
Module Three
Control Stuctures

Most of the appeal for me is not the features that Go has, but rather the fea­
tures that have been intentionally left out
txxxxd in Hacker News

I like that Go forces you to clean up little messes, like unused variables, for
example.
Jamu Kakar



Introduction to Programming in Go



Module 3: Control Structures

Page 3­1

3.1 Introduction

This module is not deep in terms of introducing new concepts, but it does introduce a lot
of detail at the nuts and bolts level of writing Go code. This module is really about get­
ting comfortable with the general appearance, flow and feel of writing Go code in the
places where it differs from other C­style languages.

I don't know if my personal experience is commonly shared by other programmers, but
there are two things I find frustrating when starting to learn a new programming new
language.

The first is that my code doesn't doesn't compile or execute but to my programmer's
eye it should because I don't see anything obviously wrong with it. This is because I
have missed some critical difference between how I normally write code and how code
should be written in the new language. Of course the difference is usually so minor that
it does not warrant mention in a lot of the material on the language, but it is not obvious
enough to me to pick it up right away – especially since I am conditioned to look at the
code in terms of other programming languages I already know.

I have been writing C, Java and C++code for decades and will often write a variable de­
claration and “int i” in Go because that is what I automatically do, and I then wonder for
just a moment what the compiler is complaining about until I remember..oh yeah this is
Go and that is not how we do it in Go.

The second thing I find frustrating is when low level details are just not mentioned in
most of the material on a language because the people who write in the language regu­
larly as either blindingly obvious or too trivial to mention. That may be true if you know
the language, and after I learn the language I realize it is in fact trivial, but if you don't
know the language then it's not obvious initially; but also almost impossible to find any
clarification on that specific topic or point.

This section just focuses on the aspects of Go control structures that are important to
point out in terms of transitioning from writing code in another language to writing code
in Go. There is no exposition in this module on what conditionals are, or how they work,
or what a for loop does – the focus is only how a Go conditional is written differently
from conditionals in C, C++ and Java.



Introduction to Programming in Go

3.2 Mixed Mode Operations

The last thing we want to do in this course is to start going over all the operators. Given
that you are an experienced programmers, then only teaching points we have to make
are about the differences between operators in Go and other C­style languages – there
are only a few but, based on my own personal experience, they are significant enough
that they really confused me the few times I encountered them.

The most minor difference, in my opinion, is that there is no exponentiation operator.
This is not a real loss since there is an exponentiation function in the math package that
provides exactly the same functionality.

3.2.1 Increment Operator

The main difference that takes getting used to, or at least it was for me because I was
so used to using it in other languages, was that the increment operator "i++" is actually
a statement and not an expression. That means that it cannot appear on the right hand
side of any sort of assignment operation.

An expression is something that can be evaluated to produce a result which can then
use in some way, such as assigning it to a variable or as a value in another expression.

In Go x++ is a short form of the statement x = x +1 which does not return a result. A
common construct I would use in C++ is j=i++ would be interpreted in Go as j = i = i+1
which is an illegal statement in Go. In fact Go does not support this chaining of opera­
tions where more than one “=” appears in a line.

The operation i++ does not produce a result, it just has a side effect which is to change
the value of the variable i. Since i++ is not an expression, the need to distinguish
between incrementing before or after we use it is no longer an issue. These means that
++i and i++ are semantically identical which makes the prefix operator is redundant so
Go drops its usage and only supports the postfix form.

3.2.2 No Mixed Mode Arithmetic

The mixed mode arithmetic operations rule is something that just takes a little getting
used to but more because of the strictness of the rule than because of any conceptual
complexity. It's easy to remember that you will get a compiler error when you add a
int32 and a float32 but it's more difficult to remember that you can't add a float32 and a
float64 either.

The rationale for the no mixed mode rule actually makes a lot of sense. In the section in
Module 2 on variable type conversions, I presented a quote by Rob Pike about why this
decision was made. It is relevant here as well.

This is illustrated in example 03­01.



Module 3: Control Structures

Page 3­3

// Example 03­01 Operators

package main

import "fmt"

func main() {

a, b, c := uint8(1), uint16(1), int8(1)
//fmt.Println("1. a + b =", a+b)
//fmt.Println("2. a + c =", a+c)
fmt.Println("3. a + uint8(b)=", a+uint8(b))
fmt.Println("4. uint8(a) + c=", int8(a)+c))

}

[Module03]$ go run ex03­01.go
3. a + uint8(b)= 2
4. uint8(a) + c= 2



Introduction to Programming in Go

3.2.3 Parallel Assignment

Parallel multiple assignment is not supported in other C­style languages so those lan­
guages tend use the the more cumbersome C­style way of using a temporary variable
to swap two values. Go does all assignments in parallel as shown in example 03­02

// Example 03­02 parallel Assignment

package main

import "fmt"

func main() {

first, last := "York", "New"
fmt.Println(first, last)
first, last = last, first
fmt.Println(first, last)

}

[Module03]$ go run ex03­02.go
York New
New York



Module 3: Control Structures

Page 3­5

3.3 Conditionals – the if Statement

Conditionals in Go work for the most part like conditionals in other C­style languages
except for the following differences:

1. No parentheses "(..)" are allowed around the test condition

2. Local variables can be defined in the if statement itself

3. Braces "{ .. }" are mandatory for all then and else blocks

4. The opening "{" for each block cannot start on a new line

5. The else keyword cannot appear at the start of a new line

Most of these differences are syntactic which is not a conceptually difficult stretch to
make. The major difference between Go and other C­style conditionals is the way vari­
ables that are local to the conditional are defined.

// Example 03­03 Basic If Statement

package main

import "fmt"

func main() {
x := 22
if x == 0 {

fmt.Printf("%d is zero\n", x)
} else if x%2 == 0 {

fmt.Printf("%d is even\n", x)
} else {

fmt.Printf("%d is odd\n", x)
}

}

[Module03]$ go run ex03­03.go
22 is even



Introduction to Programming in Go

3.2.1 Local Variables in Conditionals

We can do the same in Go as in other C­style languages and define local variables in
each of the blocks that make up the clauses of the if statement – but doing it this way
means that variable is defined only for that block and so has to be redefined for each
block that corresponds to a clause in the conditional.

However Go allows the definition of local variables at the start of the if statement which
are then local to all of the clauses of the if statement. Since only one of the clauses will
ever execute (the whole point of a conditional statement) then any interaction between
these local variables across the clauses is impossible.

We can only use the short form of variable declarations here. Earlier in the class we
said that we would see a reason for having the two forms of variable declaration – well
here it is.

// Example 03­04 Local Variables

package main

import "fmt"

func main() {

if x, y := 22, "hi"; x == 0 {
fmt.Println("Value of x=", x, " y=", y)

} else if x % 2 == 0 {
fmt.Println("Value of x=", x, " y=", y)

} else {
fmt.Println("Value of x=", x, " y=", y)

}
}

[Module03]$ go run ex03­04.go
Value of x= 22 y= hi



Module 3: Control Structures

Page 3­7

3.2.2 Using Non­local variables

We can also assign values to existing variables using the “=” operator instead of the “:=”
operator.

However we cannot mix the local and non­local or the local definition will shadow the
the non­local definition. This will be explored as one of the lab exercises.

[Module03]$ go run ex03­05.go
Value of x= 22 y= hi
Value of x= 10

// Example 03­05 Local and Non­Local Variables

package main

import "fmt"

var x int = 10

func main() {

if x, y := 22, "hi"; x == 0 {
fmt.Println("Value of x=", x, " y=", y)

} else if x % 2 == 0 {
fmt.Println("Value of x=", x, " y=", y)

} else {
fmt.Println("Value of x=", x, " y=", y)

}
fmt.Println("Value of x=", x)

}



Introduction to Programming in Go

3.4 Loops – Differences in Go

The only loop construct in Go is the for loop. The major differences between Go for
loops and other C­style language are similar to those for conditionals.

1. No parentheses "(..)" allowed in the for clause

2. Braces "{..}" are mandatory for the loop body

3. The pre and post terms in the for clause can be empty

The last point means that a for loop can look like:

for ; text==true ; {...}

which can be also written as if it were a while loop

for text==true { ...}

Like the if statement in Go, the opening brace "{" of the loop body must appear on the
same line as the for clause.

Also notice in the example we cannot define "total" in the for clause because that would
make it local to the loop body.

[Module03]$ go run ex03­06.go
total = 4950

// Example 03­06 Basic for loop

package main

import "fmt"

func main() {
var total = 0
for count := 0; count < 100; count++ {

total += count
}
fmt.Println("total = ", total)

}



Module 3: Control Structures

Page 3­9

3.4.1 Multiple Loop Variables

Example 03­07 shows how we can define multiple loop variables in the for loop. The
example also illustrates the use of the break statement – the break and continue state­
ments work the same way in Go as they do other C­style languages.

[Module03]$ go run ex03­07.go
abort
total = 105

// Example 03­07 Multiple Declarations

package main

import "fmt"

func main() {
var total = 0
for i, m := 0, "abort"; i < 100; i++ {

total += i
if total > 100 {

fmt.Println(m)
break

}
}
fmt.Println("total = ", total)

}



Introduction to Programming in Go

3.4.2 Non­local Variables

Just a reworking of the previous example to show how non­local variables are used in
the loop. The dangers of mixing the two types – local and non­local – are explored in
the lab. The example also shows the use of the continue statement, used the same as
in other C­style languages.

[Module03]$ go run ex03­08.go
total = 210
[Module03]$ go run ex03­08.go
total = 210

// Example 03­08 Non Local Variables

package main

import "fmt"

func main() {
var total, i int = 1000, 1000
for i, total = 0, 0; i < 100; i++ {

if total > 200 {
continue

} else {
total += i

}
}
fmt.Println("total = ", total)

}



Module 3: Control Structures

Page 3­11

3.4.3 For Loop as a While Loop

A while loop in C­style languages is equivalent to a for loop with an empty clause usu­
ally written and "for(;;)" In Go we can do that as well, and by dropping off the ex­
traneous semicolons we get something that looks just like a while loop.

[Module03]$ go run ex03­09.go
count = 2

// Example 03­09 For loop as a while loop

package main

import "fmt"

func main() {

count := 0

for count < 2 {
count++

}

fmt.Println("count = ", count)
}



Introduction to Programming in Go

[Module03]$ go run ex03­10.go
Letter 0 is U+0048 'H'
Letter 1 is U+0069 'i'
Letter 2 is U+0021 '!'

// Example 03­10 Looping with range

package main

import "fmt"

func main() {

test := "Hi!"

for index, letter := range test {
fmt.Printf("Letter %d is %#U\n", index, letter)

}
}

3.4.4 Looping Using Ranges

This loop form is functionally equivalent to a for­each loop. In the example, we are using
the range function, which we will see a lot in this course, to iterate over a string.

The example also demonstrates the multiple return value feature of Go functions. Dur­
ing each iteration, the range function returns both the current index as an integer and
the current contents at that index, which in this example is the letter at that position.



Module 3: Control Structures

Page 3­13

3.5 Switch Statements

One small change which I think makes the Go version of the switch statement cleaner
than in other languages is revising the default behavior of the case construct so that the
flow of control breaks by default at the end of the case rather than falling through to the
next case. In Go, the fallthrough statement is now required to fall through to the next
case rather than needing to use the break statement to prevent a fall through. The
break statement is still available but now it is used only when you want to break prema­
turely out of a case instead of executing the whole case.

In C­style languages, a test value must be provided and it usually must be some sort of
integral type. In Go both of these requirements are dropped which, again in my opinion,
make the switch in Go more powerful. One of the more useful roles of the switch state­
ment that we will explore in a later module is the ability to switch on the basis of the type
of variable.

In the example things to note are the lack of break statements and the use of the fall­
through statement to get the default clause to execute right after the '1' case when the
switch test value is 1.

// Example 03­11 Simple Switch

package main

import "fmt"

func main() {

for i := 0; i < 3; i++ {
switch i {
case 0:

fmt.Println("Case 0")
case 1:

fmt.Println("Case 1")
fallthrough

default:
fmt.Println("Default")

}
}

}

[Module03]$ go run ex03­11.go
Case 0
Case 1
Default
Default



Introduction to Programming in Go

3.5.1 Break Statements

A sort of contrived example to show the use of the break statement.

// Example 03­12 Switch Statement Break

package main

import "fmt"

func main() {

for i := 0; i < 2; i++ {
switch i {
case 0:

fmt.Println("Case 0")
case 1:

fmt.Println("Case 1")
break
fmt.Println("After break")

default:
fmt.Println("Default")

}
}

}

[Module03]$ go run ex03­12.go
Case 0
Case 1



Module 3: Control Structures

Page 3­15

3.5.2 Non­integral Test Value

Simple example where the test value is a string rather than a numeric value. Obviously
the restriction is that whatever type the switch test value is, it must be something that
has the notion of equality defined. In this example using more than one matching value
for a test case, a feature of other C­style switch statements, is also demonstrated.

[Module03]$ go run ex03­12.go
Open Source

// Example 03­13 Non­integral test

package main

import "fmt"

func main() {

os := "fedora"
switch os {
case "fedora", "redhat":

fmt.Println("Open Source")
case "Windows":

fmt.Println("Proprietary")
default:

fmt.Println("unknown")
}

}



Introduction to Programming in Go

3.5.3 Switch – No Test Value

In this variant, the cases are evaluated as usual from start to finish. However each test
case now has to be a predicate (ie. an expression that evaluates to true or false). The
first test case that evaluates to true is the case that is executed.

The developers of Go note that the switch statement in this form is equivalent to a
series of else­if statements. Aside from the fact it might be an easier way to write com­
plex switch logic, this would seem to be useful when the test value is not a variable but
a condition or combination of conditions that cannot be represented as a single variable
of a specific type.

[Module03]$ go run ex03­14.go
a=int b=int c=int
a=0 b=2 c=4

// Example 03­14 Switch with no test value

package main

import "fmt"

func main() {
x := 22

switch {
case x == 0:

fmt.Println("zero")
case x % 2 == 0:

fmt.Println("even")
default:

fmt.Println("odd")
}

}




