1/3/2019 5.18. jal, jr: Subroutine instructions

5.18 jal, jr: Subroutine instructions

A brief note from your instructor:

Sections 5.18-5.21 provide a good conceptual description of how MIPS subroutines work, using temporary registers (St
and parameters. However, practically speaking their translation is not accurate because temporary registers by definitiol
saved across procedure calls, and MIPS provides Sa registers for parameters.

Therefore | recommend skimming this section but will not require completing the activities. | will be demonstrating in cl
way of translating subroutines to MIPS, using these concepts.

Subroutines

A program often needs to perform the same operation for different data values. Ex: Determining the maximum of two value
temperature from Fahrenheit to Celsius, etc. Instead of duplicating the instruction sequence for an operation multiple time:
can use a subroutine. A subroutine is a sequence of instructions that performs a specific operation that can be called from
a program. A subroutine call causes the subroutine's statements to execute.

PARTICIPATION 5 18.1: Subroutine for computing maximum of two values.

ACTIVITY
——
D 2x speed

Compute max of DM[5000] & DM[5004] # Compute max of DM[5000] & DM[5004]
addi $t6, S$zero, 5000 addi $t6, S$zero, 5000

lw $t0, 0(Ste) 1w $t0, 0(S$te)

addi $t6, S$zero, 5004 addi $t6, S$zero, 5004

lw Stl, 0(Sto) lw $tl, 0(Ste)

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18 1/9

1/3/2019

5.18. jal, jr: Subroutine instructions

slt $t3, $t0, $tl

bne $t3, S$Szero, MaxlIsTl
add $t2, S$zero, $tO

J Max1lEnd

Max1IsTl: add $t2, S$zero,
MaxlEnd: addi $te6, Szero,
sw $t2, 0(St6)

Compute max of DM[5012]
addi $t6, S$zero, 5012

lw $t0, 0(Ste)

addi $t6, Szero, 5016

Iw $tl, 0(St6)

slt $t3, $t0, $tl

bne $t3, S$zero, Max2IsTl
add $t2, S$zero, $tO

J Max2End

stl
5008

& DM[5016]

Call CompMax subroutine (not shown)
addi $t6, Szero, 5008
sw $t2, 0($t6)

Compute max of DM[5012] & DM[5016]
addi $t6, S$zero, 5012

lw $t0, 0(S$te)

addi $t6, S$zero, 5016

&gll %to%‘lpl\%)% ts%routine (not shown)

addi $t6, Szero, 5020
sw S$t2, 0(St6)

CompMax:

slt $t3, $t0, $tl

bne $t3, S$zero, MaxIsT1l
add $t2, S$zero, S$tO

j MaxEnd

Max2IsTl: add $t2, S$Szero, S$tl
Max2End: addi $t6, S$Szero, 5020
sw S$t2, 0(S$t6)

No subroutine with redundant code

MaxIsTl: add $t2, S$Szero, Stl
MaxEnd: Return from subroutine

CompMax subroutine computes max of $t0
and $t1, writing max to $t2.

PARTICIPATION

ACTIVITY 5.18.2: Subroutines.

Refer to the animation above.

1) What label indicates the first instruction
of the subroutine for computing the
maximum value?

O CompMax
O MaxEnd

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18 2/9

1/3/2019 5.18. jal, jr: Subroutine instructions

2) How many redundant instructions in the -
original code were moved to the
subroutine.

O 5
O 10

3) A subroutine's instructions must be
duplicated each time the subroutine is
called.

O True
O False

4) A subroutine may have up to 1024
instructions.

O True
O False

Jump and link and jump register instructions

The jump and link (jal) instruction stores the address of the next instruction in register Sra, and then jumps to the instructic
specified location. Ex: jal CalcCube stores the address of the instruction after the jal instruction in Sra, and continues exe
instruction at CalcCube; CalcCube is the label for the first instruction of the subroutine. The $ra register (or return address .
the instruction address to which a subroutine returns after executing. The jump register (jr) instruction jumps to the instruc
address held in a register. Ex: jr $ra jumps to the instruction at the address held in register Sra. A programmer uses jal to
subroutine, and jr to return from a subroutine.

PARTICIPATION

ACTIVITY 5.18.3: Subroutine call using jal and jr instructions. D

D 2x speed

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18 3/9

1/3/2019

12
16
20

60
64
68

PARTICIPATION
ACTIVITY

5.18. jal, jr: Subroutine instructions

Compute cube of 3
addi $t0, $zero, 3 $zero
jal CalcCube # Call CalcCube

sw $tl, 0($t6) $0

$t1

$t6
CalcCube subroutine

CalcCube: $ra
mul $tl, $t0, $tO
mul $tl, $tl, $tO
Jjr Sra

5.18.4:jal and jr instructions.

1) Write a jump and link instruction to call
a subroutine named CalcTip.

Show answer

2) If the jal instruction below is located in
instruction memory at address 200,
what value is written to register Sra?

jal DetSpeed

Show answer

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18

Register file

0

3

9

27

5000

20

5000
5004

Data memory DM

27

4/9

1/3/2019 5.18. jal, jr: Subroutine instructions

3) Using the Sra register, write an D
instruction to return from a subroutine
named CalcTip.

Show answer

4) Assume Sra holds 116. If the jr]
instruction below is located in
instruction memory at address 200,
what is the address of the instruction
executed after jr $ra?

Show answer

Arguments and return values

An argument is a value passed to a subroutine, that influences the subroutine's operations. A return value is a value returne
subroutine. A simple subroutine may use specific registers for the argument and return value. Ex: The CalcCube subroutine
for the subroutine's argument and S$t1 for the return value.

The assembly program below passes arguments to the CalcCube subroutine using St0. The CalcCube subroutine returns t
St1. The program first passes 3 to the subroutine by writing 3 to register St0. After executing the subroutine, St1 holds the \
stored in data memory at address 5000. The program then passes 17 to the subroutine by writing 17 to St0. The result of 4
stored to data memory at address 5004.

Figure 5.18.1: Passing arguments to multiple
CalcCube subroutine calls.

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18 5/9

1/3/2019

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18

PARTICIPATION

sub $t5, $t1, $t2
mul $t3, $t5, $to

5.18. jal, jr: Subroutine instructions

Initialize registers for DM addresses
addi $t5, $zero, 5000
addi $t6, $zero, 5004

Compute cube of 3

addi $to, $zero, 3 # Pass argument of 3

jal CalcCube # Call CalcCube

sw $t1, 0($t5) # Store result to DM[5000]

Compute cube of 17
addi $t@, $zero, 17 # Pass argument of 17

jal CalcCube # Call CalcCube
sw $t1, 0($t6) # Store result to DM[5004]
j Done

CalcCube subroutine.

$t0 is subroutine argument
$t1 is subroutine return value
CalcCube:

mul $t1, $to, $te
mul $t1, $t1, $to
jr $ra # Return from subroutine

Done:

5.18.5: Subroutine arguments and return values.

The CalcEq subroutine below evaluates the equation: x * (y - z). Values for x, y, and z are
passed to the subroutine as arguments.

1) Which register is used for x?

6/9

1/3/2019

5.18. jal, jr: Subroutine instructions

O sto
O st
O st2
2) Which register is used for the argument
y?
O $to
O st
O st2
3) Which register is used for the argument
z?
O st2
O §t3

4) Which register is used for the return
value?

O Sra
O st3

PARTICIPATION) .
ACTIVITY 5.18.6: Create a subroutine.

Using the CompMax subroutine, complete the assembly program to compute the maximum of
the three values in DM[5000], DM[5004], and DM[5008], storing the result in DM[5020].

1. Load St0 and St1 with DM[5000] and DM[5004], and call the CompMax subroutine.
2. Copy the result, which is held in $t2, into S$t0. Load St1 with DM[5008]. Call the CompMax

subroutine.

3. Store the result, which is held in $t2, to DM[5020)]

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18

B

7/9

1/3/2019

Line
Line
Line
Line
Line
Line
Line
Line
Line

1
2
3
4
5
6
7
8

9

Line 10
Line 11
Line 12
Line 13

5.18. jal, jr: Subroutine instructions

Assembly .
Registers
FIXME: Compute maximum of DM[5000],
DM[5004], and DM[5008] Szero 0
j Done
) $t0 0
CompMax :
slt $t3, $to, $ti St 0
bne $t3, $zero, MaxIsT1
add $t2, $zero, $to $t2 0
j MaxEnd
MaxIsT1l: add $t2, $zero, $t1 St3 0
MaxEnd: jr $ra
St4 0
Done:
$t5 0
St6 0
+

RUN

More options v

Table 5.18.1: Instruction summary: jal, jr.

Instruction Format Description

jal

I CHALLENGE

Jump and link: Stores the address of the next
jal JLabel | instruction in register Sra, and continues execution
with the instruction at JLabel.

Jump register: Causes execution to continue with

ir $a) .
jr % the instruction at address Sa.

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18

o

5000

5004

5008

5020

Example

jal CalcTip

jr $t3

8/9

1/3/2019

I ACTIVITY

Start

5.18. jal, jr: Subroutine instructions

5.18.1: Call and create subroutines.

Pass DM[$t3] to the YearlySalary subroutine, and store the return value to DM[$t4].
$t1 is the subroutine argument.
$t2 is the subroutine return value.

$t1
$t2
$t3
$t4

Registers

0

0

5000

5004

v v] [5e1 v ofsti_v)
v v] [5e1 v ofsti_v)
v v] [5e1 v ofsti_v)
v v] [5e1 v ofsti_v)
YearlySalary:|addi v | [$t2 v |, [$zero v| 2000
mul v | [$t2 v [$tl v, [$t2 v
9r v | [$ra v|
Done:
1 2

[Provide feedback on this section

https://learn.zybooks.com/zybook/FIUCDA3103CickovskiFall2018/chapter/5/section/18

9/9

