»

HEWLETT-PACKARD
« * . .

Technical
Reference Manual

.= Portable PLUS

Portable PLUS

Technical
Reference Manual

() Jarred

Edition 1 August 1985

L]
Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranty of merchantability and fitness for a
particular purpose. Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the furnishing, performance
or use of this material.

b

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

(c) Copyright 19885, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright. All
rights are reserved. No part of this document may be photocopied, reproduced, or
translated to another language without the prior written consent of Hewlett-Packard
Company. The information contained in this document is subject to change without
notice.

Restricted Rights Legend. Use, duplication, or disclosure by the Government is %
subject to restrictions as set forth in paragraph (b)(3)(B) of the Rights in Technical
Data and Software clause in DAR 7-104.9(a).

™

MS" " isa US. trademark of Microsoft Corporation.

™

1-2-3™ and Lotus™ are US. trademarks of Lotus Development Corporation.

Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, US.A.

Printing History Edition 1 August 1985 Mfg. No. 45559-90001 b,

S—

r Contents

|
Chapter Page
1 Overview
1.1 About ThisManualiiiiiiereernenscnaesnannonas 1-1
1.2 Options for Accessing the System oo nnnn 1-2
1.2.1 Accessing the Display iiiin it ieiintnosnnenesnnns 1-2
1.2.2 Accessing Communications Devicesccivvetnnreniannns 1-3
1.3 REfCIBNCES o vt i v v ee e tneroeenenossanosesasennncaceanas 1-4
2 Electrical Design
2.1 INtroduCtion .+ v vvii it ieinerieeeneeesossasnsoossaseanas 2-1
2.2 MEMOTY Map ..ttt iiiiiieenetannaneneeeeeonsnnnnonnns 2-3
2.3 Operating MOdes .. .cuviiiinnnierenennannoneeeinnennocensas 2-4
W‘ 2.3.1 SlEeP MOAE .t it ittt ittt e e e 2-5
2.3.2 £33 o 30 (' (- 2-7
2.4 Mainframe HardWarecvevveeennnennaneatnnoseoessss 2-7
2.4.1 CPU ittt ittt ittt teneenneneeoeenennsnesnnns 2-9
24.2 ClOCKIME vt v e vt i tiieieiieansatasonesosossasnsnsnnnnss 2-9
2.4.3 Ready Circuitiittinniniinennersnneenenennenanas 2-9
2.4.4 PPU - Peripheral-Processor Unitcvvvetvennnnncens 2-9
2.4.5 Keyboard Interfacec.iiiiievnrrrnnsenrecnnonnns 2-10
2.4.6 PoWer SUPDIY ot v ittt ittt e i e e 2-10
2.4.7 Memory Boardottt iiv vt teetnrneareraenenteens 2-10
2.4.8 Configuration EPROMttt rencannnrnans 2-10
2.5 Serial Interfaceiiiiiriiiennineoronertostnenssas 2-13
2.6 HP-IL Interfacecotiie oo rncnenennaennnnnns 2-19
2.7 Recharger Interfacecciiiiniiinennenoinncnnrsnas 2-19
2.8 Video CONNECtOr .. v i vi it v ittt teeoeeenosesenanansaans 2-23
2.9 Modem COonNeCtOr .. v vttt iiereeroeneeeneenenenneoeaaann 2-25
@ 2.10 PIug=In POrtS .« ovvit ittt ittt ittt e e e, 2-28
2.10.1 Generic Module Descriptionccuvieeeneenoneanrsans 2-28
2.10.2 Electrical Specificationsceievaecvnsnsecnsnnsan 2-28
2.10.3 Architectural Requirementscoeveveenoneooennnn 2-41

Contents 3

3.1
32
3.3
34

4.1
4.2
4.2.1
42.2
4.2.3
4.2.4
4.3
4.3.1
4.3.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
S.11
5.12
5.13
5.14
515
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24

Mechanical Design

Introductioniiiiiniiininn oo rnnnnnnnnnns
Mainframe ittt ittt et e e
1 05T« L3 o

Resetting the Portable PLUS
INtroductionttt it it e e et
Reset OptionSotiiiiii ittt ieitnn s ttnreeeennnanns

Reset via (ShifD)(CTRD(Break)covunennnn...

Reset via (Shift)(CTRD) (Extend char)(Break) ‘

Reset via (@)ttt i e
Reset via the Reset Button'iitinnrennnnnnnnn
Re-Boot SCreenciiiiitiiiit ettt it
Memory Lost Messageovvevnineiiterrenenennnneen.
Standard Re-Boot Displaycoviiiirrvennnnnnnn.

BIOS Interrupts

Introductionttt i i e e
Print Screen Interrupt (Int Sh)ot i,
Video I/O Interrupt (Int 10h)ot iviinie e i,
Equipment Check Interrupt (Int 11h),
Memory Interrupt (Int 12h) 0.,
Communications Interrupt (Int 14h)c.....
Keyboard 1/0 Interrupt (Int 16h)ovi e erernnnnn.
Print Byte Interrupt (Int 17h) ...t ii e,
Reboot Interrupt (Int 19h) vttt e e e ieennn,
Time Of Day Interrupt (Int 1Ah)0rrnunnnenn.
Keyboard Break Interrupt (Int 1Bh)couvun....
Timer Tick Interrupt (Int 1Ch)ttt inennnn.
Graphics Character Extensions (Int IFh)
Modem Transmit Interrupt (Int 40h)ccvunn..
Modem Ring/Carrier Interrupt (Int 42h),
Timer 2 Interrupt (Int 43h) . .. ittt it e e e
Plug-in 1 Interrupt (Int 44h)ot ireenennnn
Plug-in 2 Interrupt (Int 45h)ttt eennnnn,
PPU Alarm Interrupt (Int 46h)ciiiirrinnrnnnn
Death/Battery Cutoff Interrupt (Int 47h)
Keyboard Interrupt (Int 49h) ... iin it iininr e
Serial Transmit Interrupt (Int 4Ah)c.....
Serial Ring/Carrier Interrupt (Int 4Bh)
HP-IL IRQ Interrupt (Int 4Ch)ciiurennnn.

Contents

Low Battery Interrupt (Int 4Dh)ccciiivreennn. 5-29
Modem Input Interrupt (Int 4Eh)t 5-29
Serial Input Interrupt (Int 4Fh)o i, 5-30
System Services Interrupt (Int SOh)cciiverervn.n. 5-31
Modifier Key Interrupt (Int 52h)cviiienninineennnn 5-64
Print Key Interrupt (Int 53h)ttt innns 5-65
HP-IL Primitives Interrupt (Int 54h) i ierineennn 5-65
Sleep Interrupt (Int S5h) ittt ittt iennnnrons 5-80
Menu Key Interrupt (Int S6h) ittt iieernnnennn 5-81
System Key Interrupt (Int 57h)ttt iiennnonsnn 5-82
Break Key Interrupt (Int 58h) vt ir it enennnnnns 5-83
Enable/Disable Ring Interrupt (Int 59h) o, 5-84
AUX Expansion Interrupt (Int SDh) 5-85
CON Expansion Interrupt (Int SEh) o0vnn 5-87
Fast Video Interrupt (Int SFh)ttt neennn 5-94
Fast Alpha it it ittt asansnnnans 5-94
Fast GraphiCsttiiiierineerstnonasncasnnsnos 5-113
Built-In Device Drivers
Introductionc.iviiiirirennnenneneecansaennonassanns 6-1
Serial Operationccuoveireinerareeseneneerneneonns 6-2
Modem Operationeeeeeereeeeoeessosnsesocennns 6-7
AUX, COMI1, COM2,COM3, and 82164A Devices 6-9
NUL Device ittt eseeroseseneonenneanennnaneenns 6-21
CLOCK DEVICE « vt vt teneeroeroneenaceenesassnssossanas 6-22
LPT], LPT2, LST,PLT,and PRN Devicesccv0tvveenan 6-22
CONBSOlE DIiVET .t ittt ittt ieetneeeeneeeeonaaroneenns 6-23
CONsole Control SEQUENCES . ..o vt v vetererenorteeennsnens 6-24
Keyboard Operationeveiererererorerorenoeesas 6-45
CONsole I/O Control FUNCtionscceievnrerenenenas 6-50
Low-Level Hardware Interface
INtrodUCtionttt ittt iieererenneneanasoneeaneenennns 7-1
O\ (3 11103 020 £ « 7-1
Multi-Controllersc.ciiitieiierierenenenoneneeananas 7-3
Keyboard Interfaceciiiiiiiiinerennnnennnnns 7-3
Interval Timerttt ineneeneeneroneeonnonnnnnsse 1-4
03 o) 0 103 o A 7-5
Multi-Purpose Portiiiiiiiiiiiiiiiirinneneennns 7-7
Registers = OVeIVIEW ...t iittinreenrrnrenereaarneeenens 7-7
Registers - Keyboard Functionciiiineinneennnn 7-9
Registers - Serial Port iiiineininnnnennnn 7-12

Contents S

7.3.8
7.3.9
7.4

7.5

1.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6

8.1
8.2
83
8.4

9.1
9.2
9.3
9.4
9.5
9.6

10
10.1
10.2
10.2.1
10.2.2
10.3
10.3.1
10.3.2
10.3.3
10.4
10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.4.6
10.4.7

6

Registers - Interval Timerc.0vmmmmeeerennnnnn. 7-16
Registers - Multi-Purpose Portcov'uuvrvnnnnn. 7-19
HP-IL Controlleri ittt 7-22
Display Controllerv'it it ittt e e 7-26
Display RAM Mapping - GraphicsMode 7-26
Display RAM Mapping ~ AlphaModecouovrun.. 7-29
Alpha Attribute Bitsc.iiiiininneenennnnnnn, 7-33
Alpha CUrsors ittt it i e e e 7-33
T -3 7-34
Softkey Menu Display . o.vvvi it ittt e, 7-37
Memory Management
Introductiont i i e e e e e e 8-1
BdisC ..ttt e e e 8-3
ROM DiSC .ttt ittt ittt et e e e e e e e 8-7
Summary of ROM DiSC ACCESS .o vttt tee e e eeeennnn, 8-14
Plug-in ROM Design
Introductioniuiiiiii i i e e e 9-1
Plug-In ROM Formatoitiininennnnenennnnnnnn 9-2
ROM-Executable Code f ettt et e 9-6
ROM Boot Code viiiiii ittt ettt et e et i i 9-7
Constraints on Plug-In ROM Software 9-7
PAM Interface to Plug-In ROMScoviiin e, 9-8

PAM - The Personal Application Manager

Power-Up Sequencec.oiiiiiminnnneeeennnnennnn.

The PAM Environmentouiieinteneennnnnnnnennn.
PAM and AUTOEXECBATFilesovivnneneeennnnn.
PAM Internal Stateoviiriiiiiterernnnnnnnss

PAM And Application Programsoevvvveernnnennn.
Installing Applicationsin PAMc0oiiuernnnn..
The "DOS Commands” Application0vvvvevunn.
PAM Executionof a Programciiiiiinenennnn.

The PAM Configurationsouveeiiunerreneeeenneenns
The System Configurationcoiiiiiererennnnnn.
Main Memoryand Ediscc.ttiiiinnennnnnnnnnn
External Disc Drivesiivttiiiinr et eeroneneennes
Disc Write Verifyiiiitiriniiitiitienininerenns
Power-Save Modeccctiiiiiitiinrinnnernnnnnns
Determining a Reasonable Status Limit Value
Display Timeoutuinietiinninnnnnneeeenennnnns

Contents

—

—

—

1

[N

—

—

—

— ot
ooooooo?oooooooo
VOV VAAOARNND PPN ——

—

—

[e—y

—

10.4.8
10.4.9
10.4.10
104.11
10.4.12

10.4.13.

10.4.14
10.4.15
10.4.16
10.4.17
10.5
10.5.1
10.5.2
10.6
10.7
10.8
10.8.1
10.8.2
10.9

1

11.1
11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.2.6
11.2.7
11.2.8
11.2.9
11.2.10
11.3

12
12.1
12.1.1
12.1.2
12.1.3
12.1.4
12.1.5

CUursor TYPE v v v it eiinanenenenesossanannssnsoannnas 10-10
Console MOde ... v iv i et onaetonosnaracennosonan 10-10
Tone Durationeveeeeereosonnessososssecsneoens 10-11
Plotter Interfacecveeevneoneosananssennocsonns 10-11
Printer Interfaceceevieenoeconnncnsonnsnnsos 10-11
Printer MOAE . oo vt tr i it iinecenranonsarssonssnennnns 10-11
Printer Pitch, Line Spacing, and Skip Perforation 10-12
DatacomInterfaceeeteveecersrereronnnncens 10-12
The Datacom Configurationccceveierevennencss 10-12
The Time and Date Configurationccveevveenns 10-15
PAM AN Alarmst erenententenssonaasonnsnssns 10-16
The PAMAALMP File ... ittt nronoonsnnens 10-16
When an Alarm OCCUTS . oot viv v v vonnneesosasnonnenens 10-16
Autoanswering: PAM and Ring Interrupts c0.e 10-17
The Battery Fuel Gaugec.ociiiiventineeaoccnnssnas 10-18
PAMHelp Facilitycointiiiiiiniieeiernrioreennes 10-19
Installing PAMHELP.COM iiiiiiiinerennnananss 10-19
After PAMHELPCOM IsInstalled 10-19
Bypassing PAM With COMMAND.COMccivvnann 10-21
Boot Sequence Options
INtrodUCtION v v vt v et veiteeeoeeernonssacanasasansssonsns 11-1
BOOt SEQUEINCE v vt vvivvvrrononnooosnsancsassnossnannsas 11-2
Built-In DiagnostiCscvuereevnsoarnsonorsssnearenens 11-2
Recover From Sleep iiiivrinennnnennneannnoesasns 11-2
ROM Slot 7 Boot Code Before Changing RAM 11-2
Config EPROM Boot Code Before Changing RAM 11-3
ROM Slot 7 Boot Code After Some Initialization 11-3
Boot Code From the Config EPROM After Initialization 11-4
Boot Using the CONFIG.SYS on the ROM in ROM Slot 7 11-4
Boot Using the CONFIG.SYS on the Default Drive 11-4
PAM Executes AUTOEXECBAT FromROM Slot 7 11-5
PAM Ezxecutes AUTOEXECBAT From Drive A: 11-5§
The CONFIGSYSFIle . ..iivitirenennoncnntanoonnnnnnsns 11-5
Modem Interface
OVEIVIEW 4 vttt vttt esentonsocneroosesossnansonssaranses 12-1
Command Modeand DataModecociivvernnrncnnnn 12-1
CommAandS .. .uvi ittt it e st 12-2
Baud Rate Selectionvevveeeriaantonronseacnnsoans 12-3
Transmission Settingsververocnreetsntnsnncanssons 12-4
AULO~ANSWETINE + v vt e vreeennerosonaasenssossessnnans 12-4

Contents 7

12.1.6
12.2
12.3
12.4
12.5
12.6
12.7
12.7.1
12.7.2
12.7.3
12.7.4
12.7.5
12.8

13

Al
A2
Al
A3l
A2
A33
Al4
A.3.S
A.3.6
A3
A.3.8
A39
A3.10

Default State of the Modemccovvvrmnnnnnn. 12-5

Modem Commandsvviiittinttrnene et 12-6
DIaling .ot e e e, 12-12
Modem Responsesvuiviinn it innn e i 12-13
S-Register Descriptionovtiiinnernnnr e, 12-15§
Hayes Compatibilitycciviiiiinnerennennnnnnnn. 12-20
Special Considerations for Programmatic Control 12-22
Modem Power-On Problem0vuuuununnnnnn... 12-22
Ignores Characters While Respondingccco.... 12-22
Can’t Dial Out While ReceivingRing 12-23
Spurious Extra Characters Generated 12-23
Spurious Interruptsat Power-Up c00.0ovvunn.. 12-23
Directly Connecting TwoModemscovvenmnennn. 12-23

Keyboards and Keycodes

Comparisons With Other Computers

Comparison Withthe HP 1100itiinnrinnnnnnnn. A-1
Comparison With the HP 150cvti i, A-2
Comparison Withthe IBMPC00itiinnnnnnnnunn. A-3
Video Interrupt (Int 10h)ot A-3
Equipment Check Interrupt (Int 11h)0..... A-S
Diskette/Disc Interrupt (Int 13h)c.c0uuunn... A-5
Communications Interrupt (Int 14h)c.0ouunu. ... A-5
Cassette Interrupt (Int 15h) ..., A-6
Keyboard Interrupt (Int 16h)000uuuunnnnn.. A-6
Printer Interrupt (Int 17h) ... v ittt i, A-6
Re-Boot Interrupt (Int 19h)o innnnnnnn. A-6
Time-of -Day Interrupt (Int 1Ah)cc0vuuunn... A-7
Keyboard Break Interrupt (Int 1Bh), A-7

Schematic Diagrams
Assembler Listing for Configuration EPROM
Character Sets

Using TERM in Batch Files

Contents

F.1

F.1.1
F.1.2
F.1.3
F.1.4
F.2

F.2.1
F.2.2

G.1
G.2
G.3
G.4
G.5
G.6
G.7
G.8

H.1
H.2
H.3
H.4

K.1
K.2
K.3
K.3.1
K.3.2
K.3.3
K.3.4
K.3.5

Mass Storage

Disc Drive Optionso vt eneeeetosssosonransseasnaas F-1
Built-In DisC DIIVES ..t v ottt ientevoeonnsoasoannansones F-1
HP 9114A HP-IL Disc Drivet vt iiiiiannntnnsnnonnnes F-1
HP-IB DisC DIrivVeS . v vvv it e tieetoencsanononssscnsosonas F-2
Portable PLUS-Desktop Linkciiiiiiiiiennnonnsens F-3

Media Compatabilityci ittt it iien it nnnans F-4
Reading Other Discs on the Portable PLUS F-4
Reading Portable PLUS Discs on Other Computers F-4

Contiguring Serial Printers

INtrodUCtION v v vttt it ettt ennnensoeasssssnenaaansns G-1

The HP 222SD ThinkJet Printercciiiirienrneneanns G-1

The HP 2601A Printeroieiniiiiiiiiiiinnnnnennns, G-3

The HP 2686A LaserJet Printercciieinoeeennnans G-5

The IDS-560 Impact Printer - The Paper Tiger G-6

The NEC Spinwriter 35100ttt nennnanns G-8

The Xerox 610C1 Memorywriterccieerineeennns G-10

The Xerox 625C Memorywritercci e eerreeens G-12

Portable PLUS-Desktop Link

Portable PLUSto HP 150 ittt H-2

Portable PLUS to IBM PC/XT ... it iiit ittt iannrrnnnes H-3

Portable PLUStOIBM ATttt iiiieennreenneeannn H-4

Portable PLUS to Portable (or Portable PLUS) H-4

Parts

Escape Sequence Summary

Software Module Configurations

OVEIVIEW ittt iet it eneiansaeennassossnanssnsnsas K-1
Plug-In ROMs and EPROMS it iiiiiiieennnns K-3
Detailed Descriptionttt eoeonnasenseonasenns K-5
ROM/EPROM Organization Optionsccvvveecnenesns K-5
Jumper and Socket Labelingcciiiiiienennnnnne K-6
Jumpers and Socket Groupscoivii ittt aon K-7
Configuration of the SmallGroup, K-7
Configuration of the Large Groupotiieiinreenenn. K-8

Contents 9

lllustrations

|

Figure Page
2-1 System Address Spacettt et e 2-3
2-2 I/0 Address Spacevvvviiin ittt e 2-4
2-3 Portable PLUS Block Diagramovviin e veeveennnnnnnn 2-8
2-4 Configuration EPROM Addressingcovvevmmnnnnnnn 2-12
2-5 Serial ConMECtOr .. v v vt itit it ittt ettt et e 2-14
2-6 Modem Cablecoitiitiniiiittiinineeennennnnns 2-18
2-7 Printer Cable00ttt ittt 2-18
2-8 Automotive Recharger Schematic Diagram 2-22
2-9 Plug-In Connectoriviiiiitt ettt it eeeeen e 2-33
2-10 Plug-In Bus Read Cycle - Lower Memoryouu... 2-34
2-11 Plug-In Bus Write Cycle - Lower MEMOTY ... vvvv e vennnnnnns 2-35
2-12 Plug-In Bus Read Cycle - I/0O and Upper Memory 2-36
2-13 Plug-In Bus Write Cycle - I/0 and Upper Memory 2-37
2-14 Plug-In Bus Interrupt Acknowledge Cycle 2-38
2-15 Plug-In Module Registersccvuiinmnnnrenrennennnnn 2-43
3-1 Mainframe Dimensionsc.vevtiinnirennneeenneennnns 3-3
3-2 Modem PCBoardciiiiiiniinnn e eneenennnnn 3-5
3-3 Plug-In PCBoardiiiiiiininnnn e enennnennnnns 3-7
5-1 Interrupt 10h Attribute Byteo viiiinen s eein s eennnnns 5-6
5-2 Fast Alpha Structuresovviviinneeriennnnnnns 5-95
5-3 Display Attribute Byteoiitiiiinntentereeeannnnns 5-96
5-4 Initial Font Load ittt ittt e ien s ereanns 5-97
5-5 Font Formatsttt it iineinneroeenonennns 5-98
6-1 Serial Interface Timing = Sheet 1 v uunnn. 6-4
6-2 Serial Interface Timing = Sheet 2cviiiiniinrnrnnnns 6-5
6-3 Serial Interface Timing - Sheet 3cciitineunnnnn 6-6
6-4 Keyboard Scancodescouviiiinniiineernnnneennns 6~48
7-1 I/0 Address SPACE .« v v vv ittt ettt tee et teaeeeranesesnanas 7-2
7-2 Display RAM Mapping - Graphics Modeccoo.... 7-28
7-3 Display RAM Mapping -~ AlphaModeccoivvvnrnn.. 7-32
8-1 RAM Organizationi'vviivinnnneeeeneenenanennnns 8-2
8-2 ROM DiISC it ittt ii ittt ittt enenneenenneseenennns 8-8

i0

Contents

[S B T N R N B |
Voo NONKnP WS

wWHEmEEEEW

—
o

A

ROMDISC FAT ittt ittt i eeetnonsnssesnsossasansnnns 8-11

ROMDisc ROOt DIr€Ctory .. vvveicntennttnrenssonnansoonns 8-12
ROM Disc Fixed Subdirectory Filesccvv v rnnrnnaenns 8-13
ROMDisc Plug-InFileDataciiituenreerecaneennn 8-14
Plug~-In ROM FOrmatceoeuevennsconnncsoneaesonnanss 9-3
English (US)Keyboardciiiiieennrinnrenoennnsonas 13-8
English (UK)Keyboardiiitiiiiirnennenaennnnss 13-11
French Keyboardiiit e nnrnroncansans 13-14
Belgian Keyboardottt ennenniinneenionnonnnns 13-15
GermanKeyboardcc0iiiiiiieiiti it nens 13-18
Italian Keyboardccoviiivennernnsnnconronnoonens 13-21
Dutch Keyboardovevetrmetnnrnernncntanaonnsan 13-24
Swiss (German) Keyboardciiiiieiiinnnerraans 13-27
Swiss (French) Keyboardciiiiieinninnroenennnss 13-30
Danish Keyboardciiiiiiineieeneneressennsnans 13-33
Norwegian Keyboardcciitiiiernonsersoenannennan 13-36
Swedish Keyboardcciiiiiiiiiinninnioensnoosnnns 13-39
Motherboard PCA ~Sheet I it vinrirnonnrnnnnnn B-2
Motherboard PCA - Sheet 2iiiiiiit et nnrnnannnns B-4
Motherboard PCA - Sheet 3 ittt inernnennnnn B-6
Motherboard PCA -Sheet 4 e, B-7
Memory Board PCA e i B-8
Modem PCA ..ttt ittt itteeneeeoneneensnsanasansns B-10
Software Drawer PCAttt ienentororerronnnsaens B-12
Memory Drawer PCA -Sheet 1, B-14
Memory Drawer PCA -Sheet 2ttt iiinrennnnns B-16
Memory Drawer Piggy-Back PCAttt iienieennnns B-18
Pin Configuration for Plug-InROM v, K-4

Contents 11

Tables

|

Table Page
1~1 Options for Display ACCESS + v vvvivinn e eesees e 1-2
2-1 Serial Interfacecitiiiiinrn i, 2-14
2-2 Recharger DCLIMIits .. .uuiitinninnneeneeevnnnnnnennnn. 2-20
2-3 Recharger Series Resistance Limitso00eenrvnnnn.. 2-21
2-4 Video Signals ...ttt i e e e e e e 2-24
2-5 Video SpecifiCationsoveveenenrnnrneennnnnnnnn. 2-24
2~6 Modem Connector ... vuiiiiint ittt et 2-25
2-7 Specifications for Modem Port over i, 2-27
2-8 Signals for Plug~In Ports Pttt .. 2-29
2-9 Plug-In Bus Loadingcitvmmeneeeenennmnnnnnnnin, 2-39
2-10 Plug-In Power Loadsciiiiiiurmmnnennnnnnnnn., 2-40
2-11 Voltage Levels for Plug=InBusc0votvreennnnnnnnnn. 2-40 w
2-12 Requirements for Plug-In Driversouvuunnnnnn.. 2-41
5-1 Hardware and BIOS Interrupts0vemrvmnnnnnnnns 5-2
§5-2 Video I/O Interrupt 10h Functionsoveuununn... 5-7
5-3 Communications Interrupt 14h Functions 5-14
5-4 Keyboard I/O Interrupt 16h Functionso00vvun.. 5-17
5-5 Print Byte Interrupt 17h Functionscc00vvuunnnn.. 5-19
5-6 Time Of Day Interrupt 1Ah Functions000.... 5-20
5-7 System Services Interrupt 50h Functionsouv.... 5-31
5-8 System Services Int 50h Detailed Description 5-33
5-9 PPUCommandsiuitinniinineneeeeiennnnnnn, 5-54
5-10 HP-IL Primitives Interrupt 54h Functions 5-69
5-11 AUX Expansion Interrupt 5SDh Functionc00uuuu.. 5-86
5-12 CON Expansion Interrupt SEh Functionscc0veu... 5-88
5-13 Fast Video Interrupt 5Fh Alpha Functions000vuu.. §-99
5-14 Fast Video Interrupt 5Fh Graphics Functions 5-114
6-1 AUXTI/0 Control Commandsovvveeennennnnnnnnn. 6-9 w
6-2 Control Charactersiiiiiiiiiiiinnneenneneneens 6-24
6-3 HP Two-Character Escape SEQUENCES .+ .o vv v evnvneernnnsnens 6-26
6-4 HP Alpha Escape SeqUENCesovviinnnsuenensnnn. 6-31
6-5 HP Graphics ESCape SEQUENCES . v v vt vt ot v ee s meenneneneens 6-36

12 Contents

1t !
Pl = N W = 003

bt et = = = \D 00 00)) I ONONON
]

e)
wwwt;JMNQOI
[SS 00 S B I S e A

13-4

13-5

13-6

13-7

13-8

13-9

13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22
13-23
13-24
13-25
13-26
13-217
13-28

ANSIESCape SEQUENCES . ..ot vvvtvroaceasnsannssaensssons 6-41

CONsole Write I/O Control Functionsc.civiiivaonas 6-50
CONssole Read I/O Control Functionsoveeeecennnnaas 6-51
Multi-Controller RegiSterseoevevennesenonsvasnassosss 7-8
HP-IL RegISterScvoverocrnsostonsssososasnssoeasnnsones 7-22
Display Controller Registersov v eeeesnneesaooens 7-35
Edisc Sector Ohvvieercn e ineonnssnonoroessnssnnss 8-5
ROMDisc Sector Oh ... uivttiin i eeeneeoonsenonsasnaenos 8-9
Plug-InROM Sector Ohitiiitineeorvsnonnnnnns 9-4
PAMInternal Statecciiiveneeosoesosonsonsenas 10-3
PAMHELP.COM Parameterseeceveeronsnancnansonns 10-20
Modem Commandsciveiiencervesnnosonncnsonssas 12-7
Modem ReSPONSES .. vvvevvvevernesaancsanseroasasanssns 12-14
Modem S-Registersccviivetecttrnrnnrcecncnnsnses 12-15
HP Mode Character Codesc.ievieveenerennnnsannes 13-3
Alternate Mode Character Codescvviiereereanneeenns 13-5
Common HP Mode CharacterCodescevvvereeannannns 13-6
Common Alternate Mode Character Codesccovevveunves 13-7
English (U.S.) HP Mode Character Codescvvevevveonn 13-9
English (US.) Alternate Mode Character Codes 13-10
English (UK.) HP Mode Character Codesvevrivennnnn 13-12
English (UK.) Alternate Mode CharacterCodes 13-13
French/Belgian HP Mode Character Codesccvvvuen. 13-16
French/Belgian Alternate Mode Character Codes 13-17
German HP Mode Character Codescccvvevveenonnne 13-19
German Alternate Mode CharacterCodesc.e0vevevennn 13-20
Italian HP Mode Character Codesvivvvenennnnnns 13-22
Italian Alternate Mode Character Codesccveveennn. 13-23
Dutch HP Mode Character Codescvovevrennnenannss 13-25
Dutch Alternate Mode Character Codescvvuvverenn 13-26
Swiss (German) HP Mode Character Codescovveeeen.. 13-28
Swiss (German) Alternate Mode Character Codes 13-29
Swiss (French) HP Mode Character Codescocoveuenn 13-31
Swiss (French) Alternate Mode CharacterCodes 13-32
Danish HP Mode Character Codesvvvveeeeeennsens 13-34
Danish Alternate Mode Character Codescvevevneen 13-35
Norwegian HP Mode Character Codesvvvvunvnnnnn 13-37
Norwegian Alternate Mode Character Codes 13-38
Swedish HP Mode Character CodesSvovivrenenernnss 13-40
Swedish Alternate Mode CharacterCodescc00nuuen. 13-41
HP Mode Muted Character Codesuouteeiennernnnnnn 13-42
Alternate Mode Muted Character Codeso00evueenn. 13-43

Contents 13

D-1 Roman8 Character Setccoiiiiieinrnnereennnnnnns D-2
D-2 Line-Drawing/Math Character Setsooveeverenenn.. D-3
D-3 Alternate Character Setevvevvveneennnonnennnnns D-4
D-4 Character Sets - Numeric LiStingvvvveeveeeeeennnnnnns. D-$5
G-1 ThinkJet Switch Settingscoiiiitenerennnneennnns G-2
G-2 HP 2601A SWitcCh Settings . vvvvvivninneennnnnnnnnnenenss G-4
G-3 IDS-560 SWitch Settings ..ot vvv i vt veenestnerenennannnases G-7
G-4 Spinwriter 3510 Switch Settingscovvvrieiennnnnnnnnen. G-9
G-$5 6101C1 Memorywriter Option Settingscvevenneen G-10
G-6 625C Memorywriter Option Settingsouvvvevenen.. G-13
I-1 Portable PLUS ACCESSOTIES v vvvvvnvveneennennsonenneonsens I-1
I-2 Custom HP Parts viiiiiieiitt it ie e e rnnenoeenenenns I-3
I-3 Standard Partst it ettt e ettt e I-3
J-1 Control Characterseueeeeeeneroesseonnnnennnnenns J-1
I-2 Two-Character Escape Sequence Summaryoeeeeneen. J-2
J-3 HP Alpha Escape Sequence SUMMAryceeveerennnesnaes J-3
J-4 HP Graphics Escape Sequence SUMmMATY .. vvviv e v e ennnnnesse. J-4
J-5 ANSI Escape Sequence SUMMATY . ..vvevverereneecnnerenenses J-5
K-1 Wire Jumper Connections for ROMs/EPROMS00vvvunn. K-2
K-2 Plug-In ROM Specificationscoeeeeeeeennnnneonnnnss K-3
K-3 ROM/EPROM Organization Optionsovevinennnnnnnnesss K-§5 ,a%

14 Contents

T 1 Overview

|
1.1 About This Manual

This manual presents information that will help you to develop hardware and software
that operate on the Portable PLUS computer. The manual contains information about:

Hardware

a Electrical design.

@ Mechanical design.

Software and Firmware:
p s Resetting the computer.

® BIOS interrupts.

® Built-in device drivers.

m Low-level hardware interface.

s Memory.

® Plug-in ROM design.

® PAM (Personal Applications Manager).

® Boot options.

@" " m Modem interface.

s Keyboards and keycodes.

Overview 1-1

In addition, appendixes include additional reference information about the Portable
PLUS.

Applications designed for the Portable PLUS may be designed to be compatible with
other computers also. (Refer to appendix A for detailed information about
compatibility.) The information in this manual will help you maximize compatibility.

]
1.2 Options for Accessing the System

The following topics describe various ways you can access certain features of the
Portable PLUS. The method you choose will depend upon your particular application.
The individual choices are described in different parts of this manual.

1.21 Accessing the Display

The Portable PLUS provides six ways to access the display. The methods are listed in
table 1-1. They provide the programmer with options for satisfying the specific

requirements of a program.

Table 1-1. Options for Display Access

Access Method Speed Power Usability Graphics
CON output via Int 21h 1 3 Simple Full
CON output via Int 50h 2 3 Simple Full
Video 1/0 Int 10h 3 2 Moderate Limited
Fast Video Int 4Fh 4 4 Moderate Full
Fast Write via Int 50h 5 | Simple None
Direct hardware access 6 S Difficult Primitive

The preferred, most commonly encountered, and most portable method of sending data
to the display is CON output via the standard MS-DOS service interrupt, Int 2 1h.
(Refer to "References” below.) Display control can be accomplished via a fairly

complete set of HP and ANSI escape sequences. A subset of standard HP graphics escape

sequences provides access to all major graphics functions.

Output via Int 50h, the System Services interrupt, offers about a 2.5-times speed
improvement over Int 21h, but only by sacrificing output redirection, simultaneous

1-2 Overview

-

.

>

printer hardcopy (via P printer on/off toggle), display start/stop control (via *S/*Q),
and portability to other MS-DOS computers. (Refer to "System Services Interrupt" in
chapter 5.

The Video I/0 interrupt, Int 10h, provides a subset of the IBM PC Video I/0 functions.
(Refer to "Video I/0O Interrupt” in chapter 5.) Its compatability limitations are due
mainly to the 480x200 size of the LCD panel and other hardware differences between
the Portable PLUS and the IBM PC.

Fast Video (Int 5Fh) functions provide a level of display control similar to Int 10h, but
with much more functionality and flexibility. (Refer to "Fast Video Interrupt” in
chapter S.) This set of routines provides very low-level, window-oriented control of
display memory in alpha mode, and a relatively full set of graphics manipulation
routines in graphics mode.

Int 50h Fast Write is a special service function that can be used to force short messages
onto the display without interfering with any other part of the system. (Refer to
"System Services Interrupt” in chapter 5.) This is used within the BIOS, for example, to
display the "Low Battery!" warning. Fast Write is a very low-level function that simply
forces a specified attribute and string of characters into display RAM with no special
processing or safety checks, and should be used only in similar immediate~-display
situations.

As with most computers, there is the option of "going straight to hardware." Performing
your own display control is potentially the fastest, most efficient way of getting the
screen to do what you want it to do, although such programming can easily become
quite complex, potentially dangerous, and can possibly interfere the normal display
operation if mixed with calls to other BIOS-resident display functions--unless you take
certain precautions. For the sake of safety and simplicity, applications should refrain
from directly accessing system hardware. (Refer to "Display Controller” in chapter 7.)
1.2.2 Accessing Communications Devices

The Portable PLUS can address three communications devices through the system BIOS:
m The serial (RS-232) port.

m A SmartModem-Compatible 1200-BPS modem.

m An HP 82164A HP-IL/RS-232-C Interface.

Overview 1-3

Each of these devices is supported by its own device driver, and data can be transferred
through them using any of the MS-DOS standard device operations. Various device
parameters can be configured through a standard set of IOCTL commands. (Refer to
"AUX, COM1, COM2, COM3, and 82164A Devices" in chapter 6.) Also, the MS-DOS
AUX device can be "redirected” to address any of the three individual devices.

In addition, the built-in serial port and the modem can be accessed through the IBM
PC-compatible software interrupt 14h. (Refer to "Communications Interrupt” in
chapter 5.) All IBM PC functions are supported, although some of the status
information returned by this interrupt must be interpreted differently due to hardware
incompatibilities. Interrupt 14h gives much better performance than the MS-DOS
device calls, but it can be cumbersome to use from high-level languages, and it is not
supported on all Hewlett-Packard products.

For applications that must get as close as possible to the hardware, interrupt SDh is
provided to allow access to each character as it comes into the communications port.
(Refer to "AUX Expansion Interrupt" in chapter 5.) This enables a program to achieve
the effect of taking over the hardware interrupt, but will not need to duplicate the
function of the BIOS.

|
1.3 References

Although this manual describes the Portable PLUS in detail, you may want to consult
additional references for other information. Owner’s manuals describe how to operate
the system. Other references provide information about standards that are
implemented by the Portable PLUS.

m Hewlett-Packard Company. Using the Portable PLUS. HP part number
45711-90002, (c)1985.

® Hewlett-Packard Company. HP 829834 300/1200 BPS Modem Owner's Manual.
HP part number 82983-90001, (¢)1985.

8 Hewlett-Packard Company. The HP-IL Interface Specification. HP part number
82166-90017, (c)1982.

@ Hewlett-Packard Company. The HP-IL Integrated Circuit User's Manual. HP part
number 82166-90016, (c)1982.

1-4 Overview

D,

.

® Kane, Gerry, et al. The HP-IL System: An Introductory Guide to the Hewlett~Packard
Interface Loop. Osborne/McGraw-Hill, Berkeley, California, (c)1982.

® Hewlett-Packard Company. HP 45419C Programmer’s Tool Kit, which contains:

-Series 100 Programmer's Reference Manual: Microsoft MS-DOS Programmer's
Reference Manual.

-Series 100 Macro Assembler Manual: Microsoft Macro Assembler Manual.

Overview 1-6

C 2 Electrical Design

.|
2.1 Introduction

The Portable PLUS computer features a 25-line liquid-crystal display (LCD), a 76-key
full-size (3/4 throw) keyboard, 128K bytes of built-in RAM, 16K bytes of display
RAM, 8K bytes of built-in configuration EPROM (expandable to 16K bytes), and 192K
bytes of built-in ROM. HP-IL and serial interfaces are built in. A 1200-baud
direct-connect modem and an external video interface are optional.

The CPU is a CMOS 80C86 that runs at 5.33 MHz. RAM cycle time is 748 ns, with
ROM and I/0O cycle times being 935 ns minimum. A secondary processor, a peripheral

processor unit (PPU), provides power supply and modem control, and also functions as a
real-time clock.

Electrical Design 2-1

Listed below are the main specifications for the Portable PLUS.

Size:
Weight:

LCD:

Keyboard:
Speaker:
CPU:

Memory:

I/0:

Battery:

Power
Consumption:

Environment:

Humidity:

13 inches wide, 10 inches deep, 3 inches thick.

8.9 pounds (with modem and two empty drawers).

25 lines by 80 characters, alpha mode.

6 dots wide by 8 dots high font size.

200 dots high by 480 dots wide, bit-mapped graphics mode.
Full size, 76 keys, 3/4 throw, embedded numeric pad.
Piezo-electric

80C86, 16-bit CMOS processor, 5.33 MHz.

128K bytes RAM.

192K bytes ROM.

16K bytes display RAM.
8K bytes configuration EPROM (16K bytes optional).

HP-IL.
Serial (RS-232-C).
1200-baud direct-connect modem (optional).

6-volt, 2.5 Amp Hour, three-cel], sealed, lead-acid.

100-175 mA ON/awake mode (typical)
285 uA sleep mode (typical)

Operating temperature: 0° to 50°C.
Storage temperature: -25° to 55°C.*
RFI: FCC class B, VDE class B.

5 to 95 percent relative humidity.

* Exposure to temperature below -5C may cause temporary cosmetic blemishes in the display.

2-2 Electrical Design

2.2 Memory Map

The 80C86 has a 1M-byte system memory address space and a 64K -byte 1/0 address

space. High bytes have odd addresses; low bytes have even addresses. Memory space is

allocated as shown in figure 2-1.

Figure 2-1. System Address Space

00000h

20000h

‘ 80000h
@! 84000h

90000h

D0000h

FFFFFh

Built-In RAM (128K)

Plug-In RAM (384K)

Display RAM (16K)

Reserved (48K)

Plug-In RAM Disk or ROM (256K)

Built-In ROM (192K)

The mainframe uses I/O address space from 0000h to 03FFh, and from 8000h to
BFFFh. Thus, the addresses from 0400h to 7FFFh and COOOh to FFFFh are available
for plug~in devices. 1/O address space is represented in figure 2-2.

~

Electrical Design 2-3

Figure 2-2. 1/0 Address Space

0000h
0020h
0040h
0050h
0060h
0080h
00A0h
00B0h
00COh
00EOh
0100h
0400h
8000h
C000h

FFFFh

Reserved

HP-IL Interface

Serial Interface
Timer 1

PPU

Display Controller

Keyboard/Modem Interface
Timer 2

Plug-In Port 2

Plug-In Port 1

Reserved
Available for plug-in modules
Configuration EPROM

Available for plug-in modules

2.3 Operating Modes

The computer has several operating modes, which are controlled by a single chip
micro-computer, known as the peripheral processor unit (PPU): The mainframe has two

S volt supplies, known as VccS and VeeDS. These supplies are switched on and of f

depending on the mode the mainframe is in. ﬂ

2-4 Electrical Design

s Awake Mode: Both 5 volt supplies are on. The display is turned on; the CPU is
running or idle. RAM is preserved. 2

@ Sleep Mode: VccS is off (the display is turned off; most circuits are powered down).
@ VeeDS is on but reduced to 3.25 volts nominal (RAM is preserved). The PPU remains
\ in a low power state, monitoring system events. This mode is used to prolong battery
life when the computer is not in use.

m Stop Mode: All internal power supplies are turned off. RAM memory is lost. All
digital logic in the mainframe, plug-in cards and modem are turned off. This mode
is only entered if a plug-in card is removed while the mainframe is in Awake Mode.

The following descriptions illustrate the system’s behavior under various conditions.

2.3.1 Sleep Mode

User initiated sleep mode to remove plug-in moduie: System is awake; CPU
running. User wants to change a plug-in drawer.

Action Required:
f User must put system into its sleep mode (by pressing the "Off" softkey in PAM).

System Behavior:

PAM accepts the "Off" command and then issues a sleep command to the PPU.

User removes plug-in drawer. PPU senses the removal and waits until both plug-in
drawers are present. During this wait, the PPU keeps updating the real time clock
and the battery charge level.

When the user has plugged in both drawers, he must press the (@) key to wake the
system up. When the system wakes up, power is applied to the mainframe and
both plug-in drawers. The CPU is initially reset. When allowed to run, it reboots.

w Any time a RAM plug—in module is removed its contents are lost. You
must back up the electronic disc before removing or installing a RAM
Caution plug-in module.

Electrical Design 2-%

User initiated Sleep Mode to conserve battery: System is awake; CPU running.
2 User wants to put system to sleep in order to save power.

Action Required:
User presses the "Off" softkey in PAM.

System Behavior:
The PPU unpowers the CPU and the LCD display. Built-in RAM,
display RAM, and plug-in RAM remain powered. The keyboard continues
to be scanned.
System remains in sleep mode until one of the following occurs:
Any key is depressed.
The alarm time is reached.
A system interrupt is generated (for example, modem ring detected, serial ring
detected, plug-in interrupt detected).
As the system wakes up, the CPU is initially reset. As it begins running, the BIOS
determines that the system was in sleep mode (as opposed to a cold start) and
restores the system to the state that existed before sleep mode was initiated.

Timeout initiated Sleep Mode to conserve battery: System is awake; CPU is
running. The battery charger is not plugged in. The program running (MS-DOS, PAM,
or an application) makes repeated calls to the keyboard driver’s status without calling
other I/O drivers. (This occurs when a program is waiting for keyboard input--refer to
"Power-Save Mode" in chapter 10.)

System Behavior:

The BIOS monitors I/O driver "call" activity. If the keyboard driver’s status is called
often enough (with no calls to other I/O device drivers), after the timeout period
has expired (set from PAM) the BIOS suspends operation of the current program,
does some housekeeping, and then issues the sleep command to the PPU.

The PPU unpowers the CPU and the LCD display. Built-in RAM, display RAM, and
plug-in RAM remain powered. The keyboard continues to be scanned.

System remains in sleep mode until one of the following occurs:

Any key is depressed.

The alarm time is reached.

A system interrupt is generated (for example, modem ring detected, serial ring
detected, plug-in interrupt detected).

As the system wakes up, the CPU is initially reset. As it begins running, the BIOS
determines that the system was in sleep mode (as opposed to a cold start) and
restores the system to its previous state (the LCD displays the same information as
before and the suspended program resumes where it left off).

2-6 Electrical Design

2.3.2 Stop Mode

Situation: System is awake; CPU is running. User removes a plug-in drawer but
forgets to put the computer in sleep mode.

System Behavior:

Removal of a plug~in drawer while the system is awake causes the system to enter
stop mode. The power supply turns off completely, which turns off all mainframe
digital logic and removes power to both plug-in ports. (All built-in RAM, LCD
memory, and plug-in RAM data is lost. The real time clock is lost. The battery
charge level is lost.)

When both plug-in ports are again occupied, the power supply for the PPU energizes
and the PPU is reset.

The PPU waits until the (@) key is pressed before it wakes up the system (by
applying power to the mainframe and both plug-in ports). The CPU is initially
reset. When allowed to run, it reboots the BIOS (which reinitializes the RAM disk
and the real-time clock).

The battery charge level initially reads O percent.

2.4 Mainframe Hardware

The mainframe (illustrated in figure 2-3) consists of the following assemblies:

Motherboard (PCA), which contains the CPU and its associated circuitry, the
peripheral-processor unit (PPU), 2 multi~purpose controllers, LCD controller, video
interface, HP-IL interface, serial interface, the interface for the optional modem, and
the power supply.

Memory board (PCA), which contains built-in RAM, built-in ROM, the
configuration EPROM, address decoding circuitry, and two plug-in ports.

Keyboard assembly, which consists of 76 keyswitches (but no active circuitry).
Liquid-crystal display module.

Piezo-electric speaker.

In addition, the mainframe has provisions for two types of optional hardware:

Electrical Design 2-7

® 1200-baud modem, which contains the modem circuitry and its power supplies. It is
installed internally in the mainframe.

® Plug-in module, which usually contains additional RAM or ROM. It is installed in a
plug-in drawer, which is then inserted into one of two external plug-in ports.

Figure 2-3. Portable PLUS Block Diagram

ROM DISC
EDISC

¢ -
5Y5. Ao <1‘__:> CONTROL Lrnes — — — —

DATA LINES

=T] = -
T] R e
_____ | I S [| |
R e | v
= e ey 7
R natuty | | ipie B = s
Ok T I

S e [p—

PLUG-INS

vioeo L1auio W [
waereace K vioeo ms| caverar INTERFACE

CONECToR oISLAY l—

T
AV

The following sections describe the basic operation of the system components.

2-8 Electrical Design

2.41 CPU

The 80C86 CPU communicates on a multiplexed address-and-data bus (20-bit
addresses, 16-bit data). The 80C86 is strapped into minimum mode, and thus produces
its own bus-control signals.

2.4.2 Clocking

All mainframe clocking is contained on the motherboard. The 16-MHz crystal and the
oscillator circuit generate several clock frequencies: 5.33 MHz for the CPU, 2.67 MHz
for the multi-controllers, and 16 MHz for the binary counter, which generates a
2-MHz clock for the HP-IL controller.

The LCD controller has its own 5~MHz oscillator. The PPU has its own 1-MHz crystal
and built-in oscillator, which always operates--even while the system is in sleep mode.
(The optional modem has its own oscillator circuit.)

2.4.3 Ready Circuit

The bus-cycle length can vary, depending on the address of the device being accessed.
This is accomplished using the CPU’s READY input.

The lower 512K bytes of system memory runs with no wait states (cycle time of 748
ns). The upper 512K bytes of system memory and all I/O addresses operate with one
wait state minimum (cycle times of 935 ns minimum). These cycles are further
extended when the (open-drain) READY line is pulled low.

2.4.4 PPU - Peripheral-Processor Unit

The peripheral processor unit (PPU) is a single-chip microcomputer of the 6805 family.
It has 112 bytes of RAM and 2106 bytes of ROM. The PPU controls the power
supplies, operating modes, and the beeper, and it provides the real-time clock. It runs
even while the system is in sleep mode. The PPU can be accessed if needed via a system
service (Refer to Int 50h in chapter §.)

A one-byte data transfer between the CPU and the PPU takes about 2.3 ms to
complete.

Electrical Design 2-9

2.4.5 Keyboard Interface

The keyboard assembly contains 76 key mechanisms, but no electronic components.
Hardware provides the key location; software maps the location into unique keycodes.
The keyboard is organized into an eight-by-nine matrix, plus three additional function
modifier keys. A matrix key connects a row line to a column line. The
multi-controller alternately cycles between activating all column drivers and sampling
the row lines, and activating all row drivers and sampling column lines.

The three function modifier keys each have an individual pullup resistor to the positive
supply. A closed key pulls the line to ground.

2.4.6 Power Supply

The power supply is overseen by the PPU and provides power for the entire mainframe,
the optional modem, and plug-in boards. Power supply conditions for each of the
system operating modes are:

8 Awake mode. VccS and VeeDS are +5V (+ 0.25V).

@ Sleep mode. VceDS is +3.25V (2 0.16V), VecsS floats.

In addition to the two S volt supplies there is a negative voltage supply used to bias the
LCD display.

2.4.7 Memory Board

The memory board contains RAM, ROM, address decoding circuitry, the configuration
EPROM, and two plug-in ports. (The plug~in ports are described separately in this
chapter.)

2.4.8 Configuration EPROM

The configuration EPROM resides in I/O memory at even addresses from 8000h to
BFFFh. It is normally an 8Kx8 device (27C64), but it can be a 16Kx 8 device (27C128).
(A 32Kx8 EPROM can be used, but only the upper 16K bytes are addressable.) The

configuration EPROM contains information which the BIOS uses to properly configure
the system. The types of information it contains are:

2-10 Electrical Design

® Product Number

® Serial Number

m Boot Information

s Country Specification

® Constants used by the BIOS

s Numeric Pad Map

a Font Loading Information

m Keyboard Matrix Maps

s System/Error Messages

] System Setup Information

= Option for Boot Code

Each supported language has a different version of the configuration EPROM.
Appendix C contains a listing of the English (US)) version. It is possible to customize
the main PAM screen and system/error messages by customizing the EPROM.
Discussion of the option for boot code is in Chapter 11. Because only 8K of 1/0
memory is allocated to the configuration EPROM, special restrictions are required to
use a 16K EPROM. For a given I/O address in the EPROM space, a "byte" access reads
from a different EPROM location than a "word" access reads. For a 16K EPROM, a
»word" access reads from its upper 8K (2000h through 3FFFh internal), but only the
lower byte is valid; a "byte" access reads from its lower 8K (0000h through 1FFFh
internal). For an 8K EPROM, both types of accesses read the same data (0000h through

1FFFh internal)--but for consistency only "byte" accesses should be made to an 8K
EPROM. Figure 2-4 illustrates this.

Electrical Design 2-11

Figure 2-4. Configuration EPROM Addressing

(Even Addresses Only)

8K
8000h 0000h 8000h
r 'y
Word Read* Word Read
(in ax,dx) (in ax,dx)
Byte Read
(in al,dx)
47 v
BFFEh 1FFFh BFFEh
8000h
Byte Read
{in al,dx)
Only AL is valid after each read. +
BFFEh

X Not recommended.

2-12 Electrical Design

16K

0000h

IFFFh

2000h

3FFFh

2.5 Serial Interface

The computer operates as a Data Terminal Equipment (DTE) on its serial interface. The
interface complies with the following industry standards:

® EIA RS-232-C. Electrical specification (except that a 9-pin female connector is
used instead of a 25-pin male connector).

m CCITT V.28. Electrical specification.

m CCITT V.24. Electrical specification (for the nine implemented lines).

Electrical Design 2-13

Figure 2-5 shows the pin configuration for the nine-pin female serial connector. Table
2-1 lists the signals at the serial connector and relates the configuration to the EIA and
CCITT standards.

Figure 2-5. Serial Connector

5 1
Female 9-Pin D-Subminiature Connector
[3N BN BN BN }
o X O «—— IS0 metric M3 x 0.5
9 6
Table 2-1. Serial Interface
Pin Signal Equivalent RS-232-C V.24
FNumber RS-232-C Circuit Circuit
Pin Designator Designator
1 Data Terminal Ready 20 CD 108/2
2 Transmitted Data Out 2 BA 103
3 Received Data In 3 BB 104
4 Request To Send 4 CA 10§
5 Clear To Send 5 CB 106
6 Data Set Ready 6 CC 107
7 Ground Reference 7 AB 102
8 Received Line Signal Detect 8 CF 109
9 Ring Detect 22 CE 125

The serial interface function is shared by the multi-controller IC, the PPU, and the
HP-IL IC. The multi-controller IC controls the frame format and receiver/transmitter
status. The PPU controls power for the line drivers and controls the RTS and DTR
output lines. The HP-IL IC maintains the status of the CTS and DSR input lines. The
milti-controller is able to connect either the serial RxD line or its own serial output
line to the receiver’s serial input. Thus, the multi-controller is able to isolate the
reciever from the serial RxD line. This is recommended during power-up or
power-down sequences and when serial power is off.

The multi-controller is powered in sleep mode, but is reset as the system comes out of
stop mode.

2-14 Electrical Design

™

C

Output Electical Characteristics. The outputs are the TxD, DTR, and RTS
signals. 2

The low level output voltage, Vol, for the TxD signal is considered the logic 1 state. For
the DTR and RTS signals, it is considered the OFF state. Iol is the magnitude of the
current provided by an output when driving the signal to Vol. All voltages are specified
with respect to GND. The RS-232-C and CCITT Recommendation V.28 limits are:

Vol (Iol = 0 mA) : =25 V min.
Vol (3000 ohms < LOAD < 7000 ohms) : =15 V min. -5 V max.
Iol (output shorted to +15 V) : 500 mA max.

The actual limits guaranteed by the Portable PLUS serial interface design are:

Vol (Iol = 0 mA) : =15 V min.
Vol (Iol = 2 mA) : =15 V min. -6.6 V max.
Iol (output shorted to +15 V) : 2.5 mA min. 45 mA max.

The high level output voltage, Voh, for the TxD signal is considered the logic O state.
For the DTR and RTS signals, it is considered the ON state. Ioh is the magnitude of the
current provided by an output when driving the signal to Voh. The RS-232-C and
CCITT Recommendation V.28 limits are:

Voh (Ioh = 0 mA) : +25 V max.
Voh (3000 ohms < LOAD < 7000 ohms) : +5 V min. +15 V max.
Ioh (output shorted to -15 V) : 500 mA max.

The actual limits guaranteed by the serial interface design are:

Voh (Ioh = 0 mA) : +8 V max.
Voh (Ioh = 2 mA) ¢ +5.2 V min. +8 V max.
Ioh (output shorted to -15 V) ¢ 10 mA min. 45 mA max.

Electrical Design 2-18%

Miscellaneous Output Characteristics. RS-232-C and CCITT Recommendation
V.28 require the following characteristics of output signal drivers:

Transition time (between -3 and +3 V): 200 nsec min. 1.56 usec max.

Power-off impedance (+-2 V applied) : 300 ohms min.

The actual limits guaranteed by the serial interface design are:
Transition time (between -3 and +3 V): 200 nsec min. 1.50 usec max.

Power-off impedance (+-30 V applied) : 300 Kohms min.

input Electrical Characteristics. The inputs are the RxD, DSR, CTS, RLSD, and
RING signals. All voltages are specified with respect to GND.

The low level input voltage, Vil, for the RxD signal is considered the logic 1 state. For
the DSR, CTS, RLSD, and RING signals, it is considered the OFF state. Vih is
considered the logic O state for the RxD signal and the ON state for the DSR, CTS,
RLSD, and RING signals. The RS-232-C and CCITT Recommendation V.28 require
that a device properly interpret input signals that fall within the following voltage
limits:

Vil (logic 1 state or OFF state) : =25 V min. -3 V max.
Vih (logic 0 state or ON state) : +3 V min. +25 V max.

However, the serial interface will properly interpret input signals which are within
these larger ranges:

Vil (logic 1 state or OFF state) : =25 V min. +0.6 V max.

Vih (logic 0 state or ON state) : +3.0 V min. +25 V max.

2-16 Electrical Design

When in SLEEP mode, the serial interface can respond to two of the input signal lines,
RING and RLSD. These signals are properly interpreted when their voltages are within 2
the following ranges:

Vil (OFF state) . : -25 V min. +0.3 V max.

Vih (ON state) : +2.4 V min. +25 V max.
LOAD and El. LOAD is DC resistance of an input signal line measured from that line
to GND. El is the magnitude of the open~circuit voltage that an input signal line
generates. RS-232-C and CCITT Recommendation V.24 specify these quantities to be
within the following limits:

LOAD (-25 V to +25 V applied) : 3000 ohms min. 7000 ohms max.

El : 2 V max.

The actual limits guaranteed by the serial interface design are:

LOAD (-25 V to +25 V applied) : 4400 ohms min. 5000 ohms max.

El : .05 V max.

Electrical Design 2-17

Cables. Two cables are available for connecting the computer to serial devices: a
modem cable (DTE to DCE) and a printer cable (DTE to DTE). A gender converter (HP
92222F) is available to convert each cable from male to female. Figure 2-6 describes
the modem cable (HP 92221 M).

Figure 2-6. Modem Cable

Signal 9-Pin 25-Pin Signal
Male Male
DTR (108/2) 1 » 20 DTR (108/2)
TxD (103) 2 » 2 TxD (103)
RxD (104) 3 3 RxD (104)
RTS (105) 4 » 4 RTS (105)
CTS (106) 5 = 5 CTS (106)
DSR (107) 6 = 6 DSR (107)
GND (102) 7 7 GND (102)
RLSD (109) 8 < 8 RLSD (109)
RING (125) 9 < 22 RING (125)
Shell Shell
Lo 1

Figure 2-7 describes the printer cable (HP 92221P).

Figure 2-7. Printer Cable

Signal 9-Pin 25-Pin Signal
Male Male

DTR (108/2) 1t » 6 DSR (107)
TxD (103) 2 » 3 RxD (104)
RxD (104) 3 = 2 TxD (103)
RTS (105) 4 > 8 RLSD (109)
CTS (106) &5 «— 1
DSR (107) 6 = 20 DTR (108/2)
GND (102) 7 7 GND (102)
RLSD (109) 8 < 4 RTS (105))
RING (125) 9 N 5 CTS (106) ‘W

Shell Shell

L 1

2-18 Electrical Design

-]
2.6 HP-IL Interface

The HP-IL interface conforms to the Hewlett-Packard Interface Loop standard, as
described in The HP-IL Interface Specification (HP part number 82166-90017).
Standard "IN" and "OUT" HP-IL receptacles are provided on the I/O plate.

|
2.7 Recharger Interface

Power may be applied to operate the computer and charge the internal battery pack
through a two pin jack (labelled "RCH") which is located on the rear panel. The RCH
connector is interfaced with the mainframe’s internal battery charger circuitry. Both
computer operation and battery charging occur simultaneously when power is applied as
long as the power that is applied at the RCH input is more than the power that the
computer is using. If this is not the case, battery drain continues, but at a reduced rate.

Battery Charger Operation. The battery charger circuit was designed to work
with a specific group of AC adapters made by Hewlett-Packard. (The U.S. model is the
HP-82059D.) These adapters provide current limiting; therefore the battery charger
circuit within the computer is designed without current limiting. Power that is applied
to the RCH input must therefore be adequately limited to ensure the survival of the
computer’s circuitry. Excessive voltage can cause the DC rectifier to be damaged.
Excessive current can cause the battery fuse to blow. Excessive power applied when the
battery is nearly fully charged can damage the battery charger’s voltage regulator.

Current from the recharger has two possible paths, the computer circuits, and the
battery. When the battery charger regulator is providing more current than the
computer circuits are using, excess current flows into the battery, charging it.
Otherwise, current flows out of the battery to satisfy the computer’s needs.

The voltage applied to a fully charged battery by the internal voltage regulator is
selected to give optimum battery life. This optimum voltage (called "float" voltage)
varies with temperature. The battery charger regulator is designed to maintain the
proper float voltage over a temperature range of -10 to +55 C.

Electrical Design 2-19

Battery Percentage Indicator. The computer maintains a Battery Fuel Guage

(main PAM screen) which operates during battery charging. This indicator assumes a

certain minimum charge current from the regulator when an AC adapter is connected.

If less than this current is provided, the battery percentage indication may show a

higher percentage of charge than the battery actually has. It is intended that the ;
battery percentage indication always under-estimate the remaining battery charge, w
rather than over-estimate it.

DC Requirements of the RCH Port. DC power may be applied to the RCH input
in the form of a DC voltage source with a series output resistance. The limitations on
the voltage source and series resistance are, in general, functions of temperature. This is
due to the varying response of the battery charger voltage regulator to temperature, as
required by the battery. The limits are listed in Table 2-2. The maximum input
current limitations are given for reference only.

Table 2-2. Recharger DC Limits

Maximum Input Maximum Input Minimum Input

Temp Voltage Current Voltage @ O Current
(°C) (Volts) (Amps) (Volts)

-10 21 0.5 9.06 w

0 21 0.5 893

10 21 0.5 8.83

20 21 0.5 8.72

25 21 0.5 8.66

30 21 0.5 8.59

40 21 0.5 8.46

50 21 0.5 8.32

60 21 0.5 8.19

The limitations on series resistance given below guarantee that the maximum input

currents are not exceeded. The series resistance limitations are functions of the value of

the DC voltage source used to supply power to the RCH input. They are also functions

of battery charger circuit operating parameters which are not detailed here. Table 2-3
specifies the minimum and maximum limitations of the series resistance for a given DC %
voltage source (open circuit voltage). Limitations are given for two operating w
temperature ranges--a resticted office temperature range and the full operating

temperature range of the Portable PLUS.

2-20 Electrical Design

Table 2-3. Recharger Series Resistance Limits

Ottice Full
Temperature Range Temperature Range
@‘\ (156 to 35°C) (-10 to 60°C)
Minimum Maximum Minimum Maximum
Voltage Resistance Resistance Resistance Resistance
(Volts) (Ohms) (Ohms) (Ohms) (Ohms)
9 * 5.2 6.0 -—- -

10* 7.2 8.0 7.6 8.0

11 * 9.2 10.0 9.6 10.0

12 11.2 12.7 11.6 12.0

13 13.2 16.3 13.6 15.2

14 15.2 19.9 15.6 18.8

15 17.2 234 17.6 22.3

16 19.2 27.0 19.6 25.9

17 21.2 30.6 23.7 29.5

18 23.2 34.1 28.7 33.0

19 25.2 37.7 34.2 36.6

W\ 20 27.5 41.3 40.2 41.0
* Battery charging with these supply voltages is possible but not
recommended. It may result in PAM’s Battery Fuel Gauge over—-estimating
the remaining capacity of the battery.

AC requirements of the RCH Port. AC power may be applied to the RCH input

in the form of an AC voltage source with a series output resistance. The source and

resistance should match the characteristics of the Hewlett-Packard AC adapters which

are designed to be used with the computer.

Output Voltage (open circuit) : 11.6 £ 0.2 volts rms
Output Resistance ¢ 11,0 £ 0.5 ohms
e, Frequency : 47.5 Hz minimum, 440 Hz maximum

Electrical Design

Automotive Recharger. Conceptually, the circuit shown in figure 2-8 fulfills the
requirements for a 12 Vdc automobile recharger. This circuit has not been thoroughly
tested and Hewlett-Packard assumes no responsibility for its use. Other circuit
topologies are clearly possible.

W

Figure 2-8. Automotive Recharger Schematic Diagram

AUTO UGHTER PLUG CURRENT LIMITING TRANSIENT HP RECHARGER COMPUTER
BATTERY W/FUSE & CABLE SUPPRESSOR CABLE W/PLUG
PTC [5061-2221]

PLUG FUSE THERMISTOR peisToR
A

—\u D M,
300 MA ROETe 20-22 OHM
SLO-BLO 10 WATT

g X 1.6KE1BC

7

PORTABLE
PLUS

or
HPHO

—
<
&
N

® The automobile’s voltage regulator must maintain a dc level between 11 and 16 volts
to provide effective and safe power. %\

= An automobile’s 12 Vdc source can experience a short-duration transient of hundreds
of volts, or a high energy transient of up to 80 volts which may not decay for several
seconds. Thus, transient voltage suppression must be provided to protect the
computer. In addition, the HP recharger cable includes miniature back-to-back
27-volt Zener diodes in its plug--they may open or short when overstressed. (These
Zeners prevent a high voltage static discharge when the plug is inserted or removed.)

The transient suppressor should protect both the computer and the recharger plug’s
Zener diodes. Placing the suppressor on the resistor’s output side allows it to survive
the voltage transients it is designed to suppress. (The 1.5KE18C is manufactured by
General Semiconductor and Motorola.)

@ The lighter plug must be fused to protect against a gross short. The fuse size (300
mA) and type (slo-blo) should be chosen to survive high energy transients while still
blowing for a sustained high current condition. Note that a current ranging from "‘%
300 mA (indefinitely long duration) to 1200 mA (very short duration) may be
required to blow a 300 mA fuse.

2-22 Electrical Design

m The thermistor/resistor combination must be bonded in intimate thermal contact; a
silicone heatsink compound is a good choice. The resistor limits the current during 2
normal operation and is large enough to sustain a direct short at the output--for
which the thermistor should then trip.

(\ The thermistor’s resistance is negligible when cool. Internal self heating and external
heating from the resistor combine in a high current condition (about 500 mA) to
“"trip"” the thermistor into a high resistance state. The thermistor will maintain this
low current state until power is removed. (The RDE18S5 is manufactured by
Raychem Corporation, Menlo Park, CA.)

m Although the HP recharger cable will plug into a number of HP computers,
calculators, and peripherals, a dc circuit designed for the Portable PLUS and HP110
may not provide effective or safe power for other devices. (The recharger cable is
manufactured by Hewlett-Packard. Refer to appendix I for more information.)

s A package containing the thermistor, resistor and transient suppressor must be
designed to avoid overheating or melting while still sustaining a current not quite
large enough to blow the fuse. The package must also protect the user from possible
contact with any wire or component, and should provide adequate cable strain relief.

2.8 Video Connector

The video interface connector is located inside the battery compartment. Six of the
signals that drive the internal LCD are present at the video interface connector. These
signals can be used by an external driver to generate a video display. Table 2-4
describes the video signals.

Electrical Design 2-23

2

Table 2-4. Video Signals

6,8 GND Ground Reference

Pin Name Description Frequency
7 CL2 Dot Clock 1.25 MHz
S FLM Frame Clock S2Hz
2 DIl Upper-Left Quadrant Data 625 KHz max.
1 DI2 Upper-Right Quadrant Data 625 KHz max.
4 DI3 Lower-Left Quadrant Data 625 KHz max.
3 DI4 Lower~Right Quadrant Data 625 KHz max.

Note: Pin 1 is the left-most pin as you face the rear of the product.

Table 2-3 lists the voltage and timing specifications for the video signals.

Table 2-5. Video Specifications

Parameter

Specification

All: high output voltage

All: low output voltage

CL2: high pulsewidth

CL2: risetime

CL2: falltime

FLM: high setup to CL2 fall

FLM: high hold from CL?2 rise

DIl -DI4: Data setup to CL2 fall
DI1-DI4: Data hold from CL2 fall

3.80 volts min.
0.95 volts max.
225 ns min.
160 ns max.
115 ns max.
280 ns min.
370 ns min.
210 ns min.
270 ns min.

2-24 Electrical Design

- I
2.9 Modem Connector

The modem connector, located on the motherboard, provides an internal interface
designed for the optional modem. The signals provided at the modem connector are
described in table 2-6. All data and control signals are CMOS-compatible. The AUX
Device Driver handles the low level modem control.

@ An asterisk in a signal name (*) indicates a negative-true signal (active
low).
Note

Table 2-6. Modem Connector

Pin Signal Description Direction

1 MRESET* Modem Reset. A low voltage should —» Modem
reset the modem. This line will be
driven low before MODEMON goes
low, and will remain low 50 ms
after MODEMON goes high.

2 MRING*# Modem Ring. Falling edge indicates <« Modem
a ring signal on the phone line.

r This line should function when the

modem is either on or off.

Mainframe has 47K pullup resistor

to VccDS on this line.

35711 GND Ground Reference.
4 MSOUT Modem Serial Out. Transmitted —» Modem

data line from mainframe to
modem. Mark is SV.

Electrical Design 2-25

Table 2-6. Modem Connector (Continued)

6

10

12

MSIN

MCARRIER

VBAT

MODEMON

MRCM

Modem Serial In. Received data
line from modem to mainframe.
Mainframe has 47K pullup to

VceDS on this line. Mark is OV.

Modem Carrier. Falling edge
indicates a loss of carrier on the
phone line. Required to function
only when the modem is on.
Mainframe has 47K pullup to
VceDS on this line.

Battery. Unregulated battery
positive supply line (fused on
motherboard). 5.6 to 7.5 Vdc.

Modem On. A high voltage on this
line should turn on the modem
power supply. When this line is low,
the modem should reduce its power
consumption to standby (microamp)
levels.

Modem Return to Command Mode.

A high voltage on this line for 100

ms (or longer) returns the modem to
command mode.

<+ Modem

<« Modem

— Modem

— Modem

— Modem

2-26

Electrical Design

Table 2-7 lists the specifications for a circuit connected to the modem connector.

Table 2-7. Specifications for Modem Port

Signal Parameter Min Max DC Load
Input:

MSOUT Vil ov 0.4V Iol £ 1.6 mA
Vih 4.25V 5.25V Ioh £ -150 vuA

MRESET* Vii ov 0.1V Iol £ 10uA
Vil ov 0.4V Iol £800uA
Vih 24V 5.25V Ioh £ -2 mA
Vih 4.65V 5.25V Ioh £ -10 uA

MODEMON Vil ov 0.1V Iol £10uA
Vil ov 04V Iol £800uA
Vih 2.4V 5.25V Ioh £ -8§ mA
Vih 4.65V 5.25V Ioh £ -10 uA

MRCM Vil ov 0.1V Iol £ 10uA
Vil ov 0.4V Iol <800 uA
Vih 2.4V 5.25V Ioh € -2 mA
Vih 465V 5.25v Ioh £ -10 vA

Open-Drain Outputs:

MSIN Vol ov 0.9V Iol £113uA

MCARRIER Vol ov 0.8V Iol £113uA

MRING* Vol ov 0.8V Iol £113uA

The modem interface takes on the following state in sleep mode:

MRCM: 0V nominal.

MRESET?*: OV nominal.

MODEMON: 0V nominal.

MSIN: 47K pullup to 3.25V nominal.
MSOUT: 3.25V nominal

MRING*: 47K pullup to 3.25V nominal.
MCARRIER: 47K pullup to 3.25V nominal.

Electrical Design 2-27

]
2.10 Plug=In Ports

The Portable PLUS provides two plug-in ports that are each capable of accepting a %
plug-in module, which becomes part of the system.

2.10.1 Generic Module Description

A plug-in module for the Portable Plus is a printed -circuit assembly mounted in a
"drawer” that fits into the mainframe. This provides the capability to expand or
customize the hardware configuration of the computer. The modules become an
integral part of the computer bottom case.

These modules would typically be additional RAM or ROM for the computer system but
might also be a serial or parallel interface or any other custom circuit which can be
operated from the system bus.

The mainframe allows up to two plug-in modules to be plugged in at the same time. w

2.10.2 Electrical Specifications

There are two categories of requirements which must be met in order for a plug-in
module to operate correctly. First, the module must provide the appropriate
identification and control registers to allow the system software to integrate the module
into the operating environment. The second set of requirements are associated with the
interfacing of the mainframe electrical circuitry with the circuitry of the module.
These specifications include such things as power consumption, drive capability, loading
limitations, digital signal timing, and environmental tolerances.

2-28 Electrical Design

Plug-in Connector.

The interface signals for the plug-in ports are listed in table

2-8.

W\ :' An asterisk (*) in a signal name indicates a negative-true signal (active
% low).
Note

Table 2-8. Signals for Plug-in Ports

Name

Description

Direction

LA19 - LAO
LBHE*

LM/IO*

BALE

I0Cs*

F D15 - DO

Latched address bus (20 bits). Low voltage on
LAO indicates data transfer on the low byte of
the data bus, D7-D0. LA19-LA16 are low
during 1/0 cycles.

Latched byte high enable. Low voltage
indicates data transfer on the high byte of the
data bus, D15-D8. This line switches with
LA19-LAO.

Latched memory or I/0 signal. High implies
memory access; low implies I/O access. This
line switches with LA19-LAO.

Buffered address latch enable. Pulses high to
signify start of CPU bus cycle. Occurs
without RD* or WR* pulsing low during
interrupt acknowledge cycles.

1/0 space address decode. Low active. Sixteen
words wide. Pulses inactive at beginning of
cycle. Used to access the ID and configuration
registers of the plug-in card.

Demultiplexed data bus (16 bits).

—» Plug-In

— Plug-In

—> Plug-In

—» Plug-In

— Plug-In

<+ Plug-In

Electrical Design 2-29

Table 2-8. Signals for Plug-In Ports (Continued)

BRD* Buffered CPU read strobe. Low active. Due
to a race in the 80C86 CPU, glitches may
appear on this line.

BWR* Buffered CPU write strobe. Low active.

DEN* Data bus driver enable. Low active. Timing
strobe to turn on data buffers when plug-in
card is addressed.

DT/R* Data bus buffer direction control. Low
voltage: plug-in buffers drive data out to the
mainframe. High voltage: plug-in buffers
drive mainframe data to plug-in card.

READY Handshake line that extends the length of a
CPU bus cycle. A low voltage on this line
extends the cycle (by inserting processor wait
states) until the READY line returns to a high
voltage. The processor bus cycle then ends
normally. READY should be driven with
open-drain devices only. The mainframe has
a 4.7K-ohm pullup resistor to VccS on the
line.

SLEEP* A low voltage on this line indicates that the
system is going to sleep. Intended for use as a
reset line for devices on the VceS supply. In
response, 2 plug-in card should reduce power
to standby levels, prepare for VccS to float,
and the plug-in interface to assume its sleep
state. Low for 200 ms after VccS
re-energizes.

— Plug-In

~+ Plug-In

—> Plug-In

— Plug-In

< Plug-In

— Plug-In

2-30 Electrical Design

Table 2-8. Signals for Plug-in Ports (Continued)

DSLEEP*

PRESENT#*

INT*

VeeDS

Deep sleep. Low voltage indicates that the — Plug-In
mainframe is preparing to have its plug-in
cards reinserted. Intended for use as a reset
line for devices on the VccDS supply. Driven
to VceDS in awake mode, and when both
plug-in cards are present in sleep mode.
Driven low when a plug-in card is removed in
sleep mode (so devices on VccDS must be able
to reset with 0 volts on DSLEEP* when
VeeDS is at 3.25 volts). Stays low until both
plug-ins are inserted and the (@) key is
pressed to wake up the system.

Low-voltage signal to mainframe that card is < Plug-In
plugged in. Thus all cards should ground this

line. Care should be taken to minimize

leakage paths on this signal.

Negative-edge-triggerred interrupt line. <« Plug-In
Mainframe has an internal 47K ohm pullup
resistor to DSLEEP? on this line. If the
plug-in’s software driver has enabled this
interrupt, it can be used in a conventional
sense in awake mode, and can wake up the
system from sleep mode. (In sleep mode, the
plug-in should not pull this line low, unless it
desires to wake up the system.) INT* pullup is
sourcing current in sleep mode, except when a
plug-in card is removed. When this occurs,
DSLEEP* is switched to ground. This avoids a
possible latchup condition of having a high
voltage on INT* before the plug-in VccDS bus
energizes as the plug-in is inserted.

+5 volts nominal (awake mode), +3.25 volts — Plug-In
nominal (sleep mode). Energized except when
the mainframe is in stop mode.

Electrical Design

2-31

Table 2-8. Signals for Plug-in Ports (Continued)

VceS +5 volts nominal (awake mode). Energized
except when the mainframe is in sleep mode

or stop mode.

GND Mainframe logic ground reference.

— Plug-In

2-32 Electrical Design

Figure 2-9 shows the connector in the plug-in port. The even-numbered pins are on
the top row (toward the top case); the odd numbered pins are on the bottom. Pin 1 is
the lower-left pin when looking into the port; pin 62 is the upper-right pin.

C Figure 2-9. Plug-in Connector

GND 62 61] VcceDS
e 60 59| o7
pa |ss 57| os
vees |56 ss| b3
p2 |54 s3] D1
po 52 51] veens
BWR* |50 49] LM/I0%
Lao |as a7] LBHEX
GND |46 45| BALE
oT/R* |44 43] BrOX
penk f42 41| Rreaoy
eND |40 39| DSLEEPX
Lats J3s 37] LAl9
@’”\ La16 |36 35 LA17
La14 |3 33| Lats
VeeS 32 31] I0CSx
anD |30 20| InNTX
La12 |28 27| wA13
LA10 J26 25] A1
as |24 23] Lo
vees 22 21] a7
a6 [20 19] LAS
tag f1s 17] LA3
a2 lis 1s] LA
GND |14 13] SLEEPX
p14 12 11| pi5
p12 |10 o] p13

VeeS | 8 7] DI
Dio } 6 S] D9
. D8 | 4 3] VeeDS
F GND | 2 1] PRESENTX*

Electrical Design 2-33

Bus Specifications. The four timing diagrams on the following pages show timing
for the plug-in bus when the plug-in board contains RAM, ROM, and 1/0O space.

The lower 1/2 megabyte in memory space runs with no CPU wait states. There is no
way to extend CPU bus cycles in this address range. The upper 1/2 megabyte of
memory space and all 64K bytes of I/0 space run with a minimum of one wait state,
and can be further extended using the READY line.

For extended cycles:
BALE low to READY low: 289 ns max.
I0OCS* low to READY low: 236 ns max.
READY tristate to data is valid: 138 ns max.

Figure 2-10. Plug-in Bus Read Cycle - Lower Memory

oata
0<15: 0> L
ADDRESS |,
“L‘a’r?é:?’ L ADDRESS VALID
LN/102
367 NAX 2 NIN > |
748 NSEC ;
543 MIN I
BALE H 427 \\ 313 NAX /——x
t le—s0 n1n —>]
154 HIN —> (—Jz o
H
BYAN
t L2 265 NIN —>
H 125 NAX
BROD
L AN
°|<"“‘a 373 Kax
" | 106 NAX
DENs é” N\
‘ l 109 NIN
H fe—274 nin
or/Rx BRI SR

TIME IN NANOSECONDS.

2-34 Electrical Design

Figure 2-11. Plug-in Bus Write Cycle - Lower Memory

ATA 7076.0.0.0070.07070.070 070 0 070, ORISR AKX
D<15: 0> RRRRRERRERLRRARERRKRS DATA VALID Setetetetete20 000 0 6 4% % %%
ADDRESS oo e—45 HIN —>|

LAy Ny ADDRESS VALIO
wh/10s L
L 549 KIN
! 748 NSEC >
; 15 NIN f[e—— 372 MIN 42 NIN —> l
BALE 42? N\ / \
L 90 n1n —
144 uAX
230 NIN 112 WIN
) 223 WAX L. 280 NIN —— |
BUAR
L N A AN\
BRD*
352 KIN

\
DEN® N 4227 \|
L 9 NIN l
H
L

@‘

TIME IN NANOSECONDS.

Electrical Design 2-35

Figure 2-12. Plug-In Bus Read Cycle - I/0 and Upper Memory

...... O S TR %
3 LEKo1ven X Rantven K Froar R

0 NIN >

ADDRESS vaLID

554 MAX
= 736 MIN
15 NIN [: 500 NAX
H
BALE
L 30 NIN
< 335 NSEC

447 WA —>

H
BWR»
L M 452 NIN

H 312 NAX
sRor AN

0 MIN 373 Kax

2 MIN

293 MAX

T 4
' 214NN | I 109 NIN
o BRI ~ S W

236 nax

289 NAX

H
nesor SRR Lo DI

TIME IN NANOSECONDS.
NOTE: I0CS* PULSES LOW ONLY FOR I/0 CYCLES WITH AN ADDRESS CORRESPONDING
TO THE 16-WORD PLUG-IN PORT ADDRESS RANGE.

2-36 Electrical Design

Figure

BALE

Jjocsa

OT/RN

READY

2-13. Plug-In Bus Write Cycle - 170 and Upper Memory

0;0;0'0'0'0'0'0'0'0’0'0'0'0’0

T
L EXRRRRLRISERRRLRS OATA ¥aLTD
le—4a5 RIN —>|
[——
. RRHAIHRHD ADDRESS VALID
ka2 nIN —]
= 935 NSEC :l'
15 nlul 153 NIN
o e
L ke—90 nin —|
H _ﬂ_—]-<——232 NAX S m
L
144 NAX |
417 NIN 112 NIN
223 [max 467 KIN ———
H
) N
H
v

TIME IN NANOSECONDS.

NOTE: IOCS* PULSES LOW ONLY FOR I/0 CYCLES WITH AN ADDRESS CORRESPONDING
TO THE 16-WORD PLUG -IN PORT ADDRESS RANGE.

Electrical Design 2-37

During an interrupt acknowledge cycle, the plug-in bus receives normal BALE and
DEN* pulses, but BRD* and BWR* remain high. The READY line is still sampled by
the mainframe. The CPU cycle is in 1/0O address space, but the address bus is
indeterminate. If the address is that of the IOCS?* space, the waveforms shown in figure

2-14 occur. W

Figure 2-14. Plug-in Bus Interrupt Acknowledge Cycle

5v-
BALE |
ov-

5V-

I0CS¥

ov-

5v-
DT/R* —I
ov-

5V-

DEN¥
ov-

5V- %
BRDX

ov-
5V-

BWR¥
ov-

The plug-in card may pull READY low (inactive) in response to the IOCS* low, but it
must release READY when IOCS* returns high so that the bus can complete
normally--bus operation will wait for READY to return high.

The addressed plug-in is allowed to drive the data bus to the mainframe in response to
DEN* and DT/R* low.

2-38 Electrical Design

Plug-in Bus Loads. Circuits connected to the plug-in ports should not exceed the
capacitive loads listed in table 2-9. (Be sure to add the plug-in connector load when
calculating the total capacitive load.)

Table 2-9. Plug-in Bus Loading

Signal Capacitive Load DC Load
LA19-LAl4 70 pF max. 15 uA max.
LA13-LA1l 60 pF max. 15 uA max.
LAO 70 pF max. 15§ uA max.
LBHE? 70 pF max. 15 uA max.
LM/10* 70 pF max. 15 uA max.
BALE 50 pF max. 15 uA max.
IOCS* 35 pF max. 5 uA max.
D15-DO0 30 pF max. 10 uA max.
DEN* 25 pF max. 40 uA max.
DT/R*? 30 pF max. 40 uA max.
DSLEEP* 50 pF max. 50 uA max.
SLEEP* 50 pF max. 50 uA max.
READY 25 pF max. 20 uA max.
BRD* 280 pF max. 40 uA max.
BWR?* 280 pF max. 40 uA max.

Electrical Design

2-39

Plug-in Power Loads. The allowable power supply loads are listed in table 2-10.

Table 2-10. Plug-In Power Loads

Supply DC Current Capacitance w
Awake Mode:
VeeDS (5V £ §%) (75 mA max. 25 uF max.
VeeS (5V £ 5%) VceDS, VeeS combined) 25 uF max.
Sleep Mode:
VeeDS (3.25V £ 5%) 300 uA max.*

* This maximum current severely limits battery life in sleep mode. Typical plug-in
modules draw less than 50 uA in sleep mode.

ll:' Plug-in card software drivers are expected to provide power consumption
J levels to the system using the appropriate INT 50h service, to ensure the
Note accuracy of the PAM battery fuel gauge.

Voitage Levels for Plug-in Bus. Table 2-11 shows the required input and output %
voltage levels for the plug-in bus.

Table 2-11. Voltage Levels for Plug-in Bus

Symbol Description Voltage
Vil Input low voltage 0.8V max.
Vih Input high voltage Vce - 1.0V min.
Vol Output low voltage 0.4V max.
Voh Output high voltage Vece - 0.5V min.

2-40 Electrical Design

Requirements for Plug-~in Drivers. The plug~in boards are required to drive the
loads listed in table 2-12. (Be sure to exclude the connector and the board itself when 2
evaluating the plug-in device’s drivers.)

Table 2-12. Requirements for Plug-In Drivers

Signal Capacitive Load DC Current Load
D15 -D8 248 pF max. 126 uA max.
D7 - D0 272 pF max. 128 uA max.
READY 85 pF max. 1.5 mA max.
INT* 45 pF max. 118 uA max.

2.10.3 Architectural Requirements

Though the circuitry of a plug—-in module is mostly unique to its specific function, the
architecture of the module must conform to the following interface specifications in
order to function properly in the mainframe environment. Identification and control
registers must be provided as described in the following two sections.

Identification and Control Registers. Each plug-in module slot has 16
word-wide I/O address locations assigned to it. These address locations are used for the
control and status information which is required by the system and by the application
for which the module is designed. This group of 16 address locations is unique for each
plug-in module slot, so there are two 16-word address spaces designated in the memory
map for the two slots.

Since the two module slots are virtually identical, a module does not "need to know"
which of the two slots it is installed in. However, for the system to associate each of the
installed modules with the I/O address space into which it is mapped, the hardware
pre-decodes a "module select" line which is unique to each slot and is used by the
module to enable accesses to its control and identification registers. This "module select"
signal is called IOCS*. Thus of the signals going to the two plug-in module slots, one
signal that is not logically identical in both slots is the IOCS* signal, which is never

Electrical Design 2-41

active in both module slots at the same time. (The only other signal that isn’t identical
in both slots is the INT* signal.)

When the IOCS? signal of a module is active, the group of special I/O addresses

associated with a module installed in that particular slot is being selected. The module

can then execute the appropriate bus cycle using signals LA4-LA1, LAO, and LBHE? to A%
select the specific address within the group and using signals BRD* and BWR* to

control the type (read or write) and timing of the data transfer. The timing of the

JOCS* signal is logically equivalent to the BALE signal.

.;' All modules must use the IOCS* signal to select their identification and
control registers, since this is the only inechanism by which the system can

Note uniquely identify and access these registers when two modules are
installed.

The 16 word-wide address locations selected by the IOCS* signal are referred to here as
"local 1/O address locations"-~that is, the I/O address range selected by IOCS* and the
specific location defined by address lines LA4-LAO and LBHE?*.

D,

Virtual Modules. An individual plug-in module is logically partitioned into two
"virtual modules", each with its unique identification and control registers. This allows
for the possibility of up to four uniquely controlled and operated virtual modules to be
configured into a system at once (two virtual modules per physical module).

The local 1/0 locations of a physical module are logically partitioned into two
sub-groups of eight address locations. One of these eight-word sub-groups is assigned
to each of the two virtual modules. Address signal LA4 is used to select one or the
other of the two sub-groups and signals LA3-LAO and LBHE?* are used to address
individual bytes within the sub-group. Signal LA4 is therefore used to distinguish
between the control/status registers of the two virtual modules.

Of the eight 1/O word addresses assigned to each virtual module, one byte-wide address
location is reserved for the identification register of that virtual module while the

remaining address locations are available to be used by the virtual module as needed by

the application for which the module was designed. N

The identification registers of the two virtual modules are assigned to local 1/O
addresses "00000" and "10000" binary (LA4-LAO, low byte). These "local" addresses
correspond to the system 1/0 addresses COh and DOh or EOh and FOh, depending on the

2-42 Electrical Design

particular slot in which the module is installed. Figure 2-15 describes the
identification and general-purpose registers. You can read the module identification
using system services interrupt 50h (refer to chapter).

Figure 2-15. Plug-in Module Registers

00COo +«——r— Identification registers:
Plug-In 2, fmmmmme G
Virtual eneral
Module A 01000000 RAM Module
00100000 ROM/EPROM Module
| 0001---- Reserved
[00D0 - 00000000 No Module
Plug-In 2,
;:;:TZIB Other registers:
General-purpose read/write
Plug-In 1, 00E0 “
Virtual
Module A
Plug-In 1, | 90F0 —
Virtual
Module B

Plug-in port 1 is behind the key.
Plug-in port 2 is behind the (1D key.

Identification of Virtual Modules. The identification register of each virtual
module is read by the system to determine the type of virtual module which is installed.
The identification number read from that location must conform to the standard
presented in figure 2~15 above. You can read the identification of 2 module using the
system services interrupt SO0h.

There must be an identification register for both virtual modules within a physical
module. If only one virtual module is utilized, then the identification byte for the other

Electrical Design 2-43

virtual module must be "00000000". An identification register is a single byte and is
generally "read-only" since it always returns the identification code.

Initialization of Virtual Modules. When a system is booted, the byte Ch is written
to the 16 high- and low-byte local I/0O address locations of each virtual module with a N
"ROM" identification. For other types of virtual modules, only the 8 low-byte locations

are zeroed (the high-bytes aren’t altered). All modules must respond by being disabled

and must not respond to any memory accesses other than to their local I/0O addresses.

Since the initialization of ROM or RAM virtual modules is done by the system software,
these modules must strictly conform to certain standards, which are described next.

Special Requirements for ROM/EPROM Plug-in Modules. The single control
register for a ROM (EPROM) plug-in module is at the same location as its identification
register, local I/O address "x0000". The value written to this register can select one of
up to eight installed ROMs:

0-mmmemn Module Disabled.
1----XXX Module Enabled, Bank XXX Selected (000-111). "’%

The protocol for determining whether or not a ROM is installed in the selected ROM
socket involves initializing the module’s data bus to zero (by reading the identification
register), and then reading from the first memory location of the ROM (or reading the
floating bus if no ROM is installed in the selected ROM socket). The first memory
location of ROMs are specifically non-zero, so that it can be determined whether or not
a ROM is installed in a particular socket position (as selected by the control register
contents).

The use of this procedure requires that the ROM data bus not be subject to current
leakage which would pull the bus to a logic “1" voltage level when it is not being
actively driven. It is therefore recommended that the design of any ROM drawer
include pull-to-ground resistors on the data bus of the module (typically 100K -ohm),
thus helping to assure that the data bus retains a "0" state between the time when the
identification register is read and when the address location of the first byte of the

ROM is read. »ﬂ%

Special Requirements tor RAM Plug-In Modules. The presence of a control
register for a block of RAM does not imply that any RAM components are installed for

2-44 Electrical Design

that block. However, RAM must be installed in complete blocks of 128K bytes, and

these blocks must be installed such that their respective control registers are 2
consecutively located in the local I/0 address space. In other words, the first block of

RAM installed in a virtual module must be installed in the position controlled by a

control register located at local I/0 address "x0000" (block 0), the second at control

location "x0002" (block 1), etc. Up to eight 128K -byte blocks of RAM can be installed

in each virtual module, providing the potential for a plug-in module (two virtual

modules) to contain up to 2M bytes of RAM.

The values written to the control registers determine the lower memory boundaries for
the corresponding 128K -byte blocks of RAM:

0---m--- Module Disabled.
1---XXX- Module Enabled, Lower Boundary for Block set at (XXX x 128K).

For reasons similar to those described in the preceding section, RAM modules should
include 100K -ohm pull-to-ground resistors on each data bus where RAM may be
installed.

Modes of Operation. Plug-in devices should respond appropriately to three
operating conditions that are implemented by the mainframe:

Awake Mode: The DSLEEP* and SLEEP* lines are both inactive (high voltage) so both
supplies (VceS and VecDS) are at S volts. The CPU is active. Plug-in cards should be
capable of handing long delays without bus cycle access, when the CPU is halted.
During 80C86 interrupt acknowledge cycles an I/0 space cycle occurs. BALE pulses
normally, and the address is undetermined. DEN* and DT/R* pulse low normally.
BRD* and BWR* remain at high voltage levels. The addressed plug-in is free to drive
the data bus at this time.

Plug-in cards must handle occasional glitches to ground on the BRD* line after BRD*
has risen high normally at the end of a bus cycle.

Sleep Mode: To initiate sleep mode, the PPU drives the SLEEP* line from 5V to OV.
This resets the CPU (80C86). After 20 microseconds, power supply sequencing begins:
VecS floats, and VcecDS goes from SV to 3.25V. VceDS reaches 3.25V after about 10
milliseconds, and VccS drops to less than 1V after about 400 milliseconds.

Electrical Design 2-45

In this state, the CPU is unpowered. Plug-in devices should reduce power consumption
2 to standby levels (in the microamp range). The plug-in bus takes on the following state
in sleep mode:

LA19-LAO: Floating (with 100K -ohm passive pulldowns to ground). »’%
LM/IO*: Floating (with 100K -ohm passive pulldown to ground).
LBHE?*: Floating (with 100K-ohm passive pulldown to ground).
D15-DO0: Floating (with 100K~-ohm passive pulldowns to ground).
BALE: Floating (with 100K -ohm passive pulldown to ground).
BRD*: Floating (with 100K ~ohm passive pulldown to ground).
BWR*: Floating (with 100K -ohm passive pulldown to ground).
DEN*: Floating.

DT/R*: Floating.

DSLEEP?*: Driven to high voltage (3.25V nominal).

SLEEP?*: Driven to low voltage (OV nominal).

I0CS*: Floating (with 100K -ohm passive pulldown to ground).
READY: Floating.

INT#*: 47K-~-ohm series resistance to DSLEEP%,

VceDS: 3.25 volts nominal.

VccS: Floating.

The system remains in sleep mode until the (@) key is pressed or a system interrupt is W
generated (keyboard interrupt, RS-232 ring, modem ring, plug-in interrupt, or

real-time clock interrupt). The wakeup sequence depends upon the condition at that

time: no plug-in module has been removed, or a plug-in module has been removed.

If no plug-in module has been removed, VccS energizes to 5V, and VceDS rises from
3.25V to §V. VccS reaches SV after about S milliseconds, and VecDS reaches 5V in
about 8 milliseconds. After 200 milliseconds, the SLEEP?* line goes high, and the CPU
begins executing instructions.

If a plug~in module kas been removed, it triggers certain events at that time. DSLEEP*
is driven from 3.25V to OV to reset any module that’s inserted and minimize latchup.
This signal also resets all devices operating on VceDS (3.25V) and disables all system
interrupts. The (@) key can wake up the system only after a module has been installed
in the port. When the (@) is pressed, DSLEEP* is raised to 3.25V, then the normal
wakeup sequence occurs.

Sleep mode is also active when power is first applied to the system by the battery 5

jumper. At this time, SLEEP* is at 0V, and DSLEEP* follows VccDS. The system
doesn’t wake up until after both plug-in ports are occupied and the (@) key is pressed.

2-46 Electrical Design

Then DSLEEP* pulses low for 80 microseconds, and the normal wakeup sequence
OCCUrS.

Stop Mode: Removal of either one of the plug-in drawers while the system is awake
causes the mainframe to enter stop mode and shut down all of its power supplies. The
power supplies remain shut down until both plug-in drawers are plugged in again and
the (@ key is pressed. Then the normal wakeup sequence occurs.

Electrical Design 2-47

T 3 Mechanical Design

3.1 Introduction

This chapter presents the mechancial specifications for the mainframe and for the
printed-circuit boards that connect to it:

® Modem printed -circuit board.

m Plug-in printed-circuit board.

Mechanical Design

3-1

. =
3.2 Mainframe

Figure 3-1 describes the outside dimensions of the Portable PLUS mainframe. The ’q%
keyboard is integrated into the main body of the unit. The display housing hinges from

the top-rear surface of the main body, allowing the user to adjust its angle for optimum
viewing. In its closed position, the display housing covers the keyboard, providing

protection for the display and keyboard.

The battery cover at the back of the computer provides access to the rechargeable

battery and the video connector. Connectors for the recharger, HP-IL interface, serial
interface, and optional modem are accessible at the back of the case.

3-2 Mechanical Design

Figure 3-1. Mainframe Dimensions

DIMENSIONS ARE IN MILLIMETERS.
OVERALL WIDTH WHEN VIEWED FROM FRONT: 330 MM.

Mechanical Design

L %
]
]
]
1
]
[}
]
]
1
i N
}
1 265 i
]
: E
! 110 / Hﬁ?sapw
: ettt > }FULLY
. ! OPEN)
p! /) :
v | '
I 476 '60 '
)] ' 1 L}
! 1 1]
v v v IN] ° / y
_ _261 (INCL VIDEO CONNECTOR) _ _ _ _ ___ .>|
___J98 [DISPLAY FULLY OPEN) _ _ _ _ _ _ _ _ __ _ _ _ __________.)

3-3

]
3.3 Modem

The modem interface, located inside the mainframe assembly, provides a connection to %

an add-on printed-circuit board. This board connects to the motherboard and extends
to the modem cutout at the back of the case.

The "modem" PC board should have a 12-pin connector that connects to the
motherboard. The modem board is installed in the bottom case (without using the two
plastic spacers that are otherwise installed in that location). The case screws secure the
board in place. Figure 3-2 shows the physical specifications for the modem PC board.
(Refer to "Modem Connector" in chapter 2 for information about signals at the
connector.)

The PC board should have an electrostatic discharge (ESD) ground trace around its
perimeter. This trace should be wide (at least 50 mils), unmasked, and on the component
side of the board. It should overlap the mounting screw holes and the ESD ground stud
hole. A ground strap connects the ESD ground of this board to that of the motherboard.
The ground strap is connected using studs and flanged nuts. It is essential that the ESD
ground be separate from the logic signal ground.

Refer to appendix I for part numbers.

3-4 Mechanical Design

™

Figure 3-2. Modem PC Board

177.29
134.00
x 165.04 ¥ | — 4 HOLES
! 1]
16.00 —g—F : 0.86 DIA
44— 5.00 :
6.00—f 1 X 112.00 - 800)'/ 2 HOLES
, ' 3.51 DIA
-1d-@-! '
-4 --T---‘ -------------------------- 4‘1"‘-“ ------- :’ (510
2 HOLES 3.48 17T ..
: 4.22 DIA a 27_}: [I 10.16
ZERO CLEARANCE: p P 1:_
2,54 ——for T 218
6.5 DIA TOP 76 23/1 ! .
12.0 DIA BOTTOM - |_"'_. !
81.79—1] 6,354t
1 HOLE | HOLE 80.29—T1"
.02 OIA 3.02 DA
ZERO CLEARANCE:
ZERO CLEARANCE 9.0 DIA BOTTOM 23.70 61.00
BOTTOM 124.00 \ —
a8, Ak
98.43 -ITM‘ ' g-
Il "?,
1 r e
60 L1 o 12 HOLES—— 7 87 26.29
0.86 DIA 1 HOLE 37.29
3.02 DIA
FOR ESD STUD
DIMENSIONS ARE IN MILLIMETERS.
COMPONENT SIDE IS SHOWN.
NOMINAL BOARD THICKNESS: 1.59 MM.
COMPONENT HEIGHT RESTRICTIONS VARY WIDELY.
THE LAYOUT MUST BE VERIFIED IN THE UNIT.
Mechanical Design 3-5

|
3.4 Plug-In Ports

Plug-in expansion modules have three primary components: the plastic housing, the
metal protective cover with ground spring, and the printed circuit assembly. Variations
of these components may include multiple printed circuit assemblies, modified housing,
and/or modified cover to allow for supplementary electrical or physical access to the
circuitry.

Each plug-in port accepts one drawer, which is connected externally to the mainframe
system. A printed-circuit board can be installed in a blank drawer and then installed in
a plug-in port.

The "plug-in" board should have a 62-pin connector that connects to the mainframe.

The metal lid for each drawer acts as a charge sink for electrostatic discharge (ESD).
The lid is directly exposed to discharge at the bottom edge of the front face. To avoid
damage, components on the plug-in board should have high-frequency impedance to
the metal lid. The lid is retained by four screws (ISO M2 x 0.4 - 6g).

Before the pins of plug-in connector make contact with the memory board connector,
the metal lid makes contact with the mainframe’s ESD-ground spring. This equalizes
the potential of the metal lid and the mainframe ground. In addition, the logic grounds
of the mainframe and the plug-in board should be at the same potential when the
board is plugged in. This can be achieved by including on the board a ground spring in
series with a long, narrow logic-ground trace (a 12-mil trace 3.5 inches long is
sufficient). The spring should contact the metal lid. The trace inductance is sufficient
to retard the high-frequency electrostatic discharge; it also keeps the mainframe and
plug~in logic grounds at the same dc potential.

Plug-in drawers with external cable connections (or I/O ports) should connect the shield
ground to the plug-in’s metal lid, or to the high inductance trace near the lid-shield
connection--not to the plug-in logic ground.

Refer to appendix I for part numbers.

Figure 3-3 shows the physical specifications for the plug-in PC board. (Refer to , 3
"Plug-In Ports” in chapter 2 for information about signals at the connector.)

3-6 Mechanical Design

Figure 3-3. Plug-In PC Board

87.00

206.00
103.00)
t
L 93.30 ., 93.30 A
4 * 1
' H 42.80 1 42.80 i E
ars ! 4 3
L : i ! : :
R PPN R A - ' :
S S — oo froceaaeeeeee ¢
5.08 : ! '
] 3]
: ' :
6 HOLES : i '
241014 i 62 HOLES | '
72.09 ! 104014 ! i
H H H
'] '
]) 4
] " ’
1) '
])]
: !)
\ H [

-

A

| Sl "

[}]

COMPQONENT HEIGHT : :
7.5 MAX : !

' '

E 1.20

DIMENSIONS ARE IN MILLIMETERS.
COMPONENT SIDE IS SHOWN.
NOMINAL BOARD THICKNESS: 1.59 MM.

1.75 REF

B 284

3 HOLES

1.47 DIA

FOR GROUND SPRING
(ANY LOCATION}

Mechanical Design 3-7

Resetting the
T 4 Portable PLUS

|
4.1 Introduction

Under certain conditions a reset to the Portable PLUS may be desirable. After changing
a plug-in drawer or creating a CONFIG.SYS file, a reset is necessary so that the system
will re-boot and recognize the new configuration.

Occasionally the computer may get into a state where it will not respond to particular
keys and a reset may be necessary. In this case, there are a few things to try before
resorting to resetting the computer.

m If the display is off and will not turn on, it is possible that the batteries are low. Plug
in the recharger and press a key to turn on the display. Do not attempt to operate
the computer on battery power alone until it has been recharged for at least one

W hour. (We recommend that if the battery charge falls to the 5% level, the computer
should be fully recharged before operating it on battery power again.)

m If the computer appears to be "locked up" in the middle of an application, try
pressing the (CTRD) (©) key combination. MS-DOS watches for this keystroke to
break out of the current process.

As an alternative, press (Shift)(Break). This keystroke clears the input buffer and
then enters ~C ((CTRD) (€©)). Sometimes MS-DOS examines only the first character
in the input buffer.

@ Some applications may watch for the (CTRD) (StoP) key combination to interrupt
the current process. When these keys are pressed, the BIOS Break Interrupt (Int 1Bh)
is called and may terminate the current application. This interrupt is a hook for
applications so its use will vary.

Resetting the Portable PLUS 4-1

|
4.2 Reset Options

4.2.1 Reset via (ShifD)(CTRL)(Break) w

The Portable PLUS may be reset by pressing the (SRift) (CTRD) (Break) key
combination. Drive A:(the Edisc) is not affected by this reset, but user memory is, and
any work not stored on a disc is lost. The default drive for the re-boot is A:.

4.2.2 Reset via (ShifD) (CTRD) (ExTend char)(Break)

The computer may also be reset by pressing the (Shift)(CTRD) (Extend char)(Break)
key combination. Drive A: is not affected by this reset, but again any work not stored
on a disc is lost. The default drive during the re-boot is drive B:.

During this re-boot, a CONFIG.SYS file stored on drive A: is ignored since MS-DOS

will search the default drive B:. If the shell is changed to boot COMMAND.COM, an
AUTOEXEC.BAT file stored on A: is ignored during the re-boot since the default drive

is B (Refer to "The CONFIG.SYS File" in chapter 11) If PAM is the boot shell, it will "~)
always change the default drive to A: and execute AUTOEXEC.BAT if found on drive ’
A

4.2.3 Reset via @

An alternate method to reset is useful when an application has "locked out" the entire
keyboard. Reset the Portable PLUS by pressing and holding down the (@) key for an
extended period of time. The display will darken to its maximum and then, after a few
seconds, turn off. Then press (@) again to turn the computer back on. Drive A: is not
modified but any work not stored on a disc is lost. The default drive during the re-boot
is drive A:.

-

4-2 Resetting the Portable PLUS

4.2.4 Reset via the Reset Button

. This last method has the most drastic results of all the resets. Pressing the reset button
located inside the battery compartment will perform a full reset.

w Pressing the reset button erases the contents of drive A: (the Edisc)
and all user memory. All data stored on drive A: will be lost. All the
Caution PAM Configuration values will be reset to their defauit values.

A warning message will appear after pressing the reset button to indicate that all of
memory has been lost. Press the (1) key to format drive A: and continue.

]
4.3 Re-Boot Screen

" 4.31 Memory Lost Message

After each reset the first eight sectors of drive A: are evaluated for checksum errors. If
no error is found, the re-boot continues and the standard re-boot display as described in
the next section is shown. If there are errors found, the following message flashes on
the display:

WARNING: Memory Lost! Press [f1] to reformat drive A:
(destroying data) or press the space bar to continue
without reformatting (data errors on A: may result).

The user has two options. If the information on drive A: is not needed, then the (F1D
key should be pressed, formatting drive A: and clearing the errors.

Resetting the Portable PLUS 4-3

Pressing the (1) key at this time will result in all the information
stored on drive A: to be erased.

Caution W

The alternative to this is to press the space bar to continue and boot from drive B:.. The
user can then attempt to salvage some of the information from drive A: (if possible)
before formatting it to clear the error(s). There is a possibility that the bad sectors on
drive A: will interfere with the boot completely if those sectors must be accessed by an
AUTOEXEC.BAT program on drive A: In this case, the only option is to format drive
A: at boot.

4.3.2 Standard Re-Boot Display

The standard re-boot display appears whenever the Portable PLUS is reset. This display
only appears for a moment and should look similar to the one shown below.

HP 45711 Revision: A PPU: A Configuration: A %
(c) COPYRIGHT Hewlett-Packard Co. 1985

Serial Number: 2522A01142 B
Rom IDs: AAAAAA

MS-DOS version 2.11
Copyright 1981,82,83 Microsoft Corp.

The following information can be found on the re-boot display.

® Product Number. The product number of the Portable PLUS is split into two
parts. The first part is the string "HP 45711" in the first line of the display.
Appended to that is the last letter or letters in the serial number. The full product
number in this example is HP 4571 1B. ﬂ

m Overall System ROM Revision. This can be read from the first line following
the word "Revision:". In this example, the overall system ROM revision is A.

4-4 Resetting the Portable PLUS

PPU Revision. The PPU revision is on the first line of the display following the
word "PPU:". In this example, the PPU revision is A.

Contiguration EPROM Revision. The configuration EPROM revision is the last
letter on the first line. In this example, the configuration EPROM revision is A.

Serial Number. The serial number is shown on the third line of the display. This
number is unique for each mainframe. The first four digits of the serial number are
a date code. A single letter follows, which is the manufacturing site code. The
remaining digits make up the sequence number. The last letter or letters are the last
part of the product number.

ROM IDs. The six individual ROM IDs are shown in the fourth line. They
correspond to the six ROMs that contain the system BIOS, MS-DOS, and built in
applications (such as Print and TERM). In this example, each ROM has the ID A.

MS-DOS Boot Information. The last two lines are displayed when MS-DOS 2.11
is booted.

Resetting the Portable PLUS 4-5

Cs5 BIOS Interrupts

|
5.1 Introduction

The BIOS (Basic Input/Output System) provides control of the system 1/O devices.
Software interrupts enable you to access the BIOS while remaining isolated from the
actual system hardware. This prevents programs from being adversely affected by
changes in the hardware, while providing quick and simple access to commonly desired
functions.

Software interrupts are generally of two types: services and hooks. Service interrupts
are events that a program enables and controls. Hooks are events that the system
initiates, and whose response can be directed by a program.

interrupt. If this is done, the interrupt should always be restored to its previous function
when the application terminates. Care should be taken when writing interrupt service
routines to avoid interrupt nesting (one interrupt happening inside the service routine
for another interrupt).

F\ An application may take over any BIOS interrupt to change the function of that

w An interrupt service routine should not invoke MS-DOS or other
functions that result in calls to the built-in device drivers. Only a
Caution limited few of the BIOS interrupt functions are allowed within an
interrupt service routine.

Assume an application has taken over the modem ring interrupt, and wishes to display
the word "RING" if a ring interrupt ever happens. If the service routine itself issues an
MS-DOS call to display the word "RING", we are effectively nesting one (software)
interrupt inside another (hardware) interrupt. This could lead to unexpected results.
W The problem is further complicated by the fact that MS-DOS typically enables
\ interrupts within its own services.

The appropriate way to handle this situation is to write the new modem ring service so
that it sets a flag upon receipt of a modem ring. The interrupt routine should then

BIOS Interrupts 5-1

clear the interrupt and return to the application. The application should test the flag at
frequent intervals and, if it is set, clear the flag and issue an MS-DOS call to display the
word "RING".

l" Unless noted otherwise, all registers should be preserved by any application %
that intercepts an interrupt.

Table 5-1 lists the system hardware and BIOS interrupts.

Table 5-1. Hardware and BIOS Interrupts

interrupt Description Type

8086 Dedicated Interrupts

Oh Divide by Zero Hook
th Single Step Hook
2h Nonmaskable - Hook
3h Breakpoint Hook
4h Overflow Hook ﬂ%

IBM-Compatible Interrupts
Refer to appendix A for compatibility descriptions of these interrupts.

5h Print Screen Service
10h Video I/0 Service
11h Equipment Service
12h Memory Service
14h Communications Service
16h Keyboard 1/0 Service
17h Printer Service
1Sh Re-Boot Service
1Ah Time of Day Service
1Bh Keyboard Break Hook
1Ch Timer Tick Hook
1Fh Graphics Character Extensions Data Pointer

5-2 BIOS Interrupts

Table 5-1. Hardware and BIOS Interrupts (Continued)

MS-DOS Interrupts

20h Program Terminate Service
21h Function Request Service
22h "~ Terminate Address Hook
23h CCTRD (© Exit Address Hook
24h Fatal Error Abort Address Hook
25h Absolute Disk Read Service
26h Absolute Disk Write Service
27h Terminate But Stay Resident Service
28h (Reserved)

3Fh (Reserved)

Pseudo-Hardware Interrupts
There is only one true hardware interrupt (FFh). In response to it, the BIOS polls
each device and then issues an appropriate “pseudo-hardware” interrupt.

40h Modem Output Port Hook
41h {Reserved)

42h Modem Ring or Carrier Hook
43h Timer 2 Hook
44h 1/0 Port 1 Hook
45h 1/0 Port 2 Hook
46h+ Alarm Hook
47h+ Death/Battery Cutoff Hook
48h+ Heartbeat Timer Hook
49h+ Keyboard Hook
4Ah+ Serial Output Port Hook
4Bh+ Serial Ring or Carrier Hook
4Ch+ HP-IL IRQ Hook
4Dh+ Low Battery Hook
4Eh Modem Input Port Hook
4Fh+ Serial Input Port Hook

BIOS Interrupts $-3

Table 5-1. Hardware and BIOS Interrupts (Continued)

Firmware Services and Hooks

S0h System Services Service

St1h (Reserved)

S52h+ Modifier Keys Hook

53h+ Key Hook

S4h+ HP-IL Primitives Service

55h+ Sleep Service

56h+ Key Hook

57h+ Key Hook

58h+ Key Hook

5%h+ Ring Enable Service

5Ah (Reserved)

5Bh (Reserved)

5Ch (Reserved)

SDh AUX Expansion Hook

5Eh CON Expansion Hook

SFh Fast Video Service
Other Interrupts

60h Available to Application Software

FEh Available to Application Software

FFh+ Hardware Hook

+ These interrupts are compatible with the HP 110 Portable Computer.

5-4 BIOS Interrupts

I
5.2 Print Screen Interrupt (Int 5h)

This interrupt executes the system screen print code. The PAM Printer Mode setting
determines how the screen contents should be printed; the display data is formatted
accordingly and sent to the PAM Printer Interface device. While the screen print is in
progress, a status byte at location 40H:100H is set toa 1. If an error occurs during the
print operation, the byte is set to FFh. When the operation terminates successfully, the
status byte is set toa 0.

|
5.3 Video 170 Interrupt (Int 10h)

Interrupt 10h provides a modified subset of IBM’s Video 1/0 utilities. Principal
differences are due to the fixed size (480 x 200) of the liquid crystal display and custom 5
LCD controller hardware.

Alpha characters can be written and read in graphics mode. The characters are formed
from the first 128 characters of the base character set. Graphics characters in the
range 128 to 255 come from a user-supplied 1K-byte font table pointed to by the
vector for interrupt 1Fh. This vector is initially 0000:0000. Each character of the
table consists of eight bytes, representing the pixel patterns of the first (top) through
last (bottom) dot-rows in an 8-by-8 character matrix. (Only the first six bits of each
byte should be used.) For graphics applications that directly read and write display
RAM, display RAM starts at 8000:0000, with successive dot-rows beginning at 64-byte
intervals. (Note that while 64 bytes per line times 8 pixels per byte equals 512 pixels
per line, the LCD can show only 480 pixels per line; the last four bytes of each line are
not used.)

For alpha applications that directly read and write display RAM, alpha page zero starts
at 8000:0200 and alpha page one starts at 8000:1B0O (or, if you prefer, 8020:0000 and
8020:1900.) The high byte of the display RAM offset increments with successive
character rows (8000:0200 starts page O row 0, 8000:0300 starts page O row 1, etc)),
while the low byte of the offset addresses the columns within each line. Each character
requires one word of display RAM: the character code is in the low byte and its
attributes are in the high byte. (Note that this addressing scheme permits access to 128
characters per line, but only 80 characters are visible. The remaining 48 words of each
line are used for font storage.)

BIOS Interrupts §~-5

When an Interrupt 10h function requests or returns attribute bytes, their format is not
the same as the format in display RAM. Attribute mapping is necessary to provide
some degree of IBM compatibility. The format of the Interrupt 10h attribute byte is
shown in figure 5-1.

ﬂ

Figure 5-1. Interrupt 10h Attribute Byte

b7 b6 bS5 b4 b3 b2 b1 bo

Se— T e——————

T— 001 Underline

1 = Halfbright (light font)
111 = Inverse
1 = Blink

o0 nn

The Video 1/0 Interrupt functions for this computer are described in table 5-2.

Specify the desired function code in AH, with additional parameters passed in other

registers as indicated. All segment registers plus BX, CX, and DX are preserved unless A%
otherwise noted; other registers may be destroyed.

5-6 BIOS Interrupts

Table 5-2. Video 170 interrupt 10h Functions

Function Description

f AH=0 Set Mode

(00h)

Initializes the specified display mode.
Specify:

AL=0 80x 25 Alpha. (IBM: 40 x 25 b&w)
80 x 25 Alpha. (IBM: 40 x 25 color)
80 x 25 Alpha. (IBM: 80 x 25 b&w)
80 x 25 Alpha. (IBM: 80 x 25 color)
480 x 200 Graphics. (IBM: 320 x 200 color)
480 x 200 Graphics. (IBM: 320 x 200 b&w)
480 x 200 Graphics. (IBM: 640 x 200 b&w)
80x 25 Alpha.

OOV W —

>

AH=1 Set Cursor Type
{01h)
Determines the type of alpha cursor to be displayed.
@ Specify:
CL If CL<CH, turn cursor off.
CH<3 Box cursor.
>3 Underscore cursor.

AH=2 Set Cursor Position
(02h)
Position the cursor for a specified page (each alpha page has its own
unique cursor).
Specify:
B8H = Page number (0-1, must be O for graphics).
DH = Row number (0 is top of screen, 24 is bottom).
DL = Column number (O is left margin, 79 is right).

BIOS Interrupts $-7

Table 5-2. Video I/0 Interrupt 10h Functions (Continued)

AH=3 Read Cursor Position
(03h)
Returns the cursor position for a specified page.
Specify:
BH = Page number (0-1, must be 0 for graphics).
Returns:
CH = Current cursor type (as set by function AH=1).
DH = Row number (0 is top of screen, 24 is bottom).
DL = Column number (0 is left margin, 79 is right).

AH=4 Read Light Pen Position
(04h)
Because there is no light pen, this function always returns AH=0.
Returns:
AH=0 Light pen switch not activated.

AH=S Select Active Display Page
(0Sh) :
This function is valid only in alpha mode.
Specify:
AL = New page number (0-1).

AH=6 Scroll Active Page Up
(06h)
Scrolls the display upwards. (No response in Graphics mode.)
Specify:
AL = Number of lines to scroll (0 means blank entire window).

BH = Attribute for scrolled-in blank lines.

CH = Row number, top of scroll region (0-24).

CL = Column number, left side of scroll region (0-79).
DH = Row number, bottom of scroll region (0-24).

DL = Column number, right side of scroll region (0-79).

5-8 BIOS Interrupts

Table 5-2. Video 170 Interrupt 10h Functions (Continued)

FAH=7 Scroll Active Page Down
{(07h)
@ Scrolls the display downwards. (No response in Graphics mode.)
Specify:

AL = Number of lines to scroll (0 means blank entire window).
BH = Attribute for scrolled-in blank lines.
CH = Row number, top of scroll region (0-24).
CL = Column number, left side of scroll region (0-79).
DH = Row number, bottom of scroll region (0-24).
DL = Column number, right side of scroll region (0-79).

AH=8 Read Attribute/Character at Current Cursor Position

(08h)
Returns the character and attribute bytes at the current cursor position
for a specified page. The cursor does not move.
Specify:

BH = Display page (ignored in graphics mode).
Returns:
n AL = Character read.
W AH = Attribute of character (zero in graphics mode).

AH=9 Write Attribule/Character at Current Cursor Position

(09h)
Displays a new character and attribute at the current cursor position
for a specified page. The cursor does not move.

Specify:
AL = Character to write.
BL = Attribute of character (in alpha mode).
Color of character (in graphics mode; see function 12).
BH = Display page (ignored in graphics mode).
CX = Count of characters to write.

BIOS Interrupts 5-9

Table §-2. Video 170 Interrupt 10h Functions (Continued)

AH=10 Write Character Only at Current Cursor Position

(0Ah)
Displays a new character at the current cursor position for a specified ’ %
page. The attribute byte at that position is left unchanged.

The cursor does not move.

Specify:
AL = Character to write.
BH = Display page (ignored in graphics mode).
CX = Count of characters to write.

AH=11 Set Color Palette
(0Bh)

This function is ignored.
AH=12 Write Dot
(0Ch)

Places a graphics dot at the specified position.
Specify:
AL = New pizxel color (O=white, I=black). If bit 7 is set, the new value :
is exclusive-ORed with the current pixel value. m

CX = Pixel column number (0-479).
DX = Pixel row number (0-199).
AH=13 Read Dot

(0Dh)
Reads the graphics dot at the specified position.
Specify:
CX = Pixel column number (0-479).
DX = Pixel row number (0-199).
Returns:
AL = Current pixel value (O=white, 1=black).

$-10 BIOS Interrupts

Table §-2. Video 170 Interrupt 10h Functions (Continued)

AH=14
(0Eh)

AH=15
(OFh)

Write Teletype to Active Display Page

This function provides a teletype-like interface to the display. The
character in AL is displayed at the current cursor position, and the
cursor advances (right) to the next position. If the cursor moves past the
end of the line, a carriage return and line feed are performed.
Backspace, carriage return, line feed, and bell are handled as commands
rather than displayable characters.
Specify:

AL = Character to output.

BL = Character color if in graphics mode (see function 12).

Current Video State

Returns display information.

Returns:
AL = Current mode (as set by function 0).
AH = Number of character columns on the screen (80).
BH = Currently active display page (0-1).

fn

[]

BIOS Interrupts 5-11

.
5.4 Equipment Check Interrupt (Int 11h)

When an Int 11h instruction is executed, system configuration information is returned
in register AX according to the current system parameter values.

The following status bits are returned in AH:

b7 b6 bS b4 b3 b2 b1 bo (AH)

I L 0 = (Unused)
001 = Number of RS-232 ports
00 = (Unused)

xx = Presence of active printer.
(If PAM Printer Interface is
set to "Serial", these bits
are always "01"%)

—

The following status bits are returned in AL:

b7 b6 b5 b4 b3 b2 b1 bo (AL)

t l L | = System contains disc drives
0 = (Unused)
11 = At least 64K system RAM
10 = Video mode: 80x25 monochrome
with graphics ("color card")
01 = Two disc drives (A: and B:)
10 = Three disc drives
11 = Four or more disc drives

6-12 BIOS Interrupts

|
5.5 Memory Interrupt (int 12h)

The Memory Interrupt can be used by an application to determine the total amount of
memory in the system, excluding ROM and internal Edisc. The interrupt returns in
register AX the number of 1K-byte blocks of system RAM.

5.6 Communications Interrupt (Int 14h)

The AUX driver uses this interrupt for communications with the serial port, modem, or
current AUX device (as specified by PAM). The HP 82164A HP-IL/RS-232-C
Interface is not supported by this interrupt.

Table 5-3 lists the functions provided by this interrupt. 5

BIOS Interrupts 5-13

Table 5-3. Communications Interrupt 14h Functions

Function Description
AH=0 Initialize Communications Parameters
{(00h)
Defines communications parameters for the specified port.
Specify:
AL = Datacom initialization byte in the following form:
b7 b6 bS5 b4 b3 b2 bl bo (AL)
' &
T— 10 = 7-Bit Word
11 = 8-Bit Word
0 = 1 Stop Bit
1 = 2 Stop Bits
X0 = No Parity
01 = Odd Parity
11 = Even Parity
000 = 110 Baud
001 = 150 Baud
010 = 300 Baud
011 = 600Baud
100 = 1200 Baud
101 = 2400 Baud
110 = 4800 Baud
111 = 9600 Baud
DX=0 Initialize the serial port.
=1 Initialize the modem.
>1 Initialize the current AUX device.
(If DX>1 and AUX device is 82164, serial port will be used.)
Returns:
AH = Port data status (refer to function AH=3).
AL = Port handshake status (refer to function AH=3).
5-14 BIOS Interrupts

Table 5-3. Communications Interrupt 14h Functions (Continued)

AH=1 Send Character
' (01h)
6 Sends the specified character over the selected communications line.
Specify:

AL = Character to send.
DX=0 Send character to the serial port.
=1 Send character to the modem.
>1 Send character to the current AUX device.
(If DX>1 and AUX device is 82164, serial port will be used.)
Returns:
AL = Character sent.
AH = If bit 7 is set, an error has prevented the character from being
transmitted, and it should be sent again.

AH=2 Read Character
(02h)
Reads a character from the specified datacom device buffer.
Specify:
@ DX=0 Read character from the serial port.
' =1 Read character from the modem.
>1 Read character from the current AUX device.
(If DX>1 and AUX device is 82164, serial port will be used.)
Returns:
AL = Character read (only if bit 7 of AH is "0").
AH = If bit 7 is set, no character was available.

BIOS Interrupts 6-15

Table §-3.

Communications Interrupt 14h Functions (Continued)

AH=3
(03h)

AUX Status

Returns the status of the specified communications port.

Specify:

DX=0 Request status for the serial port.
=1 Request status for the modem.
>1 Request status for the current AUX device.
(If DX>1 and AUX device is 82164, serial port will be used.)

Returns:

AH = Port data status:

Bit 7:
Bit 6:

Bit 5:
Bit 4:

Bit 3:
Bit 2
Bit 1:
Bit O:

If set, the operation was not successful.

If set, the transfer shift register is empty, and the next
character can be sent.

(Unused).

If set, a break condition currently exists on the
communications line.

If set, a framing error has occurred.

If set, a parity error has occurred.

If set, a data overrun error has occurred.

If set, data is available to be read.

AL = Port handshake status:

Bit 7:
Bit 6:
Bit 5:
Bit 4:
Bit 3:

Bit 2:
Bit 1:

Bit O:

If set, RLSD line is true.

If set, Ring line is true.

If set, DSR line is true (serial port only).

If set, CTS line is true (serial port only).

If set, RSLD line has changed state since last Int 14h
AUX Status call.

If set, Ring line has changed state since last Int 14h
AUX Status call.

If set, DSR line has changed state since last Int 14h
AUX Status call.

If set, CTS line has changed state since last Int 14h
AUX Status call.

5-16

BIOS Interrupts

|
5.7 Keyboard 1/0 Interrupt (Int 16h)

Keyboard 1/0 Interrupt 16h is supported in the limited manner described in table 5-4.
Specify the desired function code in AH. Only AX and flags change; all other registers
are preserved.

Table 5-4. Keyboard 1/0 Interrupt 16h Functions

Function Description

AH=0 Read Character

(00h)
Reads the next character from the keyboard queue. Note that in
Scancode Mode the key queue will contain scancodes rather than ASCII
keycodes. Scancode and keycode information cannot be returned
simultaneously. If the queue is empty, this function will wait for a key
to be hit before returning.
Returns:

AL = Next character from the keyboard queue.
| AH = 0.

AH=1 Read Character (Nondestructive)
{01h)
Reads next character from keyboard queue without removing it from
queue. If the queue is empty, this function will return immediately
with the Zero flag (ZF) set.
Returns:
ZF=1 No character is available to be read.
0 Character code is available, and is in AX.

BIOS interrupts 5-17

Table 5-4. Keyboard I/0 Interrupt 16h Functions (Continued)

AH=2 Read Shift Status
(02h)
This function returns the current states of the three modifier keys, plus ‘%
on/off status for Insert Character Mode, Caps Lock, and the Numeric
Keypad. Note that the two shift keys are functionally identical and
cannot be independently read.
Returns:
AL = Current shift status with bits set as follows:
Bit 7: Insert Character Mode is active.
Bit 6: Caps Lock is turned on.
Bit 5: Numeric keypad is active.
Bit 4: (Unused.)
Bit 3: key is depressed.
Bit 2: (CTRD key is depressed.
Bit 1: key is depressed.
Bit 0: (SRhift) key is depressed (same as Bit 1).

6-18 BIOS Interrupts

I
5.8 Print Byte Interrupt (Int 17h)

C Interrupt 17h provides a low-level method of sending one byte of data to the PAM
Printer Interface device. Table 5~5 describes the various Print Byte Interrupt
functions. Specify the desired function code in AH; all other registers are preserved.
(IBM compatability: The contents of DX, which normally indicate which printer is to be
addressed, are ignored. Also, the bytes at locations 0040:0008 through 0040:000D are
unused, rather than containing the base addresses of printer cards.)

Table 5-5. Print Byte Interrupt 17h Functions

Function

Description

AH=0
(00h)

AH=1
(01h)

(02h)

Print Character

The character in AL is sent to the current PAM Printer Interface
device.
Specify:
AL = Character to be sent to printer.
Returns:
AH=01h if an error occured.
DOh if the character was sent successfully.

Initialize Printer

The printer is configured as necessary for subsequent communications.
Returns:
AH=01h Initialization failed.
DOh Printer ready.

Return Status

Returns a status byte indicating whether or not subsequent printer
communications is possible. This is essentially the same function as
AH=1.
Returns:
AH=01h Printer is not accessible.
DOh Printer is accessible.

BIOS Interrupts $-19

.
5.9 Reboot Interrupt (int 19h)

The Reboot Interrupt is roughly the programmatic equivalent of holding down the ‘ %
contrast key for more than 15 seconds. The PPU is told to reset the system; all .
hardware (except for RAM) is subsequently reset.

.
5.10 Time Of Day Interrupt (Int 1Ah)

The Time Of Day Interrupt provides a means by which an application can perform
general purpose timing with approximately 1/18 second resolution. This interrupt has
no effect on any other part of the system; it is provided solely for application use. If
you use this interrupt to set the heartbeat timer to a new value, it will nof change the
system’s time-of -day clock (a separate timer maintained by the PPU). The current time
reported by MS-DOS, PAM, and the on-screen clock is read from the PPU and has no
relation to the heartbeat timer accessed by this interrupt. Table 5-6 describes the
functions of Int 1Ah.

Table 5-6. Time Of Day Interrupt 1Ah Functions 5
r

Function Description

AH=0 Read Heartbeat Timer

(00h)

Returns the current double~word contents of the system heartbeat
timer. If the timer has overflowed past 24 hours, a 1 will be returned in
AL. This function clears the 24-hour overflow flag.
Returns:

AL = 24-hour overflow flag.

CX = High portion of count.

DX = Low portion of count.

$-20 BIOS Interrupts

Table 5-6. Time Of Day Interrupt 1Ah Functions (Continued)

AH=1 Set Heartbeat Timer
(01h)
Loads the double-word system timer with a new value. Note that the
timer overflows and resets to zero whenever the count increments to
exactly 24 hours; if you set a value that is greater than 24 hours
(1,555,200 eighteenth-second intervals), the overflow will go undetected
and the timer will not be reset.
Specify:
CX = New high portion of count.
DX = New low portion of count.

5.11 Keyboard Break Interrupt (int 1Bh)

= A Keyboard Break interrupt is generated whenever, in Alt mode, you press the (CTIRD
@ and keys. Normally this interrupt flushes the key queue and then puts a ~C
(03h) in it. But by taking over Int 1Bh and pointing it at your own interrupt handler,
you can perform your own (CIRD) (Break) key processing. When the system branches
into your new interrupt handler, the state of the three modifier keys (at the time the
key was pressed) are available in AH; AL will contain 0D4h, the Configuration
EPROM keymap Local Function code that caused the interrupt to be issued.

This interrupt is invoked by the keyboard driver responding to a keyboard hardware
interrupt. All general registers are available when the interrupt branches into your

handler; they need not be saved and restored (in general, however, you should always
save and restore any registers that you will use in servicing an interrupt.)

-~

BIOS Interrupts 5-21

]
5.12 Timer Tick Interrupt (Int 1Ch)

Whenever a Heartbeat interrupt occurs, the system Heartbeat interrupt handler invokes
the Timer Tick interrupt (1Ch); the Timer Tick vector points at code to be executed on
every heartbeat tick (nominally 18 times per second).

Normally this vector points at a dummy IRET instruction. If you take over this vector
and point it at your own Timer Tick handler, you should end your routine with an
IRET. As with any interrupt handler, you should also save and restore any registers
that your routine will use.

'ﬁ Do not re-enable interrupts within an interrupt handler unless you are
very carefull In this particular case, the heartbeat interrupt has not yet
Note been cleared at the time Int 1Ch is called; turning on the interrupt system

will cause the heartbeat interrupt to recursively appear!

5-22 BIOS Interrupts

]
5.13 Graphics Character Extensions (Int 1Fh)

The Video 1/0 Interrupt (Int 10h) allows you to display alpha characters in graphics
mode. The font patterns for character codes in the range 0 to 127 are taken from the
first font table in the system ROMs, while the font patterns for character codes in the
range 128 to 255 are taken from a font table pointed to by the vector at interrupt 1Fh.
At reboot, this vector is initialized to 0000:0000; it is the user’s responsibility to point
this vector at an appropriate 1K-byte font table.

Each character font in the table is represented by eight bytes of graphic information.
An alpha character must fit within a 6x8 cell, so only the high-order six bits of each

byte are meaningful. For example, the eight-byte table entry for the letter “E" might
look like this:

bit: 76543210
Ist byte: EmEmE, = 0F8h 5
2nd byte: an = 0COh
3rd byte: . am = 0COh
4th byte: .EmEm = 0COh
S5th byte: . m, = 0COh
6th byte: L] . = 0COh
7th byte: asmEma = OF8h
8th byte: = 000h

The rightmost two bits of each row are not used; the left dot-column and bottom
dot-row of the remaining 6x8 matrix are left blank to provide separation between
adjacent characters and lines on the display (although you can use the entire 6x8 cell if
necessary.)

ll:' The Graphics Character Extensions table is only used in conjunction with
i Video 1/0 Interrupt 10h. It is never accessed by Fast Alpha, system
Note services, or standard alpha and graphics CON output.

BIOS Interrupts 5-23

]
5.14 Modem Transmit Interrupt (int 40h)

This interrupt is the same as Serial Transmit Interrupt 4Ah, but applies to the built-in %
Modem interface. It operatesin an identical manner, except that the 1/O addresses are
in the Axh range instead of 4xh.

5.15 Modem Ring/Carrier Interrupt (Int 42h)

This interrupt is the same as Serial Ring/Carrier Interrupt 4Bh, but applies to the
built-in Modem interface. It operates in an identical manner, except that the 1/0
addresses are in the Axh range instead of 4xh.

L
5.16 Timer 2 Interrupt (Int 43h)

Interrupt 43H is generated whenever the second interval timer (at 1/0 addresses
4Eh-SEh) is enabled and reaches zero. (For more detailed information on the interval W
timer, refer to "Registers - Interval Timer” in chapter 7). To service the timer

interrupt, a "1" must be written to bit 0 of the Timer 2 Control Register (address 58h).

This will clear the current interrupt, load the value in the interval reference registers

into the counter registers, and restart the timer.

Whenever the modem is on, the BIOS starts Timer 2 running at a rate of 50 ticks per
second. The purpose of this is to allow software implementation of the modem’s
Return-to-Command Mode feature. Whenever the modem is off, Timer 2 is availible
to application programs. However, any application that takes over Interrupt 43h must
save the old interrupt vector, and restore it before terminating, or the
Return-To-Command-Mode feature will not function properly the next time the
modem is used.

5-24 BIOS Interrupts

|
5.17 Plug=in 1 Interrupt (Int 44h)

This hook is called whenever an interrupt is generated by the Plug-in 1 drawer.
Plug-in 1 is at configuration 1/O address EOh or FOh, and is physically located on the
right side of the computer under the key.

This interrupt will not occur unless Plug-in | interrupts are enabled (refer to the Int
50h "Alter Interrupt Control Register A2h" function). Once the interrupt occurs, the
service routine should clear the interrupt using the Clear Interrupt Request Register

(see hardware description in Chapter 7).

A
5.18 Plug-in 2 Interrupt (Int 45h)

This hook is called whenever an interrupt is generated by the Plug-in 2 drawer.
Plug-in 2 is at configuration I1/O address COh or DOh, and is physically located on the
left side of the computer under the (F1D key.

This interrupt will not occur unless Plug-in 2 interrupts are enabled (refer to the Int
50h "Alter Interrupt Control Register A2h" function). Once the interrupt occurs, the
service routine should clear the interrupt using the Clear Interrupt Request Register

(see hardware description in Chapter 7).

|
5.19 PPU Alarm Interrupt (Int 46h)

If a PPU alarm has been set (via the PPU Set Alarm command), interrupt 46h will be
called when that alarm occurs. No special service action is required on the part of the
service routine.

The alarm interrupt is primarily used by PAM. For more information on what happens
when an alarm occurs, refer to "PAM And Alarms" in chapter 10.

BIOS Interrupts 5-26

]
5.20 Death/Battery Cutoff Interrupt (Int 47h)

The Battery Cutoff Interrupt is automatically called when the battery charge drops ?

S~

below the $ percent charge-remaining level. The default handler for this interrupt
forces the computer into a sleep state as quickly as possible to avoid any loss of data and
to permit the current application to be resumed once the battery level has come back
up.

If the battery cutoff point is reached and the computer is not put to sleep quickly
enough, the PPU will automatically shut the system down (and lose the state of the
current application). For this reason any application that takes over Int 47h should put
the system to sleep (via the Sleep Interrupt 55h) as soon as possible.

5-26 BIOS Interrupts

5.21 Keyboard Interrupt (Int 49h)
@ All of the keys in the hardware keyboard matrix generate a hardware interrupt on both
upward and downward transitions. (Note that the (BRifD), (CTRD), and
modifier keys, plus the contrast key, are not in the matrix.) The system keyboard
interrupt handler services these transitions by analyzing the states of the matrix and
modifier keys, and then performing an appropriate action.

If you plan to take over the keyboard hardware interrupt, your interrupt handler
should have the following form:

Kbd$INT: Save all registers

mov al,02h ;Clear and disable
out 0B8h,al : heartbeat interrupts
mov ax,80h :Clear this keyboard
out 0AOh,al : matrix interrupt
mov bx, 18h ; Disable keyboard

: int 50h s matrix interrupts

@ Process the interrupt

mov ax, 180h s Re-enable keyboard
int 50h ; matrix interrupts
mov al,t s Re-enable
out 0B8h,al s heartbeat interrupts
Restore all registers
iret

The system keyboard interrupt handler should never be invoked via a software
interrupt. For further information about using the keyboard, refer to
“Multi-Controllers" in chapter 7.

-

BIOS Interrupts §-27

.z
5.22 Serial Transmit Interrupt (Int 4Ah)

If the Serial Transmit Data Register Empty Interrupt has been enabled by writing a 0 ‘%
to bit 7 of the Serial Interrupt Control register (address 4Ch), interrupt 4Ah will be

called by the system each time a character is transferred from the Serial transmit data
register to the transmit shift register. This indicates that the transmit data register is
empty--ready to accept the next character to be transmitted to the Serial interface.

If an application enables this interrupt, the service routine must write a 1 to bit 6 of
the Serial interrupt control register to clear and reenable the interrupt.

This interrupt is normally disabled by the system BIOS, since the same function can be
- achieved by waiting for bit 1 (Transmitter Empty) of the Serial Status register (address
48h) to become a 1" before writing a data byte to the Transmit Data register. Note
that the transmitter must be empty before attempting to write to the Data register, or
else data could be lost.

5.23 Serial Ring/Carrier Interrupt (Int 4Bh) w

When the Serial RING signal becomes true, indicating a ring condition on the interface,
or the RLSD signal becomes false, indicating a loss of carrier, interrupt 4Bh is called by
the system. The interrupt service routine must read the Interrupt Status register
(address 40h) to determine which interrupt has occured. If bit 4 of this register is a 1,
the interrupt was caused by a ring condition. If bit 3 isa 1, a loss of RLSD caused the
interrupt. To clear either of these interrupts, a 1 must be written to the appropriate bit
in the Clear Interrupt Request register (address 40h).

]
5.24 HP-IL IRQ Interrupt (Int 4Ch)

The HP-IL IRQ Interrupt is generated as a system interrupt request by the HP-IL

Controller. The interrupt must have been enabled using the Int 50h service Modify W
Interrupt Control Register 42h. Once the interrupt occurs, the interrupt routine should /
then clear the interrupt using the Clear Interrupt Request Register (see hardware

description chapter 7).

5-28 BIOS Interrupts

A thorough description of HP-IL can be found in the Osborne/McGraw-Hill
publication, The HP-IL System: An Introductory Guide to the Hewlett-Packard
Interface Loop, by Kane, Harper, and Ushijima (1982).

.|
5.25 Low Battery Interrupt (Int 4Dh)

The Low Battery Interrupt is issued by the BIOS to warn the user of a low battery
condition. If the display is currently in alpha mode when the condition is detected, the
default handler for this interrupt causes a blinking, inverse-video "Low Battery!"
message to be displayed in the lower left-hand corner of the screen. If the current
display is graphics, the display will blink a few times.

The hardware indicates a low-battery condition when the battery level drops below
about 5.8V (20 percent charge remaining).

I
5.26 Modem Input Interrupt (Int 4Eh)

The Modem Input Interrupt is functionally identical to the Serial Input Interrupt 4Fh,
except that it is generated for each byte of data that arrives through the modem rather
than the serial port. Servicing the interrupt should be done in the same way as for the
serial port, except that the I/0 addresses used are AAh instead of 4Ah, A 8h instead of
48h, and ACh instead of 4Ch.

BIOS Interrupts 5-29

L
5.27 Serial Input Interrupt (Int 4Fh)

Interrupt 4Fh is generated whenever a character is received by the serial port while E
interrupts are enabled for the corresponding UART. The received data is available to
be read in the Serial Received Data register at I/O address 4Ah.

It is the responsibility of the interrupt service routine to reset the serial port UART so
that subsequent characters can be received. The sample routine shown below illustrates
how this is done. Note that the service routine must maintain a local copy of the serial
port status register (which contains information about word length, stop bits, parity,
etc.); this is necessary since the actual status register cannot be read (ie., it is
write-only).

Sin$INT: Save all registers

in al ,4Ah i Read the serial port data byte

Process the data

mov al,SerConfig :Get our local copy of the serial port

or al,2 s port status byte, set the “Clear Status”
out 48h,al ; bit, and reset the serial port UART «"%
in al,4Ch i Get transmit /receive interrupt status,

or al,10h ; set the "Clear Interrupt” bit, and

and al,NOT 20h ; zero the "Disable Interrupt” bit

out 4Ch,al 1 Make serial port ready for next character
Restore all registers

iret

5-30 BIOS Interrupts

I
5.28 System Services Interrupt (Int 50h)

A number of system service functions are provided to allow the applications
programmer easy and fast access to a wide variety of unique system features. In most
cases, these service functions permit you to easily and safely perform tasks that would
otherwise be very difficult, dangerous, or impossible without communicating directly
with the hardware. In some cases, they provide you with faster, more efficient
alternatives to the usual methods of performing certain functions -- such as displaying
a string of characters or flushing the keyboard input buffer.

In any case, the programmer should be aware that use of these services tailors an
application to run efficiently on the Portable PLUS, while sacrificing portability to
other HP (or anyone else’s) computers. In particular, The Portable (HP 110) does not
currently support any of these services; a Portable PLUS application that makes use of
any system service will not run on an HP 110.

All services are invoked by placing the service number in BX, additional parameters in
other registers as required, and performing an Int 5Oh.

Table 5-7 summarizes the routines provided by the system services interrupt. The table
which follows that describes these services in detail.

Table 5-7. System Services Interrupt SOh Functions

Function Service
00 Enable Plug-in ROM
01 Call Plug-in ROM
02 Format RAM Disc
03 Memory Initialization
04 Get RAM Disc Limit
05 Get Maximum System Size
06 Display String
07 Display Character
08 Flush Keyqueue
09 Initialize Alpha Display
0A Simulate Keyboard Input

BIOS Interrupts 5-31

Table 5-7. System Services Interrupt 50h Functions (Continued)

0B Fast Write to Display I
oC Add New Font

oD Display CONFIG ROM String

OE Get CONFIG ROM String

OF Update On-screen Clock

10 Restart Heartbeat

11 Wait for Interrupt

12 Read Timeout

13 Write Timeout

14 Read Status Limit

15 Write Status Limit

16 Return Card IDs

17 Alter Interrupt Control Register 42h
18 Alter Interrupt Control Register A2h
19 Conditonal Sleep

1A (Reserved)

1B PPU Communications

1C Set Plug-in Card Power Estimate

1D Read Clock or Alarm

1E Write Clock or Alarm

1F Read Time Zone

20 Write Time Zone

21 Read ROM Slot 7 Subdirectory Name
22 HP-IL Sleep

23 HP-IL Wake

24 Datacomm Sleep

25 Datacomm Wake

26 Security Enable

27 Security Disable

§-32 B!OS Interrupts

The system services are described in detail in table 5-8.

Table 5-8. System Services Int 50h Detailed Description

@ Function Description

BX=0
(00h)

Enable Plug-in ROM

This routine attempts to enable (or disable) a plug-in ROM.
The ROM can be specified by name or number. The ROM number is
dependent on slot and type, and in general will only be known
by being previously returned by this service.
Specify:
AL>0 Number of plug-in ROM to be enabled (01h~-0FDh)
=0 Disable any currently enabled plug-in ROM
=0FFh Enable plug-in ROM named in specified string
=0FEh Return current ROM enabled status unchanged
DS:DX = Address of 8-byte string containing the name of
the ROM to be enabled (only if AL=0FFh)
Returns:
AH = Number of ROM enabled (0 if no ROM enabled)
AL = Number of previously enabled ROM (0 if none enabled)
BX:0 = Starting address of plug-in ROM space (BX=segment no.)
CY=0 ROM specified exists (or O is specified)
=1 The specified ROM does not exist (does not change the
status of currently enabled ROM)
Destroys:
Nothing

BIOS Interrupts

Table 5-8. System Services Int 50h Detailed Description (Continued)

IBX'I
(01h)

Call Plug-in ROM

This routine passes control to a specified address in a
specified plug-in ROM and will allow control to be returned to
the point at which it was invoked. The service can be invoked
from anywhere including another plug~-in ROM. The ROM can be
identified by name or number as with the enable ROM service
except that the specified ROM must be a full bank (a half bank
ROM cannot contain ROM executable code). Execution will be
passed to the specified paragraph number of the ROM. Note that
this requires all ROM entry points to begin on a paragraph
boundary, but allows the address to be specified with a single
word and frees the calling program from having to know the
address at which the ROM is mapped. The invocation will set
the segment address to the start of the code with the
offset address zero. The invoked code must exit with a far
return to restore the environment appropriately.
Specify:
AL = Plug-in ROM number (FFh specifies the plug-in ROM named in
the string at DS:DX)
DS:DX = Address of 8-byte string containing the name of the
desired ROM (only if AL=FFh)
CX = Address of code to invoke (paragraph number relative to
the start of the ROM)
Returns:
AX=0 Call failed due to erroneous parameter
CY=1 Call failed due to erroneous parameter
If the call is successful: flag, register, and stack states
at time of return are determined by the invoked code. Note
that the invoked code should not return both AX=0 and CY=1,
as this condition will make a successful call appear to have
failed.
Destroys:
BX

5-34

BIOS Interrupts

m

Table 5-8. System Services Int 50h Detailed Description (Continued)

BX=2
(02h)

BX=3
(03h)

Format Edisc

This routine initializes the Edisc (destroying any prior
contents). The size of the disc is determined from previously
established system variables. The structure of the Edisc
is described in chapter 8.
Specify:

AX=0BEACh Safety check to avoid inadvertent data loss
Returns:

Nothing
Destroys:

BX

Memory Initialization

This service initializes the plug-in cards, checks the
Edisc integrity, and sets up the memory parameters for the
Edisc and system memory. If the Edisc is corrupt then some
memory parameters are reset to maximum Edisc to prevent the
accidental destruction of Edisc data. Plug-in RAM cards
that contain system memory are enabled; all other RAM cards
are disabled.
Specify:
Nothing
Returns:
AX = Number of paragraphs of total RAM memory in the machine
BX = Number of paragraphs of system memory in the machine
CY=1 Edisc is corrupt
Destroys:
Nothing

BIOS Interrupts

5-36

Table 5-8. System Services Int 50h Detailed Description (Continued)

BX=4 Get Edisc Limit
(04h)
This service examines the file allocation table of the
Edisc and finds the highest numbered sector that is not
available (is part of a file). This service returns the number
of sectors of Edisc needed to include all present data
without packing. This number will include the space required
for the special checksum sectors, and will also include at
least one sector for data beyond the root directory (even
on an empty disc).
Specify:
Nothing
Returns:
BX = Number of sectors required by the Edisc to retain
the current data
Destroys:
Nothing

BX=5 Get/Set Maximum System Size
(05h)
This service allows the system size value (which is maintained
in the boot sector) to be set and retrieved. This service
maintains the checksum of the boot sector if the value is set.
The value is the number of 4K byte units of system memory
existing beyond 64K. This service does not check for a valid
value when setting the system size (whatever is passed to
the service will be set).
Specify:
AX = 0 (system size value returned; not set)
AX # 0 (system size value to be set)
AL = system size value: (system size - 64K)/4K
Returns:
AX = Value of system size variable
Destroys:
BX

5-36 BIOS Interrupts

Table 5-8. System Services Int 50h Detailed Description (Continued)

BX=6
(06h)

BX=7
(07h)

BX=8
(08h)

Display String

Output an asciz (null terminated) string to the display.
The string can contain control characters and escape sequences.
Specify:
DS:SI = Address of buffer containing asciz string
Returns:
Nothing
Destroys:
BX

Display Character

Output a single character to the display. The character can
be a control character or part of an escape sequence.
Specify:

AL = Character to be displayed
Returns:

Nothing
Destroys:

BX

Fiush Keyqueue

Empties out the keyboard type-ahead buffer.
Specify:
Nothing
Returns:
Nothing
Destroys:
BX

BIOS Interrupts

5-37

Table §-8. System Services Int 50h Detailed Description (Continued)

BX=9 Initialize Alpha Display
(09h)
Resets the alpha display. HP mode is selected, softkey buffers
are initialized, and HP fonts are loaded. Display RAM is erased,
the screen is positioned at the first line of display RAM, and
the underscore cursor is placed at the upper left corner.
Specify:
Nothing
Returns:
Nothing
Destroys:
BX

BX=10 Simulate Keyboard Input
(0Ah)
Simulates the pressing of a key on the keyboard, either by
forcing the keyboard driver to process a specified scancode
and modifiers, or by forcing a keycode into the key queue.
If the scancode/modifier approach is used, you can additionally
specify whether or not a Keyboard CON Expansion interrupt
will be generated.
To add character to key queue, specify:
DH = Any negative value
DL = Character to be added to key queue
To simulate scancode/modifier combination, specify:
DH = Modifier bits (Bits 0/1/2 = Ctrl/Shift/Extend)
DL = Scancode (0-71)
AH#0 Bypass keyboard CON Expansion processing
=0 Pass scancode and modifiers through CON Expansion
Scancode/modifier simulation works only in normal keyboard
mode, and should not be used in Scancode or Modifier modes.
Returns:
Nothing
Destroys:
BX

L

5-38 BIOS Interrupts

C

Table 5-8. System Services Int 50h Detailed Description (Continued)

BX=11
(0Bh)

BX=12
(0Ch)

Fast Write to Display

Displays an asciz (null terminated) string.
Characters are displayed verbatim; there is no escape
processing. The only control characters that are recognized
are carriage return and linefeed. Note that there also is
no end-of -line wrap; nothing prevents you from writing
"beyond" the right margin and into the font tables.
Specify:

AH = Attributes to go with each character

DH = Starting row (0-24, screen-relative)

DL = Starting column (0-79)

DS:SI = Buffer containing asciz string to be displayed
Returns:

Nothing
Destroys:

BX

Add New Font

Replaces a current font table with a new one that has the
same ID. The new font table can be packed or unpacked,
and can define either 128 or 256 characters; it must, however
be the same size or smaller than the table it replaces.
If there currently is no font with the specified ID, an
attempt is made to install the new font in any available
(currently unused) fontspace.
Specify:

DH = Font ID character (e.g.,’A’)

DL = Font ID number (e.g., 8)

CH=0 Font table is packed (otherwise, unpacked)

CL=0 Font table defines 128 characters (otherwise, 256)

DS:SI = Address of new font table
Returns:

Nothing
Destroys:

BX

BIOS Interrupts

5-39

Table 5-8. System Services Int 50h Detailed Description (Continued)

BX=13 Display Contig EPROM String
(0Dh)
Displays an asciz (null-terminated) string obtained from
the config EPROM. For ease of localization, the EPROM
contains many asciz strings along with a table of pointers
to the start of each string. By specifying the unique
number of the desired string, this service will send that
string to the display. The string can contain control
characters and escape sequences. Note that the string
number is not checked -- an invalid number will display
a garbage string.
Specify:
DX = String number
Returns:
Nothing
Destroys:
BX

BX=12 Get Config EPROM String
(0Eh)
Reads an asciz (null-terminated) string obtained from
the config EPROM into a specified buffer. The entire string,
including the final null, is returned. Note that the string
number is not checked -- an invalid number will return
a garbage string (which may be VERY VERY long).
Specify:
DX = String number
DS:SI = Address of buffer to receive string
Returns:
Specified string in buffer at DS:SI.
Destroys:
BX

5~40 BIOS Interrupts

Table 5-8. System Services Int 50h Detailed Description (Continued)

BX=15 Update On-screen Clock

\ (0Fh)

@ Updates the on-screen clock (the one at the bottom
center of the screen, among the softkey labels) to
display the current time as read from the PPU.
Specify:

Nothing
Returns:

Nothing
Destroys:

BX

BX=16 Restart Heartbeat
(10H)
Restarts the heartbeat timer at its normal
18~-ticks-per-second rate.
Specify:
Nothing
@\ Returns:
Nothing
Destroys:
J BX

BX=17 Wait for Interrupt
(11H)
Causes the computer to execute a HLT instruction with
the interrupt system left enabled. Use of this service
is preferred over simply executing an STI followed by
a HLT since it informs the PPU of the halt, thereby
maintaining fuel gauge accuracy.
Specify:
Nothing
Returns:
Nothing
Destroys:
BX

)

BIOS Interrupts

Table 5-8. System Services Int 50h Detailed Description (Continued)

BX=18 Read Timeout
(12h)
Returns the current system timeout interval. This is
the number of seconds that must elapse during which
no 1/0 takes place in order for the system to go to sleep.
Specity:
Nothing
Returns:
DX = Current timeout interval (in seconds)
Destroys:
BX

BX=19 Write Timeout
(13h)
Sets the current system timeout interval. This is
H the number of seconds that must elapse during which
no I/0 takes place in order for the system to go to sleep.

If you specify an interval of zero, sleep is disabled (the
system never times out).
Specify:

DX = New timeout interval (in seconds)
Returns:

Nothing
Destroys:

BX

BX=20 Read Status Limit
(14h)
Returns the current keyboard status-call limit required
to cause the system to enter a low-power halt (power-save
mode).
Specify:
Nothing
Returns:
DX = Current keyboard status—-call limit
Destroys:
BX

§-42 BIOS interrupts

Table 5-8. System Services Int 50h Detailed Description (Continued)

BX=21
(15h)

BX=22
(16h)

Write Status Limit

Sets the keyboard status-call limit required to cause
the system to enter a low-power halt (power-save mode).
This limit is the number of keyboard status requests
which must be made within one second before the system
will enter a halt state (extending battery life).
If the status limit is zero, both power-save mode and
system timeout are disabled. If the status limit is
greater than 2000h, only power-save mode is disabled.
Specify:

DX = New keyboard status-call limit
Returns:

Nothing
Destroys:

BX

Return Card IDs

Returns the card IDs for each logical card so that its
enable address can be determined. This service should be
used instead of reading directly from the hardware since
the value read from a dummy drawer is related to the values
on the bus before the read. The only way to ensure that
a card is in the system is to use this service and check
the registers returned for the desired ID.
Specify:

Nothing
Returns:

AH = Card 2A (I/O address 0COh)

AL = Card 2B (I/O address 0D0h)

BH = Card 1A (I/O address 0EOh)

BL = Card 1B (I/O address 0FOh)
Destroys:

Nothing

BIOS Interrupts

Table 5-8. System Services Int SOh Detailed Description (Continued)

BX=23 Alter Interrupt Control Register 42h
(17h)
Modifies 1/0 register 0042h to enable or disable selected
interrupts without modifying all the interrupts in the
register. The BIOS retains a copy of the current setting
of this register since it can not be read directly (see
hardware description Chapter 7). By using this service an
application can modify the ring interrupt control without
affecting the status of the carrier interrupt control.
1
HP-IL SERIAL
IRQ Ring {Carrier
7 6 5 4 3 2 1 0

Specify:

AL = Pattern of selected bits to change.

AH=0 To disable the selected interrupts

1 To enable the selected interrupts

Returns:

Nothing
Destroys:

BX

6-44 BIOS Interrupts

Table 5-8. System Services Int 50h Detailed Description (Continued)

BX=24 Alter Interrupt Control Register A2h

{18h)

w ‘ Modifies I/0 register 00A2h to enable or disable selected
interrupts without modifying all the interrupts in the
register. The BIOS retains a copy of the current setting
of this register since it can not be read directly (see
hardware description Chapter 7). By using this service an
application can modify the ring interrupt control without
affecting the status of the keyboard interrupt control.

1 L] 1 1
Keyboard PLUG-IN MODEM MODIFIER KEYS
Matrix #1 #2 Ring |Carrier Extendl Shift | Ctrl
7 6 5 4 3 2 1 0
Specify:
AL = Pattern of selected bits to change.
f AH=0 To disable the selected interrupts
@ { To enable the selected interrupts
Returns:
Nothing
Destroys:
BX
BX=25 Conditional Sleep
(19h)
Puts the unit into a sleep state to save power if the recharger
isn’t plugged in or if the battery voltage drops below 5.8V
(80% level) (and if a modem or serial carrier signal isn’t
present). Any interrupt will wake up the unit (key hit, alarm,
modem ring, etc.) and return it to the calling application.
Specify:
Nothing
Returns:

W\ Nothing

Destroys:
BX

BIOS Interrupts

Table 5-8. System Services Int 50h Detailed Description (Continued)

BX=27 PPU Communications

(1Bh)
Communicates with the PPU to perform an assortment of
commands. Before exiting, this service will send a byte to
the PPU, read a byte from the PPU, or wait until the PPU
is not busy.

For the write service, the byte is sent to the PPU once it

is ready. For the read service, a byte is sent to the PPU
requesting data once it is ready. Then, when the data is
available, it is read and returned. The wait service will

return once the PPU is ready. The PPU wait service is handy
for making sure the PPU has completed a task. For example,
the Serial and Modem ON services take a relatively long time
to perform and you must make sure these devices are on before
sending data to them.

The system interrupts must be disabled during multi-byte
commands. Talking to the PPU is a very slow process--a one-
byte data transfer takes about 2.3 ms to complete. For very
long commands, the interrupts will be disabled for a long
period of time so the service polls the serial and modem ports
for input. This ensures that the system will not drop
incoming data during long commands.
Specity:
AH=0 Read a single byte from the PPU
1 Write a single byte to the PPU
2 Wait until the PPU is not busy
AL = Byte to send (when AH=1)
Returns:
AH=0 Byte read/written successfully
1 Read/write failed (PPU wait timeout)
AL = Byte read from PPU (when AH=0)
Destroys:
BX

Table §-9, which follows this table of System Services, describes the
PPU commands.

5-46 BIOS Interrupts

Table 5-8. System Services Int 50h Detailed Description (Continued)

BX=28
(1Ch)

Set Plug-in Power Estimate

Sets the charge levels for a plug-in drawer for use in
calculating the battery percentile reading. The plug-in
drawers configuration address is used to select one of the

two possible drawers. To determine the configuraton address,
use the Return Plug-in Card IDs service. Cards 1A and 1B
are mapped to configuration address OEOH and Cards 2A and
2B are mapped to OCOH.

There are two power levels required, each calculated from its
current usage (mA) according to the following formula, and
then converted to hex:

level (decimal) = 61.084 x current

Specify:

AX = Power usage when system is asleep

CX = Power usage when system is awake

DL = Configuration address (0COh or OEOh)
Returns:

Nothing
Destroys.

BX

BIOS Interrupts

5-47

Table 5-8. System Services Int 50h Detailed Description (Continued)

BX=29 Read Clock or Alarm
(1Dh) Reads the current Clock or Alarm time information into

a 6-byte buffer. %
Specify: ~

AH=0 Read the clock
#0 Read the alarm
ES:SI = Pointer to 6-byte buffer for return of the following:
Bytes 1&2 - (Word) Number of days since 1/1/1980
Byte 3 - Minutes (of the current hour, 0-59)
Byte 4 - Hour (of the current day, 0-23)
Byte 5 - 1/100’s of seconds (of current second, 0-99)
Byte 6 - Seconds (of the current minute, 0-59)
Returns:
AH=0 Clock/alarm read successfully
#0 Data read is invalid

Destroys:
BX
BX=30 Write Clock or Alarm >
(1ER))

Resets the clock or alarm according to the information
supplied by the user in a 6-byte buffer.
Specify:
AH=0 Write to the clock
#0 Write to the alarm
ES:SI = Pointer to 6-byte buffer containing the following data:
Bytes 1&2 - (Word) Number of days since 1/1/1980
Byte 3 - Minutes (of the current hour, 0-59)
Byte 4 - Hour (of the current day, 0-23)
Byte 5 - 1/100’s of seconds (of current second, 0-99)
Byte 6 - Seconds (of the current minute, 0-59)
Returns:
AH=0 Clock/alarm written successfully
#0 Write failed
Destroys:
BX

5-48 BIOS Interrupts

Table 5-8. System Services Int 50h Detailed Description (Continued)

BX=31
(1Fh)

Read Time Zone

Returns the current Time Zone setting. Only hourly time zones
are supported. The zone ranges from -12 (Alaska) to O (London)
to +12 (USSR). When the clock or alarm is read, the time zone
is added to the value.

Once the time has been set to a currect local time, changing
the time zone causes the clock to be read in the correct value
for that zone. The alarm function is not affected by changing
time zones ~- the alarm will go off at the initially specified
time (an alarm set for 16:00 PST will go off at 15:00 MST).

The parameter is calculated from the time zone (relative to
Greenwich Mean Time) as:

parameter (decimal) = 12 + time zone

Specify:
Nothing
Returns:
AH=0 Valid time zone returned
#0 Invalid time zone read
AL = Parameter (see above)
04h Pacific Standard (- 8).
05h Pacific Daylight.
0Sh Mountain Standard (-7).
06h Mountain Daylight.
06h Central Standard (-6).
07h Central Daylight.
07h Eastern Standard (-5).
08h Eastern Daylight.
0Ch Greenwich Mean (+0)
0Dh Europe (+1)
Destroys:
BX

BIOS Interrupts

5-49

Table 5-8. System Services Int 50h Detailed Description (Continued)

BX=32 Write Time Zone
(20h)
Changes the current Time Zone setting. For further information
regarding time zones and the parameter required by this function,
see Read Time Zone above.
Specify:
AL = Parameter (see above)
04h Pacific Standard (- 8)
05h Pacific Daylight
05h Mountain Standard (-7)
06h Mountain Daylight
06h Central Standard (-6)
07h Central Daylight
07h Eastern Standard (-95)
08h Eastern Daylight
0Ch Greenwich Mean (+0)
0Dh Europe (+1)
Returns:
AH=0 Time zone changed successfully
#0 Time zone not altered
Destroys:
BX

BX=33 Read ROM Slot 7 Subdirectory Name
(21h)
Returns the name of the ROM in the special ROM Slot 7 (see
chapter 9) to the eight byte buffer. (Any ROM plugged
into this slot is treated differently at boot.)
Specify:
ES:DI Pointer to 8-byte buffer to receive subdirectory name
Returns:
AX=0 ROM not found in slot 7
#0 ROM found in slot 7
ES:DI = Pointer to 8-byte buffer containing subdirectory name

Destroys:
BX

§-50 BIOS Interrupts

C

Table 5-8. System Services Int 50h Detailed Description (Continued)

BX=34
(22h)

BX=35
(23h)

BX=36
(24h)

HP-IL Sleep

Turns off the HP-IL interface. The state of the HP-IL controller
is saved, and the controller is powered down. This service
should not be called if the HP-IL controller is already asleep.
Specify:

Nothing
Returns:

Nothing
Destroys:

BX
HP-IL Wake

Turns on the HP-IL interface. The state of the HP~IL controller
is restored to the condition it had before being powered down.
Specify:

Nothing
Returns:

Nothing
Destroys:

BX

Datacom Sleep

If the serial port is currently on, it is turned off (including
the DTR and RTS lines). If the built-in modem is currently on,
the contents of the internal registers (plus some additional
state information) is saved, and the modem is turned off.
Specify:
Nothing
Returns:
Nothing
Destroys:
BX

BIOS Interrupts

Table 5-8. System Services int S0h Detailed Description (Continued)

BX=37 Datacom Wake
(25h)
If the serial port was turned on when the Datacom Sleep
service was called, it is turned on, restoring the state that
it was in before it went to sleep. If the serial port was
already off when the sleep service was last called, it remains
off. Similarly, if the built-in modem was turned on the last time
Datacom Sleep was called, it is turned on, restoring all
of its internal registers plus the state it was in before it
went to sleep. If the modem was already off when the sleep
service was last called, it remains off.
Specify:
Nothing
Returns:
Nothing
Destroys:
BX

BX=38 Security Enable
(26h)
Puts the unit into a secured sleep state. The only valid
reset of a secured unit is waking from sleep. Any other
attempts at rebooting will result in having all the RAM
(including the internal Edisc) set to zeros. The service
to disable security must be called to disable the security
function. This service should be used very carefully due
to the potential for losing data.
Specify:
AX = ABCDh
Returns:
Nothing
Destroys:
BX

5-52 BIOS Interrupts

Table 5-8. System Services int 50h Detailed Description (Continued)

BX=39 Security Disable
(27h)
Clears the security function. While the unit is secured, the
only valid reset is waking from sleep. Any attempts at
rebooting will result in having all the RAM (including the
internal Edisc) set to zeros.
Specify:
Nothing
Returns:
Nothing
Destroys: |

BX

BIOS Interrupts 5-53

The PPU commands which can be invoked by using the PPU Communications system
service (BX=27) are described in table 5-9.

Table 5§-9. PPU Commands

Command Description
40h Serial On
Turns on the serial port power supply. The DTR and RTS outputs
should be initialized before this command is given.
Sequence:
Send opcode 40h
Wait until PPU is not busy before sending data
41h Serial Off
Turns off the serial port power supply. The DTR and RTS and
TzD outputs will then float.
Sequence:
Send opcode 41h
42h DTR Off
Makes serial DTR output false (low voltage). If the serial port is
off, this will have no effect on the interface.
Sequence:
Send opcode 42h
43h DTR On

Makes serial DTR output true (high voltage). If the serial port is
off, this will have no effect on the interface.
Sequence:

Send opcode 43h

5-54 BIOS Interrupts

Table 5-9. PPU Commands (Continued)

44h

45h

47h

48h

4Bh

RTS Off

Makes serial RTS output false (low voltage). If the serial port is
off, this will have no effect on the interface.
Sequence:

Send opcode 44h

RTS On

Makes serial RTS output true (high voltage). If the serial port is
off, this will have no effect on the interface.
Sequence:

Send opcode 45h

Modem Reset On

Makes the modem reset line go active (low voltage). This
command does not depend on the state of the MODEMON pin.
Sequence:

Send opcode 47h

Modem Reset Off

Makes the modem reset line go inactive (high voltage). This
command does not depend on the state of the MODEMON pin.
Sequence:

Send opcode 48h

Reset CPU

Requests a reset. The recommended way to do this is through the
Re-Boot interrupt 19h. The PPU pulses the logic reset lines SLP
and DSLP active.
Sequence:

Send opcode 4Bh

BIOS Interrupts §-6%

Table 5-9. PPU Commands (Continued)

4Ch

4Dh

Beep Frequency

Sets the beeper frequency. The frequency (in hertz) is inversely
proportional to the specified number and can be approximated by
the formula:

number (decimal) = 17925/ (frequency - 2371)

The decimal number must be converted to hex before being sent.
The highest frequency corresponds to 01h, decreasing through
FFh, with the lowest frequency at 00h. The default value is 58h.
Sequence:

Disable Interrupts

Send opcode 4Ch

Send number (in hex)

Restore Interrupts

Beep Duration

Sets the beeper duration. For durations greater than 100 ms, the
length of beep (in seconds) is approximately half the duration
value divided by the frequency (in Hertz). The shortest duration
corresponds to 10h, increasing through FFh, with the longest
duration at 00h. The default value is 80h periods.
Sequence:

Disable Interrupts

Send opcode 4Dh

Send duration (in hex)

Restore Interrupts

5-66

BIOS interrupts ¥

Table 5-9. PPU Commands (Continued)

4Eh

Power Initialize

Initializes the charge levels used to calculate the battery

percentile reading. Charge levels are kept for CPU running and

halted, serial interface, modem, and the two plug-in cards

(denoted by their configuration addresses COh and EQh), as well as
for the charge supplied by the ac recharger. The levels consist of
two bytes (with the most significant (MS) byte sent first). Each

level is calculated from its current usage (in mA) as:
level (decimal) = 61.084 x current

This value must be converted to hex before being sent.

Sequence:
Disable Interrupts
Send opcode 4Eh
Send MS byte for CPU running
Send LS byte for CPU running
Send MS byte for CPU halted
Send LS byte for CPU halted
Send MS byte for Sleep mode
Send LS byte for Sleep mode
Send MS byte for Deep Sleep mode
Send LS byte for Deep Sleep mode
Send MS byte for serial interface
Send LS byte for serial interface
Send MS byte for modem
Send LS byte for modem
Send MS byte for recharger
Send LS byte for recharger
Send MS byte for OCOh plug-in when system is awake
Send LS byte for 0COh plug-in when system is awake
Send MS byte for 0OCOh plug-in when system is asleep
Send LS byte for 6COh plug-in when system is asleep
Send MS byte for OEOh plug-in when system is awake
Send LS byte for OEOh plug-in when system is awake
Send MS byte for OECh plug-in when system is asleep
Send LS byte for OEOh plug-in when system is asleep
Restore Interrupts

BIOS Interrupts

Table §-9. PPU Commands (Continued)

50h Pulse RCM

Modem returns to command mode. Pulses modem return-
to-command line high for 100 ms and then returns it to the
inactive state (low). If the return-to-command line is already
high, this command leaves it high for 100 ms longer, then drops it
low. This command does not depend on the MODEMON pin
state.
Sequence:

Send opcode 50h

Wait until PPU is not busy (modem in command mode)

51h RCM On

Makes the modem return-to-command line go to a high voltage.
This command does not depend on the MODEMON pin state.
Sequence:

Send opcode S1h

52h RCM Off

Makes the modem return-to~command line to go a low voltage.
This command does not depend on the MODEMON pin state.
Sequence:

Send opcode S2h

53h Set Contrast
Sets the LCD contrast. Value 00h is the darkest, OFh is the
lightest. The highest four bits are discarded.
Sequence:
Disable Interrupts
Send opcode 53h
Send contrast (in hex)
Restore Interrupts

$-58 BIOS Interrupts

Table 5-9. PPU Commands (Continued)

62h Interrupt Enable

ﬁ“ Enables the PPU to interrupt the CPU for alarm, low battery and
shut down.
Sequence:

Send opcode 62h
63h Interrupt Disable

Disables the PPU interrupt of the CPU. Internal PPU interrupts
are queued and will interrupt the CPU once PPU interrupts are
re-enabled.

Sequence:
Send opcode 63h

64h Version

Returns the PPU version number, an ASCII character.

Sequence:
@‘ Disable Interrupts
Send opcode 64h
Read version

Restore Interrupts
65h CPU Running

Tells the PPU that the CPU is running (not halted). This data is
used in the battery charge level calculations.
Sequence:

Send opcode 65h

66h CPU Halted

Tells the PPU that the CPU is halted. This data is used in the
M\ battery charge level calculations.
Sequence:
Send opcode 66h

BIOS Interrupts §-59

Table §-9. PPU Commands (Continued)

6Ch Read Fuel Level

Returns the battery charge level, a one-byte quantity with FFh
denoting a full charge and 00h denoting no charge. This value is
calculated -- it is not 2 measured value.
Sequence:

Disable Interrupts

Send opcode 6Ch

Read fuel level

Restore Interrupts

6Dh Interrupt Status

Returns the PPU internal interrupt status. This command should
only be sent during interrupt hardware polling so that no
interrupts are dropped. The PPU prioritizes its interrupts and
indicates only the highest priority one. The highest priority
interrupt is then cleared. If no interrupts are pending, a value of
zero is returned. The status byte indicates the cause of the

interrupt:
(highest priority) 04h: Shut down

02h: Low Battery

20h: Alarm

00h: No interrupts pending
Sequence:

Disable Interrupts
Send opcode 6Dh
Read interrupt status
Restore Interrupts

5-60 BIOS Interrupts

Table 5§-9. PPU Commands (Continued)

76h Set Accuracy

Sets the real-time clock accuracy adjust. The first byte is an
offset: FFh causes the clock to run slower, O0h causes it to run at
normal speed; O1h causes it to run faster. The next two bytes
specify a counter (in hex) of the number of seconds between
adjustments. The clock is adjusted by 0.0004 second each time
the counter cycles. The counter value can be calculated as 2103.8
divided by the adjustment in minutes per year, or 345.8 divided
by the adjustment in seconds per day.
Sequence:

Disable Interrupts

Send opcode 76h

Send offset

Send LS counter (in hex)

Send MS counter (in hex)

Restore Interrupts

77h Read Accuracy

Returns the PPU accuracy adjust value. (Refer to the previous
command for a description of the parameter values.)
Sequence:

Disable Interrupts

Send opcode 77h

Read offset

Read LS counter

Read MS counter

Restore Interrupts

7Ah Modem Off

Puts the modem RCM line to a low voltage. Sets modem reset
line active (low voltage). Then turns off modem power supplies.
Sequence:

Send opcode 7Ah

BIOS Interrupts 5-61

Table 5-9. PPU Commands (Continued)

7Ch Modem On

Sets modem RCM line to a low voltage. Turns on the modem
power supplies and auto-sequences its reset lines. There is a
built-in delay that allows the modem power supplies to stabilize
and its reset sequence to complete. After the delay, the modem is
ready for communication with the mainframe.
Sequence:

Send opcode 7Ch

Wait until PPU is not busy (modem then ready)

7Dh Beep

Causes the beeper to beep at the current frequency and duration.
(Refer to commands 4Ch and 4Dh).
Sequence:

Send opcode 7Dh

5$-62 BIOS Interrupts

Table 5-9. PPU Commands (Continued)

F 7Eh Read Status

W\ Returns the PPU internal status byte. The parameter error bit
. (bit 6) is cleared when the PPU is reset; it is set if an illegal value
is passed when setting the clock or alarm, the time zone, or
plug-in address in the Set 10 Drawer Power Service; it remains set
until the PPU is reset. Each bit is mapped accordingly:
Bit 7: Interrupts Enabled
Bit 6: Parameter Error
Bit 5: CPU ("1"=running "0"=halted)
Bit 4: Alarm Enabled
Bit 3: Timeout Disabled
Bit 2: Low Battery
Bit 1: Shut Down Active
Bit 0: Always 0
Sequence:
Disable Interrupts
Send opcode 7Eh

; Read status byte
C" Restore Interrupts

BIOS Interrupts 5-63

L
5.29 Modifier Key Interrupt (Int 52h)

When the keyboard is in Scancode, Modifier, or Numeric Keypad mode, each up- and
down-transition of any modifier key ((CTRD), (Shift), and (EXTend)) generates a
Modifier Key interrupt 52h. In Scancode and Modifier modes, the default handler for
this interrupt responds to each transition by adding the resultant state of the modifier
keys, plus 80h, to the key queue. The state is encoded in the low three bits of the
character, resulting in a byte of the following form:

1 0 0 0 0 b2 bt bo

I L

1 = (CIRD key is depressed
1 = (Shi¥D) key is depressed
1 = (Extend) key is depressed

Note that although the interrupt is generated by the transition of just one modifier key, ;
the byte that is added to the queue reflects the final states of all three modifier keys. W
This means, for example, that if (CTRD) and (BRift) are already down when the

key is depressed, an 87h will be generated; if the (BRift) key is then

released, an 85h will be generated.

The system will call the Modifier Key Interrupt routine if the keyboard is in normal
mode (neither Scancode nor Modifier mode is active) only if the numeric keypad is
enabled. In this situation, the handler normally does nothing (it simply returns) except
under the following conditions:

® The system is in Alt mode.
® An upward transition by the (Ex¥end) key caused the interrupt.

® The last character typed (while the key was depressed) was a digit on the
numeric keypad.

If all of these conditions are true, the handler adds the numeric-keypad-generated
character to the keyqueue.

5-64 BIOS Interrupts

If you write your own Modifier Key Interrupt handler, the Modifier Key interrupt is the
result of a hardware interrupt; no special information is passed into the interrupt
handler. All registers used by your handler should be saved upon entry and restored at
exit, and the routine should end with an IRET instruction. Just prior to restoring
registers, you must clear the modifier key interrupt by writing a 07h to 1/0 address
OAOh.

|
5.30 Print Key Interrupt (Int 53h)

The Print Key Interrupt is issued whenever, in normal keyboard mode, the key
is pressed. The default handler for this interrupt causes the current contents of the
display to be dumped to the PAM Printer Interface device.

This interrupt is intended to be a hook by which an application can trap the
key.

| 5
5.31 HP-IL Primitives Interrupt (Int 54h)

Both the Portable and Portable PLUS use the Hewlett-Packard Interface Loop (HP-IL)
to communicate with discs, printers and various other I/O devices. HP-IL can also be
used to control HP-IB (IEEE-488) devices through a HP82169 HP-IL/HP-IB interface.
Each device driver communicates with its device by calling HP-IL primitive routines.

Instruments and other devices not currently supported by MS-DOS device drivers may
also be controlled with a suitable application program. The application programmmer
can call these same HP-IL primitives to communicate with the device to be controlled.
Using these routines will simplify the program and allow the application to share the
bus with the MS-DOS drivers without conflict. It is recommended that devices which
have MS-DOS drivers be controlled through standard MS-DOS system calls and that
HP-IL primitives be used only for unsupported devices.

HP-IL Primitives Interrupt 54h is used to invoke the various primitive functions, which
in turn provide low level control of the HP-IL interface and serve to isolate from each
other the various routines that use HP-IL. For example, an application can read data
from an HP-IL voltmeter, use MS-DOS Int 21h functions to print the data, and save
the data on an HP-IL disc without any conflicts.

BIOS Interrupts 5-65

By using Int §4h, the application programmer can do the following operations:

Configure the loop and assign addresses to all the devices on it.

Address any device to either send data or receive it. ﬁ
Send data bytes to any device on the loop.

Receive data bytes from any device on the loop.

Send or receive individual frames.

Search for devices according to their accessory IDs.

Set the expected time out period for each operation.

Read interface status information.

Read the Accessory ID of any device on the loop.

Search the loop for a device with a certain accessory ID. »"%

Many instruments can be controlled by simply sending data bytes and receiving
information back. For example, to instruct an HP 3421 A Data Acquisition unit to take

a

voltage reading and report the results requires the following steps:
1. Configure the loop to put it into a known state.

2. Locate the HP 3421A and determine its address.

3. Address the Portable PLUS to talk and the HP 3421A to listen.
4. Set the time out to an approriate value for the HP 3421A.

5. Send the data bytes "DCV<cr>".

6. Address the HP 3421A to talk and the Portable PLUS to listen.

7. Receive the data bytes that the HP-3421A returns.

Other instruments may require the application to directly send HP-IL loop commands
and be able to respond to service requests. An application can directly send and receive

5-66 BIOS Interrupts

HP-IL frames and so can generate any command sequence that an instrument may
require. A thorough description of HP-IL can be found in the Osborne/McGraw-Hill
publication, The HP-IL System: An Introductory Guide to the Hewlett-Packard
Interface Loop, by Kane, Harper, and Ushijima (1982).

? The HP-IL primitives provide the low level control over the HP-IL interface in the

Portable PLUS. They permit an application to interleave 1/0 operations and allow
optimizations that lead to more efficient operation. The routines keep track of loop
information such as the time of the last frame transmission and the current state of the
loop. If a command is given that would be unnecessary due to the current state of the
loop then it will be safely ignored. For example if an application issues an Address
command for devices that are currently addressed then no frames will be sent.

Before each major group of operations (or any time the caller cannot be sure of the loop
configuration) the Config function must be called. No frames will be sent during this

call if it has been only a short time since the most recent loop operation. Note that

because this call checks the time since the previous loop operation, any HP-IL

operations performed immediately before the call will cause the Config call to be

ignored. 5

Each HP-IL function returns a completion code in AL and error status in the CY
(Carry) flag. The remaining flags and registers are not changed. If the function fails
due to a loop problem (ie. not connected or one or more devices turned off) then it will
set the carry flag and return an error code. The following bits will be set for errors:

0 0 0 0 0 b2 bl bo HP-IL Error Code Byte

n

Device/Loop not ready
Timeout
Frame received not as sent

~

1
1
1

In most cases an error requires that the application use the Config command to restore
the loop to a known state. Applications that issue Send Frame and Get Frame
commands may have to process the error according to which command was sent over
the loop. For example if the application sends an autoaddress command frame it will be
modified by any devices in the loop and cause the HP-IL interface to issue a "Frame
Received Not as Sent” error. In this case, the error is expected and can be ignored by
the application. However, if a Config command fails, user intervention may be needed
to restore the loop.

BIOS Interrupts 5-67

If a Timeout is indicated, the next call will generate a power up sequence (multiple IFCs
followed by a single RFC). This sequence is also performed before the first function call
after power on. This standard timeout recovery may not be overridden.

After configuring the loop the application must determine the address of the device W
that it is controlling. If it is 2 HP-IB device that is connected via a HP 82169A

interface then the address will be the same as the HP-IB address. If the device is an

HP-IL device then it will be autoaddressed according to its position on the loop. Note

that the user should be careful when choosing HP-IB device addresses since it is possible

to have an HP-IB and an HP-IL device that both respond to the same address. Only

addresses O through 7 are allowed for HP-IB devices. HP-1L addresses will then start

at 8 and be sequentially assigned to all devices around the loop.

For HP-IL devices the best way for an application to determine the address of a device

is with Accessory IDs. If the device supports this feature then the application can issue

a Find command that will return the address of the desired device. An application that
uses the Find function will not be dependent on the order that the devices are placed on
the loop. An alternative way to locate devices is to request a device to talk and use the

Input Data Block command to enter a device ID. This is normally an ASCII string that

identifies the particular device.

Most of these routines require the Portable PLUS to be the active controller on the loop,
although some applications (such as HPLINK) use the computer as a non-controller.
Any application that passes control of the loop to another device must regain control
before making any MS-DOS calls that could require use of the loop.

A typical character device driver will call the HP-IL functions in the following order
for each character to be sent to the target device:

Config iConfigure the loop if necessary
Find s Find desired device
Address yAddress device to listen

iNo frames are sent above under normal conditions

SetTimeout ;Set to reasonable value for device
SendFrame :Send byte (“Output” also valid here)

5-68 BIOS Interrupts

A typical block device driver will perform HP-IL operations in the following order:

Config :Check loop configuration
Find 1 Find disk drive
@ SetTimeout
SendFrame :Use “SendFrame” for specific frame sequence

Table 5-10 describes the HP-IL primitives interrupt functions.

Table 5-10. HP-IL Primitives Interrupt 54h Functions

Function Description

AH=0 Configure Loop
(00h)
The Configure Loop primitive checks the elapsed time since the last
HP-IL operation and performs loop configuration if necessary. This
function should be called before each major group of loop operations to
W ensure correct configuration. No frames are sent unless absolutely
necessary. Configuring the loop consists of giving each device an address
according to its position on the loop. The first device on the loop is
given address 8, the second device is address 9, and so on up through a
maximum of 23 devices. (Addresses 0-7 are reserved for HP-IB devices
that may be connected to the loop through a HP 82169A HP-IL/HP-IB
Interface.) If 23 or more devices exist on the loop, all devices beyond
the first 22 are assigned address 30 (decimal).
Returns:
AL = Completion code.

BIOS Interrupts $-69

Table 5-10. HP-IL Primitives Interrupt 54h Functions (Continued)

AH=1 Find Device
(01h) L
This primitive searches the loop starting at the address specified in BH,
looking for a device with an accessory ID that matches the one in BL. If
the value of BL is xFh, only a class match is performed (only the top
four bits are compared with the device accessory IDs). If a matching
device is found, its address is returned in BL. The BIOS maintains a
table of all devices that have been found on the loop and will return
data from this table if it is available. No frames are sent unless
absolutely necessary.
Specify:
BH = Starting address (OCh-1Eh).
BL = Desired accessory ID (00h-FFh, excluding FEh).
Returns:
AL = Completion code.
BL = Address of device (1Fh if not found).
Destroys:
BH

§-70 BIOS Interrupts

Table 5-10. HP-IL Primitives Interrupt 54h Functions (Continued)

AH=2
(02h)

Get Accessory ID

This primitive returns the accessory ID of the HP-IL device at the
address specified in BL. Several conditions exist that will cause a value
of FEh to be returned:

1) Addressed device does not support accessory ID.

2) Addressed device does not exist.

3) Addressed device has an accessory ID of FEh. FEh is the ID
for an Extended class, General device. A program that needs
to control a device with this ID will require some other
means to determine if the device is on the loop.

No frames will be sent unless absolutely necessary.
Specify:
BL = Device address.
Returns:
AL = Completion code.
BL = Accessory ID. (FEh = no device at address, device doesn’t support
accessory ID, or accessory ID is FEh.)
Destroys:

BH

BIOS Interrupts $5-71

Table 5-10. HP-IL Primitives Interrupt 54h Functions (Continued)

AH=3
(03h)

Address

This function prepares the loop for a data transfer between the
computer and a device on the loop. It is used before an Input Data
Block or Output Data Block primitive to select the device that will
either supply or receive data. The address of the selected device is sent
as either a talk or listen address while 1Fh designates the address for the
Portable PLUS itself. The BIOS keeps track of which devices are
currently addressed as talker and listener and will only send an address
command if they are changed. Setting both talk address and listen
address to 1Fh is a special case that sends UNTalk and UNListen
commands to all other devices on the loop.

These HP-IL primitives do not support direct data transfer between two
other devices on the loop. All transfers must go through the Portable
PLUS. If direct transfer is required then the application programmer
must use the Send Frame primitive to address the loop and start the
transmission of data.
Specify:

BH = Talker address (OOh-1Eh or 1Fh).

BL = Listener address (O0h-1Eh or 1Fh).
Returns:

AL = Completion code.

BH = Old talker address.

BL = Old listener address.
Destroys:

DX

A

5-72

BIOS Interrupts

Table 5-10. HP-IL Primitives Interrupt 54h Functions (Continued)

AH=4 Output Data Block

(04h)

W The Output Data Block primitive causes the block of CX bytes of data
at location ES:DI to be sent over the loop. If the End Option is set to 1,

the last byte of data is sent as an END frame. If DI+CX is greater than

65536, a segment wraparound will occur and incorrect data may be

sent.
Specify:

CX = Byte count (0 - 65,536).

DX = End option (0 - 1).

ES:DI = Address of buffer containing data to be sent.
Returns:

AL = Completion code.
CX = Number of bytes actually transfered.

BIOS Interrupts 5-73

Table 5-10. HP-IL Primitives Interrupt 54h Functions (Continued)

AH=5 input Data Block
(05h)
This primitive reads CX bytes of data from the loop into a buffer at
location ES:DI. If BX is a valid SOT frame, it is sent out to initiate the
transfer. If BX is O0h or not an SOT frame, the transfer is assumed to
have already been started. (Valid SOT frames include SDA, SST, SDI
and SAI(1)). The transfer will terminate when all CX bytes have been
received or when an ETO is received. If the buffer fills before ETO is
received, an NRD sequence is transmitted. There is an ambiguity that
occurs when the caller tries to input exactly 65536 bytes; this routine
will return CX=0 for both the case of a successful operation and the case
where no bytes are received.
SDA 560h Send Data
SST 561h Send Status
SDI 562h Send Device ID
SAI 563h Send Accessory ID
Specify:
BX = Optional SOT frame to be sent ("0" = none).
CX = Count of bytes to accept before NRD.
ES:DI = Pointer to data buffer.
Returns:
AL = Completion code.
CX = Count of bytes received.
6-74 BIOS interrupts

C

Table 5-10. HP-IL Primitives Interrupt 54h Functions (Continued)

[ar-s

(06h)

AH=7
(07h)

Send Frame

The specified frame is sent out over the loop and an error code is
returned. Frame is the frame value (0-2047) to be sent. The values and
their usage are defined in the HP-IL interface specification manual,
which should be consulted if the programmer needs this level of
interface control. The options supported are "Wait For Loop Ready
Before Transmit" (DX=0) and "No Wait Before Transmit" (DX=1).

Specify:
BX = Frame to be sent (00h-7FFh).
DX = Wait option (O=wait; 1=no wait).
Returns:
AL = Completion code.

Get Frame

This primitive waits for a frame to be received, and returns it in BX. If
no frame is available from the HP-IL interface then OOh is returned.
Get Frame is normally used in conjunction with the Send Frame
primitive when the programmer must have complete control of the

Loop.
Returns:
AL = Completion code.
BX = Received frame (DABOh=Frame unavailable).

BIOS Interrupts 6§-75

Table 5-10. HP-IL Primitives Interrupt 54h Functions (Continued)

AH=8 Status
(08h)
Returns current loop status in BX. If the loop is ready for a frame to be
sent, bit 0 will be set. If a frame is available, then bit 1 will be set.
Note that any operation that sends a frame will effectively erase the
frame available bit. The timeout is also tested if the loop is not ready
for a frame, and a timeout error is returned if necessary.
Returns:
AL = Completion code.
BX = Status:
Bit 15-7: (Not used.)
Bit 6: Controller active.
Bit 5: Talker active.
Bit 4: Listener active.
Bit 3: Service request received.
Bit 2: (Not used.)
Bit 1: Frame available.
Bit 0: Loop ready for frame.
AH=10 Set Timeout
(0Ah)
An HP-IL device that sends data can perform a loop test on each byte
sent by comparing the byte it sends with the byte that returns after
traveling around the loop. By specifying a timeout interval, an
application can dictate how long the HP-IL driver should wait for a
response to each byte sent out over the loop. If a device response is not
detected by the time the timeout period has elapsed, an error is declared
and control is returned to the calling application.
Variable timeout periods allow the programmer to handle devices that
require a long period of time to complete their operation. For example a
printer may take 20 seconds to do a formfeed and hold up the loop
during that period of time.
Specify:
BX = New timeout (in 1/16 seconds).
Returns:
AL = Completion code.
BX = Old timeout (in 1/16 seconds).
5-76 BIOS Interrupts

Example: This program demonstrates using the BIOS HP-IL interrupt (54h) to talk to
a device on HP-IL. In this case, the device isan HP 3421A Data Acquisition/Control
Unit. The program:

@i) 1. Configures the loop and sets the loop timeout value.

-

2. Finds the HP 3421’ loop address.

3. Addresses the HP 3421 to listen and sends the "Read Voltage" command to it.

4. Addresses the HP 3421 to talk and enters the voltage reading.

5. Displays the voltage read.

6. Exits.

The program is structured to be run through EXE2BIN (converted to a .COM program)
and therefore doesn't set up DS, ES, or SS, since MS-DOS does that before passing
control to the program.

page 60,132
title INSTRUMENT CONTROL --- using the BIOS HP-IL interrupt
H
cseg segment para public 'code’
assume cs:cseg, ds:cseg
org 100h
start proc far
call config ; configure the loop
call find i find the HP 3421
call output ; send the READ VOLTAGE command
call enter ; enter the voltage
mov dx ,of'fset buffer ; address of string
mov ah,8 ; display it
int 2ih
mov ax ,4c00h ; terminate our program
int 21h
start endp
page
; CONFIG --- configures the loop into a known state and assigns addresses

terminates with ERRORLEVEL=1 if timeout

BIOS Interrupts

6-78

config:

mov ah,0 ; configure the loop
int S4h ; BIOS HP-IL call
test al,?7 s not ready?
jnz errorl + Jif yes
mov ah,10 ; set timeout
mov bx,64 H for 4 seconds (64x(1/16))=4
int S4h
test 21,7 ; not ready?
jnz errorl v Jif yes
ret ; else keep going
errori:
mov dx,offset loopfail ; address of error message
mov al,1 ; errorlevel=1
error:
push ax ; 5ave errorlevel
mov ah,9 ; DOS function to display message
int 21h
pop ax i recover errorlevel code
mov ah,4ch 7 terminate code
int 21h ; terminate
page
H
i FIND --- finds a device on the loop by its accessory 1D
H terminates with ERRORLEVEL=2 if not found
H
find:
mov ah,1 3 find function
mov bh,0 ; starting search address
mov bl,53h i accessory 1D for HP 3421
int 54h ; BIOS HP-IL call
test al,7 i hot ready?
inz error2 v Jif yes
cmp bl,1fh ; not found?
jz error2 7 Jif yes
mov address,bl ; else save the address
ret
error2;
mov dx,offset nodevice ; address of error message
mov al,2 i errorlevel
Jmp error
page

BIOS Interrupts

; OUTPUT --- sends the READ VOLTRGE command to the HP 3421.
terminates with ERRORLEVEL=3 if fails.

error3:

3 ENTER

mov
mov
mov
int
test
inz
mov
mov
mov
mov
int
test
jnz
cmp

jnz

mov
mov

jmp

page

ah,3

bl ,address
bh,1fh

S4h

al,7
error3
ah,4

dx,t

cx,5
di,offset command
S4h

al,?
error3d
cx,5S

error3d

dx,0offset sendfail
al,3

error

address the loop

get HP 3421 address (LISTENER)
get PORTABLE address (TALKER)
BI0S HP-IL call

any problems?

jif yes

send data block

finish with END frame

length of command

address of the command

any problems?

jif yes

all bytes transferred?
jif no

address of error message

set errorlevel

--- read the voltage back from the HP 3421

mov
mov
mov
int
test
jnz
mov
mov
mov
mov

int

terminate with errorlevel=4 if fails.

ah,3
bh,address
bl,1fh

S4h

al,7
errord
cx,32
bx,560h
di,offset buffer
ah,$

S4h

do loop addressing

address of TALKER (HP 3421)
address of LISTENER (The PORTRBLE)
BIOS HP-IL call

any problems?

jif yes

maximum number of bytes to read
SDA (Send DRta) command

address of scratch buffer

input data block

BIOS Interrupts

test 21,7 any problems?

H
jnz errord s Jif yes
mov di,offset buffer ; address of start of data
add di,cx ; move to end of data
mov ax,0a0dh ; CR/LF W
stosw
mov 2l,36 ; ascii for §
stosb ; terminate string
ret
errord:
mov dx,offset entrfail s address of error message
mov al,4 ; errorlevel
jmp error
page
H
i
loopfail db 'Loop failure’,13,10,'s’
nodevice db 'Device not found',13,10,°'S’
sendfail db 'Send failure’,13,10,°'S"
entrfail db 'Enter failure’,13,10,'S’
command db '0OCV*,13,10 ﬂ
’ /
)
. address db ? : address of HP 3421
’ buffer db 32 dup (?) ; scratch buffer
i
cseg ends
end start
(N

5.32 Sleep Interrupt (Int 55h)

This service is used to force the computer into a recoverable sleep state. Any

subsequent interrupt that occurs after the computer goes to sleep (keyhit, serial ring,

alarm, etc.) will wake the unit and return it to its state prior to the sleep. The computer

does not reboot. Before going to sleep, the states of the HP-IL hardware, modem, LCD
controller and the current stack are saved so that they may be restored upon waking. w

$-80 BIOS Interrupts

-

~

5.33 Menu Key Interrupt (Int 56h)

A Menu Key Interrupt is generated whenever, in HP mode, you press the key.
The default handler for this interrupt performs one of three functions:

If the keyboard is in Modifier mode, adds an 8Ch to the key queue.
If the softkey labels are turned on, turns them off.

If the softkey labels are turned off, turns them on.

An application can use the Menu key interrupt in two ways:

By taking over Int S6h and pointing it at your own Menu Kkey interrupt handler, you
can perform your own Menu key processing. When the system branches into your
new interrupt handler, the state of the three modifier keys (at the time the
key was pressed) are available in AH; AL will contain FCh, the Configuration
EPROM keymap Local Function code that caused the interrupt to be issued. This
interrupt is invoked by the keyboard driver responding to a keyboard hardware
interrupt. All general registers are available when the interrupt branches into your
handler; they need not be saved and restored (in general, however, you should always
save and restore any registers that you will use in servicing an interrupt).

If you leave the Int 56h vector pointing at the default handler, you can
programmatically simulate the key by issuing an Int 56h software interrupt.
No registers are altered by the default handler.

In Alt mode, the key represents function key (8); the Menu key interrupt is
never generated. Two-byte codes will be added to the key queue according to the
following table (E=Extend, S=Shift, C=Control):

-~- - -$- -SC E-- E-C ES- ESC
00 43 00 66 00 5C 00 66 00 70 00 70 00 70 00 70

BIOS Interrupts 5-81

A

The Configuration EPROM keymap entry that generates a Menu key interrupt is Local
Function FCh. Behavior in the various keyboard modes is summarized as follows:

Normal Mode: In HP mode, pressing (Meénu) generates a Menu key interrupt (56h); the
default handler toggles the softkey labels on or off. In Alt mode, an appropriate 3
two-byte code is added to the key queue.

Scancode Mode: Pressing the (Menu) key adds its scancode, 17 decimal (11h) to the
key queue. The Menu key interrupt is not generated.

Modifier Mode: In HP mode, pressing the key generates a Menu key interrupt
(56h); the default handler adds an 8Ch to the key queue. In Alt mode, an appropriate
two-byte code is added to the key queue.

L ... |
5.34 System Key Interrupt (Int 57h)

A System Key Interrupt is generated whenever, in HP mode, you press the

key. If the keyboard is in Modifier Mode, the default interrupt handler

adds an 8Bh to the key queue; otherwise, it does nothing. An application can use the
System key interrupt in two ways: ﬂ

@ By taking over Int 57h and vectoring it to your own System key interrupt handler,
you can perform your own System key processing. When the system branches into
your new interrupt handler, the state of the three modifier keys (at the time the
System key was pressed) are available in AH; AL will contain FBh, the Configuration
EPROM keymap Local Function code that caused the interrupt to be issued. This
interrupt is invoked by the keyboard driver responding to a keyboard hardware
interrupt. All general registers are available when the interrupt branches into your
handler; they need not be saved and restored (in general, however, you should always
save and restore any registers that you will use in servicing an interrupt).

= If you leave the Int 57h vector pointing at the default handler, you can
programmatically simulate the System key by issuing an Int $7h software interrupt.
No registers are altered by the default handler.

5-82 BIOS Interrupts

In Alt mode, the System key represents function key (Z10); the System key interrupt is
never generated. Two-~-byte codes will be added to the key queue according to the
following table (E=Extend, S=Shift, C=Control):

@ - --C -s- -SC E-- E-C ES- ESC
00 44 00 67 00 5D 00 67 00 71 00 71 00 71 00 71

The Configuration EPROM keymap entry that generates a System key interrupt is
Local Function FBh. Behavior in the various keyboard modes is summarized as follows:

Normal Mode: In HP mode, pressing generates a System key interrupt
(57h); the default handler simply returns. In Alt mode, an appropriate two~byte code is
added to the key queue.

Scancode Mode: Pressing the key adds its scancode, 16 decimal (10h)
to the key queue. The System key interrupt is not generated.

Modifier Mode: In HP mode, pressing the key generates a System key
interrupt (57h); the default handler adds an 8Bh to the key queue. In Alt mode, an
appropriate two-byte code is added to the key queue.

@ |
5.35 Break Key Interrupt (Int 58h)

A Break Key Interrupt is generated by the keyboard driver when you hold down the
(Bhifb) key and press (Break). The default interrupt handler responds by first
flushing the key queue, and then putting a ~C (03h) in it. An application can use the
Break key interrupt in two ways:

® By taking over Int 58h and vectoring it to your own Break key interrupt handler,
you can perform your own Break key processing. This interrupt is invoked by the
keyboard driver responding to a keyboard hardware interrupt. All general registers
are available when the interrupt branches into your handler; they need not be saved
and restored (in general, however, you should always save and restore any registers
that you will use in servicing an interrupt).

W\' m If you leave the Int 58h vector pointing at the default handler, you can

programmatically simulate (Shift)(Break) by issuing an Int 58h software
interrupt. No registers are altered by the default handler.

BIOS Interrupts 656-83

functions identically in both HP and Alt modes. The Configuration
EPROM keymap entry that generates a Break key interrupt is Local Function 09h.
Behavior in the various keyboard modes is summarized as follows:

Normal Mode: Pressing (Shift)(Break) generates a Break key interrupt (58h), which
normally flushes the key queue and then puts a ~C (03h) in it.

Scancode Mode: Pressing the key causes the resultant state of all three
modifier keys, plus 80h, to be added to the key queue. Pressing the key adds
its scancode, 71 decimal (47h) to the key queue. The Break key interrupt is not
generated.

Modifier Mode: Pressing the (Shift) key causes the resultant state of all three
modifier keys, plus 80h, to be added to the key queue. Subsequently pressing the
key adds an 8Dh to the key queue. The Break key interrupt is not generated.

L
5.36 Enable/Disable Ring Interrupt (Int 59h)

The Serial and Modem ring interrupts can be controlled by interrupt 59h. When this
service is called, AL specifies the action to be taken. If AL contains an odd value, both W
the Modem and Serial Interface ring interrupts are enabled. When they are enabled,

the system will call interrupts 42h and 4Bh whenever the RING signal goes from a low

to a high state.

If AL contains an even value, the ring interrupts are disabled. Interrupts 42h and 4Bh
will then never occur, although the state of the RING line can still be read on a polled
basis from the Control Status register at 1/0 address 42h (for the serial port) or A2h
(for the modem).

5-84 BIOS Interrupts

|
_ 5.37 AUX Expansion Interrupt (Int 5Dh)

The AUX driver expansion interrupt (5Dh) provides a means of examining, trapping,
and altering characters coming from the serial port or modem. The driver calls this
interrupt whenever a character has been read from the 1/0 port, but before the
character is put into the input queue. A typical application of the AUX Expansion
Interrupt might be to map incoming EBCDIC characters into ASCIL

The driver automatically performs any hardware handshaking required by the serial
port before interrupt SDh is called, so an application doesn’t have to observe handshake
signals. At exit, if no character is to be placed in the input queue (indicated by
returning AX=-1), the driver ignores the normal XON/XOFF software protocol. The
application must perform this handshake if it’s required.

ll:' An application should always return to the driver by using IRET. This
ﬂ interrupt is called while processing the hardware interrupt that occurs
Note when a character is received. There are hardware-specific protocols that
must be observed in order to clear the interrupt.
An application must rnot alter any register except AX.
ll:' If you plan to use Int 5Dh, you should turn the modem on before taking
over the expansion interrupt. If the modem is turned on after taking over
Note the interrupt, you must allow the first 12 characters to be passed through

and placed into the BIOS input queue. This is necessary because the BIOS
sends a string of 12 characters to power up and configure the modem, and
expects all 12 to echo back if the modem is present in the system. If fewer
than 12 characters return from the modem to the BIOS, the system will
assume the modem is not there.

Table 5-11 describes the AUX expansion interrupt function.

BIOS Interrupts 5-85

Table 5-11. AUX Expansion Interrupt 5Dh Function

Function

Description

AH=0
(00h)

AH=1
(01h)

Character Received By Serial Port

The character in AL has just been received through the serial port and
is about to be processed by the AUX driver. The expansion code can
inspect or alter the character before it is added to the input queue, or
discard the character by returning FFh in AX.
Register contents:

AL = Character received from serial port.

BL = Serial port status byte:

b7 -- b5 b4 b3 b2 bt b0

&
| L Break being sent
Xmit data register empty

Break being received
Framing Error

Parity Error

Overrun Error

Data ready to be read

Character Received By Modem

The character in AL has just been received through the modem and is
about to be processed by the AUX driver. The expansion code can
inspect or alter the character before it is added to the input queue, or
discard the character by returning FFh in AX.
Register contents:

AL = Character received from modem.

BL = Modem status byte (same as "Serial Port Status Byte" above).

5-86 BIOS Interrupts

|
: 5.38 CON Expansion Interrupt (Int 5Eh)

W\ The CONSsole driver expansion interrupt (SEh) provides a means by which user-written
applications can preprocess characters being manipulated by the CONsole driver,
perform additional Alpha Mode initialization, and perform additional Graphics Mode
initialization. This makes it possible for an application to process additional escape
sequences, remap characters before they are displayed, prohibit certain characters from
being seen by the CONsole driver, preprocess keyhits, replace default fonts, and cause
Alpha or Graphics mode to display a specific image immediately after it is reset.

The Interrupt SEh expansion code should check the AH register to determine why it
was called. If the code in AH is not one of interest, an IRET should immediately be

performed.
. - . . . 5
ll:' An application should always return to the driver by using IRET. This
w\ ﬂ interrupt may be called in the middle of processing a keyboard matrix
Note hardware interrupt. There are hardware-specific protocols that must be

observed in order to clear the interrupt.

An application must not alter any registers unless noted otherwise.

ll:' CON expansion code must not call any built-in system drivers via standard
MS-DOS protocol. In order to output text to the display from within the
Note expansion code, for example, you must use Video I/O Interrupt 10h, Fast

Video Interrupt SFh, or System Utility Interrupt 50h rather than the usual
MS-DOS Interrupt 21h. The expansion code should also take care to avoid
recursion; CON output via service interrupt 50h (and in some cases SFh)
can cause the code to be entered recursively.

Gf " Table 5-12 lists the functions performed by this interrupt.

BIOS Interrupts 5-87

Table 5-12. CON Expansion Interrupt SEh Functions

Function Description T
AH=0 Output Character About To Be Processed
(00h)

The character in AL is about to be processed by the CONsole output
driver. The expansion code can inspect, alter, or trap the character
before the driver sees it. When the expansion routine terminates (via
IRET), the driver examines CX to determine what it should do. If the
expansion code returns CX=-1, the character in AL is discarded; if
CX=0, the character in AL is passed on to the output driver (and escape
sequence parser) for normal processing; if CX>0, the character in AL is
processed normally and then the expansion code is rerun with the same
character in AL, AH=0, and CX still set to the same positive value. The
first time the expansion code is called with any given character, CX=0.

Set Set CON EXP Is Y

—|CX:=0}—>|AH:=0}[—>|Int SEh{—s|CX=-17? |—»

} N
N

Is CON EXP Set Output
CX=0? |«—Int SEh|e—]AH:=4]e— AL
vl .

The AH=0 CON Expansion interrupt was designed as one possible way to
add additional escape sequences to the CON driver. In general, the
expansion code examines incoming characters and optionally passes them
through or traps them in a buffer; CX can eventually be used as a loop
counter if it becomes necessary to pass a string of buffered characters to
the escape parser/display driver for normal processing in one fell SWoop.

5-88 BIOS Interrupts

Table 5-12. CON Expansion Interrupt SEh Functions (Continued)

AH=1

@ I(Olh)

AH=2
f (02n)

AH=3
(03h)

Alpha Initialization Completed

The display has just been put into Alpha mode, but it has not yet been
turned on. The display has been cleared, the cursor is at the home
position, and all of the fonts for the current mode have been reloaded.
Expansion code could be used here to replace default fonts with new
ones, enable Arabic mode, reposition the cursor, or display text.

Graphics Initialization Completed

The display has just been put into Graphics mode and cleared, but it has
not yet been turned on. The graphics cursor is off, the relocatable origin
is at (0,0), drawing mode is "set pixels", the linetype is 1 (solid), and the
pen is up.

Matrix Key About To Be Processed

A matrix key has been hit; its scancode is in DX, and the current states
of the three modifier keys are in the low three bits of AL. At this point,
the expansion code has the option of altering either or both of these
registers to make the key look like another key (by changing the
scancode in DX and/or the modifiers in AL). If the expansion code
passes back a -1 in AX, normal matrix key processing is bypassed and
the keystroke will appear to have never happened.
Register contents:
AL = Bit O: State of the (CIRD) key.
Bit 1: State of the key.
Bit 2: State of the key.
DX = Scancode of matrix key (0-71).

BIOS Interrupts 5-89

Table 5-12. CON Expansion Interrupt SEh Functions (Continued)

AH=4 Display Character Just Processed

(04h)
The character in AL has just been processed by the CONsole output
driver. CX contains the same value it had at the completion of the
AH=0 expansion call (see the diagram for CON Expansion Function 0).
If, at this time, CX is passed back to the CON driver equal to zero,
output processing concludes normally. If CX is set to some non-zero
value, the character in AL will be resubmitted to the display output
routine (and escape sequence parser), passing once again through the
AH=0 expansion call.

AH=5 Display Character and Attribute About To Be Stored

(05h)
A character and attribute are about to be stored in display RAM (and
consequently displayed on the LCD). Expansion code has the option of
altering the character and attribute in BX. '¢
Register contents:

BL = Character code.
BH = Attribute byte.
ES:DI = LCD address at which character and attribute will be stored.

Example: This program adds the escape sequence "ESC &a?" to the CONsole driver.
After running this program (which stays resident), the printing of that escape sequence
to the console will cause the string "HP Portable PLUS.." to be printed in the escape
sequence’s place. There are three states in which the program can be:

m State 0: No escape sequence is being printed (parsed).

® State 1: Parsing an escape sequence that matches (so far) the one we’re looking for.

@ State -1 (FFh): Printing a string of characters; either the previous part of an escape
sequence we didn’t match (which we have saved in a buffer), or we'’re printing the
replacement string "HP Portable PLUS..".

The console expansion interrupt will not work in conjunction with another program

which also tries to do console expansion, such as the TERM program on B:\BIN. To test

this example, run the program listed below, then (in MS-DOS commands) type

5-90 BIOS Interrupts

ECHO (ESO) &&a?

The first ampersand disappears and causes the escape character to be displayed--but
W you have to type another ampersand for the escape sequence.

page 60,132
title CONSOLE EXPANSION --- adding an escape sequence to the console driver

cseg segment para public 'code’

assume cs:cseg, ds:cseg

org 100h
start proc far
jmp init ; do the init code

start endp

H

; This is the CONSOLE EXPANSION interrupt (SEh) service routine. We’re only
; concerned with console-expansion-call 0 (RH=0) which is character output.

intSe:
push ds ; save data seg reg
push es
push cs ; set up our data segment
pop ds
push cs ; set up our extra segment
pop es
cmp ah,0 ; char about to be processed?
jnz bailout 3 Jif no
cmp byte ptr state,0 ; are we parsing an escape sequence?
jnz instate 3 Jif yes
cmp cx,0 ; first time here?
jnz somebad 3 Jif no, something wrong
cmp al,27 ; character to be output an escape?
jnz bailout ; jif no, ignore it, let CON do it
mov word ptr buffptr,0 ; init buffer pointer
mov byte ptr state,l ; set state to parsing escape seq
savechar:
push di ; save register
W mov di,buffptr ; get buffer pointer
) mov [di+buffer],al 3 push char into buffer
inc di
cmp byte ptr [di+escseq],0 ; got entire escape sequence?
jz itsours ; jif yes, now do our thing

BIOS Interrupts 5-91

mov
pop
somebad:
mov
bailout:
pop
pop
iret
itsours:
mov
mov
pop
outloop:
mov
push
mov
lodsb
mov
pop
cmp
jnz
mov
jmp
instate:
cmp
jz
push
mov
cmp
jnz
pop
jmp
notours:
mov
inc
mov
mov
mov
pop
jmp

5-92 BIOS Interrupts

buffptr,di
di

cx,0ff{fh

es
ds

word ptr buffptr,offset

byte ptr state,0ffh
di

cx,1
si
si,buffptr

buffptr,si

si

al,o

bailout

byte ptr state,0

somebad

byte ptr state,0ffh
outloop

di

di,buffptr

al, [di+escseq]
notours

di

savechar

[di+buffer],al
di

byte ptr [di+buffer]),0
word ptr buffptr,offset

byte ptr state,0ffh
di
outloop

save new ptr value

tell CON to ignore it

restore data seg reg
return back to con driver

ourmsg ; address of our message

set state to output mode

restore register

set flag for CON

save register

get pointer to next char
get next char of output
save output ptr

restore reg

done?

jif no

clear state flag

exit, with CON flag to ignore

are we in output state?

jif yes

save register

get buffer ptr

does new char match next char?
jif no, dump our buffer
restore reg

put the char in our buffer

save the char

terminate buffer

buffer ; point to the start of saved

set output state
restore register
output what we've saved

™

buffer db
buffptr dw
state db
escseq db
ourmsg db
H

endkeep:

mov
mov
mov
int
mov
mov
shr
inc
mov
int

’
cseg ends

end

32 dup (?)
?
?
27,'&a?',0

escape sequence buffer
pointer to next hole in buffer
current parsing state

escape sequence we're adding

'HP Portable PLUS...',13,10,0 ; our message

byte ptr state,0
dx,offset intSe
ax ,255eh

21h

dx,0ffset endkeep
cl,s

dx,cl

dx

ax,3100h

21h

start

end of resident code

normal state: not parsing
address of our int Se ISR

take the Se interrupt vector
address of end of code to keep

get size in 16-byte paragraphs
round up one for remainder 5
terminate but stay resident

with ERRORLEVEL = 0

BIOS Interrupts 5-93

3
5.39 Fast Video Interrupt (Int 5Fh)

The liquid-crystal display (LCD) can be quickly manipulated through calls to the Fast
Video service interrupt (SFh). This interrupt provides facilities for cursor positioning,
character and/or attribute reading and writing, management of user-defined windows,
and various graphics functions such as pixel placement and line drawing.

Fast Video is composed of two distinct groups of functions: Fast Alpha and Fast
Graphics.

5.39.1 Fast Alpha

Fast Alpha operates on four structures as shown in figure 5-2.

@ The Arena is the display database, the display RAM in which the Window and
Logical Rectangle (defined below) can be moved. The Arena bounds are fixed by
hardware at 62 lines of 80 characters per line. Most Fast Alpha coordinates are
Arena-relative, with (0,0) being the (row,column) of the upper left corner. The
Arena is of fixed size and origin; it cannot be altered.

® The Window is the physical display, the area within the Arena that the user actually
sees. The Window size is fixed by hardware at 25 lines of 80 characters per line
(except when softkey labels are displayed -- it is then 23 lines). The Window origin,
however, is variable in the Y (or row) direction and can be moved to any
Arena-relative coordinate with the constraint that no part of the Window extends
outside the Arena.

® The Logical Rectangle is the Fast Alpha workspace. Nearly all Fast Alpha routines
manipulate this region or its contents. The user can define both the size and the
arena-relative origin of the LR (with the constraint that no part of the LR extends
outside the Arena); note that the LR and the Window are completely independant.

® The Cursor is a pointer to a particular row and column within the current Logical

Rectangle. The cursor moves within the bounds of the LR; it may or may not be
visible within the Window.

5-94 BIOS Interrupts

D

~

M

Figure §-2. Fast Alpha Structures

0,0
Arena

0,0
Window

0,0 19,24

Logical
@ﬁﬁ“ Rectangle

O Cursor
X,y m,n

79,61

BIOS Interrupts 5-956

Many of the Fast Alpha functions deal with characters and attributes. A character can

take on any value from 0 to 255 (one byte); each character byte is stored in display

RAM with an associated attribute byte. The attribute byte defines the various

characteristics of the character, as shown in figure 5-3. (Note that bits S and 4 aren't
interpreted as a binary form.) W

Figure 5-3. Display Attribute Byte

b7 b0
-- -- F10F2 -- UL IV BL I
00=Font 0] ¢ I T— Blinking
10=Font | Inverse Video
Xi=Font 2] Underlined
w Use caution in mixing Fast Alpha, Video I/0 Interrupt 10h, and CON ‘3
output. The CONsole driver makes internal use of several Fast Alpha

Caution tacilities, and may subsequently corrupt current Logical Rectangle,
Cursor, and Window settings. Video I/0 Interrupt 10h calls may
similarly affect Fast Alpha and CONsole driver variables. Also, while
Fast Alpha permits the cursor to be moved off screen, anything
output via the CONsole driver may force the window to be adjusted
to bring the cursor back into view.

Display RAM resides at segment 8000h. Fast alpha places the first line of the Arena at
8000:0200h and extends down 62 lines to 8000:3F00h. Display RAM from 8000:0000h
through 8000:01FFh is reserved for softkey label storage, is not touched by any Fast
Alpha routines, and should not be used. (If you prefer to think of the first line as of fset
0000, consider alpha memory as starting at segment 8§020h instead of 8000h.)

Alpha mode can simultaneously support three 256-character fonts (or six
128-character fonts, depending how you look at it). These fonts are stored in a reserved ‘w
area of display RAM which is subdivided into three 2 56-character regions: LCD font

regions 0, 1, and 2. When an alpha character is stored in display RAM, two bits of its

attribute byte specify which LCD font region is to be used; the sign bit of the character

5-96 BIOS Interrupts

byte specifies whether that character is in the low half or high half of that region.
(Refer also to “Display Controller” in chapter 7.)

Fast Alpha provides the user with total access to the character fonts in any of the three
regions by requiring the user to explicitly specify each character’s attribute byte. This
means that, in order to achieve desired results, the user must know precisely what font
resides in each of the font regions. The exact arrangement of fonts is determined by the
Initial Font Load table in the configuration EPROM, plus any font changes that may
have been made by CON Expansion code or by the user’s application itself. Barring any
such changes, the Initial Font Load will look like that shown in figure 5-4.

Figure 5-4. Initial Font Load

HP Mode Alt Mode
Low Half High Half
Font Region 0 HP Roman8 Bold Alt Bold
Font Region 1 Linedraw | Mathdraw Alt Bold s
Font Region 2 HP Roman8 Light Alt Light

The configation EPROM provides separate Initial Font Load tables for HP and Alt
modes.

Video I/O Interrupt 10h (described earlier in this chapter) generally accesses only fonts
in region 0. The exception here is graphics mode; characters with codes of 128-255
come from a user-supplied table pointed to by a double word vector for interrupt 1Fh.

Standard CON output works in terms of Primary and Alternate fonts. The primary
font generally resides in Font Region O; the alternate font is in Font Region 1. The
characters in Font Region 2 are stick figures used to mimic the halfbright
enhancement; if halfbright is enabled, characters that normally use fonts from Region 0
and 1 are automatically mapped into Font Region 2. (The only place this could present
a problem is in the halfbright enhancement of HP mode line and math symbols, which
have no equivalents in Font Region 2.)

Whenever alpha mode is initialized (at system reboot, in response to "ESC E", or at exit
from graphics mode) the font tables are reloaded as directed by the Initial Font Load
tables in the configuration EPROM. After everything has been initialized, but before

BIOS Interrupts 5-97

the display is turned on, CON Expansion code is given a chance to alter (remove,
modify, or add to) the newly loaded fonts. The first font that was loaded becomes the
Primary Font. The second font loaded becomes the Alternate Font.

In display RAM, fonts are stored in an eight-byte format in which only the high six bits
of each byte are significant. When installing fonts, you have the option of specifying
the new font table in either the same eight-byte form or in a more space-efficient
six-byte (packed) form. The two formats are shown in figure 5-§.

Figure 5-5. Font Formats

Significant Significant
0000007 O00O 000000
111111 1t1 001111
222222)22 111122
333333}§33 222222
4444441]424 333333
5$55555]655 334444 AT
666666 1] 66 444455 ‘3
77717771717 5$5556585
6x8 Matrix 6x8 Matrix
Unpacked Format Packed Format
(8 bytes) (6 bytes)

In the unpacked case, bytes 0 through 7 define eight six-bit dotrows from top to bottom
of the 6x8 matrix; the rightmost two bits of each byte are ignored. In the packed case,
bytes 0 through 5 define the same eight dotrows in a raster-scan format, starting with
the most significant bit of the first byte at the upper left corner of the matrix.
Subsequent bits are found by moving to the right, wrapping to the left end of the next
dotrow down as the matrix becomes filled.

All of the ROM -resident system default fonts are stored in the packed format. A word

in the configuration EPROM specifies the segment address of the first system font table; 53
subsequent font tables follow.

$-98 BIOS Interrupts

Graphics mode consumes all of the font regions for use as display RAM. Therefore, an
appropriate escape sequence or service function should always be used to switch from
graphics back to alpha to insure that the correct fonts will be reloaded.

Table 5-13 lists the Fast Alpha functions for Interrupt SFh. Specify the desired
function code in AH, with additional parameters passed in other registers as indicated.
All registers except AX are preserved unless otherwise noted.

A subset of the Fast Alpha functions described in table 5-13 can be accessed from
high-level languages such as Lattice C, MS Pascal, and MS Fortran through libraries
that will be provided with these products. Two such libraries provide a standard
interface that allows rapid output while maintaining portability of code. The HP-UX
Fast Alpha library (fa.lib) provides compatibility among the Portable PLUS, the Integral
PC, and other HP computers featuring HP-UX. This library is designed so that it can be
implemented on MS-DOS computers. The PCD library (pcdfa.lib) offers greater
functionality, but provides compatibility between only the Portable PLUS and the
Integral PC. This library probably won’t be implemented on future HP computers.

Table 5-13. Fast Video Interrupt 5Fh Alpha Functions 5
Function Description
AH=0 Get Arena (GETAR)
(00h)

Returns the size of the Fast Alpha Arena.
Returns:

CL = Arena width (80 columns).

CH = Arena height (62 lines).

AH=1 Get Window (GETW)
(01h)
Returns the current Window size and origin.
Returns:
BL = Window X-origin (Arena column 0).
BH = Window Y-origin (Arena line, 0-61).

CL = Window width (80 columns).
CH = Window height (23/25 lines with/without softkey labels).

BIOS iInterrupts 5-99

Table 5-13. Fast Video Interrupt SFh Alpha Functions (Continued)

AH=2
(02h)

AH=3
(03h)

AH=4
(04h)

Get Logical Rectangle (GETLR)

Returns the current Logical Rectangle size and origin.
Returns:

BL = LR X-origin (Arena column, 0-79).

BH = LR Y-origin (Arena line, 0-61).

CL = LR width (columns).

CH = LR height (lines).

Get Cursor Position (GETCUR)

Reads the current LR -relative cursor position.
Returns:

BL = Cursor column (LR column).

BH = Cursor row (LR line).

Set Window (SETW)

Repositions the Window within the Arena. If any part of the new
Window falls outside of the Arena, the desired Window origin will be
adjusted to ensure that the entire window is within the Arena bounds.
Specify:

BL = Desired Window X-origin (Arena column, 0-79 -~ ignored).

BH = Desired Window Y-origin (Arena line, 0~61).
Returns:

BL = Actual Window X-origin (Arena column 0).

BH = Actual Window Y -origin (Arena line).

|

5-100

BIOS Interrupts

Table 5-13. Fast Video Interrupt SFh Alpha Functions (Continued)

AH=5
(05h)

AH=6
(06h)

AH=7
(07h)

Set Logical Rectangle (SETLR)

Redefines the current LR. If any part of the new LR falls outside the
Arena, the LR size will be clipped to fit within the Arena bounds. The
cursor will be positioned at the upper left corner (LR coordinate [0,0]) of
the new LR.
Specify:

BL = Desired LR X-origin (Arena column, 0-79).

BH = Desired LR Y-origin (Arena line, 0-61).

CL = Desired LR width (columns).
CH = Desired LR height (lines).
Returns:
BL = Actual LR X-origin (Arena column).
BH = Actual LR Y-origin (Arena line).
CL = Actual LR width (columns).
CH = Actual LR height (lines).

Set Cursor Position (SETCUR)

Moves the cursor to a new LR coordinate. If the new position is outside
of the current LR, nothing happens.
Specify:
AL = 0 Turn off cursor.
1 Turn on primary cursor.
2 Turn on block cursor as primary.
3 Turn on underscore cursor as primary.
> 3 Don’t change cursor.
BL = Cursor column (LR column).
BH Cursor row (LR line).

Read Character (GETC)

Reads the single character at the specified LR coordinate. The cursor
does not move.
Specity:
BL = LR column.
BH = LR line.
Returns:
DL = Character at specified LR coordinate.

BIOS Interrupts 5-101

Table 5-13. Fast Video Interrupt SFh Alpha Functions (Continued)

AH=8 Read Attribute (GETA)
(08h)
Reads the single attribute at the specified LR coordinate. The cursor
does not move.
Specify:
BL = LR column.
BH = LR line.
Returns:
DH = Attribute at specified coordinate.

AH=9 Read Attribute/Character (GETCA)
(09h)
Reads the single attribute and character at the specified LR coordinate.
The cursor does not move.
Specify:
BL = LR column.
BH = LR line.
Returns:
DL = Character at specified coordinate.
DH = Attribute at specified coordinate.

AH=10 Read Character at Cursor (GETCM)
(0Ah)
Reads the single character at the current cursor position. The cursor
advances to the next LR position, possibly causing the LR to scroll up
one line.
Returns:
DL = Character at cursor.

AH=11 Read Attribute at Cursor (GETAM)

(0Bh)
Reads the single attribute at the current cursor position. The cursor
advances to the next LR position, possibly causing the LR to scroll up
one line.

Returns: >
DH = Attribute at cursor. %

$-102 BIOS Interrupts

Table 5-13. Fast Video Interrupt SFh Alpha Functions (Continued)

AH=12 Read Attribute/Character at Cursor (GETCAM)

(0Ch)
m Reads the single attribute and character at the current cursor position.
' The cursor advances to the next LR position, possibly causing the LR to
scroll up one line.
Returns:
DL = Character at cursor.
DH = Attribute at cursor.

AH=13 Write Character (PUTC)

(0Dh)
Writes a single character at a specified LR coordinate. The existing
attribute at that position stays unchanged; the cursor does not move.

Specity:
BL = LR column.
BH = LR line.
DL = Character to be displayed.
@ AH=14 Write Attribute (PUTA)
(0Eh)

Writes a single attribute at a specified LR coordinate. The existing
character at that position stays unchanged; the cursor does not move.

Specify:
BL = LR column.
BH = LR line.
DH = Attribute to be displayed.
AH=15 Write Attribute/Character (PUTCA)
(OFh)

Writes a single attribute and character at a specified LR coordinate. The
cursor does not move.
Specify:
BL = LR column.
BH = LR line.
‘ DL = Character to be displayed.
W\ DH = Attribute to be displayed.

g u n

BIOS Interrupts 5-103

Table 5-13. Fast Video Interrupt SFh Alpha Functions (Continued)

AH=16 Write Character at Cursor (PUTCM)
(10h)
Writes a single character at the current cursor position. The existing
attribute at that position stays unchanged; the cursor advances to the
next LR position, possibly causing the LR to scroll up one line.
Specify:
DL = Character to be displayed.
AH=17 Write Attribute at Cursor (PUTAM)
(11h)
Writes a single attribute at the current cursor position. The existing
character at that position stays unchanged; the cursor advances to the
next LR position, possibly causing the LR to scroll up one line.
Specify:
DH = Attribute to be displayed.
AH=18 Write Attribute/Character at Cursor (PUTCAM)
(12h)
Writes a single attribute and character at the current cursor position.
The cursor advances to the next LR position, possibly causing the LR to
scroll up one line.
Specify:
DL = Character to be displayed.
DH = Attribute to be displayed.
AH=19 Read Character String (GETCS)
(13h)
Reads a string of characters from the current LR, starting at the
specified coordinate. Attempts to read past the end of a line will wrap to
the next line; reading past the bottom of the LR will produce blanks.
The cursor does not move; text within the LR never scrolls.
Specify:
BL = LR column.
BH = LR line.
CX = Number of characters to read.
DS:SI = Address of buffer to receive string.
$~-104 BIOS Interrupts

Table 5-13. Fast Video Interrupt 5Fh Aipha Functions (Continued)

AH=20
(14h)

AH=21
(15h)

AH=22
(16h)

Read Attribute String (GETAS)

Reads a string of attributes from the current LR, starting at the
specified coordinate. Attempts to read past the end of a line will wrap to
the next line; reading past the bottom of the LR will produce blanks.
The cursor does not move; text within the LR never scrolls.

Specify:
BL = LR column.
BH = LR line.
CX = Number of bytes to read.
DS:DI = Address of buffer to receive string.

Read Character and Attribute Strings (GETCAS)

Reads a string of attributes and characters from the current LR, starting
at the specified coordinate. Attempts to read past the end of a line will
wrap to the next line; reading past the bottom of the LR will produce
blanks. The cursor does not move; text within the LR never scrolls.

Specify:
BL = LR column.
BH = LR line.
CX = Number of characters to read.
DS:DI = Address of buffer to receive attribute string.
DS:SI = Address of buffer to receive character string.

Read Character String at Cursor (GETCSM)

Reads a string of characters from the current LR, starting at the current
cursor position. Attempts to read past the end of a line will wrap to the
next line; reading past the bottom of the LR will produce blanks. The
cursor advances with each character read, possibly scrolling the text in
the LR.
Specify:

CX = Number of characters to read.

DS:SI = Address of buffer to receive character string.

BIOS Interrupts 5-105

Table 5-13. Fast Video Interrupt SFh Alpha Functions (Continued)

[a-23
(17h)

AH=24
(18h)

AH=25
(19h)

Read Attribute String at Cursor (GETASM)

Reads a string of attributes from the current LR, starting at the current
cursor position. Attempts to read past the end of a line will wrap to the
next line; reading past the bottom of the LR will produce blanks. The
cursor advances with each attribute read, possibly scrolling the text in
the LR.
Specify:

CX = Number of bytes to read.

DS:DI = Address of buffer to receive attribute string.

Read Character and Attribute Strings at Cursor (GETCASM)

Reads a string of attributes and characters from the current LR, starting
at the current cursor position. Attempts to read past the end of a line
will wrap to the next line; reading past the bottom of the LR will
produce blanks. The cursor advances with each character read, possibly
scrolling the text in the LR.
Specify:

CX = Number of characters to read.

DS:DI = Address of buffer to receive attribute string.

DS:SI = Address of buffer to receive character string.

Write Character String (PUTCS)

Writes a string of characters into the current LR, starting at the
specified coordinate. Attempts to write past the end of a line will wrap
to the next line; writing past the bottom of the LR will be ignored. The
cursor does not move; text within the LR never scrolls.
Specify:
BL
BH
CX
DS:SI

LR column.

LR line.

Number of characters to write.
Address of character string buffer.

5-106

BIOS Interrupts

Table 5-13. Fast Video Interrupt SFh Alpha Functions (Continued)

AH=26
(1Ah)

AH=27
(1Bh)

Write Attribute String (PUTAS)

Writes a string of attributes into the current LR, starting at the
specified coordinate. Attempts to write past the end of a line will wrap
to the next line; writing past the bottom of the LR will be ignored. The
cursor does not move; text within the LR never scrolls. Before being
written to the display, the specified attribute byte is ANDed with the
mask in DH, then XORed with a second mask in DL.

Specify:
BL = LR column.
BH = LR line.
CX Number of bytes to write.
DH = First attribute mask (AND).
DL = Second attribute mask (XOR).
DS:DI = Address of attribute string buffer.

Write Character and Attribute Strings (PUTCAS)

Writes a string of attributes and characters into the current LR, starting
at the specified coordinate. Attempts to write past the end of a line will
wrap to the next line; writing past the bottom of the LR will be ignored.
The cursor does not move; text within the LR never scrolls. Before
being written to the display, the specified attribute byte is ANDed with
the mask in DH, then XORed with a second mask in DL.

Specify:
BL = LR column.
BH = LR line.
cX = Number of characters to write.
DH = First attribute mask (AND).
DL = Second attribute mask (XOR).
DS:DI = Address of attribute string buffer.
DS:SI = Address of character string buffer.

BIOS Interrupts 5-107

Table 5-13. Fast Video Interrupt 5Fh Alpha Functions (Continued)

AH=28
(1Ch)

AH=29
(1Dh)

AH=30
(1Eh)

Write Character String With One Attribute (PUTCOS)

Writes a string of characters with a single attribute into the current LR,
starting at the specified coordinate. Attempts to write past the end of a
line will wrap to the next line; writing past the bottom of the LR will be
ignored. The cursor does not move; text within the LR never scrolls.
Specify:

BL

BH

CX

DH

DS:SI

LR column.

LR line.

Number of characters to write.
Attribute.

Address of character string buffer.

" w u ®Wn

Write Character String at Cursor (PUTCSM)

Writes a string of characters into the current LR, starting at the current
cursor position. Attempts to write past the end of a line will wrap to the
next line. The cursor advances with each character written, possibly
scrolling the text in the LR.
Specify:

CX = Number of characters to write.

DS:SI = Address of character string buffer.

Write Attribute String at Cursor (PUTASM)

Writes a string of attributes into the current LR, starting at the current
cursor position. Attempts to write past the end of a line will wrap to the
next line. The cursor advances with each character written, possibly
scrolling the text in the LR. Before being written to the display, the
specified attribute byte is ANDed with the mask in DH, then XORed
with a second mask in DL.
Specify:

CX = Number of bytes to write.

DH = First attribute mask (AND).

DL = Second attribute mask (XOR).

DS:DI = Address of attribute string buffer.

5-108

BIOS Interrupts-

Table 56-13. Fast Video Interrupt 5Fh Alpha Functions (Continued)

AH=31
(1Fh)

AH=32
(20h)

AH=33
(21h)

Write Character and Attribute Strings at Cursor (PUTCASM)

Writes a string of characters and attributes into the current LR, starting
at the current cursor position. Attempts to write past the end of a line
will wrap to the next line. The cursor advances with each character
written, possibly scrolling the text in the LR. Before being written to
the display, the specified attribute byte is ANDed with the mask in DH,
then XORed with a second mask in DL.

Specify:
CcX = Number of characters to write.
DH = First attribute mask (AND).
DL = Second attribute mask (XOR).
DS:DI = Address of attribute string buffer.
DS:S1 = Address of character string buffer.

Write Character String With One Attribute at Cursor
(PUTCOSM)

Writes a string of characters with a single attribute into the current LR,
starting at the current cursor position. Attempts to write past the end of
a line will wrap to the next line. The cursor advances with each
character written, possibly scrolling the text in the LR.
Specify:

CX = Number of characters to write.

DH = Attribute.

DS:SI = Address of character string buffer.

Scroll Window (TERMSCROLL)

Scrolls the characters and attributes in the Window by moving the
window relative to the Arena. (Note that since the Window width equals
the Arena width, left and right Window scrolling is meaningless.)
Specify:

AL = Scroll direction ("u"p, "d"own, "1"eft, or "r"ight).

CL = Number of lines/columns to scroll.

BIOS Interrupts 6-109

Table 5-13. Fast Video Interrupt SFh Alpha Functions (Continued)

AH=34 Scroll Logical Rectangle (SCROLLN)
(22h)
Scrolls characters and attributes within the Logical Rectangle. The
vacated lines or columns are filled with blanks.
Specify:
AL = Scroll direction ("u"p, "d"own, "I"eft, or "r"ight).
CL = Number of lines/columns to scroll.
AH=35 Scroll/Fill Logical Rectangle (SCROLLNA)
(23h)
Scrolls characters and attributes within the Logical Rectangle. The
vacated lines or columns are filled with blanks and the specified
attribute.
Specify:
AL = Scroll direction ("u"p, "d"own, "I"eft, or "r"ight).
CL = Number of lines/columns to scroll.
DH = Attribute to use for blank fill.
AH=36 Scroll Logical Rectangle One Line (SCROLL)
(24h)
Scrolls characters and attributes within the Logical Rectangle one line
or column. The vacated line or column is filled with blanks.
Specify:
AL = Scroll direction ("u"p, "d"own, "I"eft, or "r"ight).
AH=37 Scroll/Fill Logical Rectangle One Line (SCROLLA)
(25h)
Scrolls characters and attributes within the Logical Rectangle one line
or column. The vacated line or column is filled with blanks and the
specified attribute.
Specify:
AL = Scroll direction ("u“p, "d"own, "I"eft, or "r"ight).
DH = Attribute to use for blank fill.
§-110 BIOS Interrupts

Table 5-13. Fast Video Interrupt SFh Alpha Functions (Continued)

AH=38 Fill Logical Rectangle With Character (FILLC)

(26h)
Fills the entire current Logical Rectangle with a single character and no
attribute.
Specify:

DL = Fill character.

AH=39 Fill Logical Rectangle With Attribute (FILLA)
(27h)
Fills the entire current Logical Rectangle with a specified attribute.
Specify:
DH = Fill attribute.

AH=40 Fill Logical Rectangle With Attribute/Character (FILLCA)
(28h)
Fills the entire current Logical Rectangle with a single character and a
specified attribute.
Specify:
DL = Fill character.
DH = Fill attribute.

AH=41 Read Character Font (GETFONT)

(29h)
Reads a single character font from the LCD font storage area. The
character’s font matrix is returned in eight bytes. Only the leftmost six
bits of each byte are significant.

Specify:
CX = 1,
DL = Character code of initial character (0-255).
DH = LCD font region (0-2).
DS:SI = Pointer to start of buffer to receive font matrix.

BIOS Interrupts 5-111

Table 5-13. Fast Video Interrupt SFh Alpha Functions (Continued)

B810S Interrupts

AH=42 Write Character Font (PUTFONT)
(2Ah)
Writes one or more character fonts into the LCD font storage area.
Each character’s matrix is specified in either six or eight bytes (packed
and unpacked formats). In unpacked (eight-byte) format, only the
leftmost six bits of each byte are significant. Packed (six-byte) format
eliminates the two unused bits from each byte, shifting subsequent bytes
into the vacated bit positions. You can specify either a user font table
or a system ROM font table.
Specify:
AL < 0 Use packed user table (6-byte format).
= 0 Use unpacked user table (8-byte format).
= | Use HP Bold characters 0-127 (ROM font table 1).
= 2 Use HP Bold characters 128-255 (ROM font table 2).
= 3 Use HP Thin characters 0~127 (ROM font table 3).
= 4 Use HP Thin characters 128-255 (ROM font table 4).
a § Use Alt Bold characters 0-127 (ROM font table 5).
= 6 Use Alt Bold characters 128-255 (ROM font table 6).
= 7 Use Alt Thin characters 0-127 (ROM font table 7).
= 8 Use Alt Thin characters 128-255 (ROM font table 8).
= 9 Use Line Draw characters 0-127 (ROM font table 9).
=10 Use Math Draw characters 0-127 (ROM font table 10).
CX = Number of characters to write.
DL = Initial character code within LCD font region (0-255).
DH = LCD font region (0-2).
DS:SI = Pointer to user font table (if AL<=0).
‘ §-112

5.39.2 Fast Graphics

Fast Graphics functions work in essentially the same space as Video Interrupt 10h
graphics, except that the origin (0,0) is at the lower left of a 480x200 display area
rather than at the upper left as it is in the Int 10h service. The X axis increases to the
right; the Y axis increases upward.

Display RAM resides at segment 8000h. In graphics mode, the byte at the upper left
corner of the display is at 8000:0000h, with byte addresses increasing as you move to
the right; the rightmost byte on the top line is therefore at 8000:004Bh. The next
dotrow begins at 8000:0050h. The dotrow pitch is 64 bytes/line, but only the first 60
bytes are visible.

The Fast Graphics functions support two special pointing devices: a graphics "pen", and
a graphics "cursor". The two pointers are not the same. The graphics cursor is similar to
the alpha cursor, except that it appears on the display as a small arrow pointing up and
to the left. When the keyboard is in normal mode, the graphics cursor can be manually
positioned using the (=), (), (@), and (&) keys. The graphics cursor can be
programmatically turned on and off, moved to new copordinates, and have its current
coordinates read. Additionally, any text that is sent to the graphics display will appear
at the graphics cursor.

The graphics pen is never visible. It serves only as a pointer to the final endpoint of the
last line drawn using the Write Pen function (AH=52) or a line-drawing escape
sequence. To draw a line using the graphics pen, you specify only the target
coordinates; the line is drawn from the current pen position to the specified coordinate,
and the pen is then moved to the new endpoint in preparation to draw another segment.

Table 5-14 lists the Fast Graphics functions for Interfupt SFh. Specify the desired

function code in AH, with additional parameters in registers as required. Nothing is
destroyed unless otherwise indicated.

BIOS Interrupts 5-113°

Table 5-14. Fast Video Interrupt S5Fh Graphics Functions

Function Description

AH=43
(2Bh)

AH=44
(2Ch)

AH=45
(2Dh)

Reset Display (GRESET)

Selects and initialize the specified display mode.
Specify:
AL=0 Initialize Alpha mode.
#0 Initialize Graphics mode.

Read Display Specs (GSPECS)

Returns graphics display parameters.
Returns in Alpha Mode:
AL=0 Alpha mode.
BX = Display RAM offset of top~-left corner of screen.
DH = Lines on screen (23 or 25).
DL = Columns on screen (80).
Returns in Graphics Mode:
AL=1 Graphics mode.
BX = Display width (480).
DX = Display height (200).

Graphics Erase (GERASE)

Either sets or clears the graphics display, erasing or filling any image in
that area. Note that the functions for clearing and setting the entire
display will execute quickly; the coordinate-bound erase function will
be considerably slower since it works on a pixel-by-pixel basis.
Specify:
AL<0 Clear area specified by BX, DX, SI, and DI

=0 Clear entire display.

>0 Set entire display.
Area top left corner X coordinate (0-479) for AL<O.
Area top left corner Y coordinate (0-199) for AL<O.
Size in X direction for AL<O.
Size in Y direction for AL<0.

BX
DX
SI
DI

5-114

BIOS Interrupts

Table 5-14. Fast Video Interrupt 5Fh Graphics Functions (Continued)

AH=46 Draw Line (GDRAW)
(2Eh)
Draws a line between the two specified absolute coordinates. Coordinate
values can range from -32768 to +32767; lines that extend beyond any
screen bounds (0<=X<=479 and 0<=Y<=199) will automatically be
clipped at screen edges. (The graphics pen and cursor positions are
unchanged.)
Specify:
BX = Starting point X coordinate (0-479).
DX = Starting point Y coordinate (0-199).
SI = Ending point X coordinate (0-479).
DI = Ending point Y coordinate (0-199).

AH=47 Read Graphics Attributes (GRDATTR)
(2Fh)
Returns current graphics attributes.
Returns:
BL = Current line pattern (8-bit pixel string).
BH = Current line scale factor.
DL = Current drawing mode:
0 No change.
1 Clear pixels.
2 Set pixels (default).
3 Complement pixels.
4 Jam pixels.

BIOS Interrupts 5-115%

Table 5-14. Fast Video Interrupt 5Fh Graphics Functions (Continued)

AH=48
(30h)

AH=49
(31h)

AH=50
(32h)

Write Graphics Attributes (GWRATTR)

- Allows you to specify new graphics attributes. Note that you

cannot use this function to change just the drawing mode; you
must always specify a line pattern and scale factor as well.
Specify:
BL = New line pattern (8-bit pixel string).
BH = New line scale factor.
DL = New drawing mode:
0 No change.
1 Clear pixels.
2 Set pixels.
3 Complement pixels.
4 Jam pixels.

Read Pixel (GRDDOT)

Reads the state of the pixel at a given graphics coordinate.
Specify:

BX = Pixel X coordinate.

DX = Pixel Y coordinate.
Returns:

AL = Pixel value (0=off, 1=on).

Write Pixel (GWRDOT)

Lets you alter a pixel at any given graphics coordinate according to the
current drawing mode (function AH=48).
Specify:

AL = New pixel value (C=off, 1=on) if in "Jam pixels" mode.

BX = Pixel X coordinate.

DX = Pixel Y coordinate.

5-116

BIOS Interrupts

e

Table 5-14. Fast Video Interrupt 5Fh Graphics Functions (Continued)

AH=51
(33h)

AH=52
(34h)

AH=83
(35h)

Read Pen (GRDPEN)

Reads the state and current position of the graphics pen.
(Note that the graphics pen is not the graphics cursor. The
"cursor" is a visible, movable arrow pointer; the "pen"
always points at the end of the most recently pen-drawn line.)
Returns:

AL=0 Pen is currently raised.

1 Pen is currently lowered.

Current pen X coordinate.
Current pen Y coordinate.

BX
DX

n

]

Write Pen (GWRPEN)

Alters the state and current position of the graphics pen. If the pen is
lowered before moving, a line will be drawn in accordance with the
current linetype and drawing mode. (Note that the graphics pen is not
the graphics cursor. The “cursor" is a visible, movable arrow pointer; the
“pen" always points at the end of the most recently pen-drawn line))
Specify:
AL=2 Move, then raise pen.
1 Raise pen, then move.
0 Move pen without changing its height.
-1 Lower pen, then move.
-2 Move, then lower pen.
BX = New pen X coordinate.
DX = New pen Y coordinate.

Read Graphics Cursor (GRDCUR)

Reads the state and current position of the graphics cursor.
Returns:
AL=0 Cursor is off (not displayed).
1 Cursor is on (displayed).
8X = Graphics cursor X coordinate.
DX = Graphics cursor Y coordinate.

BIOS Interrupts $-117

Table §-14. Fast Video Interrupt SFh Graphics Functions (Continued)

AH=54
(36h)

AH=55
(37h)

Write Graphics Cursor (GWRCUR)

Alters the state and current position of the graphics cursor. The cursor
will be moved as far as possible toward the newly specified coordinates;
the actual updated coordinates will be returned in (BX,DX) (just in case
the specified coordinates were out of bounds).
Specify:

AL=0 Turn the cursor off.

#0 Turn the cursor on.

BX = New graphics cursor X coordinate.

DX = New graphics cursor Y coordinate.
Returns:

BX = Updated graphics cursor X coordinate.

DX = Updated graphics cursor Y coordinate.

Read Area (GRDAREA)

Reads a block of pixels from graphics memory into a user-specified
buffer. The area must be a multiple of eight pixels wide. Data will be
read from the screen in a left-to-right, top-to-~bottom order.
Specify:

AL = Height of area (in lines, or pixels).

CH = Width of area (in bytes, or 8-pixel groups).

BX = Area top left corner X coordinate.

DX Area top left corner Y coordinate.

DS:SI = Address of buffer to receive data (AL*CH bytes long).

5-118

BIOS Interrupts

Table 5-14. Fast Video Interrupt 5Fh Graphics Functions (Continued)

AH=56 Write Area (GWRAREA)

(38h)
@ Writes a block of pixels from a user-specified buffer into graphics
memory. The area must be a multiple of eight pixels wide. Data will be
written to the screen in a left-to-right, top-to-bottom order and be
displayed in accordance with the current drawing mode.

Specify:
AL = Height of area (in lines, or pixels).
CH a Width of area (in bytes, or 8-pixel groups).
BX = Area top left corner X coordinate.
DX = Area top left corner Y coordinate.
DS:SI = Address of data buffer (AL*CH bytes long).
AH=57 Copy Area (GCOPY)
{39h)
Copies an area of the graphics display. This is a direct pixel- to-pixel
transfer; current drawing mode is ignored. ’ 5
Specify:
@ AL = Height of area to copy (in pixels).
cX = Width of area to copy (in pixels).
SI = Source area top left corner X coordinate.
DI = Source area top left corner Y coordinate.
BX = Destination area top left corner X coordinate.
DX = Destination area top left corner Y coordinate.

Example: This program demonstrates the use of fast video graphics calls in the BIOS.
It allows line drawing (with rubber-band line), point plotting, and clearing of the
graphics display. Softkeys are used to change plotting mode. When a mode is selected,
an asterisk appears in the associated softkey label. When entering "line" mode, the
current cursor position becomes the fixed end of a "rubber-band" line. As the cursor is
moved, it is the other endpoint. The next time the LINE softkey is pressed, a permanent
line is drawn where the rubber-band line was. When in "point" mode, each time the
POINT softkey is pressed, the dot at the current cursor location is written. When in

@ ', "draw" mode, draw are drawn automatically as the cursor is moved. All drawing is done
by XORing a 1 with the current state of the pixel being drawn.

B1OS Interrupts $-119

page 60,132
title GRRPHICS E*RHPLE --=- using the BIOS fast video graphics calls
4
cseg segment para public ’code’
assume cs:cseg, ds:cseg

org 100h
LINE equ 0
POINT equ 1
DRAW equ 2
BIGJUMP equ S
H
start proc far
restart:

call init init program

keyloop:
cmp byte ptr mode,LINE 7 in line mode?
jnz keyl 3 Jif no, don’'t unwrite line
call drawline ; else undraw line
keyl:
mov dl,0ffh 7 get key
- mov ah,6
int 21h
iz keyl 3 Jif no key
cmp al,217 ; escape code?
jz nextcode ; Jif yes, get next code
beep:
mov al,7dh ; beep command
mov ah,1 ; write command to PPU
mov bx,27 ; PPU system services call
int S0h
jmp keyl ; try again
nextcode:
mov dl,0ffh ; see if second one
mov ah,6
int 21h
jz beep 3 Jif just escape key
cmp byte ptr mode,LINE + in line mode?
jnz norubber 3 Jif no, don’t unwrite line
push ax ; save keycode
call drawline ; else undraw line
pop ax ; restore keycode
norubber:

5§-120 BIOS Interrupts

cmp al,6s

up cursor?

inz not6s y Jif no
call setpen ; move pen to cursof loc
inc dx ; move cursor up

W - setcurs:
. . mov ax,3401h ; raise pen then move

cmp byte ptr mode,DRAW + in draw mode?
jnz sC 3 Jif no
mov al,offh ; lower pen then move
sc:
int Sfh ; move pen, drawing if in DRAW mode
mov ax,3601h ; write cursor
int Sfh
jmp keyloop
not6S:
cmp al,66 ; down cursor?
jnz noté6 3 jif no
call setpen
dec dx ; move down 5
jmp setcurs
e, noté6:
W cmp al,67 ; right cursor?
) jnz not67 s jif no
call setpen
inc bx ; move right
jmp setcurs
not67:
cmp al,68 ; left cursor?
inz not68 ; Jif no ‘
call setpen
dec bx ; move left
jmp setcurs
not68:
cmp al,86 ; extend up cursor?
jnz not86 3 Jif no
call setpen)
add dx ,BIGIJUMP 3 big jump
W jmp setcurs
l not8s:
cmp al,8s ; extend down cursor?
jnz not8S 3 Jif no .
call setpen

BIOS Interrupts 5-121

sub
jmp
not8s:
cmp
jnz
call
add
jmp
not70:
cmp
jnz
call
sub
jmp
not104:
cmp
jnz
cmp
jz
mov
call
jmp
doline:
call
getends:
mov
int
mov
mov
jmp
not112:
cmp
jnz
cmp
jz
mov
call
jmp
dopoint:
mov
int

mov

5-122 BIOS Interrupts

dx,BIGIUMP

setcurs

al,70
not70
setpen
bx,BIGIJUMP
setcurs

al,104
not104
setpen
bx,BIGIJUMP

setcurs

al,112
not112
byte ptr mode,LINE
doline
byte ptr mode,LINE
movptr

keyloop

drawline

ah,s3
sfh

.endpointx,bx

endpointy,dx
keyloop

al, 113
not113
byte ptr mode,POINT
dopoint
byte ptr mode,POINT
movptr

keyloop

ah,s3
Sfth
ax,3201h

move down

extend right cursor?

jif no

move right

extend left cursor?
jif no

move left
F1?
jif no

already in line mode?
jif yes

set that mode

move the x

draw the line

read cursor

save new end point

F2 ?

jif no

already in point mode?
jif yes

set that mode

move the x

read cursor

write pixel

not113:

notii4:

not11sS:

exit:

unknown:

start

’

setpen:

spl:

int

jmp

cmp
jnz
mov
call
jmp

cmp
jnz

imp

cmp

jnz

mov
mov
int
mov
mov
int
mov

int

mov
mov
mov
int
Jmp
endp

mov
int
mov
int
cmp
inz
mov

int

Sfh
keyloop

al,114
notli14
byte ptr mode,DRAW
movptr

keyloop

al,116
noti1s

restart

al,119

unknown

ah,43

al,o

Sfh

dx,offset exitesc
ah,9

21h

ax,4c00h

21h

al,7dh
ah,1
bx,27
SO0h
keyloop

ah,53

Sfth

ax,3401h

Sfh

byte ptr mode,DRAW
spl

ah,50

Sfh

F3?
jif no
set draw mode

move the x

FS5?
jif no

re-init

F8?

jif no

force alpha mode

beep command
write command to PPU

PPU system services call

read cursor

raise pen, then move

in draw mode?

jif no

do end point

BIOS Interrupts

5-123

ret

init:
mov byte ptr mode,POINT ; init mode to POINT plotting
mov dx,offset menu ; address of escape sequences
mov ah,9 ; output them to display
int 21h
mov al,1
mov ah,43 3 init graphics mode
int Sfh
" mov ah,s4
mov al,0
mov bx,0
mov dx,0
int Sfh
mov dx,offset labels ; a blank
mov ah,9
int 21h
mov bx,0 ; for x=0 to
initloop:
call drawbox ; draw a box around key 1
add bx,9%6 ; move to next box
cmp bx,4%x9x6 ; skip center?
jnz box jmp y Jif no
add bx,8%x6+1 ; skip center
box jmp:
cmp bx,470 ; done?
jb initloop 3 Jif no
mov ah,54 ; move graphics cursor
mov al,1 3 turn it on
mov bx,240 7 X = 240
mov dx,100 ; y = 100
int Sfth
mov word ptr endpointx,240 ; init endpoints
mov word ptr endpointy,100
mov ah,47 ; read graphics attributes
int Sfth
mov dl,3 ; set to complement mode
mov ah,48 ; set graphics attributes
int Sth
call drawline
ret

6-124 BIOS Interrupts

drawbox:
push
mov
mov
int
pop
push
mov
mov
int
pop
push
add
mov
mov
int
pop
push
add
mov
mov
int
pop
push
mov
mov
int
pop
ret
page
drawline:

mov
int
mov
int
mov
mov
mov
int

ret

bx

dx ,0
ax,3401h
Sfh

bx

bx

dx,10
ax,34ffh
Sfh

bx

bx

bx ,8%6+4
dx,10
ax,3400h
Sfh

bx

bx

bx ,8%x6+4
dx,0
ax,3400h
Sth

bx

bx

dx,0
ax,3402h
Sth

bx

ah,53

Sfh

ax,3401h

Sfh
bx,endpointx
dx,endpointy
ax ,34ffh

Sth

save x coordinate
y
set pen location

get x

y=10

lower pen and move
get x

move to right of box
top right corner
draw

get x

move to right

bottom right

draw

get x

bottom left

draw

restore x

read cursor position
raise pen and move
to where cursor is

get other endpoint coordinates

lower pen and draw

BIOS Interrupts

5-125

5-126

page
movptr:
mov
int
mov
mov
mov
mov
mov
int
mov
mov
cmp
iz
mov
markline:
int
mov
mov
mov
int
mov
mov
cmp
jz
mov
markpoint:
int
mov
mov
mov
int
mov
mov
cmp
jz
mov
markdraw:
int
mov
mov

mov

BIOS Interrupts

ah,S3

Sth
endpointx, bx
endpointy,dx
ax,3600h
bx,42

dx,0

S§fh

dl,42

ah,2

byte ptr mode,LINE
markline
d1,32

21h

ax,3600h

bx,96

dx,0

Sfth

dl,42

ah,2

byte ptr mode,POINT
markpoint

d1,32

21h

ax,3600h

bx,150

dx,0

Sfh

dl1,42

ah,2

byte ptr mode,DRAW
markdraw

d1,32

21h

ax,3601h
bx,endpointx
dx,endpointy

get cursor

save it

set cursor, off
x for 'x' in LINE box
y

star

print string

is it in LINE mode?
jif yes

blank

set cursor, off
x for "' in POINT box
y

star

print string

y is it in POINT mode?

jif yes
blank

set cursor, off
x for "%’ in DRAW box

y

star

print char

is it in DRAW mode?
jif yes

blank

set cursor, on

get coordinates

int Sfh

ret
page
H
asterisk db Tx?
blank db '
mode db ?
endpointx dw ?
endpointy dw ?
H
menu db 27,'8&k0\',27,'&s1R’,27,'&j@",'$’
)
H
exitesc db 27,'&s0A’, 'S’
labels db ' Line !
db ' Point x °
db ' Draw !
db ' '
db ' Clear
db ? ’
db ! '
db ' Exit ' ,'$?
H
H
cseg ends
end start

BIOS Interrupts §-127

« 6 Built-In Device Drivers

|
6.1 Introduction

In addition to the RAM and ROM disc drivers (A: and B:), the Portable PLUS includes
device drivers for accessing the built-in devices (AUX, CLOCK, COM1, COM3, and
CON) and various HP-IL peripheral devices (COM2, LPT1, LPT2, LST, PLT, PRN, and
82164A). These built-in device drivers are as follows:

AUX In the default configuration, equivalent to COM1. Redirectable from
PAM. :

CLOCK The system clock.

COMI The built-in serial (RS-232) port.

COM2 Assigned to the first HP 82164A HP-IL/RS-232-C Interface in the loop
(accessory ID 42h).

COM3 The optional built-in modem.

CON The system console (the built-in display for output, the built-in keyboard
for input).

LPTI1 Assigned to the first HP-IL printer (accessory ID 2xh) in the loop.

LPT2 Assigned to the second HP-IL printer (accessory ID 2xh) in the loop.

LST Same as LPT2.

PLT Assigned to the first HP-IL plotter in the loop (accessory ID 6xh).

Redirectable from PAM.

Built-in Device Drivers 6-1

PRN In the default configuration, equivalent to LPT1. Redirectable from PAM.
82164A Same as COM2.

Standard MS-DOS device read and write operations will receive and send data through w
the standard drivers to external devices. The actual transmission of data is affected by -/
several factors, including serial port configuration, software protocol, and hardware
handshaking. Most of these factors can be controlled using I/0 control commands to

the desired device driver. The following paragraphs describe the operation of the data

1/0 channels of the modem and the serial port.

IIC' When using MS-DOS Int 21h functions to read bytes from the serial port
i or modem devices, the device drivers will not wait for the specified number
Note of characters to be received before returning to the application. For

example, if an MS-DOS read command is issued to the COM1 with a

character count of 10, and there are only eight characters currently in the

buffer, only those eight charaters will be returned to the calling program.

The returned count will be 8 rather than 10. If a read command is issued

when there are no characters in the buffer, the driver will return

immediately with no characters read. ﬂ%

6.1.1 Serial Operation

Serial communications are subject to several types of hardware and software protocols,
as well as data configurations. Three hardware handshake lines are used with external
devices: Data Set Ready (DSR), Clear To Send (CTS), and Received Line Signal Detect
(RLSD), also known as Device Carrier Detect (DCD). In addition, the driver can control
two output lines: Data Terminal Ready (DTR) and Request To Send (RTS). Many
applications don’t use any of these lines. In its default state, the driver doesn’t observe
any hardware protocol and sets DTR and RTS true whenever the serial port is active.

The driver can be set to observe any or all of the handshake lines through I/O control
commands or through the PAM Datacom Configuration Menu. When handshaking is in
effect, data transmission is governed by the RS-232-C standard:

s Data won’t be sent out unless CTS, DSR, DTR, and RTS are true. %

m Data won’t be received unless RLSD, DSR, and DTR are true.

6-2 Built-In Device Drivers

s If DSR becomes false before DTR is set false, the computer assumes the line is broken
and will terminate the connection by setting its DTR and RTS outputs false. DTR is
guaranteed to stay false for at least one second.

s If RLSD becomes false and remains false for more than 10 seconds while DTR is true,
the computer assumes the line is broken and will terminate the connection by setting
its DTR and RTS outputs false.

s After the DTR output has been set false, it won’t be set true again until the DSR line
is also set to false.

m After the RTS output has been set false, it won’t be set true again until the CTS
input line is also set to false.

The following diagrams illustrate signal timing for typical situations on the serial
interface.

Built-In Device Drivers 6-3

Figure 6-1. Serial Interface Timing - Sheet 1

®

4

ON r

108/2 (DTR} —1
ouT OFF !

107 (OSR)
IN

i

105 (RTS)
out

106 (CTS)
IN

1=
®

out '

109 (DCD)
IN

104 (RxD)
IN

1 '
1 L]
1 L}
103 (TxD) —_ . | DATA | ! DATA DATA wse
1 1 L}
L] L
1

DATA see

NORMAL
POWER UP

1. Shading indicates
. Computer turns on
with DCE.

107 (DSR) turning
106 (CTS) turning
109 (DCD) turning

N

OO w

and reception.

107 (DSR) turning
107 (DSR) turning
107 (DSR) turning

—_0 OV 0~

106 (CTS) turning

CONTRQOLLING CONTROLUNG
108/2 (DTR} 105 (RTS)

the computer ignores the signal.
interface power and initiates connection

on ends "ignore" regions.
on enables data transmission.
on enables data reception.

. Computer turns off 108/2 (DTR). This inhibits data transmission

off enables 108/2 (DTR) to turn on.
off starts "ignore" regions.
on enables data transmission and reception.

Computer turns off 105 (RTS). This inhibits data transmission only.

off enables 105 (RTS) to turn on.

6-4 Built -In Device Drivers

Figure 6-2. Serial Interface Timing - Sheet 2

@ o @

10872 (DTR) see | &— 1 36¢c. min, vee
our FF ;
ON !
107 (OSR) ces susm
IN OFF @ ' a @
ON . .
105 (RTS) e | '
OFF
our ' :
ON ’ -
106 (CTS)
N OFF |
0 e—————]
103 (TxD) ess DATA ' DATA { Data .es
our 1 ' :
ON y
109 (DCD) .
N OFF
104 (RxD) DATA .o
IN
N 7 \ /s
RESPONDING RESPONDING
TO 107 (DSR) TO 106 (CTS)

1. 107 (DSR) turning off while 108/2 (DTR) is on causes computer
to end connection with DCE.

Computer initiates new connection with DCE.

107 (DSR) turning on ends "ignore" regions.

106 (CTS) turning off enables 105 (RTS) to turn on.

109 (DCD) turning on enables data reception.

106 (CTS) turning on enables data transmission.

106 (CTS) turning off disables data transmission.

N OO esEwWN

Built-In Device Drivers

Figure 6-3.

108/2 (OTR}
out

107 {DSR)
IN

105 (RTS)
out

106 (CTS)
IN

103 (TxD}
our

109 (0CD)
IN

104 {RxD}
IN

oN
OFF

ON
OFF

ON
OFF

ON
OFF

Serial Interface Timing - Sheet 3

1 sec. min, R

RESPONDING TO LONG RESPONDING NORMAL
109 (DCD) TO SHORT POWER DOWN
109 (OCD)

1. 109 (DCD) turning off for greater than 15 seconds before 108/2
(DTR) is turned off causes computer to end connection with DCE.

2.

3.

4.

5. 107

6. 106
105

7. 109

8. 106

9. 109

(DSR)
(CTS)
(RTS)
(DCD)
(CTS)
(DCD)

turning
already
to turn
turning
turning
turning

109 (DCD) turning off disables data reception.
107 (DSR) turning off enagles 108/2 (DTR) to turn on.
Computer initiates new connection with DCE.

off ends "ignore" regions.

being off at end of "ignore" region enables
on.

on enables data reception.

on enables data transmission.

off for 10 seconds or less does not cause

computer to end connection with DCE.
10. Computer ends connection with DCE.
11. Computer turns off interface power.

6-6

Built-In Device Drivers

The serial driver also supports XON/XOFF protocol. This protocol is observed as the
default state. In addition, the XON and XOFF characters can be redefined to any
eight-bit values, which is valuable for some data services that don’t use the default
values of S (control-S, or XOFF) and ~Q (control-Q, or XON).The serial driver does not
support ENQ/ACK protocol. If this protocol is desired, it must be implemented by the
application.

In normal operation, power isn’t applied to the serial port to reduce battery power
consumption. Any character that is sent to the serial port (COM1) will automatically
power up the interface. If data must be read from the port before any characters are
transmitted, the port must be turned on in one of the following ways: via the PAM
Datacom Configuration screen, the "M1;" or "M2;" I/O Control commands, or by sending
a character to the port through an MS-DOS Int 21h or Int 14h write function. The
serial port remains powered until it is explicitly turned off or a reset occurs.

6.1.2 Modem Operation

The optional built~in modem is connected internally to a second serial port, but
hardware handshaking is neither implemented nor necessary. The port configuration
parameters (such as word length, stop bits, and baud rate) are set by the same 1/0
 Control commands as the serial port. However, modem-specific Hayes-compatible
commands are passed to the modem by the driver over the normal read/write channel.
The modem is responsible for the separation of data and commands.

XON/XOFF protocol is implemented for the modem data channel. This protocol is

observed unless it is disabled from PAM or by an application. ENQ/ACK protocol is
not supported by the driver.

Built-In Device Drivers 6-7

Like the serial port, the modem isn’t usually turned on to conserve power. It is powered
up by any character that is sent to it. However, an application must wait for one
character transmission period after turning the modem on before sending it any data, or
the data may be lost. This includes the "MO0;" and "M4;" I/0 Control commands, as well
as MS-DOS Int 21h and Int 14h write functions. The character transmission period
varies with the baud rate according to the following list:

Baud Character
Rate | Transmission Period

1200 8.33 ms
300 33.33 ms
150 66.67 ms
110 90.90 ms

Once turned on, the modem remains powered until it is explicitly turned off or a reset
occurs.

6-8 Built-In Device Drivers

6.2 AUX, COM1, COM2, COM3, and 82164A Devices

The AUX device can address the serial port, the modem, or the HP 82164A
HP-IL/RS-232-C Interface. The current device associated with AUX can be set by
I/0 control commands or by using the PAM System Configuration menu. At power-on
or whenever the Edisc is formatted, the AUX device is pointed to the internal serial
port. At any subsequent system reboot, the AUX device is associated with the physical
device set by the PAM System Configuration menu.

The modem port and the serial port each have a built-in UART that supports the 1/0
control commands listed in table 6~1. Because follow-on products may use different
hardware configurations (particularly for communications), software must use only the
I/0 Control calls for setting communication parameters. An advantage of using I/O
control commands is that they will also work with the HP 82164A HP-IL/RS-232-C
Interface (except for any command that begins with an "M".)

Note that all I/O control commands are terminated by a semicolon.

“»| In order to conserve battery power, any application that makes use of the
ﬂ modem or serial port should turn off the ports before terminating.
Note 6

Table 6-1. AUX 170 Control Commands

Command Description
Break
BO; Stop sending break.
B1; Start sending break.

Sending the string "B1;" will cause the serial device to start
sending a break. It will continue to do so until you send
the string "B0;".

Built -In Device Drivers 6-9

Table 6-1. AUX 170 Control Commands (Continued)

Handshake Protocol
Co;
C2;

DTR/RTS
LIt;
LI2;
LI3;
LI4;

MO;
M1 ;
M2;
M3;
M4 .
MS;

Disable XON/XOFF protocol.
Enable XON/XOFF protocol (default).

The built-in modem and RS-232 understand only
XON/XOFF protocol. "C0;" turns it off, and "C2;" turns it
on.

Activate DTR line (default).
Deactivate DTR line.
Activate RTS line (default).
Deactivate RTS line.

DTR and RTS are normally turned on when RS-232 is
turned on; off when RS-232 is turned off.

Modem/RS-232 Power Commands

Modem on, RS-232 off.
RS-232 on, modem off.
RS-232 on.

RS-232 off.

Modem on.

Modem off.

These commands are not supported by the HP 82164A
HP-IL/RS-232-C Interface. "MO0;" and "M 1;" switch
between the modem and the RS-232 port. "M2;" through
"M S;" control these ports individually. Whenever the
RS-232 port is turned on, the DTR and RTS lines are set
true; when this port is turned off, the lines are set false 1
second before the port is deactivated.

6-10 Built -in Device Drivers

Table 6-1. AUX {70 Control Commands (Continued)

UART Status

“ M?; If a UART status command is issued, the next 1/0 Control
P Read command for one character will return a byte of
status which reflects the current state of the UART. The
bits are as follows:

Ib7 b6 b5 b4 b3 b2 bl bo

1\ 7 3 1; L
Xmit break

pending
Xmit data register
empty
Break detected
Framing error
Parity error
Overrun error

@B\ Recv data register
full

)

Built-In Device Drivers 6-11

Table 6-1. AUX I/0 Control Commands (Continued)

IHP110 Compatible Modem Dialing
MD...;

HP110 compatible modem dial commands are terminated
by any byte with the sign bit set. The intervening bytes
have the following form:

0 b6 b5 b4 b3 b2 bl bo

T— Value annn (0-15)

000 Delay for nnnn seconds
001 Tone dial nnan:
0-9 for digits 0-9
10-13 not used

14 for "*"
15 for "#"

01x Pulse dial nnnn (at 10 pulses/sec):
0 for 10 pulses

1-10 for 1 to 10 pulses
11-15 not used
100 Set modem to originate mode.
101 Enable transmit tone.
11x Not used.

This command works only when directed to the COM3
device, or to AUX when it is set to the Modem.

It is recommended that applications use the standard
modem dialing command if HP110 compatability is not
needed (see chapter 12).

Modem Hangup
MH; Forces the modem to hang up and turn off. This command
works only for COM3.

6-12 Built -in Device Drivers

Table 6-1. AUX 10 Control Commands (Continued)

Modem Present Query

MP; Checks for the optional built-in modem and returns one
p byte to to the I/0 control read buffer (to be read by an I/O
Control Read command). The byte is zero if there’s no
modem, nonzero if there is a modem.

Ring Enable
MR Turn on ring enable. J
MZ; Turn off ring enable.

It is possible to enable a software interrupt so that an
application can detect the phone ringing. "MR;" and "MZ}"
enable and disable this interrupt. (This function is
equivalent to Int 59h).

Device Status
MS; If a device status command is issued, the next 1/0 control
read command for one character will return one byte of
N status for the device the command was sent to (i.e "COM1"
M\ gives the serial port status). If the bit is "1" the condition is
true.
Bit 0: XON/XOFF handshake enabled.
Bit 1: Unused.
Bit 2: Driver has sent an XOFF.
Bit 3: XOFF has been received from Host.
Bit 4: RTS is true.
Bit §: DTR is true.
Bit 6: No internal modem.
Bit 7: Device is powered.

Parity
PO; Set even parity.
P1; Set odd parity.
P4; Set no parity.

Built-In Device Drivers 6-13

Table 6-1. AUX 170 Control Commands (Continued)

lSet XON/XOFF Characters

PCwxyz;

Baud Rate
SB3;
SB4;
SBS;
SB6;
SB7;
SB8;
SB9;
SBA;
SBB;
SBC;
SBD;
SBE;
SBF;

Redefines the XON, XOFF, ENQ, and ACK handshake
characters. (The ENQ and ACK characters are ignored by
internal devices, but are used by the HP 82164A
HP-IL/RS-232 interface.) All four characters must be
included in the command.

w: New XON character.

X: New XOFF character.

y. New ENQ character.

z: New ACK character.

Set baud to 110.

Set baud to 134.

Set baud to 150.

Set baud to 300.

Set baud to 600.

Set baud to 1200 (default for modem).
Set baud to 1800.

Set baud to 2400.

Set baud to 3600.

Set baud to 4800.

Set baud to 7200.

Set baud to 9600 (default for serial port and HP82164).
Set baud to 19200.

6-14 Built-In Device Drivers

Table 6-1. AUX I/0 Control Commands (Continued)

Hardware Handshake

SLO; Observe all handshake.

SL1; Ignore CTS.

SL2; Observe CTS.

SL3; Ignore RLSD.

SL4; Observe RLSD.

SLS; Ignore DSR.

SL6; Observe DSR.

SL7; Ignore all handshake (default).

a "not ready" error.

Stop Bits
SS0; Use 1 stop bit.
SSi; Use 2 stop bits.
Word Length
SWOo; Word length is 8 bits.
SWi1; Word length is 7 bits.

Check Butfer

HP-IL character device drivers.

If hardware RLSD is enabled, and if RLSD is not high
when the AUX write is attempted, the driver will wait for
up to 10 seconds for the line to go high. If it does not, RTS
and DTR will be turned off and the driver will return with

If CTS or DSR is being observed, and if one (or both) is not
true when the AUX write is attempted, the driver will
return a "write fault" error after 10 seconds of retries.

(BFh); This is a one-character command with a value of OBFh ("?"
with the sign bit set). It returns the number of characters
available in the device’s buffer (zero if none). To use this,
write the command to AUX I/0 Control, then read one
byte from AUX I/0 Control. You can use this returned
byte as a character count when performing an MS-DOS
read from the AUX device. This call is supported on all

Built-In Device Drivers

6-15

Example: This example demonstrates how to talk to the serial port and how to
configure it using IOCTL calls (DOS function 44h). In this example the configuration is
hard-wired into a DB statement, but could be made modifiable with more complex
programming. This program opens the AUX and CON devices and puts them in "raw"
mode. It then alternates between: /w
® Doing a status of the AUX port, and if anything has been entered, copying it to the

CON device. (If data logging is enabled, it will also get copied to the PRN device.)

® Doing a status of the CON device, and if any keys have been pressed, copying them to
the AUX device.

To allow the "data-logging" status to be toggled, the softkey (FT) is defined and the
softkey menu is displayed.

This program is structured such that it can be run through the EXE2BIN utility. It also
assumes that this has been done, hence, it doesn’t set up the DS, SS, or ES registers--if
this is a .COM file, those registers will already have been set equal to CS by the system.

page 60,132

title GLASS TELETYPE --- terminal emulation example j
H

cseg segment para public ’code’

assume cs:cseg, ds:cseg

org 100h
start proc far
call openfiles ; open the AUX and CON as a files
call cnfaux ; configure AUX port
loopl:
call stataux ; check AUX & if anything is available

H echo it to display

; now check for a key hit, and if there is one, process it.

call statkey ; Check keyboard & if alpha-numeric
H H send out RUX, else handle it.

jmp loop1 ; loop forever

H ,
start endp 9

H
; fetch a key from the keyboard. If alpha-numeric simply send it out the
; AUX port. If it’s F1, toggle log-bottom. If F8, exit the program.

’

6-16 Built -In Device Drivers

statkey:

mov dl1,0ffh ; set flag for console INPUT
mov ah,6 ; DOS function - direct console I/0
int 21h ; see DOS function calls
W\ jz nokey ; Jif no key
cmp al,27 ; possible extended keycode?
jnz alphakey 3 Jif no
mov dl,0ffh ; get the extended keycode
mov ah,6
int 21h
jz esckey 3 Jif no 2nd keycode, just escape key
cmp al, 112 3 'pt (F1)?
inz not112 3 Jif no
xor byte ptr logflag,25S ; toggle log flag
mov dx,offset logoff ; address of 'log off’ escape seq
cmp byte ptr logflag,0 ; is log off?
jz logi; 3 Jif yes
mov dx,offset logon ; else use 'log on’ escape seq
logit:
mov ah,9 ; send to console
W int 21h
ret
not112:
cmp al, 119 s 'w' (F8)?
jnz beepit 3 Jif no
mov ax,4c00h ; DOS function - terminate program
int 21h ; (function call 4C - error level=0)

; the 4C function call never returns to us (it terminates us).

beepit:
mov dl,7 ; bell character
mov ah,2 ; send it to “"CON"
int 21h
ret
esckey:
mov al,27 ; reload escape keycode
alphakey:
mov tempbuff,al ; store keycode in memory
mov dx,offset tempbuff ; get address of buffer
mov cx,1 ; number of bytes to send
mov bx, auxhandl ; get file handle for AUX

Built-In Device Drivers 6-17

mov ah,40h
int 21h

nokey:

’

ret

a file handle in MS-DOS is just a 16 bit number that the opsys uses to refer

to an open file or device. Kind of like Secret Agent Man, they’ve given you

; write to file or device

a number, and they've taken away your name.....

this routine opens the AUX port and the CON device and puts them into
raw mode for faster output and so CRs don't get stripped by the AUX driver’s
input routines. It also opens the PRN device in case log bottom

gets turned on.

openfiles:
mov ah,3dh
mov al,2
mov dx,offset auxname
int 21h
mov auxhandl, ax
mov bx,ax
mov ax,4400h
int 21h
mov bx,auxhandl
mov dh,0
or dl,20h
mov ax,4401h
int 21h
mov ax,3d02h
mov dx,offset conname
int 21h
mov conhandl, ax
mov bx,ax
mov ax,4400h
int 21h
mov bx,conhandl
mov dh,0
or dl,20h
mov ax,4401h
int 21h
mov dx,offset prnname
mov ax,3d01h

6-18 Built -In Device Drivers

DOS function - open file or device

for read/write

point to name of RUX driver

save the file handle
copy it for IOCTL call
read AUX device info function

get aux handle

upper byte has to be zero

set RAW mode bit

write device info

open file function

point to name of CON driver

save console handle

put in bx also

read CON device info function

get console handle

upper byte has to be zero when write

force to raw mode

write CON device info function

point to name of PRN driver

open for writing

/’

mov

mov

ret

21h

prnhandl,ax
dx,offset menu
ah,9

21h

dx,offset logoff
ah,8

21h

byte ptr logflag,0

save file handle
initialize softkey menu

send escape strings to CON

and DRTR LOGGING key

init DATA LOGGING flag

; This piece of code assumes that the AUX port has previously been opened as

; a file, and its file 'handle’ has been saved in the RAM location called

3 'auxhandl’.

cnfaux:
mov
mov

mov

ret

bx,auxhandl
dx,offset iostring
cx,32

ah,44h

al,3

21h

get the file handle

address of I1/0 control string
length of I/0 control string
DOS function - I/0 control
write to control channel

call the DOS function

; The two lines above that loaded registers RH and AL were done as seperate

; loads for clarity, but could have been written more compactly as:

H mov

ax,4403h

; for this example, we'll do a status of the AUX driver to find out if there’s

; anything in the input buffer.

If there is, we’ll read it and echo the bytes

; to the console display (for lack of anything better to do with them).

stataux:

bx,auxhandl
dx,offset statstring
cx,1

ax,4403h

21h

bx,auxhandl

dx,offset tempbuff

get RUX handle

address of ioctl string

only one byte long

write to dev control channel

; do it
handle

..

address of buffer

Built-In Device Drivers 6-19

mov cx,1 read only one byte

mov ax,4402h ; read from dev control channel
int 21h ; do it

mov al,tempbuff ; get the byte we read

cmp al,0 ; anything available? W
jz saret ; jif no, return

mov bx,auxhandl ; get handle

mov cl,al ; get count

mov ch,0

mov dx,offset tempbuff ; where to read it into

mov ah,3fh ; read from file or device

int 21h

H
; when reading from a device driver, MS-DOS stops when it encounters a CR.
; hence, we must use the count returned in AX by function 3F as the actual

; number of bytes read.

push ax ; save number bytes read
mov cx,ax ; copy actual number read
mov dx,offset tempbuff ; get address of data
mov bx,conhandl ; get console handle
mov ah,40h ; DOS function - write to file /ﬂnw§
int 21h
pop cx ; recover # bytes read
cmp byte ptr logflag,0 ; logging data?
jz saret 3 jif no
mov dx,offset tempbuff ; address of data
mov bx,prnhandl 3 PRN handle
mov ah,40h ; write to file/device
int 21h
saret:
ret
)
logon db 27,"&f0alk16d2L Data *Logging ",27,112,"$"
logoff db 27,"&f0alk16d2L Data Logging ",27,112,"8$"
menu db 27,"&f0a2k-1doL"
db 27,"&f0a3k-1doL"
db 27,"&f0adk-1doL" W
db 27,"&f0aSk-1doL" ~
db 27,"&f0abk-1dOL"
db 27,"&f0aTk-1dOL"
db 27,"&f0a8k16d2LExit to P.A.M. ",27,119,"$"

6-20 Built -In Device Drivers

logflag db ?

auxhandl dw ?

auxname db “"AUX",0

statstring db Obfh
W conhandl dw ?

conname db “CON",0

prnhandl dw ?

prnname db “PRN",0

H

H

iostring db "M1;SBE;C2;PO;SW1;SL7;LI0;SSO;MZ;"

3 This IOCTL call would casue the following to occur:

H Mi; select RS-232 port as active port, disable modem port
H SBE; set baud rate to 9600
H C2; enable XON/XOFF protocol
H PO ; set even parity
H SWi; set word length to 8 bits
H SL7; ignore all hardware handshake (CTS, DSR)
A H LI10; disable signal lines (DTR)
W\ H SS0; set stop bits to 1
) H MZ; disable ring interrupt
H
tempbuff db 128 dup (?)
H
cseg ends
end start
|

6.3 NUL Device

Anything sent to the NUL device will disappear.

Built-In Device Drivers 6-21

I
6.4 CLOCK Device

The CLOCK device defines and performs functions like any other character device. 1
When a read or write to this device occurs, exactly six bytes are transferred. The first
two bytes are a word representing the number of days since January 1, 1980. The third
byte is minutes; the fourth, hours; the fifth, hundredths of seconds; and the sixth,
seconds. Reading the CLOCK device returns the date and time; writing to it sets the
date and time. I/O Control reads and writes can be used in the same way to read and
set alarms. However, you should note that if is very expensive timewise to read the
hardware clock. Continuous clock reading can degrade system performance.

There are system services available for reading and setting the clock and alarms (refer
to "System Services Interrupt 50h" in chapter $).

6.5 LPT1,LPT2, LST, PLT, and PRN Devices
The following device drivers allow access to peripherals on the HP-IL interface loop. 9
LPTI Assigned to the first HP-IL printer (accessory ID 2xh) in the loop. If no
printer is found, a search is made for a display device (accessory ID 3xh).
If neither is found, an error is returned.
LPT2 Assigned to the second HP-IL printer (accessory ID 2xh) in the loop. If
only one printer (or none) is found, a search is made for a display device
(accessory ID 3xh). If no display device is found, an error is returned.

LST Same as LPT2.

PLT Assigned to the first HP-IL plotter in the loop (accessory ID 6xh).
Redirectable from PAM.

PRN In the default configuration, equivalent to LPT1. Redirectable from PAM.

~

6-22 Built -In Device Drivers

]
6.6 CONsole Driver

The CONsole driver controls the system console, which consists of two main parts and
the corresponding control mechanisms:

s Built-in display for output.
Terminal driver (refer to "Control Sequences” below).
Fast video interrupt 5Fh (refer to "Fast Video Interrupt" in chapter 5).
Video I/0 interrupt 10h (refer to "Video I/0 Interrupt" in chapter $).
CON expansion interrupt SEh (refer to "CON Expansion Interrupt" in chapter 5).

® Built-in keyboard for input.
Keyboard driver (refer to "Keyboard Operation” at the end of this chapter).
Keyboard I/0 interrupt 16h (refer to "Keyboard 1/0O Interrupt” in chapter 5).

The following overview describes some major aspects of the CONsole driver’s operation.

Display Modes. In Alpha mode, the display shows 25 rows of 80 characters. In
Graphics mode, the display shows 200 rows of 480 pixels. The CONsole driver can
control the displayed output in each of these display modes.

Character Fonts. Within Alpha display mode there are two character fonts: the HP
font and the Alternate font. Only one character font can be displayed at one time. The
HP font contains the Romang8 character set (bold and light), a math character set,and a
line-drawing character set. The Alternate font contains the Alternate character set
(bold and light). Any combination of the current mode’s fonts can appear on the screen
at the same time. Font and mode selection can be performed via escape sequences sent
to the display.

Keyboard Driver Modes. The keycodes generated and the actions performed by
the CONsole keyboard driver depend upon the driver mode (HP mode or Alternate
mode) and the keyboard mode (normal, Scancode mode, or Modifier mode). In Alternate
mode, the driver attempts to emulate an IBM~-compatible keyboard. In HP mode, the
driver provides HP110 compatibility, plus the addition of the various keyboard modes.
The keyboard also provides several terminal-like features:

Built-In Device Drivers 6-23

8 Programmable function keys.

s Menu display.

® Transmit functions mode.

6.6.1 CONsole Control Sequences

The CONsole driver recognizes certain control characters and escape sequences as
commands to perform certain functions. Generally, these characters and sequences are
interpreted as they are sent to the CONsole display (the LCD); simply typing control
characters and escape sequences on the keyboard will usually do nothing special unless
the corresponding key codes are being echoed to the display.

Control Characters.

Table 6-2 lists the control characters handled by the CON

driver. The remaining control character that are not in the table are generally ignored
(and not displayed) by the driver.

Table 6-2. Control Characters

Control Character

Description

Null
~e

Bell
~G

Backspace (BS)
“H

Tab Forward (HT)
~1

This character is ignored and not printed.

If the bell is enabled, an audible beep will be issued;
otherwise, the character is ignored and not printed.

The cursor backspaces one column.

The cursor moves forward to the next horizontal tab stop.
If there are no more tab stops on the current line, the
cursor moves to the first column of the next line. Tab stops
are set at eight-column intervals.

6-24 Built-In Device Drivers

Table 6-2. Control Characters (Continued)

Line Feed (LF)

~J The cursor moves down to the same column in the next

@ line. If it is initially on the last screen line, a Roll Up is
performed.

Carriage Return (CR)
M The cursor moves to the first column of the current line.

Select Alternate Font (SO)
“N Subsequent characters appear in the alternate font, starting
at the cursor position and continuing until an SI (Shift In)
character is received.

Select Primary Font (Sl)
~0 Subsequent characters appear in the primary font, starting
at the cursor position and continuing until an SO (Shift
Out) character is received.

= Escape (ESC)
f [The escape character starts an escape sequence.

Start Output (DC1/XON)
~Q Resumes data transmission. If typed on the keyboard, the
flow of characters to the display may be resumed
(depending on the application).

Stop Output (DC3/XOFF)
~S Suspends data transmission. If typed on the keyboard, the
flow of characters to the display may be suspended
(depending on the application).

Built-In Device Drivers 6-25

HP Two-Character Escape Sequences.

two-character escape sequences described in table 6-3.

Table 6-3. HP Two-Character Escape Sequences

The CONsole driver recognizes the HP

Escape Sequence

Description

Print Screen
ESC O

Cursor Up
ESC A

Cursor Down
ESC B

Cursor Right
ESC C

Cursor Left
ESC D

Reset Terminal
ESC E

Dumps the current screen contents to the printer. Same
effect as pressing or issuing Interrupt S3h.

The cursor moves up one line. If the cursor is at the top of
the screen, a Roll Down occurs. If the cursor is at the top
of display memory, nothing happens.

The cursor moves down one line. If the cursor is at the
bottom of the screen, a Roll Up occurs. If the cursor is at
the bottom of display memory, nothing happens.

The cursor moves right one column, stopping when it
reaches the right side of the screen.

The cursor moves left one column, stopping when it reaches
the left side of the screen.

The CONSsole output driver is reset as follows:
Alpha mode.

Default fonts.

Clear display.

Cursor at home position.

Reset softkeys to default values.

Latin print direction (left to right).

6-26 Buiit-In Device Drivers

Table 6-3. HP Two-Character Escape Sequences (Continued)

Home Down
ESC F The cursor moves to the first column of the blank line just
below the last line of text in display memory. If the last
line of text is also the last line of display memory,
everything moves up one line, discarding the first line of
display memory, to provide a blank line at the end.

Home Up
ESC H The cursor moves to the first column of the first line in
display memory.

Tab Forward
ESC I The cursor moves forward to the next horizontal tab stop.
If there are no more tab stops on the current line, the
cursor moves to the first column of the next line. Tab stops
are set at fixed eight-column intervals. (Same function as

~1 (HT))
Clear to End of Display Memory
ESC J Blanks everything from the cursor to the end of display
memory.

Clear to End of Line

ESC K Blanks characters from the cursor to the end of the current
line.
Insert Line
ESC L Inserts a blank line above the line that the cursor is on.

The cursor moves to the first column of the inserted line.

Delete Line
ESC M Deletes the line that the cursor is on. The cursor moves to
the first column of the next line.

Delete Character
ESC P Deletes the character at the cursor, moving the remainder
of the current line to the left (or right, if in Arabic mode).

Built-In Device Drivers 6-27

Table 6-3. HP Two-Character Escape Sequences (Continued)

Insert Character On
ESC Q Enables insert character mode. Subsequent characters are
inserted just before the character that the cursor is on, W
pushing the remainder of the current line to the right (or
left, if in Arabic mode).

Insert Character Off

ESC R Disables insert character mode.
Roli Up

ESC S The screen moves ahead one line in display memory (text

moves up one line).
Roll Down

ESC T The screen moves back one line in display memory (text
moves down one line).

Next Page ,

ESC U Displays the next "page" of display memory. (A “page" is A%
either 23 or 25 lines long, depending on whether or not
softkey labels are displayed.) The cursor moves to the top
left corner of the new page.

Previous Page Displays the previous page of display memory. The cursor

ESC V moves to the top left corner of the new page.

Display Functions On
ESC Y Enables display functions mode. All subsequent control
codes and escape sequences are printed and not executed,
with these exceptions:
m ESC Z - Displayed, then executed.
® Carriage return ~ Displayed, then executed with a line
feed.

Display Functions Off _
ESC Z Turns off display functions mode. %

6-28 Built-In Device Drivers

Table 6-3. HP Two-Character Escape Sequences (Continued)

Read Primary Status
ESC ©

Returns the following 1 0-byte sequence ("¥' indicates that
a bit can be "0" or "1"):
Byte O: ESC.
Byte 1: \.
Byte 2: Display memory size (always 34h):
0011 0100— 1K Bytes.
I L— 2K Bytes.
4K Bytes.
8K Bytes.
Byte 3: Configuration strap A-D status:
0011 0%0%— A - Function Key Transmission.
| L— B - Space Overwrite.
C - Inhibit EOL Wrap.
D - Page/Line.
Byte 4: Configuration strap E-H status (always 3Ch):
0011 1100— E - Always "0"
| L— F - Always "0".
G - DC2 Handshake.
H - Inhibit DC2.
Byte 5: Latching key status:
0011 0%0%— Caps Lock Key.
I L— Block Mode Key.
Auto LF Mode.
Secondary Status.
Byte 6: Transfer pending flags (always 30h):
0011 0000— Cursor Sense Pending.
| L— Function Key Pending.
Enter Key Pending.
Secondary Status Pending.
Byte 7: Error flags (always 32h).
0011 0010— Datacomm Error.
L— Self-Test OK.
Device Error.
Byte 8: Device transfer pending flags (always 30h):
0011 0000— Device Status Pending.
L— Operation Status Pending.
Byte 9: CR.

Buiit -In Device Drivers 6-29

Table 6-3. HP Two-Character Escape Sequences (Continued)

,Read Relative Cursor Position
ESC * Returns the following 11-byte sequence:

ESC & a ccc x rrr Y W
where ccc is the cursor column (000-079), and rrr is the
cursor row (000-024, relative to the top of the screen). In
Arabic mode, the columns are numbered from right to left.

Read Absolute Cursor Position
ESC a Returns the following 11-byte sequence:
ESC & a ccc ¢ rrr R
where ccc is the cursor column (000-079), and rrr is the
cursor row (000-061, absolute line in display memory). In
Arabic mode, the columns are numbered from right to left.

Enter Line
ESC d Causes the line containing the cursor to be returned.
Home Up
ESC h The cursor moves to the first column of the first line in "%
display memory. (Same as ESC H.)

Tab Backward
ESC i Moves the cursor back to the previous tab stop. If the
cursor is initially at the start of the line, it moves to the
last tab stop on the previous line. Tab stops are set at fixed
eight-column intervals.

6-30 Built -In Device Drivers

HP Alpha Escape Sequences. The CONsole driver uses the alpha escape
sequences listed in table 6-4 to control the alpha display. In sequences requiring
numeric parameters, each parameter is optional--if it's omitted, it defaults to zero.

F\ Almost every escape sequence listed below ends with an uppercase character. The
: uppercase character terminates the sequence. If the corresponding lowercase character
is used, commands that start with the same three characters can be concatenated. For
example,
ESC&a3ri9cC
would move the cursor to absolute row 3, column 19. The escape sequences that affect
softkey definitions (ESC & f) are often used this way. ‘

.g The term "HP Alpha Escape Sequences” refers to those sequences that begin
with the two characters "ESC &"; the name does not imply that all such
Note sequences necessarily perform an "alpha" function.

Table 6-4. HP Alpha Escape Sequences

W\ Escape Sequence Description

Move Cursor to Absolute Column
ESC & a {0...79} C If the target column is beyond the display bounds,
the cursor moves as far as possible. Note that
columns are numbered from right to left in Arabic
mode.

Move Cursor to Absolute Row
ESC & a {0...61} R Zero specifies the top row in display memory, while
61 specifies the bottom row. If the specified row is
beyond display memory bounds, the cursor is moved
as far as possible. The screen will be scrolled as
much as necessary to keep the cursor visible.

Move Cursor to Screen Column
ESC & a {0...79} X If the target column is beyond the display bounds,
@\‘ the cursor moves as far as possible. Note that
columns are numbered from right to left in Arabic
mode.

Built-In Device Drivers 6-31

Table 6-4. HP Alpha Escape Sequences (Continued)

Forward Print (Latin Mode)
ESC & a 2D

Move Cursor to Screen Row
ESC & a {0...22/24} Y

Zero specifies the top row on the screen, while 24
specifies the bottom row (22 if softkey labels are
being displayed). If the specified row is beyond the
screen bounds, the cursor is moved as far as possible.

Move Cursor to Relative Column
ESC & a {tvalue} C

The cursor is moved the specified number of columns
from its current position. If the target column is
beyond display bounds, the cursor is moved as far as
possible. Note that "+" moves left and "-" moves
right in Arabic mode.

Move Cursor to Relative Row
ESC & a {tvalue} R

The cursor is moved the specified number of lines
from its current position. If the target row is beyond
display memory bounds, the cursor is moved as far as
possible. The screen will be scrolled as much as
necessary to keep the cursor visible.

Reverse Print (Arabic Mode)
ESC & at D

Print subsequent text from right to left on the
display. All horizontal movement functions are
reversed, placing column zero at the right side of the
screen and increasing to the left. Additionally,
absolute and relative cursor positioning column
coordinates are reversed, running from 0 to 79, right
to left.

Print subsequent text from left to right on the
display. All horizontal movement functions are
standard, placing column zero at the left side of the
screen and increasing to the right.

6-32

Built -In Device Drivers

Table 6-4. HP Alpha Escape Sequences (Continued)

Select Display Enhancement
ESC & d {@...0) The required parameter selects the enhancement to
: be applied to subsequent characters. The
enhancement is field oriented, staying in effect until
another enhancement is given. The halfbright
enhancement is implemented by using the character
set in font region 2 (light).

Enhancement @ ABCDEFGHIJKLMNOGO

Blinking X X x %X %X %X X x
Inverse X X X X b B X X
Underline X X X X X X X X
Halfbright X K X X X X % X
Softkey Detinition Key Select
ESC & f {1...8} K Specifies which key will be affected by this softkey

definition escape sequence.

1: D softkey.

8: (OB softkey.

Softkey Definition Attribute Select
ESC & f {0...2} A Specifies the attribute for the key being defined in
this definition escape sequence.

0: Normal softkey. String will be treated just as
though it was typed at the keyboard. This is the
default attribute.

1: Local softkey. String will be displayed, but not
entered into the keyboard buffer.

2: Transmit softkey. String will be treated as
though it was typed at the keyboard with an
appended carriage return.

Built-In Device Drivers 6-33

Table 6-4. HP Alpha Escape Sequences (Continued)

Softkey Definition String Length
ESC & f value L Specifies the number of characters in the string for
the key being defined in this escape sequence.
-1: The old string is erased.
0: The old string is left unchanged.

>0: The specified number of characters are read
into the string (following the end of this
escape sequence, after softkey label characters,
if any).

Softkey Definition Label Length
ESC & f value D Specifies the number of characters in the label for
the key being defined in this escape sequence.
-1: The old label erased.
0: The old label is left unchanged.

>0: The specified number of characters are read
into the label (following the end of this escape
sequence).

Softkey Labels Off

ESC & j @ If softkey labels are currently on, turn then off. In
graphics mode, nothing happens.

Softkey Labels On

ESC & j B If softkey labels are currently off, turn then on. In
graphics mode, nothing happens.

Clear/Set Alt Mode Keyboard

ESC & k 0 \ Clear Alt Mode Keyboard (set HP Mode).

ESC & k 1\ Set Alt Mode Keyboard (clear HP Mode).
Clear/Set Auto LF

ESC & k0 A Turn off auto line feed.

ESC & k1 A Turn on auto line feed.
Clear/Set Bell Enable

ESC& kOD Disable the ~G bell.

ESC& k1D Enable the ~G bell.

6-34 Built -In Device Drivers

Table 6-4. HP Alpha Escape Sequences (Continued)

Clear/Set Keyboard Modes

ESC & k {0...3} O Selects keyboard modes.
0: Turn off numeric pad, keycode, and Modifier
modes.

1: Turn on numeric keypad mode.
2: Turn on keycode mode.
3: Turn on Modifier mode.

Clear/Set Caps Lock
ESC & k {0/1} P Permits the caps lock key to be programmatically
turned on and off.
0: Turn off caps lock.
1: Turn on caps lock.

Clear/Set Transmit Functions (Strap A)
ESC & s {0/1} A Enables or disables the transmission of key codes for
local function keys.
0: Turn off Transmit Functions.
1: Turn on Transmit Functions.

Clear/Set Inhibit End-of-Line Wrap (Strap C)
ESC & s {0/1} C Sets end-of -line wrap.

0: Enable end-~of -line wrap. Printing a character
in column 80 causes an implicit carriage return
and line feed to occur.

1: Disable end-of -line wrap. The cursor will
"stick" in column 80. Subsequent characters
will overwrite the character in that column.

Built-In Device Drivers 6-35

HP Graphics Escape Sequences. The CONsole driver uses the HP escape
sequences listed in table 6-5 to control the graphics display. In sequences requiring
numeric parameters, each parameter is optional--if a parameter is omitted, it defaults

to zero. W

ll:' The term "HP Graphics Escape Sequences" refers to those sequences that
i begin with the two characters "ESC %", the name does not imply that all
Note such sequences necessarily perform a "graphic" function.

Table 6-5. HP Graphics Escape Sequences

Escape Sequence Description

Clear Graphics Memory

ESC X d A Clear all pixels in the display if in graphics mode.
Set Graphics Memory
ESC X d B Set all pixels in the display if in graphics mode.
Graphics On 3
ESC X d C Switch to graphics mode (if not already there) and turn on
the graphics display, making visible existing graphics screen
data.

Graphics Off ‘
ESC * d D Turn off the graphics display. Screen data is retained. This
sequence is ignored in alpha mode.

Alpha On
ESC X d E Switch to alpha mode (if not already there) and turn on the
alpha display, making visible existing alpha screen data.
Alpha Oft
ESC X d F Turn off the alpha display. Screen data is retained. This

sequence is ignored in graphics mode. ‘%

6-36 Built -In Device Drivers

Table 6-5. HP Graphics Escape Sequences (Continued)

Alpha Cursor Block/Graphics Cursor On
. ESC X d K In alpha mode, set the primary cursor to "block” and turn it
t” on. In graphics mode, turn on the graphics cursor.

Alpha Cursor Underline/Graphics Cursor Off
ESC X d L In alpha mode, set the primary cursor to "underline" and
turn it on. In graphics mode, turn off the graphics cursor.

Position Graphics Cursor (Absolute)
ESCXdxy 0 Move the graphics cursor to the specified absolute
coordinates (0<=x<=479, 0<=y<=199).

Position Graphics Cursor (Relative)
ESCXdxy P Move the graphics cursor the specified distance from its
current position. (The cursor will not move past the edges
of the display.)

Alpha Cursor On (Primary/Secondary)
W\ ESC * d value Q Turn on the alpha cursor.

0: Turn on primary cursor (default).
1: Turn on secondary cursor.

Alpha Cursor Off
ESC X d R Turn off the cursor.

Set Drawing Mode
ESC X m value A Selects the way in which dots, lines, and area patterns are

written to the graphics display.

: No change.

: Clear (turn off graphic bits).

: Set (turn on graphic bits).

: Complement (toggle graphic bits).

: Jam (turn bits on or off according to data).

HwWwhN—-O

Built~In Device Drivers 6-37

Table 6-5. HP Graphics Escape Sequences (Continued)

Set Line Type
ESC * m value B Selects one of 10 line types. Once selected, all subsequent
vectors will be drawn using that line type. ' 5
msuusnsm Solid line (default).
User-defined line pattern.
Same pattern as 2.
[{ | Is]a] Ja]a]
RERENEOD
[1 []| [u]s]s]a]
M [s] [=] J] [s]
. BESEREORD
M _{=] =] [=]a]a]
[1] fa] [n] a

CWOWAO~NOUHWN —

Define Line Pattern and Scale
ESC X m pat scl C Defines the dot pattern used to draw vectors of line type 2.
N The first parameter is in decimal form. The optional
second parameter specifies a scale factor that will be
applied to the pattern of all subsequently drawn lines. f’%
(Each pixel is repeated scl times.) If the scale is not
specified, it defaults to 1.

Set Relocatable Origin)
ESCXmx yJ Moves the relocatable origin to the specified absolute
coordinates.

Set Relocatable Origin to Pen Position
ESC X m K Moves the relocatable origin to the current pen position.

Set Relocatable Origin to Cursor Position
ESC X m L Moves the relocatable origin to the current graphics cursor
position.

6-38 Buiit -In Device Drivers

Table 6-5. HP Graphics Escape Sequences (Continued)

Set Graphics Defaults
\ ESC X m R Selects the default (reset) values for the following graphics
p parameters:

& Graphics Cursor Off.
Graphics Display On.
Relocatable Origin at (0,0).
"Set Pixels" Drawing Mode.
Linetype 1 (solid).
Pen Up.
Pen to (0,0).
Graphics Cursor to (0,0).
User Line Pattern 1.
Line Scale Factor 1.

Litt Pen
ESC X p A Raises the graphics pen so that subsequent pen movement
will not draw lines.

W’*\ Lower Pen
\ ESC X p B Lowers the graphics pen so that subsequent pen movement
will draw lines.

Move Pen to Graphics Cursor Position
ESCxp C If the pen is down, a line will be drawn as determined by
the current drawing mode and line type.

Draw Single Dot at Current Pen Position
ESCXxpD The dot will be drawn in accordance with the current
drawing mode (set, clear, complement, no change).

Set Relocatable Origin to Current Pen Position
ESC X p E Sets the relocatable origin to the current pen position.
Relocatable Format parameters will be referenced to this
point.

@ " JUse ASCII Absolute Format
' ESC X p F States that subsequent X and Y parameters are absolute
graphics display coordinates. (Default.)

Built -in Device Drivers 6-39

Table 6-5. HP Graphics Escape Sequences (Continued)

Use ASCIlI Incremental Format
ESC X p G States that subsequent X and Y parameters are relative to
the current pen position.

Use ASCIl Relocatable Format
ESC X p H States that subsequent X and Y parameters are relative to
the current position of the relocatable origin.

NOP/Synch
ESC X p Z This command is useful as a graphics sequence terminator.
Its only function is to clear the parameter buffer; it can be
used to end long pen movement sequences (for example,
"ESC X pa0,0 55 20,10 2.
Move Pen
ESCXpxy ... Upon receipt of any command or parameter delimiter (a

space or comma), if two valid parameters have been
specified the pen is moved (drawing a line if it is currently |
lowered) to the appropriate coordinates (determined from
the parameters, the current pen position, and the current
drawing format).

Read Device ID
ESC X s value © Returns a device specific string into the keyqueue, followed

by a carriage return. This is among the “graphics”
sequences because it is typically used, in HP terminals, to
return various types of graphics status. Only a minimal
subset is included in this computer.

0: Returns model number and CR.

1: Returns model number and CR.
110: Returns serial number and CR.

6-40 Built-In Device Drivers

ANSI| Escape Sequences. The CONsole driver uses the ANSI escape sequences
listed in table 6-6 to control the display. All ANSI escape sequences begin with
"ESC [", followed by one or more optional parameters, and end with an alpha character
~ (usually). Multiple parameters are separated by semicolons (";"). Unspecified or zero
~ parameters are usually treated as "1".

Table 6-6. ANSI| Escape Sequences

Escape Sequence Description

Cursor Up n Lines (CUU)

ESC [p1 A Moves the cursor up the specified number of rows; the
column remains unchanged. The cursor will not move past
display memory bounds. The screen will scroll as much as
necessary to keep the cursor visible. The default parameter
is. L.

Cursor Down n Lines (CUD)
ESC [pI1 B Same as CUU, but the cursor moves down.

@ Cursor Right n Columns (CUR)
ESC[p1C Moves the cursor right the specified number of columns;
the row remains unchanged. The cursor will not move past §
the screen bounds. The default parameter is 1.

Cursor Left n Columns (CUL)
ESC [pI D Same as CUR, but the cursor moves left.

Move Cursor to Absolute Position (CUP)

ESC [pI;p2 H Moves the cursor to the position specified by the two
parameters. The first one specifies the row, while the
second specifies the column.

pI: Target line number (1...62).
p2: Target column number (1. ..80).

Erase Display (ED)

ESC[0J Clear to end of display memory (default).
{5 ESC [tJ Clear to beginning of display memory.
ESC[2] Clear entire display memory.
|

Built -In Device Drivers 6-41

Table 6-6. ANSI| Escape Sequences (Continued)

Erase Line (EL) |
ESC [0 K Clear to end of line (default).
ESC[1 K Clear to beginning of line. w
ESC [2K Clear entire line.
Insert n Lines (IL)
ESC [pI1 L Inserts one or more blank rows into the row containing the
cursor by shifting the contents of the current row and all
following rows the specified number of lines. Lines at the
end of display memory will be lost. Thecursor is placed in
the first column of the first newly inserted blank line.
Delete n Lines (DL)
ESC [pIi M The specified number of lines will be deleted, beginning the
with line containing the cursor. Subsequent lines will be
moved up to fill the void, scrolling in blank lines at the end
of display memory. The cursor is placed in the first column
of the first line that moves up into the void.
Delete n Characters (DCH) ﬁ%

ESC [p1 P Deletes one or more characters from the cursor position
onward to the right (or left, if in Arabic mode). As
characters are deleted, the remainder of the line shifts as
necessary to fill the void. Blanks shift in at the end of the
line.

Cursor Position Report (CPR)
ESC [pl;p2 R This sequence is the proper response to a Device Status
Report (DSR) sequence. (Refer to "ESC [6 n" below.)
pl: Cursor row.
p2: Cursor column.

Next Page/n Pages (NP)
ESC[p1 U Move ahead the specified number of "pages" in display
memory. Normally, a page contains 25 lines; a page is only
23 lines long, however, when softkey labels are displayed. W

6-42 Built -In Device Drivers

c

m | 27: End-of-Line Wrap On.

Table 6-6. ANSI Escape Sequences (Continued)

Previous Page/n Pages (PP)

ESC[p1 V Same as CNP, but moves back the specified number of
pages.
Move Cursor to Absolute Position (HVP) H
ESC [pI;p2 f Same as CUP.
Set Mode
ESC [pI h Set display mode. Multiple parameters may be included if

they’re separated by semicolons ("").
4: Insert Character On (IRM).
=0: Alpha Mode On. (IBM: Set 40x25 b&w)
=1: Alpha Mode On. (IBM: Set 40x25 color)
=2: Alpha Mode On. (IBM: Set 80x25 b&w)
=3: Alpha Mode On. (IBM: Set 80x25 color)
=4: Graphics Mode On. (IBM: Set 320x200 color)
=5: Graphics Mode On. (IBM: Set 320x200 b&w)
=6: Graphics Mode On. (I1BM: Set 640x200 b&w)

=8: Alpha Mode On.
=10: Graphics Mode On.
?7: End-of-Line Wrap On.

Reset Mode
ESC [p11 Reset display mode. Multiple parameters may be included
if they’re separated by semicolons (*}").
4: Insert Character Off (IRM).
=0: Alpha Mode Off. (IBM: Reset 40x25 b&w)
=1: Alpha Mode Off. (IBM: Reset 40x25 color)
=2: Alpha Mode Off. (IBM: Reset 80x25 b&w)
=3: Alpha Mode Off. (IBM: Reset 80x25 color)
=4: Graphics Mode Off. (IBM: Reset 320x200 color)
=5: Graphics Mode Off. (IBM: Reset 320x200 b&w)
=6: Graphics Mode Off. (1BM: Reset 640x200 b&w)
=7: End-Of-Line Wrap Off.
=8: Alpha Mode Off.
=10: Graphics Mode Off.
?7: End-Of-Line Wrap Off.

Built-in Device Drivers 6-43

Table 6-6. ANSI| Escape Sequences (Continued)

Set Graphics Rendition (SGR)

ESC [pI m Specifies the attributes to be used with subsequent output
characters. Multiple parameters may be specified if they’re
separated by semicolons (*}").

: All attributes Off.
: Half bright On.
: Underline On.
: Blinking On.
: Inverse On.
: Use HP fonts.
: Use Alt fonts.

—*ONUI&—-O

1
1

Device Status Report (DSR)
ESC[6 n Returns a Cursor Position Report (CPR) sequence for the
current cursor position. (Refer to "ESC [pI;p2 R"above)

Save Cursor Position (SCP)
ESC [s The current cursor row and column is saved.

Restore Cursor Position (RCP)
ESC [u Moves the cursor to the row and column that was
previously saved with the SCP sequence.

6-44 Built-In Device Drivers

6.6.2 Keyboard Operation

The CONsole driver normally recongizes each keystroke and generates one or more
codes that it places in the keyqueue. The driver has two modes that determine how it
processes keystrokes:

m HP mode (usually associated with the Roman8 character font). Provides these
features.
"Local function" keys for display control.
Programmable function keys.
Softkey menu display.
Scancode mode.
Modifier mode.
Transmit functions mode.

@ Alternate mode (usually associated with the Alternate character font). Provides
compatibility with IBM operation.

Notice that although driver modes are frequently associated with corresponding
character fonts, the treatment of keystrokes and display characters are two entirely
separate unrelated functions. It is perfectly fine to operate the keyboard in Alt mode
using HP fonts.

The Alternate mode keyboard is enabled by the HP Alpha sequence "ESC &k1\". The
Alternate font is enabled by the ANSI sequence "ESC [1{m".

The CONBsole driver mode is controlled by the "ESC &kn\" escape sequence and the
"H/h" 1/0 control functions.

Function Keys. Each function key ((d1) through (8)) has default keycodes in each
of the driver modes (refer to chapter 13). In HP mode, a definition assigned to a
function key is generated when that key is pressed, regardless of whether or not the
menu is displayed. In Alt mode, the function keys are assigned IBM-compatible
keycodes; (02 and (FID) are represented by the and keys,
respectively.

Definitions and menu labels are assigned by "ESC & f" escape sequences.

Built -In Device Drivers 6-45

Keys Affected by Transmit Functions Mode. Transmit Functions mode is

available only in HP mode. When turned off, most of the top row of keys on the

keyboard can be used to perform local screen editing. When turned on, these same keys
instead add to the keyqueue the escape sequences that correspond to their local

functions (the (A key, for example, would add "ESC A" to the keyqueue rather than W
actually move the cursor up one line). The following list summarizes the keys that are
affected by Transmit Functions mode.

Keys Operation

) Cursor Left

@ Cursor Up

&) Cursor Down
® Cursor Right
ExtendH(TD Clear Line

€Z29) Clear Display
™ Insert Line

e Delete Line

D Insert Character
a® Delete Character
©))] Home Up
Extend @ Previous Screen
6D Next Screen W
O] Home Down
Enter

Keys That Generate Interrupts. Several keys generate software interrupts, which
are described in chapter 5. (Ment) and (User/System) have an effect only in HP
mode.

Turns the function key labels on and off by issuing Interrupt 56h. (Int
$6h can be programmatically called to toggle function key labels on and
off as well; similarly, taking over Interrupt 56h will cause key
presses to enter your own interrupt handler.)

UseD) Typically used to select user mode function keys. Sets bit 2 of register AH
and generates Interrupt $7h.

™

(System) Typically used to select system mode function keys. Clears bit 2 of register
AH and generates Interrupt S7h.

Copies the current display to the PRN device. Generates Interrupt $3h.

6-46 Buiit-in Device Drivers

Keyboard Modes. The CONsole driver defines four keyboard modes that determine
how keystrokes are interpreted and placed in the keyqueue. The four modes are
described in the following paragraphs.

m Normal (character code) mode.
® Scancode mode.
® Numeric keypad mode.

m Modifier mode.

Character Code Mode. While the keyboard is in character code mode, each
keystroke generates one or more character codes that are added to the keyqueue. The
character codes depend upon the CONsole driver mode: HP mode or Alternate mode. In
addition, normal "character" keys generate character codes that depend upon the
keyboard language-~-the mapping provided by the localized configuration EPROM.
This is the normal operating mode for the keyboard. (Refer to chapter 13 for keyboard
mapping and character codes.)

Scancode Mode. When in scancode mode, pressing a key adds that key’s scancode
(rather than character code) into the keyqueue. A scancode is simply a number from 0
to 71 that refers to a key’s physical position on the keyboard. Nearly every key on the
keyboard occupies a unique position in the keyboard matrix and can be sensed in terms
of its matrix position; the exceptions are the modifier keys (Ex¥tend), (CTRD), and
(BRifD) and the contrast key (@).

Contrived scancodes for the modifier keys are constructed and added to the the key
queue each time any modifier key makes a downward or upward transition; the
resultant code is 80h plus, in the low three bits, the final states of the three modifier
keys after the transition is finished.

1 0 0 0 0 b2 b1 boO Modifier Key
"Scancode”

I L State of (CTRD) key
State of key

State of key

Built -In Device Drivers 6-47

The pseudo-scancodes 80h-87h (128-1335) can therefore be generated by the modifier
keys. Figure 6-4 shows the keyboard and indicates the scancodes associated with each
key.

Figure 6-4. Keyboard Scancodes

1 0 9 8 17 16 24 33 32 41 40 48 57 56 65
mo|f2 |13 |4 [Menu|syst| 5 |t6 |17 |8 |sel || AW D>
7 0 B 13 25 26 3 1] 13 29 50 58 5§ 6
ot 23|45 |6 |7 |8 |90~ |=] Bk
3 4] T 20 28 o7 k3 35 LY} 143 &0 5] [3:) &7
Tab Q w E R T Y U | 0 P [] \
4 11 13 22 21 30 1] 37 45 53 5] (3] 70
Caps|CTRL| A S D F G H J K L : ' Return
15 6 14 23 31 38 46 47 55 54 62
Esc{shift [z | x |c|v || N|[M|.|. |7 |snit |(P
7 E t 39 Ext 7
Ent X X
" char char Stop

Scancodes are shown in the upper left corner of the keys.
Scancodes not used: 63, 64.

“:' In Scancode mode, the (Tab) key generates the code 03h, which appears to
‘ be ~C to the operating system. This can cause the program to terminate
Note during printing or file operations.

Numeric Keypad Mode. The keyboard of the Portable PLUS includes an embedded
numeric keypad (indicated by blue numbers and symbols on the front faces of the
keycaps). The numeric keypad is activated by pressing (Extend)(Select), and can be
used in both HP and Alt modes. When turned on, the embedded numeric keyboard
generates only the indicated numeric pad keycode, regardless of whether or not any
modifier keys are depressed (with one Alt mode exception, which will be discussed
shortly). Pressing a second time turns off the numeric pad, and the
keyboard reverts to its normal format.

6-48 Built-In Device Drivers

In Alt mode, the numeric keypad can be used to generate any keycode: with the
numeric keypad turned on, hold down the (Extend) key and type, on the numeric pad,
the decimal value of the keycode you wish to generate. When you release the
key, the keycode you have specified will be added to the keyqueue.

The numeric keypad will not function in Scancode mode.

Modifier Mode. Modifier Mode combines certain features of Scancode Mode and
normal keyboard mode. Generally, the keyboard functions as it normally does in
Character Code mode. Modifier keys, however, add pseudo-scancode values to the
keyqueue on their upward and downward transitions, as they do in Scancode mode.
Certain local function keys add special one-byte values to the keyqueue and generally
do not perform their usual function (the key is an exception). Also, Transmit
Functions mode is always active, but the initial escape character normally generated by
any key that issues a two-character escape sequence will be added to the keyqueue with
the sign bit set (9Bh rather than 1Bh).

Built-In Device Drivers 6-49

6.6.3 CONsole I/0 Control Functions

The CONsole driver provides several 1/0 control functions. Refer to the MS-DOS
Programmer's Reference Manual for information about using these functions. Table
6--7 lists the write control functions.

Table 6-7. CONsole Write 170 Control Functions

Function Description

Request Keyqueue Lookahead
? Requests that a subsequent CON read control function

next table for details.)

Enable HP Mode (Disable Alt Mode)
H Puts CONsole driver in HP mode.

Enable Alt Mode (Disable HP Mode)
h Puts CONSsole driver in Alt mode.

Request Console Mode Information
M Requests that subsequent CON read I/0 control return

(Refer to the next table for information.)

Enable Numeric Keypad
N Turns on the numeric keypad.

Reset Keyqueue
Q Flushes the type-ahead buffer.

Enable Modifier Mode
X Turns on Modifier mode. In this mode, every key on the
keyboard adds a one- or two-character keycode to the
keyqueue. Modifier keys ((CTRD), (SRif1), and (Extend))
add keycodes at both their upward and downward
transitions.

return the next character from the keyqueue. (Refer to the

information about the current state of the CONsole driver.

6-50 Built -In Device Drivers

™

Table 6-7. CONsole Write I/0 Control Functions (Continued)

Disable Special Modes

Y Cancels all of the special keyboard modes: Numeric Keypad
f mode, Modifier mode, and Scancode mode.

Enable Scancode Mode
Zz Turns on Scancode mode. In this mode, every matrix key
adds its scancode, rather than normally processed keycode,
into the keyqueue. Modifier keys generate
pseudo-scancodes on both their upward and downward
transitions. Note that both left and right shift keys have r
the same scancode.

Table 6-8 lists the read control functions. The function request character is specified
@‘ by the most recent write control function call (refer to the previous table).

Table 6-8. CONsole Read 1/0 Control Functions

Function Description

Request Keyqueue Lookahead
? Returns the next byte in the keyqueue. If the keyqueue is
empty, -1 is returned. If the I/0 control call sets CX to a
value greater than one, the same next byte (or -1) will be
returned the number of times specified by CX.

Built-In Device Drivers 6-51

Table 6-8. CONsole Read I/0 Control Functions (Continued)

Request Console Mode Information
M Returns up to four bytes of current CONsole driver status
information. CX specifies the number of bytes to read,;
fewer than four can be read, but if more than four are
requested, only the first four are meaningful. The four
status bytes are:
Byte O
Bit 0: Alpha cursor is on.
Bit 1: End~of~-line wrap enabled.
Bit 2: Softkeys are being displayed.
Bit 3: Insert Character mode is on.
Bit 4: CapsLock is on.
Bit §: Transmit Functions is on.
Bit 6: HP mode is active.
Bit 7. Modifier mode is active.
Byte 1
Bit 0: Scancode mode is active.
Bit 1: Softkey label capture enabled.
Bit 2: Softkey string capture enabled.
Bit 3: Auto Linefeed is on.
L Bit 4: Bell is enabled.
Bit §: Graphics mode is on.
Bit 6: Output is stopped.
Bit 7. Primary cursor is "block".
Byte 2
Bit 0: Numeric pad is active.
Bit 1: Graphics cursor is on.
Bit 2: Graphics pen is raised.
Bit 3: (Reserved.)
H Bit 4: Numeric keypad is generating a keycode.
Bits 5-7: (Reserved.)
Byte 3
Bit 0: Blinking enhancement enabled.
Bit 1: Inverse enhancement enabled.
Bit 2: Underline enhancement enabled.
Bit 3: Halfbright enhancement enabled.

6-52 Built-In Device Drivers

Low~-Level
4 Hardware Interface

|
7.1 Introduction

For applications that don’t require compatibility with other computers, certain
operations may be performed using a low-level hardware interface. That is, the
application may directly control the individual circuits performing the operations,
rather than using "standard" system functions. This chapter describes the low-level
hardware interface for these circuits:

a Multi-controllers (keyboard, serial and modem interfaces, timers).
s HP-IL controller.

a Display controller.

7.2 170 Memory Map

The CPU has a IM-byte system memory address space and a 64K -byte 1/0 address
space. The I/O address space contains the read and write registers that control the
hardware circuits. Figure 7-1 illustrates the 1/O address space. High bytes have odd
addresses; low bytes have even addresses.

Low -Level Hardware Interface 7-1

Figure 7-1. 170 Address Space

0000h
0020h
0040h
0050h
0060h
0080h
00A0h
00B0h
00CCh
00EOh
0100h
0400h
8000h
C000h

FFFFh

Reserved

HP-IL Interface

Serial Interface
Timer 2

PPU

Display Controller

Keyboard/Modem Interface
Heartbeat Timer

Plug-In Port 2
Plug-In Port 1
Reserved

Available
Configuration EPRGOM

Available

Detailed information about the registers used by each circuit is included in the

following sections.

7-2 Low ~-Level Hardware Interface

]
7.3 Multi-Controllers

The computer contains fwo 1LK S multi-controller ICs: one associated with the modem
interface and keyboard, and one associated with the serial interface.

Each multi-controller has the following capabilities:

= Keyboard interface.

= Interval timer.

® Serial port (for built-in serial interface or optional modem).

s Multi-purpose port.

All of these functions share a common eight-bit data bus. Timing is provided by an
external clock signal. The keyboard interface and multi-purpose port can generate or
propagate an interrupt while the system is in sleep mode (with the external clock turned
off).

7.3.1 Keyboard Interface

The system keyboard interface is provided by only one of the multi~controllers. (This
capability in the other multi-controller isn’t used.) It serves two purposes:

m Generating an interrupt if enabled whenever the state of the keyboard changes
(whenever a key is depressed or released). Key debounce is provided by delaying the 7
interrupt by an appropriate time period.

m Latching the state of the keyboard so that the row and column information can be
read from the data bus. Function-modifier keys ((Shift), (CTRD), and
(Extend char)), which are intended to be depressed while other keys are pressed,
have a separate input port with a single input line for each key.

When a key is depressed or released, row and column comparators detect the change in
the state of the keyboard lines. When this occurs, the keyboard interface starts a timer
to give the line enough time to settle (debounce time).

Low-Level Hardware Interface 7-3

After the debounce time has elapsed, the interface circuitry senses the row and column
comparators to check if the key change is still present. If the key change is no longer
present at the end of the debounce time, the interface circuitry resets the debounce
timer and continues sampling the keyboard lines. If a key change is still present at the
end of the debounce time, an interrupt is generated. At the same time, the state of the
keyboard is latched, and sampling of the keyboard is discontinued. The interface
circuitry remains in this state until the interrupt is cleared.

One bit in a status register indicates whether a matrix key generated the interrupt. If
this bit is set when the register is read, the state of the row and column buffers must
then be read in order to identify the depressed key.

The process for detecting a change of state of a nonmatrix Key is simililar to the process
Just described, except that the key that caused the interrupt is immediately identified
by a bit in the status register (reading from the buffer is unnecessary). The states of
matrix and nonmatrix keys are latched at the end of the debounce time, regardless of
whether a matrix or nonmatrix key initiated the interrupt process.

Two registers are used to disable or clear interrupt requests from the keyboard or the

system interrupt lines. When an interrupt is cleared, the interrupt source is then able to
generate another interrupt immediately following this bus cycle. In addition, when an
interrupt is cleared, the Jatch associated with the corresponding comparator is updated, w
so that the comparator is set-up to detect the next change of state.

The debounce timer is automatically reset whenever the system is in sleep mode and at
the time when the last pending keyboard interrupt is cleared. If a key is pressed while
the machine is in sleep mode, an interrupt is immediately generated without any
debounce delay. In this situation, no status bit is set until the system wakes up. Then
the debounce timer begins counting, and at the end of the debounce time another
interrupt is generated and the appropriate status bit is set.

7.3.2 Interval Timer

Each of the two multi-controllers provides an interval timer. Each interval timer isa
24-bit binary counter with a resolution of 2.25 microseconds and a range of 37 seconds.
The timers can generate automatically repeated interrupts at a software-defined

interval. 7 %

Timer 1 provides the system "heartbeat" timer (18 interrupts per second). These
interrupts generate the timer tick (interrupt 1Ch), and control key repetition and
timeout. This timer is devoted to the BIOS.

7-4 Low -Level Hardware Interface

Timer 2 controls the "Return to Command" sequence timing for the optional modem
whenever the modem is turned on.

7.3.3 Serial Port

Each multi-controller provides a serial port (UART): one for the built-in serial
interface, and one for use with the optional modem. Each serial port contains a
parallel-to-serial transmitter and an independent serial-to-parallel receiver. These are
double buffered, programmable ports with variable baud rates, word lengths, stop bit
lengths, and parities. The receivers enable the CPU to detect the incoming baud rate.

Data transmission and reception may be interrupt driven or accomplished by means of
software polling. The transmitter can be programmed to send either CPU data or
breaks (all zero transmission).

The multi-controller enables testing of transmitter and receiver logic at operating
speed. This is accomplished by internally routing transmitted data to the receiver serial
input line and allowing the CPU to access the receive shift register.

The serial port consists of a transmitter, a receiver, and associated control and status
registers. Data transmission is asychronous with respect to data reception.

Transmitter Operation. When the system is awake, the transmitter is idle if no
break is pending and if no data is waiting to be sent out.

Break transmission is initiated by setting a bit in the control register. Breaks are
continuously transmitted as long as the bit is set. Note that a break transmission has
precedence over a data transmission.

Data transmission is initiated by writing to the transmit data register. This action clears
the "transmit data register empty" flag. The register contents are first loaded into the
transmit shift register. Then, the empty flag is set, signaling that the transmit register is
empty. If enabled, the transmitter interrupt is asserted. New data can now be written
to the transmit data register. Data transmission proceeds. When the stop bits have
finished, the transmitter returns to the idle state.

Receiver Operation. The receiver input data stream has two sources, which are
controlled by the loopback option. When loopback is inactive, the serial input is gated

Low -Level Hardware Interface 7-5

to the receiver’s input data line. When loopback is active, the transmitter’s output is
selected as the receiver’s input.

The state of the receiver input data line can be read from a bit in the status register.
The CPU can sample this bit to determine the incoming baud rate.

The receiver is idle as the system wakes up. It remains in this state until a valid start
bit is detected. When this occurs, the receiver enters its receive mode and shifts in the
programmed number of data bits. If parity is enabled, the parity bit is sampled next.
The receiver then samples the first stop bit.

After the incoming frame has been processed, the receiver is ready to update its status
and data register. If "receive data register full" flag is clear, the receiver assumes the old
register contents and status have been read, and it loads the new data word. The parity
error, framing error, and break detect flags are set accordingly, and the overflow error
is cleared. The full flag is then set, and (if enabled) the receiver interrupt is also
asserted.

If full flag was initially set, only the overrun error flag is set. The receive register and
the remaining status bits remain unchanged. The new data word and its status
information are discarded. To clear the "receive data register full" flag, the CPU simply
writes a 1" to bit 1 of the control register (004 8h).

Initializing the Serial Port. The receiver and transmitter enter their idle states as
the system wakes up. The proper baud rate, word and stop bit length, and parity
selection must be programmed before data can be sent or received reliably.

The transmitter remains idle until a break is forced or until the "transmit data" register
is loaded.

Because the multi-controller places the serial port in loopback mode when the system is
reset, the state of the receive line has no effect on the receiver until loopback is
deactivated. This allows the control registers to be initialized to the proper settings
before the receiver enters the receive mode.

7-6 Low -Level Hardware Interface

7.3.4 Multi-Purpose Port

Each multi-controller provides a multi-purpose port, which consists of four interrupt
lines. Operation of the mulit-purpose interrupt lines is asynchronous and is unaffected

W by the system clock or the state of the keyboard interface processing. These interrupt
lines are negative edge-triggered. to trigger on either the rising or falling edge of the
interrupt input line.-

7.3.5 Registers - Overview

Each multi-controller contains 16 internal registers. These registers exist in I/0
memory at even addresses, low byte only. Table 7-1 summarizes their functions.

Low -Level Hardware Interface 7-7

Table 7-1. Multi-Controller Registers

170 Address Function
0040h Interrupt status
0042h Interrupt control
0044h Write: Serial baud select (low byte)
0046h Write: Serial baud select (high byte)
004 8h Serial control/status
004Ah Serial data
004Ch Serial interrupt control
004Eh Read: Serial/Timer 2 interrupt status
0050h (Reserved)
0052h Timer 2 reference (high byte)
0054h Timer 2 reference (middle byte)
0056h Timer 2 reference (low byte)
0058h Timer 2 control
005Ah Timer 2 counter (high byte)
005Ch Timer 2 counter (middle byte)
00SEh Timer 2 counter (low byte)
00AOh Keyboard/multi-purpose interrupt status
00A2h Keyboard/multi-purpose interrupt control
00A4h Read: Keyboard column latch
Write: Modem baud select (low byte)
00A6h Read: Keyboard row latch
Write: Modem baud select (high byte)
00A8h Modem control/status
00A AR Modem data
00ACh Modem interrupt control
00AER Read: Modem/Heartbeat Timer interrupt status
Write: Keyboard debounce disable
00BOh (Reserved)
00B2h Heartbeat timer reference (high byte)
00B4h Heartbeat timer reference (middle byte)
00B6h Heartbeat timer reference (low byte)
00B8h Heartbeat timer control
OOBAh Heartbeat timer counter (high byte)
00BCh Heartbeat timer counter (middle byte)
OOBEh Heartbeat timer counter (low byte)

Low -Level Hardware Interface

The following paragraphs describe the operation of each register. Registers are grouped
functionally: keyboard function, serial/modem function, and timer function. Where
appropriate, registers are discussed in pairs--one from each of the two
multi-controllers.

7.3.6 Registers - Keyboard Function

The keyboard interface has five address locations associated with it. The first address
provides access to the read-only Interrupt Status register and the write-only Clear
Interrupt register. The two other address locations provide read-only access to the eight
bits of the row and column lines of the keyboard matrix. The fourth address location
accesses the inverted multi-purpose port lines, which consist of one keyboard matrix
column line, three modifier-key lines (for shift-type keys), and four falling-edge
triggered interrupt lines. The fifth address location controls keyboard debounce.

The input clock signal is stopped while the system is in sleep mode. In sleep mode the
sampling latches for the keyboard column lines and the multi-purpose lines are driven
to a transparent state, and the row line drivers are turned on. An active transition of a
column line or multi-purpose line is thus capable of generating an interrupt (if not
disabled). Under this condition the debounce timer is bypassed (no delay for a
key-generated interrupt). No other latches are affected by sleep mode.

When the system is reset, all interrupt source and status lines are cleared and disabled.
Keyboard Interrupt Status (OOAOh Read). The Interrupt Status register is the
access to the latches that store the interrupt requests for the keyboard and the
multi~purpose interrupt lines. This register is unaffected during sleep mode and is
cleared to all zeros when the system is reset.

Bit 7 set to "1" indicates a change of state in a matrix key line.

Bits 6 through 3 give status information about interrupts from the multi-purpose port,
which are discussed separately later.

Bit 2 set to "1" indicates that (EXT_char) is pressed.
Bit 1 set to "1" indicates that (Shif1l) is pressed.

Bit O set to "1" indicates that (CTRL) is pressed.

Low -Level Hardware Interface 7-9

Keyboard Cilear Interrupt Request (OOAOh Write). The Clear Interrupt
Request register allows the user to clear each individual interrupt independently. The
Clear Interrupt register is different from the Disable Interrupt register in that the
interrupt lines become active immediately upon completion of the bus cycle that writes
a clear to the individual interrupt sources. When an interrupt occurs, the interrupt
service routine must clear the interrupt using this register.

In addition to clearing the interrupt latches, a "1" bit written to a bit position
corresponding to the keyboard matrix or any extra column lines will update the
comparator latches and set up the keyboard to generate an interrupt on the next change
of state.

This register is not affected by sleep mode, but it is cleared when the system is reset.
Bit 7 set to "1" clears interrupt requests for all matrix keys.

Bits 6 through 3 clear interrupt requests for the multi-purpose lines, which are
discussed separately below.

Bit 2 set to "1" clears interrupt requests for the key.
Bit 1 set to "1" clears interrupt requests for the key. 3

Bit 0 set to "1" clears interrupt requests for the (CIRD) key.

Keyboard Disable Interrupt Control (OOA2h Write). The latch at this address
provides control over which interrupt sources are disabled. Setting a bit in this register
disables the corresponding interrupt source and clears any pending interrupt from that
source. All interrupt sources are unaffected in sleep mode, and are disabled when the
system is reset.

".' This register is not Read/Write. You're advised to use the "Alter Interrupt
; Control Register" system service (Int 50h) to avoid disabling BIOS
Note functionality.

Bit 7 set to "1" disables interrupts from all matrix keys.

Bits 6 through 3 disable interrupts for multi-purpose lines, which are discussed
separately below. '

7-10 Low -Level Hardware Interface

Bit 2 set to "1" disables interrupts from the key.
Bit 1 set to "1" disables interrupts from the (SRITD) key.

Bit O set to "1" disables interrupts from the (CTRD) key.

Keyboard Control Status (OOA2h Read). This register provides access to the
status of lines. All lines are sampled and latched to provide synchronous access from the
data bus. In sleep mode the sampling latches are driven to a transparent state.

Bit 7 set to "1" indicates that a key on matrix column line C9 is pressed.

Bits 6 through 3 indicate the states of the multi-purpose lines, which are discussed
separately below.

Bit 2 set to "1" indicates that is pressed.
Bit 1 set to "1" indicates that is pressed.

Bit O set to "1" indicates that (CTRL) is pressed.

Keyboard Column Latch (0OOA4h Read). The Column Latch is an eight-bit
read-only address location containing the inverted state of the latches that sample the
column lines of the keyboard matrix.

Bits 7 through O individually set to "1" indicate that keys on the corresponding column
lines (C8 through C1) are pressed.

Keyboard Row Latch (OOA6h Read). The Row Latch is an eight-bit read-only
address location containing the state of the latches that sample the row lines of the
keyboard matrix. These latches stop sampling during sleep mode (holding the state of
the rows at the time the system went to sleep).

Keyboard Debounce Disable (OOAEh Write). The Keyboard Debounce timer
can be bypassed by setting bit 3 to a "1". Reseting the bit to a "0" allows the debounce
timer to delay interrupt generation. Bit 3 set to "1" causes any change in the state of
the keyboard to be held in the sampling latches; an interrupt is generated within one
clock period of when the key transition is sampled. Note that only a single row or

Low -Level Hardware Interface 7-11

column transition is reflected in the state of the sampling latches since the row and
column lines are not sampled simultaneously.

Other bits have no effect. w
This register is not affected during sleep mode. Bit 3 is set to 1" when the system is

reset.

7.3.7 Registers - Serial Port

Both multi-controllers can use their serial-port registers. One IC interacts with the

modem interface; the other IC interacts with the serial interface. In the descriptions

that follow, the first address corresponds to the serial interface, the second address
corresponds to the modem interface.

J There are two serial interface inputs which are not handled by a
1 : . .
i multi-controller. DSR* and CTS* are stored in bits 6 and 7 respectively of
Note a register at I/O address 2Fh (the auxiliary input register of the HP-IL

controller). %

Serial/Modem Baud Select Low (0044h/00A4h Write). This register,
combined with six bits of the next register, determine the baud rate for the
corresponding port. The receive and transmit clock frequencies are derived from the
2.667-MHz input clock. The binary value in the Baud Select registers (14 bits) is used to
divide the clock down to the sample rate for the baud clocks. The value is the binary
representation of the following decimal equation:

value (decimal) = (1,333,500 / baud) - 1

For example, the value 138 (008Ah) produces 9600 baud; the value 4444 (115Ch)
produces 300 baud.

Bits 7 through 0 are the eight least significant bits of the binary value. (The next
register contains the six most significant bits.) E)

The 14 bits of the baud rate divisor (contained in this and the following register) take
the value of 5966 (174Eh) when the system is reset (giving 223 baud).

7-12 Low -Level Hardware Interface

Serial’/Modem Baud Select High and Loop Back (0046h/O0A6h Write).

This register contains the six most significant bits of the value that determines the baud

rate (refer to the previous register). In addition, this register enables loopback operation
of the serial port. Bit 7 is ignored.

Bit 6 set to "1" enables serial loopback operation. When enabled, serial loopback causes
transmitter output to be gated to the receiver input. It also causes the receive data
register to mirror the receive shift register, allowing the CPU to test the receiver at
operating speed. When bit 6 is "0", the receiver input is gated from the external input
line. The bit is set to "1" when the system is reset.

Bits 5 through O define the most significant six bits of the baud rate select value. (Refer
to the previous register.)

i There are several ways of setting the baud rate, parity, word length, etc.
that are preferdble to writing directly to the hardware. They can be set
Note with Int 14h (refer to chapter §), I/0O Control commands (refer to chapter

6), or the PAM Datacom Config function.

Serial’Modem Status (0048h/00A8h Read). This register indicates the status
of the serial port. Most bits can be read using Int SDh (the AUX Expansion Interrupt).

Bit 7 set to "1" indicates that the receive data register is full (contains a byte of data). It

is set when a received data word is transferred into the receive data register. To allow

another word to be loaded into the receive data register, the CPU must clear this bit by

setting bit 1 at write address 0048h/00A 8h (described below). Bit 7 set to "0" indicates

that the receive data register is empty. Bit 7 is set to "0" when the system is reset or in

sleep mode. 7

Bit 6 indicates the current receiver input state. When loopback operation is active, bit 6
samples the transmitted output. When loopback is inactive, bit 6 samples the state of
the serial input line. The CPU can read this bit to determine the incoming baud rate. Bit
6 is set to "1" in sleep mode and when the system is reset.

Bit 5 set to "1" indicates that an overrun error occurred. It is set when a new data word
is received, but the receive data register has not been read (bit 1 at write address
0048h/00A 8h has not been set since bit 7 above was last set). Bit § is set to "0" when
bit 1 at write address 0048h/00A 8h is set to "1", indicating that data has been read. Bit
§ is set to "0" in sleep mode and when the system is reset.

Low -Level Hardware Interface 7-13

Bit 4 is active only while parity is enabled (bit 3 at write address 004 8h/00A 8h is set to

“1" as described below). Bit 4 set to "1" indicates that a parity error was detected in

received data. This bit is set to "0" when bit 1 at write address 004 8h/00A 8h is set to

"1", indicating that data has been read. Bit 4 is set to "0" in sleep mode and when the

system is reset. W

Bit 3 set to "1" indicates that a framing error occurred--a zero is detected when the
stop bit is sampled. Bit 3 is set to "0" when bit 1 at write address 004 8h/00A 8h is set to
“1", indicating that data has been read. Bit 3 is set to "0" in sleep mode and when the
system is reset.

Bit 2 set to "1" indicates that the receiver detected a break signal (an all-zero signal
from the start bit to the first stop bit). Bit 2 is set to "0" when bit 1 at write address
0048h/00A 8h is set to "1", indicating that data has been read. Bit 2 is set to "0" in sleep
mode and when the system is reset.

Bit 1 set to "1" indicates that the transmit data register is empty. This bit is set when
the transmit data register contents are passed to the transmit shift register. Bit 1 set to
"0" indicates that the transmit data register is full--when data is loaded into the
transmit data register. Bit 1 is set to "1" in sleep mode and when the system is reset.

Bit O set to "1" indicates that the transmitter is sending a break signal. (The transmitted ﬂ
break signal is controlled by bit 0 at write address 0048h/00A 8h, discussed below.) Bit

0 set to "0" indicates that no break signal is being transmitted. This bit is set to "0" in

sleep mode and when the system is reset.

Serial/Modem Format Control (0048h/00A8h Write). This register controls
the format of the serial port.

Bits 7 and 6 specify the word length (the number of data bits) for both the receiver and
transmitter:

"00" = § bits.

"01" = 6 bits.

"10" = 7 bits.

"11" = 8 bits.
Bits 7 and 6 are set to "11" when the system is reset. W

7-14 Low -Level Hardware Interface

Bits 5 and 4 specify the number of stop bits sent by the transmitter at the end of each
word:

“00" = | bit.

“01" =1 1/2 bits.

"10" = 2 bits.

*11" = 2 bits.
Bits 5 and 4 are set to "1 1" when the system is reset.

Bit 3 set to "1" enables parity. Parity is disabled if the bit is set to "0". Bit 3 is set to "1"
when the system is reset. Bit 2 set to "1" selects odd parity (if parity is enabled by bit 3).
If bit 2 is set to "0", then even parity is selected. This bit is set to "1" when the system is
reset.

Bit 1 set to "1" clears these status flags: receive register full, overrun error, parity error,
framing error, received break detect (bits 7, §, 4, 3, 2 at read address 0048h/00A 8h).
Setting this bit to "0" has no effect. Bit | is set to "0" in sleep mode and when the
system is reset.

Bit O set to "1" forces the transmitter to continually send a break signal (low voltage).
The signal continues until the bit is set to "0", enabling normal data transmission. Bit 0
is set to "0" in sleep mode and when the system is reset.

Serial/Modem Received Data (004Ah/0O0AAh Read). This register contains
the data bits from the receiver. Data is right-justified; if fewer than eight data bits are
used, higher bits are set to "0". All bits are set to "0" in sleep mode and when the system
is reset.

Serial/Modem Transmitted Data (OO4Ah/O0AAh Write). This register

contains the data bits to be sent by the transmitter. Data should be right-justified; if 7
less than eight data bits are to be used, higher bits are ignored. The register is set to 209

{D1h) when the system is reset.

Serial’Modem Interrupt Control (004Ch/O0ACh Read/Write). This register
clears interrupt conditions or disables those interrupts. Note that disabling an interrupt
also clears that interrupt.

Bit 7 set to "1" disables the "transmit data register empty" interrupt and clears that flag
(bit 7 at read address 004Eh/00AEh). Setting bit 7 to "0" enables that interrupt. Bit 7
is set to "1" when the system is reset.

Low-Level Hardware Interface 7-15

Setting bit 6 to "1" clears the "transmit data register empty" interrupt flag (bit 7 at read
address 004Eh/00AER). Setting bit 6 to "0" has no effect. Bit 6 always reads as "0".

Bit § set to "1" disables the "receive data register full” interrupt and clears that flag (bit
6 at read address 004Eh/00AEh). Setting bit S to "0" enables that interrupt. Bit S is
set to "1" when the system is reset.

Setting bit 4 to "1" clears the "receive data register full” interrupt flag (bit 6 at read
address 004Eh/00AEh). Setting bit 4 to "0" has no effect. Bit 4 always reads as "0".

Bits 3 through 0 are ignored when written, and always read as "0".

Serial/Modem Interrupt Status (OO4Eh/OOAEh Read). This register indicates
the conditions that have occurred and caused an interrupt.

Bit 7 set to "1" indicates that the contents of the transmit data register have been
loaded into the transmit shift register and are no longer needed. The bit is set only if
this interrupt is enabled (by bit 7 at address 004Ch/00ACh set to "0"). Bit 7 set to "0"
indicates that data hasn't been shifted out of the transmit register. This bit is set to "0"
when either bit 7 or 6 at address 004Ch/00ACh is set to "1". Bit 7 is set to "0" in sleep
mode and when the system is reset.

Bit 6 set to "1" indicates that data has been received in the receive data register. The bit
is set only if this interrupt is enabled (by bit 5 at address 004Ch/00ACh set to "0"). Bit
6 set to "0" indicates that data hasn’t been received in the receive register. This bit is set
to "0" when either bit S or 4 at address 004Ch/00ACh is set to 1" Bit 6 is set to "0" in

sleep mode and when the system is reset.

Bits § through 1 are always "0".

Bit 0 indicates the status of the timer interrupt, which is discussed separately below.

7.3.8 Registers ~- Interval Timer

Each of the two multi-controllers has an interval timer. The interval timer has eight
registers associated with it, including the shared interrupt status register. One register
provides the means to initialize, start, and stop the interval counter and to control
interrupts from this timer. Another register provides read-only access to the high byte
of the counter, and two other registers provide access to the latched buffers for the
middle and low bytes of the counter. Three other registers provide read/write access to

7-16 Low -Level Hardware Interface

™

the three bytes of the the interval reference register. This register contains the
three-byte number that defines the interval at which the interval counter generates
repeated interrupts.

The interval counter counts downward. When activated, it automatically loads itself
with the contents of the interval reference registers. When it counts down to zero, it
can generate an interrupt. The counter can also be explicitly loaded from the interval
reference register.

If an application modifies timer 2 registers, it must restore the previous values in order
for the modem "stop” action to operate properly. If an application modifies the
heartbeat timer registers, system operation will change accordingly.

Timer 2/Heartbeat Timer Interrupt (OO4Eh/OOAEh Read). Bit 1 of this
register indicates whether a timer interrupt has occurred. (This register is shared with
the serial port.)

Bits 7 and 6 indicate the status of serial port interrupts, which are discussed separately
above.

Bits 5 through 1 always read as "0"

Bit O set to "1" indicates that a timer interrupt is pending. This means that the interval
counter has reached zero. An interrupt can be generated only while the interval
counter is counting and while its interrupt line is enabled (bits 2 and 1 at address
0058h/00B8h are set to "0"). Bit 0 set to "0" indicates that either the counter isn’t
counting or it hasn’t reached zero. This bit is set to "0" in sleep mode and when the
system 1is reset.

Timer 2/Heartbeat Timer Control (0O0O58h/00B8h Read/Write). This register
contains four bit locations to control the operation of the interval timer. Two bits are
used to disable or clear an interrupt request generated by the timer. One bit is used to
stop and start the counter. One bit causes the interval counter to be loaded with the
contents of the interval timer reference registers.

Bits 7 through 4 are ignored when written, and always read as "0".
Setting bit 3 to "1" loads the contents of the three interval reference registers into the
interval counter. This data transfer occurs in the middle of the bus cycle that writes

this bit to the control register. This action can be executed at any time, whether or not

Low -Level Hardware Interface 7-17

the counter is enabled to count. A spurious interrupt will not be generated as a result of
this action, so it isn’t neccessary to disable the timer interrupt. Setting bit 3 to "0" has
no effect. Bit 3 always reads as a "0".

Bit 2 set to "1" stops the counter from counting and deactivates clock lines, reducing W
power consumption. While this bit is "1", interrupts are disabled, but not cleared.

(Setting the interval counter to zero doesn’t cause an interrupt if this bit is "1") Bit 2 set

to "0" enables the counter to count and generate interrupts. Bit 2 is set to "1" in sleep

mode and when the system is reset.

Bit 1 set to "1" disables timer interrupts and clears a pending interrupt. Bit 1 set to *0"
enables the interval timer to generate interrupts. This bit is set to "1" in sleep mode and
when the system is reset.

Setting bit O to "1" clears a pending interrupt generated by the interval timer. The
interrupt is cleared in the middle of the bus cycle that writes this bit to the control
register. Setting this bit to "0" has no effect. Bit 0 always reads as "0".

Timer 2/Heartbeat Timer reference (0052-0056h/00B2-00B6h

Read/Write). These three registers (at even addresses only) make up the interval

reference register, which indicates the starting count value for the interval counter. w
The interval counter is a 24-bit counter. The value stored in the register (binary
representation) is related to the desired interrupt frequency (interrupts per second) by

the following decimal equation:

value (decimal) = (444,500 / frequency) - 1

The contents of this register are automatically loaded into the interval counter
immediately following the initiation of an interrupt (when the counter reaches zero
during continuous interval counting), and also when the load counter bit is set (bit 3 at
write address 0058h/00B8h is set to "1"). The low-address register contains the most
significant bits; the high-address register contains the least significant bits. Each
register is set to 255 (FFh) when the system is reset.

Timer 2/Heartbeat Timer counter (OO5A-005Eh/OOBA-O0OBEh Read).

These three registers (at even addresses only) represent the latched value of the 24-bit W
interval counter. The high byte (at the low address) is read directly from the register. At

the time the high byte is read, the middle byte and low byte are latched at the middle

and high addresses, so that they can be read next. (The middle and low counter registers

aren’t read directly.) This is the only way to set these two latches. The counter can be

7-18 Low -Level Hardware Interface

read at any time (with the counter counting or with it stopped). The three counter
registers and the two latches are set to 255 (FFh) when the system is reset.

7.3.9 Registers - Multi-Purpose Port

Each multi-controller has four external lines that can be used for generating interrupts
or monitoring status. The port has two address locations associated with it. The first
address provides access to the read-only Interrupt Status register and the write-only
Clear Interrupt register. The other address location accesses the read-only status of the
four falling-edge triggered interrupt lines and the write-only disable interrupt register.

The input clock signal is stopped while the system is in sleep mode. In sleep mode the
sampling latches for the multi-purpose lines are driven to a transparent state. An active
transition of a multi-purpose line is thus capable of generating an interrupt (if not
disabled).

When the system is reset, all interrupt source and status lines are cleared and disabled.

In the register descriptions that follow, the association between addresses, bits, and
multi-purpose signal lines are defined below:

0040h,0042h - Bit 6: PPUBUSY (from PPU)
0040h,0042h - Bit 5: IRQ* (from HP-IL controller)
0040h,0042h - Bit 4: RING* (from serial interface)
0040h,0042h - Bit 3: RLSD (from serial interface)

00AOh,00A2h - Bit 6: EXTINT1# (from plug-in port #1)

00AOh,00A2h - Bit 5: EXTINT2#* (from plug-in port #2)

00AOh,00A2h - Bit 4: MRING?* (from modem interface) .
00ACh,00A2h - Bit 3: MCARRIER (from modem interface) 7

Interrupt Status (0040h/00AOh Read). This register is accesses the latches that
store the interrupt requests for the keyboard and the multi-purpose interrupt lines.
This register is unaffected during sleep mode and is cleared to all zeros when the system
1s reset.

Bit 7 indicates keyboard status, which is discussed separately above.

Bits 6 through 3 when set to "1" indicate that an interrupt is pending in response to a
falling edge on a multi-purpose line. When a bit is set to “0", no interrupt is pending.

Low -Level Hardware Interface 7-19

Bits 2 through 0 indicate keyboard status, which is discussed separately above.

Clear Interrupt Request (0040h/00AOh Write). This register allows the user to
clear each individual interrupt independently of the others. The Clear Interrupt register
is different from the Disable Interrupt register in that the interrupt lines become active -
immediately after the bus cycle that writes a clear to the individual interrupt sources

has been completed. When an interrupt occurs, the interrupt service routine must clear

the interrupt by writing to this register.

This register is not affected by sleep mode, but it is cleared when the system is reset.
Bit 7 affects keyboard interrupts, which are discussed separately above.

Setting bit 6 through 3 to "1" clears the corresponding interrupt bit in the interrupt
register (read address 0040h/00AOh). Setting any bit to "0" has no effect.

Bits 2 through 0 affect keyboard interrupts, which are discussed separately above.

Disable Interrupt Control (0042h/00A2h Write). The latch at this address ;
provides control over which interrupt sources are disabled. Setting a bit in this register ﬂa)
disables the corresponding interrupt source and clears any pending interrupt from that

source. All interrupt sources are unaffected in sleep mode, and are disabled when the

system is reset.

Bit 7 affects keyboard interrupts, which are discussed separately above.

Setting bit 6 through 3 to "1" disables interrupts from the corresponding multi-purpose
line. Bits 2 through 0 affect keyboard interrupts, which are discussed separately above.

ll:' This register is not Read/Write. You're advised to use the "Alter Interrupt

ﬂ Control Register" system service (Int 50h) to avoid disabling BIOS

Note functionality, possibly crippling the system.

Control Status (0042h/00A2h Read). This register provides access to the T

inverted state of the multi-purpose port lines. All lines of this port are sampled and
latched to provide synchronous access to this port from the data bus. Note that the
indicated states of the lines are the inverse of the states of the input lines to that port.

7-20 Low -Level Hardware Interface

In sleep mode and when the system is reset, the sampling latches are driven to a
transparent state. Bit 7 indicates keyboard status, which is discussed separately above.

Bits 6 through 3 indicate the inverted states of the multi-purpose lines. If a bit is set to
"1", the corresponding input signal is low.

Bits 2 through O indicate keyboard status, which is discussed separately above.

Low -Level Hardware Interface 7-21

7.4 HP-IL Controller

The operation of the 1LB3 HP-IL controller IC is fully defined in the following

manuals:

@ Hewlett-Packard Company. The HP-IL Integrated Circuit User's Manual. HP part

number 82166-90016, c1982.

& Hewlett-Packard Company. The HP-IL Interface Specification. HP part number
82166-90017,¢c1982.

HP-IL control can be performed using BIOS interrupt 54h. It is highly recommended
that you use this interrupt rather than going to the hardware directly. Refer also to the

HP-IL IRQ interrupt (Int 4Ch).

The 1LB3 controller is turned off in sleep mode. It is reset as the machine wakes up.

The first manual listed above describes the eight internal registers that control the
operation of the HP-IL circuit. Each register contains one byte of information. The 1/0
addresses and functions of these registers are summarized in table 7-2 and following.

Table 7-2. HP-IL Registers

170 Address

0027h
002%h
002Bh
002Dh
002Fh

0021h
0023h
| 7 0025h

Status register
Interrupt register

Data register

Parallel poll register
Loop address register
Scratchpad register
Scratchpad register
Auxiliary input register

7-22 Low -Level Hardware interface

™

Status Register (0021h). This register controls the automatic message responses
performed by the IC.

bit 7 bit 0

Read SC CA TA LA SSRQ RFCR CLIFCR MCL I

Write SC CA TA LA SSRQ SLRDY CLIFCR MCL I

SC: System controller.

CA: Controller active.

TA: Talker active.

LA: Listener active.

SSRQ: Send service request.
RFCR: RFC received.
SLRDY: Set local ready.
CLIFCR: Clear IFCR.

MCL: -Master clear.

Interrupt Register (0023h). This register maintains five interrupt flags and their
enable bits, three control bits for the message to be received and for the message to be
sent.

bit 7 bit 0

Read | C2in Clin COin IFCR SRQR FRAV FRNS ORAVI

Write C2out Clout COout <— interrupt enable bits —» |

C2in-C0in: Control bits of received message.
C2out-COout: Control bits for transmission.
IFCR: IFC received.

SRQR: Service request received.

FRAV: Frame (message) available.

FRNS: Frame (message) received not as sent.
ORAV: Output register available.

Low -Level Hardware Interface 7-23

Data Register (0O025h). This register contains the data bits of the message received
and the message to be sent.

bit 7 bit 0 W

Read D7in D6in DSin D4in D3in D2in Diin DOin

Write | D7out D6out DSout D4out D3out D2out Diout DOout

D7in-D0in: Data bits of received message.
D7out-DOout: Data bits for transmission.

Parallel Poll Register (0027h). This register maintains the status of HP-IL
output and input, and controls the automatic response to parallel polls.

bit 7 bit 0

Read ORE RERR PPST PPEN PPPOL P2 P1 PO

Write - - PPST PPEN PPPOL P2 P1 PO %

ORE: Output register empty.

RERR: Receiver error.

PPST: Parallel poll status.

PPEN: Parallel poll enable.

PPPOL: Parallel poll polarity.
P2-P0: Parallel poll bit designation.

7-24 Low -Level Hardware Interface

Loop Address Register (0029h). This register maintains the primary HP-IL
address and provides scratchpad space.

bit 7 bit 0

Rd/Wr | <« scratchpad —» ADDR4 ADDR3 ADDR2 ADDR{ ADDRO

ADDR4-ADDRO: HP-IL address.

Scratchpad Registers (002Bh,002Dh). These two registers provide storage for
user information.

bit 7 bit 0

Rd/Wr < scratchpad +>

Auxiliary Input Register (OO2Fh). This register maintains the state of the two
input lines from the serial receptacle and controls the HP-IL oscillator.

bit 7 bit 0
Read CTSX DSR% 1 1 1 1 1 1 I
Write - - - - - - - 0SCDIS I
CTSX: Inverted CTS input signal from serial receptacle. 7

DTR*: Inverted DSR input signal from serial receptacle.
0SCDIS: Oscillator disable.

Low -Level Hardware interface 7-25

|
7.5 Display Controller

The 1LM3-0001 is the controller for the 80-character x 25-line (480 dots wide by
200 dots high), four-quadrant liquid crystal display. The 1LM3 is packaged in a

4 8-pin DIP ceramic hybrid with two 8Kx8 static CMOS RAM die. With the RAM in
the hybrid, the 1LM3 provides both display control and display memory in a single
package. The hybrid sits directly on an unbuffered 80C86 bus and drives the LCD
without buffering.

Also included on the 1LM3 is a circuit (the PPU interface) to eliminate random logic
from the computer system. This circuit is totally independent of the LCD control
functions.

The 1LM3 generates four data signals and four clock signals for the liquid-crystal
display. The four data signals and two of the clock signals are sent to the video
interface. The clock signals must be active whenever power is applied to the LCD. The
clock signals are active while the display is blanked (refer to control register O below).
All signals are turned off during sleep mode or when the system is reset.

The internal registers of the display controller are not affected during sleep mode. All
registers are cleared when the system is rebooted.

Although access to display RAM by the CPU takes place through the display controller,
the display RAM logically occupies a block of system address space starting at 80000h.
Any CPU access to this space will be directed to the display RAM.

Two modes of display RAM interpretation are provided by the 1LM3. In graphics mode,
the display RAM is bit-mapped to the display. In alpha mode, the display RAM is
interprcted from a character code and attribute bits through a font definition space to
dynamically generate the bits for the screen. In the topics that follow, display RAM
mapping is defined relative to 80000h in system memory.

7.51 Display RAM Mapping - Graphics Mode
In graphics mode, the section of display RAM pointed to by the top-of -page pointer

(register 2/3) is mapped directly (one bit to one dot) to the display. Because the display
is 480 dots wide (not 512 dots), only the 60 least significant bytes of each 64-byte

7-26 Low -Level Hardware Interface

M

block of display RAM are displayed. The four most-significant bytes of each 64-byte
block of display RAM are don’t-cares in graphics mode.

With 16K bytes of display RAM and 64 bytes used per dot row, 256 dots rows of
~ graphics can be stored. This translates to 1.25 screens of graphics display for the 25-line
(200 dot-row) display.

The least significant byte of each 64-byte block of display RAM maps to the left-most
eight dots on the display. Bit 7 of the least significant byte maps to the left-most dot on
the display. A "1" turns its corresponding dot on to black. A "0" turns its corresponding
dot off to white. A 9Bh value will map to the display as:

<9 >¢< B»
[Jalal 1 Ja] 1]

Any of the 256 dot-row blocks in display RAM can be put to the top of the display
screen by writing the appropriate (16-bit) value to register 2/3. To distinguish 256
dot-rows, the row specifier must be 8 bits (GR7-GRUO0). Because each dot-row block of
RAM is 64 bytes wide, the value written to register 2/3 must be (GR7-GR0)(64), as

@ shown:

«——— Register 3

Register 2 ————»

v
4

b7 b0 b7 b0

x X GR7 GR6 GR5 GR4 GR3 GR2JJGR1 GRO 0 0 o0 o0 0 O

In graphics mode, the two most-significant bits of register 2/3 are don’t-cares. It is the
responsibility of the graphics driver to ensure that bits 0 thru 5 of register 2/3 are "0".
Non-zero values in these bits can put the display controller into states that require a
hard reset of the chip in order to recover.

. Each dot in the display RAM can be addressed by an 8-bit row specifier (GR7-GRDO0)
* and a 9-bit column specifier (GC8-GCO0). (The left edge of the display screen is
dot-column O and the right edge of the display screen is dot-column 479 (1DFh).) The
byte to be accessed is addressed (relative to display RAM space) by:

Low -Level Hardware Interface 7-27

ald

a8 a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>