
intJ

• • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •

iRMX®1
Nucleus System Calls
Reference Manual

Order Number: 462928-001

iRMX® I
Nucleus System Calls

Reference Manual

Order Number: 462928-001

Intel Corporation
3065 Bowers Avenue

Santa Clara, California 95051

Copyright (0 1980, 1989, Intel Corporation, All Rights Reserved

In locations outside the United States, obtain additional copies of Intel documentation by
contacting your local Intel sales office. For your convenience, international sales office addrl'!sses
are located directly after the reader reply card in the back of the manual.

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update or to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation.
Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as
defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

Above iLBX iPSC Plug-A-Bubble
BITBUS im iRMX PROMPT
COMMputer iMDDX iSBC Promware
CREDIT iMMX iSBX QUEST
Data Pipeline Insite iSDM QueX

genius intel iSSB Ripplemode
1 Intel376 iSXM RMXJ80
i Intel386 Library Manager RUPI
I2ICE intelBOS MCS Seamless
ICE Intelevision Megachassis SLD
iCEL inteligent Identifier MICROMAINFRAME UPI
iCS inteligent Programming MULTIBUS VLSiCEL
iDBP Intellec MULTICHANNEL 376
iDIS Intellink MULTIMODULE 386

iOSP OpenNET 386SX
iPDS ONCE
iPSB

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a
trademark of Bell Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a
trademark of Centronics Data Computer Corporation. Chassis Trak is a trademark of General
Devices Company, Inc. VAX and VMS are trademarks of Digital Equipment Corporation.
Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc. IBM,
PCIXT, and PC/AT are registered trademarks ofInternational Business Machines. Soft-Scope is a
registered trademark of Concurrent Sciences.

CopyrightC 1980,1989, Intel Corporation. All Rights Reserved.

ii

REV. REVISION lDSTORY DATE

-001 Original Issue. 02189

iii/iv

PREFACE

This manual documents the system calls of the Nucleus, the main subsystem of the
iRMX® I Operating System. The information provided in this manual is intended as a
reference to the system calls and provides detailed descriptions of each call.

READER LEVEL

This manual is intended for programmers who are familiar with the concepts and
terminology introduced in the iRMX® I Nucleus User's Guide and with the PL/M-86
programming language.

CONVENTIONS

System call names appear as headings on the outside upper corner of each page. The first
appearance of each system call name is printed in blue ink; subsequent appearances are in
black.

Throughout this manual, system calls are shown using a generic shorthand (such as
CREATE$TASK instead of RQ$CREATE$TASK). This convention is used to allow
easier alphabetic arrangement of the calls. The actual PL/M-86 external-procedure names
must be used in all calling sequences.

NOTE

The values NIL and SELECTOR$OF(NIL) are used throughout this
manual. You may also use a value of zero in place of NIL and
SELECTOR$OF(NIL). However, Intel recommends that you use NIL and
SELECTOR$OF(NIL) in your iRMX I code to maintain upward
compatibility with the iRMX II Operating System. For a description of the
SELECTOR$OF and NIL built-in functions, refer to the PL/M user's
guide.

You can also invoke the system calls from assembly language, but you must obey the
PL/M-86 calling sequences when doing so. For more information on these calling
sequences refer to the iRMX® I Programming Techniques Reference Manual.

Nucleus System Calls v

CONTENTS

Chapter 1. iRMX® I Nucleus System Calls

Introduction ... 1
System Call Dictionary .. 3
ACCEPT$CONTROL .. 7
AL TER$COMPOSITE ... 10
CATALOG$OBJECT ... 12
CREA TE$CO MPOSITE ... 15
CREA TE$EXTENSION .. 18
CREATE$JOB ... 21
CREA TE$MAILBOX .. 29
CREA TE$REGION .. 33
CREA TE$SEGMENT .. 36
CREATE$SEMAPHORE ... 39
CREATE$TASK .. 42
DELETE$COMPOSITE .. 47
DELETE$EXTENSION .. 49
DELETE$JOB ... 52
DELETE$MAILBOX ... 55
DELETE$REGION .. 58
DELETE$SEGMENT .. 61
DELETE$SEMAPHORE .. 64
DELETE$TASK .. 67
DISABLE .. 71
DISABLE$DELETION ... 74
ENABLE ... 77
ENABLE$DELETION ... 81
END$INIT$TASK ... 84
ENTER$INTERRUPT ... 85
EXIT$INTERRUPT ... 89
FORCE$DELETE .. 92
GET$EXCEPT$HANDLER ... 95
GET$LEVEL .. 97
GET$POOL$A TTRIB .. 99
GET$PRIORITY ... 102
GET$SIZE .. 105
GET$TASK$TOKENS ... 108
GET$TYPE ... 110
INSPECT$COMPOSITE ... 113
LOOKUP$OBJECT .. 115

Nucleus System Calls vii

CONTENTS

Chapter 1. iRMX® I Nucleus System Calls (continued)

OFFSPRING .. 118
RECEIVE$CONTROL .. 121
RECEIVE$MESSAGE .. 124
RECEIVE$UNITS .. 128
RESE1'$INTERRUPT ... 131
RESUME$TASK ... 135
SEND$CONTROL .. 139
SEND$MESSAGE .. 142
SEND$UNITS .. 146
SE1'$EXCEPTION$HANDLER ... 148
SET$INTERRUPT ... 154
SE1'OSEXTENSION .. 159
SE1'$POOUMIN .. 162
SE1'$PRIORITY .. 165
SIGNAUEXCEPTION ... 169
SIGNAUINTERRUPT ... 172
SLEEP .. 177
SUSPEND$TASK .. 179
UNCATALOG$OBJECf .. 182
W AI1'$INTERRUPT .. 186

viii Nucleus System Calls

INTRODUCTION

iRMX® I 1
NUCLEUS SYSTEM CALLS

This manual lists the iRMX® I Nucleus system calls in alphabetical order and provides a
detailed description of each one.

The calling sequence for each call is the same as for the PL/M-86 interface. The
information for each system call is organized in the following order:

• A brief sketch of the effects of the call.

• The PL/M -86 calling sequence for the system call.

• Definitions of the input parameters, if any.

• Definitions of the output parameters, if any.

• A detailed description of the effects of the call.

• An example of how the system call can be used.

• The condition codes that can result from using the call, with a description of the
possible causes of each condition.

Throughout this manual, PL/M-86 data types such as BYTE, WORD, POINTER and
SELECfOR are used. In addition, the iRMX I data types TOKEN and STRING are used.
(See the iRM)(® I Nucleus User's Guide for more information on these data types.) They
are always capitalized, and their definitions are found in Appendix A of the iRM)(®
Extended I/O System User's Guide. If your compiler supports the SELECfOR data type, a
TOKEN can be declared literally as SELECfOR or WORD. Because TOKEN is not a
PL/M-86 data type, you must declare it to be literally a SELECfOR or a WORD every
place you use it. The word "token" in lowercase refers to a value that the iRMX I
Operating System returns to a TOKEN (the data type) when it creates the object.

The examples used in this manual assume the reader is familiar with PL/M. In these
examples, the appropriate DECLARE and INCLUDE statements are made first. The
reader should note the use of an INCLUDE statement that declares all of the system calls
included in the iRMX I Operating System. Refer to the iRMX® I Programming
Techniques Manual for additional information on creating this INCLUDE statement.
Further, there is also a literal declaration for TOKEN, which is used in the examples. For
the sake of simplicity, the examples assume that an established exception handler is to deal
with exceptional conditions. Consequently, they do not illustrate in-line exception
processing.

Nucleus System Calls 1

iRMX® I NUCLEUS SYSTEM CALLS

2

. Following this introduction is a system call dictionary in which the calls are grouped
according to type. The dictionary includes short descriptions and page numbers of the
complete descriptions that follow.

Nucleus System Calls

NUCLEUS SYSTEM CALL DICTIONARY

SYSTEM CALL DICTIONARY

JOBS

Call Description Page

CREATE$JOB Creates a job with a task and returns a token for the job. 21

DELETE$JOB Deletes a childless job that contains no extension objects (extension 52
objects are described in the iRM~ I Nucleus User's Guide).

OFFSPRING Provides a segment containing tokens of the child jobs of the 118
specified job.

TASKS

CREATE$TASK Creates a task and returns a token for it. 42

DELETE$TASK Deletes a task that is not an interrupt task. 67

GET$PRIORITY Returns the static priority of a task. 102

GET$TASK$TOKENS Returns to the caller a token for either itself, its job, its job's 108
parameter object, or the root job.

RESUME$TASK Decreases a task's suspension depth by one; resumes (unsuspends) 135
the task if the suspension depth becomes zero.

SET$PRIORITY Changes a task's priority. 165

SLEEP Places the calling task in the asleep state for a specified amount 178
of time.

SUSPEND$TASK Increases a task's suspension depth by one; suspends the task if 180
it is not already suspended.

MAILBOXES

CREATE$MAILBOX Creates a mailbox and returns a token for it. 29

DELETE$MAILBOX Deletes a mailbox. 55

RECEIVE$MESSAGE Allows the calling task to receive an object; the task has 124
the option of waiting if no objects are present.

SEND$MESSAGE Sends an object to a mailbox. 142

Nucleus System Calls 3

NUCLEUS SYSTEM CALL DICTIONARY

SEMAPHORES

Call Description Page

CREATE$SEMAPHORE Creates a semaphore and returns a token for it. 39

DELETE$SEMAPHORE Deletes a semaphore. 64

RECEIVE$UNITS Asks for a specific number of units from a semaphore. 128

SEND$UNITS Adds a specific number of units to a semaphore. 146

SEGMENTS AND MEMORY POOLS

CREATE$SEGMENT Creates a segment and returns a token for it. 36

DELETE$SEGMENT Returns a segment to the memory pool from which it was allocated. 61

GET$POOL$A TTRIBUTES Returns the following memory pool attributes of the caller's job: 99
pool minimum, pool maximum, initial size, number of allocated
16-byte paragraphs, number of available 16-byte paragraphs.

GET$SIZE Returns the size, in bytes, of a segment. 105

SET$POOL$MIN Changes the minimum attribute of the memory pool of the 162
caller's job.

ALL OBJECTS

CATALOG$OBJECT Places an object in an object directory. 12

GET$TYPE Accepts a token for an object and returns its type code. 110

LOOKUP$OBJECT Accepts a cataloged name of an object and returns a token for it. 115

UNCATALOG$OBJECT Removes an object from an object directory. 183

EXCEPTION HANDLERS

GET$EXCEPTION- Returns the current values of the caller's exception handler 95
$HANDLER and exception mode attributes.

SET$EXCEPTION- Sets the exception handler and exception mode attributes 148
$HANDLER of the caller.

4 Nucleus System Calls

NUCLEUS SYSTEM CALL DICTIONARY

INTERRUPT HANDLERS, TASKS, AND LEVELS
(* indicates the system calls that an interrupt handler can make)

Call Description Page

*DlSABLE Disables an interrupt level. 71

ENABLE Enables an interrupt level. 77

END$INIT$TASK Informs the root task that a synchronous initialization process 84
has completed.

*ENTER$INTERRUPT Sets up a previously designated data segment base address for the 85
calling interrupt handler.

*EXIT$INTERRUPT Used by interrupt handlers to send an end-of-interrupt signal 89
to hardware.

*GET$LEVEL Returns the interrupt level of highest priority for which an interrupt 97
handler has started but has not yet finished process!ng.

RESET$INTERRUPT Cancels the assignment of an interrupt handler to a level and, 131
if applicable, deletes the interrupt task for that level.

SET$INTERRUPT Assigns an interrupt handler and, if desired, an interrupt 154
task to an interrupt level.

*SIGNAL$INTERRUPT Used by interrupt handlers to invoke interrupt tasks. 173

WAIT$INTERRUPT Puts the calling interrupt task to sleep until it is called 187
into service by an interrupt handler.

COMPOSITE OBJECTS

AL TER$COMPOSITE Replaces components of composite objects. 10

CREATE$COMPOSITE Creates a composite object and returns a token for it. 15

DELETE$COMPOSITE Deletes a composite object. 47

INSPECT$COMPOSITE Returns a list of the component tokens contained in a 113
composite object.

EXTENSION OBJECTS

CREATE$EXTENSION Creates a new object type and returns a token for it. 18

DELETE$EXTENSION Deletes an extension object and all composites of that type. 49

Nucleus System Calls 5

NUCLEUS SYSTEM CALL DICTIONARY

DELETION CONTROL

Call Description Page

DISABLE$DELETION Makes an object immune to ordinary deletion. 74

ENABLE$DELETION Makes an object susceptible to ordinary deletion. Required only 81
if the object has had its deletion disabled.

FORCE$DELETE Deletes objects whose disabling depths are zero or one. 92

OPERATING SYSTEM EXTENSIONS

SETOSEXTENSION Either enters the address of an entry (or function) procedure 159
in the Interrupt Vector Table or deletes such an entry.

SIGNAL$EXCEPTION Used by OS extensions to signal the occurrence of an exception. 169

REGIONS

ACCEPT$CONTROL Causes the calling task to accept control from the region only 7
if control is immediately available. If control is not available,
the calling task does not wait at the region.

CREATE$REGION Creates a region and returns a token for it. 33

DELETE$REGION Deletes a region. 58

RECEIVE$CONTROL Causes the calling task to wait at the region until the task 121
receives control.

SEND$CONTROL Relinquishes control to the next task waiting at the region. 139

6 Nucleus System Calls

ACCEPT$CONTROL

The ACCEPT$CONTROL system call requests immediate access to data protected by a
region.

CAUTION

Tasks that use regions cannot be deleted while they access data protected
by the region. Therefore, you should avoid using regions in Human
Interface applications. If a task in a Human Interface application uses
regions, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal) while the task is in the region.

CALL RQ$ACCEPT$CONTROL (region, except$ptr);

Input Parameter
region

Output Parameter
except$ptr

Description

A TOKEN for the target region.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The ACCEPT$CONTROL system call provides access to data protected by a region if
access is immediately available. If access is not immediately available, the E$BUSY
condition code is returned and the calling task remains ready.

Once a task has gained control of a region, it should not suspend or delete itself while in
control of the region. Doing so will lock the region and prevent other tasks from gaining
access.

Nucleus System Calls 7

ACCEPT$CONTROL

Example

/**
* This example illustrates how the ACCEPT$CONTROL system call can be *
* used to access data protected by a region. *
**/

DEClARE TOKEN LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DEClARE region$token
DEClARE priority$queue

DEClARE status

TOKEN;
LITERALLY '1'; /* tasks wait in

priority order */
WORD;

SAMPLEPROCEDURE:
PROCEDURE;

•
• Typical PL/M-86 Statements
•

/**
* In order to access the data within a region, a task must know the *
* token for that region. In this example, the needed token is known *
* because the calling task creates the region. *
**/

region$token - RQ$CREATE$REGION

•
• Typical PL/M-86 Statements
•

(priority$queue,
@status);

/**
* At some point in the task, access is needed to the data protected *

8

* by the region. The calling task then invokes the ACCEPT$CONTROL *
* system call and obtains access to the data if access is *
* immediately available. *
**/

CALL RQ$ACCEPT$CONTROL

•
• Typical PL/M-86 Statements
•

(region$token,
@status);

Nucleus System Calls

ACCEPT$CONTROL

/**
* When the task is ready to relinquish access to the data protected *
* by the region, it invokes the SEND$CONTROL system call. . *
**/

CALL RQ$SEND$CONTROL (@status);

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

E$BUSY

E$CONTEXT

E$EXIST

ENOTCONFIGURED

E$TYPE

Nucleus System Calls

OOOOH

0OO3H

0OO5H

0OO6H

0OO8H

8002H

No exceptional conditions.

Another task currently has access to the
protected data.

The calling task currently has access to the region
in question.

The region parameter is not a token for an
existing object.

This system call is not part of the present
configura tion.

The region parameter is a token for an object
that is not a region.

9

ALTER$COMPOSITE

The AL TER$CO MPOSlTE system call replaces components of composite objects.

CAUTION

Composite objects require the creation of extension objects. Jobs that
create extension objects cannot be deleted until all the extension objects
are deleted. Therefore you should avoid creating composite objects in
Human Interface applications. If a Human Interface application creates
extension objects, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal).

CALL RQ$ALTER$COMPOSITE (extension, composite, component$index,
replacing$obj, except$ptr);

Input Parameters
extension

composite

component$index

replacing$ obj

A TOKEN for the extension type object corresponding to the
composite object being altered.

A TOKEN for the composite object being altered.

A WORD whose value specifies the location (starting at location 1)
in the component list of the component to be replaced.

A TOKEN for the replacement component object. A value of
SELECTOR$OF(NIL) or zero represents no object.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX I Operating System

will return the condition code generated by this system call.

Description

10

The ALTER$COMPOSlTE system call changes a component of a composite object. Any
component in a composite object can be replaced either with a token for another object or
with a placeholding SELECTOR$OF(NIL) or zero that represents no object.

The component$index indicates the position of the target token in the list of components.

Nucleus System Calls

ALTER$COMPOSITE

Example

See the example in section "The GET BYTE Procedure" of the iRMX® I Nucleus User's
Guide.

Condition Codes

E$OK

E$CONTEXT

E$EXIST

ENOTCONFIGURED

E$TYPE

E$PARAM

Nucleus System Calls

OOOOH No exceptional conditions.

0005H The composite parameter is not compatible with
the extension parameter.

0006H The extension, composite, or object parameter(s)
is not a token for an existing object.

0008H This system call is not part of the present
configuration.

8002H One or both of the extension or composite
parameters is a token for an object that is not of
the correct object type.

8004H The component$index parameter refers to a
nonexistent position in the component object list.

11

CATALOG$OBJECT

The CATALOG$OBJECf system call places an entry for an object in an object directory.

CALL RQ$CATALOG$OBJECT (job, object, name, except$ptr);

Input Parameters
job A TOKEN that indicates where the object is to be cataloged.

object

name

• If SELECTOR$OF(NIL) or zero, it indicates that the object is
to be cataloged in the object directory of the job to which the
calling task belongs.

• If not SELECTOR$OF(NIL) or zero, it specifies the TOKEN
for the job in whose object directory the object is to be
cataloged.

A TOKEN for the object to be cataloged. A value of
SELECTOR$OF(NIL) or zero for this parameter indicates that a
null token is being cataloged.

A POINTER to a STRING containing the name under which the
object is to be cataloged. The name must not be over 12 characters
long. Each character can be a byte consisting of any value from 0 to
OFFH.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX I Operating System

will return the condition code generated by this system call.

Description

12

The CATALOG$OBJECT system call places an entry for an object in the object directory
of a specific job. The entry consists of both a name and a token for the object. There may
be several such entries for a single object in a directory, because the object may have
several names. (However, in a given object directory, only one object may be cataloged
under a given name.) If another task is waiting, via the LOOKUP$OBJECT system call,
for the object to be cataloged, that task is awakened when the entry is cataloged.

Nucleus System Calls

CATALOG$OBJECT

Example

/**
* This example illustrates how the CATALOG$OBJECT system call can be *
* used to place an entry in an object directory. *
**/

DECLARE TOKEN LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE mbx$token
DECLARE mbx$flags
DECLARE job$token
DECLARE status

SAMPLEPROCEDURE:
PROCEDURE;

mbx$flags = 0;

TOKEN;
WORD;
TOKEN;
WORD;

/* designates four objects to be queued
on the high performance object
queue; designates a first-in/
first-out task queue */

job$token = SELECTOR$OF(NIL); /* indicates objects to be cataloged
into the object directory of the
calling task's job */

•
• Typical PL/M-86 Statements
•

/**
* The calling task creates an object, in this example a mailbox, *
* before cataloging the object's token. *
**/

mbx$token = RQ$CREATE$MAILBOX (mbx$flags,
@status);

•
• Typical PL/M-86 Statements
•

Nucleus System Calls 13

CATALOG$OBJECT

/**
* After creating the mailbox, the calling task catalogues the mailbox *
* token in the object directory of its own job. *
**/

CALL RQ$CATALOG$OBJECT

•

(j ob$token,
mbx$ token ,
@ (3, ' MBX') ,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

14

E$OK

E$CONTEXT

E$EXIST

E$LIMIT

ENOTCONFIGURED

E$PARAM

E$TYPE

OOOOH No exceptional conditions.

OOOSH At least one of the following is true:

• The name being cataloged is already in the
designated object directory.

• The directory's maximum allowable size is o.

0006H Either the job parameter, which is not
SELECTOR$OF(NIL) or zero, or the object
parameter is not a token for an existing object.

0004H The designated object directory is full.

0008H This system call is not part of the present
operating system configuration.

8004H The first BYTE of the STRING pointed to by the
name parameter contains a zero or a value
greater than 12.

8002H The job parameter is a token for an object which
is not a job or is not SELECTOR$OF(NIL) or
zero.

Nucleus System Calls

CREATE$COMPOSITE

The CREATE$COMPOSITE system call creates a composite object.

CAUTION

Composite objects require the creation of extension objects. Jobs that
create extension objects cannot be deleted until all the extension objects
are deleted. Therefore you should avoid creating composite objects in
Human Interface applications. If a Human Interface application creates
extension objects, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal).

composite ~ RQ$CREATE$COMPOSITE (extension, token$list, except$ptr);

Input Parameters
extension

token$list

Nucleus System Calls

A TOKEN for an extension type representing a license to create a
composite object.

A POINTER to a structure of the form:

DECLARE
token$list
num$slots
num$used
tokens(*)

where:

STRUCTURE (
WORD,
WORD,
TOKEN) ;

num$slots Number of elements in the component objects list that
the composite object will contain. This number
represents the maximum number of component objects
that the composite object can handle. If num$slots is
greater than num$used, the values in the extra elements
should be set to zero.

num$used Number of token elements to include in the composite.
If num$used is greater than num$slots, the extra
components are ignored.

tokens(*) Tokens that will actually constitute the composite object.

15

CREATE$COMPOSITE

Output Parameters
composite

except$ptr

A TOKEN to which the operating system returns the new composite
token.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

Description

The CREATE$COMPOSlTE system call creates a composite object of the specified
extension type. It accepts a list of tokens that specify the component objects and returns a
token for the new composite object. The token$list parameter points to a structure that
contains the list of tokens.

The first element in the token list (num$slots) indicates the number of tokens in the data
structure; that is, the maximum number of component objects that can be part of a
composite. Because you may need to specify that not all of the tokens in the token list be
used in the composite object, the second element (num$used) indicates how many of those
tokens are actually included in the composite. CREATE$COMPOSlTE selects tokens to
include beginning with the first token in the token list.

If the number of token elements to include in the composite (num$used) is less than the
number of tokens in the token$list (num$slots), CREATE$COMPOSlTE sets the
remaining elements to zero.

If, on the other hand, the number of tokens in the token list (num$slots) is less than the
number of token elements to include in the composite (num$used),
CREA TE$COMPOSlTE ignores the extra components in the token list.

Example

See "The CREATE RING BUFFER Procedure" in theiRMX® I Nucleus User's Guide.

Condition Codes

E$OK

E$EXIST

E$LIMIT

16

- -

OOOOH No exceptional conditions.

0006H The extension parameter or one or more of the
non-zero token$list parameters is not a token for
an existing object.

0004H The calling task's job has already reached its
object limit.

Nucleus System Calls

E$MEM

ENOTCONFIGURED

E$PARAM

E$TYPE

Nucleus System Calls

CREATE$COMPOSITE

0002H The memory available to the calling task's job is
insufficient to create a composite.

0008H This system call is not part of the present
configuration.

8004H The specified number of components is zero.

8002H The extension parameter is a token for an object
that is not an extension object.

17

CREA TE$EXTENSION

The CREA TE$EXTENSION system call creates a new object type.

CAUTION

Jobs that create extension objects cannot be deleted until the extension
object is deleted. Therefore, you should avoid creating extension objects in
Human Interface applications. If a Human Interface application creates
extension objects, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal).

extension - RQ$CREATE$EXTENSION (type$code, deletion$mailbox,
except$ptr);

Input Parameters
type$code A WORD containing the type code for the new type. The type code

for the new type can be any value from 8000H to OFFFFH and must
not be currently in use. (The type codes 0 through 7FFFH are
reserved for Intel products.)

deletion$mailbox

Output Parameters
extension

except$ptr

18

A TOKEN for the mailbox where objects of the new type are sent
whenever the extension type or their containing job is deleted. A
SELECfOR$OF(NIL) or zero value indicates no deletion mailbox
is desired.

A TOKEN to which the operating system will return a token for the
new type.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

Nucleus ·System Calls

CREATE$EXTENSION

Description

The CREA TE$EXTENSION system call returns a token for the newly created extension
object type.

You can specify a deletion mailbox when the extension type is created. If you do, a task in
your type manager for the new type must wait at the deletion mailbox for tokens of objects
of the new extension type that are to be deleted. Tokens of objects are sent to the deletion
mailbox for deletion either when their extension type is deleted or when their containing
job is deleted; they are not sent there when being deleted by DELETE$COMPOSITE.
The task servicing the deletion mailbox may do anything with the composite objects sent to
it, but it must delete them.

If you do not want to specify a deletion mailbox, set the token value for deletion$mailbox
to SELECTOR$OF(NIL) or zero. If the extension type has no deletion mailbox,
composite objects of that type are deleted automatically, and the type manager is not
informed. The advantage of having a deletion mailbox is that the type manager has.the
opportunity to do more than merely delete the composite objects.

A job containing a task that creates an extension object cannot be deleted until the
extension object is deleted.

Example

See the example in the "Initialization" section of Chapter 10 in the iRMX® I Nucleus User's
Guide.

Condition Codes

E$OK

E$CONTEXT

E$EXIST

E$LIMIT

E$MEM

ENOTCONFIGURED

Nucleus System Calls

OOOOH

OOOSH

0OO6H

0OO4H

0OO2H

0OO8H

No exceptional conditions.

The calling task's job is being deleted.

The deletion$mailbox parameter is not a token
for an existing object.

The calling task's job has reached its object limit.

The memory available to the calling task's job is
not sufficient to create an extension.

This system call is not part of the present
configuration.

19

CREATE$EXTENSION

20

E$PARAM

E$TYPE

8004 H The type$code parameter is invalid.

8002H The deletion$mailbox parameter is a token for
an object that is not a mailbox.

Nucleus System Calls

CREATE$JOB

The CREA TE$JOB system call creates a job with a single task.

job - RQ$CREATE$JOB (directory$size, param$obj, pool$min, pool$max,
max$objects, max$tasks, max$priority, except$handler,
job$flags, task$priority, start$address, data$seg, stack$ptr,
stack$size, task$flags, except$ptr);

Input Parameters
directory$size

param$obj

pool$min

pool$max

max$objects

Nucleus System Calls

A WORD specifying the maximum allowable number of entries a
job can have in its object directory. The value zero indicates that no
object directory is desired. The maximum value for this parameter
is OFFOH.

A TOKEN indicating the presence or absence of a parameter
object. See the iRM)(® I Nucleus User's Guide for an explanation of
parameter objects.

• If not SELECfOR$OF(NIL) or zero, it must contain a token
for the new job's parameter object.

• If set to SELECfOR$OF(NIL) or zero, it indicates that the new
job has no parameter object.

A WORD that specifies the minimum allowable size of the new
job's pool, in 16-byte paragraphs. The pool$min parameter is also
the initial size of the new job's pool. Pool$min should be at least
two paragraphs (20H bytes). If the stack$ptr parameter has a base
value of SELECfOR$OF(NIL) or zero, pool$min should be at least
two paragraphs plus the value of stack$size in 16-byte paragraphs.

A WORD that indicates the maximum allowable size of the new
job's memory in 16-byte paragraphs. If pool$max is smaller than
pool$min, an E$PARAM error is returned.

A WORD that specifies the maximum number of objects that the
created job can own.

• If not OFFFFH, contains the maximum number of objects,
created by tasks in the new job, that can exist at one time.

• If OFFFFH, indicates that there is no limit to the number of
objects that tasks in the new job can create.

21

CREATE$JOB

max$tasks

max$priority

except$handler

22

A WORD that specifies the maximum number of tasks that can
exist simultaneously in the new job.

• If not OFFFFH, it contains the maximum number of tasks that
can exist simultaneously in the new job.

• If OFFFFH, it indicates that there is no limit to the number of
tasks that tasks in the new job can create.

• It cannot be zero. A value of OH will produce the E$LIMIT
exception.

A BYTE that sets an upper limit on the priority of the tasks created
in the new job.

• If not zero, it contains the maximum allowable priority of tasks
in the new job. If max$priority exceeds the maximum priority of
the parent job, an E$LIMIT error is returned.

• If zero, it indicates that the new job is to inherit the maximum
priority attribute of its parent job.

A POINTER to a structure of the following form:

STRUCTURE (
EXCEPTION$HANDLER$PTR
EXCEPTION$MODE

POINTER,
BYTE);

If exception$handler$ptr is not NIL, then it is a POINTER to the
first instruction of the new job's own exception handler. If
exception$handler$ptr is NIL, the new job's exception handler is the
system default exception handler. In both cases, the exception
handler for the new task becomes the default exception handler for
the job.

The exception$mode indicates when control is to be passed to the
exception handler. It is encoded as follows:

o

1

2

3

When Control Passes

To Exception Handler

Never

On programmer errors only

On environmental conditions only

On all exceptional conditions

Nucleus System Calls

job$flags

task$priority

start$address

data$seg

Nucleus System Calls

CREATE$JOB

A WORD containing information that the Nucleus needs to create
and maintain the job. The bits (where bit 15 is the high-order bit)
have the following meanings:

Bits ~eaning

15-2 Reserved bits that should be set to zero.

1 If 0, then whenever a task in the new job or any of its
descendant jobs makes a Nucleus system call, the
Nucleus will check the parameters for validity.

If 1, the Nucleus will not check the parameters of
Nucleus system calls made by tasks in the new job.
However, if any ancestor of the new job has been created
with this bit set to 0, there will be parameter checking for
the new job.

° Reserved bit that should be set to zero.

A BYTE that controls the priority of the new job's initial task.

• If not zero, it contains the priority of the new job's initial task. If
the task$priority parameter is greater (numerically smaller) than
the new job's maximum priority attribute, an E$PARAM error
is returned.

• If zero, it indicates that the new job's initial task is to have a
priority equal to the new job's maximum priority attribute.

A POINTER to the first instruction of the new job's initial task (the
task created with the job).

A TOKEN that specifies which data segment the new job's initial
task is to use.

• If not SELECfOR$OF(NIL) or zero, it is the base address of
the data segment of the new job's initial task.

• If SELECfOR$OF(NIL) or zero, it indicates that the new job's
initial task assigns its own data segment. Refer to the Guide to
the iRMX® I Interactive Configuration Utility and the iRMX® I
Interactive Configuration Utility Reference Manual for more
information about data segment allocation.

23

CREATE$JOB

stack$ptr

stack$size

task$flags

Output Parameters
job

except$ptr

24

A POINTER that specifies the location of the stack for the new
job's initial task.

• If the base portion is not NIL or zero, the pointer points to the
base of the user-provided stack of the new job's initial task.

• If the base portion is NIL or zero, it indicates that the Nucleus
should allocate a stack for the new job's initial task. The length
of the allocated segment is equal to the value of the stack$size
parameter.

A WORD containing the size, in bytes, of the stack of the new job's
initial task. The stack size must be at least 16 bytes and should be at
least 300 (decimal) bytes if the new task is going to make Nucleus
system calls. The Nucleus increases specified values that are not
mUltiples of 16 up to the next higher mUltiple of 16. Refer to the
iRMX® I Programming Techniques Manual for further information
on estimating stack sizes.

If you set the stack$ptr parameter to indicate a user-provided stack,
setting the stack$size parameter causes the Nucleus to fill the user
provided stack with special characters which the iRMX 86 Debugger
uses to detect stack overflow. Because of this situation, never
specify a stack$size value that is larger than size of the user
provided stack.

A WORD containing information that the Nucleus needs to create
and maintain the job's initial task. The bits (where bit 15 is the high
order bit) have the following meanings:

Bits Meaning

15-1 Reserved bits which should be set to zero.

o If one, the initial task contains floating-point
instructions. These instructions require the Numeric
Processor Extension (NPX) component for execution.

If zero, the initial task does not contain floating-point
instructions.

A TOKEN to which the operating system will return a token for the
new job.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

Nucleus System Calls

CREATE$JOB

Description

The CREA TE$JOB system call creates a job with an initial task and returns a token for the
job. The new job's parent is the calling task's job. The new job counts as one against the
parent job's object limit. The new task counts as one against the new job's object and task
limits. The new job's resources come from the parent job, as described in the iRM)(® I
Nucleus User's Guide. In particular, the max$task and max$objects values are deducted
from the creating job's maximum task and maximum objects attributes, respectively.

Example

/**
* This example illustrates how the CREATE$JOB system call can be *
* used. *
**/

DECLARE TOKEN LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

INITIALTASK: PROCEDURE EXTERNAL;
END INITIALTASK;

DECLARE job$token
DECLARE directory$size
DECLARE param$obj
DECLARE pool$min
DECLARE pool$max
DECLARE max$objects
DECLARE max$tasks
DECLARE max$priority
DECLARE except$handler
DECLARE job$flags
DECLARE task$priority
DECLARE start$address
DECLARE data$seg
DECLARE stack$pointer
DECLARE stack$size
DECLARE task$flags
DECLARE status

Nucleus System Calls

TOKEN;
WORD;
TOKEN;
WORD;
WORD;
WORD;
WORD;
BYTE;
POINTER;
WORD;
BYTE;
POINTER;
TOKEN;
POINTER;
WORD;
WORD;
WORD;

25

CREATE$JOB

SAMPLEPROCEDURE:
PROCEDURE;

directory$size - 10;
param$obj - 0;
pool$min - OIFFH;
pool$max - OFFFFH;
max$objects - OFFFFH;
max$tasks - OAR;
max$priority - 0;
except$handler - NIL;
job$flags - 0;
task$priority - 0;
start$address - @INITIALTASK;

data$seg - SELECTOR$OF(NIL);

stack$pointer - NIL;
stack$size - 512;
task$flags - 0;

•

1* max 10 entries in object directory *1
1* new job has no parameter object *1
1* min OIFFH, max OFFFFH l6-byte *1
1* paragraphs in job pool *1
1* no limit to number of objects *1
1* OAR tasks can exist simultaneously *1
1* inherit max priority of parent *1
1* use system default except handler *1
1* no flags set *1
1* set initial task to max priority *1
1* points to first instruction of

initial task *1
1* initial task sets up own data

segment *1
1* Nucleus allocates stack *1
1* 512 bytes in stack of initial task *1
1* no floating-point instructions *1

• Typical PL/M-86 Statements
•

1**
* The calling task creates a job with an initial task labeled *
* INITIALTASK. *
**1

job$token - RQ$CREATE$JOB (directory$size,

•

param$obj,
pool$min,
pool$max,
max$objects,
max$tasks,
max$priority,
except$handler,
j ob$flags,
task$priority,
start$address,
data$seg,
stack$pointer,
stack$size,
task$flags,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

26 Nucleus System Calls

Condition Codes

E$OK

E$CONTEXT

E$EXIST

E$LIMIT

E$MEM

Nucleus System Calls

CREATE$JOB

OOOOH No exceptional conditions.

OOOSH The job containing the calling task is in the
process of being deleted.

0006H The param$obj parameter is not
SELECfOR$OF(NIL) or zero and is not a
token for an existing object.

0004H At least one of the following is true:

• max$objects is larger than the unused portion
of the object allotment in the calling task's
job.

• max$tasks is larger than the unused portion
of the task allotment in the calling task's job.

• max$priority is greater (numerically smaller)
than the maximum allowable task priority in
the calling task's job.

• directory$size is larger than OFFOH.

• The initial task would exceed the object limit
in the new job. That is, the max$objects
parameter is set to zero.

• The initial task would exceed the task limit in
the new job. The max$tasks parameter is set
to zero.

0002H At least one of the following is true:

• The memory available to the new job is not
sufficient to create a job descriptor (an
internal data structure) and the object
directory.

• The memory available to the new job is not
sufficient to satisfy the pool$min parameter.

• The memory available to the new job is not
sufficient to create the task as specified.

27

CREATE$JOB

E$PARAM

28

8004H At least one of the following is true:

• pool$min is less than 16 + (number of
paragraphs needed for the initial task and a
system-allocated stack) + 5 (if the task uses
the NPX component).

• pool$min is greater than pool$max.

• task$priority is unequal to zero and greater
(numerically smaller) than max$priority.

• stack$size is less than 16.

• pool$max is zero.

• the exception handler mode is not valid.

Nucleus System Calls

CREATE$MAILBOX

The CREA TE$MAILBOX system call creates a mailbox.

mailbox - RQ$CREATE$MAILBOX (mailbox$flags, except$ptr);

Input Parameters

mailbox$flags

Output Parameters

mailbox

except$ptr

Nucleus System Calls

A WORD containing information about the new mailbox. The bits
(where bit 15 is the high-order bit) have the following meanings:

Bits Meaning

15-5 Reserved bits which should be set to zero.

4-1 A value that, when multiplied by four, specifies the
number of objects that can be queued on the high
performance object queue. Additional objects are
queued on the slower, overflow queue. Four is the
minimum size for the high performance queue; that is,
specifying zero or one in these bits results in a high
performance queue that holds four objects.

o A bit that determines the queuing scheme for the task
queue of the new mailbox, as follows:

Queuing Scheme

o First-in/first-out

1 Priority based

A TOKEN to which the operating system will return a token for the
new mailbox.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

29

CREATE$MAILBOX

Description

30

This system call creates a mailbox, an exchange that tasks can use to exchange tokens for
objects. To send an object, use the token for that object as input to the SEND$MESSAGE
system call. The RECElVE$MESSAGE system call can be used to receive object tokens
from a mailbox.

When you set up a mailbox, you can also specify the size of a high-performance queue that
is associated with the mailbox. This queue is a block of memory that stores objects waiting
to be sent or received. It is permanently assigned to the mailbox, even if no objects are
queued there.

When more objects than the high-performance queue can hold are queued at a mailbox,
the objects overflow into a slower queue whose size is limited only by the amount of
memory in the job containing the mailbox. No space is allocated to the overflow queue
until the space is needed to contain objects.

Setting the size of the high-performance queue involves a tradeoff between memory and
performance. Setting a size that is too large wastes memory, because the unused portion of
the queue is unavailable for other uses. But setting a size that is too small forces the
Nucleus to create a temporary queue (and creating and deleting objects are relatively slow
operations). You should set up a high-performance queue large enough to contain all the
objects queued during normal operations, and let the overflow queue handle large
overflows or unusual circumstances.

Nucleus System Calls

CREATE$MAILBOX

Example

/**
* This example illustrates how the CREATE$MAILBOX system call can be *
* used. *
**/

DECLARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE mbx$token
DECLARE mbx$flags
DECLARE status

SAMPLEPROCEDURE:
PROCEDURE;

mbx$flags = 0;

•

TOKEN;
WORD;
WORD;

/* designates four objects to be queued
on the high performance object
queue; designates a first-in/
first-out task queue. */

• Typical PL/M-86 Statements
•

/**
* The token mbx$token is returned when the calling task invokes the *
* CREATE$MAILBOX system call. *
**/

•

mbx$token = RQ$CREATE$MAILBOX (mbx$flags,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Nucleus System Calls 31

CREATE$MAILBOX

Condition Codes

E$OK

E$LIMIT

E$MEM

ENOTCONFIGURED

32

OOOOH No exceptional conditions.

0004H The calling task's job has already reached its
object limit.

0002H The memory available to the calling task's job is
not sufficient to create a mailbox.

0008H This system call is not part of the present
configuration.

Nucleus System Calls

CREATE$REGION

The CREA TE$REGION system call creates a region.

CAUTION

Tasks that use regions cannot be deleted while they are in control of the
region. Using regions in a Human Interface application task can cause
situations where the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal) while the task is in the region.
Therefore, you should avoid using regions in Human Interface
applications.

region - RQ$CREATE$REGION (region$flags, except$ptr);

Input Parameters
region$f1ags A WORD that specifies the queuing protocol of the new region. If

the low-order bit equals zero, tasks await access in FIFO order. If
the low-order bit equals one, tasks await access in priority order.
The other bits in the WORD are reserved and should be set to zero.

Output Parameters
region

except$ptr

Description

A TOKEN to which the operating system will return a token for the
new region.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The CREA TE$REGION system call creates a region and returns a token for the region.

Nucleus System Calls 33

CREATE$REGION

Example

/**
* This example illustrates how the CREATE$REGION system call *
* can be used. *
**/

DECLARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE region$token
DECLARE priority$queue

DECLARE status

TOKEN;
LITERALLY , I' ;
/* tasks wait in priority order */
WORD;

SAMPLEPROCEDURE:
PROCEDURE;

•
• Typical PL/M-86 Statements
•

/***
* The token region$token is returned when the calling task *
* invokes the CREATE$REGION system call. *
***/

region$token - RQ$CREATE$REGION (priority$queue,
@status);

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

34 Nucleus System Calls

Condition Codes

E$OK

E$LIMIT

E$MEM

ENOTCONFIGURED

Nucleus System Calls

CREATE$REGION

OOOOH No exceptional conditions.

0004H The calling task's job has reached its object limit.

0002H The memory pool of the calling task's job does
not contain a sufficiently large block to satisfy the
request.

0008H This system call is not part of the present
configuration.

3S

CREATE$SEGMENT

The CREATE$SEGMENT system call creates a segment.

segment - RQ$CREATE$SEGMENT (size, except$ptr);

Input Parameter
size A WORD that specifies the size of the requested segment.

• If not zero, it contains the size, in bytes, of the requested
segment. If the size parameter is not a multiple of 16, it will be
rounded up to the nearest higher multiple of 16 before the
request is processed by the Nucleus.

• If zero or OFFFFH, it indicates that the size of the request is
65536 (64K) bytes.

Output Parameters
segment

except$ptr

A TOKEN to which the operating system will return a token for the
new segment.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

Description

36

The CREATE$SEGMENT system call creates a segment and returns the token for it. The
memory for the segment is taken from the free portion of the memory pool of the calling
task's job, unless borrowing from the parent job is both necessary and possible. The new
segment counts as one against the object limit of the calling task's job.

To gain access into the segment, you should base an array or structure on a pointer by
setting the base portion equal to the segment's TOKEN and the offset portion equal to
zero. If you have a PL/M-86 compiler that supports the SELECTOR data type, you can
accomplish the same thing by basing the array or structure on the SELECTOR.

Nucleus System Calls

CREATE$SEGMENT

Example

MAINPROC: DO;
/**
* This example illustrates how the CREATE$SEGMENT system call can be *
* used. *
**/

DECLARE TOKEN LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE seg$token
DECLARE seg$size
DECLARE status

SAMPLEPROCEDURE:
PROCEDURE;

seg$size OIOOR;

•

TOKEN;
WORD;
WORD;

/* the size of the requested segment
is 256 bytes */

• Typical PL/M-86 Statements
•

/**
* The token seg$token is returned when the calling task invokes the *
* CREATE$SEGMENT system call. *
**/

seg$token = RQ$CREATE$SEGMENT (seg$size, @status);

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;
END MAINPROC;

Nucleus System Calls 37

CREATE$SEGMENT

Condition Codes

38

E$OK

E$LIMIT

E$MEM

ENOTCONFIGURED

OOOOH No exceptional conditions.

0004H The calling task's job has already reached its
object limit.

0002H The memory available to the calling task's job is
not sufficient to create a segment of the specified
size.

0008H This system call is not part of the present
configuration.

Nucleus System Calls

CREATE$SEMAPHORE

The CREATE$SEMAPHORE system call creates a semaphore.

semaphore - RQ$CREATE$SEMAPHORE (initial$value, max$value,
semaphore$flags, except$ptr);

Input Parameters
initial$value

max$value

semaphore$f1ags

Output Parameters
semaphore

except$ptr

Description

A WORD containing the initial number of units to be in the custody
of the new semaphore.

A WORD containing the maximum number of units over which the
new semaphore is to have custody at any given time. If max$value is
zero, an E$P ARAM error is returned.

A WORD containing information about the new semaphore. The
low-order bit determines the queuing scheme for the new
semaphore's task queue:

o
1

Queuing Scheme

First-in/first-out
Priority based

The remaining bits in semaphore$f1ags are reserved for future use
and should be set to zero.

A TOKEN to which the operating system will return a token for the
new semaphore.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The CREATE$SEMAPHORE system call creates a semaphore and returns a token for it.
The created semaphore counts as one against the object limit of the calling task's job.

Nucleus System Calls 39

CREATE$SEMAPHORE

Example

/**
* This example illustrates how the CREATE$SEMAPijORE system call can *
* be used. *
**/

DECLARE TOKEN LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE sem$token
DECLARE init$value
DECLARE max$value
DECLARE sem$flags
DECLARE status

TOKEN;
WORD;
WORD;
WORD;
WORD;

SAMPLEPROCEDURE:
PROCEDURE;

init$value - 1;

max$value lOH;

sem$flags O' ,

•

/* the new semaphore has one initial
unit */

/* the new semaphore can have a maximum
of 16 units */

/* designates a first-in/
first-out task queue */

• Typical PL/M-86 Statements
•

/**
* The token sem$token is returned when the calling task invokes the *
* CREATE$SEMAPHORE system call. *
**/

sem$token = RQ$CREATE$SEMAPHORE (init$value,
max$value,
sem$flags,
@status);

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

40 Nucleus System Calls

Condition Codes

E$OK

E$LIMIT

E$MEM

ENOTCONFIGURED

E$PARAM

Nucleus System Calls

CREATE$SEMAPHORE

OOOOH No exceptional conditions.

0004H The calling task's job has already reached its
object limit.

0002H The memory available to the calling task's job is
not sufficient to create a semaphore.

0008H This system call is not part of the present
configuration.

8004 H At least one of the following is true:

• The initial$value parameter is larger than the
max$value parameter.

• The max$value parameter is o.

41

CREATE$TASK

The CREA TE$TASK system call creates a task.

task - RQ$,CREATE$TASK (priority, start$address, data$seg, stack$ptr,
stack$size, task$flags, except$ptr);

Input Parameters
priority

42

start$address

data$seg

stack$ptr

A BYTE that specifies the priority of the new task.

• If not zero, it contains the priority of the new task. The priority
parameter must not exceed the maximum allowable priority of
the calling task's job. If it does, an E$PARAM error is returned.

• If zero, it indicates that the new task's priority is to equal the
maximum allowable priority of the calling task's job.

A POINTER to the first instruction of the new task.

A TOKEN that specifies the new task's data segment.

• If not SELECTOR$OF(NIL) or zero, the TOKEN contains the
base address of the new task's data segment.

• If set to SELECTOR$OF(NIL) or zero, the TOKEN indicates
that the new task assigns its own data segment. Refer to the
Guide To The iRMX® I Interactive Configuration Utility and the
iRMX® I Interactive Configuration Utility Reference Manual for
further information on data segment allocation.

A POINTER that specifies the location of the stack for the new
task.

• If the base portion is not NIL or zero, the Nucleus uses the sum
of the offset portion and the stack$size parameter (declared
during the call to CREATE$TASK) as the value of the SP
register (the stack pointer).

• If the base portion is NIL or zero, the Nucleus allocates a stack
to the new task. The length of the stack is equal to the value of
the stack$size parameter.

Nucleus System Calls

stack$size

task$flags

Output Parameters
task

except$ptr

Nucleus System Calls

CREATE$TASK

A WORD containing the size, in bytes, of the new task's stack
segment. The stack size must be at least 16 bytes. The Nucleus
increases specified values that are not multiples of 16 up to the next
higher mUltiple of 16.

The stack size should be at least 300 bytes if the new task is going to
make Nucleus system calls. Refer to the iRMX.@ I Programming
Techniques Manual for further information on assigning stack sizes.

If you set the stack$ptr parameter to indicate a user-provided stack,
setting the stack$size parameter causes the Nucleus to fill the user
provided stack with special characters which the iRMX I Debugger
uses to detect stack overflow. Because of this situation, never
specify a stack$size value that is larger than size of the user
provided stack.

A WORD containing information that the Nucleus needs to create
and maintain the task. The bits (where bit 15 is the high-order bit)
have the following meanings:

Bits Meaning

15-1 Reserved bits which should be set to zero

o If one, the task contains floating-point instructions.
These instructions require the NPX component for
execution.

If zero, the task does not contain floating-point
instructions.

A TOKEN to which the operating system will return a token for the
new task.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

43

CREATE$TASK

Description

The CREATE$TASK system call creates a task and returns a token for it. The new task
counts as one against the object and task limits of the calling task's job. Attributes of the
new task are initialized upon creation as follows:

• priority: as specified in the call.

• execution state: ready.

• suspension depth: O.

• containing job: the job that contains the calling task.

• exception handler: the exception handler of the containing job.

• exception mode: the exception mode of the containing job.

Example

1**
* This example illustrates how the CREATE$TASK system call can be *
* used. *
**1

DECLARE TOKEN LITERALLY 'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

TASKCODE: PROCEDURE EXTERNAL;
END TASKCODE;

DECLARE task$token
DECLARE priority$level$66
DECLARE start$address
DECLARE data$seg
DECLARE stack$pointer
DECLARE stack$size$512

TOKEN;
LITERALLY' 66' ;
POINTER;
TOKEN;
POINTER;
LITERALLY '512';

DECLARE task$f1ags
DECLARE status

1* new task's stack size is 512 bytes *1
WORD;
WORD;

44 Nucleus System Calls

CREATE$TASK

SAMPLEPROCEDURE:
PROCEDURE;

start$address - @TASKCODE; 1* first instruction of the new task *1
data$seg - SELECTOR$OF(NIL); 1* task sets up own data segment *1
stack$pointer - NIL; 1* automatic stack allocation *1
task$flags - 0; 1* designates no floating-point instructions *1

•
• Typical PL/M-86 Statements
•

1**
* The task (whose code is labeled TASKCODE) is created when the *
* calling task invokes the CREATE$TASK system call. *
**1

task$token ~ RQ$CREATE$TASK (priority$level$66,
start$address,
data$seg,
stack$pointer,
stack$size$512,
task$flags,
@status) ;

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Nucleus System Calls 45

CREATE$TASK

Condition Codes

46

E$OK

E$LIMIT

E$MEM

ENOTCONFIGURED

E$PARAM

OOOOH No exceptional conditions.

0004H The calling task's job has already reached its
'object limit or task limit.

0002H The memory available to the calling task's job is
not sufficient to create a task as specified (task
descriptor, stack, and possibly NPX area).

0008H This system call is not part of the present
configuration.

8004H At least one of the following is true:

• The stack$size parameter is less than 16.

• The priority parameter is nonzero and
greater (numerically smaller) than the
maximum allowable priority for tasks in the
calling task's job.

Nucleus System Calls

DELETE$COMPOSITE

The DELETE$COMPOSITE system call deletes a composite object.

CAUTION

Composite objects require the creation of extension objects. Jobs that
create extension objects cannot be deleted until all the extension objects
are deleted. Therefore you should avoid creating composite objects in
Human Interface applications. If a Human Interface application creates
extension objects, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal).

CALL RQ$DELETE$COMPOSITE (extension, composite, except$ptr);

Input Parameters
extension

composite

Output Parameter
except$ptr

Description

A TOKEN for the extension type used as a license to create the
composite object to be deleted.

A TOKEN for the composite object to be deleted.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The DELETE$COMPOSITE system call deletes the specified composite object, but not its
component objects.

Example

See the example in the "Initialization" section of Chapter 10 in the iRMX® I Nucleus User's
Guide.

Nucleus System Calls 47

DELETE$COMPOSITE

Condition Codes

E$OK

E$CONTEXT

E$EXIST

E$MEM

ENOTCONFIGURED

E$TYPE

48

OOOOH

OOOSH

0OO6H

0OO2H

0OO8H

8002H

No exceptional conditions.

The extension type does not match the composite
parameter.

One or both of the extension or composite
parameters is not a token for an existing object.

The memory available to the calling task's job is
not sufficient to complete this operation.

This system call is not part of the present
configuration.

One or both of the extension or composite
parameters is a token for an object that is not of
the correct type.

Nucleus System Calls

DELETE$EXTENSION

The DELETE$EXTENSION system call deletes an extension object and all composites of
that type.

CAUTION

Jobs that create extension objects cannot be deleted until the extension
object is deleted. Therefore, you should avoid creating extension objects in
Human Interface applications. If a Human Interface application creates
extension objects, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal).

CALL RQ$DELETE$EXTENSION (extension, except$ptr);

Input Parameter
extension

Output Parameter
except$ptr

Description

A TOKEN for the extension object to be deleted.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The DELETE$EXTENSION system call deletes the specified extension object and all
composite objects of that type, making the corresponding type code available for reuse.

If you specified a deletion mailbox when you created the extension, all the composite
objects created subsequently with that extension type are sent to the deletion mailbox. You
must delete all the composite objects sent to the deletion mailbox. The
DELETE$EXTENSION system call is not completed until all of the composite objects
have been deleted.

If an extension has no deletion mailbox, composite objects created by the
CREA TE$EXTENSION system call are deleted without informing the type manager.

The job containing the task that created the extension object cannot be deleted until the
extension object is deleted.

Nucleus System Calls 49

DELETE$EXTENSION

Example

/**
* This example illustrates how the DELETE$EXTENSION system call can *
* be used. *
**/

DEClARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DEClARE ext$token
DEClARE type$code
DEClARE deletembxtoken
DEClARE status

TOKEN;
WORD;
TOKEN;
WORD;

SAMPLEPROCEDURE:
PROCEDURE;

type$code - 08000h; /* this is a valid value for a
new type */

deletembxtoken - SELECTOR$OF(NIL); /* No deletion mailbox is desired
for this new type */

/**
* To delete an extension, a task must know the token for that *
* extension. In this example, the needed token is known because the *
* calling task creates the extension. *
**/

ext$token - RQ$CREATE$EXTENSION (type$code,
deletembxtoken,
@status);

•
• Typical PL/M-86 Statements
•

/**
* When the extension is no longer needed, it may be deleted by any *
* task that knows the token for the extension. *
**/

CALL RQ$DELETE$EXTENSION

END SAMPLEPROCEDURE;

so

(ext$token,
@status);

Nucleus System Calls

Condition Codes

E$OK

E$EXIST

E$MEM

ENOTCONFIGURED

E$TYPE

Nucleus System Calls

DELETE$EXTENSION

OOOOH No exceptional conditions.

0006H The extension parameter is not a token for an
existing object.

0002H The memory available to the calling task's job is
not sufficient to complete this operation.

0008H This system call is not part of the present
configuration.

8002H The extension parameter is a token for an object
that is not an extension object.

51

DELETE$JOB

The DELETE$JOB system call deletes a job.

CALL RQ$DELETE$JOB (job, except$ptr);

Input Parameter
job A TOKEN for the job to be deleted. A value of

SELECfOR$OF(NIL) or zero specifies the calling task's job.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX I Operating System

will return the condition code generated by this system call.

Description

52

The DELETE$JOB system call deletes the specified job, all of the job's tasks, and all
objects created by the tasks. Exceptions are that jobs and eXtension objects (see the iRMX®
I Nucleus User's Guide) created by tasks in the target job must be deleted prior to the call
to DELETE$JOB. Information concerning the descendants of a job can be obtained by
invoking the OFFSPRING system call.

During the deletion of any interrupt tasks owned by the job, the interrupt levels associated
with those tasks are reset. The levels that do not have interrupt tasks associated with them
will not be reset during an RQ$DELETE$JOB call.

During deletion, all resources that the target job had borrowed from its parent are
returned.

Deleting a job causes a credit of one toward the object total of the parent job. Also, the
maximum tasks and maximum objects attributes of the deleted job are credited to the
current tasks and current objects attributes, respectively, of the parent job.

Nucleus System Calls

DELETE$JOB

Example

/** * This example illustrates how the DELETE$JOB system call can be *
* used to delete the calling task's job. *
**/

DEClARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DEClARE calling$tasks$job
DEClARE status

SAMPLEPROCEDURE:
PROCEDURE;

•

LITERALLY'SELECTOR$OF(NIL)';
WORD;

• Typical PL/M-86 Statements
•

/**
* If you set the selection parameter to SELECTOR$OF(NIL), *
* the DELETE$JOB system call will delete the calling task's job. *
**/

CALL RQ$DELETE$JOB

END SAMPLEPROCEDURE;

Nucleus System Calls

(calling$tasks$job,
@status);

53

DELETE$JOB

Condition Codes

E$OK

E$CONTEXT

E$EXIST

E$NOnCONFIGURED

E$TYPE

54

OOOOH No exceptional conditions.

OOOSH At least one of the following is true:

• There are undeleted jobs or extension objects
(see the iRMJ{@ I Nucleus User's Guide)
which have been created by tasks in the
target job.

• The deleting task has access to data guarded
by a region contained in the job to be
deleted. (Refer to the iRMX® I Nucleus User's
Guide for information concerning regions.)

0006H The job parameter is not a token for an existing
object.

0008H This system call is not part of the present
configuration.

8002H The job parameter is a token for an object that is
not a job.

Nucleus System Calls

DELETE$MAILBOX

The DELETE$MAILBOX system call deletes a mailbox.

CALL RQ$DELETE$MAILBOX (mailbox, except$ptr);

Input Parameter

mailbox

Output Parameters
except$ptr

Description

A TOKEN for the mailbox to be deleted.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The DELETE$MAILBOX system call deletes the specified mailbox. If any tasks are
queued at the mailbox at the moment of deletion, they are awakened with an E$EXIST
exceptional condition. If there is a queue of object tokens at the moment of deletion, the
queue is discarded. Deleting the mailbox counts as a credit of one toward the object total
of the containing job.

Nucleus System Calls ss

DELETE$MAILBOX

Example

/** * This example illustrates how the DELETE$MAILBOX system call can be *
* used. *
**/

DECLARE TOKEN LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE mbx$token
DECLARE mbx$flags
DECLARE status

TOKEN;
WORD;
WORD;

SAMPLEPROCEDURE:
PROCEDURE;

mbx$flags - 0;

•

/* designates four objects to be queued
on the high performance object
queue; designates a first-in/
first-out task queue */

• Typical PL/M-86 Statements
•

/**
* In order to delete a mailbox, a task must know the token for that *
* mailbox. In this example, the needed token is known because the *
* calling task creates the mailbox. *
**/

56

mbx$token

•

RQ$CREATE$MAILBOX (mbx$flags,
@status);

• Typical PL/M-86 Statements
•

Nucleus System Calls

DELETE$MAILBOX

/** * When the mailbox is no longer needed, it may be deleted by any task *
* that knows the token for the mailbox. *
**/

CALL RQ$DELETE$MAILBOX

•

(mbx$token,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

E$EXIST

ENOTCONFIGURED

E$TYPE

Nucleus System Calls

OOOOH No exceptional conditions.

0006H Either the mailbox parameter is not a token for
an existing object or it represents a mailbox
whose job is in the process of being deleted.

0008H This system call is not part of the present
configuration.

8002H The mailbox parameter is a token for an object
which is not a mailbox.

57

DELETE$REGION

The DELETE$REGION system call deletes a region.

CAUTION

Tasks which use regions cannot be deleted while they access data protected
by the region. Therefore, you should avoid using regions in Human
Interface applications. If a task in a Human Interface application uses
regions, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal) while the task is in the region.

CALL RQ$DELETE$REGION (region, except$ptr);

Input Parameter
region A TOKEN for the region to be deleted.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX I Operating System

will return the condition code generated by this system call.

Description

S8

The DELETE$REGION system call deletes a region. If a task that has access to data
protected by the region requests that the region be deleted, the task receives an
E$CONTEXT exceptional condition. If a task requests deletion while another task has
access, deletion is delayed until access is surrendered. If two more more tasks request
deletion of a region that another task has access to, a deadlock results. A deadlock also
results when a task attempts to delete another task that is in the process of trying to delete
an occupied region. When the region is deleted, any waiting tasks awaken with an
E$EXIST exceptional condition.

Nucleus System Calls

DELETE$REGION

Example

/**
* This example illustrates how the DELETE$REGION system call can be *
* used. *
**/

DEClARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DEClARE region$token TOKEN;
DEClARE priority$queue LITERALLY '1'; /* tasks wait in

priority order */
DEClARE status WORD;

SAMPLEPROCEDURE:
PROCEDURE;

•
• Typical PL/M-86 Statements
•

/** * In order to delete a region, a task must know the token for that *
* region. In this example, the needed token is known because the *
* calling task creates the region. *
**/

region$token - RQ$CREATE$REGION

•
• Typical PL/M-86 Statements
•

(priority$queue,
@status);

/**
* When the region is no longer needed, it may be deleted by any task *
* that knows the token for the region. *
**/

CALL RQ$DELETE$REGION (region$token,
@status);

•
o Typical PL/M-86 Statements
o

END SAMPLEPROCEDURE;

Nucleus System Calls 59

DELETE$REGION

Condition Codes

60

E$OK

E$CONTEXT

E$EXIST

E$NOnCONFIGURED

E$TYPE

OOOOH No exceptional conditions.

0005H The deletion is being requested by a task that
currently holds access to data protected by the
region.

0006H The region parameter is not a token for an
existing object.

0008H This system call is not part of the present
configuration.

8002H The region parameter is a token for an object
that is not a region.

Nucleus System Calls

DELETE$SEGMENT

The DELETE$SEGMENT system call deletes a segment.

CALL RQ$DELETE$SEGMENT (segment, except$ptr);

Input Parameter
segment

Output Parameter
except$ptr

Description

A TOKEN for the segment to be deleted.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The DELETE$SEGMENT system call deletes iRMX I segments created via
CREA TE$SEG MENT. When deleting iRMX I segments, this system call returns the
specified segment to the memory pool from which it was allocated. The deleted segment
counts as a credit of one toward the object total of the containing job.

Nucleus System Calls 61

DELETE$SEGMENT

Example

/**
* This example illustrates how the DELETE$SEGMENT system call can be *
* used. *
**/

DECLARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE seg$token TOKEN;
DECLARE size WORD;
DECLARE status WORD;

SAMPLEPROCEDURE:
PROCEDURE;
size - 64;

•

/* designates new segment to contain
64 bytes */

• Typical PL/M-86 Statements
•

/**
* In order to delete a segment, a task must know the token for that *
* segment. In this example, the needed token is known because the *
* calling task creates the segment. *
**/

seg$token - RQ$CREATE$SEGMENT (size,
@status);

•
• Typical PL/M-86 Statements
•

/**
* When the segment is no longer needed, it may be deleted by any task *
* that knows the token for the segment. *
**/

CALL RQ$DELETE$SEGMENT

•

(seg$token,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

62 Nucleus System Calls

Condition Codes

E$OK

E$EXIST

ENOTCONFIGURED

E$TYPE

Nucleus System Calls

DELETE$SEGMENT

OOOOH N a exceptional conditions.

0006H At least one of the following is true:

• The segment parameter is not a token for an
existing object.

• The segment parameter represents a
segment whose job is being deleted.

0008H This system call is not part of the present
configuration.

8002H The segment parameter is a token for an object
that is not a segment.

63

DELETE$SEMAPHORE

The DELETE$SEMAPHORE system call deletes a semaphore.

CALL RQ$DELETE$SEMAPHORE (semaphore, except$ptr);

Input Parameter
semaphore A TOKEN for the semaphore to be deleted.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX I Operating System

will return the condition code generated by this system call.

Description

64

The DELETE$SEMAPHORE system call deletes the specified semaphore. If there are
tasks in the semaphore's queue at the moment of deletion, they are awakened with an
E$EXIST exceptional condition. The deleted semaphore counts as a credit of one toward
the object total of the containing job.

Nucleus System Calls

DELETE$SEMAPHORE

Example

1**
* This example illustrates how the DELETE$SEMAPHORE system call can *
* be used. *
**1

DECLARE TOKEN LITERALLY 'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE sem$token
DECLARE init$value
DECLARE max$value
DECLARE sem$flags
DECLARE status

SAMPLEPROCEDURE:
PROCEDURE;

TOKEN;
WORD;
WORD;
WORD;
WORD;

init$value - 1; 1* the new semaphore has one initial
unit *1

max$value - 10H; 1* the new semaphore can have a maximum
of 16 units *1

sem$flags - 0; 1* designates a first-inl
first-out task queue *1

•
• Typical PL/M-86 Statements
•

1***~**
* In order to delete a semaphore, a task must know the token for that *
* semaphore. In this example, the needed token is known because the *
* calling task creates the semaphore. *
**1

sem$token = RQ$CREATE$SEMAPHORE (init$value,
max$value,
sem$flags,
@status);

•
o Typical PL/M-86 Statements
•

Nucleus System Calls 65

DELETE$SEMAPHORE

/**
* When the semaphore is no longer needed, it may be deleted by any *
* task that knows the token for the semaphore. *
**/

CALL RQ$DELETE$SEMAPHORE (sem$token,
@status);

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

66

E$OK

E$EXIST

ENOTCONFIGURED

E$TYPE

OOOOH No exceptional conditions.

0006H One of the following is true:

• The semaphore parameter is not a token for
an existing object

• The semaphore parameter represents a
semaphore whose job is being deleted.

0008H This system call is not part of the present
configuration.

8002H The semaphore parameter is a token for an .
object that is not a semaphore.

Nucleus System Calls

DELETE$TASJ(

The DELETE$TASK system call deletes a task.

CALL RQ$DELETE$TASK (task, except$ptr);

Input Parameter
task

Output Parameter
except$ptr

Description

A TOKEN that identifies the task to be deleted.

• If not SELECfOR$OF(NIL) or zero, the TOKEN must contain
a token for the task to be deleted.

• If SELECfOR$OF(NIL) or zero, this parameter indicates that
the calling task should be deleted.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The DELETE$TASK system call deletes the specified task from the system and from any
queues in which the task was waiting. DELETE$TASK allows any task currently within a
region to exit the region before being deleted. Deleting the task counts as a credit of one
toward the object total of the containing job. It also counts as a credit of one toward the
containing job's task total.

You cannot successfully delete an interrupt task by invoking this system call. Any attempt
to do so results in an E$CONTEXT exceptional condition. To delete an interrupt task,
invoke the RESET$INTERRUPT system call.

Nucleus System Calls 67

DELETE$TASK

Example

1**
* This example illustrates how the DELETE$TASK system call can be *
* used. *
**1'

DEClARE TOKEN LITERALLY'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

TASKCODE: PROCEDURE EXTERNAL;
END TASKCODE;

DEClARE task$token
DEClARE priority$level$66
DEClARE start$address
DEClARE data$seg
DEClARE stack$pointer
DEClARE stack$size$5l2

DEClARE task$flags
DEClARE status

SAMPLEPROCEDURE:
PROCEDURE;

start$address - @TASKCODE;

data$seg - SELECTOR$OF(NIL);
stack$pointer - NIL;
task$flags - 0;

•

TOKEN;
LITERALLY , 66' ;
POINTER;
TOKEN;
POINTER;
LITERALLY' 512' ;

WORD;
WORD;

1* new task's stack
size is 512 bytes *1

1* points to first instruction of
the new task *1

1* task sets up own data segment *1
1* automatic stack allocation *1
1* indicates no floating-point

instructions *1

• Typical PL/M-86 Statements
•

68 Nucleus System Calls

DELETE$TASK

/**
* In order to delete a task, a task must know the token for that *
* task. In this example, the needed token is known because the *
* calling task creates the new task (The task's code is labeled *
* TASKCODE). *
**/

task$token - RQ$CREATE$TASK (priority$level$66,
start$address,
data$seg,
stack$pointer,
stack$size$5l2,
task$flags,
@status);

•
• Typical PL/M-86 Statements
•

/**
* The calling task has created a task (whose code is labeled *
* TASKCODE) which is not an interrupt task. When this task is no *
* longer needed, it may be deleted by any task that knows its token. *
**/

CALL RQ$DELETE$TASK

•

(task$token,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Nucleus System Calls 69

DELETE$TASK

Condition Codes

70

E$OK

E$CONTEXT

E$EXIST

ENOTCONFIGURED

E$TYPE

OOOOH No exceptional conditions.

0005H The task parameter is a token for an interrupt
task.

0006H One of the following conditions has occurred:

• The task parameter is not a token for an
existing object.

• The task parameter represents a task whose
job is being deleted.

• More than one task is trying to delete a task
which is in a region.

0008H This system call is not part of the present
configuration.

8002H The task parameter is a token for an object
which is not a task.

Nucleus System Calls

DISABLE

The DISABLE system call disables an interrupt level.

CALL RQ$DISABLE (level, except$ptr);

Input Parameter
level A WORD that specifies an interrupt level encoded as follows (bit 15

is the high-order bit):

Output Parameter
except$ptr

Description

15-7 Reserved bits that should be set to zero.

6-4 First digit of the interrupt level (0-7).

3 If one, the level is a master level and bits 6-4 specify the
entire level number.

If zero, the level is a slave level and bits 2-0 specify the
second digit.

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call. All
exceptional conditions must be processed in-line. Control does not
pass to an exception handler.

The DISABLE system call disables the specified interrupt level. It has no effect on other
levels. To be disabled, a level must have an interrupt handler assigned to it. Otherwise, the
Nucleus returns an E$CONTEXT exception code.

You must not disable the level reserved for the system clock. You determine this level
during system configuration (refer to the iRMX® I Interactive Configuration Utility Reference
Manual).

Nucleus System Calls 71

DISABLE

Example

1**
* This example illustrates how the DISABLE system call can be used to*
* disable an interrupt level. *
**1

DECLARE TOKEN LITERALLY'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

INTERRUPTHANDLER: PROCEDURE INTERRUPT 63 EXTERNAL;
END INTERRUPTHANDLER;

DECLARE interrupt$level$7

DECLARE interrupt$task$flag
DECLARE interrupt$handler
DECLARE data$segment
DECLARE status
DECLARE job$token

LITERALLY 'OOOOOOOOOIIIIOOOB';
1* specifies master interrupt level 7 *1
BYTE;
POINTER;
TOKEN;
WORD;
TOKEN;

SAMPLEPROCEDURE:

72

PROCEDURE;

interrupt$task$flag O· , 1* indicates no interrupt task on level
7 *1

data$segment = SELECTOR$OF(NIL); 1* indicates that interrupt handler
will load its own data segment *1

interrupt$handler

•

INTERRUPT$PTR (INTERRUPTHANDLER);
1* points to first instruction of

interrupt handler *1

• Typical PL/M-86 Statements
•

Nucleus System Calls

DISABLE

1**
* An interrupt level must have an interrupt handler or an interrupt *
* task assigned to it. Invoking the SET$INTERRUPT system call, the *
* calling task assigns INTERRUPTHANDLER to interrupt level 7. *
**1

CALL RQSETINTERRUPT

•

(interrupt$level$7,
interrupt$task$flag,
interrupt$handler,
data$segment,
@status);

• Typical PL/M-86 Statements
•

1***
* The SET$INTERRUPT system call enabled interrupt level 7. In order *
* to disable level 7, the calling task invokes the DISABLE system *
* call. *
**1

CALL RQ$DISABLE

END SAMPLEPROCEDURE;

Condition Codes

E$OK

E$CONTEXT

ENOTCONFIGURED

E$PARAM

Nucleus System Calls

(interrupt$level$7,
@status);

OOOOH No exceptional conditions.

0005H The level indicated by the level parameter is
already disabled or has no interrupt handler
assigned to it.

0008H This system call is not part of the present
configuration.

8004 H The level parameter is invalid.

73

DISABLE$DELETION

The DISABLE$DELETION system call makes an object immune to ordinary deletion.

CAUTION

DISABLE$DELETION makes an object immune to ordinary deletion by
increasing the disabling depth of an object. If a Human Interface
application contains objects whose disabling depths are greater than one,
the application cannot be deleted asynchronously (via a CONTROL-C
entered at a terminal). Therefore you should not use
DISABLE$DELETION (and have no need to use ENABLE$DELETION or
FORCE$DELETE) in Human Interface applications.

CALL RQ$DISABLE$DELETION (object, except$ptr);

Input Parameter
object A TOKEN for the object whose deletion is to be disabled.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX I Operating System

will return the condition code generated by this system call.

Description

74

The DISABLE$DELETION system call increases by one the disabling depth of an object,
making it immune to ordinary deletion. If an object's disabling depth is two or greater, it is
also immune to forced deletion. If a task attempts to delete the object while it is immune,
the task sleeps until the immunity is removed. At that time, the object is deleted and the
task is awakened.

The ENABLE$DELETION system call is used to decrease the disabling depth of an
object, making it susceptible to ordinary deletion.

NOTES

If an object within a job has had its deletion disabled, then the containing
job cannot be deleted until that object has had its deletion re-enabled.

Nucleus System Calls

DISABLE$DELETION

Disabling deletion of a suspended task causes the calling task to hang until
the suspended task is resumed.

An attempt to raise an object's disabling depth above 255 causes an
E$LIMIT exceptional condition.

Example

/**
* This example illustrates how the DISABLE$DELETION system call can *
* be used to make an object immune to ordinary deletion. *
**/

DEClARE TOKEN LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DEClARE task$token
DEClARE calling$task
DEClARE status

SAMPLEPROCEDURE:
PROCEDURE;

•

TOKEN;
LITERALLY , 0' ;
WORD;

• Typical PL/M-86 Statements
•

/**
* In this example the calling task will be the object to become *
* immune to ordinary deletion. The GET$TASK$TOKEN is invoked by the *
* calling task to obtain its own token. *
**/

task$token - RQ$GET$TASK$TOKENS (calling$task,
@status);

•
• Typical PL/M-86 Statements
•

/**
* Using its own token, the calling task invokes the DISABLE$DELETION *
* system call to increase its own disabling depth by one. This makes *
* the calling task immune to ordinary deletion. *
**/

Nucleus System Calls 75

DISABLE$DELETION

CALL RQ$DISABLE$DELETION (task$token, @status);

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

76

E$EXIST

E$LIMIT

ENOTCONFIGURED

OOOOH No exceptional conditions.

0006H The object parameter is not a token for an
existing object.

0004H The object's disabling depth is already 255.

0008H This system call is not part of the present
configuration.

Nucleus System Calls

ENABLE

The ENABLE system call enables an interrupt level.

CALL RQ$ENABLE (level, except$ptr);

Input Parameter
level

Output Parameter
except$ptr

Description

A WORD that specifies an interrupt level that is encoded as follows
(bit 15 is the high-order bit):

15-7 Reserved bits that should be set to zero.

6-4 First digit of the interrupt level (0-7).

3 If one, the level is a master level and bits 6-4 specify the
entire level number.

If zero, the level is a slave level and bits 2-0 specify the
second digit.

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The ENABLE system call enables the specified interrupt level. The level must have an
interrupt handler assigned to it. A task must not enable the level associated with the
system clock.

Nucleus System Calls 77

ENABLE

Example

1**
* This example illustrates how the ENABLE system call can be used to *
* enable an interrupt level. *
**1

DECLARE TOKEN LITERALLY'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

INTERRUPTHANDLER: PROCEDURE INTERRUPT 63 EXTERNAL;
END INTERRUPTHANDLER;

DECLARE interrupt$level$7

DECLARE interrupt$task$flag
DECLARE interrupt$handler
DECLARE data$segment
DECLARE status

LITERALLY 'OOOOOOOOOIIIIOOOB';
1* specifies master interrupt level 7*1
BYTE;
POINTER;
TOKEN;
WORD;

SAMPLEPROCEDURE:

78

PROCEDURE;

interrupt$task$flag - 0; 1* indicates no interrupt task on level
7 *1

data$segment - SELECTOR$OF(NIL); 1* indicates that interrupt handler
will load its own data segment *1

interrupt$handler - INTERRUPT$PTR (INTERRUPTHANDLER);

•

1* points to first instruction of
interrupt handler *1

• Typical PL/M-86 Statements
•

Nucleus System Calls

ENABLE

/**
* An interrupt level must have an interrupt handler or an interrupt *
* task assigned to it. Invoking the SET$INTERRUPT system call, the *
* calling task assigns INTERRUPTHANDLER to interrupt level 7. *
**/

CALL RQSETINTERRUPT

•

(interrupt$level$7,
interrupt$task$flag,
interrupt$handler,
data$segment,
@status);

• Typical PL/M-86 Statements
•

1** * The SET$INTERRUPT system call enabled interrupt level 7. In order *
* to illustrate the use of the ENABLE system call, interrupt level 7 *
* must first be disabled. The calling task invokes the DISABLE *
* system call to disable interrupt level 7. *
**/

CALL RQ$DISABLE (interrupt$level$7,
@status);

1** * When an interrupt level needs to be enabled, a task must invoke the *
* ENABLE system call. *
**/

CALL RQ$ENABLE

•

(interrupt$level$7,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Nucleus System Calls 79

ENABLE

Condition Codes

80

E$OK

E$CONTEXT

ENOTCONFIGURED

E$PARAM

OOOOH No exceptional conditions.

0005H At least one of the following is true:

• A non-interrupt task tried to enable a level
that was already enabled.

• There is not an interrupt handler assigned to
the specified level.

• There has been an interrupt overflow on the
specified level.

0008H This system call is not part of the present
configuration.

8004 H The level parameter is invalid.

Nucleus System Calls

ENABLE$DELETION

The ENABLE$DELETION system call enables the deletion of objects that have had
deletion disabled.

CAUTION

Human Interface applications should not use the DISABLE$DELETION
system call, and therefore, have no need to use the ENABLE$DELECTION
and FORCE$DELETE system calls. This is because
DISABLE$DELETION increases the disabling depth of an object. A
Human Interface application containing objects whose disabling depths are
greater than one cannot be deleted asynchronously (via a CONTROL-C
entered at a terminal).

CALL RQ$ENABLE$DELETION (object, except$ptr);

Input Parameter
object

Output Parameter
except$ptr

Description

A TOKEN for the object whose deletion is to be enabled.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The ENABLE$DELETION system call decreases by one the disabling depth of an object.
If there is a pending deletion request against the object, and the ENABLE$DELETION
call makes the object eligible for deletion, the object is deleted and the task which made the
deletion request is awakened.

Nucleus System Calls 81

ENABLE$DELETION

Example

/**
* This example illustrates how the ENABLE$DELETION system call can be *
* used to enable the deletion of a task that had been deletion *
* disabled. *
**/

DECLARE TOKEN LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE task$token
DECLARE calling$task
DECLARE status

SAMPLEPROCEDURE:
PROCEDURE;

•

TOKEN;
LITERALLY , 0' ;
WORD;

• Typical PL/M-86 Statements
•

/**
* In this example the calling task will be the object to become *
* immune to deletion. The GET$TASK$TOKEN is invoked by the calling *
* task to obtain its own token. *
**/

task$token - RQ$GET$TASK$TOKENS

•
• Typical PL/M-86 Statements
•

(calling$task,
@status);

/**
* Using its own token, the calling task invokes the DISABLE$DELETION *
* system call to increase its own disabling depth by one. This makes *
* the calling task immune to ordinary deletion. *
**/

82

CALL RQ$DISABLE$DELETION

•

(task$token,
@status);

• Typical PL/M-86 Statements
•

Nucleus System Calls

ENABLE$DELETION

/**
* In order to allow 'itself to be deleted, the calling task invokes *
* the ENABLE$DELETION system call. This system call decreases by one *
* the disabling depth of an object. In this example, the object is *
* the calling task. *
**/

CALL RQ$ENABLE$DELETION

•

(task$token,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

E$CONTEXT

E$EXIST

ENOTCONFIGURED

Nucleus System Calls

GOOOH No exceptional conditions.

0005H The object's deletion is not disabled.

G006H The object parameter is not a token for an
existing object.

G008H This system call is not part of the present
configuration.

83

END$INIT$TASK

The END$INIT$TASK system call is used by an initialization task of a first-level job to
inform the root task that it has completed its synchronous initialization process.

CALL RQENDINIT$TASK;

Description

84

When the initialization task of a first level job finishes its synchronous initialization, it must
inform the root task that it is finished, so that the root task can resume execution and
create another first-level job. When you call END$INIT$TASK, the root task resumes
execution, allowing it to create the next first-level job. You must include this system call in
the initialization task of each first-level job, even if the jobs require no synchronous
initialization. Refer to the iRMX® I Interactive Configuration Utility Reference Manual for
more information on first-level jobs and the initialization process.

Nucleus System Calls

ENTER$INTERRUPT

The ENTE R$ INTERRUPT system call is used by interrupt handlers to load a previously
specified segment base address into the DS register.

CALL RQ$ENTER$INTERRUPT(level, except$ptr);

Input Parameter
level A WORD specifying an interrupt level that is encoded as follows

(bit 15 is the high-order bit):

15-7 Reserved bits that should be set to zero.

6-4 First digit of the interrupt level (0-7).

3 If one, the level is a master level and bits 6-4 specify the
entire level number.

If zero, the level is a slave level and bits 2-0 specify the
second digit.

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX I Operating System

will return the condition code generated by this system call. For this
system call, all exceptional conditions must be processed in-line.
Control does not pass to an exception handler.

Description

ENTER$INTERRUPT, on behalf of the calling interrupt handler, loads a base address
value into the DS register. The value is what was specified when the interrupt handler was
set up by an earlier call to SET$INTERRUPT.

If the handler is going to call an interrupt task, ENTER$INTERRUPT allows the handler
to place data in the CPU data segment that will be used by the interrupt task. This provides
a mechanism for the interrupt handler to pass data to the interrupt task.

Nucleus System Calls 85

ENTER$INTERRUPT

Example

1**
* This example illustrates how the ENTER$INTERRUPT system call can be *
* used to load a segment base address into the data segment register. *
**1

DECLARE TOKEN LITERALLY'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE the$first$word WORD;
DECLARE E$OK
DECLARE interrupt$level$7

DECLARE interrupt$task$flag
DECLARE interrupt$handler
DECLARE data$segment
DECLARE status
DECLARE interrupt$status
DECLARE ds$pointer
DECLARE PTR$OVERLAY

DECLARE ds$pointer$ovly

LITERALLY , OOR' ;
LITERALLY 'OOOOOOOOOllllOOOB';
1* specifies master interrupt level 7 *1

BYTE;
POINTER;
TOKEN;
WORD;
WORD;
POINTER;
LITERALLY 'STRUCTURE (offset

base
1* establishes a structure for

overlays *1
PTR$OVERLAY AT (@ds$pointer);

WORD,
TOKEN)' ;

1* using the overlay structure, the
base address of the interrupt
handler's data segment is
identified *1

INTERRUPTHANDLER: PROCEDURE INTERRUPT 59 PUBLIC; 1* 59 is a
placeholder value.
ENTER$INTERRUPT
establishes the
actual level. *1

•
• Typical PL/M-86 Statements
•

86 Nucleus System Calls

ENTER$INTERRUPT

1**
* The calling interrupt handler invokes the ENTER$INTERRUPT system *
* call which loads a base address value (defined by *
* ds$pointer$ovly.base) into the data segment register. *
**1

CALL RQ$ENTER$INTERRUPT

CALL INLINEERRORPROCESS

•

(interrupt$level$7,
@interrupt$status);

(interrupt$status);

• Typical PL/M-86 Statements
•

1**
* Interrupt handlers that do not invoke interrupt tasks need to *
* invoke the EXIT$INTERRUPT system call to send an end-of-interrupt *
* signal to the hardware. *
**1

CALL RQ$EXIT$INTERRUPT

CALL INLINEERRORPROCESS
END INTERRUPTHANDLER;

(interrupt$level$7,
@interrupt$status);

(interrupt$status);

INLINEERRORPROCESS: PROCEDURE (int$status);
DECLARE int$status WORD;

IF int$status <> E$OK THEN
DO;

•
• Typical PL/M-86 Statements
•

END;
END INLINEERRORPROCESS;

SAMPLEPROCEDURE:
PROCEDURE;

ds$pointer

data$segment

@the$first$word; 1* a dummy identifier used to point to
interrupt handler's data segment *1

ds$pointer$ovly.base;
1* identifies the base address of the

interrupt handler's data segment *1
interrupt$handler - INTERRUPT$PTR (INTERRUPTHANDLER);

1* points to the first instruction of
the interrupt handler *1

interrupt$task$flag o· , 1* indicates no interrupt task on level
7 *1

Nucleus System Calls 87

ENTER$INTERRUPT

•
• Typical PL/M-86 Statements
•

/**
* By first invoking the SET$INTERRUPT system call, the calling task *
* sets up an interrupt level. *
**/

CALL RQSETINTERRUPT

•

(interrupt$level$7,
interrupt$task$flag,
interrupt$handler,
data$segment,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

88

E$OK

E$CONTEXT

ENOTCONFIGURED

E$PARAM

OOOOH No exceptional conditions.

OOOSH No segment base value has previously been
specified in the call to SET$INTERRUPT.

0008H This system call is not included in the present
configuration.

8004H The level parameter is invalid.

Nucleus System Calls

EXIT$INTERRUPT

The EXIT$INTERRUPTsystem call is used by interrupt handlers when they don't invoke
interrupt tasks; this call sends an end-of-interrupt signal to the hardware.

CALL RQ$EXIT$INTERRUPT (level, except$ptr);

Input Parameter
level A WORD specifying an interrupt level that is encoded as follows

(bit 15 is the high-order bit):

15-7 Reserved bits that should be set to zero.

6-4 First digit of the interrupt level (0-7).

3 If one, the level is a master level and bits 6-4 specify the
entire level number.

If zero, the level is a slave level and bits 2-0 specify the
second digit of the interrupt level.

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX I Operating System

will return the condition code generated by this system call. For this
system call, all exceptional conditions must be processed in-line.
Control does not pass to an exception handler.

Description

The EXIT$INTERRUPT system call sends an end-of-interrupt signal to the hardware.
This sets the stage for re-enabling interrupts. The re-enabling actually occurs when control
passes from the interrupt handler to an application task.

Nucleus System Calls 89

EXIT$INTERRUPT

Example

/**
* This example illustrates how the EXIT$INTERRUPT system call can be *
* used to send an end-of-interrupt signal to the hardware. *
**/

DECLARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE interrupt$level$7

DECLARE E$OK
DECLARE interrupt$task$flag
DECLARE interrupt$handler
DECLARE data$segment
DECLARE status
DECLARE interrupt$status

LITERALLY'OOOOOOOOOIIIIOOOB';
/* specifies master interrupt level 7 */
LITERALLY , OOh' ;
BYTE;
POINTER;
TOKEN;
WORD;
WORD;

INTERRUPTHANDLER: PROCEDURE INTERRUPT 59 PUBLIC; /* 59 is a placeholder
value. ENTER$INTERRUPT
establishes actual
level */

•
• Typical PL/M-86 Statements
•

/** * Interrupt handlers that do not invoke interrupt tasks need to *
* invoke the EXIT$INTERRUPT system call to send an end-of-interrupt *
* signal to the hardware. *
**/

CALL RQ$EXIT$INTERRUPT (interrupt$level$7,
@interrupt$status);

IF interrupt$status <> E$OK THEN
DO;

•
• Typical PL/M-86 Statements
•

END;

END INTERRUPTHANDLER;

90 Nucleus System Calls

EXIT$INTERRUPT

SAMPLEPROCEDURE:
PROCEDURE;

interrupt$task$flag - 0; 1* indicates no interrupt task on
level 7 */

data$segment - SELECTOR$OF(NIL); 1* indicates that the interrupt handler
will load its own data segment *1

interrupt$handler - INTERRUPT$PTR (INTERRUPTHANDLER);

o

1* points to the first instruction of
the interrupt handler *1

8 Typical PL/M-86 Statements
•

1**
* By first invoking the SET$INTERRUPT system call, the calling task *
* sets up an interrupt level. *
**1

CALL RQSETINTERRUPT

•

(interrupt$level$7,
interrupt$task$flag,
interrupt$handler,
data$segment,
@status);

o Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

E$CONTEXT

ENOTCONFIGURED

E$PARAM

Nucleus System Calls

OOOOH No exceptional conditions.

0005H The SET$INTERRUPT system call has not been
invoked for the specified level.

0008H This system call is not part of the present
configuration.

8004H The level parameter is invalid.

91

FORCE$DELETE

The FORCE$DELETE system call deletes objects whose disabling depths are zero or one.

CAUTION

Human Interface applications should not use the DISABLE$DELETION
system call, and therefore, have no need to use the FORCE$DELETE and
ENABLE$DELECTION system calls. This is because
DISABLE$DELETION increases the disabling depth of an object. A
Human Interface application containing objects whose disabling depths are
greater than one cannot be deleted asynchronously (via a CONTROL-C
entered at a terminal).

CALL RQ$FORCE$DELETE (extension, object, except$ptr);

Input Parameters
extension If the object to be deleted is a composite object, this parameter is a

TOKEN for the extension type associated with the composite object
to be deleted. Otherwise, the extension parameter must be
SELECTOR$OF(NIL) or zero.

object A TOKEN for the object that is to be deleted.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX I Operating System

will return the condition code generated by this system call.

Description

92

The FORCE$DELETE system call deletes objects whose disabling depths are zero or one.
If an object has a deletion depth of two or more, the calling task is put to sleep until the
deletion depth is decreased to one. At that time, the object is deleted and the task is
awakened. If the wrong extension parameter is specified when deleting a composite,
FORCE$DELETE issues an E$CONTEXT error and returns without deleting the
composite. If the object to be force deleted is not a composite, the extension parameter is
ignored.

Nucleus System Calls

FORCE$DELETE

Example

1**
* This example illustrates how the FORCE$DELETE system call can be *
* used to force the deletion of an task that has had deletion *
* disabled. *
**1

DECLARE TOKEN LITERALLY'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE sem$token
DECLARE init$va1ue
DECLARE max$value
DECLARE sem$flags
DECLARE status

SAMPLEPROCEDURE:
PROCEDURE;

init$value == 1;

max$value - 10h;

sem$f1ags == 0;

TOKEN;
WORD;
WORD;
WORD;
WORD;

1* the new semaphore has one initial unit *1

1* the new semaphore can have a maximum of
16 units *1

1* designates a first-in/first-out task queue *1

1**
* In this example the calling task creates the object to become *
* immune to deletion. The CREATE$SEMAPHORE is invoked by the calling *
* task to create a semphore. *
**1

sem$token == RQ$CREATE$SEMAPHORE

•
• Typical PL/M-86 Statements
•

Nucleus System Calls

(init$value,
max$value,
sem$flags,
@status);

93

FORCE$DELETE

1**
* Using the semaphore token, the calling task invokes the *
* DISABLE$DELETION system call to increase the disabling depth by one.*
* This makes the semaphore immune to ordinary deletion. *
**1

CALL RQ$DISABLE$DELETION (sem$token,
@status);

1**
* In order to delete the semaphore, the calling task invokes *
* the FORCE$DELETE system call. This system call deletes the semphore*
* even though the disabling depth of the semaphore is one. *
**1

CALL RQ$FORCE$DELETE

•

(SELECTOR$OF(NIL),
sem$token,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

E$CONTEXT

E$EXIST

E$MEM

ENOTCONFIGURED

E$TYPE

94

OOOOH No exceptional conditions.

0005H The wrong extension type was used in the
extension parameter of the FORCE$DELETE
system call.

0006H One or both of the object or extension
parameters is not a token for an existing object.

0002H The memory available to the calling task's job is
not sufficient to complete this call.

0008H This system call is not part of the present
configuration.

8002H The extension parameter is a token for an object
that is not an extension object.

Nucleus System Calls

GET$EXCEPTION$HANDLER

The GET$EXCEPT$HANDLER system call returns information about the calling task's
exception handler.

CALL RQGETEXCEPTION$HANDLER (exception$info$ptr, except$ptr);

Output Parameters
exception$info$ptr A POINTER to a structure of the following form:

except$ptr

Description

STRUCTURE (
EXCEPTION$HANDLER$OFFSET
EXCEPTION$HANDLER$BASE
EXCEPTION$MODE

where, after the call,

WORD,
TOKEN,
BYTE);

• EXCEPTION$HANDLER$OFFSET contains the offset of the
first instruction of the exception handler.

• EXCEPTION$HANDLER$BASE contains a base for the
segment containing the first instruction of the exception handler.
If exception$handler$base is SELECTOR$OF(NIL) and
exception$handler$offset is zero, the calling task's exception
handler is the system default exception handler.

• EXCEPTION$MODE contains an encoded indication of the
calling task's current exception mode. The value is interpreted
as follows:

When to Pass Control
to Exception Handler

o Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The GET$EXCEPTION$HANDLER system call returns both the address of the calling
task's exception handler and the current value of the task's exception mode.

Nucleus System Calls 95

GET$EXCEPTION$HANDLER

Example

/**
* This example illustrates how the GET$EXCEPTION$HANDLER system call *
* can be used to return information about the calling task's *
* exception handler. *
**/

DECLARE TOKEN LITERALLY'SELECTOR'; /* if your PL/M compiler does not
support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE x$handler STRUCTURE

DECLARE status WORD;

(x$handler$offset
x$handler$base
x$mode

WORD,
TOKEN,
BYTE);

SAMPLEPROCEDURE:
PROCEDURE;

•
• Typical PL/M-86 Statements
•

/**
* The address of the calling task's exception handler and the value *
* of the task's exception mode (which specifies when to pass control *
* to the exception handler) are both returned when the calling task *
* invokes the GET$EXCEPTION$HANDLER system call. *
**/

CALL RQGETEXCEPTION$HANDLER (@x$handler, @status);

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

ENOTCONFIGURED

96

OODOH No exceptional conditions.

D008H This system call is not part of the present
configuration.

Nucleus System Calls

GET$LEVEL

The GET$LEVEL system call returns the number of the level of the highest priority
interrupt being serviced.

level - RQGETLEVEL (except$ptr);

Output Parameters
level

except$ptr

Description

A WORD whose value is interpreted as follows (bit 15 is the high
order bit):

15-8 Reserved bits that are set to zero.

7 If zero, some level is being serviced and bits 6-0 are
significant.

If one, no level is being serviced and bits 6-0 are not
significant. .

6-4 First digit of the interrupt level (0-7).

3 If one, the level is a master level and bits 6-4 specify the
entire level number.

If zero, the level is a slave level and bits 2-0 specify the
second digit.

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The GET$LEVEL system call returns to the calling task the highest (numerically lowest)
level which an interrupt handler has started servicing but has not yet finished.

Nucleus System Calls 97

GET$LEVEL

Example

/**
* This example illustrates how the GET$LEVEL system call can be used. *
**/

DECLARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE interrupt$level WORD;
DECLARE status WORD;

SAMPLEPROCEDURE:
PROCEDURE;

•
• Typical PL/M-86 Statements
•

/**
* The GET$LEVEL system call returns to the calling task the number of *
* the highest interrupt level being serviced. *
**/

interrupt$level - RQ$GET$LEVEL (@status);

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

ENOTCONFIGURED

98

OOOOH No exceptional conditions.

0008H This system call is not part of the present
configura tion.

Nucleus System Calls

GET$POOL$ATIRIB

The GET$POOL$A TTRIB system call returns information about the memory pool of the
calling task's job.

CALL RQGETPOOL$ATTRIB (attrib$ptr, except$ptr);

Output Parameters
attrib$ptr

except$ptr

Nucleus System Calls

A POINTER to a data structure of the following form:

STRUCTURE (
POOL$MAX
POOL$MIN
INITIAL$SIZE
ALLOCATED
AVAIlABLE

WORD,
WORD,
WORD,
WORD,
WORD) ;

The system call fills in the fields of this structure so that after the
call:

• POOL$MAX contains the maximum allowable size (in 16-byte
paragraphs) of the memory pool of the calling task's job.

• POOL$MIN contains the minimum allowable size (in 16-byte
paragraphs) of the memory pool of the calling task's job.

• INITIAUSIZE contains the original value of the pool$min
attribute.

• ALLOCATED contains the number of 16-byte paragraphs
currently allocated from the memory pool of the calling task's
job.

• AVAILABLE contains the number of 16-byte paragraphs
currently available in the memory pool of the calling task's job.
It does not include memory that could be borrowed from the
parent job. The memory indicated in AVAIlABLE may be
fragmented and thus not allocatable as a single segment.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

99

GET$POOL$ATTRIB

Description

The GET$POOUA TIRIB system call returns information regarding the memory pool of
the calling task's job. The data returned comprises the allocated and available portions of
the pool, as well as its initial, minimum, and maximum sizes.

Example

/**
* This example illustrates how the GET$POOL$ATTRIB system call can *
* be used to return information about the memory pool of the *
* calling task's job. *
**/

DECLARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all 'nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE mem$pool

DECLARE status

SAMPLEPROCEDURE:
PROCEDURE;

•

STRUCTURE (mem$pool$max
mem$pool$min
mem$initial$size
mem$allocated
mem$available

WORD;

• Typical PL/M-86 Statements
•

100

WORD,
WORD,
WORD,
WORD,
WORD) ;

Nucleus System Calls

GET$POOL$ATTRIB

/**
* The maximum and minimum size of the memory pool, the original value *
* of the minimum pool size, and the allocated and available number of *
* 16-byte paragraphs in the memory pool of the calling task's job are *
* all returned when the calling task invokes the GET$POOL$ATTRIB *
* system call. *
**/

CALL RQGETPOOL$ATTRIB (@mem$pool,
@status);

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

ENOTCONFIGURED

Nucleus System Calls

OOOOH No exceptional conditions.

0008H This system call is not part of the present
configuration.

101

GET$PRIORITY

The GET$PRIORITY system call returns the priority of a task.

priority - RQGETPRIORITY (task, except$ptr);

Input Parameter
task

Output Parameters
priority

except$ptr

Description

A TOKEN that specifies the task whose priority is being requested.

• If not SELECfOR$OF(NIL) or zero, the TOKEN must contain
a token for the task whose priority is being requested.

• If SELECTOR$OF(NIL) or zero, the calling task is asking for
its own priority.

A BYTE in which the system call returns the priority of the task
indicated by the task parameter.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The GET$PRIORITY system call returns the priority of the specified task.

102 Nucleus System Calls

GET$PRIORITY

Example

/**
* This example illustrates how the GET$PRIORITY system call can be *
* used. *
**/

DECLARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE priority
DECLARE calling$tasks$priority
DECLARE status

SAMPLEPROCEDURE:
PROCEDURE;

o

BYTE;
LITERALLY'SELECTOR$OF(NIL)';
WORD;

• Typical PL/M-86 Statements
•

/**
* The GET$PRIORITY system call returns the priority of the calling *
* task. *
**/

priority - RQGETPRIORITY

o

(calling$tasks$priority,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Nucleus System Calls 103

GET$PRIORITY

Condition Codes

104

E$OK

E$EXIST

ENOTCONFIGURED

E$TYPE

OOOOH No exceptional conditions.

0006H The task parameter is not a token for an existing
object.

0008H This system call is not part of the present
configuration.

8002H The task parameter is a token for an object that
is not a task.

Nucleus System Calls

GET$SIZE

The GET$SIZE system call returns the size, in bytes, of a segment.

size - RQGETSIZE (segment, except$ptr);

Input Parameter
segment

Output Parameters
size

except$ptr

Description

A TOKEN for a segment whose size is desired.

A WORD in which the system call returns the size of the segment,
as follows.

• If not zero, it contains the size, in bytes, of the segment
indicated by the segment parameter.

• If zero, the WORD indicates that the size of the segment is
65536 (64K) bytes.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The GET$SIZE system call returns the size, in bytes, of a segment.

Nucleus System Calls 105

GET$SIZE

Example

/**
* This example illustrates how the GET$SIZE system call can be used. *
**/

DEClARE 'TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DEClARE mbx$token
DEClARE calling$tasks$job
DEClARE wait$forever
DEClARE seg$token
DEClARE response
DEClARE size
DEClARE status

TOKEN;
LITERALLY'SELECTOR$OF(NIL)';
LITERALLY'OFFFFH';
TOKEN;
TOKEN;
WORD;
WORD;

SAMPLEPROCEDURE:
PROCEDURE;

•
• Typical PL/M-86 Statements
•

/**
* In order to invoke the GET.$SIZE system call, the calling task must *
* know the token for the segment. In this example, the calling task *
* invokes the LOOKUP$OBJECT and RECEIVE$MESSAGE system calls to *
* receive the token for a segment (seg$token). The calling task *
* invoked LOOKUP$OBJECT to receive the token for the mailbox named *
* 'MBX'. 'MBX' had been designated as the mailbox another task *
* would use to send an object. *
**/

mbx$token - RQ$LOOKUP$OBJECT

•
• Typical PL/M-86 Statements
•

106

(calling$tasks$job,
@(3, 'MBX') ,
wait$forever,
@status);

Nucleus System Calls

GET$SIZE

/**
* The RECEIVE$MESSAGE system call returns seg$token to the calling *
* task. *
**/

seg$token - RQ$RECEIVE$MESSAGE

•
o Typical PL/M-86 Statements
o

(mbx$token,
wait$forever,
@response,
@status);

/**
* The GET$SIZE system call returns the size of the segment pointed *
* to by seg$token. *
**/

size = RQGETSIZE (seg$token, @status);

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

E$EXIST

ENOTCONFIGURED

E$TYPE

Nucleus System Calls

OOOOH No exceptional conditions.

0006H The segment parameter is not a token for an
existing object.

0008H This system call is not part of the present
configuration.

8002H The segment parameter is a token for an object
that is not a segment.

107

GET$TASK$TOKENS

The GET$TASK$TOKENS system call returns the token requested by the calling task.

object - RQGETTASK$TOKENS (selection, except$ptr);

Input Parameter
selection A BYTE that tells the iRMX I Operating System what information

is desired. It is encoded as follows:

Object for which a Token is Requested

o The calling task.

1 The calling task's job.

2 The parameter object of the calling task's job.

3 The root job.

Output Parameters
object

except$ptr

A TOKEN to which the iRMX I Operating System will return the
requested token.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

Description

108

The GET$TASK$TOKENS system call returns a token for either the calling task, the
calling task's job, the parameter object of the calling task's job, or the root job, depending
on the encoded request.

Nucleus System Calls

GET$TASK$TOKENS

Example

/**
* This example illustrates how the GET$TASK$TOKENS system call can be *
* used to return the TOKEN requested by the calling task. *
*******************************~**/

DEClARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DEClARE task$token
DEClARE calling$task
DEClARE status

SAMPLEPROCEDURE:
PROCEDURE;

•
• Typical PL/M-86 Statements
•

TOKEN;
LITERALLY '0';
WORD;

/**
* If you set the selection parameter to zero, the GET$TASK$TOKENS *
* system call will return a token for the calling task. *
**/

task$token - RQ$GET$TASK$TOKENS (calling$task,
@status);

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK OOOOH No exceptional conditions.

E$PARAM 8004H The selection parameter is greater than 3.

Nucleus System Calls 109

GET$TYPE

The GET$TYPE system call returns the encoded type of an object.

type$code - RQ$GET$TYPE (object, except$ptr);

Input Parameter
object

Output Parameters
type$code

except$ptr

Description

A TOKEN for an object whose type is desired.

A WORD which contains the encoded type of the specified object.
The types for iRMX I objects are encoded as follows:

1 job
2 task
3 mailbox
4 semaphore
5 region
6 segment
7 extension

100H composite (user)
101H composite (connection)
300H composite (I/O job)
301H composite (logical device)
BOOOH - OFFFFH user-created composites

User and connection composites are described in the iRM)(® Basic
I/O System User's Guide. I/O jobs and logical device composites are
described in the iRM)(® Extended I/O System User's Guide.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The GET$TYPE system call returns the type code for an object. For a composite,
type$code contains the composite extension type, not the encoded object type.

110 Nucleus System Calls

GET$TYPE

Example

/** * This example illustrates how the GET$TYPE system call can be used *
* to return the encoded type of an obj ect. *
**/

DEClARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DEClARE type$code
DEClARE mbx$token
DEClARE calling$tasks$job
DEClARE wait$forever
DEClARE object$token
DEClARE response
DEClARE status

SAMPLEPROCEDURE:
PROCEDURE;

•
• Typical PL/M-86 Statements
•

WORD;
TOKEN;
LITERALLY'SELECTOR$OF(NIL)';
LITERALLY 'OFFFFH';
TOKEN;
TOKEN;
WORD;

/**
* In order to invoke the GET$TYPE system call, the calling task must *
* have the token for an object. In this example, the calling task *
* invokes the LOOKUP$OBJECT system call and then the RECEIVE$MESSAGE *
* system call to receive the token for an object of unknown type *
* (object$token). *
**/

mbx$token = RQ$LOOKUP$OBJECT

•
• Typical PL/M-86 Statements
•

Nucleus System Calls

(calling$tasks$job,
@ (3 , ' MBX') ,
wait$forever,
@status);

111

GET$TYPE

1**
* The RECEIVE$MESSAGE system call returns object$token to the calling *
* task after the calling task invoked LOOKUP$OBJECT to receive the *
* token for the mailbox named 'MBX'. 'MBX' had been designated *
* as the mailbox another task would use to send an object. *
**1

object$token - RQ$RECEIVE$MESSAGE (mbx$token,
wait$forever,
@response,
@status) ;

•
• Typical PL/M-86 Statements
•

1**
* Using the type code returned by the GET$TYPE system call, the *
* calling task can find out if the object is a job, task, *
* mailbox, region, segment, semaphore, port, or extension. *
**1

type$code - RQ$GET$TYPE

END SAMPLEPROCEDURE;

Condition Codes

E$OK

E$EXIST

ENOTCONFIGURED

112

(object$token,
@status);

OOOOH No exceptional conditions.

0006H The object parameter is not a token for an
existing object.

0008H This system call is not part of the present
configuration.

Nucleus System Calls

INSPECT$COMPOSITE

The INSPECT$COMPOSITE system call returns a list of the component tokens contained
in a composite object.

CAUTION

Composite objects require the creation of extension objects. Jobs that
create extension objects cannot be deleted until all the extension objects
are deleted. Therefore you should avoid creating composite objects in
Human Interface applications. If a Human Interface application creates
extension objects, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal).

CALL RQ$INSPECT$COMPOSITE (extension, composite, token$list$ptr,
except$ptr);

Input Parameters
extension

composite

Output Parameters
token$list$ptr

Nucleus System Calls

A TOKEN for the extension object corresponding to the composite
object being inspected.

A TOKEN for the composite object being inspected.

A POINTER to a structure of the form:

DECLARE
token$list$ptr STRUCTURE (

num$slots WORD,
num$used WORD,
tokens(*) TOKEN);

The system call returns information in the fields of this structure, as
follows:

num$slots Number of positions available for tokens in token$list
(an upper limit on the number of tokens to be returned).
You fill in this field to tell the system call how many
tokens to return.

num$used Number of component tokens making up the composite
object.

113

INSPECT$COMPOSITE

except$ptr

Description

tokens(*) The tokens that actually constitute the composite object.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The INSPECT$COMPOSITE system call accepts a token for a composite object and
returns a list of tokens for the components of the composite object.

The calling task must supply the num$slots value in the data structure pointed to by the
token$list parameter. The Nucleus fills in the remaining fields in that structure. If
num$slots is set to zero, the Nucleus will fill in only the num$used field.

If the num$slots value is smaller than the actual number of component tokens, only that
number (num$slots) of tokens will be returned.

Example

See the "DELETE _ RING_BUFFER Procedure" example in the iRMX® I Nucleus User's
Guide.

Condition Codes

E$OK

E$CONTEXT

E$EXIST

ENOTCONFIGURED

E$TYPE

114

OOOOH No exceptional conditions.

OOOSH The composite parameter is not compatible with
the extension parameter.

0006H The composite and/or extension parameter(s) is
not a token for an existing object.

0008H This system call is not part of the present
configuration.

8002H One or both of the extension or composite
parameters is a token for an object that is not of
the correct type.

Nucleus System Calls

LOOKUP$OBJECT

The LOOKUP$OBJECf system call returns a token for a cataloged object.

object - RQ$LOOKUP$OBJECT (job, name$ptr, time$limit, except$ptr);

Input Parameters
job

name$ptr

time$limit

Output Parameters
object

except$ptr

Description

A TOKEN indicating the object directory to be searched.

• If not SELECfOR$OF(NIL) or zero, the TOKEN must contain
a token for the job whose object directory is to be searched.

• If SELECTOR$OF(NIL) or zero, the object directory to be
searched is that of the calling task's job.

A POINTER to a STRING which contains the name under which
the object is cataloged. During the lookup operation, upper and
lower case letters are treated as being different.

A WORD indicating the task's willingness to wait.

• If zero, the WORD indicates that the calling task is not willing
to wait. .

• If OFFFFH, the WORD indicates that the task will wait as long
as is necessary.

• If between 0 and OFFFFH, the WORD indicates the number of
clock intervals that the task is willing to wait. The length of a
clock interval is a configuration option. Refer to the iRM)(® I
Interactive Configuration Utility Reference Manual for further
information

A TOKEN containing the requested object token.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The LOOKUP$OBJECT system call returns the token for an object after searching for its
name in the specified object directory. Because it is possible that the object is not
cataloged at the time of the call, the calling task has the option of waiting, either
indefinitely or for a specific period of time, for another task to catalog the object.

Nucleus System Calls 115

LOOKUP$OBJECT

Example

/**
* This example illustrates how the LOOKUP$OBJECT system call can be *
* used to return a token for a cataloged object. *
**/

DEClARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DEClARE mbx$token
DEClARE calling$tasks$job
DEClARE wait$forever
DEClARE status

SAMPLEPROCEDURE:
PROCEDURE;

•
• Typical PL/M-86 Statements
•

TOKEN;
LITERALLY 'SELECTOR$OF(NIL)';
LITERALLY 'OFFFFH';
WORD;

/**
* In this example, the calling task invokes LOOKUP$OBJECT in order to *
* search the object directory of the calling task's job for an object *
* with the name 'MBX'. *
**/

mbx$token = RQ$LOOKUP$OBJECT

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

116

(calling$tasks$job,
@ (3 , ' MBX') ,
wait$forever,
@status);

Nucleus System Calls

LOOKUP$OBJECT

Condition Codes

E$OK OOOOH No exceptional conditions.

E$CONTEXT OOOSH The specified job has an object directory of size
o.

E$EXIST 0OO6H At least one of the following is true:

• The specified job was deleted while the task
was waiting.

• The job parameter (which is not
SELECfOR$OF(NIL) or zero) is not a
token for an existing object.

• The name was found, but the cataloged
object has a null (NIL) token.

E$LIMIT 0OO4H The specified object directory is full and the
object being looked up has not yet been
cataloged. This code (rather than E$TIME) is
returned when a full object directory does not
contain the requested object and the calling task
is not willing to wait.

ENOTCONFIGURED 0OO8H This system call is not part of the present
configuration.

E$PARAM 8004H The first byte of the string pointed to by the
name parameter contains a value greater than 12
or equal to o.

E$TIME 0OO1H One of the following is true:

• The calling task indicated its willingness to
wait a certain amount of time, but the waiting
period elapsed before the object became
available.

• The task was not willing to wait, the entry
indicated by the name parameter is not in the
specified object directory, and the object
directory is not full.

E$TYPE 8002H The job parameter contains a token for an object
that is not a job.

Nucleus System Calls 117

OFFSPRING

The OFFSPRING system call returns a token for each child Gob) of a job.

token$list - RQ$OFFSPRING (job, except$ptr);

Input Parameter
job

Output Parameter
token$list

except$ptr

Description

A TOKEN for the job whose offspring are desired. A value of
SELECfOR$OF(NIL) or zero specifies the calling task's job.

A TOKEN that indicates the children of the specified job.

• If not SELECfOR$OF(NIL) or zero, the TOKEN contains a
token for a segment. The first word in the segment contains the
number of words in the remainder of the segment. Subsequent
words contain the tokens for jobs that are the immediate
children of the specified job.

• If SELECfOR$OF(NIL) or zero, the specified job has no
children.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The OFFSPRING system call returns the token for a segment. The segment contains a
token for each child of the specified job. By repeated use of this call, tokens can be
obtained for all descendants of a job; this information is needed by a task which is
attempting to delete a job that has child jobs.

118 Nucleus System Calls

OFFSPRING

Example

/**
* This example illustrates how the OFFSPRING system call can be used *
* to return a token for each child of a job. *
**/

DEClARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DEClARE token$list
DEClARE calling$tasks$job
DEClARE status

SAMPLEPROCEDURE:
PROCEDURE;

•

TOKEN;
LITERALLY'SELECTOR$OF(NIL)';
WORD;

• Typical PL/M-86 Statements
•

/**
* In this example, the calling task invokes the system call OFFSPRING *
* to obtain a token for a segment. This segment contains the tokens *
* for jobs that are immediate children of the calling task's job. *
**/

token$list - RQ$OFFSPRING

•

(calling$tasks$job,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Nucleus System Calls 119

OFFSPRING

Condition Codes

E$OK

E$EXIST

E$LIMIT

E$MEM

ENOTCONFIGURED

E$TYPE

120

OOOOH No exceptional conditions.

0006H The job parameter is not a token for an existing
object.

0004H The calling task's job has already reached its
object limit.

0002H The memory available to the specified job is not
sufficient to complete this call.

0008H This system call is not part of the present
configuration.

8002H The job parameter contains a token for an object
that is not a job.

Nucleus System Calls

RECEIVE$CONTROL

The RECElVE$CONTROL system call allows the calling task to gain access to data
protected by a region.

CAUTION

Tasks which use regions cannot be deleted while they access data protected
by the region. Therefore, you should avoid using regions in Human
Interface applications. If a task in a Human Interface application uses
regions, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal) while the task is in the region.

CALL RQ$RECEIVE$CONTROL (region, except$ptr);

Input Parameter
region

Output Parameter
except$ptr

Description

A TOKEN for the region protecting the data to which the calling
task wants access.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The RECElVE$CONTROL system call requests access to data protected by a region. If
no task currently has access, entry is immediate. If another task currently has access, the
calling task is placed in the region's task queue and goes to sleep. The task remains asleep

. until it gains access to the data.

If the region has a priority-based task queue, the priority of the task currently having access
is temporarily boosted, if necessary, to match that of the task at the head of the queue.

Nucleus System Calls 121

RECEIVE$CONTROL

Example

/**
* This example illustrates how the RECEIVE$CONTROL system call can be *
* used to gain access to data protected by a region. *
**/

DECLARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE region$token
DECLARE priority$queue

DECLARE status

SAMPLEPROCEDURE:
PROCEDURE;

•
• Typical PL/M-86 Statements
•

TOKEN;
LITERALLY '1'; /* tasks wait in

priority order */
WORD;

/**
* In order to access the data within a region, a task must know the *
* token for that region. In this example, the needed token is known *
* because the calling task creates the region. *
**/

region$token - RQ$CREATE$REGION

•
• Typical PL/M-86 Statements
•

(priority$queue,
@status) ;

/** * When access to the data protected by a region is needed, the *
* calling task may invoke the RECEIVE$CONTROLsystem call. *
**/

CALL RQ$RECEIVE$CONTROL (region$token,
@status);

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

122 Nucleus System Calls

Condition Codes

E$OK

E$CONTEXT

E$EXIST

E$NOnCONFIGURED

E$TYPE

Nucleus System Calls

RECEIVE$CONTROL

OOOOH No exceptional conditions.

0005H The region parameter refers to a region already
accessed by the calling task.

0006H The region parameter is not a token for an
existing object.

0008H This system call is not part of the present
configuration.

8002H The region parameter contains a token for an
object that is not a region.

123

RECEIVE$MESSAGE

The RECEIVE$MESSAGE system call delivers the calling task to a mailbox, where it can
wait for an object token to be returned.

object - RQ$RECEIVE$MESSAGE (mailbox, time$limit, response$ptr,
except$ptr) ;

Input Parameters
mailbox A TOKEN for the mailbox at which the calling task expects to

receive an object token.

time$limit A WORD that indicates how long the calling task is willing to wait.

• If zero, indicates that the calling task is not willing to wait.

• If OFFFFH, indicates that the task will wait as long as is
necessary.

• If between 0 and OFFFFH, indicates the number of clock
intervals that the task is willing to wait. The length of a clock
interval is configurable. Refer to the iRM)(® I Interactive
Configuration Utility Reference Manual for further information.

Output Parameters

124

object

response$ptr

A TOKEN for the object being received.

A POINTER to a TOKEN in which the system returns a value. The
returned pointer:

• if not NIL, points to a token for the exchange to which the
receiving task is to send a response.

• if NIL, indicates that no response is expected by the sending
task.

CAUTION

Response$ptr points to a location for the sending task to use. If you specify
a constant value for response$ptr, be careful to ensure that the value does
not conflict with system requirements.

except$ptr A POINTER to a WORD.to which the iRMX I Operating System
will return the condition code generated by this system call.

Nucleus System Calls

RECEIVE$MESSAGE

Description

The RECEIVE$MESSAGE system call causes the calling task either to get the token for
an object or to wait for the token in the task queue of the specified mailbox. If the object
queue at the mailbox is not empty, then the calling task immediately gets the token at the
head of the queue and remains ready. Otherwise, the calling task goes into the task queue
of the mailbox and goes to sleep, unless the task is not willing to wait. In the latter case, or
if the task's waiting period elapses without a token arriving, the task is awakened with an
E$TIME exceptional condition.

It is possible that the token returned by RECEIVE$MESSAGE is a token for an object
that has already been deleted. To verify that the token is valid, the receiving task can
invoke the GET$TYPE system call. However, tasks can avoid this situation by adhering to
proper programming practices.

One such practice is for the sending task to request a response from the receiving task and
not delete the object until it gets a response. When the receiving task finishes with the
object, it sends a response, the nature of which must be determined by the writers of the
two tasks, to the response mailbox. When the sending task gets this response, it can then
delete the original object, if it so desires.

Nucleus System Calls 125

RECEIVE$MESSAGE

Example

/**
* This example illustrates how the RECEIVE$MESSAGE system call can be *
* used to receive a message segment. *
**/

DECLARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE mbx$token
DECLARE calling$tasks$job
DECLARE wait$forever
DECLARE seg$token
DECLARE response
DECLARE status

TOKEN;
LITERALLY'SELECTOR$OF(NIL)';
LITERALLY 'OFFFFH';
TOKEN;
TOKEN;
WORD;

SAMPLEPROCEDURE:
PROCEDURE;

•
• Typical PL/M-86 Statements
•

/**
* In this example the calling task looks up the token for the mailbox *
* prior to invoking the RECEIVE$MESSAGE system call. *
**/

126

mbx$token - RQ$LOOKUP$OBJECT (calling$tasks$job,
@(3, 'MBX') ,
wait$forever,
@status);

•
• Typical PL/M-86 Statements
•

Nucleus System Calls

RECEIVE$MESSAGE

/**
* Knowing the token for the mailbox, the calling task can wait for a *
* message from this mailbox by invoking the RECEIVE$MESSAGE system *
* call. *
**/

seg$token - RQ$RECEIVE$MESSAGE (mbx$token,
wait$forever,
@response,
@status);

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

E$EXIST

ENOTCONFIGURED

E$TIME

E$TYPE

Nucleus System Calls

OOOOH No exceptional conditions.

0006H At least one of the following is true:

• The mailbox parameter is not a token for an
existing object.

• The mailbox was deleted while the task was
waiting.

0008H This system call is not part of the present
configuration.

OOOlH One of the following is true:

• The calling task was not willing to wait and
there was not a token available.

• The task waited in the task queue and its
designated waiting period elapsed before the
task got the desired token.

8002H The mailbox parameter contains a token for an
object that is not a mailbox.

127

AECEIVE$UNITS

The RECEIVE$UNITS system call delivers the calling task to a semaphore, where it waits
for units.

value - RQ$RECEIVE$UNITS (semaphore, units, time$limit, except$ptr);

Input Parameters
semaphore A TOKEN for the semaphore from which the calling task wants to

receive units.

units

time$limit

A WORD containing the number of units that the calling task is
requesting.

A WORD that indicates how long the calling task is willing to wait.

• If zero, the WORD indicates that the calling task is not willing
to wait.

• If OFFFFH, the WORD indicates that the task will wait as long
as is necessary.

• If between 0 and OFFFFH, the WORD indicates the number of
clock intervals that the task is willing to wait. The length of a
clock interval is configurable. Refer to the iRM)(® I Interactive
Configuration Utility Reference Manual for further information.

Output Parameters
value

except$ptr

A WORD containing the number of units remaining in the
semaphore after the calling task's request is satisfied.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

Description

128

The RECEIVE$UNITS system call causes the calling task either to get the units that it is
requesting or to wait for them in the semaphore's task queue. If the units are available and
the task is at the front of the queue, the task receives the units and remains ready.
Otherwise, the task is placed in the semaphore's task queue and goes to sleep, unless the
task is not willing to wait. In the latter case, or if the task's waiting period elapses before
the requested units are available, the task is awakened with an E$TIME exceptional
condition.

Nucleus System Calls

RECEIVE$UNITS

Example

/**
* This example illustrates how the RECEIVE$UNITS system call can be *
* used to receive a unit. *
**/

DECLARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE sem$token
DECLARE calling$tasks$job
DECLARE wait$forever
DECLARE seg$token
DECLARE units$remaining
DECLARE units$requested
DECLARE status

SAMPLEPROCEDURE:
PROCEDURE;

•

TOKEN;
LITERALLY 'SELECTOR$OF(NIL)';
LITERALLY 'OFFFFH';
TOKEN;
WORD;
WORD;
WORD;

• Typical PL/M-86 Statements
•

/**
* In this example the calling task looks up the token for the *
* semaphore prior to invoking the RECEIVE$UNITS system call. *
**/

sem$token = RQ$LOOKUP$OBJECT

•
• Typical PL/M-86 Statements
•

Nucleus System Calls

(calling$tasks$job,
@(S, ' SEMA4') ,
wait$forever,
@status);

129

RECEIVE$UNITS

/**
* Knowing the token for the semaphore, the calling task can wait for *
* units at this semaphore by invoking the RECEIVE$UNITS system call. *
**/

END

units$remaining - RQ$RECEIVE$UNITS (sem$token,
units$requested,
wait$forever,
@status);

•
• Typical PL/M-86 Statements
•

SAMPLEPROCEDURE;

Condition Codes

E$OK OOOOH No exceptional conditions.

E$EXIST 0OO6H At least one of the following is true:

• The semaphore parameter is not a token for
an existing object.

• The semaphore was deleted while the task
was waiting.

E$LIMIT 0OO4H The units parameter is greater than the
maximum value specified for the semaphore
when it was created.

ENOTCONFIGURED 0OO8H This system call is not part of the present
configuration.

E$TIME OOOlH One of the following is true:

• The calling task was not willing to wait and
the requested units were not available.

• The task waited in the task queue and its
designated waiting period elapsed before the
requested units were available.

E$TYPE 8002H The semaphore parameter is a token for an
object that is not a semaphore.

130 N udeus System Calls

RESET$INTERRUPT

The RESET$INTERRUPT system call cancels the assignment of an interrupt handler to a
level.

CALL RQ$RESET$INTERRUPT (level, except$ptr);

Input Parameter
level A WORD specifying an interrupt level. This word must be encoded

as follows (bit 15 is the high-order bit):

Output Parameter
except$ptr

Description

15-7 Reserved bits that should be set to zero.

6-4 First digit of the interrupt level (0-7).

3 If one, the level is a master level and bits 6-4 specify the
entire level number.

If zero, the level is a slave level and bits 2-0 specify the
second digit.

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The RESET$INTERRUPT system call cancels the assignment of the current interrupt
handler to the specified interrupt level. If an interrupt task has also been assigned to the
level, the interrupt task is deleted. RESET$INTERRUPT also disables the level.

The level reserved for the system clock should not be reset and is considered invalid. This
level is a configuration option (refer to the iRM){® I Interactive Configuration Utility
Reference Manual for further information).

Nucleus System Calls 131

RESET$INTERRUPT

Example

1**
* This example illustrates how the RESET$INTERRUPT system call can be *
* used to cancel the assignment of an interrupt handler to an *
* interrupt level. *
**1

DEClARE TOKEN LITERALLY'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

INTERRUPTHANDLER: PROCEDURE INTERRUPT 63 EXTERNAL;
END INTERRUPTHANDLER;

DEClARE task$token
DEClARE priority$level$66
DEClARE start$address
DEClARE data$segment
DEClARE stack$pointer
DEClARE stack$size$5l2

DEClARE
DEClARE

1*
DEClARE
DEClARE
DEClARE
DEClARE

task$flags
interrupt$level$7
specifies master interrupt
interrupt$task$flag
interrupt$handler
interrupt$status
status

TOKEN;
LITERALLY , 66' ;
POINTER;
TOKEN;
POINTER;
LITERALLY '512'; 1* new task's stack

size is 512 bytes*1
WORD;
LITERALLY 'OOOOOOOOOllllOOOB';
level 7 *1
BYTE;
POINTER;
WORD;
WORD;

INTERRUPTTASK: PROCEDURE PUBLIC;

interrupt$task$flag - OOlH;

data$segment - SELECTOR$OF(NIL);
interrupt$handler - INTERRUPT$PTR

1* indicates that calling task is
to be interrupt task *1
1* use own data segment *1

(INTERRUPTHANDLER);
1* points to the first instruction
of the interrupt handler *1

1**
* The first system call in this example, SET$INTERRUPT, makes the *
* calling task (INTERRUPTTASK) the interrupt task for the interrupt *
* level. *
**1

CALL RQSETINTERRUPT

132

(interrupt$level$7, interrupt$task$flag,
interrupt$handler,data$segment,
@interrupt$status);

Nucleus System Calls

RESET$INTERRUPT

1**
* The second system call, WAIT$INTERRUPT, is used by the interrupt *
* task to signal its readiness to service an interrupt. *
***1

CALL RQ$WAIT$INTERRUPT

•

(interrupt$level$7,
@interrupt$status);

• Typical PL/M-86 Statements
•

1**
* When the interrupt task invokes the RESET$INTERRUPT system call, *
* the assignment of the current interrupt handler to interrupt level *
* 7 is canceled and, because an interrupt task has also been assigned *
* to the level, the interrupt task is deleted. *
***1

CALL RQ$RESET$INTERRUPT

END INTERRUPTTASK;

SAMPLEPROCEDURE:
PROCEDURE;

(interrupt$level$7,
@interrupt$status);

start$address - @INTERRUPTTASK;

stack$pointer = NIL;
task$flags = 0;

1* 1st instruction of interrupt task *1
1* automatic stack allocation *1
1* indicates no floating-point

instructions *1
data$segment = SELECTOR$OF(NIL); 1* use own data segment *1

•
• Typical PL/M-86 Statements
•

1**
* In this example the SAMPLEPROCEDURE is needed to create the task *
* labeled INTERRUPTTASK. *
***1

task$token = RQ$CREATE$TASK (priority$level$66,
start$address,
data$segment,
stack$pointer,
stack$size$5l2,
task$flags,
@status);

END SAMPLEPROCEDURE;

Nucleus System Calls 133

RESET$INTERRUPT

Condition Codes

134

E$OK

E$CONTEXT

ENOTCONFIGURED

E$PARAM

OOOOH No exceptional conditions.

0005H There is not an interrupt handler assigned to the
specified level.

0008H This system call is not part of the present
configura tion.

8004H The level parameter is invalid.

Nucleus System Calls

RESUME$TASI(

The RESUME$TASK system call decreases by one the suspension depth of a task.

CALL RQ$RESUME$TASK (task, except$ptr);

Input Parameter
task

Output Parameter

except$ptr

Description

A TOKEN for the task whose suspension depth is to be
decremented.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The RESUME$TASK system call decreases by one the suspension depth of the specified
non-interrupt task. The task should be in either the suspended or asleep-suspended state,
so its suspension depth should be at least one. If the suspension depth is still positive after
being decremented, the state of the task is not changed. If the depth becomes zero, and
the task is in the suspended state, then it is placed in the ready state. If the depth becomes
zero, and the task is in the asleep-suspended state, then it is placed in the asleep state.

Nucleus System Calls 135

RESUME$TASK

Example

1**
* This example illustrates how the RESUME$TASK system call can be *
* used to decrease by one the suspension depth of a task. *
**1

DECLARE TOKEN LITERALLY'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

TASKCODE: PROCEDURE EXTERNAL;
END TASKCODE;

DECLARE task$token
DECLARE priority$level$200
DECLARE start$address
DECLARE data$seg
DECLARE stack$pointer
DECLARE stack$size$5l2

DECLARE task$flags
DECLARE status

SAMPLEPROCEDURE:
PROCEDURE;

start$address - @TASKCODE;
data$seg - SELECTOR$OF(NIL);
stack$pointer - NIL;
task$flags - 0;

•

TOKEN;
LITERALLY , 200' ;
POINTER;
TOKEN;
POINTER;
LITERALLY '512'; 1* new task's stack

size is 512 bytes *1
WORD;
WORD;

1* first instruction of the new task *1
1* task sets up own data seg *1
1* automatic stack allocation *1
1* indicates no floating-point

instructions *1

• Typical PL/M-86 Statements
•

136 Nucleus System Calls

RESUME$TASK

/**
* In this example the calling task creates a non-interrupt task and *
* suspends that task before invoking the RESUME$TASK system call. *
**/

task$token - RQ$CREATE$TASK

•

(priority$level$200,
start$address,
data$seg,
stack$pointer,
stack$size$512,
task$flags,
@status);

• Typical PL/M-86 Statements
•

/**
* After creating the task, the calling task invokes SUSPEND$TASK. *
* This system call increases by one the suspension depth of the new *
* task (whose code is labeled TASKCODE). *
**/

CALL RQ$SUSPEND$TASK

•

(task$token,
@status);

• Typical PL/M-86 Statements
•

/*************************************~**********************************
* Using the token for the suspended task (whose code is labeled *
* TASKCODE), the calling task invokes RESUME$TASK to decrease by the *
* one the suspension depth of the suspended task. *
**/

CALL RQ$RESUME$TASK

•

(task$token,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Nucleus System Calls 137

RESUME$TASK

Condition Codes

E$OK

E$CONTEXT

E$EXIST

E$STATE

E$TYPE

138

OOOOH No exceptional conditions.

OOOSH The task indicated by the task parameter is an
interrupt task.

0006H The task parameter is not a token for an existing
object.

0007H The task indicated by the task parameter was not
suspended when the call was made.

8002H The task parameter is a token for an object that
is not a task.

Nucleus System Calls

SEND$CONTROL

The SEND$CONTROL system call allows a task to surrender access to data protected by a
region.

CAUTION

Tasks that use regions cannot be deleted while they access data protected
by the region. Therefore, you should avoid using regions in Human
Interface applications. If a task in a Human Interface application uses
regions, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal) while the task is in the region.

CALL RQ$SEND$CONTROL (except$ptr);

Output Parameter
except$ptr

Description

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

When a task finishes with data protected by a region, the task invokes the
SEND$CONTROL system call to surrender access. If the task is using more than one set
of data, each of which is protected by a region, the SEND$CONTROL system call
surrenders the most recently obtained access. When access is surrendered, the system
allows the next task in line to gain access.

If a task calling SEND$CONTROL has had its priority boosted while it had access through
a region, its priority is restored when it relinquishes the access.

Nucleus System Calls 139

SEND$CONTROL

Example

/**
* This example illustrates how the SEND$CONTROL system call can be *
* used to surrender access to data protected by a region. *
***/

DEClARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DEClARE region$token
DEClARE priority$queue

DEClARE status

•

TOKEN;
LITERALLY '1'; /* tasks wait in

priority order*/
WORD;

• Typical PL/M-86 Statements
•

SAMPLEPROCEDURE:
PROCEDURE;

/**
* In order to access the data within a region, a task must know the *
* token for that region. In this example, the needed token is known *
* because the calling task creates the region. *
***/

region$token - RQ$CREATE$REGION

•
• Typical PL/M-86 Statements
•

(priority$queue,
@status);

/**
* When access to the data protected by a region is needed, the *
* calling task may invoke the RECEIVE$CONTROL system call. *
***/

CALL RQ$RECEIVE$CONTROL

•
• Typical PL/M-86 Statements
•

140

(region$token,
@status);

Nucleus System Calls

SEND$CONTROL

/**
* When a task finishes using data protected by a region, the task *
* invokes the SEND$CONTROL system call to surrender access. *
**/

CALL RQ$SEND$CONTROL (@status);

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

E$CONTEXT

ENOTCONFIGURED

Nucleus System Calls

OOOOH No exceptional conditions.

OOOSH The calling taskdoes not have access to data
protected by any region.

0008H This system call is not part of the present
configuration.

141

SEND$MESSAGE

The SEND$MESSAGE system call sends an object token to a mailbox.

CALL RQ$SEND$MESSAGE (mailbox, object, response, except$ptr);

Input Parameters
mailbox A TOKEN for the mailbox to which an object token is to be sent.

A TOKEN containing an object token which is to be sent. object

response A TOKEN for a mailbox or semaphore at which the sending task
will wait for a response.

• If not SELECfOR$OF(NIL) or zero, contains a token for the
desired response mailbox or semaphore.

• If SELECfOR$OF(NIL) or zero, indicates that no response is
requested.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX I Operating System

will return the condition code generated by this system call.

Description

142

The SEND$MESSAGE system call sends the specified object token to the specified
mailbox. If there are tasks in the task queue at that mailbox, the task at the head of the
queue is awakened and is given the token. OthelWise, the object token is placed at the tail
of the object queue of the mailbox. The sending task has the option of specifying a mailbox
or semaphore at which it will wait for a response from the task that receives the object.
The nature of the response must be agreed upon by the writers of the two tasks.

Nucleus System Calls

SEND$MESSAGE

Example

1**
* This example illustrates how the SEND$MESSAGE system call can be *
* used to send a segment token to a mailbox. *
**/

DECLARE TOKEN LITERALLY'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE seg$token TOKEN;
DECLARE size WORD;
DECLARE mbx$token TOKEN;
DECLARE mbx$flags WORD;
DECLARE no$response LITERALLY '0' ;
DECLARE status WORD;
DECLARE job$token TOKEN;

SAMPLEPROCEDURE:
PROCEDURE;

size - 64; 1* designates new segment to contain 64
bytes */

mbx$flags = 0; 1* designates four objects to be queued
on the high performance object
queue; designates a first-inl
first-out task queue *1

job$token - SELECTOR$OF(NIL); 1* indicates objects to be cataloged
into the object directory of the
calling task's job *1

•
• Typical PL/M-86 Statements
•

1**
* The calling task creates a segment and a mailbox and catalogs the *
* mailbox token. The calling task then uses the tokens for both *
* objects to send a message. *
**1

seg$token - RQ$CREATE$SEGMENT

mbx$token RQ$CREATE$MAILBOX

Nucleus System Calls

(size,
@status);

(mbx$flags,
@status);

143

SEND$MESSAGE

/**
* It is not mandatory for the calling task to catalog the mailbox *
* token in order to send a message. It is necessary, however, to *
* catalog (or in someway communicate) the mailbox token if another *
* task is to receive the message. *
***/

CALL RQ$CATALOG$OBJECT

•
• Typical PL/M-86 Statements
•

(job$token,
mbx$token,
@(3, 'MBX') ,
@status);

/**
* The calling task invokes the SEND$MESSAGE system call to send the *
* token for the segment to the specified mailbox. *
***/

CALL RQ$SEND$MESSAGE

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

144

(mbx$token,
seg$token,
no$response,
@status);

Nucleus System Calls

Condition Codes

E$OK

E$EXIST

E$MEM

E$NOnCONFIGURED

E$TYPE

Nucleus System Calls

SEND$MESSAGE

OOOOH No exceptional conditions.

0006H One or more of the input parameters is not a
token for an existing object.

0002H The high performance queue is full and the
calling task's job does not contain sufficient
memory to' complete the call.

0008H This system call is not part of the present
configuration.

8002H At least one of the following is true:

• The mailbox parameter is a'token for an object
that is not a mailbox.

• The response parameter is a token for an object
that is neither a mailbox nor a semaphore.

145

SEND$UNITS

The SEND$UNITS system call sends units to a semaphore.

CALL RQ$SEND$UNITS (semaphore, units, except$ptr);

Input Parameters
semaphore A TOKEN for the semaphore to which the units are to be sent.

A WORD containing the number of units to be sent. units

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX I Operating System

will return the condition code generated by this system call.

Description

146

The SEND $ UNITS system call sends the specified number of units to the specified
semaphore. If the transmission would cause the semaphore to exceed its maximum
allowable supply, then an E$LIMIT exceptional condition occurs. Otherwise, the
transmission is successful and the Nucleus attempts to satisfy the requests of the tasks in
the semaphore's task queue, beginning at the head of the queue.

Nucleus System Calls

SEND$UNITS

Example

1**
* This example illustrates how the SEND$UNITS system call can be used *
* to send units to a semaphore. *
**1

DEClARE TOKEN LITERALLY'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DEClARE sem$token
DEClARE init$value
DEClARE max$value
DEClARE sem$flags
DEClARE three$units$sent
DEClARE status
DEClARE job$token

SAMPLEPROCEDURE:
PROCEDURE;

TOKEN;
WORD;
WORD;
WORD;
LITERALLY' 3';
WORD;
TOKEN;

init$value - 1; /* the new semaphore has one initial
unit */

max$value = 10H; /* the new semaphore can have a maximum
of 16 units */

sem$flags - 0; /* designates a first-in/first-out
task queue *1

job$token = SELECTOR$OF(NIL); /* indicates objects to be cataloged
into the object directory of the
calling task's job */

•
• Typical PL/M-86 Statements
•

1**
* The calling task creates a semaphore and catalogs the semaphore *
* token. The calling task then uses the token to send a unit. *
**1

sem$token = RQ$CREATE$SEMAPHORE (init$value,
max$value,
sem$flags,

•
• Typical PL/M-86 Statements
•

Nucleus System Calls 147

SEND$UNITS

/**
* It is not mandatory to catalog the semaphore token in order to send *
* units. It is necessary, however, to catalog (or in someway *
* communicate) the semaphore token if another task is to receive the *
* units. *
**/

CALL RQ$CATALOG$OBJECT

•

(j ob$token,
sem$token,
@(S, ' SEMA4') ,
@status);

• Typical PL/M-86 Statements
•

/**
* The calling task invokes the SEND$UNITS system call to send the *
* units to the semaphore just created (sem$token). *
**/

CALL RQ$SEND$UNITS

•

(sem$token,
three$units$sent,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

E$EXIST

E$LIMIT

ENOTCONFIGURED

E$TYPE

148

OOOOH No exceptional conditions.

0006H The semaphore parameter is not a token for an
existing object.

0004H The number of units that the calling task is trying
to send would cause the semaphore's supply of
units to exceed its maximum allowable supply.

0008H This system call is not part of the present
configuration.

8002H The semaphore parameter is a token for an
object that is not a semaphore.

Nucleus System Calls

SET$EXCEPTION$HANDLER

The SET$EXCEPTION$HANDLER system call assigns an exception handler to the
calling task.

CALL RQSETEXCEPTION$HANDLER (exception$info$ptr, except$ptr);

Input Parameter
exception$info$ptr A POINTER to a structure of the following form:

Output Parameter
except$ptr

Nucleus System Calls

STRUCTURE (
EXCEPTION$HANDLER$OFFSET
EXCEPTION$HANDLER$BASE
EXCEPTION$MODE

WORD,
TOKEN,
BYTE) ;

where:

• exception$handler$offset contains the offset of the first
instruction of the exception handler.

• exception$handler$base contains the base of the CPU segment
containing the first instruction of the exception handler.

• exception$mode contains an encoded indication of the calling
task's intended exception mode. The value is interpreted as
follows:

o
1
2
3

When to Pass Control
to Exception Handler

Never
On programmer errors only
On environmental conditions only
On all exceptional conditions

If exception$handler$offset is SELECfOR$OF(NIL) and
exception$handler$base is zero, the exception handler of the calling
task's parent job is assigned.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

149

SET$EXCEPTION$HANDLER

Description

150

The SET$EXCEPTION$HANDLER system call enables a task to set its exception handler
and exception mode attributes. If you want to designate the Debugger as the exception
handler to interactively examine system objects and lists, the following code sets up the
needed structure in PL/M-86:

DECLARE X STRUCTURE (OFFSET
BASE
MODE

DECLARE Y POINTER AT (@X);

DECLARE EXCEPTION WORD;

Y - @RQDEBUGGEREX;

WORD,
TOKEN,
BYTE) ; /* establish a structure for

exception handlers */

/*"@RQDEBUGGER" is the public
symbol for the Debugger, here
it designates the debugger
as the exception handler*/

X.MODE - ZEROONETWOORTHREE; /* the mode is a value 0-3 */
CALL RQSETEXCEPTION$HANDLER (@X, @EXCEPTION);

Nucleus System Calls

SET$EXCEPTION$HANDLER

Example

1**
* This example illustrates how the SET$EXCEPTION$HANDLER system call . *
* can be used to assign an exception handler to the calling task. *
**1

DECLARE TOKEN LITERALLY'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

EXCEPTIONHANDLER: PROCEDURE EXTERNAL;
END EXCEPTIONHANDLER;

DECLARE X$HANDLER$STRUCTURE

DECLARE x$handler

DECLARE newxhandler

DECLARE all$exceptions

DECLARE PTR$OVERLAY

DECLARE seg$pointer
DECLARE seg$pointer$ovly

DECLARE status

Nucleus System Calls

LITERALLY 'STRUCTURE(offset
base
mode

WORD,
TOKEN,
BYTE)' ;

1* establishes a structure for
exception handlers *1

X$HANDLER$STRUCTURE;
1* using the exception handler

structure, the pointer to the
old exception handler is
defined *1

X$HANDLER$STRUCTURE;
1* using the exception handler

structure, the new exception
handler is defined *1

LITERALLY , 3' ;
1* control is passed to the exception

handler on all exceptional
conditions *1

LITERALLY 'STRUCTURE(offset WORD,
base TOKEN) , ;

1* establishes a structure for
overlays *1

POINTER;
PTR$OVERLAY AT (@seg$pointer);
1* using the overlay structure, the

first instruction of the
exception handler is identified *1

WORD;

151

SET$EXCEPTION$HANDLER

SAMPLEPROCEDURE:
PROCEDURE;

seg$pointer - @EXCEPTIONHANDLER; 1* pointer to exception handler *1

newxhandler.offset - seg$pointer$ovly.offset;
1* offset of the first instruction

of the exception handler *1

newxhandler.base - seg$pointer$ovly.base;
1* base address of the exception

handler CPU segment containing
the first instruction of the
exception handler *1

newxhandler.mode - all$exceptions; 1* pass control on all conditions *1

•
• Typical PL/M-86 Statements
•

1** * The address of the calling task's exception handler and the value *
* of the task's exception mode (when to pass control to the exception *
* handler) are both returned when the calling task invokes the *
* GET$EXCEPTION$HANDLER system call. *
**1

CALL RQGETEXCEPTION$HANDLER

•

(@x$handler,
@status);

• Typical PL/M-86 Statements
•

1** * The calling task may invoke the SET$EXCEPTION$HANDLER system call *
* to first set a new exception handler and then to later reset the *
* old exception handler. *
**1

152

CALL RQSETEXCEPTION$HANDLER.

•

(@newxhandler,
@status);

• Typical PL/M-86 Statements
•

Nucleus System Calls

SET$EXCEPTION$HANDLER

/**
* No longer needing the new exception handler, the calling task uses *
* the address and mode of the old exception handler to return *
* exception handling to its original exception handler. *
**/

CALL RQSETEXCEPTION$HANDLER (@x$handler,
@status) ;

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

ENOTCONFIGURED

OOOOH No exceptional conditions.

0008H This system call is not part of the present
configuration.

E$PARAM 8004H The exception$mode parameter is greater than 3.

Nucleus System Calls 153

SET$INTERRUPT

The SET$INTERRUPT system call assigns an interrupt handler to an interrupt level and,
optionally, makes the calling task the interrupt task for the level.

CALL RQSETINTERRUPT (level, interrupt$task$flag,
interrupt$handler, interrupt$handler$ds,
except$ptr) ;

Input Parameters
level A WORD containing an interrupt level that is encoded as follows

(bit 15 is the high-order bit):

154

15-7 Reserved bits that should be set to zero.

6-4 First digit of the interrupt level (0-7).

3 If one, the level is a master level and bits 6-4 specify the
entire level number.

If zero, the level is a slave level and bits 2-0 specify the
second digit.

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero.

interrupt$task$f1ag A BYTE indicating the interrupt task that services the interrupt
level. The value of this parameter indicates the number of
outstanding SIGNAL$INTERRUPT requests that can exist. When
this limit is reached, the associated interrupt level is disabled. The
maximum value for this parameter is 255 decimal. The iRM)(® I
Nucleus User's Guide describes this feature in more detail.

• If zero, indicates that no interrupt task is to be associated with
the special level and that the new interrupt handler will not call
SIGNAL$INTERRUPT.

Nucleus System Calls

SET$INTERRUPT

CAUTION

If a task sets the interrupt$task$flag to zero, the designated interrupt
handler should not be part of a Human Interface application that is loaded
into dynamic memory. If such an application is stopped (via a CONTROL
C entered at a terminal), subsequent interrupts to the vector table entry
set by this system call could cause unpredictable results.

• If unequal to zero, indicates that the calling task is to be the
interrupt task that will be invoked by the interrupt handler being
set. The priority of the calling task is adjusted by the Nucleus
according to the interrupt level being serviced. Be certain that
priorities set in this manner do not violate the max$priority
attribute of the containing job.

interrupt$handler A POINTER to the first instruction of the interrupt handler. To
obtain the proper start address for interrupt handlers written in
PL/M -86, place the following instruction before the call to
SET$INTERRUPT:

interrupt$handler - interrupt$ptr (inter);

where interrupt$ptr is a PL/M-86 built-in procedure and inter is the
name of your interrupt handling procedure.

interrupt$handler$ds A TOKEN that specifies the interrupt handler's data segment.

Nucleus System Calls

• If not SELECTO R$OF(NIL) or zero, it contains the base
address of the interrupt handler's data segment. See the
description of ENTER$INTERRUPT in this manual for
information concerning the significance of this parameter.

• If SELECTOR$OF(NIL) or zero, the parameter indicates that
the interrupt handler will load its own data segment and may not
invoke ENTER$INTERRUPT.

It is often desirable for an interrupt handler to pass information
to the interrupt task that it calls. The following PL/M -86
statements, when included in the interrupt task's code (with the
first statement listed here being the first statement in the task's
code), will extract the DS register value used by the interrupt
task and make it available to the interrupt handler, which in turn
can access it by calling ENTER$INTERRUPT:

ISS

SET$INTERRUPT

DECLARE begin
DECLARE data$ptr
DECLARE data$address

data$ptr - @begin;

WORD; 1* A DUMMY VARIABLE *1
POINTER;
STRUCTURE (offset WORD,

base TOKEN) AT (@DATA$PTR);
1* this makes accessible

the two halves of the
pointer DATA$PTR *1

1* puts the whole address of
the data segment into
data$ptr and data$address *1

ds$base - data$address.base;

CALL RQSETINTERRUPT (... ,ds$base, ...);

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX I Operating System

will return the condition code generated by this system call.

Description

156

The SET$INTERRUPT system call is used to inform the Nucleus that the specified
interrupt handler is to service interrupts which come in at the specified level. In a call to
SET$INTERRUPT, a task must indicate whether the interrupt handler will invoke an
interrupt task and whether the interrupt handler has its own data segment. If the handler
is to invoke an interrupt task, the call to SET$INTERRUPT also specifies the number of
outstanding SIGNAL$INTERRUPT requests that the handler can make before the
associated interrupt level is disabled. This number generally corresponds to the number of
buffers used by the handler and interrupt task. Refer to the iRM)(® I Nucleus User's Guide
for further information.

If there is to be an interrupt task, the calling task is that interrupt task. If there is no
interrupt task, SET$INTERRUPT also enables the specified level, which must be disabled
at the time of the call.

Nucleus System Calls

SET$INTERRUPT

Example

1**
* This example illustrates how the SET$INTERRUPT system call can be *
* used. *
**1

DECLARE TOKEN LITERALLY'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

INTERRUPTHANDLER: PROCEDURE INTERRUPT 63 EXTERNAL;
END INTERRUPTHANDLER;

DECLARE interrupt$level$7 LITERALLY 'OOOOOOOOOIIIIOOOB';
1* specifies master interrupt level 7 *1

DECLARE interrupt$task$flag BYTE;
DECLARE interrupt$handler POINTER;
DECLARE data$segment TOKEN;
DECLARE status WORD;

SAMPLEPROCEDURE:
PROCEDURE;

interrupt$task$flag - 0;
data$segment - SELECTOR$OF(NIL);

1* indicates no interrupt task on level 7 *,
1* indicates that the interrupt handler

will load its own data segment *1

interrupt$handler ~ INTERRUPT$PTR (INTERRUPTHANDLER);

•

1* points to the first instruction of
the interrupt handler *1

• Typical PL/M-86 Statements
•

1**
* An interrupt level must have an interrupt handler or an interrupt *
* task assigned to it. Invoking the SET$INTERRUPT system call, the *
* calling task assigns INTERRUPTHANDLER to interrupt level 7. *
**1

CALL RQSETINTERRUPT (interrupt$level$7,
interrupt$task$flag,
interrupt$handler,
data$segment,
@status);

Nucleus System Calls 157

SET$INTERRUPT

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

E$CONTEXT

E$NOnCONFIGURED

E$PARAM

158

OOOOH No exceptional conditions.

0005H One of the following is true:

• The task is already an interrupt task.

• The specified level already has an interrupt
handler assigned to it.

• The job containing the calling task or the
calling task itself is in the process of being
deleted.

0008H This system call is not part of the present
configuration

8004H One of the following is true:

• The level parameter is invalid or would cause
the task to have a priority not allowed by its
job.

• The programmable interrupt controller (PIC)
corresponding to the specified level is not
part of the hardware configuration.

Nucleus System Calls

SETOSEXTENSION

The SETOSEXTENSION system call either enters the address of an entry (or function)
procedure in the interrupt vector table or it deletes such an entry.

CAUTION

This system call should not be used by Human Interface applications that
are loaded into dynamic memory. If such an application is deleted (via a
CONTROL-C entered at a terminal), subsequent interrupts to the vector
table entry set by this system call could cause unpredictable results.

CALL RQSETOS$EXTENSION (os$extension, start$address, except$ptr);

Input Parameters
os$extension A BYTE designating the entry of the interrupt vector table to be set

or reset. This value must be between 192 and 255 (decimal),
inclusive. The values in the range 0 to 191 are valid, but are
reserved for Intel use.

start$address

Output Parameter
except$ptr

Description

A POINTER to the first instruction of an entry (or function)
procedure. If start$address contains a NIL or zero value, the
specified interrupt vector table entry is being reset (deallocated).

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The SETOSEXTENSION system call sets or resets anyone of the 32 operating system
extension entries in the interrupt vector table. An entry must be reset before its contents
can be changed. An attempt to set an already set entry causes an E$CONTEXT
exceptional condition.

Nucleus System Calls 159

SETOSEXTENSION

Example

/**
* This example illustrates how the SETOSEXTENSION system call can *
* be used to reset an entry in the Interrupt Vector Table. The *
* example assumes that the entry for the level (number 250) was set *
* earlier by another procedure. *
**/

DECLARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE vector$entry$250
DECLARE reset
DECLARE status

SAMPLEPROCEDURE:
PROCEDURE;

•

LITERALLY , 250' ;
LITERALLY , 0' ;
WORD;

• Typical PL/M-86 Statements
•

/**
* The calling task invokes the SETOSEXTENSION system call to reset *
* entry 250 (decimal) of the Interrupt Vector Table. *
**/

CALL RQSETOS$EXTENSION

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

160

(vector$entry$250, reset,
@status);

Nucleus System Calls

Condition Codes

E$OK

E$CONTEXT

ENOTCONFIGURED

E$PARAM

Nucleus System Calls

SETOSEXTENSION

OOOOH No exceptional conditions.

0005H The entry is already is set. Before you can set
the entry again, you must first reset it (call
SETOSEXTENSION and specify a 0 for the
start$address parameter).

0008H This system call is not part of the
present configuration.

8004H The OS$extension byte value is less than 192.

161

SET$POOL$MIN

The SET$POOUMIN system call sets a job's pool$min attribute.

CALL RQSETPOOL$MIN (new$min, except$ptr);

Input Parameter
new$min

Output Parameter
except$ptr

Description

A WORD indicating the pool$min attribute of the calling task's job.

• If OFFFFH, indicates that the pool$min attribute of the calling
task's job is to be set equal to that job's pool$max attribute.

• If less than OFFFFH, contains the new value of the pool$min
attribute of the calling task's job. This new value must not
exceed that job's pool$max attribute.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The SET$POOUMIN system call sets the pool$min attribute of the calling task's job. The
new value must not exceed that job's pool$max attribute. When the pool$min attribute is
made larger than the current pool size, the pool is not enlarged until the additional
memory is needed.

162 Nucleus System Calls

SET$POOL$MIN

Example

/**
* This example illustrates how the SET$POOL$MIN system call can be *
* used. *
**/

DECLARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE new$min
DECLARE status

SAMPLEPROCEDURE:
PROCEDURE;

new$min - OFFFFH;

•

WORD;
WORD;

/* sets pool$min attribute of calling
task's job equal to job's pool$max
attribute */

• Typical PL/M-86 Statements
•

/**
* In this example the pool$min attribute of the calling task's job *
* is to be set equal to that job's pool$max attribute. *
**/

CALL RQSETPOOL$MIN

•

(new$min,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Nucleus System Calls 163

SET$POOL$MIN

Condition Codes

164

E$OK

E$LIMIT

ENOTCONFIGURED

OOOOH No exceptional conditions.

0004H The new$min parameter is not OFFFFH, but it is
greater than the pool$max attribute of the calling
task's job.

0008H This system call is not part of the present
configuration.

Nucleus System Calls

SET$PRIORITY

The SET$PRIORITY system call changes the priority of a task.

CAUTION

Tasks can become blocked for long periods of time, and real-time
performance of the iRMX I Operating System can be degraded when a task
uses this system call to lower its own priority.

CALL RQSETPRIORITY (task, priority, except$ptr);

Input Parameters
task A TOKEN for the task whose priority is to be changed. Setting this

parameter to SELECfOR$OF(NIL) or zero selects the invoking
task.

priority

Output Parameter
except$ptr

Description

A BYTE containing the task's new priority. A zero value specifies
the maximum priority of the specified task's containing job.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The SET$PRIORITY system call allows the priority of a non-interrupt task to be altered
dynamically. If the priority parameter is set to zero, the task's new priority is its containing

. job's maximum priority. Otherwise, the priority parameter contains the new priority of the
specified task. The new priority, if explicitly specified, must not exceed its containing job's
maximum priority.

Nucleus System Calls 165

SET$PRIORITY

Example

1** * This example illustrates how the SET$PRIORITY system call can be *
* used to change the priority of a task. *
**1

DECLARE TOKEN LITERALLY'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

TASKCODE: PROCEDURE EXTERNAL;
END TASKCODE;

DECLARE task$token
DECLARE priority$level$66
DECLARE priority$level$O
DECLARE start$address
DECLARE data$seg
DECLARE stack$pointer
DECLARE stack$size$5l2

DECLARE task$flags
DECLARE status
DECLARE job$token

SAMPLEPROCEDURE:

166

PROCEDURE;

start$address - @TASKCODE;

data$seg - SELECTOR$OF(NIL);
stack$pointer - NIL;
task$flags - 0;

•
• Typical PL/M-86 Statements
•

TOKEN;
LITERALLY , 66' ;
LITERALLY , 0' ;
POINTER;
TOKEN;
POINTER;
LITERALLY , 512' ;

1* new task's
stack size is 512
bytes *1

WORD;
WORD;
TOKEN;

1* pointer to first instruction of
interrupt task *1

1* task sets up own data segment *1
1* automatic stack allocation *1
1* designates no floating-point

instructions *1

Nucleus System Calls

SET$PRIORITY

1**
* In this example, the calling task creates a task whose priority is *
* to be changed. The new task initially has a priority level 66. *
***1

task$token - RQ$CREATE$TASK (priority$level$66,
start$address,
data$seg,
stack$pointer,
stack$size$512,
task$flags,
@status);

1**
* The calling task in this example does not need to invoke the *
* CATALOG$OBJECT system call to ensure the successful use of the *
* SET$PRIORITY system call. To allow other tasks access to the new *
* task, however, requires that the task's object token be cataloged. *
**1

CALL RQ$CATALOG$OBJECT

•

(job$token,
task$token,
@(8, 'TASKCODE'),
@status);

• Typical PL/M-86 Statements
•

1**
* The new task (whose code is labeled TASKCODE) is not an interrupt *
* task, so its priority may be changed dynamically by invoking the *
* SET$PRIORITY system call. *
**1

CALL RQSETPRIORITY

•

(task$token,
priority$level$O,
@status);

• Typical PL/M-86 Statements
•

Nucleus System Calls 167

SET$PRIORITY

/**
* Once the need for the higher priority is no longer present, the *
* priority of the new task can be changed back to its original *
* priority by invoking SET$PRIORITY a second time. *
*********~**/

CALL RQSETPRIORITY

•

(task$token,
priority$level$66,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

E$CONTEXT

E$EXIST

E$LIMIT

ENOTCONFIGURED

E$TYPE

168

OOOOH No exceptional conditions.

0005H The specified task is an interrupt task. You
cannot set the priority of an interrupt task
dynamically.

0006H The task parameter is not a token for an existing
object.

0004H The priority parameter contains a priority value
that is higher than the maximum priority of the
specified task's containing job.

0008H This system call is not part of the present
configuration.

8002H The task parameter is a token for an object that
is not a task.

Nucleus System Calls

SIGNAL$EXCEPTION

The SIGNAL$EXCEPTION system call is normally used with OS extensions to signal the
occurrence of an exceptional condition.

CALL RQ$SIGNAL$EXCEPTION (exception$code, param$num, stack$ptr,
first$reserved$word, second$reserved$word,
except$ptr);

Input Parameters
exception$code

param$num

stack$ptr

A WORD containing the code (see list in the iRMX® I Nucleus
User's Guide) for the exceptional condition detected.

A BYTE containing the number of the parameter that caused the
exceptional condition. If no parameter is at fault, param$num
equals zero.

A WORD that, if not zero, must contain the value of the stack
pointer saved on entry to the operating system extension (see the
entry procedure in the iRMX® I Nucleus User's Guide for an
example). The top five words in the stack (where BP is at the top of
the stack) must be as follows:

FLAGS Saved by software interrupt
CS to OS extension
IP
DS Saved by OS extension
BP on entry

Upon completion of SIGNAL$EXCEPTION, control is returned to
either of two instructions. If stack$pointer contains NIL, control
returns to the instruction following the call to
SIGNAL$EXCEPTION. Otherwise, control returns to the
instruction identified in CS and IP.

first$reserved$word A WORD reserved for Intel use. Set this parameter to zero.

second$reserved$- A WORD reserved for Intel use. Set this parameter to zero.
word

Output Parameter
except$ptr

Nucleus System Calls

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

169

SIGNAL$EXCEPTION

Description

Operating system extensions use the SIGNAL$EXCEPTION system call to signal the
occurrence of exceptional conditions. Depending on the exceptional condition and the
calling task's exception mode, control mayor may not pass directly to the task's exception
handler.

If the exception handler does not get control, the exceptional condition code is returned to
the calling task. The task can then access the code by checking the contents of the word
pointed to by the except$ptr parameter for its call (not for the call to
SIGNAUEXCEPTION).

Example

1** * This example illustrates how the SIGNAL$EXCEPTION system call can *
* be used to signal the occurrence of the exceptional condition *
* E$CONTEXT. *
**1

DEClARE TOKEN LITERALLY'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DEClARE e$context
DEClARE param$num
DEClARE stack$pointer
DEClARE reserved$word
DEClARE status

SAMPLEPROCEDURE:
PROCEDURE;

param$num - 0;
stack$pointer - 0;

•

LITERALLY' SH' ;
BYTE;
WORD;
LITERALLY , 0' ;
WORD;

1* no parameter at fault *1
1* return control to instruction

following call *1

• Typical PL/M-86 Statements
•

170 Nucleus System Calls

SIGNAL$EXCEPTION

/** * In this example the SIGNAL$EXCEPTION system call is invoked by *
* extensions of the operating system to signal the occurrence of an *
* E$CONTEXT exceptional condition. *
**/

CALL RQ$SIGNAL$EXCEPTION

•

(e$context,
param$num,
stack$pointer,
reserved$word,
reserved$word,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK OOOOH No exceptional conditions.

Nucleus System Calls 171

SIGNAL$INTERRUPT

The SIGNAL$INTERRUPT system call is used by an interrupt handler to activate an
interrupt task.

CALL RQ$SIGNAL$INTERRUPT (level, except$ptr);

Input Parameter
level A WORD containing an interrupt level that is encoded as follows

(bit 15 is the high-order bit):

15-7 Reserved bits that should be set to zero.

6-4 First digit of the interrupt level (0-7).

3 If one, the level is a master level and bits 6-4 specify the
entire level number.

If zero, the level is a slave level and bits 2-0 specify the
second digit.

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX I Operating System

will return the condition code generated by this system call. All
exceptional conditions must be processed in-line, as control does not
pass to an exceptional handler.

Description

172

An interrupt handler uses SIGNAL$INTERRUPT to start up its associated interrupt task.
The interrupt task runs in its own environment with higher (and possibly the same) level
interrupts enabled, whereas the interrupt handler runs in the environment of the
interrupted task with all interrupts disabled. The interrupt task can also make use of
exception handlers, whereas the interrupt handler always receives exceptions in-line.

Nucleus System Calls

SIGNAL$INTERRUPT

Example

1**
* This example illustrates how the SIGNAL$INTERRUPT system call can *
* be used to activate an interrupt task. *
***1

DECLARE TOKEN LITERALLY'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE interrupt$level$7 LITERALLY'OOOOOOOOOIIIIOOOB';
1* specifies master interrupt level

DECLARE E$OK LITERALLY , OOH' ;
DECLARE the$first$word WORD;
DECLARE interrupt$task$flag BYTE;
DECLARE interrupt$handler POINTER;
DECLARE data$segment TOKEN;
DECLARE status WORD;
DECLARE interrupt$status WORD;
DECLARE ds$pointer POINTER;
DECLARE PTR$OVERLAY LITERALLY 'STRUCTURE (offset WORD,

7*1

base TOKEN)' ;

DECLARE ds$pointer$ovly

1* establishes a structure for
overlays *1

PTR$OVERLAY AT (@ds$pointer);
1* using the overlay structure, the

base address of the interrupt
handler's data segment is
identified *1

INTERRUPTHANDLER: PROCEDURE INTERRUPT 59 PUBLIC; 1* 59 is meaningless
value. ENTER$INTER
RUPT establishes
actual level *1

•
• Typical PL/M-86 Statements
•

Nucleus System Calls 173

SIGNAL$INTERRUPT

/**
* The calling interrupt handler invokes the ENTER$INTERRUPT system *
* call which loads a base address value (defined by *
* ds$pointer$ovly.base) into the data segment register. This *
* register provides a mechanism for the interrupt handler to pass *
* data to the interrupt task to be started up by the SIGNAL$INTERRUPT *
* system call. *
**/

CALL RQ$ENTER$INTERRUPT

CALL INLINEERRORPROCESS

•

(interrupt$level$7,
@interrupt$status);

(interrupt$status);

• Typical PL/M-86 Statements
•

/**
* The interrupt handler uses SIGNAL$INTERRUPT to start up its *
* associated interrupt task. *
**/

CALL RQ$SIGNAL$INTERRUPT

CALL INLINEERRORPROCESS

END INTERRUPTHANDLER;

(interrupt$level$7,
@interrupt$status);

(interrupt$status);

INLINEERRORPROCESS: PROCEDURE(int$status);
DECLARE int$status WORD;

IF int$status <> E$OK THEN
DO;

•
• Typical PL/M-86 Statements
•

END;

END INLINEERRORPROCESS;

174 Nucleus System Calls

SIGNAL$INTERRUPT

SAMPLEPROCEDURE:
PROCEDURE;

ds$pointer - @the$first$word; 1* a dummy identifier used to point to
interrupt handler's data segment *1

data$segment ds$pointer$ovly.base;
1* identifies the base address of the

interrupt handler's data segment *1
interrupt$handler - INTERRUPT$PTR (INTERRUPTHANDLER);

1* points to the first instruction of
the interrupt handler *1

interrupt$task$flag - OIH; 1* indicates that calling task is to be
interrupt task *1

•
• Typical PL/M-86 Statements
•

1**
* By first invoking the SET$INTERRUPT system call, the calling task *
* sets up an interrupt level and becomes the interrupted task for *
* level 7. *
**1

CALL RQSETINTERRUPT

•

(interrupt$level$7,
interrupt$task$flag,
interrupt$handler,
data$segment,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Nucleus System Calls 175

SIGNAL$INTERRUPT

Condition Codes

E$OK OOOOH No exceptional conditions.

E$CONTEXT 0005H No interrupt task is assigned to the specified
level.

E$INTERRUPT$OVERFLOW OOOAR The interrupt task has accumulated more
than the maximum allowable number of
SIGNAUINTERRUPT requests. It had
reached its saturation point and then called
ENABLE to allow the handler to receive
further interrupt signals. It subsequently
received an additional
SIGNAUINTERRUPT request before
calling W AIT$INTERRUPT.

E$INTERRUPT$SATURATION 0009H The interrupt task has accumulated the
maximum allowable number of
SIGNAUINTERRUPT requests. This is an
informative message only. It does not
indicate an error.

E$LIMIT

ENOTCONFIGURED

E$PARAM

176

0004H An overflow has occurred because the
interrupt task has received more than 255
SIGNAL$INTERRUPT requests.

0008H This system call is not part of the present
configuration.

8004H The level parameter is invalid.

Nucleus System Calls

SLEEP

The SLEEP system call puts the calling task to sleep.

CALL RQ$SLEEP (time$limit, except$ptr);

Input Parameter
time$limit

Output Parameter
except$ptr

Description

A WORD indicating the conditions in which the calling task is to be
put to sleep.

• If not zero and not OFFFFH, causes the calling task to go to
sleep for that many clock intervals, after which it will be
awakened. The length of a clock interval is configurable. Refer
to the iRM)(® I Interactive Configuration Utility Reference Manual
for further information.

• If zero, causes the calling task to be placed on the list of ready
tasks, immediately behind all tasks of the same priority. If there
are no such tasks, there is no effect and the calling task
continues to run.

• If OFFFFH, an error is returned.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The SLEEP system call has two uses. One use places the calling task in the asleep state for
. a specific amount of time. The other use allows the calling task to defer to the other ready
tasks with the same priority. When a task defers in this way it is placed on the list of ready
tasks, immediately behind those other tasks of equal priority.

Nucleus System Calls 177

SLEEP

Example

/** * This example illustrates how the SLEEP system call can be used. *
**/

DEClARE TOKEN LITERALLY'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DEClARE time$limit
DEClARE status

SAMPLEPROCEDURE:
PROCEDURE;

time$limit - 100;

•

WORD;
WORD;

/* sleep for 100 clock ticks */

• Typical PL/M-86 Statements
•

/**
* The calling task puts itself in the asleep state for 100 clock *
* ticks by invoking the SLEEP system call. *
**/

CALL RQ$SLEEP

•

(time$limit,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

ENOTCONFIGURED

E$PARAM

178

OOOOH No exceptional conditions.

0008H This system call is not part of the present
configuration.

8004H The time$limit parameter contains the invalid
value OFFFFH.

Nucleus System Calls

SUSPEND$TASK

The SUSPEND$TASK system call increases by one the suspension depth of a task.

CALL RQ$SUSPEND$TASK (task, except$ptr);

Input Parameter
task

Output Parameter
except$ptr

Description

A TOKEN specifying the task whose suspension depth is to be
incremented.

• if not SELECfOR$OF(NIL) or zero, contains a token for the
task whose suspension depth is to be incremented.

• if SELECfOR$OF(NIL) or zero, indicates that the calling task
is suspending itself.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The SUSPEND$TASK system call increases by one the suspension depth of the specified
task. If the task is already in either the suspended or asleep-suspended state, its state is
not changed. If the task is in the ready or running state, it enters the suspended state. If
the task is in the asleep state, it enters the asleep-suspended state.

SUSPEND$TASK cannot be used to suspend interrupt tasks.

Nucleus System Calls 179

SUSPEND$TASK

Example

1**
* This example illustrates how the SUSPEND$TASK system call can be *
* used to increase the suspension depth of a non-interrupt task. *
**1

DECLARE TOKEN LITERALLY'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

TASKCODE: PROCEDURE EXTERNAL;
END TASKCODE;

DECLARE task$token
DECLARE priority$level$200
DECLARE start$address
DECLARE data$seg
DECLARE stack$pointer
DECLARE stack$size$5l2

DECLARE task$flags
DECLARE status

SAMPLEPROCEDURE:
PROCEDURE;

start$address - @TASKCODE;
data$seg -SELECTOR$OF(NIL);
stack$pointer - NIL;
task$flags - 0;

•

TOKEN;
LITERALLY , 200' ;
POINTER;
TOKEN;
POINTER;
LITERALLY '512'; 1* new task's stack

size is 512 bytes *1
WORD;
WORD;

1* first instruction of the new task *1
1* task sets up own data seg *1

1* automatic stack allocation *1
1* designates no floating-point

instructions *1

• Typical PL/M-86 Statements
•

180 Nucleus System Calls

SUSPEND$TASK

/**
* In order to suspend a task, a task must know the token for that *
* task. In this example, the needed token is known because the *
* calling task creates the new task (whose code is labeled TASKCODE). *
**/

task$token - RQ$CREATE$TASK

•

(priority$level$200,
start$address,
data$seg,
stack$pointer,
stack$size$512,
task$flags,
@status);

• Typical PL/M-86 Statements
•

/*****************'***
* After creating the task, the calling task invokes SUSPEND$TASK. *
* This system call increases by one the suspension depth of the new *
* task (whose code is labeled TASKCODE). *
**/

CALL RQ$SUSPEND$TASK (task$token, @status);

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

E$CONTEXT

E$EXIST

E$LIMIT

E$TYPE

Nucleus System Calls

OOOOH No exceptional conditions.

0005H The specified task is an interrupt task. You
cannot suspend interrupt tasks.

0006H The task parameter is not a token for an existing
object.

0004H The suspension depth for the specified task is
already at the maximum of 255.

8002H The task parameter is a token for an object that
is not a task.

181

UNCATALOG$OBJECT

The UNCATALOG$OBJECf system call removes an entry for an object from an object
directory.

CALL RQ$UNCATALOG$OBJECT (job, name, except$ptr);

Input Parameters
job

name

Output Parameter
except$ptr

Description

A TOKEN indicating the job of the object directory from which an
entry is to be deleted.

• If not SELECfOR$OF(NIL) or zero, the TOKEN contains a
token for the job from whose object directory the specified entry
is to be deleted.

• If SELECfOR$OF(NIL) or zero, the entry is to be deleted
from the object directory of the calling task's job.

A POINTER to a STRING containing the name of the object whose
entry is to be deleted.

A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

The UNCATALOG$OBJECf system call deletes an entry from the object directory of the
specified job.

182 Nucleus System Calls

UNCATALOG$OBJECT

Example

/**
* This example illustrates how the UNCATALOG$OBJECT system call can *
* be used. *
**/

DECLARE TOKEN LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE seg$token TOKEN;
DECLARE size WORD;
DECLARE mbx$token TOKEN;
DECLARE mbx$flags WORD;
DECLARE no$response LITERALLY '0' ;
DECLARE status WORD;
DECLARE job$token TOKEN;

SAMPLEPROCEDURE:
PROCEDURE;

size - 64; /* designates new segment to contain 64
bytes */

mbx$flags - 0; /* designates four objects to be queued
on the high performance object
queue; designates a first-in/
first-out task queue */

job$token = SELECTOR$OF(NIL); /* indicates objects to be cataloged
into the object directory of the
calling task's job */

•
• Typical PL/M-86 Statements
•

/**
* The calling task creates a segment and a mailbox and catalogs the *
* mailbox TOKEN. The calling task then uses the TOKENs for both *
* objects to send a message. *
**/

seg$token

mbx$token

RQ$CREATE$SEGMENT (size,
@status);

RQ$CREATE$MAILBOX (mbx$flags,
@status);

Nucleus System Calls 183

UNCATALOG$OBJECT

/**
* It is not mandatory for the calling task to catalog the mailbox *
* token in order to send a message. It is necessary, however, to *
* catalog the mailbox token if a task in another job is to receive *
* the message. *
**/

CALL RQ$CATALOG$OBJECT

•

(j ob$token,
mbx$token,
@ (3 , ' MBX') ,
@status) ;

• Typical PL/M-86 Statements
•

/**
* The calling task invokes the SEND$MESSAGE system call to send the *
* token for the segment to the specified mailbox. *
**/

CALL RQ$SEND$MESSAGE

•

(mbx$token,
seg$token,
no$response,
@status);

• Typical PL/M-86 Statements
•

/**
* When the mailbox is no longer needed and there is no need to keep *
* its token cataloged, it may be deleted by any task that knows its *
* token. *
**/

CALL RQ$UNCATALOG$OBJECT

CALL RQ$DELETE$MAILBOX

•

(j ob$token,
@ (3 , ' MBX') ,
@status);

(mbx$token,
@status);

• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

184 Nucleus System Calls

Condition Codes

E$OK

E$CONTEXT

E$EXIST

ENOTCONFIGURED

E$PARAM

E$TYPE

Nucleus System Calls

UNCATALOG$OBJECT

OOOOH No exceptional conditions.

0005H The specified object directory does not contain
an entry with the designated name.

0006H The job parameter is neither zero nor a token for
an existing object.

0008H This system call is not part of the present
configuration.

8004H The first byte of the STRING pointed to by the
name parameter contains a value greater than 12
or equal to o.

8002H The job parameter is a token for an object that is
not a job.

185

WAIT$INTERRUPT

The W AIT$INTERR UPT system call is used by an interrupt task to signal its readiness to
service an interrupt.

CALL RQ$WAIT$INTERRUPT (level, except$ptr);

Input Parameter
level A WORD specifying an interrupt level which is encoded as follows

(bit 15 is the high-order bit):

15-7 Reserved bits that should be set to zero.

6-4 First digit of the interrupt level (0-7).

3 If one, the level is a master level and bits 6-4 specify the
entire level number.

If zero, the level is a slave level and bits 2-0 specify the
second digit.

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX I Operating System

will return the condition code generated by this system call.

Description

186

The W AIT$INTERRUPT system call is used by interrupt tasks immediately after
initializing and immediately after servicing interrupts. Such a call suspends an interrupt
task until the interrupt handler for the same level resumes it by invoking
SIGNAUINTERRUPT.

Nucleus System Calls

WAIT$INTERRUPT

While the interrupt task is processing, all lower level interrupts are disabled. The
associated interrupt level is either disabled or enabled, depending on the option originally
specified with the SET$INTERRUPT system call. If the associated interrupt level is
enabled, all SIGNAUINTERRUPTcalls that the handler makes (up to the limit specified
with SET$INTERRUPT) are logged. If this count of SIGNAL$INTERRUPT calls is
greater than zero when the interrupt task calls WAIT$INTERRUPT, the task is not
suspended. Instead it continues processing the next SIGNAL$INTERRUPT request.

If the associated interrupt level is disabled while the interrupt task is running and the
number of outstanding SIGNAL$INTERRUPT requests is less than the user-specified
limit, the call to W AIT$INTERRUPT enables that level.

Example

1**
* This example illustrates how the WAIT$INTERRUPT system call can be *
* used to signal a task's readiness to service an interrupt. *
**1

DECLARE TOKEN LITERALLY 'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

1* NUCLUS.EXT declares all nucleus system calls *1
$INCLUDE(:RMX:INC/NUCLUS.EXT)

INTERRUPTHANDLER: PROCEDURE INTERRUPT 63 EXTERNAL;
END INTERRUPTHANDLER;

DECLARE task$token TOKEN;
DECLARE priority$level$150 LITERALLY , 150' ;
DECLARE start$address POINTER;
DECLARE data$segment TOKEN;
DECLARE stack$pointer POINTER;
DECLARE stack$size$5l2 LITERALLY '512'; 1*

DECLARE task$flags WORD;

new task's stack
size is 512 bytes

DECLARE interrupt$level$7 LITERALLY 'OOOOOOOOOllllOOOB' ;
1* specifies master interrupt level

DECLARE interrupt$task$flag BYTE;
DECLARE interrupt$handler POINTER;
DECLARE interrupt$status WORD;
DECLARE status WORD;

*1

7 ~'(I

Nucleus System Calls 187

WAIT$INTERRUPT

INTERRUPTTASK: PROCEDURE PUBLIC;

interrupt$task$flag - OlR; 1* indicates that calling task is to
be interrupt task *1

data$segment - SELECTOR$OF(NIL); 1* use own data segment *1
interrupt$handler - INTERRUPT$PTR (INTERRUPTHANDLER);

1* points to the first instruction of
the interrupt handler *1

1**
* The first system call in this example, SET$INTERRUPT, makes the *
* calling task (INTERRUPTTASK) the interrupt task for interrupt *
* level seven. *
**1

CALL RQSETINTERRUPT

•

(interrupt$level$7,
interrupt$task$flag,
interrupt$handler,
data$segment,
@interrupt$status);

• Typical PL/M-86 Statements
•

1**
* The calling interrupt task invokes WAIT$INTERRUPT to suspend itself *
* until the interrupt handler for the same level resumes the task by *
* invoking the SIGNAL$INTERRUPT system call. *
**1

CALL RQ$WAIT$INTERRUPT

•

(interrupt$level$7,
@interrupt$status);

• Typical PL/M-86 Statements
•

1**
* When the interrupt task invokes the RESET$INTERRUPT system call, *
* the assignment of the current interrupt handler to interrupt level *
* 7 is cancelled and, because an interrupt task has also been *
* assigned to the line, the interrupt task is deleted. *
**1

CALL RQ$RESET$INTERRUPT

END INTERRUPTTASK;
SAMPLEPROCEDURE:

PROCEDURE;

(interrupt$level$7,
@interrupt$status);

start$address - @INTERRUPTTASK; 1* 1st instruction of interrupt
task *1

stack$pointer NIL; 1* automatic stack allocation *1

188 Nucleus System Calls

WAIT$INTERRUPT

task$flags - 0; /* designates no floating-point
instrucitions */

data$segment - SELECTOR$OF(NIL); /* use own data segment */

•
• Typical PL/M-86 Statements
•

/**
* In this example the calling task invokes the system call *
* CREATE$TASK to create a task labeled INTERRUPTTASK. *
**/

task$token - RQ$CREATE$TASK (priority$level$150,
start$address,
data$segment,
stack$pointer,
stack$size$512,
task$flags,
@status);

•
• Typical PL/M-86 Statements
•

END SAMPLEPROCEDURE;

Condition Codes

E$OK

E$CONTEXT

ENOTCONFIGURED

·E$PARAM

Nucleus System Calls

OOOOH No exceptional conditions.

OOOSH The calling task is not the interrupt task for the
given level.

0008H This system call is not part of the present
configuration.

8004H The level parameter is invalid.

189

A

ACCEPT$CONTROL 7
ALTER$COMPOSITE 10

c
CATALOG$OBJECf 12
CREATE$COMPOSITE 15
CREATE$EXTENSION 18
CREATE$JOB 21
CREATE$MAILBOX 29
CREATE$REGION 33
CREATE$SEGMENT 36
CREATE$SEMAPHORE 39
CREATE$TASK 42

D

DELETE$COMPOSITE 47
DELETE$EXTENSION 49
DELETE$JOB 52
DELETE$MAILBOX 55
DELETE$REGION 58
DELETE$SEGMENT 61
DELETE$SEMAPHORE 64
DELETE$TASK 67
DISABLE 71
DISABLE$DELETION 74

E

ENABLE 77
ENABLE$DELETION 81
Encoded meanings for object types 110
Encoding of interrupt levels 77
END$INIT$TASK 84
ENTER$INTERRUPT 85

Nucleus System Calls

INDEX

Index-!

INDEX

E (continued)

Examples .
ACCEPT$CONTROL 8
CATALOG$OBJECf 13
CREATE$JOB 25
CREATE$MAILBOX 31
CREATE$REGION 34
CREATE$SEGMENT 37
CREATE$SEMAPHORE 40
CREATE$TASK 44
DELETE$EXTENSION 50
DELETE$JOB 53
DELETE$MAILBOX 56
DELETE$REGION 59
DELETE$SEGMENT 62
DELETE$SEMAPHORE 65
DELETE$TASK 68
DISABLE 72
DISABLE$DELETION 75
ENABLE 78
ENABLE$DELETION 82
ENTER$INTERRUPT 86
EXIT$INTERRUPT 90
FORCE$DELETE 93
GET$EXCEPTION$HANDLER 96
GET$LEVEL 98
GET$POOUATIRIB 100
GET$PRIORITY 103
GET$SIZE 106
GET$TASK$TOKENS 109
GET$TYPE 111
LOOKUP$OBJECf 116
OFFSPRING 119
RECEIVE$CONTROL 122
RECEIVE$MESSAGE 126
RECEIVE$UNITS 129
RESEUINTERRUPT 132
RESUME$TASK 136
SEND$CONTROL 140
SEND$MESSAGE 143
SEND$UNITS 147
SEUEXCEPTION$HANDLER 151
SEUINTERRUPT 157

Index-2 Nucleus System Calls

E (continued)

SETOSEXTENSION 160
SET$POOUMIN 163
SET$PRIORITY 166
SIGNAUEXCEPTION 170
SIGNAUINTERRUPT 173
SLEEP 178
SUSPEND$TASK 180
UNCATALOG$OBJECf 183
WAIT$INTERRUPT 187

EXIT$INTERRUPT 89

F

FORCE$DELETE 92

G

GET$EXCEPTION$HANDLER 95
GET$LEVEL 97
GET$POOUATTRIB 99
GET$PRIORITY 102
GET$SIZE 105
GET$TASK$TOKENS 108
GET$TYPE 110

INSPECf$COMPOSlTE 113

L

LOOKUP$OBJECf 115

M

Mailbox$f1ags
specifying information when creating a mailbox 29

Meaning of the encoded interrupt level WORD 97

o
OFFSPRING 118

Nucleus System Calls

INDEX

Index-3

INDEX

Q

Queuing scheme of a semaphore 39

R

RECEIVE$CONTROL 121
RECEIVE$MESSAGE 124
RECEIVE$UNITS 128
Required top 5 words of stack for SIGNAL$EXCEPTION 169
RESET$INTERRUPT 131
RESUME$TASK 135

s
SEND$CONTROL 139
SEND$MESSAGE 142
SEND$UNITS 146
SET$EXCEPTION$HANDLER 148
SET$INTERRUPT 154
SETOSEXTENSION 159
SET$POOUMIN 162
SET$PRIORITY 165
SIGNAUEXCEPTION 169
SIGNAUINTERRUPT 172
SLEEP 177
Structures

exception handler 22
extracting the DS register used by an interrupt task 156
for assigning as exception handler 149
information about the exception handler 95
pool attributes for GET$POOUATfRIBUTES 99
token$list for CREATE$COMPOSITE 15
token$list for INSPECf$COMPOSITE 113

SUSPEND$TASK 179

u
UNCATALOG$OBJECT 182

v
Values for GET$TASKSTOKENS selection parameter 108

Index-4 Nucleus System Calls

W

WAIUINTERRUPT 186

Nucleus System Calls

INDEX

Index-S

iRMX0 1 Nucleus System Calls
Reference Manual

462928-001

REQUEST FOR READER'S COMMENTS

Intel's.Technical Publications Departments attempt to provide publications that meet the needs of all
Intel product users. This form lets you participate directly in the publication process. Your comments
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact
your Intel representative.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestions
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME ___ DATE

TITLE
COMPANYNAM~DEPARTMENT __ ~

ADDRESS _______________________________________ P_H_O_N_E~(__ ~ ________ ___

CITY STATE ZIP CODE
------------------------------------ ----------------------------

(COUNTRY)

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Il')tel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
:omments and suggestions become the property of Intel Corporation.

If you are in the United States, use the preprinted address provided on this form to return your
:omments.' No postage is required. If you are not in the United States, return your comments to the Intel
sales office in your country. For .your convenience, international sales office addresses, are printed on
the last page of this document.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
OMSO Technical Publications, MS: HF3-72
5200 N.E. Elam Young Parkway
Hillsboro, OR 97124-9978

11.1 •• 111.111.11 •• 1.1.1 •• 11.1 •• 1.1 •• 1 ••• 11111 •• 1.111

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

INTERNATIONAL SALES OFFICES

INTEL CORPORATION
3065 Bowers Avenue

Santa Clara, California 95051

BELGIUM

Intel Corporation SA

Rue des Cottages 65
B-1180 Brussels

DENMARK

Intel Denmark AlS

Glentevej 61-3rd Floor

dk-2400 Cop~nhagen

ENGLAND
Intel Corporation (U.K.) LTD.

Piper's Way

Swindon, Wiltshire SN3 1 RJ

FINLAND

Intel Finland OY
Ruosilante 2

00390 Helsinki

FRANCE
Intel Paris

1 Rue Edison-BP 303
78054 St.-Quentin-en-Yvelines Cedex

ISRAEL
Intel Semiconductors LTD.

Atidim Industrial Park

Neve Sharet
P.O. Box 43202
Tel-Aviv 61430

ITALY
Intel Corporation S.P.A.
Milandfiori, Palazzo E/4
20090 Assago (Milano)

JAPAN
Intel Japan K.K.

Flower-Hill Shin-machi
1-23-9, Shinmachi

Setagaya-ku, Tokyo 15

NETHERLANDS
Intel Semiconductor (Netherland B.V.)

Alexanderpoort Building
Marten Meesweg 93

3068 Rotterdam

NORWAY
Intel Norway AlS

P.O. Box 92
Hvamveien 4

N-2013, Skjetten

SPAIN
Intel Iberia

Calle Zurbaran 28-IZQDA
28010 Madrid

SWEDEN
Intel Sweden A.B.
Dalvaegen 24

S-17136Solna

SWITZERLAND

Intel Semiconductor A.G.
Talackerstrasse 17
8125 Glattbrugg

CH-8065 Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.

Seidlestrasse 27
0-8000 Munchen

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

•

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

INTEL CORPORATION
3065 Bowers Avenue
Santa Clara, California 95051
(408) 987-8080

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •

