
6SUD@
• microsystems

Debugging Tools
for the Sun Workstatioll®

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Credits and Trademarks

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.

SunStation®, Sun Microsystems®, SunCore®, SunWindows®, DVMA®, and the combination of Sun
with a numeric suffix are trademarks of Sun Microsystems, Inc.

UNIX, UN1XJ32V, UNIX System Ill, and UNIX System V are trademarks of AT&T Bell Laboratories.

Intel ® and Multibus® are registered trademarks of Intel Corporation.

DEC®, PDP®, VT®, and VAX® are registered trademarks of Digital Equipment Corporation.

Copyright © 1986 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publica­
tion may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or
by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written pennission from Sun Microsystems.

Contents

Chapter 1 Introduction .. 3

1.1. Three Debuggers .. 3

1.2. Debugging Modes of dbx and dbxtool .. 4

1.3. Common Features of dbx and dbxtool .. 4

Filenames .. 4

Expressions 5

dbx and Fortran .. ;..................... 6

dbx Scope Rules ... 6

Chapter 2 dbxtool .. 11

2.1. dbxtool Options .. 11

2.2. dbxtool Subwindows ... 12

2.3. Scrolling .. 12

2.4. The Source Window .. 13

2.5. Constructing Commands ... 13

2.6. Command Buttons .. 14

2.7. Choosing Your Own Buttons .. 14

2.8. The Display Window ... 15

2.9. Editing in the Source Window ... 15

2.10. Controlling the Environment ... 15

2.11. Other Aspects of dbxtool ... 15

toolenv .. 16

button ... 16

unbutton ... 16

- iii-

Contents Continued

2.12. Bugs .. 16

Chapter 3 dbx ... 19

3.1. Preparing Files for dbx ... 20

3.2. Invoking dbx ... 20

3.3. dbx Options ... 20

3.4. Listing Source Code ... 21

3.5. Listing Active Procedures .. 21

3.6. Naming and Displaying Data .. 22

3.7. Setting Breakpoints .. 23

3.8. Running and Tracing Programs ... 24

3.9. Accessing Source Files and Directories ... 26

3.10. Machine-Level Commands ... 28

3.11. Miscellaneous Commands ... 29

3.12. Debugging Processes that Fork ... 30

Chapter 4 adb Tutorial .. 33

4.1. A Quick Survey .. 33

Starting adb .. 33

Current Address ... 34

Formats ... 34

General Request Meanings .. 35

4.2. Debugging C Programs .. 35

Debugging A Core Image .. 35

Setting Breakpoints ... 39

Advanced Breakpoint Usage .. 42

Other Breakpoint Facilities ... 43

4.3. Maps .. 45

407 Executable Files 45

410 Executable Files 46

413 Executable Files ... 47

V ariables .. 48

4.4. Advanced Usage ... 48

-iv-

Contents Continued

FOIlllatted Dump ... 48

Accounting File Dump .. 50

Converting V alues .. 50

4.5. Patching ... 51

4.6. Anomalies .. 52

Chapter 5 adb Reference ... 55

5.1. adb Options ... 55

5.2. Using adb ... 55

5.3. adb Expressions .. 56

Unary Operators .. 57

Binary Operators ... 57

5.4. adb Variables .. 58

5.5. adb Commands .. 58

adb Verbs ... 58

?, /, @, and = Modifiers .. 59

? and / Modifiers ... 60

: Modifiers 61

$ Modifiers ... 62

5.6. adb Address Mapping ... 63

5.7. See Also .. 63

5.8. Diagnostic Messages from adb .. 63

5.9. Bugs ... 64

Chapter 6 Debugging UNIX Kernels with adb .. 67

6.1. Introduction ... 67

Getting Started .. 67

Establishing Context ... 68

6.2. adb Command Scripts ... 68

Extended FOIlllatting Facilities ... 68

Traversing Data Structures .. 72

Supplying Parameters ... 73

Standard Scripts ... 75

-v-

Contents Continued

6.3. Generating adb Scripts with adbgen ... 76

6.4. Summary .. 76

Chapter 7 Generating adb Scripts with adbgen ... 79

7.1. Example of adbgen ... 80

7.2. Diagnostic Messages from adbgen .. 80

7.3. Bugs in adbgen .. 80

-vi-

Tables

Table 1-1 Operators Recognized by dbx ... 5

Table 2-1 Attribute-Value Pairs for dbxtool ... 16

Table 3-1 Groups of dbx Functions .. 19

Table 3-2 Tracing and its Effects .. 25

Table 4-1 Some adb Format Letters ... 34

Table 4-2 Some adb Commands .. 35

Table 6-1 Standard Command Scripts .. 75

-vii-

Figures

Figure 2-1 Five dbxtool Subwindows ... 12

Figure 4-1 Executable File Type 407 .. 45

Figure 4-2 Executable File Type 410 .. 46

Figure 4-3 Executable File Type 413 .. 47

- ix-

Program Debugging Tools
for the Sun Workstation

1
Introduction

Introduction ... 3

1.1. Three Debuggers .. 3

1.2. Debugging Modes of dbx and dbxtool .. 4

1.3. Common Features of dbx and dbxtool .. 4

Filenames .. 4

Expressions 5

dbx and Fortran .. 6

dbx Scope Rules ... 6

1.1. Three Debuggers

1
Introduction

This manual describes three debuggers available on Sun Workstations™: dbx,
dbxtool, and adb. This document is intended for competent C, Fortran, or
Pascal programmers.

dbx is an interactive, line-oriented, source-level, symbolic debugger. It lets you
determine where a program crashed, view the values of variables and expres­
sions, set breakpoints in the code, and run and trace a program. In addition,
machine-level and other commands are available to help you debug code. A
detailed description of how to use dbx is found in Chapter 3.

dbxtool is based on dbx, but provides a window interface to it Thus, debug­
ging is easier because you use the mouse to delimit portions of code and con­
struct commands from redefinable buttons on the screen. You can use any of the
standard dbx commands in the command window. A detailed description of
how to use dbxtool is found in Chapter 2.

adb is an interactive, line-oriented, assembly-level debugger. It examines core
files to determine why they crashed, and provides a controlled environment for
the execution of programs. Since it dates back to Version 7, it is likely to be
available on UNIxt systems everywhere. Chapter 4 is a tutorial introduction to
adb, and Chapter 5 is a reference manual for it.

Since dbxtool and dbx are the debuggers of choice, this document begins
with them. They are much easier to use than adb, and are sufficient for almost
all debugging tasks. There are only two good reasons to use adb: for interactive
examination of binary files without symbols, and for patching binary files or
object code.

Some programs produce core dumps because they contain a bug that causes a
system fault. You can always produce a core dump by typing I CTRL-\) while a
process is running. If a process is in the background, or originated from a dif­
ferent process group, you can get it to dump core by using the gcore(l) utility.

t UNIX is a trademark of AT&T Bell Laboratories.

3 Revision A of 17 February 1986

4 Program Debugging Tools

1.2. Debugging Modes of dbx
and dbxtool

1.3. Common Features of dbx
and dbxtool

Filenames

Both dbx and dbxtool support five distinct types of debugging: post-mortem,
live process, arbitrary process, multiple process, and kernel debugging. Refer­
ences to dbx below apply to dbxtool as well.

You can do post-mortem debugging when a program creates a core file. Using
the core file as its image of the program, dbx retrieves the values of variables
from it. The most useful operations in post-mortem debugging are getting a
stack trace with where, and examining the values of variables with print.
Operations such as setting breakpoints, suspending and continuing execution, and
calling procedures, are not supported with port-mortem debugging.

In live process debugging, a process is started under control of dbx. From there,
the user controls when the process begins, at which breakpoints it stops, and
when it restarts. The most useful operations are getting a stack trace with
where, examining the values of variables with print and display, setting
breakpoints with stop, and continuing execution with next, step, and cont.

Arbitrary process debugging is an alternate fonn of live process debugging. The
two styles differ only in how the process is initiated. An arbitrary process is any
process that begins outside of dbx's control. When you wish to debug an arbi­
trary process, you can attach it to dbx. Attaching a process causes the pro­
cess to stop, so dbx can examine its state. At this point, debugging may proceed
as if the process had begun under dbx's control. The detach command
releases the process from db x' s control.

Multiple process debugging is most useful when debugging the interaction
between two tightly coupled programs. For example, in a networking situation it
is common to have server and client processes that use some style of inter­
process communication (remote procedure calls, for example). To debug both
the client and the server simultaneously, each process must have its own instance
of dbx. When using dbx for multiple process debugging, it is advisable to
begin each dbx in a separate window. This gives you a way to debug one pro­
cess without without losing the context of the other debugging session.

Kernel debugging is a special form of post-mortem debugging. Specify the-k
option on the command line (or with the debug command) to initiate kernel
debugging. When debugging the kernel, dbx uses page maps in the kernel's
core image to map addresses. The proc command specifies which process' user
structure is mapped into the kernel's uarea. The where command displays the
kernel stack associated with the process currently mapped into the uarea.

The following symbols and conventions apply to both dbx and dbxtool; as
before, references to dbx apply to dbxtool as well.

Filenames within dbx may include shell metacharacters. The shell used for pat­
tern matching is determined by the SHELL environment variable.

Revision A of 17 February 1986

Expressions

Table 1-1

Chapter 1 - Introduction 5

Expressions in dbx are combinations of variables, constants, procedure calls,
and operators. Hexadecimal constants begin with' 'Ox" and octal constants with
"0". Character constants must be enclosed in single quotes. Expressions cannot
involve literal strings, structures, or arrays, although elements of structures or
arrays may be used. However, the print and display commands do accept
structures or arrays as arguments and, in these cases, print the entire contents of
the structure or array. The call command accepts literal strings as arguments,
and passes them according to the calling conventions of the language of the rou­
tine being called.

Operators Recognized by dbx

Operators Recognized by dbx

+ add
subtract

* multiply
/ divide
di v integer divide
% remainder
« left shift
> > right shift
& bitwise and
I bitwise or

exclusive or
bitwise complement

& address of
* contents of
< less than
> greater than
<= less than or equal to
>= greater than or equal to

equal to
! = not equal to

not
& & logical and
I I logical or
s i z e 0 f size of a variable or type
(type) type cast

structure field reference
- > pointer to structure field reference

The operator"." can be used with pointers to records, as well as with records
themselves, making the C operator "->" unnecessary (though it is supported).

Precedence and associativity of operators are the same as in C. Parentheses can
be used for grouping.

Of course, if the program being debugged is not active and there is no core file,
you may only use expressions containing constants. Procedure calls also require
that the program be active.

Revision A of 17 February 1986

6 Program Debugging Tools

dbx and Fortran

dbx Scope Rules

Note the following when using dbx with Fortran programs:

1) Array elements must be referenced with square brackets [and] rather than
with parentheses. So use pr in t var [3] instead of pr in t var (3) .

2) The main routine is referenced as MAIN (as distinguished from main). All
other names in the source file that have upper case letters in them will be
lower case in dbx, unless the program was compiled with f77 -u. For
more information, see the section on dbxenv case under Miscellaneous
Commands in Chapter 3.

3) When referring to the value of a logical type in an expression, use the value
o or 1 rather than false or true, respectively.

The dbx program uses two variables to resolve scope conflicts: file and func
(see Accessing Source Files and Directories in Chapter 3). The values of file
and func change automatically as files and routines are entered and exited dur­
ing execution of the user program. The values of file and fun c can also be
changed by the user. Changing func also changes the value of file; however,
changing file does not change func.

The func variable is used for name resolution, as in the command print
grab where grab may be defined in two different routines. The search order is:

1) Search for grab in the routine named by func.

2) If grab does not exist in the routine named by func, search the file con­
taining the routine named by func.

3) Finally, search the outer levels - the whole program in the case of C and
Fortran, and the outer lexical levels (in order) in the case of Pascal- for
grab.

Clearly, if grab is local to a different routine than the one named by func, or is
a static variable in a different file than is the routine named by func, it won't be
found. Note, however, that print a. grab is allowed, as long as routine a
has been entered but not yet exited. Note that the file containing the routine a
might have to be specified when the file name (minus its suffix) is the same as a
routine name. For example, if routine a is found in module a. c, then pr i n t
a . grab would not be enough - you would have to use pr int a. a . grab.
If in doubt as to how to specify a name, use the whereis command, as in
whereis grab to display the full qualifications of all instances of the
specified name - in this case gr abo

The variable file is used to:

1) Resolve conflicts when setting func - for example, when a C program has
two static routines with the same name.

2) Determine which file to use for commands that take only a source line
number-for example, stop at 55.

3) Determine which file to use for commands such as edit, which has
optional arguments or no arguments at all.

Revision A of 17 February 1986

Chapter 1 - Introduction 7

When dbx begins execution, the initial values of file and func are deter­
mined by the presence or absence of a core file or process ID. If there is a core
file or process ID, file and func are set to the point of tennination. If there is
no core file or process ID, func is set to main (or MAIN for Fortran) and file
is set to the file containing main or MAIN.

Note that changing func doesn't affect the place where dbx continues execu­
tion when the program is restarted.

Revision A of 17 February 1986

2
dbxtool

dbxtool ... 11

2.1. dbxtool Options .. 11

2.2. dbxtool Subwindows ... 12

2.3. Scrolling .. 12

2.4. The Source Window .. 13

2.5. Constructing Commands ... 13

2.6. Command Buttons .. 14

2.7. Choosing Your Own Buttons .. 14

2.8. The Display Window ... 15

2.9. Editing in the Source Window ... 15

2.10. Controlling the Environment ... 15

2.11. Other Aspects of dbxtool ... 15

too1env .. 16

button ... 16

unbutton ... 16

2.12. Bugs .. 16

NOTE

2.1. dbxtoolOptions

2
dbxtool

dbxtool [-k] [-J: dir] [obJectfile [corefile I processID]]

A source-level debugger with a window and mouse-based controls, dbxtool
accepts the same commands as dbx, but provides a more convenient user inter­
face. Using the mouse, one can set breakpoints, examine the values of variables,
control execution, peruse source files, and so on. There are separate subwindows
for viewing source code, entering commands, and several other uses. This
debugger functions in the suntools (1) environment, so that the standard tool
manager actions, such as moving, stretching, exposing, etc. can be applied to it.

In the usage above, obJectfile is an object file produced by cc, f77, or pc, or a
combination thereof, with the -g flag specified to produce the appropriate sym­
bol information. If no obJectfile is specified, one may use the debug command
to specify the program to be debugged. The object file contains a symbol table
which includes the names of all the source files translated by the compiler to
create it. These files are available for perusal while using the debugger.

Every stage of the compilation process, including the loading phase, must
include the -g option.

If a file named core exists in the current directory, or a core/tIe is specified on
the command line, dbxtool can be used to examine the state of the program
when it faulted.

If a processID is given instead of a corefile, dbxtool halts the process and
begins debugging it. Detaching the debugger from the process allows it to con­
tinue.

Debugger commands in the file . dbxini t are executed immediately after the
symbolic information is read, if that file exists in the current directory, or in the
user's home directory ifit isn't there.

-k Kernel debugging.

-I dir
Add dir to the list of directories searched when looking for a source file.
Normally dbxtoollooks for source files in the current directory, and then
in the directory where obJectfile is located. The directory search path can
also be set with the use command. Multiple -I options may be given.

11 Revision A of 17 February 1986

12 Program Debugging Tools

2.2. dbxtool Subwindows

Figure 2-1

2.3. Scrolling

A dbxtool window consists of five subwindows. From top to bottom they are:

status Gives the location where execution is currently stopped, and a
description of lines displayed in the source subwindow.

source Displays source text of the program being debugged, and allows you
to move around in the source file.

buttons Contains buttons for frequently used commands; picking a button
with the mouse invokes the corresponding command.

command Provides a typing interface to supplement the buttons subwindow.
Also, most command output appears in this subwindow.

display Provides a way to track the values of selected variables by updating
a display of their values each time execution stops.

Five dbxtool.Subwindows

main()
{

int i;

1* print message and die *1

for (i - 1; i <- 10 ; i++) {
printf("Goodbye world! (%d)\n", i);

! dumpcore(i);
}

}

int *ip;

dumpcore(lim)
int lim;
{

1* dereference NULL pointer *1

~if (lim >- LIMIT)
*ip - lim;

Read 198 symbols
(dbxtool) stop at Idumpcore.c":9
(1) stop at Idumpcore.c":9
(dbxtool) run
Running: dumpcore
Goodbye world! (1)
(dbxtool) step
(dbxtool) •

The source, command, and display windows have scroll bars to facilitate brows­
ing their contents. The scroll bar is at the left edge of each window. The bar is a
medium gray background with a darker gray area superimposed over it indicating
the portion of the source file, command transcript, or display currently visible in
the window. Note that the size of the darker gray area corresponds to the number
of characters visible in the source window, not the number of lines.

Revision A of 17 February 1986

2.4. The Source Window

2.5. Constructing Commands

Chapter 2 - dbxtool 13

Within the scroll bar, the mouse buttons have the following functions:

left

middle

right

Scroll forward, moving towards the end of the file.

Scroll to absolute position in the text

Scroll backwards, moving towards the beginning of the file.

Positioning the cursor within the scroll bar next to a given line and clicking the
left button causes the line to move to the top of the window. Clicking the right
button causes the top line in the window to move to the position of the cursor.
The middle button treats the scroll bar as a thumb bar. The top of the thumb bar
represents the beginning of the text, and the bottom represents the end of the text.
Clicking the middle button in the scroll bar picks a point within the text relative
to its entire size. This point is displayed at the top of the window.

See Windows and Window-Based Tools: Beginner's Guide for a more complete
description of scroll bars.

The source window displays the text of the program being debugged. Initially, it
displays text from either the main routine, if there is no core file, or the point at
which execution stopped, if there is a core file. Whenever execution stops during
a debugging session, it displays the point at which it stopped. The file com­
mand can be used to switch the source window to another file; the focus of atten­
tion moves to the beginning of the new file. Similarly, the func command can
be used to switch the source window to another function; the new focus of atten­
tion is the first executable line in the function.

Breakpoints are indicated in the source window by a solid stop sign at the begin­
ning of the line. The point at which execution is currently stopped is marked by
a rightward pointing outlined arrow. See the figure above.

One can either type commands to dbxtool, or construct them with the selec­
tion and button mechanism (if a button is provided for the command), but typing
and buttons cannot be combined.

The command window is a text subwindow . You can make a text selection by
pointing the mouse at one end of the desired text and clicking the left button,
then pointing the mouse at the other end of the text and clicking the middle but­
ton. Double clicking the left button selects a word; triple clicking selects a line.
The selected text is highlighted in reverse video. To save the text, press crrnIJ
(usually the CI&J function key). Then to paste in the text, press (EJIJ (usually
the (L[) function key). Generally you use these two keys in succession. See
Windows and Window-Based Tools: Beginner's Guide for a more complete
description of the text selection facility.

The software buttons operate in a postfix manner. That is, one first selects the
arguments, and then clicks the software button with the left mouse button. Each
command interprets the selection as appropriate for that command.

There are five ways that cibxtool may interpret a selection:

literal A selection may be interpreted as exactly representing selected
material.

Revision A of 17 February 1986

14 Program Debugging Tools

2.6. Command Buttons

2.7. Choosing Your Own
Buttons

expand

lineno

A selection may be interpreted as exactly representing selected
material, except that it is expanded if either the first or last character
of the selection is an alphanumeric character or underscore. It is
expanded to the longest enclosing sequence of alphanumeric charac­
ters or underscores. Selections made outside of dbxtool cannot be
expanded and are interpreted as exactly the selected text.

A selection in the source window may be interpreted as representing
the (line number of the) first source line containing all or some of the
selection.

command A selection in the command window may be interpreted as
representing the command containing the selection.

ignore Buttons may ignore a selection.

The standard set of command buttons in the buttons window is as follows:

print

next

step

Print the value of a variable or expression. Since this button expands
the selection, identifiers can be printed by selecting only one charac­
ter.

Execute one source line and then stop execution, except that if the
current source line contains a procedure or function call, execute
through the called routine before stopping. The next button
ignores the selection.

Execute one source line and then stop execution again. If the current
source line contains a procedure or function call, stop at the first exe­
cutable line within the procedure or function. The step button
ignores the selection.

stop a t Set a breakpoint at a given source line. Interpret a selection in the
source window as representing the line number associated with the
first line of the selection.

cont Resume execution from the point where it is currently stopped. The
cont button ignores the selection.

stop in Set a breakpoint at the first line of a given function or procedure.

redo

Interpret the selection in the same manner as the print button; that
is, selecting an occurrence of a procedure or function name sets a
breakpoint in the corresponding routine.

Repeat a selected command. Interpret a selection in the command
window as representing the command containing the selection.

The button command defines buttons in the buttons window. It can be used in
. dbxini t to define buttons not otherwise displayed, or during a debugging ses­
sion to add new buttons. The first argument to button is the selection interpre­
tation for the button, and the remainder is the command associated with it. The
default set of buttons can be replicated by the sequence

~\sun ,~ microsystems
Revision A of 17 February 1986

2.8. The Display Window

2.9. Editing in the Source
Window

2.10. Controlling the
Environment

2.11. Other Aspects of
dbxtool

Chapter 2 - dbxtool 15

button expand print
button ignore next
button ignore step
button lineno stop at
button ignore cont
button expand stop in
button command redo

The unbutton command may be used in . dbxinit to remove a default but­
ton from the buttons window, or during a debugging session to remove an exist­
ing button. The argument to unbutton is the command associated with the
button.

The display window provides continual feedback of the values of selected vari­
ables. The display command specifies variables to appear in the display win­
dow, and undisplay removes them. Each time execution of the program
being debugged stops, the values of the displayed variables are updated.

The source window is a standard text subwindow (see Windows and Window­
Based Tools: Beginner's Guide for details). Initially dbxtool puts the source
subwindow in browse mode, meaning that editing capabilities are suppressed.
To the standard text subwindow menu in the source window, dbxtool adds a
"start editing" entry. When this menu item is selected, the file in the source
window becomes editable, the menu item changes to "stop editing" , and any
annotations (stop signs or arrows) are taken down. The "stop editing" menu
item is a pull-right menu with two options: "save changes" and "ignore
changes' '. Selecting either of these menu items disables editing, changes the
menu item back to "start editing", and causes the annotations to return.

After editing a source file, it is advisable to rebuild the program, as the source file
no longer reflects the executable program.

The toolenv command provides control over several facets of dbxtool's
window environment, including the font, the vertical size of the source, com­
mand, and display windows, the horizontal size of the tool, and the minimum
number of lines between the top or bottom of the source window and the arrow.
These are chiefly useful in the . dbxini t file to control initialization of the
tool, but may be issued at any time.

The commands, expression syntax, scope rules, etc. of dbxtool are identical to
those of dbx. Three of the commands, toolenv, button, and unbutton
affect only dbxtool, so they are described below. See Chapter 3 for a descrip­
tion of the others.

Revision A of 17 February 1986

16 Program Debugging Tools

toolenv

Table 2-1

button

unbutton

2.12. Bugs

toolenv [attribute value]

Set or print attributes of the dbxtool window. This command has no effect in
dbx. The possible attribute-value pairs and their interpretations are as follows:

Attribute-Value Pairs for dbxtool

Attribute-Value

font fontfile

width nchars

srclines nlines

cmdlines nlines

displines nlines

topmargin nlines

botmargin nlines

Description

Change the font to that found infontfile; default is taken
from the DEFAULT FONT shell variable.
change the width of the tool window to nchars charac­
ters; default is 80 characters.
make the source subwindow nlines high; default is 20
lines.
make the command subwindow nlines high; default is 12
lines.
make the display subwindow nlines high; default is 3
lines.
keep the line with the arrow at least nlines from the top
of the source subwindow; default is 3 lines.
keep the line with the arrow on it at least nlines from the
bottom of the source subwindow; default is 3 lines.

The toolenv command with no arguments prints the current values of all the
attributes.

button selection command-name

Associate a button in the buttons window with a command in dbxtool. This
command has no effect in dbx. The argument selection is described in the Com­
mand Construction section above.

unbutton command-name

Remove a button from the buttons window. The button with a matching
command-name is removed.

The interaction between scrolling in the source subwindowand dbx's regular
expression search commands is wrong. Scrolling should affect where the next
search begins, but it does not.

Revision A of 17 February 1986

3
dbx

dbx .. 19

3.1. Preparing Files for db x ... 20

3.2. Invoking dbx ... 20

3.3. dbx Options ... 20

3.4. Listing Source Code ... 21

3.5. Listing Active Procedures .. 21

3.6. Naming and Displaying Data .. 22

3.7. Setting Breakpoints .. 23

3.8. Running and Tracing Programs ... 24

3.9. Accessing Source Files and Directories ... 26

3.10. Machine-Level Commands ... 28

3.11. Miscellaneous Commands ... 29

3.12. Debugging Processes that Fork ... 30

Table 3-1

3
dbx

dbx [-r] [-k] [-I dir] [object/tie [corefile I processID]]

A tool for source-level debugging and execution of programs, dbx accepts the
same commands as dbxtool, but has a line-oriented user interface, which does
not use the window system. It is useful when you only have an old-fashioned ter­
minal.

Groups of dbx Functions

Groups of dbx Functions
Function

list active procedures

name, display, and set variables

set breakpoints

run and trace program

access source files & directories

process manipulation

miscellaneous commands

machine-level commands

Commands

down, proc, up, where.

assign, display, dump,
print, set, set8l,
undisplay, whatis, whereis,
which.

catch, clear, delete,
ignore, status, stop,
trace, when.

call, cont, next, rerun,
run, step.

cd, edit, file, func, list,
pwd, use, I, ?

attach, debug, detach,
kill.

alias, dbxenv, help, sh,
source, quit.

nexti, stepi, stopi,
tracei.

Although dbx provides a wide variety of commands, there are a few that you
will execute most often. You will probably want to

19 Revision A of 17 February 1986

20 Program Debugging Tools

3.1. Preparing Files for dbx

3.2. Invoking dbx

3.3. dbx Options

o find out where an error occurred,

o display and change the values of variables,

o set breakpoints,

o and run and trace your program.

When compiling programs with cc, f77, orpc, you must specify the -g option
on the command line, so that symbolic infonnation is produced in the object file.
Every step of compilation (including the Id phase) must include this option.

To invoke dbx, type:

(% db>< options objfiJe corefile

dbx begins execution by printing:

Reading symbolic information ...
Read nnn symbols
(dbx)

To exit dbx and return to the command level, type:

[~ dbx) quit

The options to dbx are:

-r Execute objfile immediately. Parameters follow the object filename
(redirection is handled properly). If the program tenninates successfully,
dbx exits. Otherwise, db~ reports the reason for tennination and waits for
your response. When -r is specified and standard input is not a tenninal,
dbx reads from / dev / tty.

-k Kernel debugging: dbx uses page maps within the kernel's core image to
map addresses.

-Idir
Add dir to the list of directories searched when looking for a source file.
Normally, dbx looks for source files in the current directory and in the
directory where objfile is located. The directory search path can also be set
with the use command.

]

]

The objfile contains compiled object code. If it is not specified, one can use the
debug command to specify the program to be debugged. The object file con­
tains a symbol table, which includes the names of all the source files the compiler
translated. These files are available for perusal while using the debugger.

If a file named core exists in the current directory, or a core/de is specified,
dbx can be used to examine the state of the program when it faulted. If a

Revision A of 17 February 1986

3.4. Listing Source Code

Chapter 3 - dbx 21

processID is given instead, dbx halts the process and begins debugging it. If
you later detach the debugger from the it, the process continues to execute.

Debugger commands in the file. dbxinit are executed immediately after the
symbolic information is read if that file exists in the current directory, or in the
user's home directory if it is not found in the current directory.

If you invoked dbx on an objfile , you can list portions of your program. For
example, consider the program example. c, which you can see by typing:

(dbx) l.ist 1,12
1 =ll=inelude <stdio.h>
2
3 main ()
4 {

5 printf("goodbye world!\n");
6 dumpeore () ;
7
8
9 dumpeore ()

10 {

11 abort () ;
12

If the range of lines starts past the end of file, dbx will tell you the program has
only so many lines; if the range of lines goes past the end of file, dbx will print
as many lines as it can, without complaining. You can also list just a single pro­
cedure by typing its name instead of a range of lines; for example 1ist main
prints ten lines starting near the top of the main () procedure.

3.5. Listing Active Procedures If your program fails to execute properly, you probably want to find out the pro­
cedures that were active when the program crashed.

where [n]
Display a list of the top n active procedures and functions on the stack. If n
is not specified, all active procedures are displayed.

When debugging a post-mortem dump of the example. c program above, dbx
prints the following:

(dbx) where
abort() at Ox80e5
dumpeore(), line 12 in "example.e"
main (Oxl, Oxfffd84, Oxfffd8e), line 7 in "example.e"
(dbx)

Three other commands useful for viewing the stack are:

up [n]
Move up the call stack (towards main) n levels. If n is not specified, the
default is one. This command allows you to examine the local variables in

Revision A of 17 February 1986

22 Program Debugging Tools

3.6. Naming and Displaying
Data

functions other than the current one. In dbxtool, the line containing the
call that passes from the n th outer level to the (n-}) th is highlighted for one
second.

down [n]
Move down the call stack (towards the current stopping point) n levels. If n
is not specified, the default is one.

proc [process_id]
Specify for kernel debugging which user process is mapped into the uarea
and hence has its kernel stack displayed by the where command. If no
argument is given, proc reports the process _id of the process currently
mapped into the uarea .

print expression [, expression ...]
Print the values of specified expressions. An expression may involve func­
tion calls if you are debugging an active process. If execution of a function
encounters a breakpoint, execution halts and the dbx command level is re­
entered. A stack trace with the where command shows that the call ori­
ginated from the dbx command level.

Variables having the same name as one in the current function may be refer­
enced as Juncname.variable , orfilename.funcname.variable. Thefilename
is required ifJuncname occurs in several files or is identical to afilename.
For example, to access variable i inside routine a, which is declared inside
module a . c, you would have to use pr in t a. a . i to make the name a
unambiguous. Use whereis to determine the fully qualified name of an
identifier. See "dbx Scope Rules" in Chapter 1 for more details.

display [expression [, expression ...]]
Display the values of the expressions each time execution of the debugged
program stops. The name qualification rules for print apply to display
as well. With no arguments, the di s pIa y command prints a list of the
expressions currently being displayed, and a display number associated with
each expression.

undisplay expression [, expression ...]
Stop displaying the expressions and their values each time execution of the
program being debugged stops. The name qualification rules for print
apply to undisplay as well. A numeric expression is interpreted as a
display number and the corresponding expression is deleted from the
display.

whatis identifier
whatis type

Print the declaration of the given identifier or type. The identifier may be
qualified with block names as above. The type argument is useful to print
all the members of a structure, union, or enumerated type.

which identifier
Print the fully qualified form of the given identifier; that is, the outer blocks
with which the identifier is associated.

Revision A of 17 February 1986

3.7. Setting Breakpoints

Chapter 3 - dbx 23

whereis identifier
Print the fully qualified form of all symbols whose names match the given
identifier. The order in which the symbols are displayed is not meaningful.

assign variable = expression
set variable = expression

Assign the value of the expression to the variable. Currently no type conver­
sion takes place if operands are of different types.

set 81 fpreg = word] word2 word3
Treat the 96-bit value gotten by concatenating word] , word2 , and word3 as
an IEEE floating-point value, and assign it to the named MC68881 floating­
point registerfpreg. Note that MC68881 registers can also be set with the
set command, but that the value is treated as double-precision and con­
verted to extended precision. This command applies to Sun-3 systems only.

dump [func]
Display the names and values of all the local variables and parameters in
func. If not specified, the current function is used.

Breakpoints are set with the stop and when commands, which have the follow­
ingforms:

stop at source-line-number [if condition]
Stop execution at the given line number when the condition is true. If con­
dition is not specified, stop every time the line is reached.

stop in procedure/function [if condition]
Stop execution at the first line of the given procedure or function when the
condition is true. If condition is not specified, stop every time the line is
reached.

stop variable [i f condition]
Stop execution when the value of variable changes and condition is true. If
condition is not specified, stop every time the value of variable changes.
This command perfonns interpretive execution, and thus is slower than most
other commands.

stop if condition
Stop execution if condition becomes true. This command performs interpre­
tive execution, and thus is slower than most other commands.

when in procedure/function {command; ••• }
Execute the given dbx command(s) whenever the specified procedure or
function is entered.

when at source-line-number {command; ••• }
Execute the given dbx command(s) whenever the specified source-line­
number is reached.

when condition {command; ••• }
Execute the given dbx command(s) whenever the condition is true before a
statement is executed. This command performs interpretive execution, and
thus is slower than most other commands.

Revision A of 17 February 1986

24 Program Debugging Tools

3.8. Running and Tracing
Programs

Note: in the when commands, the braces and semicolons between commands are
required.

The following commands can be used to view and change breakpoints:

stat us [> filename]
Display the currently active trace, stop, and when commands. A
command-number is listed for each command. The filename argument
causes the output of status to be sent to that file.

delete command-number [, command-number ...]
delete all

Remove the trace, when, and/or stop commands corresponding to the
given command-numbers, or all of them. The stat us command explained
above displays numbers associated with these commands.

clear source-line-number
Clear all breakpoints at the given source line number. If no source-line­
number is given, the current stopping point is used.

Two additional commands can be used to set a breakpoint when a signal is
detected by the program, rather than a condition or location.

catch [number [, number ...]]
Start trapping the signals with the given number(s) before they are sent to
the program being debugged. This is useful when a program handles signals
such as interrupts. Initially all signals are trapped except SIGHUP,
SIGCONT,SIGCHILD,SIGALRM,SIGKILL,SIGSTP,andSIGWINCH.
If no number is given, list the signals being caught.

ignore [number [, number . ..]]
Stop trapping the signals with the given number(s) before they are sent to
the program being debugged. This is useful when a program handles signals
such as interrupts. If no number is given, list the signals being ignored.

You can run and trace your code using the following commands:

run [args] [<filename] [> filename] [» filename]
Start executing obifile , specified on the dbx command line (or with the most
recent debug command), passing args as command line arguments; <, >, or
» can be used to redirect input or output in the usual manner. Otherwise,
all characters in args are passed through unchanged. If no arguments are
specified, the argument list from the last run command (if any) is used. If
objfile has been written since the last time the symbolic information was
read in, dbx reads the new information before beginning execution.

rerun [args] [<filename] [> filename] [» filename]
Identical to run, except in the case where no arguments are specified. In
that case run runs the program with the same arguments as on the last invo­
cation, whereas rerun runs it with no arguments at all.

cont [at source-line-number] [sig sig-number]
Continue execution from where it stopped, or, if the clause at source-line­
number is given, at that line number. The sig-number causes execution to

Revision A of 17 February 1986

Table 3-2

Chapter 3 - dbx 25

continue as if that signal had occurred. The source-line-number is evaluated
relative to the current file and must be within the current procedure/function.
Execution cannot be continued if the process has finished (that is, has called
the standard procedure _ exi t). The dbx program captures control when
the process attempts to exit, thereby letting the user examine the program
state.

trace source-line-number [if condition]
tr ace procedure/function [if condition]
trace [in procedure/function] [if condition]
trace expression at source-line-number [if condition]
trace variable [in procedurelfunction] [if condition]

Display tracing information when the program is executed. A number is
associated with the trace command, and can be used to tum the tracing off
(see the delete command).

If no argument is specified, each source line is displayed before it is exe­
cuted. Execution is substantially slower during this fonn of tracing.

The clause in procedurelfunction restricts tracing infOlmation to be
displayed only while executing inside the given procedure or function. Note
that the procedurelfunction traced must be visible in the scope in which the
trace command is issued - see the func command.

The condition is a Boolean expression evaluated before displaying the trac­
ing information; the infonnation is displayed only if condition is true.

The first argument describes what is to be traced. The effects of different
kinds of arguments are described below:

Tracing and its Effects

source-line-number Display the line immediately before executing it
Source line numbers in a file other than the
current one must be preceded by the name of the
file in quotes and a colon, for example,
"mumble. pIt : 1 7.

procedurelfunction Every time the procedure or function is called,
display information telling what routine called it,
from what source line it was called, and what
parameters were passed to it. In addition, its
return is noted, and if it is a function, the return
value is also displayed.

expression The value of the expression is displayed whenever
the identified source line is reached.

variable The name and value of the variable are displayed
whenever the value changes. Execution is sub­
stantially slower during this fonn of tracing .

.. ~ Revision A of 17 February 1986

26 Program Debugging Tools

3.9. Accessing Source Files
and Directories

Tracing is turned off whenever the function in which it was turned on is
exited. For instance, if the program is stopped inside some procedure and
tracing is invoked, the tracing will end when the procedure is exited. To
trace the whole program, tracing must be invoked before a run command is
issued.

When using conditions with trace, stop, and when, remember that variable
names are resolved with respect to the scope current at the time the command is
issued (not the scope of the expression inside the trace, stop, or when com­
mand). For example, if you are currently stopped in function f 00 () and you
issue the command

[stop in bar if x==5]
the variable x refers to the x in function foo () , not in bar (). The func com­
mand can be used to change the scope before issuing a trace, stop, or when
command.

step [n]
Execute through the next n source lines and stop on the (n+ 1) th line. If n is
not specified, it is taken to be one. Step into procedures and functions.

next [n]
Execute through the next n source lines and stop on the (n + 1) th such line,
counting functions as single statements.

call procedure (parameters)
Execute the named procedure (or function), with the given parameters. If
any breakpoints are encountered, execution halts and the dbx command
level is re-entered. A stack trace with the where command shows that the
call originated from the dbx command level.

If the source file in which the routine is defined was compiled with the -g
flag, the number and types of parameters must match. However, if C rou­
tines are called that are not compiled with the -g flag, dbx does no parame­
ter checking. The parameters are simply pushed on the stack as given in the
parameter list. Currently, Fortran alternate return points are not passed prop­
erly.

These commands let you access source files and directories without exiting dbx:

edit [filename]
edi t procedure/function

Invoke an editor onfilename (or the current source file if none is specified).
If a procedure or function name is specified, the editor is invoked on the file
that contains it. The default editor invoked is vi. Set the environment vari­
able EDITOR to the name of a preferred editor to override the default. For
dbxtool, the editor comes up in a new window.

file [filename]
Change the current source file to filename, or print the name of the current
source file if no filename is specified .

• sun
• microsystems

Revision A of 17 February 1986

Chapter 3 - dbx 27

func [procedure / function / objfile]
Change the current function, or print the name of the current function if none
is specified. Changing the current function implicitly changes the current
source file variable file to the one that contains the function; it also
changes the current scope used for name resolution. If the global scope is
desired, the argument should be the objfile.

list [source-line-number [, source-line-number]]
1 is t procedureljunction

List the lines in the current source file from the first line number through the
second. If no lines are specified, the next 10 lines are listed. If the name of a
procedure or function is given, lines n-5 to n+5 are listed, where n is the
first statement in the procedure or function. If the list command's argu­
ment is a procedure or function, the scope for further listing is changed to
that routine -use the file command to change it back.

use [directory ...]
Set the list of directories to search when looking for source files. If no direc­
tory is given, print the current list of directories. Supplying a list of direc­
tories replaces the current (possibly default) list. The list is searched from
left to right.

cd [dirname]
Change dbx's notion of the current directory to dirname. With no argu­
ment, use the value of the HOME environment variable.

pwd
Print dbx' s notion of the current directory.

/ string[!]
Search downward in the current file for the regular expression string. The
search begins with the line immediately after the current line and, if neces­
sary, continues until the end of the file. The matching line becomes the
current line. In dbxtool, the matching line is highlighted for one second.

?string[?]
Search upward in the current file for the regular expression string. The
search begins with the line immediately before the current line and, if neces­
sary, continues until the top of the file. The matching line becomes the
current line. In dbxtool, the matching line is highlighted for one second.

When dbx searches for a source file, the value of file and the use directory
search path are used. The value of f i 1 e is appended to each directory in the
use search path until a matching file is found. This file becomes the current file.

dbx knows the same filenames as were given to the compilers. For instance, if a
file is compiled with the command

(% cc -c -g .. /mip/scan.c
J

then dbx knows the filename .. /mip/ scan. c, but not scan. c.

Revision A of 17 February 1986

28 Program Debugging Tools

3.10. Machine-Level
Commands

These commands are used to debug code at the machine level:

tracei [address] [if cond]
tracei [variable] [at address] [if cond]

Tum on tracing of individual machine instructions.

stopi [variable] [if cond]
stopi [at address] [if cond]

Set a breakpoint at the address of a machine instruction.

stepi
nexti

Single step as in step or next, but do a single machine instruction rather
than a line of source.

address, address I [mode]
address I [count] [mode]

Display the contents of memory starting at the first address and continuing
up to the second address, or until count items have been displayed. If no
address is specified, the address following the one displayed most recently is
used. The mode specifies how memory is displayed; if omitted, the last
specified mode is used. The initial mode is X. The following modes are
supported:
i display as a machine instruction
d display as a word in decimal
D display as a longword in decimal
o display as a word in octal
o display as a longword in octal
x display as a word in hexadecimal
X display as a longword in hexadecimal
b display as a byte in octal
c display as a byte as a character
s display as a string of characters terminated by a null byte
f display as a single-precision real number
g display as a double-precision real number
E display as an extended-precision real number

Symbolic addresses used in this context are specified by preceding a name
with an ampersand &. Registers are denoted by preceding a name with a
dollar sign $. Here is a table of register names:

~~sun ~~ microsysterns
Revision A of 17 February 1986

3.11. Miscellaneous
Commands

$dO-$d7
$aO-$a7
$fp
$sp
$pc
$ps
$fpO-$fp7
$fpc
$fps
$fpi
$fpf
$fpg

data registers
address registers
frame pointer (same as $ a 6)
stack pointer (same as $a 7)
program counter
program status
MC68881 data registers
MC68881 control register
MC68881 status register
MC68881 instruction address register
MC68881 flags (unused, idle, busy)
MC68881 floating-point signal type

Chapter 3 - dbx 29

For example, to print the contents of the data and address registers in hex,
type & $ dO / 16X or & $ dO, & $ a 7 / x. To print the contents of register dO,
type print $dO (one cannot currently specify a range with print).
Addresses may be expressions made up of other addresses and the operators
+ (plus), - (minus), * (multiply), and indirection (unary *). The address
may be a + alone, which causes the next location to be displayed.

s h command-line
Pass the command line to the shell for execution. The SHE LL environment
variable detennines which shell is used.

alias new-command-name character-sequence
Respond to new-command-name as though it were character-sequence.
Special characters occurring in character-sequence must be enclosed in
double quotation marks. Alias substitution as in the C shell also occurs. For
example, ! : 1 refers to the first argument The command

[alias mam "print (!: 1) ->mem1->mem2")

creates a mem command that takes an argument, evaluates its meml->mem2
field, and prints the results.

help [command]
help

Print a short message explaining command. If no argument is given, display
a synopsis of all dbx commands.

source filename
Read dbx commands from the given filename . This is especially useful
when that file was created by redirecting a status command from an ear­
lier debugging session.

quit
Exit dbx.

dbxenv
dbxenv stringlen num

~\sun ,~ microsystems
Revision A of 17 February 1986

... 30 Program Debugging Tools

3.12. Debugging Processes
that Fork

dbxenv case [sensitive I insensitive]
dbxenv speed seconds

Set dbx attributes. The dbxenv command with no argument prints the
attributes and their current values. The keyword str inglen controls the
maximum number of characters printed for a char * variable in a C pro­
gram (default 512). The keyword case controls whether upper and lower
case letters are considered different The default is sensitive; insen­
sit i ve is most useful for debugging Fortran programs. The keyword
speed determines the interval between execution of source statements dur­
ing tracing (default 0.5 seconds).

debug [-k] [objfile [core/lie / process-id]]
Terminate debugging of the current program (if any), and begin debugging
the one found in objfile with the given corefile or live process, without
incurring the overhead of reinitializing dbx. If no arguments are specified,
the name of the program currently being debugged and its arguments are
printed. The -k flag specifies kernel debugging.

kill
Terminate debugging of the current process and kill the process, but leave
dbx ready to debug another. This can eliminate remains of a window pro­
gram you were debugging without exiting the debugger, or allow the object
file to be removed and remade without incurring a "text file busy" error
message.

attach
Attach to a process that began outside the control of dbx. The process is
then under the control of dbx, which can examine it and change its state.
You must have permission to send a signal to a process in order to attach
it.

detach
Detach a process from dbx's grip. The process is no longer under the con­
trol of dbx, which can no longer examine it or change its state.

Debugging a process that creates a new process (usingfork(2» introduces unique
problems. Using the ptrace (2) interface, dbx fetches from and stores into the
program being debugged.

After the fork, there are two processes sharing the same text (code) space. The
kernel does not allow ptrace () to write into a text space that is being used by
more than one process. This means that the debugged program should not
encounter any breakpoints while the child of the fork is still sharing its text
space. In most cases, the child of the fork spaWns a new program almost
immediately, using exec (2). After the exec () ,it is safe for the debugged pro­
gram to encounter breakpoints. Therefore, it is recommended that a sleep (2) of
two or three seconds be placed in the debugged code immediately after the fork.
This gives the child of the fork time to execute a new program and get out of the
way.

Revision A of 17 February 1986

4
a db Tutorial

adb Tutorial ... 33

4.1. A Quick Survey .. 33

Starting adb .. 33

Current Address ... 34

Fonnats ... 34

General Request Meanings .. 35

4.2. Debugging C Programs .. 35

Debugging A Core Image .. 35

Setting Breakpoints ... 39

Advanced Breakpoint Usage .. 42

Other Breakpoint Facilities ... 43

4.3. Maps .. 45

407 Executable Files ... 45

410 Executable Files ... 46

413 Executable Files ... 47

Variables 48

4.4. Advanced Usage ... 48

Fonnatted Dump ... 48

Accounting File Dump .. 50

Converting Values .. 50

4.5. Patching ... 51

4.6. Anomalies .. 52

4.1. A Quick Survey

Starting adb

4

a db Tutorial

Available on most UNIX systems, adb is a debugger that pennits you to examine
core files resulting from aborted programs, display output in a variety of for­
mats, patch files, and run programs with embedded breakpoints. This document
provides examples of the more useful features of adb. The reader is expected to
be familiar with basic UNIX commands, and with the C language.

Start adb with a shell command like

(% adb objectfile coreftle J

where object/de is an executable UNIX file and corefile is a core dump file. If
you leave object files in a. out, then the invocation is simple:

If you place object files into a named program, then the invocation is a bit
harder:

(% adb pro gram

The filename minus (-) means ignore the argument, as in:

(% adb - core

This is for examining the core file without reference to an object file. The adb
program provides requests for examining locations in either file: ? examines the
contents of objectfile, while / examines the contents of corefile. The general
fonn of these requests is:

(address ? fOrmal

or

(address / format

J

J

J

J

33 Revision A of 17 February 1986

34 Program Debugging Tools

Current Address adb maintains a current address, called dot. When an address is entered, the
current address is set to that location, so that

(Ol26?i]

sets dot to octal 126 and displays the instruction at that address. The request

(.,lO/d]

displays 10 decimal numbers starting at dot. Dot ends up referring to the address
of the last item displayed. When used with the? or / requests, the current
address can be advanced by typing newline; it can be decremented by typing ,., .

Addresses are represented by expressions. Expressions are made up of decimal
integers, octal integers, hexadecimal integers, and symbols from the program
under test These may be combined with the operators + (plus), - (minus), *
(multiply), % (integer divide), , (bitwise and), I (bitwise inclusive or), # (round
up to the next multiple), and - (not). All arithmetic within adb is 32 bits. When
typing a symbolic address for a C program, you can type name or _name; adb
recognizes both forms.

Formats To display data, specify a collection of letters and characters to describe the for­
mat of the display. Formats are remembered, in the sense that typing a request
without a format displays the new output in the previous format. Here are the
most commonly used format letters:

Table 4-1 Some adb Format Letters

Some adb Format Letters
Letter Description

b one byte in octal
c one byte as a character
0 one word in octal
d one word in decimal
f one long word in single-precision floating point
i ~C68000instruction

s a null terminated character string
a the value of dot
u one word as an unsigned integer
n print a newline
r print a blank space
A backup dot (not really a format)
+ advance dot (not really a format)

Format letters are also available for long values: for example, D for long
decimal, and F for double-precision floating point. Since integers are long-words
on the Sun, capital letters are used more often then not. For other formats see the
Chapter 5.

4J\sun ~~ microsystems
Revision A of 17 February 1986

General Request Meanings

Chapter 4 - adb Tutorial 35

The general form of a request is:

(address, count command modifier

which sets dot to address and executes command count times. The following
table illustrates some general adb command meanings:

)

Table 4-2 Some adb Commands

4.2. Debugging C Programs

Debugging A Core Image

Some adb Commands

Command Meaning

? Print contents from a.out file
/ Print contents from core file
= Print value of "dot' ,
: Breakpoint control
$ Miscellaneous requests
; Request separator
! Escape to shell

Since adb catches signals, a user cannot use a quit signal to exit from adb. The
request $q or $Q (or I CTRL-D I) must be used to exit from adb.

If you use adb because you are accustomed to it, you will want to compile pro­
grams with the -go option, to produce old-style symbol tables. This will make
debugging proceed according to expectations.

Consider the C program below, which illustrates a common error made by C pro­
grammers. The object of the program is to change the lower case t to an upper
case T in the string pointed to by ch, and then write the character string to the
file indicated by the first argument.

~~sun ~~ microsystems
Revision A of 17 February 1986

36 Program Debugging Tools

*include <stdio.h>

char *cp "this is a sentence.";

main (argc, argv)
int argc;
char **argv;
{

FILE *fp;
char c;

if (argc == 1) {
fprintf(stderr, "usage: %s file\n", argv[O]);
exit(l);

if «fp = fopen(argv[l], "w"»
perror(argv[l]);
exit(2);

cp = 'T';
while (c = *cp++)

putc(c, fp);
fclose(fp);
exit(O);

NULL) {

The bug is that the character T is stored in the pointer cp instead of in the string
pointed to by cpo Compile the program as follows:

% cc -go examp1el.c
% a.out junk
Segmentation fault (core dumped)

Executing the program produces a core dump because of an out-of-bounds
memory reference. Now invoke adb by typing:

% adb
core file = core -- program "a.out"
memory fault

Commonly the first debugging request given is

[~~_~_a_i_n_[_8_0_7_4_]_(_2_'_f_f_fd __ 7C __ 'f_f_f_d_8_8_) ___ + __ 9_2 _____________________________ ~]
which produces a C backtrace through the subroutines called. The output from
adb tells us that only one function - main - was called, and the arguments
argc and argv have the hexadecimal values 2 and fffd7c respectively. Both
these values look reasonable - 2 indicates two arguments, and fffd7c equals
the stack address of the parameter vector. The next request:

.~sun ~~ microsystems
Revision A of 17 February 1986

Chapter 4 - adb Tutorial 37

$C
_main[8074] (2,fffd7c,fffd88) + 92

fp: 10468
c: 104

generates a C backtrace plus an interpretation of all the local variables in each
function, and their values in hexadecimal. The value of the variable c looks
incorrect since it is outside the ASCII range. The request

$r
dO 54 frame+24
d1 77 frame+47
d2 2 man1
d3 0 exp
d4 0 exp
d5 0 exp
d6 0 exp
d7 0 exp
aO 54 frame+24
a1 0 exp
a2 0 exp
a3 fffd7c
a4 fffd88
as 0 exp
a6 fffd64
sp fffd5c
pc 8106 main+92
ps 0 exp

main+92: ???

displays the registers, including the program counter, and an interpretation of the
instruction at that location. The request

$e
environ: fffd88

_sys_nerr: 48
ctype: 202020

exit nhandlers: 0
exit tnames: 9b06
lastbuf: 10684 -
root: 0
lbound: 0 -
ubound: 0

curbrk: 12dd4
_dyot: 8000
_d_bigyot: 8000
_d_ryot: 8000
_d_r_bigyot: 8000

errno: a
end: a

Revision A of 17 February 1986

38 Program Debugging Tools

displays the values of all external variables.

A map exists for each file handled by adb. The map for a. out files is refer­
enced by ? whereas the map for core files is referenced by I. Furthermore, a
good rule of thumb is to use? for instructions and I for data when looking at
programs. To display information about maps, type:

$m
b1 = 8000 e1 bOOO f1 800
b2 = 10000 e2 11000 f2 3800
/ map 'core'
b1 10000 el 13000 fl 1800
b2 = fffOOO e2 1000000 f2 4800

This produces a report of the contents of the maps. More about these maps later.

In our example, we might want to see the contents of the string pointed to by cpo
We would want to see the string pointed to by cp in the core file:

*charp/s
55:
data address not found

Because the pointer was set to ' T' (hex 54) and then incremented, it now equals
hex 55. On the Sun, there are no symbols below address 8000, so the data
address 55 cannot be found. We could also display information about the argu­
ments to a function. To get the decimal value of the argc argument to main,
which is a long integer, type:

[

main. argc/D
.fffd6C: 2

To display the hex values of the three consecutive cells pointed to by argv in
the function main, type:

[

*main. argv, 3/X
.fffd7C: fffdcO fffdc6

Note that these values are the addresses of the arguments to main.
typing these hex values should yield the command-line arguments:

[

fffCkO/S

.fffdCO:

The request:

(.=

a.out

fffdcO

0

Therefore,

]

]

]

]
Revision A of 17 February 1986

Setting Breakpoints

Chapter 4 - adb Tutorial 39

displays the current address (not its contents) in hex, which has been set to the
address of the first argument. The current address, dot, is used by adb to
remember its current location. It allows the user to reference locations relative to
the current address. For example

[~f_£_f_d_C_6 __ : __________ Z_Z_Z ______________________________________ --JJ

prints the first command-line argument.

You set breakpoints in a program with the : b instruction, which has this fonn:

(address: b [request 1

Consider the C program below, which changes tabs into blanks, and is adapted
from Software Tools by Kernighan and PI auger, pp. 18-27.

#include <stdio.h>

#define MAXLIN 80
#define YES 1
#define NO 0
fdefine TABSP 8

int tabs[MAXLIN];

main ()
{

int *ptab, col, c;

ptab = tabs;
settab(ptab); /* set initial tab stops */
col = 1;
while «c = getchar(» != EOF)

switch (c) {
case ":

while (tabpos(col) != YES) {
putchar(' ');
col++;

putchar(' ');
col++;
break;

case '\n':
putchar('\n');
col = 1;
break;

default:
putchar(c);
col++;

exit(O);

)

Revision A of 17 February 1986

40 Program Debugging Tools

tabpos(col) /* return YES if col is a tab stop, NO if not *V
int col;
{

if (col > MAXLIN)
return(YES);

else
return(tabs[col]);

settab(tabp)
int *tabp;

/* set initial tab stops every TABSP spaces '

{

int i;

for (i
(i %

0; i <= MAXLIN; i++)
TABSP) ? (tabs[i] = NO) (tabs [iJ YES);

Run the program under the control of adb, and then set four breakpoints as fol­
lows:

[% adb a.out -
settab+4:b
tabpos+4:b

This sets breakpoints at the start of the two functions. The addresses are entered
at symbol + 4 so that they will appear in a C backtrace, since the first instruction
of each function is a call to the C save routine csv. Sun compilers generate
statement labels only with the -g option, which is incompatible with adb.
Therefore it is impossible to plant breakpoints at locations other than function
entry points using adb. To display the location of breakpoints, type:

$b
breakpoints
count bkpt
1 _tabpos+4
1 settab+4

command

A breakpoint is bypassed count-l times before causing a stop. The command
field indicates the adb requests to be executed each time the breakpoint is
encountered. In this example no command fields are present.

Display the instructions at the beginning of function settab () in order to
observe that the breakpoint is set after the 1 i nk assembly instruction:

1

Revision A of 17 February 1986

Chapter 4 - adb Tutorial 41

settab,5?ia
set tab:
set tab:
settab+4:
settab+a:
settab+e:
settab+12:
settab+1a:

link
addl
moveml
clrl
cmpl

a6,fO
f-4,a7
f<>,sp@
a6@ (-4)
f50, a6@ (-4)

This request displays five instructions starting at settab with the address of
each location displayed. Another variation is

settab,5?i
settab:
settab: link

addl
moveml
clrl
cmpl

a6,fO
f-4,a7
f<>,sp@
a6@ (-4)
f50,a6@ (-4)

which displays the instructions with only the starting address. Note that we
accessed the addresses from a . out with the? command. In general, when ask­
ing for a display of multiple items, adb advances the current address the number
of bytes necessary to satisfy the request; in the above example, five instructions
were displayed and t he current address was advanced 26 bytes.

To run the program, type:

J
To delete a breakpoint, for instance the entry to the function tabpos () , type:

(~t_a_b_p_O_S_+_4_:d __ ~J
Once the program has stopped, in this case at the breakpoint for settab () ,
adb requests can be used to display the contents of memory. To display a stack
trace, for example, type:

$c
_settab[8250] (10658) + 4
_main[8074] (1,fffd84,fffd8c) + 1a

And to display three lines of eight locations each from the array called tab s ,
type:

tt\sun
~ microsystems

Revision A of 17 February 1986

42 Program Debugging Tools

Advanced Breakpoint Usage

tabs,3/8x
tabs:
tabs: 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

At this time (at location settab+4) the tabs array has not yet been initialized.
If you just deleted the breakpoint at tabpos+4, put it back by typing:

(tabpos+4: b

To continue execution of the program from the breakpoint type:

You will need to give the a . out program a line of data, as in the figure above.
Once you do, it will encounter a breakpoint at t abpo s + 4 and stop again.
Examine the tabs array once more: now it is initialized, and has a one set in
every eighth location:

tabs,3/8x
tabs:
tabs: 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

)

]

You will have to type : c eight more times in order to get your line of output,
since there is a breakpoint at every input character. Type I CTRL-D I to tenninate
the a. out process; you are back in command-level of adb.

The quit and interrupt signals act on adb itself, rather than on the program being
debugged. If such a signal occurs, then the program being debugged is stopped
and control is returned to adb. The signal is saved by adb and passed on to the
test program if you type:

(:c 0]
Now let's reset the breakpoint at settab () and display the instructions located
there when we reach the breakpoint This is accomplished by:

Revision A of 17 February 1986

Other Breakpoint Facilities

Chapter 4 - adb Tutorial 43

settab+4:b settab,5?ia
:r
settab: -
settab: link a6,*0
settab+4: addl *-4,a7
settab+a: moveml #<>,sp@
settab+e: clrl a6@ (-4)
settab+12: cmpl *50,a6@(-4)
settab+1a: -

breakpoint settab+4: addl #-4,a7

It is possible to stop every two breakpoints, if you type , 2 before the breakpoint
command. Variables can also be displayed at the breakpoint, as illustrated
below:

tabpos+4,2:b main.col?X
:c

x
fffd64:
fffd64:
breakpoint

1
2
_tabpos+4: addl *0,a7

This shows that the local variable col changes from 1 to 2 before the occurrence
of the breakpoint.

Warning: setting a breakpoint causes the value of dot to be changed. However,
executing the program under adb does not change dot. A breakpoint can be
ovelWritten without first deleting the old breakpoint. For example:

settab+4:b main.ptab/X; main.c/X
:r
fffd68:
fffd60:
breakpoint

10658
o
settab+4: addl *-4,a7

The semicolon is used to separate multiple adb requests on a single line.

Arguments and change of standard input and output are passed to a program as
follows. This request kills any existing program under test and starts a . out
afresh:

(
: r argJ arg2 ... <infile >outfile]

'----------
The program being debugged can be single stepped as follows. If necessary, this
request starts up the program being debugged and stops after executing the first
instruction:

[,----:8 _______]

Revision A of 17 February 1986

44 Program Debugging Tools

You can enter a program at a specific address by typing:

[_a_d_~_~_s_:r __ ~J
The count field can be used to skip the first n breakpoints, as follows:

(_,n:r ____________ J
This request may also be used for skipping the first n breakpoints when continu­
ing a program:

(,n:c
A program can be continued at an address different from the breakpoint by:

[address:c

The program being debugged runs as a separate process, and can be killed by:

J

J

J

Revision A of 17 February 1986

4.3. Maps

407 Executable Files

a.out

core

Chapter 4 - adb Tutorial 45

Sun UNIX supports several executable file fonnats. Executable type 407 is gen­
erated by the cc (or Id) flag -N. Executable type 410 is generated by the flag
-no And executable type 413 is generated by the flag -z; the default is type 413.
adb interprets these different file formats, and provides access to the different
segments through a set of maps. To display the maps, type $m from inside adb.

In 407 files, instructions and data are intennixed. This makes it impossible for
adb to differentiate data from instructions. Furthermore, some displayed sym­
bolic addresses look incorrect (for example, data addresses as offsets from rou­
tines). Here is a picture of 407 files:

Figure 4-1 Executable File Type 407

Ihdrl text + data

I
hdr

text + data H 00 00.00 ... 001 stack

~_--IoI ... oo oo ... _____ -----'

Here are the maps and variables for 407 files:

$m
? map
b1 = 8000
b2 = 8000
/ map
b1 = 8000
b2 = fffOOO
$v
variables
b 0100000
d 03070
e = 0407
m 0407
s = 010000
t 07450

~~sun ~~ microsystems

'a.out'

'core'

e1
e2

e1
e2

8f28
9560

b800
1000000

f1
f2

f1
f2

20
20

1800
5000

Revision A of 17 February 1986

46 Program Debugging Tools

410 Executable Files In 410 files (pure executable), instructions are separate from data. The? com­
mand accesses the data part of the a . out file, telling adb to use the second part
of the map in that file. Accessing data in the core file shows the data after it
was modified by the execution of the program. Notice also that the data segment
may have grown during program execution. Here is a picture of 410 files:

Figure 4-2 Executable File Type 410

a.out l~h_dr~I _________ te_x_t ______ ~ _________ d_ata __________ ~

core
l..--_h_d_r_-'--____ da_ta ____ -..JoL::::::: ::: :1 ___ sta_c_k __ ---'

Here are the maps and variables for 410 files:

$m
? map 'a.out'
bI = 8000
b2 = 10000
/ map 'core'
b1 = 10000
b2 = fffOOO
$v
variables
b = 0200000
d = 03070
e = 0410
m = 0410
s = 010000
t = 07450

e1
e2

e1
e2

8f28
10638

12800
1000000

f1
f2

f1
f2

20
f48

1800
4000

Revision A of 17 February 1986

413 Executable Files

a.out

core

Figure 4-3

Ihdrl

Chapter 4 - adb Tutorial 47

In 413 files (pure demand-paged executable) the instructions and data are also
separate. However, in this case, since data is contained in separate pages, the
base of the data segment is also relative to address zero. In this case, since the
addresses overlap, it is necessary to use the ? * operator to access the data space
of the a. out file. In both 410 and 413 files the corresponding core file does
not contain the program text. Here is a picture of 413 files:

Executable File Type 413

text data

I
hdr

'---__ ---'-_____ d_ata ____ ---'"[:::::::::: :110-___ st_ac_k __ ----'

The only difference between a 410 and a 413 file is that 413 segments are
rounded up to page boundaries. Here are the maps and variables for 413 files:

$m
? map 'abort'
b1 = 8000 e1 9000 f1 800
b2 = 10000 e2 10800 f2 1800
/ map 'core'
b1 = 10000 e1 12800 f1 1800
b2 = fffOOO e2 1000000 f2 4000
$v
variables
b = 0200000
d 04000
e = 0413
m 0413
s 010000
t 010000

Revision A of 17 February 1986

48 Program Debugging Tools

Variables

4.4. Advanced Usage

Formatted Dump

The b, e, and f fields are used to map addresses into file addresses. The f1 field
is the length of the header at the beginning of the file - 020 bytes for an a . out
file and 02000 bytes for a core file. The f2 field is the displacement from the
beginning of the file to the data. For a 407 file with mixed text and data, this is
the same as the length of the header; for 410 and 413 files, this is the length of
the header plus the size of the text portion. The b and e fields are the starting and
ending locations for a segment. Given the address A , the location in the file
(either a . out or core) is calculated as:

bI<A<eI file address = (A-bI) +fI
b2<A<e2 file address = (A-b2) +f2

You can access locations by using the adb-defined variables. The $v request
displays the variables initialized by adb:

b base address of data segment,

d length of the data segment,

s length of the stack,

t length of the text,

m execution type (407, 410,413).

Those variables not presented are zero. Use can be made of these variables by
expressions such as

in the address field. Similarly, the value of a variable can be changed by an
assignment request such as

(02000>b]

which sets b to octal 2000. These variables are useful to know if the file under
examination is an executable or core image file.

The adb program reads the header of the core image file to find the values for
these variables. If the second file specified does not seem to be a core file, or if it
is missing, then the header of the executable file is used instead.

One of the uses of adb is to examine object files without symbol tables; dbx
cannot handle this kind of task. With adb, you can even combine formatting
requests to provide elaborate displays. Several examples are given below.

The following adb command line displays four octal words followed by their
ASCn interpretation from the data space of the core file:

(<b,-1/404"SCn]

Revision A of 17 February 1986

Chapter 4 - adb Tutorial 49

Broken down, the various requests mean:

<b The base address of the data segment

<b, -1 Print from the base address to the end-of-file. A negative count is used
here and elsewhere to loop indefinitely or until some error condition
(like end-of-file) is detected.

The format 404 ~ 8Cn is broken down as follows:

40 Print 4 octal locations.

4 ~ Back up the current address 4 locations (to the original start of the
field).

8C Print 8 consecutive characters using an escape convention; each char­
acter in the range 0 to 037 is displayed as followed by the correspond­
ing character in the range 0140 to 0177. An @ is displayed as @ @.

n Print a newline.

The following request could have been used instead to allow the displaying to
stop at the end of the data segment

[_<_b_'_<_d_/_4_0_4_~_8c_n __ -JJ

The request <d provides the data segment size in bytes. Because adb can read
in scripts, you can use formatting requests to produce image dump scripts.
Invoked adb as follows:

[~% ___ a_db ____ a_._o_u_t ___ c_o_r_e ___ < ___ d_ump __ ~J
This reads in a script file, dump, containing formatting requests. Here is an
example of such a script:

120$w
4095$5
$v
=3n
$m
=3n"C Stack Backtrace"
$C
=3n"C External Variables"
$e
=3n"Registers"
$r
0$5
=3n"Data Segment"
<b,-1/8ona

The request 120$w sets the width of the output to 120 characters (normally, the
width is 80 characters). adb attempts to display addresses as:

Revision A of 17 February 1986

50 Program Debugging Tools

Accounting File Dump

Converting Values

(symbol + offset

The request 40 95 $ s increases the maximum pennissible offset to the nearest
symbolic address from the default 255 to 4095. The request = can be used to
display literal strings. Thus, headings are provided in this dump program with
requests of the fonn:

(=3n n c Stack Backtracen

]

J
This spaces three lines and displays the literal string. The request $ v displays all
non-zero adb variables. The request 0 $ s sets the maximum offset for symbol
matches to zero, thus suppressing the display of symbolic labels in favor of octal
values. Note that this is only done for displaying the data segment. The request

(_<_b_,_-_1_1_8o_n_a ___ J
displays a dump from the base of the data segment to the end-of-file with an octal
address field and 8 octal numbers per line.

As another illustration, consider a set of requests to dump the contents
/ etc/utmp or /usr / adm/wtmp, both of which are composed of8-character
tenninal names, 8-character login names, 16-character host names, and a 4-byte
integer representing the login time.

% adb /etc/utmp -
0,-1?cccccccc8tcccccccc8tcccccccccccccccc16tYn

The c format is repeated 8 times, 8 times, and 16 times. The 8 t means go to the
8th tab stop, and 16t means to to the 16th tab stop. Y causes the 4-byte integer
representing the login time to print in ctime (3) format.

You can use adb to convert values from one representation to another. For
example, to print the hexadecimal number f f in octal, decimal, and hexade­
cimal, type:

[

ff = odx

. 072 58 f3a]
The default input radix of adb is hexadecimal. Fonnats are remembered, so that
typing subsequent numbers will display them in the same format. Character
values may be converted as well:

a]
This technique may also be used to evaluate expressions, but be warned that all

Revision A of 17 February 1986

4.5. Patching

Chapter 4 - adb Tutorial 51

binary operators have the same precedence, which is lower than for unary opera­
tors.

Patching files with adb is accomplished with the write requests w or W. This is
often used in conjunction with the locate requests 1 or L. In general, the syntax
for these requests is as follows:

(71 value J
The 1 matches on two bytes, whereas L matches four bytes. The w request writes
two bytes, whereas W writes four bytes. The value field in either locate or write
requests is an expression. Either decimal and octal numbers, or character strings,
are permitted.

In order to modify a file, adb must be invoked as follows:

(% adb -w file] file2

When invoked with this option,filel andfile2 are created if necessary, and
opened for both reading and writing.

For example, consider the following C program, zen. c: We will change the
word "Thys" to "Thys" in the executable file.

char strl[] = "Thys is a character string";
int one = 1;
int number 456;
long Inurn = 1234;
float fpt = 1.25;
char str2[] = "This is the second character string";

main ()
{

one 2;

Use the following requests:

[% adb -w zen -
? 1 ' Th'
?W 'This'

J

1
The request ? 1 starts a dot and stops at the first match of "Th" , having set dot to
the address of the location found. Note the use of? to write to the a . out file.
The form ? * would be used for a 411 file.

More frequently the request is typed as:

(?1 'Th'; ?s J

Revision A of 17 February 1986

52 Program Debugging Tools

4.6. Anomalies

which locates the first occurrence of "Tb", and display the entire string. Execu­
tion of this adb request sets dot to the address of those characters in the string.

As another example of the utility of the patching facility, consider a C program
that has an intemallogic flag. The flag could be set using adb, before running
the program. For example:

% adb a.out -
:8 arg! arg2
flag/v 1
:0

The : s request is normally used to single step through a process or start a pro­
cess in single step mode. In this case it starts a. out as a subprocess with argu­
ments arg 1 and arg2. If there is a subprocess running, adb writes to it rather
than to the file so the w request caused flag to be changed in the memory of the
subprocess.

Below is a list of some strange things that users should be aware of.

1) When displaying addresses, adb uses either text or data symbols from the
a . out file. This sometimes causes unexpected symbol names to be
displayed with data (for example, sa vr 5+ 0 22). This does not happen if ?
is used for text (instructions) and / for data.

2) The adb debugger cannot handle C register variables in the most recently
activated function.

Revision A of 17 February 1986

5
a db Reference

adb Reference .. 55

5.1. adb Options ... 55

5.2. Using adb ... 55

5.3. adb Expressions .. 56

U nary Operators .. 57

Binary Operators ... 57

5.4. adb Variables .. 58

5.5. adb Commands .. 58

adb Verbs ... 58

?, /, @, and = Modifiers .. 59

? and / Modi fiers ... 60

: Modifiers ... 61

$ Modifiers ... 62

5.6. adb Address Mapping ... 63

5.7. See Also .. 63

5.8. Diagnostic Messages from adb .. 63

5.9. Bugs ... 64

5.1. adb Options

5.2. Using adb

5
adb Reference

adb [-w] [-k] [-I dir] [objectfile [corefile]]

An interactive, general-purpose, assembly-level debugger, adb examines files
and provides a controlled environment for the execution of UNIX programs.

Normally objectfile is an executable program file, preferably containing a sym­
bol table. If the file does not contain a symbol table, it can still be examined, but
the symbolic features of adb cannot be used. The default objectfile is a. au t .

The corefile is assumed to be a core image file produced after executing
objectfile. The default core/zle is core.

-w Create both objectfile and corefile if necessary and open them for reading
and writing so they can be modified using adb.

-k Do UNIX kernel memory mapping; should be used when corefile is a UNIX
crash dump or /dev/mem.

-I Specifies a directory where files to be read with $< or $« (see below) will
be sought; the default is /usr / lib/ adb.

adb reads commands from the standard input and displays responses on the stan­
dard output, ignoring QUIT signals. An INTERRUPT signal returns to the next
adb command.

adb saves and restores terminal characteristics when running a sub-process. This
makes it possible to debug programs that manipulate the screen. See tty (4).

In general, requests to adb are of the form

[address] [, count] [command] [;]

The symbol dot (.) represents the current location. It is initially zero. If address
is present, then dot is set to address. For most commands count specifies how
many times the command will be executed. The default count is 1 (one). Both
address and count may be expressions.

55 Revision A of 17 February 1986

56 Program Debugging Tools

5.3. adb Expressions
The value of dot.

+ The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

& The last address typed; this used to be " .

integer
A number. The prefixes 00 and 00 (zero oh) force interpretation in octal
radix; the prefixes Ot and OT force interpretation in decimal radix; the
prefixes Ox and OX force interpretation in hexadecimal radix. Thus 0020=
Ot16= OxlO= sixteen. If no prefix appears, then the default radix is used;
see the $ d command. The default radix is initially hexadecimal. Hexade­
cimal digits are 0123456789abcdefABCDEF with the obvious values.
Note that if a hexadecimal number starts with a letter, but does not duplicate
a defined symbol, it is accepted as a hexadecimal value. To enter a hexade­
cimal number that is the same as a defined symbol, precede it by 0, Ox, or
ox.

, eccc'
The ASCII value of up to 4 characters. A backslash (\) may be used to
escape a ' .

<name
The value of name, which is either a variable name or a register name; adb
maintains a number of variables (see VARIABLE S) named by single letters
or digits. If name is a register name, then the value of the register is
obtained from the system header in core/tie. The register names are those
printed by the $ r command.

symbol
A symbol is a sequence of upper or lower case letters, underscores or digits,
not starting with a digit. The backslash character (\) may be used to escape
other characters. The value of the symbol is taken from the symbol table in
objectfile. An initial _ will be prepended to symbol if needed.

_symbol
In C, the true name of an external symbol begins with underscore (_). It
may be necessary to use this name to distinguish it from internal or hidden
variables of a program.

routine.name
The address of the variable name in the specified C routine. Both routine
and name are symbols. If name is omitted the value is the address of the
most recently activated C stack frame corresponding to routine. Works only
if the program has been compiled using the -go flag. See cc (1).

(expr)
The value of the expression expr.

~\Slln ,~ microsystems
Revision A of 17 February 1986

Unary Operators

Binary Operators

Chapter 5 - adb Reference 57

* expression
The contents of the location addressed by exp in eorefile .

% expression
The contents of the location addressed by exp in objeetfile (used to be @).

-expression
Integer negation.

- expression
Bitwise complement.

=#=expression
Logical negation.

"" F expression
(Control-t) Translates program addresses into source file addresses. Works
only if the program has been compiled using the -go flag. See ee(I).

"" Aexpression
(Control-a) Translates source file addresses into program addresses. Works
only if the program has been compiled using the -go flag. See ee (1).

name
(Back-quote) Translates a procedure name into a source file address. Works
only if the program has been compiled using the -go flag. See ee(I).

"file name"
A filename enclosed in quotation marks (for instance, main. c) produces
the source file address for the zero-th line of that file. Thus to reference the
third line of the file main.c, we say: "main. c"+3. Works only if the pro­
gram has been compiled using the -go flag. See ee (1).

Binary operators are left associative and are less binding than unary operators.

expression-l + expression-2
Integer addition.

expression-l-expression-2
Integer subtraction.

expression-l * expression-2
Integer multiplication.

expression-l % expression-2
Integer division.

expression-l & expression-2
Bitwise conjunction.

expression-l I expression-2
Bitwise disjunction.

expression-l =#= expression-2
Expressionl rounded up to the next multiple of expression2 .

• \sun ~~ mlcrosystems
Revision A of 17 February 1986

58 Program Debugging Tools

5.4. adb Variables

5.5. adb Commands

adb Verbs

adb provides several variables. Named variables are set initially by adb but are
not used subsequently. Numbered variables are reserved for communication as
follows:

o The last value printed.

1 The last offset part of an instruction source.

2 The previous value of variable 1.

9 The count on the last $ < or $ < < command.

On entry the following are set from the system header in the corefile. If corefile
does not appear to be a core file then these values are set from objectfile .

b The base address of the data segment

d The data segment size.

e The entry point.

m The 'magic' number (0407, 0410 or 0413).

s The stack segment size.

t The text segment size.

Commands to adb commands consist of a verb followed by a modifier or list of
modifiers.

The verbs are:

? Print locations starting at address in objectfile .

/ Print locations starting at address in corefile .

Print the value of address itself.

@ Interpret address as a source file address, and print locations in objectfile or
lines of the source text Works only if the program has been compiled using
the -go flag. See cc (1).

Manage a subprocess.

$ Execute miscellaneous commands.

> Assign a value to a variable or register.

RETURN
Repeat the previous command with a count of 1. Dot is incremented by its
current increment.

Call the shell to execute the following command.

Each verb has a specific set of modifiers, these are described below.

Revision A of 17 February 1986

?, /, @, and = Modifiers

Chapter 5 - adb Reference 59

The first four verbs described above take the same modifiers, which specify the
format of command output. Each modifier consists of a letter preceded by an
optional repeat count. Verb can take one or more modifiers.

{ ?, /, @, =} [[rcount] fietter ...]

Each modifier specifies a format that increments dot by a certain amount, which
is given below. If a command is given without a modifier, the last specified for­
mat is used to display output. The following table shows the format letters, the
amount they increment dot, and a description of what each letter does. Note that
all octal numbers output by adb are preceded by O.

format OOt+=

0 2

0 4

q 2

Q 4

d 2

D 4

x 2

X 4

u 2

u 4

f 4

F 8

b 1

c 1

C 1

s n

s n

y 4

i n

description

Print 2 bytes in octal.

Print 4 bytes in octal.

Print in signed octal.

Print long signed octal.

Print in decimal.

Print long decimal.

Print 2 bytes in hexadecimal.

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the 32 bit value as a floating point number.

Print double floating point.

Print the addressed byte in octal.

Print the addressed character.

Print the addressed character using the standard escape
convention. Print control characters as ... X and the delete
character as "'?

Print the addressed characters until null character is
reached; n is the length of the string including its zero
terminator.

Print string using the escape conventions of C; n is the
length of the string including its zero terminator.

Print 4 bytes in ctime (3) fonnat.

Print as machine instructions; n is the number of bytes
occupied by the instruction. In this format, variables 1
and 2 are set to the offset parts of the source and destina­
tion respectively.

Revision A of 17 February 1986

60 Program Debugging Tools

? and / Modifiers

z n Print as machine instructions with MC68010 instruction
timings; n is the number of bytes occupied by the instruc-
tion. In this format, variables 1 and 2 are set to the offset
parts of the source and destination respectively.

I 0 Print the source text line specified by dot (@ command),
or most closely corresponding to dot (? command).

a 0 Print the value of dot in symbolic form. Symbols are
checked to ensure that they have an appropriate type as
indicated below.
/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

p 4 Print the addressed value in symbolic form using the
same rules for symbol lookup as with a.

A 0 Print the value of dot in source file symbolic form, that
is: "file"+nnn. Works only if the program has been
compiled with the -go flag. See cc (1).

p 4 Print the addressed value in source file symbolic fonn,
that is: ''file'' +nnn. Works only if the program has been
compiled using the -go flag. See cc (1).

t 0 When preceded by an integer, tabs to the next appropriate
tab stop. For example, 8 t moves to the next 8-space tab
stop.

r 0 Print a space.

n 0 Print a newline.

" " 0 Print the enclosed string.

0 Dot decremented by current increment; nothing is printed.

+ 0 Dot incremented by 1; nothing is printed.

0 Dot decremented by 1; nothing is printed.

Only the verbs? and / take the following modifiers:

[? /] 1 value mask
Words starting at dot are masked with mask and compared to value
until a match is found. If the command is L instead of 1, the match is
for 4 bytes at a time instead of 2. If no match is found dot is
unchanged; otherwise dot is set to the matched location. If mask is
omitted then -1 is used.

? /] w value ...
Write the 2-byte value into the addressed location. If the command is
W instead of w, write 4 bytes instead of 2. Odd addresses are not
allowed when writing to the subprocess address space.

Revision A of 17 February 1986

: Modifiers

Chapter 5 - adb Reference 61

[? /] m b1 e1 f1 [? I]
New values for (b1, e1 ,f1) are recorded. If fewer than three
expressions are given, then the remaining map parameters are left
unchanged. If the ? or / is followed by *, then the second segment
(b2, e2,j2) of the address mapping is changed (see Address Mapping
below). If the list is tenninated by? or I, then the file, objectfile or
corefile respectively, is used for subsequent requests. For example,
1m? causes I to refer to objectfile.

Only the verb : takes the following modifiers:

b cmd Set breakpoint at address. The breakpoint is executed count -1 times
before causing a stop. Each time the breakpoint is encountered the
command cmd is executed. If this command is omitted or sets dot to
zero, then the breakpoint causes a stop.

B Like b but takes a source file address. Works only if the program has
been compiled using the -go flag. See cc (1).

d Delete breakpoint at address.

D Like d but takes a source file address. Works only if the program has
been compiled using the -go flag. See cc (1).

r Run object/lie as a subprocess. If address is given explicitly, then the
program is entered at this point; otherwise, the program is entered at its
standard entry point. An optional count specifies how many break­
points are to be ignored before stopping. Arguments to the subprocess
may be supplied on the same line as the command. An argument start­
ing with < or > causes the standard input or output to be established for
the command. All signals are enabled on entry to the subprocess.

c s The subprocess is continued with signal s ; see sigvec (2). If address is
given then the subprocess is continued at this address. If no signal is
specified, then the signal that caused the subprocess to stop is sent.
Breakpoint skipping is the same as for r.

s s Same as for c except that the subprocess is single stepped count times.
If there is no current subprocess, then object/lie is run as a subprocess
as for r. In this case no signal can be sent; the remainder of the line is
treated as an argument list for the subprocess.

S Like s but single steps by source lines, rather than by machine instruc­
tions. This is achieved by repeatedly single-stepping machine instruc­
tions until the corresponding source file address changes. Thus pro­
cedure calls cause stepping to stop. Works only if the program has
been compiled using the -go flag. See cc (1).

i Add the signal specified by address to the list of signals that are passed
directly to the subprocess with the minimum of interference. Nor­
mally, adb intercepts all signals destined for the subprocess, and the
: c command must be issued to continue the process with the signal.
Signals on this list are handed to the process with an implicit : c

~~ sun Revision A of 17 February 1986
~ microsystems

62 Program Debugging Tools

$ Modifiers

commands as soon as they are seen.

t Remove the signal specified by address from the list of signals that are
implicitly passed to the subprocess.

k Terminate (kill) the current subprocess, if any.

Only the verb $ takes the following modifiers:

<file Read commands fromfile. If this command is executed in a file,
further commands in the file are not seen. If file is omitted, the current
input stream is terminated. If a count is given, and it is zero, the com­
mand will be ignored. The value of the count will be placed in variable
9 before the first command in file is executed.

< < file Similar to <, but can be used in a file of commands without closing the
file. Variable 9 is saved during the execution of this command, and
restored when it completes. There is a small, finite limit to the number
of «files that can be open at once.

> file Append output to file, which is created if it does not exist. If file is
omitted, output is returned to the tenninal.

? Print the process id, the signal that stopped the subprocess, and the
registers. Produces the same response as $ used without any modifier.

r Print the general registers and the instruction addressed by pc; dot is
set to pc.

b Print all breakpoints and their associated counts and commands.

c C stack backtrace. If address is given, it is taken as the address of the
current frame instead of the contents of the frame-pointer register. If
count is given, only the first count frames are printed.

C Similar to c, but in addition prints the names and 32-bit values of all
automatic and static variables for each active function. Works only if
the program has been compiled using the -go flag. See cc (1).

d Set the default radix to address and report the new value. Note that
address is interpreted in the (old) current radix. Thus 10 $ d never
changes the default radix. To make the default radix decimal, use
OtlO$d.

e Print the names and values of external variables.

w Set the page width for output to address (default 80).

s Set the limit for symbol matches to address (default 255).

o Regard all input integers as octal.

q Exit adb.

v Print all non-zero variables in octal.

m Print the address map.

+ §.!!!! Revision A of 17 February 1986

5.6. adb Address Mapping

5.7. See Also

5.8. Diagnostic Messages from
adb

Chapter 5 - adb Reference 63

f Print a list of known source file names.

p Print a list of known procedure names.

p For kernel debugging. Change the current kernel memory mapping to
map the designated user structure to the address given by the symbol
_ u. The address argument is the address of the user's proc structure.

i Show which signals are passed to the subprocess with the minimum of
adb interference. Signals may be added to or deleted from this list
using the : i and : t commands.

W Re-open objectfile and corefile for writing, as though the -w
command-line argument had been given.

The interpretation of an address depends on its context. If a subprocess is being
debugged, addresses are interpreted in the usual way (as described below) in the
address space of the subprocess. If the operating system is being debugged,
either post-mortem or by using the special file / dev /mem to interactively exam­
ine and/or modify memory, the maps are set to map the kernel virtual addresses,
which start at zero. For some commands, the address is not interpreted as a
memory address at all, but as an ordered pair representing a file number and a
line number within that file. The @ command always takes such a source file
address, and several operators are available to convert to and from the more cus­
tomary memory locations.

The address in a file associated with a written address is determined by a map­
ping associated with that file. Each mapping is represented by two triples (bi,
el ,/1) and (b2, e2,j2), and the file address corresponding to a written address
is calculated as follows.

hI S; address < ei ~ file address = address + /i - bi

otherwise

b2 S; address < e2 ~ file address = address + f2 - b2

Otherwise, the requested address is not legal. If a? or / request is followed by
an *, only the second triple is used.

The initial setting of both mappings is suitable for normal a. out and core
files. If either file is not of the kind expected then, for that file, bi is set to 0, ei
is set to the maximum file size, and/I is set to O. This way, the whole file can be
examined with no address translation.

dbx (1), ptrace (2), a.out (5), core (5).

After startup, the only prompt adb gives is

when there is no current command or format. On the other hand, adb supplies
comments about inaccessible files, syntax errors, abnormal termination of

J

Revision A of 17 February 1986

64 Program Debugging Tools

5.9. Bugs

commands, etc. Exit status is 0, unless the last command failed or returned non­
zero status.

There is no way to clear all breakpoints with a single command.

Since no shell is invoked to interpret the arguments of the : r command, the cus­
tomary wildcard and variable expansions cannot occur.

Since there is little type checking on addresses, using a source file address in an
inappropriate context may lead to unexpected results: main? i will almost cer­
tainly not do anything useful.

Revision A of 17 February 1986

6
Debugging UNIX Kernels with adb

Debugging UNIX Kernels with adb ... 67

6.1. Introduction ... 67

Getting Started .. 67

Establishing Context ... 68

6.2. adb Command Scripts ... 68

Extended Fonnatting Facilities ... 68

Traversing Data Structures .. 72

Supplying Parameters ... 73

Standard Scripts ... 75

6.3. Generating adb Scripts with adbgen ... 76

6.4. Summary .. 76

6.1. Introduction

Getting Started

6
Debugging UNIX Kernels with a db

This document describes the use of extensions made to the UNIX debugger adb
for the purpose of debugging the UNIX kernel. It discusses the changes made to
allow standard adb commands to function properly with the kernel and intro­
duces the basics necessary for users to write adb command scripts that may be
used to augment the standard adb command set. The examination techniques
described here may be applied to running systems, as well as the post-mortem
dumps automatically created by save core (8) after a system crash. The reader is
expected to have at least a passing familiarity with the debugger command
language.

Modifications have been made to the standard UNIX debugger adb to simplify
examination of the post-mortem dump generated automatically following a sys­
tem crash. These changes may also be used when examining UNIX in its normal
operation. This document serves as an introduction to the use of these facilities,
but should not be construed as a description of how to debug the kernel.

Use the -k option of adb when you want to examine the UNIX kernel:

[% adb -k /vmunix /dav/mem

The -k option makes adb partially simulate the Sun-2 or Sun-3 virtual memory
management unit when accessing the core file. In addition, the internal state
maintained by the debugger is initialized from data structures maintained by the
UNIX kernel explicitly for debugging. t A post-mortem dump may be examined
in a similar fashion:

J

(~'_o_a_db ____ -_k ___ vm ___ u_n_1_.x ___ .?_._v.mc ____ o_r_e __ ._? ___ ~J
Supply the appropriate version of the saved operating system image, and its core
dump, in place of the question mark.

t If the -k flag is not used when invoking adb. the user must explicitly calculate virtual addresses. With
the -k option. adb interprets page tables to automatically pelfonn virtual to physical address translation.

~~sun ~'f{I' microsystems
67 Revision A of 17 February 1986

68 Program Debugging Tools

Establishing Context

6.2. adb Command Scripts

Extended Formatting
Facilities

During initialization adb attempts to establish the context of the currently active
process by examining the value of the kernel variable panic_regs. This
structure contains the register values at the time of the call to the panic () rou­
tine. Once the stack pointer has been located, this command generates a stack
trace:

(_$C _____ -------"]

An alternate method may be used when a trace of a particular process is required;
see Section 6.3 for details.

This section supplies details about writing adb scripts to debug the kernel.

Once the process context has been established, the complete adb command set is
available for interpreting data structures. In addition, a number of adb scripts
have been created to simplify the structured printing of commonly referenced
kernel data structures. The scripts normally reside in the directory
/usr/lib/adb, and are invoked with the $< operator. Standard scripts are
listed below in Table 6-1.

As an example, consider the listing that starts on the next page. The listing con­
tains a dump of a faulty process's state .

• \sun ,~ microsystems
Revision A of 17 February 1986

Chapter 6 - Debugging UNIX Kernels with adb 69

% adb -k v.muniz.3 v.mcore.3
sbr 50030 sIr 51e
physmem 3cO
$a
-panic [10fec] (5234d) + 3c
_ialloc[16ea8] (d44a2,2,dff) + c8
_maknode[ld476] (dff) + 44
_copen [lc480] (602,-1) + 4e
_creat () + 16
_syscall[2eaOa] () + 15e
leveI5() + 6c
5234d/s
_nldisp+175:
u$<u

ialloc: dup alloc

u:
u: pc

4beO
u+4: d2 d3 d4

13bO 0 0
u+14: d6 d7

o 2604
u+lc: a2 a3 a4

o c7800 5a958
u+2c: a6 a7

3e62 3e48
u+34: sr

27000000

d5
0

as
d7160

u+38: pObr
105000

pOlr
40000022

sswap

p1brp1lr
fd7f4 1ffe

u+48:
1

szpt
o

u+50: procp
d7160

u+158: argO
1001c

u+178: uap
2958

arO
3fb2

corom
dtime"@"@"@"@"@

arg1 arg2
-1 ffffa4
qsave
2eb46

error
o

u+1b2: rv1 rv2
1

eosys
o o

u+1bc: -
49

u+1cO:
10
-1

u+1eO:
49

u+1e4:
7

u+344:
0

u+350:
0
0

~\sun ~~ microsystems

14cac
uid gid
10
groups

-1
-1

ruid rgid
10
tsize

1b
odsize

0
signal

0
0

-1 -1
-1 -1

dsize ssize
2
ossize outime
0

0 0
0 0

Revision A of 17 February 1986

70 Program Debugging Tools

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
sigmask
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

u+450: onstack oldmask code
0 80002 0

u+45c: sigstack onsigstack
0 0

u+464: ofile
d66b4 d66b4 d66b4 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

pofile
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0

u+4c8: cdir rdir ttypttydcmask
d44a2 0 5c6cO 012

ru & cru
u+4d8: utime stime

0 0 0 35b60
u+4e8: maxrss ixrss idrssisrss

9 35 43
u+4f8: minflt majflt nswap

0 5 0
u+504: inblock oublock msgsndmsgrcv

3 7 0 0
u+514: nsignals nvcsw nivcsw

0 12 4
u+520: utime stime

0 0 0 0
u+530: maxrss ixrss idrssisrss

0 0 0
u+540: minflt majflt nswap

0 0 0
u+54c: inblock oublock msgsndmsgrcv

0 0 0 0
u+55c: nsignals nvcsw nivcsw

.~~I! Revision A of 17 February 1986

Chapter 6 - Debugging UNIX Kernels with adb 71

0 0 0
Od7160$<proc
d7160: link rlink addr

590eO 0 1057f4
d716c: upri pri cpu stat timeniceslp

066 024 020 03 01 024 0
d7173: cursig sig

0 0
d7178: mask ignore catch

0 0 0
d7184: flag uid pgrp pid ppid

8001 31 2f 2f 23
d7190: xstat ru poip szpttsize

0 0 0 1 7
d71ge: dsize ssize rssizemaxrss

1b 2 5 fffff
d71ae: swrss swaddr wchantextp

0 0 0 d8418
d71be: pObr xlink ticks

105000 0 15
d71c8: %cpu ndx idhashpptr

0 6 2 d70d4
d71d4: real itimer

0 0 0 0
d71e4 : quota ctx

0 5f236
Od8418$<text
d8418: daddr

284 0 0 0
0 0 0 0
0 0 0 0

ptdaddr size caddr iptr
184 7 d7160 d47eO

rssize swrss count ccount flagslptimpoip
4 0 01 01 042 0 0

The cause of the crash was a panic (see the stack trace) due to a duplicate
inode allocation detected by the ialloc () routine. The majority of the
dump was done to illustrate the use of command scripts used to fonnat kernel
data structures. The u script, invoked by the command u$<u, is a lengthy series
of commands to pretty-print the user vector. Likewise, proc and text are
scripts to format the obvious data structures. Let's quickly examine the text
script, which has been broken into a number of lines for readability here; in actu­
ality it is a single line of text.

./"daddr"n12Xn\
"ptdaddr"16t"size"16t"caddr"16t"iptr"n4Xn\
"rssize"8t"swrss"8t"count"8t"ccount"8t"flag"8t"slptim"8t"poip"n2x~bx

Revision A of 17 February 1986

72 Program Debugging Tools

Traversing Data Structures

The first line produces the list of disk block addresses associated with a swapped
out text segment. The n format forces a newline character, with 12 hexadecimal
integers printed immediately after. Likewise, the remaining two lines of the
command format the remainder of the text structure. The expression 16t tabs to
the next column which is a multiple of 16.

The majority of the scripts provided are of this nature. When possible, the for­
matting scripts print a data structure with a single format to allow subsequent
reuse when interrogating arrays of structures. That is, the previous script could
have been written:

./"daddr"n12Xn
+/"ptdaddr"16t"size"16t"caddr"16t"iptr"n4Xn
+/"rssize"8t"swrss"8t"count"8t"ccount"8t"flag"8t"slptim"8t"poip"n2xL

But then, reuse of the format would have invoked only the last line of the format.

The adb command language can be used to traverse complex data structures.
One such data structure, a linked list, occurs quite often in the kernel. By using
adb variables and the normal expression operators it is a simple matter to con­
struct a script which chains down the list, printing each element along the way.

For instance, the queue of processes awaiting timer events, the callout queue, is
printed with the following two scripts:

callout:
ca11todo/"time"16t"arg"16t"func"
*(.+Ot12)$<cal1out.nxt

callout.nxt:
./D2p
*+>1
,#<1$<
<1$<ca11out.nxt

The first line of the script callout starts the traversal at the global symbol
call todo and prints a set of headings. It then skips the empty portion of the
structure used as the head of the queue. The second line then invokes the script
callout. nxt moving dot to the top of the queue - *+ performs the indirec­
tion through the link entry of the structure at the head of the queue. The script
callout. nxt prints values for each column, then performs a conditional test
on the link to the next entry. This test is performed as follows:

[*+>1 J

This means to place the value of the link in the adb variable <1. Next:

Revision A of 17 February 1986

Supplying Parameters

Chapter 6 - Debugging UNIX Kernels with adb 73

(,#<1$<]

This means if the value stored in <1 is non-zero, then the current input stream
(from the script callout. nxt) is terminated. OthelWise, the expression #<1
is zero, and the $ < operator is ignored. That is, the combination of the logical
negation operator #, adb variable <1, and operator $<, in effect, creates a state­
ment of the form:

[if (!1~nk)
eXl.ti

The remaining line of callout. nxt simply reapplies the script on the next
element in the linked list. A sample callout dump is shown below:

% adb -k /v.munix /dev/mem
sbr 50030 sIr 51e
physmem 3cO
$<callout
cailtodo:
cailtodo: time arg

d9fc4 : 5 0
d9f94: 1 0
d9fd4: 1 0
d9fa4 : 3 0
d9fe4 : 0 0
d9fb4 : 15 0
d9ff4: 12 0
da044: 736 d7390
da004: 206 d6fbc
da024 : 649 d741c

func
roundrobin -
if slowtimo - -

_schedcpu
yffasttimo
_schedpaging
yfsIowtimo
_arptimer

_realitexpire
_realitexpire
_realitexpire

da034: 176929 d7304 _realitexpire

A command script may use the address and count portions of an adb command
as parameters. An example of this is the setproc script, used to switch to the
context of a process with a known process ID:

]

(Ot99$<setproc J

The body of setproc is:

.>4
*nproc>1
*proc>f
$<setproc.nxt

The body of setproc. nxt is:

Revision A of 17 February 1986

74 Program Debugging Tools

(*«f+Ot42)&Oxffff)="pid "D
,t«(*«f+Ot42)&Oxffff»-<4)$<setproc.done
<1-1>1
<f+Ot140>f
, *<1$<
$<setproc.nxt

The process ID, supplied as the parameter, is stored in the variable <4, the
number of processes is placed in <1, and the base of the array of process struc­
tures in <f. Then setproc. nxt performs a linear search through the array
until it matches the process ID requested, or until it runs out of process structures
to check. The script setproc. done simply establishes the context of the pro­
cess, then exits.

Revision A of 17 February 1986

Chapter 6 - Debugging UNIX Kernels with adb 75

Standard Scripts Here are the command scripts currently available in /usr / lib/ adb:

Table 6-1 Standard Command Scripts

Standard Command Scripts
Name Use Description

buf addr$<buf fonnat block I/O buffer
callout $<cal1out print timer queue
clist addr$<clist fonnat character I/O linked list
dino addr$<dino fonnat directory inode
dir addr$<dir fonnat directory entry

file addr$<file fonnat open file structure
filsys addr$<fi,lsys fonnat in-core super block structure
findproc pid$<findproc find process by process id
ifnet addr$<ifnet fonnat network interface structure
inode addr$<inode fonnat in-core inode structure

inpcb addr$<inpcb fonnat internet protocol control block
iovec addr$<iovec fonnat a list of iov structures
ipreass addr$<ipreas s fonnat an ip reassembly queue
mact addr$<mact show active list of mbuf's
mbstat $<mbstat show mbuf statistics

mbuf addr$<mbuf show next list of mbuf's
mbufs addr$<mbuf s show a number of mbuf's
mount addr$<mount format mount structure
pcb addr$<pcb format process context block
proc addr$<proc fonnat process table entry

protosw addr$<protosw fonnat protocol table entry
rawcb addr$<rawcb fonnat a raw protocol control block
rtentry addr$<rtentry fonnat a routing table entry
rusage addr$<ru s age fonnat resource usage block
setproc pid$<setproc switch process context to pid

socket addr$<socket fonnat socket structure
stat addr$<stat fonnat stat structure
tcpcb addr$<tcpcb format TCP control block
tcpip addr$<tcpip format a TCP/IP packet header
tcpreass addr$<tcpreass show a TCP reassembly queue

text addr$<text format text structure
traceall $<traceal1 show stack trace for all processes
tty addr$<tty format tty structure
u addr$<u format user vector, including pcb
uio addr$<uio format uio structure
vtimes addr$<vt1.mes format vtimes structure

Revision A of 17 February 1986

76 Program Debugging Tools

6.3. Generating adb Scripts
with adbgen

6.4. Summary

You can use the adbgen program to write the scripts presented earlier in a way
that does not depend on the structure member offsets of referenced items. For
example, the t ext script given above depends on all printed members being
located contiguously in memory. Using adbgen, the script could be written as
follows (again it is really on one line, but broken apart for ease of display):

:ll=include "sys/types.h"
:ll=include "sys/text.h"

text
./"daddr"n{x_daddr,12X}n\
"ptdaddr"16t"size"16t"caddr"16t"iptr"n\
{x-ptdaddr,X} {x_size,X} {x_caddr,X} {x_iptr,X}n\
"rssize"8t"swrss"8t"count"8t"ccount"8t"flag"8t"slptim"8t"poi
{x_rssize,x} {x_swrss,x} {x_count,b} {x_ccount,b} \
{x_flag,b} {x_slptime,b} {x-poip,x} {END}

The script starts with the names of the relevant header files, while the braces del­
imit structure member names and their fonnats. This script is then processed
through adbgen to get the adb script presented in the previous section. See
Chapter 7 of this manual for a complete description of how to write adbgen
scripts. The real value of writing scripts this way becomes apparent only with
longer and more complicated scripts (the u script for example). When scripts are
written this way, they can be regenerated if a structure definition changes,
without requiring people to calculate the offsets.

The extensions made to adb provide basic support for debugging the UNIX ker­
nel by eliminating the need for a user to carry out virtual-to-physical address
translation. A collection of scripts has been written to fonnat the major kernel
data structures, and aid in switching between process contexts. This was carried
out with only minimal changes to the debugger.

Revision A of 17 February 1986

7
Generating adb Scripts with adbgen

Generating adb Scripts with adbgen .. 79

7.1. Example of adbgen ... 80

7.2. Diagnostic Messages from adbgen .. 80

7.3. Bugs in adbgen .. 80

7
Generating adb Scripts with adbgen

/usr/l1b/adb/adbqen file.adb ...

This program makes it possible to write adb scripts that do not contain hard­
coded dependencies on structure member offsets. After generating a C program
to determine structure member offsets and sizes, adbgen proceeds to generate
an adb script.

The input to adbgen is a file named file . adb containing adbgen header infor­
mation, then a nullline, then the name of a structure, and finally an adb script.
The adbgen program only deals with one structure per file; all member names
occurring in a file are assumed to be in this structure. The output of adbgen is
an adb script infile (without the . adb suffix).

The header lines, up to the null line, are copied verbatim into the generated C
program. These header lines often have # in c 1 ude statements to read in header
files containing relevant structure declarations.

The second part offile.adb specifies a structure.

The third part contains an adb script with any valid adb commands (see
Chapter 6 of this manual), and may also contain adbgen requests, each enclosed
in braces. Request types are:

1) Print a structure member. The request form is {member, format} where
member is a member name of the structure given earlier, andformat is
any valid adb format request. For example, to print the p yid field of the
proc structure as a decimal number, say {p yid, d}.

2) Reference a structure member. The request form is {*member, base}
where member is the member name whose value is wanted, and base is an
adb register name containing the base address of the structure. For exam­
ple, to get the p yid field of the proc structure, get the proc structure
address in an adb register, such as <f, and say {*p yid, <f}.

3) Tell adbgen that the offset is OK. The request form is {OFFSETOK}.
This is useful after invoking another adb script which moves the adb dot.

4) Get the size of the structure. The request form is {S I ZEOF} ; adbgen
simply replaces this request with the size of the structure. This is useful for
incrementing a pointer to step through an array of structures.

79 Revision A of 17 February 1986

80 Program Debugging Tools

7.1. Example of adbgen

7.2. Diagnostic Messages from
adbgen

7.3. Bugs in adbgen

5) Get the offset to the end of the structure. The request fonn is {END}. This
is useful at the end of a structure to get adb to align dot for printing the next
structure member.

By keeping track of the movement of dot, adbgen emits adb code to move for­
ward or backward as necessary before printing any structure member in a script.
The model of dot's behavior is simple: adbgen assumes that the first line of the
script is of the fonn struct _address / adb text and that subsequent lines are of the
fonn + / adb text. This causes dot to move in a sane fashion. Unfortunately,
adbgen does not check the script to ensure that these limitations are met. How­
ever, adbgen does check the size of the structure member against the size of the
adb format code, and warns you if they are not equal.

If there were an include file x . h like this,

struct x
char *x_cp;
char x_c;

} ;

then the adbgen file (call it script. adb) to print it would be:

.finclude "x.h"

x
./"x_cp"16t"x_c"8t"x_i"n{x_cp,X} {x_c,C} {x_i,D}

After running adbgen, the output file script would contain:

To invoke the script, type:

[x$<script

The adbgen program generates warnings about structure member sizes not
equal to adb fonnat items, and complaints about badly fonnatted requests. The
C compiler complains if you reference a non-existent structure member. It also
complains about & before array names; these complaints may be ignored.

Structure members that are bit fields cannot be handled, because C will not give
the address of a bit field; the address is needed to determine the offset.

]

]

• 2m!! Revision A of 17 February 1986

Index

Special Characters
! adb verb, 58
$ adb verb, 58
/ adb verb, 58
/ dbx command, 28
: adb verb, 58
= adb verb, 58
> adb verb, 58
? adb verb, 58
@ adb verb, 58

o
o adb variable -last value printed, 58

1
1 adb variable -last offset, 58

2
2 adb variable - previous value of 1, 58

9
9 adb variable - count on last read, 58

A
adb address mapping, 63
adb commands, 58 thru 63
adb expressions, 56 thru 57
adb variables, 58

o - last value printed, 58
1 - last offset, 58
2 - previous value of 1,58
9 - count on last read, 58
b - data segment base, 58
d - data segment size, 58
e - entry point, 58
m - magic number, 58
s - stack segment size, 58
t - text segment size, 58

adb verbs, 58
!,58
$,58
/,58
:,58
=,58
>,58
?,58

-81-

adb verbs, continued
@,58
RE11JRN,58

address mapping in adb, 63
assign dbx command, 23
attach dbx command, 30

B
b adb variable - data segment base, 58
breakpoints in dbx, 23 thru 24
buttons subwindow in dbxtool, 12

C
call dbx command, 26
catch dbx command, 24
clear dbx command, 24
command buttons in dbxtool, 14

cont, 14
next, 14
print, 14
redo, 14
step, 14
stop at, 14
stop in, 14

command sub window in dbxtool, 12
commands in adb, 58 thru 63
cont command button in dbxtool, 14
cont dbx command, 24

D
d adb variable - data segment size, 58
dbx commands

/,28
assign, 23
attach,30
call,26
catch,24
clear, 24
cont,24
dbxenv,30
delete all,24
detach,30
display, 22
dump, 23
help, 29
ignore, 24
kill,30

Index C Onlinued

dbx commands, continued
next, 26
nexti,28
print, 22
quit, 29
rerun, 24
run, 24
set, 23
set8l,23
sh,29
source, 29
status, 24
step, 26
stop at, 23
stop if, 23
stop in, 23
stop, 23
stopi,28
trace, 25
tracei,28
undisplay, 22
whatis,22
when at, 23
when in, 23
when, 23
whereis,23
which,22

dbx machine-level commands, 28 thru 29
dbx miscellaneous commands, 29 thru 30
dbxenv dbx command, 30
. dbxinit, 11
dbxtool command buttons, 14

cont,14
next, 14
print, 14
redo, 14
step, 14
stop at, 14
stop in, 14

dbxtool options, 11
dbxtool subwindows

buttons, 12
command, 12
display, 12
source, 12
status, 12

delete all dbx command, 24
detach dbx command, 30
display data in dbx, 22 thru 23
di splay dbx command, 22
display subwindow in dbxtool, 12
dump dbx command, 23

E
e adb variable - entry point, 58
expressions in adb, 56 thru 57

H
help dbx command, 29

-82-

I
ignore dbx command, 24

K
kill dbx command, 30

M
m adb variable - magic number, 58
machine-level dbx commands, 28 thru 29
miscellaneous dbx commands, 29 thru 30

N
name data in dbx, 22 thru 23
next command button in dbxtool, 14
next dbx command, 26
nexti dbx command, 28

o
options

dbxtool,11

p
print command button in dbxtool, 14
print dbx command, 22

Q
quit dbx command, 29

R
redo command button in dbxtool, 14
rerun dbx command, 24
RETURN adb verb, 58
run dbx command, 24
running programs in dbx, 24 thru 26

s
s adb variable - stack segment size, 58
scrolling in dbxtool, 12 thru 13
set dbx command, 23
set8l dbxcommand, 23
setting breakpoints in dbx, 23 thru 24
sh dbx command, 29
source dbx command, 29
source subwindow in dbxtool, 12
status dbx command, 24
status subwindow in dbxtool, 12
step command button in dbxtool, 14
step dbx command, 26
stop at command button in dbxtool, 14
stop at dbx command, 23
stop dbx command, 23
stop if dbx command, 23
stop in command button in dbxtool, 14
stop in dbx command, 23
stopi dbx command, 28

T
t adb variable - text segment size, 58
trace dbx command, 25
tracei dbx command, 28
tracing programs with dbx, 24 thru 26

U
undisplay dbx command, 22

V
variables in adb, 58

o - last value printed, 58
1 -last offset, 58
2 - previous value of 1, 58
9 - count on last read, 58
b - data segment base, 58
d - data segment size, 58
e - entry point, 58
m - magic number, 58
s - stack segment size, 58
t - text segment size, 58

verbs in adb, 58
!,58
$,58
/,58
:,58
=,58
>,58
?,58
@,58
REnJRN,58

W
whatis dbx command, 22
when at dbx command, 23
when dbx command, 23
when in dbx command, 23
whereis dbx command, 23
which dbx command, 22

Index Continued

-83 -

Revision History

Rev Date Comments

I-a 6 August 1985 Alpha release of this manual; material culled from old manuals.
51-~ 11 October 1985 Beta release of this manual; old material extensively revised.

A 17 February 1986 Initial release of this manual, for customer shipment.

Notes

Notes

Notes

Notes

Notes

Notes

Notes

