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Preface

This book attempts to provide a comprehensible and practical introduction 
to error control coding. The targeted readers are practicing engineers and 
university students who have already set foot in this territory or plan to. To 
achieve the goal, this book takes an approach that is somewhat different from 
the approaches used by the many excellent textbooks currently available.

First, the book introduces MATLAB as a tool to facilitate the pre-
sentation of key concepts. The DVD that accompanies this book provides 
more than 90 MATLAB programs with which readers can experiment. It is 
the author’s hope that this fresh attempt does help readers in mastering the  
subject. 

Second, the book pays attention to the implementation of various de-
coding algorithms. Readers will find that a few practical issues have received 
in-depth treatment in the book, such as implementation of Galois field arith-
metic, Viterbi decoder design, RS decoder design, and MAP architecture, to 
name a few. 

The organization of the book is standard. Readers may notice, however, 
that many mathematical proofs and theorems have been omitted. This is 
because this book emphasizes concepts and rationales. For those who wish 
to explore further, a comprehensive list of references is given at the end of 
each chapter. Note that the MATLAB functions marked with asterisks are 
provided by the book not by the MATLAB software. 
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It is left to the readers to determine whether the book has served its 
purpose. The author welcomes feedback of any kind (ecc.book.comments@
hotmail.com). 

Finally the author would like to express his gratitude to editors Mark 
Walsh, Lindsey Gendall, and Rebecca Allendorf at Artech House. With-
out their appreciation and help, publication of this book would have been 
a lot harder. The author is also indebted to the book reviewer, who remains 
anonymous to the author, for his valuable comments and suggestions, which 
enlightened the author a great deal. 
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1
Error Control in Digital Communications 
and Storage

The goal of this introductory chapter is to sketch out an overall picture of 
error control coding for digital communications and storage, so that, after 
completing the chapter, readers will have a rough idea of what the subject is 
all about. The emphasis in this chapter is on the concepts and the rationale.

1.1  Error Control Coding at a Glance

1.1.1  Codes for Error Control

1.1.1.1  The Rationale

Digital communications and storage have become part of our daily lives. Ro­
bust data transmission and data storage are taken for granted. People hardly 
realize that errors occur from time to time in data transmission/storage sys­
tems, and if it were not for the use of error control techniques, reliable data 
transmission/storage would be impossible. 

Errors in data transmission/storage systems can come from many differ­
ent sources: random noise, interference, channel fading, or physical defects, 
just to name a few. These channel errors must be reduced to an accept­
able level to ensure the quality of data transmission/storage. To combat the  
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errors, we normally use two strategies, either stand-alone or combined. The 
first one is the automatic repeat request (ARQ). An ARQ system attempts 
to detect the presence of errors in the received data. If any errors are found, 
the receiver notifies the transmitter of the existence of errors. The transmitter 
then resends the data until they are correctly received. 

The second strategy, known as the forward error correction (FEC), not 
only detects but also corrects the errors, so that data retransmission can be 
avoided. In many practical applications retransmission may be difficult or not 
even feasible at all. For example, it is impossible for any receiver in a real-time 
broadcasting system to request data to be resent. In this case, FEC is the only 
viable solution. 

Either way, error control codes (ECC) are used for detecting the pres­
ence of errors and correcting them. To intuitively explain the mechanism 
of ECC, let us look at a simple example from our daily lives. You and your 
friend are going for a walk. Before you leave, you recall that rain has been 
forecast. So you say to your friend, “We should carry an umbrella with us.” 
Your friend may hear it as “We should carry a banana with us” and gets 
confused. However, if you instead say, “We should carry an umbrella with 
us; it’s going to rain,” your friend will know what you said is umbrella not 
banana, based on the context of your second sentence. Your second sentence 
in this case is redundancy that facilitates detection and correction of the error. 
ECC does exactly the same thing. It first adds redundancy to the message to 
be sent; this process is called encoding and is carried out at the transmitter. 
It then corrects errors based on the redundancy in a process called decoding 
that is performed at the receiver. The output of the encoding process is a 
codeword that contains both the message and the redundancy (explicitly or 
implicitly). The redundancy is referred to as the parity check, or simply the 
parity. Figure 1.1 shows a typical communications system equipped with er­
ror control functionality. 

Example 1.1

We send a message bit of 1 to the receiver. Due to the channel error, when 
the bit passes the channel and arrives at the receiver it becomes a 0. Unfor-
tunately there is no indication whatsoever whether the received bit is correct 
or not.

Now, instead of sending the raw message bit, we send a codeword c formed 
by repeating the message bit three times. The codeword corresponding to a 
message bit of 0 is c0 = (000), and the codeword for a message bit of 1 is c1 = 
(111). The redundancy here is the two duplicates of the message bit.
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Suppose that the received word is r = (011), which has an error in its 
first position. We immediately know that r is in error, because all three bits 
are supposed to be identical but they are not.

Notice that r differs from c0 by two bits and differs from c1 by one bit. It 
is logical to think that the received word is more likely to be r if c1 is sent. 
So we can quite confidently conclude that the codeword transmitted is c1 = 
(111) and the original message is 1. The two redundant bits have helped us 
make correct decoding. 

This trivial repetition code provides both error detection and error cor-
rection capability.

Figure 1.2 illustrates a typical bit error rate (BER) versus signal-to-noise 
ratio (SNR) curve for coded and uncoded systems.

The use of error correction, however, is not free. The redundancy acts 
as overhead and it “costs” transmission resources (e.g., channel bandwidth 
or transmission power). Therefore, we want the redundancy to be as small 
as possible. To give the redundancy a quantitative measure, the coding rate 
R is defined as the ratio of the message length to the codeword length. For 
example, if a coding scheme generates a codeword of length n from a message 
of length k, the coding rate is: 

	
= kR n	

(1.1)

The maximum value of the coding rate is 1 when no redundancy is 
added (i.e., when the message is uncoded). Coding performance and cod­
ing rate are two opposing factors. As more redundancy is added, the error  

Information
source

Encoding Modulation

Transmitter

Receiver

Information
destination

Decoding Demodulation

Ch
an

ne
l

Figure 1.1  A typical communications system with ECC.
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correction capability is strengthened, but the coding rate drops. A good code 
should maximize the error correction performance while keeping the coding 
rate close to 1. 

1.1.1.2  A Second Look at ECC

From the preceding introduction, it seems that we are definitely better off 
using error control coding because errors indeed get corrected (as seen in the 
example). A closer examination of the coding principle, however, shows that 
this may not be always true, despite the error correction capability provided. 
As we have just said, the redundancy costs resources. To see if coding is really 
beneficial, we need to compare coded systems and uncoded systems under the 
condition of equal resource usage. 

Now, say, we use 1 watt of power to transmit the raw message bit in the 
preceding example. With coding, the transmit power of each bit in the code­
word is reduced to 1/3 watt (the total power is kept to 1 watt). Consequently, 
the probability of errors will increase. We see, on one hand, that coding cor­
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Figure 1.2  Typical BER performance of coded system.
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rects channel errors and brings down the error probability; on the other hand, 
reduced power per bit causes the error probability to go higher. So we will be 
better off only if the coding increases the performance enough to make up 
for the signal power reduction caused by the redundancy and produces a net 
gain. Let us reexamine Figure 1.2. We observe that the BER performance of 
the coded system is actually worse than that of the coded system in the low 
SNR range (£3.5 dB in the figure). This is because the coding in that SNR 
range is not able to offer enough performance improvement to cover the sig­
nal power loss due to the redundancy.

As a conclusion, codes must be designed to offer a net performance 
gain. 

1.1.2  Important Concepts

1.1.2.1  Types of Codes

Depending on how redundancy is added, there are two families of codes. 
One is called the block codes. Block coding encodes and decodes data on 
a block-by-block basis. Data blocks in this case are independent from each 
other. Consequently block coding is a memoryless operation and can be im­
plemented using combinational logic. The code in Example 1.1 is a block 
code because the coding is completely determined by the current data block. 
In contrast, another family of codes, namely, the convolutional codes, works 
on a continuous data stream, and its encoding and decoding operations de­
pend not only on the current data but also on the previous data. As such, 
convolutional coding contains memory and has to be implemented using 
sequential logic. 

1.1.2.2  Systematic Versus Nonsystematic Codes

A complete codeword comprises the message and the redundancy. If the re­
dundancy is implicitly embedded in the codeword, the code is said to be 
nonsystematic. On the other hand, if the redundancy is explicitly appended 
to the message, the code is systematic (see Figure 1.3). Systematic codes are 
always preferred in practice, because the message and the parity are separated 
so the receiver can directly extract the message from the decoded codeword.

1.1.2.3  Digital Modulation 

After error control encoding, we have a sequence of coded digital symbols, 
which is to be converted to an analog signal (called the carrier) before it can 
be transmitted over a physical channel (copper wire, optical fiber, or air). 
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This job is done by modulation. According to the symbols, the modulation  
process instantaneously alters the amplitude, phase, frequency (or a combina­
tion thereof ) of the carrier to convey the information to be transmitted. A 
modulation scheme of particular interest is binary phase shift keying (BPSK) 
for binary symbols (i.e., bits). BPSK assigns to the carrier 0 phase shift when 
the bit is a 0, and p phase shift when the bit is a 1. From a baseband point  
of view, the BPSK modulation is a mapping process: 0 ® 1 and 1 ® –1. 
Figure 1.4 shows the waveform of a BPSK modulated signal. At the receiver, 
the received signal is demodulated back to digital symbols.

Figure 1.3  Structure of systematic code.

Figure 1.4  BPSK modulated signal.
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Extending BPSK to the nonbinary case, let us say that the symbol 
consists of two bits. Then the symbol has four possible combinations: (00), 
(01), (11), and (10). Assigning to the carrier four corresponding phase shifts 
p/4, 3p/4, 5p/4, and 7p/4, we form so-called quadrature phase-shift keying 
(QPSK). QPSK maps the symbol as (00) ® 1 + j, (01) ® -1 + j, (11) ® -1 -  
j, (10) ® 1 - j. The signal space constellations of BPSK and QPSK are de­
picted in Figure 1.5.

MATLAB Experiment 1.1

The Communications Toolbox in MATLAB provides a pair of functions, 
modmap and demodmap, to map a digital signal to and from an analog signal 
for a given modulation scheme, respectively. Typing in modmap(‘psk’,2) 
and modmap(‘psk’,4) generate the BPSK and QPSK constellations, as 
shown in Figure 1.5.

BPSK

QPSK
Q

(1)

(01)

(01) (00)

(11)

(0)

−1

−1

−1

+1

+1
I

+1

Figure 1.5  Signal constellation of BPSK and QPSK.
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1.1.2.4  Channel and Channel Errors 

The most common transmission errors are caused by additive white Gauss­
ian noise (AWGN). Because this type of noise is totally random, the AWGN 
errors are independent from each other; that is, they are memoryless. Such a 
transmission channel is called an AWGN channel. Most error control codes 
tackle memoryless errors. 

However, in some scenarios channel errors occur in bursts. The bursty 
channel involves memory, therefore the errors are correlated. Wireless fading 
channels and defects on the surface of a compact disc are two examples of the 
channel. 

Classical coding theory often views the modulation, channel, and de­
modulation in Figure 1.2 as being combined as a discrete composite channel. 
The input to the composite channel consists of binary bits. If the demodulation 
also outputs binary bits, we may neglect all details inside the composite channel 
and simply model it as a binary symmetric channel (BSC) (see Figure 1.6) char­
acterized by the crossover probability px. The crossover probability is defined 
as the probability of a bit error. For the particular case of AWGN “internal” 
channel and BPSK signaling, px can be computed as follows:

	

æ ö= ç ÷è ø0

2 b
x

Ep Q N 	
(1.2)

where ( )p
∞

⋅ ∫�
2 /21( )

2
y

x
Q x e dy is called the Q -function and Eb/N0 is  

the bit SNR.� Like an AWGN channel, the BSC is also memoryless. 

MATLAB Experiment 1.2

The AWGN channel is modeled in MATLAB by awgn. The function 
adds AWGN noise to transmitted data at a specified SNR.

The companion DVD provides a BSC model bsc*, which introduces 
random bit errors to a binary sequence based on a crossover probability. 

�.  Eb denotes the bit energy, and N0 denotes the AWGN power spectral density.
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MATLAB Experiment 1.3

The DVD also includes a simple script qfunc* to compute the Q-func­
tion. To calculate the crossover probability at Eb/N0 = 0 dB, we type in the 
following command:
>> eb_n0 = 0;				   % dB
>> eb_n0 = 10 (̂eb_n0/10);		  % convert to linear scale
>> px = qfunc(sqrt(2*eb_n0))	 % crossover prob.
px =  
	 0.0786 

1.1.2.5  Optimal Decoding Principles

Recall that in the previous example, we take c1 as the decoded output, because 
the received vector is more likely to be r if c1 is sent. Decoding based on this 
principle is called maximum-likelihood decoding, or simply ML decoding. 
Mathematically ML decoding can be expressed as follows�:

	

³ì
= í <î
�

0 0 1

1 0 1

, if ( | ) ( | )

, if ( | ) ( | )

P P

P P

c r c r c
c

c r c r c
	

(1.3)

where c̃  denotes the decoded word and P(r |c0) [or P(r |c1)] is the prob­
ability that the word r is received given the condition that the codeword 

�.  For the sake of simplicity, we assume two codewords in total. The principle remains the 
same for cases with more codewords.

Transmit Receive

Crossover
probability

0

1 1

0

px

px

px1−

px1−

Figure 1.6  Binary symmetric channel.
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c0 (or c1) is transmitted. ML decoding is optimal if all codewords (or  
message symbols, since they have one-to-one correspondence) are equally  
likely. 

When the occurrences of the codewords are not equally probable, so-
called maximum a posteriori decoding, or MAP decoding, comes into play. 
In contrast to ML, MAP selects as the decoded output the codeword that 
maximizes the a posteriori probability (APP):

	

³ì
= í <î
�

0 0 1

1 0 1

, if ( | ) ( | )

, if ( | ) ( | )

P P

P P

c c r c r
c

c c r c r
	

(1.4)

where P(c0|r) [or P(c1|r)] is the probability that c0 (or c1) is transmitted given 
the condition that the vector r is received.

In the previous example, we implied that the codewords c0 and c1 are 
equally likely to occur. If, say, c0 has an 80% chance to be sent, and c1 has the 
remaining 20%, then we need to use MAP to achieve optimal decoding.

When all message symbols are equally probable, ML and MAP decod­
ing techniques are equivalent.

1.1.2.6  Hard-Decision Decoding and Soft-Decision Decoding

With BSC, the input to the decoder is a binary sequence. Decoding based on 
“hard” binary bits is referred to as hard-decision decoding. In contrast, if the 
demodulation process uses a multilevel “soft” value to represent an output 
bit, the decoding then works on (quantized) real values. This type of decod­
ing is called soft-decision decoding. Hard-decision decoding can be viewed 
as a special case of soft decoding in which single-bit quantization is used. We 
can imagine that soft-decision decoding performs better because it has more 
information to exploit.

1.1.2.7  Minimum Hamming Distance and Error Correction Capability

In Example 1.1, we chose as decoded output the codeword to which the re­
ceived word is “closest” in distance. The distance was measured by counting 
the number of differing bits in two words. This distance, denoted by dH and 
referred to as the Hamming distance, is frequently used in coding theory. As­
sociated with the Hamming distance is the so-called Hamming weight wH, 
which is defined as the Hamming distance between a nonzero codeword and 
the all-zero codeword. For a binary word, the Hamming weight is simply the 
number of 1s in the word.

Let c1 and c2 be any two codewords of a linear code C. The Hamming 
distance and the Hamming weight have the following relation:
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	 = +1 2 1 2( , ) ( )H Hd wc c c c 	 (1.5)

It is now clear that the decoding performed in the previous example is 
actually a process to choose a codeword c̃  that satisfies the following:

	 Î
=� arg min ( , )H

C
d

c
c r c

	
(1.6)

For a BSC channel, (1.6) represents ML decoding [1]. 
The smallest Hamming distance dmin between any two different code­

words ci and cj in a code C is called the minimum Hamming distance of the 
code, that is:

	 =min min ( , )H i jd d c c 	 (1.7)

where dmin reflects the error correction capability of a code. To explain this, 
let us assume that C is a code with a total of eight codewords c0, c1, ... , c7, 
which are graphically represented as eight points in Figure 1.7. Without 
loss of generality, we also assume dH(c1, c3) = dmin. Now we draw a circle 
around each codeword point with the same radius and no overlap with the 
others. Evidently the maximum such radius is t = ë(dmin - 1)/2û, where ëxû 

C

C

C

C

C

C

C

C

Figure 1.7  Graphical representation of decoding sphere.
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denotes the greatest integer no greater than x. These circles are called the 
Hamming sphere (or the decoding sphere) of their corresponding codewords. 
Now suppose that we send c3 to the receiver. If no channel errors exist, the 
received word r will coincide with the codeword point c3 in the figure. Oth­
erwise the channel errors will move r away from where c3 is. If in this case 
r falls within the Hamming sphere of c3, r will still be correctly decoded to 
c3, simply because it is closer to c3 than any other codeword point (the ML 
decoding criterion). If r falls out of the sphere, then it will be mistakenly 
decoded to some other codeword. From this we actually can draw a general 
conclusion:

Correct decoding is guaranteed if and only if the received word falls within 
the Hamming sphere of the true codeword. 

In other words, the maximum error correction capability of a code quals to 
the radius of the Hamming sphere t. Therefore, 

	 t = ë(dmin - 1)/2û	 (1.8)

is the random error correction capability of the code. 

Example 1.2

The repetition code in the previous example contains only two codewords,  
c0 = (000) and c1 = (111). Therefore, the Hamming distance between the 
two codewords is the minimum Hamming distance, which is computed to 
be:

	 = = + + =min 0 1( , ) 1 1 1 3Hd d c c 	

Based on (1.8), we see that the code is able to correct, at most, one ran-
dom error. Example 1.1 confirms that it does correct one error. It is also easy 
to verify that the code cannot correct two or more errors. For instance, if c1 
is transmitted and r = (001) (containing two errors) is received, r will be 
incorrectly decoded to c0.

1.1.2.8  Performance Measures 

The most direct measure of performance of an error correcting system is 
the error rate, defined as the number of errors that the decoder fails to 
correct divided by the length of the transmitted sequence, at a specified  
SNR. 
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However, in many practical applications, exact computation of the er­
ror rate is difficult. It is more convenient to use the union bound instead. The 
union bound is an upper bound and it is computed based on the following 
observation: If an event is the union of n subevents E1, E2, ... , En, then the 
probability of the event occurring, P(E1  E2  

... En), is at most the sum of 
the probabilities of all the subevents, P(Ei) (1 £ i £ n), that is:

	
( )⋅ ⋅ ⋅ ≤ + + ⋅ ⋅ ⋅ +∪ ∪ ∪1 2 1 2( ) ( ) ( )n nP E E E P E P E P E

	
(1.9)

where the equality holds when the subevents are mutually exclusive. 
Alternatively an error control system may also be evaluated with cod­

ing gain. Coding gain measures the difference in the SNR levels between the 
coded system and uncoded system at a specified error rate. Go back to Figure 
1.2; the difference in Eb /N0 between the intersections of the two BER curves 
and the horizontal line of 10-4 is the coding gain of the code at the error rate 
of 10–4. While the coding gain must be evaluated for each individual code 
of interest, the asymptotic coding gain, an approximation to the coding gain 
when SNR >> 1, offers a simple and quick measure of the coding perfor­
mance. It has been shown that, for hard-decision decoding, a code with a 
rate R and a minimum distance dmin has an asymptotic coding gain of [1, 2]: 

	
( )= × min10 log 2
RdK

	
(1.10)

For soft-decision decoding, the asymptotic coding gain becomes:

	 ( )= × min10 logK Rd 	 (1.11)

which is 3 dB better.

MATLAB Experiment 1.4

The MATLAB function cgain* estimates the coding gain given the 
error probability of the code. Let us find the coding gain at a BER of 10–4 for 
the code in Figure 1.2.
>> % bit snr in dB
>> eb_n0 = [3.25 4 5 6 7 7.5];
>> % bit error probability of the code corresponding to eb_n0
>> ber = [2.8e-2 1e-2 2.05e-3 4e-4 4e-5 1e-5]; 
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>> cgain(eb_n0,ber,10 (̂-4))
ans =

	 1.7112 

    Comment: the result is in dB.

1.2  Channel Capacity and Shannon’s Theorem

Now we have some idea about the benefits that channel coding can provide. 
It will be interesting to see the theoretic limit of the coding performance, 
that is, how small the probability of error can go with a code of rate R. 
The question was answered by Shannon in his landmark paper published 
in 1948 [3]. In that paper Shannon proved the following channel coding 
theorem:

By employing a sufficiently long error correction code, an arbitrarily small 
probability of error can be achieved if the coded bits are transmitted at a rate less 
than the channel capacity.

The channel capacity C, defined as the maximum number of bits per unit 
time that can be transmitted free of error over a channel, is given by the 
Shannon formula:

	
( )= × +2log 1 SC B N 	

(1.12)

where B is the channel bandwidth, S/N = Eb RT /N0B is the average SNR 
expressed in linear scale, and RT denotes the bit transmission rate. The value 
of C is given in bits per second. Shannon’s channel coding theorem basi­
cally states that no such error correction codes exist to guarantee free-of-error 
transmission if the information bits are transmitted at the rate RT > C; such 
codes do, however, exist if RT £ C. 

MATLAB Experiment 1.5

The MATLAB script chcap.m* plots the relation between the normal­
ized channel capacity C/B and the bit SNR shown in Figure 1.8. 



	 Error Control in Digital Communications and Storage	 15

Figure 1.8 is revealing. Look at the point Eb/N0 = -1.59 dB reached 
when C/B = 0 (i.e., B ® ¥). This is the minimum Eb/N0 required to 
achieve reliable communications. For anything above this, as long as we 
design the system to operate in the reliable region, we are able to obtain 
error-free transmission (provided that the error control code is sufficiently  
long).

Shannon’s theorem has been keeping coding theorists busy for 
more than 60 years, because it does not give the actual codes. Coding 
specialists have seriously attempted to construct codes that are both ef­
fective in correcting errors and low in decoding complexity. Their work 
is rewarding. It has been reported that low-density parity check (LDPC) 
codes can get to the Shannon channel capacity as close as 0.0045 dB  
[4].
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Figure 1.8  Normalized channel capacity.
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1.3  Considerations When Selecting Coding Schemes

As practicing engineers, we probably will not need to design codes. We do, 
however, often need to choose codes—and selection of a coding scheme appro­
priate for a particular application is also not an easy task. It needs to take into 
account many factors: error correction capability, decoding complexity, error 
types, channel bandwidth constraints, signal power constraints and processing 
latency, and so forth. No single coding scheme works for all applications.

Shannon’s theorem tells us that the longer the code, the better the er­
ror correcting performance. On the other hand, longer code means a higher 
decoding complexity and larger processing latency. Decoding dominates the 
overall computational cost of an error control system. Also, in real-time ap­
plications large amounts of latency are not preferred nor tolerated. Therefore, 
we have a trade-off to make. The ensemble average bound on uncorrected 
error probability can give us a rough idea of how the performance and the 
complexity are related. For block codes of length n and coding rate R, the 
bound PE is:

	
-£ ( )2 BnE R

EP 	 (1.13)

For convolutional codes with memory length M, it becomes:

	
- +£ ( 1) ( )2 CM nE R

EP 	 (1.14)

where EB(R) and EC(R) are two positive functions of R and are completely 
determined by the channel characteristics [5].

The type of errors encountered during data transmission is another 
important consideration. As we already know, there are random errors and 
busty errors. Random errors affect the data independently. Busty errors are 
contiguous. An error control code must match the error type in order to be 
effective. Most codes are designed to combat random errors; only a few codes 
such as Reed-Solomon codes are good at correcting bursty errors. 

With redundancy added, the coding rate R = k/n becomes less than 1 
and the effective data rate is reduced. To maintain the same data rate, we 
need to raise the overall throughput. An increase in throughput translates 
into more channel bandwidth. Although in deep-space, satellite, and some 
other wideband communications this required increase is not an issue, it be­
comes undesirable or even totally impossible in bandwidth-limited applica­
tions (e.g., voiceband modem). In this case coding should be used together 
with multilevel modulation such as m-ary PSK or QAM. Proper combination 
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of coding and modulation can achieve error correction without the need for 
bandwidth expansion [6].

Note  We have just looked at error control coding as the “woods.” Now we need to 
take a look at the “trees.” Starting with the next chapter, we will discuss every detail 
of popular error control codes.
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2
Brief Introduction to Abstract Algebra

Starting with the next chapter, individual error control code will be intro-
duced, and we will find that many popular codes are based on abstract alge-
bra. Therefore, this chapter provides readers with basic algebra knowledge 
to facilitate the study of the codes. The focus of this chapter is not on math-
ematical rigor; rather it is on comprehension of concepts. Implementation 
of algebraic operations will also be given attention. The coverage will just 
be enough to understand the materials presented in this book. For more ad-
vanced algebraic theory, the readers may refer to many excellent textbooks, 
such as [1–3]. 

2.1  Elementary Algebraic Structures

2.1.1  Group

A group is an elementary structure in abstract algebra. Let G be a set on  
which an algebraic operation * is defined. G is a group if all of the following 
conditions are met: 

1.	 G is closed under the operation *; that is, for any a, b Î G, a * b Î 
G.
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2.	 The operation * is associative; that is, for any a, b, c Î G, (a * b ) *  
c = a * (b * c).

3.	 There exists an element e Î G such that a * e = e * a = a for all a Î 
G, where e is called the identity element of G.

4.	 For every a Î G, there exists an element a -1 Î G  such that a * a -1 =  
e, where a -1 is called the inverse of a.

The group is denoted by áG, *ñ. The identity of a group is unique, and 
so is the inverse of an element in a group.

The group áG, *ñ is also commutative if the following condition is  
satisfied:

	 a * b = b * a for every a, b, Î G	

Example 2.1

Let G Î {1, 0} and the operation Å be defined as:

Å 0 1
0 0 1
1 1 0

The operation Å is called the modulo-2 addition (or the exclusive-or 
operation, XOR). áG, Åñ forms a group. From the preceding table we can 
easily verify that Å is associative. The element 0 is the identity element 
because 0 Å 1 = 1 Å 0 = 1, and 0 Å 0 = 0. The inverse of 1 is 1(1 Å 1 = 
0), and the inverse of 0 is 0 (0 Å 0 = 0). G is closed under Å. Moreover, 
áG, Åñ is communicative.

Example 2.2

Let G Î {1, 0} and the operation Ä be defined as:

Ä 0 1
0 0 0
1 0 1

The operation Ä is called the modulo-2 multiplication (or the AND 
operation). áG, Äñ also forms a group. It is not difficult to find that Ä is 
associative, and 1 is the identity element of the group. The inverse of 0 is 1, 
the inverse of 1 is 0. G is closed under Ä. áG, Äñ is communicative, too.
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The number of elements in a group is the order of the group. A group 
of finite order is called the finite group. Obviously áG, Åñ and áG, Äñ are 
both finite groups.

Let G ¢ be the subset of G. áG ¢,* ñ is a subgroup of áG,* ñ if and only if 
áG ¢,* ñ is itself a group. The following theory, Lagrange’s theorem, applies to 
a group and its subgroup [4]: 

If  áG,* ñ is a finite group of order n, and áG ¢,* ñ is áG,* ñ’s subgroup of order 
m, then m divides n (in other words, n/m has no remainder). 

A group áG,* ñ is called a cyclic group if each of its elements equals to 
some powers of an element a in the same group, where the ith power of a, 
a i, is defined as: 

	
α α α α* * *

times

i

i
� �� � �

	

where a is called the generating element of the group.

Example 2.3

Let G Î {1, 2, 3, 4}. Then áG, ´ mod-5ñ is a cyclic group, where the opera-
tion ´ mod-5 is defined as: 

´ mod-5 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

We then have the following:

21 = 2 mod-5 = 2

22 = 2 ´ 2 mod-5 = 4	

23 = 2 ´ 2 ´ 2 mod-5 = 3	

	 24 = 2 ´ 2 ´ 2 ´ 2 mod-5 = 1	

So, 2 is a generating element. The readers may want to verify that 3 is 
also a generating element. The generating element is not unique.
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Let a Î G. The set a * G ¢  {a * b} for b Î G ¢ is called a left coset of G ¢, 
and the set G ¢ * a   {b * a} for b Î G ¢ is called a right coset of G ¢. Cosets 
can be thought of as the elements of G ¢ shifted by a fixed element a.

2.1.2  Field

Now we introduce another important algebraic structure known as the field. 
A field is essentially a set of elements in which operations such as addition, 
subtraction, multiplication and division can be performed without the need 
to leave the set, and the addition and multiplication are associative, commu-
nicative, and distributive. Formally a field is defined as follows.

Let F be a set of elements on which two algebraic operations are de-
fined, one is the addition + and the other the multiplication ×. The set F 
together with + and × are called a field if and only if the following conditions 
are satisfied: 

1.	 F forms a communicative group under addition +. 

2.	 The set of nonzero elements in F forms a communicative group 
under multiplication.

3.	 Multiplication × is distributive over addition +; that is, a × (b + c) =  
a × b + a × c, where a, b, and c are any three elements in F.

The identity element with respect to addition, denoted by 0, is called 
the zero element, and the identity element with respect to multiplication, 
denoted by 1, is called the unit element. The total number of elements in a 
field is referred to as the order of the field.

Example 2.4

The set {0, 1} with the modulo-2 addition Å and the modulo-2 multiplica-
tion Ä defined in the previous two examples forms the binary field. Based 
on the tables in the two examples, we can easily verify that all three condi-
tions of a field are satisfied.

Notice that the binary field has a finite number of elements (that is, 0 
and 1). This type of field is extensively used in coding theory. We will have 
more to say about it later in the chapter.

2.1.2.1  Vector Space

Let áV, +ñ of vectors be a commutative group and F be a field of scalars. A 
multiplication operation × is defined between the scalars of F and the vectors 
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of V. In this case V becomes a vector space over the field F if the following  
four conditions are met:

1.	 For any a Î F and any v Î V, a × v Î V.

2.	 For any u, v Î V and any a, b ÎF, a . (u + v) = a . u + a . v and (a + b) . 
v = a . v + b . v (distributive law).

3.	 For any v Î V and any a, b Î F, (a . b) . u = a . (b . u) (associative 
law).

4.	 Let 1 be the unit element in F, then 1 × v = v for any v Î V.

The addition + defined over V is the vector addition. The multiplica-
tion between the scalars in F and the vectors in V is the scalar multiplication. 
F is the scalar field of the vector space V.

The vector space of particular interest to error control coding is the 
vector space over the binary field, denoted by V2

(n). Each element of V2
(n) is a 

binary vector of length n (we call it an n-tuple):

	 v = (v0 v1 v2
 ... vn-1)	

where vi Î {0, 1}. V2
(n) has a total of 2n different vectors. Let u = (u0 u1 u2

 ...  
un-1) and v = (v0 v1 v2

 ... vn-1) be two elements of V2
(n). The binary vector ad-

dition is defined as:

	 - -+ + + + +0 0 1 1 2 2 1 1n nu v u v u v u v� �u v ( (

	 (2.1)

where ui + vi is carried out as modulo-2 addition (XOR). The scalar multi-
plication is defined as:

	 - -× × =0 1 2 1 0 1 2 1n na a u u u u au au au au� � �u ( ( ( (

	 (2.2)

where aui is performed as modulo-2 multiplication (AND). The all-zero vec-
tor 0 = (000 ... 0) is the additive identity:

	 u + 0 = u and u + u = 0	

Example 2.5

For n = 3, the vector space V2
(3) has the following eight vector elements:

	 (000), (001), (010), (011), (100), (101), (110), (111),	
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Pick any two vectors, say, (010) and (100). We then have:

	 (010) + (100) = (0 + 1  1 + 0  0 + 0) = (110),	

which is also an element in V2
(3). The scalar multiplication is also easy:

	 0 × (010) = (000) and 1 × (010) = (010).	

For a vector space V defined over a field F, it is possible to find a subset 
of vectors inside V that also meets the above four conditions to be a vector 
space. Such a subset V ¢ is called the subspace of the vector space V provided 
the following conditions are satisfied:

1.	 For any two vectors in V ¢, u and v, the sum vector u + v Î V ¢.
2.	 For any scalar a Î F and any vector v Î V ¢, the scalar multiplication  

a × v Î V ¢.

It has been shown that if v0 , v1, ... , vk-1 are k vectors in a vector space 
V over F, all possible linear combinations of v0, v1, ... , vk -1, that is:

	 a0 v0 + a1v1 + ... + ak-1vk-1	

constitute a subspace of V, where a0, a1, ... , ak -1 are the scalar elements in the 
field F [4, p. 58]. 

Example 2.6 

Consider two vectors (101) and (010) in the vector space V2
(3). All linear 

combinations of the two vectors are: 

	 0 × (101) Ä 0 × (010) = (000)	

	 0 × (101) Ä 1 × (010) = (010)	

	 1 × (101) Ä 0 × (010) = (101)	

	 1 × (101) Ä 1 × (010) = (111)	

The subset {(000), (010), (101), (111)} not only meets the four condi-
tions to be a vector space but also satisfies the two conditions to be a sub-
space. So it is a subspace of V2

(3).
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2.2  Galois Field and Its Arithmetic

2.2.1  Galois Field 

2.2.1.1  Definition

A field with a finite number of elements is a finite field, or Galois field, in 
memory of its discoverer É. Galois. A Galois field of order q is denoted by 
GF(q). The Galois field is extensively used in coding theory. The binary field 
in Example 2.3 is a Galois field. If the order of a Galois field is a prime p, 
then the field is called the prime field. Evidently the binary field is moreover 
a prime field with p = 2. 

For any Galois field GF(q), there exists a smallest positive integer l such 
that:

	 λ
+ + + =

1's
1 1 1 0�� � �

	

The integer l is called the characteristic of the field. The characteristic 
of GF(2) is 2 because 1 Å 1 = 0. For a prime field GF(p), the characteristic is 
p. It can be shown that the characteristic of any Galois field must be a prime 
[4, p. 35]. 

The preceding definition of a characteristic implies that, for any integer 
0 < k < l,

	
+ + + ¹

1's
1 1 1 0

k
�� � �

	

The sum is in fact distinct with different k, and these l distinct sums, 

λ
+ + + +

1's

1,(1 1), ,(1 1 1)� �� � � , form a field GF(l) under addition and multiplica-

tion. The resulting field GF(l) is a subfield of GF(q).
The Galois field of order q = pm, where p is a prime and m is a posi-

tive integer, is called the extension Galois field of GF(p), denoted by GF(pm). 
GF(p) is the ground field of GF(pm), where GF(pm) contains a total of pm 
elements (including the zero element 0 and the unit element 1). Of primary 
interest to error control codes is GF(2m), which we will describe later in 
detail. 

An important property of a Galois field is that there always exists at least 
one element whose powers constitute the set of all nonzero elements of the 
field [4, p. 37], and this element is referred to as a primitive element of the 
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field. Let a denote such a primitive element. All q - 1 nonzero elements of 
the field can be obtained as follows:

	 α α α α α -= � 20 2 3( 1), , , , , q
	 (2.3)

This equation says that an extension field can be entirely constructed by its 
primitive element using (2.3). The exponential representation of a field element 
as in (2.3) is called the power representation of the field element. It has been 
shown [4, p. 36] that higher powers of a repeat the pattern in (2.3), that is:

	 a q–1 = a 0 = 1	

	 a q = a 	

	 a q+1 = a 2	

	  	

Let b = a i be an arbitrary nonzero element of the field GF(q). The nth 
power of the element is:

	 b n = (a i)n = a i×n	

where i is some integer. If i × n is a multiple of q - 1, then:

	 b n = a i×n = a q –1 × a q –1 ... a q –1 = 1	

The order of field element b is defined as the smallest number n such that  
b n = 1. 

2.2.1.2  Galois Field and Polynomial 

An alternative to the power representation of a field element is the polynomial 
representation. We now introduce the polynomial representation for the exten-
sion field GF( pm). We begin this with the concept of polynomial over GF( p).

A polynomial over a prime Galois field GF( p) of degree n is a single-
variate polynomial whose coefficients are from GF( p):

	 = + + + +2
0 1 2( ) n

nf X f f X f X f X� 	 (2.4)

where the polynomial coefficient fi (i = 0, 1, ... , n) is one of the p elements 
in GF( p). The polynomial over GF( p) can be added, subtracted, multiplied, 
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and divided just like an ordinary polynomial except the polynomial coeffi-
cients are computed using modulo-p arithmetic.

We must mention the following useful property, which is associated 
with the polynomials over GF(2), that is:

	
( ) ( )=2 2f X f X

	
(2.5) 

Equation (2.5) can be derived as follows [5, p. 210]:
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Repeatedly applying the above procedure yields:

	 f  2(X ) = f  20 + (  f1 X )2 + (  f2  X 2)2 + ... + (  fn  X n)2	

Consider that fi = 0, 1 and f  2i = f i ; hence, the preceding equality is 
simplified to:

	 f  2(X ) =  f0 +  f1 X 2 +  f2  (X 2)2 + ... + (  fn  X 2)n =  f (X 2)	

In fact, it holds true that, for any i ³ 0,

	
( )=2 2( )

i i
f X f X

	
(2.6)

An immediate inference from (2.6) is that if b is a root of a polynomial 
over a prime Galois field then b 2i must also be its root:

	 f (b 2i) = f   2i (b ) = 0	
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So the existence of b as a polynomial root implies the existence of b 2, 
b 22, b 23, ... as roots. b 2, b 22, b 23, ... are called the conjugates of b. For example, 
a is a root of the binary polynomial X 3 + X + 1; a 2, a 4, ... are also its roots. 

A polynomial J(X ) over GF( p) of degree m is irreducible over GF( p)  
if it is not divisible by any polynomial over GF( p) of degree less than m. For 
instance, polynomial 1 + X + X 3 is an irreducible polynomial over GF(2), 
but X + X 3 is not because (X + X 3)/X = 1 + X 2. Irreducible polynomials have 
an important feature, that is, any irreducible polynomial of degree m di-
vides X pm-1 -1[5, p. 207]. This is easy to verify. Dividing X 23-1 - 1 = X  7 - 1  
by 1 + X + X 3, we find the quotient is 1 + X + X 2 + X 4 and no remainder.� 

An irreducible polynomial j(X ) of degree m is said to be primitive if the 
smallest positive integer n for which j(X ) divides X n - 1 is n = pm - 1. Inter-
estingly, the roots of an mth degree primitive polynomial j(X ) over GF( p) 
are primitive elements of some extension field GF( pm) [5, p. 208]. We have 
already stated that an extension Galois field can be completely constructed on 
its primitive element. Consequently, we can also say that an extension field is 
built on a primitive polynomial. 

MATLAB Experiment 2.1

We use MATLAB to verify that 1 + X + X  3 is a primitive polynomial; 
that is, it divides X  7 - 1 but not X n - 1 for 0 < n < 7.
>> p1 = [1 1 0 1];			   % polynomial 1 + x + x^3
>> p2 = [1 0 0 0 0 0 0 1];		 % polynomial 1 + x^7
>> p3 = [1 0 0 0 0 0 1];		  % polynomial 1 + x^6
>> % for polynomials over GF(2), x^7 – 1 = 1 + x^7,
>> % x^6 – 1 = 1 + x^6, ...
>> [q,r] = gfdeconv(p2,p1);	 % (1 + x^7)/(1 + X + x^3) 
>>					     % q: quotient, r: remainder
>> r						    
r =
	 0
>> [q,r] = gfdeconv(p3, p1);	 % (1 + x^6)/(1 + x + x^3)
>> r						    
r =
	 0 0 1

So, 1 + X + X 3 divides X 7 - 1 but not X 6 - 1. Similarly, we can find that 
1 + X + X 3 does not divide X 5 - 1, X 4 - 1, and so forth. 

1.  Note that X 7 - 1 = X 7 + 1 over GF(2).
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Primitive polynomials play a central role in coding theory. Although theo-
retically an irreducible but nonprimitive polynomial can also define an extension 
field, it is more convenient to use a primitive polynomial to generate an extension 
field since its root is the primitive element of the field. Table 2.1 lists primitive 
polynomials up to degree 20. Note that, for each m, only the default primitive 
polynomial (i.e., the one that contains the fewest terms) is given. 

MATLAB Experiment 2.2

It is convenient to use MATLAB function gfprimdf(m,p)to generate 
the default primitive polynomials over GF( p) of degree m. 
>> p = 2;			   % order of ground field p
>> m = 3;			   % degree of primitive polynomial
>> primpoly = gfprimdf(m,p)

Table 2.1
Some Primitive Polynomials over GF (2)

m Primitive Polynomial

3 1 + X + X 3

4 1 + X + X 4

5 1 + X  
2 + X 5

6 1 + X + X 6

7 1 + X 3 + X 7

8 1 + X 2 + X 3 + X 4 + X 8

9 1 + X 4 + X 9

10 1 + X 3 + X 10

11 1 + X 2 + X 11

12 1 + X + X 4 + X 6 + X 12

13 1 + X + X 3 + X 4 + X 13

14 1 + X + X 6 + X 10 + X 14

15 1 + X + X 15

16 1 + X + X 3 + X12 + X16

17 1 + X 3 + X 17

18 1 + X 7 + X 18

19 1 + X + X 2 + X 5 + X 19

20 1 + X 3 + X 20
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primpoly =
	 1  1  0  1

The result corresponds to the polynomial 1 + X + X 3.

MATLAB Experiment 2.3

To check whether a polynomial poly over a Galois field of degree m is 
primitive, we need to examine if poly is irreducible and if the smallest posi-
tive integer n for which poly divides X n - 1 is n = 2m - 1. In practice, we may 
let the MATLAB function gfprimck(poly)do it for us. 
>> poly = [1 1 0 1];		  % polynomial = 1 + x + x^3
>> gfprimck(poly)
ans =
	 1

The result indicates that 1 + X + X 3 is a primitive polynomial (see 
MATLAB Experiment 2.2).

Comment: The function returns –1 if poly is not an irreducible poly-
nomial; 0 if poly is irreducible, but not a primitive polynomial for GF(2m); 
and 1 if poly is a primitive polynomial for GF(2m).

Having defined the polynomial over GF( p), we are now ready to rep-
resent all elements of the extension field GF( pm) by polynomials over GF( p) 
of degree less than m. Let j(X ) be the primitive polynomial that generates 
GF( pm), and i be an integer. X i can be expressed as:

	 ϕ= +( ) ( ) ( )iX q X X r X 	 (2.7)

where q(X ) and r(X ) are quotient and remainder, respectively. Letting a de-
note the root of j(X ) (it is also a primitive element of the extension field) and 
inserting X = a into (2.7), we have:

	 α α ϕ α α= +( ) ( ) ( )i q r 	 (2.8) 

Considering j(a) = 0, we obtain the following equation from (2.8):

	 α α α α α -
-= = + + + +2 1

0 1 2 1( )i m
mr r r r r� 	 (2.9)
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Equation (2.9) indicates that an arbitrary element a i can be represented 
as the polynomial r (a), which is obtained as:

	 αα ϕ =Þ mod ( ) |i i
XX X 	 (2.10)

Example 2.7

Consider the extension Galois field GF(23), or GF(8). The seven nonzero 
elements of the field are a 0 (= 1), a , a 2, ... , a 6. The primitive polynomial 
of degree 3 is 1 + X + X 3 (see Table 2.1). Using the polynomial to construct 
the field, the polynomial representations of all nonzero elements of the field 
are as follows:

a 0 Þ 1	

a 1 Þ a	

a 2 Þ a 2	

a 3 Þ X 3 mod 1 + X + X 3|x = a = 1 + a 	

a 4 = a  × a 3 = a(1 + a ) = a + a 2	

a 5 = a 1 × a 4 = a(a + a 2) = a 2 + a 3 Þ 1 + a + a 2	

a 6 = a 1 × a 5 = a(a 2 + a 3) = a 3 + a 4 Þ 1 + (1 + 1)a + a 2 = 1 + a 2	

Often the polynomial representation is abbreviated to a vector. For in-
stance, a 5 Þ 1 + a + a 2 Þ (111). The mapping between the three represen-
tations is summarized in Table 2.2.

MATLAB Experiment 2.4

Mapping between the different representations for a Galois field can be 
done in MATLAB. Run the following script to convert the power representa-
tion to the polynomial representation.
>> indx = [0;1;2;3;4;5;6]; 		  % power index 
>> % prime polynomial = 1 + x + x^3
>> primpoly = [1 1 0 1]; 	  
>> p = 2; 					     % over GF(2)
>> poly = gftuple(indx,primpoly,p)	 % polynomial in
						      % vector form 
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poly =
	 1  0  0
	 0  1  0
	 0  0  1
	 1  1  0
	 0  1  1
	 1  1  1
	 1  0  1

So the polynomial representations of a 0, a 1, a 2, a 3, a 4, ... are 1, a, 
a2, 1 + a, a + a 2, ... .

Finally we give one more definition before concluding this section. Let 
f(X ) be an irreducible polynomial over GF( p). If f(X ) has b as its root, where 
b is an element in GF( pm), then f(X ) is the minimum polynomial of b. Take 
Galois field GF(8) as an example. The field is constructed on the primitive 
polynomial 1 + X + X 3. Substituting X = a into the polynomial gives:

	 1 + a + a 3 = 1 + a + (1 + a ) = 0	
The polynomial is therefore the minimum polynomial of a. 

The minimum polynomial of b can be obtained as [4, p. 51]:

	
( )φ β

-

=
= -Õ

1
2

0

( )
iL

i

X X
	

(2.11) 

where L is the smallest integer such that b 2L = b. 

Table 2.2
Mapping Between Different Representations of GF (8) 

Power  
Representation

Polynomial  
Representation

Vector  
Representation

a -¥ 0 (000)

a 0 = 1 1 (100)

a a (010)

a2 a 2 (001)

a3 1 + a (110)

a4 a + a 2 (011)

a5 1 + a + a 2 (111)

a6 1 + a 2 (101)
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Example 2.8

We have verified that the minimum polynomial of the primitive element a 
in GF(23) is 1 + X + X 3. Now we want to find the minimum polynomial 
of b = a 3. Notice:

	 b 2 = a 6 = 1 + a 2	

	 b 22 = a 12 = 1 + a + a 2 	

	 b 23 = a 24 = a 3 = b	

The minimum polynomial is then obtained as:

	 f (X ) = (X – b)(X – b 2 )(X – b 22 ) = (X – a 3)(X – a 6)(X – a 12) 

= 1 + X  2+ X  3	

The polynomial is listed in the second row of Table 2 3.

MATLAB Experiment 2.5

The size of Table 2.3 grows exponentially as we add more fields into 
it. Therefore, for more minimum polynomials, we turn to MATLAB. The 
MATLAB Communications Toolbox offers a function gfminpoly that re-
turns the minimal polynomial of an element in a Galois field. The following 
finds the minimum polynomial of a 23 in GF(26):
>> k = 23;			   % the element is alpha^23
>> m = 6;			   % field is GF(2^6)
>> minpoly = gfminpol(k,m)
minpoly =
		  1  1  0  0  1  1  1

The result is 1 + X + X 4 + X 5+ X 6.

2.2.2  Arithmetic in GF (2m)

In digital communications and storage, data are represented in binary. As 
such, only binary field GF(2) and its extension field GF(2m) are of primary 
concern to error control coding. This section concentrates on the arithmetic 
in GF(2m).
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2.2.2.1  Addition and Subtraction

Galois field arithmetic differs from integer arithmetic in that the former has 
only a finite number of possible values for the operand. Consequently, Galois 
field arithmetic must be performed with modulo operation. 

For binary field GF(2), addition is performed as modulo-2 addition, or 
exclusive-or (XOR) operation, defined in Example 2.1. Subtraction in GF(2) 
is exactly the same as addition:

	 u – v = u + v = u Å v	

where u, v Î GF (2).
We have learned that any element of GF(2m) can be represented as a 

polynomial with its coefficients taken from GF(2). Therefore, addition and 
subtraction of any two elements in GF(2m) can be accomplished as follows:

	 ( ) ( ) ( ) 1
0 0 1 1 1 1( ) ( ) ( ) m

m mw u v u v u v u vα α α α α -
- -= + = + + + + + +�

(2.12) 

Table 2.3
List of Minimum Polynomials

Galois Field Element Minimum Polynomial Element Minimum Polynomial

GF (22) a 1 + X + X 2 — —

GF (23) a 1 + X + X 3 a 3 1 + X 2 + X 3

GF (24)
a 1 + X + X 4 a 3 1 + X + X 2+ X 3 + X 4

a 5 1 + X + X 2 a 7 1 + X 3 + X 4

GF (25)

a 1 + X 2 + X 5 a 3 1 + X 2+ X 3 + X 4+ X 5 

a 5 1 + X + X 2+ X 4 + X 5 a 7 1 + X + X 2+ X 3 + X 5

a 11 1 + X + X 3+ X 4 + X 5 a15 1 + X 3 + X 5

GF (26)

a 1 + X + X 6 a3 1 + X + X 2+ X 4 + X 6

a 5 1 + X + X 2+ X 5 + X 6 a7 1 + X 3 + X 6

a 9 1 + X 2 + X 3 a11 1 + X 2+ X 3 + X 5+ X 6 

a 13 1 + X + X 3+ X 4 + X 6 a15 1 + X 2+ X 4 + X 5+ X 6 

a 21 1 + X + X 2 a 23 1 + X+ X 4 + X 5+ X 6 

a 27 1 + X + X 3 a31 1 + X 5 + X 6
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where u(a) = u0 + u1a + u2a 2  + ...  + um-1a  m-1 and v(a) = v0 + v1a + v2a 2  
+ ... + vm-1a m-1 are two elements of GF(2m). Calculation of ui + vi is carried 
out using modulo-2 addition, and w(a) = w0 + w1a + w2a 2  + ... + wm-1a m-1  
is the sum. 

Example 2.9

Suppose we want to add a 3 and a 5 in GF(8). From Table 2.2 we have 
their polynomial presentations as:

	 a 3 Þ 1 + a  and a 5 Þ 1 + a  + a 2	

So,

	 a 3 + a 5 = (1 + a ) + (1 + a  + a 2) = a 2	

2.2.2.2  Multiplication

Multiplication in a Galois field GF(2m) is accomplished by adding the power 
of the multiplicand and the power of the multiplier together, followed by 
modulo-(2m -1) operation: 

	 α α α + -× = ( )mod 2 1mj i ji
	 (2.13)

where a i and a j are the multiplicand and multiplier, and the right side of the 
equation is the product.

When the multiplication is performed using the polynomial representa-
tion, the product equals the ordinary multiplication of the two polynomials 
modulo the primitive polynomial:

	 αα ϕ ==( ) ( ) ( )mod ( ) |xw u X v X X 	 (2.14)

where u(a) and v(a) Î GF(2m) are the two operands, w(a) is the product, 
and j(X ) is the primitive polynomial on which GF(2m) is built.

Example 2.10

Let us multiply a 3 by a 5 in GF(23). If power representation is used, the 
product is obtained as:

	 a 3 × a 5 = a (3 + 5)mod 23_1 = a	
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On the other hand, if polynomial representation is used, the multiplica-
tion should be performed as follows:

	 a 3 × a 5 = (1 + X ) ×  (1 + X + X  2) mod (1 + X + X  3)½X = a 	

= 1 +X  3 mod (1 + X + X  3)½X = a	

= a 	

where 1 + X + X 3 is the primitive polynomial that we used to construct the 
field. 

MATLAB Experiment 2.6

MATLAB contains a set of functions dedicated to Galois field arith-
metic such as gfadd, gfsub, and gfmul. Readers should consult the  
MATLAB User’s Guide for details about using the functions. This book’s 
companion DVD provides two simple subroutines: one is gfmulp* for 
polynomial-based multiplication; the other is gfinvp* for polynomial-based  
inversion.

The following script multiplies two elements in polynomial representa-
tions.
>> u = [1 1];		 % multiplicand 1 + alpha = alpha^3
>> v = [1 1 1];	 % multiplier 1 + alpha + alpha^2 =  
			   % alpha^5
>> p = [1 1 0 1];	 % primitive polynomial 1 + alpha +�  
			   % alpha^3
>> gfmulp(u,v,p)	 % the product
ans = 
	 0  1

The product is a.

2.3  Implementation of GF (2m) Arithmetic 

2.3.1  Arithmetic with Polynomial Representation

Addition and subtraction in GF(2m) using the polynomial representation are 
easy. Based on (2.12), the circuit can be built using simple XOR gates as 
shown in Figure 2.1.
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Multiplication, however, is more complex. It follows from (2.14):

	 ϕ=( ) ( ) ( )mod ( )w X u X v X X 	 (2.15) 

Direct implementation of (2.15) involves two separate steps with the 
second step done iteratively: 

1.	 Polynomial multiplication;

2.	 Reduction modulo the primitive polynomial.

The above implementation approach is often not favored in high-speed 
design because it is a multiple-cycle operation and the circuit thus must be 
clocked at a much higher frequency than the data rate. However, given the 
primitive polynomial j(X ) = j0 + j1X + ... + jm X m, it is possible to complete 
the second step off-line. Let u(X ) = u0 + u1 X + ... + um-1 X m-1, v(X ) = v0 + 
v1X + ... + vm –1 X m –1. We then have [6]: 
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where 
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(2.17)

u0

w0

v 0

w1 wm−1

u1 v 1 um−1 v m−1

Figure 2.1  Polynomial-based Galois field adder.
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Since the primitive polynomial j(X ) is known, terms X m mod j(X ), 
X m+1 mod j(X ), ... , X 2m-2 mod j(X ), all can be precomputed. Let ri(X ) = 
ri,0 + ri,1 X + ... + ri,(m-1)X m-1 = X i mod j(X ), where m £ i £ 2m - 2. The 
coefficients of the product w(a) = w0 + w1 X + ... + wm-1X m-1 are obtained 
as follows:

	

-

=
= + = -å

2 2

, ( 0,1, , 1)
m

j j i i j
i m

w d d r j m�
	

(2.18)

Note that the design results in a purely combinational logic circuit.

Example 2.11

Now we use the method to design a multiplier for GF(23) with the primi-
tive polynomial j(X) = 1 + X + X 3. It is easy to find:

	

3
3

4 2
4

( ) mod ( ) 1

( ) mod ( )

r X X X X

r X X X X X

ϕ

ϕ

= = +

= = + 	

The multiplication is thus realized by the following equations:

	

0 0 3

1 1 3 4

2 2 4

w d d

w d d d

w d d

= +

= + +

= + 	

where 

	

0 0 0

1 0 1 1 0

2 0 2 1 1 2 0

3 2 1 1 2

4 2 2

d u v

d u v u v

d u v u v u v

d u v u v

d u v

=

= +

= + +

= +

= 	

The schematic of the multiplier is given in Figure 2.2.
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2.3.2  Arithmetic with Power Representation

The simplest way to perform multiplication in a Galois field is to repre-
sent the operands in the power basis and use (2.13). However, addition 
in this case becomes awkward. A clever solution to the problem is the 
Zech algorithm. The algorithm defines a variable called the Zech logarithm  
z(n):

	
( ) 1 ( 1,2, ,2 2)z n n mnα α+ = -� � 	 (2.19)

The Zech algorithm transforms addition into multiplication as follows:

	 α α α α α α- -+ = + = ( )(1 )j j i z j ii i i
	 (2.20)

The algorithm requires one table look-up (to search for the Zech loga-
rithm) and one multiplication. In many implementations this method im-
proves the latency quite significantly.

Example 2.12 

The Zech logarithm for GF(8) is listed in the following table:

n z(n)
1 3
2 6
3 1
4 5
5 4
6 2

w0 w1

d1

w2

d2 d3 d4d0

Figure 2.2  GF (23) multiplier.
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Using this table, we have:

	 α α α α α α α α α+ = + = = =3 5 3 2 3 (2) 3 6 2(1 ) z
	

The schematic of a general adder based on the Zech algorithm is drawn 
in Figure 2.3.

2.3.3  A Special Case: Inversion

So far we have not touched division. The common practice for computing 
the quotient v/u in GF(2m) is to multiply the dividend v by the multiplicative 
inverse (or reciprocal), u-1, of the divisor u. So we should examine possible 
implementations of the inversion operation. Fortunately the majority of error 
coding applications do not require single-cycle division, leaving some flex-
ibility for our designs.

The most straightforward way to implement element inversion in a Ga-
lois field is table look-up. Inverses are precomputed and stored in a 2m ´ m 
read-only memory (ROM). The divisor u is used as the access address to the 
ROM. The problem with this approach is that for large fields a lot of memory 
space is required, resulting in high costs. 

By definition the inverse of an element in a Galois field must be another 
element in the same field. As such, we may find the reciprocal of u by testing 
bu = 1 for every nonzero element b in the field. This brute-force search can be 
realized using a pair of linear feedback shift registers (LFSR). The technique 
is best explained by using an example.

Example 2.13

Take as an example the Galois field GF(23) defined by the primitive poly-
nomial j(X) = 1 + X + X 3. We want to find the reciprocal of u = (110). 
As depicted in Figure 2.4, the two LFSRs of length 3 are individually con-
nected, corresponding to j(X). Upon reset, the left LFSR is loaded with u 

Power of addend

Power of augend

Integer adder Integer adder

Power of sumZech
logarithm

LUT

Figure 2.3  Galois field adder based on Zech algorithm.
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and the right LFSR with 1. The ratio between the two LFSRs is u:1. Then 
both LFSRs shift bit by bit simultaneously. After each shift, the content of 
the LFSR changes to a different element in the field. During the shifting 
process, the ratio between the two LFSRs remains u:1. As a result, when the 
left LFSR reaches 1, the content of the right LFSR must be u-1. The process 
is illustrated in Table 2.4.

From Example 2.13 we can see that the LFSR is connected in such 
a way that it becomes the so-called maximum-length LFSR and is able to 
exhaust all 2m - 1 nonzero elements in the field (although in the example we 
were lucky to obtain the inverse before exhausting all the elements). Also, 
each shift of the LFSR is equivalent to multiplying its content by X followed 
by modulo-j(X  ). 

One issue associated with the preceding technique is that the number of 
shifts needed for different elements is different. This may cause some prob-
lem when interfacing with other circuit blocks. The following exponentiation 
method provides a remedy.

Recall that the order of any nonzero element b ÎGF(2m) is 2m - 1,  
that is:

	 β - =2 1 1
m

	 (2.21) 

D DD D DD

Initial value:
Final value:

u
1

1
u−1

Figure 2.4  GF (23) inversion circuit.

Table 2.4
An LFSR-Based GF Inversion Process

Step
Content of  
Left LFSR

Content of  
Right LFSR

Note

0 (110) (100) u = (110), b = (100) = 1

1 (011) (010)

2 (111) (001)

3 (101) (110)

4 (100) (011) Left LFSR = 1, Right LFSR = u -1 = (011)
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Multiplying both sides of (2.21) by b -1, we have:

	 β β- -=2 2 1m

	 (2.22)

The equation indicates that computing the (2m - 2)-th power of an ele-
ment gives the inverse of the element. Notice that 2m - 2 can be expanded as 
follows (Fermat’s theorem):

	
-- = + + +2 12 2 2 2 2m m� 	 (2.23)

The inverse can then be calculated quickly as [7]:

	 β β β β β
-- -= =

2 11 2 2 2 2 2m m
� 	 (2.24)

The implementation of (2.23) is depicted in Figure 2.5 [8]. It con-
sists of a register, a multiplier, and a squaring circuit. The register is initially 
loaded with a 1. As the circuit shifts in a cyclic manner, the successive values 
of the register become:

	 β β β β β- -Þ Þ Þ Þ × × × Þ =2 6 14 2 2 11
m

	

The final value b -1 is obtained in m - 1 shifts. 

Note  This chapter may seem a bit dry, but it is absolutely necessary for under-
standing the materials presented in the remainder of the book. Our introduction 
to algebra does not stop here. Several things have yet to be covered, for example, 
Galois field Fourier transforms and Euclid’s algorithm. Because these topics are 
used for some specific codes or algorithms, they will be presented when needed. 
Also, readers may have noticed that most of the mathematical proofs are omitted 

D

Initial value: 1

β

(   ). 2

Figure 2.5  Inversion circuit using exponentiation method.
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in this chapter. We did this because we think such proofs are the tasks of algebra  
textbooks.

As for implementation, the designs given in this chapter are rather rudimen-
tary, but they should satisfy many practical needs. Keep in mind that optimal imple-
mentations are always considered in the context of applications. 

Our official journey of error control coding starts with the next chapter—so 
be prepared.

Problems

2.1 � Show that every extension Galois field has a primitive element. 
(Hint: An extension Galois field is defined by a primitive poly-
nomial.)

2.2 � How many roots does f (X ) = X 4 + a 3X 3 + X 2 + a X + a 3 over 
GF(23) have [where a is a primitive element of GF(23)]? Find the 
roots (see Table 2.2). Use the MATLAB function gfroots to 
verify your result.

2.3 � Divide f (X ) = X 4 + a 3X 3 + X 2 + aX + a 3 over GF(23) by g (X ) =  
X 2 + aX + a 5 over the same field (a is a primitive element of 
the field). Find the quotient and the remainder (again, use Ta-
ble 2.2). Use the MATLAB function gfdeconv to verify your  
result.

2.4 � 1 + X + X 4 is a primitive polynomial of GF(24) (see Table 2.1). 

a. � Use the polynomial to construct GF(24) by listing all of its 
elements in both a power representation and a polynomial 
representation.

b.  Solve the following simultaneous equations in GF(24):

	

α α

α α α

α α α

+ + =

+ + =

+ + =

3

3 5

2 6

X Y Z

X Y Z

X Y Z 	

2.5  Write a MATLAB function to calculate the Zech logarithm.

2.6 � When performing element inversion by exponentiation, is there 
any other way possibly faster than (2.24)?
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3
Binary Block Codes

Having defined block codes in the first chapter, we are now going to discuss 
the codes in detail. We take the typical top-down approach in presenting 
the materials. First, linear block codes are described. Then cyclic codes 
are introduced as a subclass of linear block codes. The most important 
cyclic codes, namely, BCH codes, are explained last. We confine our dis-
cussion to binary codes. Nonbinary block codes are the theme of the next  
chapter. 

3.1  Linear Block Codes

3.1.1  Code Construction and Properties

3.1.1.1  Construction of Block Codes

To  encode data into a block code C, we first need to divide the data sequence 
into blocks of equal length, say, k bits. Then we take each data block m of k 
bits (we call it a message word or a message vector) and map it into a code-
word c of n bits, where n > k. The n - k additional parity-check bits are the 
redundancies added for error detection and correction use. Different redun-
dancy structures lead to different types of codes. 
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A block code is specified by a set of two parameters (n, k), where n 
is the length of the message word and k is the codeword length. The rate 
of the code is k/n. Each message word is associated with one and only one 
codeword. The total number of codewords in a code equals that of message 
words, 2k.

Example 3.1

Table 3.1 lists all codewords of a (7,4) block code. For every mes-
sage word of four bits, there exists a corresponding codeword of seven 
bits. Note that this code is a systematic code. The first four MSBs of the 
codewords are the message bits. The remaining three bits are the parity  
bits.

Table 3.1
Codewords of a (7,4) Block Code

Message Word (LSB … MSB) Codeword (LSB … MSB)

m 0 = (0000) c0 = (0000000)

m 1 = (1000) c1 = (1101000)

m 2 = (0100) c2 = (0110100)

m 3 = (1100) c3 = (1011100)

m 4 = (0010) c4 = (1110010)

m 5 = (1010) c5 = (0011010)

m 6 = (0110) c6 = (1000110)

m 7 = (1110) c7 = (0101110)

m 8 = (0001) c8 = (1010001)

m 9 = (1001) c9 = (0111001)

m 10 = (0101) c10 = (1100101)

m 11 = (1101) c11 = (0001101)

m 12 = (0011) c12 = (0100011)

m 13 = (1011) c13 = (1001011)

m 14 = (0111) c14 = (0010111)

m 15 = (1111) c15 = (1111111)

Note: LSB = least significant bit; MSB = most significant bit.
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3.1.1.2  Linear Block Codes

A binary block code C is said to be linear if and only if its 2k codewords form 
a subspace of the vector space consisting of all binary vectors of length n. 
The code in Example 3.1 is a linear block code. The 15 codewords form a 
subspace of the vector space V (7)

2. 
It follows from the property of subspace (refer to Chapter 2) that linear 

block codes have the following two important properties: 

1.	 The sum of any two codewords in C is another codeword in C:

	 i j k+ =c c c 	 (3.1)

where ci, cj and ck ÎC. 
2.	 There exists a set of k codewords in C which are linearly independent 

such that every codeword in C is a linear combination of the k code-
words:

	 0 0 1 1 1 1k km m m - -= + + +�c g g g 	 (3.2)

where g0, g1, g2, ¼ gk -1 are the k linearly independent codewords, 
and m0, m1, m2, ¼ mk -1 are some scalars. By linearly independent 
we mean that m0 g0 + m1 g1 +  ¼ + mk-1 gk -1k ¹ 0 unless m0, m1, ¼, 
mk -1 = 0.

Note that the codes discussed in this chapter are binary codes; all mul-
tiplications are logic AND operations and all additions/subtractions are logic 
XOR (exclusive-or) operations. 

Example 3.2

Consider the linear block code in the previous example. Take any two code-
words, say, c6  = (1000110) and c8 = (1010001), and sum them. The result 
is (0010111), which is c14. The four linearly independent codewords may 
be chosen as c1 = (1010001), c2 = (1110010), c4 = (0110100), and c8 = 
(1101000). All codewords can be constructed from these four codewords us-
ing simple AND and XOR operations. For example, c9 = 1 × c1 + 0 + c2 +  
0 × c4 + 1 × c8. Another example, c13 = 1 × c1 + 0 + c2 + 1 × c4 + 1 × c8.

3.1.1.3  Generator Matrix and Parity-Check Matrix

If we choose k message bits as the k coefficients in (3.2), m0, m1, m2, ¼, mk-1, 
then the codewords and the message words have one-to-one correspondence. 
We can rewrite (3.2) in matrix form:
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where m = (m0 m1 m2 ¼ mk-1) is the message word, and the k ´ n matrix G 
is called the generator matrix of the code C. A linear block code is completely 
determined by its generator matrix. 

For systematic codes, the generator matrix G consists of a k ´ (n - k)  
matrix P, which produces the parity-check bits of the code, and a k ´ k iden-
tity matrix Ik, side by side: 

	

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

1 0 0 0

0 1 0 0
[ | ]
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(3.4)

The generator matrix for the (7,4) systematic code example is:

	

0 8

1 4

2 2

3 1

110 1000

011 0100

111 0010

101 0001

é ùé ù é ù
ê úê ú ê ú
ê úê ú ê ú= = = ê úê ú ê ú
ê úê ú ê ú
ê úë û ë û ë û

g c

g c
G
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MATLAB Experiment 3.1

The MATLAB function encode encodes a data block into a linear block 
code specified by the generator G. The following script is for the (7,4) code.
>> n = 7; k = 4;				    % (7,4) code
>> % generator matrix of the (7,4) code
>> G = [1 1 0 1 0 0 0;0 1 1 0 1 0 0;1 1 1 0 0 1 0; 
	 1 0 1 0 0 0 1];
>> m = [1 0 0 1];				    % message word
>> c = encode(m,n,k,’linear’,G); 		 % encoding
>> c’
ans =
	 0  1  1  1  0  0  1

The generated codeword is c9 (see Example 3.1).

A matrix closely associated with the generator G is the parity-check 
matrix H:

	

0,0 0,1 0, 1

1,0 1,1 1, 1

,0 ,1 , 1

n

n

n k n k n k n

h h h

h h h

h h h

-
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- - - -

é ù
ê ú
ê ú=
ê ú
ê ú
ë û

�
�

�
�

H

 	

(3.5)

where G and H satisfy the following:

	
T× = 0G H 	 (3.6)

The superscript T in (3.6) denotes the transpose of the matrix. Based on 
(3.6) H is related to codeword c as follows:

	
T T× = × × = 0c H m G H 	 (3.7)

For systematic codes, H takes the form of:

	 | T
n k-é ù= ë ûH I P 	 (3.8)
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Similar to the generator matrix, the parity-check matrix alone can also 
completely specify a linear block code.

MATLAB Experiment 3.2

MATLAB has a dedicated function gen2par to convert between the 
parity matrix and the generator matrix, saving us some time to solve (3.6) 
manually.
>> % generator matrix of the (7,4) code
>> G = [1 1 0 1 0 0 0;0 1 1 0 1 0 0;1 1 1 0 0 1 0; 
1 0 1 0 0 0 1];
>> H = gen2par(G)
H =
	 1  0  0  1  0  1  1
	 0  1  0  1  1  1  0
	 0  0  1  0  1  1  1

where H is the parity-check matrix of the (7,4) code.

3.1.1.4  Encoding with G and H

With the generator matrix G, block encoding can be accomplished through 
matrix operation [see (3.3)]. For systematic codes, encoding can be further 
simplified. Notice that a codeword in systematic form can be expressed as:

	 ( )0 1 1 0 1 1n k km m mµ µ µ - - -= � �c 	 (3.9)

where m0, m1, ¼, mn-k-1 are the parity bits, and m0, m1, ¼, mk-1 are the mes-
sage bits. Consequently only the n - k parity bits need to be computed. If we 
combine (3.3), (3.4), and (3.9), we have the following equation for calcula-
tion of the parity: 
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1 0 0,1 1 1,1 1 1,1
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(3.10)
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Equation (3.10) may also be derived from the parity-check matrix H. 
Substituting (3.8) and (3.9) into (3.7), and solving the equation for mi, we 
obtain the same equation, (3.10).

If expressed in matrix form as follows, (3.10) is more compact:

	 m = m . P	 (3.11)

where m = ( m0 m1 ¼ mn - k - 1) is the parity vector. 

3.1.2  Decoding Methods

3.1.2.1  General Description 

Let r denote the received word corresponding to the transmitted codeword c. 
Due to the noise existing in the channel, r may not be identical to c. Instead, 
r will equal to c plus an error pattern or error vector e = (e0 e1 ¼ en - 1) caused 
by the channel noise: 

	 = +r c e	 (3.12)

where ei = 1 if ri ¹ ci and ei = 0 otherwise. The decoding task is to determine if 
the error pattern e is a zero vector (error detection), or find the error pattern 
e itself so that the original transmitted codeword can be recovered as follows 
(error correction):

	 = -�c r e	 (3.13)

Detection of error(s) is relatively easy. If r is not identical to any of the code-
words in C, we know that an error or errors have occurred (although we do 
not know where they occurred). However, we want to point out that even 
if r happens to be the same as one of the codewords, it does not necessarily 
mean that r is free of error. This can be explained using a simple example. 
Suppose that the codeword c = (1110010) of the (7,4) code is transmitted. 
If e = (0110100), then r = (1110010) + (0110100) = (1000110). Note that 
(1000110) is another codeword in C (see Example 3.1). When the decoder 
sees r, it legitimately treats it as a valid codeword. In this case the error(s) is 
undetectable.

Compared with error detection, correction of error(s) is a much more 
difficult task. Usually there will be multiple codeword/error combinations 
that give the same received word. For instance, the codeword/error pairs  
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c = (1110010)/e = (0110100) and c = (0100011)/e = (1100101) pro-
duce the same received word r = (1000110).The actual transmitted 
codeword can only be one of them. It is the job of the decoder to de-
termine which one is the true codeword. Based on the maximum-likeli-
hood decoding principle, the codeword that makes r most likely should 
be regarded as the true codeword. For a BSC channel, it is the codeword 
closest in the Hamming distance to r. The error pattern e in this case 
will have the smallest number of 1’s. The maximum-likelihood decoding 
principle was explained in Chapter 1. Next we present a method for error  
correction.

MATLAB Experiment 3.3

The MATLAB function decode decodes linear block codes. Take the  
(7,4) code as an example. Suppose that we have received the word r = 
(1001110) containing one error in its fourth position. By running the fol-
lowing script, we will get the correct message word:
>> n = 7; k = 4;			   % (7,4) code
>> % generator
>> G = [1 1 0 1 0 0 0;0 1 1 0 1 0 0;1 1 1 0 0 1 0; 
	 1 0 1 0 0 0 1];
>> % received word 
>> r = [1 0 0 1 1 1 0];	
>> % decoding, ‘linear’ means linear block code
>> m = decode(r,n,k,’linear’,G); 
>> m’					     % decoded message word
ans =

	 0  1  1  0

3.1.2.2  Error Correction with Standard Array 

Standard array decoding is a table look-up (LUT) decoding technique for 
block codes. For an (n, k) binary block code C, there exist 2n possible n-
tuples that the decoder may receive, 2k of which are the codewords. The 
standard array decoding method first arranges all 2n n-tuples in an array as 
follows: 

1.	 List all 2k codewords among the 2n n-tuples on the first row, starting 
with the all-zero codeword 0.
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2.	 From the remaining n-tuples, choose one with the smallest number 
of 1’s, and put it in the first position of the next row.

3.	 Add the chosen n-tuple to the codewords at the top of each column, 
and place the results in the corresponding positions of the row. The 
results are then removed from the remaining n-tuples.

4.	 Repeat steps 2 and 3 until all 2n n-tuples have been used.

At the end of the process, we should have a LUT that looks like that 
shown in Figure 3.1. This 2n - k ´ 2k LUT is called the standard array of the 
code C. Notice that l1, l2,¼, l2n - k form a subgroup of 2n n-tuples. By defi-
nition all n-tuples on the same row as li are the cosets of li (see Chapter 2). 
These l ’s are called the coset leaders. 

The coset leaders can be viewed as possible error patterns.� The n-
tuples in one same column are possible received words corresponding 
to the codeword at the top. Consequently, upon receiving a word r, all 
we do for decoding is find the coset in the standard array that is iden-
tical to r, and the corresponding codeword at the top is the decoded  
codeword. 

Example 3.3

Consider a simple (5,2) code with the generator matrix 
10101

01011
é ù

= ê ú
ë û

G . The 
standard array of the code is constructed as follows:

�.  In fact the coset leaders are correctable error patterns. There are also other error patterns, 
but they are just not correctable.

Figure 3.1  Standard array.
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00000  01011  10101  11110 ¬ Codewords
10000  11011  00101  01110
01000  00011  11101  10110
00100  01111  10001  11010
00010  01001  10111  11100
00001  01010  10100  11111
11000  10011  01101  00110
10010  11001  00111  01100

�
Coset Leader

The first row of the array consists of four codewords. On the second 
row, the coset leader is the n-tuple with the smallest number of 1’s among 
the remaining n-tuples, which is (10000).� Adding it to the codewords 
(01011), (10101), and (11110), respectively, we have (11011), (00101), 
and (01110) placed in the rest positions of the row. The other rows are 
constructed in a similar manner.

Suppose the decoder receives r = (01010), which contains an error in 
its fifth position (counting from the left). In the above standard array we 
find that the coset leader corresponding to r is (00001), and the codeword 
is (01011).

3.1.2.3  Simplifying a Standard Array Using a Syndrome

The standard array may be simplified using something called a syndrome. 
Syndrome S is defined as the inner product of r and the transpose of the par-
ity-check matrix H:

	 ( ) T
0 1 2 1n kS S S S - -= ×� �S r H 	 (3.14)

Substituting (3.12) into (3.14), we obtain:

	 ( )T T T T T= × = + × = × + =× ×S r H c e H c H e H e H 	 (3.15)

�.  We may also choose other n-tuples like (00010) or (01000), but it should not affect the 
decoding result because they will be chosen eventually.
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Example 3.4 

The parity-check matrix of the (5,2) code is:

	

10100

01010

11001

é ù
ê ú= ê ú
ê úë û

H

 	

The syndrome for r = (01010) is calculated as:

	

T

T

10100

(01010) 01010 (001)

11001

é ù
ê ú= × = × =ê ú
ê úë û

S r H

	

MATLAB Experiment 3.4

A MATLAB function synd* is included for syndrome calculation. The 
following script applies it to the above example:
>> H = [1 0 1 0 0; 0 1 0 1 0; 1 1 0 0 1];    % parity-check 		
						         % matrix
>> r = [0 1 0 1 0];				      % received word
>> % ‘h’ indicates H is a parity-check matrix
>> S = synd(r,H,’h’) 
S =

	 0  0  1

Reexamining the standard array, it is not difficult to find that all n-
tuples on the same row have the same syndrome. (This is simply because 
each row is associated with the one same error pattern which is the coset 
leader.) As such, the entire row of n-tuples can be replaced by their syn-
drome (see Figure 3.2) and the array still serves the purpose. Decoding 
in this case is accomplished by finding the coset leader l with the same 
syndrome as the one calculated from r, and correcting the error(s) as  
c̃ = r - l.
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Example 3.5

The new standard array for the (5,2) code is:

00000  000
10000  101
01000  011
00100  100
00010  010
00001  001
11000  110
10010  111

The syndromes are computed using (3.15). From the array we see that 
the coset leader l corresponding to the syndrome of r = 01010 [= (001) as 
highlighted] is (00001). So c̃ = r - l = (01011).

MATLAB Experiment 3.5

The MATLAB function syndtable in MATLAB Communications 
Toolbox returns the syndrome-based standard array. Here we use it to build 
the array for the (5,2) code:
>> G = [1 0 1 0 1;0 1 0 1 1];	 % generator matrix
>> H = gen2par(G);	 % convert to parity-check matrix
>> t = syndtable(H)	 % construct the standard array
t =
	 0  0  0  0  0
	 0  0  0  0  1
	 0  0  0  1  0
	 0  1  0  0  0

l2 n k− S2 n k−

l2 S2

l1 S1

Coset leader Syndrome

......
Figure 3.2  Syndrome-based standard array.
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	 0  0  1  0  0
	 1  0  0  0  0
	 1  1  0  0  0
	 1  0  0  1  0

Each row is a coset leader whose syndrome equals the row number - 1 
(in decimal).

3.1.2.4  Elaboration on Syndrome Decoding

The syndrome decoding technique presented in the preceding section, in its 
essence, is to solve (3.15) for the error pattern e. One issue with the approach 
is that (3.15) are indeterminate equations and, thus, will have multiple solu-
tions. This is more evident after we write out (3.15) as follows:

	

0 0 0,0 1 1,0 1 1,0

1 0 0,1 1 1,1 1 1,1

1 0 0, 1 1 1, 1 1 1, 1

n n

n n
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S e h e h e h
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S e h e h e h
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(3.16)

Equation (3.16) has n unknowns e0, e1, ¼, en - 1  but only n - k equa-
tions. The standard array technique, by design, picks the error pattern with 
the fewest 1’s as the true error pattern. According to Section 3.1.2.1, this er-
ror pattern is the most probable error pattern. 

Syndromes are also used for error detection. A nonzero syndrome indi-
cates error(s). Note, however, that a zero syndrome does not necessarily mean 
no error exists. As a matter fact, two possibilities can lead to a zero syndrome: 
e is a zero vector, or e is identical to a codeword. Errors of the latter kind are 
undetectable.

Combining (3.8) and (3.14), we have the following syndrome compu-
tation equation for systematic codes:

0 0 0,0 1 1,0 1 1,0

1 1 0,1 1 1,1 1 1,1

1 1 0, 1 1 1, 1 1 1, 1

n k n k n k

n k n k n k

n k n k n k n k n k n k n k n k

S r r p r p r p

S r r p r p r p

S r r p r p r p

- - + - -

- - + - -

- - - - - - - - + - - - - - -

= + + + +
= + + + +

= + + + +

�
�

�
�  

(3.17)

The corresponding combinational logic circuit is shown in Fig-
ure 3.3.
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3.1.2.5  Erasure Decoding

Erasure is a special type of error whose location is known (whereas the loca-
tion of a regular error is unknown). An erasure is produced when the receiver 
receives a signal that is not considered reliable. For example, when BPSK 
modulation is employed, the demodulator maps positive value ® 0 and neg-
ative value ® 1. If a received signal is too close to 0, the demodulator may 
consider the signal not reliable enough and assign an erasure to it (instead of 
1 or 0). In this case, the discrete composite channel (see Chapter 1) will have 
a ternary output; that is, the channel output consists of 0, 1 and ´, where ´ 
denotes an erasure (Figure 3.4).

For binary linear codes, erasures can be corrected by following three 
steps [1, p. 229]:

1.	 Replace all erasures with 0’s and decode to a codeword c̃ 0.

2.	 Replace all erasures with 1’s and decode to a codeword c̃ 1.

3.	 Compare c̃ 0 and c̃ 1 with the received word, and choose as the de-
coded output the codeword closer to the received word r in the 
Hamming distance. Note that erasures are excluded when comput-
ing the Hamming distance.

Example 3.6

Consider the (7,4) linear block code. Assume a received word r = (1 ´ 100 
´ 1), where ´ represents an erasure. We first replace the erasures with 0’s 
and decode it to c̃ 0 = (1010001). Then we replace the erasures with 1’s and 
decode it to c̃ 1 = (1110010).

Transmit Receive

Probability
0

1 1

0
px

px

px1−

px1−

Figure 3.4  Binary erasure channel.
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c̃ 0 is therefore selected as the decoded output. 

3.1.3  Performance of Linear Block Codes 

3.1.3.1  Minimum Distance

We stated in Chapter 1 that the minimum distance dmin determines the er-
ror detection and correction capability of a code. The minimum distance for 
binary linear block codes is derived next.

Equation (1.5) indicated that the Hamming distance between any two 
codewords in a code C is equal to the Hamming weight of the sum of the 
two codewords:

	 ( , ) ( )H i j i jd w= +c c c c 	
(3.18)

where ci, cj ÎC and ci  ¹ cj. Consequently we have:

	 min min ( , ) min ( )H i j id d w= = +c c c c
	

(3.19)

By the definition of linear block codes: ci + cj = ck ÎC, (3.19) can be 
rewritten as:

	 min min ( )kd w= c 	 (3.20)

Equation (3.20) tells us that the minimum Hamming distance of a 
linear block code C equals the minimum weight (i.e., the minimum number 
of 1’s) of its nonzero codewords. It can be shown that the minimum weight 
equals the minimum number of columns in the parity-check matrix of C that 
sums to 0 [2, p. 77]. For instance, the (7,4) code has a minimum distance of 
3 because the smallest number of such columns is 3 (i.e., columns 4, 5, and 
7 in the parity-check matrix).
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MATLAB Experiment 3.6

Finding the minimum distance for a code involves counting the num-
ber of 1’s in every codeword of the code and comparing the numbers. We 
should leave this tedious work to a machine. 
>> % generator matrix of the (7,4) linear block code
>> G = [1 1 0 1 0 0 0;0 1 1 0 1 0 0;1 1 1 0 0 1 0; 
	 1 0 1 0 0 0 1];
>> % compute the minimum distance
>> dmin = gfweight(G,‘gen’)	 % ‘gen’: generator matrix
dmin =
	   3

The function also works with the parity-check matrix H.

3.1.3.2  Error Detection and Error Correction Capabilities

As explained earlier, errors are detectable if and only if they do not change 
the transmitted codeword into another codeword. Notice that the received 
word is the sum of the transmitted codeword and the error pattern [see 
(3.12)]. One situation that always meets this condition is that the number 
of errors is less than the code minimum distance dmin. By the definition 
of minimum distance, any two codewords of the same code differ in at 
least dmin bits. The transmitted codeword in this case will by no means be 
turned into another codeword. Therefore, up to t errors can be detected, 
where:

	 min 1dτ = -  	 (3.21)

This random error detection capability in (3.21) is guaranteed. How-
ever, in some cases a linear block code may be able to go beyond this. 
Consider a scenario in which the received word contains more than 
dmin - 1 errors but falls outside of the codeword set. In this case the re-
ceived word also differs from any of the codewords and the errors are  
detectable.

Now let us determine the probability of an error going undetected. 
We already know that undetectable error patterns are the ones identical to 
codewords. In a BSC with the crossover px, the probability of a particular 
pattern of i errors is pi

x × (1 - px )n-i. There are a total of Wi cases in which 
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a pattern of i errors can be identical to a codeword, where Wi is the weight 
distribution of the codeword, defined as the number of codewords with 
weight i. Summing all of the possibilities yields the probability of unde-
tected error as follows:

	

min min min min
min min

min min
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1 1
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(3.22)

The summation starts from i = dmin because no codeword has a weight 
of less than dmin [see (3.20)]. 

The probability of a detected error, Pd, is the probability that errors 
occur minus the probability that the errors are undetected, and is given by 
[3, p. 99]:
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(3.23)

where the term (1 )i n i
X X

n
p p

i
-æ ö

-ç ÷è ø  is the probability that i errors occur.

Turn now to error correction. The minimum distance of a block code 
dmin is a positive integer, and is either an odd or an even number. So, dmin can 
always be expressed as:

	 min2 1 2 2t d t+ £ £ + 	 (3.24)

where t is some positive integer. We now show that a block code is capable of 
correcting up to t errors. 

Let c be a codeword of C and r be the corresponding received word. 
Denote as w another codeword in C. The following relation is based on the 
simple triangle inequality:

	 H H H( , ) ( , ) ( , )d d d+ ³c r r w c w 	 (3.25)

This can also be easily seen in Figure 3.5.
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Suppose the received word r contains t ¢ errors; r then differs from c 
in t ¢ positions: dH(c, r) = t ¢. Also, because c and w are both codewords, we  
have:

	 H min( , ) 2 1d d t³ ³ +c w 	 (3.26)

Combining (3.25), (3.26), and dH(c, r) = t ¢, we obtain:

	 H( , ) 2 1d t t³ + - ¢r w 	 (3.27)

If t ¢ £ t, the preceding inequality becomes  dH(r, w) ³ t + 1 > t. Therefore, un-
der the condition t ¢ £ t, the received word is closer in the Hamming distance 
to the true codeword c than to any other codewords, or in the maximum-
likelihood terminology, the probability P (r |c) is greater than P (r |w). Thus, 
r is correctly decoded. This means that the block code is able to correct up to  
t errors. From (3.24) we have t = ë(dmin - 1)/2û, where ëxû signifies the largest 
integer no greater than x. So, as a conclusion, a block code is able to correct 
up to t errors, where:

	 min( 1)/2t d= -ê úë û	 (3.28)

The parameter t  is often called the random error correcting capability of 
linear block codes. In fact, this error correction capability was obtained intui-
tively in Chapter 1. Similar to the situation in error detection, a linear block 
code may occasionally correct more errors (but there is no guarantee). 

For a BSC with the crossover probability pX, the upper bound of the 
probability of uncorrected error can be calculated using the union bound 

Figure 3.5  Triangle inequality.
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introduced in Chapter 1. As mentioned earlier, the probability of a pattern 
of i errors is pi

X × (1 - pX )n-1, and there are a total of (ni ) distinct such cases. 
Because only up to t errors can be corrected for sure, the bound is simply 
the sum of all the probabilities that a received word contains more than t 
errors: 

	
uc 1
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n i n i

X Xi t

n
P p p

i
-

= +
æ ö

£ -ç ÷è øå
	

(3.29)

Normally in (3.29) only the first few terms are significant.
To get a sense of how block codes can perform, we show in Figure 

3.6 the BER versus SNR per bit (Eb/N0, where Eb is the energy per bit and 
N0 is the AWGN power spectral density) for several popular binary block 
codes.
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MATLAB Experiment 3.7

This MATLAB experiment simulates the probability that the (7,4) 
block code fails to correct error(s) and compares the result with the bound 
and the performance of the uncoded BPSK. Three m-files are provided in the 
companion DVD: hmsim.m* [simulation of the (7,4) code], hmtheory.m*  
(bit error probability bound), and bpsksim.m* (simulation of uncoded 
BPSK).

It is worth noting that we may trade error correction for error detection. 
According to (3.21) and (3.28), one bit of error correction can be exchanged 
for two bits of error detection. Therefore, for example, a two-error correcting 
code may be used to detect four errors, or correct one error and at the same 
time detect two errors.

3.1.4  Encoder and Decoder Designs

3.1.4.1  Encoder

The most primeval block encoder is perhaps an LUT storing 2k codewords 
of length n. For systematic codes, the width of the LUT can be reduced to  
n - k because only the parity portion of a codeword needs to be looked up. 
Such an encoder is depicted in Figure 3.7. The ROM of size 2k ´ (n - k) is 

D D D D

D D D D

Message
in

read_enable

µ0

m0

µ1

m1

µ2 µn k− −1

m2 mk−1

Message register

sw
Codeword
output

Parity register

ROM [2 ( )]× −n k

Figure 3.7  LUT-based systematic block encoder.
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needed to hold the 2k parity checks of length n - k. The read_enable signal 
is asserted when the message word m = (m0 m1 ¼ mk -1) is completely moved 
into the register buffer. Upon the assertion of read_enable, the parity bits  
m0, m1, ¼ mn - k-1 are loaded into the parity register. The switch is initially 
placed at position a  to let message bits shift into the channel, and turned  
to b  when read_enable becomes active. The codeword output is of the 
form c = ( m0 m1 ¼ mn - k -1m0 m1 ¼ mk -1).

The encoder can also be built using combinational logic as in Fig-
ure 3.8. The circuit block highlighted is based on (3.10) and has the 
same functionality as the ROM in Figure 3.7. The sw switches from a
to b  when all message bits are shifted into the registers. Note the re-
semblance between this encoder and the syndrome computation circuit in  
Figure 3.3.

3.1.4.2  Decoder

The syndrome decoding circuit is sketched in Figure 3.9. The ROM is ar-
ranged as the simplified standard array of the code. Once the received word 
is clocked into the receive register, the syndrome is computed and fed to the 
ROM as a read address. Immediately the read_enable signal is asserted to 
load the selected coset leader (i.e., the error pattern) from the ROM into the 
error register. The received bit and the error bit are shifted out of their respec-
tive registers simultaneously, one at a time. The two bits are then XORed to 
correct any errors. 

3.1.5  Hamming Codes

Hamming codes are binary linear block codes that can correct one er-
ror or detect two errors. The code is named after its inventor R. Ham-
ming. Although invented in 1950s, Hamming codes are still widely used 
today, especially in computer memory systems, for their simplicity and  
effectiveness.�

Hamming codes always have m (m ³ 3) parity bits and 2m - m -1 mes-
sage bits. Therefore, the code rate of Hamming codes is (2m - m -1)/(2m -1). 
All Hamming codes have a minimum distance of dmin = 3.

The parity-check matrix H of a Hamming code is constructed by taking 
all 2m -1 nonzero binary vectors of length m as columns of the matrix. 

�.	 Hamming codes are among the easiest error control codes to construct.
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Example 3.7

Taking all seven nonzero three-bit binary vectors and putting them column 
by column to form a matrix generates the parity-check matrix of the (7,4) 
Hamming code:

	

0001111

0110011

1010101

é ù
ê ú= ê ú
ê úë û

H

 	

The code has three parity bits.

Hamming codes can also be constructed by using an ad hoc method as 
follows.

Construction of Hamming Codes

1.	 All bit positions in the codeword that are powers of 2 (i.e., positions 
1, 2, 4, 8, ¼) are for parity bits m1, m2, m3, m4, ¼.�

2.	 All of the rest of the positions (i.e., positions 3, 5, 7, 9, ¼) are for 
message bits m1, m2, m3, m4, ¼.

3.	 The parity bits are governed by the following rules: 

(a) � m1 checks every other bit starting from where m1 is located (i.e., 
position 1). 

�.  Note that the message bits and the parity bits are numbered from 1 instead of from 0 to 
facilitate our discussion.

DReceived bit in

Syndrome computation

ROM (2 )× nn−k

Decoded bit out

Receive register

Error register

read_enable

r1

e1

S1

rn−1

en−1

Sn k−

r2

e2

S2

r0

e0

S0

D D D

D D D D

XOR

Figure 3.9  Block diagram of a syndrome-based decoder.
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(b) � m2 checks every other 2 bits starting from where m2 is located 
(i.e., position 2).

(c) � m3 checks every other 4 bits starting from where m3 is located 
(i.e., position 4).

(d) � m4 checks every other 8 bits starting from where m4 is located 
(i.e., position 8).

	    . . .

4. � Set a parity bit to 1 if the total number of 1’s in the bits it checks 
(excluding itself ) is odd, to 0 otherwise.

The method is pictorially illustrated in Table 3.2. The ́  sign signifies that the 
parity bit checks the bit in that position. For example, parity m 2 checks the 
bits in positions 2, 3, 6, ¼. So m 2 = m1 Å m3 Å m4 Å 

¼. The highlighted 
area in the table corresponds to the (7,4) Hamming code. Note the resem-
blance between the ´ pattern in the area and the parity-check matrix of the 
code in Example 3.7. 

Decoding of Hamming codes can be accomplished by using a standard 
array because Hamming codes are linear block codes. However, the way that 
Hamming codes are built entitles us to decode it more straightforwardly as 
follows:

Decoding of Hamming Codes

1.	 Based on Table 3.2, compute the parity checks of the received bits.

2.	 Bitwise add (i.e., bitwise XOR) the received parity bits to the com-
puted parity bits.

Table 3.2
Construction of Hamming Codes

Bit Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Codeword Content m1 m2 m1 m3 m2 m3 m4 m4 m5 m6 m7 m8 m9 m10 m11



Parity Bit

m1 × × × × × × × ×

m2 × × × × × × × ×

m3 × × × × × × × ×

m4 × × × × × × × ×

¼
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3.	 Sum the result, which gives the position where the received bit is in 
error.

4.	 Complement the bit in the position.

Example 3.8

Assume the (7,4) Hamming code. Suppose we have the following four 
message words to be sent: (1011), (1001), (0011), and (1011). Based 
on Table 3.2, the corresponding Hamming codewords are (0110011), 
(0011001), (1000011), and (1010011). The four received words are 
(0110011), (1011001), (1001010), and (0011001), which have 0, 1, 
2, and 3 errors, respectively. Table 3 3 shows the decoding process and the 
decoding result.

As we can see, the (7,4) Hamming code is able to correct one error or 
detect up to two errors. Beyond this, the code can neither detect nor correct 
any errors.

Hamming codes can also be arranged into a systematic form. If we ma-
nipulate the parity-check matrix H of the (7,4) Hamming code by column 

Table 3.3
Decoding Process for (7,4) Hamming Code

Transmitted  
Codeword

(0110011) (0011001) (1000011) (1010011)

Case 0 Error 1 Error 2 Errors 3 Errors

Received Word r * (0110011) (1011001) (100101 0) ( 00110 01)
Received Parity  
(m1 m2 m3)

(010) (101) (101) (001)

Computed Parity  
(m¢1 m¢2 m¢3)

(010) (001) (011) (001)

(m1 m2 m3) Å (m¢1 m¢2 m¢3) (000) (100) (110) (000)

Error Position — = 1 + 0∙21 + 0∙22 = 1 = 1 + 1∙21 + 0∙22 = 3 —

Decoded Word (0110011) (0011001) (101100) (0011001)

Error Detected? — Yes Yes No

Error Corrected? — Yes No No

* The highlighted bits are the erroneous bits. 
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permutation and elementary row operation, we obtain the equivalent parity-
check matrix H ¢ in systematic form as follows:�

	

100 1011

010 1110

001 0111

é ù
ê ú=¢ ê ú
ê úë û

H

	

Compare the above H ¢ with H obtained in MATLAB Experiment 3.2, 
we find that the code introduced in Example 3.1 is actually the (7,4) system-
atic Hamming code.

MATLAB Experiment 3.8

We can use MATLAB function hammgen(m) to produce systematic 
parity-check and generator matrices for a particular Hamming code specified 
by the parity-check length m.
>> m = 3;			   % parity-check length = 7 - 4
>> % produce parity-check and generator matrices 
>> [H,G] = hammgen(m)		
H =
	 1  0  0  1  0  1  1
	 0  1  0  1  1  1  0
	 0  0  1  0  1  1  1
G =
	 1  1  0  1  0  0  0
	 0  1  1  0  1  0  0
	 1  1  1  0  0  1  0

	 1  0  1  0  0  0  1

�.  Let G (resp. H ) and G ¢ (resp. H ¢ ) be the generator (resp. parity-check) matrices of 
two codes. If they can be related merely via simple column operation and elementary row  
operation, the two codes are equivalent, and their distance structures are identical. An elemen-
tary row operation (a simple column operation) on a matrix is to sum two rows (columns) or 
scale a row (column) with a nonzero element.
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Table 3.4 lists some of the Hamming codes with different (n,k).
Hamming codes can be expanded to extended Hamming codes by adding 

one extra bit. This bit increases the minimum distance of the extended Ham-
ming code to dmin = 4, giving the code the ability to detect up to three errors. 
The extra bit mx checks the parity of the whole codeword:

	 0 1 1x nc c cµ -= Å Å Å� 	 (3.30)

where c0, c1, ¼, cn -1 are the n bits of the original codeword. For instance, the 
codeword of the (7,4) Hamming code (0110011) is expanded to (01100110), 
(0011001) is expanded to (00110011), and so forth. 

The parity-check bits alone in a Hamming code are not able to tell if 
the received word r contains no error or three errors, because in both cases 
the received parity is identical to the computed parity (see Example 3.8). 
However, the extra bit computed from r and the extra bit received in r will 
not match in the case of three errors. So, mx serves as an indication of whether 
r is error free or has three errors in it.

Example 3.9

We continue with Example 3.8. (01100110), (00110011), (10000111), 
and (10100110) are the codewords extended from the four Hamming code-

Table 3.4
Hamming Codes with Different (n, k )

n k g (X )

7 4 1 + X + X 3

15 11 1 + X + X 4

31 26 1 + X 2 + X 5

63 57 1 + X + X 6

127 120 1 + X 3 + X 7

255 247 1 + X 2 + X 3 + X 4 + X 8

511 502 1 + X 4 + X 9

1,023 1,013 1 + X 3 + X 10

2,047 2,036 1 + X 2 + X 11

4,095 4,083 1 + X+ X 4 + X 6 + X 12
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words (0110011), (0011001), (1000011), and (1010011), respectively. 
Let us assume that the same errors occur as in the previous example. Decod-
ing of the extended Hamming code is illustrated in Table 3.5.

The received and computed parities match in both cases of no error and 
three errors, but, in the latter case, the calculated and received extra parity 
bits do not, that is, mx ¹ mx¢. So detection of up to three errors is now feasible 
with the extended code.

3.2  Cyclic Codes

As a subclass of linear block codes, cyclic codes are attractive for two reasons. 
First, due to their unique algebraic structure, cyclic encoding is easy to imple-
ment and efficient decoding algorithms can be devised. Second, the codes are 

Table 3.5
Decoding Process for Example 3.9 

Transmitted 
Codeword

(01100110) (00110011) (10000111) (10100110)

Case 0 Error 1 Error 2 Errors 3 Errors

Received Word r* (01100110) (10110011) (100101 01) ( 00110 010)
Received Original  
Parity ( m1 m2 m3)

(010) (101) (101) (001)

Computed Original  
Parity ( m¢1 m¢2 m¢3)

(010) (001) (011) (001)

( m1 m2 m3) Å  
( m¢1 m¢2 m¢3)

(000) (100) (110) (000)

Error Position – = 1 + 0∙21 + 0∙22 = 1 = 1 + 1∙21 + 0∙22 = 3 –
Received Extra  
Parity mx

0 0 1 0

Computed Extra  
Parity m¢x 

0 0 1 1

mx Å m¢x 0 0 0 1

Decoded Word (0110011) (0011001) (1011010) (0011001)

Error Detected? – Yes Yes Yes

Error Corrected? – Yes No No

* The highlighted bits are the erroneous bits.
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very effective in error detection. Needless to say, all properties associated with 
linear block codes apply equally to cyclic codes.

3.2.1  Basic Principles

3.2.1.1  Definition of Cyclic Codes

Let C be an (n, k) linear code. Then C is a cyclic code if every cyclic shift of a 
codeword in C is another codeword in C. For codeword c = (c0 c1 c2 ¼ cn -1), 
if a shift is performed l times, the shifted version of c beomes:

	
( )

1 1 0 1( )l
n l n l n n lc c c c c- - + - - -= � �c 	 (3.31)

The preceding definition of cyclic codes does not mean that all code-
words can be generated from one codeword by cyclic shift; rather, it says that 
all codewords can be generated from one codeword by the combination of 
cyclic shift and addition. The former operation is due to cyclicality, and the 
latter comes from linearity.

Binary cyclic codewords are best described by a code polynomial over 
GF(2) whose coefficients are the codeword bits. The code polynomial cor-
responding to the codeword c = (c0 c1 c2 ¼ cn -1) is:

	
2 1

0 1 2 1( ) ( {0,1})n
n ic X c c X c X c X c-

-= + + + + Î� 	 (3.32)

The code polynomial of the cyclically shifted version of c, c(l ), is then 
expressed as:

  
( ) 1 1

1 1 0 1( )l l l n
n l n l n n lc X c c X c X c X c X- -

- - + - - -= + + + + + +� � 	 (3.33)

c (l )(X ) can be obtained from c(X ) through the following operation [3, p. 
114]:

	
( )( ) ( ) mod ( 1)l l nc X X c X X= - 	 (3.34)

This is easy to verify. For instance, the code polynomial of c = (1010001) is 
c(X ) = 1 + X 2 + X 6. The code polynomial of c (2) = (0110100) is obtained as:

7 8 4 21
X

X X X X- + +
 X 8 +                 X	

	                         X 4 + X 2 + X ¬ code polynomial of c (2)	
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3.2.1.2  Generator Polynomial and Parity-Check Polynomial

It can be shown [2, p. 140] that, for an (n, k) cyclic code C, there always exists 
a unique codeword with the code polynomial g(X ) as follows:

	
2

0 1 2( ) n k
n kg X g g X g X g X -

-= + + + +� 	 (3.35)

where g0, gn-k = 1. By the definition of cyclic codes, g(X ), g(1)(X ), g(2)(X ), ¼, 
g (k-1)(X ) are all code polynomials of the code C, and any linear combina-
tion of g(X ), Xg(X )mod (X n - 1), X 2g(X )mod (X n - 1), ¼, X k-1 g(X )mod 
(X n - 1) is also a valid code polynomial of C (recall that all codewords 
can be generated from a single codeword by cyclic shift and addition).  
That is,

	

-
-

-
-

-
-

= + - + - +

+ -

= + + + + -

= + + + + -

�

�

�

2
0 1 2

1
1

2 1
0 1 2 1

2 1
0 1 2 1

( ) ( ) ( )mod ( 1) ( )mod ( 1)

( )mod ( 1)

[ ( ) ( ) ( ) ( )] mod ( 1)

( ) ( ) mod ( 1)

n n

k n
k

k n
k

k n
k

c X m g X m Xg X X m X g X X

m X g X X

m g X m Xg X m X g X m X g X X

m m X m X m X g X X 	
(3.36)

is a codeword polynomial of C, where m0, m1, m2, ¼, mk - 1, Î (0,1) are 
some coefficients. Notice that the degrees of g(X ), Xg(X ), X 2g(X ), ¼,  
X k-1g(X ) are all less than n. Therefore, the modulo operation in (3.36) can 
be omitted:

	

2 1
0 1 2 1( ) ( ) ( )

( ) ( )

k
kc X m m X m X m X g X

m X g X

-
-= + + + + ×

= ×

�

	
(3.37)

where m(X ) = m0 + m1X + m2X 2 +  ¼ + mk - 1X k-1. We see that c(X ) and 
m(X ) have a one-to-one correspondence. If m0, m1, m2, ¼, mk-1 are chosen 
to be k message bits, then c(X ) becomes the codeword of m(X ). Comparing 
(3.37) with (3.3), we observe the analogy between g(X ) and the generator 
matrix G. g(X ) is therefore called the generator polynomial of the code C, 
m(X ) and is the message polynomial.

It has been proven that the generator polynomial of a cyclic code g(X ) 
is a polynomial factor of X n - 1. In fact, any factor of X n - 1 can generate a 
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cyclic code [2, p. 140]; it is just that the resultant code may or may not be a 
good code.

Example 3.10

Polynomial 1 + X + X 3 is a factor of X 7 - 1 [i.e., X 7 - 1 = (1+ X + X 3)(1+ 
X + X 2 + X 4 )]. We now take it as the generator polynomial of a (7,4) cy-
clic code. Let m = (1011) be the message word. The corresponding message 
polynomial is m(X) = 1 + X 2 + X 3. Multiplying m(X) by g(X) we obtain 
the following codeword:

	 c(X ) = 1 + X  + X 2 + X 3 + X 4 + X 6 , or c = (1111101)	

MATLAB Experiment 3.9

The MATLAB function cyclpoly in the Communications Toolbox 
produces all possible generator polynomials for an (n, k) cyclic code. Let us 
find the generator polynomial of the (7,4) code now:
>> n = 7; k = 4; 		  % (7,4) code
>> % to produce generator polynomial
>> % ‘all’ returns all generator polynomials for a given  
>> % n and k
>> genpoly = cyclpoly(n,k,’all’)	
genpoly =
		  1  0  1  1

		  1  1  0  1

The second row of genpoly is the generator polynomial used in Ex-
ample 3.10, g(X) = 1 + X + X 3.

Similar to the parity-check matrix, a parity-check polynomial is associ-
ated with cyclic codes:

	
2

0 1 2( ) k
kh X h h X h X h X= + + + +� 	 (3.38) 

where h0,hk = 1. Like the generator polynomial g(X ), the parity-check poly-
nomial h(X ) also determines a code. The polynomials h(X ) and g(X ) are 
related to each other as follows:



	 Binary Block Codes	 77

	 ( ) ( ) 1ng X h X X= - 	 (3.39)

Similar to (3.7):

	

( ) ( )mod ( 1) ( ) ( ) ( ) mod ( 1)

( )( 1) mod ( 1) 0

n n

n n

c X h X X m X g X h X X

m X X X

- = -

= - - =
	 (3.40)

Using (3.39), the parity-check polynomial of the (7,4) Hamming code 
can be obtained as follows:

	 h(X ) = (X 7 - 1)/g(X ) = (X 7 + 1)/(X 3 + X + 1) = 1 + X + X 2 + X 4	

MATLAB Experiment 3.10

This book’s companion DVD provides a MATLAB function  
g2hpoly* that produces a generator polynomial given a parity-check poly-
nomial and vice versa.
>> g = [1 1 0 1];			   % generator poly.
>> h = g2hpoly(7,g)  
>> h = 				    % parity-check poly.

     1  1  1  0  1

3.2.1.3  Generator Matrix and Parity-Check Matrix

As a subclass of linear block codes, cyclic codes can also be represented by 
their generator matrices or parity-check matrices. Based on (3.37) we have:

	

2 1
0 1 2 1

2 1 T
0 1 2 1

( ) ( ) ( ) ( ) ( )

( ) [ ( ) ( ) ( ) ( )]

k
k

k
k

c X m g X m Xg X m X g X m X g X

m m m m g X Xg X X g X X g X

-
-

-
-

= + + + +

= ×

�

� �       

(3.41) 

Expressing (3.41) in matrix form, we obtain the following equation, 
which is identical to (3.3):

	 = ×c m G	 (3.42)
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where m = (m0 m1 m2 ¼ mk-1), and the k ´ n generator matrix G is:

	

0 1 2

0 1 2

0 1 2

0 1 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

n k

n k

n k

n k

g g g g

g g g g

g g g g

g g g g

-

-

-

-

× × × × × × ×é ù
ê ú× × × × × × ×ê ú
ê ú× × × × × × ×=
ê ú
ê ú
ê ú× × × × × × × ×ë û

�
G

(3.43)

It follows from (3.39) that c(X )h(X ) = m(X )g(X )h(X ) = m(X )(X n - 1) 
= m(X )Xn - m(X ). The highest order in m(X ) is X k-1 and the lowest order in 
m(X ) X n is X n, therefore c(X )h(X ) should not contain the terms X k, X k+1, ¼ 
X n-1, or in other words, the coefficients of the terms are zero. Consequently, 
we have:

	 0
0 ( , 1, , 1)

k
i l ii

h c l k k n-=
= = + -å �

	
(3.44)

Rearranging (3.44) in matrix form gives us the following equation, 
which is exactly the same as (3.7):

	 × =T 0c H 	 (3.45)

where c = c0 c1 c2 
¼

 cn-1), and the (n - k) ´ n parity-check matrix H is:

	

1 2 0

1 2 0

1 2 0

1 2 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

k k k

k k k

k k k

k k k

h h h h

h h h h

h h h h

h h h h

- -

- -

- -

- -

× × × × × × ×é ù
ê ú× × × × × × ×ê ú
ê ú× × × × × × ×=
ê ú
ê ú
ê ú× × × × × × × ×ë û

�
H

(3.46)

Note that the two matrices G and H are Toeplitz with the property ei,j =  
ei -1,j -1, where ei,j denotes the matrix element in the ith row and jth 
column. Also, there is a one-to-one correspondence between the gen-
erator (or parity-check) polynomial and the generator (or parity-check)  
matrix.

The two matrices for the (7,4) cyclic code are easily obtained:
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1101000
1011100

0110100
and 0101110

0011010
0010111

0001101

é ù
é ùê ú
ê úê ú= = ê úê ú
ê úê ú ë û

ë û

G H

	

3.2.1.4  Cyclic Codes in Systematic Form

Using the generator polynomial g(X ) we can also produce cyclic codes in  
systematic form. Recall that a systematic codeword c is in the form of c = 
(m|m) = (m0 m1 ¼ mn-k-1|m0 m1 m2 

¼ mk-1). Correspondingly its code poly-
nomial is:

	
1 1 1

0 1 1 0 1 1
( )( )

( ) n k n k n k n
n k k

m XX

c X X X m X m X m X
µ

µ µ µ - - - - + -
- - -= + + + + + + +� �� � �� � �

	                                                                                                            (3.47)

where m(X ) is termed the parity polynomial. As long as we find m(X ), we 
obtain the codeword polynomial in systematic form by appending m(X ) to 
m(X ). Next we show that m(X ), as calculated next, is the parity polynomial:

	 ( ) ( ) mod ( )n kX X m X g Xµ -= 	 (3.48)

Rewrite (3.48) as:

	 ( ) ( ) ( ) ( )n kX m X q X g X Xµ- = + 	 (3.49)

where q(X ) is the quotient. Adding m(X ) to both sides of (3.49), we obtain:

	 ( ) ( ) ( ) ( )n kX X m X q X g Xµ -+ = 	 (3.50)

We realize that m(X ) + X n -km(X ) has to be a codeword, because q(X ) 
g(X ) is a codeword [according to (3.37)]. Writing out m(X ) + X n -km(X ), we 
have:

	

1
0 1 1

1 1
0 1 1

( ) ( )n k n k
n k

n k n k n
k

X X m X X X

m X m X m X

µ µ µ µ- - -
- -

- - + -
-

+ = + + +

+ + + +

�

� 	

(3.51)
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which corresponds to the systematic codeword c = (m0 m1 ¼ mn - k - 1 m0
 m1 

¼ mk - 1).
For the generator and parity-check in matrix form, their systematic rep-

resentations can be obtained through column permutation and elementary 
row operation. Applying such manipulation to matrices G and H of the (7,4) 
cyclic code, we have their systematic forms as follows:

	

110 1000
100 1011

011 0100
and 010 1110

111 0010
001 0111

101 0001

é ù
é ùê ú
ê úê ú= = ê úê ú
ê úê ú ë û

ë û

G H

 	

The above G and H are completely identical to the G and H obtained in 
MATLAB Experiment 3.8, indicating that the (7,4) Hamming code is a cy-
clic code. In fact, it has been observed that all Hamming codes have cyclic 
equivalences [5, p. 184].

MATLAB Experiment 3.11

The function cyclgen(n,g,opt) built-in MATLAB produces a gen-
erator matrix and parity-check matrix for cyclic codes, given a codeword 
length of n and the generator polynomial g. The parameter opt takes the 
following values: 

opt = ‘nonsys’: the function produces the matrices in nonsystematic 
form. 

‘system’: the function produces the matrices in systematic form. 
For the (7,4) cyclic code, we have:
>> n = 7;				        % code length n = 7
>> g = [1 1 0 1];			       % generator polynomial
>> [H,G] = cyclgen(n,g,’nonsys’)	     % nonsystematic G and H
H =
	 1  0  1  1  1  0  0
	 0  1  0  1  1  1  0
	 0  0  1  0  1  1  1
G =
	 1  1  0  1  0  0  0
	 0  1  1  0  1  0  0
	 0  0  1  1  0  1  0
	 0  0  0  1  1  0  1
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or in systematic form:
>> [H,G] = cyclgen(n,g,‘system’)		  % systematic G and H
H =
	 1  0  0  1  0  1  1
	 0  1  0  1  1  1  0
	 0  0  1  0  1  1  1
G =
	 1  1  0  1  0  0  0
	 0  1  1  0  1  0  0
	 1  1  1  0  0  1  0

	 1  0  1  0  0  0  1

3.2.2  Shift Register–Based Encoder and Decoder 

Considering the fact that every linear block code has a systematic equivalence 
[6, pp. 53–54], we focus on systematic encoders and decoders.

3.2.2.1  Cyclic Encoder

The key to systematic encoding of cyclic codes is the computation of par-
ity polynomial m(X ) using (3.48). The equation is essentially a polynomial 
division operation, therefore we first consider a generic circuit to divide 
polynomial b(X ) = b0 + b1X + b2X 2 + ¼ + bn X n by polynomial a(X ) = 
a0 + a1X + a2X 2 + ¼ + amX m (n ³ m). To carry out the division, we first  
subtract (bnam

-1)X n-ma(X ) from b(X ) so that the highest-order term in 
b(X ), bm X m, is eliminated and leave b(1)(X ). Then we subtract am

-1(bn - 1 -  
bn am

-1)X n -m -1a(X ) from b (1)(X ) so that the highest order (bn -1 - bn am
-1) 

X n-1 in b (1)(X ) is removed. The procedure is performed for a to-
tal of n - m + 1 times. Then the remaining b (n -m + 1)(X ) is the remain-
der of b(X )/a(X ). The division process can be realized by the circuit 
in Figure 3.10. The registers are initially reset to zeros. When the last 
term in b(X ), b0, is shifted in, what is left in the registers is the re-
mainder. The quotient is at the output of the circuit with the highest  
order appearing first. If a(X ) and b(X ) are over GF(2), then am

-1 = am (am 
nonzero) and -am = am.

Notice that (3.48) computes the remainder of X n - k m(X )/g(X ). Letting 
a(X ) = g(X ), b(X ) = X n - km(X ), we can design the cyclic encoder shown in 
Figure 3.11. Inputting m(X) from the right side of the circuit corresponds to 
multiplication of m(X) by Xn-k. The encoder operates as follows:
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1.	 Turn both switches sw1 and sw2 to a . The message polynomial is 
shifted into the encoder with the highest order first, and simulta-
neously into the channel. Once the lowest order of the message is 
shifted in, the registers contain the parity polynomial m(X ).

2.	 Turn sw1 and sw2 to b . The encoder is clocked n - k - 1 more 
times to shift the parity-check bits into the channel.

Systematic cyclic encoding may also be implemented using the parity- 
check polynomial h(X ). Because hk = 1 [see (3.38)], we can rewrite (3.44) as:

	

1
0 1 1 1 1 0

( , 1, , 1)
k

l k l l k l k i l ii
c h c h c h c h c l k k n

-
- - - - + -=

= + + + = = + -å� � 	

(3.52)

Figure 3.10  Polynomial division circuit.

g0 g1 gn k−1− gn k−g2

m X( )
c X( )

D D D D

sw 2

sw 1

0

Figure 3.11  Systematic cyclic encoder using a generator polynomial.
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Notice that cn - k = m0, cn - k + 1 = m1, ¼, cn - 1 = mk - 1 are already 
known. The parity checks m0 = c0, m1 = c1, ¼, mn - k - 1 = cn - k  - 1 can then 
be computed using (3.52) starting from l = n - 1. Figure 3.12 is the sche-
matic of the encoder. The circuit consists of the following four operational  
steps:

1.	 First switch sw1 is closed and switch sw2 open. The message  
m(X ) = m0 + m1X + m2X 2 + ¼ + mk - 1X k-1 is shifted into 
both the register and the channel, starting with the highest or-
der. At the end of k clocks, the register line contains the entire  
message.

2.	 Then sw1    is turned open and sw2    closed. The first parity-check 
bit mn -k -1 = cn -k -1 = S ik -= 

1
0 hi cn -i -1 is generated and appears at point  

Σ . 

3.	 When the next clock arrives, the register is shifted once more and 
the second parity-check bit mn -k -2 = cn -k -2 = Si

k -
= 

1
0 hicn -i -2 is pro-

duced and appears at point Σ . 

4.	 The computation continues until all n - k parity-check bits have 
been formed.

Example 3.11

Figure 3.13 shows the encoder for the (7,4) code with the generator g(X ) = 
1 + X + X 3. The encoding process for the message polynomial m(X ) = 1 + 
X 3 is listed in Table 3.6.

The encoded output is c(X ) = X + X 2 +  X 3 + X 6. 

h0h2hk−1 hk−2hk

m X( )

c X( )

D D D D

sw 2

sw 1

h1

D

Figure 3.12  Systematic cyclic encoder using parity-check polynomial.
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MATLAB Experiment 3.12

Given a generator polynomial, the function encode used in MATLAB 
Experiment 3.1 can also encode a message into the desired cyclic code. The 
following script encodes m = (001) into the codeword c = (0100011) of the 
(7,4) cyclic code.
>> n = 7; k = 4; 			       % (7,4) code
>> g = [1 1 0 1];			       % generator polynomial
>> m = [0 0 1 1];			       % message
>> c = encode(m,n,k,’cyclic’,g);	     % ‘cyclic’ encoding
>> c’					         % codeword
ans =

	 0  1  0  0  0  1  1

m X( )
c X( )

D D D

sw 2

sw 1

0

Figure 3.13  Example cyclic encoder.

Table 3.6
Example Cyclic Encoding Process 

Step
Message 
Input

sw1 sw2 Register Output Note

0

a a

000 Initialization

1 1 110 1

2 0 011 0

3 0 111 0

4(a) 1 011 1

4(b)

b b

011 1

5 001 1

6 000 0 Encoding complete
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3.2.2.2  Cyclic Decoder

Due to the cyclic nature of the codes, the syndrome computation for cyclic 
codes can be implemented in a much simpler manner with a shift register. 

Let r (X ) = r0 + r1X 1 + r2X 2 + ¼ + rn - 1X n - 1 be the received polynomial 
corresponding to the received word r = (r0 r1 r2 ¼  rn -1). Then r(X ) can be 
expressed as:

	 ( ) ( ) ( ) ( ) ( ) ( )r X c X e X m X g X e X= + = + 	 (3.53)

where e(X ) = e0 + e1X + e2X + ¼ + en - 1X n-1 is the error polynomial corre-
sponding to the error pattern e = (e0 e1 e2

¼ en -1). Computing r (X ) modulo- 
g(X ), we obtain a remainder S(X ):

	 ( ) ( ) mod ( ) [ ( ) ( )]mod ( ) ( ) mod ( )S X r X g X c X e X g X e X g X= = + = 	
(3.54)

Notice that the polynomial S(X ) has the same functionality as the syn-
drome matrix S: it equals zero if r(X ) contains no error, and nonzero other-
wise. Therefore, S(X ) is called the syndrome polynomial.

The syndrome computation in (3.54) basically involves polynomial di-
vision; therefore, it can be done using a circuit similar to that shown in Fig-
ure 3.10. The architecture is sketched in Figure 3.14. Initially, the registers 
are reset to zero. After the received polynomial r(X ) has been totally shifted 
into the registers, the content of the registers forms the syndrome.

Example 3.12

The syndrome computation circuit for the (7,4) Hamming code is depicted 
in Figure 3.15. Table 3.7 provides a step-by-step list of how the circuit op-
erates when it receives the polynomial r (X) = X + X 2 + X 5 +X 6.

g0 g1 gn k−1− gn k−g2

r X( )
D D D D

S1 Sn k− −1S0 Sn k− −2

Figure 3.14  Syndrome computation circuit for cyclic codes.
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MATLAB Experiment 3.13

The syndrome computation function that we have provided can also be 
used to find the syndrome polynomial with the option set to ‘g’:
>> r = [0 1 1 0 0 1 1];	 % r(x) = x + x^2 + x^5 + x^6
>> g = [1 1 0 1];		  % g(x) = 1 + x + x^3
>> syndpoly = synd(r,g,’g’)	% ‘g’ means g is a generator poly.
syndpoly =
		  0  0  1 

The result corresponds to X 2 and is exactly the same as in the example.

Once the syndrome is computed, we can readily tell if the received 
polynomial r(X ) contains any error. For error correction, however, we need 
to find the error polynomial e(X ) from S(X ). Certainly we can apply the 
simplified standard array decoding method introduced earlier to cyclic codes, 
but the decoder proposed by Meggitt is more efficient [7]. 

The basic idea of the Meggitt decoder is to decode only the highest 
position in r(X ) and its cyclically shifted versions. After r(X ) is shifted  

D D D

S0

r X( )

S1 S2

Figure 3.15  Syndrome computation circuit for cyclic Hamming code.

Table 3.7
Operation Process of Example Syndrome Computational Circuit

Step r (X ) Register Note

0 000 Initialization

1 1 100

2 1 110

3 0 011

4 0 111

5 1 001

6 1 010

7 0 001 S (X ) = X 2
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n - 1 times, every bit of r(X ) is in that position once and has the chance 
to be decoded. The presence of error is determined by checking if the re-
lated syndrome corresponds to an error polynomial with a 1 in its highest  
order.

It has been shown that if the syndrome of r(X ) is S(X ), the syndrome 
of r (i)(X ) is S (i)(X ), where the superscript (i ) denotes the cyclic shift by i times 
[3, p. 138]. That is to say, only the first syndrome needs to be computed from 
scratch. 

The Meggitt decoding process is illustrated in Figure 3.16. If the highest 
position is found to be correct in the current version of the received polyno-
mial r (i)(X ), nothing is changed except that r (i)(X ) and S (i)(X ) are cyclically 
shifted once at the same time. If the highest position in r (i)(X ) is found to be in 
error, the position is complemented (i.e., corrected) and the resultant polyno-
mial r̂ (i)(X ) is shifted. Note that the new syndrome in this case can no longer 
be obtained by shifting S (i)(X ) [because r̂ (i)(X ) ¹ r (i)(X )]; rather it equals the 
shifted version of S (i)(X ), that is, S (i+1)(X ), plus one:

	
( +1) ( )
new ( ) shift of [ ( )] 1i iS X S X= + 	 (3.55)

The loop continues until all bits in r (X ) have been decoded.

Shift ( )r x
∧

Compute new ( )S X

Compute ( )S X

Receive ( )r X

Shift ( ) and ( )r X S X

Complement the position

Highest position
in error?

Yes

No

Figure 3.16  Flowchart of Meggitt decoding.
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A Meggitt decoder consists of a buffer, a syndrome computation circuit, 
and a pattern recognizer, as depicted in Figure 3.17. Before the decoding  
starts, sw1 is closed and sw2 (including sw2_a and sw2_b) is open. The de-
coder first moves the message into the syndrome register and into the buffer 
simultaneously. When this is completed, the syndrome register contains the 
syndrome of r (X ). Then sw1 opens and sw2 closes. If the pattern recognizer 
detects that the current syndrome corresponds to an error polynomial with a 
1 in its highest position, it produces a 1; otherwise, it produces a 0. Accord-
ingly, the decoder does either of following:

1.	 Correct the highest position and cyclically shift the resultant re-
ceived polynomial once. Also, at the same time, calculate the new 
syndrome.

2.	 Cyclically shift both the received polynomial and the syndrome 
once. 

Either way, the pattern recognizer then checks the highest position in  
the new received polynomial and the decoding proceeds in a similar manner.

The Meggitt decoder can also be configured to move in r (X ) from the 
right side of the circuit. This is left as a problem for readers to solve.

Example 3.13

Let us design a Meggitt decoder for the (7,4) Hamming code. The key cir-
cuit is the pattern recognizer. Recall that Hamming codes can correct one 
error at most. As such, there is only one error polynomial that corresponds to 
the received polynomial having an error in the highest position, that is, e(X) 

Pattern recognizer

Buffer

Syndrome computation circuit

Syndrome registerr X( )

sw  _a2

sw  _b2

sw 1

c X( )~

Figure 3.17  Block diagram of Meggitt decoder.
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= 0 + 0X + 0X 2 + 0X 3 + 0X 4 + 0X 5 + X 6. The syndrome corresponding 
to the error is calculated to be S(X) = 1 + X, or S = (101) in vector form. 
Consequently, the logic function of the pattern recognizer is as shown in 
Table 3.8.

The circuit is simply a single three-input AND gate with the middle 
input inverted.

The complete decoder is depicted in Figure 3.18. Table 3.9 lists the 
operations of the decoder for decoding on r (X) = X + X 2 + X 4 + X 5 + X 6 
with an error in its term X.

Table 3.8
Logic Function of the Example Pattern Recognizer

Input (= S ) Output

(000) 0

(001) 0

(010) 0

(011) 0

(100) 0

(101) 1

(110) 0

(111) 0

Pattern recognizer

Buffer

Syndrome computation circuit

pr_out

r X( )

D D

D

D D D D D

sw  _a2

sw  _b2

sw 1

c X( )~

D D

Figure 3.18  Meggitt decoder for Example 3.13.
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An alternative decoder is the error trapping decoder of Kasami [8], 
which is a modified version of the Meggitt decoder. Because the error trap-
ping decoder is most suited to Fire codes and those codes are not intro-
duced in this book, we do not cover it. Interested readers will find details in  
[2, 3].

MATLAB Experiment 3.14 

This book’s companion DVD provides an errpat* function that lists 
syndrome patterns for all possible errors having erroneous MSBs. Together 
with the syndrome computation function synd* we can easily simulate the 
Meggitt decoder in MATLAB.

If the decoding method is not a concern, we can use the MATLAB 
function decode to decode a cyclic code. The following commands decode 
r = (0100001), which has an error in its sixth position. The original message 
is m = (0011).

Table 3.9
Decoding Process for Example 3.13

Step Input ri sw1 sw2 pr_out
Syndrome 
Register

Buffer Note

0

Close Open

000 0000000

1 1 0 100 1000000

2 1 0 110 1100000

3 1 0 111 1110000

4 0 0 101 0111000

5 1 0 000 1011100

6 1 0 100 1101110 Error bit moves in

7 0 0 010 0110111

8

Open Close

0 001 1011011

9 0 110 1101101

10 0 011 1110110

11 0 111 0111011

12 1 101 1011101 Corrected to 1011100

13 0 000 0101110

14 0 000 0010111 ¬ Decode output
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>> n = 7; k = 4;			       % code parameters
>> g = [1 1 0 1];			       % generator polynomial
>> r = [0 1 0 0 0 0 1];		      % received word
>> m = decode(r,n,k,’cyclic’,g);	     % decoding
>> m’
ans =

	 0  0  1  1

3.2.3  Shortened Cyclic Codes and CRC

3.2.3.1  Shortening Cyclic Codes

The need for shortened codes arises when the original code parameters do not 
match the system design. Code shortening is accomplished by giving up some 
of the message bits in a code. To be more specific, suppose that we want to 
encode a message of length k - L:

	 m¢(X ) = m0 + m1X +¼ + mk-L-1X k-L	

but the selected code is an (n, k) code. In this case we may add L 0’s to m´(X ) 
to make up the length k. The resultant message polynomial is:

	 1 1 1
0 1 1

0's
( ) 0 0 0k L k L k L k

k L
L

m X m m X m X X X X- - - - + -
- -= + + + + × + × + + ×� �� � �

The corresponding codeword is�:

	

1
0 1 1

1 1
0 1 1 0 1 1

1 1

0's

( )

0 0 0

n
n

n k n k n k n L
n k k L

k L k L n

L

c X c c X c X

X X m X m X m X

X X X

µ µ µ

-
-

- - - - + -
- - - -

- - + -

= + + +

= + + + + + + +

+ × + × + + ×

�

� �

�� � �

The L 0’s in c(X ) are not transmitted. So the codeword actually transmitted is 
the shortened version of c(X ) [shortened from (n, k) to (n - L, k - L)]:

	 c ¢(X ) = c0 + c1X +¼ + cn-L-1X n-L-1

	  = m0 + m1X + ¼ + mn-k-1X n-k + m0X n-k+ m1X n-k+1+ ¼ + mk-L-1X n-L-1	

�.  Without loss of generality, we assume a systematic code.
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By shortening the code we are actually using a subset of the original 
codewords. The error detection and correction capabilities of the shortened 
codes are at least the same as their original codes.

Shortened cyclic codes (sometimes also referred to as polynomial codes) are 
still linear block codes, but in general they are no longer cyclic. However, if 
we pad the L 0’s to make up the length, the shift register–based encoder and 
the Meggitt decoder can still be used. 

The L 0’s apparently do not impact the syndrome computation. So it 
should also be possible for the Meggitt decoder to decode the shortened codes 
without adding the L 0’s. Attention must be paid, however, to the proper 
alignment of the syndrome with the bit to be decoded. Let r´(X ) = r0 +  
r1X + r2X 2 + ¼ rn - L - 1X n-L-1 be the received polynomial. To decode the  
first received bit rn - L, we actually need the syndrome calculated as  
X n-k+Lr´(X )mod g(X ), rather than r´(X )mod g(X ). (Think about it; why?) 
The term X n-k +L can be made up by either shifting the syndrome register 
n - k + L times after the original syndrome is ready, or by modifying the 
syndrome computation circuit so that it directly computes X n-k+Lr´(X )mod 
g(X ). The first approach needs additional n - k + L clocks to shift S(X ), and 
the second one introduces no extra delay. 

Modification to the syndrome computation circuit for shortened codes 
is straightforward. We notice that X n-k+Lr´(X )mod g(X ) can be equivalently 
calculated as r´(X )r(X )mod g(X ), where r(X ) is is defined as:

	 r(X ) = r0 + r1X +  ¼ + rn-k-1X n-k-1
  X n-k +L mod g(X )	

As a result, the new circuit involves both polynomial multiplication 
[r´(X )r(X )] and polynomial division [r´(X )r(X )mod g(X )], as illustrated in 
Figure 3.19.

g0

ρ0

g1

ρ1

gn k−1−

ρn k−1−

gn k−g2

ρ2

r X( )

D D D D

Figure 3.19  Modified syndrome computation circuit for shortened cyclic codes.



	 Binary Block Codes	 93

Example 3.14

Consider a (5,2) code shortened from the (7,4) Hamming code with the 
generator polynomial g(X ) = 1 + X + X 3. The polynomial r(X ) is calcu-
lated to be:

	 r(X ) = X n-k-L mod g(X ) = x5 mod g(x)= 1 + X 2	

The syndrome register in the Meggitt decoder is now revised as in Fig-
ure 3.20. The connection enclosed by the dashed line implements r´(X )r(X ). 
The switches are initially set to off and turned to on when r´(X ) is clocked 
in. The content of the resultant circuit is r´(X )r(X )mod g(X ).

3.2.3.2  Cyclic Redundancy Check

One of the most important shortened cyclic codes for error detection is the 
cyclic redundancy check (CRC) codes. By design, a CRC code has a shorter 
message length than cyclic codes. A CRC code is particularly good at detect-
ing burst errors. So the codes are exclusively used together with ARQ for er-
ror detection in practice, especially in computer communications (although 
they do have some error correction capabilities).

CRC has generator polynomials of the form g(X ) = (1 + X )a(X ), where 
a(X ) is a primitive polynomial over GF(2). Different a(X ) results in different 
error detection capability of the code. Table 3.10 is a list of some CRC codes 
that have been standardized and used in practice. 

Error detection with CRC is simple. We do not even need a syndrome. 
We calculate the parity check of the k received bits corresponding to the  
message bits in the codeword, and compare it with the received parity check. 
If they do not match, an error or errors have occurred.

CRC codes are evaluated in terms of their error pattern coverage, burst 
error detection capability, or probability of undetected error. The error pattern  

r X( ) D D D

Figure 3.20  Syndrome computation circuit revised for shortened (5,2) code.
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coverage of an (n, k) CRC code, h, is defined as the ratio of the number of 
noncodeword n-tuples to the total number of n-tuples:

	

( )(2 2 )
1 2

2

n k
n k

nη - --= = -
	

(3.56)

The measure reflects the probability that a received word, if in error, is 
not a codeword, or in other words, it is detectable. Obviously we want this 
parameter as close to 1 as possible.

An (n, k) CRC code has the following burst error detection capability 
[9, p. 189]:

1.	 Detect all error bursts of length b £ n - k. The length of an error 
burst is defined as the number of bits counted from the first error to 
the last, inclusive.

2.	 Detect the fraction of 1 - 2-(n - k -1) of all bursts of length b = n - k 
+ 1.

3.	 Detect the fraction of 1 - 2-(n - k) of all bursts of length b > n - k + 1.

The probability of undetected error may be calculated from (3.22). 
For a BSC with small crossover probability and large code length, The 
probability approaches 2-(n - k), independent of the channel quality [5,  
p. 175]. 

Table 3.10
Some Standardized CRC Codes

CRC Code Generator Polynomial g (X )

CRC-8 X 8 + X 2 + X  + 1 

CRC-12 X 12 + X 11 + X 3 + X 2 + X + 1

CRC-ANSI X 16 + X 15 + X 2 + 1

CRC-CCITT X 16 + X 12 + X 5 + 1

CRC-SDLC X 16 + X 15 + X 13 + X 7 + X 4 + X 2 + X + 1

CRC-32 X 32 + X 26 + X 23 + X 22 + X 16 + X 12 + X 11 + X 10 + X 8 + X 7 + X 5+ X 4 + X 2 + X + 1
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Example 3.15

Consider the CRC-CCITT, whose generator polynomial is:

	

16 12 5

15 14 13 12 4 3 2

( ) 1

( 1)( 1)
( )

g X X X X

X X X X X X X X X
a X

= + + +

= + + + + + + + + +� � �

This is a (k + 16, k) code with the minimum distance dmin = 4. The code 
is able to correct a single error and at the same time detect two errors, or 
detect up to three errors. The codeword is formed by appending the 16-bit 
parity check to the original message. The encoder/detector is depicted in Fig-
ure 3.21. CRC-CCITT is widely used in many communications protocols 
such as X.25 and Bluetooth.

MATLAB Experiment 3.15 

Our  function crcchk* generates and checks CRC. Taking CRC-ANSI 
as an example, we assume a message word of m = (1110010010110010).
>> m = [1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0];
>> g = [1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1];	 % gen. poly.
>> crc = crcchk(m,g)
crc = 
	 1 1 1 0 1 0 1 1 0 1 1 1 0 1 0 0

Appending the parity bits to the message, we have the complete code-
word as (111010110111010|01110010010110110). If no error occurs in the 
transmission, we then have:
>> r =	[1 1 1 0 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 0...
	 1 0 1 1 0 0 1 0];
>> crc = crcchk(r,g)
crc = 
	 0

The outcome confirms that no error exists.

3.3  BCH Codes 

BCH codes, named after their discoverers Bose, Chaudhuri, and Hocqueng-
hen [10, 11], are undoubtedly the most important cyclic codes. The codes 
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are among the best codes of moderate length. The biggest advantage of 
BCH codes is the existence of efficient decoding methods due to the special 
algebraic structure introduced in the codes. The two main types of inter-
est are binary BCH codes and Reed-Solomon codes. In this section we 
present binary BCH codes. Reed-Solomon codes are the topic of the next  
chapter.

3.3.1  Introduction 

3.3.1.1  Designing BCH Codes 

A binary BCH code of length n = 2m - 1(m ³ 3) is defined as a cyclic code 
whose code polynomials take a, a 2, a 3, ¼, a 2t as their roots, where a is the 
primitive element of GF(2m) and t < 2m-1. 

From the preceding statement it follows that the generator polynomial 
of a BCH code is the least common multiple (LCM) of the minimum poly-
nomials of a i(i = 1, 2, ¼, 2t):

	 1 2 2( ) LCM[ ( ), ( ), , ( )]tg X X X Xφ φ φ= � 	 (3.57)

where fi (X ) represents the minimum polynomial of ai. 
The minimal polynomials f1(X ), f2(X ), ¼, f2t(X ) have an interesting 

property: for every fi (X ), where i is an even number, there exists fi'  (X ) = 
fi (X ), where i ¢ is an odd number [2, p. 195]. Based on this finding, (3.57) 
can be simplified as follows:

	 1 3 2 1( ) LCM[ ( ), ( ), , ( )]tg X X X Xφ φ φ -= � 	 (3.58)

Because each minimal polynomial is of degree m or less, the degree of 
g(X ) is at most mt, and so is the number of parity-check bits, that is, n - k £ 
mt.� 

Table 3.11 lists the parameters and generator polynomials of some 
BCH codes.

The binary BCH codes defined in Table 3.11 are primitive BCH codes 
because they are constructed using a primitive element of GF(2m).

�.  If t is small, n - k = mt [2, 3].
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Example 3.16

Let a be a primitive element of GF(23) and t = 1.The minimum polynomi-
als corresponding to a and a 2 are:

	 f1(X ) = f2(X ) = X 3 + X + 1	

So, the generator polynomial is obtained as:

	 g(X ) = LCM[f1(X ), f2(X )] = X 3 + X + 1	

Notice that  g(X) is exactly that same generator polynomial of the (7,4) 
cyclic Hamming code. Therefore the (7,4) cyclic Hamming code is also a 
BCH code.

With the generator polynomial ready, encoding of a BCH code is done 
just the same as that of a cyclic code.

Table 3.11
Some BCH Codes

n k t Generator Polynomial

15 7 2 1 + X 4 + X 6 + X 7 + X 8

15 5 3 1 + X + X 2 + X 4 + X 5 + X 8 + X 10

31 21 2 1 + X 3 + X 5 + X 6 + X 8 + X 9 + X 10

31 16 3 1 + X + X 2 + X 3 + X 5 + X 7 + X 8 + X 9 + X 10 + X 11 + X 15

31 11 5 1 + X 2 + X 4 + X 6 + X 7 + X 9 + X 10 + X 13 + X 17 + X 18 + X 20

63 51 2 1 + X 3 + X 4 + X 5 + X 8 + X 10 + X 12

63 45 3 1 + X  + X 2 + X 3 + X 6 + X 7 + X 9 + X 15 + X 16 + X 17 + X 18

63 39 4 1 + X  + X 2 + X 4 + X 5 + X 6 + X 8 + X 9 + X 10 + X 13 + X 16 + X 17 + X 19  
  + X 20 + X 22 + X 23 + X 24

63 36 5 1 + X  + X 4 + X 8 + X 15 + X 17 + X 18 + X 19 + X 21 + X 22 + X 27

63 30 6 1 + X  + X 2 + X 5 + X 6 + X 8 + X 9 + X 11 + X 13 + X 14 + X 15 + X 20 

  + X 22 + X 23 + X 26 + X 27 + X 28 + X 29 + X 30 + X 32 + X 33

127 113 2 1 + X  + X 2 + X 4 + X 5 + X 6 + X 8 + X 9 + X 14

127 106 3 1 + X  + X 5 + X 6 + X 7 + X 8 + X 11 + X 12 + X 14 + X 15 + X 17 + X 18 + X 21

255 239 2 1 + X  + X 5 + X 6 + X 8 + X 9 + X 10 + X 11 + X 13 + X 14 + X 16

255 231 3
1 + X 2 + X 4 + X 5 + X 7 + X 8 + X 13 + X 15 + X 16 + X 17 + X 19  
  + X 20 + X 21 + X 23 + X 24
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MATLAB Experiment 3.16

The function bchpoly in the MATLAB Communications Toolbox is 
designed to find the generator polynomial of a binary BCH code with code-
word length n and message length k. 
>> n = 7; k = 4; 			   % (7,4) BCH code
>> genpoly = bchpoly(n,k)		  % generator polynomial
genploy =
		  1  1  0  1

The corresponding generator polynomial for the result is 1 + X + X 3. 

MATLAB Experiment 3.17

Run the following script and encode a message word m into an (n, k) 
BCH code specified by the generator polynomial g.
>> n = 7; k = 4;		  % (7,4) BCH code
>> g = [1 1 0 1];		  % from last experiment
>> m = [1 0 0 1];		  % message, you may change  
				    % it to any 4-tuple
>> c = bchenco(m,n,k,g)	 % encoding
c =

	 0  1  1  1  0  0  1

3.3.1.2  Parity-Check Matrix of BCH Codes

BCH codes can also be specified by their generator matrices or parity-check 
matrices. Stated previously, a BCH code takes a i (i = 1, 2, ¼, 2t) as its roots. 
This implies c (a i) = 0. Writing it out, we have:

	

1 2 1
0 1 2 1

2 1 2 2 2 1
0 1 2 1

2 1 2 2 2 1
0 1 2 1

0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

n
n

n
n

t t t n
n

c c c c

c c c c

c c c c

α α α

α α α

α α α

-
-

-
-

-
-

+ + + + =

+ + + + =

+ + + + =

�

�

�

� 	

(3.59)
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or in matrix form:

	

1 2 1 2 1

2 2 2 2 2
0 1 2 1

1 2 1 2 1

1 1 1

( ) ( )

( ) ( ) ( )

( ) ( )

t

t
n

n n t n

c c c c

α α α

α α α

α α α

-

- - -

é ù
ê ú
ê ú
ê ú× =ê ú
ê ú
ê ú
ê úë û

0

�

�

� �
�

�

	 (3.60)

On the other hand, the parity-check matrix satisfies the following  
[see (3.7)]:

	
T× = 0c H 	 (3.61)

Comparing (3.60) with (3.61), we obtain the parity-check matrix of 
the BCH code:

	

T 1 2 1

1 2 1 2 1 2 1 2 2 2 1

2 2 2 2 2 3 1 3 2 3 1

1 2 1 2 1 2 1 2 2 2 1

1 1 1 1

( ) ( ) 1 ( ) ( ) ( )

( ) ( ) 1 ( ) ( ) ( )

( ) ( ) 1 ( ) ( ) ( )

n

t n

t n

n n t n t t t n

α α α
α α α α α α
α α α α α α

α α α α α α

-

-

-

- - - -

é ùé ù
ê úê ú
ê úê ú
ê úê ú= = ê úê ú
ê úê ú
ê úê ú
ê úê úë û ë û

� �

� �

� �
� �

� �

H

	                                                                                                            (3.62)

3.3.2  BCH Bound and Vandermonde Matrix

We first state that, by design, the minimum distance of a BCH code is  
dmin = 2t + 1. As such, a BCH code is able to correct up to ë(dmin-1)/2û = t  
errors. This error correction capability is called the BCH bound.

Now we prove the bound by using reductio ad absurdum. BCH codes 
are linear block codes. So the minimum distance is the minimum weight of 
nonzero codewords. Suppose that there exists a nonzero codeword of weight 
w £ 2t. Let cj1 = 1, cj2

 = 1, ¼, cjw
 = 1 be the nonzero components in the code-

word c. It follows from (3.61) that:
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(3.63)

Equation (3.63) implies that every column in the w ´ 2t matrix 
must sum to zero. However, we also find that any w ´ w submatrix of 
the preceding matrix is a Vandermonde matrix whose columns never sum 
to zero. So our assumption that dmin £ 2t must be invalid, and the code 
distance of BCH codes exceeds 2t. This proves that the minimum distance  
dmin = 2t + 1.

Note that although we have proven that  dmin = 2t + 1, the true mini-
mum distance of a BCH code may be larger and the code may be able to cor-
rect more than t errors. However, despite that potential, most BCH decoding 
methods will correct only up to errors anyway, and any extra capability of the 
code goes into error detection.

3.3.3  Decoding BCH Codes

3.3.3.1  General Approach 

Thanks to the unique algebraic structure in BCH codes, the syndrome com-
putation for the codes can be simplified to a great extent. Using the definition 
of syndrome S = S0 S1 S2 ¼ Sn - 1 = r × H T and the parity-check matrix for 
BCH codes H specified in (3.62), each component of the syndrome, Si, can 
be easily calculated as:

	
2 1

0 1 2 1( ) ( ) ( ) ( 1,2, ,2 )i i i i n
i nS r r r r r i tα α α α -

-= = + + + + =� � 	
(3.64)

Substitute r(X ) = c(X ) + e(X ) into (3.64):
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	 ( ) ( ) ( )i i i
iS c e eα α α= + = 	 (3.65)

Assume that r(X ) contains n £ t errors at locations j1, j2, ¼, jn. Then 
the error polynomial is:

	
ν

ν= × + × + + ×�1 2
1 2( ) j j j
j j je X e X e X e X 	 (3.66)

Combining (3.65) and (3.66), we obtain the syndrome:

	

ν
ν

ν
ν

α α α

α α α

= × + × + + ×

= × + × + + × =

�

� �

1 2
1 2

1 2
1 2

( ) ( ) ( )
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i j j j
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j j j

S e e e

e e e i t 	

(3.67)

Letting bk denote a jk, (3.67) is rewritten as:
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(3.68)

Notice that for binary codes, ejk = 1 (k = 1, 2, ¼, n). Equation (3.68) 
is further simplified to:
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(3.69)

Decoding of BCH codes is essentially done to find bk’s. Once all bk’s 
are known, the location of the error(s) is also known. For example, say, b1 =  
a3, by definition a j1 = a 3 or j1 = 3, which means that r(X ) has an error with 
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the term X 3. The bit r3 is then complemented and the error is corrected. The 
solution to the simultaneous equations in (3.69) is usually not unique. How-
ever, if there are t or fewer errors, the most probable error pattern is the one 
with the smallest number of 1’s. 

Equation (3.69) is a set of nonlinear functions; solving it directly ap-
pears not to be a simple task especially for large t. However, things will be 
easier if we construct a polynomial s(X ) whose roots are the reciprocals of 
bk’s:

	
ν

ν νσ σ σ σ σ β β β= + + + + - - -� � �2
0 1 2 1 2( ) (1 )(1 ) (1 )X X X X X X X 	

(3.70)

where 
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1 2 1
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( 1) 	

(3.71)

As we will see shortly an efficient algorithm is available with which to 
build the polynomial. Polynomial s(X ) is called the error location polynomial. 
Equation (3.71) is referred to as the elementary symmetric function. 

Summarizing, decoding of BCH codes involves: 

1.	 Calculating a syndrome;

2.	 Determining the error location polynomial s(X );  

3.	 Finding the roots of the error location polynomial (i.e., error posi-
tions); 

4.	 Correcting the errors. 

Step 1 is done by evaluating (3.64). Step 4 is trivial for binary codes. In 
the next two subsections we focus on steps 2 and 3 in detail. 

Based on the decoding steps just listed, the block diagram of a BCH 
decoder is illustrated in Figure 3.22. The delay is used to compensate for 
the processing latency in steps 1, 2, and 3, such that the delayed r(X ) aligns  
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properly with the error position signal. The signal is 1 whenever an error is 
found, and simultaneously is used to correct the error bit in r(X ) using XOR.

3.3.3.2  Error Location Polynomial and Peterson’s Algorithm

We now come down to the algorithm for deriving the error location poly-
nomial. It has been shown that the coefficients of the error locator poly-
nomial s(X ) are related to the syndrome by the so-called Newton’s identity  
[3, p. 285]:

	

ν ν ν ν ν

ν ν ν ν ν

ν ν ν ν ν

ν ν ν ν

σ

σ σ

σ σ σ

σ σ σ σ

σ σ σ σ

σ σ σ σ

σ σ σ σ

- - -

+ - -

+ + -

- - - - + -

+ =

+ + =

+ + + =

+ + + + + =

+ + + + + =

+ + + + + =

+ + + + + =

�

�

�

�

�

�

1 1

2 1 1 2

3 2 1 1 2 3

1 1 2 2 1 1

1 1 2 1 1 2 1

2 1 1 2 1 3 2

2 1 2 1 2 2 2 1 2 1 2

0

2 0

3 0

0

0

0

0t t t t t

S

S S

S S S

S S S S ν

S S S S S

S S S S S

S S S S S 	

(3.72)

Considering the fact that for binary codes the syndrome component St 
is either 1 or 0, we have: 

	

0 if is even

if is odd
i

i
S

S

σ
σ

σ
ì

= í
î 	

(3.73)

r X( )
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Syndrome

comput. circuit
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Delay
Decoded word
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c X( )~

Figure 3.22  Block diagram of binary BCH decoder.



	 Binary Block Codes	 105

Moreover, based on (2.5) in Chapter 2, we also have:

	
( )ν νβ β

= =
= = =å å
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2 1 1
i i

i ik kk k
S S

	
(3.74)

Substituting (3.73) and (3.74) into (3.72), we find that every second 
equation in (3.72) is redundant and can be omitted. As a result, a simplified 
version of (3.72) is obtained:
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(3.75)

Equation (3.75) is a linear equation. The error location polynomial 
coefficients s0, s1, s2, ¼, sn are readily obtained by solving the equation. 
This is the algorithm proposed by Peterson in 1960 [12] to derive the error 
location polynomial. Equation (3.75) can be compactly arranged in the fol-
lowing matrix form:

	 �
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	 × =A SL 	 (3.76)
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One small issue remaining is that we do not know n. This can be solved by 
initially assuming n = t. If indeed there are t errors, matrix A is nonsingular 
and has a nonzero determinant | A |, and (3.75) [or (3.76)] can be solved as is. 
If there are fewer than t errors (i.e., n < t), then A is singular. In this case we 
remove the last two rows and the rightmost two columns from A,� and then 
check for singularity of the new matrix. The procedure continues until the 
remaining matrix eventually becomes nonsingular. Then we solve (3.76) with 
the nonsingular matrix and obtain L. 

Figure 3.23 is the flowchart of Peterson’s algorithm. 
For a small number of errors, it may be easier to solve the equations 

directly. The following lists some of the results [13]: 

Single Error Correction

	 s1 = S1	

Double Error Correction

	

3
3 1

1 1 2
1

,
S S

S
S

σ σ += =
	

�.  Accordingly, the last two elements in A are also removed.

Delete last 2
rows/columns in A

Compute fromS r

Construct A

| | 0?A = Solve A SΛ =No

Yes

Figure 3.23  Flowchart of Peterson’s algorithm.



	 Binary Block Codes	 107

Triple Error Correction
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Although Peterson’s method is conceptually straightforward, it is com-
putationally complex. In practice, a more effective algorithm such as the 
Berlekamp-Massey algorithm or Euclid’s method are often used instead (see 
the next chapter).

3.3.3.3  Finding Error Locations and Chien Search

Now we have the error location polynomial ready. The next step is to find the 
roots of the error location polynomial s(X ). One simple yet effective method 
is to do an exhaustive search. 
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Notice that any root of s (X ) must be one of the elements in the Ga-
lois field of the code: 1, a, a 2, ¼, a n-1, where n = 2m - 1. As such, we can 
evaluate one by one if an element a i is a root; that is, we evaluate s (X ) at 
each nonzero element of the field. If s (a i) = 0, a i is a root of s (X ). This 
algorithm is by Chien and is called the Chien search [14].

A hardware realization of the algorithm is drawn in Figure 3.24. The 
jth register contains sj · (a j)i, where i = 0, 1, 2, ¼, n - 1.The output of the 
circuit is S = s (a i) = s0 + s1 · a i + s2 · (a 2)i + ¼ + sn · (a n)i = s0 + s1 · a i +  
s2 · (a i)2 + ¼ + sn · (a i)n. After n clocks, all elements of the field are  
tested.

Example 3.17

Now we use the (15,5) two-error-correcting BCH code as an example to 
demonstrate BCH decoding. The generator polynomial of the code is as fol-
lows (see Table 3.11):

	 g(X ) = 1 + X 4 + X 6 + X 7 + X 8	

which has as roots a, a 2, a 3, and a 4. Suppose the message polynomial m(X) 
= X + X 2. The corresponding code polynomial is c(X) = X + X 2 + X 4 +  
X 5 + X 6 + X 7 + X 8 + X11 + X12. The received polynomial r(X) = X + X 2 +  
X 5 + X 6 + X 7 + X 8 + X 12 contains two errors. The syndrome of r(X) is 
calculated to be:

	 S1 = r(a) = a13, S2 = r(a 2) = a11, S3 = r(a3) = a10 and S4 = r(a 4) = a	

Figure 3.24  Hardware implementation of the Chien search.
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Using the formulas for double error correction listed earlier, we have:

	

3
313 1

1 1 2
1

, 1
S S

S
S

σ α σ += = = =
	

So the error location polynomial is:

	 s(X ) = 1 + a13X  + X  2 	

Inserting 1, a, a 2, ¼, a14 into s(X) and using the result of Problem 
2.4(a) in Chapter 2, we find that s(a11) and s(a 4)are equal to zero. The 
inverses of the two roots are a4 and a11. So the error polynomial is:

	 e(X ) = X 4  + X 11 	

Summing up, e(X) and r(X) indeed give the correct codeword c(X).

MATLAB Experiment 3.18

The MATLAB built-in function bchdeco(r,k,t) decodes BCH 
code r. Parameter k is the message length and t is the error-correction  
capability.

The following experiment uses the function to decode the (15,5) BCH 
code:
>> k = 5; t = 2;				     % code parameters
>> r = [0 1 1 0 0 1 1 1 1 0 0 0 1 0 0];  % = r(X) in example
>> m = bchdeco(r,k,t)			    % decoding
m =

	 0  1  1  0  0

Note  The focus of this chapter has been on the generalities of block codes. There-
fore, in terms of specific codes, we have only presented Hamming codes and CRC 
codes. Many other types of block codes are widely used in practice, such as Reed-
Muller codes, Golay codes and Fire codes, to name a few. They are by no means less 
important. Interested readers are referred to [2, 3, 5].

The chapter discusses binary codes. The most important nonbinary BCH 
codes, Reed-Solomon codes, will be presented in the next chapter.
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Problems

3.1 � This is a (30,20) binary block code. The codeword is formed by 
first arranging the 20 message bits into a 5 ´ 4 array, and then 
assigning a parity bit to each row and column. The value of the 
parity is XOR of all bits in the row or column. For instance, if the 
message is m = (10110100011011000011), the two-dimensional 
codeword c is as follows:

1 2 3 4 5

   ¬ Parity

1 1 0 1 1 1
2 0 1 0 0 1
3 0 1 1 0 0
4 1 1 0 0 0
5 0 0 1 1 0
6 0 1 1 0 0

�
Parity

The codeword bits are read out of the array row by row. 
The code has certain error correction capability. Suppose that 

during the transmission the bit at location (3,2) is flipped into 
0. The row parity and the column parity associated with the bit 
are recomputed as 1 and 0, and do not match the corresponding 
received parities. [They are 0 and 1; see locations (3,5) and (6,2), 
respectively.] Based on the observation, we know that the bit at 
the intersection of the row and the column [i.e., the bit at (3,2)] is 
in error. The bit is then complemented (i.e., corrected). 
(a) � Determine the generator matrix and the parity-check matrix 

of the code.

(b) � What is the number of errors the code guarantees to correct? 
What is the maximum number of errors the code may cor-
rect (though not guaranteed)?

(c)  Determine the code rate.

(d) � Compare the code with the (31,21) BCH code (see  
Table 3.11). Which one is more efficient?
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3.2 � Assume a channel that generates only the following six different 
error patterns:

(1001010), (0110111), (1001000), (0011011), (1010111), 
(0100010).
Determine the largest possible k for a (7, k) block code that can 
detect all of the above error patterns.

3.3 � Consider the (15,7) BCH code in Table 3.11. Could the 
polynomial X + X 5 + X 8 possibly be a syndrome polynomial 
of the code? Why?

3.4 � Use MATLAB to simulate the probability that the (7,4) example 
code fails to detect errors, and compare the result with the bound 
in (3.25).

3.5 � Implement the Meggitt decoder in MATLAB. (Hint: Use the 
synd* and errpat* function provided in this book’s companion 
DVD.)

3.6 � For a cyclic code, if an error pattern is detectable, is its cyclically 
shifted version also detectable? Justify your conclusion [2].

3.7 � Show that all CRC are guaranteed to correct up to one error. 
[Hint: g(X )|x = 1 = 0 Þ c(X )|x = 1 = 0 Þ dmin = 2].

3.8 � What are the correctable error patterns of the (7,4) Hamming 
code? (Hint: Use a standard array.)
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4 
Reed-Solomon Codes

In Chapter 3 we constructed all BCH codes over GF(2), which resulted in bi-
nary BCH codes. There are also BCH codes that are over GF(q), where q > 2. 
Such codes are called nonbinary BCH codes. A special class of nonbinary BCH 
codes that is overwhelmingly popular is Reed-Solomon (RS) codes. Discovered 
by I. Reed and G. Solomon in 1960 [1], RS codes are very powerful in cor-
recting both random errors and bursty errors. RS codes were initially applied 
in deep-space communications; today they are found in numerous consumer 
products, such as mass storage devices (e.g., CDs and DVDs), broadband 
modems (e.g., xDSL and cable modems), wireless mobile communications 
systems (e.g., WiMax), and so forth. Some of the literature claims that RS 
codes are the most widely used error correcting codes in the world.

RS codes (or nonbinary BCH codes as a whole) are a generalization of 
binary BCH codes. Many similarities exist between the two. In this chapter, 
we assume that readers are already familiar with the materials in the previous 
chapter and concentrate on specifics for RS codes. 

4.1  Introduction to RS Codes 

4.1.1  Prelude: Nonbinary BCH Codes

4.1.1.1  From Binary BCH Codes to Nonbinary BCH Codes

Nonbinary BCH codes differ from binary BCH codes in that nonbinary 
BCH codewords consist of symbols over GF(2m) (m ³ 2),1 whereas binary 
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BCH codewords contain binary bits of 1’s and 0’s. As a consequence, 
arithmetic operations in nonbinary codes are no longer the simple XORs 
and ANDs; rather, they are performed over GF(2m).� Other than that, all 
properties associated with binary BCH codes apply equally to nonbinary 
codes.

Similar to binary BCH codes, a t-error-correcting nonbinary BCH code 
of length n = q z - 1 (q = 2m and z ³ 3) contains roots a 1, a 2, a 3, …, a 2t,� 

where a is the primitive element of GF(q z). The generator polynomial of the 
code is constructed as follows:

φ φ φ-
-= + + + + =2 1

0 1 2 1 1 2 2( ) LCM[ ( ), ( ), , ( )]k
k tg X g g X g X g X X X X� �

(4.1)

where gi Î GF(2m) and fi(X  ) is the minimum polynomial of a i. The mini-
mum distance of the code is dmin ³ 2t + 1. Note that in nonbinary codes “t 
errors” means “t symbol errors.” [Do not confuse the two Galois fields associ-
ated with a nonbinary BCH code: GF(2m) and GF(q z) where q = 2m. The 
former is where the generator polynomial gets its coefficients and also where 
the codeword symbols are from, and the latter is the field over which the 
generator polynomial has its roots.]

The encoding process for nonbinary BCH codes is the same as that 
for binary BCH codes. The encoding methods presented in Chapter 3 can 
be directly ported to nonbinary BCH codes, as long as the computations are 
performed over GF(2m). 

Compared with binary BCH codes, decoding of nonbinary BCH codes 
involves one extra step: finding the magnitude of the error(s). The complete 
decoding procedure now consists of a total of five steps:

Decoding of Nonbinary BCH Codes

1.	 Calculate syndrome Si for i = 1, 2, …, 2t [see (3.64)].

2.	 Determine the error location polynomial s(X  ). 

1.  In a broader sense, the codeword symbols can be over GF(pm), where p is a prime number. 
However, in almost all practical applications GF(2m) is adopted because our systems live on 
binary logic.
2.  The message word comprises symbols that are also over Galois field GF(2m). 
�.  Notice that the root a i starts with i = 1. Such a code is said to be narrow sense. If the root 
starts with i > 1, the code is nonnarrow sense.
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3.	 Find the roots of the error location polynomial (Chien search).

4.	 Compute the error magnitude.

5.	 Correct the errors [see (3.13)]. 

Note that the computation in the first step is performed over GF(q z), 
all others are over GF(2m).

A nonbinary BCH decoder based on the procedure here is sketched in 
Figure 4.1. The error position determination unit controls switch sw. When 
an error position is determined, the unit closes sw to let the error magnitude 
pass through to the GF(2m) adder for correction of the error. 

The Peterson-Gorenstein-Zierler (PGZ) algorithm [2, 3], extended from 
Peterson’s algorithm to the nonbinary case, can be used in step 2 above to 
obtain the error location polynomial. However, like its original version, PGZ 
algorithm becomes computationally costly as the number of errors increases. 
Therefore, we should instead turn to some more efficient algorithms (although 
they may not be as straightforward conceptually). The presentation of these 
algorithms is deferred to Section 4.2. In the next section we introduce an algo-
rithm for the error magnitude calculation performed in step 4.

4.1.1.2  Calculating Error Magnitude and Forney’s Algorithm

The relationship between the syndrome and the error magnitude for a binary 
BCH code with n errors is specified by (3.68) in Chapter 3, which we dupli-
cate here for convenience:

	 ν νβ β β β= + + + + =� �1 2 31 2 3 ( 1,2, ,2 )i i i i
i j j j jS e e e e i t 	 (4.2)

where bk = a jk. The same equation holds for nonbinary codes except ejk 
Î 

GF(2m) in this case. The error magnitude ejk 
sought in step 4 of the above 

r X( )

Step 1 Step 2

Syndrome
computation

Err. location
poly. circuit

Err. magnitude
calculation

Err. position
determination

Step 3
Delay

sw

Step 4

Step 5
c X( )~

Figure 4.1  Structure of nonbinary BCH decoder.
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decoding procedure can then be obtained by solving (4.2) over GF(2m) after 
the error location is determined (which is done in step 3).

However, a more efficient algorithm for calculating the error magni-
tude has been developed by Forney [4]. The algorithm defines an error evalu-
ation polynomial W(X  ) as follows:

	 σW � 2( ) ( ) ( )mod tX S X X X 	 (4.3)

where 

	
-= + + + +�2 2 1

1 2 3 2( ) t
tS X S S X S X S X 	

is the syndrome polynomial, and 

	 = - - - = + + + +� �2
1 2 0 1 2( ) (1 )(1 ) (1 )X X X X X X X ν

ν νσ β β β σ σ σ σ 	

is the error location polynomial. We call (4.3) the key equation. The modulo-
X 2t operation in the equation is to remove all terms of order ³ 2t. 

Forney’s algorithm computes the error magnitude as follows:

	 β
ν

σ -=

W= =
¢

�
1

( )
( 1,2, , )

( )i

i

j
X

X
e i

X
	

(4.4)

where s¢(X ) is the formal derivative of s(X ). Proof of the algorithm can be 
found in [5] or [6].

The value of s¢(X ) can be calculated as follows:

	

ν
ν

ν
ν

σ σ σ σ σσ

σ σ σ ν σ

-
-

-

+ + + +=¢

= + + + + -

��

�

2 1
0 1 2 1

2 1
1 2 3

( ) ( )
( )

2 3 ( 1)

d X d X X X
X

dX dX

X X X 	

Observe that s(X  ) is a polynomial over GF(2m). It follows from the 
GF(2m) arithmetic (see Section 2.2.2 in Chapter 2):

	
σ

σ
ì

× = í
î

0 if is even

if is odd
i

i

i
i

i
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Consequently, s ¢(X ) can be formed by taking the coefficients of the 
odd power terms of s(X ), and assigning them to the next lower power terms 
(which are even power):

	 σ σ σ σ= + + +¢ �2 4
1 3 5( )X X X 	 (4.5)

Later in Section 4.2.4 we will provide an example that illustrates how 
the algorithm is used in decoding RS codes.

In terms of computational complexity, for the nonbinary BCH codes 
over GF(2m) in which we are interested, Forney’s algorithm requires about 
1.25v 2 multiplications and v inversions to find all v error magnitudes.

4.1.2  Reed-Solomon Codes

4.1.2.1  Definition and Particulars

Reed-Solomon codes are a special case of nonbinary BCH codes with z = 
1, that is, the roots of the generator polynomial are also over GF(2m). For a 
t-error-correcting RS code of length n = 2m - 1, the generator polynomial is 
constructed as follows:�

	 α α α

-
-= + + + + +

= + + +

2 2 1 2
0 1 2 2 1

1 2 2

( )

( )( ) ( )

t t
t

t

g X g g X g X g X X

X X X

�

� 	
(4.6) 

where a is a primitive element of GF(2m) and a1, a2, …, a2t are elements 
of the same field. Notice that, since g(X ) is of degree exactly 2t, all (n, k) RS 
codes satisfy the following equation:

	 - = 2n k t	 (4.7) 

Example 4.1

The generator polynomial of the (7,3) RS code is constructed as follows:

	

α α α α

α α α

= + + + +

= + + + +

2 3 4

4 3 3 2 3

( ) ( )( )( )( )g X X X X X

X X X X 	

where a is the primitive element of GF(8). Clearly the code can correct up 
to t = (n - k)/ 2 = 2 erroneous symbols.

�.  X + a i is the minimal polynomial of a i.
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MATLAB Experiment 4.1

MATLAB has a function rspoly built in the Communications Tool-
box that can produce the generator polynomial for RS codes over GF(2m).
>> n = 7; k = 3; m = 3;	 % code parameters
>> g = rspoly(n,k,m)	 % produce generator
g =
  3  1  0  3  0

The result corresponds to the generator polynomial obtained in Ex-
ample 4.1.

4.1.2.2  Encoding Using Generator Polynomial

The (n, k) RS code can be encoded just as binary BCH code. The only dif-
ference is that the multiplications and additions must now be performed over 
GF(2m). For systematic encoding of a message polynomial m(X ) with k coeffi-
cients being the k message symbols over GF(2m), the parity-check polynomial  
m(X ) is the remainder of the shifted message polynomial X n-km(X ) divided by  
the generator polynomial g(X ), that is:

	 µ -=( ) ( )mod ( )n kX X m X g X 	 (4.8)

The resulting code polynomial is: 

	 µ -= +( ) ( ) ( )n kc X X X m X 	 (4.9)

Replacing XOR and AND by the GF(2m) adder and multiplier, respec-
tively, the binary BCH encoding circuit in Figure 3.11 can readily be used for 
systematic RS encoding (the circuit is duplicated in Figure 4.2). 

Example 4.2

Continue with the (7,3) RS code. Let the message polynomial be m(X ) = a2 
+ a3X + X 2. The parity-check polynomial is calculated as:

	

µ

α α α α α

α α α

=

= + + + + + +

= + + +

4

2 4 3 5 6 3 2 3 3 4

2 4 2 4 3

( ) ( )mod ( )

mod

X X m X g X

X X X X X X X

X X X 	
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The complete code polynomial therefore is:

	

µ

α α α α α

= +

= + + + + + +

4

2 4 2 4 3 2 4 3 5 6

( ) ( ) ( )c X X X m X

X X X X X X 	

MATLAB Experiment 4.2

We can use the MATLAB function encode to perform RS encoding if 
the generator polynomial is known, or simply use rsenco and let MATLAB 
figure out the appropriate generator polynomial.
>> n = 7; k = 3;	 % code parameter
>> m = [2 3 0];	 % message poly. as in example 4.2
>> c = rsenco(m,n,k,’power’)	 % ‘power’: power representation
c =
  2  0  4  4  2  3  0

The codeword is c = (a2 1 a4 a4 a2 a31).

4.1.2.3  Encoding in the Frequency Domain

RS code can also be generated in the so-called frequency domain. To explain 
this, we first need to define the Galois field Fourier transform (GFFT). Let a 
be a primitive element in GF(q). The GFFT of an n-symbol vector c = (c0 c1 

Figure 4.2  Systematic RS encoder.
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… cn-1) over GF(q), denoted by C = F(c), is the vector C = (C0 C1 … Cn-1) 
with the elements being computed as:

	
α-

=
= = -å �1

0
( 0,1,0, , 1)

n ij
i jj

C c i n
	

(4.10)

The inverse GFFT of C, denoted by c = F -1(C ), is obtained as:

	

1

0

1
( 0,1,2, , 1)

mod
n ij

j ii
c C j n

n
α

λ
- -
=

= = -å �
	

(4.11)

where l is the characteristic of GF(q). (The characteristic of a Galois field was 
defined in Chapter 2.) The GFFT is analogous to the discrete Fourier trans-
form (DFT) in signal processing. Therefore, Ci (i = 0, 1, 0, …, n - 1) can be 
viewed as components in the frequency domain.

Interestingly, if we take the GFFT of an RS codeword c over GF(2m), 
we find that C contains 2t = n - k consecutive zeros. In fact, it can be shown 
that a polynomial has as roots 2t consecutive powers of a: a1, a1, …, a2t if 
and only if the GFFT of its coefficient vector has 2t consecutive zeros at loca-
tions 1, 2, …, 2t [5, p. 272]. RS code contains 2t roots of consecutive powers 
of a. It is therefore possible to perform RS encoding by treating the message 
as a vector in the frequency domain, inserting necessary zeros and inverse 
transforming the sequence as follows:

	
1( )-=c CF 	 (4.12)

where 0 1 1

2 0's

0 0 0 k

t

m m m -æ ö=
ç ÷è ø

� �� � �C . 

RS encoding based on (4.12) is called frequency-domain RS encoding 
(Figure 4.3).

First message symbol

n codeword symbols

Inverse GFFT

2 0’st k−1 message symbols

Figure 4.3  RS encoding in the frequency domain.
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Example 4.3

Assume the same message polynomial as in Example 4.2, that is, m(X ) = a2 
+ a 3X + X 2. Based on (4.11), we have:
C = (a 2 0 0 0 0 a 31), and
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So, the codeword c = (a 4 11 a 3 a 2 a 4 a 3). Obviously, the code is not 
in systematic form.

Notice that the number of multiplications needed in (4.11) is the same 
as that required by (4.8). So why bother to encode RS in the frequency do-
main? The answer is that it is sometimes useful when the number of message 
symbols is not fixed. Frequency-domain RS encoding can adapt to different 
message lengths k simply by setting the appropriate zeros in C, which requires 
no hardware change.
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4.1.2.4  Error Probability Performance

By design, an RS code can correct up to t = (n - k)/2 errors. Figure 4.4 shows 
the performance of an m = 8 (i.e., n = 255) RS code in an AWGN channel.

Singleton proved that the best achievable random error correction ca-
pability of a block code is [(n - k)/2] [7], and such a block code is called the 
maximum distance separable (MDS) code. RS codes are exactly MDS codes. 

For RS codes over GF(2m), it has been shown that BER is upper bounded 
by [8, p. 72]:
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(4.13)

where PS is the symbol error rate (SER) before decoding. Given the BSC 
channel with a crossover probability of pX, PS is calculated as:

	 = - -S 1 (1 )mXP p 	 (4.14)

10
−5

10
−4

10
−3

10
−2

10
−1

Uncoded

RS coded

Bi
t e

rr
or

 p
ro

ba
bi

lit
y

5 6 7 8 9 10

10
−6

10
−7

E N/ (dB)b 0

Figure 4.4  RS code performance.
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Following a derivation similar to that of (3.29), the upper bound of the 
probability of a word error can be obtained as:

	

-
= +

æ ö
£ -ç ÷è øåW S S1

(1 )
n i i n i
i t

n
P P P

i 	
(4.15)

RS codes demonstrate strong burst error correcting capability, too. A 
burst error of length l is a sequence of errors confined to l consecutive symbols 
of which the first and last are nonzeros. It has been proven that the maximum 
burst error correcting capability of an (n, k) linear block codes, b, satisfies the 
Rieger bound as follows [9]:

	 £ ë - û( )/2b n k 	 (4.16)

For RS codes, (4.16) holds with equality. Therefore, RS codes are also 
the most powerful block codes for burst error correction. One of the reasons 
for this strong burst error correction capability is that RS codes are nonbi-
nary, and their error correction is based on a symbol, that is, on a binary 
tuple, regardless of whether one or all of the bits are in error.

MATLAB Experiment 4.3

We have included in this book’s companion DVD two m-files: rssim.
m* simulating the BER of the example (7,3) RS code, and rstheory.m* com-
puting the upper bound in (4.13). Run the simulation and compare the result 
with the performance of the (7,4) Hamming code simulated in MATLAB Ex-
periment 3.7. The simulation involves RS decoding, which is yet to be discussed. 
For the time being let us put aside the decoding issue and concentrate on the  
performance.

4.2  Decoding of RS Codes

4.2.1  General Remarks 

RS decoding can be accomplished by going through the same decoding pro-
cess as outlined in Section 4.1. Most recently, however, several breakthroughs 
have been achieved in this area, the most notable being the list decoding of 
RS codes able to correct errors beyond half the minimum distance of the code. 
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The algorithm is based on interpolation and factorization of polynomials 
over GF(2m) and its extensions. This advanced topic falls outside the scope of 
this book. Readers willing to explore further are referred to [10] and [11]. 

For the conventional RS decoding given earlier, the only thing left un-
touched is some efficient algorithms for finding the error location polynomial 
s(X ) in (4.3). We now present two such methods that are widely used in 
practice. Note that the methods are not specific to RS codes; they apply to 
nonbinary BCH codes in general. 

MATLAB Experiment 4.4

As one of the core decoding functions, rsdeco is a function that  
MATLAB has specifically designed to decode RS codes. In MATLAB Experi-
ment 4.3 we used it to decode the example RS code. Readers are encouraged 
to take a look at the m-file to find out how the function is used.

4.2.2  Determining the Error Location Polynomial

4.2.2.1  Berlekamp-Massey Algorithm

If we compare Newton’s identity in (3.72):

	
ν σ ν ν ν-=

= - = + + £å �
1

( 1, 2, ,2 and is the number of errors)i j i jj
S S i t t

with the input/output relation of a classical autoregressive filter:

	
-

-=
= - +å 1

1

N
i j i j ij

y a y x
	

we can see that Newton’s identity represents just an autoregressive filter that 
outputs the syndrome sequence Sn+1, Sn+1, …, S2t under zero input. Because 
an autoregressive filter can be implemented as a linear feedback shift register 
(LFSR), the task of determining the error location polynomial can be trans-
formed into the task of constructing an LFSR that takes the syndrome sequence 
as its output. One comment on this is that the LFSR may not be unique, and 
we want the shortest such LFSR (i.e., the smallest number of errors) in order to 
conform to the maximum-likelihood decoding principle (see Section 3.3.3). 

The Berlekamp-Massey (BM ) algorithm synthesizes such an LFSR itera-
tively [12, 13]. Starting with an LFSR that produces S1, the LFSR is checked 
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to see if it can also produce S2. If it can, then the LFSR is not touched. Oth-
erwise, the LFSR is modified such that it can also generate S2. Next the LFSR 
is examined to see if it can also produce S3. Again, if it can, the LFSR remains 
unchanged. Otherwise, the LFSR is updated so that it can also produce S2. 
The procedure is carried out for 2t times. At the end, the LFSR is able to 
produce all of the 2t syndrome components. Because the algorithm guaran-
tees that the resulting LFSR will be the shortest, the LFSR is the desired error 
location polynomial.

The BM algorithm defines a supporting polynomial B(X ) to assist in 
the updating of s(X ). Denoting L as the length of the LFSR, a summary of 
the algorithm follows. The superscript ( j ) indicates the jth iteration. For ex-
ample, s( j)(X ) means the error location polynomial at the jth iteration.

Berlekamp-Massey Algorithm

Initialization:
Set:

	 s (0)(X ) = 1, B (0)(X ) = 1, L(0) = 0, and j = 1	

Normal Operation: the jth iteration:

1.	 Compute the LFSR output:
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2.	 Calculate the discrepancy�:

	 j j jS SD = - � 	

3.	 Assign value to the variable d:
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4.	 Update:
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(4.17)

	 L ( j ) = d(k - L( j -1)) + (1 - d )L(  j -1)	

5.	 If j = 2t, stop. Otherwise, j = j + 1 and return to step 1.

Note that L( j ) is the degree of  s ( j )(X  ). Figure 4.5 is a flowchart of the 
BM algorithm.
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Figure 4.5  Flowchart of the Berlekamp-Massey algorithm.
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Example 4.4

Again, we use the (7,3) RS code. Suppose that the code polynomial c(X ) =  
X 6 + a3X 5 + a 5X 4 + a 3X 3 + a 6X 2 + a 5X + 1 was transmitted. The 
received polynomial r(X ) = X 6 + a 3X 5 + X 4 + a 3X 3 + a 3X 2 + a 5X + 1  
contains two errors. The error polynomial is e(X ) = a 4X 4 + X 2. Compute 
the syndrome as follows:

	 S1 = r (a) = a 4, S2 = r (a 2) = 1, S3 = r (a 3) = 1, S4 = r (a 4) = a5	

Now we use the BM algorithm to find the error location polynomial for 
the received polynomial:
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Because s(X ) = s (4)(X ) = 1 - aX - a 6X 2 = (1 - a 2X )(1 - a 4X ), the 
two errors are located at positions 2 and 4.

Once the error location polynomial has been found, we can construct 
the error evaluation polynomial using (4.3). Considering Example 4.4, for 
instance, the error evaluation polynomial is computed to be:

W(X ) = S(X )s(X ) mod X 2t = (a 4 + X + X 2 + a 5X 3)(1 - aX - a 6X 2) mod X 4  
= a 4 + a 4X	

MATLAB Experiment 4.5

The m-file bmdemo.m* in this book’s DVD finds the error location 
and error evaluation polynomials for the above example using the BM  
algorithm. 
>> bmdemo
sigma =
  0  1  6 
omega =

              4  4 
Comment: Extending the program to other RS codes should be straight-

forward.

The Berlekamp-Massey algorithm involves the inversion D j-1 at each iteration. 
We know that Galois field inversion is a costly operation. In view of this, some 
inversion-free variations on the BM algorithm (referred to as iBM) have been 
proposed [14, 15], leading to simplified and more structured hardware designs.

The basic idea of the iBM algorithm is straightforward. Reexamining 
(4.17), we find that D j-1 is needed to compute B ( j )(X ) when d = 1:

	 σ --= D( ) ( 1)1( ) ( )j j
jB X X 	

If we scale B ( j )(X ) as follows when d = 1, the inversion operation is 
avoided:

	
σ σ- --é ù= D D =ë û

( ) ( 1) ( 1)1( ) ( ) ( )j j j
j jB X X Xi

	

Notice that the scaled version B(  j )(X  ) will be added to s(  j+1)(X  ) at the 
next iteration; we therefore need to multiply s(  j+1)(X  ) by Dj at the (  j + 1) th it-
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eration. Summarizing the above, we have the following inversionless Berlekamp-
Massey algorithm.

Inversionless Berlekamp-Massey Algorithm

Initialization:
Set

	 s (0)(X  ) = 1, B (0)(X  ) = X, q (0) = 1, L(0) = 0 and j = 1	

Normal Operation: the jth iteration:

1.	 Calculate the discrepancy between the syndrome and the LFSR 
output:
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2.	 Assign value to the variable d:
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3.	 Update:
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(4.18)

	 q (  j ) = dD j  + (1 - d ) q ( j-1)  and
	 L(  j ) = d (k - L ( j-1)) + (1 - d )L ( j-1)	

4.	 If j = 2t, stop. Otherwise, j = j + 1 and go to step 1.

The variable q ( j-1) in (4.18) controls the multiplication of s(  j )(X  ) by 
Dj -1. The new error location polynomial s(X ) resulting from the inversion-
less algorithm has the same roots as the error location polynomial obtained 
from the original BM algorithm. Because it is the roots of s(X ), not s(X ) 
itself, that specify the error positions, the new algorithm should not change 
the decoding outcome. 
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Example 4.5

We now apply the inversionless BM algorithm to the previous example.
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Note that s(X ) - s(4)(X ) = a6 - X - a5X  2 can be factorized as a 6 

(1 - aX - a 6X 2 ), where 1 - aX - a 6X 2 is the error location polyno-
mial obtained from the original BM algorithm in the last example. Beyond 
doubt, s (X ) has the same roots. 

4.2.2.2  Euclid’s Method

Besides the Berlekamp-Massey algorithm, an error location polynomial can 
also be constructed using Euclid’s algorithm [16]. Euclid’s algorithm, attri
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buted to mathematician Euclid, was originally formulated to find the great-
est common divisor (GCD) of two positive integers. To obtain (a, b), the 
GCD of two integers a and b, the algorithm divides a by b to get a remainder 
d1, then divides b by d1 to get a new remainder d2, and afterward divides d1 
by d2

¼. This simple division of the latest divisor by the latest remainder is 
repeated until the remainder becomes zero. The latest nonzero remainder  
is (a, b).

Example 4.6

Find greatest common divisor of 469 and 161.
Step 1. Divide 469 by 161: 			       469  = 161 × 2 + 147 
Step 2. Divide 161 by the remainder 147: 	     161  = 147 × 1 + 14 
Step 3. �Divide the latest divisor 147 by the  

latest remainder 14: 			   147 = 14 × 10 + 7
Step 4. �Divide the latest divisor 14 by the  

latest remainder 7: 			     14 = 7 × 2 + 0 
So (469,161) is 7, which is the latest nonzero remainder.

It has been observed that if d = (a, b), then two numbers f and g exist 
such that [17]:

	 + =fa gb d 	 (4.19) 

Given a, b, and d, f and g can be found by executing the above proce-
dure backwards.

Example 4.7

Find f and g such that (469,161) = 469f  + 161g. 
We perform the procedure in the previous example backwards, starting 

from step 3 above:
Step a. 	 7 = 147 -14 × 10
Step b. 	  14 = 161 - 147 × 1
	     Þ 7 = 147 - (161 - 147 × 1) × 10
Step c.	     147 = (469 - 161 × 2)

	     Þ 7 = (469 - 161 × 2) - (161 - (469 - 161 × 2) × 1) × 10
	       Þ 7 = 11 × 469 - 32 × 161

Therefore, f = 11 and g = -32.
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Euclid’s algorithm is not limited to integers; it is applicable to polyno-
mials as well. In that case a = a(X ) and b = b(X ) are two polynomials, and  
d = d(X ), f = f (X ), and g = g(X ) are also polynomials. The following lists the 
procedure for Euclid’s algorithm when using it for polynomials. The super-
script (  j ) denotes the jth iteration.

Euclid’s Algorithm for Polynomial

Initialization:
Set 

f   (-1)(X ) = g (0)(X ) = 1, f  (0)(X  ) = g (-1)(X  ) = 0, d (-1)(X  ) = a(X  ), d (0)(X  ) = b(X  ) 
and j = 1

Normal Operation: the jth iteration:

1.	 q(  j )(X  ) = Quotient[d (  j -2)(X )/d (  j -1)(X )] 

2.	 d (  j )(X ) = d ( j -2)(X ) - q(  j )(X )d (j -1)(X )

	 f  (  j )(X ) = f  ( j -2)(X ) - q(  j )(X )f  (j -1)(X )
	 g (  j )(X ) = g ( j -2)(X ) - q(  j )(X )g (j -1)(X )

3.	 If d (  j )(X ) ¹ 0, set j = j + 1 and go back to step 1. Otherwise, stop 
and d (  j -1)(X ) = (a, b) 

Note that at each iteration the relationship f  (  j )a + g ( j )b = d ( j ) is always 
maintained.

Example 4.8

Let a(X ) = X 3 + 1, b(X ) = X 2 + 1. The process of Euclid’s algorithm is 
demonstrated in Table 4.1, and (a,b) is X + 1.

Table 4.1
Example Process of Euclid’s Algorithm

j q (j)(X ) d (j)(X ) f ( j)(X ) g(j)(X ) Note

-1 — X 3 + 1 1 0 Initialization

0 — X 2 + 1 0 1

1 X X + 1 1 X

2 X + 1 0 X + 1 X 2 + X + 1 Zero remainder
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MATLAB Experiment 4.6

Two MATLAB functions, gcdnum* and gcdpoly*, are included in  
the DVD that accompanies this book. They are used to compute the GCD 
of two integers and of two polynomials, respectively. For example, (469, 161) 
is found as:
>> gcd = gcdnum(469,161)

>> gcd =

7

Recall that the error location polynomial satisfies (4.3). Reformulate (4.3) as:

	 σ π- = -W2( ) ( ) ( ) ( )tS X X X X X 	 (4.20)

where p(X ) is the quotient polynomial of S(X )s(X )/X 2t. Let a = S(X ),  
b = -X 2t. The error location polynomial s(X ) and the error evaluation poly
nomial W(X ) can readily be found [together with p(X )] using the recursive 
Euclid’s algorithm. Notice that by definition W(X ) is of degree less than t. 
The decoding process therefore should terminate as soon as the degree of  
W(X ) becomes less than t, instead of when W(X ) = 0. Euclid’s method for 
constructing the error location polynomial is summarized next in matrix 
form. 

Euclid’s Method for RS Decoding

Initialization:
Set 
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Normal Operation: the jth iteration:
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2.	 If the degree of T (  j + 1)(X  ) is less than t, stop and compute the fol-
lowing:

U = A22
(  j )(0), where A22

(  j )(X ) is the element of A(  j )(X  ) in the second 
row and second column, 
s(X  ) = U -1 × A22

( j )(X )
W(X  ) = U -1 × T( j )(X )
Otherwise, j = j + 1 and go back to step 1.

Example 4.9 

Let us now construct the error location polynomial from Example 4.4 us-
ing Euclid’s method. The syndrome polynomial is S(X ) = a 4 + X + X 2 + 
a 5X 3. 
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Note that U = A22
(2)(0) = 1 Þ s(X ) = U -1 × A22

(2) (X) = 1 + a X + a6X 2, 
which is completely identical to what was obtained with the BM algorithm: 
W(X ) = U -1 × T (2)(X) = a 4 + a 4X.
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MATLAB Experiment 4.7

The MATLAB m-file eucdemo.m* uses Euclid’s method to generate 
the error location and error evaluation polynomials for Example 4.9. The 
program can easily be modified for RS codes with other parameters.
>> eucdemo
sigma =
  0  1  6
omega =

4  4

Compared with the Berlekamp-Massey algorithm, Euclid’s method has 
the advantage of obtaining the error evaluator polynomial W(X ) automatically 
as a by-product of the process. Also, all of the steps in the Euclid’s method 
are identical, which translates into a more structured hardware implementa-
tion. However, as far as the number of GF(2m) operations is concerned, the 
Berlekamp-Massey algorithm is somewhat more efficient. Both algorithms 
provide identical error correction performances.

4.2.3  Frequency-Domain Decoding

Before presenting the frequency-domain decoding of RS codes, we have 
an important GFFT property to introduce. Let x = (x0 x1 x2 ¼ xn-1) and 
y = (y0 y1 y2 ¼ yn-1) be two vectors over GF(q), and X = (X0 X1 X2 ¼ Xn-1) 
and Y = (Y0 Y1 Y2 ¼ Yn-1) be the GFFTs of x and y, respectively. Then 
the GFFT of the inner product of x and y is the convolution of X and Y  
[18, p. 184]:

	 Φ Φ Φ

- -

-

× =

= Ä =

0 0 1 1 1 1

0 1 1

( ) [( )]

( )

n n

n

x y x y x y�

�

x y

X Y+ 	
(4.21)

where +Ä represents cyclic convolution, and 

	

1

0

1
( 0,1,2, , 1)

mod
n

i j i jj
X Y i n

n
Φ

λ
-

-=
= = -å �

	
(4.22)

The subscript i - j is computed modulo n, that is, it “wraps around” 
in a cyclic fashion. The parameter l is the characteristic of the Galois field 
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GF(q) (see Section 2.2.1 in Chapter 2). We notice that (4.22) is analogous to 
the convolution property of the DFT in signal processing. In fact, the GFFT 
and DFT share many properties: the linearity property, similarity property, 
and so forth.

Now let r = (r0 r1 r2 ¼ rn-1) be the received word. The frequency- 
domain RS decoding proceeds with computing the GFFT of r, R = (R0 R1 

R2 ¼ Rn-1):

	
α α-

=
= = = -å �1

0
( ) ( 0,1,2, , 1)

n iji
i jj

R r r i n
	

(4.23)

Notice that r = c + e. Follow the linearity property of GFFT, we have:

	 = +R C E 	 (4.24) 

where C = (C0 C1 C2 ¼ Cn-1) and E = (E0 E1 E2 ¼ En-1) are the GFFT of c 
and e, respectively. 

According to (3.64), the syndrome of r is computed as:

	
α α-

=
= = =å �1

0
( ) ( 1,2, ,2 )

n iji
i jj

S r r i t
	

(4.25)

Comparing (4.25) with (4.23), we can conclude:

	 = = �( 1,2, ,2 )i iS R i t 	 (4.26)

Considering that an RS code in the frequency domain contains 2t zeros 
(i.e., Ci = 0 for i = 1, 2, ¼ 2t), we have:

	 = = �( 1,2, ,2 )i iS E i t 	 (4.27)

This equation tells us that the 2t elements of error pattern in frequency-
domain, Ei (i = 1, 2, ¼, 2t), are the 2t components of the syndrome. As such, 
all we need to do next for the decoding is to find the errors Ei for i = 0, 2t + 1, 
2t + 2, ¼, n - 1. 

Suppose that n £ t errors have occurred. Then the corresponding error 
polynomial e(X ) is:

	
ν

ν= + + +�1 2
1 2( ) j j j
j j je X e X e X e X 	 (4.28)

On the other hand, following (3.70), the error location polynomial is 
formed as:

	 s(X ) = s0 + s1X + ¼ + sn Xn = (1 - a j1X ) (1 - a j2X ) ¼ (1 - a jnX )	
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where j1, j2, ¼ jn are the locations of the n errors, and 

	 σ α ν- = = �( ) 0 ( 1,2, , )ij i 	 (4.29)

Let L = (L0 L1 ¼ Ln) be the inverse GFFT of the vector s = (s0  
s1 ¼ sn), where:

	

νΛ σ α σ α ν
λ λ

- -
=

æ ö æ ö= = =ç ÷ ç ÷è ø è øå �
0

1 1
( ) ( 0,1,2, , )

mod mod
ik k

k ii
k

n n 	
(4.30)

It follows from (4.29) and (4.30) that:

	
Λ σ α ν

λ
-æ ö= = =ç ÷è ø �1

( ) 0 ( 1,2, , )
mod

i
i

j
j i

n 	
(4.31)

which indicates that Lk = 0 wherever ek ¹ 0. In other words, either Lk or ek, 
or maybe both, are zero. As an immediate consequence, Lk ek = 0 for k = 1, 
2, ¼, n - 1. By expanding L into L = (L0 L1 ¼ Ln-1Ln Ln+1 ¼ Ln-1) with  
Lk  0 for k ³ n, the following exists:

	 Λ Λ Λ - -× = + + + =�0 0 1 1 1 1 0n ne e eΛ eΛ∆∆

	 (4.32)

Taking the GFFT of both sides of (4.32), we obtain:

	
σ-

-=
Ä = = = -å �1

0
0 or 0 ( 0,1,2, , 1)

n
j i jj

E E i n+σ
	

(4.33)

Since the degree of s(X ) is n, (4.33) shrinks to:

	 -=
= = -å �

0
0 ( 0,1,2, , 1)j i jj

E i n
ν σ

	
(4.34)

Considering s0 = 1, (4.34) can be reformulated as: 

	 - - -= - + + + = -� �1 1 2 2( ) ( 0,1,2, , 1)i i i iE E E E i nν νσ σ σ 	
(4.35) 

Based on the known errors E1, E2, ¼ , E2t [see (4.27)], we readily find 
the errors Ei for i = 0, 2t + 1, 2t + 2, ¼ , n - 1, by recursively computing 
(4.35). Setting i = n in (4.35) yields:

	 Ev = -(s1En-1 + s2En-2 + ¼ + sn E0)	



138	 A Practical Guide to Error-Control Coding Using MATLAB®

Solving the equation for E0, we obtain:

	 ν ν ν νσ σ σ- -= - + + +�0 1 1 1 1(1/ )( )E E E E 	 (4.36)

Up to now we have found solutions to all 2t elements of E. 
With E ready, the error vector e in the time domain is obtained by tak-

ing the inverse GFFT of E: 

	
-= 1( )e EF 	 (4.37)

The error location polynomial is found as before (using either the  
Berlekamp-Massey algorithm or the Euclid’s method).

RS decoding in the frequency domain offers certain advantages, since 
we only need to find errors Ei for i = 0, 2t + 1, 2t + 2, ¼, n - 1 instead of for 
the whole codeword.

Example 4.10

Suppose that c = (a 4 1 1 a 3 a 2 a 4 a 3), the codeword in Example 4.3, 
has been transmitted, and the corresponding received word r = (a 4 a 1 
a 3 a 2 a 6 a 3) contains two errors. Now we decode it in the frequency 
domain.

Based on (4.10), we calculate the GFFT of r:
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The syndrome polynomial is obtained as:

	 S(X ) = a 2 + a X + a 3X 2 + a 6X 3	

Using the BM algorithm or the Euclid’s method, we get:

	 s(X ) = 1 - a 6X - a 6X 2	

Based on (4.35), E5 and E6 are computed:

	 E5 = -(s1E4 + s2E3) = - (-a 6a 6 - a 6a 3 ) = a 3, and  
	 E6 = -(s1E5 + s2E4) = - (-a 6a 3 - a 6a 6) = a 3	

E0 is obtained to be:

	 E0 = (1/s2) (E2 + s1 E1) = a -6(a - a 2a 6) = 0	

Finally the decoded word is:

	
2 3( 0 0 0 0 1)α α= + =�C R E 	

which is identical to the frequency-domain codeword obtained in Example 
4.3.
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4.2.4  Error and Erasure Decoding 

Up until now we have limited RS decoding to error-only decoding. However, 
an RS code can correct any combination of n errors and z erasures, provided:

	 ν ζ+ £/2 t	 (4.38)

To correct both errors and erasures, we replace the erasures in r(X ) with 
some arbitrary elements from GF(2m), say, zeros, and form a new received 
polynomial r ¢(X  ). By doing so, we are then able to apply the previously de-
veloped decoding algorithm to it.

Suppose that the received polynomial r(X ) contains n errors at the loca-
tions i1, i2, ¼, in and z erasures at the locations l1, l2, ¼, lz. Similar to the er-
ror location polynomial, we define an erasure location polynomial as follows:

	 ζΓ ρ ρ ρ- - -� �0 1( ) (1 )(1 ) (1 )X X X X 	 (4.39) 

where rk = a lk represents the erasure location lk ( just as bk = a ik  represents 
the error location ik).

Then, as we just said, we replace the erasures in r(X ) with zeros and form 
r ¢(X ). Notice that the total number of errors in  r ¢(X ), in the worst case, can be 
n + z. This occurs when the true symbols corresponding to the erasures are all 
nonzeros. The error location polynomial for  r ¢(X ) can thus be expressed as:
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(4.40)

where s(X ) = (1 - b0X ) (1 - b1X ) ¼ (1 - bn X ) is the error location polyno-
mial corresponding to the n true errors. 

Afterwards, we construct the key equation as follows:

	
2 2( ) ( ) ( )mod ( ) ( ) ( )modt tX X S X X X X S X XΞ Φ σ Γ= = 	 (4.41)

where the syndrome S(X ) is:

	
υ ζα β ρ
= =

= = + =¢ å å1 1
( ) ( 1,2, ,2, )i i

k k k
k j i l ii i

S r e w k t�
	

(4.42) 
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where eji is the magnitude of the original error at location ji, and wli is the 
magnitude of the error at erasure location li. Letting

	
2( ) ( ) ( )mod tX X S X XΘ Γ= 	 (4.43)

Equation (4.41) becomes:

	
2( ) ( ) ( )mod tX X X XΞ σ Θ= 	 (4.44)

The key equation in (4.44) involves erasures and is called the Berlekamp-
Forney key equation. The most important observation is that (4.44) has exactly 
the same form as the Forney key equation in (4.3) except the syndrome S(X  ) is 
replaced by Q(X  ). As a result, any decoding algorithm presented earlier (e.g., 
Berlekamp-Massey, Euclid’s) can be used to solve (4.44) for s(X  ) and X(X  ) 
[5, p. 268]. If the BM algorithm is used, then the coefficients of Q(X  ), Q0,  
Q1, ¼, Q2t-1, are used in place of the components of the syndrome S(X  ), 
S1, S2, ¼, S2t. If instead Euclid’s method is employed, then a = X 2t and b = 
Q(X ). Once s(X ) and X(X  ) are found, the error/erasure magnitude can be 
calculated by using the following modified Forney algorithm:
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(4.45)

Example 4.11

We use the (7,3) example RS code to show how error and erasure decoding 
is performed. Suppose that the code polynomial c(X  ) = X 6 + a 3X 5 + a 5X 4 
+ a 3X 3 + a 6X 2 + a 5X  + 1 was transmitted. The received polynomial r(X ) 
= X 6 + a3X 5 + X 4 + a 3X 3 + a 6X 2 + ´ X  + 1 contains one error (the term 
X 4) and one erasure (marked with ´). 

First let us replace the erasures with zeros. The new received polynomial 
becomes r ¢(X ) = X 6 + a 3X 5 + X 4 + a 3X 3 + 1. The erasure location poly-
nomial is calculated as:

	 G(X ) = (1 - aX )	

The syndrome is found to be:

α α α α α α α= = = = = = = =¢ ¢ ¢ ¢5 2 4 3 4 4
1 2 3 4( ) , ( ) , ( ) , ( ) 1S r S r S r S r
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and the syndrome polynomial is therefore:

	 S(X ) = a 5 + a 4X + a 4X 2 + X 3	

With both G (X ) and S(X ) available, we now compute Q(X ):

	 Q G α α α= = + + +2 5 3 2 4 3( ) ( ) ( ) tX X S X mod X X X X

We can also find:

	 s(X ) = 1 - a 4X	

whose root X = a -4 indicates an error at i1 = 4. 
The error evaluation polynomial is computed next:

	 X σ Q α α= = +2 5 5( ) ( ) ( ) tX X X mod X X

So the error magnitude is:

	 4
4

4 ( )/ ( ) Xe X X αΞ Φ α-== - =¢
	

and the erasure magnitudes are: 

	 αX F α=
′= - =1

5
1 ( )/ ( ) Xe X X -

	

where

	 = = + +2 5 2( ) ( ) ( ) 1X X X X XΦ σ Γ α α 	

The decoded polynomial:

	
6 3 5 5 4 3 3 6 2 5( ) 1 ( )c X X X X X X X c Xα α α α α= + + + + + + =� 	
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4.3  RS Decoder: From Algorithm to Architecture 

Design of a high-performance RS decoder is a challenging task and has been 
an active research topic for years. Performance of an RS decoder is largely 
determined by three key factors: (1) the decoding algorithm, (2) the archi-
tecture to which the algorithm is mapped, and (3) the Galois field arithmetic 
units. Since the third part was discussed in Chapter 2, in the next section we 
focus on the architecture design.

4.3.1  Syndrome Computation Circuit

As in (3.64), the syndrome of an RS code is computed as:

	
2 1

0 1 2 1( ) ( ) ( ) ( 1,2, ,2 )i i i i n
i nS r r r r r i tα α α α -

-= = + + + + =� � 	
(4.46)

Using Horner’s rule, (4.46) can be reformulated as:

	
α α α- - -= + + + + =1 2 3 0((( ) ) ) ( 1,2, ,2 )i i i

i n n nS r r r r i t� �
	

(4.47) 

Equation (4.47) results in the recursive syndrome computation circuit 
shown in Figure 4.6.

4.3.2  Architectures for Berlekamp-Massey Algorithm

As a key step in RS decoding, the Berlekamp-Massey algorithm is probably 
the most difficult part to implement in an RS decoder. A high-level architec-
ture for realization of the algorithm is illustrated in Figure 4.7 [19, Chap. 5].  
The circuit consists of a control unit and three register lines to hold B(X ), 
s(X ), S(X ) respectively. The control unit generates d and other necessary 
control signals. All registers are designed to be large enough to accommo-
date the largest possible degrees of their respective polynomials. Short-degree 
polynomials are stored with the registers filled out with zeros. The discrep-
ancy Dk is recursively calculated as:
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Table 4.2 summarizes the operations.
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The preceding implementation of the Berlekamp-Massey algorithm is 
rudimentary. Its speed is bottlenecked by computation of the discrepancy 
followed by updating of the error location polynomial. Some authors have 
proposed a reformulated inversionless architecture called riBM [20], which 
pipelines the error location polynomial update and the discrepancy compu-
tation so that the discrepancy Dj + 1 can be computed and become available 
one iteration earlier (i.e., at iteration j instead of j + 1). To explain the idea, a 
discrepancy polynomial should be defined:

	

( ) ( ) ( ) ( )( ) ( ) 2
0 1 2

( ) 2
2

( ) ( ) ( ) j j j jj j k
k

j t
t

X X S X X X X

X

σD × = D + D + D + + D

+ + D

� �

� 	

Syndrome computation
block #2t

Syndrome computation
block #2

Syndrome computation
block #1

Syndrome
computation

block

rn−1r  , r  , r  , . . .,0 1 2
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Si Si
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rn−1r  , r  , r  , . . .,0 1 2

Figure 4.6  Syndrome computation circuit for RS codes.
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where the superscript (  j ) signifies the jth iteration. By computing s ( j )(X  )×S(X  ) 
directly, we obtain the coefficient D( j )

j  as:

	

( )
( ) ( )

0

jLj j
k ij ii

Sσ -=
D = å 	

which equals exactly the discrepancy Dj + 1. 
Next let us see if D( j )(X ) can be obtained at the j th iteration. Based on 

(4.18), we have:

	

( 1) ( 1)

( ) ( ) ( 1) ( 1) ( 1)

( 1)( 1) ( 1) ( 1)
1

( ) ( )

( 1)( 1) ( 1) ( 1)
1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

j j

j j j j j
j

jj j j
j

X X

jj j j
j

X X S X X X B X S X

X S X X B X S X

X X X

Ψ

σ θ σ

θ σ

θ Ψ

- -

- - -

-- - -
-

D

-- - -
-

é ùD = × = - D × ×ë û

= - D × ×

= D - D × ×

� � � � � �

×

	

It is clear that D( j )(X ) can indeed be ready at iteration j, and so is the 
discrepancy Dj + 1. The process is illustrated in Figure 4.8.

∆k

σ( ) registerX

B X( ) register
sw 1

sw 2

sw 4

sw 3

δ and other
ctrl. signals

Ctrl. unit S X( ) register

Figure 4.7  Circuit structure for implementing the Berlekamp-Massey algorithm.
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The polynomial Y ( j )(X ) may be computed in a similar way to B( j ) [see 
(4.18)] as:
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Putting riBM in matrix form, we have:
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(4.48)

where D(0)(X ) = S(X  ). The approach may be improved even further. For 
more details, readers are referred to [20].

Table 4.2
Operation of a Berlekamp-Massey Circuit

Step

Registers Switches

NoteS(X ) B(X ) s (X ) sw1 sw2 sw3 sw4

0
Load with S1, 
S2, ¼, S2t

Load  
with 1

Load  
with 1

a — — — Initialization

1 Shift — Shift a Close Close Compute D

2 — Shift
Shift/ 
update  
(4.17)

a Close Open Open Update s (X)

3 — Shift — a — — — d = 0
Shift/ 
update  
(4.17)

b d = 1
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4.3.3  Circuit for Chien Search and Forney’s Algorithm

We discussed the Chien search in Chapter 3. Notice that the following sum-
mation of the Chien search output generates the quantity s ¢(X  )|X = ai, which 
is required in Forney’s algorithm:
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The architecture for a Chien search and the error magnitude computa-
tion are shown in Figure 4.9.

4.4  Standardized RS Codes

RS codes have been standardized for a variety of applications. After the fa-
mous Voyage mission, which employed the (255,223) RS code over GF(28), 
the CCSDS (Consultative Committee for Space Data Systems) officially 
recommended the code for space communications in the Space Commu-
nications Protocol Specifications. The Galois field is generated based on the 
primitive polynomial:

	 p(X ) = 1 + X + X 2 + X 7 + X 8	

The generator polynomial of the code is specified as:

	
( )143 11

112
( ) j

j
g X X α== -Õ 	

The motivation behind the selection of these polynomials was to mini-
mize the encoder hardware.

In commercial applications, RS code was first introduced in compact 
disc (CD) digital audio systems. The RS code was standardized as the cross-
interleaved Reed-Solomon code (CIRC). CIRC consists of two RS codes, 
the (28, 24) and (32, 28) RS codes, both of which are shortened from the  
(255, 251) RS code over GF(28). From what we learned about code shortening  
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in Chapter 3, we know that shortened codes have the same error correction 
capability as the original code, which is t = 2. The generator polynomial is 
constructed as follows:

	
4 10 81 251 2 76 3 4

1
( ) ( )j

j
g X X X X X Xα α α α α== - = + + + +Õ 	

The two codes are concatenated together. The coding rate of CIRC 
is (24 ⁄ 28)(28 ⁄32) = 3/4. An interleaver is placed between the two codes to 
enhance the burst error correcting capability of the code (as will be explained 
in the next chapter), because defects on the surface of CDs cause errors in 
bursts. As a result, CIRC is able to correct error bursts up to 4,000 bits, al-
lowing for reproduction of high-fidelity sound [21].

The RS code that has been most widely adopted is perhaps the (255, 
239) RS code. The code is stipulated in many different standards such as 
ANSI T1.413 and ITU G.992 (for ADSL), IEEE 802.16 (for WiMAX ) and 
ITU OTN G.709 (for optical transmission networks), and so forth. The 
(204,188) RS code used in ETSI DVB-T for digital broadcasting is also a 
shortened version of this code. The primitive polynomial of the Galois field 
GF(28) and the code generator polynomial for the code are specified as:

	 j(X ) = 1 + X 2+ X 3 + X 4 + X 8 and  
	 g(X ) = (X + a0) (X + a 1)...(X + a15), respectively	

Note  RS code is such an abundant topic that a chapter of this scale can only 
accommodate the basics. Readers are certainly encouraged to go beyond this. In 
particular, we would like to bring to the attention of readers two more decoding 
algorithms. The first one is the Welch-Berlekamp algorithm, which could lead to 
faster and simpler decoder design [22]. The other is the soft decoding of RS codes. 
Exemplified by list decoding, this type of RS decoding is able to decode beyond the 
design distance of the code (amazingly) [23 and the references therein]. 

This chapter marks the end of our introduction to linear block codes. The next chap-
ter will explore another major class of error control codes, namely convolutional codes.

Problems

4.1 � Write a MATLAB program to verify that the Rieger bound holds 
with equality for RS codes. [You may use the (7,3) RS code as 
example.]
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4.2 � Sketch a block diagram of an RS decoder in the frequency do-
main.

4.3 � In MATLAB program a decoder for the (255,239) RS code. 

4.4 � For the same RS code in our examples, decode the received poly-
nomial 6 3 5 5 4 3 3 2 2 5( ) 1r X X X X X X Xα α α α α= + + + + + +  
using both the BM algorithm and Euclid’s method.

4.5 � How should we modify the decoding algorithms for nonnarrow-
sense RS codes?

References

  [1]	 Reed, I. S., and G. Solomon, “Polynomial Codes over Certain Finite Fields,” SIAM J. 
Applied Math., Vol. 8, 1960, pp. 300–304.

  [2]	 Peterson, W. W., “Encoding and Error-Correction Procedures for the Bode-Chaudhuri 
Codes,” IRE Trans. Info. Theory, Vol. IT-6, September 1960, pp. 459–470.

  [3]	 Gorenstein, D., and N. Zierler, “A Class of Error Correcting Codes in pm Symbols,” J. 
SIAM, Vol. 9, June 1961, pp. 207–214.

  [4]	 Forney, G. D., “On Decoding BCH Codes,” IEEE Trans. Inform. Theory, Vol. IT-11, 
October 1965, pp. 549–557.

  [5]	 Moon, T. K., Error Control Coding—Mathematical Methods and Algorithms, New York: 
John Wiley & Sons, 2005.

  [6]	 Lin, S., and D. J. Castello, Error Control Coding—Fundamentals and Application, 2nd 
ed., Upper Saddle River, NJ: Prentice-Hall, 2004.

  [7]	 Singleton, R. C., “Maximum Distance Q-nary Codes,” IEEE Trans. Inform. Theory, 
Vol. IT-10, 1964, pp. 116–118.

  [8]	 Morelos-Zaragoza, R. H., The Art of Error Correcting Coding, New York: John Wiley & 
Sons, 2002.

  [9]	 Rieger, S. H., “Codes for the Correction of ‘Clustered’ Errors,” IRE Trans. Inform. 
Theory, Vol. IT-6, 1960, pp. 16–21.

[10]	 Sudan, M., “Decoding of Reed-Solomon Codes Beyond the Error Correction Bound,” 
J. Complexity, Vol. 12, 1997, pp. 180–193.

[11]	 Guruswami, V., and M. Sudan, “Improved Decoding of Reed-Solomon and Algebraic- 
Geometric Codes,” IEEE Trans. Inform. Theory, Vol. 45, September 1999, pp. 1755–1764.

[12]	 Berlekamp, E. R., “Nonbinary BCH Decoding,” Intl. Symposium Inform. Theory, San 
Remo, Italy, 1967.

[13]	 Massey, J. L., “Shift Register Synthesis and BCH Decoding,” IEEE Trans. Inform. 
Theory, Vol. IT-15, No. 1, January 1969, pp. 122–127.



152	 A Practical Guide to Error-Control Coding Using MATLAB®

[14]	 Xu, Y., “Implementation of Berlekamp-Massey Algorithm Without Inversion,” IEE 
Proc., Pt. I, Vol. 138, No. 3, June 1991, pp. 138–140.

[15]	 Reed, I. S., M. T. Shih, and T. K. Truong, “VLSI Design of Inversion-Free Berlekamp-
Massey Algorithm,” IEE Proc., Part E, Vol. 138, No. 5, September 1991, pp. 295–
298.

[16]	 Sugiyama, Y., et al., “A Method for Solving Key Equation for Decoding Goppa Codes,” 
Inform. Control, Vol. 27, 1975, pp. 87–99.

[17]	 Niven, I., H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of 
Numbers, 5th ed., New York: John Wiley & Sons, 1991.

[18]	 Clark, G., and J. Cain, Error-Correcting Codes for Digital Communications, New York: 
Plenum Press, 1981.

[19]	 Wicker, S. B., and V. K. Bhargava, (eds.), Reed-Solomon Codes and Their Applications, 
New York: Wiley-IEEE Press, 1999.

[20]	 Sarwate, D. V., and N. R. Shanbhag, “High-Speed Architectures for Reed-Solomon 
Decoders,” IEEE Trans. VLSI Syst., Vol. 9, No. 5, October 2001, pp. 641–655.

[21]	 Wicker, S. B., Error Control Systems for Communication and Storage, Englewood Cliffs, 
NJ: Prentice-Hall, 1995.

[22]	 Welch, L. R., and E. R. Berlekamp, Error Correction for Algebraic Block Codes, U.S. 
Patent 4633470, December 1986.

[23]	 Vardy, A., “Recent Advances in Algebraic Decoding of Reed-Solomon Codes,” http://
ccc.ustc.edu.cn/abstract/vard.ps.



153

5
Convolutional Codes

Convolutional codes were first introduced by Elias in 1955 [1]. Since then 
they have gained vast popularity in practical applications. The codes are not 
only equal (or sometimes even superior) to block codes in performance but 
also relatively simpler to decode.

Starting with the basic concept, this chapter discusses the fundamental 
aspects of convolutional codes. Implementation issues frequently arising in 
practice are also addressed in detail. The focus is on binary code.

5.1  Fundamentals of Convolutional Codes

5.1.1  Code Generation and Representations

5.1.1.1  Codes with Memory

As we mentioned in Chapter 1, convolutional code contains memory, that is, 
a convolutional encoding process is dependent on both the current and the 
previous message inputs. Because of this, a convolutional code is specified 
by three parameters: the codeword length n, the message length k, and the  
constraint length υ defined as the number of previous messages involved, 
M, plus 1. So, an (n, k, υ) convolutional code involves not only the current 
message but also υ - 1 previous ones. The parameter M refers to the memory 
depth of the code.
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For an (n, 1, υ) binary convolutional code, the message input to the 
encoder is a binary sequence. Upon receiving an input bit mt at time t, the 
encoder (Figure 5.1) produces an n-bit codeword c c c ct t t t

n= ( )( ) ( ) ( )1 2 �  as fol-
lows:

	
υ-

-=
= Åå 1( ) ( )

0
j j

t t iii
c g m

	
(5.1) 

where j = 1, 2, …, n.gi
j( ) Îgi

( { , }0 1  are the coefficients. These coefficients consti-
tute the encoding logic of the encoder.

Example 5.1 

A simple (2,1,3) binary code is defined in (5.2) and its corresponding en-
coder is shown in Figure 5.2:

	

(1)
1 2

(2)
2

t t t t

t t t

c m m m

c m m

- -

-

ì = Å Åï
í
ï = Åî 	

(5.2)

Generation of the codeword c c ct t t= ( )( ) ( )1 2  depends not only on the cur-
rent input bit mt but also on two previous ones: mt -1 and mt -2. The con-
straint length v is therefore 3. The coding rate is k n =1 2.

υ υ

Figure 5.1  Structure of binary convolutional encoder.
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Figure 5.2  A (2,1,3) convolutional encoder.
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Notice that the coefficient set gi
j( ) in (5.1) completely defines a convo-

lutional encoder. It is therefore referred to as a code generator. For instance, 
the generators of the example (2,1,3) code are (111) and (101). Often, the 
two binary vectors are abbreviated in octal as 7 and 5. Alternatively, they 
may also be expressed in the transform domain as a generator polynomial:  
1 + D + D 2 and 1 + D 2, where D is the delay operator.

Example 5.2

Apply an input sequence of �m = 11010 0  to the (2,1,3) convolutional 
encoder. Using (5.2), it is encoded to be �c = 110101001011 (assume that 
the encoder is reset to the all-zero state initially).

MATLAB Experiment 5.1

The following MATLAB commands produce the same coded output as 
in Example 5.2. The MATLAB function convenc convolutionally encodes a 
binary data sequence.
>> g = [7 5];				   % code generator
>> m = [1 1 0 1 0 0];		  % message
>> trellis = poly2trellis(3,g);	 % constraint length = 3
>> c = convenc(m,trellis)		  % encoding
c =
	 1 1 0 1 0 1 0 0 1 0 1 1

Comment: Put aside the third line for now because we will explain it in 
the next section. 

5.1.1.2  Systematic Convolutional Codes

The preceding example code is apparently nonsystematic. Some convolu-
tional codes, however, are in the systematic form. For example, the following 
encoding

	

(1)

(2)
2

t t

t t t

c m

c m m -

ì =ï
í

= Åî 	

produces a systematic code with the first bit in a codeword being the message 
bit itself. Systematic convolutional codes have a very important feature (or, 
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we should say, advantage), that is, they cannot be catastrophic, as explained 
later in Section 5.4.

5.1.1.3  Code Representations

Convolutional codes may be represented in several ways. First, from a circuit 
point of view, a convolutional encoder is a state machine with 2υ-1 states, 
where the state is the content of the encoder memory. The encoder may then 
be represented by a state transition diagram.

Example 5.3 

The (2,1,3) code encoder has 23-1 = 4 states. They are S(00), S(10), S(01), 
and S(11). A truth table (Table 5.1) specifies the relationship among the 
input, output, and state transition of the encoder. Based on this table, the 
state transition diagram is shown in Figure 5.3.

If we display all of the possible state transitions in a branching structure, 
a tree diagram for the code is formed.

Example 5.4 

The code tree for the example (2,1,3) code is constructed partially in Fig-
ure 5.4. The tree is followed upward if the input bit is a 0, or downward if 
a 1. The bold line corresponds to the encoding process in Example 5.2 and 

Table 5.1
Truth Table of the (2,1,3) Convolutional Encoder

Current State Message Bit Codeword New State

S (00) 0 00 S (00)

S (00) 1 11 S (10)

S (10) 0 10 S (01)

S (10) 1 01 S (11)

S (01) 0 11 S (00)

S (01) 1 00 S(10)

S (11) 0 01 S (01)

S (11) 1 10 S (11)
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is called the encoding path. The path is obtained as follows: Starting from 
the root S(00), the first message bit is a 1, so the path moves downward 
and produces the first codeword “11.” The second bit is also a 1, so the path 
moves down again and produces the second codeword “01,” and so forth. 
The procedure is repeated until the last message bit is encoded. The coded 
sequence along the encoding path ( from left to right) is 11 01 01 00 …, 
which agrees with what we had in the previous example.

A third graphical representation is the trellis diagram. The trellis diagram is 
perhaps the most frequently used representation in convolutional codes.

Example 5.5 

Figure 5.5 shows the trellis of our example code. The branches in the dia-
gram represent state transitions. The upper branch coming out of a state 
corresponds to an input message bit of 0, and the lower branch to a bit of 

Bit input/codeword output

S(10)

S(00)

S(01)

S(11)

1/01 0/01

1/11 0/11

0/00

1/10

Branch

1/00

0/10

Figure 5.3  State transition diagram.
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Root

Input bit 0

Input bit 1

State reached

Tree branch
S(00)

Codeword generated
S(11),  10

S(11),  10
S(11),  01

S(01),  01

S(01),  00

S(00),  11

S(11),  01

S(11),  01

S(01),  10

S(01),  10

S(10),  11

S(00),  00

S(10),  11

S(11),  10

S(01),  01

S(01),  01

S(10),  00

S(10),  00

S(10),  11

S(00),  11

S(00),  11

S(11),  01

S(01),  10

S(01),  10

S(10),  11

S(10),  11

S(00),  00
S(00),  00

S(00),  00

S(00),  00

Figure 5.4  Code tree diagram.
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S(10)

S(00)

Time

01

00

10

11

11

10
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00

00
0 1 2 3 4 5 6

01

01

11

Figure 5.5  Code trellis diagram.

1 (which is in line with the convention used in the tree diagram). Each 
trellis node represents a particular state S at a particular time t and can be 
uniquely denoted by (S, t).
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The highlighted encoding path in the figure corresponds to the encoding 
process under the input sequence 1 1 0 1 0 0 [with the initial state being 
S(00)]. The process evolves as (S(00),0)®(S(10),1)®(S(11),2)®(S(01),
3)®(S(10),4)®(S(01),5)®(S(00),6). The coded sequence is simply the 
chain of the codewords on all branches along the encoding path and it is 11 
01 01 00 10 11. 

The trellis diagram is the temporal repetitions of the radix-2 struc-
ture shown in Figure 5.6(a). (It is called radix-2 because there are two 
branches leaving a node and two branches entering a node.) Rearranging 
the trellis nodes, we can decompose the radix-2 structure into two inde-
pendent butterfly-like substructures; see Figure 5.6(b).

The observation that there exist two branches entering a trellis node 
and two branches leaving the node for the example code applies to any binary 
convolutional code.

The astute reader may ask at this point what these diagrams are for. The 
answer is that they exhibit different aspects of convolutional codes. The state 
transition diagram demonstrates the repetitive nature of a convolutional en-
coding process, the tree diagram illustrates the time evolution, and the trellis 
diagram shows both.

From the diagrams just discussed it is easy to see that convolutional 
encoding is in fact a process in which the encoder traverses the code tree or 
the code trellis along a particular path (i.e., the encoding path) directed by 
the message bit sequence. Conversely, convolutional decoding is a process in 
which the decoder searches for the path that the encoder has traversed (i.e., 
the decoding path).

Figure 5.6  (a) Radix-2 structure and (b) butterfly substructure.
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MATLAB Experiment 5.2

We now go back to the third line of the script in MATLAB Experiment 
5.1. What the command does is to convert the (2,1,3) code generator to the 
trellis description. Let us check it out:
>> trellis = poly2trellis(3,[7 5]);
>> trellis.numInputSymbols
ans =
	 2

Comment: The input to the encoder assumes two possible values: either 
bit 0 or bit 1. Therefore, the answer is 2.
>> trellis.numOutputSymbols
ans =
	 4

Comment: There are four possible codewords in total: “00,” “01,” “10,” 
and “11.”
>> trellis.numStates
ans =
	 4

Comment: The total number of states is 4.
>> trellis.nextStates
ans =
	 0 2
	 0 2
	 1 3
	 1 3

Comment: The (i, j )-th element aij in the matrix trellis.nextStates 

indicates that there exists a trellis branch starting from the current state (i - 
1) and ending at the next state aij under the input ( j - 1). For instance, the 
(1, 2)-th element 2 signifies a branch from state 0 (S(00)) to state 2 (S(10)) 
under input bit 1. 
>> trellis.outputs
ans =
	 0 3
	 3 0
	 2 1
	 1 2

Comment: Each element in trellis.outputs is the codeword associ-
ated with the branch correspondingly specified in nextStates. For instance, 
the element at location (1,2), 3, indicates that the branch S(00)®S(10) 
produces codeword “11.”
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5.1.2  Additional Matters

5.1.2.1  Distance Properties

The minimum distance of a convolutional code, defined as the smallest Ham-
ming distance between all possible code sequences of the code, is called the 
free distance, dfree. Similar to the block code case, the distance determines the 
error correcting capability of a convolutional code. Because convolutional 
codes are linear and their distance properties are code sequence independent, 
the free distance may further be defined as the smallest Hamming distance 
between the nonzero code sequences and the all-zero sequence, or as the min-
imum Hamming weight of the nonzero code sequences:

	 ¹ ¹ ¹
= = =� �� � � �

�� � � �
free H H

0 0
min ( , ) min ( ,0) min ( )
A B

A B
c c c c

d d c c d c w c 	 (5.3) 

where cA and cB are two different code sequences. 

Example 5.6 

Figure 5.7 shows the trellis diagram for the example code. The number 
on each branch is the Hamming weight of the codeword associated with 
the branch. Starting from the leftmost side of the trellis, we see that no 
path enters state S(00) other than the all-zero path until time 3 and it is 
S(00)®S(10)®S(01)®S(00). The free distance of the code is the cumula-
tive Hamming weight of the path, and is calculated to be 2 + 1 + 2 = 5.

1
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S(00)

Time

2

0
0 1 2
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3 4 5 6
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0 0 0 0 0

2

1 1 1 1

1 1 1 1

1 1 1 11

1

1

1

1

1

1

1

1

222

222

Figure 5.7  Finding free distance in a trellis diagram.
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Although using visual examination to find the free distance appears 
conceptually quite straightforward, the process itself can be rather tedious. 
The so-called modified generating function (sometimes also called the transfer 
function) provides an analytical solution to the problem.� For a given code, 
the modified generating function is obtained by first modifying the state tran-
sition diagram of the code as follows:

1.	 Replace the “bit input/codeword output” on each branch with the 
branch gain X i whose exponent i is the Hamming weight of the branch 
(i.e., the number of nonzero bits in the codeword of the branch).

2.	 Split the initial state into a starting state and an ending state, and 
discard the self-loop of the initial state.�

Then solve the simultaneous state equations corresponding to the mod-
ified transition diagram.

Example 5.7 

Following the above-stated rules, the state transition diagram for the (2,1,3) 
code in Figure 5.3 is modified as shown in Figure 5.8. The initial state 
S(00) is split into a starting state S(00)s and an ending state S(00)e. Based 
on the diagram, we can establish a set of state equations as follows:
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(10) (00) 1 (01)
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(00) (01)
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(5.4) 

where X(00)s, X(10), X(01), X(11), and X(00)e are five temporary vari-
ables holding the gains of the branches arriving at state S(10), S(01), S(11), 
and S(00)e, respectively.

The modified generating function is defined in (5.5), and obtained in 
(5.6) by solving (5.4):

�.  This method is suitable for convolutional codes with a small constraint length. Unfortu-
nately, no solution yet exists for large constraint lengths.
�.  This is done because circulation of the loop only produces a trivial all-zero sequence and 
does not contribute to the distance property of the code.
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	 ( ) (00) / (00)s eT X X X� 	 (5.5)
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(5.6) 

It follows from (5.5) that the modified generating function T(X) con-
tains the gains of the paths that depart from the S(00) [i.e., S(00)s ] initially 
and come back to S(00) [i.e., S(00)e ] sometime later. The first term on the 
right-hand side of (5.6) indicates that there is one shortest such path with a 
path gain of 5, or a Hamming weight of 5. By definition, the free distance 
of the code is 5.

MATLAB Experiment 5.3 

The MATLAB function dfree* on this book’s companion DVD com-
putes the free distance of a convolutional code.
>> g = [7 5];					    % code generator
>> trellis = poly2trellis(3,g);		  % convert to trellis
>> df = dfree(trellis)			   % get free distance
df =

	 5

Figure 5.8  Modified state diagram.
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Recall that a block code can correct up to t = ë(dmin - 1)/2û errors, 
where ëxû denotes the greatest integer not greater than x, and dmin is the mini-
mum distance. Similarly a convolutional code can also correct up to t errors, 
and t is computed as:

	 ( )free 1 /2t d= ë - û 	 (5.7) 

This error correcting capability is obtained when the errors are sepa-
rated by at least the constraint length of the code (i.e., random error).

5.1.2.2  Code Termination

To encode a message sequence, we need a starting point. This starting point 
is the encoder initial state and is usually set to be the all-zero state. However, 
at the end of the encoding process, the encoder state is usually unknown. On 
the other hand, an optimum decoder needs to know the encoder final state 
to decode (see Section 5.2). As such, it is necessary to force the encoder to a 
known state when the encoding process comes to an end (this is what code 
termination is all about). Several methods exist for doing this. Among them 
the zero-tailing and tail-biting methods are the two most popular ones. 

The zero-tailing method (Figure 5.9) appends a “tail” of M zeros (M 
is the memory depth of the encoder) to the message sequence, so that at the 
end the encoder memory contains only zeros and the encoder is at the all-zero 
state. We have in fact done this implicitly. Going back to Example 5.2, the 
actual message bits of the encoder input sequence in the example are 1 1 0 
1, and two zeros are purposely added at the end of the sequence in order to 
let the encoder (with the memory depth M = 2) go back to the all-zero state. 
Also in Section 5.1.2.1, we split state S(00) into a starting state and an end-
ing state, implying that the ending state is also S(00). The M zeros are often 
called flushing bits, meaning that they are used to clear the encoder memory. 

M zeros

M zeros

0

0

0

0

mL−1 m1 m00

0

Reset
Convolutional

encoder

Figure 5.9  Zero-tailing method.
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The method is simple to implement, but, due to addition of the extra bits, 
the effective coding rate is reduced to R · l /(l + M ), where l is the length of 
the actual message sequence, and R is the original coding rate.

The tail-biting method (Figure 5.10) solves the problem by initially 
setting the encoder to a state that is identical to its final state rather than 
to the all-zero state. The encoding process then proceeds as follows: First, 
use the last M bits of the message sequence to initialize the encoder, and 
then input the message sequence to the encoder to perform the encoding 
as usual. At the end of encoding, the same M bits terminate the encoder 
at the same initial state. Because no extra bits are involved, the coding 
rate is retained. The price to pay is the increase of decoder complexity, 
because all the decoder knows is merely that the initial state and the final 
state are identical and the decoder has to find out what the actual state is. 
Because this common state can be any one of 2υ -1 possible states (where 
υ is the code constraint length), in the worst case an optimum decoder 
needs to run 2υ -1 decoding trials to search for the decoding path with 
identical initial and final states. The disadvantage triggered exploration of 
suboptimum decoding algorithms in exchange for reduction of the decoder  
complexity [2].

5.2  Decoding of Convolutional Codes

As previously stated, convolutional decoding is the process of searching for 
the path that an encoder has traversed. Three main convolutional decoding 
schemes exist: sequential decoding, majority-logic decoding, and Viterbi de-
coding. Sequential decoding, as the first practical decoding technique for con-
volutional codes, was introduced in [3]. The most notable achievements in 
this area are the Fano algorithm and the stack algorithm. The threshold-based  

M bits

M bits
Copy
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mL−1

m1 m0

Reset
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encodermL−2

mL−2

mL M−

mL M−

Figure 5.10  Tail-biting method.
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majority-logic decoding scheme appeared some time later [4]. In 1967 Vit-
erbi published a new decoding method, known today as the Viterbi algo-
rithm [5]. The algorithm is optimal in the maximum-likelihood sense [6], 
and has quickly become the most widely used convolutional decoding algo-
rithm in practice for its reduced computational complexity and satisfactory 
performance. This section discusses sequential decoding and Viterbi decod-
ing because they are the most popular ones in applications. For majority-logic 
decoding, readers are referred to [4].

5.2.1  Optimum Convolutional Decoding and Viterbi Algorithm

5.2.1.1  Maximum-Likelihood Decoding of Convolutional Codes 

Maximum-likelihood decoding of convolutional codes can be expressed as 
follows:

	 ( )
{ }

| * max ( | )
c

P r c P r c=� � � �
	 (5.8)

where 1 2, , Lc c c c=� �  is the coded bit sequence, 1 2, , , Lr r r r=� �  is the received 
bit sequence, and L is the sequence length c* is the decoded sequence. Liter-
ally what (5.8) says is that among all possible code sequences, if code sequence 
c* is transmitted, the received sequence is most likely to be r.

For a memoryless channel, the likelihood function ( | )P r c� �  can be ex-
pressed as:
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(5.9)

Recall that in a BSC:
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(5.10)

where pX is the crossover probability of the channel. Substituting (5.10) into 
(5.9) the likelihood function for the BSC is obtained:

	 ( ) -= -� � H H| (1 )d L d
XXP r c p p

	 (5.11)

where dH is the Hamming distance between the received sequence and the 
code sequence (i.e., the number of differing bits). In (5.11) P r c( | )   is a mono-
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tonically decreasing function of dH. Maximizing (5.11) is therefore equiva-
lent to choosing a code sequence whose Hamming distance to the received 
sequence is minimized. 

For an AWGN channel with a noise power spectral density (PSD) of 
N0, the likelihood function is:

	
( )

2
E

0

0

1
|

d

NP r c e
N

� �
π

-
=

	
(5.12)

where dE
2
 is the squared Euclidean distance between the received sequence and 

the code sequence and is defined as:

	
2

E 1

L
i ii

d r c
=

= -å 	
(5.13)

Similar to the BSC case, it is easy to show that maximization of (5.12) 
is equivalent to minimization of dE

2.
ML decoding of convolutional codes is straightforward at first glance, 

but a closer examination reveals that it is impractical for real applications be-
cause all 2L possible code sequences must be examined one by one. For an L 
as small as 100, there are a total of 2100 > 1030 sequences existing. Even with 
today’s most powerful computer, the task takes weeks to finish. Therefore, an 
efficient algorithm is necessary. The Viterbi algorithm has a complexity lin-
early proportional to the sequence length L and, furthermore, it is maximum 
likelihood based.

5.2.1.2  The Viterbi Algorithm

If we arbitrarily choose a node (S,t) in the trellis diagram of a code and look at 
all of the paths going into it, we will find that there always exists a path that 
has a smaller distance between the received sequence and the code sequence 
than all other paths.� By the definition of maximum likelihood, the path is an 
optimum path, at least for now.� This path is called the local survivor path, 
or simply the survivor. Viterbi noticed that the paths that are not optimal 
now can never be optimal in the future. This observation led to the famous 
Viterbi algorithm in which only one path, the survivor path, is retained for 
each trellis node during the entire decoding process. Because there are 2υ -1 

�.  Be it the Hamming distance or the squared Euclidian distance.
�.  Occasionally there may exist more than one such paths for the same node. Choosing any 
one of them as the local optimum path does not affect the final decoding result.
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states, the total number of path examinations for the entire decoding process 
is 2υ-1 ´ L, where L is the sequence length. We see that computation of the 
Viterbi algorithm increases linearly with sequence length L.

Two metrics are used in the Viterbi algorithm: a branch metric and a 
path metric. Let c = (c (1) c (2) … c (n)) be the transmitted codeword and r = (r (1) 

r (2) … r (n)) be the received vector corresponding to the codeword. The branch 
metric BM is then defined as follows:

	 =

ìï= í
-ïîå

H

2( ) ( )
1

( , ) BSC
( , )

AWGN Channel
n i i
i

d
BM

r c

r c
r c

	

(5.14)

where r is a binary word for the BSC, or a real-valued vector for the AWGN. 
The branch metric measures how close the received vector is to the code-
word. 

Another metric, the path metric PM of state S, is the accumulation of 
branch metrics on the path from the beginning of the trellis up to the current 
decoding point:

	 ( , ) {branch}
( , )S tPM BM= å r c

	
(5.15)

where {branch} denotes all branches on the path. The path metric can be 
calculated recursively as follows:

	 ( , 1) ( , ) ( , ) ( , 1)S t S t S t S tPM PM BM+ ® +¢ ¢= + 	 (5.16)

That is, the path metric of the next node (S, t + 1) is the path metric 
of the current node (S', t) plus the branch metric corresponding to branch  
(S', t)®(S, t +1).

The Viterbi algorithm is best illustrated by using an example.

Example 5.8

Suppose that the code sequence =�c 1101010 01011 has been transmitted 
(corresponding to the message sequence =�m 1 1 0 1 0 0 in Example 5.1). 
The noisy received sequence r is 0.8 0.77 0.55 0.63 0.2 0.52 0.25 0.4 0.9 
0.4 0.43 0.75.

The Viterbi decoding of the above code is divided into three procedures. 
The first is to compute the branch metrics for all branches in the trellis dia-
gram using (5.14). The resulting metrics are shown in Figure 5.11. Take 
the branch S(00)®S(00) at time 3 as an example. Because the codeword 
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associated with the branch is (00) and the received vector is (0.2 0.52), the 
BM is computed as |0 - 0.2|2 + |0 - 0.52|2 = 0.3104.

Next, for every node in the trellis diagram, the path metrics are calculated 
for all arriving paths. Afterwards the path with minimum PM is taken as 
the survivor of the node and, at the same time, all others are discarded. Use 
node (S(00),3) as an example. The two paths coming into the node are from 
(S(00),2) and (S(01),2). Their path metrics are calculated as:
1.9323 [path metric of node (S(00),2)] + 0.3104 (branch metric) = 
2.2427 and
0.6923 [path metric of node (S(01),2)] + 0.8704 (branch metric) = 
1.5627, 
respectively. The path with the metric value 1.5627 becomes the survivor 
path (the solid line in the figure), and the other is given up (the dashed line). 
Because we reset the encoder to state S(00) at the beginning, the initial path 
metric of S(00) should be set to 0 and all others to ¥.

If the code is properly terminated at state S(00), the last procedure in 
the Viterbi algorithm selects the local path ending at (S(00),6), that is, 
S(00)®S(10)®S(11)®S(01)®S(010)®S(01)®S(00), as the global opti
mum decoding path (shown in bold in the figure). Based on Table 5.1 the 

0 1

1

2 3 4 5 6

S(11)

S(01)

S(10)

S(00)

Time

Path metric

Decode output 1 10 0 0

Figure 5.11  Viterbi decoding process.
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path is mapped to decode sequence as follows: S(00)®S(10) maps to a mes-
sage bit of 1, S(10)®S(11) again to 1, S(11)®S(01) to 0, and so forth. 
The decoding sequence is then obtained as 1 1 0 1 0 0, which is exactly the 
original message bit sequence.

The Viterbi decoding used in the preceding example is considered to 
be soft-decision decoding because the received sequence is real valued. On 
the other hand, if the channel is a BSC (the received sequence is binary), the 
decoding becomes hard-decision decoding.

Notice that the path metric update in the Viterbi algorithm involves 
add [(5.16)], compare (to find the minimum path metric), and select (choose 
the path with minimum metric as the survivor). The operations form the so-
called add-compare-select (ACS). ACS can be expressed mathematically:

	
( ){ }υυ --- ® + ®+ -

é ù= + +é ùë û ë û22( , ) ( ), 1 ( ) , ( 2 ) ,2 , 1
min ,S t S i t S i S t S i S tS i tPM PM BM PM BM

  	
(5.17)

where S = S(2i) or S(2i + 1). One note about (5.17) is that the state is num-
bered in decimal notation. For our example code, we have S(0)«S(00), 
S(1)«S(10), S(2)«S(01) and S(3)«S(11). The implementation of (5.17) 
is sketched in Figure 5.12. The output of the MUX, PMS,t, is the minimum 
path metric. Signal ds,t picks the survivor.

To summarize, the Viterbi algorithm decodes as follows:

υ

υ

υ

υ

υ

υ

Figure 5.12  ACS architecture.
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Viterbi Algorithm

Initialization: 
Set: time ¬ 0, initial state PM ¬ 0, all other PM ¬ ¥.

Normal Operation:

1.	 Increase time by 1.

2.	 BM computation: Compute BM for each branch.

3.	 PM update: Perform ACS for each current state, and store the sur-
vivor path together with its PM; discard the other(s).

4.	 If the end of the trellis is reached, map the global optimum path to 
the decode sequence and output. Otherwise go back to step 1.

Note that in contrast to the previous example, BM computation is now 
distributed over the entire decoding process. Figure 5.13 is the flowchart for 
the Viterbi algorithm.

Output decode
sequence

End of
Trellis?

PM update (ACS)

BM computation

Time Time 1= +

Initialization

No

Yes

Figure 5.13  Flowchart for the Viterbi algorithm.
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MATLAB Experiment 5.4 

The function vitdec in MATLAB Communications Toolbox decodes 
binary convolutional codes using the Viterbi algorithm. We now apply it 
to Example 5.8. The function only accepts quantized input if used as soft- 
decision decoding. Therefore, we quantize r to 256 levels so that it will be 
close enough to its original value.
>> trellis = poly2trellis(3, [7 5]);
>> % received sequence
>> r =	[0.8 0.77 0.55 0.63 0.2 0.52 0.25 0.4 0.9 0.4 0.43...		
	 0.75]; 
>> % quantization, rq is the quantized version of vector r
>> [x rq] = quantiz(r,[0:1/256:1-1/256],[0:255]);
>> % decoding, ‘soft’ for soft-decoding
>> decoded = vitdec(rq,trellis,3,’term’,’soft’,8) 
decoded =

	 1  1  0  1  0  0

With the frame-by-frame Viterbi decoding above, the decoded data 
sequence will not be available until the end of the received sequence (i.e., 
one frame). For real-time applications this may not be acceptable, especially 
when the sequence is long. To solve the problem, the sliding-window decoding 
method is used instead.

MATLAB Experiment 5.5 

Let us run the m-file survpath.m* on the book’s DVD to trace the 
survivor paths in the decoding of the (2,1,3) convolutional code. 
>> survpath;		  % run the m-file
>> state		  % check the state transition history
state =
	 0  0  0  1  1  0  0  0
	 0  2  2  3  2  3  3  3
	 0  0  0  0  1  1  1  0
	 0  2  2  3  3  3  3  2
>> decoded(1:3)	 % first 3 bits of the decoded sequence	
ans =
	 0  1  1
>> m(1:3)		  % first 3 bits of the message sequence
ans =
	 0  1  1
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The state matrix contains the history of all survivor paths in the past 
eight decoding steps. The element ai,j represents a branch coming from state 
ai,j to node (i, j ). The corresponding trellis diagram is shown in Figure 5.14. 
Suppose that the decoder is now at time 8. Looking back at all survivor paths 
in the trellis diagram, it is easy to find that those paths join together starting 
from time 3 backward. Moreover, the decoder output of this merged path is 
0 1 1, which is exactly the first 3 bits of the message. So, we see that the first 
3 bits have been successfully decoded before the end of the received sequence, 
which is 12 bits long.

What has happened in the experiment is not coincidental. Rather 
it is an inherent feature of the Viterbi algorithm: Survivor paths tend to 
agree on one common path some distance away from the current decod-
ing point backward, and the decode output corresponding to the common 
path tends to be error free. The sliding-window decoding method makes 
use of this feature and decodes the survivor paths that have merged prior 
to a window rather than waiting for the end of the entire sequence. Keep 
in mind that the common path does not depend on any particular survivor  
path because all paths should have merged before the window.� Once  

�.  In practice, we usually take as the decoding path either the path with the smallest metric 
or the path ending at the all-zero state. The latter is probably easier to implement.

S(11) 3=

S(01) 1=

S(10) 2=

S(00) 0=

Time 1 2 3 4 5 6 7 80

All paths merge

Figure 5.14  Path merge.
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the current decoding finishes, the window slides forward by the decode 
length B (Figure 5.15).

The width of the sliding window is called the decoding depth. The 
possibility that survivors will merge goes higher as the decoding depth in-
creases, and so does the decoding latency. Clearly this is a trade-off we need 
to make. The decoding error caused by insufficient decoding depth is called 
the truncation error. Forney [7] found that with a decoding depth equal or 
greater than roughly 5 times the constraint length v, the truncation error is 
virtually negligible.

A special case of the sliding-window decoding is that when B is set to 1, 
the decoder output becomes a continuous bit stream.

5.2.1.4  Performance of Viterbi Decoding

We illustrate in Figure 5.16 the simulated BER of rate-1/2 convolutional 
codes with different constraint lengths decoded using the Viterbi algorithm. 

Decode length B

Decode length B

Decode depth D

Decode depth D

Window

Window

Current decoding point
t B+

t

Next decoding point

Paths merge

Figure 5.15  Sliding-window decoding.
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Exact closed-form BER expression does not exist for Viterbi decoding. 
However, an upper bound can be derived based on the information con-
tained in the extended generating function of a given code.

Example 5.9 

The extended generating function of a convolutional code is similar to the 
modified generating function except that the former is based on the extended 
state diagram. The extended state diagram for the (2,1,3) code is illustrated 
in Figure 5.17. Compared with the modified state diagram in Example 
5.7, two more variables are introduced: Y i and Z i. The exponent of Y i is 
the Hamming weight of the associated encoder input. The exponent of Z i 
counts the number of branches through which a path has passed. For in-
stance, the input bit associated with branch S(00)s®S(10) is 1; a Y is then 
assigned to the branch. Furthermore, the path S(00)s®S(10) passes through 
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Figure 5.16  Performance of Viterbi decoding. (After: [8].)



176	 A Practical Guide to Error-Control Coding Using MATLAB®

one branch, so a Z is added. The label on the branch S(00)s®S(10) be-
comes X 2YZ. The state equations are obtained as follows:
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(5.18) 

The extended generating function is defined in (5.19), and the result is 
obtained in (5.20) by solving the state equations in (5.18):
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(5.19)

	
5 3 6 2 4 7 3 5 2(1 ) (1 )X YZ X Y Z Z X Y Z Z �= + + + + + 	 (5.20) 

The extended generating function contains more information than the 
modified generating function. Take the first term in (5.20) as an example. 
The term X 5YZ 3 indicates that there is one path with the Hamming weight 
5 (seen from X 5) that is 3 branches long (seen from Z 3) and is generated 
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Figure 5.17  Extended state diagram.
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by an input of weight 1. One more example: The second term X 6Y 2Z 4 

(1 + Z) tells us that there are two paths with weight 6. One is 4 branches 
long, and the other 5 branches long. Both are generated by an input of 
weight 2.

With the extended generating function available, a loose BER bound PB 
for Viterbi decoding can be derived [9, 10]:
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(5.21) 

where the BSC has the crossover probability px, the AWGN channel has 
the noise PSD N0, Eb is the energy per information bit, and R is the coding  
rate = 1/n. Note that, if k ¹ 1, the right-hand side of both (5.21) must be 
divided by k. 

Example 5.10

Let us now calculate the BER bounds for the (2,1,3) code in both the BSC 
and AWGN channel. Substituting (5.20) into (5.21), we get:

	

5 6 7
B

1, 1

( , , )
4 12

Y Z

T X Y Z
P X X X

Y
�

= =

¶» = + × + × +
¶ 	

(5.22)

where = -( )x xX 2 p 1 p  if the channel is BSC, or X e RE N= - b / 0 if 
AWGN. Because px and e-RBb /N0 are both <<1 in practice, the right-hand 
side of (5.22) is dominated by the first term. By ignoring the higher-order 
terms in (5.22) the BER bounds are obtained for both the BSC and AWGN 
channels as follows:
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Note that the above bound computation has assumed BPSK signaling. 
The crossover probability px is related to Eb /N0 as:
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MATLAB Experiment 5.6 

The m-files convsim1.m* and convsim2.m* numerically simulate 
BER for the example code in the BSC and AWGN channels, respectively. 
Run the programs and obtain the error probability curves.

Example 5.10 has shown that the BER bound of the (2,1,3) code is 
calculated as PB » X 5 + 4X 6 + 12X 7 + …» X 5. The following expression is 
the general BER bound expression for any convolutional code:

	
free free free free

free free free free
1 2

B 1 2
d d d d

d d d dP b X b X b X b X�+ +
+ +» + + + » 	

(5.25)

where b b bd d dfree free free, , ,+ +1 2 � are the coefficients, and dfree is the free distance.
Besides BER, coding gain is also frequently used as another performance 

measure. For hard-decision decoding, = -2 (1 )x xX p p  and
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Substituting the above X expression and (5.26) into (5.25) results in the 
following for small px:

	

( ) free

free

free bfree

free free 0
free free

B

1 22

2 1

2 2

d

d x x

Rd Ed
d d N

d x d

P b p p

b p b e
-

-

é ù» -ë û

» × × < × × 	

(5.27)

On the other hand, the uncoded performance is bounded by
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Comparing the exponents in (5.27) and (5.28), it is easy to see that cod-
ing has yielded an advantage of Rdfree /2 over the uncoded system in terms of 
Eb /N0. So, the coding gain is: 

	 BSC free /2K Rd»  	 (5.29)

Similarly, for soft-decision decoding, the coding gain is found to be:

	 »AWGN freeK Rd  	 (5.30)

From (5.29) and (5.30) we can see that soft-decision decoding is roughly 
3 dB better than hard-decision decoding. The numerical simulation results 
presented in Figure 5.16 confirm our observation.

5.2.2  Sequential Decoding

Although the complexity of the Viterbi algorithm increases linearly with the 
sequence length, it is still an exponential function of the constraint length 
u (see the previous section). As a result, the algorithm is only good for rela-
tively short constraint length (u < 10). Notice that in a decoding process 
there always exist some paths that appear better than the others. By “better” 
we mean that these paths are more likely to be the correct path. Sequential 
decoding is such a decoding approach that concentrates only on better paths 
and consequently eases its computational burden. Although the technique is 
suboptimal, it is attractive in decoding long constraint length codes (for u as 
large as 50) since its computational complexity is independent of u. Several 
algorithms have been developed. The stack algorithm [11] and the Fano algo-
rithm [12] are the most recognized two among them.

5.2.2.1  Fano Metric

Recall that in the Viterbi algorithm the Hamming distance metric or the 
squared Euclidian distance metric is used for decoding. Analogously the stack 
algorithm and the Fano algorithm use the Fano metric to perform sequential 
decoding. Consider a code tree branch with codeword c = (c1c2 … cn). The 
Fano metric of the branch is defined as:
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where r = (r1r2 … rn) is the received vector corresponding to c, P(ri|ci) denotes 
the probability of ri conditional on ci, R is the coding rate, and P(ri) can be 
computed using (5.32):

	 { }
( ) ( ) ( | ) (1/2) ( | 0) (1/2) ( | 1)

i
i i i i i i i ic
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where ci Î {0, 1}, and we assume that code bits 0 and 1 are transmitted with 
equal probability 1/2: P c P ci i( ) ( ) /= = = =0 1 1 2 .

For BSC with a crossover probability of px, by definition the following 
exist:

	

( 0 | 1) ( 1| 0)

( 0 | 0) ( 1| 1) 1
i i i i x

i i i i x

P r c P r c p

P r c P r c p

= = = = = =
= = = = = = - 	

(5.33)

By inserting (5.32) and (5.33) into (5.31), we obtain the Fano metric 
expression for BSC:

	

λ
- + - =ì

= í + - ¹î
2

2

log (1 ) (1 )

log ( ) (1 )
x i i

i
x i i

p R r c

p R r c
	

(5.34)

The Fano metric of a path starting from the tree root to the current 
node is the summation of the Fano metrics of all branches on that path:

	 {branch}
Λ λ= å 	

(5.35)

Similar to the path metric calculation in the Viterbi algorithm, L can 
also be computed recursively as follows:

	 S C C SΛ Λ λ ®= + 	 (5.36)

where the subscript C represents the current node, S represents the successor 
node, and C ® S represents the transition from C to S.

The branch Fano metric of an R = 1/2 code in a BSC with a px of 0.1 
is 0.3480 for ri = ci and –2.8219 for ri ¹ ci. From this we can imagine that a 
correct path will have a moderately increasing metric and an incorrect path 
will have a sharply decreasing metric. This is, in fact, a property that the 
metric was purposely designed to have, and it is this property that the two 
sequential decoding algorithms use to distinguish between the correct path 
and the incorrect path.
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MATLAB Experiment 5.7

A simple MATLAB routine fanom* is provided to compute the Fano 
metric.
>> r = [0 0]; c = [0 0]; px = 0.1; R = 0.5;	
>>	 % crossover 0.1, coding rate 0.5
>> fanom(r,c,px,R)
ans = 

0.6960	

Now we are ready to present the stack algorithm and the Fano algo-
rithm. The stack algorithm is presented first for its conceptual simplicity.

5.2.2.2  Stack Algorithm

Starting from the tree root of a given code, at each decoding step, the stack 
algorithm calculates the branch metric l for each current branch, and com-
putes the path metric L for each current node. The path metrics, together 
with the corresponding paths, are stored in a stack in the descending order; 
that is, the path with the largest metric is placed at the top of the stack, and 
the path with the smallest metric at the bottom. The top path is then chosen 
as the best path and is extended with its successor branches. The procedure 
repeats itself until the top path reaches the end of the code tree. Then the top 
path is taken as the final decoding path. By keeping extending the best path, 
the algorithm maximizes the probability that the resultant path is the correct 
path.

Example 5.11

Consider the (2,1,3) example code and the message sequence =�m 1,1,0,1,0,0.  
The code sequence c is 11, 01, 01, 00, 10, 11. Assume that the channel is 
a BSC with pX = 0.1 and the received sequence r is 11, 11, 01, 00, 10, 11 
with one error in its third position.

The process of decoding r using the stack algorithm is shown in Fig-
ure 5.18. For the sake of simplicity, the branch metrics calculated are nor-
malized as  0.3480 ® 1 for ri = ci and -2.8219 ® -8 for ri ¹ ci. Notice 
that the second decoding step ends up with two equally good paths with the 
same metric value –5. We arbitrarily choose to extend node a. However, 
step 3 proves it an incorrect decision. So, at the fourth step, we come back to 
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extend node b. The received symbol r2 is therefore used twice in the decoding 
process, once at step 3 and the other time at step 4.

The stack algorithm can be summarized as follows.

Stack Algorithm

Initialization:
Load the stack with the root of the code tree and set its path metric to 

zero.

Figure 5.18  Stack decoding process.
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Normal Operation:

1.	 Extend the best path (i.e., the path at the top of stack) with its 2k 
successor branches.

2.	 Compute the metrics of the extended paths.

3.	 Store all of the paths and their path metrics in the stack from top to 
bottom in the order of decreasing metric values.

4.	 If the top path has reached the end of the code tree, stop and output 
it as the decoded sequence. Otherwise, return to 1.

The flowchart for the stack algorithm is shown in Figure 5.19.
The amount of computation needed in the algorithm varies with the 

channel condition. If the channel SNR is high, little computation is needed. 

Figure 5.18  (Continued )
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Otherwise, more computation is expected. Recall that in the example the re-
ceived symbol r2 was used twice, once at decoding step 3 and the other time 
at step 4. Consequently, the stack algorithm needs extra storage (in addition 
to the stack storage) to store the received symbols for possible reuse in the 
future.

MATLAB Experiment 5.8 

The companion DVD contains a program stackdemo.m* that simu-
lates the stack decoder for the previous example.
>> r = [1 1; 1 1; 0 1; 0 0; 1 0; 11]; % received sequence
>> px = 0.1;				    % channel crossover prob.

Output best path
and terminate

Best path
at tree end?

Reorder and store all
paths and metrics

Compute metrics for
extended paths

Extend best path

Initialization

Yes

No

Figure 5.19  Flowchart for the stack algorithm.



	 Convolutional Codes	 185

>> stackdemo
decoded = 
	 1  1  0  1  0  0

Step through the program. What difference did you notice between the 
simulation and Example 5.11?

5.2.2.3  Fano Algorithm

The Fano algorithm works differently than the stack algorithm. The key op-
eration here is the continuous comparison of the path metric with a changing 
threshold T. When the path metric exceeds T, the decoder regards the path 
as the correct path and moves forward. If the metric falls below the threshold, 
the algorithm goes backward and searches for a better path. The threshold 
is tightened whenever possible so that the algorithm will only keep moving 
forward on a path whose metric is increasing. 

The algorithm relies on the information of the following three paths to 
carry out the decoding: the current path and its metric LC, the immediate pre-
decessor and its metric LP, and one of the successors and its metric LS. Figure 
5.20 shows a flowchart for the algorithm. Although at first glance the chart seems 
rather complicated, it basically describes the following three procedures.

Fano Algorithm

Initialization:
�Start from the root of the code tree and reset both the initial threshold 
and the path metric to 0.

Normal Operation:

1.	 At the current tree node C, the algorithm tries to move forward 
by doing the following: First, the metrics of all 2k possible suc-
cessor branches are computed and the branch with the maximum 
branch metric is selected to extend the current best path. Then LS 
of the extended path is computed according to (5.36). If LS ³ T, 
the algorithm advances to the successor node S, at which point T is  
increased by the largest possible multiple of a fixed increment D 
without exceeding the updated metric, if this is the first time visit 
to this node; that is, T ¬ T + KD (where K is the largest possible 
integer). Otherwise, T remains unchanged. The algorithm repeats 
until the end of the tree is reached. This procedure corresponds to 
the main loop 1 in the flowchart.
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2.	 If at some point in step 1 it turns out that LS < T, and moreover LP 

< T, the algorithm lowers T by D (i.e., T ¬ T - D), and attempts 
to go forward from node C by repeating step 1 but with the lowered 
T. This procedure corresponds to loop 2. 

3.	 The last procedure considers the case where LS < T and LP ³ T. The 
algorithm first moves backward to node P, and then tries to move 
forward from node P via the next best path if branch P ® C is not 
the last remaining successor for P (i.e., the worst node). Otherwise, 
it moves one more step back (because in this case all possible suc-
cessor branches of node P have been examined and no other choice 
is left). This is loop 3 or loop 4.

Tighten T Loosen T

Prev. Λ

Λ T?≥

Compute ,λ Λ
(best path)

Compute ,λ Λ
(next best path)

≥ ?T Move back

Come from
worst node?

No

No

No

No
Yes

Yes

Yes

Yes

YesEnd of tree?

Move
forward

Start
at root

Yes

No

Stop, output
decode seq.

First time
at this node?

Figure 5.20  Flowchart for the Fano algorithm.
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Example 5.12

The process of Fano decoding for the received sequence in Example 5.11 is 
shown in Table 5.2 and Figure 5.21. The input sequence records the input 
bits along the selected path. The value of D is set to 4. Notice that in the last 
three sections of the code tree each node is only extended by the branch corre-
sponding to the input bit 0; the branch corresponding to bit 1 is eliminated. 

Table 5.2
Fano Decoding Process

# Node Input  
Sequence

LP LC LS T  Scenario Action Succ.

1 r — –¥ 0 2 0 LS ³ T f 1

2 a 1 0 2 –5 0* LS < T and 
LP ³ T

b

3 r — –¥ 0 –16 0 LS < T and 
LP < T

l 2

4 r — –¥ 0 2 –4 LS ³ T f 1

5 a 1 0 2 –5 –4 LS < T and 
LP ³ T 

b

6 r — –¥ 0 –16 –4 LS < T and 
LP < T 

l 2

7 r — –¥ 0 2 –8 LS ³ T f 1

8 a 1 0 2 –5 –8 LS ³ T f

9 b 10 2 –5 –12 –8* LS < T and 
LP ³ T

b

10 a 1 0 2 –5 –8 LS ³ T f

11 e 11 2 –5 –3 –8* LS ³ T f 1

12 d 110 –5 –3 –1 –4* LS ³ T f 1

13 e 1101 –3 –1 1 –4* LS ³ T f 1

14 j 11010 –1 1 3 0* LS ³ T f 1

15 g 110100 1 3 — 4* — — —

                                              � Decode Sequence

Note: f: move forward, b: move backward, l: lower threshold; 1: best successor, 2: second best successor;  
*: threshold tightened (the actual number may not change); succ.: successor.
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Figure 5.21  A Fano decoding process.
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The simplification is made because the last two bits of the decoded sequence 
are the flushing bits and can only be 0 0.

Similar to the stack algorithm case, the amount of computation re-
quired in the Fano algorithm goes up or down as the channel SNR rises or 
drops. Although the number of computations in the Fano algorithm usually 
exceeds that in the stack algorithm, the Fano algorithm is nevertheless pre-
ferred in hardware implementation because it does not need stack storage.

5.3  Designing Viterbi Decoders

This section addresses some key issues relating to the implementation of the 
Viterbi algorithm.

5.3.1  Typical Design Issues

5.3.1.1  Design Partition

A typical Viterbi decoder is partitioned into three data path units: a branch 
metric generation unit, a path metric update unit, and a global survivor de-
coding unit. The branch metric unit takes the received symbol in and com-
putes the corresponding branch metrics. Given the branch metrics by the 
branch metric unit, the path metric update unit performs the ACS operation, 
stores updated path metrics in its path metric memory, and produces a deci-
sion signal indicating which paths are the survivors. The survivor decoding 
unit updates survivor path history based on the decision signal, and at the end 
of the decoding process finds the global optimum path in the survivor paths. 
A control unit coordinates the operations. Figure 5.22 shows a block diagram 
for a typical Viterbi decoder.

Input
(received data)

Branch
metric unit

Path
metric unit

Output
(decoded data)

Branch
metric Decision

Control unit

Survivor
decoding unit

Figure 5.22  Viterbi decoder block diagram.
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5.3.1.2  Signal Quantization

The soft-decision Viterbi decoding in Example 5.8 tackles real numbers with 
infinite precision. However, actual decoders have to quantize the received 
signal with a finite word length at the expense of some performance loss. 
Needless to say, higher precision incurs less performance loss, but at the same 
time means more implementation cost. Observations made in the past have 
found that a 3- to 5-bit quantization usually gives a satisfactory trade-off. 
Study shows that a 3-bit quantization for a rate-1/2 code incurs a coding gain 
loss as small as 0.14 dB [13]. 

MATLAB Experiment 5.9 

Repeat MATLAB Experiment 5.5 with a quantization of 8 levels  
(3 bits), 16 levels (4 bits), and 32 levels (5 bits). The results are plotted in Fig-
ure 5.23. The difference between the 8-level quantization and the unquan-
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Figure 5.23  Performance of Viterbi decoding with different quantization levels.
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tized is indeed only a fraction of decibels. (Note that your result may vary a 
bit because the experiment uses random numbers.)

5.3.1.3  Metric Normalization

The path metric in the Viterbi algorithm is a continuous accumulation of 
branch metrics and, therefore, is unbounded. Overflow occurs when it ex-
ceeds the word length and leads to an erroneous decoding result. So some sort 
of normalization must be in place to prevent such overflow.

The most straightforward solution is based on the following property 
existing in the Viterbi algorithm:

Property 1: � The outcome of Viterbi decoding depends only on the differ-
ences of metrics.

The method avoids metric overflow by subtracting a constant from the path 
metrics when the smallest metric exceeds the constant. Since the subtraction 
is made to all path metrics, the metric difference is unaffected, and so is the 
decoding result. The method is conceptually simple, but it involves extra 
computations such as comparisons and subtractions.

An alternative solution [14] favored in practical designs utilizes another 
property of the Viterbi algorithm as follows:

Property 2: � The path metric differences are bounded by a fixed quantity 
of

	 max Mσ κ= × 	 (5.37)

where k is the maximum branch metric and M is the memory depth of 
the code.

The method computes the path metrics modulo U so that their magni-
tudes will always fall within [0, U ), and U is computed as:

	 max2U σ=  	 (5.38)

This translates to the following minimum number of bits B to be used 
to represent the path metric:

	 2 maxlog (2 )B σ= é ù 	 (5.39)
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where éx ù means the smallest integer not smaller than x. The trick is 
that, by using two’s-complement arithmetic in path metric compari-
sons, a correct metric comparison (and ultimately correct decoding) can 
be guaranteed regardless of overflow. We use an example to illustrate the  
technique. 

Example 5.13

Given the three path metrics shown in Table 5.3, in which PM1 is the 
largest, followed by PM3 and then PM2. Normally at this point we need 
5 bits to represent the metrics to avoid overflow. However, based on the 
method above, we need only 4 bits (because the maximum path metric dif-
ference smax = PM1 - PM2 = 6 and élog2(2 ´ 6)ù = 4). As a result, PM1 
is truncated to (0011)2 and overflow occurs; the other two are unaffected 
(see Table 5.4). 

Using two’s-complement arithmetic to compare the above three binary 
numbers, we have PM2* = -4 < PM3* = -1 < PM1* = 3. So the comparison 
result is still correct even though overflow has occurred.

The maximum path metric difference is usually unknown to us in prac-
tice, and often is determined through extensive numerical simulations.

Table 5.3
Initial Path Metrics for Example 5.13

Path Metric Value in Decimal Value in Binary

PM1 19 10011

PM2 13 01101

PM3 15 01111

Table 5.4
Truncated Path Metrics for Example 5.13

Truncated  
Metric

Value in  
Decimal

Value in  
Binary

Overflow

PM1*   3 0011 Yes

PM2* 13 1101 No

PM3* 15 1111 No
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5.3.1.4  Survivor Path Management

The Viterbi algorithm requires that 2u-1 survivor paths be kept in storage 
for final decoding use. One essential task in a Viterbi decoder is to properly 
manage the storage so that decoding can be performed effectively. Basically 
two methods are frequently used in practice: the register-exchange method 
and the traceback method. Of the two methods, the former can run at much 
faster than the latter but is more power consuming. They are now introduced 
through two examples.

Example 5.14 

This example shows how the register-exchange method works when it is ap-
plied to Example 5.8. 

The method uses a set of 4 by 6 registers to store the survivor paths, cor-
responding to the 4 ´ 6 nodes in the decoding trellis. The complete decoding 
process is illustrated in Figure 5.24. Take node (S(01),4) as an example. At 
decoding step 4, of the two paths going into node (S(01),4), the path from 
node (S(10),3) is selected by ACS as the survivor for node (S(01),4). The 
register associated with node (S(01),4) copies the register of node (S(10),3) 
(whose content is “S(00)S(10)S(01)”) and appends “S(10)” to form the 
survivor path for node (S(01),4) (i.e., “S(00)S(10)S(01)S(10)”). The path 
is then saved in the register. When the decoding comes to the end, the con-
tent of the register for node (S(00),6) is filled with the decoding path.� The 
decoding sequence is obtained by mapping the decoding path to the encoder 
input based on Table 5.1:

S(00)®S(10) ®S(11)®S(01)®S(10)®S(01)®S(00)
		  ¯      ¯      ¯      ¯              
		  1	 1      0      1       0       0

The method bears the name register-exchange because the registers keep 
copying each other in the decoding process.

Example 5.15

Redecode the last example but with the traceback method.
Figure 5.25 illustrates the traceback decoding process. The method sets 

two successive procedures. The first procedure tracks the survivor history and 
stores it in a so-called traceback memory (also 4 ́  6 in size). For example, at 

�.  Because of the added flushing bits, the final decoding path must terminate at S(00). See 
Section 5.1.2.2.
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time 1, the survivor path to node (S(01),1) is from node (S(11),0). S(11) is 
then stored in the traceback memory location (S(01),1). Next at time 2, the 
survivor path to node (S(01),2) is from node (S(10),1). S(10) is then stored 
in the location (S(01),2), and so forth.

The second procedure finds the optimum decoding path by tracing back 
the survivor history. Starting from the traceback memory location (S(00),6), 
we see an “S(01)” in that location. Traceback then goes to memory location 
(S(01),5). Next in (S(01),5) we see that an “S(10),” traceback moves to 
location (S(10),4), and so forth. The sequence S(00)®S(01)®S(10)® 
… forms the optimum path (in reverse order). Notice that while the first 
procedure is carried out forward, the second procedure is backward.

Similar to the register-exchange, the final decoding sequence is also ob-
tained by mapping the optimum path to the encoder input bits.

The preceding examples are illustrative only. Some minor modifica-
tions could simplify the implementation complexity effectively. For instance, 
instead of keeping the sequence of states in the register exchange, we may 
store the sequence of the information bits, and at the end the register contains 

S(11)

S(01)

S(10)

S(00)

Decoding Trellis
1 2 3 4 5 6

Decoding output

State transition

Row address

Column address

0

Traceback memory
1 2 3 4 5 6

Figure 5.25  Traceback decoding process.
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the decoded output directly. Also, in traceback, we can use the ACS decisions 
rather than the states as the traceback pointers so that the space of the trace-
back storage can be reduced. The details are left as a problem for the reader.

One more remark is that the two methods require a total of N ´ L 
independent storages in general, where N is the number of states, L is either 
the sequence length for frame-by-frame decoding, or L equals to the decode 
length plus the decoding depth for sliding-window decoding.

5.3.1.5  Path Metric Memory Management

ACS uses path metrics at time t to update path metrics at time t + 1. A naïve 
design would then use two path metric memories, one for storing the old 
metrics and the other for the new metrics. A more efficient way is to use the 
in-place computation and save one memory [15].

To enable the strategy, ACS should be performed on the butterfly sub-
structure. Take a closer look at the butterfly substructure in Figure 5.6, we 
find that the old PM of, for instance, states S(00) and S(01) are used solely 
for updating the PM of states S(00) and S(10) and are no longer needed after 
the update. This tells us that the new metrics can write over the old metrics. 
The address to store the updated PM is one bit right-rotation of the address 
in which PM was originally placed:

	 - - - -= =1 2 2 1 0 0 1 2 2 1New Address Right cyclic shift of ( )n n n na a a a a a a a a a� � 	
(5.40)

where an -1 an -2 … a2a1a0 is the address of PM before updating. Fig-
ure 5.26 shows an example for four states. The initial path metrics PM(S(00),0), 
PM(S(01),0), PM(S(10),0), and PM(S(11),0), are placed in addresses 00, 01, 10, and 
11, respectively. The address for PM(S(00),1), at time t = 1 is still 00 because 

Figure 5.26  Path metric memory management.
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one bit right-rotation of 00 is again 00. The address for PM(S(01),1), at t = 1 
becomes 10 because one bit right-rotation of 01 is 10, and so forth.

5.3.2  Design for High Performance

5.3.2.1  From ACS to CAS

High-speed implementation of the Viterbi algorithm is a challenging task. 
One bottleneck is ACS operation. Due to the sequential execution of the 
add, compare, and select operations, the ACS method is very time consum-
ing. Moreover, ACS is feedback in nature and its speed is hard to raise via 
conventional pipelining and/or parallelization.

Many possible solutions have been suggested in the past. One pro-
posal is to replace ACS with CAS, that is, compare-add-select. By breaking 
the boundary of the ACS iteration, the CAS method performs the compare 
and add operations in parallel before select (Figure 5.27). A 34% increase 
in speed has been achieved at the expense of a fairly modest silicon area 
increase [16].

Readers will probably find that in Figure 5.27 the formation of CSA 
is fairly straightforward, but the transformation from CSA to CAS appears a 
little more difficult to understand. A functional table (Table 5.5) is provided 
to help verify that CSA and CAS are functionally equivalent. Under the same 
input conditions, the outputs of both CSA and CAS are indeed identical.

5.3.2.2  Scarce-State-Transition Decoding

Low-power design at an algorithmic level has been focusing on reducing 
circuit switchings, because dynamic power constitutes the largest power 
consumption in complementary metal-oxide-semiconductor (CMOS). The 
scarce-state-transition (SST) Viterbi decoding uses a simple predecoding to 
minimize the state transitions, thereby reducing the circuit on/off switch-
ing activities [17]. Shown in Figure 5.28, such a decoder consists of an SST 
processing module and a conventional Viterbi decoder. The re-encoder in 
the SST module is simply a duplicate of the original encoder. The prede-
coder is designed so that when there are no channel errors, the input to the 
conventional decoder is an all-zero sequence and, thus, no state transition 
takes place. Consequently, when occasional errors occur the state transi-
tions will be limited. The technique is able to effectively cut down power 
dissipation [18]. Study has also shown that an SST Viterbi decoder requires 
a shorter decoding depth than its conventional counterpart and therefore 
can be used for area reduction as well [19].
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Figure 5.27  From ACS to CAS.
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Example 5.16

Now let us design an SST Viterbi decoder for the (2,1,3) example code.� 
Given a binary message sequence of m0, m1, …, mt -1, mt, …, the code-

word at time t, ct t tc c= ( )( ) ( )1 2 , is produced by:

	
(1) (2)

1 2 2andt t t t t t tc m m m c m m- - -= Å Å = Å  	 (5.41)

Let et t te e= ( ) ( )1 2( ) be the channel error. The received symbol rt t tr r= ( )( ) ( )1 2  
is the codeword corrupted by the channel error and can be expressed as:

	
(1) (1) (1) (2) (2) (2)andt t t t t tr c e r c e= Å = Å 	 (5.42)

On the other hand, the output of the reencoder rt t tr r= ( )( ) ( )1 2  is:

	
(1) (2)

1 2 2andt t t t t t tr q q q r q q- - -= Å Å = Å  	 (5.43)

As we have said, we want pt to equal (00) when et is (00). This gives the 
following:

	

1 1

1 1

(1) (1) (1) (1)
1 2

(2) (2) (2) (2)
2

0

0

t t t t tt t

t t t tt t

p r r r q q q

p r r r q q

τ τ

τ τ

- -- -

-- -

= Å = Å Å Å =

= Å = Å Å =
	

(5.44)

�.  For the sake of simplicity, hard-decision decoding is used. However, the underlying prin-
ciple applies to soft-decision decoding as well. Refer to [18] for details.

Table 5.5
Functional Table of CSA and CAS

Condition t t t tPM BM PM BM1, 1 1, 2, 1 2,− −+ < + t t t tPM BM PM BM1, 1 1, 2, 1 2,− −+ > +

CSA Decision dS,t 0 1

MUX output t tPM BM1, 1 1,- + t tPM BM2, 1 2,- +

Output 1 t t tPM BM BM1, 1 1, 1, 1- ++ + t t tPM BM BM2, 1 2, 1, 1- ++ +

Output 2 t t tPM BM BM1, 1 1, 2, 1- ++ + t t tPM BM BM2, 1 2, 2, 1- ++ +

CAS Decision dS,t 0 1

Output 1 t t tPM BM BM1, 1 1, 1, 1- ++ + t t tPM BM BM2, 1 2, 1, 1- ++ +

Output 2 t t tPM BM BM1, 1 1, 2, 1- ++ + t t tPM BM BM2, 1 2, 2, 1- ++ +
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By XOR’ing pt
( )1  and pt

( )2 , the following equation is obtained:

	 1 1

(1) (2) (1) (2)
1 0t t tt tp p r r qτ τ -- -Å = Å Å =

 	
(5.45)

or, equivalently:

	 1 1

(1) (2)
1t t tq r rτ τ- - -= Å

 	
(5.46)

This equation is the logic of the predecoder.� Setting t1 = 1, the complete 
schematic of the SST Viterbi decoder for the (2,1,3) code is depicted in 
Figure 5.29.

Next we prove that the SST decoder decodes correctly. From (5.41), 
(5.42), and (5.46), we have:

	
(1) (2) (1) (2)

1 1t t t t t t t tq r r m e e m e- -= Å = Å Å = Å ¢ 	 (5.47)

where et́ = e(1)
t   Å e(2)

t  . The output of the predecoder qt is reencoded as:

	
(1) (1) (1) (2) (2) (2)

1 2 21 1andt t t t e t t t et tr q q q c x r q q c x- - -- -= Å Å = Å = Å = Å 	
(5.48)

where x (1)
e   = et́  Ået́ -1Å et́ -2 and x (2)

e   = et́  Ået́ -2. The input to the conven-
tional Viterbi decoder is found to be:

	
(1) (1) (1) (1) (1) (2) (2) (2) (2) (2)

1 1 1 1andt t e t t et t t tp r r x e p r r x e- - - -= Å = Å = Å = Å 	  
(5.49)

�.  We have taken an ad hoc approach in designing the predecoder. In general the predecoder 
is the inverse of the encoder. Refer to [20] for more details.

M: memory depth of (re)encoder

Predecoder Reencoder
SST processing module

Delay τ1

Delay τ2

Received symbol
rt

r t pt

qt M

Bitwise
XOR

Conventional
Viterbi decoder

Decoding
output mt

qt

Figure 5.28  SST Viterbi decoder.
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By treating ( )= (1) (2)
e e ex xx  as data symbol, ( )= (1) (2)

t t tp pp  can be viewed 
as xe corrupted by the channel error ( )- -= (1) (2)

1 1t t te ee . Then pt is sent to the 
conventional Viterbi decoder for decoding. If it is decoded correctly, the con-
ventional decoder outputs e¢t -t ,� where t is the latency of the conventional 
decoder. The final decoded output of the SST decoder is simply:

	 22 1t t t tm q e mτ τ τ- - - - -= Å =¢� 	 (5.50)

where 2 + t2 = t. The delay 2 in qt - 2 - t2
 accounts for the encoder memory 

depth.

5.4  Good Convolutional Codes

Although the majority of block codes are obtained by algebraic manipula-
tions, convolutional codes are only found through computer searches.10 Given 
a coding rate and a code constraint length, the computer first constructs all 
possible codes. Only the codes with no catastrophic error propagation are 
considered further. Then the performance bounds for the remaining codes 
are computed and compared, and finally the codes with the best performance 
are selected as good convolutional codes.

Note that different decoding algorithms may pose different additional 
criteria for good codes. For example, a good code for Viterbi decoding should 
have a free distance dfree as large as possible, simply because the BER perfor-
mance of Viterbi decoding decreases exponentially as dfree increases (refer to 
Section 5.2.1.4). 

 � .  Recall that xe is the codeword of et¢.
10.  At present there is no known method for analytically finding good convolutional codes.

Figure 5.29  The (2,1,3) code SST Viterbi decoder.
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5.4.1  Catastrophic Error Propagation

Catastrophic error propagation is a problem associated with some convolu-
tional codes. Let us look at a simple example.

Example 5.17

Consider a (2,1,3) code with code generators of (110) and (101). Assume 
that the message sequence is an all-one sequence: , , , ,m 1 1 1 1=� �. The code 
sequence would then be =� �, , , , , ,c 1 1 0 1 0 0 . Now suppose that the channel 
noise turns the three nonzero bits in the code sequence into zeros. Then the 
received sequence becomes an all-zero sequence , , , ,r 0 0 0 0=� �. Because an 
all-zero received sequence could legitimately translate to an all-zero message 
sequence with no channel error, any decoder will inevitably take the all-zero 
sequence as its valid decode output, thus producing a catastrophic result.

Catastrophic error propagation occurs only in nonsystematic codes; sys-
tematic codes [for example, the rate-1/2 code with the generators (100) and 
(111) is inherently error-propagation free] [8, 21–23].

5.4.2  Some Known Good Convolutional Codes

Convolutional codes are specified by their generators. For example, g1 = (111) 
and g2 = (101), or 7 and 5 in octal, specify the (2,1,3) code that has been used 
throughout this chapter as the example code.

The set of good convolutional codes listed in Tables 5.6 through 5.9 is 
the work of Odenwalder, Larsen, and Daut [24–26]. The codes are “good” 
in the sense that they have the largest free distance and therefore suitable to 
Viterbi decoding. Note that the first nonzero LSB of each octal generator in 
the tables, when converted into binary, corresponds to the lowest power in 
the generator polynomial. For instance, (13)8 ® (001011)2 ®1 + D 2 + D 3.

5.5  Punctured Convolutional Codes

The convolutional codes that we have discussed so far are rate-1/n codes. Al-
though the codes provide powerful error correcting capabilities, their coding rate 
is sometimes too low for bandwidth-constrained applications. One approach to 
raise the code rate is to increase the value of k in an (n, k, v) code to k > 1. The 
problem with this is that the resultant code will be a nonbinary code. The decod-
ing complexity of nonbinary codes rises geometrically with an increase in k.
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An alternative solution proposed by Cain and Geist [27] is the so-called 
code puncturing, in which a rate-(n - 1)/n code with n > 3 is obtained by 
systematically deleting some bits in a “base” rate-1/n code. The complexity 
increase of this approach is marginal.

Example 5.18

The rate-1/2 convolutional encoder in Figure 5.2 produces two code bits, 
c(1) and c(2), for each incoming information bit. Eliminating one code bit 
every other codeword in the code sequence generates the following sequence:

Table 5.6
Rate-1/2 Convolutional Codes

Constraint Length Generator Free Distance

3 (5,7) 5

4 (15,17) 6

5 (23,35) 7

6 (53,75) 8

7 (133,171) 10

8 (247,371) 10

9 (561,753) 12

10 (1167,1545) 12

Table 5.7
Rate-1/3 Convolutional Codes

Constraint Length Generator Free Distance

3 (5,7,7)   8

4 (13,15,17) 10

5 (25,33,37) 12

6 (47,53,75) 13

7 (133,145,175) 15

8 (225,331,367) 16

9 (557,663,711) 18

10 (1117,1365,1633) 20
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(1) (2) (1) (1) (2) (1)
0 0 0 1, , , , ,t t tc c c c c c +´ ´� �	

where × represents the deleted code bit. As a result, only three code bits are 
generated per two information bits. The code rate therefore becomes 2/3. 
A puncturing matrix P specifies how the output bits from the base encoder 
are deleted. A 1 in the matrix indicates that the output bit from the base 
encoder is transmitted, and a 0 indicates that the bit is deleted. The punc-
turing matrix for this example is:

	

é ù
= ê ú

ë û

1 1

1 0
P

	

Table 5.8
Rate-1/4 Convolutional Codes

Constraint Length Generator Free Distance

3 (5,7,7,7) 10

4 (13,15,15,17) 13

5 (25,27,33,37) 16

6 (53,67,71,75) 18

7 (133,135,147,163) 20

8 (235,275,313,357) 22

9 (463,535,733,745) 24

10 (1117,1365,1633,1653) 27

Table 5.9
Rate-1/5 Convolutional Codes

Constraint Length Generator Free Distance

3 (5,5,7,7,7) 13

4 (13,15,15,17,17) 16

5 (25,27,33,35,37) 20

6 (57,65,71,73,75) 22

7 (131,135,135,147,175) 25

8 (233,257,271,323,357) 28
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Figure 5.30 depicts the punctured encoder and the associated trellis  
diagram.

The rate-2/3 code, if constructed in the traditional way, would have four 
branches leaving and entering a state, which greatly increases the decoding 
complexity.

Apart from the computational savings, punctured codes also make it 
possible to adaptively use codes of different rates in a communications system 
according to the channel condition with only one encoder and one decoder. 
(We will see how this is done in the next subsection). Therefore, in this sense, 
the punctured codes of the same base are collectively called rate-compatible 
punctured convolutional (RCPC) codes [28].

MATLAB Experiment 5.10 

Two MATLAB functions, punc* and depunc*, are provided in the ac-
companying DVD for code puncturing and depuncturing.

S(11)

S(10)

S(01)

S(00)

Time 1 2 3

Code output

PuncturingBase encoder

0

Bit input mt

4

D D

ct
(1)

ct
(2)

P =   [1   0]2

P =   [1   1]1

P

Figure 5.30  Punctured convolutional encoder and trellis.
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>> p = [1 1; 1 0 ];	% puncture matrix
>> c = [1 1 0 1 0 1 0 0 1 0 1 1];   % original code sequence
>> c1 = punc(c,p)			      % puncture
c1 = 
	 1  1  0  0  1  0  1  0  1
>> r = [-1 -1 1 1 -1 1 -1 1 -1];	    % received sequence
>> r1 = depunc(r,p)			    % depuncture
r1 = 

	 -1  -1  1  0  1  -1  1  0  -1  1  -1  0

5.5.1.1  Decoding of Punctured Codes

Viterbi decoding of punctured codes involves an additional procedure 
known as code depuncturing. Code depuncturing inserts nulls into the re-
ceived sequence at the positions of the originally deleted bits. A null is a 
dummy symbol that is equidistant from all codewords. As we have seen, 
the number of bits per codeword changes periodically after code punctur-
ing. (For instance, in the previous example the codeword contains one bit 
at time 1, 3, 5, … and two bits at 2, 4, 6, ….) Without depuncturing, the 
number of bits per codeword must be tracked for each trellis branch in order 
for Viterbi decoding to perform properly. Code depuncturing makes up the 
deleted bits in the received sequence, so that decoding can be carried out 
just as if the code were the base code. This is particularly helpful in RCPC 
codes because we need only one decoder for all codes with different rates, as 
long as they are correctly depunctured. Figure 5.31 illustrates a decoder for 
punctured code.

Example 5.19

The code sequence in Example 5.2 11,01,01,00,10,11c =�  is punctured 
to 11,0,01,0,10,1c =�  to increase the coding rate from 1/2 to 2/3. Let 
us assume that BPSK is employed. So, what is actually transmitted is 
–1 –1 +1 +1 –1 +1 –1 +1 –1. The corresponding received sequence is 
–1 –1 +1 –1 –1 +1 –1 +1 –1, which has one error in the fourth posi-

Received
sequence Code

depuncture
Base Viterbi

decoder

Decode
sequence

Figure 5.31  Decoder for punctured code.
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tion. To decode the sequence, we first depuncture it by inserting zeros 
(nulls) into it. The depunctured sequence then is –1 –1 +1 0 –1 –1 
+1 0 –1 +1 –1 0. The Viterbi decoder takes the depunctured sequence 
and performs decoding on it as usual. Figure 5.32 shows the decoding  
process.

S(11)

S(01)

S(10)

S(00)

Time 1

1

2 3

Decoding trellis

0

0

4 5 6

Decode output

Path metric

1 1 0 0

Figure 5.32  Punctured code decoding process.

Table 5.10
Rate-2/3 Punctured Code

Constraint Length Generator Free Distance

3 (7,5),7 3

4 (15,13),15 4

5 (31,33),31 5

6 (73,41),73 6

7 (163,135),163 6

8 (337,251),337 8

9 (661,473),661 8
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MATLAB Experiment 5.11 

Use MATLAB to decode Example 5.19:
>> trellis = poly2trellis(3,[7 5]);
>> r = [-1 -1 1 1 -1 1 -1 1 -1];		  % received sequence
>> rd = [-1 -1 1 0 -1 -1 1 0 -1 1 -1 0];  % depunctured seq. 
>> decoded = vitdec(rd,trellis,3,’term’,’unquant’)  % decode
decoded =

	 1  1  0  1  0  0

The above-received sequence is successfully decoded without difficulty. In 
general, however, the error correcting capabilities of punctured codes are 

Table 5.11
Rate-3/4 Punctured Code

Constraint Length Generator Free Distance

3 (5,7),5,7 3

4 (15,17),15,17 4

5 (35,37),37,37 4

6 (61,53),53,53 5

7 (135,163),163,163 6

8 (205,307),307,307 6

9 (515,737),737,737 6

Table 5.12
Rate-4/5 Punctured Code

Constraint Length Generator Free Distance

4 (17,11),11,11,13 3

5 (37,35),25,37,23 4

6 (61,53),47,47,53 4

7 (151,123),153,151,123 5

8 (337,251)237,237,235 5

9 (765,463),765,765,473 5
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somewhat weakened. This is because as a coding rate goes higher, the redun-
dancy in the codes is reduced and, hence, so is the code’s error correcting 
capabilities. Consequently, the decoding depth must be increased in order to 
maintain performance. 

5.5.1.2  Popular Punctured Codes

The rate-2/3 punctured code discussed earlier is simply a punctured version 
of the known good rate-1/2 code, code (7,5). However a good rate-1/n code 
does not necessarily yield a good punctured code. Similar to the rate-1/n 
codes, good punctured codes are also discovered by computer search. The 
known good punctured codes are tabulated in Tables 5.10 through 5.13, 
together with their respective free distances [29, 30].

A punctured code is specified by the set of generators of its base code 
followed by the generators used at successive times. For example, the code in 
Example 5.18 is specified by (7,5),7, which means that the first message bit 
is encoded using generators (111) and (101), and the second message bit is 
encoded using (111) only. Using the (5,7),5,7 code as another example, the 
first message bit is encoded using (101) and (111), the second is encoded us-
ing (101), and the third using (111).

Note  This chapter has covered almost every important aspect of convolutional 
codes except one: recursive convolutional codes. This particular type of convolu-
tional code is of special significance because it is the basis of another powerful error 
correcting code—the newly developed turbo codes. So it will be discussed in the next 
chapter where we present turbo codes.

Table 5.13
Rate-5/6 Punctured Code

Constraint Length Generator Free Distance

4 (17,15),13,15,15,13 3

5 (37,23),23,23,25,25 4

6 (75,53),75,75,75,75 4

7 (145,127)133,127,145,133 4

8 (251,237),235,235,251,251 5

9 (765,473),765,473,463,457 5
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Problems

5.1 � Use a MATLAB simulation to find the relationship between the 
BER and decoding depth. Validate the “five times constraint 
length” rule suggested in [7].

5.2 � Errors at the output of a Viterbi decoder occur in bursts. Explain 
why and determine the minimum length of the error bursts.

5.3 � For the sake of implementation simplicity, some Viterbi decoder 
designs simply replace the squared Euclid’s distance |r(i) - c(i)|2 
in (5.14) with a linear distance |r(i) - c(i)| at the expense of some 
performance degradation. Taking the (2,1,3) code as an example, 
evaluate the degradation through simulation.

5.4 � Use simulation to verify that errors at the output of a Viterbi de-
coder tend to occur in bursts.

5.5 � For the (2,1,3) convolutional code, assume a received sequence r, 
and decode on r using the Viterbi algorithm, the stack algorithm, 
and the Fano algorithm.
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6
Modern Codes

During the past half-century, coding theorists have been busy searching for better 
error correcting codes. A breakthrough was made in 1993 when Berrou, Glavieux, 
and Thitimajshima published their research on what they called turbo codes [1], 
leading coding research into a new era. Turbo codes leapt past the classical block 
codes and convolutional codes by their near Shannon capacity performance. Fol-
lowing this exciting finding, 3 years later, MacKay rediscovered the low-density 
parity code (LDPC) that had been invented by Gallager thirtysomething years 
before [2–5]. LDPC codes push the limit even further [6].

This chapter surveys the modern advances in the area of error correct-
ing codes. 

6.1  Turbo Codes

6.1.1  Code Concatenation 

6.1.1.1  Serial Concatenated Codes 

Although, as Shannon indicated, we can always improve coding performance 
by increasing code length, this approach does not work in practice because 
decoding complexity rises exponentially with code length. In 1966 Forney 
proposed a simple and yet elegant strategy called code concatenation [7]. The 
basic idea is to cascade two or more relatively simple codes in a serial manner 
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such that the resulting composite code is equivalent to a much longer code in 
performance but much lower in decoding complexity. 

Illustrated in Figure 6.1, such a strategy arranges a message block of 
k1k2 bits into a k1 ´ k2 two-dimensional array. The k1 message symbols (of k2 
bits each) are first encoded into a nonbinary code C1(n1, k1) (the outer code). 
The codeword is stored in a buffer. A second binary code C2(n2, k2) (the inner 
code) reads in the k2-bit-long words from the buffer, one by one, to produce 
n1 codewords of code C2 (each of which is n2 bits long). The result is a con-
catenated (n1n2, k1k2) code C. If the minimum distances of the two codes are 
d1 and d2, respectively, the minimum distance of C is at least d1d2 [7]. Due to 
its simplicity and effectiveness, the technique has been widely adopted. The 
most popular concatenated code in practical applications is perhaps the code 
that pairs RS code (as the outer code) with convolutional code (as the inner 
code). Whereas Viterbi decoding output tends to produce errors in bursts 
(see Problem 5.2 in Chapter 5), RS code is able to correct burst errors effec-
tively. The combination thus makes perfect sense.

A typical serial concatenated coding system is illustrated in Figure 6.2. 
The buffers in the encoder and the decoder are called the interleaver and 

Figure 6.2  Serial concatenated coding system.

k2 k2

k1

n2

n1 n1

Outer encoding
( , nonbinary)c1

Inner encoding
( , binary)c2

Figure 6.1  Concatenating codes in a serial manner.
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deinterleaver, respectively. Their role in code concatenation goes beyond 
simple data buffering and will be explained in the next subsection.

Example 6.1

The simple two-dimensional code introduced in Problem 3.1 of Chapter 
3 is in fact a concatenated code. The values of k1 and k2 are 5 and 4, re-
spectively. The outer code is a (k1 + 1, k1 ) block code with codewords over 
GF(2 4), and the inner code is a (k2 + 1, k2  ) binary block code. An example 
encoding process is shown in Figure 6.3. Although neither the outer code nor 
the inner code alone can correct any errors, the concatenated code is able to 
correct up to one error, as shown previously.

Figure 6.4 presents the performance of a (255,223) RS code + rate-1/2 
convolutional code with the generator (155,117). The BER of the individual 
code is also plotted for comparison purposes. 

MATLAB Experiment 6.1

The program concat.m* on the companion DVD simulates the per-
formance of concatenation of the (2,1,3) convolutional code and the (7,4) RS 
code. Compare the error probability with that of the individual codes, which 
were simulated in previous chapters.

6.1.1.2  Role of Interleaving

The interleaver/deinterleaver between the outer and the inner code serves 
two purposes. First, the interleaver provides buffering between the outer code 
and the inner code. Second, more importantly, interleaving spreads out burst 
errors so that error bursts are randomized and become more correctable. As 
shown in Figure 6.5, data sequence 1 2 24, , ,d d d d=

�
�  is first read into the 

interleaver row by row, and then read out column by column as:

	     d1, d5, d9, d13, d17, d21, d2, d6, d10, d14, d18, d22,    
	 d3, d7, d11, d15, d19, d23, d4, d8, d12, d16, d20, d24¿- ¿-

	

Assume that an error burst of length 4 occurs at positions 3, 4, 5, and 
6, and the data affected are d9, d13, d17, and d21. The deinterleaver puts the 
permuted sequence back into the original order. These errors are spread out 
and are no longer contiguous. 
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Read out of columns

Read out of rows
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Figure 6.5  Operation of block interleaver.
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This type interleaver is called a block interleaver. It is widely used in 
practice. In general, a block interleaver deals with a two-dimensional array 
that can be read and written in different directions. In the preceding example, 
the data sequence is first written into the interleaver in the x direction and 
then read out in the y direction. 

Another commonly used interleaver, the convolutional interleaver, con-
sists of a bank of delay lines with increasing lengths. An input commutator 
successively connects to the delay lines at each cycle to load the data into the 
delay lines. An output commutator moves in sync with the input commuta-
tor to read the data out of the delay lines. The deinterleaver does just the 
opposite with the delay lines of decreasing lengths. Figure 6.6 shows an ex-
ample convolutional interleaver/deinterleaver comprised of three delay lines. 
The operation of the devices is also detailed in the figure. The convolutional 
interleaver/deinterleaver can be viewed as a block interleaver split diagonally 
in half.

Interleaving plays an important role (sometimes a key role) in many ap-
plications, including turbo codes (which we will be introducing shortly) and 
channel fading mitigation. We will have more to say on this later.

MATLAB Experiment 6.2

Two MATLAB functions, blkintlv* and convintlv*, one for block 
interleaving and the other for convolutional interleaving, are included on this 
book’s DVD. Readers are encouraged to try them out. 

6.1.2  Concatenating Codes in Parallel: Turbo Code

6.1.2.1  Recursive Systematic Convolutional Codes

The basic building block in a turbo code is the so-called recursive systematic 
convolutional (RSC) code. An RSC code is an alternative realization of the 
nonsystematic rate-1/n convolutional code. The conventional convolutional 
code is constructed in a feed-forward fashion; that is, the encoder consists 
of no feedback. In contrast, its RSC equivalence involves feedback in the 
encoding process. Notice that by using the term equivalence we have implied 
that the recursive code has the same distance property as its nonrecursive  
counterpart.
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Figure 6.6  Operation of convolutional interleaver/deinterleaver.
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To construct an RSC code, we need to transform the nonsystematic 
feed-forward code generator into a systematic feedback generator. For a  
convolutional code with generators g1(D), g2(D), …, gn(D), the generators of 
the equivalent RSC code are:

	

2 2

1 1 1

( ) ( ) ( )
1, , , ,

( ) ( ) ( )
ng D g D g D

g D g D g D
�

	
(6.1)

where the denominator represents the feedback involved.

Example 6.2

Figure 6.7 shows the equivalent RSC code of the nonsystematic feed-forward 
(2,1,3) convolutional encoder introduced in Chapter 5. The original gen-
erators are g1(D) = 1 + D + D2 and g2(D) = 1 + D2. The generators of the 
equivalent RSC are g1(D) = 1 and g2(D) = (1 + D2)/(1 + D + D2). 

From the circuit schematic in Figure 6.7(b), we can draw the state tran-
sition diagram and the trellis diagram of the RSC code as in Figure 6.8.  
As can be seen, the diagrams are very similar to those for the conventional 
(2,1,3) code.

For convolutional codes, the code generator is often expressed as an 
octal number. Similarly, for the example RSC code, we use 1 and 5/7 to rep-
resent its generators g1(D) = 1 and g2(D) = (1 + D 2)/(1 + D + D 2).

6.1.2.2  Turbo Codes

Turbo codes are formed by concatenating in parallel two RSC codes sepa-
rated by an interleaver p.� Figure 6.9 is the block diagram of a typical turbo 

�.  We may use more than two RSC encoders, but the underlying principle remains the 
same.  

Figure 6.7  (a) Convolutional encoder and (b) RSC encoder.
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encoder. Apparently, the turbo code is a systematic code. Its coding rate is 
1/3; that is, for every input bit, the encoder produces three code bits. One is 
the message bit itself (we call it the systematic bit), and the other two are the 
parity bits generated by the two RSC encoders. At the end of encoding, flush-
ing bits are added to force the first RSC encoder to the all-zero state. (RSC 
II may or may not be terminated to zero.) The two RSC encoders are often 
referred to as component encoders.

The code may also be punctured to obtain a higher coding rate, as de-
picted in Figure 6.10. Puncturing operates only on the parity sequences; the 
systematic bits are not touched. The punctured code in the figure raises the 
rate to 1/2. 

Figure 6.9  Turbo encoder.

Figure 6.8  State transition diagram and trellis for a (1,5/7) RSC code.
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Figure 6.10  Turbo encoder with puncturing.

Example 6.3 

Figure 6.11 shows a turbo encoder that uses the preceding example RSC as 
the component encoder. The interleaver changes the bit positions 1, 2, . . . ,  
8 to 8, 2, 7, 4, 3, 6, 5, 1. The message bit sequence to encode is m =  
1, 0, 1, 1, 0, 1, 0, 0 with the leftmost bit entering the encoder first. All reg-
isters are reset to zero initially. According to the state transition diagram in 
the last example, the output of the first RSC encoder is 1, 1, 0, 0, 1, 1, 0, 0. 
The input sequence to the second encoder is permutated by the interleaver as  
m¢ = 0, 0, 0, 1, 1, 1, 0, 1. Therefore, the output of the second encoder is 0, 
0, 0, 1, 0, 1, 0, 1. The final encoded output sequence then is (110),(010),
(100),(101),(010),(111),(000),(001).

Figure 6.11  Example of a turbo code encoder.
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MATLAB Experiment 6.3

We now use the MATLAB routine tbcenc* on this book’s companion 
DVD to encode the preceding message sequence into turbo code. 
>> m = [1,0,1,1,0,1,0,0];		  % message sequence
>> intlv = [8 2 7 4 3 6 5 1];	 % interleaver permutation
>> c = tbcenc(m,intlv)		  % encoding
c =
	 1  1  0
	 0  1  0
	 1  0  0
	 1  0  1
	 0  1  0
	 1  1  1
	 0  0  0

	 0  0  1

6.1.2.3  Notes on Performance of Turbo Codes

At the beginning of the chapter we stated that turbo codes are very powerful 
error correcting codes. Now we show some typical BER curves in Figure 6.12 
and make the following three points: 

1.	 We indeed see that the performance of the turbo code is very impres-
sive. The original turbo code reported in [1] achieved a 10–5 BER 
at only 0.7 dB away from the Shannon limit in an AWGN channel 
(whereas the convolutional code leaves a 3-dB gap). This superior per-
formance largely benefits from the random-like property of the code 
due to interleaving. Therefore, interleaving is crucial in turbo codes.

2.	 An interesting phenomenon is that when the SNR increases to some 
point, the decrease in the BER suddenly slows down, forming some 
sort of error floor. This is an inherent drawback of turbo codes, due 
to the presence of low-weight codewords in the code. 

3.	 The error performance of turbo codes improves as the code block 
length increases (code length 1,000 versus code length 65,536 in 
Figure 6.12). So, in order for turbo codes to achieve good perfor-
mance, the code length is normally chosen to be on the order of 
several thousand bits. As a result, an interleaver of the same length 
is needed. This is another major disadvantage of turbo codes, since 
such a large code length results in significant processing delays.
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MATLAB Experiment 6.4

Run the m-file tbcsim.m* to simulate the BER of our turbo code in 
the example. Readers will observe behavior similar to that of Figure 6.12.

Comment: You may not know what each subroutine does at this point. 
They will become clear when you finish this section. 

6.1.2.4  Interleaver Design for Turbo Codes

Whereas in a conventional serial concatenated code an interleaver is used 
merely to spread out burst errors, the interleaver in a turbo code plays a far 
more important role: It permutes the data sequence sent to the second com-
ponent encoder so as to generate a second parity that is independent from the 
parity generated by the first component encoder. As we will see, by doing so, 
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Figure 6.12  Typical performance of turbo code.



	 Modern Codes	 225

the turbo decoder will have two independent (or almost independent, to be 
more precise) sets of redundancies to exploit in decoding, and the decoding 
performance is thereby significantly improved.

Traditional block interleavers and convolutional interleavers do not 
work well in turbo coding. It is important for the interleaver in turbo coding 
to have a random property and make the interleaved sequence as indepen-
dent as possible from the original sequence. In the original turbo code [1], a 
pure random interleaver was adopted. The permutation is based on randomly 
generated numbers. However, in practice, only a pseudo-random interleaver 
is feasible, which permutes data sequence according to pseudo-random num-
bers. We use the following notation:

	 p = p1, p2, ¼ , pn	

to describe the permutation of an interleaver of depth n, where the ith ele-
ment of the interleaved sequence is the pith element of the input sequence. 
Figure 6.13 illustrates such an interleaver of depth 8. The permutation func-
tion is p = 8, 2, 7, 4, 3, 6, 5, 1. 

MATLAB Experiment 6.5

A simple routine, called rndintlv.m*, for implementing the random 
interleaver is included on this book’s DVD.

The issue with the random integer approach just discussed is that the 
resulting interleaver could be good or bad; we have no control over the selec-
tion of the random numbers. A remedy is the so-called S-random interleaver 
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Figure 6.13  Pseudo-random interleaver.
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[9]. An S-random interleaver attempts to permute the elements to the loca-
tions that are at least S positions apart. (In other words, it guarantees the 
contiguous bits in the original sequence to be at least S positions away from 
each other after interleaving.) The interleaver is constructed as follows: 

1.	 Randomly select the first element of the permutation p1 Î {1, 2, …, 
n}.

2.	 For each subsequent element of the permutation, pi, i = 2, 3, …, n, 
randomly select a number from the set {1, 2, …, n} and compare it 
to S previous selections p1, p2, …, pS.

3. 	 If the absolute values of the distances between the current selection 
and all S previous selections are larger than S (the S-random crite-
rion), the selection is accepted. Otherwise, reselect another number 
until the S-random criterion is met.

4.	 The process stops when every element of the permutation satisfies 
the S-random criterion. 

A possible S-random interleaver of depth 8 is p = 3, 7, 5, 2, 8, 4, 1, 6. 
Notice that every element in the permutation of this design has a distance ³2 
from its two immediate predecessors, whereas the minimum distance in the 
pseudo-random interleaver is 1.

The S-random interleaver offers significant performance improvement over 
the random interleaver. Because of this, many variations on the S-random algo-
rithm have been developed [10, 11]. 

Another type of interleaver, called an algebraic interleaver, admits analytical 
designs and simple implementations. The simplest such interleaver is the row-
column block interleaver introduced earlier. A modification to the block inter-
leaver is the helical interleaver, which writes data in row by row and reads data out 
diagonally [12]. To be more specific, for a two-dimensional array of k1 rows and 
k2 columns, the index for helically reading the bits out is given by:

	 2 1 2 1 2( 1) ( 1)mod( ) 1 ( 1,2,3, , )j i k k k i k k= - × + + = � 	 (6.2)

For the 6 ´ 4 array in Figure 6.5, the readout order is 1, 6, 11, 16, 21, 2, 7, 
12, 17, 22, 3, 8, 13, 18, 23, 4, 9, 14, 19, 24, 5, 10, 15, 20. The helical interleaver 
has been reported [12] to outperform the pseudo-random interleaver.

An interleaver can be designed that allows simultaneous flushing of both 
encoders with one single tail (termed the simile interleaver) [13]. Consider an 
input sequence that can be divided into M + 1 subsequences (where M is the 
number of registers in an RSC encoder). It has been found that the final state of 
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the RSC encoder is the modulo-2 sum of some subsequences. Take as an example 
the RSC encoder presented earlier. Suppose that an N-bit-long input sequence is 
d


 = d0, d1, d2, ¼, which can be divided into three subsequences (because there  
are two registers in the RSC encoder, i.e., M = 2) as follows:

	

I 0 3 6 9 12

II 1 4 7 10 13

III 2 5 8 11 14

{ | mod( 1) 0} , , , , ,

{ | mod( 1) 1} , , , , ,

{ | mod( 1) 2} , , , , ,

k

k

k

d d k M d d d d d

d d k M d d d d d

d d k M d d d d d

= + = =

= + = =

= + = =

�
�

�
�

�
�	

Depending on the value of N mod (M + 1), the final state of the en-
coder can only be one of the three possibilities shown in Table 6.1, and the 
order of the bits inside each subsequence does not matter to the final state 
of the encoder. This implies that we can drive both encoders with one tail 
and the encoders will end with the same state if the permutation is confined 
within the subsequences (i.e., the subsequences are interleaved separately).

Most recently, Sun and Takeshita [14] devised an algebraic interleaver 
called the quadratic permutation polynomial (QPP) interleaver. The interleaver 
provides a number of advantages including excellent performance (it exceeds 
that of the S-random interleaver), suitability for parallel processing, and low 
power consumption. For a data sequence of length N, a QPP interleaver of 
the same size is defined by the following polynomial:

	 pi = ( f1 × i + f2 × i2)mod N	

where i is the bit position of the interleaved sequence, pi is the corresponding 
bit index before interleaving, and coefficients f1 and f2 defining the permuta-
tion are conditioned based on the following:

Table 6.1 
Possible States of RSC Encoder with Simile Interleaver

N mod (M + 1)

Final State of RSC

RSC I RSC II

0 d


II Å d


III d


I Å d


II

1 d


I Å d


III d


II Å d


III

2 d


I Å d


II d


I Å d


III
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1.	 Coefficient f1 is relatively prime to data block size N.

2.	 All prime factors of N are also factors of f2.

Note that the deinterleaver may not be QPP (i.e., of higher polynomial 
degree). A detailed explanation of the interleaver is beyond the scope of the 
book. The readers are referred to [14] for further information. 

Last, we have a few words to say about a special interleaver, the uniform 
interleaver. By “special” we mean that the interleaver is an abstract model 
rather than a real design. When evaluating the performance of turbo codes, 
an interleaver is preferred that averages all possible interleavers, so that the 
evaluation outcome will be the average performance rather than a biased re-
sult toward a particular interleaver. The interleaver is designed to map a given 

input word of weight w into all N
w

æ ö
è ø  possible permutations with equal prob-

ability 1 N
w

æ ö
è ø  (uniformly distributed).

6.1.3  Iterative Decoding of Turbo Codes

For the sake of simplicity, we limit our discussion on decoding to the turbo 
code presented in Section 6.1.2. The basic principle applies to all turbo 
codes.

6.1.3.1  MAP Decoding and Log Likelihood Ratio

Let c = c0, c1,¼, cN -1 be a coded sequence produced by the rate-1/2 RSC 
encoder, and r = r0, r1,¼, rN -1 be the noisy received sequence, where the 

codeword is (1) (2)( )k k kc c c= , with the first bit (i.e., the systematic bit) being the 

message bit (1)
kkc m=  and the second bit being the parity bit. The correspond-

ing received word is (1) (2)( )k k kr r r= . The coded bit can take on the values +1 or 
-1.� The maximum a posteriori (MAP) decoding is carried out as follows:

( ) ( )
( ) ( )

(1) (1)

(1)

(1) (1)

1, if 1| 1|
( 0,1, , 1)

1, if 1| 1|

k k

k

k k

P c r P c r
c i N

P c r P c r

ì+ = + ³ = -ï= = -í
- = + < = -ïî

� �
�� �

	

(6.3)

�.  Assuming BPSK signaling, 0 ® +1, 1 ® -1.
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We define a quantity called the a posteriori log likelihood ratio (LLR) of 
ck

(1) as follows:

	

(1)
(1)

(1)

1|
ln

1|
k

k
k

P c r
L c

P c r

é ù= +
ê ú

= -ê úë û

�
� �( ) ( )

( ) 	

(6.4) 

The MAP decoding rule in (6.3) can be alternatively expressed as:

	
(1) (1)sign |k kc L c ré ù= ë û

�))

	
(6.5) 

Evidently, the magnitude of the LLR, (1)( )kL c r� , measures the likeli-

hood (or reliability, confidence) of ck
(1) = +1 (or ck

(1) = -1). Now all we need for 
MAP decoding is to compute the a posteriori LLR. The LLR can be expressed 
as a function of the probability P(ck

(1) = +1|r ):

	

( ) ( )
( )

( )
( )

(1) (1)
(1)

(1) (1)

1| 1|
ln ln

1| 1 1|

k k
k

k k

P c r P c r
L c

P c r P c r

� �

� �
é ù é ù= + = +
ê ú ê ú= =
ê ú ê ú= - - = +ë û ë û	

(6.6) 

and is depicted in Figure 6.14. 

6.1.3.2  BCJR Algorithm 

The most common algorithms for computing the LLR are the BCJR algo-
rithm and the SOVA algorithm. We first introduce the BCJR algorithm in 
this section.

Applying Bayes’ rule to (6.4), we obtain:
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(6.7)
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	 Now incorporating the code trellis structure (see Example 6.2), we have:
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1
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1, ( , , )

k kk S

k kk S

P c r P s S s S r

P c r P s S s S r

+

-

-

-

= + = = =¢

= - = = =¢

å

å

� �
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(6.8)

where sk-1 and sk denote the encoder states at time k - 1 and k, respectively; 
the subscript S+ means the sum is computed over the set of all transitions 
from state S¢ to state S due to message bit mk = +1; and S- is the set of all state 
transitions caused by mk = -1. Then (6.7) can be reformulated as follows:

( ) ( )
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1(1)
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ln ln

( , , )1,

k kk S
k

k kk S

P c r P s S s S r
L c

P s S s S rP c r

+

-

-

-

é ù é ù= + = =¢
ê ú= = ê ú

= =¢ê ú= - ê úë ûë û

å
å

� �

��
	

(6.9)

Figure 6.14  LLR versus a posteriori probability.
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Let us break the received sequence r into three pieces, one containing 
the past, another the present (i.e., time k), and the third the future:

	

0 1 1 1 1

(0: 1) ( 1: 1)

, , , , , ,k k k N

r k r k N

r - + -

- + -

=
� �

� � �� � � � � �r r r r r r

	
(6.10)

We then have:
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(6.11) 

Recall that the future coded output of a convolutional encoder is depen-
dent on the current state sk, but not on the previous states sk-1, sk-2, … nor on 
the current and past inputs (i.e., it is a Markov process). A memoryless chan-
nel (e.g., AWGN) retains this characteristic; therefore, the received sequence 
will bear the same Markovity. Consequently (6.11) can be simplified to: 
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Equation (6.7) then becomes:
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(6.13) 

Now we state the BCJR algorithm for computing the three probabilities  
ak-1(S ¢), gk (S ¢, S), and bk(S) for the rate-1/2 component code of the turbo 
code. First gk (S ¢, S) is computed as follows:

	

γ
=

é ù×æ ö= × ×¢ ê úç ÷è ø ê úë û
å

ext (1) ( )
2 ( ) ( )

1

( )
( , ) exp exp

2 2

i
c i i k k

k k k ki

L c rL
S S Z c r

	
(6.14)

where Zk is some constant, and can be ignored since it appears both in the 
numerator and in the denominator of (6.13) and cancels out.� (For a proof of 
(6.14), the reader is referred to [15, Chap. 14, Section 14.3].) The Lext(ck

(1)) 
term is the LLR of the bit ck

(1), but not the one we are computing; rather, it is 
supplied by an external source (the superscript “ext” means it is extrinsic).�

Given the coding rate R = 1/2, the quantity Lc is calculated to be:

	
= =b b

0 0
4 2c

E E
L R

N N 	
(6.15)

The value of ak(S) is computed recursively: 

	 1all S
( ) ( , ) ( )k k kS S S Sα γ α -¢

= ¢ ¢å 	
(6.16) 

where the subscript “all S ¢ ” means the summation is over all states at time  
k - 1 linked to state S at time k. Assuming that encoding starts with the all-
zero state, the initial condition for a0 is:

	
0

1 for all-zero state

0 for nonzero states
α

ì
= í

î 	
(6.17)

�.  Readers could imagine that, for a rate-1/n code, the sum is over i = 1 to i = n, that is, 
( ) ( )

1
n i i
i k kc r=å .

�.  Obviously the extrinsic LLR must be less accurate; otherwise, there is no point in comput-
ing the LLR again here.
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Finally,

	 1 all
( ) ( , ) ( )k k kS
S S S Sβ γ β- =¢ ¢å 	

(6.18)

is also computed recursively, where the subscript “all S ” means all states at 
time k with branches originating from state S¢ at time k - 1. The boundary 
condition is: 

	

1 for all-zero state

0 for nonzero states
Nβ

ì
= í

î 	
(6.19) 

Equations (6.14), (6.16), and (6.18) constitute the BCJR algorithm. 
We make the following observations about the algorithm:

1.	 Probability g has to be computed first, because it is needed in com-
puting both a and b.

2.	 Probability a is computed as r is being received; in other words, it 
is computed forward from the beginning of the trellis to the end.

3.	 Probability b can only be computed after we have received the en-
tire sequence r; that is, it is computed backward from the end of the 
trellis to the beginning.

4.	 The terms a and b are associated with the encoder states and g is 
associated with the state transitions.

5.	 Equation (6.19) implies that the encoder is terminated at the all-
zero state. Therefore, flushing bits are required.

The BCJR algorithm is also known as the forward-backward algorithm; 
the reason is evident. Also, a, b, and g are referred to as the forward metric, 
backward metric, and transition metric, respectively.

As with the path metric in the Viterbi algorithm, the forward metric and 
the backward metric, too, face potential numerical overflow issues. To circum-
vent the problem, a and b may undergo the following normalization:

	
α α α= åall 

( ) ( ) ( )k k kS
S S S

	
(6.20) 

	 1 1 1all 
( ) ( ) ( )k k kS
S S Sβ β β- - -¢

=¢ ¢ ¢å 	
(6.21)
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so that

	 1all all 
( ) 1 and ( ) 1k kS S
S Sα β -¢

= =¢å å 	

Notice that the normalization does not affect computation of L(ck
(1)) 

because it is applied to both the numerator and the denominator and cancels 
out. That is to say, the same LLR can be obtained as:

	
( )(1)

1 1ln ( ) ( , ) ( ) ( ) ( , ) ( )k k k k k kk S S
L c S S S S S S S Sα γ β α γ β+ -- -é ù= ¢ ¢ ¢ ¢ë ûå å

	
(6.22) 

Computation of the three metrics is best performed with the aid of the 
trellis diagram. We now give an example.

Example 6.4

Consider the rate-1/2 RSC code used in the turbo code above. Assume an all-
zero message sequence m = 0,0,0,0,0,0,0,0. The coded sequence c is also an 
all-zero sequence c = (+1 +1), (+1 +1), (+1 +1), (+1 +1), (+1 +1), (+1 +1),  
(+1 +1), (+1 +1) using BPSK signaling. The coded sequence, after going 
through an AWGN channel with Eb /N0 = 0.5, arrives at the receiver as:

( 0.3 0.7),( 0.8 0.7), (0.2 0.5),( 0.1 0.6),(0.2 0.6)

(0.6 0.3),(0.5 0.9),( 0.2 0.6)

r = - - -

-

�

According to (6.15), Eb /N0 = 0.5 Þ Lc = 1. Because we do not have 
the extrinsic LLR, we simply assume it equals zero. The transition metric 
is first computed using (6.14), which is exemplified in the leftmost figure of 
Figure 6.15: 

{ }
{ }

(1) (2)
2 2 2

1
(2,1) exp ( 1) ( 1)

2

1
exp [( 1)( 0.8) ( 1)(0.7)] 0.9512

2

r rγ é ù= + + +ë û

= + - + + =

Note that we number the states as 0®(00), 1®(10), 2®(01) and 
3®(11), Next, using (6.16) and (6.18), the other two metrics are calcu-
lated. As an example,
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a2(2) = a1(1) g2(1,2) + a1(3) g2(3,2)  
= 0.8187 ´ 2.1170 + 0 ´ 0.4724 = 1.7333

b2(2) = b2(0) g3(2,0) + b3(1) g3(2,1)  
         = 13.5310 ´ 0.7047 + 9.9425 ´ 1.4191 = 23.6442	

The complete computation process is illustrated in Figure 6.16 where 
c̃k is the decoded bit. Note that the received sequence contains four errors 
if hard-decision decoded by thresholding r at 0, and the MAP decoding is 
able to correct three of the four errors. 

MATLAB Experiment 6.6

A function bcjr* is provided to compute a, b, and g, as well as the LLR  
L. We now use it to solve Example 6.4.
>> % received sequence
>> r =	[-0.3 0.7 -0.8 0.7 0.2 0.5 -0.1 0.6 0.2 0.6 0.6... 
0.3 0.5 0.9 -0.2 0.6];
>> % bcjr
>> [L,a,b,g] = bcjr(r,0,1);  % a: alpha, b: beta, g: gamma, 
>>				      % L: LLR, Lext = 0, Lc = 1

We get the same results as in the example. For instance,
>> L
L =
	 0.1799 -0.5850 0.2627 0.0092 0.2870 0.8020 0.7513 0.6719

MATLAB Experiment 6.7

Suppose that we have somehow obtained the extrinsic Lext(ck
(1)) (k = 1, 

2, ¼, 8) to be 0.59, 0.48, 0.12, 0.25, 0.25, 0.31, 0.66, 1.02. Recalculate the 
four quantities a, b, g, and L.
>> Lext = [0.59 0.48 0.12 0.25 0.25 0.31 0.66 1.02]; 
>> L = bcjr(r,Lext,1);
>> L
L =
      1.0896 0.4932 0.9152 0.8842 1.1632 1.6394 1.7918 1.7329

We see that all bits are correctly decoded. In this new experiment, the 
extrinsic LLR information has helped the decoding. Now the natural ques-
tion is this: How do we get it? In fact, this is the central point of turbo decod-
ing and is presented next.



	 Modern Codes	 237

Fi
gu

re
 6

.1
6 

A 
BC

JR
 d

ec
od

in
g 

pr
oc

es
s.



238	 A Practical Guide to Error-Control Coding Using MATLAB®

6.1.3.3  Turbo Principle and Iterative Decoding of Turbo Codes 

Let us now leave LLR for awhile, and discuss the iterative decoding concept 
for turbo codes.

In their pioneering work, Berrou et al. [1] adopted MAP decoding to 
decode their code. However, as we have seen, without the extrinsic LLR, the 
performance of MAP is compromised. The turbo code inventors then turned 
to a decoding approach called iterative decoding, which starts with a rough 
estimate of the code and iteratively improves it toward true optimum decod-
ing. The trick is that the turbo decoder employs two component decoders. At 
each decoding iteration, the two component decoders produce the extrinsic 
LLRs for each other and exchange them with each other. Each component 
decoder uses the incoming extrinsic information as a priori probability to 
refine its decoding outcome, and at the same time generates more accurate 
extrinsic information for the other decoder. This ping-pong–like decoding 
principle is similar to a turbo engine in which compressed air is fed back from 
the compressor to the main engine cylinder in order to gain more power, and 
therefore is referred to as the turbo principle (Figure 6.17).

Figure 6.18 shows the structure of the turbo decoder, where DI and 
DII are the two component decoders. Before the decoding starts, the received 
sequence r is demultiplexed into three subsequences, r (1), r (2) and r (3) in 
correspondence with the three code bit sequences c (1), c (2) and c (3) respec-
tively (see Figure 6.9). The turbo decoder works as follows. First, r (1) and 
r (2) are fed to the component decoder DI. DI performs decoding and at the 
same time produces extrinsic LLR information (which is a posteriori to DI 
itself  ). This information is interleaved and passed on to DII. Next DII uses it 
as a priori for its decoding and produces more accurate extrinsic information 
for D1. Afterwards, the extrinsic information given by DII is deinterleaved 
and sent back to DI for a new iteration of decoding. The decoding proceeds 

Extrinsic LLR for
Decoder II

Component
Decoder IDecoding

a priori

a posteriori

Component
Decoder II Decoding

a priori

a posteriori

Extrinsic LLR for
Decoder I

Figure 6.17  Turbo decoding principle.
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as DI®DII®DI®DII® … until the process has converged or until a prede-
termined iteration count is reached. As the decoding proceeds, the decoding 
result is iteratively improved. Notice that the component decoder accepts soft 
LLR from and generates soft LLR for its companion; therefore, it is called the 
soft-in-soft-out (SISO) decoder.

Now we relate the LLR to the turbo decoding. It can be shown [15, 16] 
that the LLR can be decomposed into the sum of three parts, a quantity re-
lated to channel condition ck, an a priori probability Lk

apri and an a posteriori 
probability Lk

apos, that is:

	 ( ) apri apos(1)
kk k kL c L Lχ= + +

	
(6.23) 

where Lk
apri is the very extrinsic LLR provided by the other component de-

coder, and Lk
apos represents the extrinsic LLR that this component decoder 

generates for its companion. Use of the LLR in turbo decoding process can 
be illustrated as in Figure 6.19. The subscript I or II indicates the LLR com-
puted by decoder I or decoder II.

The value of Lk
apos is obtained based on (6.23):

	 ( )apos apri(1)
kk k kL L c Lχ= - -

	
(6.24) 

where ck is computed as:

	
(1)

k c kL rχ = 	 (6.25)

Figure 6.18  Structure of turbo decoder.
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We now can summarize the turbo decoding procedure:

Turbo Decoding

Initialization:
Compute c = c1,c2, ¼, cN [use (6.25)].

Decoding Iteration:

1.	 Decoder I: Computes LI(ck
(1)) (using BCJR�) for k = 1, 2, ¼, N. 

Computes Lk
apos based on (6.24) and outputs it. If it is the first itera-

tion, set Lk
apri = 0; otherwise, Lk

apri is the deinterleaved extrinsic from 
decoder II.

2.	 Decoder II: Computes LII(ck
(1)) (using BCJR or SOVA) for k = 1,  

2, ¼, N. Computes Lk
apos based on (6.24) and output. The term 

Lk
apri is the interleaved extrinsic from decoder I. 

3.	 If decoding converges, or reaches a predetermined number of de-
coding iterations, stop and output the hard decision [use (6.5)]; 
otherwise, go back to step 1. 

To maximize the benefit of the information exchange, the two com-
ponent decoders must operate as independently as possible. Otherwise, the 

�.  We will see shortly that SOVA can also be used.

Decode I

Decoding
iteration

L c X L L( )  = + +I k
(1)

k k
apri

k
apos

L c X L L( )  = + +I k
(1)

k k
apri

k
apos

L c X L L( )  = + +II k
(1)

k k
apri

k
apos

L c X L L( )  = + +II k
(1)

k k
apri

k
apos

Decode II

Decode I

Decode II

Figure 6.19  Use of LLR in turbo decoding.
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extrinsic information produced by the two decoders will be very much corre-
lated and the information exchange loses its sense. This further explains why 
a random-like interleaver is so important in turbo codes.

Note that the turbo principle is not limited to turbo decoding; it can 
serve as effective solutions to many other tasks in digital communications 
as well, for example, channel equalization (turbo equalization), multiple-in-
multiple-out (MIMO) processing (turbo MIMO), and multiuser detection 
(turbo multiuser detection).

Example 6.5

Now we use BCJR to decode our example turbo code (the code is the same as 
Example 6.3 except the interleaver here is 8,2,5,4,7,6,3,1). The code is an 
all-zero sequence, and Lc = 1.7825. The received sequence is: 

r = (-0 3  0.7  0.6),(-0.8  0.7 - 0.8), (0.2  0.5  0.9), (-0.1  0.6  0.6), 
(0.2  0.6  0.5), (0.6  0.3  0.2), (0.5  0.9  0.6), (-0.2 0.6 0.5)	

We run five decoding iterations:
Iteration 1: Decoder I works on noninterleaved (or de-interleaved) sequence:

k 1 2 3 4 5 6 7 8

L(ck 
(1))   0.20 –0.59 0.46 0.27 0.66 1.731 1.68 1.54 

Lk
apri   0 0 0 0 0 0 0 0

Lk
apos   0.74 0.87 0.10 0.45 0.31 0.66 0.79 1.89

Iteration 2: Decoder II works on interleaved sequence:

k 1 2 3 4 5 6 7 8

L(ck 
(1)) 3.39 –0.47 –0.11 0.25 1.95 2.24 1.28 1.76

Lk
apri 1.89 0.87 0.31 0.45 0.79 0.66 0.10 0.74

Lk
apos 1.86 0.09 –0.78 –0.02 0.27 0.51 0.81 1.56

At the fifth iteration, the LLR is:

k 1 2 3 4 5 6 7 8

L(ck 
(1)) 5.97 4.75 5.78 5.10 4.72 5.73 6.11 6.40

The decoded outcome is indeed an all-zero sequence.
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MATLAB Experiment 6.8

Example 6.5 has been implemented in the m-file tbcdemo.m*. Readers 
should step through the program and consult this section and the previous 
section to enhance their understanding of the topic. Readers may also try a 
different number of iterations to get an idea of how the decoding improves 
with more iterations.
>> tbcdemo
L =

5.9734 4.7521 5.7785 5.0993 4.7202 5.7251 6.1074 6.3966

MATLAB Experiment 6.9

If we plot the eight LLRs at different iterations, we end up with Fig-
ure 6.20. Clearly the reliability (confidence) of the decoded outcome rises  
as the iteration increases.

6.1.3.4  Variations on MAP Decoding

The BCJR algorithm suffers from a large amount of multiplications. To 
reduce this computational burden, two simplified MAP algorithms are 
often adopted in practice: the max-log-MAP algorithm and the log-MAP 
algorithm [17]. Both algorithms substitute additions for multiplications. 
For the first algorithm, the price paid is about a 0.35-dB performance  
loss [18].

Take the natural logarithm on the three probabilities ak(S ), bk(S ), and 
gk(S ¢,S ):

	 ( ) ln[ ( )]k kA S Sα� 	 (6.26)

	 ( ) ln[ ( )]k kB S Sβ� 	 (6.27)

and

	 ( , ) ln[ ( , )]k kS S S SΓ γ¢ ¢� 	 (6.28)

Substituting (6.16) and (6.18) into (6.26) and (6.27), respectively, yields:
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(6.29b) 

Also, substituting (6.14) into (6.28), we obtain:
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(6.30)
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Figure 6.20  Decoding reliability versus decoding iteration.
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Finally, following (6.13) and (6.30), we have: 
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(6.31)

Equations (6.29) through (6.31) tell us that we can perform MAP de-
coding in the log domain.

The max-log-MAP algorithm uses the following approximation to 
avoid summation of exponentials in computing Ak(s) Bk(s) and L(ck

(1)):

	
( )ln max( )ix

ii
e x»å

	
(6.32)

Then (6.29) and (6.31) become:

	 Γ -
¢

» +¢ ¢1( ) max[ ( , ) ( )]k k k
S

A S S S A S 	 (6.33)

	 Γ» +¢( ) max[ ( , ) ( )]k k k
S

B S S S B S 	 (6.34)

and 
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S

L c A S B S S S

A S B S S S 	

(6.35) 

As mentioned, the max-log-MAP algorithm suffers some performance 
degradation when compared to exact decoding. The problem can be solved 
by the log-MAP algorithm, which uses the Jacobian logarithm:

	

( )
max*( , )

ln( ) max( , ) ln 1 max* ( , )x yyx

x y

e e x y e x y- -+ = + + =
� � �

	

(6.36)

where ln(1 + e-|x - y|) is called the offset.
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Applying (6.36) to (6.29) and (6.32), the log-MAP algorithm com-
putes Ak(s) Bk(s) and L(ck

(1)) recursively as follows:

    
( ) ( )( )( )( )5 4 3 1 2ln max* ,max* ,max* ,max* ( , )ix

i
e x x x x x=å � �

	
(6.37)

If the term ln(1 + e-|x - y|) is implemented in an LUT, the computational 
complexity of log-MAP is only marginally higher than that of max-log-MAP, 
but the decoding is exact and no loss is incurred [15, p. 610].

MATLAB Experiment 6.10

The decoding of Example 6.5 using log-MAP and max-log-MAP algo-
rithms is simulated in the files logmap.m* and maxlogmap.m*, respectively.

6.1.3.5  SOVA Decoding Algorithm

An alternative to MAP-type decoding is the soft-output Viterbi algorithm 
(SOVA). SOVA is extended from the conventional Viterbi algorithm. It dif-
fers from its predecessor in that it takes into account the a priori of its input 
and additionally outputs the soft reliabilities of the decoded bits (i.e., the 
LLR). Therefore, SOVA is also a SISO algorithm. 

Recall that, in the conventional Viterbi algorithm, we choose as the 
survivor the path with the minimum path metric, which is the sum of the 
squared Euclidean distance dE

2 [see (5.13) and (5.16) in Chapter 5]. This 
maximizes the probability [see (5.12)]:

	

2
E

0

0

1
( | )

d

Np r c e
Nπ

-
=� �

 	

With SOVA, we maximize the probability p(r| c)P(c), where P(c) is 
the a priori probability of the code sequence c. This leads to the following 
SOVA metric for the current trellis node (S,t) [8]:

	
( )

=
é ù= +ê úë ûå å� 2 ( ) ( ) ext (1) (1)

( , ) 1
i i

S t c t t t tc i
SM L c r L c r

	
(6.38)
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where Lext(ct
(1)) is the extrinsic LLR of the systematic bit ct

(1). The outer sum 
is carried out over the path that gives the sequence c. As seen from this equa-
tion, the SOVA metric incorporates the channel reliability (the first term), 
and the extrinsic probability as a priori supplied by an external source (the 
second term). Similar to the path metric in the conventional Viterbi algo-
rithm, the SOVA metric can also be calculated recursively as:

	
( )2 ( ) ( ) ext (1) (1)

( , ) ( , 1) 1
i i

S t S t c t t t tt
SM SM L c r L c r-¢ =

= + +å 	
(6.39) 

where (S ¢, t - 1) is the preceding trellis node on the path.
SOVA decoding operates just like the conventional Viterbi algorithm: 

At every decoding step, for each state, we compare the SOVA metrics of two 
incoming paths and select as the survivor the path with the maximum metric. 
At the end, the global optimum path is our decoding path.

The extra task in SOVA is to compute the soft LLR output. It can be 
shown [19] that the probability of a path y coming to trellis node (S,t) is re-
lated to its metric SM y             (S,t) as follows:

	
( )( , )exp /2y

y S tP SM=
	

(6.40) 

Notice that there are two paths coming into trellis node (S,t). Denote the two 
paths as x and y and assume, without loss of generality, that y is chosen as the survi-
vor path. The probability that y is the true survivor can be computed as follows:
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é ù= D + Dë û 	

(6.41) 

where Dt
xy

 is the difference of the metrics:

	

1
2

xy x t
t t ySM SMD -�

	
(6.42) 
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The LLR of path y as the survivor, by definition, is:
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t t
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P y
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= D 	

(6.43)

This LLR is just for the path. What we are ultimately interested in is 
the LLR for each decoded bit along the path. This LLR can be computed as 
[8, p. 562]:
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(6.44)

where ck
(1) is the systematic bit on path y at decoding step k, and dk

(1) is the 
systematic bit associated with path x at that step. Note that L(ck

(1)) must be 
updated at each decoding step.

The computation is graphically illustrated in Figure 6.21. The binary 
digit on each transition branch is the systematic bit of the associated code-
word. Paths x and y merge at state 0 at time 6, and y is the correct path and 
is chosen as the survivor. The LLR is computed according to (6.44). For ex-
ample, L(c5

(1)) equals [D 6
xy , L(c5

(1))] since the systematic bit associated with the 
transition (S(0),4)®(S(0),5) (on path y) is 0, whereas the bit associated with 
the transition (S(1),4)®(S(2),5) (on path x) is 1. 

Soft-Output Viterbi Algorithm

Initialization:
Set: time ¬ 0, initial state SM ¬ 0, all other SM ¬ -¥, ( )(1)

kL c ¬ ¥.
Normal Operation:

1.	 Increase time by 1.

2.	 Compute SOVA metric according to (6.39) for every path.
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3.	 Compare SOVA metrics for each state, store the path with the max-
imum metric as well as the metric itself.

4.	 Update the LLR for each systematic bit along the survivor path  
using (6.44).

Decoding and Output: 
At the end of the trellis, choose as the global optimum path the path 
ending at the initial state (if the encoder is terminated) or the survivor 
with maximum SOVA metric (if the encoder is not terminated). Out-
put the bit sequence and the associated LLRs.
When applied in turbo decoding, the LLR output generated by one 

component SOVA decoder is used as the a priori (i.e., the extrinsic LLR) in 
the other component decoder for computing the SOVA metrics [see (6.38)]. 

MATLAB Experiment 6.11 

This book’s DVD includes a SOVA decoding program called  
sovademo.m*. Step through the program to gain more insight into the  
algorithm.

Note that, in general, SOVA is inferior to BCJR in terms of bit error 
performance. The main advantage of SOVA is that it has much lower imple-
mentation complexity. 

SOVA can also be used in the sliding-window fashion, similar to the 
conventional window-sliding Viterbi decoding [15]. 

6.1.3.6  Criterion for Stopping Decoding Iterations

Normally turbo decoding is run for a fixed number of iterations. The fixed 
iteration count is set to handle the worst channel noise. However, in most 
cases, codewords do not experience that level of noise corruption. Conse-
quently, decoding can finish with fewer iterations. The stopping criterion 
for iterative decoding is to determine if the decoding has converged so that 
it can be terminated earlier without compromising its error probability per-
formance. Many such criteria have been proposed. One simple criterion is to 
count the number of sign changes between the current Lk

apos and Lap
k -1

 os com-
puted at last iteration. If the number is below a certain ratio (normally 0.005 
to 0.003) of the sequence length, decoding stops. This criterion is called the 
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sign-change ratio (SCR) criterion [20]. Another one is to compare the sign 
of L(ck

(1)) with the sign of L(c(1)
k -1). When they are the same, decoding stops 

[called the hard-decision-aided (HDA) criterion] [20].

6.1.4  Implementing MAP

In practical implementations, log-MAP is most preferred for its reduced 
complexity and satisfactory performance. A log-MAP core consists of three 
processing units: the transition metric calculator (TMC), which computes G; 
the add-compare-select-offset (ACSO) unit, which calculates A and B; and 
the LLR calculator (LLRC), which computes L(ck

(1)). Next we briefly discuss 
how to implement them.

6.1.4.1  Transition Metric Calculator

Codeword c = (c (1)c (2)) has four combinations, that is, (00), (01), (10) and 
(11). Substituting them into (6.30), we arrive at the four values shown in 
Table 6.2 for the transition metric. Based on the table, the TMC circuit is 
easily designed as in Figure 6.22. 

6.1.4.2  ACSO 

Notice that computation of A and B share a similar recursion architecture 
[see (6.29)]. Therefore, we focus our discussion on A. 

Write out (6.29) for our example turbo code as follows:
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Applying the Jacobian logarithm, we have:

	
1 1 1 2 1 2( ) max* ( , ) ( ), ( , ) ( )k k k k k

x y

A S S S A S S S A SΓ Γ- -

æ ö
= + +¢ ¢ ¢ ¢ç ÷

ç ÷è ø
� � � � � �

	

Table 6.2
Possible Transition Metrics

ck (00) (01) (10) (11)

Gk 0 Lcr (2) Lcr (1) + Lext(ck
(1)) Lcr (1) + Lcr (2) + Lext(ck

(1))
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It is clear now that recursive calculation of A involves ACS and correc-
tion of e-|x-y| (i.e., the offset). This ACSO operation can be implemented in 
the structure shown in Figure 6.23. The circuit in the box implements the 
max* operation. The LUT stores the offset, which is computed off-line, and 
x - y is used as the access address to the LUT.

r (1)

r (2)

Lc

L ext

0

M
UX

c

Γ

Lc

Figure 6.22  Transition metric calculator.

A S( )k

LUT

Offsetx

y
A S´( )k−1 2

A S´( )k−1 1

Γ ( )S´ , S2k

Γ ( )S´ , S1k

max ( , )x  y*

Figure 6.23  Architecture of ASCO.
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6.1.4.3  LLR Calculator

We observe:
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For the example turbo code, S+ contains four transition branches (re-
fer to the trellis in Example 6.2): S(0)®S(0), S(1)®S(3), S(2)®S(1), and 
S(3)®S(2). Therefore, computation of LLR+ takes the form:

	 LLR+ = ln{e a + e b + e c + e d}	

It follows from (6.36) that:

	

{ } ( ) ( ){ }+ ++ + + = +

=

ln lnln ln

max* (max* ( , ),max* ( , ))

a b c da b c d e e e ee e e e e e

a b c d 	

Therefore, computation of LLR+ can readily be realized in a circuit 
with a tree structure. LLR– can be obtained in exactly the same way. The 
schematic of an LLR calculator is shown in Figure 6.24. 

6.2  Low-Density Parity-Check Codes

The low-density parity-check (LDPC) code, also known as the Gallager code, 
was invented as early as 1962 [2, 3]. Despite its near ideal performance, the 
code was forgotten for almost 30 years, largely because its decoding complex-
ity exceeded the capabilities of the hardware for that time. It was Mackay and 
Neal who rediscovered the code in the mid-1990s [4, 5] and invoked inten-
sive research on it. Most recently, the capability of the code has been pushed 
to only 0.0045 dB away from the Shannon limit [6], making it the best per-
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forming code known so far. On the commercial side, an additional advantage 
is that the LDPC code is not patented (unlike turbo code, which is patent 
protected in Europe and America). The disadvantages of the code include its 
higher encoding complexity and longer latency than turbo code. LDPC code 
has been adopted in several standards including IEEE 802.16 (WiMAX), 
IEEE 802.3an (10GBase-T Ethernet), and DVB-S2 (satellite transmission of 
digital television).

B
A

LLR−

LLR+

LLR

max*

max*

Γ

max*

B
A

Γ

B
A

Γ

B
A

Γ

B
A

max*

max*

Γ

max*

B
A

Γ

B
A

Γ

B
A

Γ

Figure 6.24  LLR calculator.
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6.2.1  Codes with Sparse Parity-Check Matrix

6.2.1.1  LDPC Codes: Definition and Properties

An LDPC code is an (n,k) linear block code whose parity-check matrix H 
contains only a few 1’s in comparison to 0’s (i.e., sparse matrix). For an m ´ n  
parity-check matrix (where m = n - k), we define two parameters: the column 
weight J equal to the number of nonzero elements in a column and the row 
weight K equal to the number of nonzero elements in a row. So, for LDPC 
codes, J << n and K << m. However, we want to point out that the generator 
matrix of LDPC code G is in general not sparse.

Example 6.6

The following parity-check matrix represents an LDPC code. Notice that 
the number of 1’s is far less than the number of 0’ s in the matrix.

	

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

=H

0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û	

In fact, this is the parity-check matrix of the LDPC code proposed by 
Gallager in [2].

An LDPC code is regular if J is constant for every column and K is also 
constant for every row. On the other hand, if H is low in density but J and 
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K are not constant, the code is irregular. The example Gallager code above is 
obviously a regular LDPC code since it contains three 1’s per column and four 
1’s per row for all columns and rows. An (n,k) regular LDPC code sometimes 
may be denoted as C(n,J,K ), where n is the code length. For instance, the ex-
ample code is denoted by C(20,3,4). Also for a regular LDPC code, the coding 
rate is calculated as follows provided all rows are linearly independent�:

	 1 /R J K= - 	 (6.45)

The equation is easy to derive. The total number of 1’s counted row 
by row, mK, must equal that counted column by column, nJ, that is, mK 
= nJ. Substituting this expression into the definition of the coding rate, 

/ ( )/R k n n m n= -� , yields (6.45). 
In addition to near-capacity performance, LDPC codes possess other 

advantages over turbo codes as summarized in the following [21]:

1.	 Suitable for parallel implementation;

2.	 More amenable to high coding rate;

3.	 Lower error floor;

4.	 Superior burst error correcting capability;

5.	 One single LDPC code can be good for different channels.

Among the disadvantages are:

1.	 High encoder complexity;

2.	 Interconnect in decoder is large and irregular;

3.	 May perform worse than turbo codes when code length is short.

6.2.1.2  Tanner Graph

A Tanner graph is a bipartite graph introduced to graphically represent LDPC 
codes [22]. It consists of nodes and edges. The nodes are grouped into two 
sets. One set consists of n bit nodes (or variable nodes), and the other of m 
check nodes (or parity nodes). The creation of such a graph is straightfor-
ward: Check node i is connected to bit node j if hi,j of the parity matrix H 
is a 1. From this we can deduce that there are totally mK (or nJ ) edges in a 
Tanner graph for a regular code. Apparently the Tanner graph has a one-to-
one correspondence with the parity-check matrix. The Tanner graph of the 
C(20,3,4) Gallager code is shown Figure 6.25. 

�.  The actual coding rate may be somewhat higher.
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As we shall see shortly, decoding of LDPC codes operates by iteratively 
passing messages between the two sets of nodes in the Tanner graph. 

Certain terminology is associated with a Tanner graph. The degree of a 
node is defined as the number of edges connecting to it. A path comprising 
l edges in a Tanner graph that closes back on itself is called a cycle of length 
l. The minimum cycle length in a Tanner graph is referred to as the girth of 
the graph. The shortest possible cycle in a Tanner graph is a length-4 cycle 
(see Figure 6.26).

6.2.1.3  Criteria for Good LDPC Codes

A good LDPC code should possess a large minimum distance dmin and no 
short cycles in its Tanner graph. The first requirement is obvious as LDPC is 
a block code. The second one comes from the fact that cycles hurt the perfor-
mance of the message-passing decoding algorithm because they invalidate the 
assumption of independence under which the algorithm is derived.

The requirements impose some constraints on the parity-check matrix 
as follows:

1.	 The matrix is low in both column weight and row weight; that is,  
J << n and K << m.

2.	 The overlapping of 1’s per column and per row should be at most equal 
to one. This is necessary to avoid short cycles in the Tanner graph.

3.	 J ³ 3 and K > J to ensure good distance property.

6.2.1.4  Notes on LDPC Performance 

Readers should be aware that the near Shannon performance of LDPC 
codes exists only for long code lengths (at least a few thousands of bits). The 
minimum distance of an LDPC code increases with increasing code length; 
at the same time, the error probability of the code decreases exponentially.  

Figure 6.26  Shortest possible cycle length in Tanner graph.
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Figure 6.27 plots the BER versus Eb /N0 curve for the (2048,1723) LDPC code. 
It has also been found that, in general, the BER performances of irregular LDPC 
codes are better than those of regular LDPC codes by up to 0.5 dB [23]. 

MATLAB Experiment 6.12

Consider a (12,3,6) LDPC code whose parity-check matrix is as follows:

	

1 1 0 1 0 0 0 0 1 1 0 1

1 1 1 1 1 0 0 1 0 0 0 0

1 0 1 0 1 1 0 0 0 1 1 0

0 0 0 1 1 1 1 0 1 0 1 0

0 1 1 0 0 0 1 1 0 0 1 1

0 0 0 0 0 1 1 1 1 1 0 1

é ù
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Figure 6.27  Error performance of (2048,1723) LDPC code. (After: [24].)
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The m-file ldpcsim.m* simulates the code. 
Comment: The error probability is understandably not as good as Figure 

6.27, because this code is obviously too short.

6.2.2  Decoding and Encoding Algorithms

6.2.2.1  General Description

For all of the codes we have discussed so far, their encoding is far less complex 
than their decoding and has never been an issue. However, the situation is differ-
ent with LDPC codes. LDPC encoding poses a challenge. As we have mentioned, 
the generator matrix of an LDPC code is usually not sparse. Due to large size of 
the matrix, the conventional block encoding method (i.e., multiply message by 
generator matrix) could require a significant number of computations. For in-
stance, the generator for a rate-1/2 LDPC code with a codeword length of 10,000 
and message length of 5,000 is a 5,000×10,000 matrix. Brute-force multiplica-
tion of the matrix with the message requires 107 XORs even if we assume the 
density of the matrix to be as low as 0.2. Therefore, an efficient encoding method 
has been a topic of LDPC code research.

Like turbo decoding, LDPC decoding adopts an iterative approach. 
The decoding operates alternatively on the bit nodes and the check nodes 
to find the most likely codeword c that satisfies the condition cH T = 0. Sev-
eral decoding algorithms exist for LDPC codes. For hard-decision decoding, 
there is the bit-flipping (BF) algorithm; for soft-decision decoding, there is 
the sum-product algorithm (SPA), also known as the brief propagation algo-
rithm and Pearl’s algorithm. The iterative soft-decision decoding of LDPC 
code converges to true optimum decoding if the corresponding Tanner graph 
contains no cycles. Therefore, we want LDPC codes with as few cycles as pos-
sible, especially short cycles.

In the following sections, we present the decoding algorithms, followed 
by the encoding methods.

6.2.2.2  BF Decoding

Gallager [2] proposed the following BF decoding algorithm:

Bit-Flipping Decoding Algorithm

1.	 Compute each parity check for the received word r.

2.	 For each received bit, count the number of failed parity checks.
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3.	 Flip the bit(s) with the largest number of failed check(s).

4.	 Repeat steps 1, 2, and 3 until all parity checks are satisfied or un-
til the predetermined number of iterations is reached. In the latter 
case, if some parity checks still fail, declare decoding failure.

The BF decoding algorithm is attractive for its simplicity (requires only 
XOR gates and comparators). For fixed values of J and K, the decoding com-
plexity grows linearly with the code length n. To enhance the performance 
of the algorithm, several variants such as weighted bit flipping (WBF) have 
been proposed [25].

Example 6.7

Consider the following code �:

	

1 1 0 0 0 0 0

0 1 1 1 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 0 1 0 1 1

é ù
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H

	

The Tanner graph of the code is drawn in Figure 6.28.
Suppose that the codeword is an all-zero vector c = (0000000), and the 

received word contains two errors in the second and fourth bits such that  
r = (0101000). The BF decoding process is shown in Figure 6.29, where × 
denotes a failed parity check and Ö a successful parity check. We see that, at 
the third iteration, the received word is correctly decoded.

MATLAB Experiment 6.13

The MATLAB program bf.m* simulates the BF algorithm. Readers 
are advised to step through the program for one iteration to see how the BF 
algorithm is implemented.

7.  This is not quite an LDPC code; we use it merely to illustrate the BF algorithm. 	
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1 2 3 4 5 6 7

a b c d e f

Figure 6.28  Example Tanner graph.

6.2.2.3  Sum-Product Decoding Algorithm

Instead of flipping bits, the sum-product algorithm (SPA) propagates soft 
probabilities of the bits between bit nodes and check nodes through the Tan-
ner graph, thereby refining the confidence that the parity checks provide 
about the bits. The exchange of the soft probabilities is termed as message 
passing or belief propagation. When no cycles exist in the Tanner graph, SPA 
computes the exact probabilities [26]; when cycles are present, it computes 
only approximate solutions. However, even with cycles, the algorithm, given 
next, can still decode very effectively.

Sum-Product Decoding Algorithm

Initialization:
For bit node j with an edge to check node i:

Set:

	

1 2
0

0 1

1/[1 exp(2 / )] 1/[1 exp(4 / )]

1

j j j

j j

p r r N

p p

σì = + = +ï
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ï = -î

and

1 2

1

1 1

0 1

1 1 exp 2 / 1/[ exp 4 ]

( 1| )

1

ij j j j

ij ij

p r r N

p p

P P c r p

P P

σ= + = +

= -

ì = = =ï
í
ï = -î 	

(6.46)

where rj is the received bit corrupted by noise, and s2 = N0 /2 is the variance 
of the AWGN channel.
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Message Passing:

1.	 From check nodes to bit nodes: For each check node i with an edge to 
bit node j, compute

	
0 1

ij ij ijP P PD = - 	 (6.47)

Compute DQij as the product of DPij ¢ for all j ¢ ¹ j, that is:

# of failed
parity checks 0 0 0 0 0 0

1 2 3 4 5 6 7

a b c d e f

# of failed
parity checks 2 1 0 0 0 0

1 2 3 4 5 6 7

a b c d e f

0

1

# of failed
parity checks 1 1 3 0 0 0

1 2 3 4 5 6 7

a b c d e f

1

Iteration

3

2

1

r´´  = (0  0  0  0  0  0  0)

r´  = (0  1  0  0  0  0  0)

r = (0  1  0  1  0  0  0)

Flip bit #2

Flip bit #4

Figure 6.29  BF decoding process.



	 Modern Codes	 263

	
( 1,2, , and  )ij ijj
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(6.48)

Also, compute: 
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(6.49)

2.	 From bit nodes to check nodes: For each bit node j with an edge to 
check node i:

Compute P 0ij as p 0j multiplied by the product of Q 0i ¢j and P1
ij as p1

j 
multiplied by the product of Q1

i ¢j over all i ¢ ¹ i that is: 

	

0 0 0

1 1 1
( 1,2, , and )

ij j i ji

ij j i ji

P p Q
i m i i

P p Q
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(6.50)

and scale P 0ij and P1
ij  by a same factor so that P 0ij + P1

ij  = 1.

Compute P 0ij  as p 0j  times the product of Q 0i ¢j and P1
ij  as p1

j  multiplied 
by the product of Q 0i ¢j over all i, that is:

	

0 0 0

1 1 1
( 1,2, , )

j j iji

j j iji

P p Q
i m

P p Q

ì =ï =í
ï =î

Õ

Õ
�

	

(6.51)

and scale P 0j and P1
j by a same factor so that P 0j  + P1

j  = 1.

3.	 Decoding and soft outputs: For j = 1,2, ¼, n:

	

( )1 00 if ln / 0

1 otherwise

j j
j

P P
c

ì ³ï= í
ïî 	

(6.52)

If cH T = 0, stop and output hard decision c and/or soft likelihood 
ln(P 1j /P 0j ). Otherwise, go to step 1. In the latter case, if the itera-
tions exceed a preset number, declare a decoding failure. 

Notice that the sum-product algorithm performs in the same way as 
the MAP BCJR algorithm in that it gives the best possible estimate of each 
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bit of the received vector, but not necessarily the best estimate of the whole 
codeword.

Example 6.8

Consider the (12,3,6) LDPC code in MATLAB Experiment 6.12. Its  
Tanner graph is drawn in Figure 6.30.

Suppose the codeword c = (101000101000) is transmitted through an 
AWGN channel with s 2 = 1. The received vector is r = (-0.40 0.80  
-0.20 1.10 1.20 -0.20 -1.30 0.70 0.07 1.10 1.30 1.10). Using (15.5), 
we find the following:
P 1j =

0.69 0.17 0.60 0.10 0.08 0.60 0.93 0.20 0.47 0.10 0.07 0.10

If we decode r simply by thresholding the above probabilities at 0.5, the 
result is (101001100000), which contains two errors.

Applying the sum-product algorithm, we have the following decoding 
process:
Iteration 0 (initialization):
P1

ij =

0.69 0.17 0.10 0.47 0.10 0.10
0.69 0.17 0.60 0.10 0.08 0.20
0.69 0.60 0.08 0.60 0.10 0.07

0.10 0.08 0.60 0.93 0.47 0.07
0.17 0.60 0.93 0.20 0.07 0.10

0.60 0.93 0.20 0.47 0.10 0.10

1 2 3 4 5 6 7 8 9 10 11 12

a b c d e f

Figure 6.30  Tanner graph of (12,3,6) LPDC code.
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P 0ij =

0.31 0.83 0.90 0.53 0.90 0.90
0.31 0.83 0.40 0.90 0.92 0.80
0.31 0.40 0.92 0.40 0.90 0.93

0.90 0.92 0.40 0.07 0.53 0.93
0.83 0.40 0.07 0.80 0.93 0.90

0.40 0.07 0.80 0.53 0.90 0.90

Iteration 1:
DPij =

–0.38 0.66 0.80 0.07 0.80 0.80
–0.38 0.66 –0.20 0.80 0.83 0.60
–0.38 –0.20 0.83 –0.20 0.80 0.86

0.80 0.83 –0.20 –0.86 0.07 0.86
0.66 –0.20 –0.86 0.60 0.86 0.80

–0.20 –0.86 0.60 0.07 0.80 0.80

DQij =

0.02 –0.01 –0.01 –0.13 –0.01 –0.01
–0.06 0.03 –0.10 0.03 0.02 0.03
0.02 0.04 –0.01 0.04 –0.01 –0.01

0.01 0.01 –0.03 –0.01 0.10 0.01
0.07 –0.24 –0.05 0.08 0.05 0.06

–0.02 –0.01 0.01 0.10 0.01 0.01

Q 0ij = 

0.51 0.49 0.49 0.44 0.49 0.49

0.47 0.52 0.45 0.51 0.51 0.52

0.51 0.52 0.49 0.52 0.49 0.50

0.50 0.50 0.48 0.50 0.55 0.50

0.54 0.38 0.47 0.54 0.53 0.53

0.49 0.50 0.50 0.53 0.50 0.50
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Q1
ij =

0.49 0.51 0.51 0.56 0.51 0.51
0.47 0.48 0.55 0.49 0.49 0.49
0.49 0.48 0.51 0.48 0.51 0.51

0.50 0.50 0.52 0.51 0.45 0.50
0.46 0.62 0.53 0.46 0.47 0.47

0.51 0.50 0.50 0.47 0.50 0.50

p0
j  =

0.31 0.86 0.27 0.90 0.92 0.39 0.06 0.84 0.55 0.90 0.94 0.91

p1
j =

0.69 0.14 0.73 0.10 0.08 0.61 0.94 0.16 0.45 0.10 0.06 0.09

P1
ij =

0.70 0.14 0.09 0.39 0.10 0.09
0.67 0.15 0.69 0.10 0.08 0.17
0.70 0.75 0.08 0.63 0.10 0.06

0.10 0.08 0.59 0.94 0.48 0.06
0.16 0.63 0.93 0.19 0.07 0.10

0.59 0.94 0.16 0.48 0.10 0.09

P 0ij =

0.30 0.86 0.91 0.62 0.90 0.91
0.331 0.85 0.31 0.90 0.92 0.83
0.30 0.25 0.92 0.37 0.90 0.94

0.90 0.92 0.41 0.06 0.50 0.94
0.84 0.37 0.07 0.81 0.94 0.90

0.41 0.06 0.84 0.52 0.90 0.91

ln(P 1j   /P 0j   ) =

–0.81 1.78 –1.00 2.24 2.44 –0.43 –2.74 1.64 0.21 2.17 2.71 2.31
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At the end of the first iteration, the decoded word is (101001100000), 
which still has two errors. This means we need more decoding iterations. 

Finally, at the eighth iteration, we obtain:

ln(P 1j   /P 0j   ) = 

–0.88 1.84 –1.03 2.24 2.44 0.01 –2.74 1.70 –0.14 2.11 2.70 2.31

The received word is correctly decoded as (101000101000).

MATLAB Experiment 6.14

The MATLAB program spademo.m* simulates Example 6.8. Checking the 
probabilities, we notice that their magnitudes vary greatly. 
>> spademo

LLR =

 Columns 1 through 8 

 -0.8752 1.8355 -1.0286 2.2377 2.4431 0.0095 -2.7386 1.7042 

 Columns 9 through 12 

 -0.1404 2.1054 2.7035 2.3083

6.2.2.4  Sum-Product Algorithm in Log Domain

Several drawbacks are associated with SPA. First, as we saw in the previous 
experiment, the numerical dynamic range in SPA computations is quite large. 
This could potentially result in numerical instability. Second, intensive mul-
tiplication in the algorithm poses a challenge for implementation. As with 
MAP, we want to modify the algorithm so that we can use the log-likelihood 
ratio (LLR) instead of probability [21].

Define the following LLRs:

	

( )
( )
( )

0 1

0 1

0 1

( ) ln[ ( 0 | )/ ( 1| )]

( ) ln /

( ) ln /

( ) ln /

i i i i i

ij ij ij

ij ij ij

j j j

L c P c r P c r

L P P P

L Q Q Q

L P P P

= =�

�

�

�
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where ln(×) represents the natural logarithm operation. The log domain SPA 
can be described as follows: 

Sum-Product Algorithm in Log Domain

Initialization:
For bit node j with an edge to check node i:
Set:

	
2( ) ( ) 2 /ij i iL P L c r σ= = 	 (6.53) 

Message Passing:

1.	 From check nodes to bit nodes: For each check node i with an edge to 
bit node j:

Update L(Q ij) as:

    
( ) ( ) ( 1,2, ,  and )ij ij ijj j

L Q j n j jα φ φ β¢ ¢¢ ¢
é ù= = ¹¢ ¢
ë ûÕ å �

(6.54)

where sign[ ( )]ij ijL Pα �  and ( )ij ijL Pβ � . The f function is defined 
as:

	 ( ) ln[tanh( /2)] ln[( 1)/( 1)]x xx x e eφ = - = + - 	 (6.55) 

2.	 From bit nodes to check nodes: For each bit node j with an edge to 
check node i:

Update L(Pj) as:	

	   
( ) ( ) ( ) ( 1,2, , and )ij j iji

L P L c L Q i m i i
¢

= + = ¹¢ ¢å �
	 (6.56)

3.	 Decoding and soft outputs: For j = 1,2,¼, n:

Update L(Pj) as:

	
( ) ( ) ( ) ( 1,2, , )j j iji

L P L c L P i m= + =å �
	

(6.57)

Let:

	

1 if ( ) 0

0 else
j

j
L P

c
<ì

= í
î 	

(6.58) 
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If c × H T = 0 or the number of iterations reaches the maximum 
limit, stop; otherwise, go to step 2.

The most frequently involved computation in log domain SPA is com-
putation of the f function. The function is fairly well behaved, as illustrated 
in Figure 6.31, and it may be implemented with an LUT.

MATLAB Experiment 6.15

The MATLAB program logspa.m* for decoding the previous example 
using log-SPA is included on this book’s DVD. Experiment with the pro-
gram to gain more insight into the algorithm.

Figure 6.31  The f(x ) function.
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6.2.2.5  Encoding

LDPC encoding can be accomplished using the conventional method 
presented in Chapter 3: First reformulate the (n - k) ´ n parity-check 
matrix in systematic form: H = [In - k| P] [see (3.8) in Chapter 3], then  
construct the generator matrix as G = [Pk ´(n - k| Ik], and finally encode as  
c = mG. The construction of the generator can be done off-line and does 
not count toward the encoder’s complexity. However, multiplication of 
m with G has a complexity of ~k ´ n = Rn ´ n ~ n2, where R is the cod-
ing rate. In other words, the encoder complexity is quadratic in the block  
length. 

Some novel ideas for lower complexity LDPC encoding have been pro-
posed that exploit the sparseness of the parity-check matrix. One proposal is 
the message-passing encoder [26, 27]. Notice that, for systematic code, en-
coding is nothing more than finding n - k parity bits. The method treats the 
codeword with n - k unknown parity bits as if it were a received word with 
n - k erasures, and uses a decoder to find the erasures. Once the erasures are 
known, the parity bits are obtained. Hence, encoding is converted to decod-
ing for a binary erasure channel.

Another encoding method proposed in [28] is to transform the parity-
check matrix into an approximate lower triangular form by row and column 
permutations, so that the sparseness of the matrix is preserved. The encoding 
complexity is on the order of magnitude n + g 2, where g is called the “gap” to 
linear encoding. This gap is actually the number of rows of the parity-check 
matrix that cannot be brought into triangular form by row and column per-
mutations only. 

6.2.3  High-Level Architecture Design for LDPC Decoders 

6.2.3.1  Parallel Architecture

We observe that, in the SPA decoding algorithm, computation of the quan-
tity Q 1ij (or P 1ij) for a node j (or i) does not count on the other nodes. In other 
words, computation of Q 1ij (or P 1ij) can be performed independently for all 
bit nodes (or check nodes). Exploiting this feature, the parallel architecture 
design directly maps the nodes of the Tanner graph onto processing elements 
(PE), and the edges of the graph onto a network of interconnects (see Figure 
6.32). Each PE corresponding to a check node (we call it CPE) executes step 
1 in the message passing of the SPA; each PE corresponding to a bit node (we 
call it BPE) executes step 2 in the message passing.
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The advantage of a fully parallel design is its ability to achieve the highest 
throughput and no need for large memory to store intermediate messages. How-
ever, the architecture (Figure 6.32) suffers from large hardware area and complex 
interconnection between the PEs (a hard-wired connection is required between 
every pair of BPEs and CPEs). Also, this irregular interconnection makes it dif-
ficult to partition a parallel design into smaller subblocks for repetition.

6.2.3.2  Serial Architecture

The high usage of hardware in the parallel structure can be brought down by 
using the resource sharing technique. This then leads to a serial design for the 
decoder (Figure 6.33). Two memory devices are needed in this case to store 
the messages, one for Q 1ij and the other for P 1ij.

The serial architecture results in a smaller area and significantly simpler 
interconnection. It is also more flexible in supporting different parity-check 
matrices. The main drawbacks include much lower throughput and the need 
for memory. The control mechanism also becomes rather sophisticated, as 
compared with a parallel architecture.

6.2.3.3  A Few Words on Architecture Optimization

Besides hardware area and throughput, architecture optimization for LDPC 
decoders also emphasizes reconfigurability, low-power consumption, and ef-
ficient use of memory.

Some cited works on architecture optimization for LDPC decoder de-
sign include [29], which focuses on reconfigurable hardware; [30], which 
reports on an architecture that achieves low power by inducing structural reg-
ularity into the decoder; and [31], which covers a high-throughput, memory- 
efficient parallel architecture.

Figure 6.32  Parallel architecture of LDPC decoder.
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Note  Two most important classes of modern error correcting codes are intro-
duced (albeit at a somewhat superficial level). The codes are still under intensive 
research. We recommend the IEEE Transactions on Information Theory journal and 
other related journals and conferences as sources for the most up-to-date coverage. 
This chapter serves only as a starting point.

Although the proof of the iterative BCJR decoding is omitted, it is beneficial 
to go through the mathematical derivations. Reference [16] provides a concise treat-
ment of this. The explanation of turbo code performance including the error floor is 
quite brief in this book. To gain an insightful understanding of this topic, we suggest 
Section 16.3 in [8] and Sections 8.6 and 8.7 in [32] for further reading. 

For LDPC codes, several other decoding algorithms are worth our attention, 
such as the min-sum and min-sum-plus-correction-factor algorithms. They are ap-
proximations to SPA. These algorithms simplify the decoder design and hence are 
attractive in practice. Interested readers may want to access [33, 34] for details.

This chapter concludes the book. However, the research on error control cod-
ing continues. Breakthroughs are expected at any time. You never know.

Problems

6.1 � Use a MATLAB simulation to confirm that SOVA is inferior to 
MAP decoding in terms of bit error performance, and give the 
reason why. 

6.2 � Consider a rate-1/2 turbo code punctured from the rate-1/3 code 

in Example 6.1. The puncturing matrix is 
1 0

0 1
é ù
ê ú
ë û

. Demonstrate 

the decoding process of the code.

6.3 � Fill the missing decoding iterations in Example 6.5 and compare 
the results with MATLAB Experiment 6.8.

Figure 6.33  Serial architecture of LDPC decoder.



	 Modern Codes	 273

Fi
gu

re
 6

.3
4 

Tr
an

sf
or

m
at

io
n 

fro
m

 d
ec

od
er

 A
 to

 d
ec

od
er

 B
.



274	 A Practical Guide to Error-Control Coding Using MATLAB®

6.4 � From the system point of view, decoder B can be obtained from 
decoder A by block diagram reduction and they do the same 
thing (as shown in Figure 6.34). Can we use decoder B since it 
has saved two interleavers [35]? Why or why not?

6.5 � Examine the following parity-check matrix and determine if it is a 
good LDPC code. What is the coding rate of this code?

1 1 0 1 0 0 0 0 1 1 0 1

1 1 1 1 1 0 0 1 0 0 0 0

1 0 1 0 1 1 0 0 0 1 1 0

0 0 0 1 1 1 1 0 1 0 1 0

0 1 1 0 0 0 1 1 0 0 1 1

0 0 0 0 0 1 1 1 1 1 0 1

é ù
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê úë û

H

	

6.6 � Derive the generator matrix of the (20,3,4) LDPC code for en-
coding use.

6.7 � Modify SPA for hard-decision decoding. In this case, the message 
from the check node to the bit node would be the bit that the 
check node believes to be correct assuming that the bits from the  
other bit nodes are correct. The message from the bit node to  
the check node would be the bit that wins the majority vote.

6.8 � Fill in the missing decoding iterations in Example 6.8 and check 
the results with MATLAB Experiment 6.14.
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Index

Add-compare-select (ACS), 170, 197
Additive white Gaussian noise (AWGN) 

channel, 8
A posteriori probability (APP), 10
A priori probability, 238
Asymptotic coding gain. See Coding gain
Automatic repeat request (ARQ), 2

Bahl-Cocke-Jelinek-Raviv (BCJR) 
algorithm, 229

BCH bound, 100–101
BCH code

Binary, 97
Nonbinary, 113–14

Belief-propagation decoding. See  
Sum-product algorithm

Berlekamp-Massey (BM) algorithm, 125
inversionless BM algorithm (iBM),  

129
reformatted inversionless BM (riBM) 

architecture, 144
Binary phase shift keying (BPSK), 6
Binary symmetric channel (BSC), 8
Bit-flipping (BF) decoding algorithm, 

259–60
Block code, 5

construction, 45

Bound
BCH bound, 100
Rieger bound, 123
Singleton bound, 122
union bound, 13
Viterbi decoding, 177

Branch metric, 168
Butterfly structure, 159

Catastrophic error propagation. See 
Convolutional code

Channel capacity, 14
Channel error

bursty, 8
random, 8

Chien search, 108
Coding gain, 13

asymptotic, 13
Code generator

matrix, 48
polynomial, 75

Code puncturing and depuncturing, 203, 
206

Concatenated code, 213–14
Constraint length. See Convolutional code
Convolutional code, 5

catastrophic error propagation, 202
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Convolutional code (continued)
code termination, 164
constraint length, 153
recursive systematic convolutional 

(RSC) code, 219
Coset, 22, 53

coset leader, 53
Cyclic code, 73

shortened, 91
Cyclic redundancy check (CRC), 93

Decoding depth, 174
Decoding sphere. See Hamming sphere
Deinterleaver. See Interleaver and 

deinterleaver
Distance

Euclidean distance, 167
Hamming distance, 10

Elementary symmetric function, 103
Erasure, 59
Erasure decoding

linear binary block code, 59
Reed-Solomon code, 140

Erasure location polynomial, 140
Error correcting capability

block code, 63
Reed-Solomon code, 114, 122–23

Error detecting capability
block code, 61
CRC, 94

Error evaluation polynomial, 116
Error floor. See Turbo code
Error location polynomial, 103

modified for IBM, 202
Euclid’s algorithm, 131–32
Euclid’s decoding of RS codes, 133
Extension field, 25
Extrinsic information, 232

Fano metric, 179
Fano algorithm, 185
Forward-backward algorithm. See  

Bahl-Cocke-Jelinek-Raviv 
(BCJR) algorithm

Field, 22
Finite field. See Galois field
Flushing bit, 164

Forney algorithm, 116
Free distance, 161
Frequency domain RS coding

decoding, 135
encoding, 119–20

Gallager code. See Low-density parity-check 
(LDPC) code

Galois field, 25
characteristic, 25
element representations, 26, 30
extension, 25
ground, 25
prime, 25
primitive element, 25–26

Galois field Fourier transform (GFFT), 
119–20

inverse GFFT, 120
Greatest common divisor (GCD), 131

cyclic, 21
finite. See Galois field
generating element, 21
group, 19
order, 21
subgroup, 21

Hamming code, 66
construction, 68
decoding, 69
extended, 72

Hamming distance, 10
minimum, 11

Hamming sphere, 12
Hamming weight, 10
Hard-decision decoding, 10

Inner code, 214
Interleaver and deinterleaver, 214–15

algebraic, 226 
block, 215, 218
convolutional, 218
helical interleaver, 226
quadratic permutation polynomial 

(QPP), 227
random, 225
simile, 226–27
S-random, 225–26
uniform, 228
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Irreducible polynomial, 28
Iterative decoding

LDPC code, 259
turbo code, 238

Key equation, 116
Berlekamp-Forney, 141

Lagrange’s theorem, 21
Log-likelihood ratio (LLR), 229
Log-MAP algorithm, 242, 245
Log-SPA, 268
Low-density parity-check (LDPC) code, 254

Maximum a posteriori (MAP) decoding, 10
Maximum-distance-separable (MDS) code, 

122
Maximum likelihood (ML) decoding, 9

block code, 52
convolutional code, 166–67

Max-log-MAP algorithm, 244
Metric normalization
Viterbi decoding, 191
MAP decoding, 233–34
Meggitt decoder, 86–88
Message passing decoding algorithm. See 

Sum-product algorithm (SPA)
Minimum Hamming distance. See 

Hamming distance
Minimum polynomial, 32
Modified generating function, 162

extended, 175–76

Newton’s identity, 104
Nonsystematic code, 5

Order of a field element, 26
Outer code, 214

Parity-check
matrix, 49
polynomial, 76

Path metric, 168
Pearl’s algorithm. See Sum-product 

algorithm (SPA)
Peterson’s algorithm, 106–7
Polynomial

over a prime Galois field, 26
primitive, 28

Polynomial division circuit, 81–82

Q-function, 8

Rate-compatible punctured convolutional 
(RCPC) code, 205

Reed-Solomon (RS) code, 117
Register-exchange, 193

Shannon’s theorem, 14
Single-input single-output (SISO) decoder, 

239
Sliding-window decoding

Viterbi algorithm, 173–74
SOVA, 249

Soft-decision decoding, 10
Soft-output Viterbi algorithm (SOVA), 

247–49
Stack algorithm, 182–83
Standard array, 52–53

syndrome based, 55–56
State transition diagram, 156–57
Sum-product algorithm (SPA), 261–62

in log domain. See Log-SPA
Syndrome, 54

polynomial, 85
Systematic code, 5

Tail-biting, 165
Tanner graph, 255–57
Traceback, 193–95
Tree diagram, 156
Trellis diagram, 157
Truncation error, 174
Turbo code, 220–21
Turbo decoding, 240

component encoder and decoder, 221, 
238

Vandermonde matrix, 101
Vector space, 22–23
Viterbi algorithm, 171

soft output. See Soft-output Viterbi 
algorithm (SOVA)

Weight distribution, 62

Zech algorithm, 39
Zech logarithm, 39
Zero-tailing, 164–65
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