CONTROL DATA ${ }^{\circledR} 1750$ data and control terminal (DCT)

GENERAL DESCRIPTION
OPERATION AND PROGRAMMING
THEORY OF OPERATION MAINTENANCE
DIAGRAMS AND PARTS LIST WIRE LIST

CORPOFATION

HARDWARE REFERENCE/ CUSTOMER ENGINEERING MANUAL

HARDWARE REFERENCE/ CUSTOMER ENGINEERING MANUAL

Publication No. 39072900

November 1970

La Jolla, California

ADDITIONAL COPIES OF THIS MANUAL MAY EE OETAINED FROM THE NEAREST CONTROL DATA CORPORATION SALES OFFICE.

ADDRESS COMMENTS CONCERNING THIS MANUAL TO:
CONTROL DATA CORPORATION
LA JOLLA SYSTEMS DIVISION
4455 EASTGATEMALL
LA JOLLA, CALIFORNIA
OR USE COMMENT SHEET IN THE BACK OF THIS MANUAL.

TABLE OF CONTENTS

PAGE

INTRODUCTION . $x i$

Section One
 GENERAL DESCRIPTION

1.1 GENERAL . 1.1
1.2 OPERATIONAL DESCRIPTION 1.1
1.2.1 Connect/Addressing Requirements 1.3
1.2.2 Addressing 1.11
1.2.3 Interrupt Lines 1.14
1.2.4 Program Protect 1.14
1.3 OPTIONS . 1.16
1.3.1 1574 Sequential Addressing Unit 1.16
1.3.2 1572 Programmable Sample Rate Unit 1.16
1.3.3 1573 Line Synchronized Timing Generator 1.17
1.3.4 1577 Stall Alarm 1.17
1.4 SYSTEM OPTIONS 1.17
1.5 PHYSICAL DESCRIPTION 1.18
1.5.1 General 1.18
1.5.2 Dimensions 1.20
1.5.3 Cooling 1.20
1.6 ELECTRICAL REQUIREMENTS 1.20
1.6.1 Power . 1.20
1.6.2 Logic Levels 1.20

TABLE OF CONTENTS (Continued)

Section Two
OPERATION AND PROGRAMMING
2.1 GENERAL 2.1
2.2 DATA TRANSFER OPERATIONS 2.1
2.2.1 Digital Output 2.1
2.2.2 Digital Input. 2.1
2.2.3 Analog Output 2.2
2.2.4 Analog Input. 2.2
2.3 COMMAND FORMATS 2.2
2.3.1 Connect/Function Commands 2.4
2.3.2 Status and Connect 2.8
2.3.3 Data Transfer Commands 2.10
2.3.4 Sequential Operation Commands 2.13
2.4 INTERRUPTS USAGE 2.15
Section Three
THEORY OF OPERATION
GLOSSARY OF TERMS. 3.2
3.1 GENERAL 3.4
3.2 TYPICAL DATA AND CONTROL BUS INPUT AND OUTPUT CONFIGURATION 3.4
3.2.1 Input Configuration 3.4
3.2.2 Output Configuration 3.4
3.3 FUNCTIONAL DESCRIPTION 3.7
3.3.1 A-Register Interface 3.7
3.3.2 Q-Register Receivers 3.7
3.3.3 PROTECT and EQUIPMENT NUMBER Switches 3.7

TABLE OF CONTENTS (Continued)

TABLE OF CONTENTS (Continued)

3.8.1
3.8.2

$$
3.9
$$

3.9.1
3.9.2
3.10
3.10.1
3.10.2
3.10.3
3.10.4
3.10 .5
3. 10.6
3.10.7
3.11
3.11.1
3.11.2
3.11.3
3.11 .4
3.11 .5
3.11 .6
3.11.7
3.11 .8
3.11.9
3.11. 10
3.11. 11
3.11. 12
3.11. 13

Receivers
3.32

PAGE

TABLE OF CONTENTS (Continued)

PAGE
3.12 LONG-LINE DRIVERS (CARDS 20 AND 21) 3.56
3.13 ADDRESS DECODER (CARD 22) 3.603.13 .23.13 .33.13.4
3.13 .1No Address3.60
Enable Data Transfer 3.60
Random Access Lockup 3.60
End of Sequence. 3.60
Section Four
MAINTENANCE
4.1 GENERAL 4.1
4.2 PREVENTIVE MAINTENANCE PROCEDURES 4.1
4.3 TROUBLE SHOOTING PROCEDURES 4.1
4.4 PREVENTIVE MAINTENANCE INDEX 4.2
Section Five
DIAGRAMS AND PARTS LIST
5.1 GENERAL 5.1
Section SixWIRE LIST
6.1 GENERAL 6.1
APPENDIX A INTERRUPT USAGE IN THE 1700 OPERATING SYSTEM

LIST OF ILLUSTRATIONS

FIGURE
1.1 SYSTEM BLOCK DIAGRAM 1.2
1.2 RESPONSE TIMING DIAGRAM 1. 13
3.1 TYPICAL DCB INPUT CONFIGURATION 3.5
3.2 TYPICAL DCB OUTPUT CONFIGURATION 3.5
3.33.4DCB CONNECTOR (CARD POSITION 6)3.16
3.11 PROTECT AND EQUIPMENT NUMBER SWITCH LOGIC (CARD 7) 3.21
3.12 A-WRITE LINE DRIVERS (CARD 8) 3.23
3.13 DATA AND CONTROL BUS, INTERFACE 1 (CARD 9) 3.25
3.14 DATA AND CONTROL BUS, INTERFACE 2 (CARD 11). 3.27
3.15 DATA AND CONTROL BUS, INTERFACE 3 (CARD 13). 3.29
3.17 A-REGISTER INTERFACE: BITS 12-15 (CARD 10). 3.333.18DATA AND CONTROL BUS, INTERFACE 4 (CARD 15).3.31
A-REGISTER INTERFACE: BITS 8-11 (CARD 12) 3.34
A-REGISTER INTERFACE: BITS 4-7 (CARD 14) 3.35
A-REGISTER INTERFACE: BITS 0-3 (CARD 16) 3.36
FUNCTION CONTROL LOGIC (CARD 17) 3.41
RESPONSE TIMING DIAGRAM. 3.43
NORMAL RESPONSE CYCLE 3.47
DEVICE PROTECT CYCLE 3.47

L!ST OF ILLUSTRATIONS (Continued)

FIGURE		PAGE
3. 25	INTERNAL REJECT CYCLE	3.48
3.26	DEVICE REJECT CYCLE	3.49
3. 27	DEVICE HERE BUT NOT READY CYCLE	3.50
3. 28	RESPONSE CONTROL LOGIC (CARD 18)	3.51
3. 29	ADDRESS CONTROL LOGIC (CARD 19)	3.55
3. 30	LONG-LINE DRIVERS (CARD 20)	3.57
3. 31	LONG-LINE DRIVERS (CARD 21)	3.59
3. 32	ADDRESS DECODER (CARD 22)	3. 61
5.1	BALANCED LINE INTERFACE (AV) CARD, BOARD LAYOUT	5.2
5.2	RESPONSE CONTROL (BB) CARD, BOARD LAYOUT	5.4
5.3	ADDRESS DECODER (BE) CARD, BOARD LAYOUT	5.6
5.4	PROTECT AND EQUIPMENT SELECT (BG) CARD, PANEL ASSEMBLY.	5.8
5.5	PROTECT AND EQUIPMENT SELECT (BG) CARD, BOARD LAYOUT	5.10
5.6	ADDRESS CONTROL (BH) CARD, BOARD LAYOUT .	5.12
5.7	DATA AND CONTROL BUS INTERFACE (BJ) CARD, BOARD LAYOUT	5. 14
5.8	LONG-LINE DRIVERS (BM) CARD, BOARD LAYOUT	5. 16
5.9	FUNCTION CONTROL (BN) CARD, BOARD LAYOUT	5.18

LIST OF TABLES

NUMBER

1.1	EQUPPMENT CODE ASSIGNMENTS	1.4
1.2	DCT STATION ADDRESSES	1.5
1.3	CHANNEL ADDRESSES	1.8
1.4	MAXIMUM DCT STATION AND CHANNEL ASSIGNMENTS	1. 10
1.5	RESPONSE CONDITIONS	1. 12

LIST OF TABLES (Continued)

NUMBER
PAGE

1. 6 INTERRUPT LINE ASSIGNMENTS 1. 15
2.1 DCT COMMAND STRUCTURE 2.16
3.1 DCT SIGNAL AND PIN ASSIGNMENTS 3. 10
3.2 RESPONSE CONTROL LOGIC (CARD 18) 3.43
3.3 TYPICAL TRUTH TABLES 3.60
5.1 PARTS LIST - BALANCED LINE INTERFACE (AV) CARD 5.3
5.2 PARTS LIST - RESPONSE CONTROL (BB) CARD 5.5
5.3 PARTS LIST - ADDRESS DECODER (BE) CARD 5.7
5.4 PARTS LIST - PROTECT AND EQUIPMENT SELECT (BG) PANEL ASSEMBLY 5.95.5
PARTS LIST - PROTECT AND EQUIPMENT SELECT 5.11
5.6 PARTS LIST - ADDRESS CONTROL (BH) CARD 5.13
5.7 PARTS LIST - DATA AND CONTROL BUS INTERFACE (BJ) CARD. 5.15
5.8 PARTS LIST - LONG-LINE DRIVERS (BM) CARD 5. 17
5.9 PARTS LIST - FUNCTION CONTROL (BN) CARD 5.19
5.10 MODULE ASSEMBLY PARTS LIST 5. 20

INTRODUCTION

This manual contains logic diagrams, circuit descriptions, and programming information for the CONTROL DATA ${ }^{\circledR}$ * 1750 Data and Control Terminal (DCT). References are made in the text to Control Data manuals which describe invididual equipments in greater detail. Following is a list of Control Data publications that are applicable to the DCT.

1700 MAIN FRAME MANUALS

Publication NO.
Input/Output Specification Manual 60165800
Computer Reference Manual . 60153100
System Manual . 60152900

1500 SERIES/MISCELLANEOUS PERIPHERAL MANUALS

1572 Programmable Sample Rate Generator 39070900
1573 Line Synchronized Timing Generator 39071000
1574 Sequential Addressing Unit . 39073200
1577 Stall Alarm . 84781600
DTL Intebrid ${ }^{\circledR}$ Logic . 84785000

[^0]
Section One GENERAL DESCRIPTION

1.1
 GENERAL

The CONTROL DATA 1750 Data and Control Terminal (DCT) provides the control and interface to allow communication between the computer and CONTROL DATA ${ }^{\circledR} 1500$ Series I/O Peripheral Equipment. If optional devices, such as the CONTROL DATA ${ }^{\circledR} 1574$ Sequential Addressing Unit, 1572 Programmable Sample Rate Unit, 1573 Line Synchronized Timing Generator, and the 1577 Stall Alarm are used in the system, they are contained in the DCT module rack. Following are brief functional descriptions of these optional devices. Complete descriptions of the optional equipment can be found in their respective manuals. The remainder of this manual describes the DCT in detail.

1.2
 OPERATIONAL DESCRIPTION

The Data and Control Terminal connects to a CONTROL DATA ${ }^{\circledR} 1705$ Interrupt/Data Channel and provides a specialized interface for attaching industrial control and data acquisition equipment (see Figure 1.1). The DCT simplifies the logical decoding task of all devices attached to it by providing the following features which are time shared by all devices attached to the Data and Control Bus (DCB).
a. Computer Interface. The DCT provides party-line transmitters and receivers for all lines to the 1705 Interrupt/Data Channel, including transmitters for all 15 interrupt lines. (Refer to publication NO. 84785000 for details on party lines.)
b. Responses. All responses to Read and Write signals from the computer are predetermined by the DCT. No response is sent (resulting in an internal reject within the computer after a preset delay time of 4 microseconds) if the addressed device is not in the system or if it is too slow in acknowledging a data transfer. A Reject is sent if the addressed device is not ready. A Reply is sent only when the operation has been executed successfully.

FIGURE 1.1. SYSTEM BLOCK DIAGRAM

1.2.1 Connect/Addressing Requirements

The DCT must be assigned an equipment number, usually Equipment NO. 8 or NO. 9. Equipment NO. 8 is for DCT NO. 1; Equipment NO. 9 is for DCT NO. 2. The DCT is also assigned station addresses (0 and 1). Each device attached to the DCT is assigned a station address and/or channel addresses. A Connect command, which includes the equipment number and a station address, must be sent by the computer. A Continue command is sent for channel addresses. Following are brief descriptions of an equipment, station, channel, Connect command, and Continue command.
a. Equipment. An equipment is any device which occupies a position on the 1705 from the CONTROL DATA ${ }^{\circledR} 1700$ Computer. A maximum of eight equipments can be attached. A maximum of 16 addresses (0 through F) are available. (Refer to Table 1.1 for recommended equipment codes.)
b. Station. A station is contained within an equipment. Up to 128 station addresses are possible within the DCT. (Refer to Table 1.2 for recommended station assignments.)
c. Channel. A channel is contained within an equipment. (Refer to Table 1.3 for channel assignments.)
d. Connect command. Execution of the Connect command allows addressing of a specific equipment and a station within that equipment.
e. Continue command. Execution of Continue commands allows channel Read and Write instructions to be issued to channels within a specific equipment. (Refer to Section Two for Connect and Continue command formats.)

NOTE

The station and channel assignments in the following tables are recommended only.

The standard addresses listed in Tables 1.2 and 1.3 allow for a system equal to or less than the maximum listed in Table 1.4. Hardware restrictions may prevent these maximums from being realized. For systems exceeding the maximum in one or more areas, it is

TABLE 1.1. EQUIPMENT CODE ASSIGNMENTS

HEXADECIMAL EQUIPMENT CODES	DESCRIPTION
0	Unassigned
1	Low-Speed I/O Equipment (e.g., 1711, 1713, 1721, 1729)
2	1731 Magnetic Tape Controller
3	1751 Drum Interface/1738 Disk Pack Controller
4	1742 Line Printer
5	1749 Communications Terminal Controller
6	Remote I/O Controller NO. 2
7	Remote I/O Controller NO. 1
8	DCT NO. 1
9	DCT NO. 2
A	
B	
C	
D	
E	
F	

TABLE 1.2. DCT STATION ADDRESSES

STATION ADDRESS	EQUIPMENT ASSIGNED	$\begin{gathered} \text { INPUT } \\ \text { COMMAND } \end{gathered}$	$\begin{aligned} & \text { OUTPUT } \\ & \text { COMMAND } \end{aligned}$
007	DCT	1750 Status	1750 Function
01 Fixed	DCT	System Status	Acknowledge Interrupt from 1573
02	1572 Programmable Sample Rate Unit		
03	1572 Programmable Sample Rate Unit		
04			
05			
06			
07			
08			
09	1577 Stall Alarm	Status	Function
0A	1575 Limit Comparison Unit ${ }^{\text {a }}$		
0B	1575 Limit Comparison Unit		
0C	1575 Limit Comparison Unit		
0D	1575 Limit Comparison Unit		
OE			
0F			
10	1549 Interrupt Interface NO. 1 (00-15)	Status	Acknowledge Interrupt
11	1549 Interrupt Interface NO. 2 (00-15)	Status	Acknowledge Interrupt
12	1549 Interrupt Interface NO. 3 (00-15)	Status	Acknowledge Interrupt
13	1549 Interrupt Interface NO. 4 (00-15)	Status	Acknowledge Interrupt
14	1549 Interrupt Interface NO. $1(00-15)$	--	Set Mask
15	1549 Interrupt Interface NO. $2(00-15)$	--	Set Mask
16	1549 Interrupt Interface NO. 3 (00-15)	--	Set Mask
17	1549 Interrupt Interface NO. 4 (00-15)	--	Set Mask
18	1549 Interrupt Interface NO. 5 (00-15)	Status	Acknowledge Interrupt
19	1549 Interrupt Interface NO. 6 (00-15)	Status	Acknowledge Interrupt
1 A	1549 Interrupt Interface NO. 7 (00-15)	Status	Acknowledge Interrupt
1B	1549 Interrupt Interface NO. 8 (00-15)	Status	Acknowledge Interrupt
1 C	1549 Interrupt Interface NO. 5 (00-15)	--	Set Mask
$1 D$	1549 Interrupt Interface NO. 6 (00-15)	--	Set Mask
1 E	1549 Interrupt Interface NO. 7 (00-15)	--	Set Mask
1 F	1549 Interrupt Interface NO. 8 (00-15)	--	Set Mask
20	1547 Event Counter Interface NO. $1(0-\mathrm{F})$	Status	Acknowledge Interrupt
21	1547 Event Counter Interface NO. 1 (0-F)	--	Set Mask
22	1547 Event Counter Interface NO. 2 (0-F)	Status	Acknowledge Interrupt
23	1547 Event Counter Interface NO. 2 (0-F)	--	Set Mask
24	1547 Event Counter Interface NO. 3 (0-F)	Status	Acknowledge Interrupt
25	1547 Event Counter Interface NO. 3 (0-F)	--	Set Mask
26	1547 Event Counter Interface NO. 4 (0-F)	Status	Acknowledge Interrupt
27	1547 Event Counter Interface NO. 4 (0-F)	--	Set Mask
28	1547 Event Counter Interface NO. 5 (0-F)	Status	Acknowledge Interrupt
29	1547 Event Counter Interface NO. 5 (0-F)	--	Set Mask

TABLE 1.2. DCT STATION ADDRESSES (Continued)

STATION ADDRESS	EQUIPMENT ASSIGNED	$\begin{gathered} \text { INPUT } \\ \text { COMMAND } \end{gathered}$	$\begin{aligned} & \text { OUTPUT } \\ & \text { COMMAND } \end{aligned}$
2A	1547 Event Counter Interface NO. 6 (0-F)	Status	Acknowledge Interrupt
2B	1547 Event Counter Interface NO. 6 (0-F)	--	Set Mask
2C	1547 Event Counter Interface NO. 7 (0-F)	Status	Acknowledge Interrupt
2D	1547 Event Counter Interface NO. 7 (0-F)	--	Set Mask
2 E	1547 Event Counter Interface NO. 8 (0-F)	Status	Acknowledge Interrupt
2 F	1547 Event Counter Interface NO. 8 (0-F)	--	Set Mask
30	1581/1583 Typewriter Interface NO. 1	Data	Data
${ }^{31}$	1581/1583 Typewriter Interface NO. 1	Status	Function
32	1581/1583 Typewriter Interface NO. 2	Data	Data
33	1581/1583 Typewriter Interface NO. 2	Status	Function
34	1581/1583 Typewriter Interface NO. 3	Data	Data
35	1581/1583 Typewriter Interface NO. 3	Status	Function
36	1581/1583 Typewriter Interface NO. 4	Data	Data
37	1581/1583 Typewriter Interface NO. 4	Status	Function
38	1581/1583 Typewriter Interface NO. 5	Data	Data
39	1581/1583 Typewriter Interface NO. 5	Status	Function
3A	1581/1583 Typewriter Interface NO. 6	Data	Data
3B	1581/1583 Typewriter Interface NO. 6	Status	Function
3 C	1581/1583 Typewriter Interface NO. 7	Data	Data
3D	1581/1583 Typewriter Interface NO. 7	Status	Function
3 E	1581/1583 Typewriter Interface NO. 8	Data	Data
3 F	1581/1583 Typewriter Interface NO. 8	Status	Function
40	1581/1583 Typewriter Interface NO. 9	Data	Data
41	1581/1583 Typewriter Interface NO. 9	Status	Function
42	1581/1583 Typewriter Interface NO. 10	Data	Data
43	1581/1583 Typewriter Interface NO. 10	Status	Function
44	1581/1583 Typewriter Interface NO. 11	Data	Data
45	1581/1583 Typewriter Interface NO. 11	Status	Function
46	1581/1583 Typewriter Interface NO. 12	Data	Data
47	1581/1583 Typewriter Interface NO. 12	Status	Function
48	1558 Latching Relay Output Interface (1024)	Status	Function
49	1558 Latching Relay Output Interface (1024)	Status	Function
4A	1558 Latching Relay Output Interface (1024)	Status	Function
4B	1558 Latching Relay Output Interface (1024)	Status	Function
4 C	1558 Latching Relay Output Interface (1024)	Status	Function
4D	1558 Latching Relay Output Interface (1024)	Status	Function
4 E	1538 High-Speed, High-Level Analog Input Interfaca NO. 1	Status	Function
4 F	1538 High-Speed, High-Level Analog Input Interface NO. 2	Status	Function

TABLE 1.2. DCT STATION ADDRESSES (Continued)

TABLE 1.3. CHANNEL ADDRESSES

CHANNEL ADDRESS	EQUIPMENT ASSIGNED
DIGITAL	
000-OFF (R)	1544 Digital Input Interface: 256 words (16 controllers with 16 words each) $=4096$ bits
000-07F (W)	1553 External Register Output Interface: 128 words (8 words per controller $)=128$ DAC's or 2048 contact closure outputs less 2 words for each digital display
080-1FF (W)	1558 Latching Relay Output Interface: 384 words (64 words per controller) $=384$ DAC's or 6144 contact closure outputs. Each DAC relay module (16 DAC 's) requires 16 words, and each contact closure relay module (128 contact closures) requires 8 words even if the modules are partially filled. Assign the least significant addresses to the DAC's.
200-27F (R \& W)	1547 Event Counter Interface: 16 counters per controller for 8 controllers $=128$ counters
3 FE	Not Assigned
3 FF (R \& W)	160A I/O Channel
100-1FF (R)	Not Assigned (256)
280-3FD (R \& W)	Not Assigned (382)

TABLE 1.3. CHANNEL ADDRESSES (Continued)

CHANNEL ADDRESS	EQUIPMENT ASSIGNED
LOW-SPEED ANALOG	
$800-\mathrm{BFF}$ C00-FFF	1530A, 1530B, or 1534 Analog Input Interface NO. 1: (1024 points) 256 or 1024 per controller 1530A, 1530B, or 1534 Analog Input Interface NO. 2: (1024 points) 256 or 1024 per controller
HIGH-SPEED ANALOG	
$400-7 \mathrm{FF}(\mathrm{R})$ $400-7 \mathrm{FF} \text { (W) }$	1538 High-Speed, High-Level Analog Input Interface: (1024 points) 256 per controller 1561 High-Speed Analog Output Interface: (1024 points) 256 per controller for 4 controllers $=1024$

TABLE 1.4. MAXIMUM DCT STATION AND CHANNEL ASSIGNMENTS

QUANTITY	EQUIPMENT
4096	Digital inputs
6144	Latching contact closure outputs or 384 latching DAC outputs or a combination
2048	External register relay outputs or 128 DAC outputs less two words/digital display or a combination
128	Event counters
128	External interrupts
12	I/O typewriters
2048	Analog input relay multiplexer channels
1024	1538 High-Speed, High-Level Analog Input Interface channels
1024	1561 High-Speed DAC Output Interfaces
1	1577 Stall Alarm
1	1573 Limit Comparison Unit (optional)
1	1572 Programmable Sample Rate Unit (optional)
1	1797 Buffered I/O Interface
2	160A I/O Channels
10	Unassigned station addresses
382	Unassigned channel addresses

recommended that additional devices be assigned in the unassigned areas, even though addresses for a particular class of equipment may not be contiguous.

All responses to Read or Write signals from the computer through the 1705/DCT interface are controlled by the response control logic of the DCT. Conditions existing either at the DCT or at devices connected to the Data and Control Bus (DCB), determine the response to the Read or Write signal. The response conditions are arranged in Table 1.5 in order of precedence. The condition with the highest order of precedence determines the response, and all lower precedence conditions are ignored.

A device must be installed in the system (Here) and available (Ready) at the time of receipt of a Read or Write command. If either of these conditions is not established at the start of a Read or Write pulse or if a protect fault exists, the command is not executed. The device acknowledges receipt of the Read or Write execute signal from the DCT by dropping its ready line. If the ready line does not drop within 2 microseconds after the leading edge of the Read or Write pulse, no response is sent to the computer.

If the computer receives a Reply or a Reject or if no response has been received prior to the end of the Internal Reject delay time, the computer drops the Read or Write Ready input to the DCT and the response logic is cleared allowing the response control logic of the DCT to reset to the Ready state for the next input/output command. Timing of responses is determined by fixed delays with the response control logic. The basic response timing is summarized in Figure 1.2.

1.2.2 Addressing

All addresses are partially decoded in the DCT for easy recognition by connected devices. The Address Decoder is designed to decode the least significant bits (Q0 through Q11) of the address; this is done by binary decoding of the bits, two at a time, to form four addressing signals for each two bits. If the 1574 Sequential Addressing Unit is installed, the Address Decoder (Card 22) must be removed. The 1574 can be instructed to increment the address

TABLE 1.5 RESPONSE CONDITIONS

PRECEDENCE	CONDITION	RESPONSE
1 2 a 2 b 3 a 	Not connected and not a Connect command Unprotected command and PROTECT switch in position 2 Unprotected command and PROTECT switch in position 3 Addressed device Here and Ready: Generate REX or WEX and wait $2 \mu \mathrm{sec}$ from leading edge of Read or Write, then: If Ready drops in time and RJT is false If Ready drops in time and RJT is true If Ready does not drop in time Addressed device Here but not Ready Addressed device not Here 1574 Sequential Addressing Unit not in system: Sequential Setup or Sequential Status command Random Address command in mode 2 or 3 Any No-Address command Station Address 00 and Write (set DCT functions) Station Address 00 and Read (present DCT status) Station Address 01 and Write (1573 Line Synchronized Timing Generator): If 1573 not in system If 1573 interrupt sent If 1573 interrupt not sent Station Address 01 and Read (present system status)	None Reject Reply and Interrupt Reply Reject None Reject None None Reject Reject Reply Reply None Reply Reject Reply

NOTES:
A REJECT IS SENT INSTEAD OF A REPLY IF RJT IS TRUE WHEN READY DROPS.
A REJECT IS SENT INSTEAD OF AN EXECUTE If THE ADDRESSED DEVICE IS HERE AND NOT READY. NO RESPONSE IS SENT IF THE ADDRESSED DEVICE IS NOT HERE.

NO RESPONSE IS SENT IF READY DOES NOT DROP IN TIME (WITHIN 4.0μ SEC OF READ OR WRITE). ADDRESS BEING INCREMENTED FOR SEQUENTIAL OPERATION (NO-ADDRESS COMMAND ONLY).

1-1347B

FIGURE 1.2. RESPONSE TIMING DIAGRAM
after each data transfer and to cycle repeatedly between programmed first and last addresses. The CONTROL DATA ${ }^{\circledR} 1797$ Buffered I/O Interface/ 1571 Chaining Buffer Channel system (optional equipment) contains its own incrementing logic. A brief description of these options can be found at the end of this section.

1.2.3 Interrupt Lines

Fifteen interrupt lines are available for use by the DCT and all devices connected to the DCB. The priority of the interrupt lines is controlled by the computer program by use of the interrupt mask. The interrupt line(s) of any device can be connected to any interrupt line (01 through 15) by proper installation of jumpers on the interrupt plugboard of the device. No control or inhibit of the interrupts from devices connected to the DCB is maintained by the DCT, except for the interrupt status of the DCT. Provision for jumpering interrupts from options housed in the DCT module (refer to Section Three) is available on card position 5.

The basic 1705 Interrupt/Data Channel transfers the address information to the DCT on the Q-register lines and inputs or outputs data on the A-register lines. Data is input or output upon Read or Write commands issued by the computer on the A-Read or A-Write lines, respectively.

Table 1.6 lists the recommended line assignments. These assignments may be changed to meet particular system requirements.

1.2.4 Program Protect

The DCT and all other devices connected to the DCT contain a three-position PROTECT switch. The switch positions are labeled and function as follows:
a. OFF (Position 1). The Program Protect bit is ignored, no protect faults are recognized, and the Program Protect status bit is false.
b. REJECT (Position 2). A Reject signal is transmitted if the command is not protected, and the faulting command is not executed.

TABLE 1.6. INTERRUPT LINE ASSIGNMENTS

INTERRUPT LINE NUMBER	EQUIPMENT
0	Memory Protect/Parity
1	Low-Speed I/O
2	1573 Line Synchronized Timing Generator
3	1731 Magnetic Tape Controller
4	1751 Drum Interface/1738 Disk Pack Controller
5	1749 Communications Terminal Controller
6	1584 I/O Typewriter
7	1545 Digital Input Sync Unit
8	1530/1534 Analog Input Interface
9	1558 Latching Relay Output Interface
10	1547 Event Counter Interface
11	Unassigned
12	Unassigned
13	Unassigned
. 14	Unassigned
15	Unassigned

c. INTERRUPT (Position 3). A Reply signal is transmitted if the command is not protected, but the faulting command is not executed, and the interrupt output becomes true.

1.3

OPTIONS

The DCT module provides space for the addition of up to three optional units. While these do not form a part of the DCT itself, they occupy the same module as the DCT. The units are the 1574 Sequential Addressing Unit, 1572 Programmable Sample Rate Unit, 1573 Line Synchronized Timing Generator, and the 1577 Stall Alarm.

1.3.1 $\quad 1574$ Sequential Addressing Unit

This unit provides automatic scanning of channel addressing and is an alternate replacement unit for the Address Decoder. The 1574 and the Address Decoder are controlled by common signals and perform similar, but not identical, functions; they cannot both be used with the same DCT. The 1574 must be provided with a first channel address (FCA) and a last channel address plus one (LCA), which are specified by the program. A counter in the 1574 starts at the first channel address and is successively incremented until the last channel address is reached. The counter then recycles, starting again at the first channel address.

Random Address commands can be executed to sample a single address without disturbing the sequence, and a sequence can be modified to skip or repeat a group of channels at any time under the program control.

1.3.2 $\quad 1572$ Programmable Sample Rate Unit

The 1572 Programmable Sample Rate Unit can be operated either as an elapsed-time accumulator or as an interval generator. In the Elapsed-Time mode, it accumulates counts from a time base, and the counter is examined under program control. In the Interval mode, the program specifies a count value, and the 1572 accumulates the time base until the specified count value is reached; at this point an interrupt is generated.

A timing signal is also generated and distributed to the peripherals via the DCB. The 1572 obtains its time base from the 1573 Line Synchronized Timing Generator, a self-contained oscillator, or an external source.

1.3.3 1573 Line Synchronized Timing Generator

The 1573 Line Synchronized Timing Generator provides a timing pulse output and interrupts at selectable frequencies between 60 Hz and 7680 Hz that are multiples of and synchronous with the 60 Hz power line. The interrupt can be used to initiate computer programs. The timing pulse can be used by the 1572 Programmable Sample Rate Unit or by other peripheral devices.

1.3.4 1577 Stall Alarm

The 1577 Stall Alarm detects system malfunctions caused by nonterminating loops or similar errors in the computer program; it also detects power failures. The stall alarm contains a "watchdog timer" that must be periodically reset by the computer program by means of a function command. If the program fails to reset the timer within a given period, the 1577 produces a Stall condition. A Stall condition causes a computer interrupt, actuates an audible alarm, produces a contact closure for controlling external equipment, and may inhibit further data transfers to some of the I/O systems. In the case of a power failure, the 1577 causes an interrupt to inform the computer of the failure.

1.4 SYSTEM OPTIONS

The 1571 Chaining Buffer Channel is a system option that is used in conjunction with the 1797 Buffered I/O Interface. The 1571 is similar to the 1574 Sequential Addressing Unit in that it also provides automatic sequential channel addressing. The 1571, however, can be operated in a Buffered or Nonbuffered mode. The Buffered mode is via the Direct Storage Access (DSA) bus, and the Nonbuffered mode is via the A/Q channel and the DCB. If a 1571 is used in the system, a 1574 is not used.

1.5 PHYSICAL DESCRIPTION

1.5.1 General

The DCT is contained within a standard Control Data 19 -inch module. The module provides connectors and card guides for the DCT and for the following additional logic units (see Figure 1.3 for a card position diagram) :
a. Address Decoder (standard for the DCT).
b. 1572 Programmable Sample Rate Unit.
c. 1573 Line Synchronized Timing Generator.
d. 1574 Sequential Addressing Unit.
e. 1577 Stall Alarm.

The card connectors are numbered from left to right, 01-42, as viewed from the front of the module. The connector pins are numbered from top to bottom, 01-50. Assignment and wiring of the connectors for the units listed above are as follows:
a. Connectors $02,04,06$ Used as cable connectors for the DCT (DCB).
b. Connector 05 Used to jumper interrupts from within DCT module to desired interrupt lines.
c. Connectors 07-21 Contain the DCT logic cards.
d. Connector 22 Contains the Address Decoder card (if used).
e. Connectors 23-28 Contain the 1574 Sequential Addressing Unit (if used).
f. Connectors 29-31
g. Connectors 32-33
h. Connectors 34-39
i. Connector 40
j. Connector 41

Oscillator card (1572).
k. Connector 42

Spare connectors.
Contain the 1573 Line Synchronized Timing Generator (if used).

Contain the 1572 Programmable Sample Rate Unit (if used).

Spare connector.

Contains stall alarm logic.

* Remove Card 22 before installing a 1574 unit.

FIGURE 1.3. CARD LOCATION DIAGRAM

1.5.2 Dimensions

Width	Standard 19-inch RETMA relay rack mounting
Height	Standard 7-inch RETMA relay panel
Depth	16 inches
Weight	35 pounds

1.5.3 Cooling

Cooling for the module is provided by fans mounted in the rack. All operating specifications are met with an ambient air temperature of $40^{\circ} \mathrm{F}$. to $120^{\circ} \mathrm{F}$. and a relative humidity of 0 percent to 95 percent excluding conditions where condensation takes place in and on the equipment in the form of water and/or frost.

1.6
 ELECTRICAL REQUIREMENTS

1.6.1 Power

Two integral power supplies are included in the module. Primary power to these supplies is $208 \mathrm{~V}, 3$-phase, $400-\mathrm{Hz}$ which is provided by a self-contained MG set or is customer supplied. Power supplied to the printed circuit cards is ground, +6 volts, and -6 volts. The +6 VDC and ground lines are distributed by bus bars. The -6 VDC is wired from connector to connector using wire-wrap techniques. The back plane (chassis) is also used for ground, and pins 2 and 50 of each connector are connected directly to the ground plane. Supplied by a cable from the computer is ± 20 volt terminator power for the computer interface.

1.6.2 Logic Levels

Logic levels within the DCT are as follows:

False or " 0 " $=+0.9$ to +1.1 VDC
True or " 1 " $=+1.8$ to +3.0 VDC (nominal)

Section Two
 OPERATION AND PROGRAMMING

2.1 GENERAL

The Data and Control Terminal is programmed using the Input-to-A and Output-from-A commands. For the programming descriptions following, it is assumed that the programmer is familiar with CONTROL DATA 1700 Computer System programming formats and all general 1700 programming procedures. For further information on programming, refer to the CONTROL DATA 1700 Computer Reference Manual and System Manual.

2.2 DATA TRANSFER OPERATIONS

There are four types of data transfer operations: digital output, digital input, analog output, and analog input. Any of these can be executed using Random Address commands or, if the 1574 Sequential Addressing Unit is present, No Address commands can be used.

2.2.1 Digital Output

A digital output consists of transferring one 16 -bit word which can be used as a binary quantity, in the form of 16 discrete " 0 " or " 1 " values or any combination thereof. The combination is determined only by the output's use by equipment external to this system. The 16 bits are usually stored in flip-flops or relays in a digital output unit or in external equipment.

2.2.2 Digital Input

A digital input can be any combination of binary values and discrete bits making up the 16-bit word. Each bit or group of bits meaning is determined only by the source of information.

2.2.3 Analog Output

An analog output is similar to a digital output, except that the significant bits are stored in the holding register of a digital-to-analog converter. The command is rejected if a conversion is in progress at the time.

2.2.4 Analog Input

Analog input operations require more sophisticated programming techniques because an analog-to-digital (A/D) conversion takes longer than the 4 microseconds allowed by the computer. The data transferred when an analog input command is executed is the result of the previous A / D conversion. The command is rejected if a conversion is in progress at the time. Another A/D conversion is started at the specified address except when the input command is a Random Address command with mode equal to " 0 " or a No-Address command with a " 1 " in bit 0 .

2.3 COMMAND FORMATS

In general, command formats recognized by the DCT are analogous to those used by other equipments connected to the computer (refer to the Computer Reference Manual). Accordingly, four command formats are possible on the A/Q channel, i.e., Connect/Function, Status and Connect, Data Transfer, and Sequential Operations. The function and status bit assignments for the DCT and associated equipment are summarized below.

FUNCTION WORD BIT ASSIGNMENTS (STATION 00 OUTPUT)

STATUS WORD BIT ASSIGNMENTS (STATION 00 INPUT)

STATUS WORD BIT ASSIGNMENTS (STATION 01 INPUT)

2.3.1 Connect/Function Commands

When the contents of the Q-register conform to the format for a Connect command as shown below, the contents of the A-register control the functions of the DCT. For Function and Connect commands, the W -field must be " 0 ", and the station address must be " 0 " to address the DCT. The E-field must contain the equipment number of the DCT. The DCT contains a thumbwheel switch for setting the equipment number (usually set to equipment NO. 8 for DCT NO. 1 and equipment NO. 9 for DCT NO. 2). When an Output-from-A command is executed under these conditions, Function and Connect command is executed.

When the Connect/Function command is executed, the equipment number in the E-field sets the Connect flip-flop in the DCT and connects the DCT to the computer. A data transfer cannot take place unless the DCT is connected. The Connect flip-flop stays set regardless of the number of new Connect commands as long as the E-field contains the equipment number of the DCT (8 or 9) and the station address is for the DCT or one of the attached devices. The Connect flip-flop is reset by any Connect command addressed to an equipment other than the DCT. The Connect flip-flop is not reset by a clear function.

When the computer executes the Output-from-A instruction, the bits in the A-register control the functions of the addressed station. Refer to the appropriate module manuals for function bit assignments.

STATION ADDRESSES

Bits 0 through 6 of a Connect command are defined as a station address. Station addresses are used to communicate with subsystem interfaces and other devices connected directly to the DCT. Station address 00 is reserved for commands (function and status) directed to the DCT itself.

Execution of an input to station 01 is used to input status from the 1572 and 1577. Execution of an output to station address 01 is used to acknowledge an interrupt from the 1573. The A-register is not used for this operation. No response is sent if the 1573 is not present. A Reply is sent if the 1573 is present, has sent an interrupt, and the interrupt is reset. A Reject is sent if the 1573 is present but has not sent an interrupt.

Station addresses 02 and 03 are reserved for use by the 1572 option within the DCT module. Station addresses 60 through 6F (hexadecimal) are reserved for use by devices connected to the 1797 Buffered I/O Interface.

The values 70 through 7 F are not allowed as station addresses because of the restriction that a command with a " 1 " in bits 4,5 , and 6 is a No Address Data Transfer command.

The remaining 92 station addresses, 04 through 5 F (hexadecimal), are reserved for assignment to individual stations connected to the DCT.

FUNCTION CODES

Clear DCT Analog-to-Digital Subsystems Controller (A0 = "1")

This code clears all interrupt selections and signals, error indications, and other clearable conditions. It cannot be used in conjunction with other function codes. This is the same as a Master Clear, except that the DCT is connected.

Clear Protect Fault Interrupt (A1 = "1")

This code clears the interrupt signal generated by a protect fault. The code can be used in conjunction with other function codes. This interrupt can also be reset by clearing the controller or by a Master Clear.

Clear End-of-Sequence Interrupt (A2 = "1")

This code clears the interrupt signal generated by the completion of a sequential addressing operation by the 1574 option. This interrupt can also be reset by clearing the controller or by a Master Clear.

Clear External Sync Interrupt (A3 = "1")

This code clears the interrupt received from an external synchronizing source.

Disable End-of-Sequence Interrupt (A4 = "1")

This code disables the interrupt sent by the 1574 upon completion of an addressing sequence. The interrupt is prevented from reaching the computer, but bit 8 of the DCT status is set by End of Sequence.

Enable End-of-Sequence Interrupt (A5 = "1")

This code enables the interrupt sent by the 1574 at the end of a sequence. The interrupt is sent to the computer, and bits 2 and 8 of the DCT status are set.

Disable External Synchronizing Interrupt (A6 = "1")

This code disables the interrupt sent by an external synchronizing source. The interrupt is prevented from reaching the computer, but bit 3 of the DCT status is set.

Enable External Synchronizing Interrupt (A7 = "1")

This code enables the interrupt generated by an external synchronizing source. The interrupt is sent to the computer, bit 3 of the DCT status is set, and a signal may or may not be sent on the SYNC2 line of the DCB depending on whether or not that signal is enabled or disabled.

Disable External SYNC from SYNC2 Line (A10 = "1")

This code prevents the transmission of a signal received from an external synchronizing source to the SYNC2 line of the DCB.

Enable External SYNC to SYNC2 Line (A11 = "1")

This code enables an external sync signal to be transmitted on the SYNC2 line of the DCB.

Disable 1573 Output from SYNC1 Line (A12 = "1")

This code prevents the transmission of a signal received from a 1573 Line Synchronized Timing Generator to the SYNC1 line of the DCB.

Enable 1573 Output to SYNC1 Line (A13 = "1")

This code enables the signal from a 1573 to be transmitted on the SYNC1 line of the DCB.

Disable 1573 Interrupt (A14 = " 1 ")

This code disables the interrupt sent by the 1573. The interrupt is prevented from reaching the computer, but bit 4 of the DCT status is set.

Enable 1573 Interrupt (A15 = "1")

This code enables the interrupt sent by the 1573. The interrupt is sent to the computer, and bit 4 of the DCT status is set.

2.3.2 Status and Connect

When the contents of the Q-register conform to the format for Function and Connect commands, the status of the DCT is loaded into the A-register when an Input-to-A command is executed. For Status and Connect commands, the W -field must be 00 , the station must be 00 , and the E -field must contain the equipment number of the DCT.

Execution of this command connects the DCT to the computer.

If station address bits are present when the computer executes the Input-to-A instruction, the status of the addressed station is loaded into the A-register. Refer to the appropriate manuals for status word bit assignments for particular units (stations).

STATUS CODES (STATION 00)

DCT Ready (A0 = " 1 ")

The DCT is always Ready, i.e., any allowable operation can be performed on request, except while being reset by a Master Clear. Thus, this bit is always set in the status word except when the MASTER CLEAR button on the DCT is depressed.

Protect Fault Interrupt (A1 = "1")

Bit A1 is set whenever an unprotected I/O command is received by the DCT and the PROTECT switch is in position 3. An interrupt is generated and a Reply is sent; however, no other action is taken. This bit is cleared when the interrupt signal is cleared.

End-of-Sequence Interrupt (A2 = "1")

Bit A2 is set when the 1574 has generated an interrupt upon completion of an addressing sequence, the interrupt was enabled, and the interrupt has not been acknowledged.

External Sync Interrupt (A3 = "1")

Bit A3 is set when a synchronizing interrupt has been received by the DCT from an external sync source. Bits in the station 00 function word enable an external sync signal to cause an interrupt and/or cause the signal to be transmitted on the SYNC2 line of the DCB. The station 00 function word is also used to reset these interrupts.

Line Synchronized Timing Interrupt (A4 = "1')

Bit A4 is set when a synchronizing interrupt has been received by the DCT from the 1573 Line Synchronized Timing Generator. Bits in the DCT station 00 function word enable the 1573 to send interrupts and/or send a signal on the SYNC1 line of the DCB. A Write command at DCT station address 01 is used to acknowledge an interrupt from the 1573. (Bit A4 is present as a status bit regardless of whether the interrupt is enabled or disabled.)

1574 in the System (A5 = "1")

Bit A5 is set whenever a 1574 is connected to the DCT.

1573 in the System (A6 = " 1 ")

Bit A6 is set whenever a 1573 is connected to the DCT.

Protected (A7 = "1")

This bit is set whenever the DCT's PROTECT switch is in position 2 or 3.

End of Sequence (A8 = "1")

Bit A8 is set when the 1574 is precisely at the end of an addressing sequence.

External Sync Enabled to SYNC2 Line (A9 = "1")

Bit A9 is set when the external synchronizing input has been connected to the SYNC2 line of the DCB. This bit is reset when the external sync is disabled from the SYNC2 line.

2.3.3 Data Transfer Commands

Data Transfer commands are used for Read or Write operations at specified channel addresses. The channel address may be specified in the command (Random Address) or it may have been previously set up (No Address commands) if a 1574 Sequential Addressing Unit is in the system.

DATA TRANSFER COMMAND FORMAT

The general format for data transfer commands is shown below. In Data Transfer command the Q-register contains a " 1 " in bit 15 and an Input-to-A or Output-from-A command is executed indicating the "connected" flip-flop of the DCT is set. If a Connect command has not been previously executed, the DCT does not respond and the computer generates an Internal Reject.

RANDOM ADDRESS COMMANDS

Random Address commands are Data Transfer commands with a " 0 " in bit 14 . The channel address is always specified by bits 0 through 11 of the Q-register. Bits 12 and 13 specify 1 of 4 operating modes as follows:
a. Random Address Read Only (Mode $=00$). This mode causes data to be read from the indicated channel without starting another conversion. The sequence of a sequential operation using the 1574 is not affected. No execute signal is generated in this mode.
b. Random Address Execute $(M o d e=01)$. This mode causes a data transfer to be executed at the specified channel. The sequence of a sequential operation using the 1574 is not affected.
c. Random Address and Lockup (Mode $=02$). This mode is rejected if the 1574 is not present in the system. A data transfer is executed at the specified channel address and the next address in the sequence is set equal to the specified address.
d. Random Address and Increment (Mode $=03$). This mode is rejected if the 1574 is not present in the system. A data transfer is executed at the specified channel address and the next address in the sequence is set equal to one greater than the specified address.

CHANNEL ADDRESSES

Bits 0 through 11 of a Data Transfer command are defined as a channel address. Channel addresses are used to communicate with units connected to the stations. Bits 10 and 11 of the channel address select the type of unit to be addressed as illustrated below.

CHANNEL ADDRESS UNIT TYPE BIT ASSIGNMENTS

Unique channel addresses (bits $0-9$) must be assigned to all channels connected to stations of the same typé.

NO ADDRESS COMMANDS

As No Address command is a command with " 1 's" in bits 4,5 , and 6 as shown below.

NO ADDRESS DATA TRANSFER COMMAND FORMAT

Bits 0 through 3 specify special operating conditions. The channel address for sequential operations is controlled by the 1574 Sequential Addressing Unit; No Address commands are rejected if the 1574 is not in the system.

Bits 2 and 3 can be used to change from an analog channel to a digital channel of the same address or vice versa. No change is made if bit 3 is " 0 ;" however, if bit 3 is " 1, " bit 2 is temporarily substituted for bit 10 of the address previously set up if bit 11 of that address is "0."

A " 1 " in bit 1 causes the channel address to be incremented after the data transfer.

Bit 0 indicates that the Read Execute signal should be inhibited. A No Address input command with a " 1 " in bit 0 may be used to read the result of an alog-to-digital conversion without starting another conversion. No response is sent to a No Address output command with a " 1 " in bit 0 .

2.3.4 Sequential Operation Commands

Sequential addressing operations are made possible by the 1574 Sequential Addressing Unit or the 1571 Chaining Buffer Channel. A reject is sent from the DCT when Sequential Operation commands are executed if a 1574 or 1571 is not in the system. The A-register is used for addresses instead of for function or status bits when Sequential Address commands are executed.

Sequential operations for data transfer are executed in the Direct mode using No Address commands (1574 only). The channel address may be incremented (for the 1574) on each data transfer or at selected times as desired. Incrementing of channel addresses using the 1571 is automatic after initial setup. Bits 10 and 11 of the channel address are never incremented since they are used to select the type of unit instead of for channel selection.

Random Address operations can be executed in modes zero or one without disturbing the sequence of a sequential operation. Random Address operations in modes two or three are used only by the 1574 and can be used to change the sequence at any time.

The A- and Q-register formats for Sequential Operation Setup commands are shown below. Sequential setup is accomplished when bit 14 and bit 15 are " 1 's," the registers are loaded as indicated, and the computer executes an Output-from-A command. Bit 15 indicates the channel address; bit 14 indicates a sequential address setup. Since setup commands are in the form of a Data Transfer command, the DCT must have been connected previously.

SEQUENTIAL OPERATION SETUP COMMAND FORMATS

SEQUENTIAL STATUS

The A- and Q-register formats for Sequential Operation Status commands are shown below. When the Q-register is loaded as indicated and the computer executes an Input-to-A command, the A-register receives the next channel address from the 1574 in bits 0 through 11. The same word as used for a Sequential Setup may be left in the Q-register, since bits 0 through 11 are ignored. This status command can be executed while a sequential operation is in progress to determine how much of a block has been transferred.

SEQUENTIAL OPERATION STATUS COMMAND FORMATS

Table 2.1 summarizes all allowable DCT commands.

2.4 INTERRUPTS USAGE

Refer to Appendix A for a discussion of DCT interrupts usage.

TABLE 2.1. DCT COMMAND STRUCTURE

Section Three
THEORY OF OPERATION

SIGNAL NAME	INPUT/OUTPUT	DEFINITİON
INPUT SIGNALS TO DCT FROM 1705		
$\begin{aligned} & \text { Q0-Q15 } \\ & \text { A0-A15 } \\ & \text { WEZ } \\ & \text { MCL } \\ & \text { PRO } \\ & \text { READ } \\ & \text { WRITE } \end{aligned}$	$\begin{aligned} & 7,9,11,13,15,18,19 \\ & 10,12,14,16 \\ & 7 \\ & 7 \\ & 7 \\ & 18 \\ & 18 \end{aligned}$	Q-Register Inputs A-Register Inputs W-Field Equals Zero Master Clear Program Protect Bit Read Command Write Command
OUTPUT SIGNALS TO 1705 FROM DCT		
RPY RJT NT01-NT15 A00-A15 S1771 S1785 S1788 Q00A-Q15B ADD 1A WHR SYN 1 SYN2 FNCT PRDT MCL REX	$\begin{aligned} & 15 \\ & 18 \\ & 18 \\ & 9,11,13,15 \\ & 10,12,14,16 \\ & \\ & \cdots \\ & 23-28 \\ & --1,-11,-13,15, \\ & 19,22,25,26,28 \\ & 19 \\ & 19 \\ & 9,13 \\ & 9,17 \\ & 7,20 \\ & 2,7,42 \\ & 7 \\ & 19 \end{aligned}$	Character Input Reply Reject Interrupt Lines 01-15 A-Register Outputs 1573 Grounds This Signal 1574 Grounds This Signal 1572 Grounds This Signal Condition Q-Register Bits Add " 1 " to 1574 Register (Q12 - Q14 - Q15) Write Here Sync Source NO. 1 Sync Source NO. 2 Function Protect Master Clear Read Execute

SIGNAL NAME	INPUT/OUTPUT	DEFINITION
INTERNAL CONTROL SIGNALS (Continued)		
WEX ADD1B NAD SRS PRO2 PRØ3 CNCT CONR	$\begin{aligned} & 17,19 \\ & 9,19 \\ & 19 \\ & 19 \\ & 7,18 \\ & 7,18 \\ & 7 \\ & 7 \end{aligned}$	Write Execute Add " 1 " to 1574 Register (No Address - Q01) No Address Status Read PROTECT Switch in Position 2 PROTECT Switch in Position 3 Connect Reset
ADDRESS DECODER SIGNALS		
CSA $0-\mathrm{CSA} 3$ CSB0-CSB3 CSC0-CSC 3 CSD0-CSD3 CSE0-CSE 3 DIGT ANA1 ANA2 ANA3 EØS DDT RDT EDT	$\begin{aligned} & 20,22 \\ & 8,17,21,22 \\ & 8,17,21,22 \\ & 8,17,21,22 \\ & 8,17,21,22 \\ & 22 \\ & 22 \\ & 22 \\ & 22 \\ & 22 \\ & 18,22 \\ & 22 \\ & 22 \end{aligned}$	Decoded Address Bits 8,9 Decoded Address Bits 6,7 Decoded Address Bits 4,5 Decoded Address Bits 2,3 Decoded Address Bits 0,1 Digital Input or Output (Address 0XX) Analog 1 (Address 4XX) Analog 2 (Address 8XX) Analog 3 (Address CXX) End of Sequence (Grounded by This Card) Disable Data Transfer EDT (NAD + RAL) Reject Data Transfer EDT (NAD + RAL) Enable Data Transfer (Grounded by Cards 23-28)

GLOSSARY OF TERMS (Continued)

SIGNAL NAME	InPUT/OUTPUT	DEFINITION
1574 SEQUENTIAL ADDRESSING UNIT SIGNALS		
CØMP	23-28	Compare
SASS		Sequential Address and Setup
SAM1		Sequential Address Module 1
SAM2		Sequential Address Module 2
NAD		No Address
NLK		1574 Interlock
RAL		Random Address and Lockup
EøS		End of Sequence
NA		Next Address Register
PA		Present Address Register
FA		First Address Register
LA		Last Address Register
CARY		Carry from Preceding Stage of Register
RNA		Read Next Address Register
NAPA		Copy Next Address to Present Address Register
FAPA		Copy First Address to Present Address Register
PANA		Copy Present Address into Next Address Register and Add " 1 "
QTPA		Copy Q-Register Bits into Present Address Register
RNAR	23-28	Read Next Address Register

SIGNAL NAME	INPUT/OUTPUT	DEFINITION
DCT InPUT AND OUTPUT LINES		
CHL	20	Channel Address
STA	20	Station Address
EOS	23	End of Sequence
SAM1	20, 42	Sequential Addressing Module 1
SAM2	20, 42	Sequential Addressing Module 2
REX	20	Read Execute
WEX	20	Write Execute
PRD	20	Protected Command
UNPF	20	Unprotected (False)
SYN1	20	Sync NO. 1
SYN2	17	Sync NO. 2
MCL	7	Master Clear
CINF	15	Character Input (False)
RJTF	18	Reject Unconditionally (False)
RHRF	18	Read Here (False)
RRYF	18	Read Ready (False)
WHRF	18	Write Here (False)
WRYF	18	Write Ready (False)
CSA0-CSE3	20, 21	Decoded Address Lines
DIG	20	Digital
ANA1	20	Analog NO. 1
ANA2	20	Analog NO. 2
ANA3	20	Analog NO. 3
AR00F-AR15F	9, 11, 13, 15	A-Read Lines 00-15 (False)
ST00F-ST 15F	$9,10,11,13,15$	Status Lines 00-15 (False)
AW00-AW15	8	A-Write Lines 00-15
NT01F-NT15F	9, 11, 13, 15	Interrupt Lines 01-15 (False)
PRØSF	7	PROTECT Switch in DCT Off

The 1750 Data and Control Terminal receives function and addressing information in

 the form of line-to-line differential voltages of the order of 0.5 volts with a complete voltage reversal distinguishing a " 1 " from a " 0 ."For a logical " 0, " the odd numbered line of the pair (e.g. , A1) is at +0.25 V and the even numbered line of the pair (e.g., A2) is at $\mathbf{- 0 . 2 5 V}$. For a logical " 1, " these voltages reverse so that the even numbered line is at +0.25 V and the odd numbered line is at $\mathbf{- 0 . 2 5 V}$.

The Q-register and the A-register configurations of the 1700 Computer are transmitted to the DCT with the Q-register containing the W-field, the equipment number in the E -field, and the address (if applicable) in the lower order 7 bits. The A-register contains either the function code or the address. Table 2.1 defines the configuration of the A- and Q-registers during input/output operations.

In addition to the A- and Q-register transfers, inputs are provided for 15 interrupt lines. These interrupts can be generated within the DCT or within any of the devices connected to the DCT.

TYPICAL DATA AND CONTROL BUS INPUT AND OUTPUT CONFIGURATIONS

3.2.1 Input Configuration

Figure 3.1 shows the typical configuration of input lines from devices connected to the DCT. Each input line forms a continuous AND gate because of the connection of the input signals through the output diodes of the line drivers within the devices. Since inverted logic levels are provided for the output signals from the devices, the net effect is the formation of a continuous OR. The gate implemented by this configuration performs an OR operation on the incoming signals from the devices, and the output of the receiver within the DCT is the logical sum of all the input signals. This output is a " 1 " if the output frọm any device is a " 0 " state signal.

3.2.2 Output Configuration

Figure 3.2 shows the typical configuration of the output line connections for devices connected to the DCT. Each DCT line output driver is capable of driving 40 diode input loads. An isolation diode must be provided for each signal line within each device connected to the DCT. A maximum of two loads are used within any device for each input signal.

FIGURE 3.1. TYPICAL DCB INPUT CONFIGURATION

FIGURE 3.2. TYPICAL DCB OUTPUT CONFIGURATION

3.3
 FUNCTIONAL DESCRIPTION

Information received by the DCT is handled by the A-register interface, the Q-register receivers (Address Control), and the PROTECT and EQUIPMENT NUMBER switch logic. Control of information flow during input/output information transfers is maintained by the function control and response control logic. Addressing of devices connected to the DCT is established by either the Address Decoder or the 1574 Sequential Addressing Unit. These are mutually exclusive options and only one should be installed in any DCT. If both or parts of both are accidentally installed, a logical interlock system inhibits data transfers until the duplication is eliminated. The interrupts from the DCT and its connected devices are transmitted to the 1705 by the interrupt line transmitters. The function of each of the logic blocks shown in Figure 3.3 is briefly described in the following paragraphs.

3.3.1 A-Register Interface

The A-register interface logic provides an interface for all data and status information between the 1705 and the stations and channels connected to the DCT. The bipolar inputs are received from the A-register transmitters of the 1705 , changed to logic levels (0 volts $=" 0, "+3$ volts $=" 1$ ') for transmission to the devices connected to the DCT. Signals originating at the stations are received by line terminators changed to bipolar levels by the transmitters, and transmitted to the 1705 . Control of this information flow is maintained by the DCT function and response control logic with initiation of control by the computer Read/Write signals.

3.3.2 Q-Register Receivers

Q-register bits Q00 through Q06 and Q11 through Q15 are received by this logic block, changed to logic level signals, and output to the Address Decoder, the 1574,
and the PROTECT and EQUIPMENT NUMBER switch logic. These bits provide the basic connect and addressing configuration which are decoded to form the various basic control signals.

3.3.3 PROTECT and EQUIPMENT NUMBER Switches

The remaining Q-register bits, the Master Clear, $\mathrm{W}=" 0, "$ and the Program Protect bits are received by this logic block, changed to logic level signals, and compared to the switch settings to originate control signals used by the function and response control logic blocks.

3.3.4 Response Control Logic

This block of logic receives the Read or Write command from the 1705 and the Here, Ready, and Character Input signals from the DCB. The bipolar signals received from the stations connected to the DCB are received as logic levels, and, in some cases, AND'ed with control signals from the function control logic, then changed to bipolar signals and transmitted to the 1705. This block provides the final response to be transmitted to the computer. In cases where no execution of the instruction has occurred, a response is simulated.

3.3.5 Function Control Logic

This logic controls the basic functions of the DCT for transmission, generation, and retrieval of information. Inputs are received from all other logic blocks and from the DCB. The inputs are decoded, interpreted, and combined to control the flow of information to and from the devices connected to the DCT. Decisions regarding disposition of all information transfers are made in this block, with the control information from all other blocks.

Interrupt Interface

The interrupt interface provides line terminators for interrupts generated at the stations or the DCT and transmitters to change these inputs to bipolar signals for transmission to the computer.

3.3.7 A-Write Line Drivers

This block receives the logic level outputs of the A-register interface block and transmits the A-register configuration to the stations continually except during transmission of A-read or status information to the 1705.

3.3.8 A-Read and Status Terminators

This block of logic receives the logic level inputs from the stations which are gated by control signals into the A-register interface block

3.3.9 C/S Line Drivers

This is a block of line drivers which receives the C / S (Channel/Station Address) inputs from either the Address Decoder or the 1574 and transmits the address control signals to the stations.

3.3.10 End of Sequence

A single line driver is provided for the End-of-Sequence signal from the 1574. This driver is located on a 1574 card and is not used if the 1574 is not installed

Control Line Drivers

This block of drivers provides amplification for the control signals transmitted to the stations. The inputs to this block are provided by the function control and Address Decoder logic blocks. The input control signals are received, in some cases inverted, and amplified for transmission on the DCB lines.

3.3.12 Address Decoder

This block provides decoding for the lower bits of the Q-register. The bits are decoded two at a time to provide four control outputs for each two bits. These outputs are labeled CSA0 through CSE3, with CSE0 through CSE3 decoded from the two lowest order bits of the Q-register.

Q11 is also decoded for special functions within this block. This block and the 1574 are mutually exclusive, and if the 1574 is installed, this block, which is implemented by Card 22, should be removed.

3.3.13 1574 Sequential Addressing Unit

This is an alternate option to the Address Decoder and is used instead of, but not in addition to, the Address Decoder. The 1574 is implemented on cards in positions 23 through 28 , all of which must be removed if the 1574 is not used. The 1574 provides a group of four interconnected registers to retain the addresses during sequential addressing operations. The four 8 -bit registers are labeled Last Address register, First Address register, Next Address register, and Present Address register.

- card 22 is removed if the 1574 module is installed.
table 3.1. DCt Signal and pin assignments

All communications to and from the computer are via the A / Q cables connected to the DCT. Each interrupt is cabled separately from the DCT to the computer. (See Table 3.1 for DCT pin assignments and Figure 3.4 for DCT cabling.) All communication between the DCT and 1500 Series Peripherals is via the Data and Control Bus (DCB) which originates at the DCT.

The DCB is a two-way communication bus that originates at the DCT in card positions 2, 4, and 6. The DCB is connected to each cabinet rack that contains a controller and is connected from controller to controller in a serial fashion by 50 -pin wired connectors (see Figure 3.5). Terminator boards are installed in card positions 2,4 , and 6 of the last controller rack of the serial string.

Figures 3.6 through 3.10 list the signal and pin assignments for the DCB connectors that are in card positions 2 through 6. Master Clear (MCL) originates from four parallel diodes of a standard logic element in the DCT and appears in true orientation on the DCB. All other signals originate from four parallel diodes of standard logic elements in devices on the DCB; these signals appear in inverted orientation on the DCB. Card position 3 contains the jumpering for the 1577 Stall Alarm channel/ station lines, interrupts, and status. Card position 5 contains the jumpering for signals and interrupts for other optional equipment.

All of the channel/station lines (CSAX, CSBX, CSCX, CSDX, and CSEX) are jumpered from various card positions in the controller module rack to the required DCB lines. (Refer to individual controller manuals for station/channel selection examples and jumpering positions.) Interrupts and multiplexer assignments are jumpered to the DCB lines in the same manner. All other signals are back-plane wired to the DCB lines.

DATA CABLE SIGNAL	PIN	ADDRESS CABLE SIGNAL
 Not Defined Termination Power	Al, 2 3,4 5,6 7,8 9,10 B1, 2 3,4 5,6 7,8 9,10 C1, 3,4 5,6 7,8 9,10	Address Bit 00
* These signals exist in the cables from a BDC only and are for use with devices which use the BDC channel exclusively.		

J11-J25:
CONNECTOR RECEPTACLE
17896900
J30-J33:
30 TWISTED-PAIR WIRE CONNECTOR
38956900

J38-J40:
CONNECTOR RECEPTACLE 38925500

EITHER ONE OF THE DATA, ADDRESS, AND TERMINATOR POWER CONNECTOR PAIRS CAN BE USED FOR IN OR OUT WHEN THE LCA IS PART OF A CHAIN ON THE 1700 COMPUTER.

IF THE LCA IS THE LAST UNIT ON 1700 pARTY LINES, VACANT RECEPTACLES J30 OR J31 AND J32 OR J33 MUST HAVE A RESISTIVE TERMINATOR PLUG (NO. 30001201) INSTALLED.

FIGURE 3.5. DATA AND CONTROL BUS

PIN	SIGNAL	TO CARDS	FROM CARDS
1	GROUND		
3	CSA0		
5	CSA1		20
7	CSA2		
9	CSA3		
11	CSB0	17,3	
13	CSB1	3	
15	CSB2		
17	CSB3		
19	CSC0	17,3	
21	CSC1	3	
23	CSC2	3	21
25	CSC3	3	
27	CSD0	17,3	
29	CSD1	3	
31	CSD2	3	
33	CSD3	3	
35	CSE0	17,3	
37	CSE1	17,3	
39	CSE2	39,3	
41	CSE3	39,3	
43	CHL		20
45	STA	$17,18,18,42$	20
47	EØS		23,22
49	GROUND		
4			

PIN	SIGNAL	TO CARDS	FROM CARDS
2	GROUND		
4	DIG		
6	ANA1		
8	ANA2		
10	ANA3		20
12	SAM1	23	
14	SAM2	23	
16	REX	$17,18,24,38$	
18	WEX	$17,23,32,39,42$	
20	PR \varnothing		
22	SYN 1		17
24	SYN2		7
26	MCL	27,42	7
28	PR \varnothing SF	2	42
30	STALL	42	
32			
34			
36			
38			
40			
42			
44			
46	CINF	15	
48	RJTF	18	
50	GROUND		

NOTE: Pins 28, 32, and 34 are spare pins for signals originating in the DCT; pins $38,40,42$ and 44 are spare pins for signals originating outside the DCT; pin 36 is used for $\mathrm{E} \emptyset \mathrm{PF}$ in the 1571 .

PIN	SIGNAL	to Cards	FROM CARDS
1	GROUND		
3	AR00F))
5	AR01F	,	
7	AR02F	15	(37
9	AR03F	\int	\bigcirc
11	AR04F))
13	AR05F	,	,
15	AR06F	13	36
17	AR07F	\bigcirc	\bigcirc
19	AR08F))
21	AR09F	,	
23	AR10F	(11	35
25	AR11F	\bigcirc	\bigcirc
27	AR12F))
29	AR13F	(
31	AR14F	9	34
33	AR15F	\bigcirc	1
35	RHRF	18	13
37	RRYF	18	11
39			
41			
43			
45			
47			
49	GROUND		

PIN	SIGNAL	TO CARDS	FROM CARDS
2	GROUND		
4	AW00	$37,39,42$	
6	AW01	37,39	
8	AW02	37	
10	AW03	37	
12	AW04	36	
14	AW05	36	
16	AW06	36,39	
18	AW07	36,39	8
20	AW08	35,39	
22	AW09	35,39	
24	AW10	35,39	
26	AW11	35,39	
28	AW12	$32,34,39$	
30	AW13	$32,34,39$	
32	AW14	$32,34,39$	
34	AW15	$32,34,39$	
36	WHRF	18	
38	WRYF	18,42	
40			19
42			
44			
46			
48			
50	GROUND		

NOTE: Pins 39 through 48 are not continuous in the DCB Connector.

PIN	SIGNAL	TO CARDS	FROM CARDS
1			
3			
5			
7	EØSNF	5	23
9	LSCNF	5	32
11	SRGNF	5	39
13	EXSNF	5	17
15	E \emptyset SNF		5
17	LSCNF		5
19	SRGNF		5
21	EXSNF		5
23			
25			
27			
29			
31			
33			
35			
37			
39			
41			
43			
45			
47			
49			

PIN	SIGNAL	to CARDS	FROM CARDS
2			
4			
6	NT01F	3, 6, 9	Jumpered from signals on pins_at_left
8	NT02F	3, 6, 11	
10	NT03F	3, 6, 13	
12	NT04F	3, 6, 15	
14	NT05F	3, 6, 9	
16	NT06F	3, 6, 11	
18	NT07F	3, 6, 13	
20	NT08F	3, 6, 15	
22	NT09F	3, 6, 9	
24	NT10F	3, 6, 11	
26	NT11F	3, 6, 13	
28	NT12F	3, 6, 15	
30	NT13F	3, 6, 9	
32	NT14F	3, 6, 11	Jumpered from signals on pins_at_left
34	NT15F	3, 6, 13	
36			
38			
40			
42			
44			
46			
48			
50	GROUND		

NOTE: For standard interrupt line assignments, insert jumpers as follows: Line Sync Clock (LSC) pin 8 to
pin 9 (line 2). pin 9 (line 2).

FIGURE 3.9. DCB CONNECTOR (CARD POSITION 5)

PIN	SIGNAL	TO CARDS	FROM CARDS
1	GROUND		
3	UNPF	11	15
5	NT01F	9	-
7	NT02F	11	
9	NT03F	13	
11	NT04F	15	
13	NT05F	9	
15	NT06F	11	
17	NT07F	13	
19	NT08F	15	5
21	NT09F	9	
23	NT10F	11	
25	NT11F	13	
27	NT12F	15	
29	NT13F	9	
31	NT14F	11	
33	NT15F	13)
35			
37			
39			
41			
43			
45			
47			
49	GROUND		

PIN	SIGNAL	TO CARDS	FROM CARDS
2	GROUND		
4	ST00F	O	39
6	ST01F	15	42
8	ST02F		42
10	ST03F	\bigcirc	
12	ST04F		
14	ST05F	13	
16	ST06F		
18	ST07F	J	
20	ST08F)	
22	ST09F	11	
24	ST10F		
26	ST11F	,	
28	ST 12 F	T	
30	ST 13 F	9	
32	ST 14F	7	
34	ST 15 F	1	
36			
38			
40			
42			
44			
46			
48			
50	GROUND		

NOTE: Pins 35 through 48 are not continuous in the DCB Connector.

FIGURE 3.10. DCB CONNECTOR (CARD POSITION 6)

PROGRAM PROTECT AND EQUIPMENT NUMBER SWITCH LOGIC (CARD 7)

This block of logic is implemented by the printed circuit card at card position 7 (see Figure 3.11), which contains a hexadecimally-coded thumbwheel switch (EQUIPMENT NUMBER), a three-position rotary switch (PROTECT), and logic elements for decoding Q7 through Q10, $\mathrm{W}=\mathrm{=} 0$," Program Protect, and the Master Clear signal o provide control signals.

3.5.1 EQUIPMENT NUMBER Switch

The Q-register bits Q7 through Q10 are received, changed to logic levels for output to other logic blocks within the DCT module, and decoded by the equipment select logic to provide a Connect (CNCT) output. When the setting of the hexadecimal thumbwheel switch matches the E-field (Q7 through Q10) and the $\mathrm{W}=$ " 0 " signal is true, the Connect (CNCT) output is true

The " C " and " $\overline{\mathrm{C}}$ " contacts of the EQUIPMENT NUMBER switch are mutually exclusive and provide selection of the output of Q7 through Q10, either as they appear on the output of the receivers or inverted, but not both. When the Q7 through Q10 configurations, and the EQUIPMENT NUMBER switch setting are identical, only '1" state signals are connected to the output. These signals are AND'ed with the $\mathrm{W}=\mathrm{"} 0$ " signal to form the Connect (CNCT) output

When the switch setting does not match the E-field identically or when the W-field is not " 0, " the DCT is not connected to the 1705 , and the instruction and address is ignored, unless the DCT was connected by a previous operation and bit 15 of the Q-register is a " 1 " (Continue commands).

3.5.2 PROTECT Switch

The PROTECT switch is a three-position rotary switch used to select the Program

The Program Protect bit is received, changed to a logic level signal, and provided as an output ($\operatorname{PR} \emptyset \mathrm{T}$) to other blocks of logic. The output of the receiver is also connected to the common pin of the PROTECT switch. The three positions of the switch provide control and status signals as descrived below.
a. OFF (Position 1)

In this position the Program Protect bit is ignored, no protect faults occur, and the Program Protect status bit (STS07, indicating switch positions 2 and 3) is false. The output to the DCT (PRøSF) is true when the switch is in this position.
b. REJECT (Position 2)

In this position the PR $\varnothing 2$ output is the protect bit of the command, the PRø3 output is true, and the PR \varnothing SF output is false. When PR $\varnothing 2$ is false, a protect fault exists, and the faulting command is rejected. For further explanation of this mode, refer to paragraph 3. 10 .

c. INTERRUPT (Position 3)

In this position the PRø3 output is the protect bit of the command, the PR $\emptyset 2$ output is true, and the PRøSF output is false. When PRø3 is false, a protect fault exists and the response is a Reply and Interrupt transmission to the computer. The faulting command is not executed. For further explanation, refer to paragraph 3.10

3.5.3 Clear and Master Clear

The Master Clear signal is received in inverted form, changed to a logic level signal, and provided as an input to the AND gate at the input to inverter D4B. The MASTER CLEAR pushbutton provides another input to the AND gate. The manual switch discharges the capacitor, providing a 30 -millisecond Clear signal. A 30 -millisecond signal is also provided when power is turned on.

When either the Master Clear from the computer or the switch goes false, the inpu to D4B is false, and the Connect flip-flop reset (CØNR) is true. The Connect reset provides a reset pulse for the Connect flip-flop and an input to inverter C4.

When either C $\varnothing \mathrm{NR}$ is true or the Clear signal (FNCT AND'ed with A00 and provided as input FNCTO) is true, the output of inverter C4 is false. The output of C4 provides control outputs MCLF1 through MCLF5 and a false signal for status bit 00 (STSOO, which indicates a Ready state if true).

The output of C4 is inverted by D4A, which provides an input to the line driver A. The output of line driver A provides a Master Clear signal for other devices connected to the DCT. Figure 3.11 is a diagram of the PROTECT and EQUIPMENT NUMBER switch logic.

FIGURE 3.11. PROTECT AND EQUIPMENT NUMBER SWITCH LOGIC (CARD 7)

The logic elements contained on the printed circuit card at position 8 (Figure 3.12) provide line drivers for the A-write outputs to the DCT. Each of the noninverting amplifiers contained in this block can drive up to 40 loads. Inputs to these amplifiers are provided by one of the outputs from the A-register interface logic.

The inputs to this card exactly duplicate the configuration of the computer A-register except during the time required for transmission of data or status information to the computer.

The outputs of the amplifiers are connected directly to the connectors to the DCT, and the AW lines are output directly to modules connected to the DCT.

FIGURE 3.12. A-WRITE LINE DRIVERS (CARD 8)

The printed circuit cards located in card positions 9, 11, 13, and 15 provide line terminators for the A-read lines (AR00 through AR15), system status lines (ST00 through ST15), and interrupt lines (NT01 through NT15). The remainder of the logic elements on these cards are used for miscellaneous functions as described below.

3.7.1 A-Read Lines

The A-read signals received from stations on the DCB are inverted by the line terminators to provide inputs to AND gates located on the A-register interface cards. The A-read line signals are AND'ed with control signals from the function control logic, which controls the data transmission to the 1705 .

3.7.2 Status Lines

The System Status signals received from the stations on the DCB are gated to the A-register interface transmitters by the function control logic as described above.

3.7.3 Interrupt Lines

Interrupt lines 02 through 15 are received from the DCB stations, inverted, and transmitted directly to the 1705 interrupt inputs.

Interrupt line NT01 is used for interrupts within the DCT module and for stations on the Decoded Data Channel. When an interrupt occurs either within the DCT or
within a station connected to this line, the interrupt is transmitted to the 1705 interrupt input as described above.

3.7.4 Q-Register Receivers

Receivers are provided for Q-register bits Q1, Q2, Q3, and Q11 on the logic cards in locations $9,11,13$, and 15 . The Q-register signals are received, converted to logic level signals, and provided as outputs to the address decoding and/or function control logic blocks.

Q01 is also used for the ADD1B output to the 1574 logic when the 1574 is used. The ADD1B signal is used to increment the Present Address and Next Address registers of the 1574.

3.7.5 Miscellaneous Logic Elements (Card 9)

S1788

This input is generated by the Sample Rate Generator (Card 9) when this option is installed (see Figure 3.13). The 1788 input is inverted and provided as an input to the function control logic (SYN2T) and as an output to the DCT line drivers (SYN1B).

LOCAL WRITE HERE (LWHR1)

An inverter is provided for the LWHR1 input, from the function control logic, providing an input (WHRF) to the response control logic.

* mote: inverter with four output DIODES TIED TOGETHER

S1788	1572 Grounds This Signal
AR00F-AR15F	A-Read Lines 00-15 (False)
ST00F-ST15F	Status Lines 00-15 (False)
SYMI-SYN:	Sync Source NO. 1. 2
NT01F-NT15F	Interrupt Lines 01-15 (False)
Q0-Q15	Q-Register Inputs
LWHR1	Local Write Here (False)
Q00A-Q15B	Condition Q-register Bits
addib	Add " 1 " to 157 + Register (No Address - Q01)
WHR	Write Here (False)

FIGURE 3.13. DATA AND CONTROL BUS, INTERFACE 1 (CARD 9)

3.7.6 Miscellaneous Logic Elements (Card 11)

In addition to the elements described in the preceding descriptions, Card 11 (Figure 3.14) provides circuit elements for the following signals: (1) UNPF is

UNP3, which are used by the response control logic; and (2) LRRY1 is received from the function control logic, inverted, and provided as an output to the response control logic block.

CARD TYPE: BJ
CARD TITLE: Daisy Chain Interface CARD DRAWING NO.: 38897000 CARD DRAWING NO.: 38897000
LOGIC DRAWING NO.: 38952600 , Sheet 11

UNPF	Unprotected (False)
AR00-AR15	A-Read Lines 00-15
ST00-ST15	Status Lines 00-15
NT01-NT15	Interrupt Lines 01-15
Q0-Q15	Q-Register Inputs
LRRY	Local Read Ready
Q00A-Q15B	Condition Q-Register Bits
RRYF	Read Ready (False)

FIGURE 3.14. DATA AND CONTROL BUS, INTERFACE 2 (CARD 11)
3.7.7 Miscellaneous Logic Elements (Card 13)

In addition to the elements described in the preceding description, Card 13 (Figure 3.15) provides circuit elements for the following signals.

S1771

This signal is received from the 1573 Line Synchronized Timing Generator, if installed, and is inverted and provided as an output signal to the status transmitters
(STS04 and STS06) and as an input to the DCT (SYN1A). STS04 is the status bit 04, indicating a line sync interrupt when true. STS 06 is the status bit 06 , indicating that the 1573 module is present in the system.

LRHR1

This signal is received from the Function Control logic and inverted for use by the response control logic.

FIGURE 3.15. DATA AND CONTROL BUS, INTERFACE 3 (CARD 13)

In addition to the elements described in the preceding sections, Card 15 (Figure 3.16) provides circuit elements for the following signals.

NLK5

NLK5 (Interlock 5) is received from the 1574 Sequential Addressing Unit, inverted, and provided as status output signals as follows.
a. STS02 is the 1574 Sequential Addressing Unit interrupt bit.
b. STS05 is the status bit indicating that the 1574 Sequential Addressing Unit is present in the system.
c. STS08 is the status bit that indicates the end of sequence for the 1574.

CINF

The CINF (Character Input) signal is received from the DCB stations, inverted, and AND'ed with the CØNT (Connect) signal to provide an input to the character input transmitter to the 1705. The Character Input signal, when true, indicates that the information being transmitted is a character and not a word of input data.

FIGURE 3.16. DATA AND CONTROL BUS, INTERFAC̣E 4 (CARD 15)

The A-register interface is implemented by circuit cards in card positions 10, 12, 14, and 16 (see Figures 3.17 through 3.20). These cards contain both transmitters and receivers for all A-register interfacing.

3.8.1 Receivers

The information is received from the 1705 in the form of bipolar differential signals. The receivers accept the 16A-register bits, change the bipolar signals to logic levels, provide the logic level outputs for use by the DCT logic, and provide inputs to the A-write line drivers (Card 8). The receivers are constantly accepting the A-register contents except during transmission of information from any device on the DCB.

3.8.2 Transmitters

Information transmissions to/from the DCT occur as described below.

The transmitters receive information from the DCB, the 1574 , and the DCT. Control of the transmission is maintained by the function control logic (Card 17), the response control logic (Card 18), and the sequential address control (Card 23) if the 1574 is installed.

LOCAL STATUS (STS00-STS15)

Local Status information, from the DCT or devices contained within the DCT module, will be transmitted when the Read-Station-Zero command is executed. During this command the RS0F1 through RS0F4 inputs to the A-register interface cards will be false. The input to the E3 inverter (RSOFX) is false, the output of E3 is true, and
the STS00-STS15 input gates are enabled. If the STS input to the gates are true, a " 1 " will be transmitted to the 1705 .

SYSTEM STATUS (ST00T - ST15T)

System Status information, received from stations connected to the DCB, will be transmitted when the Read-Station-One command is executed. During this command the RS1F1 through RS1F4 inputs will be false, the outputs of the D3 inverters will be true, and the ST00T - ST15T input gates will be enabled. If the STXXT input is true, a " 1 " will be transmitted to the 1705 .

A-READ LINE INFORMATION (AR00T - AR15T)

Input information, received from the DCB, will be transmitted when a Read command with the appropriate station or channel address is executed. During these commands the RARF1 - RARF4 inputs to the A-register interface will be false. If the other inputs to the B3 inverters (RS0FX, RS1FX, and RNAFX) are also all false, the output of the B3 inverters will be true and the ARXXT input gates are enabled. If the ARXXT input is true, a " 1 " will be transmitted to the DCT. If one or more of the other inputs to the B3 inverters is true, the ARXXT lines will not be transmitted.

SEQUENTIAL ADDRESSING UNIT NEXT ADDRESS REGISTER (NA00 - NA11)

If the 1574 Sequential Addressing Unit is installed in the DCT package replacing the Address Decoder, the NA00 - NA11 information (contents of the Next Address register of the 1574) is transmitted when a Read-Sequential-Status command is executed. During this command the RNAF1 - RNAF4 inputs to the A-register interface are false, the output of the C3 inverters is true, and the NAXX input gates are enabled. If the NAXX input is true, a " 1 " is transmitted to the 1705.

FIGURE 3.17. A-REGISTER INTERFACE: BITS 12-15 (CARD 10)

FIGURE 3.18. A-REGISTER INTERFACE: BITS 8-11 (CARD 12)

FIGURE 3.19. A-REGISTER INTERFACE: BITS 4-7 (CARD 14)

FIGURE 3.20. A-REGISTER INTERFACE: BITS 0-3 (CARD 16)

The function control logic is implemented by the circuit card in position 17 (see Figure 3.21). Inverters and drivers incidental to function control are located on other cards and described in other sections. The "L" prefix used in this description implies a local control signal (station addresses $0-3$), pertaining to devices located within the DCT module package, and includes the DCT logic and the Sequential Setup and Sequential Status commands. The functional descriptions are divided into sections based on the function being described. These sections are not mutually exclusive, but descriptions are carried only as far as required to describe adequately each function.

3.9.1 Local Station False (LSTAF)

This output, when false, indicates that the station address being used is addressing a local station. When a station is addressed (STA true) and when the address is less than 04 (CSB0, CSC0, and CSD0 all true), the input to inverter E1B is true and the E1B output is false. LSTAF is used in the false state to control station addresses 02 and 03. If the device address is not a station (STA false) or if the address is larger than 04 (one or more of the CSB0, CSC0, or CSD0 inputs are false), the input to inverter E1B is false and the output is true. LSTAF in the true state indicates that a local station is not being addressed.

3.9 .2

Station Addresses " 0 " and "1"

If the LSTAF output is false, the input to inverter E1A is false and the output of E1A is true, which enables the input gates to inverters C2A and D2A. When the address is " 0 " (CSE 0 true), the input to D2A is true and the output of D2A is false. If the address is " 1 " (CSE1 true), the input to C2A is true and the output of C2A is false. When the address is either " 0 " or " 1, " a false input is provided for the input gates of inverters C3A, C3B, and D3A. These inverters provide read or write control outputs for stations within the DCT module; read is controlled by the Read Execute (REX), and write is controlled by the Write Execute (WEX), as described below.

When the address is " 0, " D2B provides a true output to enable the input gate to inverter A2. If the command is a Read command, Read Execute (REX) is true, and the input to A2 is true and the output of A2 is false. The output of A2 provides RS0F1 through RS0F4 outputs (these are used in the false state to gate local status information to the A-read line drivers and transmitters) and provides an input to inverter D3B. The output of inverter D3B provides a true input for the input gate to D3A. The delay input to the D3A gate provides a time delay which is fixed to provide a true Local Read Ready (LRRY1) output for 1.0 microsecond after the leading edge of the Time-to-Execute pulse (REX is timed by TEX). This timing insures sufficient time for transmission of information, and the Ready signal drops at the end of this timed delay and remains false until REX goes false.

READ STATION ADDRESS " 1 "

The sequence for address " 1 " is the same as described above for address " 0 ," except for the inverters used. The outputs RS1F1 through RS1F4 are false as described for RS0F1 through RS0F4. The RS1F1 through RS1F4 outputs are used in the false state to gate System Status (status of devices connected to the DCT) to the transmitters. The status word bit assignments for station addresses " 0 " and " 1 " are listed below.
a. Input at Station Address " 0 " (DCT Status).
A-Register Bit Function (and source if not DCT)

Ready
Protect Fault Interrupt
End-of-Sequence Interrupt (1574)
External Sync Interrupt
Line Sync Clock Interrupt (1573)
1574 Present in System
1573 Present in System
Protected (PROTECT switch in position 2 or 3) End of Sequence (1574)
External Sync Enabled to Sync Line 2
b. Input at Station Address " 1 " is used to read the system status lines on the DCB.

WRITE STATION ADDRESS " 0 "

When the station address is " 0, " the false output of inverter D2A starts at the local read or write cycles (outputs LRRY, LRHR, and LWHR become true), and the LWRY output gate and the A5B inverter input gate are enabled. The output of A5A is normally true; therefore, LWRY goes true at this time. When the Write Execute (WEX) input goes true, the input to A5B is true and the output of A5B is false. The A5B false output provides the FNTF1 through FNTF3 outputs (used in the False state to indicate a Function (Write) for devices within the DCT) and provides a false input to inverter A4. The true output of A4 enables the input gates to the sync and Interrupt flip-flops, provides an input to the A5A gate, and provides the FNCT0 (Function at station 0 address) output. The time delay input to the A5A gate provides a 1.5microsecond delay and causes the A5A inverter to remain true for 1.5 microseconds after WEX comes true. This delay allows time for the function to be executed. When the 1.5 -microsecond delay time elapses, the LWRY output goes false and remains false until WEX goes false. The functions at station address " 0 " are as listed in the table below.

Output at Station Address "0" (DCT Functions)

A-Register Bit	Function
0	Clear DCT
1	Reset Protect Fault Interrupt
2	Reset End-of-Sequence Interrupt
3	Reset External Sync Interrupt
4	Disable End-of-Sequence Interrupt
5	Enable End-of-Sequence Interrupt
6	Disable External Sync Interrupt
7	Enable External Sync Interrupt
8	
9	
10	Disable External Sync from Sync 2 Line
11	Enable External Sync to Sync 2 Line
12	Disable 1573 Output from Sync 1 Line
13	Enable 1573 Output to Sync 1 Line
14	Disable 1573 Interrupt
15	Enable 1573 Interrupt

EXTERNAL SYNC CONTROL, EXTERNAL SYNC, AND PROTECT FAULT INTERRUPT CONTROL

The functions performed with station address " 0 " include control of four flip-flops used for External Sync Enable (B4), External Sync Interrupt Enable (C4), External Sync Interrupt (D4), and the Protect Fault Interrupt. Various control signals and A-register bits are used for these control functions, as described below. For these functions, the station address must be " 0 " and WEX must come true as described above. The following descriptions assume that these conditions have been met and that the FNCT0 (Function at Station Address " 0 ") output is true. Input gates to all the flip-flops are enabled by the FNCT0 signal.

Master Clear

The Master Clear Input (MCLF1, used in the False state to indicate a Master Clear) when false, provides a false input to inverter E5B. The output of E5B goes true and clears (resets) all four flip-flops.

Sync Enable Flip-Flop
a. Set

When FNCT0 is true and the A11B input is true (A-register bit 11), flip-flop B4 is set. The set side of $B 4$, when in the True state, enables the input gate to line driver A and provides a true output for status bit 09 (STS09). STS09, when true, indicates that the External Sync is connected to SYN2. When the EXTSN (External Sync Input) goes true, all inputs to the AND gate at the input to the SYN2 line driver are true (C5A output is normally true), and the SYN2 output goes true. After 300 nanoseconds the output of C5A goes false, and the SYN2 output goes false.

b. Reset

When FNCT0 is true and the A10B input is true (A-register bit 10) or MCLF1 is false as described above, flip-flop B4 resets and remains reset until set again with a FNCTO command.

When set, the C4 flip-flop provides a true set output which enables the input gate to the C5B line driver. This line driver provides an output to the interrupt lines and can be OR'ed with one or more other interrupt outputs. With the input gate enabled, the input to C5B goes true whenever an External Sync Interrupt occurs (flip-flop D4 set) and remains true until D4 and/or C4 is reset by a FNCT0 command as described above.

External Sync Interrupt Flip-Flop

a. Set

When the EXTSN (External Sync Input) input goes true, flip-flop D4 is set (C5A output is normally true), and a true input is provided for the input gate to inverter C5A. C5A acts as a leading edge detector to provide a sync pulse for a period of 300 nanoseconds. At the end of the 300 -nanosecond period, the input to C5A goes true and the C5A output goes false. C5A thus produces a 300 -nanosecond, positivegoing pulse at the leading edge of the EXTSN pulse. When true, the set side of the D4 flip-flop provides a true input to the line driver C5B. If the input gate of C5B is enabled (enable flip-flop C4 is set), the input to C5B goes true and remains true until D4 and/or C4 is reset.

b. Reset

When FNCT0 is true and the A03C input comes true (A-register bit 03) or when the MCLF1 input goes false as described above, the External Sync Interrupt flip-flop D4 resets and remains reset until the next EXTSN pulse occurs.

Protect Fault Interrupt Flip-Flop
a. Set

When a protect fault interrupt occurs (in other words, the PFNS input is true), flip-flop E4 sets. Flip-flop E4 remains set until it is reset as described in the
following paragraph. The set output provides a true output for the protect fault status bit which is STS01.
b. Reset

When FNCT0 is true and the A01C input is true (A-register bit 01), or MCLF1 is false as described above, flip-flop E4 resets and remains set until it is set by PFNS as described above.

During the set state of E4, the reset output provides a false output to inverter E5A. E5A provides a true output connected to interrupt line 01 and may be OR'ed with one or more other NT01 inverter outputs. The input to E5A remains true as long as E4 is set.

Provision is made to OR another input to E5A via pin 39. When false, the input on pin 39 also provides a true output on NT01T as long as it remains false. As pin 39 is not currently connected to any input, it can be disregarded but should not be tied to ground.

WRITE STATION ADDRESS " 1 "

When the station address is " 1, " both inputs to the gate at C2A are true, the input to C2A is true, and the C2A output is false. This false output provides an input for the local Read and Write controls as described above; it also provides false input to C2B.

The output of C2B is true, providing the LST41 output. This command is used to acknowledge an interrupt from the 1573 Line Synchronized Timing Generator. The A-register is not used for this operation.

No response is sent if the 1573 is not present. A Reply is sent if the 1573 is present and has sent an interrupt, and the interrupt is reset. A Reject is sent if the 1573 is present but has not sent an interrupt.

FIGURE 3.21. FUNCTION CONTROL LOGIC (CARD 17)

3.10

3.10.1 Basic Response Timing

The response control logic (Card 18), with the function control logic, maintains control of the responses sent to the computer. These responses include data inputs and the Reply, Reject, Character Input, and the Interrupt signal used by the DCT module. Table 3.2 lists the responses in order of precedence. The condition with the highest precedence determines the response; all other conditions are ignored.

TABLE 3.2. RESPONSE PRIORITIES

When a device is addressed, a response [Read Here (RHR) or Write Here (WHR)] is transmitted to the DCT. The addressed device transmits a Read Ready (RRY) or Write Ready (WRY) if ready to perform the specified operation. Upon receipts of a Read or Write command from the computer, the DCT examines the RHR, WHR, RRY, and WRY lines. If the device is both Here and Ready, a Read Execute (REX) or Write Execute (WEX) is transmitted to the device. The device acknowledges the Execute signal by dropping the Ready line, and a Reply (RPY) is transmitted to the computer. This description assumes the DCT is connected, no protect fault exist, and a Reject is not generated by the device. See Figure 3.22 for basic response timing.

notes:
A reject is sent instead of a reply if rut is true when ready drops
A reject is sent instead of an execute if the addressed device is here and not ready. no response is sent if the addressed device is not here.
no response is sent if ready does not drop in time (within 4.0μ SEC of read or write), address beng incremented for sequential operation (no-address command only).

1-1347B
FIGURE 3.22. RESPONSE TIMING DIAGRAM

CONNECT

The format for Connect commands is shown below. A Connect command is defined as any command whose W-field is " 0 " and whose E-field matches the equipment number of the DCT. When any command is executed, a flip-flop in the DCT is set which allows Continue commands to be recognized. This "connected" flip-flop is reset by any command addressed to another equipment or by a Master Clear. It is not reset by a clear function.

CONNECT COMMAND FORMAT

Connect Flip-Flop

a. Set

When the Connect (CNCT) input is true, the output of inverter B1A is false to inhibit resetting the connected flip-flop (E1). The input to inverter B1B is false, the output
of B1B is true, and if a Read or Write input is true, the connected flip-flop is set. When true, the set output of E1 provides an enable input to the C1A inverter gate and provides the connect (CøNT) output. This output is used on Card 15 to enable the Character Input transmitter gate. The reset output of E1 provides a false signal for one input to the E 2 inverter.
b. Reset

If the Connect (CNCT) input is false and the Q15F input (Not Continue) is true, or if the Connect Reset (CØNR) input is true, the Connected flip-flop is reset and remains reset until set as described above.

CONTINUE

The general format for Continue commands is shown below. A Continue command is defined as any command with a " 1 " in bit 15 when the connected flip-flop is set. The mode field is used by the 1574 Sequential Addressing Unit and 1571 Chaining Buffer Channel and must be " 0 " or " 1 " if the 1574 is not present in the system.

CONTINUE COMMAND FORMAT

3. 10.3
 Normal Response Sequence

During this sequence it is assumed that the DCT is connected, the device is Here and Ready, and no protect faults occur. When the Read or Write pulse goes true, the output of the Read or Write receivers goes true, providing one true input to inverter E5B. A true input is also provided to enable the input gates to inverter E4B (Device Response). The Read Ready or Write Ready signals provide another true input to the E4B gate, and the output of E4B goes false and remains false until the Read or Write Ready line is dropped.

E5B provides a false input to the TEX inverter (B3). The output of the E5B inverter also provides a false input to E4A (Read or Write) and the output of E4A comes true to start the 500 -nanosecond Read or Write pulse delay and to start the 3.4 -microsecond Internal Reject Delay at the input to the E4B inverter. Inverter D2A provides the 500 -nanosecond Read or Write delay. The Read or Write pulse is delayed 500 nanoseconds after the leading edge of the Read or Write command pulse; then the output of D2A goes false, the output of D2B goes true and provides the input to start the Read or Write pulse at the input to E2, and the time-to-execute delay at the input to inverter C1A.

When the E2 inverter output comes true, the reset input gates to the Device-NotReady flip-flop (D3) are enabled. Since the device is both Here and Ready, all inputs to either the Read gate or the Write gate are true and the Device-Not-Ready (D3) flip-flop is reset.

The Read or Write pulse output of E2 remains true for 60 nanoseconds, as determined by the delay, and drops false after the delay time has elapsed.

When the output of D2B goes true, the input to C1A is delayed for 250 nanoseconds, as determined by the delay, and the output of C1A remains true during the 250 -nanosecond delay time to inhibit the Time-to-Execute (TEX) inverter B3

Inverter B3 acts as an inverted AND gate for the output of E5B (false at this time) and the output of C 1 A , which goes false at the end of the 250 -nanosecond delay When both of these inputs are false, the output of B3 comes true, providing a true state TEX (Time-to-Execute pulse), which is transmitted to the device.

Since the Device-Not-Ready reset output enabled the WEXT and REXT gates, and the Read Here or Write Here inputs provided a true input to these gates, the Write Execute (WEXT) or Read Execute (REXT) ouput comes true at the leading edge of the Time-to-Execute pulse, and TEX, WEXT or REXT remain true until the ready line is dropped by the device.

The response control logic of the DCT now waits for the addressed device to drop the Read Ready (RRYF comes true) or the Write Ready (WRYF comes true) line. When the ready line drops, the input to the Device Response inverter (E4B) goes false and the output of E4B becomes true, providing a true input to set the Reply (E3) flip-flop. The delay at the input of the set gate provides a 50 -nanosecond delay which acts as a noise filter for the Reply flip-flop. When the set output of the Reply flip-flop comes true and the Reject flip-flop has not been set, a 450 -nanosecond delay at the input to the Reply transmitter (D4 and C4) is started to allow the Reply flip-flop to settle. After the 200-nanosecond delay time has elapsed, the input to the Reply transmitter comes true and the reply is transmitted to the computer.

After the computer receives the reply, the Read or Write command line is dropped causing the output of E5B to go true dropping TEX and WEXT or REXT, and resetting the Reply flip-flop.

E5B also provides a true input to E4A, the false output of E4A provides an input to D2A. The true output of D2A sets the Device-Not-Ready (D3) flip-flop, which disables the REXT and WEXT output gates. The D2A output is coming true and also provides a true input to D2B, and the output of D2B goes false. The DCT is now in the Ready state for the next command.

3. 10.4 Device Protect Sequence

The unprotect false (UNPF) line of the decoded data channel is used to inhibit the normal use of the DCT PROTECT switch. When this input is false (0 volts), the addressed station accepts all commands with the proper station address.

If the device has a Program Protect switch, the switch controls the protect responses. If the device has no switch and accepts unprotected commands, the UNPF line is false when the device is addressed.

If the UNPF line is true when a station is addressed, the station is protected against protect faults by the PROTECT switch in the DCT. The UNPF line, when false, provides the response control logic inputs (UNP2 and UNP3). Both these inputs are true when the UNPF line is false.

If the UNP2 and UNP3 inputs are true and the device addressed is a station, the AND gate inputs to inverters C1B and E5A are both true. The outputs of these inverters provide false inputs for the Execute Enable inverter (D1B). Since the DDT input is normally false, the output of D1B is true. The result of this is that the PROTECT switch on the DCT (providing inputs PRø2 and PR $\varnothing 3$) is ignored, and the Enable Execute is true regardless of the state of the Program Protect bit during the present command.

When the UNPF input is in the true state, the addressed device is protected by the PROTECT switch of the DCT. If the UNPF line is true, UNP2 and UNP3 are false, and the AND gate inputs to inverters C1B and E5A are disabled. In this condition the response depends upon the setting of the DCT PROTECT switch as described below, with normal responses occurring unless there is a protect fault.

PROTECT Switch in Position 2

With the PROTECT switch in position 2, the input to inverter C1B (the Program Protect bit of the command PR02) is false, and the output of C1B is true, disabling the D1B inverter (Disables Execute) and enabling the input gate to the reject transmitter. This allows a Reject to be transmitted directly during Time-to-Execute (TEX). During this response cycle, the Ready lines from the device, and the state of the Device Ready inverter (E4B) are ignored, the Device-Not-Ready flip-flop (D3) is not reset, and the response cycle proceeds normally, except for these alterations: the Reply and Reject flip-flops are not set and the Reject signal is transmitted during TEX time. The computer responds by dropping the Read or Write command and the DCT cycles out, resetting the response logic to the Ready state for the next command.

PROTECT Switch in Position 3

With the PROTECT switch in position 3, the response cycle proceeds as described above except that the output of inverter E5A provides a true signal to enable the set input of the Reply flip-flop and to enable the Protect Fault Interrupt (PFNS) output gate. When the Read or Write pulse comes true, the Reply flip-flop is set, and the Protect Fault Interrupt output comes true and is transmitted to the computer. The Reject flip-flop (C3) is not set during this cycle, so the input gate to the Reply transmitter is enabled. When the Reply flip-flop set output comes true and after the 200nanosecond delay time has elapsed, a Reply is sent to the computer. The computer responds by dropping the Read or Write command, and the DCT cycles out to the Ready state for the next command. Figure 3.24 shows the timing of both sequences described above.

A 500 ทร
B 6076
C 2507 s
D $0-2 \mu \mathrm{sec}$
E 50 $\eta \mathrm{s}$
F 2007 ns
G indeterminate
$\mathrm{H} \approx 20 \eta \mathrm{~s}$

ALLOWS CONNECT FLIP-FLOP TO SETTLE
leading edge detector pulse used as strobe
COMBINED WITH TIME DELAY b, ALLOWS 250 $\eta \mathrm{F}$ FOR DNR FLIP-FLOP TO SETTLE. WAITING FOR RESPONSE.
NOISE FILTER FOR REPLY
ALLOWS RPY FLIP-FLOP TO SETTLE.
COMPUTER RESPONSE TIME TO DROP READ OR WRITE.
REPLY (F) DELAY DISCHARGE.

1-1331A
FIGURE 3.23. NORMAL RESPONSE CYCLE

Abstract

N POSITION 2

time delay descriptions
A 5007 s ALLOWS CONNECT FLIP-FLOP TO SETTLE
B 60 गs \quad LEADNG EDGE DETECTOR PULSE USED AS STROBE.
C 2507 s
D $0-2 \mu \mathrm{sec}$
E 50 7 s
COMBINED WTTH TIME DELAY b, ALLOWS 250 7 s FOR DNR FLIP-FLOP TO SETTLE WAITING FOR RESPONSE.
NOISE FILTER FOR REPLY.
ALLOWS RPY FLIP-FLOP TO SETTLE.
G indeterminate
COMPUTER RESPONSE TIME TO DROP READ OR WRITE.
$\mathrm{H}=20 \mathrm{~ms}$ REPLY (F) DELAY DISCHARGE

1-1328

If the addressed device responds as Here and Ready, the Device Ready inverter (E4B) output goes false as described in the normal response sequence, and the timing sequence proceeds as in the normal sequence. A Read or Write pulse is generated, the Device-Not-Ready flip-flop is reset, and the REX and WEXT or REXT outputs come true.

The DCT is then waiting for the device to drop the ready line to acknowledge execution of the command. If the device never drops the ready line during the 2 -microsecond interval specified, the Device Ready inverter (E4B) remains inhibited by the 3.4-microsecond delay. The output of E4B never comes true, the Reply flip-flop is never set, and the computer does not receive a response.

After the time delay set for Internal Reject within the computer, the computer generates an Internal Reject signal for use by the program for recognition of the fault, and the computer drops the Read or Write command. The Response logic then cycles out to the Ready state, as described in the normal response sequence. Figure 3.25 shows the timing of this internal reject sequence described above.

1-1329A NOTE: FOR time delay descriptions, see figure 3.24.

3.10 .6

Stations can inhibit execution of commands by the Reject False (RJTF) input. When the RJTF input is false (indicating of execution), the output of the Reject inverter (D1A) is true, enabling the set input gate to the Reject flip-flop (C3).

The first portions of the timing cycle are normal, but when the TEX (time-to-execute) signal comes true, the Reject false input goes true in the device and is transmitted to the DCT. The output of D1A, now true, is AND'ed with the output of E4B (Device Response) and the reset output of the Device-Not-Ready flip-flop (D3), setting the Reject flip-flop.

The Reject flip-flop reset output (now false) inhibits the Reply transmitter input gate, and the set output starts a 200-nanosecond delay/reject at the input of the transmitter, to allow the Reject flip-flop to settle. When the delay time has elapsed, the Reject signal is transmitted to the computer, and the computer responds by dropping the Read or Write command as described in the normal sequence description.

Figure 3.26 shows the timing during the device reject sequence described above

1-1327A
Note: for time delay descriptions, see figure 3.24. FIGURE 3.26. DEVICE REJECT CYCLE

If the addressed device is Here But Not Ready, the RRYF input (Read Ready false) remains true and the output of inverters D5A (Write Ready) or D5B (Read Ready) remains false causing the Device Ready inverter (E4B) output to remain true.

The Read or Write pulse is generated as in the normal sequence, and the Time-toExecute (TEX) output comes true, but the WEXT or REXT gates are not enabled (since the Device-Not-Ready flip-flop was not reset), and the WEXT or REXT outputs remain false.

With the Device-Not-Ready flip-flop still set and the Device Here inverter, Read Here (C5A) or Write Here (C5B) output true, the Reject flip-flop set input gate is enabled, and the flip-flop is set when TEX comes true. The Reply is inhibited by the 'reset side of the Reject flip-flop (now false), and the set side starts the delay at the input to the reject transmitter. After the delay time, the Reject signal is transmitted and the computer responds by dropping the Read of Write command. The response logic cycles out to the Ready state as described in the normal sequence. Figure 3.27 shows the timing of the device here and not ready sequence described above.

Figure 3.28 is a logic diagram of Card 18.

NOTE: FOR time delay descriptions, SEE figure 3.24. FIGURE 3.27. DEVICE here but not ready cycle

FIGURE 3.28. RESPONSE CONTROL LOGIC (CARD 18)

The address control logic is implemented by the printed circuit card in position 19 (see Figure 3.29) and provides decoding for Q00, Q04 through Q06, and Q12 through Q15. These inputs from the Q-register of the computer are combined in various ways described below to form the control signals to determine the addressing modes.

3.11.1 No-Address (NAD)

When Q04, Q05, and Q06 are all true and Q15 is false, the input to inverter C4B is true. The output of C4B, when false, disables the input gates to C4A, and the STAT output gate. The output of C4A is inverted by D5A to provide a true NAD output and to enable the input gate to E3A. The NAD output, when true, specifies a No-Address data transfer command used for direct I/O with no address.

3.11.2 Station Address (STAT)

The Station Address true (STAT) output is true if the NAD output is false and Q15 is false. This output indicates that the device being addressed is a station and is true only during Function and Connect or Status and Connect commands. The STAT output is transmitted on the DCB and is also used to enable the inhibit gate for the protect fault reject logic on Card 18.

3.11.3 Channel Address (CHLT)

The Channel Address True (CHLT) outputindicates that a channel is being addressed and is true for direct I/O commands and all random-addressing commands.

The output of inverter C4B provides a false input to both gates of inverter C4A whenever the direct I / O commands are used. This makes the CHLT output true during these commands.

When Q15 is true, the output of inverter E4 is false, providing a false input to one of the gates to C4A. If Q14 is false, which it is during Random Address commands, the
output of the Q14 receiver provides a false input to the other gate of C4A. With both input gates having false signals, the output of C4A (CHLT) is true.

3.11.4 Write Ready (WRYF)

The Write Ready False (WRYF) output is normally true. A Local Write Ready signal (LWRY going true or LWRYF going false) creates a Write Ready condition causing WRYF to go false. It is necessary for Write Ready to drop (WRYF going true) to cause a response. This is inhibited if the output of inverter D4B is true. The output of D4B is true for any Read Only command, as determined by the inputs to E3A, NAD (No-Address) AND'ed with Q0 (Inhibit Execute) and Random Address Read only (Q15 set and Q12, Q13, and Q14 reset).

3.11.5 Q07A

This output is connected with the output of another inverter at the input of logic cards in positions 22 (Address Decoder) and 25 (1574 Sequential Addressing Unit). The two inputs to these cards (Q15 and Q07) are AND'ed to form the final input signal.

When Q15 is false, the Q07 input to the cards is inhibited from the decoding logic. Since a station address consists only of bits Q00 through Q06, the Q07 bit is only inhibited during those commands associated with station addresses. When the address is a channel, the Q07 bit is used in the address decoding.

3.11.6 Q15F

For this output Q15 is inverted and is provided as an output to the response control logic (Card 18). Q15F in the True state enables the reset input gate to the Connect flip-flop, allowing the Connect flip-flop to be reset. Q15F in the False state inhibits the reset gate of the Connect flip-flop; and thus specifies a Continue command, as Q15F is false only during those commands when Q15 is true (Random Addressing and Sequential Addressing)

3.11.7 Read Execute (REXT) and Write Execute (WEXT)

The Read Execute (REXT) and Write Execute (WEXT) outputs are used for all data transfers, unless inhibited, and are false only during direct I/O commands with Q00 false or during Random Address Read Only commands. In all other cases either REXT or WEXT is true for a time specified by the response control logic. They will come true at the leading edge of the Time-to-Execute (TEX) pulse, unless inhibited by a Read Only command.

The conditions creating a false output for these signals are described above in the WRYF descriptions.

3.11.8 Q00A and Q00B

The Q00 outputs are true whenever the Q-register bit 00 is true. They are used to inhibit execution of commands in the No-Address mode as described above and also to provide outputs used by the Address Decoder and the 1574 Sequential Addressing Unit.

When the Address Decoder is installed, Q00 is combined with Q01 to form the CSE0CSE3 addressing outputs. When the 1574 is installed, Q00 is used as the set input to the least significant bit of the address registers.

3.11.9 Simulate Response

The Simulate Response signals (SRSF1 and SRSF2) are normally true, enabling the normal responses described above. However, for any Read Only command, WEXT and REXT outputs are inhibited. Therefore, the addressed device does not respond by dropping its Ready signal (RRY or WRY going false). The input gate to D4B (Read Only and TEX) causes SRSF1 and SRSF2 to go false when the Time-to-Execute (TEX) pulse occurs. The SRSF1 and SRSF2 outputs go to Card 18 to cause the AR lines to be gated to the A-read line transmitters and to provide inputs to simulate the RRYF output to go true (Read Ready dropping).

3.11.10 Sequential Address Setup or Status (SASS)

This control signal is used when a sequential address module is being addressed. It is used by the 1574 as well as by other sequential addressing modules external to the DCT package (e.g., 1797/1571).

When both Q14 and Q15 are true, the inputs to E2B and E4 inverters are true, and the outputs provide false inputs to inverter E3B. With both these inputs false, the output (SASS) is true. When Q15 is true and Q14 is false (during Random Address mode commands), the SASS output is false.

3.11.11 SAM1T and SAM2T

These two signals are used for control of special sequential addressing modules other than the 1574 (1797/1571). Commands controlling these modules are programmed in the Sequential Setup and Sequential Status formats, which are defined as commands having both Q14 and Q15 set ('1's'). When both Q14 and Q15 are true, the outputs of inverters E2B and E4 (both false at this time) provide inputs to inverter E3B, which acts as an inverted AND gate for False State signals and provides a true output (SASS). The Sequential Address or Setup (SASS) output enables the output gates for SAM1T and SAM2T. If Q12 is true, the SAM1T output is true, and if Q13 is true, the SAM2T output is true.

3.11.12 Random Address and Lockup (RAL)

During the Random Address and Lockup commands, which are rejected if the 1574 Sequential Addressing Unit is not installed, a data transfer is executed at the specified address and the next address is set equal to the address specified by the current command.

During the Random Address and Increment commands, also rejected if the 1574 is not installed, a data transfer is executed at the specified channel address and the next address is set to one greater than the address specified by the current command.

The RAL signal is gated by the Address Decoder logic (Card 18) to cause a Reject Data Transfer (RDT) and a Disable Data Transfer (DDT) if the Address Decoder is installed in addition to the 1574.

The RAL output is decoded from Q13, Q14, and Q15. When Q13 is true, Q14 is false, and Q15 is true, all three inputs to the RAL gate are true, and the RAL signal is available for gating on other logic cards. If any one or more of the inputs is false, the RAL output is disabled.
3.11.13 ADD1A and ADD1B

These outputs are used to increment the Address register of the 1574 during the RAL commands described above. ADD1A is true during Random Address commands when Q12 is true and increments the Next Address register during RAL commands (Random Address and Increment).

ADD1B and Q01 are AND'ed at the input to the 1574 (Card 27) and increment the Next Address register when Q01 is true during a No Address command.

3.12
 LONG-LINE DRIVERS (CARDS 20 AND 21)

The line drivers provided on the printed circuit cards in card positions 20 and 21 provide noninverting amplification of the signals connected to the Data and Control

Bus. Figures 3.30 and 3.31 are logic diagrams of the Long-Line Drivers (Cards 20 and 21). The line drivers provide sufficient amplification for driving 40 normal loads. An isolation diode must be provided for each load on each line.

FIGURE 3.30. LONG-LINE DRIVERS (CARD 20)

FIGURE 3.31. LONG-LINE DRIVERS (CARD 21)

3.13 ADDRESS DECODER (CARD 22)

The Address Decoder (Card 22) provides inverters and gates for partially decoding the Q-register inputs; these inputs have, in some cases, terms AND'ed for additional control features and are not the actual A-Register contents. Each set of four inverters decodes two input bits in straight binary fashion as shown in Table 3.3.

TABLE 3.3. TYPICAL TRUTH TABLES

Q01A	Q00A	$\begin{gathered} \text { TRUE } \\ \text { output } \end{gathered}$	COMBINATION	Q11A	Q10A	$\begin{aligned} & \text { TRUE } \\ & \text { oUTPUT } \end{aligned}$	combination
0	0	CSEOT	$\overline{\text { Q01A }} \overline{\text { Q00A }}$	0	0	digt	$\overline{\text { Q1IA }} \overline{\text { Q10 }}$
0	1	CsE1T	$\overline{\text { Q01A }} \mathrm{Q} 00 \mathrm{~A}$	0	1	ANAIT	Q11A Q 10 A
1	0	CSE2T	Q01A $\overline{\text { Q00A }}$	1	0	andit	Q11A $\overline{\text { Q10A }}$
1	1	CSE3T	Q01A q00A	1	1	ANA3T	Q11A qioa

Two additional inverters and several input and output pins are used to provide interlocking controls for the Address Decoder (see Figure 3.32).

3.13.1 No Address

The NAD input (No Address is decoded from the Q-register bits to indicate a direct I/O command with no address associated with the command

3.13.2 Enable Data Transfer

The EDT (Enable Data Transfer) is a pin which is grounded by each card of the 1574, thus providing a false signal input to the Address Decoder when the 1574 is also installed.

3.13.3 Random Access Lockup

The RAL input is the Random Access Lockup signal used for the 1574 and is not used in the Address Decoder. The B2A inverter acts as a NOR gate for the EDT, NAD, and RAL inputs.

If RAL or NAD come true or if the EDT input is held at ground by any of the 1574 cards installed, the DDT (Disable Data Transfer) and the RDT (Reject Data Transfer) outputs of the card are true, thus disabling and rejecting any transfer of data. This interlocking system provides protection for misplacement of hardware and programming errors.

3.13.4 End of Sequence

The EDS output pin is grounded by the Address Decoder to provide a continuously false EøS output when the Address Decoder is installed. This output and DDT and RDT outputs disable the 1574 if the Address Decoder is installed. This provides bilateral protection for both the Address Decoder and the 1574.

FIGURE 3.32. ADDRESS DECODER (CARD 22)

Section Four
MAINTENANCE

4.1

 GENERALCorrective maintenance procedures, parts removal, and parts replacement can be found in Control Data publication NO. 84785000. This section provides only fundamental preventive maintenance instructions and procedures. Since the DCT is located in a cabinet that includes other modules, some maintenance procedures include the other modules as well as the DCT.

4.2 PREVENTIVE MAINTENANCE PROCEDURES

Preventive maintenance includes two basic procedures:
a. Inspect modular cabinet MG air filters and clean as necessary every two to three weeks.
b. Check output of MG power supply at least once a month. The MG power supply contains a variac with which the output voltage can be varied to compensate for additional module loading. Whenever modules are added or deleted, check output voltage and adjust the variac for 208 volts output.

4.3 TROUBLESHOOTING PROCEDURES

There are no normal troubleshooting procedures besides chasing "1's" and "0's." The response control Card 18 (Figure 3.28) contains the response delay for the Reply signal. Resistor R23 is selected to adjust for a nominal response delay of from 3.3 to 3.5 microseconds.

4.4

PREVENTIVE MAINTENANCE INDEX

TIME EST. MINS.	LEVEL	ITEM	PREVENTIVE MAINTENANCE
5	Monthly	1.1	Clean Air Filter
5	Monthly	1.2	Check Cooling
2	Monthly	1.3	Check Power Supplies
40	Bi-Monthly	2.1	Voltage Margins

"This PMI is the recommended frequency of performing preventive maintenance on this equipment. Scheduling of this preventive maintenance is a site responsibility. Scheduling may include variations in the recommended frequency due to individual site conditions (e.g., usage, environment, time, etc.)."

CLEAN AIR FILTER

CHECK/Conditions
Action

1. 60 Hz power off.
2. Snap plate at front bottom of cabinet removed
3. Vacuum both sides of filter element thoroughly.
a. If filters are very dirty, wash them in a mild detergent-water solution.
b. Place filters vertically while drying to avoid damage.

CHECK COOLING

CHECK/Condition

Action

1. 60 Hz power off.

CHECK: Is the red light on at the bottom of the cabinet?

2. 60 Hz power turned on.

CHECK: Does air circulate upwards through entire cabinet?

Yes No \longrightarrow 1. Verify blower is operating.
2. Check for any unnatural obstructions.
3. Verify there is a proper allowance for air to move under cabinet, through filters and up.

CHECK POWER SUPPLIES

CHECK/Condition
Action

1. Verify power supplies are creating +6 VDC and -6 VDC.

CHECK: Is the proper voltage present?

2. Verify termination power ($\pm 20 \mathrm{VDC}$) is supplied to the module.

RUN VOLTAGE MARGINS

CHECK/Condition

Action

1. Insure system is configured for running of appropriate diagnostic for equipment on 1750. (Interrupts equipment number, proper inputs or outputs for diagnostic used, . . .)
2. Optional testing could be performed to verify operation of master clear button, equipment number switch and protect switch depending on whether customer desires to use these features as variables.
3. Run the diagnostic and shock test the 1750 module*

CHECK: Are there any errors?

4. Re-run the diagnostic at $\pm 10 \%$ power supply margins.

CHECK: Are there any errors:

End of PMP

[^1]
Section Five DIAGRAMS AND PARTS LIST

5.1 GENERAL

Included in this section are board layout diagrams for all cards in the DCT (see Figures 5.1 through 5.9). These diagrams illustrate the positions of the components on each board. Following each diagram is a parts list for that board. Table 5.10 is a module assembly parts list.

1-8527

FIGURE 5.1 BALANCED LINE INTERFACE (AV) CARD, BOARD LAYOUT

		TITLE PRINTED WIRING ASSY BRLANCED LINE INTEPFAGE GV												PRODUCT1500		PL 38874900		Rev.												
		2	of																											
	identification													QUANTITY REQURED												nomenclature or description			$\xrightarrow{\text { SPECIFICATIONS }}$ ORMATERIAL ${ }^{\text {NOTES }}$	
10																														
11	28563033	8													RES. COMP I.	直W 5\%	RI THRU R													
12	38958502	1													TEST UAC	CK														
13	38817200	1													HEADER, PEINT	ED WIEING	$B D$													
14	84717500	2													EIVET, UNIV HD	$A C$	$1 / 16$ D/A $\times 1 / 4$													
																		.-												

NOTE: BAND DENOTES CATHODE END OF DIODE.
$乌$ R23 IS A SELECT ON TEST RESISTOR ($1 / 4 \mathrm{~W}, 5 \%$)
1-2528A

FIGURE 5.2. RESPONSE CONTROL (BB) CARD, BOARD LAYOUT

[^2]

1-2529

FIGURE 5.3. ADDRESS DECODER (BE) CARD, BOARD LAYOUT

TABLE 5.4. PARTS LIST
PROTECT AND EQUIPMENT SELECT (BG) PANEL ASSEMBLY

1-3503BG

FIGURE 5.5. PROTECT AND EQUIPMENT SELECT (BG) CARD, BOARD LAYOUT

TITLE PRINTED WIRING AS5YCOREOHADION PROTECT \& EQUIPMENT SELECT

FIGURE 5.6. ADDRESS CONTROL (BH) CARD, BOARD LAYOUT

1-2532

FIGURE 5.7. DATA AND CONTROL BUS INTERFACE (BJ) CARD, BOARD LAYOUT

FIGURE 5.8. LONG-LINE DRIVERS (BM) CARD, BOARD LAYOUT

Colil	MidGDind 	analoc - dicital systems division La Jolla, Calif. 92037						$\begin{aligned} & \text { COCE IDENT } \\ & 09132 \end{aligned}$			SHEET		$2 . \mathrm{PL}$DOCUMEN 388	$\begin{aligned} & \text { DOCUMENT NO } \\ & 38897100 \end{aligned}$	$\stackrel{\text { Rev. }}{\text { K }}$
FIND	Part			UNTI	Y	EQU	IRED						nomenclature	SPECIFICATIO	
											MEAS		or discrimion		
1	38866800	1											PW BOARD		
2	24500048	16											RES COMP 240ת $1 / 4 W 5 \%$	R3A-R3R	
3	24500050	16											RES COMP 300 $1 / 4 W 5 \%$	R4A-R4R	
4	24505229	4											CAP TANT IMF 35V 10%	Cl-C4	
5	39064900	REF											LOGK DIAG		
6															
7	38958502	1											TEST JACK		
8	24562100	16											TRANSISTOR (2N3O14)	QIA-QIR	
9	39034800	16											TRANSISTOR (2N3252)	Q2A-Q2R	
10	25175800	36											DIODE (IN914)	$\begin{aligned} & \text { CRIA-CR2 } \\ & \text { CRIN-CR3 } \end{aligned}$	
11	2450006=	36											RES COMP 1.2K I/AW 59\%	RIA-R2R, RGA	RCOR
$!2$	84996729	16											CAP CER 1000ff 100 V 10%	CIA-CIR	
13	38817200	1											HEADER PWB		
14	84717500	2											RIVET UNIV HD ALLM	$1 / 16$ DIA $\times 1 /$	LG.

1-3502BN
FIGURE 5.9. FUNCTION CONTROL (BN) CARD, BOARD LAYOUT

TABLE 5.10. MODULE ASSEMBLY PARTS LIST

Section Six WIRE LIST

6.1 GENERAL

This section contains the wire list for the 1750 Data and Control Terminal.

Signal list					
name	draming	REV.	Date		titile
1750	39925400	AA		noi	

```
* *
* ON SPECIAL NOTES :
```



```
* K= RELAYS
```



```
* se TWISTED PAIR *
* S= switches :
- this is a teSt comment:
```


- GRDCHE lGGA WTRE :

EXTSN	$\times 34-721$	17-r?s
PWR1	$42-005$	r?-nn3
PWR2	4>-976	Tr-nn5
SRGCI	$\times 36-091$	$41-105$
SRGC2	$x 77-071$	$41-n \cap 7$
SRGO	$\times 350001$	39-nns
TR1	32-033	T1-nn3
TR?	32-043	r1-n04
TR3	32-039	T1-nn5
$v+20$	THE-0n2	T92-nns

	stgnal list					Titio
		nraminge:	REV.	date		
	1750	389?54nn	AA		nei	
$v \times 20$	$\times 3 n-89$	Tap-nn3				
$v \times 20$	$\times 31-79$	T92-n04				
$v+20$	x32-F9	TRP-n05				
$v+20$	×33-F9	TR2-006				
$v+20$	$\times 3 \mathrm{~B}-\mathrm{A}$	T92-nn2				
$v \times 20$	x 39 - 4	T92-n0s				
v-20	TR5-003	T83-009				
$v-20$	x30-F0	T®3-nn3				
v-20	x $31-\mathrm{FO}$	TR3-not				
v-2 0	x32-F0	T83-nn5				
$v-20$	$\times 33-\mathrm{FO}$	TA3-nns		.		
v-20	$\times 38-8$	TR3-nD2				
$v-20$	$\times 30-\mathrm{B}$	tR3-nDs	-			
V-6	POS-TER	$V-6=P s$	NEG-TER	Vobe is	is 34	
v-6	x4, ${ }^{\text {a }}$	41-n19				
v-n	X4:1- 4		NEG-TER	V-R-PS	in 64	
V-Grt	$\times 490$		PNS-TER	V-R- PS	ia 64	
117AC	TRI-0n1	D01-n01				
11740	T81-0.01	T1-nn1				

117AC	THI-002	r1-nn		
117AC	TR1-0n2	Pnlunnz		
117 PD	TR\&-001	W01-0nl		
11780	TRA-0nt	tr-nnl		
117PD	TRG-DOP	52-002		
117 PD	tranonz	W01-no?		
SAO	$\times 3 n-4)$	16-n18	$\times 30-42$	\|a-กil
SA0	$\times 31-41$	16-n18	$\times 31-42$	16-017
SAn4	$\times 30-49$	14-n18	$\times 30=10$	14-017

	Stinal titst				Tet titien
	NAMF	nrawtan:	REV.	date	
	17511	38925400	AA		
SAn4	$\times 31-49$	14-rin	$\times 31-40$	14-917	
SAD5.	$\times 30 \cdot-41$	14-n14	$\times 30=8 ?$	14-015	
SAO5	$\times 31-91$	14-n16	x31-92	14-015	
SA06	$\times 3 \mathrm{C}-\mathrm{H3}$	14-n46	$\times 30.24$	14-845	
SA06	$\times 31-43$	14-n4n	$\times 31-84$	14-045	
SAD7	x 3 r. P -	14-n44	$\times 30-86$	14-043	
SAOT	$\times 31-35$	140044	$\times 31=86$	14-043	
\$A1	$\times 37-43$	15-016	$\times 30.14$	14-nis	
sAl	$\times 31-43$	16-n16	$\times 31-44$	14-nis	
SA10	$\times 3.1-\mathrm{Cl}$	12-r46	$\times 30-\mathrm{c} 2$	17-065	
SA10	$\times 31-\mathrm{Cl}$	12-n46	x $31-\mathrm{c} 2$	120045	
SA11	$x \mathrm{an}=\mathrm{C3}$	12-n44	$\times 3 n-\mathrm{c} 4$	17-043	
SA11	$\times 31-\mathrm{C3}$	12-n44.	$\text { x } 31 \text { - C4 }$	ij-043	
\$A12	$\times 3:-65$	10-n18	$\times 3 n-\mathrm{c}$ - 6	10-n17	
812	$\times 31-5.5$	10-n19	$\times 31-\mathrm{c} 6$	10-n17	
* 13	$\times 3 .-\mathrm{c7}$	10-n19	X3n-CA	1n-n15	
88_{13}	$\times 31-\mathrm{C7}$	1rarit	$\times 31-\mathrm{CA}$	1n-nis	
\$ ${ }^{14}$	$\times 30-\mathrm{ca}$	10-n46	$\times 30=00$	10-045	

8414	$\times 71-C O$	$1 r-n 44$	$\times 31-\mathrm{r} 0$	10.n45
* ${ }^{\text {P }} 15$	$\times 3: 71$	1190144	$\times 30-72$	1n-ก43
* 415	$\times 31-71$	100044	$\times 31-02$	10-943
${ }^{81} 2$	xar- 45	16-1146	$\times 30-46$	1A-045
SA2	$\times 71-15$	180n46	$\times 31-46$	16.045
SA3	$\times 3 r-47$	160n44	$\times 30-\Delta 8$	18-043
\& 43	$\times 31-47$	$16-144$	$\times 31-\Delta R$	14-047
SAB	$\times 30-87$	12-n1R	$\times 30=88$	17-017
SAB	$\times 31-47$	12-018	X31- 88	170017
\$49	$\times 3 n=49$	12-n16	$\times 30=80$	1う-015

	signal list				TTTLF
		drawing ：		nate	
	17＝9	309254nn	AA		
SA9	$\times 21-49$	12－n16	$\times 31-9 n$	17－019	
scint	$\times 3 \sim-77$	15－nn7	$\times 3 \mathrm{n}-\mathrm{na}$	15－nñ	
scint	$\times 31-n 7$	15－nnt	$\times 31-89$	$15-0$ ¢̊	
$s S_{C L} C^{T}$	$\times 37-37$	07－n34	$\times 32-78$	n7－033	
SMCLT	$\times 37-17$	07－n34	×33－ 78	n7－n33	
SPGPT	\times アア－ 09	ar－nnc	$\times 32-00$	ロプロก̄5	
SPGPT	$\times 33-19$	07－0n6	$\times 33-80$	07－005	
500	$\times 32-41$	19－n？1	$\times 32-42$	19－nว2	
80	×33－41	19－n21	x33－42	19－02？	
8.1	$\times 37-43$	n9－n4？	$\times 32-44$	n9－n4i	
501	$\times 33-43$	09－n4？	$\times 33-44$	no－n41	
5010	$\times 37-\mathrm{Cl}$	$07-n 07$	$\times 32-\mathrm{c} 2$	07－008	
S010	$\times 33-\mathrm{Cl}$	07－n07	$\times 33-\mathrm{c} 2$	O7－008	
S011	x32－c3	15－n4？	x32－C4	$15-841$	
\＄011	$\times 37-.63$	15－n4？	$\times 33-\mathrm{c}_{4}$	15－n4i	
s012	137－C5	17－nก4	$\times 32-\mathrm{C6}$	19－nn3	
S01？	$\times 37-\mathrm{C} 5$	19－n04	$\times 33-06$	io－nis	
8013	$\times 32-07$	19－0n5	$\times 3$ ？－C8	10－nin	
SO13	$\times 32-\mathrm{C7}$	19－005	$\times 33-\mathrm{C}$	19－006	

8014	$\times 30-4$	17-n17	$x \rightarrow 2-\mathrm{c}$	10-n11
8014	$\times 37-59$	19-r12	$\times 33-\mathrm{r}$	19-711
8015	$\times 3>-01$	19-010	$\times 32-12$	10.niq
S0,5	$\times 32-11$	$1^{9-n} 1^{n}$	$\times 3 x=n ?$	19-309
\$0?	$\times 30-45$	11-n4?	$\times 320.46$	11-041
502	*37-45	11-n4?	$\times 33-46$	1i-n4i
S03	x32- 27	13-n4?	$\times 3$ - 0 - 4	17-n41
\$03	$\times 33-47$	13-n4?	$\times 33-48$	$13-741$
8.84	$\times 32-49$	19-n2n	$\times 32=40$	19-719

	signal litst				Det TTTIF
		noantalg：	aEv．	date	
	17 ma	38975ann	18		
SO4	$\times 37-49$	19－n＞n	$\times 33-4 n$	10－n19	
\＄05	$\times 32-11$	19－n31	$\times 32-82$	19－n3？	
\＄05	x72－ 81	19－n31	$\times 33-82$	19－032	
506	$\times 32-43$	19－n43	$\times 32-84$	10－044	
806	$\times 37-13$	19－n43	X33－84	10－n44	
507	$\times 32-85$	07－043	X32－86	07.044	
507	$\times 37-45$	07－n43	$\times 33-86$	ni－n44	
SOA	$\times 3>-47$	n7－n26	x32－88	กフーロ？5	
50.5	$\times 33-87$	n7－n＞6	$\times 3.8$－${ }^{\text {P }}$	n7－n？5	
509	$\times 37-89$	07－n17	x32－90	－7－пin	
\＄09	$\times 33-89$	$07-n 17$	$\times 33-{ }^{-10}$	ロシーกi®	
sREAD	$\times 32-03$	18－037	$\times 3$－${ }^{14}$	18－338	
sread	$\times 33-03$	18－n37	$\times 33-84$	1R－03R	
sREJEC	$\times 32-n_{5}$	19－n15	$\times 30-36$	18－016	
sREJEC	$\times 31-05$	18－015	$\times 31=06$	1Ranin	
¢RFPLL	$\times 2 \times 17$	10－n 34	X30－84	120033	
sRFply	$\times 31-33$	1R－034	x $31-84$	10－n33	
SSPAOI	$\times 30009$	$\times 31-\mathrm{na}$	$\times 30-10$	$\times 3$－Dn	
sspanz	$\times 3=51$	x $31-\mathrm{Fl}$	$\times 30=52$	\times ¢T－E2	

\$5Pan 3	$x^{2}-\mathrm{F} 3$	$\times 31-57$	$\times 30-54$	X3i-E4
*SPan4	$\times 3-55$	x31-55	$\times 70-56$	$\times 3$ - 5 -
SSPA05	$\times 3-57$	$\times 31-\mathrm{ET}$	$\times 30=58$	$\times 3$ i- E8
SSPAC6	831-8.9	$\times 31-59$	$\times 30-50$	
sfpant	$x \rightarrow=51$	×31-F1	$\times 30-72$	$\times 3 i-52$
SSPAOR	$\times 7.53$	$\times 31-53$	$\times 30-54$	13i- F4
\$SPA09	$\times 7 \mathrm{a}-\mathrm{F5}$	$\times 31-55$	$\times 30-56$	*3i- Fa
*SPA10	$\times 3 n-57$	$\times 31-57$	$\times 30-58$	$\times 3 \mathrm{i}=\mathrm{FR}$
\$SPA11	+37-51	X33-E1	x $32-8.2$	X33-E?

		Stigal				
	\cdots ma	noaming ：	rev．	date		titig
	17en	3R9354n0	AA		ne．t	
sspalz	$\times 3 \approx$－¢ 3	$\times 33-\mathrm{E} 3$	－ $32-54$	$\times 33-54$		
SSPA13	$x_{3}=-55$	$\times 33-55$	X32－E6	メアネ゙ー E6		
SSPA14	メ72－57	－ $33-\mathrm{E7}$	$\times 3$－－ 58	メ3アー ¢¢		
sSpal 5	$\times 3$－E9	x 33.59	x32－80	×33－Eก		
s5pal6	$\times 32-51$	x 33－F_{1}	x 32－F2	x33－F？		
SSPA17	＊32－F3	x $33-53$	×32－F4	×39－F4		
sSpal ${ }^{\text {a }}$	－3＞－F5	x33－ 55	X3R－F6	メ37－F6		
$\mathrm{SW}=0$	×32－F7	07－n46	$\times 32-\mathrm{F8}$	ف̄ワ－n45		
Sw＝0	×37． 57	07－n46	X33－F8	nion45		
swrite	x32－ 55	18－0．45	x32－${ }^{\text {－}}$	18－046		
sWRITE	$\times 33-55$	18－045	x33－16	120046		
\＄1＊	TR5．0n6	09－ก35				
\＄1＊	×11－${ }^{\text {a }}$	T85－n06				
s1－	TRS－nn4	n9－ก36				
\＄1－	（11－${ }^{\text {a }}$	TA5－nn4				
c10．	TRE－ $\mathrm{Cl}^{\text {4 }}$	11－017				
sin＊	$x>=0$	T25－n45				
s10－	TRGEn43	11－n18				
510－	$x>n-R$	T25－n43				

\$11*	1:3-017	13-ri7
\$11*	$\times 21-4$	T45-017
\$11-	TAE-n10	$13-518$
s11-	x $21-4$	TR5- 17
\$12.	THE-n? 1	15-517
\$12*	$x \gg-A$	TR5-r21
\$12-	TH5:-019	15-n18
\$12-	X?2- 8	945-n19
\$134	THE-030	09-nn7

Stgnal lict				
1.a.4F	noawtag	REV.	Date	titige
1750	309254nn	AA		

513.	$\times 3708$	T85-n30
\$13-	TRGAOPR	09-nns
513	K73- H	TA5-nつA
\$14*	T140-n39	$11-0 \cap 7$
\$14*	X $74-1$	TR5-n39
\$14.	TRG-n37	11-nnR
514.	x $24-8$	TR5-n37
\$15*	TRE-n48	13-nก7
\$15*	x 5- $^{\text {- }}$	TR5-n4R
\$15-	TRE-046	13-nne
\$15-	x $75-\mathrm{R}$	TR5-046
s2*	THE-015	11-n35
\$2*	X12- ${ }^{\text {a }}$	TR5-n15
52-	TRE-0. 13	11-036
52.	人17- 4	TR5-n13
3	TRE-n34	13-ก35
53*	(12- ${ }^{2}$	995-n.24
53-	THE-n?	13-135
53-	X1?- ${ }^{\text {P }}$	125-n??

\$4*	T-A=- 133	150n35
844	メ14- ${ }^{\text {a }}$	T25-n33
84-	T450. 31	15-n34
94-	X14- 2	T25-031
554	THE= - 4 ?	م9-n>7
$85 *$	x15. 4	725-n42
55-	TGF-740	n9-n29
\$5-		T95-n4n
86	T45-0109	11-027

		stignal lis				
	-1.4F	neawtag 1		date		trita
	1/2n	30925ann	ΔA		r.e.t	
\$6*	メ14-A	TR5-nn9				
86-	TRS.-nil 7	11-n28				
86-	X1a, H	125-nn7				
\$7.	thamin	13-nフ7				
57*	17- A	TRS-niA				
87-	tracolb	13-n78				
57-	Y17- R	T95-016				
s8*	THSOn27	15-n27				
\$8*	X1a- ${ }^{\text {a }}$	T85-027				
s8-	TRL-n25	$15-128$				
8-	X1R- ${ }^{\text {a }}$	TR5-n>5				
\$9*	TR5-036	090017				
\$9*	$\times 140$	TR5-036				
s9-	THC-n 34	09-n18				
\$9.	x10. H	T25-034				
ADDIA	10.14	28-049				
	nR. 5					
ADDIB	190. ${ }^{44}$	19-041	2R-047			
	25.5	05.5				
ANAI	1.2-inh	20-nว1				

94.5			
ANAIT	$3 \mathrm{ra}=3$	23-n>7	? $2-041$
	93.9	n3.)	
ANAT	- P-~n	20-022	
	10.1		
$\triangle N A>T$	2n-r19	23-025	2?-038
	13.0	n3.n	
ANA 3	n-9-10	20-n17	
	19.0		

	sigmal list				
	:, MME	noaxing :	dev.	Date	Titla
	1 man	3P9354n0	ΔA	ne.t	
ANA 3 T	2n--18	?3-079	22-039		
	33.5	$n 2.5$			
ARnof	r4-nn3	15-n?	37-039		
	17.5	12.0			
arnot	$15.03 n$	16-028			
	n?. 0				
ARCIF	n4-rn5	15-074	37-047		
	17.5	12.0			
AROIT	15-r 25	16-0n)			
	34.0				
ARO2F	n4-0.n7	15-001	37-043		
	76.5	14.5			
ARORT	15-nip	16-034			
	$n 4.0$				
ARO3F	104-0.09	15-014	37-045		
	16.5	13.0			
ARO3T	15-900	$160 n>7$			
	n2.0				
APn4F	-4-711	13-n>1	36-039		
	176.0	12.5			
API4T	13-70	140078			

	14.0	$17 . n$	
ARIPT	9-~2n	10-n20	
	12.3		
AR13F	14-39	n7-n>4	34-047
	14.0	13.5	

Awns	rı-~10	nu-n>1	35-013	29-ni>n
	12.0	13.5	n3.5	
AW 07	"4-? 14	n9-nつ7	36-015	39-n14
	13.5	13.5	n2́a	
AWnR	r4-n7n	nR-n.?	35-011	29-rio
	13.5	14.n	n3.n	

Stimal list						
	n, mat	noawtina	Qfv.	nate		titif
	17-n	389254nn	AA		ont	
AWCO	-4-93	n?-03?	35-079	30-nı		
	04.1	14.0	n3.n			
awlo	14.8084	n8-035	35-013	za-npa		
	03.5	14.5	n4.5			
AW11	1.4-92	n80039	35-015	20-ņa	.	
	n4.1)	14.5	04.5			
Awl?	14-4.78	n8-n4n	32-015	34.nii	39-n7*	iว-n ${ }^{\text {a }}$
	04.0	13.1	n?.5	05.5	33.7	
AWI?C	47-125	Xп6-01?				
	50.6					
AW13	¢4-n 3 n	05-043	32-017	24-กั่ง	39-ก19	4フ-n76
	04.0	13.5	n3.n	ก4. 5	33.5	
AW13C	4ア-n27	$\times 06014$				
	50.6					
awla	14-0.73	neonat	32-019	34-กั่з	39-ñ7	4>-ñs
	$n 4.5$	13.5	n2.5	n4.5	97. 5	
AW14C	4>- ${ }^{\text {a }}$	xntonia				
AW 15	n4-"34	nR-n47	32-025	34-nis	39-n5	4ว-ṅ3
	14.0	13.0	n3.n	04. ${ }^{\text {¢ }}$	13.i	
AW15C	4\%-71	XnSunia				
	55.6					

AOna	-4-: 13	18-nnt
	95.0	
40nR	16-124	290009
	26.0	
Anla	14- 27	15-011

An5A	14-14	14-n11
	74.5	
A058	14-13	36-nns
409C	14-~14	23-041

		stgmal				
	A : MF	noawter :	REV.	Data		tith
	17cin	$349356 n 0$	AA		net	
A06A	$n \boldsymbol{n - n > 3}$	14-035				
AOKA	$140 \cdot 77$	25-0n9				
A06C	14.738	17-037				
An7a	no-n>5	14-039				
	05					
A07B	14-n41	25-005				
A07C	14-n6?	17-031				
a 08 a	-R-179	12-0n7				
ADBR	17-nn9	24-009				
A09A		12-011				
A09R	12-r13	24-005				
Alna	n9-^33	12-0.35				

A10R	10-37	17-n4n
	17.5	
4114	94-:36	120030
	13.0	
A11A	12-41	17-ก34
	14.0	

		STGMal				
	tomp	neaming :	REV.	nate.		TTtim
	17man	$399254 n n$	$\triangle A$		net	
A12A	ra-:37	1n-nn7				
	05.0					
A134	1.4.941	1n-nil				
	$n 5.0$					
A14A		10-0.35				
	$n 2.5$					
A15A	ra-r 45	10-0.39				
	02.5					
cara	36-ก 37	37-035				
	n2.0					
CARR	35-197	36-035				
	12.0					
CARC	34-~37	35-035				
	n2.0					
CARY1	27-749	PR-01?	-			
	- 05.5					
CARyP	2h-a 4 A	27-017				
	- 95.5					
capy 3	25-48	25-n12				
	15.5					
CARY4	24-48	25-017				
	25.5					

CDIN1	17-27	$30-0.44$
	14.6	
CDInd	- ロ->7	37-n>9
	12.0	
CDIN3	15-27	3h-n>8

SIGNAL LIST

CLRAF	17.18	3R-n>4
	i3.	
clegf	24-~11	39-nつ5
	n2.3	
CLRCF	75-r:10	$38-n>6$
	94.0	

		stgmal				
		noawtigs:	REV.	natf		tithe
	178.n	$349254 n n$	14		net	
CLRDF	$34-710$	38-027				
CL? $\mathrm{AF}^{\text {F }}$	77-971	3R-ก14				
CL. 2 PF	36-171	38-015				
CL.?CF	25-n ${ }^{1}$	38-016				
Clzif	34-0.31	38-017				
CMP	3P-0. 13	39-033				
CMPAF	77-r.f4	38-0.7				
CMPAF	3R-7n4	38-0,				
CMPCF	75-:3n4	38-0n9				
CMPDF	34-.n4	38-011				
CMPF	3rang	39-กn7				

CSATT

2n-res 24-n10 2?-045

24.504 .5

$\operatorname{csp} x$	r2-"n4	$42-010$		
	17.5			
$\mathrm{CS}^{\text {Hn }}$	- $2-711$	n3-0.5	17-003	$31-n 47$
	12.5	ก7. ${ }^{\text {n }}$		

		stgnal lis				
	namf	neaming 1	RFV.	nate		Trita
	1750	38925400	$\Delta \Delta$		no.t	
CsBnt	21-n45	22-036	25-039			
	$n 2.5$	n?. 5				
$\mathrm{CS}^{\text {8 }}{ }^{1}$	np-0.13	n3-0n3	21-046			
	$n 2.5$	13.0				
CsBlit	21-144	22-035	25-020			
	$n 2.5$	n4.0				
CsBr	n. -nis $^{\text {a }}$	21-043				
	11.5					
CSB2T	21-n41	22-032	25-022			
	02.5	03.5				
CsB3	02-n 17	21-040				
	11.5					
cs83i	21-ก37	22-033	25-019			
	02.0	n4.0				
cscx	n3-nos	42-011				
	17.0					
csco	n2-n.19	$03-013$	17-004	う1-ñ39		
	02.5	08.n	j6.0i			
cscot	2i-n36	22-03n	26-039			
	02.5	03.5				
Cscl	ne-n?l	03-011	21-0.35			
	02.5	11.0				

c．scit	－1－73	23－070	3 nan 00
	१Р．${ }^{\text {c }}$	n4．n	
csc $>$	「フーツ3	n3－009	21－032
	13.0	$11 . n$	
r．scrit	$21-030$	23－07n	26－0？
	92．		

17.5
cSEn

21-nis

CSEnT

二1-~14 2R-01の 2R-039

$22.0 \quad 96.5$

	signal list				met trita
	\therefore ans	noamtag:		natf	
	1ion	$3297540 n$	AA		
CSE 1	1.2-177	n3-027	17-010	21-ก1?	
	12.5	ne. 5	$n 3 . n$		
CSEIT	$21-704$	23-007	PR-nフo		
	12.0	n5.n		.	
CSE?	- $2-189$	n3-075	21-010	30-ni	
	73.0	10.0	10.5		
csert	21-n 7	P3-0n6	2R-022		
	72.0	05.5			
CSE 3	rP-n41	n3-023	$21-005$	29-ñ?	
	03.5	10.5	11.0		
CSE3T	$21-213$	22-005	28-019		
	12.0	n5.n			
c1771	$32-n 33$	33-0ก4			
	22.0			.	
DDT	$18.3 n 9$	22-011	23-0n3		
	- 3.30	n2. 5			
nig	n)- $n 4$	2n-n>7			
	10.5				
nigt	2n-25	23-03n	2?-042		
	13.0	n3.n			
DSARL	13-mal	XnS-nn5	42-021		
	13.0	14.5			

EDT	22-0.04	24-078	25-034	26-ri39	27-079	20.030	$37-140$
	94.3	01.5	n 1.5	ni.	-1.5	04.5	
EOs	- 20.74	23-044	22-004				
	10.0	$n 5.5$					
F.OSNF	inara 7	n5-n15	23-046				
	12.0	11.5					

	Sigmal litst					title
	hamp	noaming :	REV.	date		
	17 cor	389754nn	AA		п.t	
ETC	340001	39-0n4				
	12.0					
EXSNF	-5--13	n5-n>1	17-041			
	17.0	na.n				
FAPA	27- 32	26-011				
	84.5					
FIELO	r3-r.4H	42-043	$\times 06=003$			
	17.0	16.5				
fncto	ก7-ก72	17-135	1f-010			
	05.5	04.5				
FNTF1	17-743	$23-045$				
	74.0					
FNTF3	17-n4	32-011				
	10.5					
FPAF1	24-~ 25	26-014	-			
	14.5					
fPAF?	P5-0.35	26-015				
	13.5					
fPaf3	26-14	26-025				
	13.0					
fPAF4	PR-17	27-ก35				
	13.5					

-3-••1
 ?ann

31.1

01.5


```
1-2N 11-034 11-050
    1?.0 n3.n
フ-*n? 1P-n?? 1?-0フ4
    7.5 01.5
12-032 1?-036 12-05n
    11.5 n2.5
```


$$
\begin{aligned}
& 10.5 \\
& \text { Tha-47 25-n5n } \\
& 11.5 \\
& \text { 2K-47 2hanEn } \\
& 91.5
\end{aligned}
$$

Stondl Lict					
ar:	noawinas :	QFV.	DATF		Titif
17 ma	3R935ann	ΔA		ne.t	
27-.44	27-n5n				
11.5					
2mes ? 34	29005n				
n3.1)					
ว9-: 74	$39-050$				
03.0					
$41-144$	$41-050$				
n1.5					
(rament		27-002			
03.5	11.0				

GRDC	12-004		4?-n5n
GRDC	TM1-nn3		POI-nO3
GRDC	2144-nn?		38-n50
GRDC	rn5-nnl		TR4-nn9
GRDC	メ11-	C	TR5-nn5
GRDC	*12-	c	T35-n14
GRDC	x17-	c	T35-n73
GRDC.	x14-	c	T25-n32
GRDC	$\times 150$	C	T35-n41
SROC	*12-	c	T35-rna

GRDE	$\times 17$	r	Tマ5－n！
GRDC	メリー	C	125－039
GRDC	x12－	C	＋45－035
GRDC	x $2:-$	c	T25－044
GRDC	$x \geq 1-$	c	TR5－\％ 11
GRDC	メフワー	c	TRS－n？
GRDC	y？3－	c	595－n29
GRDC	$\times 34=$	C	TR5－＾39

		stgnal lis						
	ane	noantig：	Rev．	nata		trita		
	itar	32935400	$\Delta \Delta$		net			
GRDC	$x=-c$	T95－047						
grnc	$\times 3 \div-\mathrm{e}$	T34－0n3						
GRDC	$x+1-\mathrm{ct}$	TR4－n 04						
GRDC	$\times 3.00$	TR4－nn5		．				
GRDE，	－ $33-\mathrm{T}$	T24－n76						
GRDC	$\times 37-n \cap ?$	x3n－nns	$\times 35-002$	$\times 3$－\times－${ }^{\text {añ }}$（	$4-\cap 07$			
INpF	$39-n n 3$	39－ก1？						
	02.5							
L．DRAF	27－119	38－nis						
	n2．0							
LDraf	$36-: 19$	38－019	．					
	12.0							
LDRCF	35－nic	38－n＞n						
	n2．5							
LDRDF	74－～19	39－021						
	13.1							
lflaf	27－15	24－0n3	25－0， 3	jhaniz	27－กファ	20－nis	う0．n73	ジーnij
	13.0	01.5	0.1 .5	ni．5	－${ }^{\text {a }}$	n4．n	へi．a	
	27－3 3	26－07？	25－032	24－n3＞				
	－ 01.5	n1．5	n1．5					
LRHRF	17－934	23－0n7	39－042					
	25．0	11.5						

LRHH1	17-19	17-025	
	13.5		
LRRYF	17-27	23-nn9	3R-041
	44.5	10.5	
LRRY 1	11-19	17-033	
	34.0		

		Stignal lis				
	naba	deaming :	REV.	nate		TTT.F
	17:4	3R9254nn	ΔA		net	
LSCNF	n.annc	05-017	32-0? 4			
	12.1	$13 . n$				
LStaf	17-"n5	39-035				
	13.0					
ISTAI	17-nn4	3?-n73				
	$n 8.5$					
LWHPF	17-8:36	23-0nA	3?-0?7	79-กี4		
	75.5	n6.5	n5.5			
LWHR1	no-r 19	17-071				
	04.5					
I.WRY	17-¢45	19-n38				
	03.0					
LWRYF	10-739	23-010	32-026	79-ก゙39		
	96.0	06.5	n5.5			
MANLF	47-93	XOn-On9				
	14.5		-			
MCL	r?-35	-7-039	42-045			
	04.5	16.0				
MCLF 1	17-ヤว1	17-047				
	'17.0					
MCLF 3	1.7-3n	23-042		.		
	18.5					

MCLF 4	-7-:37	$32-010$	
	14.13		
MCLF5	-7-:28	39-nna	
	17.0		
NAD	19-r.4n	23-034	22-012
	03.5	04.0	

		-roul				
	: ans	noaming :	Rev.	Date		Titif
	1/im	309754 nm	A A		net	
NAPA	23-93	25-n11				
NAOS	14-933	20-071				
NAAI	1a-rn4	28-n21				
NAn?	14-931	27-031				
NAO3	1a-rab	27-021				
	$n 6$					
NAn4	$14-0.93$	26-ก31				
$N A_{0}$	14-r.n4	26-n31				
vang	$14-6.71$	25-031				
			-			
Nant	14.-3n	? 5 -n>1				
mana	12-13	24-n31				
NAnO	12- 04	24-n71				
NAIO	17-911	23-019				

	27.4	
NA11	120:2n	23-n>1
	96. 5	
NLK1	27-934	29-036
	n2.1	

		Stgenl ltat				
	Une	neamtag:	qfov.	tate		Titi.f
	1150	34975ann	ΔA		net	
NLK?	26-r 34	27-036				
	n2.0					
NLK3	25-3 34	26-036				
	12.0					
NLK4	20-34	25-036				
	12.0					
NLK5	15.0 O. 4	23-006	24-036			
	14.5	94.5				
NPAFI	24-187	25-014				
	04.0					
NPAF2	25-0, 15	25-037				
	03.5					
NPAF 3	25-6.16	26-037				
	13.5					
NPAF4	25--17	27-037				
	14.0		-			
NPAF5	25014	28-037				
	94.0					
NTOLF	- $3-31$	n9-031	n6-0n5	ñ5-ก̄̃n		
	13.5	n5.n	n?.n			
MTnIt	0-74	17-n47				
	05.5					

ntosp	7-. 77	11-n?	naman	neancia
	14.3	"5.5	17.1	
$\mathrm{NTO}^{\text {n }} 3 \mathrm{~F}$:3-74	n5-nin	nfonne	13-n31
	14.5	01.5	+6.5	
VTALF	-7- 37	n5-n1?	nr-nil	i5-i31
	74.5	01.5	n7.n	

	stimal itit				
	ane	noaming ：	prv．	nate	titife
	$110 n$	377254 nn	$\wedge \mathrm{A}$		nrt
NTA5F	$83-839$	n5－014	n6－013	ヘローกัว	
	114.5	01.5	03．5		
NTAGF	13－41	n5－nis	n6－015	シーーก゙ว	
	14．5	n1．5	04.0		
NTOTF	「7－43	n5－n18	nfonit	イアーกัファ	
	94.5	$n 1.5$	n4．5		
ntinf	－3－ 3 ？	25－n2n	nt－n19	i5－ņ3	
	13.5	01.5	－5．5		
ntogi	n7－n 34	n5－n7？	n6－n21	na－ni3	
	83.5	01.5	n3．5		
NTIDF	13－36	n5－n74	－6－n23	イiーディ	
	13.5	01.5	n4． 5		
NTIIF	173－－3R	n5003n	n6－025	i3－n］3	
	13.5	01.5	05.5		
NT12F	13－44n	05－028	n6－027	i5－ก13	
	13.5	01.5	－ 86.5	．	
NTI 3 F	－7－142	n5－03n	06－029	nั－ño	
	03.5	n1．5	n5．0n		
NT14F	$12-144$	n5－n32	n6－031	iノ－ñz	
	17.5	11.5	ran ${ }^{\text {n }}$		
NT15F	$\cdots 2.046$	05－034	nt－n33	iz－ก̄ก3	
	13.5	$n 1.5$	n7．n		
nse．	32－48	$33-007$			

$$
\begin{aligned}
& 14.0 \\
& \text { :7- if 2l-fill } \\
& 15.0 \\
& \text { DFLAF } \\
& 19.5
\end{aligned}
$$

25-044
Phon44

13.5 ก7.n

BOAR

10-18 $\quad 2 R-0 \geq 3$

15.1

Dnka

14.44 2P-n34 $\quad 75-04$?

13.5 n3.5

ORGR
10-44 25-073

dAL	10-13	22-015	23-738
	12.5	$n 4 . n$	
rarfi	10-25	1R-nつ?	
	115.0		
QARF?	120-tion	18-010	
	94.5		

11.5
RNAFI
1n- $2 \mathrm{~h} \quad$ 24-n14
RNAF?
78.0
17-r26 24-n15
67.0

		.stanal lits				
	" \quad M \times	noantis:	arv.	nate		Titis
	170n	3R975ann	ΔA		int	
anaf 3	14-r=h	24-016				
	76.5					
pnaf4	16-1 3 h	$24-017$				
	05.0					
pnat	22-:16	$24-011$				
	n?.0					
RPYF	18-:37	23-035				
	44.0					
rpyt	12-IT34	23-0.37				
	04.5					
RRYF	n4-0.27	11-011	18-031			
	16.5	n6.0				
RSnf1	1n-:\% 2	17-0i3				
	n5.0					
nSofz	12-31	17-014				
	34.0		-			
nSof 3	14-~71	17-015				
	13.0					
DSAF4	1×-21	17-016				
	n2. 5					
RSIFI	$10-23$	170017				
	24.5					

DSIF?	120.33	17-n1m
	74.0	
RSIF3	14-:23	17-019
	73.1	
RSIF4	14.-72	17-07n
	n2.0	

17.5

		sigmal lis				
	:nmp	noautars:	RFV.	natf		titife
	lian	329754nn	AA		oret	
STA	1.2-945	18-ก39	? 70035	iRanil	17-nni	4フーกั่9
	14.5	02.5	n4.5	n).a	12.i	
STALL	romern	42-047				
	12.5					
stat	10-298	20-033				
	n2.0					
STLCF	42-175	Xntonnt				
	16.0					
STLNF	ก7-0.47	4?-nnt				
	21.0			.		
steal	$3 \mathrm{H}-\mathrm{C} 43$	39-ก45				
.	02.0					
StNaz	30-ก44	39-046				
	12.0					
stsno	n7-7n	16-nns				
	87.5		-			
STSn 1	Iforna	17-027				
	93.5					
Stsap	19.0n9	16-032	23-640			
	04.0	n5.0				
StSn 3	16. 74	17-n>9				
	12.0					

STSn4	17-104	14-nng	32-nn7
	12.0	na.a	
Stans	140 :n4	1500n5	
	181.5		
Stson	17.105	14-037	
	74.5		

	14.5	
STn4T	17-30	14-005
	n5.0.	
Stasf	r.a.- 14	$13-n 40$
	26. 5	

11-032

STIIT
11-:73 12-033 31.5

STI2Fn9-037

		Stgaal lic				
	1., AMF	draming i		nite		TTT.F
	17 m	309?5an	AA		net	
ST12T		10-0n5				
	95.0					
ST13F	nacian	n9-nan				
	33.5					
Sti3t		10-019				
	74.5					
ST14F	nt- 37	n9-n>0				
	72.5					
STIAT	n9-п38	10-n79				
	32.5					
ST15F	ng-734	n9-032				
	12.5					
ST15T	ก.0.:173	100033				
	11.5					
SYnu	$32-\cdots 10$	39-n>1				
	25.0		-			
SYN_{1}	n>-122	2n-n43				
	10.5					
SYNIA	13-n19	an-nt?	32-0n9			
	77.5	n¢.n				
SYNIA	¢0-n 09	2n-n41	39-009			
	$n 9.0$	12.0				
SYN?	18-¢034	17-n1?				

E. SYNDT

51771

TH. 5
-O-D.n5 17-n11 39-0n3
$.95 .0 \quad 11 . n$

12-クの4 3?-0n4
09.0

	stgmal list					Titife
	ncime	neawting:	RFV.	nate		
	17:n	309354nn	AA		net	
S17ar	- 3 - n n 4	39-018				
	14.5			-		
TEX	190.2n	19-076				
	12.5					
tlaf	27- 33	3R-n?				
	$n 3.0$					
T18F	26-~ 73	39-023				
	33.0					
TlCF	35-~ 73	35-070				
	13.0					
T1DF	34-733	3R-030				
	73.5					
T2A	71-2n3	38-0.37				
	25.0					
T2H	3500×3	38-n38				
	35.5		-			
T2C	35-7n3	38-039				
	16.0					
T?O	24-*n3	3R-033				
	76.0					
UNPF	chan ${ }^{\text {a }}$	11-0R4				
	33.5					

Appendix A
INTERRUPT USAGE IN THE 1700 OPERATING SYSTEM

The 1700 Operating System provides multi-priority-level programming. When a 1705 Interrupt/Data Channel is installed, interrupting of programs from external devices becomes a major source of priority control. Interrupted and scheduled programs are held in "stacks." At the same time, active interrupts which operate at priority levels lower than the current operating level are masked so they cannot interrupt the current programs. The computer executes the highest priority program. This program runs to completion unless interrupted by another program of higher priority.

Up to 16 interrupt levels are available. The 15 external interrupts can be expanded to handle a maximum of 64 interrupt conditions by use of a 1549 Interrupt Interface. The interrupts are fanned into the 15 DCB interrupt lines. Determination of which interrupt activated the interrupt line requires additional software and is not discussed here.

INTERRUPTING CONDITIONS

There are 15 external and 1 internal hardware interrupt lines. In addition, scheduling a program of higher priority (jump to a higher priority program) uses some of the mechanics of processing a hardware interrupt.

INTERNAL HARDWARE

Three internal errors activate the same interrupt line (line 0):
a. Incorrect storage of information in core (parity error).
b. An erroneous attempt to store into or execute from protected core information by nonprotected programs (Protect Fault).
c. A power failure.

In all cases line 0, which normally is assigned priority 15 (highest of any interrupt line), interrupts the running program.

EXTERNAL HARDWARE

Fifteen external interrupt lines are provided; any of the lines can interrupt a running program of lower priority. When this interrupt occurs, the running program parameters are stored and the program associated with the interrupt line is executed. When the interrupting program is completed (barring further interrupts), control of the computer is returned to the first program. The interrupt line may be associated with the running program (e.g., an analog-to-digital inputword is requested at higher priority and is now ready in the I/O unit) or with a more important program (e.g., arithmetic operations of low priority are interrupted by a process control device of high priority).

NOTE

Interrupt lines may be disabled or masked.

Disabling takes place when the unit attached to the interrupt line is directed not to send the interrupt under any conditions. The unit internal conditions, which cause the interrupt, occur but that unit's interrupt flip-flop does not set. The interrupt line remains inactive at all times.

Masking takes place via the Operating System Interrupt Mask Table. If a program A is operating at priority level P, all interrupt lines with priority levels $\leq P$ are masked. An interrupt line of priority $Q \leq P$ becomes active but it is not processed until the priority level is lowered to Q (or lower). For example, assume that programs A, B, C, D, E, and F have priority levels $10,8,8,8,7$, and 4 , respectively, and program Z has priority level 2. Parameters for programs A through F are held in the interrupt or scheduler stacks or they are programs associated with active hardware interrupt lines which have not been processed because they are masked at the current operating level. All these programs are executed before the priority level is
lowered to level 2 (or lower). Only then is the level 2 interrupt processed and the associated program executed.

Higher Priority Program Request

Running program A can request program B of higher priority than its own. Program A parameters are placed in the interrupt stack and program B is executed. After execution (barring further interrupts), control of the computer is returned to program A.

The following examples indicate the type of programming which requires scheduling a higher priority program.

EXAMPLE 1

Program A requests a message to be printed. The Operating System saves the request parameters, schedules the driver for the message output device, and then returns to the requester (program A). Program A then continues at its normal priority level. However, because the driver for the output device normally runs at a higher priority than program A, program A is saved first on the interrupt stack and the driver is initiated. Only after the driver exits to the dispatchers (e.g., after output of the first character of the message) is the return to program A made. (See Dispatcher Operation, below.)

EXAMPLE 2

Program A is normally interruptable by program B, which is of higher priority. If program A must set up data for use by program B, it may be illegal for program B to interrupt program A while this data is being changed. To prevent this occurrence, interrupts may be inhibited for this portion of program A. Alternatively, program A may schedule a subprogram to a level equal to or greater than the level of program B. This allows the subprogram to set up the desired data and then exit to the dispatcher. Program A then continues at its normal level.

Every effort should be made to set up the system so that only short, fast programs are assigned high priority level.
1

Lower Priority Program Request

If program A requests program B of the same or lower priority level, program B is added to the scheduler stack. Execution of program A is then completed. Any other programs of higher priority than program B are then executed. Program B is called according to its scheduled priority.

PROGRAM PRIORITY CONTROL

Priority control is accomplished by means of the interrupt and scheduler stacks and the interrupt mask. The scheduler stack is a list of requested programs with priority equal to or lower than the current program. The scheduler stack threads the address and significant parameters of such programs to be processed when those programs are requested by other programs of the same or higher priority. The interrupt stack is a list of programs which have been interrupted by programs of a higher priority. This stack holds the address and significant parameters of programs which have been interrupted after starting execution.

The interrupt mask corresponds to the priority level of the running program. It prevents the running programs from being interrupted by a program of equal or lower priority.

Scheduler Stack

Scheduler stack (see Figure 1) entries are threaded together in two or more threads. The full thread links the entries of all scheduled programs; the entry thread joins unused entries. (A timer thread may also be present.) Each entry requires four consecutive locations in core. The entries contain

FIGURE 1. SIMPLIFIED FLOWCHART FOR SCHEDULING A REQUESTED PROGRAM
a. Parameters to be passed to the program.
b. Request code.
c. Completion priority of the program.
d. Program address.
e. A pointer to the next entry on the thread.

Programs are threaded in order of increasing priority so that the top entry on the full thread holds the highest priority program. If two or more programs have the same priority level, programs in this priority level are threaded on a first-come, first-served basis. When a program in the scheduler stack is removed to be executed, the thread entry point is added to the list of entries on the empty thread. If a program is requested when no entries remain on the empty thread (i.e., the stack is full), Q is set negative on the return to the requester and the request is ignored.

The scheduler stack is built when the Operating System is assembled. The length should be four times the number of timer calls and scheduler requests that may be active at any one time. As a rule of thumb, $4 \times 25_{10}$ or ${ }^{100}{ }_{10}$ usually provides an adequate scheduler stack. The form of the stack is shown on pages A. 13 and A. 14.

While the scheduler is determining whether to put a requested entry in the scheduler stack or to put the running program in the interrupt stack, interrupts are inhibited and the running program parameters are assigned to volatile. Volatile is a specified area of the system table region designated at assembly time. It is used by re-entrant program for storage of necessary parameters and intermediate results. If the requested program is of higher priority, the running program parameters are transferred to the interrupt stack and the requested program is executed. If the requested program is of the same or lower priority, the entry parameters are threaded on the scheduler stack. After the determination is made, the interrupts are re-enabled and the interrupt mask is set to correspond to the current running priority level. The chosen program is then put into execution.

Interrupt Stack, Interrupt Trap, and Interrupt Mask

The interrupt stack (see Figure 2) consists of up to 16 five-word entries. Each entry holds data pointers for programs that have been interrupted. The stack is a push-down, pop-up type. The top-of-the-stack pointer is located at location \$B8. It points to the first word of the next available entry.

The size of the interrupt stack should be the number of interrupt lines used (N) times 5. Normally this is $16{ }_{10} \times 5$, or $90{ }_{10}$ locations. The stack size is determined at operating program assembly time. A stack smaller than the full number of interrupt lines times five is subject to overflow.

When the interrupt stack entry is due to scheduling up in priority, some parameters from the interrupted program are saved in the volatile area. The I-register entry in the interrupt stack holds the address of that portion of volatile which has the remaining program parameters.

Volatile is not released until the higher priority program is terminated and the requesting program is resumed. The new priority level is established as in the hardware interrupt case. The interrupt mask is set to the new priority level before entering the requested program.

The interrupt mask allows only interrupts of higher priority than the running programs to be processed. All other interrupt lines are suppressed. The suppressed interrupt lines remain activated until the mask is reset to the priority level of the interrupt line (or lower).

Dispatcher Operation to Find Next Program

As higher priority programs are completed, they exit to the dispatcher. The next program is picked off the top of the interrupt or scheduler stack (see Figure 3). The priority level is lowered by the dispatcher to the level of the proposed program to be executed and the Mask register is reset.

FIGURE 2. SIMPLIFIED INTERRUPT LINE PROCESSING FLOW DIAGRAM

PRIORITIES SHOWN AT THE END OF THE PREVIOUS PROGRAM. PREVIOUS PROGRAM RAN AT LEVEL $P_{3}>\left(P_{1}, P_{2}, P_{4}\right.$, OR $\left.P_{5}\right)$.
SELECTION OF NEXT PROGRAM PROCEEDS IN TWO STAGES:
a. COMPARE P_{1} TO P_{2}. IF $P_{1} \geq P_{2}$, NEXT PROGRAM 1 COMES FROM P_{1}; OTHERWISE PROGRAM COMES FROM P ${ }_{2}$.
b. CHANGE MASK LEVEL AND CHECK INTERRUPTS AT NEW LEVEL.

LOWER MASK TO NEW LEVEL ($\mathrm{P}_{1} \mathrm{OR} \mathrm{P}_{2}$).
IF $P_{4} \geq$ NEW LEVEL, LINE J INTERRUPTS PUTS NEXT PROGRAM 1 ONTO THE INTERRUPT STACK, THE INTERRUPT LINE IS ACKNOWLEDGED, THE MASK IS SET TO P L LEVEL, AND THE PROGRAM ASSOCIATED WITH P_{4} IS EXECUTED. IF P 4 < NEW PRIORITY LEVEL, LINE J REMAINS MASKED. LINE K REMAINS MASKED IN ALL CASES SINCE $P_{5}<\left(P_{1}, P_{2}, P_{3}\right.$, OR P_{4}).

1-2538

FIGURE 3. SELECTION OF NEXT PROGRAM WHEN PREVIOUS PROGRAM IS COMPLETED

NOTE

When the mask is reset, it may include one or more active interrupt lines. Those lines are processed. The proposed next program is moved to the interrupt stack and the program associated with the interrupting line is put into execution.

INTERRUPT LINE PRIORITY ASSIGNMENT

For maximum efficiency, the used interrupt lines should be assigned priorities on a scale of decreasing order of importance, i.e., line $n+1$'s priority \leq line n's priority. Assignment is made this way because interrupting lines which have been masked are processed in line number order when several active lines are unmasked at the same time. In other words, an interrupt on line 0 is processed before an interrupt on line 1 , which in turn is processed before an interrupt on line 2, etc., when all these active interrupt lines are unmasked at the same time. Assume, for example, a program operating at priority level 9 ends and the next highest entry in either interrupt or scheduler stack is priority 3. At the same time, three interrupt lines are active:

Line	Priority
5	4
6	7
10	8

In this case, the program with priority 3 becomes the next scheduled. The mask is set to priority level 3. As soon as interrupts are enabled, all three lines are capable of interrupting. Line 5 is processed first. Interrupts are inhibited, the associated priority 4 program is scheduled, the next scheduled program is transferred to the interrupt stack, the mask is set to level 4, and the interrupts are enabled. The same processes are repeated for line 6. Line 6 interrupts, interrupts are inhibited; the level 4 program goes to the interrupt stack, and the mask is raised to level 7. When the interrupts are again enabled, the process is repeated. Line 10 interrupts, interrupts are inhibited, the level 7 program is added to the interrupt stack, the mask is raised to level 8, and interrupts are again enabled. This program is the next to be executed.

Two disadvantages to this type of interrupt line assignment are apparent:
a. Each interrupt processing cycle requires 40 to 50 microseconds.
b. The interrupt stack is unnecessarily filled with programs that might have as well remained masked.

If, in the example given, the lines were assigned priority on a decreasing scale of priorities, the first interrupt would have been line 5 at priority 8 , and the associated program would have been executed as soon as the interrupt mask was reset.

STACK ORGANIZATION

Two types of stack organization are discussed, threaded and push down/pop up. Both are described below.

Threaded Stacks

The address of the top of the threaded scheduler stack is held in SCHTOP. Assume programs are requested as shown:

Program	Priority	Temporal Sequence of Requests	Location of First Word of Entry
	6	1	$\mathrm{~L}+0$
B	10	2	$\mathrm{~L}+4$
C	9	3	$\mathrm{~L}+8$
D	10	4	$\mathrm{~L}+\mathrm{C}$
E	8	5	$\mathrm{~L}+10$
F	6	6	$\mathrm{~L}+14$

The programs are loaded into the stack in the order of column 3 with the top of each entry shown in column 4. They are threaded as follows:

FIRST WORD

Pointer
SCHTOP

Thread
$L+7$

Thread
$L+E$

Thread
$\mathrm{L}+\mathrm{A}$
Thread
L +12
Thread
L +12
Thread
$L+2$
Thread
$\mathrm{L}+2$
$\mathrm{L}+0$ $\longrightarrow \mathrm{L}+14$

L

$$
\mathrm{L}+4
$$

\qquad
\qquad

$$
\mathrm{L}+10
$$

$$
\longrightarrow
$$

$$
\mathrm{L}+0
$$

The form of the scheduler stack is shown below:

CP = Completion priority (level at which this entry runs).

Thread $=$ Points to address of first word of next less important entry.
RC $=9=$ Request code 9 (schedule) (refer to Control Data Publication
No. 60170400, Paragraph 3.2.5)
$\mathrm{Q}=$ Contents of the Q -register at the time of request.

C = Program address.

Push-Down, Pop-Up Stacks

In the push-down, pop-up interrupt stack, entries are added to the top of the stack and the pointer is moved to the next available entry. When an entry is removed, it is always the top (last) entry and the pointer is moved back five words.

The structure of an entry is shown below:

Entry for interrupted program A	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N}+1 \\ & \mathrm{~N}+2 \\ & \mathrm{~N}+3 \\ & \mathrm{~N}+4 \end{aligned}$	Q-Register	
		A-Register	
		I-Register	
		*	Address P
		Priority Level of Program A	

$\mathbf{P}=$ Execution address when program A was interrupted

[^3]The structure of the interrupt trap is

$R=$ Address of the program that responds to the interrupt.

* Overflow indicator (bit 15)
$\begin{array}{lllllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 0\end{array}$ Internal

MASKT	-1	1	1	1	1	1	0	0	0	0	0					1	
	0	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	1
	+1	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	1
	+2	0	1	1	1	1	0	0	0	0	0	1	1	1	1	1	1
	+3	0	0	0	1	1	0	0	0	0	0	1	1	1	1	1	1
	+4	0	0	0	1	1	0	0	0	0	0	1	1	1	1	1	1
	+5	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
0	+6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
B	+7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
0	+8	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	+9	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	+10	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	+11	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	+12	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	+13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	+14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
													0				0

MANUAL TITLE 1750 DATA AND CONTROL TERMINAL (DCT)
\qquad
PUBLICATION NO. 39072900 REVISION "

FROM NAME. \qquad

BUSINESS
ADDRESS: \qquad

COMMENTS: This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may be made below. Please include page number.

[^0]: *Registered trademark of Control Data Corporation

[^1]: *Equipment that has not been shock tested regularly, should be approached with caution as large scale failures are possible in older modules.

[^2]: こうご20

[^3]: * Overflow indicator (bit 15)

