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In recent topological work [2], we were forced to consider the left 
derived functors of the I-adic completion functor, where I is a finitely 
generated ideal in a commutative ring A. While our concern in [2] was 
with a particular class of rings, namely the Burnside rings A(G) of compact 
Lie groups G, much of the foundational work we needed was not restricted 
to this special case. 

The essential point is that the modules we consider in [2] need not be 
finitely generated and, unless G is finite, say, the ring ,4(G) is not 
Noetherian. There seems to be remarkably little information in the 
literature about the behavior of I-adic completion in this generality. We 
presume that interesting non-Noetherian commutative rings and interesting 
non-finitely generated modules arise in subjects other than topology. We 
have therefore chosen to present our algebraic work separately, in the hope 
that it may be of value to mathematicians working in other fields. 

One consequence of our study, explained in Section 1, is that I-adic com- 
pletion is exact on a much larger class of modules than might be expected 
from the key role played by the Artin-Rees lemma and that the deviations 
from exactness can be computed in terms of torsion products. 

However, the most interesting consequence, discussed in Section 2, is 
that the left derived functors of I-adic completion usually can be computed 
in terms of certain local homology groups, which are defined in a fashion 
dual to the definition of the classical local cohomology groups of 
Grothendieck. These new local homology groups may well be relevant to 
algebraists and algebraic geometers. 

In particular, we obtain a universal coefficients theorem for calculating 
these groups from local cohomology in Section 3; the classical local duality 
spectral sequence is a very special case. 

The brief Section 4 gives an analysis of the behavior of composites of left 
derived functors of I-adic completion. The still briefer Section 5 describes 
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the right derived functors of I-adic completion, which are much less 
interesting (and irrelevant to our topological applications). 

We restrict ourselves to the main points here, and the arguments are 
quite elementary. Commutative ring theorists will see that we have left 
many very natural questions unaswered. In particular, we have left sheaf 
theoretic generalizations to the reader. 

0. PRELIMINARIES 

To establish notations and context, we recall briefly the definitions of left 
derived functors and of some basic constructions that we shall use. Let A&! 
be the category of modules over a commutative ring A. 

A a-functor 9 is a sequence {Oi 1 ia 0} of covariant functors 
Di: A&’ -+ A& together with natural connecting homomorphisms 
ai: .;(M”) -+ D,+ ,(M’) for short exact sequences 

such that the following are zero sequences (all composites are zero): 

. . + DJM’) + D,(M) -+ Di(M”) -+ D,+ ,(M’) 

-+ . . . + D,(M) + D,(M”) + 0; 

9 is exact if these sequences are exact. 9 is effaceable if, for each M, there 
is an epimorphism N -+ M such that DiN-+ DiM is zero for i > 0. This 
obviously holds if Di F = 0 for i > 0 when F is free. 

Let l? A& -+ A,,& be an additive functor. Its left derived functors are 
given by an exact and effaceable a-functor P’r= {LiT) together with a 
natural transformation E: LOT+ r, which is an isomorphism on free 
modules. The functor LJ is right exact and its left derived functors for 
i > 0 are the same as those of r. For any &functor 9, a natural tranforma- 
tion J,: D, + L,T extends uniquely to a map {fi}: 9 -+ yr of %functors. 
Moreover, {f,} is an isomorphism if and only if 9 is exact and effaceable 
andf, is an isomorphism on free modules. For an A-module M, 2’I’M can 
be constructed by taking the homology of the complex obtained by 
applying r to a free resolution of M. Details may be found in [l, V, 
Sects. 2-3 1. 

Define the cone, or caliber, Ck of a chain map k: X+ Y by 
(Ck)i= Yi@XiPl, with differential di(y,x)=(di(y)+ki-,(x), -dip,(x)). 
Define the suspension CX and desuspension C- ‘X by (ZX), = Xi-, and 
(c-lx)i=xi+*, with the differential -d. We have a short exact sequence 
0 + Y -+ Ck + CX -+ 0, and the connecting homomorphism of the derived 
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long exact sequence in homology is k,. It is convenient to define the fiber 
of k to be Fk=C- ‘C(-k). 

Given a sequence of chain maps f’: x’ + x’+ ‘, r b 0, define a map 1: 
@r + @Xr by I(X) =x -,f’(x) for x E X’. Define the homotopy colimit, 
or telescope, of the sequence {fr} to be Cr and denote it Tel(X). Then 
Hi(Tel(X’)) = Colim H,(X’). The composite of the projection from Cr to its 
first variable and the canonical map @X’ + Colim X’ is a homology 
isomorphism [: Tel(X’) + Colim X’. 

We shall need an observation about the behavior of telescopes with 
respect to tensor products. Given two sequences f r: X’ -+X’+ ’ and g‘: 
Y’-+ Y+l, we obtain a sequencefrOg’: Xr@ Y-x+‘@ Y+‘. 

LEMMA 0.1. There is a natural homology isomorphism 

4: Tel(X’@ Y) + Tel(X’)@Tel( I”‘). 

ProoJ: Using an ordered pair notation for elements of the relevant 
calibers, we specify 5 by the explicit formula 

WOY’, x0.Y) = (0, x)0 (y, 0) + (- 1 )d’byf(X), O)@ (0, y) 

+ (x’, 0) 0 (y’, 0). 

A tedious computation shows that 4 commutes with differentials. It is a 
homology isomorphism because the diagram 

Tel(X’@ Y) b Tel(X’)@Tel( Y) 

I i I l@i 
Colim(X’@ Y) -+ Colim(X’@ Y’) 2 Colim(X’)@Colim( Y) 

r r. A r s 

commutes. Here the bottom left arrow is the diagonal cofmality 
isomorphism. 

Dually to the telescope, given chain maps f’: x’ -+ x’- ’ for r b 1, define 
a map rr: xX’+ x X’ by rr(x’) = (xr-fr+l(x’+ ‘)). Define the homotopy 
limit, or microscope, of the sequence {fr> to be Fx and denote it Mic(X’). 
Then there are short exact sequences 

(0.2) 0 -+ Lim’ Hi+ l(Xr) -+ H,(Mic(X’)) + Lim H,(F) -+ 0. 

Observe that a degreewise short exact sequence 

o+{cr}+{Y}+{z’}~o 
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of systems of chain complexes gives rise to a short exact sequence 

0 -+ Mic(X’) + Mic( Y’) -+ Mic(Z’) -+ 0 

and thus to a long exact sequence of homology groups. 
Here Lim’ denotes the first right derived functor of the inverse limit 

functor. We shall be concerned only with inverse sequences, for which the 
higher right derived functors of Lim vanish. Thus a short exact sequence of 
inverse sequences gives a six term exact sequence of Lim’s and Lim”s. We 
say that an inverse sequence {M’} is pro-zero if, for each r, there exists 
s > r such that M” --f M’ is zero; of course, if {M’) is pro-zero, then 
LimM’=O and Lim’M’=O. 

1. THE LEFT DERIVED FUNCTORS OF I-ADIC COMPLETION 

Let I be an ideal in our commutative ring A. For an A-module IV, define 
M; = Lim M/I’M. Let L: denote the ith left derived functor of I-adic com- 
pletion. We begin by obtaining a construction of these functors that leads 
to a description of the Lf(M) in terms of torsion products. Let x’ be a free 
resolution of A/I’ and construct chain maps f’: x’-+ XP1 over the 
quotient maps A/I’ + A/I’~ ‘. 

PROPOSITION 1.1. The functors Lj(A4) are computable as the homology 
groups of the complexes Mic(X’@ M). Therefore, by (0.2), there are short 
exact sequences (the rightmost term in the zerolh being M,” ) 

0 -+ Lim’ Torf+ ,(A/Z’, M) + Lf + Lim Tor:(A/Z’, M) + 0. 

Proof: The H,(Mic(X’@ M)) clearly give an exact &functor. If M is 
free, the evident natural map E: H,(Mic(X’@ M)) + Lim(A/I’@ M) = M,” 
is an isomorphism and H, (Mic(X’@ M)) = 0 for i > 0. 

We need some restrictive hypotheses to proceed further. In the rest of the 
paper, all ideals are assumed to be finitely generated. 

DEFINITION 1.2. Let a E A. For an A-module M, let T(a; M) denote the 
kernel of a: M + A4 and observe that T(a’; M) c r(ar’ ‘; M) for r > 1. Say 
that M has bounded a-torsion if this increasing sequence stabilizes, for 
example if A is Noetherian and A4 is finitely generated. 

Remarks 1.3. (i) Observe that a: M+ M restricts to a map 
T(a’+ ‘; M) -+ r(a’; M) for each r. It is easily checked that M has bounded 
a-torsion if and only if the inverse sequence {T(a’; M)} is pro-zero. Thus 
Lim T(a’; M) = 0 and Lim’ f(ar; M) = 0 if M has bounded a-torsion. 
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(ii) If NcM, then r(crr; N)=f(cr’; M)nN, so that N has bounded 
cc-torsion if M does. If each of a set M, of A-modules has bounded 
a-torsion with a common bound r, then the sum and product of the M, 
have bounded cr-torsion. In particular, if A itself has bounded z-torsion, 
then so does every submodule of any free A-module. 

EXAMPLES 1.4. If A is the quotient of the polynomial ring generated 
by (~1, y, 1 r 3 1) by the ideal generated by {cY’~, 1 Y > 1 }, then A has 
unbounded a-torsion. As pointed out by Swan, if k is a field and if CI, /I, and 
x,, s 2 1, are indeterminates, then the sub k-algebra A of k(a, fi, x,~) which 
is generated by tl, /I, the x,, and the elements y,>, r = CL~X,//Y for s 3 r 2 1 is 
an example of an integral domain in which A/(B’) has unbounded u-torsion 
for every r. 

PROPOSITION 1.5. Let I= (LX) and assume that A has bounded cc-torsion. 
If Lim IJar; M) = 0 and Lim’ ZJcC; M) = 0, for example if M has bounded 
cc-torsion, then LA(M) z M; and L:(M) = 0 for i > 0. Moreover, the 
following conclusions hold for any A-module M. 

(i) There is a short exact sequence 

0 + Lim’ Tor;‘(A/I’, M) + L;(M) -+ M; -+ 0. 

(ii) L:(M) E Lim Tor$A/Z’, M). 

(iii) L:(M) for i>2. 

Proof. Tensoring M with the diagram 

O-+f(cc; A)+ A +(a)+0 

0 + (u)+ A + A/(a) 4 0 

and inspecting, we see that Tor,(A/Z, M) z r(a; M)/~(cx; A) M. There 
results an exact sequence 

of inverse systems. If Lim r(ccr; M) = 0 and Lim’ T(a’; M) = 0, the six 
term Lim-Lim’ exact sequence and our hypothesis on A imply 
that Lim Tor,(A/Z’, M) = 0 and Lim’ Tor,(A/I’, M) = 0. In view of 
Proposition 1.1, it remains to show that Lim Tor,(A/I’, M)=O and 
Lim’Tor,(A/I’,M)=O for all M when i>2. If O+N-+F+M+O is 
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exact, where F is free, then N has bounded cr-torsion. The conclusion 
follows inductively from the connecting isomorphisms 

Tori+ ,(A/Z’, M) E Tor,(A/I’, N), i> 1. 

To generalize to arbitrary finitely generated ideals, we need to under- 
stand the behavior of composites of completions. We begin with the 
following observation (in which J need not be finitely generated). 

LEMMA 1.6. Let I = (J, ~1) and suppose that 

Lim Lim’ T(cc”; M/J’M) = 0. 
s r 

Then M,” is isomorphic to (M; ),^ . 

Proof For each r and s, we have the two short exact sequences 

0 + T(cc”; M/J’M) + M/J’M + cr”(M/J’M) + 0 

O-+ cr”(M/J’M) +M,:‘M+M,(s’,S)M+O 

For each fixed s, the Lim-Lim’ exact sequence gives exact sequences 

0 -+ Lim T(cr”; M/SM) + MJ -+ Lim tl”( M/J’M) + Lim’ T(cc”; M/SM) + 0 

I 25 

0 -+ Lim a”(M/J’M) + Mj’ + Lim M/(cr”, J’) M + 0 

This diagram implies the short exact sequence 

0 -+ a”M; + Lim a”M/J’M -+ Lim’ T(cc”; M/J’M) + 0 (*I 

and the map of short exact sequences 

O+ CY”M,^ +M; + M;/a”M; -+ 0 

I I/ I 
(**I 

0 + Lim cr”M/J’M -+ M; + Lim M/(a”, J’) M ---f 0. 

As s varies, the sequences above all give exact sequences of inverse systems. 
By hypothesis, the Lim-Lim’ exact sequence, and the fact that Lim’ Lim’ 
is always zero for bi-countably indexed systems (e.g., by a spectral sequence 
in Roos [7]), the exact sequences (*) give rise to isomorphisms 

Lim cr”Mj’ + Lim Lim cr”M/SM 
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and 

Lim’ a”M,̂  + Lim’ Lim a”M/J’M. 

Now application of the Lim-Lim’ exact sequence to the diagram (**) gives 
the commutative diagram with exact rows 

0 -+ Lim cx”M; + A4; + (MS ),^ -+ Lim’cr”M; -+ 0 

Iz II I 1% 
0 -+ Lim Lim $M/J’M -+ M; --f M,* + Lim’ Lim c?M/J’M -+ 0 

By the live lemma, (MS ),^ + Ml‘ is an isomorphism. 

We need a conveniently verifiable criterion for checking that the 
hypothesis of the previous lemma holds. The following observation gives us 
one (and, here again, J need not be finitely generated). It also gives a 
means of verifying the hypothesis of Proposition 1.5 for modules of the 
form M; that does not require boundedness of their a-torsion. 

LEMMA 1.7. Let I = (J, a). Multiplication by a and the quotient map 
M/J’+’ M + M/J’M induce a map 

T(M’+‘; M/J’+’ M) + r(cC; M/J’M). 

If the resulting inverse system { r(~‘; MJJ’M)} is pro-zero, for example if 
each MIJ’M has bounded cc-torsion, then 

Lim Lim ’ T(cc”, M/J’M) = 0, 
1 r 

Lim T(a’; A4 ; ) = 0, and Lim’ f(cr’; M,^ ) = 0. 
r r 

Proof: The left exactness of Lim implies that, for any cc, J, and M, 

T(a; M; ) = r( a; Lim M/FM) z Lim T(a; M/FM). 

Write Y,, s = ~(cc’; M/SM). This is a bi-indexed system, and the diagonal 
system Y, r is cofinal in it. We have an isomorphism 

Lim Lim Y, J g Lim Y,, ~. 
r ., r. J 

By a spectral sequence of Roos [7], we also have a short exact sequence 

O+Lim’Lim Y,,-+Lim’ Y,,r+LimLim’ Yr,s-+O, 
r s r. s , s 

and similarly with the roles of r and s reversed. The result follows. 
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DEFINITION 1.8. Let a= {ul, . . . . a,} be a sequence of elements of A. 
Write Z(0) = 0 and Z(i) = (a,, . . . . a;). Say that a is a pro-regular sequence for 
A4 if the inverse sequence f (a:; M/1( i - 1)’ M) is pro-zero for 1 < i < n. Say 
that the ring A is good if every a is a pro-regular sequence for A. Clearly 
A is good if A/J has bounded a-torsion for every finitely generated ideal J 
(including 0) and every element a. 

THEOREM 1.9. Let I= (a,, . . . . a,,) and write J= (a,, . . . . z,_ L) and a = a,. 
Assume that A has bounded ai-torsion for each i and that a is a pro-regular 
sequence for A. If a is a pro-regular sequence for an A-module M, then 
L;(M) z A4; and L:(M) = 0 for i > 0. Moreover, the following conclusions 
hold,for any A-module M. 

(i) LA(M) g Li(L$M)). 

(ii) For 1 Gidn- 1, there is a short exact sequence 

0 -+ L;((LJ(M)) -+ L;(M) -+ L;(L;- ,(M)) -+ 0. 

(iii) L:(M) 2 LI;(Li- ,(M)). 

(iv) L:(M)=0 for i>n+ 1. 

Prooj Proposition 1.5 handles the case n = 1. Assume inductively that 
the conclusion holds for J. By [ 1, XVII, Sect. 71, there is a pair of corn- 

posite functor spectral sequences, (Ei, ,} and { ‘EL, u}, which both converge 
to the same hyperhomology groups 2*. They have E*-terms 

E;, 4 = LpW;o (j’ 1) (Ml = &(L;U’,^ )I> 

where X is a free resolution of M, and 

‘E;, y = L;@;(M)). 

It is clear that a is a pro-regular sequence for any free A-module. Thus 
Proposition 1.5 and the previous two lemmas give that 

Ei,,=O for q> 1 and q, 0 = Hp(u-; LA ) = ffp(X,^ 1. 

Therefore Y,, = Lj,M. For the first statement of the theorem, the induction 
hypothesis, Proposition 1.5, and the previous two lemmas give that 

E&=0 for q>O, ‘Ei,,=L;(M; )=0 for p>O, and ‘E;,,=M;. 

It follows that Y* = 0 for p > 0 and that Y0 = M,” . For the second state- 
ment, the induction hypothesis implies that ‘E; 4 =0 for p > 1 and for 
q > n - 1. Thus ‘E* = ‘E”, and (i) through (iv) follow. 
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Note that (i) holds even though Ml‘ need not be isomorphic to (MJ  ̂ )%” 
in general. The point is that these two functors agree on free modules and 
so have the same derived functors. Theorems 3.3 and 3.4 below imply better 
vanishing results than (iv) for Noetherian rings and Burnside rings. For a 
good ring A, we conclude from the first statement that I-adic completion 
is an exact functor when restricted to those A-modules A4 for which a is a 
pro-regular sequence. It is obvious that Noetherian rings are good, and so 
are all Burnside rings A(G) [2]. Some bad rings are exhibited in 
Examples 1.4. 

2. LOCAL HOMOLOGY AND DERIVED FUNCTORS 

We begin by recalling Grothendieck’s definition and calculation of local 
cohomology groups [4; 5, Sect. 21. 

DEFINITIONS 2.1. For CIE A, let K.(R) be the chain complex LX: A + A, 
where the two copies of A are in degrees 1 and 0, respectively. For a 
sequence a = {cil, . . . . a,}, let K.(a) = K.(cc,) @ . . . @K.(a,). The identity 
map in degree 0 and multiplication by CI in degree 1 give a chain map 
zqcc+ ‘) + K.(d), and thus, by tensoring, a chain map K.(a’+‘) + K.(a’). 
Let M be an A-module and define the local cohomology groups of M at 
the ideal Z= (cz,, . . . . LY,) to be 

H?(M) = Z-Z*(Colim Hom(K.(a’), M)). 

For a space X, a closed subspace Y, and a sheaf 9 of Abelian groups 
over X, let Z’,(X; 9) be the group of sections of F with support in Y. The 
functor Tr(X, ?) on sheaves is left exact, and its right derived functors are 
denoted H*y(X, 9). 

THEOREM 2.2. Let X= Spec(A) and Y = V(Z). Then 

H:(M) z Ht(X; ATi), 

where fi is the associated sheaf of M. Zf A is Illoetherian, then 

H:(M) z Colim Ext*(A/Z’, M). 

This identifies local cohomology groups as right derived functors. We 
shall define certain local homology groups and verify that they agree with 
the left derived functors L:(M) under mild hypotheses. We begin with a 
reformulation of the definition of local cohomology. 
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Remarks 2.3. For tx E A, let K’(N) be the cochain complex ~1: A -+ A, 
where the two copies of A are in degrees 0 and 1, respectively. For a 
sequence a = { ct,, . . . . an}, let K’(a) = K’(cc,)@ ... 0 K’(cc,). The identity 
map in degree 0 and multiplication by GI in degree 1 give a cochain map 
K’(a’) -+ K’(a’+ ‘), and thus, by tensoring, a cochain map K’(a’) -+ 
K’(a’ + ’ ). These cochain complexes and cochain maps are obtained 
by applying Hom(?, A) to the chain complexes and chain maps in 
Definitions 2.1, and we have an isomorphism of direct systems 

Hom(K.(a’), M) z K’(a’) @ M. 

Define K’(a”) = Colim K’(a’), and observe that K’(a”) is just the cochain 
complex A -+ A[l/a]. We have an evident isomorphism 

H:(M) 2 H*(K’(a”) @ M). 

The homology isomorphism Tel K’(a’) -+ K’(az ) gives a projective 
approximation of the flat cochain complex K’(a”). By the Kiinneth 
spectral sequence, this approximation induces an isomorphism 

H:(M) z H*(Tel K’(a’) 0 M). 

This suggests the following definition, which seems to be new. 

DEFINITION 2.4. Define the local homology groups of A4 at I by 

H’,(M) = H,(Hom(Tel K’(a’), M)). 

A formal duality argument shows that 

Hom(Te1 K’(a’), M) z Mic Hom(K’(a’), M), 

and clearly Hom(K’(a’), M) g K.(a’) 0 M. Putting these isomorphisms 
together, we obtain the alternative description 

H:(M) z H, (Mic(K.(a’) @ M)). 

The resemblance to the description 

L:(M) E H,(Mic(X’@M)) 

in Proposition 1.1 is obvious, and the following result should now come as 
no surprise. 

THEOREM 2.5. Let Z= (a,, . . . . a,). Assume that A has bounded a,-torsion 
for each i and that a is a pro-regular sequence for A. Then 

Hpf) z L’,(M). 
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Since the K.(a’) are free chain complexes, the H:(M) certainly give an 
exact Sfunctor. We need only construct a natural mapf,: Hi(M) + L;(M) 
and show that f0 is an isomorphism and Hi(M) = 0 for i> 0 when M 
is free. We proceed in three steps, first handling the case n = 1, next 
constructing a spectral sequence that will allow induction, and then 
completing the proof. 

LEMMA 2.6. Let I= (a), where A has bounded cc-torsion. Then 

H/,(M) z L:(M). 

Proof: The free complex K.(cx’) over A/(a’) is not a resolution, but it 
gives the first two terms of a free resolution X’. We thus obtain a map of 
inverse systems K.(cc’) + X’ and thus a map of microscopes. The homology 
of K.(cc’) @ M is M/cr’M in degree zero and r(cC; M) in degree one. If M 
is free, the system T(a’; M) is pro-zero and thus H;(M) = M; and 
H!(M) = 0 for i > 0 by the short exact sequence for the computation of the 
homology of microscopes. 

LEMMA 2.7. Let I= J+ K. Then there is a spectral sequence {E’} which 
conuerges to H:(M) and has Ei. y = H$H,“(M)). 

Prooj Let a and p be sequences of generators for J and K. By 
Lemma 0.1 and the evident adjunction, we have a homology isomorphism 

<*: Hom(Te1 K’(a’), Hom(Te1 K’(p), M)) + Hom(Te1 K’(a’, /Y), M). 

A standard argument with double complexes yields the conclusion. 

Proof of Theorem 2.5. Let J= Z(n - 1) and a = CC,. Lemma 2.6 gives the 
result for (c() and we may assume it for J. By the previous result, the 
induction hypothesis, and Theorem 1.9(i), we have 

H;(M) z Hpz;(M)) z LG(Li(M)) z L&w). 

If M is free, Theorem 1.9 gives that Hi(M) z L:(M) is zero for q > 0 and 
is M,̂  for q = 0, and Proposition 1.5 gives that Hg(MJ  ̂ ) z Lg(M; ) is zero 
for p>O. Thus, when M is free, Ez,,= 0 unless p = q = 0 and therefore 
H:(M) = 0 for n > 0. This completes the proof. 

3. A UNIVERSAL COEFFICIENTS SPECTRAL SEQUENCE 

We can use the relationship between local homology and local 
cohomology to obtain a duality, or universal coefficients, spectral sequence. 
It is the most useful tool for explicit calculation of local homology groups. 
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PROPOSITION 3.1. There is a fourth quadrant spectral sequence 

{E,;d,: EW+E;+W-r+l) 

which converges to H’,(M) in total (homological) degree -(p + q) and has 

E;,y = ExV’(HJA), M). 

Proof Replace A4 in Hom(Tei K’(a’), M) by an injective resolution Y 
of M. To keep track of the grading, think of Tel K’(a’) as a complex 
graded in non-positive degrees, so that Hom(Te1 K’(a’), Y) is a 
(cohomological) bicomplex. Filtering so as to take the homology of Y first 
we obtain Hom(Te1 K’(a’), M) on the E,-level and H!+(M) on the E,-level, 
with no further differentials and with trivial extensions. Filtering so as to 
take the homology of Tel K’(a’) first, we obtain the spectral sequence we 
want. 

This spectral sequence looks a little strange. If H’;(A) = 0 for k > n, then 
the non-zero terms of EFy lie on the Oth through ( -n)th rows of the fourth 
quadrant, while the non-zero terms of EC4 lie on the Oth through nth 
diagonals in the seventh octant; that is, E;, y = 0 if q < -n or q > 0 and 
EP;y = 0 if either -(p + q) < 0 or - (p + q) > n. The differentials wipe out 
all but finitely many of the non-zero terms present in E,. The following 
immediate observation is quite useful. 

COROLLARY 3.2. Zf Hi(A ) = 0 for i > k, then H:(M) = 0 for i > k. 

This gains force from the following theorem of Grothendieck (see [3, 
3.6.51 or [6, 2.71). 

THEOREM 3.3. rf A is Noetherian, then Hi(A) = 0 for i > dim A. 

Even though Burnside rings need not be Noetherian, the same 
conclusion holds for them [2]; recall that they have dimension one. 

THEOREM 3.4. If A is the Burnside ring of a compact Lie group, then 
Hj(A)=O for i> 1. 

COROLLARY 3.5. Suppose that A is a Noetherian ring of dimension one 
or a Burnside ring. Then there is an exact sequence 

0 + Exti(H:(A), M) + Hi(M) -+ Hom(Hy(A), M) + Exti(H:(A), M) + 0 

and an isomorphism 

H:(M) g Hom(H:(A), M). 

481/149/2-12 
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The spectral sequence of Proposition 3.1 generalizes Grothendieck’s local 
duality spectral sequence. To see this, we consider modules of the form 
M= Hom(N, Q), where Q is injective. Here our &-term and abutment 
take the following alternative forms. 

LEMMA 3.6. For modules L and N and injective modules Q, there is a 
natural isomorphism 

ExtP(L, Hom(N, Q)) g ExtP(N, Hom(L, Q)). 

Proof There is an evident natural isomorphism 

Hom(L, Hom(N, Q)) E Hom(N, Hom(L, Q)), 

If X is a projective resolution of L, then Hom(X, Q) is an injective 
resolution of Hom(L, Q). 

LEMMA 3.7. For modules N and injective modules Q, there is a natural 
isomorphism 

Hom(H;(N), Q) g H!(Hom(N, Q)). 

Proof: Apply homology to the evident isomorphisms 

Hom(Te1 K’(a’) 0 N, Q) g Hom(Te1 K’(a’), Hom(N, Q)). 

After the second degree is raised by n so as to put the non-zero terms in 
the first quadrant, the spectral sequence of Proposition 3.1 takes the same 
form as the local duality spectral sequence. 

PROPOSITION 3.8. Write DN= Hom(N, Q), where Q is injective, and 
assume that H:(A) = 0 for q > n. There is a spectral sequence 

{E,;d,: EFY r +EP+r,q-r+I 
1 

which converges to DH:(N) in total degree n - q-p and has 

E;’ y = ExtP( N, DH’l- Y(A)). 

Here A is any commutative ring, I is any finitely generated ideal, N is 
any A-module, and Q is any injective A-module. In the special case when 
A is a complete local ring of dimension n, I is its maximal ideal, N is 
finitely generated, and Q is a dualizing module, this is precisely [S, 
Theorem 6.83. 
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4. COMPOSITES OF DERIVED FUNCTORS 

Let E: LAM+ M,̂  be the natural epimorphism. We also have a natural 
map y: M-+M,̂ , and y is an isomorphism if A4 = N,̂  . Since the zeroth left 
derived functor of the identity functor is the identity functor, there results 
a natural map I]: M-+ LhA4 such that ~oyl= y. In our topological work in 
[2], the map YZ appears naturally and plays a far more central role than the 
more intuitive map y. In fact, we were led there to say that A4 is “Z-com- 
plete” if q: M+ LiM is an isomorphism. With this sense of the term 
“Z-complete,” the following result shows that M; and all of the L:M are 
Z-complete; it also shows that Li N = 0 for p 3 1 when N is Z-complete. 

THEOREM 4.1. Assume the hypotheses of Theorem 2.5, so that 

H#f) 2 L’,(M). 

Let N be either M; or L:M for some q 3 0. Then ‘I: N -+ LhN is an 
isomorphism and LL N = 0 for p 3 1. 

Proof We agree to write L, for Li throughout the proof. It suffices to 
prove that r~: N + L,N is an isomorphism for the specified N and that 
L,L,M=O forpa 1 and any M. 

We can let Z= J= K in Lemma 2.7, using the same list of generators 
twice, and so obtain a spectral sequence {E’} converging from L,L,M to 
L,M. In total degree zero, the spectral sequence collapses to an 
isomorphism L,Mz L,L,M. Writing down an explicit construction of ‘1 
and using the proof of Theorem 2.5, we easily check that the isomorphism 
is in fact given by 9. Since Lo&: L,L,M -+ L,M,* is an epimorphism, it 
follows by a little diagram chase that ‘1: M; -+ L,M,̂  is an epimorphism, 
and q is certainly a monomorphism since E 0 r] is the isomorphism y. We will 
prove at the end that r~: L,M + L,L,M is an isomorphism for q > 0. 

Suppose next that F is a free module. Then the E,-term of the spectral 
sequence above is zero unless q=O, when it is L,LOF= L,F,“, while the 
limit term is zero except in degree 0. Thus L,L,F= 0 for p > 1. Given a 
general module M, construct a short exact sequence 

where F is free. We first show that LI L,M = 0. 
Since L, F = 0, we have an exact sequence 

O-+L,M-+L,R-tL,F+L,M-kO. 
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Let K be the kernel of L,F-+ L,M and break this sequence into the two 
short exact sequences 

O+L,M+L,R+K+O and O+K+L,F+L,M+O. 

The first gives an epimorphism L,L,R + L, K, and the fact that q: 
L, + L, L, is an isomorphism implies that r]: K -+ L, K is an epimorphism. 
Using the second and the fact that L, L,F= 0, we obtain a commutative 
diagram with exact rows 

O+ K + L,F + L,M -+O 

Chasing the diagram, we see that n: K -+ L,K is an isomorphism, hence 
that L,K -+ L, L,F is a monomorphism, hence that L, L,M = 0. 

Since L, + , L,M z L, K z L, L, K, it follows inductively that L, L,M = 0 
for all p > 1. Finally, q: L,M + L, L,M is an isomorphism for q = 1 since 
q: L,R + L,L,R and ?z: K + L,K are isomorphisms; it is an isomorphism 
for q 3 2 since, inductively, r~: L, ~, R -+ LOL, ~, R is an isomorphism and 
L y ~, R is isomorphic to L, M. 

5. THE RIGHT DERIVED FUNCTORS OF I-ADIC COMPLETION 

Let I= (a,, . . . . LX,) and let Rj be the ith right derived functor of I-adic 
completion, These functors are much less interesting than the functors Lf. 
The main reason is the following observation, which surely must be known. 
For an A-module M, define T(Z, M), the annihilator of Z in M, to be 
{m 1 Z.m=O}cM. Write Z(Z)=ZJZ,A). 

LEMMA 5.1. For an injectioe A-module N, IN = T(f(Z), N); in particular, 
if A is an integral domain, then ZN = N. 

Proof Clearly Z(ZJZ), N) = { 1 n a. I= 0 implies a. n = 0} contains IN. 
The injectivity of N implies the reverse inclusion. To see this, note that 
T(Z)=T(cr,)n ... nf(cr,) is the kernel of the map A+(a,)@ ... @(a,) 
with coordinates m,. Thus we have inclusions 

A/r(z) -, (aI) 0 ... @(a,)+A@ ... @A. 

We may identify T(T(Z), N) with Hom(A/Z(Z), N). By extending maps over 
(a,)@ ... @(a,) and then over A@ ... @A, we see that 

T(I’(Z), N)=xf(T(a,), N)=zaiN=ZN. 
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Now assume that A has bounded cc,-torsion for all i. Using that 
f(Z) = f(q) n . . . nr(a,) and that Z’ is generated by the monomials of 
degree r in the tl,, we see that A has bounded Z-torsion. That is, there exists 
r such that T(r) = f(Z’) for all sat-. We conclude from the lemma that 
N; = N/Z-(r(r), N) for injective A-modules N. For an arbitrary A-module 
M, the right derived A-modules RIM are computed by applying I-adic 
completion to an injective resolution of A4 and then taking homology. In 
particular, if A is an integral domain, then N,” = 0 for any injective module 
N and we conclude that R>M = 0 for any A-module A4 and all i 2 0. 

Note that the functor RM= M/ZJZ-(r), M) of A4 preserves mono- 
morphisms and epimorphisms but fails to be half exact in general. For a 
short exact sequence, 

O+M’-+M-+M”-+O, 

the middle homology group measuring the deviation from exactness is 

(m 1 al’ = 0 implies am E M’ }/M’ + ZJ r(T), M). 

Of course, when the functor R is exact, Ry = R and R’, = 0 for i > 0. 
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