
ptg18144529

ptg18144529

Pearson Education
800 East 96th Street
Indianapolis, Indiana 46240
USA

Kirupa Chinnathambi

JavaScript

ptg18144529

Acquisitions Editor
Mark Taber

Development Editor
Chris Zahn

Copy Editor
Autumn Spalding

Production Editor
Lori Lyons

Technical Editors
Trevor McCauley
Kyle Murray

JavaScript Absolute Beginner’s Guide
Copyright © 2017 by Pearson Education

All rights reserved. No part of this book shall be reproduced, stored in
a retrieval system, or transmitted by any means, electronic, mechanical,
 photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and author assume no
 responsibility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

ISBN-13: 978-0-7897-5806-4
ISBN-10: 0-7897-5806-7

Library of Congress Control Number: 2016939721

Printed in the United States of America

First Printing: July 2016

Trademarks
All terms mentioned in this book that are known to be trademarks or
 service marks have been appropriately capitalized. Pearson cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate
as possible, but no warranty or fitness is implied. The information provided
is on an “as is” basis. The author and the publisher shall have neither liability
nor responsibility to any person or entity with respect to any loss or damages
 arising from the information contained in this book.

Special Sales
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department at
 corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearsoned.com.

ptg18144529

Accessing the Free Web Edition
Your purchase of this book in any format includes access to the corresponding
Web Edition, which provides several special online-only features:

• The complete text of the book, with all the figures and code in full color

• Short videos by the author introducing each chapter

• Interactive quizzes to test your understanding of the material

• Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices
with any modern web browser that supports HTML5.

To get access to the JavaScript Absolute Beginner’s Guide Web Edition all you
need to do is register this book:

1. Go to www.quepublishing.com/register.

2. Sign in or create a new account. www.quepublishing.com.

3. Enter ISBN: 9780789758064.

4. Answer the questions as proof of purchase.

5. The Web Edition will appear under the Digital Purchases tab on your Account
page. Click the Launch link to access the product.

http://www.quepublishing.com/register
http://www.quepublishing.com

ptg18144529

This page intentionally left blank

ptg18144529

Contents at a Glance

Introduction .. 1

 1 Hello, World! ... 5

Part I The Basic Stuff

 2 Values and Variables ..13

 3 Functions ...19

 4 Conditional Statements: If, Else, and Switch ..31

 5 Meet the Loops: For, While, and Do…While!47

 6 Timers ..59

 7 Variable Scope ..67

 8 Closures ...77

 9 Where Should Your Code Live? ..89

10 Commenting Your Code ...101

Part II It’s an Object-Oriented World

11 Of Pizza, Types, Primitives, and Objects ...109

12 Strings ..121

13 When Primitives Behave Like Objects ...133

14 Arrays ...139

15 Numbers..149

16 A Deeper Look at Objects ..161

17 Extending Built-in Objects ..179

18 Booleans and the Stricter === and !== Operators189

19 Null and Undefined ..195

20 Immediately Invoked Function Expressions ..201

Part III Working with the DOM

21 JS, The Browser, and The DOM ...219

22 Finding Elements in the DOM ..231

23 Modifying DOM Elements ..237

24 Styling Your Content ..247

25 Traversing the DOM...255

26 Creating and Removing DOM Elements ...265

27 In-Browser Developer Tools ..279

ptg18144529

vi

Part IV Dealing with Events

28 Events ..299

29 Event Bubbling and Capturing ...311

30 Mouse Events ...325

31 Keyboard Events ..339

32 Page Load Events and Other Stuff ...349

33 Handling Events for Multiple Elements ...363

34 Conclusion ..373

Glossary ... 377

Index ... 381

ptg18144529

vii

Table of Contents
Introduction ...1

Parlez-vous JavaScript? ... 2

Contacting Me/Getting Help ... 4

1 Hello, World! ...5

What Is JavaScript? ... 7

A Simple Example ... 8
Code Editing Tools ... 8
The HTML Document .. 9

Looking at the Code: Statements and Functions ..10

I The Basic Stuff

2 Values and Variables ..13

Using Variables ..14

More Variable Stuff ..15
Naming Variables ...15
More on Declaring and Initializing Variables ...16

3 Functions ...19

What Is a Function? ...22
A Simple Function ..22

Creating a Function That Takes Arguments ...24

Creating a Function That Returns Data...27
The Return Keyword ..27
Exiting the Function Early ..28

4 Conditional Statements: If, Else, and Switch ..31

The If/Else Statement ..32
Meet the Conditional Operators ..34
Creating More Complex Expressions ...36
Variations on the If/Else Statement ..38
Phew ..39

ptg18144529

viii

Switch Statements ...39
Using a Switch Statement ..39
Similarity to an If/Else Statement ...42

Deciding Which to Use ...44

5 Meet the Loops: For, While, and Do…While! ...47

The for Loop ..49
The Starting Condition ..51
Terminating Condition (aka Are we done yet?) ..51
Reaching the End ...51
Putting It All Together ..52

Some for Loop Examples ...52
Stopping a Loop Early ...53
Skipping an Iteration ..53
Going Backwards ..54
You Don’t Have to Use Numbers ...54
Array! Array! Array! ...54
Oh No He Didn’t! ...55

The Other Loops ...55
The while Loop ..56
The do...while Loop ...56

6 Timers ...59

Meet the Three Timers ...60
Delaying with setTimeout ..60
Looping with setInterval ..61
Animating Smoothly with requestAnimationFrame62

7 Variable Scope ..67

Global Scope ...68

Local Scope ..70

Miscellaneous Scoping Shenanigans ..71
Declarations Using var Do Not Support Block Scoping71

How JavaScript Processes Variables ..72

Closures ..74

8 Closures ...77

Functions within Functions ...78

When the Inner Functions Aren’t Self-Contained ..81

ptg18144529

ix

9 Where Should Your Code Live? ...89

The Options on the Table ...90

Approach #1: All the Code Lives in Your HTML Document92

Approach #2: The Code Lives in a Separate File ..93
The JavaScript File ...93
Referencing the JavaScript File ..94

So...Which Approach to Use? ..97
Yes, My Code Will Be Used on Multiple Documents!97
No, My Code Is Used Only Once, on a Single HTML Document!99

10 Commenting Your Code .. 101

What Are Comments? ...102
Single Line Comments ...103
Multi-line Comments ..104

Commenting Best Practices ...106

II It’s an Object-Oriented World

11 Of Pizza, Types, Primitives, and Objects .. 109

Let’s First Talk About Pizza ..110

From Pizza to JavaScript ...113

What Are Objects? ..115

The Predefined Objects Roaming Around ...117

12 Strings ... 121

The Basics ...122

String Properties and Methods ..124
Accessing Individual Characters ...124
Combining (aka Concatenating) Strings ..125
Making Substrings out of Strings ...126
Splitting a String/split ..128
Finding Something Inside a String ...129
Upper and Lower Casing Strings ..130

ptg18144529

x

13 When Primitives Behave Like Objects .. 133

Strings Aren’t the Only Problem ..134

Let’s Pick on Strings Anyway ..134

Why This Matters ...137

14 Arrays .. 139

Creating an Array ..140

Accessing Array Values ...141

Adding Items to Your Array ..143

Removing Items from the Array ...145

Finding Items in the Array ..146

Merging Arrays ..147

15 Numbers ... 149

Using a Number...150

Operators ...151
Doing Simple Math ..151
Incrementing and Decrementing ..152

Special Values—Infinity and NaN ..153
Infinity ..153
NaN ..154

The Math Object ...154
The Constants ...155
Rounding Numbers ..157
Trigonometric Functions ..158
Powers and Square Roots..158
Getting the Absolute Value ...159
Random Numbers ..159

16 A Deeper Look at Objects .. 161

Meet the Object ..162
Creating Objects ..163
Specifying Properties ...167

Creating Custom Objects ...169

The this Keyword ..175

ptg18144529

xi

17 Extending Built-in Objects .. 179

Say Hello to Prototype...Again—Sort of! ..181

Extending Built-in Objects Is Controversial ..185
You Don’t Control the Built-in Object’s Future ...186
Some Functionality Should Not Be Extended or Overridden186

18 Booleans and the Stricter === and !== Operators 189

The Boolean Object ..190

The Boolean Function ...190

Strict Equality and Inequality Operators ...192

19 Null and Undefined .. 195

Null ..196

Undefined ...197

20 Immediately Invoked Function Expressions ... 201

Writing a Simple IIFE ...203

Writing an IIFE That Takes Arguments ..204

When to Use an IIFE ...205
Avoiding Code Collisions ..206
Closures and Locking in State...207

Making Things Private ...213

III Working with the DOM

21 JS, The Browser, and The DOM ... 219

What HTML, CSS, and JavaScript Do ...220

HTML Defines the Structure ...220

Prettify My World, CSS! ..222

It’s JavaScript Time! ...223

Meet the Document Object Model ...225
The Window Object ...227
The Document Object ...228

ptg18144529

xii

22 Finding Elements in the DOM .. 231

Meet the querySelector Family ..232
querySelector ..233
querySelectorAll ...233

It Really Is the CSS Selector Syntax ...234

23 Modifying DOM Elements ... 237

DOM Elements Are Objects—Sort of! ..238

Let’s Actually Modify DOM Elements ..240
Changing an Element’s Text Value ...242
Attribute Values ..242

24 Styling Your Content .. 247

Why Would You Set Styles Using JavaScript? ..248
A Tale of Two Styling Approaches ..248
Setting the Style Directly ...249

Adding and Removing Classes Using classList ...250
Adding Class Values ...250
Removing Class Values ..251
Toggling Class Values ..251
Checking Whether a Class Value Exists ...252
Going Further ...252

25 Traversing the DOM ... 255

Finding Your Way Around ...256
Dealing with Siblings and Parents ..259
Let’s Have Some Kids!..259

Putting It All Together ...261
Checking Whether a Child Exists ...261
Accessing All the Child Elements ...261
Walking the DOM...262

26 Creating and Removing DOM Elements .. 265

Creating Elements ...266

Removing Elements ..271

Cloning Elements ..273

ptg18144529

xiii

27 In-Browser Developer Tools .. 279

Meet the Developer Tools ..280
Inspecting the DOM ..282
Debugging JavaScript ...287
Meet the Console ...293
Inspecting Objects ...294
Logging Messages ...296

IV Dealing with Events

28 Events .. 299

What Are Events? ..300

Events and JavaScript ...302
1. Listening for Events ...302
2. Reacting to Events ...304

A Simple Example ...305

The Event Arguments and the Event Type ...307

29 Event Bubbling and Capturing ... 311

Event Goes Down. Event Goes Up. ..312

Meet the Phases ..316

Who Cares? ..319

Event, Interrupted ...319

30 Mouse Events .. 325

Meet the Mouse Events ..326
Clicking Once and Clicking Twice ..326
Mousing Over and Mousing Out..328
The Very Click-like Mousing Down and Mousing Up Events330
The Event Heard Again…and Again…and Again!331
The Context Menu ...332

The MouseEvent Properties ...333
The Global Mouse Position ...333
The Mouse Position Inside the Browser ..334
Detecting Which Button Was Clicked ..335

Dealing with the Mouse Wheel ...336

ptg18144529

xiv

31 Keyboard Events ... 339

Meet the Keyboard Events ...340

Using These Events ...341

The Keyboard Event Properties ...342

Some Examples ...343
Checking That a Particular Key Was Pressed ..343
Doing Something When the Arrow Keys Are Pressed344
Detecting Multiple Key Presses ..345

32 Page Load Events and Other Stuff .. 349

The Things That Happen During Page Load ...350
Stage Numero Uno ..351
Stage Numero Dos...352
Stage Numero Three ...352

The DOMContentLoaded and load Events ..353

Scripts and Their Location in the DOM ..355

Script Elements—Async and Defer ..358
async ..358
defer ..359

33 Handling Events for Multiple Elements .. 363

How to Do All of This..365
A Terrible Solution ..366
A Good Solution ...367
Putting It All Together ..370

34 Conclusion .. 373

Glossary .. 377

Index ... 381

ptg18144529

xv

Dedication
To Meena!

(Who still laughs at the jokes found in these pages despite having read them
a bazillion times!)

Acknowledgments
As I found out, getting a book like this out the door is no small feat. It involves a
bunch of people in front of (and behind) the camera who work tirelessly to turn my
ramblings into the beautiful pages that you are about see. To everyone at Pearson
who made this possible, thank you!

With that said, there are a few people I’d like to explicitly call out. First, I’d like to
thank Mark Taber for giving me this opportunity, Chris Zahn for patiently answering
my numerous questions, and Loretta Yates for helping make the connections that
made all of this happen. The technical content of this book has been reviewed
in great detail by my long-time friends and online collaborators, Kyle Murray and
Trevor McCauley. I can’t thank them enough for their thorough (and occasionally,
humorous!) feedback.

Lastly, I’d like to thank my parents for having always encouraged me to pursue
creative hobbies like painting, writing, playing video games, and writing code.
I wouldn’t be half the rugged indoorsman I am today without you both.J

ptg18144529

xvi

About the Author
Kirupa Chinnathambi has spent most of his life trying to teach others to love web
development as much as he does.

In 1999, before blogging was even a word, he started posting tutorials on
kirupa.com. In the years since then, he has written hundreds of articles, written
a few books (none as good as this one, of course!), and recorded a bunch of
videos you can find on YouTube. When he isn’t writing or talking about web
 development, he spends his waking hours helping make the Web more awesome
as a Program Manager in Microsoft. In his non-waking hours, he is probably
 sleeping...or writing about himself in the third person.

You can find him on Twitter (twitter.com/kirupa), Facebook (facebook.com/kirupa),
or e-mail (kirupa@kirupa.com). Feel free to contact him anytime.

http://www.twitter.com/kirupa
http://www.facebook.com/kirupa
http://www.kirupa@kirupa.com

ptg18144529
Have you ever tried learning to read, speak, or write in a language different

from the one you grew up with? If you were anything like me, your early

attempts probably looked something like the following:

INTRODUCTION

ptg18144529

2 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Unless you are Jason Bourne (or Roger Federer), you barely survived learning your
first language. This is because learning languages is hard. It doesn’t matter if you
are learning your first language or a second or third. Being good at a language
to a point where you are useful in a non-comical way takes a whole lotta time
and effort.

It requires starting with the basics:

It requires a boatload of practice and patience. It’s one of those few areas where
there really aren’t any shortcuts for becoming proficient.

Parlez-vous JavaScript?
Successfully learning a programming language is very similar to how you would
approach learning a real world language. You start off with the basics. Once
you’ve gotten good at that, you move on to something a bit more advanced.
This whole process just keeps repeating itself, and it never really ends. None of us
ever truly stop learning. It just requires starting somewhere. To help you with the

ptg18144529

INTRODUCTION 3

 “starting somewhere” part is where this book comes in. This book is filled from
beginning to end with all sorts of good (and hilarious—I hope!) stuff to help you
learn JavaScript.

Now, I hate to say anything bad about a programming language behind its back,
but JavaScript is pretty dull and boring:

There is no other way to describe it. Despite how boring JavaScript might most
certainly be,1 it doesn’t mean that learning it has to be boring as well.

As you make your way through the book, hopefully you will find the very casual
language and illustrations both informative as well as entertaining (infotaining!).
All of this casualness and fun is balanced out by deep coverage of all the
 interesting things you need to know about JavaScript to become better at using it.
By the time you reach the last chapter, you will be prepared to face almost any
 JavaScript-related challenge head-on without breaking a sweat.

1. FYI. All grammatical snafus are carefully and deliberately placed—most of the time!

ptg18144529

4 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Contacting Me/Getting Help
If you ever get stuck at any point or just want to contact me, post in the forums at:
forum.kirupa.com.

For non-technical questions, you can also send e-mail to kirupa@kirupa.com,
tweet to @kirupa, or message me on Facebook (facebook.com/kirupa). I love
 hearing from readers like you, and I make it a point to personally respond to every
 message I receive.

And with that, flip the page—it’s time to get started!

ptg18144529

1
I N T H I S C H A P T E R
• Learn why JavaScript is awesome

• Get your feet wet by creating a simple example

• Preview what to expect in subsequent chapters

HELLO, WORLD!
HTML is all about displaying things. CSS is all about making things look

good. Between the both of them, you can create some pretty nifty-looking

stuff like the examples you see on CSS Zen Garden (csszengarden.com).

Figure 1.1 shows one such example.

ptg18144529

6 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 1.1

The CSS Zen Garden home page highlighting one layout designed entirely using only CSS.

Despite how nifty sites built using only CSS and HTML look, they will be pretty
static. They don’t adapt or react to what you are doing. With those two, it’s almost
like watching a rerun of a great Seinfeld episode over and over again. It’s fun for
a while, but it gets boring eventually. The web today isn’t static. The sites that you
use often (such as those in Figure 1.2) have a certain level of interactivity and per-
sonalization that goes well beyond what HTML and CSS by themselves can provide.

FIGURE 1.2

Examples of various web sites that rely heavily on JavaScript for their proper functioning.

ptg18144529

CHAPTER 1 HELLO, WORLD! 7

To make your content come alive, you will need some outside help. What you
need is JavaScript!

What Is JavaScript?
JavaScript is a modern-day programming language that is a peer of HTML and
CSS. To be a bit vague, it basically enables you to add interactivity to your
 document. A short list of things you can do with JavaScript include the following:

• Listen to events like a mouse click and do something.

• Modify the HTML and CSS of your page after the page has loaded.

• Make things move around the screen in interesting ways.

• Create awesome games (like “Cut the Rope”) that work in the browser.

• Communicate data between the server and the browser.

• Allow you to interact with a webcam, microphone, and other devices.

….and much MUCH more! The way you write JavaScript is pretty simple—sort of.
You put together words that often resemble everyday English to tell your browser
what to do. Here is an example:
var defaultName = "JavaScript";

function sayHello(name) {

 if (name === undefined) {

alert("Hello, " + defaultName + "!");

 } else {

alert("Hello, " + name + "!");

 }

}

Don’t worry if you don’t know what any of that means. Just pay attention to what
the code looks like. Notice that you see a lot of English words like function,
if, else, alert, name, and so on. In addition to the English words, you also
have a lot of bizarre symbols and characters from the parts of your keyboard that
you probably never notice. You’ll be noticing them plenty enough really soon, and
you’ll fully understand what everything in this code does as well.

Anyway, that’s enough background information for now. While you would expect
me to now provide a history of JavaScript and the people and companies that
make it work, I’m not going to bore you with stuff like that. The only thing to know

ptg18144529

8 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

is that JavaScript is not related to Java. And with that, we’ve covered the relevant
history that matters. Instead, I want you to get your hands dirty by writing some
JavaScript. By the end of this chapter, you will have created something sweet and
simple that displays some text in your browser.

A Simple Example
Right now, you may feel a bit unprepared to start writing some code. This is
 especially true if you aren’t all that familiar with programming in general. As you’ll
soon find out, JavaScript isn’t nearly as annoying and complicated as it often
 pretends to be. It is simply just dull and boring. Big difference!

Code Editing Tools
Sorry to interrupt, but there is one more thing to call out before we go on. This
entire book is written with no expectation that you use a fancy HTML authoring
tool or a code editor. All you need is a basic editor (like Notepad!) that enables
you to see HTML, CSS, and JavaScript. Now, that isn’t to say that you won’t be
better off with a good code editor. They do make your life easier without taking
away from the ruggedness of learning JavaScript with your bare hands.

Some of my favorite code editors are

• Atom

• Sublime Text

• Notepad++

• TextMate

• Coda

• Visual Studio Code

This book doesn’t cover how to work with any particular code editor, nor does it
make a big deal out of it. As long as you know how to create a new document,
make some edits, save the document, and preview it in a browser, you know
everything you need to follow along.

If you are new to code editors and are unsure how to proceed, then check out my
playlist of short videos that shows how to use many of the editors listed here to
work with HTML, CSS, and JavaScript: http://www.kirupa.com/links/editors.htm.

http://www.kirupa.com/links/editors.htm

ptg18144529

CHAPTER 1 HELLO, WORLD! 9

The HTML Document
The first thing you need is an HTML document. This document will host the
 JavaScript that you will be writing. You can use any blank HTML document that
you want, but if you don’t have an HTML page already created and/or want to
 follow closely along, create a blank HTML page and add the following content
into it:
<!DOCTYPE html>

<html>

<head>

 <title>An Interesting Title Goes Here</title>

 <style>

 </style>

</head>

<body>

 <script>

 </script>

</body>

</html>

If you preview this document in your browser, you won’t really see anything. That
is totally expected, for this is (after all) a blank document that has nothing really
going on. That’s fine, for we’ll fix that shortly starting with the script tag that
you see toward the bottom of your example:
<script>

</script>

ptg18144529

10 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The script tag acts as a container where you can place any JavaScript you want
to run. What we want to do is display the words hello, world! in a dialog box that
appears when you load your HTML page. Depending on what browser you are
using, Figure 1.3 shows what such a dialog box would look like.

FIGURE 1.3

Our dialog box displaying hello, world!

Inside your script region, add the following (highlighted) line:
<script>

 alert("hello, world!");

</script>

Save your HTML file and open it in your browser. Once your page has loaded, you
should see a dialog box with the words hello, world! displayed. It should look very
similar to the screenshot you see in Figure 1.3.

If this is your first attempt at writing JavaScript, congratulations! You just crossed a
giant hurdle. You created a working example using it. Now, let’s look at what you
did and try to make sense of what is going on.

Looking at the Code: Statements and Functions
What you just did is write a very simple JavaScript statement. A statement makes
up the logical set of instructions that tell your browser what to do. A typical
 application will have many MANY statements. In our case, we just have one:
alert("hello, world!");

ptg18144529

CHAPTER 1 HELLO, WORLD! 11

NOTE You can usually tell when something is a statement
by looking at the last character in it. It is usually a semicolon (;)
just like what you see in the earlier code snippet. Now, this is
isn’t a guaranteed way to identify a statement. JavaScript works
fine in many cases without having a semicolon at the end of your
 statements, and some developers may even choose to omit them
as part of the code they write.

Inside a statement, you will see all sorts of funky JavaScript jargon. Our code,
despite being just one line, is no exception. You have this weird thing called
alert that makes an appearance. This is an example of a common English word
that behaves similarly in the JavaScript world to how it might in our everyday
world. It is responsible for getting your attention by displaying some text.

To get more precise, the word alert is actually something known as a function.
You will use functions all the time, for a function is basically a reusable chunk
of code that does something. The something it does could be defined by you,
defined by some third party library you are using, or it could be defined by the
JavaScript framework itself. In our case, the code that gives your alert function
the magical ability to display a dialog box with a message you pass to it lives
deep inside the bowels of your browser. All you really need to know is that if you
want to use the alert function, simply call it and pass in the text you want it to
display. Everything else is taken care of for you.

Getting back to our example, the text you want to display is hello, world!. Notice
how I am specifying it. I wrap the words inside quotation marks:
alert("hello, world!");

Whenever you are dealing with pieces of text (more commonly known as strings),
you will always wrap them inside single or double quotation marks. I know that
seems weird, but every programming language has its own quirks. This is one of
the many quirks you will see as you explore JavaScript further. We’ll look at strings
in greater detail shortly, so for now, just enjoy the view from the outside.

Let’s go one step further. Instead of displaying hello, world!, change the text you
are displaying to show your first and last name instead. Here is an example of
what my code looks like when I use my name—or the name I wish I had:
alert("Steve Holt!!!");

If you run your application, you will see your name appear in the dialog box.
Pretty straightforward, right? You can replace the contents of your string with all
sorts of stuff—the name of your pet, your favorite TV show, and so on. JavaScript
will display it, and (best of all) it will not judge whether your favorite TV show hap-
pens to involve the day-to-day lives of the Kardashians…or meerkats.

ptg18144529

12 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
In this chapter, you created a simple example that helped get you familiar with
writing some JavaScript code. As part of getting you familiar, I threw a lot of
 concepts and terms at you such as statement, function, string, and so on. We
even used the alert function a bunch of times to get some text to display on
screen:
alert("We just finished the first chapter!");

I certainly don’t expect you to know or remember all of them now. In future
 chapters, we are going to take each interesting part of what you’ve seen so far
and elaborate on it in nauseatingly vivid detail with (possibly) better examples.
After all, I’m pretty sure you want to eventually do things in JavaScript that go
beyond displaying some text in a ridiculously annoying dialog box.

Going forward, at the end of each chapter, you may even see a set of links to
external resources written by me or others. These resources will give you more
details or a different perspective on what you learned, along with opportunities
to put your learning into practice with more involved examples. Think of what you
see in this book as a jumping-off point for greater and more awesome things.

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

http://www.quepublishing.com

ptg18144529

2
I N T H I S C H A P T E R
• Learn how to use values to store data

• Organize your code with variables

• Get a brief look at variable naming conventions

VALUES AND VARIABLES
In JavaScript, every piece of data that you provide or use is considered

to contain a value. In the example you saw from our introduction in the

 previous chapter, the words hello, world! might just be some words that

you pass in to the alert function:

alert("hello, world!");

ptg18144529

14 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

To JavaScript, these words and punctuation marks have a specific representation
under the hood. They are considered values. You may not have thought much
about that when you were typing those words in, but when you are in JavaScript
country, every piece of data you touch is considered a value.

Now, why is knowing this important? It is important because you will be working
with values a whole lot. Working with them in a way that doesn’t drive you insane
is a good thing. There are two things you need to simplify your life when working
with values. You need to:

1. Easily identify them.

2. Reuse them throughout your application without unnecessarily duplicating the
value itself.

Those two things are provided by what we are going to be spending the rest of
our time on in this chapter: variables. Let’s learn all about them here.

Onwards!

Using Variables
A variable is basically a name for a value. Instead of typing hello, world! every
single time you want to use that phrase in your application, you can assign that
phrase to a variable and use that variable whenever you need to use hello, world!
again. This will make more sense in a few moments—I promise!

The way to use variables is by using the var keyword followed by the name you
want to give your variable:
var myText;

In this line of code, we very successfully declared a variable called myText. Right
now, your variable has simply been declared. It doesn’t contain anything of value
(ha!). It is merely an empty shell.

Let’s fix that by initializing our variable to a value like—let’s say—hello, world!:
var myText = "hello, world!";

You probably shouldn’t be too surprised that I ended up using that phrase.
Anyway, let’s modify our original example that you saw earlier to use our newly
declared (and initialized) variable:
var myText = "hello, world!";

alert(myText);

ptg18144529

CHAPTER 2 VALUES AND VARIABLES 15

Notice that we are no longer passing in our hello, world! text to the alert
 function directly. Instead, we are passing in the variable name myText. The end
result is the same. When this script runs, an alert with hello, world! will be shown.

What this change does is simple. It allows us to have one place in our code where
hello, world! is being specified. If we wanted to change this text to The dog ate
my homework!, all you would have to do is just make one change to the value
specified by the myText variable:
var myText = "The dog ate my homework!";

alert(myText);

Throughout your code, wherever you referenced the myText variable, it is the
new value that will be used. While this is hard to imagine for something as simple
as what we have right now, for larger applications this convenience of having just
one location where you can make a change that gets reflected everywhere is a
major time saver. You’ll see more, less-trivial cases of the value variables provide
in subsequent examples and chapters.

More Variable Stuff
What you learned in the previous section will take you far in life—at least, in the
part of your life that involves getting familiar with JavaScript. I am not going to
go very deep into variables here; we’ll do all of that as part of future chapters
where the code is more complex and the importance of variables is more obvious.
With that said, there are a few odds and ends that I want to cover before calling
it a day.

Naming Variables
You have a lot of freedom in naming your variables however you see fit. Ignoring
what names you should give things based on philosophical/cultural/stylistic
 preferences, from a technical point of view, JavaScript is very lenient about what
characters (letters, numbers, and other stuff your keyboard can generate) can go
into a variable name.

Basically, keep the following things in mind when naming them:

1. Your variables can be as short as one character, or they can be as long as you
want. Think thousands and thousands…and thousands of characters.

2. Your variables can start with a letter, underscore (_), or the dollar sign ($)
 character. They can’t start with a number.

ptg18144529

16 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

3. Outside of the first character, your variables can be made up of any
 combination of letters, underscores, numbers, and $ characters. You can
also mix and match lowercase and uppercase to your heart’s content.

4. Spaces are not allowed.

I’ve posted some examples of valid variable names in the following:
var myText;

var $;

var r8;

var _counter;

var $field;

var thisIsALongVariableName_butItCouldBeLonger;

var __$abc;

var OldSchoolNamingScheme;

To check whether your variable name is valid, check out the really awesome and
simple JavaScript Variable Name Validator (http://bit.ly/kirupaVariable).

Outside of valid names that stop JavaScript from complaining, there are other
things to focus on as well. There are things like naming conventions where you can
spend hours debating what the proper variable name should look like. While we
won’t dwell on that topic here, a good starting point for understanding this space
is Douglas Crockford’s Code Convention: http://bit.ly/kirupaCodeConvention.

More on Declaring and Initializing Variables
One of the things you will learn about JavaScript is that it is a very forgiving and
“easy to work with” language. That has some implications, but we’ll ignore them
for now and deal with the consequences later. For example, you don’t have to use
the var keyword to declare a variable. You could just do something as follows:
myText = "hello, world!";

alert(myText);

Notice the myText variable is being used without formally being declared with
the var keyword. While not recommended, this is completely fine. The end result
is that you will still have a variable called myText. The thing is that, by declaring

http://bit.ly/kirupaVariable
http://bit.ly/kirupaCodeConvention

ptg18144529

CHAPTER 2 VALUES AND VARIABLES 17

a variable this way, you are declaring it globally. Don’t worry if the last sentence
makes no sense. We’ll look at what “globally” means when talking about variable
scope in Chapter 7, “Variable Scope.”

One more thing to call out. The thing you should know is that the declaration and
initialization of a variable does not have to be part of the same statement. You can
break it up across multiple statements:
var myText;

myText = "hello, world!";

alert(myText);

In practice, you will find yourself breaking up your declaration and initialization of
variables all the time. You’ll see some examples much later on where we do this,
and it will totally make sense why at that point.

One more thing to call out—yes, this time I am not lying about this being the last
thing. You can change the value of a variable whenever you want, to whatever you
want:
var myText;

myText = "hello, world!";

myText = 99;

myText = 4 * 10;

myText = true;

myText = undefined;

alert(myText);

If you have experience working with languages that are more strict and don’t allow
variables to store a variety of data types, this leniency (and being over 21) makes
JavaScript sorta cool.

ptg18144529

18 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

THE ABSOLUTE MINIMUM
Values store data, and variables act as an easy way to refer to that data. There are
a lot of interesting details about values, but those are details that you do not need
to learn right now. Just know that JavaScript enables you to represent a variety of
values such as text and numbers without a lot of fuss.

To make your values more memorable and reusable, you declare variables.
You declare variables using the var keyword and a variable name. If you want
to initialize the variable to a default value, you follow all of that up with an equal
sign (=) and the value you want to initialize your variable with.

http://www.quepublishing.com

ptg18144529

3
I N T H I S C H A P T E R
• Learn how functions help you better organize and

group your code

• Understand how functions make your code reusable

• Discover the importance of function arguments and
how to use them

FUNCTIONS
So far, all of the code we’ve written contained virtually no structure. It was

just…there:

alert("hello, world!");

There is nothing wrong with having code like this. This is especially true if

your code is made up of a single statement. Most of the time, though, that

will never be the case. Your code will rarely be this simple when you are

using JavaScript in the real world for real-worldy things.

ptg18144529

20 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

To highlight this, let’s say we want to display the distance something has traveled
(see Figure 3.1).

FIGURE 3.1

The distance something has traveled.

If you remember from school, distance is calculated by multiplying the speed
something has traveled by how long it took as shown in Figure 3.2.

FIGURE 3.2

The formula for calculating distance.

The JavaScript version of that will look as follows:
var speed = 10;

var time = 5;

alert(speed * time);

We have two variables—speed and time—and they each store a number. The
alert function displays the result of multiplying the values stored by the speed
and time variables. Quick note: The * character (which I threw in there without
warning) between two numbers indicates that a multiplication needs to take place.
Anyway, as you can see, our JavaScript is a pretty literal translation of the distance
equation you just saw.

Let’s say we want to calculate the distance for more values. Using only what we’ve
seen so far, our code would look as follows:
var speed = 10;

var time = 5;

alert(speed * time);

ptg18144529

CHAPTER 3 FUNCTIONS 21

var speed1 = 85;

var time1 = 1.5;

alert(speed1 * time1);

var speed2 = 12;

var time2 = 9;

alert(speed2 * time2);

var speed3 = 42;

var time3 = 21;

alert(speed3 * time3);

I don’t know about you, but this just looks (as Frank Caliendo impersonating
Charles Barkley would say) turrible.1 Our code is unnecessarily verbose and
 repetitive. As I mentioned earlier, when we looked at variables in the previous
chapter, repetition makes your code harder to maintain. It also wastes your time.

This entire problem can be solved very easily by using what you’ll be seeing a lot
of here—functions:
function showDistance(speed, time) {

 alert(speed * time);

}

showDistance(10, 5);

showDistance(85, 1.5);

showDistance(12, 9);

showDistance(42, 21);

Don’t worry too much about what this code does just yet. Just know that this
smaller chunk of code does everything all those many lines of code did earlier
without all of the negative side effects and calories. We’ll learn all about functions,
and how they do all the sweet things that they do, starting…right…now!

1. Frank Caliendo FTW: http://bit.ly/kirupaFrankCB.

http://bit.ly/kirupaFrankCB

ptg18144529

22 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

What Is a Function?
At a very basic level, a function is nothing more than a wrapper for some code.
A function basically

• Groups statements together

• Makes your code reusable

You will rarely write or use code that doesn’t involve functions, so it’s important
that you become familiar with them and learn all about how well they work.

A Simple Function
The best way to learn about functions is to just dive right in and start using them,
so let’s start off by creating a very simple function. Creating a function is pretty
easy and only requires understanding some little syntactical quirks like using weird
parentheses and brackets.

The following is an example of what a very simple function looks like:
function sayHello() {

 alert("hello!");

}

Just having your function isn’t enough, though. Your function needs to actually be
called, and you can do that by adding the following line at the end of your code
block:
function sayHello() {

 alert("hello!");

}

sayHello();

If you type all this in your favorite code editor and preview your page in your
browser, you will see hello! displayed. The only thing that you need to know right
now is that your code works. Let’s look at why the code works by breaking it up
into individual chunks and looking at them in greater detail.

First, you see the function keyword leading things off:
function sayHello() {

 alert("hello!");

}

ptg18144529

CHAPTER 3 FUNCTIONS 23

This keyword tells the JavaScript engine that lives deep inside your browser to
treat this entire block of code as something to do with functions.

After the function keyword, you specify the actual name of the function
 followed by some opening and closing parentheses, ():
function sayHello() {

 alert("hello!");

}

Rounding out your function declaration are the opening and closing brackets that
enclose any statements that you may have inside:
function sayHello() {

 alert("hello!");

}

The final thing is the contents of your function—the statements that make your
function actually…functional:
function sayHello() {

 alert("hello!");

}

In our case, the content is the alert function that displays a dialog box with the
word hello! displayed.

The last thing to look at is the function call:
function sayHello() {

 alert("hello!");

}

sayHello();

The function call is typically the name of the function you want to call (or invoke)
followed again by parentheses. Without your function call, the function you
 created doesn’t do anything. It is the function call that wakes your function up and
makes it do things.

Now, what you have just seen is a very simple function. In the next couple
of sections, we are going to build on what you’ve just learned and look at
 increasingly more realistic examples of functions.

ptg18144529

24 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Creating a Function That Takes Arguments
Like I mentioned earlier, the previous sayHello example was quite simple:
function sayHello() {

 alert("hello!");

}

You call a function, and the function does something. That simplification by itself
is not out of the ordinary. All functions work just like that. There are differences,
 however, in the details on how functions get invoked, where they get their data
from, and so on. The first such detail we are going to look at involves functions
that take arguments.

Let’s start with a simple example:
alert("my argument");

What we have here is your alert function. You’ve probably seen it a few (or a few
dozen) times already. As you know, this function simply displays some text that
you tell it to show (see Figure 3.3).

FIGURE 3.3

The text “my argument” is displayed as a result of the alert function.

Let’s look at this a little closer. Between your opening and closing parentheses
when calling the alert function, you specify the stuff that needs to be displayed.
This “stuff” is more formally known as an argument. The alert function is just
one of many functions that take arguments, and many functions you create will
take arguments as well.

ptg18144529

CHAPTER 3 FUNCTIONS 25

To stay local, within this chapter itself, another function that we briefly looked at
that takes arguments is our showDistance function:
function showDistance(speed, time) {

 alert(speed * time);

}

So, you can tell when a function takes arguments by looking at the function decla-
ration itself:
function showDistance(speed, time) {

 ...

}

Functions that don’t take arguments are easy to identify. They typically show up
with empty parentheses following their name. Functions that take arguments
aren’t like that. Following their name and between the parentheses, these func-
tions will contain some information about the quantity of arguments they need,
along with some hints about what values your arguments will take.

For showDistance, you can infer that this function takes two arguments: the first
corresponds to the speed and the second corresponds to the time.

You specify your arguments to the function as part of the function call:
function showDistance(speed, time) {

 alert(speed * time);

}

showDistance(10, 5);

In our case, we call showDistance and specify the values we want to pass to the
function inside the parentheses.
showDistance(10, 5);

Functions that take arguments, however, contain some information about the
quantity of arguments they need in the parentheses following their name, along
with some hints about what values your arguments will take. To emphasize this,
let’s look at Figure 3.4.

ptg18144529

26 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 3.4

Order matters.

When the showDistance function gets called, the 10 corresponds to the speed
argument, and the 5 corresponds to the distance argument. That mapping is
entirely based on order.

Once the values you pass in as arguments reach your function, the names you
specified for the arguments are treated just like variable names (see Figure 3.5).

FIGURE 3.5

The names of the arguments are treated as variable names.

You can use these variable names to easily reference the values stored by the
arguments inside your function.

ptg18144529

CHAPTER 3 FUNCTIONS 27

NOTE If a function happens to take arguments and you don’t
provide any arguments as part of your function call, provide too
few arguments, or provide too many arguments, things can still
work. You can code your function defensively against these cases.

In general, to make the code you are writing clear, just provide the required
number of arguments for the function you are calling. Don’t complicate things
unnecessarily.

Creating a Function That Returns Data
The last function variant we will look at is one that returns some data back to
whatever called it. Here is what we want to do. We have our showDistance
 function, and we know that it looks as follows:
function showDistance(speed, time) {

 alert(speed * time);

}

Instead of having our showDistance function calculate the distance and display
it as an alert, we actually want to store that value for some future use. We want
to do something like this:
var myDistance = showDistance(10, 5);

The myDistance variable will store the results of the calculation done by the
showDistance function. There are just a few things you need to know about
being able to do something like this.

The Return Keyword
The way you return data from a function is by using the return keyword. Let’s
create a new function called getDistance that looks identical to showDistance
with the only difference being what happens when the function runs to
completion:
function getDistance(speed, time) {

 var distance = speed * time;

 return distance;

}

Notice that we are still calculating the distance by multiplying speed and time.
Instead of displaying an alert, we return the distance (as stored by the distance
variable).

ptg18144529

28 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

To call the getDistance function, you can just call it as part of initializing a
variable:
var myDistance = showDistance(10, 5);

When the getDistance function gets called, it gets evaluated and returns a
numerical value that then becomes assigned to the myDistance variable. That’s
all there is to it.

Exiting the Function Early
Once your function hits the return keyword, it stops everything it is doing at that
point, returns whatever value you specified to whatever called it, and exits:
function getDistance(speed, time) {

 var distance = speed * time;

 return distance;

 if (speed < 0) {

distance *= -1;

 }

}

Any code that exists after your return statement will not be reached, such as the
following highlighted lines:
function getDistance(speed, time) {

 var distance = speed * time;

 return distance;

 if (speed < 0) {

distance *= -1;

 }

}

It will be as if that chunk of code never even existed. In practice, you will use the
return statement to terminate a function after it has done what you wanted it
to do. That function could return a value to the caller like you saw in the previous
examples, or that function could simply exit:
function doSomething() {

 // do something

 return;

}

ptg18144529

CHAPTER 3 FUNCTIONS 29

Using the return keyword to return a value is optional. The return keyword can
be used by itself as you see here to just exit the function.

THE ABSOLUTE MINIMUM
Functions are among a handful of things that you will use in almost every single
JavaScript application. They provide the much sought-after capability to help
make your code reusable. Whether you are creating your own functions or using
the many functions that are built into the JavaScript language, you will simply not
be able to live without them.

What you have seen so far are examples of how functions are commonly used.
There are some advanced traits that functions possess that I did not cover here.
Those uses will be covered in the future…a distant future. For now, everything
you’ve learned will take you quite far when it comes to understanding how
 functions are used in the real world.

TIP Just a quick reminder for those of you reading these words
in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

http://www.quepublishing.com

ptg18144529

This page intentionally left blank

ptg18144529

4
I N T H I S C H A P T E R
• Use the popular if/else statement to help make a

decision in code

• Learn about switch statements and when to use
them

CONDITIONAL
STATEMENTS: IF, ELSE,
AND SWITCH
From the moment you wake up, whether you realize it or not, you start

making decisions. Turn the alarm off. Turn the lights on. Look outside to

see what the weather is like. Brush your teeth. Put on your robe and wizard

hat. Basically…you get the point. By the time you step outside your door,

you consciously or subconsciously will have made hundreds of decisions

with each decision having a certain effect on what you ended up doing.

ptg18144529

32 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

For example, if the weather looks cold outside, you might decide to wear a
hoodie or a jacket. Independent of what you actually do, you can model this
 decision as shown in Figure 4.1.

FIGURE 4.1

An example of some of the choices you make everyday.

If the weather is cold, you do whatever falls into the true bucket. If the weather
is not cold, then you do whatever is in the false bucket. Every decision you make
can be modeled as a series of true and false statements. This may sound a bit
chilly (ha!), but that’s generally how we, others, and pretty much all living things go
about making choices.

This generalization especially applies to everything your computer does. This may
not be evident from the code we’ve written so far, but we are going to fix that.
In this chapter, I will cover what is broadly known as conditional statements.
These are the digital equivalents of the decisions we make where your code does
something different depending on whether something is true or false.

Onwards!

The If/Else Statement
The most common conditional statement you will use in your code is the if/else
statement or just the if statement. The way this statement works is shown in
 Figure 4.2.

ptg18144529

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 33

FIGURE 4.2

The anatomy of an if/else statement.

To make sense of this, let’s take a look at a simple example of an if statement in
action:
var safeToProceed = true;

if (safeToProceed) {

 alert("You shall pass!");

} else {

 alert("You shall not pass!");

}

If you put all of this code into an HTML document and run it, you will see an alert
with the text You shall pass! This is because your expression (the thing following the
word if that ultimately evaluates to true or false) is the variable safeToProceed.
This variable is initialized to true, so the “true” part of your if statement kicks in.

ptg18144529

34 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Now, go ahead and change the value of the safeToProceed variable from true
to false:
var safeToProceed = false;

if (safeToProceed) {

 alert("You shall pass!");

} else {

 alert("You shall not pass!");

}

This time when you run this code, you will see an alert with the text “You shall not
pass!” This happens because your expression evaluates to false. So far, all of this
should seem pretty simple. That’s good. Hopefully you’ll feel the same way in a
few more sections!

Meet the Conditional Operators
In most cases, your expression will rarely be a simple variable that is set to true or
false like it was in our earlier example. Your expression will involve what are known
as conditional operators that help you to compare between two or more things
to establish a true or false outcome.

The general format of such expressions is as shown in Figure 4.3.

FIGURE 4.3

A more general look at what your if/else statements look like.

ptg18144529

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 35

The conditional operator defines a relationship between the expressions. The end
goal is to return a true or a false so that our if statement knows which block of
code to execute. This may not make much sense yet, but bear with me. Let’s look
at the conditional operators first before diving into more examples where we tie
everything together.

The conditional operators are listed in Table 4.1.

TABLE 4.1 Conditional Operators in JavaScript

Operator When It Is True

== If the first expression evaluates to something that is equal to the second
expression.

>= If the first expression evaluates to something that is greater than or equal to
the second expression

> If the first expression evaluates to something that is greater than the second
expression

<= If the first expression evaluates to something that is lesser than or equal to the
second expression

< If the first expression evaluates to something that is less than the second
expression

!= If the first expression evaluates to something that is not equal to the second
expression

&& If the first expression and the second expression both evaluate to true

|| If either the first expression or the second expression evaluate to true

== If the first expression evaluates to something that is equal to the second
expression

>= If the first expression evaluates to something that is greater or equal to the
second expression

> If the first expression evaluates to something that is greater than the second
expression

!== and === Just know that these exist. We’ll look at these in a future chapter.

Let’s take our fuzzy understanding of conditional operators and make them unfuzzy
by looking at an example:
var speedLimit = 55;

function amISpeeding(speed) {

 if (speed >= speedLimit) {

ptg18144529

36 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

alert("Yes. You are speeding.");

 } else {

alert("No. You are not speeding. What's wrong with you?");

 }

}

amISpeeding(53);

amISpeeding(72);

Take a moment to understand what exactly is going on. We have a variable called
speedLimit that is initialized to 55. We then have a function called amISpeeding
that takes an argument named speed. Inside this function, you have an if state-
ment whose expression checks whether the passed in speed value is greater than
or equal (using >=) to the value stored by the speedLimit variable:
function amISpeeding(speed) {

 if (speed >= speedLimit) {

alert("Yes. You are speeding.");

 } else {

alert("No. You are not speeding. What's wrong with you?");

 }

}

The last thing (well, actually the first thing) our code does is actually call the
amISpeedingfunction by passing in a few values for speed:
amISpeeding(53);

amISpeeding(72);

When we call this function with a speed of 53, the speed >= speedLimit
expression evaluates to false. The reason is that 53 is not greater than or equal to
the stored value of speedLimit, which is 55. This will result in an alert showing
the “you are not speeding” message.

The opposite happens when you call amISpeeding with a speed of 72. In this
case, you are speeding and the conditional expression evaluates to true. An alert
telling you that you are speeding will also appear.

Creating More Complex Expressions
The thing you need to know about these expressions is that they can be as simple
or as complex as you can make them. They can be made up of variables, function
calls, or raw values. They can even be made up of combinations of variables,

ptg18144529

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 37

 function calls, or raw values all separated using any of the operators you saw
earlier. The only thing that you need to ensure is that your expression ultimately
evaluates to true or false.

Here is a slightly more involved example:
var xPos = 300;

var yPos = 150;

function sendWarning(x, y) {

 if ((x < xPos) && (y < yPos)) {

alert("Adjust the position");

 } else {

alert("Things are fine!");

 }

}

sendWarning(500, 160);

sendWarning(100, 100);

sendWarning(201, 149);

Notice what your condition inside sendWarning’s if statement looks like:
function sendWarning(x, y) {

 if ((x < xPos) && (y < yPos)) {

alert("Adjust the position");

 } else {

alert("Things are fine!");

 }

}

There are three conditions being tested here. The first one is whether x is less
than xPos. The second one is whether y is less than yPos. The third is seeing
whether the first statement and the second statement both evaluate to true
to allow the && operator to return a true as well. You can chain many series of
 conditional statements together depending on what you are doing. The tricky
thing, besides learning what all the operators do, is to ensure that each condition
and subcondition is properly insulated using parentheses.

All of what I am describing here and in the previous section falls under the
umbrella of Boolean Logic. If you are not familiar with this topic, I recommend
that you glance through the excellent quirksmode article on this exact topic:
http://www.quirksmode.org/js/boolean.html.

http://www.quirksmode.org/js/boolean.html

ptg18144529

38 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Variations on the If/Else Statement
We are almost done with the if statement. The last thing we are going to is look
at some of its relatives.

The if-only Statement
The first one is the solo if statement that doesn’t have an else companion:
if (weight > 5000) {

 alert("No free shipping for you!");

}

In this case, if the expression evaluates to true, then great. If the expression
 evaluates to false, then your code just skips over the alert and moves on to
 wherever it needs to go next. The else block is completely optional when working
with if statements. To contrast the if-only statement, we have our next relative…

The Dreaded If/Else-If/Else Statement
Not everything can be neatly bucketed into a single if or if/else statement.
For those kinds of situations, you can chain if statements together by using the
else if keyword. Instead of explaining this further, let’s just look at an example:
if (position < 100) {

 alert("Do something!");

} else if ((position >= 100) && (position < 300)) {

 alert("Do something else!");

} else {

 alert("Do something even more different!");

}

If the first if statement evaluates to true, then your code branches into the first
alert. If the first if statement is false, then our code evaluates the else if
statement to see if the expressions in it evaluate to true or false. This repeats
until your code reaches the end. In other words, your code simply navigates down
through each if and else if statement until one of the expressions evaluates
to true:
if (condition) {

 ...

} else if (condition) {

 ...

} else if (condition) {

 ...

ptg18144529

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 39

} else if (condition) {

 ...

} else if (condition) {

 ...

} else if (condition) {

 ...

} else {

 ...

}

If none of the statements have expressions that evaluate to true, the code inside
the else block (if it exists) executes. Between the more complex expressions and
if/else if statements, you can represent pretty much any decision that your
code might need to evaluate.

Phew
And with this, you have learned all there is to know about the if statement. It’s
time to move on to a different conditional statement…

Switch Statements
In a world filled with beautiful if, else, and else if statements, the need for
yet another way of dealing with conditionals may seem unnecessary. However,
people with more battered keyboards than you and me disagreed, so we have
what are known as switch statements. In this section, putting my initial snarkastic
comments aside, you’ll learn all about them and why they are useful.

Let’s get started!

Using a Switch Statement
The basic structure of a switch statement is as follows:
switch (expression) {

 case value1:

statement;

break;

 case value2:

statement;

break;

ptg18144529

40 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 case value3:

statement;

break;

 default:

statement;

}

The thing to never forget is that a switch statement is nothing more than
a conditional statement that tests whether something is true or false. That
 “something” is a variation of whether the result of evaluating the expression
equals a case value. Now, I do realize that this probably makes no sense if you
have never worked with switch statements before. I have worked with switch
statements, and what I wrote barely makes sense to me either!

Let’s make this explanation stick by looking at a better example:
var color = "green";

switch (color) {

 case "yellow":

alert("yellow color");

break;

 case "red":

alert("red color");

break;

 case "blue":

alert("blue color");

break;

 case "green":

alert("green color");

break;

 case "black":

alert("black color");

break;

 default:

alert("no known color specified");

}

ptg18144529

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 41

In this simple example, I have a variable called color whose value is set to green:
var color = "green";

This color variable is what gets passed in to our switch statement, and it is here
that things get interesting!

Our switch statement contains a collection of case blocks. Only one of these
blocks will get hit with their code getting executed. The way this chosen one
gets picked is by matching a block’s case value with the result of evaluating the
 expression. In our case, because our expression evaluates to a value of green, the
code inside the case block whose case value is also green gets executed:
var color = "green";

switch (color) {

 case "yellow":

alert("yellow color");

break;

 case "red":

alert("red color");

break;

 case "blue":

alert("blue color");

break;

 case "green":

alert("green color");

break;

 case "black":

alert("black color");

break;

 default:

alert("no known color specified");

}

Note that only the code inside the green case block gets executed. This is thanks
to the break keyword that ends that block. When your code hits the break, it
exits the entire switch block and continues executing the code that lies below it.
If you did not specify the break keyword, you will still execute the code inside the
green case block. The difference is that you will then move to the next case block
(the black one in our example) and execute any code that is there. Unless you hit

ptg18144529

42 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

another break keyword, your code will just move through every single case block
until it reaches the end. You almost never want that.

With all of this said, if you were to run this code, you will see an alert dialog box
that displays the words green color!

You can alter the value for the color variable to other valid values to see the
other case blocks execute. Sometimes, no case block’s value will match the
result of evaluating an expression. In those cases, your switch statement will just
do nothing. If you wish to specify a default behavior, add a default block as
 highlighted below:
switch (color) {

 case "yellow":

alert("yellow color");

break;

 case "red":

alert("red color");

break;

 case "blue":

alert("blue color");

break;

 case "green":

alert("green color");

break;

 case "black":

alert("black color");

break;

 default:

alert("no known color specified");

}

Note that the default block looks a bit different than your other case statements.
More specifically, it doesn’t actually contain the word case. You should remember
this detail in case it comes up during trivia night. You never know!

Similarity to an If/Else Statement
At the beginning, I mentioned that a switch statement is used for evaluating
conditions—just like an if/else statement. Given that this is a major accusation,

ptg18144529

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 43

let’s explore this in further detail by first looking at how an if statement would
look if it were to be literally translated into a switch statement.

Let’s say we have an if statement that looks as follows:
var number = 20;

if (number > 10) {

 alert("yes");

} else {

 alert("nope");

}

Because the value of our number variable is 20, our if statement will evaluate to
true. Seems pretty straightforward. Now, let’s turn this into a switch statement:
switch (number > 10) {

 case true:

 alert("yes");

 break;

 case false:

 alert("nope");

 break;

}

Notice that our conditional expression is number > 10. The case value for the
case blocks is set to true or false. Because number > 10 evaluates to true, the
code inside the true case block gets executed. While your expression in this
case wasn’t as simple as reading a color value stored in a variable as in the previ-
ous section, our view of how switch statements work still hasn’t changed. Your
expressions can be as complex as you would like. If they evaluate to something
that can be matched inside a case value, then everything is golden—like a fleece!

Now, let’s look at a slightly more involved example doing the opposite of what we
just did. This time, let’s convert our earlier switch statement involving colors into
equivalent if/else statements. The switch statement we used earlier looks as
follows when converted into a series of if/else statements:
var color = "green";

if (color == "yellow") {

 alert("yellow color");

} else if (color == "red") {

 alert ("red color");

ptg18144529

44 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

} else if (color == "blue") {

 alert ("blue color");

} else if (color == "green") {

 alert ("green color");

} else if (color == "black") {

 alert ("black color");

} else {

 alert ("no color specified");

}

As you can see, if/else statements are very similar to switch statements and
vice versa. The default case block becomes an else block. The relationship
between the expression and the case value in a switch statement is combined
into if/else conditions in an if/else statement. Everything translates nicely!

Deciding Which to Use
In the previous section, you saw how interchangeable switch statements
and if/else statements are. When you have two ways of doing something very
similar, it is only natural to want to know when it is appropriate to use one over the
other. In a nutshell, and this is totally not helpful, use whichever one you prefer.
There are many arguments on the web about when to use switch versus an if/
else, and the one thing that is clear is that they are all inconclusive. For once, the
Internet has failed to provide a clear answer on a complicated debate.

My personal preference is to go with whatever is more readable. If you look at the
comparisons earlier between switch and if/else statements, you’ll notice that
if you have a lot of conditions, your switch statement tends to look a bit cleaner.
It is certainly less verbose and a bit more readable. What your cut off mark is for
deciding when to switch (ha!) between using a switch statement and an if/
else statement is entirely up to you. I tend to draw the line at around four or five
conditions.

Second, a switch statement works best when you are evaluating an expression
and matching the result to a value. If you are doing something more complex
involving weird conditions, value checking, and other shenanigans, you probably
want to use something different. That “something different” is probably an if
statement. You may find other tricks as you progress further through the book that
may be more appropriate.

ptg18144529

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 45

To reiterate, use whatever you like. For every person who agrees with what I’ve
written, you’ll find someone who can convincingly provide a counter argument. If
you are part of a team with coding guidelines, then follow them. Whatever you do,
just be consistent. It makes your life, as well as the life of anybody else who will be
working on your code, a little bit easier.

For what it is worth, I’ve personally never been in a situation where I had to
use a switch statement, but I’ve been in many situations where I was looking
at someone else’s code that used a lot of switch statements. Your mileage
may vary.

THE ABSOLUTE MINIMUM
While creating true artificial intelligence goes beyond the scope of this book (:P),
you can write code to help your application make choices. This code will almost
always take the form of an if/else statement where you provide the browser with a
set of choices it needs to make:
var loginStatus = false;

if (name == "Admin") {

 loginStatus = true;

}

These choices are fed by conditions that need to evaluate to true or false.

In this chapter, we learned the mechanics of how to work with if/else statements
and their (sortof) related cousins, the switch statements. In future chapters, you’ll
see us using these statements very casually, as if we’ve known them for years, so
you’ll be very familiar with how to write these statements by the time you reach
the end of this book.

ptg18144529

46 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

http://www.quepublishing.com

ptg18144529

5
I N T H I S C H A P T E R
• Learn how to have some code run repeatedly

• Work with for, while, and do…while loops

MEET THE LOOPS: FOR,
WHILE, AND DO…WHILE!
When you are coding something, there will be times when you want to

repeat an action or run some code multiple times. For example, let’s say

we have a function called saySomething that we want to repeatedly call

10 times.

ptg18144529

48 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

One way we could do this is by simply calling the function 10 times using copy
and paste:
saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

This works and accomplishes what we set out to do, but you shouldn’t do
 something like this. Duplicating code is never a good idea.

Now, even if you decide to duplicate some code a few times manually, this
approach doesn’t really work in practice. You will often never know the number of
times you need to run your code. The number of times will vary based on some
external factor such as the number of items in a collection of data, some result
from a web service call, the number of letters in a word, and various other things
that will keep changing. It won’t always be a fixed number like 10. More than
likely, the number of times you want to repeat some code could be very VERY
large. You don’t want to copy and paste something a few hundred or thousand
times to repeat something. That would be terrible.

What we need is a generic solution for repeating code with control over how
many times the code repeats. In JavaScript, this solution is provided in the form of
something known as a loop. There are three kinds of loops you can create:

• for loops

• while loops

• do...while loops

Each of these three loop variations enable you to specify the code you want to
repeat (aka loop) and a way to stop the repetition when a condition is met. In the
following sections, you’ll learn all about how to use them.

Onwards!

ptg18144529

CHAPTER 5 MEET THE LOOPS: FOR, WHILE, AND DO…WHILE! 49

The for Loop
One of the most common ways to create a loop is by using the for statement
to create what is known as a for loop. A for loop allows you to repeatedly run
some code until an expression you specify returns false. That probably doesn’t
make a whole lot of sense, so to help clarify this definition, let’s look at an
example.

If we had to translate our earlier saySomething example using for, it would look
as follows:
var count = 10;

function saySomething() {

 document.writeln("hello!");

}

for (var i = 0; i < count; i++) {

 saySomething();

}

If you were to enter this code inside some script tags and preview it in your
browser, you will see something similar to what is shown in Figure 5.1.

FIGURE 5.1

The word hello! will be repeated ten times across your page.

ptg18144529

50 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

NOTE The words are printed to the browser because we
used document.writeln. This is another method we will use
(besides alert) that will help us quickly test something out. The
document.writeln method takes whatever you want to print
as arguments, and when it runs, it replaces everything in the page
with the content you were interested in displaying.

This is made possible thanks to the for loop, so we are gonna thank it by learning
all about how it works. First, let’s look at our star:
for (var i = 0; i < count; i++) {

 saySomething();

}

This is a for loop. It probably looks very different from other statements you’ve
seen so far, and that’s because, well, it is very different. To understand the differ-
ences, let’s generalize a for loop into the form shown in Figure 5.2.

FIGURE 5.2

Our for loop and the three regions that we will focus on.

These three differently shaded regions each play a very important role in how your
loop functions. In order to use a for loop well, we must know what each region
accomplishes. That brings us to…

ptg18144529

CHAPTER 5 MEET THE LOOPS: FOR, WHILE, AND DO…WHILE! 51

The Starting Condition
In the first region, we define a starting condition. A common starting condition
usually involves declaring and initializing a variable. In our example, I create a new
variable called i and initialize it to the number 0:
for (var i = 0; i < count; i++) {

 saySomething();

}

In case you are wondering, the variable name in these cases is traditionally a sin-
gle letter, with i being the most common. The value you initialize this variable to is
also traditionally 0. There is one really good reason for using 0, and I’ll explain that
reason a bit later.

Terminating Condition (aka Are we done yet?)
Once we define our starting point, in the next region we determine the
 terminating condition. That is basically a fancy way of saying how long to keep
looping. This is handled by a conditional expression (just like what you say in the
previous chapter!) that returns either true or false. In our example, the condition is
that our i variable is less than the value of count—which is 10:
for (var i = 0; i < count; i++) {

 saySomething();

}

If our i variable is less than 10, this expression evaluates to true and our loop
continues to run. If our i variable becomes equal to or greater than 10, the
condition is false, and our loop terminates. Now, you may be wondering what
causes our i variable to actually change from its starting value of 0. Well, that is
covered next…

Reaching the End
So far, we’ve looked at our starting point. We also looked at the expression
that needs to evaluate to false if we want to break our loop. What is missing
is the final region where we describe how to go from your starting point to the
 terminating point:
for (var i = 0; i < count; i++) {

 saySomething();

}

ptg18144529

52 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In our example, at each iteration of our loop, we increment our i variable by 1.
In case you aren’t familiar with this syntax, the ++ after i means you increase
 whatever value the i variable had by 1. Each time our loop runs, whatever you
specified here will execute. In this case, our i value will increment.

Putting It All Together
Okay, now that we looked at each part of the for statement in great detail, let’s
run through it all once more to make sure we totally got this. Our full example,
repeated from earlier, is as follows:
var count = 10;

for (var i = 0; i < count; i++) {

 saySomething();

}

function saySomething() {

document.writeln("hello!");

}

When our for loop is initially hit, the i variable is created and initialized to 0.
Next, our code checks if the value of i is less than the value referenced by
count…which is 10. At this point, everything is green and whatever code is inside
the loop executes. In our case, that is the saySomething function. Once the
statements inside your loop have executed, the last part of the for statement
kicks in. The i variable is incremented by 1.

Now, the loop starts all over again except the variable i isn’t re-initialized. Its
value is set to the incremented value of 1, and that means it still passes the
i < count test. The saySomething function is called again, and the value of i
is incremented again. Now, the i variable’s value is 2.

This whole process repeats until the value of i equals 10. At this point, the
i < count test will fail and the loop will exit after having successfully executed
the saySomething function 10 times.

Some for Loop Examples
In the previous section, we dissected a simple for loop and labeled all of its
inner workings. The thing about for loops, and most everything in JavaScript, is
that a simple example doesn’t always cover everything you might need. The best

ptg18144529

CHAPTER 5 MEET THE LOOPS: FOR, WHILE, AND DO…WHILE! 53

solution is to look at some more examples of for loops, and that’s what we are
going to be doing in the next few sections.

Stopping a Loop Early
Sometimes, you may want to end your loop before it reaches completion. The way
you end a loop is by using the break keyword. Below is an example:
for (var i = 0; i < 100; i++) {

 document.writeln(i);

 if (i == 45) {

break;

 }

}

When the value of i equals 45, the break keyword stops the loop from continu-
ing further. While this example was just a little bit contrived, when you do run into
a real-world case for ending your loop, you now know what to do.

Skipping an Iteration
There will be moments when you want your loop to skip its current iteration and
move on to the next one. That is cleverly handled by the continue keyword:

Unlike break where your loop just stops and goes home, continue tells your
loop to stop and move on to the next iteration. You’ll often find yourself using
continue when handling errors where you just want the loop to move on to the
next item.
var floors = 28;

for (var i = 1; i <= floors; i++) {

 if (i == 13) {

// no floor here

continue;

 }

 document.writeln("At floor: " + i + "
");

}

ptg18144529

54 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Going Backwards
There is no reason for why you have to start at 0 and then increment upward:
for (var i = 25; i > 0; i--) {

 document.writeln("hello");

}

You can just as easily start high and then decrement until your loop condition
returns a false.

You may have heard that doing something like this increases your loop’s
 performance. The jury is still out on whether decrementing is actually faster than
incrementing, but feel free to experiment and see if you notice any performance
benefits.

You Don’t Have to Use Numbers
When filling out your for loop, you don’t have to only use numbers or do a
 traditional increment/decrement operation:
for (var i = "a"; i !="aaaaaaaa"; i += "a") {

 document.writeln("hmm...");

}

You can use anything you want as long as your loop will eventually hit a point
where it can end. Notice that in this example, I am using the letter a as my
 currency for running this loop. When you “add” letters together as we are doing,
the result is a, aa, aaa, aaaa, aaaaa, and so on!

Array! Array! Array!
I know we haven’t looked at arrays in detail yet, but one of the greatest love
 stories of all time is that between a data structure known as an array and the for
loop. The bulk of your time, you will be using loops to travel through all of the
data stored in an array, so just glance through the following code and explanation.
I’ll rehash this information in greater detail when we formally talk about arrays
really soon in Chapter 15, Arrays.
var myArray = ["one", "two", "three"];

for (var i = 0; i < myArray.length; i++) {

 document.writeln(myArray[i]);

}

ptg18144529

CHAPTER 5 MEET THE LOOPS: FOR, WHILE, AND DO…WHILE! 55

The TL; DR version is as follows: An array is a collection of items. The way to
 enumerate and access all of the items in an array requires some sort of a loop,
and the for loop is usually the chosen one.

Anyway, I figured I would introduce you to the array and for loop pair. Just like
two seemingly random characters at the beginning of a Quentin Tarantino movie,
their actual contribution to the story seems irrelevant at this point in time.

Oh No He Didn’t!
Oh yes! Yes I did. I went there, took a picture, posted on Facebook, and
came back:
var i = 0;

var yay = true;

for (; yay;) {

 if (i == 10) {

yay = false;

 }

 i++;

 document.writeln("weird");

}

You don’t have to fill out the three sections of your for loop to make it work. As
long as, in the end, you manage to satisfy the loop’s terminating condition, you
can do whatever you want—just like I did. Now, just because you can do some-
thing doesn’t mean you should. This example falls clearly in the “You shouldn’t do
this!” bucket.

The Other Loops
Living in the shadow of the beloved for loop are the while and do...while
loop variants. These two loop variants clearly serve a purpose, but I’ve never quite
found what that purpose is. Despite that, in the interest of completeness and to
familiarize you with code you will encounter in the wild, let’s quickly look at both
of them.

ptg18144529

56 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The while Loop
The while loop repeats some code until its test condition (another expression)
returns false:
var count = 0;

while (count < 10) {

 document.writeln("looping away!");

 count++;

}

In this example, the condition is represented by the count < 10 expression. With
each iteration, our loop increments the count value by 1. Once the value of count
becomes 10, the loop stops because the count < 10 expression will return false.
That’s all there is to the while loop.

The do...while Loop
Now, we get to the Meg Griffin of the loop variants. That would be the
do...while loop whose purpose is even less defined than while. Where the
while loop had its conditional expression first before the loop would execute, the
do...while loop has its conditional expression at the end.

Here is an example:

var count = 0;

do {

 count++;

 document.writeln("I don't know what I am doing here!");

} while (count < 10);

The main difference between a while loop and a do...while loop is that the
contents of a while loop could never get executed if its conditional expression is
false from the very beginning:
while (false) {

 document.writeln("Can't touch this!");

}

ptg18144529

CHAPTER 5 MEET THE LOOPS: FOR, WHILE, AND DO…WHILE! 57

With a do...while loop, because the conditional expression is evaluated only
after one iteration, your loop’s contents are guaranteed to run at least once:
do {

 document.writeln("This code will run once!");

} while (false);

Yaaawwn! Anyway, there is just one last bit of information I need to tell you before
we move on. The break and continue statements that we saw earlier as part
of the awesome for loop also work similarly when used inside the while and
do...while loop variants.

THE ABSOLUTE MINIMUM
So there you have it—a look at for loops and how you can use them along with
very basic coverage of the while and do...while loops. Right now, you may
not see yourself using loops a whole lot. As we start getting into more involved
situations involving collections of data, HTML elements in your document, text
manipulation, and other complex situations, loops will be one of the natural
 components you will rely on frequently.

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and want
to try your hand at the quiz, then you’re in luck – all you need to
do is scroll down!

http://www.quepublishing.com

ptg18144529

This page intentionally left blank

ptg18144529

6
I N T H I S C H A P T E R
• Learn how to delay when your code runs

• Figure out several ways to run your code repeatedly
without blocking your entire app

TIMERS
By default, your code runs synchronously. That is a fancy of way of saying

that when a statement needs to execute, it executes immediately. There are

no ifs, ands, or buts about it. The concept of delaying execution or defer-

ring work to later isn’t a part of JavaScript’s default behavior. That doesn’t

mean the ability to delay work to a later time doesn’t exist! If you swerve just

slightly off the main road, there are three functions that allow you to mostly

do just that (and more). Those functions are setTimeout, setInterval,

and requestAnimationFrame.

ptg18144529

60 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In this chapter, we look at what each of these function do and other good stuff
that comes along with learning more about some of the basic components
 JavaScript provides for helping your code do interesting things.

Onwards!

Meet the Three Timers
Like you saw a few pixels ago, the main suspects of this chapter are going to be
the setTimeout, setInterval, and requestAnimationFrame functions.
In the following sections, let’s look at each of these functions in greater detail and
figure out a reason for their existence.

Delaying with setTimeout
The setTimeout function enables you to delay executing some code. The way
you use it is pretty simple. This function makes it possible for you to specify what
code to execute and how many milliseconds (aka 1/1000 of a second) to wait
before the code you specified executes.

Putting that into JavaScript, it looks something like this:
var timeID = setTimeout(someFunction, delayInMilliseconds);

Going a bit more example-ish, if I wanted to call a function called showAlert
after 5 seconds, the setTimeout declaration would look as follows:
function showAlert() {

 alert("moo");

}

var timeID = setTimeout(showAlert, 5000);

Pretty simple, right? Now, let’s talk about something less interesting that I cover
just for completeness. That something has to do with the timeID variable that
is initialized to our setTimeout function. It isn’t there by accident. If you ever
wanted to access this setTimeout timer again, you need a way to reference
it. By associating a variable with our setTimeout declaration, we can easily
 accomplish that.

Now, you may be wondering why we would ever want to reference a timer once
we’ve created it. There aren’t too many reasons. The only reason I can think of
would be to cancel the timer. For setTimeout, that is conveniently accomplished
using the clearTimeout function and passing the timeout ID as the argument:
clearTimeout(timeID);

ptg18144529

CHAPTER 6 TIMERS 61

If you are never planning on cancelling your timer, you can just use setTimeout
directly without having it be part of the variable initialization.

Anyway, moving past the technical details on how to use setTimeout, let’s talk
about when you would commonly use it in the real world. As you will find out
eventually, especially if you are doing front-end/user interface (UI) development,
deferring some action to a later time is more common than you might think. Here
are some examples that I ran into just in the recent past:

1. A menu slides in, and after a few seconds of the user no longer playing with
the menu, the menu slides away.

2. You have a long running operation that is unable to complete, and a
 setTimeout function interrupts that operation to return control back to
the user.

3. My favorite is where you use the setTimeout function to detect whether a user
is inactive or not (See: http://bit.ly/kirupaDetectIdle).

If you do a search for setTimeout on this site or Google, you’ll see many more
real-world cases where setTimeout proves very useful.

Looping with setInterval
The next timer function we are going to look at is setInterval. The setInterval
function is similar to setTimeout in that it also enables you to execute code after a
specified amount of time. What makes it different is that it doesn’t just execute the
code once. It keeps on executing the code in a loop forever.

Here is how you would use the setInterval function:
var intervalID = setInterval(someFunction, delayInMilliseconds);

Except for the function name, the way you use setInterval is even identical
to setTimeout. The first argument specifies the inline code or function you
would like to execute. The second argument specifies how long to wait before
your code loops again. You can also optionally initialize the setInterval
 function to a variable to store an interval ID—an ID that you can later use to do
exciting things like cancel the looping.

OK! Now that we’ve seen all that, here is an example of this code at work for
looping a function called drawText with a delay of 2 seconds between each loop:
function drawText() {

 document.querySelector("p").textContent += "#\n";

}

var intervalID = setInterval(drawText, 2000);

http://bit.ly/kirupaDetectIdle

ptg18144529

62 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Just make sure you have a p element somewhere in your page that will act as the
target our code will add the # character to.

If you wish to cancel the looping, you can use the appropriately named
 clearInterval function:
clearInterval(intervalID);

Its usage is similar to its clearTimeout equivalent. You pass in the ID of
the setInterval timer instance that you optionally retrieved while setting up
your setInterval in the first place.

Here is some interesting trivia. For the longest time, setInterval was the
 primary function you had for creating animations in JavaScript. To get something
running at 60 frames a second, you would do something that looks as follows:
// 1000 divided 60 is the millisecond value for 60fps

window.setInterval(moveCircles, 1000/60);

Towards the end of this chapter, you’ll see some links to examples and articles
I’ve written on the web where setInterval is part of a larger, more realistic
example.

Animating Smoothly with requestAnimationFrame
Now, we get to one of my favorite functions ever: requestAnimationFrame.
The requestAnimationFrame function is all about synchronizing your code with
a browser repaint event. What this means is pretty simple. Your browser is busy
juggling a billion different things at any given time - fiddling with layout, reacting
to page scrolls, listening for mouse clicks, displaying the result of keyboard taps,
executing JavaScript, loading resources, and more. At the same time your browser
is doing all of this, it is also redrawing the screen at 60 frames per second…or at
least trying its very best to.

When you have code that is designed to animate something to the screen,
you want to ensure your animation code runs properly without getting lost in
the shuffle of everything else your browser is doing. Using the setInterval
 function mentioned earlier doesn’t guarantee that frames won’t get dropped
when the browser is busy optimizing for other things. To avoid your animation
code from being treated like any other generic piece of code, you have the
 requestAnimationFrame function. This function gets special treatment by the
browser. This special treatment allows it to time its execution perfectly to avoid
dropped frames, avoid unnecessary work, and generally steer clear of other side
effects that plague other looping solutions.

ptg18144529

CHAPTER 6 TIMERS 63

The way you use this function starts off a bit similar to setTimeout
and setInterval:
var requestID = requestAnimationFrame(someFunction);

The only real difference is that you don’t specify a duration value. The duration is
automatically calculated based on the current frame rate, whether the current tab
is active or not, whether your device is running on battery or not, and a whole host
of other factors that go beyond what we can control or understand.

Anyway, this usage of the requestAnimationFrame function is merely the textbook
version. In real life, you’ll rarely make a single call to requestAnimationFrame like
this. Key to all animations created in JavaScript is an animation loop, and it is this
loop that we want to throw requestAnimationFrame at. The result of that throw
looks something as follows:
function animationLoop() {

 // animation-related code

 requestAnimationFrame(animationLoop);

}

// start off our animation loop!

animationLoop();

Notice that our requestAnimationFrame calls the animationLoop function
fully from within the animationLoop function itself. That isn’t a bug in the
code. While this kind of circular referencing would almost guarantee a hang,
 requestAnimationFrame’s implementation avoids that. Instead, it ensures
the animationLoop function is called just the right amount of times needed to
ensure things get drawn to the screen to create smooth and fluid animations. It
does so without freezing the rest of your application functionality up.

To stop a requestAnimationFrame function, you have the
 cancelAnimationFrame function:
cancelAnimationFrame(requestID);

Just like you’ve seen several times with functions of this sort, cancelAnimation-
Frame takes the ID value of our requestAnimationFrame function that is
returned when you call it. If you plan on using cancelAnimationFrame, then you
can modify our earlier animationLoop example as follows:
var requestID;

function animationLoop() {

ptg18144529

64 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 // animation-related code

 requestID = requestAnimationFrame(animationLoop);

}

// start off our animation loop!

animationLoop();

Notice that our call to requestAnimationFrame always sets the
value of requestID, and you can use requestID as the argument to
 cancel AnimationFrame to stop our loop.

THE ABSOLUTE MINIMUM
If you think that timers fall under a more niche category compared to some of the
other more essential things like the if/else statements and loops we looked at ear-
lier, you would probably be right in thinking that. You can build many awesome
apps without ever having to rely on setTimeout, setInterval, or request-
AnimationFrame. That doesn’t mean it isn’t essential to know about them,
though. There will be a time when you’ll need to delay when your code executes,
loop your code continuously, or create a sweet animation using JavaScript. When
that time arrives, you’ll be prepared…or at least know what to Google for.

To see these timer functions used in the wild, check out these optional articles and
examples that may help you out:

• Creating Animations Using requestAnimationFrame
http://bit.ly/kirupaAnimationsJS

• Creating a Sweet Content Slider
http://bit.ly/sliderTutorial

• Creating an Analog Clock
http://bit.ly/kirupaAnalogClock

• The Seizure Generator
http://bit.ly/kirupaSeizureGenerator

http://bit.ly/kirupaAnimationsJS
http://bit.ly/sliderTutorial
http://bit.ly/kirupaAnalogClock
http://bit.ly/kirupaSeizureGenerator

ptg18144529

CHAPTER 6 TIMERS 65

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

http://www.quepublishing.com

ptg18144529

This page intentionally left blank

ptg18144529

7
I N T H I S C H A P T E R
• Understand global scope

• Familiarize yourself with the various techniques
available for using local scope

• Learn about some quirks that might cause your
code to behave unpredictably

VARIABLE SCOPE
Let’s revisit something relating to variables that we saw in Chapter 2,

 “Values and Variables.” Each variable you declare has a certain level

of visibility that determines when you can actually use it. In human-

understandable terms, what this means is simple: just because you declare

a variable doesn’t mean that it can be accessed from anywhere in your

code. There are some basic things you need to understand, and this whole

area of understanding falls under a topic known as variable scope.

ptg18144529

68 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In this chapter, I explain variable scope by looking at common cases that you’ve
(mostly) already seen. This is a pretty deep topic, but we are just going to scratch
the surface here. You’ll see variable scope creep up in many subsequent chapters
where we will expand on what you will learn here.

Onwards!

Global Scope
We are going to start our exploration of scope at the very top with what is
known as global scope. In real life, when we say that something can be heard
globally, it means that you can be anywhere in the world and still be able to hear
that…something (see Figure 7.1).

FIGURE 7.1

Something that is global can be accessed and heard from anywhere.

In JavaScript, much the same applies. If we say, for example, that a variable is
available globally, it means that any code on your page has access to read and
modify this variable. The way you make something apply globally is by declaring it
in your code completely outside of a function.

To illustrate this, let’s take a look at the following example:
<script>

var counter = 0;

</script>

ptg18144529

CHAPTER 7 VARIABLE SCOPE 69

Here, I am simply declaring a variable called counter and initializing it to 0. By
virtue of this variable being declared directly inside the script tag without being
placed inside a function, the counter variable is considered to be global. What this
distinction means is that your counter variable can be accessed by any code that
lives in your document.

The code that follows highlights this:
var counter = 0;

function returnCount() {

 return counter;

}

In this example, the counter variable is declared outside of the returnCount
function. Despite that, the returnCount function has full access to the counter
variable.

At this point, you are probably wondering why I am pointing out what seems very
obvious. After all, you’ve been using global variables all this time without really
noticing it. All I am doing here is formally introducing you to a guest that has been
hanging around your party for a while, a guest that has the potential for causing a
lot of mayhem if you aren’t careful.

NOTE I’ve been pretty vague in defining what global exactly
means. This is deliberate, as formally describing it will involve a
whole lot more backstory to make sense of everything. If you are
familiar enough with JavaScript (or are feeling adventurous), read
on. If not, feel free to skip this note and move on to the next
 section. We’ll revisit this later.

Anyway, something is considered global in JavaScript when it is a direct child of
your browser’s window object. That is a more precise way of saying “declared
outside of a function.” You can verify this pretty easily by checking if counter and
window.counter point to exactly the same thing:
alert(window.counter == counter);

The answer is going to be true. The reason is that you are referring to the exact
same thing.

Realizing that global variables live under your window object should help you
understand why you can access a global variable from anywhere in your document.
All your code (for everything you’ll see in this book) lives under the umbrella of
your window object.

ptg18144529

70 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Local Scope
Now, things get a little interesting when we look at things that aren’t globally
declared. This is where understanding scope really helps you out. As you saw
 earlier, a variable declared globally is accessible inside a function:
var counter = 0;

function returnCount() {

 return counter;

}

The opposite doesn’t hold true. A variable declared inside a function will not work
when accessed outside of the function:
function setState() {

 var state = "on";

}

setState();

alert(state) // nooooooooooo

In this example, the state variable is declared inside the setState function,
and accessing the state variable outside of that function doesn’t work. The
 reason is that the scope for your state variable is local to the setState function
itself. A more generic way of describing this is by saying that your state variable
is just local.

NOTE Let’s clarify something that I briefly mentioned when
looking at variables. Continuing our earlier example, if we declare
the state variable without using the var keyword, the scoping
behavior is drastically different:

function setState() {

 state = "on";

}

setState();

alert(state); // on

In this case, even though your state variable makes its appearance inside the
setState function first, not including the var keyword makes this variable live
globally.

ptg18144529

CHAPTER 7 VARIABLE SCOPE 71

Keep in mind that a variable that is used without being declared using the var
keyword will always live globally.

Miscellaneous Scoping Shenanigans
Since we are talking about JavaScript here, things would be too easy if we just
left everything with variable scope as it stands now. In the following sections, I am
going to highlight some quirks that you need to be familiar with.

Declarations Using var Do Not Support Block Scoping
Before I attempt to explain this, take a look at the following code:
function checkWeight(weight) {

 if (weight > 5000) {

var text = "No free shipping for you!";

alert(text);

 }

 alert(text); // how did it know??!

}

checkWeight(6000);

I’ve highlighted the relevant lines that you should focus on. Inside the
if statement, we declare a variable called text. When this code is run,
the alert function directly below it displays No free shipping for you! That
makes sense. What might make less sense is that the second alert that is outside
of the if statement also displays No free shipping for you!.

Here is what is going on. Your text variable is declared inside what is known as
a block. A block is anything that appears within the open and close brackets -
{ and }. In many programming languages, variables declared inside a block are
part of that block’s own scope. That means those variables are local and can’t be
accessed outside of the block.

JavaScript is not like those many “other” programming languages. JavaScript
doesn’t support block scoping. For the code you just saw, despite the text
 variable being declared inside a block, from JavaScript’s point of view, it might
as well have been declared at the top of your checkWeight function itself as
follows:
function checkWeight(weight) {

 var text;

ptg18144529

72 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 if (weight > 5000) {

text = "No free shipping for you!";

alert(text);

 }

 alert(text);

}

checkWeight(6000);

The behavior of this checkWeight function is identical compared to what you
saw a few moments earlier.

To repeat, there are only two scopes you need to keep track of. The first is the
global scope where what you are declaring is completely outside the grip of a
function. The second is the local scope where what you are declaring is enclosed
by whatever function you are inside.

NOTE The latest version of JavaScript (part of the ECMAScript
6/ES2015 improvements) introduces support for the let keyword
that allows you to declare variables that are block scoped:

var x = 100;

function blockScoping() {

 if (true) {

let x = 350;

alert(x) // 350

 }

 alert(x); // 100;

}

blockScoping();

How JavaScript Processes Variables
If you thought the earlier block scoping logic was weird, wait till you see this one.
Take a look at the following code:
var foo = "Hello!";

function doSomethingClever() {

 alert(foo);

ptg18144529

CHAPTER 7 VARIABLE SCOPE 73

 var foo = "Good Bye!";

 alert(foo);

}

doSomethingClever();

Examine the code in detail. What do you think is shown in the two highlighted
alert function calls? Given what is going on, you may answer Hello! and Good
Bye! However, if you test this code out, what you will actually see is undefined and
Good Bye! Let’s look at what is going on here.

At the very top, we have our foo variable that is instantiated to Hello!. Inside the
doSomethingClever function, the first thing we have is an alert that should
show the value stored by the foo variable. A few lines below that, we re-declare
the foo variable with a new value of Good Bye!:
var foo = "Hello!";

function doSomethingClever() {

 alert(foo);

 var foo = "Good Bye!";

 alert(foo);

}

doSomethingClever();

Because our first alert comes before the foo variable re-declaration, the logical
assumption is that foo’s original value of Hello! will be what gets shown. As you
saw earlier, that isn’t the case. The value of foo when it hits the first alert is
actually undefined. The reason for this has to do with how JavaScript deals with
variables.

When JavaScript encounters a function, one of the first things it does is scan
the full body of the code for any declared variables. When it encounters
them, it initializes them by default with a value of undefined. Because the
 doSomethingClever function is declaring a variable called foo, before the
first alert even hits, an entry for foo is created with a value of undefined.
 Eventually, when our code hits var foo = "Good Bye!", the value of foo is
properly initialized. That doesn’t help our first alert function, but it does help
the second one that follows the re-declaration of foo. All of this has a name. It is
known as hoisting or variable hoisting!

ptg18144529

74 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Keep this little quirk in mind if you ever run into a situation where you are
 re-declaring variables into a local scope like this simple example highlighted.
Tracking down why your variables aren’t behaving as expected isn’t fun, and
 hopefully this tidbit of knowledge will come in handy.

Closures
No conversation about variable scope can be wrapped up without discussing
closures. That is, until right now. I am not going to explain closures here, for it
is important and involved enough to require its own chapter. That chapter…is
 coming up next!

Given that this section is titled “Closures,” I’ll just do my usual closing song and
dance here itself:

Well, that concludes this topic of variable scopes. This topic seems
very simple on the surface, but as you can see, there are some unique
 characteristics that take some time and practice to fully understand.

I am not good at conclusions…or singing and dancing. I get that, and they are all
on my bucket list. I swear!

THE ABSOLUTE MINIMUM
Where your variables live has a major impact on where they can be used. Variables
declared globally are accessible to your entire application. Variables declared
locally will only be accessible to whatever scope they are found in. Within the
range of global and local variables, JavaScript has a lot going on up its sleeve.

This chapter gave you an overview of how variable scope can affect your code,
and you’ll see some of these concepts presented front-and-center in the near
future.

ptg18144529

CHAPTER 7 VARIABLE SCOPE 75

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
i nteractive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and want
to try your hand at the quiz, then you’re in luck – all you need to
do is scroll down!

http://www.quepublishing.com

ptg18144529

This page intentionally left blank

ptg18144529

8
I N T H I S C H A P T E R
• Understand what closures are

• Tie together everything you’ve learned about
 functions, variables, and scope

CLOSURES
By now, you probably know all about functions and all the fun functioney

things that they do. An important part of working with functions, with

JavaScript, and (possibly) life in general is understanding the topic known

as closures. Closures touch upon a gray area where functions and variable

scope intersect (see Figure 8.1).

ptg18144529

78 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 8.1

The intersection of functions and variable scope.

Now, I am not going to say any thing more about closures, as this is something
best explained by seeing the actual code. Any words I add right now to define
or describe closures will only serve to confuse things. In the following sections,
we’ll start off in familiar territory and then slowly venture into hostile areas where
 closures can be found.

Onwards!

Functions within Functions
The first thing we are going to do is really drill down on what happens when you
have functions within functions…and the inner function gets returned. As part of
that, let’s do a quick review of functions.

Take a look at the following code:
function calculateRectangleArea(length, width) {

 return length * width;

}

ptg18144529

CHAPTER 8 CLOSURES 79

var roomArea = calculateRectangleArea(10, 10);

alert(roomArea);

The calculateRectangleArea function takes two arguments and returns the
multiplied value of those arguments to whatever called it. In this example, the
“whatever called it” part is played by the roomArea variable.

After this code has run, the roomArea variable contains the result of multiplying
10 by 10…which is simply 100. Figure 8.2 visualizes this situation:

FIGURE 8.2

Nobody knows why roomArea is a rectangle and the 100 value is a circle :-(

As you know, what a function returns can pretty much be anything. In this case,
we returned a number. You can very easily return some text (aka a String), the
undefined value, a custom object, and so on. As long as the code that is calling
the function knows what to do with what the function returns, you can do pretty
much whatever you want. You can even return another function. Let me rathole
on this a bit.

Below is a very simple example of what I am talking about:
function youSayGoodbye() {

 alert("Goodbye!");

 function andISayHello() {

alert("Hello!");

 }

 return andISayHello;

}

ptg18144529

80 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

You can have functions that contain functions inside them. In this example, we
have our youSayGoodbye function that contains an alert and another function
called andISayHello:

The interesting part is what the youSayGoodbye function returns when it gets
called. It returns the andISayHello function:
function youSayGoodbye() {

 alert("Goodbye!");

 function andISayHello() {

alert("Hello!");

 }

 return andISayHello;

}

Let’s go ahead and play this example out. To call this function, initialize a variable
that points to youSayGoodbye:
var something = youSayGoodbye();

ptg18144529

CHAPTER 8 CLOSURES 81

The moment this line of code runs, all of the code inside your youSayGoodbye
function will get run as well. This means, you will see a dialog box (thanks to
the alert) that says Good Bye! The andISayHello function gets returned.
The important thing to note is that the andISayHello function does not get run
yet, for we haven’t actually called it. We simply return a reference to it.

At this point, your something variable only has eyes for one thing, and that thing
is the andISayHello function:

The youSayGoodbye outer function, from the something variable’s point of view,
simply goes away. Because the something variable now points to a function, you
can invoke this function by just calling it using the open and close parentheses like
you normally would:
var something = youSayGoodbye();

something();

When you do this, the returned inner function (aka andISayHello) will execute.
Just like before, you will see a dialog box appear, but this dialog box will say
Hello!—which is what the alert inside this function specified.

Okay, we are getting close to the promised hostile territory. In the next section,
we will expand on what we’ve just learnt by taking a look at another example with
a slight twist.

When the Inner Functions Aren’t Self-Contained
In the previous example, your andISayHello inner function was self-contained
and didn’t rely on any variables from the outer function:
function youSayGoodbye() {

 alert("Goodbye!");

ptg18144529

82 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 function andISayHello() {

alert("Hello!");

 }

 return andISayHello;

}

In many real scenarios, very rarely will you run into a case like this. You’ll often
have variables and data that is shared between the outer function and the inner
function. To highlight this, take a look at the following:
function stopWatch() {

 var startTime = Date.now();

 function getDelay() {

var elapsedTime = Date.now() - startTime;

alert(elapsedTime);

 }

 return getDelay;

}

This example shows a very simple way of measuring the time it takes to do
 something. Inside the stopWatch function, you have a startTime variable that
is set to the value of Date.now():
function stopWatch() {

 var startTime = Date.now();

 function getDelay() {

var elapsedTime = Date.now() - startTime;

alert(elapsedTime);

 }

 return getDelay;

}

ptg18144529

CHAPTER 8 CLOSURES 83

NOTE The Date.now() function is something we haven’t
seen before, so let’s quickly take a look at it. What this function
does is return a really large number that represents the current
time. More specifically, the really large number is the number of
milliseconds that have elapsed since 1 January 1970 00:00:00 UTC.

You also have an inner function called getDelay:
function stopWatch() {

 var startTime = Date.now();

 function getDelay() {

var elapsedTime = Date.now() - startTime;

alert(elapsedTime);

 }

 return getDelay;

}

The getDelay function displays a dialog box containing the difference in time
between a new call to Date.now() and the startTime variable declared earlier.

Getting back to the outer stopWatch function, the last thing that happens is that
it returns the getDelay function before exiting. As you can see, the code you see
here is very similar to the earlier example. You have an outer function, you have an
inner function, and you have the outer function returning the inner function.

Now, to see the stopWatch function at work, add the following lines of code:
var timer = stopWatch();

// do something that takes some time

for (var i = 0; i < 1000000; i++) {

 var foo = Math.random() * 10000;

}

// call the returned function

timer();

If you run this example, you’ll see a dialog box displaying the number of
 milliseconds it took between your timer variable getting initialized, your for loop
running to completion, and the timer variable getting invoked as a function.

ptg18144529

84 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Basically, you have a stopwatch that you invoke, run some long-running operation,
and invoke again to see how long the long-running operation took place.

Now that you can see our little stopwatch example working, let’s go back to the
stopWatch function and see what exactly is going on. Like I mentioned a few
lines ago, a lot of what you see is similar to the youSayGoodbye/andISayHello
example. There is a twist that makes this example different, and the important part
to note is what happens when the getDelay function is returned to the timer
variable.

Here is an incomplete visualization of what this looks like:

The stopWatch outer function is no longer in play, and the timer variable is still
tied to the getDelay function. Now, here is the twist. The getDelay function
relies on the startTime variable that lives in the scope of the outer stopWatch
function:
function stopWatch() {

 var startTime = Date.now();

 function getDelay() {

var elapsedTime = Date.now() - startTime;

alert(elapsedTime);

 }

 return getDelay;

}

When the outer stopWatch function runs and disappears once getDelay is
returned to the timer variable, what happens in the following line?
function getDelay() {

 var elapsedTime = Date.now() - startTime;

 alert(elapsedTime);

}

ptg18144529

CHAPTER 8 CLOSURES 85

In this context, it would make sense if the startTime variable is actually
 undefined, right? But, the example obviously worked, so something else is
going on here. That something else is the shy and mysterious closure. Here is
a look at what happens to make our startTime variable actually store a value
and not be undefined.

The JavaScript runtime that keeps track of all of your variables, memory usage,
references, and so on is really clever. In this example, it detects that the inner
function (getDelay) is relying on variables from the outer function (stopWatch).
When that happens, the runtime ensures that any variables in the outer function
that are needed are still available to the inner function even if the outer function
goes away.

To visualize this properly, here is what the timer variable looks like:

It is still referring to the getDelay function, but the getDelay function also has
access to the startTime variable that existed in the outer stopWatch function.
This inner function, because it enclosed relevant variables from the outer function
into its bubble (aka scope), is known as a closure:

ptg18144529

86 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

To define the closure more formally, it is a newly created function that also
 contains its variable context :

To review this one more time using our existing example, the startTime variable
gets the value of Date.now the moment the timer variable gets initialized and
the stopWatch function runs. When the stopWatch function returns the inner
getDelay function, the stopWatch function is no longer active. You can sort
of say that it goes away. What doesn’t go away are any shared variables inside
 stopWatch that the inner function relies on. Those shared variables are not
destroyed. Instead, they are enclosed by the inner function aka the closure.

THE ABSOLUTE MINIMUM
By looking at closures through examples first, you really missed out on a lot of
 boring definitions, theories, and hand waving. In all seriousness, closures are
very common in JavaScript. You will encounter them in many subtle and
not-so-subtle ways.

If there is only thing you take out of all of this, remember the following: The most
important thing closures do is allow functions to keep on working even if their
environment drastically changes or disappears. Any variables that were in scope
when the function was created are enclosed and protected to ensure the function
still works. This behavior is essential for a very dynamic language like JavaScript
where you often create, modify, and destroy things on the fly. Happy days!

ptg18144529

CHAPTER 8 CLOSURES 87

 TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

http://www.quepublishing.com

ptg18144529

This page intentionally left blank

ptg18144529

9
I N T H I S C H A P T E R
• Learn about the various places your code can live

• Understand the pros and cons of the various
approaches

WHERE SHOULD YOUR
CODE LIVE?
Let’s take a break from our regularly scheduled…programming (ha!).

Instead of looking at what goes into our code, in this chapter, we are going

to go a bit higher and look at something really basic. We are going to look

at where exactly the code you write should live.

Onwards!

ptg18144529

90 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Options on the Table
So far, all of the code we have been writing has been contained fully inside an
HTML document as shown in Figure 9.1.

FIGURE 9.1

All of our code so far has been located in the same document as our HTML and CSS.

ptg18144529

CHAPTER 9 WHERE SHOULD YOUR CODE LIVE? 91

In this world, the only thing that protects your HTML document from JavaScript is
just a couple of script tags. Now, your JavaScript does not have to live inside your
HTML document. You have another option, which involves creating a separate file
where all of your JavaScript will instead live as illustrated in Figure 9.2.

FIGURE 9.2

You can put your JavaScript into a separate file.

In this approach, you don’t have any real JavaScript inside your HTML
document. You still have your script tag, but this tag simply points to the
JavaScript file instead of containing line after line of actual JavaScript code.

Of course, none of these approaches are mutually exclusive. You can mix both
approaches into an HTML document and have a hybrid approach where you have
both an external JavaScript file as well as lines of JavaScript code inside your
HTML document as shown in Figure 9.3.

ptg18144529

92 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 9.3

A hybrid approach where your JavaScript lives both externally as well as inside your
HTML document.

To make things more interesting, you also have variations on the two approaches
such as having multiple script sections in a HTML document, having multiple JS
files, and so on. In the following sections, we’ll look at both these approaches in
greater detail and discuss when you would choose one approach over the other.

By the end of this short chapter, you will have a good understanding of the pros
and cons of each approach so that you can do the right thing with the JavaScript
in your web pages and applications.

Approach #1: All the Code Lives in Your
HTML Document

The first approach we will look at is the one that we’ve been using all along so far.
This is the approach where all of your JavaScript lives inside a script tag along-
side the rest of your HTML document:
<!DOCTYPE html>

<html>

<body>

ptg18144529

CHAPTER 9 WHERE SHOULD YOUR CODE LIVE? 93

 <h1>Example</h1>

 <script>

function showDistance(speed, time) {

alert(speed * time);

}

showDistance(10, 5);

showDistance(85, 1.5);

showDistance(12, 9);

showDistance(42, 21);

 </script>

</body>

</html>

When your browser loads the page, it goes through and parses every line of HTML
from top to bottom. When it hits the script tag, it will go ahead and execute
all the lines of JavaScript as well. Once it has finished executing your code, it will
continue to parse the rest of your document.

Approach #2: The Code Lives in a Separate File
The second approach is one where your main HTML document doesn’t contain
any JavaScript content. Instead, all of your JavaScript lives in a separate document.
There are two parts to this approach. The first part deals with the JavaScript file.
The second part deals with referencing this JavaScript file in the HTML. Let’s look
at both of these parts in greater detail.

The JavaScript File
The key to making this approach work is the separate file that contains your
 JavaScript code. It doesn’t matter what you name this file, but its extension should
be .js. For example, my JavaScript file is called example.js:

ptg18144529

94 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Inside this file, you will only have JavaScript:
function showDistance(speed, time) {

 alert(speed * time);

}

showDistance(10, 5);

showDistance(85, 1.5);

showDistance(12, 9);

showDistance(42, 21);

Everything you would normally put inside a script tag in the HTML will go here.
Nothing else will go into this file. Putting anything else like arbitrary pieces of
HTML and CSS isn’t allowed, and your browser will complain if you try to sneak
some non-JavaScript content inside it.

Referencing the JavaScript File
Once you have your JavaScript file created, the second (and final) step is to
 reference it in the HTML page. This is handled by your script tag. More

ptg18144529

CHAPTER 9 WHERE SHOULD YOUR CODE LIVE? 95

specifically, it is handled by your script tag’s src attribute that points to the
location of your JavaScript file:

<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <script src="example.js"></script>

</body>

</html>

In this example, if your JavaScript file is located in the same directory as your
HTML document, you can use a relative path and just reference the file name
directly. If your JavaScript file lives in another folder, you should alter your path
accordingly:
<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <script src="/some/other/folder/example.js"></script>

</body>

</html>

In this case, our script file starts looking at the root of your site and walks through
folders with the name some, other, and folder. You can completely avoid relative
paths and use an absolute path if you want:
<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <script src="http://www.kirupa.com/js/example.js"></script>

</body>

</html>

http://www.kirupa.com/js/example.js

ptg18144529

96 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Either a relative path or absolute path will work just fine. For situations where the
path between your HTML page and the script you are referencing will vary (such
as inside a template, a server-side include, a third-party library, and so on), you’ll
be safer using an absolute path.

SCRIPTS, PARSING, AND LOCATION IN DOCUMENT
A few sections earlier, I briefly described how scripts get executed. Your browser
parses your HTML page starting at the top and then moves down line by line.
When a script tag gets hit, your browser starts executing the code that is
 contained inside the script tag. This execution is also done line-by-line starting
at the top. Everything else that your page might be doing takes a backseat while
the execution is going on. If the script tag references an external JavaScript
file, your browser first downloads the external file before starting to execute its
contents.

This behavior where your browser linearly parses your document has some
 interesting side effects that affect where in your document you want to place
your script tags. Technically, your script tag can live anywhere in your HTML
 document. There is a preferred place you should specify your scripts, though.
Because of how your browser parses the page and blocks everything while your
scripts are executing, you want to place your script tags toward the bottom of
your HTML document after all of your HTML elements.

If your script tag is towards the top of your document, your browser will block
everything else while the script is running. This could result in users seeing a
 partially loaded and unresponsive HTML page if you are downloading a large
script file or executing a script that is taking a long time to complete. Unless
you really have a good reason to force your JavaScript to run before your full
 document is parsed, ensure your script tags appear towards the end of your
document as shown in almost all of the earlier examples. There is one other
advantage to placing your scripts at the bottom of your page, but I will explain
that much later when talking about the DOM and what happens during a
page load.

ptg18144529

CHAPTER 9 WHERE SHOULD YOUR CODE LIVE? 97

 So…Which Approach to Use?
You have two main approaches around where your code should live:

The approach you end up choosing depends on your answer to the follow-
ing question: Is the identical code going to be used across multiple HTML
documents?

Yes, My Code Will Be Used on Multiple Documents!
If the answer is yes, then you probably want to put the code in an external file
and then reference it across all of the HTML pages in which you want it executing.
The first reason you want to do this is to avoid having code repeated across
 multiple pages:

ptg18144529

98 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Duplicates make maintenance a nightmare where a change to your script will
require you updating every single HTML document with the exact change. If you
are employing some sort of templating or SSI (server-side includes) logic where
there is only one HTML fragment containing your script, then the maintenance
issue is less of a problem.

The second reason has to do with file size. When you have your script duplicated
across many HTML pages, each time a user loads one of those HTML pages, they
are downloading your script all over again. This is less of a problem for smaller
scripts, but once you have more than a few hundred lines of code, the size starts
adding up.

When you factor all our code into a single file, you don’t have the issues I just
outlined:

ptg18144529

CHAPTER 9 WHERE SHOULD YOUR CODE LIVE? 99

Your code is easily maintainable because you update your code inside one single
file. Any HTML document that references this JavaScript file automatically receives
the most recent version when it loads. By having all of your code in one file, your
browser will download the code only once and deliver the cached version of the
file on subsequent accesses.

No, My Code Is Used Only Once, on a Single HTML Document!
If you answered no to the earlier question regarding whether your code is going
to be used in multiple HTML documents, then you can do whatever you want. You
can still choose to put your code into a separate file and reference it in your HTML
document, but the benefits of doing that are less than what you saw earlier with
my example involving many documents.

Placing your code entirely inside your HTML document is also fine for this
 situation. Most of the examples you will see in this site have all of the code within
the HTML document itself. Our examples aren’t really going to be used across
multiple pages, and they aren’t going to be so large where readability is improved
by putting all of the code in a separate location.

ptg18144529

100 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and want
to try your hand at the quiz, then you’re in luck – all you need to
do is scroll down!

THE ABSOLUTE MINIMUM
As you can see, even something as seemingly simple as determining where your
code should live ends up taking many pages of explanation and discussion.
 Welcome to the world of HTML and JavaScript where nothing is really black and
white. Anyway, getting back to the point of this article, a typical HTML document
will contain many script files loaded from an external location. Some of those files
will be your own; some, however, will be created by a third party and included into
your document.

Also, do you remember the hybrid approach I showed at the very beginning
where your HTML document contains both a reference to a separate JavaScript
file as well as actual code within the document? Well, that approach is pretty
common as well. Ultimately, the approach you end up using is entirely up to
you. Hopefully, this chapter gave you a taste of the information needed to make
the right choice. In Chapter 32, “Page Load Events and Other Stuff,” we take a
deeper look at what you saw here by looking at page loading-related events and
certain special attributes that complicate things. Don’t worry about them for now.

http://www.quepublishing.com

ptg18144529

10
I N T H I S C H A P T E R
• Learn the importance of code comments

• Familiarize yourself with the JavaScript syntax for
writing comments

• Understand good commenting practices

COMMENTING YOUR CODE
We are almost done with our break. Just one more topic left, and it is a

good one! See, here is the thing—everything you write in your code editor

might seem like it is intended for your browser’s eyes only:

var xPos = -500;

function boringComputerStuff() {

 xPos += 5;

 if (xPos > 1000) {

 xPos = -500;

 }

 requestAnimationFrame(boringComputerStuff);

}

ptg18144529

102 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

As you will soon find out, that isn’t the case. There is another audience for your
code. That audience is made up of human beings.

Your code is often used or scrutinized by other people. This is especially true if
you are working in a team with other JavaScript developers. You’ll often be look-
ing at your teammates’ code, and they’ll often be looking at your’s. You need
to ensure your code makes sense when someone new is looking at it. If you are
 working solo, this applies to you as well. That brilliant function that makes sense to
you today might be gibberish when looked at next week.

There are many ways of solving this problem. One of the best ways is by using
something known as comments. In this short article, we will learn what comments
are, how to specify them in JavaScript, and learn some good practices on how to
use them.

Onwards!

What Are Comments?
Comments are the things you write in your code that communicate something
to humans:
// This is for not inviting me to your birthday party!

var blah = true;

function sweetRevenge() {

 var blah = true;

 while (blah) {

 // Infinite dialog boxes! HAHAHA!!!!

 alert("Hahahaha!");

 }

}

sweetRevenge();

In this example, the comments are marked by the // character, and they provide
some not-so-useful information about the code at hand.

The thing to keep in mind about comments is that they don’t run and get
 executed like all the other code you write. JavaScript ignores your comments.
It doesn’t like you. It doesn’t care what you have to say, so you don’t have to
worry about proper syntax, punctuation, spelling, and everything else you need
to keep in mind when writing normal code. Comments exist only for us to help
understand what a piece of code is doing.

ptg18144529

CHAPTER 10 COMMENTING YOUR CODE 103

There is one other purpose comments serve. You can use comments to mark lines
of code that you don’t want executed:
function insecureLogin(input) {

 if (input == "password") {

 //var key = Math.random() * 100000;

 //processLogin(key);

 }

 return false;

}

In this example, the following two lines can be seen in your code editor, but they
won’t run:
//var key = Math.random() * 100000;

//processLogin(key);

You’ll often find yourself using the code editor as a scratchpad, and comments
are a great way to keep track of things you’ve tried in making your code work
without affecting how your application ultimately runs.

Single Line Comments
There are several ways to specify comments in your code. One way is by
 specifying single line comments using the // mark followed by what you want to
communicate. This is the comment variation you’ve seen several times already.

You can specify these comments in their own dedicated line:
// Return the larger of the two arguments

function max(a, b) {

 if (a > b) {

 return a;

 } else {

 return b;

 }

}

You can also specify these comments on the same line as a statement:
var zorb = "Alien"; // Annoy the planetary citizens

Where you specify them is entirely up to you. Choose a location that seems
appropriate for the comment you are writing.

ptg18144529

104 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

As you know well by now, your comments don’t run as part of your application.
Only you, me, and possibly Dupree can see them. If that last line made no sense,
what you are telling me is that you did not see one of the greatest comedies of
our generation. I highly encourage you to put this book down and take a few
hours to rectify that.

Multi-line Comments
The problem with single line comments is that you have to specify the // characters
in front of every single line you want to comment. That can get really tiring -
 especially if you are writing a long comment or commenting out a large chunk of
code.

For those situations, you have another way of specifying comments. You have
the /* and */ characters to specify the beginning and ending of what are known
as multi-line comments:
/*

var mouseX = 0;

var mouseY = 0;

canvas.addEventListener("mousemove", setMousePosition, false);

function setMousePosition(e) {

 mouseX = e.clientX;

 mouseY = e.clientY;

}

*/

Instead of adding // marks in front of each line like an animal, we can use
the /* and */ characters to save us a lot of time and frustration.

In most applications, you’ll use a combination of single line and multi-line
 comments depending on what you are trying to document. This means you need
to be familiar with both of these commenting approaches.

ptg18144529

CHAPTER 10 COMMENTING YOUR CODE 105

JSDOC STYLE COMMENTS
When you are writing some code that you want used by others, you probably want
an easier way to communicate what your code does beyond having people rum-
mage through source code. That easier way exists, and it is made possible by a tool
known as JSDoc! With JSDoc, you slightly modify how you write your comments:
/**

* Shuffles the contents of your Array.

 *

* @this {Array}

* @return {Array} A new array with the contents fully shuffled.

 */

Array.prototype.shuffle = function() {

 var input = this;

 for (var i = input.length - 1; i >= 0; i--) {

 var randomIndex = Math.floor(Math.random() * (i + 1));

 var itemAtIndex = input[randomIndex];

 input[randomIndex] = input[i];

 input[i] = itemAtIndex;

 }

 return input;

}

Once you have commented your files, you can use the JSDoc tool to export the
relevant parts of your comments into an easily browsable set of HTML pages. This
allows you to spend more time writing JavaScript while giving your users an easy
way to understand what your code does and how to use various parts of it.

If you want to learn more on how to use JSDoc, check out their awesome Getting
Started page for more details.

ptg18144529

106 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Commenting Best Practices
Now that we have a good idea of what comments are and the several ways we
have to write them in JavaScript, let’s talk a bit about how to properly use com-
ments to make your code easy to read:

1. Always comment your code as you are writing it. Writing comments is
 dreadfully boring, but it is an important part of writing code. It is much more
time efficient for you (and others) to understand what your code does from
reading a comment as opposed to reading line after line of boring JavaScript.

2. Don’t defer comment writing for later. Related to the previous point, deferring
comment writing for a later time is the grown-up equivalent of procrastinating
on a chore. If you don’t comment your code as you are writing it, you’ll prob-
ably just skip commenting entirely. That’s not a good thing.

3. Use more English and less JavaScript. Comments are one of the few places
when writing JavaScript that you can freely use English (or whatever language
you prefer communicating in). Don’t complicate your comments unnecessarily
with code. Be clear. Be concise. Use words.

4. Embrace whitespace. When scanning large blocks of code, you want to
ensure your comments stand out and are clear to follow. That involves being
liberal with your Spacebar and Enter/Return key. Take a look at the following
example:

function selectInitialState(state) {

 var selectContent = document.querySelector("#stateList");

 var stateIndex = null;

 /*

For the returned state, we would like to ensure that
we select it in our UI. This means we iterate through
every state in the drop-down until we find a match.
When a match is found, we ensure it gets selected.

 */

 for (var i = 0; i < selectContent.length; i++) {

 var stateInSelect = selectContent.options[i].innerText;

 if (stateInSelect == state) {

ptg18144529

CHAPTER 10 COMMENTING YOUR CODE 107

stateIndex = i;

 }

 }

 selectContent.selectedIndex = stateIndex;

}

Notice that our comment is appropriately spaced to distinguish it from the rest
of the code. If your comments are strewn about in arbitrary locations where
they are difficult to identify, that just unnecessarily slows you and whoever is
reading your code down.

5. Don’t comment obvious things. If a line of code is self-explanatory, don’t waste
time explaining what it does unless there is some subtle behavior you need to
call out as a warning. Instead, invest that time in commenting the less obvious
parts of your code.

The best practices you see here will take you far in ensuring you write properly
commented code. If you are working on a larger project with other people, I
can assure you that your team already has some established guidelines on what
proper commenting looks like. Take some time to understand those guidelines
and follow them. You’ll be happy. Your team will be happy.

THE ABSOLUTE MINIMUM
Comments are often viewed as a necessary evil. After all, would you rather
take a few minutes documenting what you clearly already know, or would you
rather implement the next cool piece of functionality? The way I like to describe
 comments is as follows: It is a long-term investment.

The value and benefit of comments is often not immediately obvious. It becomes
obvious when you start having other people looking over your code, and it
becomes obvious when you have to revisit your own code after you’ve forgotten
all about it and how it works. Don’t sacrifice long-term time savings for a
 short-term kick. Invest in single line (//) and multi-line (/* and */) comments now
before it is too late.

ptg18144529

108 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

http://www.quepublishing.com

ptg18144529

11
I N T H I S C H A P T E R
• Understand what all this fuss about Objects is about

• Learn about the basic types you’ll run into in
JavaScript

• Find out that pizza has an educational value beyond
just being deliciously awesome

OF PIZZA, TYPES,
PRIMITIVES, AND OBJECTS
It’s time to get serious. Srsly! In the past few chapters, we’ve been working

with various kinds of values. You’ve worked with strings, numbers, bool-

eans (aka true and false), functions, and various other built-in things that

are part of the JavaScript language.

ptg18144529

110 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Below are some examples to jog your memory:
var someText = "hello, world!";

var count = 50;

var isActive = true;

Unlike other languages, JavaScript makes it really easy to specify and use these
built-in things. You don’t even have to think about or plan ahead to use any
of them. Despite how simple it is to use these different kinds of built-in things,
there is a lot of detail that is hidden from you. Knowing these details is important
because it will not only help you make sense of your code more easily, it may
even help you to more quickly pinpoint what is going wrong when things aren’t
working the way they should.

Now, as you can probably guess, “built-in-things” isn’t the proper way to describe
the variety of values that you can use in JavaScript. There is a more formal name
for the variety of values you can use in your code, and that name is types. In this
chapter, you are going to get a gentle introduction to what they are.

Onwards!

Let’s First Talk About Pizza
No, I haven’t completely lost it. Since I am always eating something (or thinking
about eating something), I am going to try to explain the mysterious world of
types by first explaining the much simpler world of pizza.

ptg18144529

CHAPTER 11 OF PIZZA, TYPES, PRIMITIVES, AND OBJECTS 111

In case you haven’t had pizza in a while, this is what a typical pizza looks like:

A pizza doesn’t just magically appear looking like this. It is made up of other
 ingredients—some simple and some not so simple as illustrated in Figure 11.1.

ptg18144529

112 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 11.1

A pizza is made up of many smaller ingredients.

The simple ingredients are easy to spot. These would be your mushrooms and
jalapeños. The reason these are simple is that you can’t break these ingredients
apart any further:

ptg18144529

CHAPTER 11 OF PIZZA, TYPES, PRIMITIVES, AND OBJECTS 113

They aren’t prepared. They aren’t made up of other simple ingredients. Just like
the dude, they abide.

The not-so-simple, complex ingredients would be your cheese, sauce, crust, and
the pepperoni. These are more complex for all the reasons the simple ones are…
um…simple. These complex ingredients are made up of other ingredients:

Unfortunately for all of us, there is no one ingredient called cheese or pepperoni
out there. You need to combine and prepare and add some more ingredients to
make up some of the complex ingredients you see here. There is a subtle point
that needs to be noted about complex ingredients. Their composition isn’t limited
to just simple ingredients. Complex ingredients can themselves be made up of
other complex ingredients. How scandalous?!!

From Pizza to JavaScript
While this may be hard to believe, everything you learned about pizzas in the
 previous section was there for a purpose. The description of the simple and

ptg18144529

114 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

complex ingredients very neatly applies to types and JavaScript. Each individual
ingredient could be considered a counterpart to a type that you can use:

Just like the cheese, sauce, pepperoni, mushrooms, and bacon in our version of a
pizza, the basic types in JavaScript are String, Number, Boolean, Null, Undefined,
and Object. Some of these types may be very familiar to you already, and some of
them may not be. While we will look at all of these types in much greater detail in
future chapters, Table 11.1 provides a very brief summary of what they do.

TABLE 11.1 Basic JavaScript Types

Type What It Does

String The basic structure for working with text

Number As you can guess, it allows you to work with numbers

Boolean Comes alive when you are using true and false

Null Represents the digital equivalent of nothing…or moo :P

Undefined While sorta similar to null, this is returned when a value should exist but
doesn’t…like when you declare a variable but don’t assign anything to it

Object Acts as a shell for other types including other objects

ptg18144529

CHAPTER 11 OF PIZZA, TYPES, PRIMITIVES, AND OBJECTS 115

Now, while each of these types is pretty unique in what it does, there is a
simple grouping they fall under. Just like with your pizza’s simple and complex
 ingredients, your types can be simple or complex as well. Except, in JavaScript
terminology involving types, simple and complex are more formally known as
primitive and object respectively. Another way of saying this is that your types in
JavaScript are known as primitive types (or just primitives) and object types (or
just objects).

The next two paragraphs are going to be really boring, and I don’t expect you
to memorize what I am about to say. Your primitive types are your String,
 Number, Boolean, Null, and Undefined types. Any values that fall under this
umbrella can’t be divided any further. They are the jalapeños and mushrooms of
the JavaScript world. Anything that you create or use that is an Object, under
the covers, is potentially made up of other primitive types or other Objects.
Objects can also be empty, but we’ll cover all those details eventually.

As you can see, primitives are pretty easy to understand. There is no depth to
them, and you pretty much get what you see when you encounter one. Your
Object types are a bit more mysterious, and so they are the last thing I want
to cover before unleashing details about all of these types is what Objects in
 JavaScript actually are.

What Are Objects?
The concept of objects in a programming language like JavaScript maps nicely
to its real-world equivalents. In the real world, you are literally surrounded by
objects. Your computer is an object. A book on a shelf is an object. A potato
is (arguably) an object. Your alarm clock is an object. The autographed Cee Lo
Green poster you got on eBay is also an object! I could go on forever, but (for
everyone’s sake :P) I’m going to stop here.

Some objects like a paperweight don’t do much:

ptg18144529

116 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

They just sit there. Other objects, like a television, go above and beyond the call
of mere existence and do a lot of things:

A typical television takes input, allows you to turn it on or off, change the channel,
adjust the volume, and do all sorts of television-y things.

The thing to realize is that objects come in different shapes, sizes, and usefulness.
Despite the variations, objects are all the same at a high level. They are an
abstraction. They provide an easy way for you to use them without having to
worry about what goes on under the covers. Even the simplest objects hide a
 certain level of complexity that you simply don’t have to worry about.

For example, it doesn’t matter what goes on inside your TV, how the wires are
connected, or what type of glue is used to hold everything together. Those are
unnecessary details. All that you care about is that the TV does what it is told.
When you want it to change the channel, the channel should change. When you
adjust the volume, the volume should adjust. Everything else is just noise.

Basically, think of an object as a black box. There are some predefined/documented
things it does. How it does them is something you can’t easily see. How it does
its magic is also something you don’t really care about as long as it works. We’ll
change that notion later when we learn to actually create the insides of an object,
but let’s relish this simple and happy world for now.

ptg18144529

CHAPTER 11 OF PIZZA, TYPES, PRIMITIVES, AND OBJECTS 117

The Predefined Objects Roaming Around
Besides the built-in types you saw earlier, you also have a handful of predefined
objects in JavaScript that you can use out of the box. These objects allow you to
work with everything from collections of data to dates to even text and numbers.
Table 11.2 presents some of these objects along with, just like before, a short
blurb on what they do.

TABLE 11.2 Some Pre-defined JavaScript Objects

Type What It Does

Array Helps store, retrieve, and manipulate a collection of data

Boolean Acts as a wrapper around the boolean primitive; still very much in love
with true and false

Date Allows you to more easily represent and work with dates

Function Allows you to invoke some code among other esoteric things

Math The nerdy one in the group that helps you better work with numbers

Number Acts as a wrapper around the number primitive

RegExp Provides a lot of functionality for matching patterns in text

String Acts as a wrapper around the string primitive

The way you use these built-in objects is slightly different from how you use
 primitives. Each object has its own quirk regarding how you can use them as well.
Explaining each object and how it is meant to be used is something that I will
defer to for later, but here is a very short snippet of commented code to show you
what is possible:
// an array

var names = ["Jerry", "Elaine", "George", "Kramer"];

var alsoNames = new Array("Dennis", "Frank", "Dee", "Mac");

// a round number

var roundNumber = Math.round("3.14");

// today's date

var today = new Date();

// a boolean object

var booleanObject = new Boolean(true);

ptg18144529

118 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

// infinity

var unquantifiablyBigNumber = Infinity;

// a string object

var hello = new String("Hello!");

One thing that you may find puzzling is the existence of the Object-form of the
string, boolean, and number primitives. On the surface, the Object-form and
primitive-form of these types look very similar. Here is an example:
var movie = "Pulp Fiction";

var movieObj = new String("Pulp Fiction");

alert(movie);

alert(movieObj);

What you will see printed will be identical. Below the surface, though, both movie
and movieObj are very different. One is literally a primitive of type string, and
the other is of type Object. This leads to some interesting (and possibly incom-
prehensible) behavior that I will gradually touch upon as we explore the handful of
built-in types that you’ve seen so far.

THE ABSOLUTE MINIMUM
If this feels like a movie that abruptly ended just as things were getting interesting,
I don’t blame you for thinking that way. The main takeaway is that your primitives
make up the most basic types that you can use in your code. Your objects are a
bit more complex and are made up of other primitives or objects. We’ll see more
of that in a little bit when we dive deeper. Beyond that, we learned the names for
the common built-in types and some basic background material about all of them.

What you are going to see in subsequent chapters is a deeper look at all of these
types and the nuances of working with them. Think of this chapter as the gentle
on-ramp that suddenly drops you onto the rails of a crazy rollercoaster.

ptg18144529

CHAPTER 11 OF PIZZA, TYPES, PRIMITIVES, AND OBJECTS 119

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

http://www.quepublishing.com

ptg18144529

This page intentionally left blank

ptg18144529

12
I N T H I S C H A P T E R
• Understand how text is treated in JavaScript

• Learn how to perform common string operations

• Look at the various string properties

STRINGS
I have a hunch that you are a human being. As a human, you probably

relate really well with words. You speak them. You write them. You also

tend to use a lot of them in the things you program. As it turns out,

 JavaScript likes words a whole lot as well. The letters and funny-looking

symbols that make up your (and my) language have a formal name. They

are known as strings:

ptg18144529

122 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

That image may not be very representative of what I am talking about. In fact, that
image has nothing to do what I am talking about…

Anyway, strings in JavaScript are nothing more than a series of characters. Despite
how boring that sounds, accessing and manipulating these characters is a skill that
you must be familiar with. That’s where this chapter comes in.

Onwards!

The Basics
The way you can work with strings is by just using them in your code. Just make
sure to enclose them in single or double quotes. Below are some examples:
var text = "this is some text";

var moreText = 'I am in single quotes!';

alert("this is some more text");

ptg18144529

CHAPTER 12 STRINGS 123

Besides just listing strings, you’ll often combine a couple of strings together.
You can easily do that by just using the + operator:
var initial = "hello";

alert(initial + " world!");

alert("I can also " + "do this!");

In all of these examples, you are able to see the string. The only reason I point out
something this obvious is that, when you can see the contents of your string as
literally as you do, these strings are more appropriately known as string literals.
That doesn’t change the fact that the resulting structure is still a built-in primitive
type called a string (you know…a basic pizza ingredient from the previous
chapter).

If you had to visualize what the text and moreText strings look like, they would
look as shown in Figure 12.1.

FIGURE 12.1

What our code looks like as visualized by weird lines and colorful boxes!

You just have your two variables pointing to some literal chunks of text. There isn’t
anything else that is going on. If you are wondering why I wasted this space in
visualizing something so obvious, the visualizations will get more complex once we
move into Object territory. You’ll see hints of that in this chapter itself.

Anyway, all of this isn’t particularly important…yet. The only important thing to
keep in mind is that you need to wrap your string literals in either quotation marks
(") or apostrophes (') to designate them as a region of text. If you don’t do that,
bad things happen and your code probably won’t run.

That’s all there is to the basics. The fun stuff comes from using all of the functionality
JavaScript provides for working with strings. We’ll look at that and more in the
 following sections.

ptg18144529

124 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

String Properties and Methods
When you are working with strings, the underlying String object implementation
contains a lot of properties that make working with text (usually) easier. In the
 following sections, instead of going over every property and boring both of us to
death, I’ll just focus on the important ones in the context of tasks you will be doing.

Accessing Individual Characters
While a string looks like one cohesive unit, it is actually made up of a series of
characters. You can access each character in several ways. The most common way
is by using array/bracket notation and passing in a number that corresponds to the
index position of the character:
var vowels = "aeiou";

alert(vowels[2]);

In this example, I will see the i character because it is the item at the second index
position. If you have no idea what just happened, Figure 12.2 may help.

FIGURE 12.2

How the index positions map to the string character.

Here is something you should keep in mind when the word index is thrown
around. Index positions in JavaScript start at 0 and move up from there. That is
why your index position is 2, but the count of the element at that position is
 actually 3. This gets less weird the more you work with JavaScript and other
 languages that don’t contain the words Visual and Basic.

To go one step further, you can access all characters in your string by just looping
through the index positions. The start of the loop will be 0, and the end of your
loop will be determined by the length of your string. The length of your string
(aka a count of the number of characters) is returned by the length property.

ptg18144529

CHAPTER 12 STRINGS 125

Here is an example of the preceding paragraph in action:
var vowels = "aeiou";

for (var i = 0; i < vowels.length; i++) {

 alert(vowels[i]);

}

While you may not be looping through a string all the time, it is very common to
use the length property to get a count of the number of characters in your string.

If you don’t get along with the array/bracket notation, you also have the charAt
method that returns a character at a specified index position:
var vowels = "aeiou";

alert(vowels.charAt(2));

The end result is identical to what you see using the array notation. I wouldn’t
really use this method unless you care about really old browsers like Internet
Explorer 7. Yep, I didn’t think you did either.

WAIT…WHAT?
If you are wondering where in the world string primitives have the ability to access
properties only available to String objects, suspend your curiosity for a few
moments until the next chapter where we’ll look at this in much greater detail.

 Combining (aka Concatenating) Strings
To combine two strings together, you can just use the + or += operators and just
add them like you would a series of numbers:
var stringA = "I am a simple string.";

var stringB = "I am a simple string, too!";

alert(stringA + " " + stringB);

ptg18144529

126 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Notice that, in the third line, we add both stringA and stringB together.
Between them, we specify an empty space character (" ") to ensure there is
a space between each of the individual strings. You can mix and match string
 literals with string primitives and string objects and still get your text all combined
together.

For example, this is all valid:
var textA = "Please";

var textB = new String("stop!");

var combined = textA + " make it " + textB;

alert(combined);

Despite all of the mixing going on, the type of the combined variable is simply a
string primitive.

For combining strings, you also have the concat method. You can call this
method from any string and specify a sequence of string primitives, literals, and
objects that you want to combine into one…megastring:
var foo = "I really";

var blah = "why anybody would";

var blarg = "do this";

var result = foo.concat(" don't know", " ", blah, " ", blarg);

alert(result);

For the most part, just use the + and += approach for combining strings. It is faster
than the concat approach. With everything else being equal, who wouldn’t want
some extra speed in their code?

Making Substrings out of Strings
Sometimes, what you are interested in is a sequence of characters somewhere
in the middle of your string. The two properties that help satisfy this interest are
slice and substr. Let’s say we have the following string:
var theBigString = "Pulp Fiction is an awesome movie!";

Let’s mess with this string for a bit.

ptg18144529

CHAPTER 12 STRINGS 127

The slice Method!
The slice method allows you to specify the start and end positions of the part of
the string that you want to extract:
var theBigString = "Pulp Fiction is an awesome movie!";

alert(theBigString.slice(5, 12));

In this example, we extract the characters between index positions 5 and 12.
The end result is that the word Fiction is what will get returned.

The start and end position values do not have to be positive. If you specify a
negative value for the end position, the end position for your string is what is left
when you count backwards from the end:
var theBigString = "Pulp Fiction is an awesome movie!";

alert(theBigString.slice(0, -6));

If you specify a negative start position, your start position is the count of whatever
you specify starting from the end of the string:
var theBigString = "Pulp Fiction is an awesome movie!";

alert(theBigString.slice(-14, -7));

You just saw three variations of how the slice method can be used. I’ve never
used anything but the first version with a positive start and end position, and you’ll
probably fall in a similar boat.

The substr Method!
The next approach we will look at for splitting up your string is the substr
method. This method takes two arguments as well:
var newString = substr(start, length);

The first argument is a number that specifies your starting position, and the
 second argument is a number that specifies the length of your substring.
This makes more sense when we look at some examples:
var theBigString = "Pulp Fiction is an awesome movie!";

alert(theBigString.substr(0, 4)); // Pulp

ptg18144529

128 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

We start the substring at the zeroth position and count four characters up. That is
why Pulp is returned. If you want to just extract the word Fiction, this is what your
code would look like:
var theBigString = "Pulp Fiction is an awesome movie!";

alert(theBigString.substr(5, 7)); // Fiction

If you don’t specify the length, the substring that gets returned is the string that
goes from the start position to the end:
var theBigString = "Pulp Fiction is an awesome movie!";

alert(theBigString.substr(5)); // Fiction is an awesome movie!

There are a few more variations of values you can pass in for substr, but these
are the big ones.

Splitting a String/split
That which you can concatenate, you can also split apart. I am pretty sure a wise
person once said that. Another way you can split apart a string is by using the
split method. Calling this method on a string returns an array of substrings.
These substrings are separated by a character or Regular Expression (aka RegEx)
that you use to determine when to split apart your string.

Let’s look at a simple example where this makes more sense:
var inspirationalQuote = "That which you can concatenate, you can
 also split apart.";

var splitWords = inspirationalQuote.split(" ");

alert(splitWords.length); // 10

In this example, we are splitting the inspirationalQuote text on the space
 character. Every time a space character is encountered, what is left of the string
before it is removed and made an item in the array that gets returned by this
method.

Here is another example:
var days = "Monday,Tuesday,Wednesday,Thursday,Friday,
 Saturday, Sunday";

var splitWords = days.split(",");

alert(splitWords[6]); // Sunday

ptg18144529

CHAPTER 12 STRINGS 129

We have the days variable, which stores a string of days separated only by a
comma. If we wanted to separate out each day, we could use the split method
with the separator character being the comma. The end result is an array of seven
items where each item is the day of the week from the original string.

You’ll be surprised at how often you will find yourself using the split method
to break apart a sequence of characters that can be as simple as a sentence or
 something more complex like data returned from a web service.

Finding Something Inside a String
If you ever need to find a character or characters inside a string, you can use
the indexOf, lastIndexOf, and match methods. Let’s look at the indexOf
method first.

What the indexOf method does is take the character(s) you are looking for as its
argument. If what you are looking for is found, it returns the index position in the
string where the first occurrence…occurs. If no matches are found, this method
gifts you with a –1. Let’s look at an example:
var question = "I wonder what the pigs did to make these birds so
 angry?";

alert(question.indexOf("pigs")); // 18

I am trying to see if pigs exist in my string. Because what I am looking for does
exist, the indexOf method lets me know that the first occurrence of this word
occurs at the 18th index position. If I look for something that doesn’t exist, like the
letter z in this example, a –1 gets returned for:
var question = "I wonder what the pigs did to make these birds so
 angry?";

alert(question.indexOf("z")); // -1

The lastIndexOf method is very similar to indexOf. As you can guess by the
name, lastIndexOf returns the last occurrence of what you are looking for:
var question = "How much wood could a woodchuck chuck if a
 woodchuck could chuck wood?";

alert(question.lastIndexOf("wood")); // 65

ptg18144529

130 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

There is one more argument you can specify to both indexOf and
 lastIndexOf. In addition to providing the characters to search for, you can
also specify an index position on your string to start your search from:
var question = "How much wood could a woodchuck chuck if a
 woodchuck could chuck wood?";

alert(question.indexOf("wood", 30)); // 43

The last thing to mention about the indexOf and lastIndexOf methods is that
you can match any instance of these characters appearing in your string. These
functions do not differentiate between whole words or what you are looking for
being a substring of a larger set of characters. Be sure to take that into account.

Before we wrap this up, let’s look at the match method. With the match method,
you have a little more control. This method takes a Regex as its argument:
var phrase = "There are 3 little pigs.";

var regexp = /[0–9]/;

var numbers = phrase.match(regexp);

alert(numbers[0]); // 3

What gets returned is also an array of matching substrings, so you can use your
Array ninja skills to make working with the results a breeze. Learning how to work
with regular expressions is something that we’ll look at much later.

Upper and Lower Casing Strings
Finally, let’s end this coverage on Strings with something easy that doesn’t require
anything complicated. To uppercase or lowercase a string, you can use the appro-
priately named toUpperCase and toLowerCase methods. Let’s look at this
example:
var phrase = "My name is Bond. James Bond.";

alert(phrase.toUpperCase()); // MY NAME IS BOND. JAMES BOND.

alert(phrase.toLowerCase()); // my name is bond. james bond.

See, told you this was easy!

ptg18144529

CHAPTER 12 STRINGS 131

THE ABSOLUTE MINIMUM
Strings are one of the handful of basic data types you have available in JavaScript,
and you just saw a good overview of the many things you can do using them. One
issue that I skirted around is where your string primitives seem to mysteriously
have all of these properties that are common only to Objects. We’ll look at that
one in the next chapter!

Some additional resources and examples:

• The Devowelizer: http://bit.ly/kirupaDeVowelize

• Capitalize the First Letter of a String: http://bit.ly/kirupaCapLetter

• 10 Ways to Reverse a String: http://bit.ly/kirupaWaysToReverseString

 TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

http://bit.ly/kirupaDeVowelize
http://bit.ly/kirupaCapLetter
http://bit.ly/kirupaWaysToReverseString
http://www.quepublishing.com

ptg18144529

This page intentionally left blank

ptg18144529

13
I N T H I S C H A P T E R
• Get a deeper understanding of how primitives and

objects work

• Understand that even primitives have object-like
traits

• Wonder how JavaScript ever got to being so
popular

WHEN PRIMITIVES BEHAVE
LIKE OBJECTS
In the previous chapter (Chapter 12, “Strings”) and less so in the

“Of Pizza, Types, Primitives, and Objects” chapter (Chapter 11), you got

a sneak peek at something that is probably pretty confusing. I’ve stated

many times that primitives are very plain and simple. Unlike Objects, they

don’t contain properties that allow you to fiddle with their values in inter-

esting (or boring) ways. Yet, as clearly demonstrated by all the stuff you

can do with strings, your primitives seem to have a mysterious dark side

to them:

var greeting = "Hi, everybody!!!";

var shout = greeting.toUpperCase(); // where did toUpperCase
 come from?

ptg18144529

134 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

As you can see from this brief snippet, your greeting variable, which stores a
primitive value in the form of text, seems to have access to the toUpperCase
method. How is this even possible? Where did that method come from? Why am
I here? Answers to confusing existential questions like this will make up the bulk of
what you see in this page. Also, I apologize for writing that previous sentence in
passive voice. Happen again it won’t.

Strings Aren’t the Only Problem
Because of how cute they are, it’s easy to pick on strings as the main perpetrator
of this primitive/Object confusion. As it turns out, many of the built-in primitive
types are involved in this racket as well. Table 13.1 presents the built-in Object
types with the guilty parties that also exist as primitives highlighted.

TABLE 13.1 Object Types that also Exist as Primitives

Type What It Does

Array helps store, retrieve, and manipulate a collection of data

Boolean acts as a wrapper around the boolean primitive; still very much in
love with true and false

Date allows you to more easily represent and work with dates

Function allows you to invoke some code among other esoteric things

Math the nerdy one in the group that helps you better work with numbers

Number acts as a wrapper around the number primitive

RegExp provides a lot of functionality for matching patterns in text

String acts as a wrapper around the string primitive

Whenever you are working with boolean, number, or string primitives, you have
access to properties their Object equivalent exposes. In the following sections,
you’ll see what exactly is going on.

Let’s Pick on Strings Anyway
Just as you were taught by your parents growing up, you typically use a string in
the literal form:
var primitiveText = "Homer Simpson";

ptg18144529

CHAPTER 13 WHEN PRIMITIVES BEHAVE LIKE OBJECTS 135

As you saw in the table earlier, strings also have the ability to be used as objects.
There are several ways to create a new object, but the most common way to
 create an object for a built-in type like our string is to use the new keyword
 followed by the word String:
var name = new String("Homer Simpson");

The String in this case isn’t just any normal word. It represents what is known
as a constructor function whose sole purpose is to be used for creating objects.
Just like there are several ways to create objects, there are several ways to create
String objects as well. The way I see it, knowing about one way that you really
shouldn’t be creating them with is enough.

Anyway, the main difference between the primitive and object forms of a string is
the sheer amount of additional baggage the object form carries with it. Let’s bring
our silly visualizations back. Your primitiveText variable and its baggage looks
as shown in Figure 13.1.

FIGURE 13.1

What primitiveText looks like.

There really isn’t much there. Now, don’t let the next part scare you, but if we
had to visualize our String object called name, it would look like what you see in
 Figure 13.2.

ptg18144529

136 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 13.2

It is a bit more complex, right?

You have your name variable containing a pointer to the text, Homer Simpson.
You also have all of the various properties and methods that go with the String
object - things you may have used like indexOf, toUpperCase, and so on. You’ll
get a massive overview of what exactly this diagram represents in Chapter 16,
“A Deeper Look at Objects,” so don’t worry yourself too much about what you
see here. Just know that the object form of any of the primitives carries with it a
lot of functionality.

ptg18144529

CHAPTER 13 WHEN PRIMITIVES BEHAVE LIKE OBJECTS 137

Why This Matters
Let’s go back to our earlier point of confusion. Our string is a primitive. How can
a primitive type allow you to access properties on it? The answer has to do with
JavaScript being really weird. Let’s say you have the following string:
var game = "Dragon Age: Origins";

The game variable is very clearly a string primitive that is assigned to some literal
text. If I want to access the length of this text, I would do something as follows:
var game = "Dragon Age: Origins";

alert(game.length);

As part of evaluating game.length, JavaScript will convert your primitive string
into an object. For a brief moment, your lowly primitive will become a beautiful
object to figure out what the length actually is. The thing to keep in mind is that
all of this is temporary. Because this temporary object isn’t grounded or tied to
anything after it serves its purpose, it goes away and you are left with the result of
the length evaluation (a number) and the game variable (still a string primitive).

This transformation only happens for primitives. If you ever explicitly create a
String object, then what you create is permanently kept as an object. Let’s say
you have the following:
var gameObject = new String("Dragon Age:Origins");

In this case, our gameObject variable very clearly points to something whose
type is Object. This variable will continue to point to an Object type unless you
modify the string or do something else that causes the reference to be changed.
The primitive morphing into an object and then morphing back into a primitive is
something unique to primitives. Your objects don’t partake in such tomfoolery.

You can easily verify everything I’ve said by examining the type of your data. That
is done by using the typeof keyword. Here is an example of me using it to con-
firm everything I’ve just told you about:
var game = "Dragon Age: Origins";

alert("Length is: " + game.length);

var gameObject = new String("Dragon Age:Origins");

alert(typeof game); // string

alert(typeof game.length); // number

alert(typeof gameObject); // Object

Now, aren’t you glad you learned all this?

ptg18144529

138 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

THE ABSOLUTE MINIMUM
Hopefully, this brief explanation helps you to reconcile why your primitives behave
like objects when they need to. At this point, you might have a different question
around why anybody would have designed a language that does something this
bizarre. After all, if a primitive turns into an object when it needs to do something
useful, why not just stay an object always? The answer has to do with memory
consumption.

As you saw from my discussion and illustrations on how much extra baggage the
object form of a primitive carries when compared to just a primitive, all of those
pointers to additional functionality cost resources. The solution in JavaScript is a
compromise. All literal values like text, numbers, and booleans are kept as primi-
tives if they are declared and/or used as such. Only when they need to are they
converted to their respective Object forms. To ensure your app continues to
keep a low memory footprint, these converted objects are quickly discarded (aka
 garbage collected) once they’ve served their purpose.

http://www.quepublishing.com

ptg18144529

14
I N T H I S C H A P T E R
• Use arrays to handle lists of data

• Learn how to perform common tasks using the
 various Array properties

ARRAYS
Let’s imagine you are jotting down a list on a piece of paper. Let’s call

the piece of paper “groceries.” Now, on this sheet of paper, you write a

 numbered list starting with zero with all the items that belong there such

as what you see in Figure 14.1.

ptg18144529

140 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 14.1

An example of a grocery list.

By simply creating a list of things, what you have right now is a real-world example
of an array! The piece of paper called “groceries” would be your array. The items
that you need to purchase are known as array values (or array elements).

In this chapter, you will learn all about what I like to go grocery shopping for.
You may indirectly get an introduction to the very common built-in type, the array.

Onwards!

Creating an Array
The popular way in which all the cool kids create arrays these days is to use an
open and close bracket. The example that follows is our groceries variable that is
initialized to an empty array:
var groceries = [];

ptg18144529

CHAPTER 14 ARRAYS 141

You have your variable name on the left, and you have a pair of brackets on the
right that initializes this variable as an empty array. This bracket-y approach for
creating an array is better known as the array literal notation.

Now, you will commonly want to create an array with some items inside it from the
very beginning. To create these non-empty arrays, place the items you want inside
the brackets and separate them by commas:
var groceries = ["Milk", "Eggs", "Frosted Flakes", "Salami",
 "Juice"];

Notice that my groceries array now contains Milk, Eggs, Frosted Flakes, Salami,
and Juice. I just have to reiterate how important the commas are. Without the
commas, you’ll just have one giant item. All right, now that you’ve learned how
to declare an array, let’s look at how you can actually use it to store and work
with data.

Accessing Array Values
One of the nice things about arrays is that you not only have easy access to the
array, but you also have easy access to the array values…similar to highlighting an
item on your grocery list as shown in Figure 14.2.

FIGURE 14.2

Eggs are highlighted. Must be important.

ptg18144529

142 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The only thing you need to know is the procedure for accessing an individual item.

Inside an array, each item is assigned a number (formally known as an index value)
starting with zero just like you saw with characters inside a string earlier. In the
above example, Milk would have an index value of 0, Eggs would have an index
value of 1, Frosted Flakes the index value of 2, and so on.

Let’s say that our groceries array is declared as follows:
var groceries = ["Milk", "Eggs", "Frosted Flakes", "Salami",
 "Juice"];

If I wanted to access an item from the array, all I need to do is specify the index
value of the item I am interested in:
groceries[1];

The index value is specified using square brackets. In this example, you are
 referring to the Eggs value because the index value 1 refers to it. If you specified
a 2, you would return Frosted Flakes. You can keep specifying a larger index value
until you have no more entries in the array left that map to it.

The number you can use as your index value goes all the way from 0 to one less
than your array’s length. The reason is that, as shown in the diagram earlier, your
index values start with a value of 0. If your array only has 5 items, trying to display
grocery[6] or grocery[5] will result in a message of undefined.

Let’s go one step further. In most real-world scenarios, you will want to program-
matically go through your array as opposed to accessing each item individually.

You can take what I explained in the previous paragraph and use a for loop to
accomplish this:
for (var i = 0; i < groceries.length; i++) {

 var item = groceries[i];

}

Notice the range of your loop starts at 0 and ends just one before your array’s full
length (as returned by the length property). This works because, like I mentioned
earlier, your array index values go from 0 to one short of the value returned for
the array’s length. And yes, the length property returns a count of all the items
in your array! (To be precise, the length property returns the number of index
values in your array, and that can sometimes not equal the number of actual items
your array is storing. That is a nitpicky detail we’ll deal with another time.)

ptg18144529

CHAPTER 14 ARRAYS 143

Adding Items to Your Array
Rarely will you leave your array in the state you initialized it in originally. You will
want to add items to it. To add items to your array, you will use the push method:
groceries.push("Cookies");

The push method is called directly on your array, and you pass in the data you
want to add to it. By using the push method, your newly added data will always
find itself at the end of the array.

For example, after running the code on our initial array, you will see Cookies
added to the end of your groceries array as shown in Figure 14.3.

FIGURE 14.3

Our newly added item was placed at the end.

If you want to add data to the beginning of your array, you use the unshift
method:
groceries.unshift("Bananas");

ptg18144529

144 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

When data is added to the beginning of your array, the index value for all of
the existing items increases to account for the newly inserted data as shown in
Figure 14.4.

FIGURE 14.4

This time, our newly added item was placed at the beginning.

The reason is that the first item in your array will always have an index value of 0.
This means that the space originally occupied by the zeroth item needs to push
itself and everything below it out to make room for the new data.

Both the push and unshift methods, besides adding the elements to the array
when you use them, return the new length of the array as well:
alert(groceries.push("Cookies")); // returns 6

Not sure why that is useful, but keep it under your hat in case you do need it.

ptg18144529

CHAPTER 14 ARRAYS 145

Removing Items from the Array
To remove an item from the array, you can use the pop or shift methods.
The pop method removes the last item from the array and returns it:
var lastItem = groceries.pop();

The shift method does the same thing on the opposite end of the array. Instead
of the last item being removed and returned, the shift method removes and
returns the first item from the array:
var firstItem = groceries.shift();

When an item is removed from the beginning of the array, the index position of all
remaining elements is decremented by 1 to fill in the gap:

ptg18144529

146 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Note that, when you are adding items to your array using unshift or push, the
returned value from that method call is the new length of your array. That is not
what happens when you call the pop and shift methods, though! When you are
removing items using shift and pop, the value returned by the method call is
the removed item itself!

We are almost done talking about removing things. The last method we are going
to look at is slice:
var newArray = groceries.slice(1, 4);

The slice method allows you copy a portion of an array and return a new
array with just those copied items. In this snippet, we copy all items between
the second and fifth items in our array and return them to a new array
we call…newArray! When you are using slice, your original array is never
 modified. No items are actually removed. They are simply copied over.

Finding Items in the Array
To find items inside your array, you have two built-in methods called indexOf
and lastIndexOf. These methods work by scanning your array and returning the
index position of the matching element.

The indexOf method returns the index value of the first occurrence of the item
you are searching for:
var groceries = ["milk", "eggs", "frosted flakes", "salami",
 "juice"];

var resultIndex = groceries.indexOf("eggs", 0);

alert(resultIndex); // 1

Notice that the resultIndex variable stores the result of calling indexOf on our
groceries array. To use indexOf, I pass in the element I am looking for along
with the index position to start from:
groceries.indexOf("eggs", 0);

The value returned by indexOf in this case will be 1.

The lastIndexOf method is similar to indexOf in how you use it, but it dif-
fers a bit on what it returns when an element is found. Where indexOf finds the
first occurrence of the element you are searching for, lastIndexOf finds the
last occurrence of the element you are searching for and returns that element’s
index position.

ptg18144529

CHAPTER 14 ARRAYS 147

When you search for an element that does not exist in your array, both indexOf
and lastIndexOf return a value of −1.

Merging Arrays
The last thing we are going to do is look at how to create a new array that is made
up of two separate arrays. Let’s say you have two arrays called good and bad:
var good = ["Mario", "Luigi", "Kirby", "Yoshi"];

var bad = ["Bowser", "Koopa Troopa", "Goomba"];

To combine both of these arrays into one array, use the concat method on the
array you want to make bigger and pass the array you want to merge into it as
the argument. What will get returned is a new array whose contents are both
good and bad:
var goodAndBad = good.concat(bad);

alert(goodAndBad);

In this example, because the concat method returns a new array, the goodAndBad
variable ends up becoming an array that stores the results of our concatenation
operation. The order of the elements inside goodAndBad is good first and
bad second:

ptg18144529

148 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and want
to try your hand at the quiz, then you’re in luck – all you need to
do is scroll down!

THE ABSOLUTE MINIMUM
That is almost all there is to know about arrays…well, at least the things you will
use them for most frequently. At the very least, you will have learned how to use
them to create a grocery list!

Some additional resources and examples:

• Shuffling an Array: http://bit.ly/kirupaArrayShuffle

• Picking a Random Item from an Array: http://bit.ly/
kirupaRandomItemArray

• Removing Duplicates from an Array: http://bit.ly/kirupaRemoveDuplicates

• Hashtables vs. Arrays: http://bit.ly/kirupaHvA

http://www.quepublishing.com
http://bit.ly/kirupaArrayShuffle
http://bit.ly/kirupaRandomItemArray
http://bit.ly/kirupaRandomItemArray
http://bit.ly/kirupaRemoveDuplicates
http://bit.ly/kirupaHvA

ptg18144529

15
I N T H I S C H A P T E R
• Make sense of numbers

• Learn about the variety of numerical values you will
encounter

• Meet the Math object and the various mathematical
things you can do

NUMBERS
When you are not dealing with strings, a large part of your time in

 JavaScript will be spent dealing with numbers. Even if you aren’t working

with numbers directly, you’ll indirectly encounter them when doing even

the most basic of tasks such as keeping count of something, working with

arrays, and so on.

In this chapter, I will provide an introduction to numbers in JavaScript by

looking at how you can use them to accomplish many common tasks.

Along the way, we will dive a little bit beyond the basics to broadly explore

some interesting number-related things you might find useful.

Onwards!

ptg18144529

150 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Using a Number
In order to use a number, all you have to do is…well, use it. Below is a simple
example of me declaring a variable called stooges that is initialized to the num-
ber 3:
var stooges = 3;

That is it. There are no hoops to jump through. If you want to use more complex
numbers, just use them as if nothing is different:
var pi = 3.14159;

var color = 0xFF;

var massOfEarth = 5.9742e+24;

In the above example, I am using a decimal value, a hexadecimal value, and a
really large value using exponents. In the end, your browser will automatically do
the right thing. Note that the “right thing” doesn’t just exist in the positive space.
You can use negative numbers easily as well. To use negative numbers, just place
a minus (-) character before the number you want to turn into a negative value:
var temperature = −42;

What you’ve seen in this section makes up the bulk of how you will actually use
numbers. In the next couple of sections, let’s go a little bit deeper and look at
some of the other interesting things you can do with numbers.

TRIVIA: NUMBERS IN JAVASCRIPT
If you are curious why working with numbers is so easy, the reason is that
 JavaScript isn’t big on numerical types. You don’t have to declare a number as
being of type int, double, byte, float, etc. like you might have had to do in
other languages.

In JavaScript, all numbers are converted into 64-bit floating point numbers.

ptg18144529

CHAPTER 15 NUMBERS 151

 Operators
No introduction to numbers would be complete (…or started) without showing
you how you can use mathematical operators in code to implement things you
learned in first-grade Math class.

Let’s look at the common operators in this section.

Doing Simple Math
In JavaScript, you can create simple mathematical expressions using the +, -,
*, /, and % operators to add, subtract, multiply, divide, and find the remainder
 (modulus) of numbers respectively. If you can use a calculator, you can do simple
math in JavaScript.

Here are some examples that put these operators to use:
var total = 4 + 26;

var average = total / 2;

var doublePi = 2 * 3.14159;

var removeItem = 50–25;

var remainder = total % 7;

var more = (1 + average * 10) / 5;

In the last line in the above example, notice that I am defining a particular order
of operations by using parentheses around the expression I want to evaluate as a
group. Again, all of this is just calculator stuff.

JavaScript evaluates expressions in the following order:

1. Parenthesis

2. Exponents

3. Multiply

4. Divide

5. Add

6. Subtract

There are various mnemonic devices out there to help you remember this. The
one I grew up with since elementary school is “Please Excuse My Dear Aunt
Sally.”

ptg18144529

152 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Incrementing and Decrementing
A common thing you will do with numbers involves incrementing or decrementing
a variable by a certain amount. Below is an example of me incrementing the vari-
able i by 1:
var i = 4;

i = i + 1;

You don’t have to increment or decrement by just 1. You can use any arbitrary
number:
var i = 100;

i = i - 2;

All of this doesn’t just have to just be addition or subtraction. You can perform
other operations as well:
var i = 40;

i = i / 2;

You should start to see a pattern here. Regardless of what operator you are using,
you’ll notice that you are cumulatively modifying your i variable. Because of how
frequently you will use this pattern, you have some operators that simplify this a
bit (see Table 15.1).

TABLE 15.1 Operators

Expression What It Does

i++ Increments i by 1 (i = i + 1)

i Decrements i by 1 (i = i − 1)

i += n Increments i by n (i = i + n)

i = n Decrements i by n (i = i − n)

i *= n Multiplies by n (i = i * n)

i /= n Divides i by n (i = i / n)

i %= n Finds the remainder of i when divided by n (i = i % n)

If I use these operators on the three examples you saw earlier, the code will look
as follows:
i++;

i -= 2;

i /= 2;

ptg18144529

CHAPTER 15 NUMBERS 153

Before we wrap this up, there is one quirk you should be aware of. It has to do
with the -- and ++ operators for incrementing or decrementing a value by 1.
Whether the ++ and -- operators appear before or after the variable they are
incrementing matters.

Let’s look at this example:
var i = 4;

var j = i++;

After executing these two lines, the value of i will be 5…just like you would
expect. The value of j will be 4. Notice that in this example, the operator appears
after the variable.

If we place the operator in front of the variable, the results are a bit different:
var i = 4;

var j = ++i;

The value of i will still be 5. Here is the kicker…the value of j will also be 5.

What changed between these two examples is the position of the operator.
The position of the operator determines whether the incremented value or the
 preincremented value will be returned. Now, aren’t you glad you learned that?

Special Values—Infinity and NaN
The last thing we will look at are two special/reserved keywords that you will
encounter that aren’t numerical values. These values are Infinity and NaN.

Infinity
You can use the Infinity and -Infinity values to define infinitely large or
small numbers:
var reallyBigNumber = Infinity;

var reallySmallNumber = -Infinity;

The chances of you having to use Infinity are often very slim. Instead, you will
probably see it returned as part of something else your code does. For example,
you will see Infinity returned if you divide by 0.

ptg18144529

154 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

NaN
The NaN keyword stands for “Not a Number”, and it gets returned when you do
some numerical operation that is invalid. For example, NaN gets returned in the
following case:
var oops = Math.sqrt(-1);

The reason is that you cannot divide a number and a string. There are non-
contrived cases where you will see this value returned. The parseInt function
I described earlier will return a NaN if the string you are converting is invalid.

TRIVIA: NUMBERS IN JAVASCRIPT
Sometimes, you will have numbers that are buried inside Strings. To get the
full scoop on that, read the Going from a String to a Number tutorial at the
 following location: http://bit.ly/kirupaStrToNum.

 The Math Object
Numbers are used in a variety of mathematical expressions, and they often go
beyond simple addition, subtraction, multiplication, and division. Your math
classes back in the day would have been a whole lot easier if that’s all there was
to it. To help you more easily do complicated numerical things, you have the Math
object. This object provides you with a lot of functions and constants that will
come in handy, and we are going to very briefly look at some of the things this
object does.

http://bit.ly/kirupaStrToNum

ptg18144529

CHAPTER 15 NUMBERS 155

 The Constants
To avoid you having to explicitly define mathematical constants like Pi, Euler’s
 constant, LN10, and so on, the Math object defines many common constants
for you:

Property What It Stands for

Math.E Euler’s constant

Math.LN2 Natural logarithm of 2

Math.LN10 Natural logarithm of 10

Math.LOG2E Base 2 logarithm of E

Math.LOG10E Base 10 logarithm of E

Math.PI 3.14159 (that’s all I remember, and I’m too lazy to look up the rest!)

Math.SQRT1_2 Square root of 1/2

Math.SQRT2 Square root of 2

THIS IS BORING!
I am not going to lie to you. Looking at all the stuff the Math object provides is
pretty boring. Unless you really want to know about all of this now, I would prefer
you just very VERY quickly skim through the following sections and refer back as
needed. The Math object isn’t going anywhere (it has no friends), so it will be
waiting for you at a later time.

ptg18144529

156 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Of all of these constants, the one I’ve used the most is Math.PI:

You will use this in everything from drawing circles on your screen to specifying
trigonometric expressions. In fact, I can’t ever remember having used any of these
other constants outside of Math.PI. Here is an example of a function that returns
the circumference given the radius:
function getCircumference(radius) {

 return 2 * Math.PI * radius;

}

alert(getCircumference(2));

ptg18144529

CHAPTER 15 NUMBERS 157

You would use Math.PI or any other constant just as you would any named
variable.

Rounding Numbers
Your numbers will often end up containing a ridiculous amount of precision:
var position = getPositionFromCursor(); //159.3634493939

To help you round these numbers up to a reasonable integer value, you have the
Math.round(), Math.ceil(), and Math.floor() functions that take a num-
ber as an argument:

Function What It Does

Math.round() Returns a number that is rounded to the nearest integer. You
round up if your argument is greater than or equal to .5. You
stay at your current integer, if your argument is less than .5.

Math.ceil() Returns a number that is greater than or equal to your
argument

Math.floor() Returns a number that is less than or equal to your argument

The easiest way to make sense of the above table is to just see these three func-
tions in action:
Math.floor(.5); // 0

Math.ceil(.5); // 1

Math.round(.5); // 1

Math.floor(3.14); // 3

Math.round(3.14); // 3

Math.ceil(3.14); // 4

Math.floor(5.9); // 5

Math.round(5.9); // 6

Math.ceil(5.9); // 6

These three functions always round you to an integer. If you want to round to
a precise set of digits, check out the last half of the Rounding Numbers in
 JavaScript tutorial at the following location: http://bit.ly/kirupaRounding.

http://bit.ly/kirupaRounding

ptg18144529

158 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Trigonometric Functions
My favorite among all the functions, the Math object, gives you handy access to
almost all of the trigonometric functions you will need.

Function What It Does

Math.cos() Gives you the cosine for a given argument

Math.sin() Gives you the sine for a given argument

Math.tan() Gives you the tan for a given argument

Math.acos() Gives you the arccosine (isn’t that such a cool name?) for a given
argument

Math.asin() Gives you the arcsine for a given argument

Math.atan() Gives you the arctan for a given argument

To use any of these, just pass in a number as the argument:
Math.cos(0); // 1

Math.sin(0); // 0

Math.tan(Math.PI / 4); // 0.9999999999999999

Math.cos(Math.PI); // -1

Math.cos(4 * Math.PI); // 1

These trigonometric functions take arguments in the form of radian values. If your
numbers are in the form of degrees, be sure to convert them to radians first.

Powers and Square Roots
Continuing down the path of defining the Math object functions, you have Math.
pow(), Math.exp(), and Math.sqrt():

Function What It Does

Math.pow() Raises a number to a specified power

Math.exp() Raises the Euler’s constant to a specified number

Math.sqrt() Returns the square root of a giving argument

ptg18144529

CHAPTER 15 NUMBERS 159

Let’s look at some examples:
Math.pow(2, 4) //equivalent of 2^4 (or 2 * 2 * 2 * 2)

Math.exp(3) //equivalent of Math.E^3

Math.sqrt(16) //4

Note that Math.pow() takes two arguments. This might be the first built-in
 function we’ve looked at that takes two arguments. This little detail is somehow
mildly exciting.

Getting the Absolute Value
If you want the absolute value of a number, simply use the Math.abs() function:
Math.abs(37) //37

Math.abs(-6) //6

The way this function works is pretty predictable if you looked at these in school.
If you pass in a negative number, it returns the positive variant of it.

Random Numbers
To generate a somewhat random number between 0 and a smidgen less than 1,
you have the Math.random() function. This function doesn’t take any arguments,
but you can simply use it as part of a mathematical expression:
var randomNumber = Math.random() * 100;

Each time your Math.random function is called, you will see a different number
returned for Math.random(). To learn all about how to work with this function to
generate random numbers, read the Random Numbers in JS tutorial here:
http://bit.ly/kirupaRandom.

http://bit.ly/kirupaRandom

ptg18144529

160 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and want
to try your hand at the quiz, then you’re in luck – all you need to
do is scroll down!

THE ABSOLUTE MINIMUM
That’s all there is to it for this introductory chapter on numbers and the Math
object in JavaScript. As you can see, it doesn’t get much easier than this.
 JavaScript provides a very no-frills approach to working with them, and this
 chapter gave you a slight peek at the edges in case you needed to go there.

Some additional resources and examples that will help you to better understand
how numbers in JavaScript can be used:

• Going from a String to a Number: http://bit.ly/kirupaStrToNum

• Random Numbers in JS: http://bit.ly/kirupaRandom

• Advanced Random Numbers in JS: http://bit.ly/AdvRandom

• Why Don’t My Numbers Add Up: http://bit.ly/kirupaFPG

• Random Colors in JS: http://bit.ly/kirupaRandomColors

http://www.quepublishing.com
http://bit.ly/kirupaStrToNum
http://bit.ly/kirupaRandom
http://bit.ly/AdvRandom
http://bit.ly/kirupaFPG
http://bit.ly/kirupaRandomColors

ptg18144529

16
I N T H I S C H A P T E R
• Understand at a deeper level how Objects work

• Learn to create custom objects

• Demystify the prototype property

• Do some inheriting

A DEEPER LOOK
AT OBJECTS
In the Introduction to Objects schtuff in Chapter 11, “Of Pizzas, Types,

Primitives, and Objects,” I provided a very high-level overview of what

objects in JavaScript are and how to think about them. That was good

enough to cover the basics and some of the built-in types, but we need to

go a little deeper. In this chapter, we will make that earlier chapter seem

like the tip of a ginormous iceberg:

ptg18144529

162 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

What we are going to do here is re-look at objects in greater detail and touch
on the more advanced topics such as using the Object object, creating your
own custom objects, inheritance, prototypes, and the this keyword. If all that
I’ve listed so far makes no sense, it will after you’ve reached the end of this
chapter…I hope.

Onwards!

Meet the Object
At the very bottom of the food chain, you have the Object type that lays the
groundwork for both custom objects as well as built-in types like Function,
Array, and RegExp. Pretty much everything except null and undefined is
directly related to an Object or can become one as needed.

As you saw from the introduction to objects forever ago, the functionality that
Object brings to the table is pretty minimal. It allows you to specify a bunch
of named key and value pairs that we lovingly call properties. This isn’t all
that different from what you see in other languages with data structures like
 hashtables, associate arrays, and dictionaries.

Anyway, all of this is pretty boring. Let’s get to some of the more exciting stuff!

ptg18144529

CHAPTER 16 A DEEPER LOOK AT OBJECTS 163

Creating Objects
All the cool kids are creating objects these days by using the funny-looking (yet
compact) object literal syntax:
var funnyGuy = {};

That’s right. Instead of typing in "new Object()" like you may have seen in
 old-timey books, you can just initialize your object by saying "{}". At the end
of this line getting executed, you will have created an object called funnyGuy
whose type is Object. If all of this makes sense so far, great!

This funnyGuy object isn’t as simple as it looks. Let’s dive a little bit deeper
and visualize what exactly is going on. On the surface, you just have the
 funnyGuy object:

ptg18144529

164 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

If you back up and look more broadly at the funnyGuy object, you’ll realize that
it isn’t alone here. Because it is an object, is has a connection to the main Object
type that it derives from:

What this connection means is pretty significant. Let’s add some more detail to
what we have provided so far:

The funnyGuy object has no properties defined. That makes sense given what we
specified in the code (and can see in the diagram above):
var funnyGuy = {};

Our funnyGuy is simply an empty object. While there may not be any properties
we defined on it, there is a special internal property that exists called __proto__
and often visualized as [[Prototype]] that points to the internally defined Object.
If your mind just melted for a second, let me slow down and explain what is going
on here.

ptg18144529

CHAPTER 16 A DEEPER LOOK AT OBJECTS 165

What the __proto__ property references is what is known as a prototype
object:

A prototype object is the source that another object is based on. In our case, the
funnyGuy object is created in the likeness of our Object type. What this means
is best highlighted by looking at an example. We know that funnyGuy contains
no properties of its own. Because it is “derived” from our Object type, you can
access any properties the Object contains through funnyGuy itself.

For example, I can do something like this:
var funnyGuy = {};

funnyGuy.toString(); // [object Object]

I am calling the toString() method on our funnyGuy object. Despite
 funnyGuy not having any property called toString on it, what gets returned
isn’t an error or undefined. You actually see the results of the toString()
method having acted on our funnyGuy object.

Think about this in a different way. Your funnyGuy object is like a little kid. It
doesn’t have any money of its own to buy big and expensive things. What the
funnyGuy object/kid does have is a parent with a credit card. Having access to
this credit card allows the kid to go and buy things that he/she wouldn’t otherwise
be able to. The funnyGuy/Object relationship is very much like a child/parent
relationship where if the child doesn’t have something, he/she can check with a
parent next.

ptg18144529

166 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

This entire (very dramatic) interaction is part of what is known as a prototype
chain. If an object doesn’t have what you are looking for, the JavaScript engine
will navigate to the next object as determined by the [[Prototype]] property
and keep going until it reaches the very end. The very end is when you try to
access the [[Prototype]] property on the Object itself. You can’t go any fur-
ther beyond Object, since that is as basic a type as you can get. I highlight this in
the diagrams by having your Object’s [[Prototype]] refer to null.

If you’ve ever heard of the term inheritance as it applies to programming before,
what you’ve just seen is a simple example of it!

ACTING THIS OUT
Getting back to our example and looking at it all one more time, what happened
is this. Let’s act this out:

Our JavaScript engine was like, Hey, funnyGuy! I’m going to call toString()
on you.

The funnyGuy object replied with a, Yo…dawg. I don’t know what you are
 talking about.

The JavaScript engine then said, Well, I’m going to check your prototype object
and see if it contains a property called toString().

A few milliseconds later, after finding the prototype object thanks to the
[[Prototype]] property, our JavaScript engine says, Object, my old chum!
Do you have a toString() property?

The Object quickly replies with a Yep. and calls the toString method.

ptg18144529

CHAPTER 16 A DEEPER LOOK AT OBJECTS 167

Specifying Properties
I bet you didn’t imagine that a single line of JavaScript would result in that much
explanation, did you? Well, the nice thing is, I front-loaded a lot of conceptual
data on you. Hopefully, that makes everything else that you see from here on
wards make a lot more sense.

Right now, we still just have an empty object:
var funnyGuy = {};

Let’s specify some properties on it called firstName and lastName. As with all
things in JavaScript, you have multiple ways of defining properties on an element.
The method you’ve seen so far uses the dot notation:
var funnyGuy = {};

funnyGuy.firstName = "Conan";

funnyGuy.lastName = "O'Brien";

Another approach involves using the square bracket syntax:
var funnyGuy = {};

funnyGuy["firstName"] = "Conan";

funnyGuy["lastName"] = "O'Brien";

The final approach is by extending our object initializer syntax with the literal
notation for declaring properties:
var funnyGuy = {

 firstName: "Conan",

 lastName: "O'Brien"

};

There is no right or wrong approach in how you want to specify properties, so be
aware of all three variants and go with one that works best for the situation you
find yourself in. In general, I use

1. The literal notation when I am specifying properties directly with a value.

2. The dot notation if I am specifying a property whose values are provided as
part of an argument or expression.

3. The square bracket notation if the property name itself is something that is
part of an argument or expression.

ptg18144529

168 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Regardless of which of the three approaches you used for specifying your
 properties, the end result is that your funnyGuy object will have these properties
(and values) defined on itself:

All of this should be straightforward. Let’s just do one more thing before we move
on to bigger and greener pastures. Let’s create a method called getName on
funnyGuy that will return the value of the firstName and lastName properties.
I will just show what this looks like using the literal notation, for it is easy in the
other approaches:
var funnyGuy = {

 firstName: "Conan",

 lastName: "O'Brien",

 getName: function() {

return "Name is: " + this.firstName + " " + this.lastName;

 }

};

Our getName property’s value is a function whose body simply returns a string
that includes the value of our firstName and lastName properties. To call the
getName property, ahem…method, this is all you have to do:
var funnyGuy = {

 firstName: "Conan",

 lastName: "O'Brien",

ptg18144529

CHAPTER 16 A DEEPER LOOK AT OBJECTS 169

 getName: function() {

return "Name is: " + this.firstName + " " + this.lastName;

 }

};

alert(funnyGuy.getName()); // Name is: Conan O'Brien

Yep, that’s all there is to declaring an object and setting properties on it.
 Indirectly, you learned a whole lot about what goes on behind the scenes when
a simple object is created. You’ll need all of this fancy learnin’ in the next section
when we kick everything up a few notches.

Creating Custom Objects
Working with the generic Object and putting properties on it serves a useful
 purpose, but its awesomeness fades away really quickly when you are creating
many objects that are basically the same thing:
var funnyGuy = {

 firstName: "Conan",

 lastName: "O'Brien",

 getName: function () {

return "Name is: " + this.firstName + " " + this.lastName;

 }

};

var theDude = {

 firstName: "Jeffrey",

 lastName: "Lebowski",

 getName: function () {

return "Name is: " + this.firstName + " " + this.lastName;

 }

};

var detective = {

 firstName: "Adrian",

 lastName: "Monk",

ptg18144529

170 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 getName: function () {

return "Name is: " + this.firstName + " " + this.lastName;

 }

};

Currently, if we had to visualize what we have right now, this is what you will see:

There is a lot of duplicated stuff here that is, frankly, unnecessary. Let’s fix that
using what we’ve learned about inheritance and the prototype chain.

What we want to do is create an intermediate parent object that contains the
properties that are more generic and not necessary to be on the child object
itself. From what we have here, the firstName and lastName properties are
going to be unique for each object we create. Because of that, these two proper-
ties still belong on the funnyGuy, theDude, and detective objects.

ptg18144529

CHAPTER 16 A DEEPER LOOK AT OBJECTS 171

Our getName property, though, does not have to be duplicated for each object.
This is something we can parcel off into a parent object that the rest of the objects
can inherit from. Let’s call this object person:

Visually, this makes sense. How do we end up creating something like this?

Well, thinking out loud, we need to create our funnyGuy, theDude, and
 detective objects and ensure the firstName and lastName properties are
defined on them. That’s easy. Of course, if this is all we did, this wouldn’t be
adequate. The prototype for these objects will be Object, and we don’t want
that. We want the person object with the getName property to be a part of
our prototype chain as the immediate parent. The way we do that is by ensur-
ing the [[Prototype]] property on funnyGuy, theDude, and detective
 references person.

In order to do this, we use the extremely awesome Object.create method. Let
me quickly explain what it does before we see it in action. The Object. create
method, as its name implies, creates a new object. As part of creating the object,
it allows you to specify what your newly created object’s prototype will be. Strange
how what we want to do and what Object.create provides are identical! :P

ptg18144529

172 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Let’s use Object.create and the rest of the code that brings the diagram and
the explanation you’ve seen to life:
var person = {

 getName: function () {

return "Name is " + this.firstName + " " + this.lastName;

 }

};

var funnyGuy = Object.create(person);

funnyGuy.firstName = "Conan";

funnyGuy.lastName = "O'Brien";

var theDude = Object.create(person);

theDude.firstName = "Jeffrey";

theDude.lastName = "Lebowski";

var detective = Object.create(person);

detective.firstName = "Adrian";

detective.lastName = "Monk";

Let’s look at all of this code in greater detail. First, we have our person object:
var person = {

 getName: function () {

return "Name is " + this.firstName + " " + this.lastName;

 }

};

There is nothing special going on here. We create a new person object whose type
is Object. It’s [[Prototype]] property will point you to the Object type. It con-
tains a method called getName that returns some string involving this.firstName
and this.lastName. We’ll come back to the this keyword and how this works
shortly, so keep that one under your hat for now.

ptg18144529

CHAPTER 16 A DEEPER LOOK AT OBJECTS 173

After creating our person object, this is what our world looks like right now:

In the next line, we declare our funnyGuy variable and initialize it to the object
that gets returned by Object.create:
var funnyGuy = Object.create(person);

Notice that I pass in the person object as an argument to Object.create.
Like I mentioned earlier, what this means is you create a new object with
the [[Prototype]] value pointing to our person object. This is how things
look now:

ptg18144529

174 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

We created our funnyGuy object with the person object set as its prototype
object. In the next two lines in our code, I define the firstName and lastName
properties on the object:
var funnyGuy = Object.create(person);

funnyGuy.firstName = "Conan";

funnyGuy.lastName = "O'Brien";

This is your standard, run-of-the-mill property declaration on an object using a
name and value. What happens should be of no surprise to you:

We just created our funnyGuy object and set the firstName and lastName
properties on it. We just have our theDude and detective objects left, and the
process for setting the firstName and lastName properties is the same, as you
can see. Let’s skip looking at them in further detail and move on to shinier and
more awesome things instead :P

At this point, if you’ve been following along and understand what is going on, you
should be quite impressed with yourself. Many people who work with JavaScript
for a very long time have difficulty grasping how inheritance and prototypes
tie in to object creation. Wrapping your head around all of this is quite an
accomplishment.

However, we are not done yet. Before you pop the champagne bottle and start
celebrating, there is one last thing we need to look at before we call it a day.

ptg18144529

CHAPTER 16 A DEEPER LOOK AT OBJECTS 175

The this Keyword
Let’s go back to our person object and, more specifically, the getName property:
var person = {

 getName: function () {

return "The name is " + this.firstName + " " +
this.lastName;

 }

};

When you call getName, depending on which object you called it from, you’ll see
the appropriate name returned. For example, let’s say you do the following:
var funnyGuy = Object.create(person);

funnyGuy.firstName = "Conan";

funnyGuy.lastName = "O'Brien";

alert(funnyGuy.getName());

When you run this, you’ll see a dialog box that looks as follows:

ptg18144529

176 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

If you look at the getName method again, there is absolutely no sign of existence
of the firstName or lastName properties on the person object. When a
 property doesn’t exist, I mentioned that we walk down the prototype chain from
parent to parent. In this case, that would be Object:

There is no sign of existence of the firstName or lastName properties on
Object either. How is it that this getName method happens to work and return
the right values?

ptg18144529

CHAPTER 16 A DEEPER LOOK AT OBJECTS 177

The answer has to do with the this keyword that precedes firstName and
 lastName. The this keyword refers to the object that our getName method is
pointing to. That object is, in this case, funnyGuy:

At the point where the getName method is evaluated and the firstName
and lastName properties have to be resolved, the lookup starts at whatever
the this keyword is pointing to. In our case, the this keyword is pointing to
the funnyGuy object—an object that contains the firstName and lastName
properties!

Knowing what the this keyword refers to is something we’ll devote more time to
later, but what you’ve seen until now will you get you pretty far.

ptg18144529

178 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

TIP Just a quick reminder for those of you reading these words
in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

THE ABSOLUTE MINIMUM
Because so much fuss is made about JavaScript’s object orientedness, it is only
natural that a topic that covers it would be as wide and deep as what you’ve seen
here. A bulk of what you saw here dealt with inheritance directly or indirectly where
objects are derived and based on other objects. Unlike other, more class-ical lan-
guages that use classes as templates for objects, JavaScript has no such concept
of a class. JavaScript uses what is known as a prototypical inheritance model. You
don’t instantiate objects from a template. Instead, you create objects either from
scratch or, more commonly, by copying/cloning another object.

In the bazillion pages here, I tried to reinforce JavaScript’s new functionality for
working with objects and extending them for your own needs. There is still more
to cover, so take a break and we’ll touch upon some more interesting topics in
the near future that extend what you’ve seen in more powerful, expressive, and
 awesome ways.

Some additional resources and examples:

• Understanding “Prototypes” in JS:
http://bit.ly/kirupaJSPrototypes

• A Plain English Guide to JS Prototypes:
http://bit.ly/kirupaPrototypesGuide

• How Does JavaScript “.prototype” Work?:
http://bit.ly/kirupaPrototypeWork

http://www.quepublishing.com
http://bit.ly/kirupaJSPrototypes
http://bit.ly/kirupaPrototypesGuide
http://bit.ly/kirupaPrototypeWork

ptg18144529

17
I N T H I S C H A P T E R
• Extend your objects’ functionality

• Learn more about the prototype chain

EXTENDING BUILT-IN
OBJECTS
As you know very well by now, JavaScript comes from the factory with a

good supply of built-in objects. These objects provide some of the core

functionality for working with text, numbers, collections of data, dates, and

a whole lot more. As you become more familiar with JavaScript and start

doing interesting-er and cleverer things, you’ll often find that you want to

do more and go farther than what the built-in objects allow.

ptg18144529

180 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Let’s take a look at an example of when something like this might occur. Below is
an example of how you can shuffle the contents of an array:
function shuffle(input) {

 for (var i = input.length - 1; i >= 0; i--) {

var randomIndex = Math.floor(Math.random() * (i + 1));

var itemAtIndex = input[randomIndex];

input[randomIndex] = input[i];

input[i] = itemAtIndex;

 }

 return input;

}

The way you use this shuffle function is by simply calling it and passing in the
array whose contents you want shuffled:
var tempArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

shuffle(tempArray);

// and the result is...

alert(tempArray);

After this code has run, the end result is that the contents of your array are
now rearranged. Now, this functionality is pretty useful. I would say this is sooo
 useful, the shuffling ability should be a part of the Array object and be as easily
 accessible as push, pop, slice, and other doo-dads the Array object has.

If the shuffle function were a part of the Array object, you could simply use it
as follows:
var tempArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

tempArray.shuffle();

This is an example of us extending a built-in object (the Array) with some
 functionality that we defined (the shuffle). In this chapter, we are going to look
at how exactly to accomplish this, why it all works, and why extending built-in
objects is pretty controversial.

Onwards!

ptg18144529

CHAPTER 17 EXTENDING BUILT-IN OBJECTS 181

Say Hello to Prototype...Again—Sort of!
Extending a built-in object with new functionality sounds complicated, but it is
really simple once you understand what needs to be done. To help with this, we
are going to look at a combination of sample code and diagrams all involving the
very friendly Array object:

Um...anyway, let’s say that we have the following code:
var tempArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

ptg18144529

182 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

If we were to diagram the full hierarchy of the tempArray object, it would look as
follows:

On the left, we have our tempArray object that is an instance of Array. The
built-in Array object is derived from the basic Object type. Now, what we want
to do is extend the Array object with our shuffle function. What this means is
that we need to figure out a way to get our shuffle function inserted into our
Array object itself:

ptg18144529

CHAPTER 17 EXTENDING BUILT-IN OBJECTS 183

Here is the part where the quirkiness of JavaScript shines through. We don’t have
access to the Array object source code. We can’t find the function or object
that makes up the Array and insert our shuffle function into it like we might for
a custom object that we defined. Your built-in objects, such as the Array, are
defined deep inside your browser’s volcanic underbelly where no human being can
go. We need to take another approach.

ptg18144529

184 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

That another approach involves casually sneaking in and attaching your
 functionality by using the Array object’s prototype property. That would look
something like this:

Array.prototype.shuffle = function () {

 var input = this;

 for (var i = input.length - 1; i >= 0; i--) {

var randomIndex = Math.floor(Math.random() * (i + 1));

var itemAtIndex = input[randomIndex];

input[randomIndex] = input[i];

input[i] = itemAtIndex;

 }

 return input;

}

Notice that our shuffle function is declared on Array.prototype! As part of
this attachment, we made a minor change to how the function works. The function
no longer takes an argument for referencing the array you need shuffled:
function shuffle(input) {

 .

 .

 .

 .

 .

}

Instead, because this function is now a part of the Array object, the this
 keyword inside the function body points to the array that needs shuffling:
Array.prototype.shuffle = function () {

 var input = this;

 .

 .

 .

 .

}

ptg18144529

CHAPTER 17 EXTENDING BUILT-IN OBJECTS 185

Taking a step back, once you run this code, your shuffle function will find itself
shoulder to shoulder with all of the other built-in methods the Array object
provides:

If you wanted to access the shuffle property (err...method…I gotta stop doing
that!), you can now do so using the approach we had initially desired:
var tempArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

tempArray.shuffle();

This is because the prototype property provides you with direct access to your
Array object’s insides. Declaring the shuffle function on it gave us the result
we wanted. Best of all, any new arrays you create will also have access to the shuf-
fle functionality by default thanks to how prototype inheritance works.

Extending Built-in Objects Is Controversial
Given how easy it is to extend a built-in object’s functionality by declaring
 methods and properties using the prototype object, it’s easy to think that
 everybody loves the ability to do all of this. As it turns out, extending built-in
objects is a bit controversial. The reasons for this controversy revolve around the
fact that...

ptg18144529

186 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

You Don’t Control the Built-in Object’s Future
There is nothing preventing a future implementation of JavaScript from including
its own version of shuffle that applies to Array objects. At this point, you have a
collision where your version of shuffle and the browser’s version of shuffle
are in conflict with each other - especially if their behavior or performance
 characteristics wildly differ. Rut ruh!

Some Functionality Should Not Be Extended or Overridden
Nothing prevents you from using what you’ve learned here to modify the behavior
of existing methods and properties. For example, this is me changing how the
slice behavior works:
Array.prototype.slice = function () {

 var input = this;

 input[0] = "This is an awesome example!";

 return input;

}

var tempArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

tempArray.slice();

// and the result is...

alert(tempArray);

While this is a terrible example, this does show how easy it was for me to break
existing functionality.

FURTHER READING
To see a more comprehensive discussion and further reading around this
 controversy, check out this StackOverflow thread: http://stackoverflow.com/
questions/8859828/.

http://stackoverflow.com/questions/8859828/
http://stackoverflow.com/questions/8859828/

ptg18144529

CHAPTER 17 EXTENDING BUILT-IN OBJECTS 187

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www. quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and want
to try your hand at the quiz, then you’re in luck – all you need to
do is scroll down!

THE ABSOLUTE MINIMUM: WHAT SHOULD YOU DO?
My answer to what you need to do is simple: Use your best judgment! The two
cases I outlined are only a few of the numerous issues that people raise when
extending built-in objects is discussed. For the most part, all of the objections
are valid. The question you need to ask is, “Are these objections valid for my
 particular scenario?” My guess is that they probably won’t be.

From personal experience, I have never had any issues extending built-in objects
with my own functionality. I wrote this shuffle function years ago, and no browser
as of now has even hinted at implementing their own version of it. I am certainly
not complaining! Second, for any functionality I do add, I test to make sure that
it works well across the browsers I am currently targeting. As long as your testing
is somewhat comprehensive (probably the latest one or two versions of the major
browsers), you should be good to go.

If you are worried about future-proofing your app, name any properties or
 methods in such a way that only your app would use them. For example, the
chances of Array.prototype.kirupaShuffle being introduced by any future
browser release is pretty close to zero :P

Anyway, now that we’ve sufficiently covered some detailed topics around objects in
this and the previous chapters, let’s go back to looking at some of the other types
you will run into before we move on to some really exciting stuff in a little bit.

http://www.quepublishing.com

ptg18144529

This page intentionally left blank

ptg18144529

18
I N T H I S C H A P T E R
• Learn more about what goes on behind true

and false

• Understand what boolean objects and functions do

• Find out the difference between simple inequality
operators and strict inequality operators

BOOLEANS AND
THE STRICTER === AND
!== OPERATORS
While it’s polite to say that all types are interesting and fun to be around,

you and I both know that is a lie. Some types are just boring. The boolean

type is one such example. Here is the reason why. Whenever you initialize

a variable using either true or false, you create a boolean:

var sunny = false;

var traffic = true;

ptg18144529

190 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Congratulations. If you know just this, you are 80% of the way there in fully
 understanding how booleans operate. Of course, 80% isn’t really adequate when
you think about it. It’s like eating a hot dog without any condiments. It’s like watch-
ing a live concert and leaving before the encore set. It’s like leaving a sentence mid.

What I am going to expand upon a bit in this chapter is the other 20% made up
of various boolean quirks; the Boolean object; the Boolean function; and the
important === and !== operators.

The Boolean Object
Booleans are meant to be used as primitives. I’m going to be extra lazy and just
reuse the example you saw a few moments earlier to show you an example of
what a boolean primitive looks like:
var sunny = false;

var traffic = true;

Like you’ve seen so many times already, behind every primitive there is an
 Object-based representation lurking in the shadows. The way you create a new
boolean Object is by using the new keyword, the Boolean constructor name, and
an initial value:
var boolObject = new Boolean(false);

var anotherBool = new Boolean(true);

The initial values you can pass in to the Boolean constructor are commonly
true and false, but you can pretty much pass anything in there that will result
in the final evaluation being true or false. I will detail what kinds of values
will predictably result in a true or false outcome in a little bit, but here is the
 obligatory warning from the Surgeon General about this approach: Unless you
really REALLY want a Boolean object, you should stick with primitives.

The Boolean Function
There is one major advantage the Boolean constructor provides, and that
 advantage revolves around being able to pass in any arbitrary value or expression
as part of creating your Boolean object:
var boolObject = new Boolean(arbitrary expression);

ptg18144529

CHAPTER 18 BOOLEANS AND THE STRICTER === AND !== OPERATORS 191

This is really advantageous because you may find yourself wanting to evaluate a
boolean expression where the data you end up with isn’t a clean true or a false.
This is especially common when you are dealing with external data or code, and
you have no control over which of the various falsey and truthy values you get.
Here is a contrived example:
var isMovieAvailable = getMovieData[4];

The value for isMovieAvailable is probably a true or false. When it comes
to processing data, you often have no guarantee that something at some point
will break or change what gets returned. Just like in real life, simply hoping that
things will work is never adequate without you taking some actionable steps.
The Boolean function is one such step.

Now, creating your own function to deal with the ambiguity may be overkill, but
the downside with the Boolean constructor is that you are obviously left with
a boolean object—which isn’t desirable. Fortunately, there is a way to get the
 flexibility of the Boolean constructor with the lightweightedness of a boolean
primitive extremely easily. That way is led by the Boolean function:
var bool = Boolean(true);

The Boolean function allows you to pass in arbitrary values and expressions while
still returning a primitive boolean value of true or false. The main difference in
how you use it compared to the constructor approach is that you don’t have the
new keyword. W00t! Anyway, let’s take a few moments and look at the variety of
things you can pass in to the Boolean function, and note that all of this will also
apply to what you can pass in to the Boolean constructor you saw in the previous
section as well.

The values you can pass in to return false are null, undefined, empty/nothing,
0, an empty string, NaN, and (of course) false.
var bool;

bool = Boolean(null);

bool = Boolean(undefined);

bool = Boolean();

bool = Boolean(0);

bool = Boolean("");

bool = Boolean(NaN);

bool = Boolean(false);

ptg18144529

192 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In all of these examples, the bool variable will return false. To return true, you
can pass in a value of true or ANYTHING that results in something other than the
various false values you saw earlier:
var bool;

bool = Boolean(true);

bool = Boolean("hello");

bool = Boolean("Liam Neesons" + "Bruce Willie");

bool = Boolean(new Boolean()); // Inception!!!

bool = Boolean("false"); // "false" is a string

In these examples, the bool variable will return a true. That may seem bizarre
given some of the statements, so let’s look at a few of the subtle things in
play here. If what you are evaluating is an object, such as new Boolean(new
 Boolean()) the evaluation will always be true. The reason is that the mere
 existence of an object will trigger the true switch, and calling new Boolean()
results in a new object. Extending this logic a bit, it means the following if
 statement actually results in a true as well:
var boolObject = new Boolean(false);

if (boolObject) {

 alert("Bool, you so crazy!!!");

}

It doesn’t matter that the object you are evaluating is secretly a false in disguise…
or a String object or an Array and so on. The rules for primitives are more
 simple. If you are passing in a primitive (or something that evaluates to a
 primitive), anything other than null, undefined, 0, an empty string, or false will
result in a result of true.

Strict Equality and Inequality Operators
The last thing we are going to look at is going to combine what you know about
types and booleans to add a twist to the various conditional operators you saw
earlier. So, you know about == and != and have probably seen them in use a few
times. These are the equality and inequality operators that let you know if two
things are either equal or unequal. Here is the plot twist. There is a subtle and
deviant behavior they exhibit that you may not be aware of.

ptg18144529

CHAPTER 18 BOOLEANS AND THE STRICTER === AND !== OPERATORS 193

Here is an example:
function theSolution(answer) {

 if (answer == 42) {

alert("You have nothing more to learn!");

 }

}

theSolution("42"); //42 is passed in as a string

In this example, the expression answer == 42 will evaluate to true. This works
despite the 42 you are passing in being a string and the 42 you are checking
against being a number. What is going on here? In what kind of a world is a string
and a number equal? With the == and != operators, this is expected behavior.
The value for the two things you are comparing is 42. To make this work,
 JavaScript forces the two different yet similar values to be the same under the
hood. This is formally known as type coercion.

The problem is that this behavior can be undesirable—especially when this is
happening without you knowing about it. To avoid situations like this, you have
stricter versions of the equality and inequality operators, and they are === and
!== respectively. What these operators do is that they check for both value and
type and do not perform any type coercion. They basically force you to write code
where the burden on ensuring true equality or inequality falls squarely on you.
That is a good thingTM.

Let’s fix our earlier example by replacing the == operator with the === operator:
function theSolution(answer) {

 if (answer === 42) {

alert("You have nothing more to learn!");

 }

}

theSolution("42"); // 42 is passed in as a string

This time around, the conditional expression will evaluate to false. In this stricter
world, a string and number are of different types despite the values being similar.
Because no type coercion takes place, the final result is false.

The general word on the street is to always use the stricter forms of the equality
and inequality operators. If anything, using them will help you to spot errors in
your code—errors that might otherwise turn out very difficult to identify.

ptg18144529

194 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www. quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

CAUTION If you are comparing two different objects,
the strict equality operator (and the not-so-strict equality
operator) won’t work as you might expect. For example new
String("A") == new String("A") will be false. Keep
that in mind when comparing the equality or inequality of two
individual objects.

 THE ABSOLUTE MINIMUM
Booleans make up one of the most frequently used types in your code. They play
a key role in allowing your code to branch out into different directions despite the
simplicity they exhibit on the surface. While I can count on one hand the number
of times I had to use the Boolean function, there aren’t enough hands with
 fingers for me to count the number of times I’ve encountered these strange things
in the wild.

http://www.quepublishing.com

ptg18144529

19
I N T H I S C H A P T E R
• Learn about when values don’t exist

• Understand what to do with null and undefined

NULL AND UNDEFINED
One of the great mysteries of the world revolves around making sense of

null and undefined. Most code you see is littered with them, and you’ve

probably run into them yourself a few times. As mysteries go, making

sense of null and undefined isn’t particularly bizarre. It is just dreadfully

 boring…like the most boring (yet important) thing about JavaScript you’ll

ever have to learn.

Onward!

ptg18144529

196 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Null
Let’s start with null. The null keyword is also sort of a primitive that fills a
 special role in the world of JavaScript. It is an explicit definition that stands for no
value. If you’ve ever browsed through code others have written, you’ll probably
see null appear quite a number of times. It is quite popular, for the advantage
of null lies in its definitiveness. Instead of having variables contain stale values or
mystery undefined values, setting it to null is a clear indication that you want
the value to not exist.

This advantage is important when you are writing code and want to initialize or
clear a variable to something that represents nothing.

Here is an example:
var test = null;

if (test === null) {

 test = "Peter Griffin";

} else {

 test = null;

}

The null primitive isn’t a naturally occurring resource. It is something you
 consciously assign, so you will often see it used as part of variable declarations
or passed in as arguments to function calls. Using null is easy. Checking for the
value of null is pretty easy as well:
if (test === null) {

 // do something interesting...or not

}

The only thing to note is that you should use the === operator instead of the lowly
== one. While the world won’t end if you use ==, it’s good practice.

ptg18144529

CHAPTER 19 NULL AND UNDEFINED 197

Undefined
Here is where things get a little interesting. To represent something that isn’t
defined, you have the undefined primitive. You see undefined in a few cases,
the most common ones being when you try to access a variable that hasn’t been
initialized or when accessing the value of a function that doesn’t actually return
anything.

Here is a code snippet that points out undefined in a few of its natural habitats:
var myVariable;

alert(myVariable); // undefined

function doNothing() {

 // watch paint dry

 return;

}

var weekendPlans = doNothing();

alert(weekendPlans); // undefined

IS NULL A PRIMITIVE OR AN OBJECT?
The null primitive is similar to your string and boolean built-in types in that it
also has an object representation. There is one quirk you need to note, though.
Despite what I just said, doing typeof null at any given time will show it
as being an object. That isn’t how a primitive behaves, and the reason for this
 behavior has to do with a longstanding bug in the JavaScript language. The word
on the street is that this bug may get fixed in the future, so…yeah! Go team.

ptg18144529

198 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In your code, you probably won’t be assigning undefined to anything. Instead,
you will spend time checking to see if the value of something is undefined. You
have several ways to perform this check. The first is a naive way that usually almost
always works:
if (myVariable == undefined) {

 // do something

}

The downside of this approach is that you could potentially overwrite undefined
to something like true, and that would break your code. The safest way to
 perform a check for undefined involves typeof and the === operator:
var myVariable;

if (typeof myVariable === "undefined") {

 alert("Define me!!!");

}

This ensures that you will perform a check for undefined and always return the
 correct answer.

NULL == UNDEFINED, BUT NULL !== UNDEFINED
Continuing the == and === weirdness, if you ever check for null == undefined,
the answer will be a true. If you use === and have null === undefined, the
answer in this case will be false.

The reason is that == does type coercion where it arm-twists types to conform to
what JavaScript thinks the value should be. Using ===, you check for both type
and value. This is a more comprehensive check that detects that undefined and
null are indeed two different things.

A hat tip to senocular1 (aka Trevor McCauley) for pointing this out!

1. https://twitter.com/senocular

https://twitter.com/senocular

ptg18144529

CHAPTER 19 NULL AND UNDEFINED 199

THE ABSOLUTE MINIMUM
There is a reason why I saved these built-in types for last. Null and undefined
are the least exciting of the bunch, but they are also often the ones that are
the most misunderstood. Knowing how to use null and detecting for it and
 undefined is a very important skill to get right. Not getting it right will lead to
very subtle errors that are going to be hard to pinpoint.

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www. quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains the
c omplete text of this book but also features a short, fun interac-
tive quiz to test your understanding of the chapter you just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

http://www.quepublishing.com

ptg18144529

This page intentionally left blank

ptg18144529

20
I N T H I S C H A P T E R
• Understand anonymous functions

• Learn how to invoke a block of code immediately

• Take our knowledge of scope further by creating
data that is private

IMMEDIATELY INVOKED
FUNCTION EXPRESSIONS
We are going to take a slight detour from our coverage of objects to focus

on something important that can only properly make sense at this point.

You’ll see why in a few moments when we walk through some examples.

Anyway, by now, you probably know enough functions in JavaScript to

be dangerously productive. Functions allow you to group statements

together. If you give your function a name, you can re-use those grouped

statements a whole bunch of times, as in the example that follows:

ptg18144529

202 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

function areYouLucky() {

 // Pick a random number between 0 and 100

 var foo = Math.floor(Math.random() * 100);

 if (foo > 50) {

alert("You are lucky!");

 } else {

alert("You are not lucky!");

 }

}

// calling this function!

areYouLucky();

If you don’t give your functions a name, that is totally cool as well. They are known
as anonymous functions, and they look as follows:
// anonymous function #1

var isLucky = function () {

 var foo = Math.round(Math.random() * 100);

 if (foo > 50) {

return "You are lucky!";

 } else {

return "You are not lucky!";

 }

};

var me = isLucky();

alert(me);

// anonymous function #2

window.setTimeout(function () {

 alert("Everything is awesome!!!");

}, 2000);

These anonymous functions can only be called if they are associated with a vari-
able as shown in the first example. They can also be called if they are provided as
part of another function (such as setTimeOut) that knows what to do with them.

ptg18144529

CHAPTER 20 IMMEDIATELY INVOKED FUNCTION EXPRESSIONS 203

In this chapter, we are going to look at another function variation known
as an Immediately Invoked Function Expression. Friends like us just call it
IIFE (pronounced “iffy”). At first, what it does might seem a bit boring and
 unnecessary. As we get more familiar with it, I will describe some of its use cases
and why you may find yourself both seeing and using these IIFEs a whole lot. By
the end, IIFEs will probably still be very boring, but at least they will seem quite
useful and necessary...hopefully!

Onwards!

Writing a Simple IIFE
To be very blunt, an IIFE is nothing more than a function (surrounded by a whole
bunch of parentheses) that executes immediately. Before we do anything else,
let’s just write an IIFE and prove to ourselves that it actually does whatever it is
 supposed to do. Below is a simple IIFE:
(function() {

 var shout = "I AM ALIVE!!!";

 alert(shout);

})();

Go ahead and add these few lines of code and preview it in your browser. If
 everything worked properly, you will see I AM ALIVE!!! displayed. If things didn’t
work properly and you don’t see that, make sure your many parentheses are in the
correct locations. The most common illness that afflicts IIFEs are mismatched or
misplaced parentheses! Anyway, now that you have created a working IIFE, let’s
peel back the layers and look at what exactly is going on.

First, you have your function with the code you want to execute:
function() {

 var shout = "I AM ALIVE!!!";

 alert(shout);

}

This is just a simple anonymous function that displays some obnoxious all-caps
text. As this function stands, though, JavaScript has no idea what to do with
it. This function is invalid syntax. To make it more valid, add the () after the
function body:
function() {

 var shout = "I AM ALIVE!!!";

 alert(shout);

}()

ptg18144529

204 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Adding the () generally means you intend for whatever preceded the () to
 execute immediately. When you do this, JavaScript will still complain because
this is also not valid syntax. The reason is that you need to tell JavaScript that this
function you want to execute is actually an expression. The easiest way to do that
is to wrap your function inside another pair of parentheses:
(function() {

 var shout = "I AM ALIVE!!!";

 alert(shout);

})();

Your entire function is now treated as an expression. Following this with the ()
you saw a few moments ago allows your function expression to be executed. You
could say that this function expression gets executed (aka invoked) immediately
once JavaScript encounters it.

Writing an IIFE That Takes Arguments
At first, the most difficult thing to grasp about IIFEs is that they are nothing more
than simple functions. These simple functions just happen to wear all sorts of crazy
parentheses to help them execute immediately. Despite that, there are some
minor differences in how you work with IIFEs. Once major difference is how you
deal with passing in arguments.

The general structure for creating an IIFE that takes arguments looks as follows:
(function (a, b) {

 /* code */

})(arg1, arg2);

Just like with any function call, the order of the arguments you pass in maps to the
order of the arguments your function will take.

Here is a slightly fuller example:
(function (first, last) {

 alert("My name is " + last + ", " + first + " " + last + ".");

})("James", "Bond");

If you run this in your browser (or run it in your mind), what gets displayed is
My name is Bond, James Bond. And with this, you have learned the basics of how
to write an IIFE. This is the easy part. The more interesting (and difficult) part is
 figuring out the cases when to use an IIFE.

ptg18144529

CHAPTER 20 IMMEDIATELY INVOKED FUNCTION EXPRESSIONS 205

When to Use an IIFE
At this point, the value IIFEs bring to the table seems a little odd. After all,
what is so different about an IIFE compared to a function you declare and call
 immediately like you have always done? The main difference is that an IIFE leaves
behind no evidence of its existence after it has run. This is largely because IIFEs
are typically anonymous functions that are nameless. This means you can’t track
them by examining variables. Because the code you put inside an IIFE is actually
inside a function, any variables you declare are local to that function. Putting all
of this together, an IIFE provides you with a very simple way of running code fully
inside its own bubble and then disappearing without a trace.

QUICK REVIEW OF SCOPING AND FUNCTIONS
To help make the next few sections digestible, let’s review one important detail.
From the Variable Scope chapter, you learned that JavaScript doesn’t have the
concept of block scoping. It only has lexical scope. This means that variables
declared using var inside a block such as an if statement or loop will actually be
accessible to the entire enclosing function:

function scopeDemo() {

 if (true) {

var foo = "I know what you did last summer!";

 }

 alert(foo); // totally exists!

}

scopeDemo();

As you can see in this example, the foo variable, despite being stuck inside the
if statement, is accessible outside of it because your if is not a scope-able
block. This ability to have your “supposedly inner” variables promoted and
 accessible to the entire enclosing function is known as variable hoisting!

ptg18144529

206 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Now that you know what makes IIFEs unique (and extremely confusing), let’s look
at when you will need to use them.

Avoiding Code Collisions
One of the biggest advantages of IIFEs is their ability to insulate any code from
outside interference. This is important if you are writing code that will be used
widely in someone else’s application. You want to ensure that any existing (or
new) code doesn’t accidentally clobber your variables or override functions and
 methods. The way to ensure that such accidents don’t happen is to wrap all of
your code inside an IIFE.

For example, here is some code for a content slider I created wrapped into
an IIFE:
(function() {

 // just querying the DOM...like a boss!

 var links = document.querySelectorAll(".itemLinks");

 var wrapper = document.querySelector("#wrapper");

 // the activeLink provides a pointer to the currently displayed
 item

 var activeLink = 0;

 // setup the event listeners

 for (var i = 0; i < links.length; i++) {

var link = links[i];

link.addEventListener('click', setClickedItem, false);

// identify the item for the activeLink

link.itemID = i;

 }

 // set first item as active

 links[activeLink].classList.add("active");

 function setClickedItem(e) {

removeActiveLinks();

ptg18144529

CHAPTER 20 IMMEDIATELY INVOKED FUNCTION EXPRESSIONS 207

var clickedLink = e.target;

activeLink = clickedLink.itemID;

changePosition(clickedLink);

 }

 function removeActiveLinks() {

for (var i = 0; i < links.length; i++) {

links[i].classList.remove("active");

}

 }

 // Handle changing the slider position as well as ensure

 // the correct link is highlighted as being active

 function changePosition(link) {

var position = link.getAttribute("data-pos");

wrapper.style.left = position;

link.classList.add("active");

 }

})();

As highlighted in this example, just add the first and last line that wraps everything
you are doing into a function that gets immediately executed. You don’t have to
make any additional modifications. Because all of the code inside the IIFE runs in
its own scope, you don’t have to worry about someone else creating their own
copies of things found in your code and breaking your functionality.

Closures and Locking in State
There is an important detail about closures that I didn’t highlight in the Closures
in JavaScript article: closures store their outer values by referencing them. They
don’t directly store the actual values. I am fairly certain that line didn’t make much
sense, so let’s take a look at an example.

Let’s say we have a function called quotatious:
function quotatious(names) {

 var quotes = [];

ptg18144529

208 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 for (var i = 0; i < names.length; i++) {

var theFunction = function() {

return "My name is " + names[i] + "!";

}

quotes.push(theFunction);

 }

 return quotes;

}

What this function does should seem pretty simple. It takes an array (for now, just
think of it as a collection of values separated by a comma) of names and returns
an array of functions that print out the name when called. To use this function, add
the following lines of code:
// our list of names

v ar people = ["Tony Stark", "John Rambo", "James Bond", "Rick
James"];

// getting an array of functions

var peopleFunctions = quotatious(people);

// get the first function

var person = peopleFunctions[0];

// execute the first function

alert(person());

When the last line with the alert statement is executed, what would you expect
to see? Because our person variable is getting the first item from the array of
 functions returned by peopleFunctions, it would seem reasonable to expect
My name is Tony Stark! to appear.

ptg18144529

CHAPTER 20 IMMEDIATELY INVOKED FUNCTION EXPRESSIONS 209

What you will actually see is the following:

You will see undefined appearing instead of any person’s name from the people
array...much less the supposedly correct value of Tony Stark. What is going
on here?

What is going on is very subtle and highlighted in the following two lines of code:
function quotatious(names) {

 var quotes = [];

 for (var i = 0; i < names.length; i++) {

var theFunction = function() {

return "My name is " + names[i] + "!";

}

quotes.push(theFunction);

 }

 return quotes;

}

Your theFunction function relies on the value of names[i]. The value of i is
defined by the for loop (in the scope of the parent function), and the for loop
is outside of the theFunction’s scope. What you have is basically a closure with
the theFunction function and the variable i being an outer variable. Figure 20.1
presents a visualization of what this situation looks like.

ptg18144529

210 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 20.1

Closures. Can’t live with them. Can’t live without them.

Here is where the important detail I mentioned about closures comes into play.
The value of i is never locked into the theFunction or the closure. Its value
is simply referenced. What you have is something similar to what you see in
Figure 20.2.

FIGURE 20.2

When values are referenced, that complicates what actually gets stored inside the closure.

Because the value of the i variable is actually referenced, the value of i that your
closures reference is increased by one with each iteration of your for loop. That
isn’t the behavior we want. We want each function in the quotes array to store

ptg18144529

CHAPTER 20 IMMEDIATELY INVOKED FUNCTION EXPRESSIONS 211

the value of i that it had when the function was first created. By the time our loop
has fully run to completion, the value of i is 4.

Figure 20.3 helps you visualize what is going on.

FIGURE 20.3

Why our code isn’t running exactly as we had hoped.

Because i is 4 and greater than the number of items in the names array input, you
get undefined when the following line executes with names[4]:
function quotatious(names) {

 var quotes = [];

 for (var i = 0; i < names.length; i++) {

var theFunction = function() {

ptg18144529

212 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

return "My name is " + names[i] + "!";

}

quotes.push(theFunction);

 }

 return quotes;

}

At this point, we understand what the code does and why it doesn’t work as it
is currently written. The solution is to lock in the value of our outer variable, the
troublesome i, inside the closure. This will involve, as you might have guessed, the
assistance of an IIFE.

Below is the modified version of the quotatious function that does what we
want it to do:
function quotatious(names) {

 var quotes = [];

 for (var i = 0; i < names.length; i++) {

(function(index) {

var theFunction = function() {

return "My name is " + names[index] + "!";

}

quotes.push(theFunction);

})(i);

 }

 return quotes;

}

Notice that the i variable is passed in as an argument to our IIFE. This argument,
now referenced inside the IIFE by the index variable, is local to whatever the
function does. The state of what used to be an outer variable is now locked in!
This change ensures that the function inside the quotes array has its own copy
of the array index it needs so that the right person is being referenced. You no
 longer have references to outer variables that change and cause your code to
break. W00t!

ptg18144529

CHAPTER 20 IMMEDIATELY INVOKED FUNCTION EXPRESSIONS 213

Making Things Private
In JavaScript, you don’t have an easy, built-in way to limit the visibility of variables
and properties you end up creating. This means it is difficult to have parts of your
app hidden from other parts of your app. That’s why we spent a fair amount of
time in the previous sections looking into this. For good measure, let us cover this
topic one more time :P

Take a look at the following example that highlights this problem:
var weakSauce = {

 secretCode: "Zorb!",

 checkCode: function (code) {

if (this.secretCode == code) {

alert("You are awesome!");

} else {

alert("Try again!");

}

 }

};

You have this object called weakSauce that has these two properties called
secretCode and checkCode. This is a very naive password checker. When you
pass in a code value to the checkCode function, it will check if what you entered

SOMETIMES REFERENCING OUTER VARIABLES IS WHAT
YOU WANT!

I am most certainly not suggesting that you should always use an IIFE when an
outer variable changes after a closure has been created. There may be times
where you want your closure to work with the updated value of an outer variable,
so in those cases, don’t use an IIFE to lock-in the value.

ptg18144529

214 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

matches the value of secretCode. If it matches, you are awesome will get
 displayed. If it doesn’t, you will see Try again! appear instead.

Now, here is where some privacy in your code may help. Nothing prevents me,
you, or someone who uses this code from checking the value of secretCode
directly:
var bar = Object.create(weakSauce);

alert(bar.secretCode); // sigh :(

This is probably not what you intended when creating the secretCode property.
The reason isn’t because secretCode is named with the word secret in it. It
is part of an implementation detail that you may want to change at any time.
The checkCode function is what you would intend people to use. Any other
 variable or property is fair game for you to change whenever you want. If other
pieces of code take a dependency on implementation details, their code may
break whenever you make a change. That’s why keeping some items private is
 important. That is why the secretCode property should be hidden to everything
except the internals of the weakSauce object. In other languages, you could add
an access modifier like private to secretCode, and that would be the end of
this entire conversation. JavaScript isn’t like other languages. You have to jump
through hoops to solve your problem, and one such awesome hoop to jump
through is our friendly IIFE.

By taking advantage of the local scope IIFEs create, you can selectively choose
what to expose or what not to expose. Here is a version of the same example that
works as we would want it to:
var awesomeSauce = (function () {

 var secretCode = "Zorb!";

 function privateCheckCode(code) {

if (secretCode == code) {

alert("You are awesome!");

} else {

alert("Try again!");

}

 }

 // the public method we want to return

 return {

checkCode: privateCheckCode

ptg18144529

CHAPTER 20 IMMEDIATELY INVOKED FUNCTION EXPRESSIONS 215

 };

})();

Let’s repeat what we tried earlier with awesomeSauce:
var foo = Object.create(awesomeSauce);

alert(foo.secretCode); // undefined

This time around, you won’t be able to access secretCode. The reason is
that the contents of secretCode are buried inside the IIFE and not accessible
 publicly. In fact, the only thing that is publicly exposed is what you have here:
var awesomeSauce = (function () {

 var secretCode = "Zorb!";

 function privateCheckCode(code) {

if (secretCode == code) {

alert("You are awesome!");

} else {

alert("Try again!");

}

 }

 // the public method we want to return

 return {

checkCode: privateCheckCode

 };

})();

By only returning an object that contains the checkCode property—that internally
references the privateCheckCode function (which is a closure), you get all the
functionality you originally had.

There is a more formal name for what I’ve just shown you here. It’s known as the
Revealing Module Pattern, and there is a ton of good stuff on the net about it.
My favorite is the following concise take of this pattern by Addy Osmani:
http://bit.ly/kirupaRMP.

http://bit.ly/kirupaRMP

ptg18144529

216 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

REMEMBER, YOUR JAVASCRIPT CODE IS AN OPEN BOOK!
While you may have just learned about a way to keep the internals of your code
private, it is only private to the typical code you write. Unlike other languages,
JavaScript’s source is always fully accessible. Even with obfuscation and other
techniques, if your browser can see your code, then anybody else with a few extra
seconds to spare can as well.

For example, using the Chrome Developer Tools, I can easily inspect the closure
stored by checkCode and clearly see the value of the secretCode variable.

Essentially, what I’m trying to say is this: don’t rely on client-side JavaScript for
dealing with things you truly want to keep private. Instead, do what everyone
else does and use some server-side service that provides you with a private
 environment where top-secret things get done. The server then only returns the
things you want exposed publicly back to JavaScript.

ptg18144529

CHAPTER 20 IMMEDIATELY INVOKED FUNCTION EXPRESSIONS 217

THE ABSOLUTE MINIMUM
An IIFE (short for Immediately Invoked Function Expression) is one of those
bizarre things in JavaScript that turns out to play a very useful role once you
give it a chance. The main reason you will need to learn about IIFEs is because
 JavaScript lacks privacy. This problem becomes more annoying when you are
working on increasingly larger and more complex JavaScript apps (which usually
have increasingly larger and more complex closures), so the local scope created
by an IIFE is the ultimate blunt instrument for solving all of your problems. As with
all blunt instruments, do be careful when using them.

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
 www. quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains the
complete text of this book but also features a short, fun interac-
tive quiz to test your understanding of the chapter you just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

http://www.quepublishing.com

ptg18144529

This page intentionally left blank

ptg18144529

21
I N T H I S C H A P T E R
• Learn how JavaScript and the rest of your page

interact

• Understand what the fuss about the Document
Object Model (DOM) is all about

• Figure out the fuzzy boundaries between HTML,
CSS, and JavaScript

JS, THE BROWSER, AND
THE DOM
So far, we’ve looked at JavaScript in isolation. We learned a lot about its

basic functionality, but we did so with little to no connection with how it

ties to the real world—a world that is represented by your browser and

swimming with little HTML tags and CSS styles. This chapter will serve

as an introduction to this world, and subsequent chapters will dive in

much deeper.

ptg18144529

220 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In the following sections, you will learn about the mysterious data structure and
programming interface known as the Document Object Model (DOM). You’ll
learn what it is, why it is useful, and how it ties in to everything that you’ll be
doing in the future.

Onwards!

What HTML, CSS, and JavaScript Do
Before we dive in and start answering the meaning of life…err, the DOM, let’s
quickly look at some things you probably already know. For starters, the stuff you
put into your HTML documents revolves around HTML, CSS, and JavaScript. We
treat these three things as equal partners in building up what you see in your
browser:

Each partner has an important role to play, and the role each one plays is very
different.

HTML Defines the Structure
Your HTML defines the structure of your page and typically contains the content
that you see:
<!DOCTYPE html>

<html>

ptg18144529

CHAPTER 21 JS, THE BROWSER, AND THE DOM 221

<head>

 <meta content="sea otter, kid, stuff" name="keywords">

 <meta content="Sometimes, sea otters are awesome!"
name="description">

 <title>Example</title>

 <link href="foo.css" rel="stylesheet" />

</head>

<body>

 <div id="container">

<h1>What This Sea Otter Did to This Little
Kid Will Make You LOL!</h1>

<p class="bodyText">

Nulla tristique, justo eget semper viverra,

massa arcu congue tortor, ut vehicula urna mi

in lorem. Quisque aliquam molestie dui, at tempor

turpis porttitor nec. Aenean id interdum urna.

Curabitur mi ligula, hendrerit at semper sed,

feugiat a nisi.

<p>

<div class="submitButton">

more

</div>

 </div>

 <script src="stuff.js"></script>

</body>

</html>

HTML by itself, kinda like Meg Griffin in Family Guy, is pretty boring. If you don’t
know who Meg is and are too lazy to Google her, Figure 21.1 is an approximation
of what she looks like.

ptg18144529

222 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 21.1

An artistic interpretation of Meg Griffin.

Anyway, you don’t want your HTML documents to be boring. To transform your
content from something plain and drab to something appealing, you have CSS.

Prettify My World, CSS!
CSS is your primary styling language that allows you to give your HTML elements
some much-needed aesthetic and layout appeal:
body {

 font-family: "Arial";

 background-color: #CCCFFF;

}

#container {

 margin-left: 30%;

}

#container img {

 padding: 20px;

}

ptg18144529

CHAPTER 21 JS, THE BROWSER, AND THE DOM 223

#container h1 {

 font-size: 56px;

 font-weight: 500;

}

#container p.bodyText {

 font-size: 16px;

 line-height: 24px;

}

.submitButton {

 display: inline-block;

 border: 5px solid #669900;

 background-color: #7BB700;

 padding: 10px;

 width: 150px;

 font-weight: 800;

}

For the longest time, between HTML and CSS, you had everything you needed to
create an awesome-looking and functioning page. You had structure and layout.
You had navigation. You even had simple interactions such as mouseovers. Life
was good.

It’s JavaScript Time!
For all the great things HTML and CSS had going for them, they were both
 limited in how much interactivity they provided. People wanted to do more on a
web document than just passively sit back and observe what is going on. They
wanted their web documents to do more. They wanted their documents to help
them play with media; remember where they left off; do things with their mouse
clicks, keyboard taps, and finger presses; use fancy navigation menus; see spiffy

ptg18144529

224 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

(yes, I used the word spiffy) programmatic animations; interact with their webcams/
microphones; not require a page reload/navigation for any kind of action; and a
whole lot more:

It certainly helped that web developers and designers (aka you and me) were
 itching for a way to help create these kinds of things as well.

To fill in this gap between what HTML and CSS provided and what people wanted,
you had third-party components like Java and Flash that thrived for many years.
It wasn’t until recently that this trend changed. There were many technical and
political reasons for this shift, but one reason was that JavaScript for many years
just wasn’t ready. It didn’t have what it took either in the core language or in what
browsers supported to be effective.

That’s no longer the case today. JavaScript is now a perfectly capable language
that allows you to add the kinds of interactive things that people are looking for.
All of these capabilities are accessed by the real star of all this, the DOM.

ptg18144529

CHAPTER 21 JS, THE BROWSER, AND THE DOM 225

Meet the Document Object Model
What your browser displays is a web document. More specifically, to summarize
the entirety of the previous sections, what you see is a collision of HTML, CSS, and
JavaScript working together to create what gets shown. Digging one step deeper,
under the covers, there is a hierarchical structure that your browser uses to make
sense of everything going on.

This structure is known (again) as the Document Object Model. Friends just call
it the DOM. Figure 21.2 shows a very simplified view of what the DOM for our
 earlier example would look like:

FIGURE 21.2

Our DOM for all the HTML you saw earlier looks sorta like this!

Despite the simplicity, there are several things to drill in on that apply to all
DOM structures in general. Your DOM is actually made up many kinds of things
beyond just HTML elements. All of those things that make up your DOM are more
 generically known as nodes.

These nodes can be elements (which shouldn’t surprise you), attributes, text
 content, comments, document-related stuff, and various other things you simply
never think about. That detail is important to someone, but that “someone”
shouldn’t be you and me. Almost always, the only kind of node we will care about

ptg18144529

226 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

is the element kind because that is what we will be dealing with 99% of the time.
At the boring/technical level, nodes still play a role in our element-centric view.

Every HTML element you want to access has a particular type associated with it,
and all of these types extend from the Node base that make up all nodes:

Your HTML elements are at the end of a chain that starts with Node and
 continues with Element and HTMLElement before ending with a type
(ie: HTMLDivElement, HTMLHeadingElement, and so on.) that matches the
HTML element itself. The properties and methods you will see for manipulating
HTML elements are introduced at some part of this chain.

Now, before we run toward using the DOM to modify HTML elements, let’s first
talk about two special objects that get in the way before the road clears up for
what we want to do.

ptg18144529

CHAPTER 21 JS, THE BROWSER, AND THE DOM 227

The Window Object
In the browser, the root of your hierarchy is the window object that contains many
properties and methods that help you work with your browser:

Some of the things you can do with the help of the window object include
 accessing the current URL, getting information about any frames in the page,
using local storage, seeing information about your screen, fiddling with the
 scrollbar, setting the statusbar text, and all sorts of things that are applicable to
the container your web page is displayed in.

ptg18144529

228 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Document Object
Now, we get to the document object. Here is where things get interesting, and it
is also where you and I will be focusing a lot of our time on:

The document object is the gateway to all the HTML elements that make up what
gets shown. The thing to keep in mind (and one that makes more sense as we
look at future chapters) is that the document object does not simply represent
a read-only version of the HTML document. It is a two-way street where you can
read as well as manipulate your document at will.

Any change you make to the DOM via JavaScript is reflected in what gets
shown in the browser. This means you can dynamically add elements, remove
them, move them around, modify attributes on them, set inline CSS styles, and
 perform all sorts of other shenanigans. Outside of the very basic HTML needed
via a script tag to get some JavaScript to run in an HTML document, you can
 construct a fully functioning page using nothing but JavaScript if you felt like it.
Used properly, this is a pretty powerful feature.

Another import aspect of the document object has to do with events. I will go
into more detail on this shortly, but if you want to react to a mouse click/hover,
checking a check box, detecting when a key was pressed, and so on, you will be
relying on functionality the document object provides for listening to and reacting
to events.

ptg18144529

CHAPTER 21 JS, THE BROWSER, AND THE DOM 229

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www. quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and want
to try your hand at the quiz, then you’re in luck – all you need to
do is scroll down!

THE ABSOLUTE MINIMUM
The DOM is the single most important piece of functionality you have for working
with your HTML documents. It provides the missing link that ties your HTML and
CSS with JavaScript. It also provides access one level up to your browser.

Now, knowing about the DOM is just part of the fun. Actually using its
 functionality to interact with your web document is the much larger and funner
other part. When you are ready, turn (or flip) on over to the next chapter where we
will go further.

There are a few more big buckets of functionality the DOM provides, but I’ll
 highlight them as we get to them.

http://www.quepublishing.com

ptg18144529

This page intentionally left blank

ptg18144529

22
I N T H I S C H A P T E R
• Learn how to find elements in the DOM

• Use the CSS selector syntax for cleverer element
discovery

FINDING ELEMENTS IN
THE DOM
As you saw in previous chapter, your DOM is nothing more than a tree-like

structure made up of all the elements that exist in your HTML document:

ptg18144529

232 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

That detail is only sort of important. What is important is that you have all of
these HTML elements floating around that you want to access and read data from
or modify. There are many ways to find these HTML elements. After all, these
 elements are arranged in a tree-like structure, and if there is one thing computer
scientists like to do, it is figuring out crazy ways to run up and down a tree to find
something.

I won’t subject you to that torture…just yet. In this chapter, you are going
to learn how to use two built-in functions called querySelector and
 querySelectorAll to solve a good chunk of all your DOM searching needs.

Onwards!

Meet the querySelector Family
To help explain the awesomeness that querySelector and querySelectorAll
bring to the table, take a look at the following HTML:
<div id="main">

 <div class="pictureContainer">

<i mg class="theImage" src="smiley.png" height="300"
width="150" />

 </div>

 <div class="pictureContainer">

<i mg class="theImage" src="tongue.png" height="300"
width="150" />

 </div>

 <div class="pictureContainer">

<i mg class="theImage" src="meh.png" height="300"
width="150" />

 </div>

 <div class="pictureContainer">

<i mg class="theImage" src="sad.png" height="300"
width="150" />

 </div>

</div>

ptg18144529

CHAPTER 22 FINDING ELEMENTS IN THE DOM 233

In this example, you have one div with an id of main, and then you have
four div and img elements each with a class value of pictureContainer and
 theImage respectively. In the next few sections, we’ll set the querySelector
and querySelectorAll functions loose on this HTML and see what happens.

querySelector
The querySelector function basically works as follows:
var element = document.querySelector("CSS selector");

The querySelector function takes an argument, and this argument is a CSS
selector for the element you wish to find. What gets returned by querySelector
is the first element it finds—even if other elements exist—that could get targeted
by the selector. This function is pretty stubborn like that.

Taking the HTML from our earlier example, if we wanted to access the div whose
id is main, you would write the following:
var element = document.querySelector("#main");

Because main is the id, the selector syntax for targeting it would be #main.
 Similarly, let’s specify the selector for the pictureContainer class:
var element = document.querySelector(".pictureContainer");

What gets returned is the first div whose class value is pictureContainer. The
other div elements with the class value of pictureContainer will simply be ignored.

The selector syntax is not modified or made special because you are in JavaScript.
The exact syntax you would use for selectors in your stylesheet or style region can
be used!

querySelectorAll
The querySelectorAll function returns all elements it finds that match what-
ever selector you provide:
var element = document.querySelectorAll("CSS selector");

With the exception of the number of elements returned, everything I described
about querySelector above applies to querySelectorAll as well. That
important detail changes how you end up actually using the querySelectorAll
function. What gets returned is not a single element. Instead, what gets returned
is an array-like container of elements!

ptg18144529

234 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Continuing to use the HTML from earlier, here is what our JavaScript would look
like if we wanted to use querySelectorAll to help us display the src attribute
of all the img elements that contain the class value theimage:
var images = document.querySelectorAll(".theImage");

for (var i = 0; i < images.length; i++) {

 var image = images[i];

 alert(image.getAttribute("src"));

}

See? This is pretty straightforward. The only thing you need to do is remember
how to work with Arrays (Chapter 13, “When Primitives Behave Like Objects”).
The one weird thing is the mysterious getAttribute function. If you aren’t
 familiar with getAttribute and how to read values from elements, that’s totally
okay. We’ll look at all that really soon.

It Really Is the CSS Selector Syntax
The thing that surprised me when I first used querySelector and
 querySelectorAll is that it actually takes the full range of CSS selector syntax
variations as its argument. You don’t have to keep it simple like I’ve shown you so far.

If you wanted to target all of the img elements without having to specify the class
value, here is what our querySelectorAll call could look like:
var images = document.querySelectorAll("img");

If you wanted to target only the image whose src attribute is set to meh.png, you
can do the following:
var images = document.querySelectorAll("img[src='meh.png']");

Note that I just specified an attribute selector1 as my argument to
 querySelectorAll. Pretty much any complex expression you can specify for a
selector in your CSS document is fair game for specifying as an argument to either
querySelector or querySelectorAll.

There are some caveats that you should be aware of:

• Not all pseudo-class selectors are allowed. A selector made up of :visited
or :link is ignored and no elements are found.

1. http://bit.ly/kirupaAttribute

http://bit.ly/kirupaAttribute

ptg18144529

CHAPTER 22 FINDING ELEMENTS IN THE DOM 235

• How crazy you can get with the selectors you provide depends on the
 browser’s CSS support. Internet Explorer 8 supports querySelector and
querySelectorAll. It doesn’t support CSS3. Given that situation, using
 anything more recent than the selectors defined in CSS 2 will not work when
used with querySelector and querySelectorAll on IE8. Chances are,
this doesn’t apply to you because you are probably supporting more recent
versions of browsers where this IE8 issue isn’t even on the radar.

• The selector you specify only applies to the descendants of the starting
 element you are beginning your search from. The starting element itself is not
included. Not all querySelector and querySelectorAll calls need to be
made from a document.

THE ABSOLUTE MINIMUM
The querySelector and querySelectorAll functions are extremely
 useful in complex documents where targeting a particular element is often
not straightforward. By relying on the well-established CSS selector syntax, we
can cast as small or as wide a net over the elements that we want. If I want
all image elements, I can just say querySelectorAll("img"). If I only
want the immediate img element contained inside its parent div, I can say
querySelector("div + img"). Now, that’s pretty awesome.

Before we wrap up, there is one more thing I’d like to chat with you about.
Missing in all of this element-finding excitement were the getElementById,
 getElementsByTagName, and getElementsByClassName functions. Back in
the day, these were the functions you would have used to find elements in your
DOM. The querySelector and querySelectorAll functions are the present
and future solutions for finding elements, so don’t worry about the getElement*
functions anymore. As of right now, the only slight against the querySelector
and querySelectorAll functions is performance. The getElementById
 function is still pretty fast, and you can see the comparison for yourself
here: http://jsperf.com/getelementbyid-vs-queryselector.

Like a wise person once said, life is too short to spend time learning about old
JavaScript functions…even if they are a bit faster!

http://jsperf.com/getelementbyid-vs-queryselector

ptg18144529

236 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www. quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and want
to try your hand at the quiz, then you’re in luck – all you need to
do is scroll down!

http://www.quepublishing.com

ptg18144529

23
I N T H I S C H A P T E R
• Understand how JavaScript can be used to modify

the DOM

• Meet the HTML Element

• Learn how to modify attributes

MODIFYING DOM
ELEMENTS
At this point, you kinda sorta know what the DOM is. You also saw how to

find elements using querySelector and querySelectorAll. What’s

next is for us to learn how to modify the DOM elements you found. After

all, what’s the fun in having a giant lump of clay (or cookie dough) if you

can’t put your hands on it and make a giant mess?

ptg18144529

238 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Anyway, besides it being fun and all, you will find yourself modifying the DOM
all the time. Whether you are using JavaScript to change some element’s text,
swap out an image with a different one, move an element from one part of your
 document to another, set an inline style, or perform any of the bazillion other
changes you will want to do, you will be modifying the DOM. This chapter will
teach you the basics of how to go about doing that.

Onwards!

DOM Elements Are Objects—Sort of!
Your ability to use JavaScript to modify what gets shown by the browser is made
possible because of one major detail. That detail is that every HTML tag, style
rule, and other things that go into your page have some sort of a representation in
the DOM.

To visualize what I just said, let’s say you have an image element defined in
markup:
<img src="images/lol_panda.png" alt="Sneezing Panda!" width="250"
 height="100" />

When your browser parses the document and hits this image element, it creates a
node in the DOM that represents it as illustrated in Figure 23.1.

FIGURE 23.1

Your DOM stores an entry for the image element at the appropriate location.

This DOM representation provides you with the ability to do everything you could
have done in markup. As it turns out, this DOM representation actually ends up
allowing you to do more with your HTML elements than you could have done
using just plain old markup itself. This is something you’ll see a little bit of here

ptg18144529

CHAPTER 23 MODIFYING DOM ELEMENTS 239

and a whole lot of in the future. The reason why your HTML elements are so
 versatile when viewed via the DOM is because they share a lot of similarities with
JavaScript Objects. Your DOM elements contain properties that allow you to
get/set values and call methods. They have a form of inheritance that you read
a little bit about earlier where the functionality each DOM element provides is
spread out across the Node, Element, and HTMLElement base types.

This hierarchy (which you’ve seen earlier) is illustrated again in Figure 23.2.

FIGURE 23.2

JavaScript is big on hierarchies…even when representing the DOM!

DOM elements probably even smell like an Object when they run inside the
house after rolling around in the rain for a bit.

Despite all of the similarities, for legal and…possibly health reasons, I need to
provide the following disclaimer: the DOM was never designed to mimic the
way Objects work. Many of the things you can do with objects you can certainly
do with the DOM, but that is because the browser vendors help ensure that.

ptg18144529

240 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The W3C specification doesn’t state that your DOM should behave identically to
how you may expect things to behave with plain old Objects. While I wouldn’t
lose any sleep worrying about this, if you ever decide to extend DOM elements
or perform more advanced object-related gymnastics, be sure to test across all
browsers just to make sure everything works the way you intended.

Now that we got this awkward conversation out of the way, let’s start to actually
modify the DOM.

Let’s Actually Modify DOM Elements
While you can certainly lean back and passively learn all there is about how to mod-
ify elements in the DOM, this is one of those cases where you may have more fun
following along with a simple example. If you are interested in following along, we’ll
be using the following HTML as a sandbox for the techniques you will be learning:
<!DOCTYPE html>

<html>

<head>

 <title>Hello...</title>

 <style>

 .highlight {

font-family: "Arial";

padding: 30px;

 }

 .summer {

font-size: 64px;

color: #0099FF;

 }

 </style>

</head>

<body>

 <h1 id="theTitle" class="highlight summer">What's happening?</h1>

ptg18144529

CHAPTER 23 MODIFYING DOM ELEMENTS 241

 <script>

 </script>

</body>

</html>

Just put all of that code into an HTML document and follow along. If you preview
this HTML in the browser, you will see some text appear that looks as follows:

There isn’t really a whole lot going on here. The main piece of content is the h1
tag that displays the What’s happening? text:
<h1 id="theTitle" class="highlight summer">What's happening?</h1>

Now, switching over to the DOM side of things, Figure 23.3 shows what this exam-
ple looks like with all of the HTML elements (and document and window) mapped:

FIGURE 23.3

What our DOM looks like for the markup that we are working with.

In the following sections, we’ll look at some of the common things you can do in
terms of modifying a DOM element.

ptg18144529

242 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Changing an Element’s Text Value
Let’s start off with an easy one. Many HTML elements have the ability to display
some text. Examples of such elements are your headings, paragraphs, sections,
inputs, buttons, and many more. There is one thing they all have in common.
The way you modify the text value is by setting the textContent property.

Let’s say we want to change the text that appears in the h1 element from our
example. The following snippet shows what that would look like:
<body>

 <h1 id="theTitle" class="highlight summer">What's happening?</h1>

 <script>

var title = document.querySelector("#theTitle");

title.textContent = "Oppa Gangnam Style!";

 </script>

</body>

If you make this change and preview it in a browser, you will see the words Oppa
Gangnam Style! show up.

Let’s look at what exactly we did to cause this change. The first step to modifying
any HTML element in JavaScript is to first get a reference to it:
var title = document.querySelector("#theTitle");

Here is where our old friends querySelector and querySelectorAll come
in. As you will see later, you also have indirect ways of referencing an element.
The direct approach shown here, though, is what you will use when you have a
very specific idea of what element or elements you wish to target.

Once you have the reference to the element, just set the textContent property
on it:
title.textContent = "Oppa Gangnam Style!";

The textContent property can be read like any variable to show the current value.
You can also set the property to change it to whatever you want. In this example, we
are setting our textContent property to say Oppa Gangnam Style! After this line
has run, your markup’s original value of What’s happening? will have been replaced!

Attribute Values
One of the primary ways your HTML elements distinguish themselves is through
their attributes and the values these attributes store. For example, the src and
alt attributes are what distinguish the following three img elements:

ptg18144529

CHAPTER 23 MODIFYING DOM ELEMENTS 243

Every HTML attribute (including custom data-* ones) can be accessed via
 JavaScript. To help you deal with attributes, your elements expose the somewhat
self-explanatory getAttribute and setAttribute methods.

The getAttribute method allows you to specify the name of an attribute on
the element it is living on. If the attribute is found, this method will then return the
value associated with that attribute. What follows is an example:
<body>

 <h1 id="theTitle" class="highlight summer">What's happening?</h1>

 <script>

var title = document.querySelector("h1");

alert(title.getAttribute("id"));

 </script>

</body>

In this snippet, notice that we are getting the value of the id attribute on our h1
element. If you specify an attribute name that doesn’t exist, you will get a nice
value of null. The opposite of getting the value of an attribute is to actually set the
value. To set the value, you would use the appropriately named setAttribute
method. You use this method by calling setAttribute on the element that you
want to affect and specifying both the attribute name as well as the value that
attribute will store.

Here is an example of setAttribute at work:
<body>

 <h1 id="theTitle" class="highlight summer">What's happening?</h1>

 <script>

document.body.setAttribute("class", "bar foo");

 </script>

</body>

We are setting the class attribute on the body element to bar foo. The
 setAttribute function doesn’t do any validation to ensure that the attribute

ptg18144529

244 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

you are setting is valid for the element you are setting it on. Nothing prevents you
from doing something silly as follows:
<body>

 <h1 id="theTitle" class="highlight summer">What's happening?</h1>

 <script>

document.body.setAttribute("src", "http://www.kirupa.com");

 </script>

</body>

The body element doesn’t contain the src attribute, but you can get away
with specifying it. When your code runs, your body element will sport the src
 attribute…probably very uncomfortably.

There is something I need to clarify before we move on. In the examples for how
to use setAttribute and getAttribute, I picked on id and class. For these
two attributes, you do have another way of setting them. Because of how common
setting id and class attributes are, your HTML elements expose the id and
className properties directly:
<body>

 <h1 id="theTitle" class="highlight summer">What's happening?</h1>

 <script>

var title = document.querySelector("h1");

alert(title.id);

document.body.className = "bar foo";

 </script>

</body>

In this example, notice that I switched from using getAttribute and
 setAttribute to use the id and className properties instead in lines
6 and 8. The end result is identical. The only difference is that you had a direct
way of setting these attributes values without having to use getAttribute or
setAttribute.

TIP There is a much better way of setting class values besides
using className. That way is via the much more awesome
classList property that you will learn all about in the next
chapter.

http://www.kirupa.com

ptg18144529

CHAPTER 23 MODIFYING DOM ELEMENTS 245

 TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www. quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

THE ABSOLUTE MINIMUM
It may seem a bit odd to end our discussion around modifying DOM elements at
this point. While changing an element’s text and attribute values is very popular,
they are by no means the only major kinds of modifications you will perform.
The reason for ending at this cliffhanger is because manipulating the DOM and
using an element’s properties and methods to accomplish our task is central to
 everything we are going to be seeing. In subsequent chapters, you are going to
see a whole lot more of what you’ve seen here.

Your main takeaway from this chapter is that the DOM changes you perform will
almost always take one of the following two forms:

• Setting a property

• Calling a method

The textContent, setAttribute, and getAttribute methods you saw
here cover both of those approaches, and you’ll see a lot more of them and their
friends shortly.

http://www.quepublishing.com

ptg18144529

This page intentionally left blank

ptg18144529

24
I N T H I S C H A P T E R
• Learn how to change CSS using JavaScript

• Understand the pros and cons of setting styles
directly as opposed to adjusting class values

• Use classList to make fiddling with element class
values a breeze

STYLING YOUR CONTENT
In the previous chapter, we looked at how to modify your DOM’s content

using JavaScript. The other part of what makes our HTML elements stand

out is their appearance, their styling. When it comes to styling stuff, the

most common way is by creating a style rule and have its selector target

an element or elements. A style rule would look as follows:

.batman {

 width: 100px;

 height: 100px;

 background-color: #333;

}

ptg18144529

248 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

An element that would be affected by this style rule could look like this:
<div class="batman"></div>

On any given web page, you’ll see anything from just a few to many MANY style
rules each beautifully stepping over each other to style everything that you see.
This isn’t the only approach you can use to style content using CSS, though. It
wouldn’t be HTML if there weren’t multiple ways to accomplish the same task!

Ignoring inline styles, the other approach that you can use to introduce elements
to the goodness that is CSS that revolves around the DOM and JavaScript.
 Basically, you can use JavaScript to directly style an element, and you can also
use JavaScript to add or remove class values on elements which will alter which
style rules get applied. In this chapter, you’re going to learn about both of these
approaches.

Onwards!

Why Would You Set Styles Using JavaScript?
Before we go further, it is probably useful to explain why you would ever want to
use JavaScript to affect the style of an element in the first place. In the common
cases where you use style rules or inline styles to affect how an element looks,
the styling kicks in when the page is loaded. That’s awesome, and that’s probably
what you want most of the time.

There are many cases, especially as your content gets more interactive, where you
want styles to dynamically kick in based on user input, some code having run in
the background, and more. In these sorts of scenarios, the CSS model involving
style rules or inline styles won’t help you. While pseudoselectors like hover provide
some support, you are still greatly limited in what you can do.

The solution you will need to employ for all of them is one that involves
 JavaScript. JavaScript not only lets you style the element you are interacting
with, but more importantly, it allows you to style elements all over the page.
This freedom is very powerful and goes well beyond CSS’s limited ability to style
 content inside (or very close to) itself.

A Tale of Two Styling Approaches
Like I mentioned in the introduction, you have two ways to alter the style of an
element using JavaScript. One way is by setting a CSS property directly on the
element. The other way is by adding or removing class values from an element
which may result in certain style rules getting applied or ignored. Let’s look at
both of these cases in greater detail.

ptg18144529

CHAPTER 24 STYLING YOUR CONTENT 249

Setting the Style Directly
Every HTML element that you access via JavaScript has a style object. This
object allows you to specify a CSS property and set its value. For example, this
is what setting the background color of an HTML element whose id value is
 superman looks like:
var myElement = document.querySelector("#superman");

myElement.style.backgroundColor = "#D93600";

To affect many elements, you can do something as follows:
var myElements = document.querySelectorAll(".bar");

for (var i = 0; i < myElements.length; i++) {

 myElements[i].style.opacity = 0;

}

In a nutshell, to style elements directly using JavaScript, the first step is to access
the element. I am using the querySelector function to make that happen. The
second step is just to find the CSS property you care about and give it a value.
Remember, many values in CSS are actually strings. Also remember that many
 values require a unit of measurement like px or em or something like that to
 actually get recognized.

SPECIAL-CASING SOME NAMES OF CSS PROPERTIES
JavaScript is very picky about what makes up a valid property name. Most
names in CSS would get JavaScript’s seal of approval, so you can just use them
 straight-up from the carton. There are a few things to keep in mind, though.

To specify a CSS property in JavaScript that contains a dash, simply remove
the dash and capitalize the first letter of the second word. For example,
 background-color becomes backgroundColor, the border-radius
 property transforms into borderRadius, and so on.

ptg18144529

250 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Adding and Removing Classes Using classList
A common way to style elements is by adding and removing class values on their
class attribute. Let’s say we have the following div element:
<div id="myDiv" class="bar foo zorb"> ... </div>

From looking at the markup, we can see that this element has a class attribute
with the bar, foo, and zorb values set. What we are going to do in this section
is see how easy it is to manipulate these class values using the classList API.
This API is great because it is simple and provides the following methods to
manipulate class values:

• add

• remove

• toggle

• contains

What these four methods do may be pretty self-explanatory from their names, but
let’s look at them in further detail anyway. Gotta get the page count up somehow,
right?

Adding Class Values
To add a class value to an element, call the add method on classList:
var divElement = document.querySelector("#myDiv");

divElement.classList.add("baz");

alert(divElement.classList);

Also, certain words in JavaScript are reserved and can’t be used directly. One
example of a CSS property that falls into this special category is float. In CSS it
is a layout property. In JavaScript, it stands for something else. To use a property
whose name is entirely reserved, prefix the property with css where float
becomes cssFloat.

ptg18144529

CHAPTER 24 STYLING YOUR CONTENT 251

After this code runs, our div element will have the following class values: bar,
foo, zorb, baz. The classList API takes care of ensuring that spaces are added
between class values and all the other sort of stuff that CSS expects from your
HTML content.

If you specify an invalid class value, the classList API will throw an exception
and not add it. If you tell the add method to add a class that already exists on the
element, your code will run without exception (ha!) but the duplicate class value
will not get added.

Removing Class Values
To remove a class value, just call the remove method on classList:
var divElement = document.querySelector("#myDiv");

divElement.classList.remove("foo");

alert(divElement.classList);

After this code executes, the foo class value will be removed. What you will be left
with is just bar and zorb. Pretty simple, right?

Toggling Class Values
For many styling scenarios, there is one very common workflow. First, you check
if a class value on an element exists. If the value exists, you remove it from the
element. If the value does not exist, you add that class value to the element. To
simplify this very common toggling pattern, the classList API provides you with
the toggle method:
var divElement = document.querySelector("#myDiv");

divElement.classList.toggle("foo"); // remove foo

divElement.classList.toggle("foo"); // add foo

divElement.classList.toggle("foo"); // remove foo

alert(divElement.classList);

The toggle method, as its name implies, adds or removes the specified class
value on the element each time it is called. In our case, the foo class is removed
the first time the toggle method is called. The second time, the foo class is
added. The third time, the foo class is removed. You get the picture.

ptg18144529

252 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Checking Whether a Class Value Exists
The last thing we are going to look at is the contains method:
var divElement = document.querySelector("#myDiv");

if (divElement.classList.contains("bar") == true) {

 // do something

}

This method checks to see if the specified class value exists on the element. If the
value exists, you get true. If the value doesn’t exist, you get false.

Going Further
As you can see, the classList API provides you with almost everything
you need to add, remove, or inspect class values on an element very easily.
The emphasis being on the word almost. For the few things the API doesn’t
 provide by default, you can go online and read my full article on everything that
you can do with classList: http://bit.ly/kClassList.

THE ABSOLUTE MINIMUM
So, there you have it—two perfectly fine JavaScript-based approaches you can use
for styling your elements. Of these two choices, if you have the ability to modify
your CSS, I would prefer that you style elements by adding and removing classes
using the classList approach. The simple reason is that this approach is far
more maintainable. It is much easier to add and remove style properties from a
style rule in CSS as opposed to adding and removing lines of JavaScript.

http://bit.ly/kClassList

ptg18144529

CHAPTER 24 STYLING YOUR CONTENT 253

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www. quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

http://www.quepublishing.com

ptg18144529

This page intentionally left blank

ptg18144529

25
I N T H I S C H A P T E R
• Learn how to navigate the DOM tree

• Use the various APIs you have for moving and
 re-parenting elements

• Find an element’s sibling, parent, children, and more

TRAVERSING THE DOM
As you may have realized by now, your DOM looks like a giant tree—a

giant tree with elements dangerously hanging on to branches and trying to

avoid the pointy things that litter the place. To get a little more technical,

elements in your DOM are arranged in a hierarchy that defines what you

eventually see in the browser:

ptg18144529

256 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

This hierarchy is used to help organize your HTML elements. It is also used to help
your CSS style rules make sense of what styles to apply on which things. From
the JavaScript angle, this hierarchy does add a bit of complexity. That’s where this
chapter comes in. To help you understand how to easily navigate from branch to
branch (basically, like a monkey), the DOM provides you with a handful of proper-
ties that you can combine with techniques you already know. This chapter will give
you an overview of all that and more.

Onwards!

Finding Your Way Around
Before you can find elements and do awesome things with them, you need to first
get to where the elements are. The easiest way to tackle this topic is to just start
from the top and slide all the way down. That’s exactly what we are going to do.

The view from the top of your DOM is made up of your window, document, and
html elements:

ptg18144529

CHAPTER 25 TRAVERSING THE DOM 257

You’ve already seen a blurb about them a few chapters ago, so I’ll make this quick.
Because of how important these three things are, the DOM provides you with easy
access to them via window, document, and document.documentElement:
var windowObject = window; // um....

var documentObject = document; // this is probably unnecessary

var htmlElement = document.documentElement;

One thing to note is that both window and document are global properties.
You don’t have to explicitly declare them like I did. Just shake and use them
straight out of the container.

Once you go below the HTML element level, your DOM will start to branch out
and get more interesting. At this point, you have several ways of navigating
around. One way that you’ve seen plenty of (mostly in the previous chapter)
is by using querySelector and querySelectorAll to precisely get at the
 elements you are interested in. For many practical cases, these two methods are
too limiting.

Sometimes, you don’t know where you want to go. The querySelector and
querySelectorAll methods won’t help you here. You just want to get in the
car and drive…and hope you find what you are looking for. When it comes to
 navigating the DOM, you’ll find yourself in this position all the time. That’s where
the various built-in properties the DOM provides for will help you out, and we are
going to look at those properties next.

ptg18144529

258 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The thing that will help you out is knowing that all of our elements in the DOM
have at least one combination of parents, siblings, and children to rely on. To
visualize this, take a look at the row containing the div and script elements in
Figure 25.1.

FIGURE 25.1

Your DOM elements are part of some parent/sibling/child arrangement.

Both the div and script elements are siblings. The reason they are siblings is
because they share the body element as their parent. The script element has
no children, but the div element does. The img, h1, p, and div are children of
the div element, and all children of the same parent are siblings as well. Just like
in real life, the parent, child, and sibling relationship is based on where in the tree
you are focusing on. Almost every element, depending on the angle with which
you look at them under, can play multiple familial roles.

To help you through all of this, you have a handful of properties that you
will rely on. These properties are firstChild, lastChild, parentNode,
 children, previousSibling, and nextSibling. From just looking at their
names, you should be able to infer what role these properties play. The guy in
red with the pointed pitchfork is in the details, so we’ll look at this in greater
detail next.

ptg18144529

CHAPTER 25 TRAVERSING THE DOM 259

Dealing with Siblings and Parents
Of these properties, the easiest ones to deal with are the parents and siblings.
The relevant properties for this are parentNode, previousSibling, and
nextSibling. The diagram in Figure 25.2 gives you an idea of how these three
properties work:

FIGURE 25.2

All in the family!

This diagram is a little busy, but if you squint really hard you can sort of make
out what is going on here. The parentNode property points you to the element’s
 parent. The previousSibling and nextSibling properties allow an element
to find its previous or next sibling. You can see this visualized in the diagram by
just moving in the direction of the arrow. In the last line, our img’s nextSibling
is the div. Our div’s previousSibling is the img. Accessing parentNode on
either of these elements will take you to the parent div in the second row. It’s all
pretty straightforward.

Let’s Have Some Kids!
What is a little less straightforward is how the children fit into all of this, so let’s
take a look at the firstChild, lastChild, and children properties in
the diagram in Figure 25.3.

ptg18144529

260 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 25.3

Navigating via children is another way of getting around.

The firstChild and lastChild properties refer to a parent’s first and last child
elements. If the parent only has one child, as is the case with the body element in
our example, then both firstChild and lastChild point to the same thing. If
an element has no children, then these properties return a null.

The tricky one compared to the other properties we’ve looked at is the children
property. When you access the children property on a parent, you basically get
a collection of the child elements the parent has. This collection is not an Array,
but it does have some Array-like powers. Just like with an Array, you can iterate
through this collection or access the children individually kind of like what you see
in the diagram. This collection also has a length property that tells you the count
of how many children the parent is dealing with. If your head is spinning from all
of this, don’t worry. The snippets in the next section will help clarify the vagueness.

ptg18144529

CHAPTER 25 TRAVERSING THE DOM 261

Putting It All Together
Now that you have a good idea of all the important properties you have for
 traversing the DOM, let’s look at some code snippets that tie in all the diagrams
and words into some sweet lines of JavaScript.

Checking Whether a Child Exists
To check if an element has a child, you can do something like the following:
var bodyElement = document.body;

if (bodyElement.firstChild) {

 // do something interesting

}

This chunk of code will return null if there are no children. You could also have
used bodyElement.lastChild or bodyElement.children.length if you
enjoy typing, but I prefer to just keep things simple.

Accessing All the Child Elements
If you want to access all of a parent’s children, you can always rely on good old
uncle for loop:
var bodyElement = document.body;

for (var i = 0; i < bodyElement.children.length; i++) {

 var childElement = bodyElement.children[i];

 document.writeln(childElement.tagName);

}

Notice that I am using the children and length properties property just like
I would an Array. The thing to remember is that this collection is actually not an
Array. Almost all of the Array methods that you may want to use will not be
available in this collection returned by the children property.

ptg18144529

262 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Walking the DOM
The last snippet touches upon a little bit of everything you’ve seen so far. This
snippet recursively walks the DOM and awkwardly runs into every HTML element it
can find:
function theDOMElementWalker(node) {

 if (node.nodeType == 1) {

// do something with the node

node = node.firstChild;

while (node) {

theDOMElementWalker(node);

node = node.nextSibling;

}

 }

}

To see this function in action, simply call it by passing in a node that you want to
start your walk from:
var texasRanger = document.querySelector("#texas");

theDOMElementWalker(texasRanger);

In this example, we are calling theDOMElementWalker function on an element
referenced by the texasRanger variable. If you want to run some code on the
element that this script found, replace my commented out line with whatever you
want to do.

ptg18144529

CHAPTER 25 TRAVERSING THE DOM 263

THE ABSOLUTE MINIMUM
Finding your way around the DOM is one of those skills that every JavaScript
developer should be familiar with. This chapter provided you an overview of
what is technically possible. The onus of applying this in more practical ways falls
entirely on you….or a cool friend who helps you out with these things. With that
said, in subsequent chapters, we will expand upon what you’ve seen here as part
of continuing our deep dive into everything you can do with the DOM. Doesn’t
that sound exciting?

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and want
to try your hand at the quiz, then you’re in luck – all you need to
do is scroll down!

http://www.quepublishing.com

ptg18144529

This page intentionally left blank

ptg18144529

26
I N T H I S C H A P T E R
• Understand how easy it is to use JavaScript to

 create DOM elements from nothing

• Learn how to clone existing DOM elements as well
as remove DOM elements you no longer want

CREATING AND REMOVING
DOM ELEMENTS
This part may blow you away. For the following sentences, I suggest you hold

on to something sturdy:

ptg18144529

266 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Despite what my earlier chapters may have led you to believe, your DOM does
not have to be made up of HTML elements that exist in markup. You have the
ability to create HTML elements out of thin air and add them to your DOM using
just a few lines of JavaScript. You also have the ability to move elements around,
remove them, and do all sorts of God-like things. Let’s pause for a bit while we let
all of that sink in. This is pretty big.

Besides the initial coolness of all this, the ability to dynamically create and modify
elements in your DOM is an important detail that makes a lot of your favorite
 websites and applications tick. When you think about this, this makes sense.
 Having everything predefined in your HTML is very limiting. You want your content
to change and adapt when new data is pulled in, when you interact with the page,
when you scroll further, or when you do a billion other things.

In this chapter, we are going to cover the basics of what makes all of this work.
We are going to look at how to create elements, remove elements, re-parent
 elements, and clone elements. This is also the last of our chapters looking directly
at DOM-related shenanigans, so get your friends and the balloons ready!

Onwards!

Creating Elements
Like I mentioned in the introduction, it is very common for interactive sites and
apps to dynamically create HTML elements and have them live in the DOM. If this
is the first time you are hearing about something like this being possible, you are
going to love this section!

The way to create elements is by using the createElement method. The way
createElement works is pretty simple. You call it via your document object and
pass in the tag name of the element you wish to create. In the following snippet,
you are creating a paragraph element represented by the letter p:
var el = document.createElement("p");

If you run this line of code as part of your app, it will execute and a p element
will get created. If you assign the createElement call to a variable (el in our
case), then the variable will store a reference to this newly created element.
Now, creating an element is the simple part. Actually raising it to be a fun and
 responsible member of the DOM is where you need some extra effort. You need
to actually place this element somewhere in the DOM, for your dynamically
 created p element is just floating around aimlessly right now:

ptg18144529

CHAPTER 26 CREATING AND REMOVING DOM ELEMENTS 267

The reason for this aimlessness is because your DOM has no real knowledge that
this element exists. In order for an element to be a part of the DOM, there are two
things we need to do:

1. Find an element that will act as the parent

2. Use appendChild and add the element you want into that parent element

The following highlighted line shows both of these steps in action:
<body>

 <h1 id="theTitle" class="highlight summer">What's happening?
 </h1>

 <script>

var newElement = document.createElement("p");

 newElement.textContent = "I exist entirely in your
 imagination.";

document.body.appendChild(newElement);

 </script>

</body>

Our parent is going to be the body element, which I access via document.body.
On the body element, we call appendChild and pass in an argument to our
newly created element, to which I hold a reference with the newElement variable.

ptg18144529

268 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

After these lines of code have run, your newly created p element will not only exist
but also be a card-carrying member of the DOM.

The following is a visualization of what the DOM for our simple example looks like
(assume we also have a head, title, and style element in the markup defined):

Now, one thing to note about the appendChild function is that it always adds
the element to the end of whatever children a parent may have. In our case, our
body element already has the h1 and script elements as its children. The p
 element gets appended after them as the youngest child. With that said, you
do have control over the exact order where a particular element will live under
a parent.

If you want to insert newElement directly after your h1 tag, you can do so by
calling the insertBefore function on the parent. The insertBefore function
takes two arguments. The first argument is the element you want to insert. The
second argument is a reference to the sibling (aka child of a parent) you want to
precede. Here is our example modified to have our newElement live after your
h1 element (and before your script element):
<body>

 <h1 id="theTitle" class="highlight summer">What's happening?</h1>

ptg18144529

CHAPTER 26 CREATING AND REMOVING DOM ELEMENTS 269

 <script>

var newElement = document.createElement("p");

 newElement.textContent = "I exist entirely in your
 imagination.";

var scriptElement = document.querySelector("script");

document.body.insertBefore(newElement, scriptElement);

 </script>

</body>

Notice that I call insertBefore on the body element and specify that
 newElement should be inserted before our script element. Our DOM in this
case would look as follows:

You might think that if there is an insertBefore method, there must be an
insertAfter method as well. As it turns out, that isn’t the case. There isn’t a
widely supported built-in way of inserting an element AFTER an element instead
of before it. What you can do is trick the insertBefore function by telling it to
insert an element an extra element ahead. That probably makes no sense, so let
me show you the code first and explain later:

ptg18144529

270 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

<body>

 <h1 id="theTitle" class="highlight summer">What's happening?</h1>

 <script>

var newElement = document.createElement("p");

 newElement.textContent = "I exist entirely in your
 imagination.";

var h1Element = document.querySelector("h1");

 document.body.insertBefore(newElement, h1Element.
 nextSibling);

 </script>

</body>

Pay attention to the highlighted lines, and then take a look at the following
 diagram, which illustrates what is happening:

The h1Element.nextSibling property references the script element.
 Inserting your newElement before your script element accomplishes your goal of
inserting your element after your h1 element. What if there is no sibling element
to target? Well, the insertBefore function in that case is pretty clever and just
appends the element you want to the end automatically.

ptg18144529

CHAPTER 26 CREATING AND REMOVING DOM ELEMENTS 271

Removing Elements
I think somebody smart (probably Drake?) once said the following: That which has
the ability to create, also has the ability to remove. In the previous section, we
saw how you can use the createElement method to create an element. In this
section, we are going to look at removeChild which, given its slightly unsavory
name, is all about removing elements.

Take a look at the following example:
<body>

 <h1 id="theTitle" class="highlight summer">What's happening?</h1>

 <script>

var newElement = document.createElement("p");

HANDY DANDY FUNCTION
If for some reason you find yourself wanting to insert elements after another
 sibling all the time, then you may want to use this function to simplify your
life a bit:

function insertAfter(target, newElement) {

 target.parentNode.insertBefore(newElement, target.nextSibling);

}

Yes, I do realize this is a roundabout way of doing this, but it works...really well.
You can even go all out and extend HTMLElement with this function to provide
this functionality more conveniently to all your HTML elements. Chapter 17, which
you probably already read and told everyone about, covers how to do something
like that in greater detail. Note that extending your DOM is frowned upon by
some people, so make sure to have some witty banter on the ready to lighten the
mood if you ever are accosted by these “some people”.

ptg18144529

272 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 newElement.textContent = "I exist entirely in your
 imagination.";

document.body.appendChild(newElement);

document.body.removeChild(newElement);

 </script>

</body>

The p element stored by newElement is being added to our body element by
the appendChild method. You saw that earlier. To remove this element, we call
removeChild on the body element and pass in a pointer to the element we wish
to remove. That element is, of course, newElement. Once removeChild has run,
it will be as if your DOM never knew that newElement existed.

The main thing you should note is that you need to call removeChild from the
parent of the child you wish to remove. This method isn’t going to traverse up
and down your DOM trying to find the element you want to remove. Now, let’s
say that you don’t have direct access to an element’s parent and don’t want to
waste time finding it. You can still remove that element very easily by using the
 parentNode property as follows:
<body>

 <h1 id="theTitle" class="highlight summer">What's happening?</h1>

 <script>

var newElement = document.createElement("p");

newElement.textContent = "I exist entirely in your
imagination.";

document.body.appendChild(newElement);

newElement.parentNode.removeChild(newElement);

 </script>

</body>

In this variation, I remove newElement by calling removeChild on its parent by
specifying newElement.parentNode. This looks like a roundabout method, but
it gets the job done.

ptg18144529

CHAPTER 26 CREATING AND REMOVING DOM ELEMENTS 273

Besides these minor quirks, the removeChild function is quite merciless in its
efficiency. It has the ability to remove any DOM element—including ones that
were originally created in markup. You aren’t limited to removing DOM elements
you dynamically added. If the DOM element you are removing has many levels of
children and grandchildren, all of them will be removed as well.

Cloning Elements
This chapter just keeps taking a turn for the weirderer the further we go into it,
but fortunately we are at the last section. The one remaining DOM manipulation
technique you need to be aware of is one that revolves around cloning elements
where you start with one element and create identical replicas of it:

The way you clone an element is by calling the cloneNode function on the
 element you wish to clone along with providing a true or false argument to
specify whether you want to clone just the element or the element and all of its
children.

Here is an example that makes sense of the previous sentence with the relevant
lines highlighted:
<!DOCTYPE HTML>

<html>

<body>

 <div id="outerContainer">

<div>

ptg18144529

274 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

<h1>This one thing will change your life!!!</h1>

</div>

 </div>

 <div id="footer">

<div class="share">

<p>Something</p>

</div>

 </div>

 <script>

var share = document.querySelector(".share");

var shareClone = share.cloneNode(false);

document.querySelector("#footer").appendChild(shareClone);

 </script>

</body>

</html>

Take a moment to understand what is going on here. The share variable gets a
reference to the div whose class value is share. In the next line, we clone this
div by using the cloneNode function:
var shareClone = share.cloneNode(false);

The shareClone variable now contains a reference to the cloned version of the
div stored in the share variable. Note that we are calling cloneNode with an
argument of false. This means that only the div referenced by share is cloned.

The postoperative steps after calling cloneNode are identical to what you would
do with createElement. In the next line, we are simply appending our cloned
element to the footer div element so that it actually finds mention in the DOM.
The DOM for all of this after our code has run looks as follows:

ptg18144529

CHAPTER 26 CREATING AND REMOVING DOM ELEMENTS 275

Notice that our cloned element now appears as a peer of the existing div
 element. The thing to also notice is that this cloned element contains all of the
attributes that the original/source element had. For example, this div will also
have a class value of share. Keep that in mind when you are cloning elements
that contain id values set on them. Because id values need to be unique in the
DOM, you may need to do some extra cleanup work to ensure the uniqueness is
maintained.

ptg18144529

276 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

We are almost done here. The last thing to look at is what happens when we call
cloneNode and specify that the children get cloned as well. Let’s change our
 earlier behavior by passing in a true instead of a false in our cloneNode call:
var shareClone = share.cloneNode(true);

When the code runs now, the end result of this minor change is that our DOM will
now have a few more people in it because the children of the .share div will also
be brought along:

See, told you!!! The p and img elements have also been cloned and dragged
along with the parent .share div. Once your cloned elements have been added
to the DOM, you can then use all the tricks you’ve learned to modify them.

ptg18144529

CHAPTER 26 CREATING AND REMOVING DOM ELEMENTS 277

THE ABSOLUTE MINIMUM
If there is anything you walk away from after reading all this, I hope you walk away
with the knowledge that your DOM is something you can touch and extensively
modify. We sort of talked about how everything in the DOM can be altered ear-
lier, but it is here where we saw first-hand the depth and breadth of the alterations
you can easily make using methods like createElement, removeChild, and
cloneNode.

With everything you’ve learned here, there is nothing preventing you from start-
ing off with a completely empty page and using just a few lines of JavaScript to
 populate everything inside it:

<!DOCTYPE html>

<html>

<head>

 <title>Look what I did, ma!</title>

</head>

<body>

 <script>

var bodyElement = document.querySelector("body");

// create an h1 element

var h1Element = document.createElement("h1");

h1Element.textContent = "Do they speak English in 'What'?";

bodyElement.appendChild(h1Element);

var pElement = document.createElement("p");

pElement.textContent = "I am adding some text here...like a
boss!";

bodyElement.appendChild(pElement);

 </script>

</body>

</html>

ptg18144529

278 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

Just because you can do something like this doesn’t mean you always should.
The main problem with dynamically creating content is that search engines,
screen readers, and other accessibility tools (even with ARIA attributes defined)
 probably won’t know what to do if they don’t have JavaScript enabled. They
are more familiar with content specified in markup than they are with things
 created using JavaScript. Just be aware of that limitation if you ever decide to get
 overenthusiastic with dynamically modifying your DOM.

http://www.quepublishing.com

ptg18144529

27
I N T H I S C H A P T E R
• Learn how browser developer tools can save you a

lot of time

• Familiarize yourself with what Chrome’s Developer
Tools offer

IN-BROWSER DEVELOPER
TOOLS
All of the major browsers—Google Chrome, Apple Safari, Mozilla Firefox,

and Microsoft Edge (formerly Internet Explorer)—do more than just display

web pages. For developers, they provide access to a lot of cool function-

ality for figuring out what is actually going on with the web page that is

displayed. They do all of this via what I’ll generically just call the Developer

Tools. These are tools that are built in to the browser, and they give you

the ability to fiddle with your HTML, CSS, and JavaScript in a lot of neat

and interesting ways.

ptg18144529

280 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In this chapter, let’s look at these Developer Tools and learn how we can use them
to make our lives easier.

Onwards!

Meet the Developer Tools
Let’s start at the very beginning. When you navigate to a web page, your browser
will load whatever document it was told to load:

I’LL BE USING GOOGLE CHROME
For all of the examples you are about to see, I’ll be using Google’s Chrome
browser. While each browser provides similar functionality for what I’ll be
 describing, the exact UI and steps to get there will vary. Just be aware of that, and
also note that the version of Chrome you may be using might be more recent than
the one that is used in this chapter.

ptg18144529

CHAPTER 27 IN-BROWSER DEVELOPER TOOLS 281

This should all be very familiar for you, as this part of the browser functionality
really hasn’t changed much since the very first browser that was released in the
1800s…or therabouts. While using Chrome, press (Cmd-Opt-I) on the Mac or the
F12 key [or Ctrl+Shift+I] in Windows.

Once you’ve pressed those key or keys, notice what happens. While you may not
hear heavenly music followed by the earth rumbling and laser beams shooting
across the sky, you will see your browser’s layout change to show something
 mysterious (usually) toward the bottom or right of the screen as shown in
Figure 27.1.

FIGURE 27.1

Your browser with its developer tools displayed right below it.

Your browser will split into two parts. One part is where your browser deals with
displaying your web pages. We like this guy and have known him for quite some
time. The other part, the new guy whom we eye suspiciously from a distance,
 provides you with access to information about the currently displayed page that
only a developer such as yourself would appreciate. This guy is better known as
the Developer Tools.

ptg18144529

282 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Developer Tools provide you with the ability to:

• Inspect the DOM

• Debug JavaScript

• Inspect objects and view messages via the console

• Figure out performance and memory issues

• See the network traffic

• …and a whole lot more!

In the interest of time (Game of Thrones is about to start soon, and this is the
 episode where I believe Ned Stark comes back to life as a dire wolf), what I’m
going to do is focus on the first three items that are directly related to what you
are learning about in this book.

Inspecting the DOM
The first Developer Tool feature we will look at is how you can inspect and even
manipulate the contents of your DOM. With Chrome launched, navigate to
http://bit.ly/kirupaDevTool.

NO BROWSER? NO PROBLEM!
Now, if you don’t have a browser handy or simply can’t access that link, don’t
worry. I’ll explain what is going on at each step of the way so that you aren’t left
out of all the fun.

http://bit.ly/kirupaDevTool

ptg18144529

CHAPTER 27 IN-BROWSER DEVELOPER TOOLS 283

When you load this page, you will see a colorful background with some text
displayed:

If you reload this page, you’ll see this page showing up with a different
 background color. As you can guess, each page reload will result in a different
background color getting generated:

ptg18144529

284 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The first thing we’ll do with this example is examine the DOM to see what is going
on. Make sure your Developer Tools are visible, and ensure the Elements tab
is selected:

What you will see is a view of your live markup from the page that is currently
shown. To be more specific, this is a view of your DOM. The importance of this
distinction is that this view provides you with a live version of what your page
looks like. Any shenanigans JavaScript or your browser may have pulled on the
DOM will be shown in this view.

Using our example as an…um…example, using View Source will result in
 something that looks as follows:
<!DOCTYPE html>

<html>

<head>

 <title>Random Color Generator!</title>

 <style>

 h2 {

font-family: Arial, Helvetica;

font-size: 100px;

color: #FFF;

text-shadow: 0px 0px 11px #333333;

margin: 0;

padding: 30px;

 }

ptg18144529

CHAPTER 27 IN-BROWSER DEVELOPER TOOLS 285

 </style>

</head>

<body>

 <h2>Random

Color

Generator</h2>

 <script src="js/randomColor.js"></script>

 <script>

 var bodyElement = document.querySelector("body");

 bodyElement.style.backgroundColor = getRandomColor();

 </script>

</body>

</html>

The View Source command simply gives you a view of the markup as stored in
the HTML page. Another way of saying this is that View Source gives you a (stale)
 version of the markup as it lives is on the server and not a version of the DOM.

If you use the Developer Tool’s DOM view, you will see a DOM-based
 representation of your document based on the live version of the page:

<!DOCTYPE html>

<html>

<head>

 <title>Random Color Generator!</title>

 <style>

 h2 {

font-family: Arial, Helvetica;

font-size: 100px;

color: #FFF;

text-shadow: 0px 0px 11px #333333;

margin: 0;

padding: 30px;

 }

 </style>

ptg18144529

286 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 <body style="background-color: rgb(75, 63, 101);">

 <h2>Random

Color

Generator</h2>

 <script src="js/randomColor.js"></script>

 <script>

var bodyElement = document.querySelector("body");

bodyElement.style.backgroundColor = getRandomColor();

 </script>

 </body>

</html>

If you pay close attention, you’ll notice some subtle differences in how
some elements look. The biggest difference is the highlighted inline
background-color style on the body element that only exists in the DOM
view but not in the traditional View Source view. The reason is that we have
some JavaScript that dynamically sets an inline style on the body element.
The following note expands on why this happens!

THE DIFFERENCE BETWEEN THE DOM VIEW
AND VIEW SOURCE

The reason for the discrepancy between the two code views goes back to what
the DOM represents. To repeat this one more time, your DOM is the result of your
browser and JavaScript having run to completion. It provides you with a fresh-
from-the-oven look that mimics what your browser sees.

View Source is just a static representation of your document as it was on the
server (or your computer). It doesn’t contain any of the liveliness of your running
page that the DOM view highlights. If you look at our JavaScript, you’ll see that
I specified that our body element get its backgroundColor set dynamically:
var bodyElement = document.querySelector("body");

bodyElement.style.backgroundColor = getRandomColor();

ptg18144529

CHAPTER 27 IN-BROWSER DEVELOPER TOOLS 287

As examples highlighting the differences between the source and DOM go, our
example was quite simple. To see the real benefit of the DOM view, you should
experiment with some element reparentings, creations, and deletions to really see
the divergence between viewing the source and examining the DOM. Some of the
examples you saw in the previous chapters around DOM manipulation would be
good things to inspect as well.

Debugging JavaScript
Moving along, the other big thing that the Developer Tools bring to the table is
debuggability. I don’t know if that is a really word or not, but the Developer Tools
allow you to poke and prod at your code to figure out what is going wrong (or not
wrong). The general catch-all phrase for all this is known as debugging.

In your Developer tools, click on the Sources tab:

When this code runs, it modifies the DOM to set the backgroundColor property
on the body element. You would never see this using View Source. Ever. That’s
why the DOM view the Developer Tools provide is your bestest friend in the whole
wide world.

ptg18144529

288 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Sources tab gives you access to all the files that are currently being used by
your document. As the name implies, you are looking at the raw contents of these
files—not the DOM-generated version from earlier that is your bestest friend.

From the tree view on the left, ensure the randomColorGenerator.htm file is
selected. This will ensure that the contents of this file are displayed for you to
examine on the right. In the displayed file, scroll all the way down until you see
the script tag with the two lines of code that you saw earlier. Based on the line
counts shown in the left gutter, our lines of JavaScript should be lines 20 and 21.

What we want to do is examine what happens when the code in Line 21 is
about to execute. To do this, we need to tell the browser to stop when Line 21
is about to get executed. The way you do that is by setting what is known as a
breakpoint. To set a breakpoint, click directly on the 21 label on the left gutter.

Once you’ve done that, you’ll see the 21 getting highlighted:

At this point, a breakpoint has been set. The next step is to actually have your
browser run into this breakpoint. This is more peacefully known as “hitting the
breakpoint.” The way a breakpoint is hit is by ensuring your code runs into it.
In our case, all we need to do is just hit F5 to refresh the page, as Line 21 will
just execute as part your page loading and executing everything inside the
script tags.

If everything worked as expected, you’ll see your page load and suddenly pause
with line 21 getting highlighted:

ptg18144529

CHAPTER 27 IN-BROWSER DEVELOPER TOOLS 289

You are currently in debugging mode. The breakpoint you set on Line 21 has
been hit. This means your entire page ground to a screeching halt the moment
the browser hit it. At this point, with your browser being in suspended animation,
you have the ability to fiddle with everything going on in your page. Think of this
as time having stopped with only you having the ability to move around, inspect,
and alter the surroundings. If a movie hasn’t been made about this, somebody
should get on it!

While in this mode, go back to Line 21, and hover over the bodyElement
 variable. When you hover over it, you’ll see a tooltip indicating the various
 properties and values that this particular object contains:

ptg18144529

290 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

You can then interact with the tooltip, scroll through all the objects, and even
dig deeper into complex objects that have more objects inside them. Because
 bodyElement is basically the JavaScript/DOM representation of the body
 element, you’ll see a lot of properties that you encountered indirectly from our
look at HTMLElement a few chapters ago.

On the right side of your source view, you have more angles through which you
can inspect your code:

I won’t be explaining what all of those categories do, but I am pointing that area
out just so you know that you have the ability to examine the current state of all
your JavaScript variables and objects in much greater detail if you so wanted to.

The other big advantage a breakpoint provides is the ability for you to step
through your code just like your browser would. Right now, we are stuck on
Line 21. To step through the code, click on the “Step into function call” button
found on the right-hand side:

ptg18144529

CHAPTER 27 IN-BROWSER DEVELOPER TOOLS 291

Remember, this is the line of code you are currently broken at:
bodyElement.style.backgroundColor = getRandomColor();

Once you’ve clicked that button, notice what happens. You will find yourself inside
randomColor.js where the getRandomColor function has been defined. Keep
clicking on the “Step into function call” to continue stepping into your code and
going through each line of the getRandomColor function. Notice that you now
get to see how the objects in your browser’s memory update as you go line-by-
line and execute the code sequentially. If you are tired of doing that, you can Step
back by clicking on the Step out of current function button (found to the right of
your Step into button) that exits you out of this function. In our case, that is back
to Line 21 in randomColorGenerator.htm.

ptg18144529

292 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

If you just want to execute your app without stepping through any more of the
code, click on the Play button found a few pixels to the left of Step into:

When you hit Play, your code will execute. If you happen to have another
 breakpoint set somewhere in your code’s path, that breakpoint will also get hit.
When stopped at any breakpoint, you can choose to Step into, Step out, or just
resume execution with Play. Because we only set one breakpoint, hitting Play
will just run the code to completion and have your random color appear as the
 background for your body element:

ptg18144529

CHAPTER 27 IN-BROWSER DEVELOPER TOOLS 293

To remove a breakpoint, just click on the line number that you set the breakpoint
on. If you click on the Line 21 label again, the breakpoint will toggle itself off
and you can just run your application without getting into debugging mode.

So, there you have it. A whirlwind tour of how to use some of the debugging
functionality you have at your disposal. To reiterate something I mentioned at the
beginning of this chapter, I am only scratching the surface of what is possible.
The resources I provide toward the end should help you out further.

Meet the Console
The other OTHER big Debugging Tool functionality we will look at is using what
is known as the Console. The console provides you with the ability to do several
things. It allows you to see messages logged by your code. It also allows you to
pass commands and inspect any object that is currently in scope.

To show the Console, navigate to the Console tab by clicking (or tapping) on it:

Don’t be afraid of the vast emptiness that you see in front of you. Instead,
embrace the freedom and fresh air.

Anyway, what the Console provides you with is the ability to inspect or call any
object that exists in whatever scope your application is currently running in. With
no breakpoints set, launching the console puts you in the global state.

ptg18144529

294 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Inspecting Objects
Where your cursor is right now, type in window and press Enter:

What you will see is an interactive listing of all the things that live in your window
object. You can start to type in any valid object or property, and if it is in scope,
you will be able to access it, inspect its value, or even execute it:

This is by no means a read-only playground. You can cause all sorts of mayhem.
For example, if you type in document.body.remove() and press Enter, your
entire document will just disappear. If you did end up deleting the body, just
refresh the page to get back to your earlier state. Developer Tools primarily work
with the in-memory representation of your page and don’t write back to source.
Your experimentations will safely stay in the transient realm.

ptg18144529

CHAPTER 27 IN-BROWSER DEVELOPER TOOLS 295

REFRESHER ON THE SCOPE/STATE
On several occasions, I mentioned that your console allows you to inspect the
world at whatever scope you are currently in. This is basically just applying what
you learned about Variable Scope in Chapter 6 to the Console’s behavior.

Let’s say you have a breakpoint set at the following highlighted line:

var oddNumber = false;

function calculateOdd(num) {

 if (num % 2 == 0) {

 oddNumber = false;

 } else {

 oddNumber = true;

 }

}

calculateOdd(3);

When you run the code and the breakpoint gets hit, the value of oddNumber is
still false. Your breakpointed line hasn’t been executed yet, and you can verify this
by testing the value of add Number in the Console. Next, let’s say you run this
code, hit this breakpoint, and step through to the next line.

At this point, your oddNumber value is set to true. Your Console will now reflect
the new value, for that is what the in-memory representation of oddNumber states.
The main takeaway is that your Console’s view of the world is directly tied to
where in the code you are currently focusing on. This is especially made obvious
when you are stepping through code and the scope you are in changes frequently.

ptg18144529

296 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Logging Messages
We are almost done with all of this Developer Tools business. The last thing we
will look at is the console’s ability to log messages from your code. Remember all
those times where we did something like this?
function doesThisWork() {

 alert("It works!!!");

}

The “this” being where we used an alert statement to print some value or prove
that the code is being executed. Well, we can stop doing that now. By using the
console, you have a far less annoying way of printing messages without interrupt-
ing everything with a modal dialog box. You can use the console.log function
to pass in whatever you want to print into the console:
function doesThisWork() {

 console.log("It works!!!")

}

When this code executes, you’ll see whatever you logged get printed in your
 Console when you bring it up:

Using the console is, in almost every way, superior to using alert for debugging
purposes. In future code snippets, you’ll start to see me using console.log over
alert in some cases.

ptg18144529

CHAPTER 27 IN-BROWSER DEVELOPER TOOLS 297

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and want
to try your hand at the quiz, then you’re in luck – all you need to
do is scroll down!

THE ABSOLUTE MINIMUM
If you have never used a Developer Tool before, I really REALLY think you should
take some time to get familiar with one. JavaScript is one of those languages
where things can go wrong even when everything looks right. In the very simple
examples you’ll encounter in this book, it’s easy to spot mistakes. When you
start working on larger and more complex applications, having the right tools to
 diagnose issues will save you many hours of effort.

To learn more about the Developer Tools (aka Dev Tools as the cool kids call it) in
far greater detail than what I’ve covered here, check out the following resources:

• Overview of the Chrome Dev Tools: http://bit.ly/kirupaChromeDevTools

• Overview of the IE/Edge F12 Dev Tools: http://bit.ly/kirupaIEDevTools

• Overview of the Firefox Dev Tools: http://bit.ly/kirupaFFDevTools

• Overview of the Safari Web Inspector http://bit.ly/kirupaSafariDevTools

http://www.quepublishing.com
http://bit.ly/kirupaChromeDevTools
http://bit.ly/kirupaIEDevTools
http://bit.ly/kirupaFFDevTools
http://bit.ly/kirupaSafariDevTools

ptg18144529

This page intentionally left blank

ptg18144529

28
I N T H I S C H A P T E R
• Understand how communication happens between

you and your app

• Learn about events

• Use event arguments to better handle event-related
scenarios

EVENTS
In case you haven’t noticed, most applications and websites are pretty

boring when left alone. They launch with great fanfare and gusto, but the

excitement they bring to the table goes away very quickly if you don’t start

interacting with them:

ptg18144529

300 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The reason for this is simple. Your applications exist to react to things that
you do to them. They have some built-in motivation when you launch them to
get themselves out of bed and ready for the day. Everything else that they do
 afterwards depends largely on what you tell them to do. This is where things
get really interesting.

You tell your applications what to do by having them react to what are known as
events. In this chapter, we will take an introductory look at what events are and
how you can use them.

Onwards!

What Are Events?
At a high level, everything you create can be modeled by the following statement
as shown in the following:

You can fill in the blanks in this statement in a bajillion different ways. The first
blank calls out something that happens. The second blank describes the reaction
to that. The following are some examples of this statement filled out:

ptg18144529

CHAPTER 28 EVENTS 301

This generic model applies to all of the code we’ve written together. This model
also applies to all of the code your favorite developer/designer friends wrote for
their applications. There is no way of escaping this model, so…there is no point
in resisting. Instead, you need to learn to embrace the star of this model, the very
talented critter known as the event.

An event is nothing more than a signal. It communicates that something has just
happened. This something could be a mouse click. It could be a key press on your
keyboard. It could be your window getting resized. It could just be your document
simply getting loaded. The thing to take away is that your signal could be one of
hundreds of somethings that are built in to the JavaScript DOM API…or custom
somethings that you created just for your app alone.

Getting back to our model, events make up the first half:

ptg18144529

302 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Events define the thing that happens. They fire the signal. The second part of the
model is defined by the reaction to the event:

After all, what good is a signal if there isn’t someone somewhere that is waiting
for it and then takes the appropriate action?! Okay, now that you have a high-level
overview of what events are, let’s dive into how events live in the nature reserve
known as JavaScript.

Events and JavaScript
Given the importance of events, it should be no surprise to you that JavaScript
provides you with a lot of great support for working with them. To work with
events, there are two things you need to do:

1. Listen for events

2. React to events

These two steps seem pretty simple, but never forget that we are dealing
with JavaScript here. The simplicity is just a smokescreen for the deep trauma
JavaScript will inflict upon you if you take a wrong step. Maybe I am being
overly dramatic here, but we’ll find out soon enough.

1. Listening for Events
To more bluntly state what I danced around earlier, almost everything you do
inside an application results in an event getting fired. Sometimes, your appli-
cation will fire events automatically such as when it loads. Sometimes, your
 application will fire events as a reaction to you actually interacting with it. The
thing to note is that your application is bombarded by events constantly whether
you intended to have them get fired or not. Our task is to tell your application to
listen only to the events we care about.

ptg18144529

CHAPTER 28 EVENTS 303

The thankless job of listening to the right event is handled entirely by a function
called addEventListener. This function is responsible for being eternally vigi-
lant so that it can notify another part of your application when an interesting event
gets fired.

The way you use this function looks as follows:
source.addEventListener(eventName, eventHandler, useCapture);

That’s probably not very helpful, so let’s dissect what each part of this function means.

The Source
You call addEventListener via an element or object that you want to listen
for events on. Typically, that will be a DOM element, but it can also be your
 document, window, or any other object that just happens to fire events.

The Event Name
The first argument you specify to the addEventListener function is the name
of the event you are interested in listening to. The full list of events you have at
your disposal is simply too large to list here (go to http://bit.ly/kirupaEvents
instead), but some of the most common events you will encounter are shown in
the following table.

Event Events Is Fired…

click …when you press down and release the primary mouse
button/trackpad and so on.

mousemove …whenever your mouse cursor moves

mouseover …when you move the mouse cursor over an element. This is
the event you would use for detecting a hover!

mouseout …when your mouse cursor moves outside the boundaries of
an element.

dblclick …when you quickly click the mouse button/trackpad twice.

DOMContentLoaded …when your document’s DOM has fully loaded. You will
learn more about this event in Chapter 32.

load …when your entire document (DOM, external stuff like
images, scripts, and so on) has fully loaded.

keydown …when you press down on a key on your keyboard

keyup …when you release a key press on your keyboard

scroll …when an element is scrolled around

wheel & DOMMouseScroll …every time you use your mousewheel to scroll up or down

http://bit.ly/kirupaEvents

ptg18144529

304 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In subsequent chapters, we will look at a lot of these events in greater detail. For
now, just take a quick glance at the click event, for we will be using that one in a
few moments.

The Event Handler
The second argument requires you to specify a function that will get called
when the event gets overheard. This function is very affectionately known as the
event handler by friends and family. You’ll learn a whole lot more about this
 function in a few moments.

To Capture or Not to Capture—That Is the Question!
The last argument is made up of either a true or a false. To fully help you
 understand the implications of specifying either value, you are going to
have to wait until the the next chapter where we talk about Event Bubbling
and Capturing.

Putting It All Together
Now that you’ve seen the addEventListener function and what it looks like,
let’s tie it all up with an example of this function fully decked out:
document.addEventListener("click", changeColor, false);

Our addEventListener in this example is attached to the document object.
When a click event is overheard, it calls the changeColor function (aka the
event handler) to react to the event. This sets us up nicely for the next section
which is all about reacting to events.

2. Reacting to Events
As you saw in the previous section, listening to events is handled by
addEventListener. What to do after an event is overheard is handled by the
event handler. I wasn’t joking when I mentioned earlier that an event handler is
nothing more than a function:
function normalAndBoring() {

 // I like hiking and puppies and other stuff!

}

ptg18144529

CHAPTER 28 EVENTS 305

The only distinction between a typical function and one that is designated as the
event handler is that your event handler function is specifically called out by name
in an addEventListener call (and receives an Event object as its argument):
document.addEventListener("click", changeColor, false);

function changeColor() {

 // I am important!!!

}

Any code you place inside your event handler will execute when the event your
addEventListener function cares about gets overheard. It’s all pretty simple!

A Simple Example
The best way to make sense of what we’ve learned so far is to see all of this actu-
ally working. To play along, add the following markup and code to an HTML file:
<!DOCTYPE html>

<html>

<head>

 <title>Click Anywhere!</title>

</head>

<body>

 <script>

document.addEventListener("click", changeColor, false);

function changeColor() {

document.body.style.backgroundColor = "#FFC926";

}

 </script>

</body>

</html>

ptg18144529

306 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

If you preview your document in the browser, you will initially just see a blank page:

Things will change when you click anywhere on the page, though. Once you’ve com-
pleted your click, your page’s background will change from white to a yellowish color:

The reason for this is pretty easy to see. Let’s take a look at the code:
document.addEventListener("click", changeColor, false);

function changeColor() {

 document.body.style.backgroundColor = "#FFC926";

}

ptg18144529

CHAPTER 28 EVENTS 307

The addEventListener call is identical to what you saw earlier, so let’s skip that
one. Instead, pay attention to the changeColor event handler:
document.addEventListener("click", changeColor, false);

function changeColor() {

 document.body.style.backgroundColor = "#FFC926";

}

This function gets called when the click event on the document is overheard.
When this function gets called, it sets the background color of the body
 element to a shade of yellow. Tying this back to the very beginning where we
 generalized how applications work, this is what this example looks like:

If all of this makes complete sense to you, then that’s great! You just learned about
one of the most important concepts you’ll encounter. We aren’t done just yet. We
let the event handler off the hook a little too easily, so let’s pay it one more visit.

The Event Arguments and the Event Type
Your event handler does more than just get called when an event gets overheard
by an event listener. It also provides access to the underlying event object as
part of its arguments. To access this event object easily, we need to modify your
event handler signature to support this argument.

Here is an example:
function myEventHandler(e) {

 // event handlery stuff

}

At this point, your event handler is still a plain ol’ boring function. It just happens
to be a function that takes one argument…the event argument! You can go with
any valid identifier for the argument, but I tend to go with e because that is what

ptg18144529

308 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

all the cool kids do. There is nothing technically wrong with identifying your event
as follows:
function myEventHandler(isNyanCatReal) {

 // event handlery stuff

}

Anyway, the event argument points to an Event object, and this object is passed
in as part of the event firing. There is a reason why we are paying attention to
what seems like a typical and boring occurrence. This Event object contains
 properties that are relevant to the event that was fired. An event triggered by a
mouse click will have different properties when compared to an event triggered
by your keyboard key press, a page load, an animation, and a whole lot more.
Most events will have their own specialized behavior that you will rely on, and
the event object is your gateway into all of that uniqueness.

Despite the variety of events and resulting event objects you can get, there are
certain properties that are common. This commonality is made possible because
all event objects are derived from a base Event type (technically, an Interface).
Some of the popular properties from the Event type that you will use are
as follows:

1. currentTarget

2. target

3. preventDefault

4. stopPropagation

5. type

To fully understand what these properties do, we need to go a little deeper into
our understanding of events. We aren’t there yet, so just know that these proper-
ties exist. You’ll be seeing them real soon in future chapters.

ptg18144529

CHAPTER 28 EVENTS 309

REMOVING AN EVENT LISTENER
Sometimes, you will need to remove an event listener from an element.
The way you do that is by using addEventListener’s arch-nemesis, the
removeEventListener function:
something.removeEventListener(eventName, eventHandler, useCapture);

As you can see, this function takes the exact number and type of arguments
as an addEventListener function. The reason for that is simple. When you
are listening for an event on an element or object, JavaScript uses an
addEventListener’s eventName, eventHandler, and the true/false value
to uniquely identify that event listener. To remove this event listener, you need
to specify the exact same arguments.

Here is an example:
document.addEventListener("click", changeColor, false);

document.removeEventListener("click", changeColor, false);

function changeColor() {

 document.body.style.backgroundColor = "#FFC926";

}

The event listener we added in the first line is completely neutralized by the
removeEventListener call in the highlighted second line. Notice the identical
argument values for both of these functions.

ptg18144529

310 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and want
to try your hand at the quiz, then you’re in luck – all you need to
do is scroll down!

THE ABSOLUTE MINIMUM
Well, that’s all there is to getting an introduction to events. Just remember that
you have your addEventListener function that allows you to register an event
handler function. This event handler function will get called when the event your
event listener is listening for gets fired. While we touched base on a few other
topics, they will make more sense when we view them in the context of more
advanced event-related examples that you will see in the following chapters!

http://www.quepublishing.com

ptg18144529

29
I N T H I S C H A P T E R
• Learn how events travel through the DOM

• Understand the differences between event capturing
and event bubbling

• Interrupt events

EVENT BUBBLING
AND CAPTURING
In the previous chapter, you learned how to use the addEventListener

function to listen for events that you want to react to. That chapter covered

the basics, but it glossed over an important detail about how events

 actually get fired. An event isn’t an isolated disturbance. Like a butterfly

flapping its wings, an earthquake, a meteor strike, or a Godzilla visit, many

events ripple and affect a bunch of elements that lie in their path.

ptg18144529

312 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In this article, I will put on my investigative glasses, a top hat, and a serious British
accent to explain what exactly happens when an event gets fired. You will learn
about the two phases events live in, why all of this is relevant, and a few other
tricks to help you better take control of events.

Event Goes Down. Event Goes Up.
To better help us understand events and their lifestyle, let’s frame all of this in the
context of a simple example. Here is some HTML we’ll refer to.
<!DOCTYPE html>

<html>

<head>

 <title>Events!</title>

</head>

<body id="theBody" class="item">

 <div id="one_a" class="item">

 <div id="two" class="item">

<div id="three_a" class="item">

<button id="buttonOne" class="item">one</button>

</div>

<div id="three_b" class="item">

<button id="buttonTwo" class="item">two</button>

<button id="buttonThree" class="item">three</button>

</div>

 </div>

 </div>

 <div id="one_b" class="item">

 </div>

 <script>

 </script>

</body>

</html>

ptg18144529

CHAPTER 29 EVENT BUBBLING AND CAPTURING 313

As you can see, there is nothing really exciting going on here. The HTML should
look pretty straightforward (as opposed to being shifty and constantly staring at its
phone), and its DOM representation looks as shown in Figure 29.1.

FIGURE 29.1

What the DOM for the markup you saw looks like.

Here is where our investigation is going to begin. Let’s say that we click on the
buttonOne element. From what we saw previously, you know that a click event
is going to be fired. The interesting part that I omitted is where exactly the click
event is going to get fired from. Your click event (just like almost every other
JavaScript event) does not actually originate at the element that you interacted
with. That would be too easy and make far too much sense.

ptg18144529

314 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Instead, an event starts at the root of your document:

From the root, the event makes its way through the narrow pathways of the DOM
and stops at the element that triggered the event, buttonOne (also more formally
known as the event target):

ptg18144529

CHAPTER 29 EVENT BUBBLING AND CAPTURING 315

As shown in the diagram, the path your event takes is direct, but it does
 obnoxiously notify every element along that path. This means that if you were
to listen for a click event on body, one_a, two, or three_a, the associated event
 handler will get fired. This is an important detail that we will revisit in a little bit.

ptg18144529

316 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Now, once your event reaches its target, it doesn’t stop. Like some sort of an
energetic bunny for a battery company whose trademarked name I probably can’t
mention here, the event keeps going by retracing its steps and returning back to
the root:

Just like before, every element along the event’s path as it is moving on up gets
notified about its existence.

Meet the Phases
One of the main things to note is that it doesn’t matter where in your DOM you
initiate an event. The event always starts at the root, goes down until it hits the
target, and then goes back up to the root. This entire journey is very formally
defined, so let’s look at all of this formalness.

The part where you initiate the event and the event barrels down the DOM from
the root is known as the Event Capturing Phase:

ptg18144529

CHAPTER 29 EVENT BUBBLING AND CAPTURING 317

The less learned in the world may just call it Phase 1, so be aware that you’ll see
the proper name and the phase name used interchangeably in event-related con-
tent you may encounter in real life. Up next is Phase 2 where your event bubbles
back up to the root:

ptg18144529

318 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

This phase is also known as the Event Bubbling Phase. The event “bubbles” back
to the top!

Anyway, all of the elements in an event’s path are pretty lucky. They have the good
fortune of getting notified twice when an event is fired. This kinda sorta maybe
affects the code you write, for every time you listen for events, you make a choice
on which phase you want to listen for your event on. Do you listen to your event
as it is fumbling down in the capture phase? Do you listen to your event as it
climbs back up in the bubbling phase?

Choosing the phase is a very subtle detail that you specify with a true or false as
part of your addEventListener call:
item.addEventListener("click", doSomething, true);

If you remember, I glossed over the third argument to addEventListener in
the previous chapter. This third argument specifies whether you want to listen for
this event during the capture phase. An argument of true means that you want to
listen to the event during the capture phase. If you specify false, this means you
want to listen for the event during the bubbling phase.

To listen to an event across both the capturing and bubbling phases, you can
 simply do the following:
item.addEventListener("click", doSomething, true);

item.addEventListener("click", doSomething, false);

I don’t know why you would ever want to do this, but if you ever do, you now
know what needs to be done.

NOT SPECIFYING A PHASE
Now, you can be rebellious and choose to not specify this third argument for the
phase altogether:
item.addEventListener("click", doSomething);

When you don’t specify the third argument, the default behavior is to listen to
your event during the bubbling phase. It’s equivalent to passing in a false value as
the argument.

ptg18144529

CHAPTER 29 EVENT BUBBLING AND CAPTURING 319

 Who Cares?
At this point, you are probably wondering why all of this matters. This is doubly
true if you have been happily working with events for a really long time and this
is the first time you’ve ever heard about this. Your choice of listening to an event
in the capturing or bubbling phase is mostly irrelevant to what will be doing. Very
rarely will you find yourself scratching your head because your event listening and
handling code isn’t doing the right thing because you accidentally specified true
instead of false in your addEventListener call.

With all this said…there will come a time in your life when you need to know and
deal with a capturing or bubbling situation. This time will sneak up on your code
and cause you many hours of painful head scratching. Over the years, these are
the situations where I’ve had to consciously be aware of which phase of my event’s
life I am watching for:

1. Dragging an element around the screen and ensuring the drag still happens
even if the element I am dragging slips out from under the cursor

2. Nested menus that reveal submenus when you hover over them

3. You have multiple event handlers on both phases, and you want to focus only
on the capturing or bubbling phase event handlers exclusively

4. A third party component/control library has its own eventing logic and you
want to circumvent it for your own custom behavior

5. You want to override some built-in/default browser behavior such as when you
click on the scrollbar or give focus to a text field

In my nearly 105 years of working with JavaScript, these five things were all I was
able to come up with. Even this is a bit skewed to the last few years, since various
browsers didn’t work well with the various phases at all.

Event, Interrupted
The last thing I am going to talk about before re-watching Godzilla is how to pre-
vent your event from propagating. An event isn’t guaranteed to live a fulfilling life
where it starts and ends at the root. Sometimes, it is actually desirable to prevent
your event from growing old and happy.

ptg18144529

320 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

To end the life of an event, you have the stopPropagation method on your
Event object:
function handleClick(e) {

 e.stopPropagation();

 // do something

}

As its name implies, the stopPropagation method prevents your event from
continuing through the phases. Continuing with our earlier example, let’s say that
you are listening for the click event on the three_a element and wish to stop
the event from propagating. The code for preventing the propagation will look as
follows:
var theElement = document.querySelector("#three_a");

theElement.addEventListener("click", doSomething, true);

function doSomething(e) {

 e.stopPropagation();

}

When you click on buttonOne, here is what our event’s path will look like:

ptg18144529

CHAPTER 29 EVENT BUBBLING AND CAPTURING 321

Your click event will steadfastly start moving down the DOM tree and notifying
every element on the path to buttonOne. Because the three_a element is listen-
ing for the click event during the capture phase, the event handler associated
with it will get called:
function doSomething(e) {

 e.stopPropagation();

}

In general, events will not continue to propagate until an event handler that gets
activated is fully dealt with. Because three_a has an event listener specified to
react on a click event, the doSomething event handler gets called. Your event
is in a holding pattern at this point until the doSomething event handler executes
and returns.

In this case, the event will not propagate further. The doSomething event han-
dler is its last client thanks to the stopPropagation function that is hiding in the
shadows to kill the event right there and then….gangsta’ style! The click event
will never reach the buttonOne element nor get a chance to bubble back up. So
tragically sad.

TIP Another function that lives on your event object that you
may awkwardly run into is preventDefault:

function overrideScrollBehavior(e) {

 e.preventDefault();

 // do something

}

What this function does is a little mysterious. Many HTML
 elements exhibit a default behavior when you interact with it.
For example, clicking in a textbox gives that textbox focus with a
little blinking text cursor appearing. Using your mouse wheel in a
scrollable area will scroll in the direction you are scrolling. Clicking
on a check box will toggle the checked state on or off. All of
these are examples of built-in reactions to events your browser
instinctively knows how to handle.

If you want to turn off this default behavior, you can call the
 preventDefault function. This function needs to be called
when reacting to an event on the element whose default
 reaction you want to ignore. You can see an example of me using
this function in the Smooth Parallax Scrolling tutorial online at:
http://bit.ly/kirupaParallax.

http://bit.ly/kirupaParallax

ptg18144529

322 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
So…yeah! How about those events and their bubbling and capturing phases? One
of the best ways to learn more about how event capturing and bubbling works is
to just write some code and see how your event makes its way around the DOM.

Below is a simple example related to the DOM tree we’ve been looking at:
<!DOCTYPE html>

<html>

<body id="theBody" class="item">

 <div id="one_a" class="item">

<div id="two" class="item">

<div id="three_a" class="item">

<button id="buttonOne" class="item">one</button>

</div>

<div id="three_b" class="item">

<button id="buttonTwo" class="item">two</button>

<button id="buttonThree" class="item">three</button>

</div>

</div>

 </div>

 <div id="one_b" class="item">

 </div>

 <script>

var items = document.querySelectorAll(".item");

for (var i = 0; i < items.length; i++) {

var el = items[i];

//capturing phase

el.addEventListener("click", doSomething, true);

ptg18144529

CHAPTER 29 EVENT BUBBLING AND CAPTURING 323

//bubbling phase

el.addEventListener("click", doSomething, false);

}

function doSomething(e) {

console.log(e.currentTarget.id);

}

 </script>

</body>

</html>

If you make an HTML document out of this and preview it in your browser, you will
see three buttons. If you click on buttonOne and inspect your browser’s console,
you’ll see the following path your click event takes from beginning to end:

• theBody

• one_a

• two

• three_a

• buttonOne

• buttonOne

• three_a

• two

• one_a

• theBody

If you examine our DOM, it should be no surprise to you that this is the order the
click event propagates through the elements (with each element represented by
the currentTarget property).

ptg18144529

324 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

We are done with the technical part of all this, but if you have a few more
 minutes to spare, then I encourage you watch (http://bit.ly/kirupaBubblyTime)
the somewhat related episode of Comedians Getting Coffee aptly titled It’s
 Bubbly Time, Jerry! In what is probably their bestest episode, Michael Richards
and Jerry Seinfeld just chat over coffee about events, the bubbling phase, and
other very important topics. I think.

 TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and want
to try your hand at the quiz, then you’re in luck – all you need to
do is scroll down!

http://bit.ly/kirupaBubblyTime
http://www.quepublishing.com

ptg18144529

30
I N T H I S C H A P T E R
• Learn how to listen to the mouse using the various

mouse events

• Understand the MouseEvent object

• Deal with the Mouse Wheel

MOUSE EVENTS
One of the most common ways people (and possibly cats) interact with

their computers is by using a pointing device known as a mouse:

FIGURE 30.1

Cats probably like them too. (Image Source)

ptg18144529

326 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

This magical device allows you to accomplish great things by moving it around
with your hands and clicking around with your fingers. Using them as a, um…
user is one thing. As a developer, trying to make your code work with a mouse is
something else. That’s where this chapter comes in.

Meet the Mouse Events
In JavaScript, your primary way of dealing with the mouse is through events. There
are a boatload of events that deal with the mouse, but we won’t be looking at all
of them here. Instead, we’ll focus on just the cool and popular ones such as the
following:

• click

• dblclick

• mouseover

• mouseout

• mouseenter

• mouseleave

• mousedown

• mouseup

• mousemove

• contextmenu

• mousewheel and DOMMouseScroll

The names of these events should give you a good idea of what they do, but
we’ll take nothing for granted and look at each of these events in some level of
greater detail in the following sections. I should warn you that some events are
just dreadfully boring to learn about.

Clicking Once and Clicking Twice
Let’s start with probably the most popular of all the mouse events that you will
use—the click event. This event is fired when you click on an element. To
state this differently in a way that doesn’t involve mentioning the thing you are
 describing as part of your description, the click event is fired when you use your
mouse to press down on an element and then release the press while still over
that same element.

ptg18144529

CHAPTER 30 MOUSE EVENTS 327

Here is a totally unnecessary visualization of what I am talking about:

You’ve seen the code for working with the click event a few times already, but you
can never really get enough of it. Here is another example:
var button = document.querySelector("#myButton");

button.addEventListener("click", doSomething, false);

function doSomething(e) {

 console.log("Mouse clicked on something!");

}

The way you listen to the click event is just like almost any other event that
you’ll encounter, so I won’t unnecessarily bore you with that detail and our
old friend addEventListener. Instead, I will bore you with details about the
 somewhat related dblclick event.

The dblclick event is fired when you quickly repeat a click action a double
 number of times, and the code for using it looks as follows:
var button = document.querySelector("#myButton");

button.addEventListener("dblclick", doSomething, false);

function doSomething(e) {

 console.log("Mouse clicked on something...twice!");

}

The amount of time between each click that ends up resulting in a dblclick
event is based on the OS you are running the code in. It’s neither browser specific
nor something you can define (or read) using JavaScript.

ptg18144529

328 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Mousing Over and Mousing Out
The classic hover over and hover out scenarios are handled by the appropriately
titled mouseover and mouseout events respectively:

Here is a snippet of these two events in action:
var button = document.querySelector("#myButton");

button.addEventListener("mouseover", hovered, false);

button.addEventListener("mouseout", hoveredOut, false);

function hovered(e) {

 console.log("Hovered!");

}

DON’T OVERDO IT
If you happen to listen to both the click and dblclick event on an element,
your event handlers will get called three times when you double-click. You will get
two click events to correspond to each time you clicked. After your second click,
you will also get a dblclick event.

ptg18144529

CHAPTER 30 MOUSE EVENTS 329

function hoveredOut(e) {

 console.log("Hovered Away!");

}

That’s all there is to these two events. They are pretty boring overall…which, as
you’ve probably found out by now, is actually a good thing when it comes to
 programming concepts.

WHAT ABOUT THE OTHER TWO SIMILAR-LOOKING
EVENTS?

We just looked at two events (mouseover and mouseout), which are all about
hovering over something and hovering away from something. As it turns out, you
have two more events that pretty much do the exact same thing. These are your
mouseenter and mouseleave events. There is one important detail to know
about these events that makes them unique. The mouseenter and mouseleave
events do not bubble.

This detail only matters if the element you are interested in hovering over or out
from has child elements. All four of these events behave identically when there are
no child elements at play. If there are child elements at play:

• mouseover and mouseout will get fired each time you move the mouse
over and around a child element. This means that you could be seeing many
unnecessary event fires even though it seems like you are moving your mouse
within a single region.

• mouseenter and mouseleave will get fired only once. It doesn’t matter how
many child elements your mouse moves through.

For 90% of what you will do, mouseover and mouseout will be good enough.
For the other times, often involving slightly more complex UI scenarios, you’ll be
happy that the non-bubbling mouseenter and mouseleave events are available.

ptg18144529

330 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Very Click-like Mousing Down and Mousing Up Events
Two events that are almost subcomponents of the click event are the
 mousedown and mouseup ones. From the following diagram, you’ll see why:

When you press down with your mouse, the mousedown event is fired. When you
release the press, the mouseup event is fired. If the element you pressed down on
and released from are the same element, the click event will also fire.

You can see all of this from the following snippet:
var button = document.querySelector("#myButton");

button.addEventListener("mousedown", mousePressed, false);

button.addEventListener("mouseup", mouseReleased, false);

button.addEventListener("click", mouseClicked, false);

function mousePressed(e) {

 console.log("Mouse is down!");

}

function mouseReleased(e) {

 console.log("Mouse is up!");

}

function mouseClicked(e) {

 console.log("Mouse is clicked!");

}

ptg18144529

CHAPTER 30 MOUSE EVENTS 331

You may be wondering, “Why bother with these two events?” The click event
seems perfectly suited for most cases where you may want to use mousedown
and mouseup. If you are spending sleepless nights wondering about this, the
answer is…Yes! A more helpful (and sensible) answer is that the mousedown
and mouseup events simply give you more control in case you need it. Some
 interactions (such as drags…or awesome moves in video games where you press
and hold to charge a lightning bolt of doom!) need you to act only when the
mousedown event has happened but the mouseup event hasn’t.

The Event Heard Again…and Again…and Again!
One of the most chatty events that you’ll ever encounter is the very friendly
mousemove event. This event fires a whole lotta times as your mouse moves over
the element you are listening for the mousemove event on:

What follows is an example of the mousemove event in code:
var button = document.querySelector("#myButton");

button.addEventListener("mousemove", mouseIsMoving, false);

function mouseIsMoving(e) {

 console.log("Mouse is on the run!");

}

Your browser controls the rate at which the mousemove event gets fired, and this
event gets fired if your mouse moves even a single pixel. This event is great for
many interactive scenarios where your mouse’s current position is relevant to keep
track of, for example.

ptg18144529

332 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Context Menu
The last mouse-related event we are going to look at is affectionately called
 contextmenu. As you probably know very well, when you commonly right-click in
various applications, you will see a menu:

This menu is known as the context menu. The contextmenu event is fired just
before this menu appears.

Now, you may be wondering why anybody would want an event for this situation.
To be completely honest with you (as opposed to all of the other times when I’ve
been lying), there is only one primary reason to listen for this event. That reason
has to do with preventing this menu from appearing when you right-click or use a
context menu keyboard button or shortcut.

Here is an example of how you can prevent the default behavior where the
 context menu appears:
document.addEventListener("contextmenu", hideMenu, false);

function hideMenu(e) {

 e.preventDefault();

}

ptg18144529

CHAPTER 30 MOUSE EVENTS 333

The preventDefault property on any type of Event stops whatever the default
behavior is from actually happening. Because the contextmenu event is fired
before the menu appears, calling preventDefault on it ensures the context
menu never shows up. The default behavior has been prevented from running.
Yes, this is also the second time I’m mentioning this property. As you know, I am
being paid by the word :P

With all of this said, I can think of a billion other ways you could prevent the
 context menu from appearing without using an event for dealing with all of this,
but that’s the way things are…for now <insert evil, maniacal laughter>!

The MouseEvent Properties
Let’s get a little bit more specific. All of the mouse events we’ve seen so far
are based around MouseEvent. Normally, this is the kind of factoid you keep
under your hat for trivia night and ignore. This time around, though, this detail is
 important because MouseEvent brings with it a number of properties that make
working with the mouse easier. Let’s look at some of them.

The Global Mouse Position
The screenX and screenY properties return the distance your mouse cursor is
from the top-left location of your primary monitor:

ptg18144529

334 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Here is a very simple example of the screenX and screenY properties at work:
document.addEventListener("mousemove", mouseMoving, false);

function mouseMoving(e) {

 console.log(e.screenX + " " + e.screenY);

}

It doesn’t matter what other margin/padding/offset/layout craziness you may have
going on in your page. The values returned are always going to be the distance
between where your mouse is now and where the top-left corner of your primary
monitor is.

The Mouse Position Inside the Browser
The clientX and clientY properties return the x and y position of the mouse
relative to your browser’s (technically, the browser viewport’s) top-left corner:

The code for this is nothing exciting:
var button = document.querySelector("#myButton");

button.addEventListener("mousemove", mouseMoving, false);

function mouseMoving(e) {

 console.log(e.clientX + " " + e.clientY);

}

ptg18144529

CHAPTER 30 MOUSE EVENTS 335

You just call the clientX and clientY properties of the event argument that
got passed in to our event handler to get the values.

Detecting Which Button Was Clicked
Your mice often have multiple buttons or ways to simulate multiple buttons. The
most common button configuration involves a left button, a right button, and a
middle button (often a click on your mouse wheel). To figure out which mouse
button was pressed, you have the button property. This property returns a 0 if
the left mouse button was pressed, a 1 if the middle button was pressed, and a 2
if the right mouse button was pressed:

The code for using the button property to check for which button was pressed
looks exactly as you would expect:
document.addEventListener("mousedown", buttonPress, false);

function buttonPress(e) {

 if (e.button == 0) {

console.log("Left mouse button pressed!");

ptg18144529

336 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 } else if (e.button == 1) {

console.log("Middle mouse button pressed!");

 } else if (e.button == 2) {

console.log("Right mouse button pressed!");

 } else {

console.log("Things be crazy up in here!!!");

 }

}

In addition to the button property, you also have the buttons and which
 properties that sorta do similar things to help you figure out which button was
pressed. I’m not going to talk too much about those two properties, but just know
that they exist. You can Google them if you want to know more.

Dealing with the Mouse Wheel
The mouse wheel is special compared to everything else we’ve seen so far. The
obvious difference is that we are dealing with a wheel as opposed to a button.
The less obvious, yet probably more relevant, detail is that you have two events to
deal with. You have the mousewheel event that is used by Internet Explorer and
Chrome and the DOMMouseScroll event used by Firefox.

The way you listen for these mouse wheel-related events is just the usual:
document.addEventListener("mousewheel", mouseWheeling, false);

document.addEventListener("DOMMouseScroll", mouseWheeling, false);

It’s what happens afterwards where things get interesting. The mousewheel
and DOMMouseScroll events will fire the moment you scroll the mouse wheel
in any direction. For all practical purposes, the direction you are scrolling the
 mousewheel is important. To get that information, we’ll need to go spelunking in
the event handler to find the event argument.

The event arguments for a mousewheel event contain a property known as
wheelDelta. For the DOMMouseScroll event, you have the detail property on
the event argument. Both of these properties are similar in that their values change
from positive or negative depending on what direction you scroll the mouse wheel.
The thing to note is that they are inconsistent in what sign they go with. The
wheelDelta property associated with the mousewheel event is positive when
you scroll up on the mouse wheel. It is negative when you scroll down. The exact
 opposite holds true for DOMMouseScroll’s detail property. This property is
negative when you scroll up, and it is positive when you scroll down.

ptg18144529

CHAPTER 30 MOUSE EVENTS 337

Handling this wheelDelta and detail inconsistency is pretty simple…as you
can see in the following snippet:
function mouseWheeling(e) {

 var scrollDirection = e.wheelDelta || -1 * e.detail;

 if (scrollDirection > 0) {

console.log("Scrolling up! " + scrollDirection);

 } else {

console.log("Scrolling down! " + scrollDirection);

 }

}

The scrollDirection variable stores the value contained by the wheelData
property or the detail property. Depending on whether this value is positive or
negative, you can then special case the behavior.

THE ABSOLUTE MINIMUM
Generally, it is true that if you know how to just work with one event, you pretty
much know how to work with all other events. The only thing you need to know
is which event corresponds to what you are trying to do. The mouse events are a
good introduction to working with events because they are very easy to play with.
They aren’t very fussy, and the things you learn about them you will use in almost
all apps that you build.

Some additional resources and examples that you may want to check out:

• Move Element to Click Position: http://bit.ly/kirupaElementClickPosition

• Are You On a Touch-Enabled Device: http://bit.ly/kirupaTouchEnabled

http://bit.ly/kirupaElementClickPosition
http://bit.ly/kirupaTouchEnabled

ptg18144529

338 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www. quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

http://www.quepublishing.com

ptg18144529

31
I N T H I S C H A P T E R
• Listen and react to the keyboard

• Understand how to work with the various
 keyboard-related events

• See some examples that highlight how common
keyboard scenarios work

KEYBOARD EVENTS
We spend a lot of time in various applications tapping away at our keyboards.

In case you are wondering what a keyboard looks like, Figure 31.1 features

a sweet one from I think about a hundred years ago:

ptg18144529

340 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 31.1

What a keyboard might look like…in a museum probably. (Image Source)

Anyway, our computers (more specifically, the applications that run on them) just
know how to deal with our board of plastic depressible keys. You never really think
about it. Sometimes, depending on what you are doing, you will have to think
about them. In fact, you’ll have to deal with them and make them work properly.
Better cancel any plans you have, for this chapter is going to be pretty intense!

By the end of this chapter, you will learn all about how to listen to the keyboard
events, what each of those events do, and see a handful of examples that
 highlight some handy tricks that may come in…um…handy.

Onwards!

Meet the Keyboard Events
To work with keyboards in an HTML document, there are three events that you will
need to familiarize yourself with. Those events are

• keydown

• keypress

• keyup

ptg18144529

CHAPTER 31 KEYBOARD EVENTS 341

Given what these events are called, you probably already have a vague idea of
what each event does. The keydown event is fired when you press down on a key
on your keyboard. The keyup event is fired when you release a key that you just
pressed. Both of these events work on any key that you interact with.

The keypress event is a special bird. At first glance, it seems like this event
is fired when you press down on any key. Despite what the name claims, the
 keypress event is fired only when you press down on a key that displays a
 character (letter, number, and the like). What this means is somewhat confusing,
but it makes sense in its own twisted way.

If you press and release a character key such as the letter y, you will see the
 keydown, keypress, and keyup events fired in order. The keydown and keyup
events fire because the y key is simply a key to them. The keypress event is fired
because the y key is a character key. If you press and release a key that doesn’t
display anything on the screen (such as the spacebar, arrow key, or function keys),
all you will see are the keydown and keyup events fired.

This difference is subtle but very important when you want to ensure your key
presses are actually overheard by your application.

SAY WHAT?
It is weird that an event called keypress doesn’t fire when any key
is pressed. Maybe this event should be called something else like
characterkeypress, but that is probably a moo point. (What is a
“moo point”? Well… http://bit.ly/kirupaMoo)

 Using These Events
The way you listen to the keydown, keypress, and keyup events is similar to any
other event you may want to listen and react to. You call addEventListener on
the element that will be dealing with these events, specify the event you want to
listen for, specify the event handling function that gets called when the event is
overheard, and a true/false value indicating whether you want this event to bubble.

http://bit.ly/kirupaMoo

ptg18144529

342 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Here is an example of me listening to our three keyboard events on the
window object:
window.addEventListener("keydown", dealWithKeyboard, false);

window.addEventListener("keypress", dealWithKeyboard, false);

window.addEventListener("keyup", dealWithKeyboard, false);

function dealWithKeyboard(e) {

 // gets called when any of the keyboard events are overheard

}

If any of these events are overheard, the dealWithKeyboard event handler gets
called. In fact, this event handler will get called three times if you happen to press
down on a character key. This is all pretty straightforward, so let’s kick everything
up a few notches and go beyond the basics in the next few sections.

The Keyboard Event Properties
When an event handler that reacts to a keyboard event is called, a Keyboard
event argument is passed in. Let’s revisit our dealWithKeyboard event handler
that you saw earlier. In that event handler, the keyboard event is represented
by the e argument that is passed in:
function dealWithKeyboard(e) {

 // gets called when any of the keyboard events are overheard

}

This argument contains a handful of properties:

• KeyCode
Every key you press on your keyboard has a number associated with it.
This read-only property returns that number.

• CharCode
This property only exists on event arguments returned by the keypress event,
and it contains the ASCII code for whatever character key you pressed.

• ctrlKey, altKey, shiftKey
These three properties return a true if the Ctrl key, Alt key, or Shift key
are pressed.

ptg18144529

CHAPTER 31 KEYBOARD EVENTS 343

• MetaKey
The metaKey property is similar to the ctrlKey, altKey, and shiftKey
properties in that it returns a true if the Meta key is pressed. The Meta
key is the Windows key on Windows keyboards and the Command key on
Apple keyboards.

The Keyboard event contains a few other properties, but the ones you see above
are the most interesting ones. With these properties, you can check for which key
was pressed and react accordingly. In the next couple of sections, you’ll see some
examples of this.

CAUTION The charCode and keyCode properties are
 currently marked as deprecated by the web standards people at
the W3C. It’s replacement might be the mostlyunsupported code
property. Just be aware of this, and be ready to update your
code in the future when whichever successor to charCode and
keyCode has taken his/her rightful place on the throne.

Some Examples
Now that you’ve seen the horribly boring basics of how to work with Keyboard
events, let’s look at some examples that clarify (or potentially confuse!) everything
you’ve seen so far.

Checking That a Particular Key Was Pressed
The following example shows how to use the keyCode property to check if a
 particular key was pressed:
window.addEventListener("keydown", checkKeyPressed, false);

function checkKeyPressed(e) {

 if (e.keyCode == "65") {

console.log("The 'a' key is pressed.");

 }

}

The particular key I check is the a key. Internally, this key is mapped to the
 keyCode value of 65. In case you never memorized all of them in school, you
can find a handy list of all key and character codes at the following link:
http://bit.ly/kirupaKeyCode Please do not memorize every single code from
that list. There are far more interesting things to memorize instead.

http://bit.ly/kirupaKeyCode

ptg18144529

344 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Some things to note. The charCode and keyCode values for a particular key are
not the same. Also, the charCode is only returned if the event that triggered your
event handler was a keypress. In our example, the keydown event would not
contain anything useful for the charCode property.

If you wanted to check the charCode and use the keypress event, here is what
the above example would look like:
window.addEventListener("keypress", checkKeyPressed, false);

function checkKeyPressed(e) {

 if (e.charCode == 97) {

alert("The 'a' key is pressed.");

 }

}

The charCode for the a key is 97. Again, refer to the table of key and character
codes I listed earlier for such details.

Doing Something When the Arrow Keys Are Pressed
You see this most often in games where pressing the arrow keys does something
interesting. The following snippet of code shows how that is done:
window.addEventListener("keydown", moveSomething, false);

function moveSomething(e) {

 switch(e.keyCode) {

case 37:

// left key pressed

break;

case 38:

// up key pressed

break;

case 39:

// right key pressed

break;

case 40:

// down key pressed

break;

 }

}

ptg18144529

CHAPTER 31 KEYBOARD EVENTS 345

Again, this should be pretty straightforward as well. And, would you believe
it—an actual use for the switch statement that you learned about forever ago
in Chapter 4, “Conditional Statements: if, else, and switch.”

Detecting Multiple Key Presses
Now, this is going to be epic! An interesting case revolves around detecting when
you need to react to multiple key presses. What follows is an example of how to
do that:
window.addEventListener("keydown", keysPressed, false);

window.addEventListener("keyup", keysReleased, false);

var keys = [];

function keysPressed(e) {

 // store an entry for every key pressed

 keys[e.keyCode] = true;

 // Ctrl + Shift + 5

 if (keys[17] && keys[16] && keys[53]) {

// do something

 }

 // Ctrl + f

 if (keys[17] && keys[70]) {

// do something

// prevent default browser behavior

e.preventDefault();

 }

}

function keysReleased(e) {

 // mark keys that were released

 keys[e.keyCode] = false;

}

ptg18144529

346 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Going into great detail about this will require another chapter by itself, but let’s
just look at how this works very briefly.

First, we have a keys array that stores every single key that you press:
var keys = [];

As keys get pressed, the keysPressed event handler gets called:
function keysPressed(e) {

 // store an entry for every key pressed

 keys[e.keyCode] = true;

}

When a key gets released, the keysReleased event handler gets called:
function keysReleased(e) {

 // mark keys that were released

 keys[e.keyCode] = false;

}

Notice how these two event handlers work with each other. As keys get pressed,
an entry gets created for them in the keys array with a value of true. When keys
get released, those same keys are marked with a value of false. The existence
of the keys you press in the array is superficial. It is the values they store that is
 actually important.

As long as nothing interrupts your event handlers from getting called properly
such as an alert window, you will get a one-to-one mapping between keys pressed
and keys released as viewed through the lens of the keys array. With all of this
said, the checks for seeing which combination of keys have been pressed is
handled in the keysPressed event handler. The following highlighted lines show
how this works:

When a key gets released, the keysReleased event handler gets called:
function keysPressed(e) {

 // store an entry for every key pressed

 keys[e.keyCode] = true;

 // Ctrl + Shift + 5

 if (keys[17] && keys[16] && keys[53]) {

// do something

 }

ptg18144529

CHAPTER 31 KEYBOARD EVENTS 347

 // Ctrl + f

 if (keys[17] && keys[70]) {

// do something

// prevent default browser behavior

e.preventDefault();

 }

}

There is one thing you need to keep in mind. Some key combinations result in
your browser doing something. To avoid your browser from doing its own thing,
use the preventDefault method as I show when checking to see if Ctrl + F is
being used:
function keysPressed(e) {

 // store an entry for every key pressed

 keys[e.keyCode] = true;

 // Ctrl + Shift + 5

 if (keys[17] && keys[16] && keys[53]) {

// do something

 }

 // Ctrl + f

 if (keys[17] && keys[70]) {

// do something

// prevent default browser behavior

e.preventDefault();

 }

}

The preventDefault method prevents an event from triggering a default
behavior. In this case, it was preventing the browser from showing the Find dialog
box. Different key combinations will trigger different reactions by the browser, so
keep this method handy to put a stop to those reactions.

Anyway, looking at the code in aggregate, you have a basic blueprint for how to
check for multiple key presses easily.

ptg18144529

348 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
The keyboard is pretty important when it comes to how people interact with their
computer-like devices. Despite its importance, you often won’t have to deal with
them directly. Your browser, the various text-related controls/elements, and every-
thing in-between just handle it as you would expect by default. There are certain
kinds of applications where you may want to deal with them, though, which is why
you have this chapter.

This chapter started off in the most boring way possible by explaining how to
work with the Keyboard events and their event arguments. Along the way, things
(hopefully) got more interesting as you saw several examples that address com-
mon things you would do when dealing with the keyboard in code. One thing to
note is that all of our examples listened for the keyboard events on the window
object. You don’t have to use window. You can listen for your keyboard events on
any DOM element…that it makes sense to listen for keyboard events on :P

 TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

http://www.quepublishing.com

ptg18144529

32
I N T H I S C H A P T E R
• Learn about all the events that fire as your page is

getting loaded

• Understand what happens behind the scenes during
a page loads

• Fiddle with the various script element attributes
that control exactly when your code runs

PAGE LOAD EVENTS
AND OTHER STUFF
An important part of working with JavaScript is ensuring that your code

runs at the right time. Things aren’t always as simple as putting your code

at the bottom of your page and expecting everything to work once your

page has loaded. Yes, we are going to revisit some things we looked at in

Chapter 9, “Where Should Your Code Live.” Every now and then, you

may have to add some extra code to ensure your code doesn’t run before

the page is ready. Sometimes, you may even have to put your code at the

top of your page…like an animal!

ptg18144529

350 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

There are many factors that affect what the “right time” really is to run your code,
and in this chapter, we’re going to look at those factors and narrow down what
you should do to a handful of guidelines.

Onwards!

The Things That Happen During Page Load
Let’s start at the very beginning. You click on a link or press Enter after typing in
a URL and, if the stars are aligned properly, your page loads. All of that seems
pretty simple and takes up a very tiny sliver of time to complete from beginning
to end:

In that short period of time between you wanting to load a page and your page
loading, a lot of relevant and interesting stuff happen that you need to know more
about. One example of the relevant and interesting stuff that happens is that any
code specified on the page will run. When exactly the code runs depends on a
combination of the following things that all come alive at some point while your
page is getting loaded:

• The DOMContentLoaded event

• The load Event

ptg18144529

CHAPTER 32 PAGE LOAD EVENTS AND OTHER STUFF 351

• The async attribute for script elements

• The defer attribute for script elements

• The location your scripts live in the DOM

Don’t worry if you don’t know what these things are. You’ll learn (or re-learn) what
all of these things do and the effect they have when your code runs really soon.
Before we get there, though, let’s take a quick detour and look at the three stages
of a page load.

Stage Numero Uno
The first stage is when your browser is about to start loading a new page:

At this stage, there isn’t anything interesting going on. A request has been made
to load a page, but nothing has been downloaded yet.

ptg18144529

352 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Stage Numero Dos
Things get a bit more exciting with the second stage where the raw markup and
DOM of your page has been loaded and parsed:

The thing to note about this stage is that external resources like images and linked
stylesheets have not been parsed. You only see the raw content specified by your
page/document’s markup.

Stage Numero Three
The final stage is where your page is fully loaded with any images, stylesheets,
scripts, and other external resources making their way into what you see:

ptg18144529

CHAPTER 32 PAGE LOAD EVENTS AND OTHER STUFF 353

This is the stage where your browser’s loading indicators stop animating, and this
is also the stage you almost always find yourself in when interacting with your
HTML document. That said, sometimes you’ll find yourself in an in-between state
where 99% of your page has loaded with only some random thing taking forever
to load. If you’ve been to one of those viral/buzz/feedy sites, you’ll totally know
what I am talking about :P

Now that you have a basic idea of the three stages your document goes through
when loading content, let’s move forward to the more interesting stuff. Keep these
three stages at the tip of your fingers (or under your hat if you are wearing one
while reading this), as we’ll refer back to these stages a few times in the following
sections.

The DOMContentLoaded and load Events
There are two events that represent the two important milestones while your page
loads: DOMContentLoaded and load. The DOMContentLoaded event fires at
the end of Stage #2 when your page’s DOM is fully parsed. The load event fires
at the end of Stage #3 once your page has fully loaded. You can use these events
to time when exactly you want your code to run.

ptg18144529

354 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Below is a snippet of these events in action:
document.addEventListener("DOMContentLoaded", theDomHasLoaded, false);

window.addEventListener("load", pageFullyLoaded, false);

function theDomHasLoaded(e) {

 // do something

}

function pageFullyLoaded(e) {

 // do something again

}

You use these events just like you would any other event, but the main thing to
note about these events is that you need to listen to them from the document
element. You can technically listen to these events on other elements, but for
page loading scenarios, you want to stick with the document element.

Now that we’ve got the boring technical details out of the way, why are these
events important? Simple. If you have any code that relies on working with the
DOM such as anything that uses the querySelector or querySelectorAll
functions, you want to ensure your code runs only after your DOM has been fully
loaded. If you try to access your DOM before it has fully loaded, you may get
incomplete results or no results at all.

Here is an awesome extreme example from Kyle Murray that should help you
never forget this:
<!DOCTYPE html>

<html>

<head>

 <script>

 // try to analyze the book’s meaning here

 </script>

</head>

<body>

 [INSERT ENTIRE COPY OF /WAR AND PEACE/ HERE]

</body>

</html>

ptg18144529

CHAPTER 32 PAGE LOAD EVENTS AND OTHER STUFF 355

A sure-fire way to ensure you never get into a situation where your code runs
before your DOM is ready is to listen for the DOMContentLoaded event and let
all of the code that relies on the DOM to run only after that event is overheard:
document.addEventListener("DOMContentLoaded", theDomHasLoaded, false);

function theDomHasLoaded(e) {

 var images = document.querySelectorAll("img");

 // do something with the images

}

For cases where you want your code to run only after your page has fully loaded,
use the load event. In my years of doing things in JavaScript, I never had too
much use for the load event at the document level outside of checking the
final dimensions of a loaded image or creating a crude progress bar to indicate
 progress. Your mileage may vary, but…I doubt it :P

Scripts and Their Location in the DOM
In Chapter 7, “Variable Scope,” we looked at the various ways in which you can
have scripts appear in your document. You saw that your script elements’ position
in the DOM affects when they run. In this section, we are going to re-emphasize
that simple truth and go a few steps further.

To review, a simple script element can be some code stuck inline somewhere:
<script>

var number = Math.random() * 100;

alert("A random number is: " + number);

</script>

A simple script element can also be something that references some code from an
external file:
<script src="/foo/something.js"></script>

Now, here is the important detail about these elements. Your browser parses your
DOM sequentially from the top to the bottom. Any script elements that are found
along the way will get parsed in the order they appear in the DOM.

ptg18144529

356 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Below is a very simple example where you have many script elements:
<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <script>

console.log("inline 1");

 </script>

 <script src="external1.js"></script>

 <script>

console.log("inline 2");

 </script>

 <script src="external2.js"></script>

 <script>

console.log("inline 3");

 </script>

</body>

</html>

It doesn’t matter if the script contains inline code or references something exter-
nal. All scripts are treated the same and run in the order in which they appear in
your document. Using the above example, the order in which the scripts will run is
as follows: inline 1, external 1, inline 2, external 2, and inline 3.

Now, here is a really REALLY important detail to be aware of. Because your DOM
gets parsed from top to bottom, your script element has access to all of the
DOM elements that were already parsed. Your script has no access to any DOM
 elements that have not yet been parsed. Say what?!

Let’s say you have a script element that is at the bottom of your page just above
the closing body element:
<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <p>

 Quisque faucibus, quam sollicitudin pulvinar dignissim,
nunc velit sodales leo, vel vehicula odio lectus vitae

ptg18144529

CHAPTER 32 PAGE LOAD EVENTS AND OTHER STUFF 357

mauris. Sed sed magna augue. Vestibulum tristique cursus
orci, accumsan posuere nunc congue sed. Ut pretium sit amet
eros non consectetur. Quisque tincidunt eleifend justo,
quis molestie tellus venenatis non. Vivamus interdum urna
ut augue rhoncus, eu scelerisque orci dignissim. In commodo
purus id purus tempus commodo.

 </p>

 <button>Click Me</button>

 <script src="something.js"></script>

</body>

</html>

When something.js runs, it has the ability to access all of the DOM elements that
appear just above it such as the h1, p, and button elements. If your script ele-
ment was at the very top of your document, it wouldn’t have any knowledge of
the DOM elements that appear below it:
<!DOCTYPE html>

<html>

<body>

 <script src="something.js"></script>

 <h1>Example</h1>

 <p>

 Quisque faucibus, quam sollicitudin pulvinar dignissim,
nunc velit sodales leo, vel vehicula odio lectus vitae
 mauris. Sed sed magna augue. Vestibulum tristique cursus
orci, accumsan posuere nunc congue sed. Ut pretium sit amet
eros non consectetur. Quisque tincidunt eleifend justo,
quis molestie tellus venenatis non. Vivamus interdum urna
ut augue rhoncus, eu scelerisque orci dignissim. In commodo
purus id purus tempus commodo.

 </p>

 <button>Click Me</button>

</body>

</html>

ptg18144529

358 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

By putting your script element at the bottom of your page as shown earlier, the
end behavior is identical to what you would get if you had code that explicitly
listened to the DOMContentLoaded event. If you can guarantee that your scripts
will appear toward the end of your document after your DOM elements, you
can avoid following the whole DOMContentLoaded approach described in the
 previous section. Now, if you really want to have your script elements at the top
of your DOM, ensure that all of the code that relies on the DOM runs after the
 DOMContentLoaded event gets fired.

Here is the thing. I’m a huge fan of putting your script elements at the bottom of
your DOM. There is another reason besides easy DOM access why I recommend
having your scripts live toward the bottom of the page. When a script element is
being parsed, your browser stops everything else on the page from running while
the code is executing. If you have a really long-running script or your external
script takes its sweet time in getting downloaded, your HTML page will appear
frozen. If your DOM is only partially parsed at this point, your page will also look
incomplete in addition to being frozen. Unless you are Facebook, you probably
want to avoid having your page look frozen for no reason.

Script Elements—Async and Defer
In the previous section, I explained how a script element’s position in the DOM
determines when it runs. All of that only applies to what I call simple script
 elements. To be part of the non-simple world, script elements that point to
 external scripts can have the defer and async attributes set on them:
<script async src="myScript.js"></script>

<script defer src="somethingSomethingDarkSide.js"></script>

These attributes alter when your script runs independent of where in the DOM
they actually show up, so let’s look at how they end up altering your script.

async
The async attribute allows a script to run asynchronously:
<script async src="someRandomScript.js"></script>

If you recall from the previous section, if a script element is being parsed, it could
block your browser from being responsive and usable. By setting the async
 attribute on your script element, you avoid that problem altogether. Your script
will run whenever it is able to, but it won’t block the rest of your browser from
doing its thing.

ptg18144529

CHAPTER 32 PAGE LOAD EVENTS AND OTHER STUFF 359

This casualness in running your code is pretty awesome, but you must realize that
your scripts marked as async will not always run in order. You could have a case
where several scripts marked as async will run in an order different from what was
specified in your markup. The only guarantee you have is that your scripts marked
with async will start running at some mysterious point before the load event
gets fired.

defer
The defer attribute is a bit different from async:
<script defer src="someRandomScript.js"></script>

Scripts marked with defer run in the order in which they were defined, but they
only get executed at the end just a few moments before the DOMContentLoaded
event gets fired. Take a look at the following example:
<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <script defer src="external3.js"></script>

 <script>

console.log("inline 1");

 </script>

 <script src="external1.js"></script>

 <script>

console.log("inline 2");

 </script>

 <script defer src="external2.js"></script>

 <script>

console.log("inline 3");

 </script>

</body>

</html>

Take a second and tell the nearest human/pet the order in which these scripts will
run. It’s okay if you don’t provide them with any context. If they love you, they’ll
understand.

ptg18144529

360 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Anyway, your scripts will execute in the following order: inline 1, external 1, inline
2, inline 3, external 3, and external 2. The external 3 and external 2 scripts
are marked as defer, and that’s why they appear at the very end despite being
declared in different locations in your markup.

THE ABSOLUTE MINIMUM
In the previous sections, we looked at all sorts of factors that influence when your
code will execute. The following diagram summarizes everything you saw into a
series of colorful lines and rectangles:

Now, here is probably what you are looking for. When is the right time to load
your JavaScript? The answer is…

1. Place your script references below your DOM directly above your closing body
element.

2. Unless you are creating a library that others will use, don’t complicate your
code by listening to the DOMContentLoaded or load events. Instead, see the
previous point.

ptg18144529

CHAPTER 32 PAGE LOAD EVENTS AND OTHER STUFF 361

TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
 www. quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

3. Mark your scripts referencing external files with the async attribute.

4. If you have code that doesn’t rely on your DOM being loaded and runs as part
of teeing things off for other scripts in your document, you can place this script
at the top of your page with the async attribute set on it.

That’s it. I think those four steps will cover almost 90% of all your cases to ensure
your code runs at the right time. For more advanced scenarios, you should defi-
nitely take a look at a third-party library like require.js, which gives you greater
control over when your code will run.

Some additional resources and examples:

• Module Loading with RequireJS: http://bit.ly/kirupaRequireJS

• Preloading Images: http://bit.ly/kirupaPreloadImages

http://bit.ly/kirupaRequireJS
http://bit.ly/kirupaPreloadImages
http://www.quepublishing.com

ptg18144529

This page intentionally left blank

ptg18144529

33
I N T H I S C H A P T E R
• Learn to efficiently react to multiple events

• Revisit how events work for one last time

HANDLING EVENTS FOR
MULTIPLE ELEMENTS
In its most basic case, an event listener deals with events fired from a single

element:

ptg18144529

364 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

As you build more complicated things, the “one event handler for one element”
mapping starts to show its limitation. The most common reason revolves around
you creating elements dynamically using JavaScript. These elements you are
 creating can fire events that you may want to listen and react to, and you can have
anywhere from a handful of elements that need eventing support to many MANY
elements that need to have their events dealt with.

What you don’t want to do is this:

You don’t want to create an event listener for each element. The reason is
because your parents told you so. The other reason is because it is inefficient.
Each of these elements carries around data about an event listener and its
 properties that can really start adding up the memory usage when you have a
lot of content. Instead, what you want is a clean and fast way of handling events
on multiple elements with minimal duplication and unnecessary things. What you
want will look a little bit like this:

ptg18144529

CHAPTER 33 HANDLING EVENTS FOR MULTIPLE ELEMENTS 365

All of this may sound a bit crazy, right? Well, in this chapter, you will learn all
about how non-crazy this is and how to implement this using just a few lines of
JavaScript.

Onwards!

How to Do All of This
Okay - at this point, you know how simple event handling works where you have
one element, one event listener, and one event handler. Despite how different the
case with multiple elements may seem, by taking advantage of the disruptiveness
of events, solving it is actually quite easy.

ptg18144529

366 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Imagine we have a case where you want to listen for the click event on any of
the sibling elements whose id values are one, two, three, four, and five. Let’s
 complete our imagination by picturing the DOM as follows:

At the very bottom, we have the elements we want to listen for events on. They all
share a common parent with an element whose id value is theDude. To solve
our event handling problems, let’s look at a terrible solution followed by a good
solution.

A Terrible Solution
Here is what we don’t want to do. We don’t want to have five event listeners for
each of these buttons:
var oneElement = document.querySelector("#one");

var twoElement = document.querySelector("#two");

ptg18144529

CHAPTER 33 HANDLING EVENTS FOR MULTIPLE ELEMENTS 367

var threeElement = document.querySelector("#three");

var fourElement = document.querySelector("#four");

var fiveElement = document.querySelector("#five");

oneElement.addEventListener("click", doSomething, false);

twoElement.addEventListener("click", doSomething, false);

threeElement.addEventListener("click", doSomething, false);

fourElement.addEventListener("click", doSomething, false);

fiveElement.addEventListener("click", doSomething, false);

function doSomething(e) {

 var clickedItem = e.target.id;

 alert("Hello " + clickedItem);

}

To echo what I mentioned in the intro, the obvious reason is that you don’t want
to duplicate code. The other reason is that each of these elements now has their
addEventListener property set. This is not a big deal for five elements. It starts
to become a big deal when you have dozens or hundreds of elements each taking
up a small amount of memory. The other OTHER reason is that your number of
elements, depending on how adapative or dynamic your UI really is, can vary.
It may not be a nice fixed number of five elements like we have in this contrived
example.

A Good Solution
The good solution for this mimics the diagram you saw much earlier where we
have just one event listener. I am going to confuse you first by describing how this
works. Then I’ll hopefully un-confuse you by showing the code and explaining in
detail what exactly is going on. The simple and confusing solution to this is:

1. Create a single event listener on the parent theDude element.

2. When any of the one, two, three, four, or five elements are clicked, rely on
the propagation behavior that events possess and intercept them when they
hit the parent theDude element.

3. (Optional) Stop the event propagation at the parent element just to avoid
 having to deal with the event obnoxiously running up and down the DOM tree.

ptg18144529

368 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

I don’t know about you, but I’m certainly confused after having read those
three steps! Let’s start to unconfuse ourselves by starting with a diagram that
explains those steps more visually:

The last step in our quest for complete unconfusedness is the code that translates
what the diagram and the three steps represent:
var theParent = document.querySelector("#theDude");

theParent.addEventListener("click", doSomething, false);

function doSomething(e) {

 if (e.target !== e.currentTarget) {

var clickedItem = e.target.id;

ptg18144529

CHAPTER 33 HANDLING EVENTS FOR MULTIPLE ELEMENTS 369

alert("Hello " + clickedItem);

 }

e.stopPropagation();

}

Take a moment to read and understand the code you see here. It should be pretty
self-explanatory after seeing our initial goals and the diagram. We listen for the
event on the parent theDude element:
var theParent = document.querySelector("#theDude");

theParent.addEventListener("click", doSomething, false);

There is only one event listener to handle this event, and that lonely creature is
called doSomething:
function doSomething(e) {

 if (e.target !== e.currentTarget) {

var clickedItem = e.target.id;

alert("Hello " + clickedItem);

 }

e.stopPropagation();

}

This event listener will get called each time theDude element is clicked along
with any children that get clicked as well. We only care about click events relating
to the children, and the proper way to ignore clicks on this parent element is
to simply avoid running any code if the element the click is from (aka the event
 target) is the same as the event listener target (aka theDude element):
function doSomething(e) {

 if (e.target !== e.currentTarget) {

var clickedItem = e.target.id;

alert("Hello " + clickedItem);

 }

e.stopPropagation();

}

The target of the event is represented by e.target, and the target element the
event listener is attached to is represented by e.currentTarget. By simply
checking that these values not be equal, you can ensure that the event handler
doesn’t react to events fired from the parent element that you don’t care about.

ptg18144529

370 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

To stop the event’s propagation, we simply call the stopPropagation method:
function doSomething(e) {

 if (e.target !== e.currentTarget) {

var clickedItem = e.target.id;

alert(“Hello “ + clickedItem);

 }

e.stopPropagation();

}

Notice that this code is actually outside of my if statement. This is because I want
the event to stop traversing the DOM under all situations once it gets overheard.

Putting It All Together
The end result of all of this code running is that you can click on any of the Dude’s
children and listen for the event as it propagates up:

ptg18144529

CHAPTER 33 HANDLING EVENTS FOR MULTIPLE ELEMENTS 371

Because all of the event arguments are still tied to the source of the event,
you can target the clicked element in the event handler despite calling
addEventListener on the parent. The main thing to call out about this solution
is that it satisfies the problems we set out to avoid. You only created one event
listener. It doesn’t matter how many children theDude ends up having. This
approach is generic enough to accommodate all of them without any extra
 modification to your code. This also means that you should do some strict filtering
if your theDude element ends up having children besides buttons and other
 elements that you care about.

THE ABSOLUTE MINIMUM
For some time, I actually proposed a solution for our Multiple Element Eventing
Conundrum (MEEC as the cool kids call it!) that was inefficient but didn’t require
you to duplicate many lines of code. Before many people pointed out the
 inefficiences of it, I thought it was a valid solution.

The way this solution worked was by using a for loop to attach event listeners to
all the children of a parent (or an array containing HTML elements). Here is what
that code looked like:
var theParent = document.querySelector(“#theDude”);

for (var i = 0; i < theParent.children.length; i++) {

 var childElement = theParent.children[i];

 childElement.addEventListener(‘click’, doSomething, false);

}

function doSomething(e) {

 var clickedItem = e.target.id;

 alert(“Hello “ + clickedItem);

}

The end result was that this approach allowed us to listen for the click event
directly on the children. The only code I wrote manually was this single event
listener call that was parameterized to the appropriate child element based on
where in the loop the code was in:
childElement.addEventListener(‘click’, doSomething, false);

ptg18144529

372 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The reason this approach isn’t great is because each child element has an event
listener associated with it. This goes back to our efficiency argument where this
approach unnecessarily wastes memory.

Now, if you do have a situation where your elements are spread throughout the
DOM with no nearby common parent, using this approach on an array of HTML
elements is not a bad way of solving our MEEC problem.

Anyway, as you start working with larger quantities of UI elements for games,
data-visualization apps, and other HTMLElement-rich things, you’ll end up having
to use everything you saw here at least once. I hope. If all else fails, this chapter
still served an important purpose. All of the stuff about event tunneling and cap-
turing you saw earlier clearly came in handy here. That’s something!

 TIP Just a quick reminder for those of you reading these
words in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains
the complete text of this book but also features a short, fun
 interactive quiz to test your understanding of the chapter you
just read.

If you’re reading these words in the Web Edition already and
want to try your hand at the quiz, then you’re in luck – all you
need to do is scroll down!

http://www.quepublishing.com

ptg18144529

34
I N T H I S C H A P T E R
• Pat ourselves on the back for a job well done

• Pat ourselves on the back one more time just
for kicks

CONCLUSION
Well, now you’ve done it! You just couldn’t stop binge reading and now

you are nearing the end. How does it feel knowing that you won’t have any

more new content to look forward to until the next season?

ptg18144529

374 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Anyway, if you’ve been following along from the very beginning, you’ll agree that
we covered a lot of ground. We started with this:
<script>

alert("hello, world!");

</script>

We ended up with this:
var theParent = document.querySelector("#theDude");

theParent.addEventListener("click", doSomething, false);

function doSomething(e) {

 if (e.target !== e.currentTarget) {

var clickedItemId = e.target.id;

alert("Hello " + clickedItemId);

 }

e.stopPropagation();

}

These lines of code are probably not very impressive, but they hide a great
deal of conceptual knowledge that you’ve learned along the way - knowledge
about variables, basic types, objects, the DOM, dealing with events, and a
whole lot more spread across 32 chapters that are now too basic to even bother
mentioning.

The thing you should remember is that writing code is easy. Writing elegant
code that actually solves a problem is hard. This was best captured by one of
my favorite lines from Scarface where Tony Montana delivered the following line
(exact wording may be off a bit…it’s hard to understand him sometimes, as you
know if you've seen the film):

ptg18144529

CHAPTER 34 CONCLUSION 375

This book is all about the basics. The way you go from the basics to the next step
is by continuing to write code, trying out new things, and learning more along the
way. This book described all the various tools and provided short examples of how
they fit together help you build small things. It’s up to you to take this knowledge
and apply it towards building all the cooler non-small things that you often see
associated with JavaScript.

So with that…see you all later, and feel free to drop me a line at kirupa@kirupa.com
or find me on Facebook and Twitter (@kirupa). Like I mentioned in the introduction,
I enjoy hearing from readers such as you, so don’t be shy about contacting me.

Also, I know you have a lot of choices in books for learning JavaScript. Thank you for
choosing this book and allowing me to live vicariously through your code editor :P

Cheers,

ptg18144529

This page intentionally left blank

ptg18144529

Glossary

A very casual look at the various terms you will
encounter in this book and beyond.

A
Arguments The values you provide (or pass in)
to a function.

Array A data structure that allows you to store
and access a sequence of values.

B
Boolean A data structure that represents true or
false.

C
Cascading Style Sheets (CSS) A styling
 language used primarily for changing how the
content in your HTML page looks.

Closure An inner function that has access to an
outer function’s variables (in addition to its own
and any global variables).

Comments Human readable text (often
 separated by // or /* and */ characters)
in your code that is completely ignored by
JavaScript.

D
Developer Tools In the context of browsers,
they are extensions that help you inspect,
debug, and diagnose what is going on inside
your web page.

Do…While Loop A control statement that
 executes some code until a condition you
 specify returns false. (This is great if you don’t
know how many times you want to loop!)

Document Object Model (DOM) The
JavaScript representation (often in a tree-like
structure) of your HTML page and all the things
inside it.

E
Event Bubbling The phase where an event
starts at the element that initiated the event
and climbs the DOM back to the root.

Event Capturing The phase where an event
starts at the root and traverses down the DOM
until it reaches the element that initiated the
event.

Event Listener A function that listens for an
event and then executes some code when that
event is overheard.

Event Target The element that is responsible
for having initiated (aka fired) an event.

Event A signal that travels through your DOM
to indicate something has happened.

F
For Loop A control statement that executes
some code a finite number of times.

Functions A reusable block of code that takes
arguments, groups statements together, and
can be called on to execute the code contained
inside it.

ptg18144529

378 GLOBAL SCOPE

O
Object A very flexible and ubiquitous data
structure you can use to store properties and
their values and…even other objects.

Operators A built-in function such as your
friendly +, -, *, /, for, while, if, do, =,
etc. words.

P
Primitives A basic type that isn’t composed of
other types.

R
Return A keyword that exits a function or block.
In the case of functions, it is often used to return
some data back to whatever called the function.

S
Scope A term indicating the visibility of
 something. In the real world, it is also a brand of
mouthwash.

Strict Equality (===) Comparison Checks
whether value and type of two things is equal.

Strict Inequality (!==) Comparison Checks
whether the value and type of two things is not
equal.

String A sequence of characters that make up
what we think of as text. It is also the name of
formal type for dealing with text in JavaScript.

Switch Statement A conditional statement that
checks a particular condition against a list of
cases. If one of the cases matches the condition,
the code associated with that case executes.

G
Global Scope Something declared outside of a
function that is accessible to the entire app.

I
If Statement A conditional statement that
 executes some code if the condition is true.

If/Else Statement A conditional statement that
executes different pieces of code depending on
whether a condition is true or false.

IIFE (Immediately Invoked Function
Expression) A way of writing JavaScript that
allows you to execute some code in its own
scope without leaving behind any trace of its
existence.

Invoke A fancy way of saying the same thing as
calling a function.

J
JavaScript A fussy and (often) inconsistent
scripting language that, to everyone’s surprise
over the years, has grown to be quite popular
for building apps on the web and the server.

L
Local Scope Something that is accessible only
to the enclosing function or block.

Loop A control statement that allows you to
execute code repeatedly.

N
Node A generic name for an item in the DOM.

ptg18144529

WHILE LOOP 379

W
Weak Equality (==) Comparison Checks only
whether the value of two things is equal.

Weak Inequality (!=) Comparison Checks only
whether the value of two things is unequal.

Web Browser A complex application that, at
its bare minimum, helps you browse the internet
and display web pages.

While Loop A control statement that continually
executes some code until a condition you
 specify returns false.

T
Timer Functions Functions that execute code
at a periodic interval. The most common timer
functions are setTimeOut, setInterval, and
requestAnimationFrame.

Type A classification that helps identify your
data and the values you can use.

V
Values The formal name for the various types of
data you’ll encounter.

Variable Scope The term for describing the
 visibility of a variable in a section of code.

Variables A named bucket for storing
some data.

ptg18144529

This page intentionally left blank

ptg18144529

%= (modulus operator), 152
/∗.∗/ (multi-line comments),

104
∗= (multiplication operator),

152
() (parentheses)

in functions, 23
in IIFE, 203-204
in mathematical

expressions, 151
% (percent sign), modulus

operator, 151
+ (plus sign)

addition operator, 151
concatenation operator,

 125-126
+ = (plus-equal sign)

concatenation operator,
 125-126

increment operator, 152
““ (quotation marks) in

strings, 11, 123
; (semicolon) in statements,

11
// (single line comments),

 103-104
= = = (strict equality operator),

35
comparison with = =

equality operator,
192-194, 198

!== (strict inequality
operator), 35

Symbols
∗ (asterisk), multiplication

 operator, 20, 151
[] (brackets)

array declaration, 140
property definition, 167

|| conditional operator, 35
&& conditional operator, 35
< conditional operator, 35
<= conditional operator, 35
> conditional operator, 35
>= conditional operator, 35
{ } (curly braces) in functions,

23
−− (decrement operator),

152, 153
− = (decrement operator),

152
/ = (division operator), 152
= = (equality operator), 35

comparison with == =
strict equality operator,
192-194, 198

/ (forward slash), division
 operator, 151

+ + (increment operator),
152, 153

!= (inequality operator), 35
comparison with != = strict

inequality operator,
 192-194

− (minus sign), subtraction
 operator, 151

comparison with !=
 inequality operator,
 192-194

A
abs() function (Math object),

159
absolute paths, referencing

JavaScript files, 94-96
absolute value, 159
accessibility tools,

DOM and, 278
accessing

all children, 261
array values, 141-142
characters in strings,

 124-125
Developer Tools, 280-282

acos() function
(Math object), 158

add method (classList API),
250-251

addEventListener function,
 302-304, 341-342

adding
class values, 250-251
items to arrays, 143-144

addition operator, 151
alert function, 11

arguments, 24
console.log function

versus, 296

Index

ptg18144529

382 ALTKEY PROPERTY (KEYBOARD EVENTS)

altKey property (keyboard
events), 342

animation, requestAnima-
tionFrame function, 62-64

anonymous functions, 202
appendChild function,

267-268
arguments

for event handlers,
307-308

for functions, 24-27
in IIFE, 204

Array object, 117, 134
concat method, 147
indexOf method, 146-147
lastIndexOf method,

146-147
length property, 142
pop method, 145
push method, 143
shift method, 145
shuffling arrays example

(extending objects),
 179-180

slice method, 146
unshift method, 143-144

arrays
accessing values, 141-142
adding items to, 143-144
declaring, 140-141
finding items in, 146-147
in for loops, 54-55
merging, 147
removing items from,

 145-146
shuffling arrays example

(extending objects),
 179-180

arrow key actions, 344-345
asin() function (Math object),

158
asterisk (∗), multiplication

 operator, 20, 151

async attribute (script tag),
 358-359

atan() function (Math object),
158

attribute selectors, 234
attribute values, modifying

in DOM elements, 242-244

B
block scope, 71-72
Boolean function, 190-192
Boolean Logic, 37
Boolean object, 117, 134,

190
Boolean type, 114
booleans

initializing variables as,
189

as primitives, 190
brackets ([])

array declaration, 140
property definition, 167

break keyword
in for loops, 53
in switch statements,

41-42
breakpoints

removing, 293
setting, 288

browser Developer Tools.
See Developer Tools

browser-specific mouse
 position, 334-335

bubbling events phase, 318
usage examples, 322-324
when to use, 319

built-in objects. See objects;
primitives

button detection mouse
 properties, 335-336

button property
(MouseEvent object),
335-336

buttons property
(MouseEvent object), 336

C
calling functions, 22, 23

within functions, 78-81
cancelAnimationFrame

function, 63
canceling

animation frames, 63
looping timers, 62
timers, 60

capturing events phase, 316
usage examples, 322-324
when to use, 319

Cascading Style Sheets.
See CSS

case (of strings), changing,
130

case statements in switch
 statements, 39-42

ceil() function (Math object),
157

characters in strings
accessing, 124-125
finding, 129-130

charAt method
(String object), 125

charCode property
(keyboard events), 342,
343-344

child objects, 170, 258
accessing all, 261
checking existence, 261
event listening on,

367-370
mouse events and, 329
properties, 259-260

ptg18144529

DEFAULT STATEMENTS 383

children property, 259-260
class values

adding, 250-251
checking existence, 252
removing, 251
toggling, 251

classList API, 250-252
className property, 244
clearInterval function, 62
clearTimeout function, 60
click event, 303, 326-327
clientX property

(MouseEvent object),
334-335

clientY property
(MouseEvent object),
334-335

cloneNode function, 273-276
cloning DOM elements,

273-276
closures, 77-78, 81-86

outer variable references,
207-212

code collision avoidance,
206-207

Code Convention, 16
code editors, 8
code placement options,

90-92, 355-358, 360-361
in HTML document,

92-93
in separate file, 93-96
which to use, 97-99

code privacy, providing,
213-216

combining strings, 125-126
comments

best practices, 106-107
JSDoc comments, 105
multi-line comments, 104

single line comments,
103-104

when to use, 102-103
complex expressions in

if/else statements, 36-37
concat method

Array object, 147
String object, 126

concatenating strings,
125-126

conditional operators, 34-36
conditional statements

if/else statements, 32-34
complex expressions,

36-37
conditional operators

in, 34-36
switch statement

 comparison, 42-44
when to use, 44-45

if/else-if/else statements,
38-39

if-only statements, 38
switch statements, 39-42

if/else statement
 comparison, 42-44

when to use, 44-45
console (Developer Tools),

293
console.log function, 296
constants, 155-157
constructor functions, 135
contains method

(classList API), 252
context menus, disabling,

 332-333
contextmenu event, 332-333
continue keyword, 53
converting strings to

numbers, 154

cos() function (Math object),
158

create method (Object
type), 171-174

createElement method
(DOM), 266

Crockford, Douglas, 16
CSS (Cascading Style

Sheets)
purpose of, 222-223
selector syntax, 234-235
styling directly, 249-250

CSS Zen Garden, 5-6
ctrlKey property (keyboard

events), 342
curly braces ({ }) in functions,

23
currentTarget property

(Event type), 308
cursor. See mouse
custom objects, creating,

 169-174

D
Date object, 117, 134
Date.now() function, 83
dblclick event, 303, 327-328
debugging JavaScript,

287-293
decisions. See conditional

 statements
declaring

arrays, 140-141
functions, 22-23
variables, 14-15, 16-17

decrementing
for loops, 54
with operators, 152-153

default statements, 42

How can we make this index more useful? Email us at indexes@quepublishing.com

ptg18144529

384 DEFER ATTRIBUTE (SCRIPT TAG)

else if statements, 38-39
equality operator (= =), 35

comparison with == =
strict equality operator,
192-194, 198

Event Bubbling Phase, 318
usage examples, 322-324
when to use, 319

Event Capturing Phase, 316
usage examples, 322-324
when to use, 319

event handlers, 304
arguments, 307-308
as functions, 304-305
usage examples, 305-307

event targets, 314
Event type, 308
events

definition, 300-302
DOM paths of, 312-316
handling. See event

 handlers
interrupting, 319-321
keyboard events

arrow key actions,
 344-345

detecting particular
keys, 343-344

list of, 340-341
listening for, 341-342
multiple key presses,

 345-347
properties, 342-343

list of, 303
listening for

addEventListener
 function, 302-304

in document object,
354

interrupting, 319-321
keyboard events,

341-342
on multiple elements,

365-371

document object,
228-229

event paths, 312-316
JavaScript objects

 comparison, 238-240
modifying elements,

240-241
attribute values,

242-244
text values, 242

navigating, 256-258
accessing all children,

261
checking child

 existence, 261
child relationships,

 259-260
parent and sibling

 relationships, 259
usage examples, 262

nodes, 225-226
removing elements,

271-273
searching in

CSS selector syntax,
 234-235

querySelector function,
233

querySelectorAll
 function, 233-234

viewing in Developer
Tools, 282-287

window object, 227
DOMContentLoaded event,

303, 353-355, 358
DOMMouseScroll event,

303, 336-337
dot notation, 167
do…while loops, 56-57

E
E property (Math object),

155

defer attribute (script tag),
358, 359-360

defining
methods, 168-169
properties, 167-169

delays. See timers
detail property

(DOMMouseScroll event),
 336-337

Developer Tools, 279
accessing, 280-282
console, 293
debugging JavaScript,

 287-293
DOM view, 282-287
inspecting objects,

294-295
logging messages, 296

disabling context menus,
 332-333

distance calculation
 example, 20-21

division operator, 151
document object, 228-229,

 256-257, 354
Document Object Model.

See DOM (Document
Object Model)

documents (HTML). See
HTML documents

document.writeln function,
50

DOM (Document Object
Model), 225-226

accessibility tools and,
278

cloning elements,
273-276

code placement and,
 355-358

creating elements,
266-271

ptg18144529

385FUNCTIONS

How can we make this index more useful? Email us at indexes@quepublishing.com

calling, 22, 23
cancelAnimationFrame,

63
ceil(), 157
clearInterval, 62
clearTimeout, 60
cloneNode, 273-276
closures, 77-78, 81-86
console.log, 296
constructor functions,

135
cos(), 158
Date.now(), 83
declaring, 22-23
definition, 22
distance calculation

example, 21
document.writeln, 50
event handlers, 304-305
exiting early, 28-29
exp(), 158
floor(), 157
within functions, 78-81

shared variables, 81-86
getDistance, 27-28
getElementById, 235
getElementsByClass-

Name, 235
getElementsByTagName,

235
IIFE

arguments in, 204
code collision

 avoidance, 206-207
creating, 203-204
hidden code, 213-216
outer variable

 references, 207-212
when to use, 205-206

initializing variables in,
72-74

insertAfter, 271
insertBefore, 268-270
pow(), 158
purpose of, 201

F
files, JavaScript in, 91, 93-96
finding

characters in strings,
129-130

items in arrays, 146-147
firstChild property, 259-260
floor() function (Math object),

157
for loops, 49-50, 52

accessing array values,
142

arrays, 54-55
decrementing, 54
iterations, 51-52
missing sections, 55
non-numerical iterations,

54
skipping iterations, 53
starting condition, 51
stopping early, 53
terminating condition, 51

forward slash (/), division
 operator, 151

function keyword, 22
Function object, 117, 134
functions. See also methods

abs(), 159
acos(), 158
addEventListener,

302-304, 341-342
alert, 11

arguments, 24
console.log function

 versus, 296
anonymous functions,

202
appendChild, 267-268
arguments, 24-27
asin(), 158
atan(), 158
Boolean, 190-192

phases, 316-319
removeEventListener

 function, 309
mouse events

click, 326-327
contextmenu, 332-333
dblclick, 327-328
DOMMouseScroll,

 336-337
list of, 326
mousedown, 330-331
mouseenter, 329
mouseleave, 329
mousemove, 331
mouseout, 328-329
mouseover, 328-329
mouseup, 330-331
mousewheel, 336-337

MouseEvent object, 333
browser-specific mouse

position, 334-335
button detection,

335-336
global mouse position,

333-334
scroll wheel

 movement, 336-337
page loads

DOMContentLoaded
and load events,
353-355

steps in, 350-353
usage examples,

305-307
exiting functions early,

28-29
exp() function (Math object),

158
extending objects

array shuffling example,
 179-180

prototype property,
181-185

reasons against, 185-186

ptg18144529

386 FUNCTIONS

conditional operators in,
34-36

switch statement
 comparison, 42-44

when to use, 44-45
if/else-if/else statements,

38-39
if-only statements, 38
IIFE (Immediately Invoked

Function Expression)
arguments in, 204
code collision avoidance,

206-207
creating, 203-204
hidden code, 213-216
outer variable references,

207-212
when to use, 205-206

incrementing with operators,
152-153

index positions, 124
index values of arrays, 142
indexOf method

Array object, 146-147
String object, 129-130

inequality operator (!=), 35
comparison with != = strict

inequality operator,
 192-194

Infinity keyword, 153
inheritance, 166, 170-171
initializing variables, 14-15,

16-17
as booleans, 189
in functions, 72-74

inner functions, shared
 variables, 81-86

insertAfter function, 271
insertBefore function,

268-270
inspecting objects, 294-295

hoisting variables, 72-74,
205

hovering. See mouseover
event

HTML (Hypertext Markup
Language)

purpose of, 220-222
styling, 247-248

with classList API,
250-252

directly with style
object, 249-250

with JavaScript, 248
HTML documents

code placement within,
90, 92-93

CSS, purpose of, 222-223
Hello, World! example,

9-10
HTML, purpose of,

220-222
JavaScript, purpose of,

 223-224
page loads

DOMContentLoaded
and load events,
353-355

steps in, 350-353
parsing, 96
script tag placement, 96,

355-358, 360-361
html object, 256-257
hybrid code placement

option, 91-92
Hypertext Markup

Language. See HTML

I
id property, 244
if/else statements, 32-34

complex expressions,
36-37

querySelector, 233,
234-235, 257

querySelectorAll,
233-235, 257

random(), 159
removeChild, 271-273
removeEventListener, 309
requestAnimationFrame,

62-64
returning data, 27-28
round(), 157
scope and, 70-71, 205
setInterval, 61-62
setTimeout, 60-61
showDistance

arguments, 25-26
returning data, 27

sin(), 158
sqrt(), 158
tan(), 158

G
getAttribute method,

242-244
getDistance function, 27-28
getElementById function,

235
getElementsByClassName

 function, 235
getElementsByTagName

 function, 235
global mouse position,

333-334
global scope, 16-17, 68-69

H
handling events. See event

 handlers
Hello, World! example, 9-10
hidden code with IIFE,

213-216

ptg18144529

MATH OBJECT 387

How can we make this index more useful? Email us at indexes@quepublishing.com

literal notation, 167
literals, string, 123
LN2 property

(Math object), 155
LN10 property

(Math object), 155
load event, 303, 353-355
local scope, 70-71
locking in state, 207-212
LOG2E property

(Math object), 155
LOG10E property

(Math object), 155
logging messages, 296
loops

do…while loops, 56-57
for loops, 49-50, 52

accessing array values,
142

arrays, 54-55
decrementing, 54
iterations, 51-52
missing sections, 55
non-numerical

iterations, 54
skipping iterations, 53
starting condition, 51
stopping early, 53
terminating condition,

51
types of, 48
while loops, 56

lowercase, changing strings
to, 130

M
match method

(String object), 130
Math object, 117, 134,

154-155. See also numbers
absolute value, 159

keyup event, 303, 340-341
listening for, 341-342

keywords
break

in for loops, 53
in switch statements,

41-42
continue, 53
function, 22
Infinity, 153
let, 72
NaN, 154
null, 196-197
return

exiting functions early,
28-29

returning data, 27-28
this, 175-177
typeof, 137
var, 14, 70-71

L
lastChild property, 259-260
lastIndexOf method

Array object, 146-147
String object, 129-130

length property
Array object, 142
String object, 124

let keyword, 72
lexical scope, 205
listening for events

addEventListener
 function, 302-304

in document object, 354
interrupting, 319-321
keyboard events,

341-342
on multiple elements,

 365-371
phases, 316-319
removeEventListener

 function, 309

interrupting events, 319-321
iterations

in for loops, 51-52
non-numerical, 54
skipping, 53

J
JavaScript

code placement options,
90-92, 355-358, 360-361

in HTML document,
92-93

in separate file, 93-96
which to use, 97-99

debugging, 287-293
definition, 7-8
purpose of, 223-224

JavaScript Variable Name
Validator, 16

.js file extension, 93-94
JSDoc comments, 105

K
keyboard events

arrow key actions,
344-345

detecting particular keys,
343-344

list of, 340-341
listening for, 341-342
multiple key presses,

 345-347
properties, 342-343

keyboards, 339
keyCode property (keyboard

events), 342, 343-344
keydown event, 303,

340-341
listening for, 341-342

keypress event, 340-341
listening for, 341-342

ptg18144529

388 MATH OBJECT

mouseenter event, 329
MouseEvent object, 333

browser-specific mouse
 position, 334-335

button detection, 335-336
global mouse position,

 333-334
scroll wheel movement,

 336-337
mouseleave event, 329
mousemove event, 303, 331
mouseout event, 303,

328-329
mouseover event, 303,

328-329
mouseup event, 330-331
mousewheel event, 303,

 336-337
multi-line comments, 104
multiple elements, events

on, 365-371
multiple key presses,

345-347
multiplication operator,

20, 151

N
naming variables, 15-16
NaN keyword, 154
navigating DOM, 256-258

accessing all children, 261
checking child existence,

261
child relationships,

259-260
parent and sibling

 relationships, 259
usage examples, 262

nextSibling property, 259
nodes, 225-226

stopPropagation (Event
type), 308, 320-321, 370

substr (String object),
 127-128

toggle (classList API), 251
toLowerCase

(String object), 130
toUpperCase

(String object), 130
unshift (Array object),

 143-144
minus sign (−), subtraction

 operator, 151
modifying DOM elements,

 240-241
attribute values, 242-244
text values, 242

modulus operator, 151
mouse, 325

browser-specific mouse
 position, 334-335

button detection,
335-336

global cursor position,
 333-334

scroll wheel movement,
 336-337

mouse events
click, 326-327
contextmenu, 332-333
dblclick, 327-328
DOMMouseScroll,

336-337
list of, 326
mousedown, 330-331
mouseenter, 329
mouseleave, 329
mousemove, 331
mouseout, 328-329
mouseover, 328-329
mouseup, 330-331
mousewheel, 336-337

mousedown event, 330-331

constants, 155-157
powers and square roots,

158-159
random numbers, 159
rounding numbers, 157
trigonometric functions,

158
merging arrays, 147
metaKey property (keyboard

events), 343
methods. See also functions

add (classList API),
250-251

charAt (String object), 125
concat

Array object, 147
String object, 126

contains (classList API),
252

create (Object type),
171-174

createElement (DOM),
266

defining, 168-169
getAttribute, 242-244
indexOf

Array object, 146-147
String object, 129-130

lastIndexOf
Array object, 146-147
String object, 129-130

match (String object), 130
pop (Array object), 145
preventDefault (Event

type), 308, 321, 333, 347
push (Array object), 143
remove (classList API), 251
setAttribute, 242-244
shift (Array object), 145
slice

Array object, 146
String object, 127

split (String object),
128-129

ptg18144529

PREVENTDEFAULT METHOD (EVENT TYPE) 389

How can we make this index more useful? Email us at indexes@quepublishing.com

P
page loads

DOMContentLoaded and
load events, 353-355

steps in, 350-353
parent objects, 170, 258

event listening on,
367-370

properties, 259
parentheses (())

in functions, 23
in IIFE, 203-204
in mathematical

expressions, 151
parentNode property, 259
parsing HTML documents, 96
percent sign (%), modulus

 operator, 151
phases (event listening),

 316-318
usage examples, 322-324
when to use, 319

PI property (Math object),
155, 156-157

pizza metaphor (types),
110-113

plus sign (+)
addition operator, 151
concatenation operator,

 125-126
pop method (Array object),

145
pow() function (Math object),

158
powers (Math object),

158-159
preventDefault method

(Event type), 308, 321,
333, 347

custom objects, creating,
169-174

document, 228-229,
 256-257, 354

DOM element
 comparison, 238-240

extending
array shuffling

 example, 179-180
prototype property,

 181-185
reasons against,

185-186
html, 256-257
inspecting, 294-295
list of, 117-118
methods, defining,

168-169
parent objects, 170, 258

event listening on,
 367-370

properties, 259
properties, defining,

167-169
prototype, 165
prototypical inheritance

model, 178
sibling objects, 258, 259
style, 249-250
temporarily converting

 primitives to, 133-138
this keyword, 175-177
window, 69, 227,

256-257
operators

conditional, 34-36
incrementing and

 decrementing, 152-153
simple math, 151

outer functions, shared
 variables, 81-86

outer variables, referencing,
207-212

non-numerical iterations in
for loops, 54

null keyword, 196-197
Null type, 114
Number object, 117, 134
Number type, 114
numbers. See also Math

object
absolute value, 159
converting strings to, 154
Infinity keyword, 153
NaN keyword, 154
operators

incrementing and dec-
rementing, 152-153

simple math, 151
powers and square roots,

158-159
random numbers, 159
rounding, 157
types, 150
usage examples, 150

O
object literal syntax, 163
Object type, 114, 162

create method, 171-174
creating objects, 163-166
DOM element

 comparison, 238-240
[[Prototype]] property, 166

objects, 115-116
child objects, 170, 258

accessing all, 261
checking existence,

261
event listening on,

 367-370
properties, 259-260

constructor functions, 135
creating, 163-166

ptg18144529

390 PREVIOUSSIBLING PROPERTY

return keyword
exiting functions early,

28-29
returning data, 27-28

returning data from
 functions, 27-28

within functions, 78-81
Revealing Module Pattern,

215
right-click menus, disabling,

332-333
round() function

(Math object), 157
rounding numbers, 157

S
scope of variables

block scope, 71-72
closures, 77-78, 81-86
global scope, 16-17,

68-69
initializing variables in

 functions, 72-74
inspecting objects, 295
lexical scope, 205
local scope, 70-71
var keyword, 70-71

screenX property
(MouseEvent object),
333-334

screenY property
(MouseEvent object),
333-334

script tag, 9-10
async attribute, 358-359
code placement within,

92-93
defer attribute, 358,

359-360
placement in HTML

 document, 96, 355-358,
360-361

[[Prototype]] property, 166
prototypical inheritance

model, 178
push method (Array object),

143

Q
querySelector function, 233,

234-235, 257
querySelectorAll function,

 233-235, 257
quotation marks (““) in

strings, 11, 123

R
random() function

(Math object), 159
random numbers, 159
referencing

JavaScript files, 94-96
outer variables, 207-212

RegExp object, 117, 134
relative paths, referencing

JavaScript files, 94-96
remove method

(classList API), 251
removeChild function,

271-273
removeEventListener

function, 309
removing

breakpoints, 293
class values, 251
DOM elements, 271-273
items from arrays, 145-146

repeats. See loops
requestAnimationFrame

 function, 62-64
requestID variable, 64

previousSibling property, 259
primitives, 115

booleans as, 190
null, 196-197
object usage versus,

117-118
temporary conversion to

objects, 133-138
undefined, 197-198

private code with IIFE,
213-216

properties, 162
child objects, 259-260
className, 244
CSS, styling directly,

249-250
for custom objects,

170-171
defining, 167-169
Event type, 308
id, 244
keyboard events, 342-343
MouseEvent object

browser-specific mouse
position, 334-335

button detection,
335-336

global mouse position,
333-334

scroll wheel
 movement, 336-337

parent and sibling objects,
259

prototype, extending
objects, 181-185

textContent, 242
this keyword, 175-177

__proto__ property, 164
prototype chains, 166,

170-171
prototype objects, 165
prototype property,

 extending objects, 181-185

ptg18144529

STRINGS 391

How can we make this index more useful? Email us at indexes@quepublishing.com

comparison with = =
equality operator,
192-194, 198

strict inequality operator
(!= =), 35

comparison with !=
inequality operator,
192-194

string literals, 123
String object, 117, 134

charAt method, 125
concat method, 126
indexOf method, 129-130
lastIndexOf method,

 129-130
length property, 124
match method, 130
slice method, 127
split method, 128-129
substr method, 127-128
toLowerCase method,

130
toUpperCase method,

130
String type, 114
strings, 121-123

accessing characters in,
124-125

changing case, 130
concatenating, 125-126
converting to numbers,

154
finding characters within,

129-130
primitive versus object

forms, 134-136
quotation marks (““) in,

11, 123
substrings, 126

slice method, 127
split method, 128-129
substr method,

127-128

sqrt() function (Math object),
158

SQRT1_2 property
(Math object), 155

SQRT2 property
(Math object), 155

square brackets ([])
array declaration, 140
property definition, 167

square roots, 158-159
src attribute (script tag),

94-95
starting condition in for

loops, 51
state, locking in, 207-212
statements

case, 39-42
conditional

if/else statements,
32-34

if/else-if/else
 statements, 38-39

if-only statements, 38
switch statements,

39-42
default, 42
definition, 10
loops

do…while loops,
56-57

for loops, 49-50, 52
types of, 48
while loops, 56

semicolon (;) in, 11
stepping through code,

290-292
stopPropagation method

(Event type), 308, 320-321,
370

strict equality operator
(= = =), 35

referencing JavaScript
files, 94-96

scroll event, 303
scroll wheel movement,

 336-337
searching in DOM

CSS selector syntax,
234-235

querySelector function,
233

querySelectorAll function,
233-234

semicolon (;) in statements,
11

setAttribute method,
242-244

setInterval function, 61-62
setTimeout function, 60-61
shared variables in inner

 functions, 81-86
shift method (Array object),

145
shiftKey property (keyboard

events), 342
showDistance function

arguments, 25-26
returning data, 27

shuffling arrays example
(extending objects),
179-180

sibling objects, 258, 259
sin() function (Math object),

158
single line comments,

103-104
slice method

Array object, 146
String object, 127

split method (String object),
128-129

ptg18144529

392 STYLE OBJECT

variables
arguments as, 26
declaring, 14-15, 16-17
definition, 14
hoisting, 72-74, 205
initializing, 14-15, 16-17

as booleans, 189
in functions, 72-74

naming, 15-16
outer variables,

 referencing, 207-212
requestID, 64
scope

block scope, 71-72
closures, 77-78, 81-86
global scope, 16-17,

68-69
inspecting objects, 295
lexical scope, 205
local scope, 70-71
var keyword, 70-71

shared variables in inner
functions, 81-86

timeID, 60
View Source command

(Developer Tools), 284-287
viewing DOM in Developer

Tools, 282-287

W
web documents. See HTML

documents
wheelDelta property

 (mousewheel events),
336-337

which property (MouseEvent
object), 336

while loops, 56
whitespace in comments, 106
window object, 69, 227,

 256-257

toggle method (classList API),
251

toggling class values, 251
toLowerCase method (String

object), 130
toUpperCase method (String

object), 130
trigonometric functions, 158
true/false. See booleans
type coercion, 193
type property (Event type),

308
typeof keyword, 137
types

list of, 113-115
for numbers, 150
objects, 115-116

list of, 117-118
pizza metaphor, 110-113
primitives, 115

U
undefined primitive,

197-198
Undefined type, 114
unshift method (Array

object), 143-144
uppercase, changing

strings to, 130

V
values

of arrays, accessing,
141-142

definition, 14
null, 196-197
undefined, 197-198

var keyword, 14, 70-71

style object, 249-250
styling HTML elements,

 247-248
with classList API, 250-252
directly with style object,

249-250
with JavaScript, 248

substr method (String
object), 127-128

substrings, 126
slice method, 127
split method, 128-129
substr method, 127-128

subtraction operator, 151
switch statements, 39-42

if/else statement
 comparison, 42-44

when to use, 44-45

T
tags. See script tag
tan() function (Math object),

158
target property (Event type),

308
terminating condition in for

loops, 51
text values, modifying in

DOM elements, 242. See
also strings

textContent property, 242
this keyword, 175-177
timeID variable, 60
timers

canceling, 60
requestAnimationFrame

 function, 62-64
setInterval function, 61-62
setTimeout function,

60-61

ptg18144529

This page intentionally left blank

ptg18144529

Accessing the Free Web Edition
Your purchase of this book in any format includes access to the corresponding
Web Edition, which provides several special online-only features:

• The complete text of the book, with all the figures and code in full color

• Short videos by the author introducing each chapter

• Interactive quizzes to test your understanding of the material

• Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices
with any modern web browser that supports HTML5.

To get access to the JavaScript Absolute Beginner’s Guide Web Edition all you
need to do is register this book:

1. Go to www.quepublishing.com/register.

2. Sign in or create a new account. www.quepublishing.com.

3. Enter ISBN: 9780789758064.

4. Answer the questions as proof of purchase.

5. The Web Edition will appear under the Digital Purchases tab on your Account
page. Click the Launch link to access the product.

http://www.quepublishing.com/register
http://www.quepublishing.com

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Introduction
	Parlez-vous JavaScript?
	Contacting Me/Getting Help
	1 Hello, World!
	What Is JavaScript?
	A Simple Example
	Code Editing Tools
	The HTML Document

	Looking at the Code: Statements and Functions

	I: The Basic Stuff
	2 Values and Variables
	Using Variables
	More Variable Stuff
	Naming Variables
	More on Declaring and Initializing Variables

	3 Functions
	What Is a Function?
	A Simple Function

	Creating a Function That Takes Arguments
	Creating a Function That Returns Data
	The Return Keyword
	Exiting the Function Early

	4 Conditional Statements: If, Else, and Switch
	The If/Else Statement
	Meet the Conditional Operators
	Creating More Complex Expressions
	Variations on the If/Else Statement
	Phew

	Switch Statements
	Using a Switch Statement
	Similarity to an If/Else Statement

	Deciding Which to Use

	5 Meet the Loops: For, While, and Do…While!
	The for Loop
	The Starting Condition
	Terminating Condition (aka Are we done yet?)
	Reaching the End
	Putting It All Together

	Some for Loop Examples
	Stopping a Loop Early
	Skipping an Iteration
	Going Backwards
	You Don’t Have to Use Numbers
	Array! Array! Array!
	Oh No He Didn’t!

	The Other Loops
	The while Loop
	The do...while Loop

	6 Timers
	Meet the Three Timers
	Delaying with setTimeout
	Looping with setInterval
	Animating Smoothly with requestAnimationFrame

	7 Variable Scope
	Global Scope
	Local Scope
	Miscellaneous Scoping Shenanigans
	Declarations Using var Do Not Support Block Scoping

	How JavaScript Processes Variables
	Closures

	8 Closures
	Functions within Functions
	When the Inner Functions Aren’t Self-Contained

	9 Where Should Your Code Live?
	The Options on the Table
	 ?????4????L?? ???????p????s?????????ð??????????
	Approach #2: The Code Lives in a Separate File
	The JavaScript File
	Referencing the JavaScript File

	So...Which Approach to Use?
	.?????????????????????p????s?????????ð??????????
	No, My Code Is Used Only Once, on a Single HTML Document!

	10 Commenting Your Code
	What Are Comments?
	Single Line Comments
	Multi-line Comments

	Commenting Best Practices

	II: It’s an Object-Oriented World
	11 Of Pizza, Types, Primitives, and Objects
	Let’s First Talk About Pizza
	From Pizza to JavaScript
	What Are Objects?
	The Predefined Objects Roaming Around

	12 Strings
	The Basics
	String Properties and Methods
	Accessing Individual Characters
	Combining (aka Concatenating) Strings
	Making Substrings out of Strings
	Splitting a String/split
	Finding Something Inside a String
	Upper and Lower Casing Strings

	13 When Primitives Behave Like Objects
	Strings Aren’t the Only Problem
	Let’s Pick on Strings Anyway
	Why This Matters

	14 Arrays
	Creating an Array
	Accessing Array Values
	Adding Items to Your Array
	Removing Items from the Array
	Finding Items in the Array
	Merging Arrays

	15 Numbers
	Using a Number
	Operators
	Doing Simple Math
	Incrementing and Decrementing

	Special Values—Infinity and NaN
	Infinity
	NaN

	The Math Object
	The Constants
	Rounding Numbers
	Trigonometric Functions
	Powers and Square Roots
	Getting the Absolute Value
	Random Numbers

	16 A Deeper Look at Objects
	Meet the Object
	Creating Objects
	Specifying Properties

	Creating Custom Objects
	The this Keyword

	17 Extending Built-in Objects
	Say Hello to Prototype...Again—Sort of!
	Extending Built-in Objects Is Controversial
	You Don’t Control the Built-in Object’s Future
	Some Functionality Should Not Be Extended or Overridden

	18 Booleans and the Stricter === and !== Operators
	The Boolean Object
	The Boolean Function
	Strict Equality and Inequality Operators

	19 Null and Undefined
	Null
	Undefined

	20 Immediately Invoked Function Expressions
	Writing a Simple IIFE
	Writing an IIFE That Takes Arguments
	When to Use an IIFE
	Avoiding Code Collisions
	Closures and Locking in State

	Making Things Private

	III: Working with the DOM
	21 JS, The Browser, and The DOM
	What HTML, CSS, and JavaScript Do
	HTML Defines the Structure
	Prettify My World, CSS!
	It’s JavaScript Time!
	Meet the Document Object Model
	The Window Object
	The Document Object

	22 Finding Elements in the DOM
	Meet the querySelector Family
	querySelector
	querySelectorAll

	It Really Is the CSS Selector Syntax

	23 Modifying DOM Elements
	DOM Elements Are Objects—Sort of!
	Let’s Actually Modify DOM Elements
	Changing an Element’s Text Value
	Attribute Values

	24 Styling Your Content
	Why Would You Set Styles Using JavaScript?
	A Tale of Two Styling Approaches
	Setting the Style Directly

	Adding and Removing Classes Using classList
	Adding Class Values
	Removing Class Values
	Toggling Class Values
	Checking Whether a Class Value Exists
	Going Further

	25 Traversing the DOM
	Finding Your Way Around
	Dealing with Siblings and Parents
	Let’s Have Some Kids!

	Putting It All Together
	Checking Whether a Child Exists
	Accessing All the Child Elements
	Walking the DOM

	26 Creating and Removing DOM Elements
	Creating Elements
	Removing Elements
	Cloning Elements

	27 In-Browser Developer Tools
	Meet the Developer Tools
	Inspecting the DOM
	Debugging JavaScript
	Meet the Console
	Inspecting Objects
	Logging Messages

	IV: Dealing with Events
	28 Events
	What Are Events?
	Events and JavaScript
	1. Listening for Events
	2. Reacting to Events

	A Simple Example
	The Event Arguments and the Event Type

	29 Event Bubbling and Capturing
	Event Goes Down. Event Goes Up
	Meet the Phases
	Who Cares?
	Event, Interrupted

	30 Mouse Events
	Meet the Mouse Events
	Clicking Once and Clicking Twice
	Mousing Over and Mousing Out
	The Very Click-like Mousing Down and Mousing Up Events
	The Event Heard Again…and Again…and Again!
	The Context Menu

	The MouseEvent Properties
	The Global Mouse Position
	The Mouse Position Inside the Browser
	Detecting Which Button Was Clicked

	Dealing with the Mouse Wheel

	31 Keyboard Events
	Meet the Keyboard Events
	Using These Events
	The Keyboard Event Properties
	Some Examples
	Checking That a Particular Key Was Pressed
	Doing Something When the Arrow Keys Are Pressed
	Detecting Multiple Key Presses

	32 Page Load Events and Other Stuff
	The Things That Happen During Page Load
	Stage Numero Uno
	Stage Numero Dos
	Stage Numero Three

	The DOMContentLoaded and load Events
	Scripts and Their Location in the DOM
	Script Elements—Async and Defer
	async
	defer

	33 Handling Events for Multiple Elements
	How to Do All of This
	A Terrible Solution
	A Good Solution
	Putting It All Together

	34 Conclusion

	Glossary
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	N
	O
	P
	R
	S
	T
	V
	W

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

