
1/3/2019 5.18. jal, jr: Subroutine instructions

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18 1/9

5.18 jal, jr: Subroutine instructions

Subroutines

A program often needs to perform the same operation for different data values. Ex: Determining the maximum of two value
temperature from Fahrenheit to Celsius, etc. Instead of duplicating the instruction sequence for an operation multiple times
can use a subroutine. A subroutine is a sequence of instructions that performs a speci�c operation that can be called from
a program. A subroutine call causes the subroutine's statements to execute.

PARTICIPATION
ACTIVITY 5.18.1: Subroutine for computing maximum of two values.

A brief note from your instructor:

Sections 5.18-5.21 provide a good conceptual description of how MIPS subroutines work, using temporary registers ($t)
and parameters. However, practically speaking their translation is not accurate because temporary registers by de�nition
saved across procedure calls, and MIPS provides $a registers for parameters.

Therefore I recommend skimming this section but will not require completing the activities. I will be demonstrating in cla
way of translating subroutines to MIPS, using these concepts.

Compute max of DM[5000] & DM[5004]
addi $t6, $zero, 5000
lw $t0, 0($t6)
addi $t6, $zero, 5004
lw $t1, 0($t6)

Compute max of DM[5000] & DM[5004]
addi $t6, $zero, 5000
lw $t0, 0($t6)
addi $t6, $zero, 5004
lw $t1, 0($t6)

Start 2x speed

1/3/2019 5.18. jal, jr: Subroutine instructions

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18 2/9

PARTICIPATION
ACTIVITY 5.18.2: Subroutines.

Refer to the animation above.

1) What label indicates the �rst instruction
of the subroutine for computing the
maximum value?

slt $t3, $t0, $t1
bne $t3, $zero, Max1IsT1
add $t2, $zero, $t0
j Max1End
Max1IsT1: add $t2, $zero, $t1
Max1End: addi $t6, $zero, 5008
sw $t2, 0($t6)

Compute max of DM[5012] & DM[5016]
addi $t6, $zero, 5012
lw $t0, 0($t6)
addi $t6, $zero, 5016
lw $t1, 0($t6)
slt $t3, $t0, $t1
bne $t3, $zero, Max2IsT1
add $t2, $zero, $t0
j Max2End
Max2IsT1: add $t2, $zero, $t1
Max2End: addi $t6, $zero, 5020
sw $t2, 0($t6)

No subroutine with redundant code CompMax subroutine computes max of $t0
 and $t1, writing max to $t2.

CompMax:
 slt $t3, $t0, $t1
 bne $t3, $zero, MaxIsT1
 add $t2, $zero, $t0
 j MaxEnd
 MaxIsT1: add $t2, $zero, $t1
 MaxEnd: Return from subroutine

addi $t6, $zero, 5008
sw $t2, 0($t6)

Compute max of DM[5012] & DM[5016]
addi $t6, $zero, 5012
lw $t0, 0($t6)
addi $t6, $zero, 5016
lw $t1, 0($t6)

addi $t6, $zero, 5020
sw $t2, 0($t6)
...

Call CompMax subroutine (not shown)

Call CompMax subroutine (not shown)

CompMax

MaxEnd

1/3/2019 5.18. jal, jr: Subroutine instructions

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18 3/9

2) How many redundant instructions in the
original code were moved to the
subroutine.

3) A subroutine's instructions must be
duplicated each time the subroutine is
called.

4) A subroutine may have up to 1024
instructions.

Jump and link and jump register instructions

The jump and link (jal) instruction stores the address of the next instruction in register $ra, and then jumps to the instructio
speci�ed location. Ex: jal CalcCube stores the address of the instruction after the jal instruction in $ra, and continues exe
instruction at CalcCube; CalcCube is the label for the �rst instruction of the subroutine. The $ra register (or return address r
the instruction address to which a subroutine returns after executing. The jump register (jr) instruction jumps to the instruc
address held in a register. Ex: jr $ra jumps to the instruction at the address held in register $ra. A programmer uses jal to
subroutine, and jr to return from a subroutine.

PARTICIPATION
ACTIVITY 5.18.3: Subroutine call using jal and jr instructions.

5

10

True

False

True

False

Start 2x speed

1/3/2019 5.18. jal, jr: Subroutine instructions

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18 4/9

PARTICIPATION
ACTIVITY 5.18.4: jal and jr instructions.

1) Write a jump and link instruction to call
a subroutine named CalcTip.

2) If the jal instruction below is located in
instruction memory at address 200,
what value is written to register $ra?

jal DetSpeed

$zero

$ra

$t6

$t1

$t0

Register file

5004

5000

Data memory DM

012
16
20

60
64
68

3

...

20
5000

Compute cube of 3
addi $t0, $zero, 3
jal CalcCube # Call CalcCube
sw $t1, 0($t6)

...

CalcCube subroutine
CalcCube:
 mul $t1, $t0, $t0
 mul $t1, $t1, $t0
 jr $ra

9 27

27

Check Show answer

Check Show answer

1/3/2019 5.18. jal, jr: Subroutine instructions

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18 5/9

3) Using the $ra register, write an
instruction to return from a subroutine
named CalcTip.

4) Assume $ra holds 116. If the jr
instruction below is located in
instruction memory at address 200,
what is the address of the instruction
executed after jr $ra?

Arguments and return values

An argument is a value passed to a subroutine, that in�uences the subroutine's operations. A return value is a value returne
subroutine. A simple subroutine may use speci�c registers for the argument and return value. Ex: The CalcCube subroutine
for the subroutine's argument and $t1 for the return value.

The assembly program below passes arguments to the CalcCube subroutine using $t0. The CalcCube subroutine returns t
$t1. The program �rst passes 3 to the subroutine by writing 3 to register $t0. After executing the subroutine, $t1 holds the v
stored in data memory at address 5000. The program then passes 17 to the subroutine by writing 17 to $t0. The result of 4
stored to data memory at address 5004.

Figure 5.18.1: Passing arguments to multiple
CalcCube subroutine calls.

Check Show answer

Check Show answer

1/3/2019 5.18. jal, jr: Subroutine instructions

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18 6/9

Initialize registers for DM addresses
addi $t5, $zero, 5000
addi $t6, $zero, 5004

Compute cube of 3
addi $t0, $zero, 3 # Pass argument of 3
jal CalcCube # Call CalcCube
sw $t1, 0($t5) # Store result to DM[5000]

Compute cube of 17
addi $t0, $zero, 17 # Pass argument of 17
jal CalcCube # Call CalcCube
sw $t1, 0($t6) # Store result to DM[5004]
j Done

CalcCube subroutine.
$t0 is subroutine argument
$t1 is subroutine return value
CalcCube:
 mul $t1, $t0, $t0
 mul $t1, $t1, $t0
 jr $ra # Return from subroutine

Done:

PARTICIPATION
ACTIVITY 5.18.5: Subroutine arguments and return values.

The CalcEq subroutine below evaluates the equation: x * (y - z). Values for x, y, and z are
passed to the subroutine as arguments.

CalcEq:
 sub $t5, $t1, $t2
 mul $t3, $t5, $t0
 jr $ra

1) Which register is used for x?

1/3/2019 5.18. jal, jr: Subroutine instructions

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18 7/9

2) Which register is used for the argument
y?

3) Which register is used for the argument
z?

4) Which register is used for the return
value?

PARTICIPATION
ACTIVITY 5.18.6: Create a subroutine.

Using the CompMax subroutine, complete the assembly program to compute the maximum of
the three values in DM[5000], DM[5004], and DM[5008], storing the result in DM[5020].

1. Load $t0 and $t1 with DM[5000] and DM[5004], and call the CompMax subroutine.
2. Copy the result, which is held in $t2, into $t0. Load $t1 with DM[5008]. Call the CompMax

subroutine.
3. Store the result, which is held in $t2, to DM[5020]

$t0

$t1

$t2

$t0

$t1

$t2

$t2

$t3

$ra

$t3

1/3/2019 5.18. jal, jr: Subroutine instructions

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18 8/9

Table 5.18.1: Instruction summary: jal, jr.

Instruction Format Description Example

jal jal JLabel
Jump and link: Stores the address of the next
instruction in register $ra, and continues execution
with the instruction at JLabel.

jal CalcTip

jr jr $a
Jump register: Causes execution to continue with
the instruction at address $a.

jr $t3

CHALLENGE

ENTER SIMULATION STEP RUN

More options

Assembly
Registers

$zero 0
$t0

$t1

$t2

$t3

$t4

$t5

$t6

0

0

0

0

0

0

0

+

Da
5000

5004

5008

5020

+

FIXME: Compute maximum of DM[5000],
DM[5004], and DM[5008]
j Done

CompMax:
 slt $t3, $t0, $t1
 bne $t3, $zero, MaxIsT1
 add $t2, $zero, $t0
 j MaxEnd
 MaxIsT1: add $t2, $zero, $t1
 MaxEnd: jr $ra

Done:

Line 1
Line 2
Line 3
Line 4
Line 5
Line 6
Line 7
Line 8
Line 9
Line 10
Line 11
Line 12
Line 13

1/3/2019 5.18. jal, jr: Subroutine instructions

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18 9/9

ACTIVITY
5.18.1: Call and create subroutines.

1

2

Start

Pass DM[$t3] to the YearlySalary subroutine, and store the return value to DM[$t4].
$t1 is the subroutine argument.
$t2 is the subroutine return value.

lw $t1 , 0($t1)

lw $t1 , 0($t1)

lw $t1 , 0($t1)

lw $t1 , 0($t1)

YearlySalary: addi $t2 , $zero , 2000

mul $t2 , $t1 , $t2

jr $ra

Done:

2

Registers
$t1 0
$t2 0
$t3 5000
$t4 5004

5

5

Check Next

 Provide feedback on this section

1

