
• UNISYS A Series
Binder
Programming
Reference Manual

Release Mark 3.9.0

Priced Item

June 1991
Distribution Code SE
Printed in U S America
8600 0304-000

• UNISYS A Series
Binder
Programming
Reference Manual

Copyright C 1991 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation

Release Mark 3.9.0

Priced Item

June 1991
Distribution Code SE
Printed in U S America
8600 0304-000

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the
names, places, and/or events with the names of any individual, living or otherwise, or that of any
group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and
conditions of a duly executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to the products described in
this document are set forth in such License or Agreement. Unisys cannot accept any financial or
other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by
using the Business Reply Mail form at the back of this manual or by addressing remarks directly to
Unisys Corporation, Technical Publications, 25725 Jeronimo Road, Mission Viejo, CA 92691.

Page Status

Page Issue

iii -000
iv Blank
v through vii -000
viii Blank
ix through xiii -000
xiv Blank
xv -000
xvi Blank
xvii -000
xviii Blank
1-1 through 1-9 -000
1-10 Blank
2-1 through 2-7 -000
2-8 Blank
3-1 through 3-11 -000
3-12 Blank
4-1 through 4-23 -000
4-24 Blank
5-1 th rough 5-45 -000
5-46 Blank
6-1 through 6-3 -000
6-4 Blank
7 -1 through 7-9 -000
7-10 Blank
8-1 through 8-6 -000
A-I through A-16 -000
B-1 through B-6 -000
C-l . through C-9 -000
C-I0 Blank
Glossary-l through Glossary-7 -000
Glossary-8 Blank
Bibliography-l through -000
Bibliography-2
Index-l through Index~17 -000
Index-18 Blank

Unisys uses an II-digit document numbering system. The suffix of the document number
(1234 5678-xyz) indicates the document level. The first digit (x) designates a revision
level; the second digit (y) designates an update level. For example. the first release of a
docijment has a suffix of -000. A suffix of -130 designates the third update to revision 1.
The third digit (z) is used to indicate an errata for a particular level and is not reflected in
the page status summary.

8600 0304.;000 iii

About This Manual

Purpose
This manual explains how to use the Binder compiler to insert a module from a
separately compiled program into another separately compiled program.

Scope
This manual begins with an introduction to the process of binding. The main text
includes information, syntax, and examples for binding programs and libraries
written in the same language and in a variety of different languages.

Audience
Programmers of all experience levels can use this manual.

Prerequisites
You must be familiar with the languages in which the programs you are binding
are written.

How to Use This Manual
Read the first section of this manual to understand the binding function and
process. You can use the rest of the manual as a reference tool to obtain more
information for your specific program binding needs.

If you find terms that are unfamiliar to you, refer to the Glossary at the end of
this manual.

For a list of A Series documents that discuss programming languages and
operations related to binding, see the Bibliography at the end of this manual.

In this document, A Series manuals are referenced by their shortened title. For
the complete title, see the Bibliography at the end of this manual.

The syntax of Binder statements is presented in this manual in railroad syntax
diagram form. If you are unfamiliar with this notation, see Appendix C for a
complete explanation.

8600 0304-000 v

About This Manual

Organization

vi

This manual consists of eight sections, three appendixes, a glossary, a
bibliography, and an index. The content of the sections and appendixes is
described as follows:

Section 1. Understanding the Binding Process

This section explains the overall binding process.

Section 2. Binder Language Constructs

This section describes the elements that form the most primitive structures of the
Binder language.

Section 3. Binder Statements

This section provides the syntax and function of the language elements used with
Binder.

Section 4. Binding Programs Written in the Same Language

This section describes the procedures and techniques required to perform
intralanguage binding, which is the process of binding programs written in the
same language.

Section 5. Binding Programs Written in Different Languages

This section describes the procedures and techniques required to perform
interlanguage binding, which is the process of binding programs written in

, different languages.

Section 6. Binding Intrinsics

This section describes the binding procedures that are required to create and bind
intrinsic files.

Section 7. Binding Programs That Access Databases

This sectio~ explains how to bind programs that access 81M or DM8II databases.

Section 8. Printing Binding Information

This section describes how to use the PRINTBINDINFO utility to print an analysis
of the binding information of a code file.

Appendix A. Warning and Error Messages

This appendix lists the various warning and error messages and their meanings,
and provides solutions for the errors when applicable.

Appendix B. Using Binder Control Record Options

This appendix describes how to use Binder control record options to control the
processing of Binder input files and the content of the resulting bound code file.

8600 0304-000

About This Manual

Appendix C. Understanding Railroad Diagrams

This appendix describes the notation used throughout this manual to represent
the syntax of the Binder language.

Related Product Information
The following documentation provides details for using Command and Edit
(CANOE) and Work Flow Language (WFL) which you use to write and execute
Binder files.

A Series CANDE Operations Reference Manual (form 8600 1500)

This manual describes how CANOE operates to allow generalized file preparation
and updating in an interactive, terminal-oriented environment. This manual is
written for a wide range of computer users who work with text and program
files.

A Series Work Flow Language (WFL) Programming Reference Manual (form
86001047)

This manual presents the complete syntax and semantics of WFL. WFL is used to
construct jobs that compile or run programs written in other languages and that
perform library maintenance such as copying files. This manual is written for
individuals who have some experience with programming in a block-structured
language such as ALGOL and who know how to create and edit files using
CANOE or the Editor.

8600 0304-000 vii

Contents

About This Manual . v

Section 1. Understanding the Binding Process

What Is Binder? 1-1
Binder Code File Restrictions . 1-1
Binder Input Flies '," . 1-2

The ·Primary Input File . 1-2
The Host Program . 1-3
The Subprogram 1-3

Blnde; Output Flies . 1-4
Avoiding Unresolved External References In the Bound Code

File 1-5
Invoking Binder 1-6

Invoking Binder from CANOE 1-6
Invoking Binder from WFL 1-7

Reserved Words . 1-7
Binder Execution . 1-7

Binding Subprograms 1-8·
Encountering Errors . 1-8

Using Binder Efficiently . 1-9
Object-Code Efficiency . 1-9

. Section 2. Binder Language Constructs

File Specifier . 2-1
Identifier , . 2-3
Intrinsic Specification 2-3
Subprogram Identifier 2-5

Section 3. Binder Statements

BIND Statement•.. 3-2
DONTBIND Statement . 3-5
Conflicts between BIND and DONTBIND Statements 3-6
EXTERNAL Statement 3-7
HOST Statement 3-7
INITIALIZE Statement 3-8
PURGE Statement 3-9
STOP Statement . 3-9
USE Statement . 3-10

8600 0304-000 ix

Contents·

Section 4. Binding Programs Written in the Same Language

ALGOL Intralanguage Binding
Compiling ALGOL Host Programs and Subprogram
Declaring Global Items within an ALGOL Procedure

Using the Brackets Method
Using the INFO File Method

Adding New Global Items to an A~GOL Host Program

Using the ALGOL Separate Compilation Facility
Library Binding in ALGOL
Record Binding in ALGOL
Example of ALGOL Intralanguage Binding
Example of Binding an ALGOL Library
Example of Binding an ALGOL Program That

References a Library
C Intralanguage Binding

Compiling C Host Programs and Subprograms
Describing Functions and Variables
Example of C Intralanguage Binding

COBOL Intralanguage Binding
Compiling COBOL Host Programs and Subprograms

Binding an External Procedure to a COBOL Host
Program

Activating Bound Subprograms
Global Declarations in Subprograms
OWN Declarations in the Subprogram
Library Binding in COBOL
Example of COBOL Intra language Binding

FORTRAN Intralanguage Binding
Compiling FORTRAN Host Programs and

Subprograms
FORTRAN Common Blocks
Library Binding in FORTRAN
Example of FORTRAN ·Intralanguage Binding

FORTRAN77 Intralanguage Binding
Compiling FORTRAN77 Host Programs and

Subprograms
Files .. .
Common Blocks
Library Binding in FORTRAN77
Example of FORTRAN77 Intra language Binding

PL/I Intralanguage Binding
Declaring Host Programs and Subprograms
STATIC EXTERNAL Variables
Example of PL/llntralanguage Binding

4-1
4-1

4-2
4-2
4-3

4-3
4-4
4-4
4-5
4-5
4-6

4-7
4-9
4-9
4-9
4-9

4-10

4-11

4-11
4-11
4-11
4-12
4-13
4-13
4-15

4-15
4-16
4-16
4-16
4-17

4-17
4-18
4-18
4-18
4-18
4-21
4-21
4-21
4-23

x 86000304-000

Contents

Section 5. Binding Programs Written in Different Languages

8600 0304-000

ALGOL·COBOL Interlanguage Binding
Global Items
Parameters
Libraries
Record Binding
Binding ALGOL and COBOL74 Programs That Use

COMS
ALGOL·FORTRAN Interlanguage Binding

Parameters
Global Items
Files
Common Blocks

Simulating Common Blocks in ALGOL
Accessing FORTRAN Common Blocks as ALGOL

Arrays
Accessing ALGOL Global Arrays from a

FORTRAN Common Block
Example of ALGOL-FORTRAN Binding

ALGOL·FORTRAN77 Interlanguage Binding
Global Items
Subprograms
Files
Common Blocks

Accessing FORTRAN77 Common Blocks as
ALGOL Arrays

Using Initial Values with Common Blocks
Accessing ALGOL Arrays from a FORTRAN77

Common Block
Simulating Common Blocks in ALGOL

Parameters
.Example of Binding an ALGOL Subprogram Into a

FORTRAN77 Host Program
Example~f Replacing a FORTRAN77 Character

Function by an ALGOL Procedure
Example of Binding. FORTRAN77 Program Units Into

an ALGOL Host Program
ALGOL·NEWP Interlanguage Binding
ALGOL· Pascal Interlanguage Binding

Global Items
Parameters
Examples of Binding An ALGOL Subprogram Into a

Pascal Host Program
COBOL·FORTRAN Interlanguage Binding

Global Items
Parameters

COBOL·FORTRAN77 Interlanguage Binding
Global Items
Parameters

5-2
5-3
5-3
5-3
5-3

5-4
5-5
5-6
5-7
5-7
5-7
5-8

5-8

5-9
5-10
5-11
5-12
5-13
5-13
5-14.

5-14
5-15

5-15
5-16
5-16

5-18

5-19

5-20
5-21
5-22
5-24
5-25

5-25
5-27
5-28
5-29
5-29
5-30
5-31

xi

Contents

xii

Example of Passing a FORTRAN77 Character
Variable to a COBOL74 Section

COBOL-Pascal Interlanguage Binding
Global Items
Parameters
Example of Binding a COBOL74 Procedure Into a

Pascal Host Program
Example of Binding a COBOL Procedure Into a

Pascal Host Program
FORTRAN-FORTRAN77 Interlanguage Binding

Subprograms
Common Blocks
Parameters ~
Characters
Libraries
Example of Binding a FORTRAN Common Block Into

a FORTRAN77 Host Program
Example of Interlanguage Binding Involving

FORTRAN77, COBOL74, and ALGOL

Section 6. Binding Intrinslcs

5-31
5-33
5-35
5-36

5-37

5-38
5-39
5-39
5-40
5-40

.5-41
5-41

5-41

5-42

What Is an Intrinsic? . 6-1
Compiling Intrlnsles . 6-1
Creating a Binder Input File . 6-1
Intrinsic Specification . 6-2

Section 7. Binding Programs That Access Databases

Binding DMSII Databases
Binding SIM Databases

SIM Data Types
Referencing a SIM Database
Referencing a SIM Entity Reference Variable in a

Host Program
Referencing a SIM Query Variable in a Host Program

...... ~ . "
Adding Query Variables as New Globals
Referencing a SIM Database in a Pascal Host

Section 8. Printing Binding Information

7-1
7-1
7-2
7-2

7-4

7-5
7-6
7-7

Generating Binding Information . 8-1
Using the PRINTBINDINFO Utility 8-2
Printing Binding Information for Specific Procedures 8-4
Output Options . 8-5

Appendix A. Warning and Error Messages

8600 0304-000

Contents

Appendix B. Using Binder Control Record Options

Binder Control Record Format . B-1
Binder Options . B-4

Appendix C. Understanding Railroad Diagrams

What Are Railroad Dlalrams? C-I
Constants and Variables C-2
Constraints C-2

Vertical Bar . C-3
Percent Sign . C-3
Right Arrow . C-3
Required Items . C-3
User-Selected Items . C-3
Loop' C-4
Bridge C-4

Followlnl the Paths of a Railroad Dlalram C-5
Railroad Dlalram Examples with Sample Input C-6

Glossary

Bibliography

Index

8600 0304-000 xiii

Figures

2-1. Subprogram Nesting Structure . 2-6

8600 0304-000 xv

Tables

1-1. Allowable Binding Combinations 1-2
1~2. Reserved Words 1-7
1-3. Binder Action on Subprograms Named in the Host Program 1-8

3-1. Binder Statements 3-1

5-1. Allowable Binding Combinations 5-1
5-2. Corresponding Identifier Types between ALGOL and COBOL 5-2
5-3. Corresponding Identifier Types between ALGOL and FORTRAN 5-5
5-4. Corresponding Identifier Types between ALGOL and FORTRAN77 5-12
5-5. Corresponding Identifier Types between ALGOL and Pascal 5-22
5-6. Corresponding Identifier Types between COBOL and FORTRAN 5-27
5-7. Corresponding Identifier Types between COBOL and FORTRAN77 5-29
5-8. Corresponding Identifier Types between COBOL and Pascal 5-33
5-9. Corresponding Identifier Types between FORTRAN and FORTRAN77 5-39

B-1. Binder Control Record Options B-4

8600 0304-000 xvii

Section 1
Understanding the Binding Process

What Is Binder?
Binder is a utility that lets you permanently insert a module from one compiled
program into another compiled program. The module you want to insert is called
a subprogram. The program in which you are inserting the subprogram is called
the host program. Binder lets you combine subprograms and host programs
written in the same langua.ge or in a variety of different languages. Table 1-1
shows the allowable binding combinations.

By using Binder, you can change or correct an existing program without having
to rewrite or recompile the entire program. For example, if a program accesses
several subprograms, and some require changes, you can revise and recompile
only the subprograms that need changes, and then use Binder to combine the
subprograms into one resultant program. This process saves computer time in
recompiling and programmer time in rewriting.

Binder also allows you to use a standard set of subprograms with multiple other
programs. You need to write the subprograms only once. Then, you can bind them
into the other programs whenever you need to do so.

Binder Code File Restrictions
You cannot bind code files that are more than three system software releases
older than the release level of the Binder program with which you are working.
For example with the Mark 3.9 release of Binder, you can only bind code files of
Mark 3.6 or later. If you use a code file that is too old, Binder flags the file with
an error message and terminates.

If you use your compiler to generate code that runs on a restricted set of
computers, the resulting bound code file will run only on the computers on which
the host program and the bound subprograms run. For example, if one code file
runs on an A 4 and an A 16 and another code file runs only on an A 4, the bound
code file will run only on the A 4.

8600 0304-000 1-1

Understanding the Binding Process

t

§

Table 1-1. Allowable Binding Combinations

Subprogram
Host Program Language

Language ALGOLt C COBOL FORTRAN FORTRAN77 NEWP* Pascal' PL/'

ALGOLt Yes Yes Yes Yes Yes Yes

C Yes

COBOL Yes Yes Yes Yes Yes

FORTRAN Yes Yes Yes Yes

FORTRAN?? Yes Yes Yes Yes

PL/I Yes

All references to ALGOL include the various extensions of ALGOL, such as BDMSALGOL, DCALGOL, and
DMALGOL.

The NEWP Master Control Program (MCP) can serve only as a host program in binding.

Pascal programs can serve only as host programs in binding.

Bi"der Input Files
In a normal execution, you supply Binder with the following input:

• A primary input file (optional)

• A compiled host program

• One or more externally compiled subprograms

The Primary Input File

1-2

The primary input file is an optional file that consists of Binder statements and
Binder control records. You can use Binder statements to indicate the titles of the
subprograms and the title of the host program to be bound. You can also use
Binder statements to exclude certain subprograms from the binding process. You
can use Binder control records to control the way Binder processes the
subprogram and the host program, and to determine the content of various files
produced during binding. Binder statements are described in Section 3. Binder
control records are described in Appendix B.

The internal name of the primary input file is CARD. If you initiate the bind from
WFL, the file kind is READER. If you initiate the bind from CANOE, the file kind
is DISK, unless you use a file equation.

8600 0304-000

Understanding the Binding Process

The Host Program

The host program is the code file to which subprograms can be bound. A host
program must contain the first executable code segment of a program. A host
program can be the resultant code file of a previous bind.

You can specify the title of the host file to Binder by using the Binder HOST
statement (see Section 3) or by file equating file HOST in the WFL or CAN DE
syntax used to start Binder. The internal name of the host program is HOST. The
file kind is DISK, unless you change the file kind with a file equation. ¥ou must
always supply a host program, except when binding intrinsics. For details about
binding intrinsics, see Section 6.

Some examples of host programs are as follows:

• An ALGOL outer block

• A FORTRAN program containing a main program

• The MCP

• A PL/I procedure

• A COBOL program compiled with the LEVEL option set to 2

• A previously bound program

• A FORTRAN77 program with $ BINDINFO set

• A Pascal program with modules declared EXTERNAL

• A C program containing the function, "main."

The Subprogram

A subprogram is a separately compiled program unit that exists externally to the
host program. ¥ou must compile external subprograms with the appropriate
language compiler before binding them to a host program. Note that a
subprogram cannot be the resultant code file of a previous bind. Multiple
subprograms can exist in a subprogram file.

External subprograms are referenced in the host program but have not yet been
bound. You do not have to specify external subprograms in the BIND statement,
because they are bound automatically by default.

Binding makes the subprogram 'a part of the host program. When you bind a new
version of the subprogram, the new version replaces the existing version in the
host program. This procedure is known as replacement binding.

8600 0304-000 1-3

Understanding the Binding Process

Some examples of subprogram files are as follows:

• ALGOL procedures

• FORTRAN77 subroutines or functions

• Separately compiled procedures of the MCP

• Intrinsics

• PL/I procedures

• COBOL programs compiled with the LEVEL option set to
a value greater than 2

• C functions

The ALGOL, FORTRAN, FORTRAN77, and PL/I compilers title subprograms
compiled through WFL by replacing the identifier following the last slash of the
code file title in the WFL COMPILE statement with the subprogram name. In
COBOL, the subprogram name is taken from the identifier following the last slash
of the code file title in which the subprogram resides.

In ALGOL, FORTRAN, and FORTRAN77, a LIBRARY compiler control option is
available that causes the compiler to place all subprograms compiled in a single
compilation into one code file. The title of the code remains as specified in the
COMPILE statement. The LIBRARY option is automatically set to TRUE when the
compilation of an ALGOL program with one or more independent procedures is
initiated by CANOE, or when the compilation of a FORTRAN or FORTRAN77
program with the SEPARATE compiler control option set to TRUE is initiated by
CANOE.

Binder Output Files

1-4

Binder can produce three files during normal execution:

• A bound code file

A file consisting of the host program and the subprograms bound into the
host program.

All of the deimplementation warnings produced for the individual code files
are included in the bound code file. In addition, the bound code file might also
contain unresolved references to external programs. Unresolved external
references occur when subprograms referenced in the host do not get bound.
Unresolved external references are discussed later in this section.

The internal file name for the bound code file is CODE. The file kind is DISK;
you cannot change the file kind with a file equation.

• An optional printer listing

A printer listing whose contents vary depending upon the Binder control
record options you specify. To produce a printer listing, include the LIST or
TIME Binder control record option in the primary input file.

8600 0304-000

Understanding the Binding Process

The internal file name for the printer flIe is LINE. The file kind is PRINTER
unless you change the file kind with a file equation.

• An optional error file

The error file, labeled ERRORS by default, contains all the error messages
produced during the binding process. To generate an error file, include the
ERRORLIST" Binder control record option in the input file you use to invoke
Binder.

If you initiate Binder from WFL, the file kind is PRINTER. If you initiate
Binder from CANDE, the file kind is REMOTE, unless you change the kind
with a file equation.

Avoiding Unresolved External References in the
Bound Code File

A reference to an external subprogram is in a resolved state when the
subprogram is successfully bound to the host program. An external reference is in
an unresolved state when the subprogram does not get bound to the host
program.

External subprograms do not get bound to the host program if

• Binder cannot locate the subprogram

• You use the Binder EXTERNAL statement in the host program to prevent the
subprogram from being bound

Unresolved references to external subprograms are fatal to program execution if
the program tries to access the unbound subprogram. Program execution is not
affected if the program does not attempt to access the unbound subprogram.

You can help prevent fatal program errors due to unresolved external references
by including the WAIT, STRICT, and LIST Binder control record options in the
primary input file.

WAIT

STRICT

LIST

Causes Binder to suspend binding when it cannot find a
specified subprogram. You can then make the subprogram
available and resume binding, or you can terminate Binder.

Prevents the resultant code file from being locked if a
specified subprogram is not bound.

Produces a printer listing that you can use to verify that
all necessary subprograms have been bound before you
attempt to execute the program.

For details about Binder control record options, see Appendix B.

8600 0304-000 1-5

Understanding ,the Binding Process

Invoking Binder
There are two ways to invoke Binder:

• By using the CANDE command, BIND, to activate the primary input file (a
work file or disk file containing Binder statements)

• By using a WFL job that contains Binder statements

Refer to Section 3 for the syntax and explanation of the Binder statements.

When the bind is complete, Binder gives the time of the compilation, as well as
the compiler name and version number for the subprograms and the host
program.

Invoking Binder from CANDE

1-6

Your primary input file must contain BIND statements to indicate the location of
the subprograms to be bound. The input file can optionally indicate the name of
the host program to which the subprograms are being bound. If the input file
does not contain the name of the host program, you must indicate the host
program name by using a file equation in the CANDE BIND command.

For example, assume that you have the following CANDE file, named
BOUND /LIB, as the primary input file:

HOST IS OBJECT/BOUND/LIB/HOST;
BIND SUBA FROM OBJECT/BOUND/LIB/PASSR;
BIND SUBB FROM OBJECT/BOUND/LIB/PASSR;

To invoke Binder, you would enter

BIND BOUND/LIB

Assume that the HOST statement was not included in the BOUND/LIB file, and
instead, the file looked like the following:

BIND SUBA FROM OBJECT/BOUND/LIB/PASSR;
BIND SUBB FROM OBJECT/BOUND/LIB/PASSR;

In this case, the command to invoke Binder would be

BIND BOUND/LIB; BINDER FILE HOST=OBJECT/BOUND/LIB/HOST

For both of the preceding command examples, the resultant bound code file
would be titled OBJECT/BOUND/LIB.

Refer to the CANDE Operations Reference Manual for the complete syntax and
description of the BIND command.

8600 0304-000

Understanding the Binding Process

Invoking Binder from WFL

You can list Binder statements in a WFL job, and then use the WFL job to initiate
the bind, as shown in the following example.

? BEGIN JOB BINDISYSTEM/MYLIB
BIND SYSTEM/MYLIB BINDER LIBRARY;
BINDER DATA
HOST IS OBJECT/BOUND/LIB/HOST;
BIND SUBA fROM OBJECT/BOUND/LIB/PASSR;
BIND SUBB fROM OBJECT/BOUND/LIB/PASSR;

? END JOB.

The resultant bound code file would be titled SYSTEM/MYLIB.

Reserved Words
The following list contains words that are reserved for use in Binder syntax. You
cannot use these words for any purpose other than that described in this manual.

BIND

DONTBIND

EXTERNAL

FOR

Binder Execution

Table 1-2. Reserved Words

FROM

HOST

INITIALIE

IS

OF

PURGE

STOP

USE

Binder begins execution by reading the primary input file (CARD), if one exists.
If Binder finds a primary input file, it processes and stores the Binder statements
for future reference. If Binder detects any syntax errors during the processing, it
terminates after reading the last input record of the file. If a primary input file
does not exist, Binder attempts to open the host program and read the first
record.

If the host program is not present or cannot be made present, the operating
system discontinues Binder. If the host program is not a code file or is otherwise
not suitable for binding, the appropriate error message appears and Binder
terminates.

If Binder finds a host program, it locates and reads the Binder information
contained therein. Binder determines if each named subprogram is bound or
unbound, and then determines whether a statement from the primary input file
applies to the subprogram. As a result of this examination, Binder takes the
actions shown in Table 1-3.

8600 0304-000 1-7

Understanding the Binding Process

Table 1-3. Binder Action on Subprograms Named in the Host Program

Primary Input File
Statement

No statement

DONTBIND statement

BIND statement

Bound
Subprogram

Ignores subprogram

Ignores subprogram

Binds subprogram and
discards previously bound
subprogram (replacement
binding)

External (Unbound)
Subprogram

Attempts to bind
subprogram

Ignores subprogram

Binds subprogram

Binding Subprograms

When directed to bind a subprogram, Binder attempts to find the correct file
where the subprogram resides. If the correct file is not present on disk and
neither the STRICT nor WAIT options are specified, Binder ignores the
subprogram, sends a message indicating that it was unable to access the file, and
continues to look for other subprograms to bind. (For more information about the
STRICT and WAIT options, refer to Appendix B.)

If Binder is directed to a host program or to the resultant code file of a previous
bind, Binder sends a message indicating that the file is suitable only as a host and
does not bind the given subprogram. Binder continues to look for other
subprograms to bind.

When Binder finds a file containing a subprogram, it first verifies that the file
contains the necessary information for binding. Binder also verifies that the
subprogram matches the description of what is expected by the host. If the type
of subprogram, its number or type of parameters, or its execution level does not
match its declaration in the host, Binder discontinues binding the subprogram,
returns to its previous level of binding, and continues to look for other
subprograms to bind.

Encountering Errors

1-8

Once Binder finds a subprogram that matches the host description, any
subsequent error conditions arising during the. bind of that subprogram are
usually fatal, and binding is discontinued.

Errors occur during the binding process when Binder finds a mismatch between
the description of a global reference made in the subprogram and its
corresponding description in the host program. Certain languages allow minor
discrepancies in type matching, such as referencing a variable as a real number in
the subprogram when it is declared as an integer in the host. However, more
serious mismatches, such as referencing a single-precision variable as an array or

8600 0304-000

Understanding the Binding Process

calling another subprogram with the wrong number of parameters, are flagged as
fatal errors.

Using Binder Efficiently
Most of Binder's execution time is used to perform input and output operations.
For this reason, the most efficient way to use Binder is to maintain a host
program that contains a completely bound program. When you need to update an
existing subprogram, you change the code, recompile the subprogram, and then
replace the existing subprogram in the host program by binding in the new
version. This method, called replacement binding, requires that only two files be
accessed, greatly reducing the" I/O time used.

If your host program is not a completely bound program, you can waste a great
deal of I/O time. For example, if you have an unbound host program and 250 files
that contain subprograms to be bound to it, you have to rebind all the files each
time you update one subprogram. To bind the host program and the subprograms
together requires the opening and closing of 251 files with corresponding buffer
allocations and deallocations, as well as the I/O time to read and write the files.
You could reduce the number of files by using the LIBRARY option available in
some compilers to combine several subprograms into one library code file.
However, using this option is not as effective as maintaining a bound program.

Object-Code Efficiency
In general, the bound code file produced by Binder is equivalent to the code file
produced by a language compiler. In the case of replacement binding, a process in
which an existing subprogram is replaced by binding in a new subprogram,
Binder reuses some segment dictionary locations used exclusively by the
subprograms being exchanged. However, code segments not needed by the new
subprogram might remain in the bound code file. These obsolete code segments do
not affect the execution of the bound code but do occupy storage space.

Once added to a bound program, items at lexical (lex) level 2 are never removed.
For example, if a subprogram containing variables declared as OWN or STATIC is
replaced, the lex level-2 locations for the one or more variables declared as OWN
in the replaced subprogram are not reused. New lex level-2 locations can be
allocated for the subprogram that replaces the existing subprogram. (Although
variables declared as OWN exist at lex level 2, they are accessible only to the
program unit that declares them; thus, if this program unit is replaced, the lex
level-210cations are inaccessible.)

Usually the unreferenced lex level-2 stack locations belonging to replaced
subprograms cause very little overhead in execution or in core usage. However, if
an initialized array, which is an array containing initial values other than 0
(zero), is declared as OWN, the code to initialize the array causes the array to be
made present. Therefore, repeated replacement binding of a subprogram that
contains initialized arrays can cause some additional core usage and can increase
execution time.

8600 0304-000 1-9

Section 2
Binder Language Constructs

This section describes the syntactic items that appear in the syntax diagrams in
Section 3 of this manual.

File Specifier
Use the file specifier construct to indicate the name of a file.

Syntax

<file specifier>

.---/~

...,.--(<-us-e-rc-o-d-e>-)--r~12'- <nalle> [~] [ON _ <family name>]

*-----'

<name>

<letter> .-y-......-----------..,......,,....------------f
<digit> 161 <letter>

<digit>

<hyphen>

<underscore>

" 117'- <EBCOIC character> 1 " ____J

<family name>

1.
<nonquote identifier>

PACK --------f

DISK------......J

8600 0304-000 2-1

· Binder Language Constructs

Explanation

Details

2-2

<letter>

<digit>

<hyphen>

<underscore>

<name>

<EBCDIC>

< usercode >

<family name>

<nonquote identifier>

Anyone, of the 26 uppercase characters, A through Z

Any character in the range 0 (zero) through 9

The hyphen character (-)

The underscore character (_)

A string of characters used to identify an entity such as
a file, a usercode, or a device group.

Any EBCDIC character for which the hexadecimal code
is greater than or equal to hexadecimal 40 and is not
the EBCDIC quotation mark character (")

A name whose purpose is to establish user identity, to
control security, and to provide for segregation of files

An identifier that specifies the group of disk storage
devices that function as one logical unit. .

A string of 1 to 17 alphanumeric characters

alphanumeric character Any of the characters A through Z or 0 (zero) through 9

In a file specifier, all of the names except the last indicate the directory in which
a file is located. The last name is the actual file name. For example, in the file
specifier A/B/C, A/B is the directory name, and C is the file name.

The Jile specifier can be optionally preceded by a usercode (enclosed in
parentheses) or by an asterisk (*). A family other than the default family (which
usually is DISK) can be specified by using the suffix; ON <family name>.

The name and the family name can consist of 1 through 17 alphanumeric
characters and cannot be split across input record boundaries.

If you use an equal sign (=) as part of the directory name, Binder replaces the
equal sign with the subprogram.name. For example, if the directory name is
A/B/= and the subprogram is S, Binder looks for a file titled AIB/S. If multiple
files have the same directory name, as in A/B/SUB, A/B/PROG, A/B/ALG, Binder
examines each of the specified files in order of appearance to ,determine if the file
contains the subprogram to be bound.

8600 0304-000

Binder Language Constructs

Examples

A/B/=

(MYUSERCODE)TEST/=

*- ON TESTPACK

AlBIC

FILEIDI/FILEID2/FILEID3 ON MYPACK

Identifier

Use the identifier construct to indicate the name of a file, subprogram, or
program variable.

- <identifier> --------------------------4

Explanation

An identifier consists of any combination of the following characters, optionally
enclosed in quotation marks. You cannot split an identifier across input record
boundaries.

A through Z
a through z
o (zero) through 9
_ (underscore)
, (single quote)
. (period)

- (hyphen)
@ (commercial at)
/ (slash)
$ (dollar sign)
(pound sign)

Intrinsic Specification

Syntax

Use the intrinsic specification construct to indicate the name of an installation
intrinsic to be bound.

<intrinsic specification>

- <subprogram identifier> - = - <intrinsic number pair> - <language list> -----f

<intrinsic number pair>

- <integer> - , - <integer> --------------------~

8600 0304-000 2-3

Binder Language Constructs

<language list>

- (ALGOL

COBOL

DCAlGOl

NEWP

PlII

Explanation

Details

Examples

2-4

<intrinsic number
pair>

<language list>

Specifies an intrinsic number pair. The first integer of
the intrinsic number pair specifies an installation
number, which can range in value from 0 through 2046;
however, numbers 0 through 99 are reserved for system
use. The second integer specifies -an intrinsic number,
which can range in value from 0 through 8191. No two
intrinsics within an intrinsic file can have the same
intrinsic number pair.

Specifies a list of those compilers authorized to
reference a given intrinsic. A referencing language is
not necessarily the same as the language in which the
intrinsic is written. The DCALGOL language identifier
allows a specified intrinsic to be accessed by the
DMALGOL compiler as well as by the DCALGOL
compiler.

Standard system intrinsics that are referenced as EXTERNAL in a program are
automatically bound. Thus, you do not need to declare such system intrinsics in a
BIND statement. See Section 6 for details on binding intrinsics.

$ SET INTRINSICS
BIND = FROM INTR/=;
BIND MYSIN = 101, 1 (ALGOL,FORTRAN) FROM INTL/=;
BIND COFFEE = 102, 2 (COBOL) FROM POT;
STOP;

8600 0304-000

Binder Language Constructs

Subprogram Identifier

Use the subprogram identifier construct to indicate the name of a subprogram.

j4-'29L- OF

--L <identifie:-l--L-----------------------~
Explanation

Details

The identifier construct is defined earlier in this section.

If you have subprograms with the same name, you must use identifiers to
uniquely identify, or qualify, the subprograms.

A subprogram identifier can contain a maximum of 30 identifiers. A level of
nesting can~ot be skipped when a subprogram is qualified.

When a subprogram identifier is used in a Binder statement, the Binder statement
is applicable to all subprograms that fit the qualifications of the subprogram
identifier.

Figure 2-1 illustrates the nesting structure of a program.

86000304-000 2-5

Binder Language Constructs

2-6

O.B.{l)
P (2)

[

(3)

L (4)

F(5)
L L (6)

Q (7)

L (8) R(9)

L (10)

*R (g) 4------,.......

*Declared as EXTERNAL

Qualification
P
POFP
POFPOFP
POFQ
POFO.B.
R
S
P OF.R OFQ OF O.B.
POFR
SOFQ

Item Referred to
by Qualification

2
3
4
8
2
9
11
10
10

none

Figure 2-1. Subprogram Nesting Structure

The program shown in Figure 2-1 declares one external subprogram R
(subprogram R is declared in subprogram Q that resides in the host), plus the
structure of the separately compiled subprogram R. As R is bound into the host,
all subprogram identifiers become applicable to subprograms nested within R as
well as to those subprograms initially residing in the host. Each subprogram is
given a number in the example so that it can be uniquely identified. O.B. is the
name given to the unnamed outer block so that it can be used as a qualifier.

8600 0304-000

Examples

PROC_ONE

REC-I-LEN

P OF Q

TE5T-5 OF TE5T-4 OF TE5T-3

8600 0304-000

Binder Language Constructs

2-7

Section 3
Binder Statements

Binder statements let you initiate certain binding operations or specify file names
or identifiers to be used in the binding process.

You specify Binder statements in the primary input file in free form on one or
more records. Place a semicolon (;) after each statement.

A percent sign (%) appearing in any column from 1 through 72 of a record directs
Binder to ignore the remaining columns of the record. Binder automatically
ignores columns 73 through 80.

An example of a Binder primary input file within a WFL job is shown below. The
primary input file is indicated in italic type.

? BEGIN JOB BIND/RESULT;
BIND COBOL74/EXAMPLE .BINDER;
BINDER DATA;
HOST IS COBOL74IHOST;
USE S1 FOR PROG;
BIND S1 FRON COBOL74IPROG;
STOP;

? END JOB.

The various Binder statements are shown in Table 3-1. The syntax and examples
for each statement are provided in this section.

Table 3-1. Binder Statements

Statement Description

BIND

DONTBIND

EXTERNAL

HOST

INITIALIZE

PURGE

86000304-000

Indicates the name of a subprogram or intrinsic to be bound. the
title of the file containing the subprogram or intrinsic. or both

Directs Binder not to bind a specified subprogram

Nonpreferred synonym for DONTBIND.

Indicates the name of the host program to which a subprogram
will be bound

Specifies the address couple of a Master Control Program (MCP)
global item for intrinsic binding

Causes the file or group of files indicated by the file specifier to
be removed from disk after binding

. 3-1

Binder Statements

STOP

USE

Table 3-1. Binder Statements (cont.)

Statement Description

Indicates the end of the primary input file

Matches the identifiers of external subprograms with the
identifiers in the host program

BIND Statement

Syntax

Use the BIND statement to specify the name of a subprogram or intrinsic to be
bound, the title of the file where the subprogram or intrinsic can be found, or
both.

- BIND -----"---- <subprogram i denti fi er> --r---'I...-y--------r~------___i

,<intrinsic specification> <from part>

- - <from part> ---.---------------1
? FROM - <file specifier> ----------~

<from part>

- FROM L <fi Ie S~ifier> -..L---------------------f

Explanation

Details

3-2

For an explanation of the metatokens in the preceding syntax diagram, see
Section 2.

Using the BIND •• .FROM ••• Form of the BIND Statement

With the BIND <S'Ubprogram identifier> FROM <file specifier> construct, you
can specify only one subprogram identifier, unless the file specifier names a
library file (an ALGOL, FORTRAN, or FORTRAN77 program compiled with the
LIBRARY option set to TRUE).

Replacement Binding

You can use the BIND statement to bind in a new version of a subprogram
already bound to a host. This action is called replacement binding.

8600 0304-000

Binder Statements

(Replacement binding is not possible with a C program. Refer to "C Intralanguage
Binding" in Section 4 for more information.)

Binding External Subprograms

It is not necessary to use a BIND statement to declare external subprograms
(those not already bound to the host). Rather, you can declare the subprograms
as external in the host program, and use the BIND = form of the BIND statement
to indicate the file that contains the subprograms to be bound.

Using the BIND = Form of the Bind Statement

You should use the BIND = construct when a subprogram identifier is specified
in a BIND statement and no file is provided. Binder attempts to locate the file
containing the subprogram by using the directory names declared in this
construct. Binder replaces the equal sign (=) with the name of the subprogram to
be bound.

You can supply only one BIND = statement to Binder. If you supply more than
one, only the last statement is used.

If a BIND = statement is required for proper binding, but you did not include
that statement in the CARD input file, Binder creates a BIND = statement by
using the host program title and substituting the last identifier with an equal
sign. For example, if the host program has the title THIS/IS/MY /HOST, Binder
creates the following statement:

BIND = FROM THIS/IS/MY/=

After creating a BIND = statement, Binder replaces the equal sign with the
subprogram name and looks for a file with that title. For example, if PF is the
subprogram to be bound, the BIND statement assumes the following form:

BIND PF FROM THIS/IS/MY/PF

Binder looks for subprogram PF in the file titled THIS/IS/MY /PF and binds the
subprogram if it is found.

During intrinsic binding when no host program is used, Binder creates the BIND
= statement by substituting the code file title for the host program title.

Using the BIND? Form of the BIND Statement

The BIND? FROM <file specifier> form of the BIND statement binds a
subprogram written in C to a host program written in C. This construct lets you
bind all functions exported from the specified file into the host without having to
specify the functions with the BIND <subprogram identifier> construct. For
example, if file A contains the functions X, Y, and Z, you can bind all the
functions by using either of the following statements:

BIND ? FROM A;

BIND X, Y, Z FROM A;

8600 0304-000 3-3

Binder Statements

Examples

3-4

The following example binds subprogram SUBA with subprogram P, which is
nested in subprogram Q. For details on subprogram nesting structure and
restrictions, refer to "Subprogram Identifier" in Section 2 ..

BIND SUBA, P OF Q

The following example directs Binder to bind subprograms SUBA and SUBB from
an ALGOL library file labeled ALGOL/LIBFILE.

BIND SUBA, SUBB FROM ALGOL/LIBFILE

The following example directs Binder to bind subprogram SUBA from the file
A/B/C.

BIND SUBA FROM AlBIC

The following example directs Binder to bind subprograms SUBA, SUBB, and
SUBC from the files A/SUBA, A/SUBB, and A/SUBC, respectively.

BIND SUBA, SUBB, SUBC FROM A/=

The following example directs Binder· to look for subprogram SUBA first in
TESTI/SUBA, and then in TEST2/SUBA. Then Binder looks for subprogram
SUBB first in TESTI/SUBB, and then in TEST2/SUBB.

BIND SUBA, SUBB FROM TEST1/=, TEST2/=

The following example directs Binder to bind subprogram SUBA nested in SUBX,
and subprogram SUBB nested in SUBY, from the file TEST/FILE.

BIND SUBA OF SUBX, SUBB OF SUBY FROM TEST/FILE

In the following example, Binder looks in the file, THISFILE, for any external
subprograms and for any subprograms declared in a BIND statement without a
corresponding file specifier. Binder replaces the equal sign with the name of the
subprogram.

BIND = FROM THISFILE

Assuming that there is an external subprogram labeled SUBA, the following
example directs Binder to look for SUBA first in A/SUBA, next in B/SUBA, and
then in C/SUBA.

BIND = FROM A/=,B/=,C/=

If the subprogram is SUBA, the following example directs Binder to look for
SUBA in SUBA.

BIND = FROM =

8600 0304-000

Binder Statements

The following examples illustrate how you can specify program files by using the
BIND <subprogram identifi,er> and BIND = constructs. Each of the three
statement groups has the same net effect.

BIND = FROM FILEID/=;
BIND P;
BIND Q;
BIND R;

BIND P,Q,R FROM FILEID/=;

BIND P FROM FILEID/P;
BIND Q FROM FILEID/Q;
BIND R FROM FILEID/R;

If the subprograms, P, Q, and R were external to the host, they would be bound
by default. Thus the following statement would have the same effect as the
statements in the previous three examples:

BIND = FROM FILEID/=;

DONTBIND Statement

Syntax

Use the DONTBIND statement to direct Binder not to bind a specified
subprogram. You can use the DONTBIND statement to suppress the binding of all
external subprograms referenced in the host program.

- DONTBIND <subprogram identifier> --r--iL.....---------------i

Explanation

Details

For an explanation of the metatokens in the preceding syntax diagram, see
Section 2.

When you include a subprogram identifier in a BIND statement, but do not
include a file specifier, Binder uses the host program title to create a file in which
to possibly locate the subprogram. Binder substitutes the subprogram identifier
for the last identifier of the host program title and searches for the subprogram
in the file under this name. The DONTBIND statement is used to suppress this
process.'

8600 0304-000 3-5

~inder Statements

Examples

For example, if a subprogram is declared external to allow it to be invoked by the
ALGOL statement, CALL, the OONTBIND statement can be used to suppress the
automatic search for the subprogram reference. In addition, the DONTBIND
statement can be used if the subprogram is to be bound during a later run of
Binder.

The following example directs Binder to suppress the binding of the subprograms,
SUBA and SUB3. The subprograms remain unresolved external references.

DONTBIND SUBA, SUB3

The following example directs Binder to suppress the binding of all external
subprograms referenced in the host program and not explicitly named in a BIND
statement. All of the subprograms remain unresolved external references.

DONTBIND =

Conflicts between BIND and DONTBIND Statements

3-6

If multiple BIND and DONTBIND statements apply to a subprogram, Binder
selects the statement to use according to the following priority scheme.

1. Binder uses the statement that contains the subprogram identifier with the
most qualifiers if the qualification matches the environment of the given
subprogram.

2. When a BIND statement and a DONTBIND statement have the same number
of qualifiers, Binder uses the BIND statement.

3. When more than one BIND statement applies and each has the same number
of qualifiers, Binder uses the last BIND statement. (These rules are referred
to in the following paragraphs as priority rule 1, priority rule 2, and priority
rule 3.) .

In the following example, Binder selects the BIND statement .according to priority
rule 1.

DONTBIND =
BIND SUBR;

In the next example, Binder selects the BIND statement according to priority
rule 2.

BIND ·SUBR;
DONTBIND SUBR;

In the following e~ample, potential conflict exists among three BIND statements.
If subprogram P is nested in subprogram Q, P is bound from file B/C according to

8600 0304-000

Binder Statements

priority rule 1. If subprogram P is not nested in subprogram Q, the statement
BIND P OF Q FROM BIG; does not apply, and P is bound from file C/D according
to priority rule 3.

BIND P FROM AlB;
BIND P OF Q FROMB/C;
BIND P FROM C/D;

EXTERNAL Statement

Syntax

Use the EXTERNAL statement to direct Binder not to bind the specified
subprogram.

- EXTE~AL ~ <subprogram l~entlfler> --'-........-----------------1

Explanation

Details

For an explanation of the metatokens in the preceding syntax diagram, see
Section 2.

If a subprogram is external to the host, it is left as an unresolved external
reference when the EXTERNAL statement is used.

The EXTERNAL statement is the nonpreferred synonym for the DONTBIND
statement. Refer to the DONTBIND statement for a more detailed explanation.

HOST Statement

Syntax

Use the HOST statement to name the title of the host program to which a
subprogram is to be bound.

- HOST - IS - <file specifier> ------------------~

Explanation

For an explanation of the metatokens in the preceding syntax diagram, see
Section 2.

8600 0304-000 3-7

Binder Statements

Details

Examples

When the HOST statement is used, any file equation that involves the host
program is overridden. If more than one HOST statement appears in the primary
input file, only the last HOST statement is effective.

A HOST statement (or host program equation) is not necessary when binding a C
program if the host program is specified in a BIND? statement. The file
containing the "main" function is implicitly the host program.

HOST ·IS MY/HOST;
HOST IS *SYSTEM/PL/I;
HOST IS (MYUSERCODE)HOST/FILE;

INITIALIZE Statement

Syntax

Use the INITIALIZE statement when binding intrinsics to specify the correct
address couple of an MCP global item.

- INITIALIZE 1 <ldenUtler> - * -' <address couple>;.1..------------1

<address couple>

- (- <integer> -, - <integer> -) -----------------~

<integer>

Explanation

Details

3-8

<digit> Anyone of the Arabic numerals 0 (zero) through 9.

(For an explanation of the' other metatokens in the'
preceding syntax diagram, see Section 2.)

This statement is necessary because compilers do not have the correct address
couple of the MCP global item at compiling time.

8600 0304-000

Examples

Binder Statements

Take extreme care when using the INITIALIZE statement, because unpredictable
results can occur.

For details about binding intrinsics, see Section 6.

INITIALIZE A = (0,50);
INITIALIZE BLOCKEXIT - (0,10);

PURGE Statement

Syntax

The PURGE statement causes the file or group of files indicated by the file
specifier to be removed from disk after Binder has finished processing.

<purge statement>

- PURGE 10: <file spe:lfler> -""'--------------------i

Explanation

DetaUs

Examples

For an explanation of the metatokens in the preceding syntax diagram, see
Section 2.

If a file is specified in the PURGE statement but is not successfully bound, it will
not be removed from disk after Binder has finished.

PURGE SEP/FILE;
PURGE -;
PURGE FILEl/-,FILE2/-;

STOP Statement

Syntax

Use the STOP statement to indicate the end of the primary input file. The STOP
statement is optional.

-STOP---~

8600 0304-000 3-9

Binder Statements

Details

Example

Binder ignores all records that follow the STOP statement in the input file. This
feature allows you to store additional Binder input records in one file without
having them executed.

STOP;

USE Statement

Syntax

The USE statement directs Binder to match a specified identifier in a subprogram
with a specified identifier in a host program. Use the USE statement when
identifiers in the subprogram have different names from the identifiers in the
host program.

- USE - <identifier'> - FOR 1 <identifier> --r-------------r-"'--t
~ OF - <subprogram identifier> ~

Explanation

Details

3-10

For an explanation of the metatokens in the preceding syntax diagram, see
Section 2.

The first identifier following USE is the identifier contained in the host.

The identifiers following FOR are identifiers referenced by the subprograms to be
bound into the host. For example, the statement, USE A FOR B,C,D, directs
Binder to use the host identifier, A,. anytime it encounters the subprogram
identifiers, B, C, or D.

When a USE statement is invoked and the host identifier does not exist in the
host program, the identifier referenced by the subprogram is added to the host
program and given the name of the host identifier as specified in the USE
statement. The identifier referenced by the subprogram can be qualified by the
subprogram identifier so that the USE statement is invoked only when the
specified subprogram is bound.

Special considerations are necessary when the USE statement includes the
subprogram name itself., According to file-naming conventions, the identifier
following the last slash in the subprogram title is the subprogram name. (For
more information concerning file-naming conventions, refer to "BIND Statement"

8600 0304-000

Examples

Binder Statements

in this section.) However, when Binder looks for the subprogram through the
directory name, as in OBJECT ILIBI =, it looks for a file title ending with the
subprogram name as found in the host program.

If Binder is directed to bind a subprogram from a specified file, and it discovers
that the subprogram identifier does not match the subprogram identifier in the
host, Binder issues a warning message and creates a USE statement that corrects
the identifier mismatch.

The following examples set up the following correspondences:

• Use the host identifier ALGOLARRAY whenever the COMMON block is
referenced in a FORTRAN or FORTRAN77 subprogram.

• Use the host identifier A whenever the subprogram identifiers B, C, or Dare
encountered. .

• Use the host identifier Z whenever the subprogram identifier Y is encountered
in the subprogram identified as SUBR2.

USE ALGOLARRAY FOR ICOMMON/;
USE A FOR B~C~D;
USE Z FOR Y OFSUBR2;

For the following two examples, assume that Q is a subprogram contained in a
file titled A/Q. If the input to Binder is as shown in the first example, Binder will
attempt to bind from file AlP. That is, the USE statement does not cause Binder
to bind subprogram P from file A/Q. The BIND statement included in the second
example is necessary for correct binding.

BIND = FROM A/=;
USE P FOR Q;
BIND P;

BIND = FROM A/=;
USE P FOR Q;
BIND P FROM A/Q;

8600 0304-000 3-11

Section 4
Binding Programs Written in the Same
Language

The process of binding one or more subprograms to a host written in the same
language is known as intralanguage binding. This section discusses the various
techniques required to perform intralanguage binding for programs written in
ALGOL, C, COBOL, FORTRAN, FORTRAN77, and PL/I. You cannot perform
intralanguage binding for NEWP and Pascal programs.

ALGOL Intralanguage Binding
(In this section, any reference to ALGOL also refers to the extensions of ALGOL,
such as BDMSALGOL, DCALGOL, and DMALGOL.)

ALGOL intralanguagebinding consists of binding one or more ALGOL procedures
(or subprograms) into an ALGOL host program. The declaration of the
subprogram must match its declaration in the host as to the type of subprogram,
its number and type of parameters, and its execution level.

Compiling ALGOL Host Programs and Subprogram

An ALGOL host program can be either the outer block of an ALGOL program or
an ALGOL procedure.

An ALGOL subprogram compiled independently is called a separate procedure.
To bind the procedure to a host program, you must compile the procedure at the
same lexical level as that of the procedure within the host. Use the Binder control
record option, LEVEL, described in Appendix B, to set the desired lexical level of
the procedure you want to bind. If you do not set the LEVEL option, the lexical
level of the procedure is 3.

Parameter names declared in the procedure need not be the same as those
declared in the host. If unmatched identifiers exist in the host and in the
procedure you want to bind, declare a Binder USE statement to correct the
mismatch. (For the syntax and explanation of the USE statement, see Section 3.)

A separate procedure can reference any item declared in the host that is global to
the lexical level of that procedure. This includes items at intermediate lexical
levels.

Any item declared after the body of a given procedure in a host program can be
referenced by a separately compiled procedure that replaces the original

8600 0304-000 4-1

Binding Programs Written in the Same Language

procedure. Thus, a host program that contains a separately compiled and bound
procedure might produce different results from the same program fully compiled
by the ALGOL compiler.

Note: Binder can only replacement bind DCALGOL exception and epilog
procedures. Only one procedure, epilog or exception, can appear in a
block.

Declaring Global Items within an ALGOL Procedure

You must declare all global items within the separate procedure that references
them. This ensures that no undeclared global identifiers exist within the
procedure. You can declare global items by using either the brackets method or
the INFO file method described later in this section.

Using the Brackets Method

With this method, you enclose global item declarations in brackets and place the
declarations before the separate procedure. A bracketed set of global
declarations, also known as the global part, is illustrated in the following
example.

[REAL S;
ARRAY B [1];
FILE LINE;
PROCEDURE PROC (V); VALUE V;
REAL V; EXTERNAL;]

When a compilation includes multiple procedures, you must include all global
items referenced by all procedures within the same set of brackets and place the
global part before the first procedure to be compiled.

Following are some Binder exceptions to the typical way of declaring ALGOL
items:

• You can declare an array with lower bounds only.

• You can declare switch items without declaring the corresponding switch list
items.

• Declaring a LABEL item as a new global item is illegal unless a "bad GO TO"
to that label appears in the host. (A "bad GO TO" transfers control from an
inner block to a label that is global to that block.)

• If the same global array in the subprogram and host program are different
sizes, and the host array is not an equivalence array, the array in the bound
code file will be the larger of the two arrays. Arrays with lower bounds
larger than 131,071 words remain unchanged.

• If a global array in the subprogram is bound to an equivalence array in the
host program, the array in the bound code file takes on the size of the array
in the ALGOL host program.

4-2 8600 0304-000

Binding Programs Written In the Same Language

Using the INFO File Method

With this method of declaring global items, you store declared information for
Binder in an 'INFO file. You can create an INFO file by placing the DUMPINFO
compiler control record at any point within the symbolic file of the host program
and compiling your ALGOL program with DUMPINFO set to TRUE.

DUMPINFO places information about all items within the scope of the DUMPINFO
control record into the INFO file. For example, if a DUMPINFO compiler control
record is placed just before the last END statement of a program, all global items
declared in that program are described in the INFO file.

To recover the information about the declared items from the INFO file, include
the LOADINFO compiler control record in the subprogram before the first
procedure to be compiled.

Note that INFO files created by the ALGOL compiler cannot be used by an
ALGOL compiler of a different release level. For example, if an INFO file is
created by the DUMPINFO compiler control option of the Mark 3.8 ALGOL
compiler, the INFO file cannot be used by the LOADINFO compiler control option
of the Mark 3.9 ALGOL compiler. If the release levels of the INFO files do not
match, a syntax error message is given and the compilation is discontinued.

For a description of INFO files and the DUMPINFO and LOADINFO compiler
control options, refer to the ALGOL Reference Manual, Volume 1.

You can use a combination ~f the INFO file and brackets methods to add global
items to the host without recompiling the host program. To do this, place the
LOADINFO compiler control record within the brackets before the first global
declaration.

Adding New Global Items to an ALGOL Host Program

If a subprogram references a global item not declared in the host program, Binder
adds the item to the host as a new global item when binding the procedure into
the host. Binder adds new global items at the global level of the host.

The following rules apply when Binder adds new global items to a host program:

• Binder cannot add the following variable types as new global items:

- DMSII database

- FORMAT

- LABEL

- LIBRARY

- LIST

- PICTURE

- SDF form record libraries

8600 0304-000 4-3

Binding Programs Written in the Same Language

SIM databases

Switch items

Transaction base

• Binder can add a new global array only if the array is declared in the
subprogram with both upper bounds and lower bounds.

• Binder strips a new global file of any specified file attributes during the
binding process. Thus, you must indicate all necessary file attributes by using
a file equation. Note that if a global file is already present in the host and is
being replaced during the binding procedure, the file attributes specified in
the host are used.

Using the ALGOL Separate Compilation Facility

The ALGOL compiler provides a separate compilation and binding facility called
sepcomp. The sepcomp facility lets you easily recompile and bind procedures
contained within one large symbolic file. When you make changes to a procedure,
you can use the sepcomp facility to recompile only the changed procedure, rather
than recompiling the entire program.

To use the sepcomp facility, you must first create a host object code file by
compiling the program with the ALGOL MAKEHOST compiler control option set
to TRUE. This causes the ALGOL compiler to save special Binder information in
the object code file.

Next, make changes to· your program in a patch file. The first record of the patch
file must set the ALGOL SEPCOMP compiler control option to TRUE. This signals
the compiler to perform a separate compilation.

During the sepcomp process, the ALGOL compiler determines which procedures
are affected by the patch file and recompiles those procedures. The compiler then
invokes Binder to bind the recompiled procedures into the rest of the object code
obtained from the host file.

(Refer to the ALGOL Reference Manual, Volume 1 for more information about the
SEPCOMP and MAKEHOST options.)

Library Binding in ALGOL

4-4

You can bind libraries and library objects like other locally or globally declared
nonprocedure items. You can declare exported procedures as EXTERNAL, and
you can bind and replacement bind them. For more information about libraries
and exported procedures, refer to the A Series System Software Utilities Manual
and the ALGOL Programming Manual, Volume 1.

Libraries in subprograms do not have to be explicitly declared in the host
program. If libraries are not declared in the host program, Binder builds a library
template from the binding information in the subprogram file. Once the template
is built, Binder can add library objects not explicitly declared in the host

8600 0304-000

Binding Programs Written in the Same Language

program. When declaring libraries in the global part, you must declare the library
before declaring the library object.

The restrictions that apply to library binding are as follows:

• Additional library objects can be added to a library declared in the host
program if the host program'was compiled with a Mark 3.8 compiler or a
more recent version of the compiler.

• Library attributes cannot be changed or added from a subprogram. The
library attributes in the host are always used, so it is not necessary to include
any attributes in the subprogram.

• The declaration of a procedure to be bound to an exported procedure must be
identical to the declaration of the exported procedure.

• Library objects and by-calling procedures cannot be declared external and
bound in. (A by-calling procedure is a procedure that is declared in a library
program and is specified.to be exported dynamically.) .

• By-calling procedures cannot be declared in the global part of a procedure
that is to be bound to a host program.

• If a new global library object is declared in two or more subprograms, then
the global library objects must be identical and match the library object in the
library referenced.

Record Binding in ALGOL

Binding of records retrieved from a data dictionary is allowed in ALGOL.
However, Binder does not check the format of the records involved, nor does it
make any distinction between records and EBCDIC arrays. Thus, Binder allows
any record to be bound to any other record, and allows any record to be bound to
any star-bounded EBCDIC array and vice versa.

Example of ALGOL Intralanguage Binding

The following example shows an ALGOL host program, a subprogram, and the
Binder input file used to bind them together. The WFL job used to compile each
program appears in italic type.

ALGOL Host Program

? BEGIN JOB ALGOL/HOST;
COMPILE OBJECT/HOST ALGOL LIBRARY;
ALGOL DATA
BEGIN

8600 0304-000

FILE LINE(KIND=PRINTER,MAXRECSIZE=22);
ARRAY BUFFER[O:2,O:8];
REAL J;
PROCEDURE PRINTIT; EXTERNAL;
FOR J := ° STEP 1 UNTIL 8 DO

Binding Programs Written in the Same Language

BUFFER[O,J] := BUFFER[l,J] := BUFFER[2,J]
FOR J := ° STEP 1 UNTIL 2 DO

BUFFER[J,l] := BUFFER[J,3] := BUFFER[J,5]
BUFFER[1,2] := 11*1';
PRINTIT;

END.
? END JOB.

ALGOL Subprogram

? BEGIN JOB COMPILE/PRINTIT;
COMPILE OBJECT/PRINTIT ALGOL LIBRARY;
ALGOL DATA
[ARRAY BUFFER[O,O]; REAL J, K; FILE LINE;]
PROCEDURE PRINTIT;
BEGIN

FOR J := ° STEP 1 UNTIL 2 DO

e_ II II • . - ,

.- "*" . . - ,

WRITE{LINE,<3Al,Xl,3Al>, FOR K := 1 STEP 1 UNTIL 6
DO BUFFER[J,K]);

END;
? END JOB.

Binder Input FOe

? BEGIN JOB BIND/PRINTIT;
BIND OBJECT/HELLO BINDER LIBRARY;
BINDER DATA
HOST IS OBJECT/HOST;
BIND PRINTIT FROM OBJECT/PRINTIT;
STOP;

? END JOB.

The result of the bind is a program entitled OBJECT/HELLO. When
OBJECT /HELLO is executed, it produces the following output:

* * *
*** *
* * *

Example of Binding an ALGOL Library

4-6

This binding example includes an ALGOL library host program, an ALGOL
subprogram to be bound to that library, and the Binder input file used to bind
them together. The WFL job used to compile each program appears in italic type.

ALGOL Host Program

? BEGIN JOB COMPILE/LIB/HOST;
COMPILE OBJECT/LIB/HOST ALGOL LIBRARY;
ALGOL DATA
BEGIN

8600 0304-000

Binding Programs Written in the Same Language

END.

PROCEDURE REVERSE (A,B,LEN);
VALUE LEN;
EBCDIC ARRAY A,B [0];
INTEGER LEN;

BEGIN
END;

EXPORT REVERSE;
FREEZE (TEMPORARY);

? END JOB.

ALGOL Subprogram

? BEGIN JOB COMPILE/REVERSE;
COMPILE OBJECT/REVERSE ALGOL LIBRARY;
ALGOL DATA
PROCEDURE REVERSE (A,B',LEN);

VALUE LEN;
EBCDIC ARRAY A,B [0];
INTEGER LEN;

BEGIN

END;

INTEGER J;
IF LEN> 0

AND LEN <= SIZE(A) AND LEN <= SIZE(B)
THEN

FOR J := 0 STEP 1 UNTIL (LEN-I) DO
REPLACE B[J] BY A[LEN-J-I] FOR 1;

? END JOB.

Binder Input File

? BEGIN JOB BIND/SYSTEM/MYLIB;
BIND SYSTEMIMYLIB BINDER LIBRARY;
BINDER DATA
HOST IS OBJECT/LIB/HOST;
BIND REVERSE FROM OBJECT/REVERSE;
STOP;

? END JOB.

The result of the bind is a library named SYSTEM/MYLIB. This library is used in
the following example.

Example of Binding an ALGOL Program That References a Library

This example shows an ALGOL host program, a subprogram, and the Binder input
file used to bind them together. The WFL job used to compile each program
appears in italic type. This example uses the library, SYSTEM/MYLIB, created in
the preceding example.

, 8600 0304-000 4-7

Binding Programs Written in the Same Language

4-8

ALGOL Host

? BEGIN JOB COMPILE/HOST;
COMPILE OBJECT/HOST ALGOL LIBRARY;
ALGOL DATA
BEGIN

END.

LIBRARY L (LIBACCESS = BYTITLE,
TITLE = I 'SYSTEM/MYLIB.' ');

PROCEDURE REVERSE (A,B,LEN);
VALUE LEN;
EBCDIC ARRAY A,B [0];
INTEGER LEN;

LIBRARY L;

PROCEDURE P; EXTERNAL;
P;

? END JOB.

ALGOL Subprogram

? BEGIN JOB COMPILE/P;
COMPILE OBJECT/P ALGOL LIBRARY;
ALGOL DATA
[LIBRARY L (LIBACCESS = BYTITLE~

TITLE = I 'SYSTEM/MYLIB.' ');
PROCEDURE REVERSE (A,B,LEN);

VALUE LEN;
EBCDIC ARRAY A,B [0];
INTEGER LEN;

LIBRARY L;
]
PROCEDURE P;
BEGIN

EBCDIC ARRAY El,E2 [0:29];
FILE F (KIND = PRINTER);

. REPLACE El[O] BY "ABCDEFGHIJKLMNOPQRSTUVWXYZ
REPLACE E2[0] BY II II FOR 30;
REVERSE (El,E2,10);
WRITE (F,5,El);
WRITE (F,5,E2);

END;
? END JOB.

Binder Input File

? BEGIN JOB BINO/P;
BIND OBJECT/BOUND BINDER LIBRARY;
BINDER DATA
HOST IS OBJECT/HOST;
BIND P FROM OBJECT/P;
STOP;

? END JOB.

II. ,

8600 0304-000

Binding Programs Written in the Same Language

The result of the bind is a file named OBJECT/BOUND. When executed,
OBJECT /BOUND produces the following result:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
JIHGFEDCBA

C Intralanguage B'inding
C intralanguage binding involves binding a C function into a C host program. It is
not possible to bind a C library; however, you can bind programs that reference
libraries. C functions cannot be replacement bound.

Compiling C Host Programs and Subprograms

A C host program is a C program that contains the function, "main." The host
program can contain variables and functions that are referenced by external
functions.

You cannot use a bound C program as a host program for a subsequent bind.

If the host program appears in a BIND? statement (see Section 3), it is not
necessary to file equate the host program or use a HOST statement in the primary
input file.

A C subprogram file is any C code file that does not contain the function, "main."
Unlike other programming languages, an explicit compiler control option (such as
LEVEL or SEPARATE) is not req:uired to create a subprogram file.

Describing Functions and Variables

Any function or variable not declared with the storage class specifier, static, is
implicitly exported.

All references to a variable or function must match the declaration of the
variable or function in type, number, and types of parameters.

Example of C Intralanguage Binding

The following example shows a C ,host program, a C subprogram, and the Binder
input file used to bind them together. The WFL job used to compile each program
appears in italic type.

C Host Program

? BEGIN JOB C/~IN;
COMPILE C/~IN CC LIBRARY;
CC DATA

#include <stdio.h>

8600 0304-000 4-9

Binding Programs Written in the Same Language

print_it (int s) {
printf C'the sum is %i\n" ,s);

}
main () {

}

int i = 12, j = 24;
add (i, j);

? END JOB.

C Subprogram

? BEGIN JOB CIADD;
COMPILE CIADD CC LIBRARY;
CC DATA

int add (int x, int y) {
pr{nt_it (x + y) {

}
? END JOB.

Binder Input File

? BEGIN JOB CIBIND;
BIND SUM BINDER;
BINDER DATA
BIND ? FROM C/ADD;
BIND ? FROM C/MAIN;

? END JOB.

The result of the bind is a file named SUM. When executed, SUM produces the
following output:

the sum is 36

COBOL Intralanguage Binding

4-10

COBOL intralanguage binding consists of binding a COBOL subprogram into a
COBOL host. The declaration of the subprogram must match its declaration in the
host as to the type of subprogram, its number and type of parameters, and its
execution level.

Note: COBOL 68, COBOL74, and COBOL85 progra'mS usually are bound
similarly and, therefore, are discussed in this section generically as
COBOL progra'mS. When a difference exists, the version is specified.

8600 0304-000

Binding Programs Written in the Same Language

Compiling COBOL Host Programs and Subprograms

A COBOL host program is a COBOL program compiled at the default lexical (lex)
level of 2.

You must compile subprograms at a lex level compatible with their usage in the
host program. All subprograms must be compiled at one lex level higher than the
lex level of the subprogram in which they are declared. For example, a
subprogram to be bound to ;l lex level 3 subprogram must be compiled at lex
level 4.

If a subprogram is declared directly in the host, you must set the LEVEL option
to 3 during the compilation of that subprogram.

You must describe in the subprogram any parameters being passed to the
subprogram from a host program. You must also specify such parameters
following the keyword USING in the PROCEDURE DIVISION heading. You must
declare parameters in the LOCAL-STORAGE (LD entry) of the DATA DIVISION
and identify them as being passed by reference or by content.

Binding an External Procedure to a COBOL Host Program

To bind an external procedure to a COBOL host program, you must declare the
procedure as external in the DECLARATIVES portion of the PROCEDURE
DIVISION of the host program.

You can indicate the title of the code file containing the subprogram by using the
CODE FILE TITLE IS <mnemonic name> option within the SPECIAL-NAMES
paragraph. Note that using a BIND statement overrides the SPECIAL-NAMES
paragraph.

Activating Bound Subprograms

You can activate bound subprograms by using either the ENTER or CALL verb.
Immediately following the verb, you must indicate the" name of the section in the
DECLARATIVES portion that contains the procedure description of the
subprogram. Binder uses the section name that declares the subprogram as
external to process the external· subprogram. All Binder statements that pertain
to an external subprogram must reference the corresponding section name.

Global Declarations In Subprograms

Any variable that can be passed or received as a parameter can be declared as a
global variable in the subprogram. Untyped procedures, files, and direct files can
also be declared as global variables in the subprogram. To declare global
variables, use the GLOBAL clause. The following COBOL74 examples illustrate
the declaration of global variables in the WORKING-STORAGE SECTION of the
subprogram.

8600 0304-000 4-11

Binding Programs Written in the Same Language

77 GLASTATUS GLOBAL BINARY PIC 9(11).
77 BL-EVNT GLOBAL EVENT.
77 GL-SWFL INDEX FI LE GLOBAL.
01 GL-RCD RECORD AREA GLOBAL OCCURS 10 PIC X(180)
01 GL-EBCRAY GLOBAL.

03 CMP-ITE BINARY PIC 9(11)
OCCURS 100 INDEXED BY 11.

If most of the variables declared in the WORKING-STORAGE SECTION are global,
use the GLOBAL compiler control option. You can set this option throughout the
compilation.

The GLOBAL option affects only the variables that are candidates for global
declarations and only the items declared in the WORKING-STORAGE SECTION.

You can use the LOCAL or OWN option to override the GLOBAL option. In the
following example, items Gl, G2, and G3 are declared GLOBAL; I is declared
OWN; and Ll is declared LOCAL.

$ SET
77 G1
77 G2
77 L1

01 G3.

GLOBAL
BINARY
BINARY
LOCAL
BINARY

03 FLO

PIC 9(11).
PIC 9(11).

PIC .9{U).

BINARY PIC 9(11) OCCURS 10 INDEXED BY I.

OWN Declarations in the Subprogram

4-12

COBOL programs compiled at lex level 3 or higher can declare certain variables
as OWN in the subprogram. OWN variables retain their initial values or states
throughout repeated exit and reentry of the subprogram in which they are
declared.

With the exception of direct switch files, you can declare any item in the
WORKING-STORAGE SECTION of the subprogram as OWN by using either the
OWN clause or the OWN compiler control option.

All related index names for OWN items are also considered to be OWN. Redefined
OWN items are implicitly OWN, so you do not need to specify them in the OWN
clause.

If you use the OWN compiler control option throughout the compilation, all
variables declared in the WORKING-STORAGE SECTION are declared OWN,
unless they are direct files.

You can use the LOCAL or GLOBAL clause to override the OWN option for any
individually specified item.

8600 0304-000

Binding Programs Written in the Same Language

Library Binding in COBOL

Binder lets you bind COBOL programs that are libraries and COBOL programs
that reference libraries. You can bind libraries and library objects as you would
other locally or globally declared nonprocedure items.

To bind a COBOL library, declare the library as external in the host program and
make sure that the procedure parameters match those in the host program.

Libraries in subprograms do not have to be explicitly declared in the host
program. If libraries are not declared in the host program, Binder builds a library
template from the binding information in the subprogram file. Once the template
is built, Binder can add library objects not explicitly declared in the host
program. When declaring libraries in the global part, you must declare the library
before declaring the library object.

Example of COBOL Intralanguage Binding

The following example contains a COBOL host program and a subprogram, and
the Binder input file used to bind them together. The WFL job used to compile
each program appears in italic type.

COBOL Host Program

? BEGIN JOB COMPILE/HOST;
COMPILE COBOL74/HOST COBOL74 LIBRARY;
COBOL74 DATA

8600 0304-000

IDENTIFICATION DIVISION.
PROGRAM-ID. HOST.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. A-IS.
OBJECT-COMPUTER. A-IS.
SPECIAL-NAMES.

"COBOL"/"PROG" IS TO-BE-CALLED.
INPUT-OUTPUT SECTION.
FI LE -CONTROL.

SELECT PR ASSIGN TO PRINTER.
DATA DIVISI.ON.
FILE SECTION.
FD PRo
01 PR-RCD
WORKING-STORAGE SECTION.
01 ORIG
01 NEW
LOCAL-STORAGE SECTION.
LD PARMS.
01 A
01 B
PROCEDURE DIVISION.

PIC X(36).

PIC X(36).
PIC X(36).

PIC X(36) REF.
PIC X(36) REF.

4-13

Binding Programs Written in the Same Language

4-14

DECLARATIVES.
S1 SECTION.
USE EXTERNAL TO-BE-CALLED AS PROCEDURE WITH PARMS USING A B.

END DECLARATIVES.
THE-MAIN SECTION.
START.

OPEN OUTPUT PRo
MOVE IITHIS WILL STOP WHEN THIS LINE ENDS" TO ORIG.
ENTER S1 USING ORIG NEW.
WRITE PR-RCD FROM ORIG.
WRITE PR-RCD FROM NEW.
STOP RUN.

? END JOB.

COBOL Subprogram

? BEGIN JOB COMPILEIPROG;
COMPILE COBOL741PROG COBOL74 LIBRARY;
COBOL74 PATA

$ SET LEVEL = 3
IDENTIFICATION DIVISION.
PROGRAM-ID. ARRAY/MIXER.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. A-g.
OBJECT-COMPUTER. A-g.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X REF.

03 ONE
03 SECOND
03 THIRD
03 FOURTH
03 FIFTH
03 SIXTH
03 SEVENTH
03 EIGHTH

PIC X(5).
PIC X(5).
PIC X(5).
PIC X(5).
PIC X(5).
PIC X(5).
PIC X(5).
PIC X(l).

01 Y REF.
03 FIRS PIC X(5)~
03 SECON PIC X(5).
03 THIR PIC X(5).
03 FOURT PIC X(5).
03 FIFT PIC X(5).
03 SIXT PIC X(5).
03 SEVENT PIC X(5).
03 EIGHT PIC X(l).

PROCEDURE DIVISION USING X Y.
THE-SUBPROGRAM SECTION.
MIX.

MOVE ONE TO SECON.
MOVE SECOND TO FOURT.
MOVE THIRD TO FIRS.

8600 0304-000

Binding Programs Written in the Same Language

? END JOB.

MOVE FOURTH TO THIR.
MOVE FIFTH TO SIXT.
MOVE SIXTH TO SEVENT.
MOVE SEVENTH TO FIFT.
MOVE EIGHTH TO EIGHT.

Binder Input File

? BEGIN JOB BIND/RESULT;
BIND COBOL74/EXAMPLE BINDER;
BINDER DATA;
HOST IS COBOL74/HOST;
USE S1 FOR PROG;
BIND S1 FROM COBOL74/PROG;

? END JOB.

The result of the bind is an object file titled COBOL74/EXAMPLE. When
executed, the program generates the following output:

THIS WILL STOP WHEN THIS LINE ENDS
STOP THIS WHEN WILL ENDS THIS LINE

FORTRAN Intralanguage Binding
FORTRAN intralanguage binding consists of binding a FORTRAN subroutine or
function into a FORTRAN host.

Compiling FORTRAN Host Programs and Subprograms

A FORTRAN host is a FORTRAN program that contains a main program. The host
can also include subroutines or functions compiled with the main program.

, A FORTRAN subprogram is a FORTRAN subroutine or function. You must
compile the subprogram at a lexical (lex) level consistent with its lex level within
the host.

Any subprogram bound into a host must match its invocations in the host
program in terms of the number and type of parameters. If the subprogram
identifier does not match its invocation as specified in the host, you must use the
Binder USE statement to correct the mismatch.

If an entry point is referenced by a host program, but the corresponding
subprogram is not referenced, you must use a BIND statement to specify the file
in which the entry point is located.

8600 0304-000 4-15

Binding Programs Written in. the Same Language

FORTRAN Common Blocks

When a common block is bound, its resulting length is the largest of all the length
values declared for that common block in the host and bound subprograms.

Library Binding in FORTRAN

Subroutines and functions can be bound or replacement bound into a host
program that references libraries.

Libraries in subprograms do not have to be explicitly declared in the host
program. If libraries are not declared in the host program, Binder builds a library
template from the binding information in the subprogram file. Once the template
is built, Binder can add library· objects not explicitly declared in the host
program.

Exported subroutines and functions can be replacement bound. You cannot add
new exported program units to a host.

You can bind program units that do not reference libraries into host programs
that are libraries or that reference libraries.

Example of FORTRAN Intralanguage Binding

4-16

The. following example shows a FORTRAN host program and subprogram, and the
Binder input file used to bind them together. The WFL job used to compile each
program appears in italic type.

FORTRAN Host Program

? BEGIN JOB COMPILE/HOST;
COMPILE FORTRAN/HOST FORTRAN LIBRARY;
FORTRAN DATA
DIMENSION ICK(5,55)
DO 5 1=1,5
DO 5 J=1,55

5 I CK (I , J) = I I I I

DO 10 1=1,55
10 CALL PLOT(ICK,I)

DO 20 1=1,5
20 WRITE(6,100) (ICK(I,J),J=1,55)
100 FORMAT(lX,55A1)

CALL EXIT
END

? END JOB.

8600 0304-000

Binding Programs Written in the Same Language

FORTRAN Subprogram

? BEGIN JOB COMPILE/PLOT;
COMPILE FORTRAN/PLOT FORTRAN LIBRARY;
FORTRAN DATA

$ SET SEPARATE
SUBROUTINE PLOT(ICK,I)
DIMENSION ICK(5,55)
ICK(3-SIN(I*O.3)*2,I)="*' I

RETURN
END

? END JOB.

Binder Input File

? BEGIN JOB BIND/PLOT;
BIND SINE BINDER;
BINDER DATA
HOST IS FORTRAN/HOST;

? END JOB.

The result of the bind is an object file titled SINE. When executed, this program
produces the following output:

******* ******* *******
* ** ** ** ** **

** * ** * **
******* ******* *

FORTRAN77 Intralanguage Binding
FORTRAN77 intralanguage binding consists of binding a FORTRAN77
subprogram into a FORTRAN77 host.

Compiling FORTRAN77 Host Programs and Subprograms

A FORTRAN77 host is a program that has the BINDINFO compiler control option
set. If a main program does not exist in the host program, the main program is
assumed to be external. A FORTRAN77 host is compiled at an outer lexical (lex)
level of 2. The main program is compiled at a lex level of 3.

A FORTRAN77 subprogram can be a FORTRAN77 main program, subroutine,
function, or block data subprogram. Each subprogram is compiled at a lex level
of3.

Any subprogram bound into a host must match its invocations in the host in
terms of number and type of parameters. If the subprogram identifier does not
match its invocation as specified in the host, you must declare a Binder USE
statement to correct the mismatch.

8600 0304-000 4-17

Binding Programs Written in the Same Language

Files

In cases where an entry point is referenced by a host but the corresponding outer
subprogram is not referenced, you must use a BIND statement to specify the code
file in which the ENTRY statement is located.

A FORTRAN77 main program can be replaced by another FORTRAN77 main
program or a FORTRAN77 subroutine that has no parameters.

At execution time, file declarations in the host apply to all subprograms that are
bound into the host. If a new file is bound into the host, the first declaration for
the new file encountered during binding takes precedence over other declarations.

Common Blocks

When a common block is bound, its resulting length is the largest of all the length
values declared for that common block in the host and subprograms, as long as
the compiler control option CODEFILEINIT is not set in the host. Any common
block that has been initialized in the code file cannot be extended.

Library Binding in FORTRAN77

You can replacement bind exported subroutines and functions into a FORTRAN77
host program that is a library. You cannot add or delete exported subprograms
from a host program.

Libraries in subprograms do not have to be explicitly declared in the host
program. If libraries are not declared in the host program, Binder builds a library
template from the binding information in the subprogram file. Once the template
is built, Binder can add library objects not explicitly declared in the host
program. When declaring libraries in the global part, you must declare the library
before declaring the library object.

If you compile a program with the SEPARATE option set, you must declare all
libraries and entities imported from those libraries before the first executable
program unit. Each program unit can contain references only to those libraries
and library objects that it uses.

Example of FORTRAN77 Intralanguage Binding

4-18

The following example shows the binding process involved in binding three
FORTRAN77 subprograms to a FORTRAN77 host program.

First, the skeleton library program is created and compiled as a Binder host
during a Command and Edit (CAN DE) session.

8600 0304-000

Binding Programs Written in the Same Language

File Name: BOUND/LIB/HOST

$ SET BINDINFO
BLOCK GLOBALS

EXPORT {PASSR, PASSI, EQV}
END
SUBROUTINE PASSR (R)

REAL R
END
SUBROUTINE PASSI {I}

INTEGER I
END
LOGICAL FUNCTION EQV {Rl, R2}

REAL Rl, R2
END
CALL FREEZE {'TEMPORARY'}
END

Next, the following three separate subprograms are compiled:

File Name: BOUND/LIB/PASSR

$ SET SEPARATE
SUBROUTINE PASSR {R}

REAL R
PRINT *, ' IN PAS$R, R = " R

END

File Name: BOUND/LIB/PASSI

$ SET SEPARATE CALLBYREFERENCE
SUBROUTINE PASSI (I)

INTEGER I
PRINT *, ' IN PASSI, I (ROUNDED) = " I

END

File Name:.BOUND/LIB/EQV

$ SET SEPARATE
LOGICAL FUNCTION EQV (Rl, R2)

PARAMETER (TINYNO = 0.000000001)
REAL R1, R2
EQV = (ABS(R1 - R2) .LT. TINYNO)

END

The following Binder input file is used to bind the three separate code files into
the library program:

File Name: BOUND/LIB

HOST IS OBJECT/BOUND/LIB/HOST;
BIND PASSR FROM OBJECT/BOUND/LIB/PASSR;

8600 0304-000 4-19

~indlng Programs Written in the Same Language

4-20

BIND PASSI FROM OBJECT/BOUND/LIB/PASSI;
BIND EQV FROM OBJECT/BOUNO/LIB/EQV;

The following program references the newly bound library:

File Name: REF/BOUND/LIB

BLOCKGLOBALS
LIBRARV LIB (TITLE='OBJECT/BOUND/LIB ')

END
SUBROUTINE PASSR (R)

REAL R
IN LIBRARV LIB

END
SUBROUTINE PASSI (I)

INTEGER I
IN LIBRARV LIB

END
LOGICAL FUNCTION EQV (Rl, R2)

REAL Rl, R2
IN LIBRARV LIB

END
LOGICAL EQV
X = 1.7
V = 1.7
CALL PASSR (X)
CALL PASSI (V)
IF (EQV(X, V)) THEN

PRINT *, I X STILL EQUALS VI
ELSE

PRINT *, I X NO LONGER EQUALS VI
END IF
END

When executed, the preceding program produces the following output:

IN PASSR, R = 1.7
IN PASSI, I (ROUNDED) = 2
X STILL EQUALS V

Usually, when a FORTRAN77 variable or array element appears as an actual
argument (that is, the corresponding dummy argument is a variable), the
argument is passed by value-result. The dummy argument is assigned the value of
the actual argument when the subprogram is entered. If the value of the dummy
argument changes, the final value of the dummy argument is assigned to the
corresponding actual argument when execution of the subprogr·am is completed.
Passing by value-result is also known as copy-restore.

Note that in the preceding example, the compiler control option
CALLBYREFERENCE is set for P ASSI. Therefore, the argument to that
subroutine is passed by reference rather than by value-result. Thus, the value of.
Y is not truncated when Y is passed to an integer.

8600 0304-000

Binding Programs Written in the Same Language

Suppose that a new version of P ASSI, called P ASSI2, is created without
CALLBYREFERENCE set.

File Name: BOUND/LIB/PASSI2

$ SET SEPARATE
SUBROUTINE PASSI2 (I)

INTEGER I
PRINT *, I IN PASSI2, I (ROUNDED) I I

END

A new version of BOUND/LIB binds the new subroutine into the old library.

File Name: BOUND/LIB

HOST IS OBJECT/BOUND/LIB;
BIND PASSI FROM OBJECT/BOUND/LIB/PASSI2;
USE PASSI FOR PASSI2;

When REF/BOUND/LIB is executed again, the argument to PASSI2 is explicitly
truncated to form an integer when the subroutine is entered. The following
output is produced:

IN PASSR, R = 1. 7
IN PASSI2, I (ROUNDED) = 1
X NO LONGER EQUALS Y

PL/I Intralanguage Binding
PL/I intralanguage binding consists of binding one or more PL/I subprograms or
procedures to a PL/I host. Communication among the procedures is performed
through common EXTERNAL declarations within the procedures and through
parameters;

Declaring Host Programs and Subprograms

You can declare any external PL/I procedure as a host program if the only
parameters declared within the external procedure are CHARACTER VARYING
or DECIMAL FIXED.

Any external procedure not specified as the host is considered to be a
subprogram. No parameter type restrictions exist for subprograms.

STATIC EXTERNAL Variables

If you declare a STATIC EXTERNAL variable in both the host program and the
external procedure, the variable retains the value declared in the host upon
binding. If you declare a STATIC EXTERNAL variable only in the external
procedure, the variable retains the value'declared in the external procedure.

8600 0304-000 4-21

Binding Programs Written in the Same Language

4-22

If you declare a STATIC EXTERNAL variable in more than one external
procedure but not in the host, a binding error occurs.

Examples of declaring STATIC EXTERNAL variables in a host and in an external
procedure are provided in the following example:

HOST:PROC;
DCl A(4) FIXED STATIC EXTERNAL

INIT (1,2,3,4),
SEPARATE ENTRY EXTERNAL;

CAll SEPARATE();
PUT DATA (A) ;

END HOST;
SEPARATE: PROC;

DCl A(4) FIXED STATIC EXTERNAL INIT(5,6,7 ,8),
Al(4) FIXED STATIC EXTERNAL INIT(9,10,ll,12);

PUT DATA (A,Al);
END SEPARATE;

When executed, the bound code file produces the following output:

A(l)= 1 A(2)= 2 A(3)= 3 A(4)= 4 Al(I)= 9
Al(2)= 10 AI(3)= II AI(4)= 12 ; A(I)= I
A(2)= 2 A(3)= 3 A(4)= 4

You must initialize any STATIC EXTERNAL CONTROLLED or STATIC
EXTERNAL BASED variable before using either variable in a declaration. For
example, the first set of code below must be rearranged to initialize and declare
the variables in the proper order, as shown in the second set of code.

DCl
I SI(X) STATIC,

2 A(X) INIT(B(I),B(2),B(3),B(4»,
I S2 STATIC,

2 B(2*X) INIT(C(I),C(2),C(3),C(4»,
I S3 STATIC,

2 C(2*X) INIT(l,2,3,4),
X STATIC INIT(2);

DCl
X STATIC INIT(2),
1 S3 STATIC,

2 C(2*X) INIT(I,2,3,4),
1 S2 STATIC,

2 B(2*X) INIT(C(I),C(2),C(3),C(4»,
1 SI(X) STATIC,

2 A(X) INIT (B(I),B(2),B(3),B(4»;

Variables whose order of declaration causes a program to run incorrectly when
bound also cause a level 3 error at compilation time.

8600 0304-000

Binding Programs Written in the Same Language

Example of PL/I Intralanguage Binding

The following example shows a PL/I host program and subprogram, and the
Binder input file used to bind them together. The WFL job used to compile each
program appears in italic type.

PL/I Host Program

? BEGIN JOB COMPILE/HOST;
COMPILE HOST/HOST PL/I LIBRARY;
Pl/I DATA

HOST:PROC;
DCl SEPARATE ENTRY (CHAR(~}) EXTERNAL;
DCl CHR CHAR(S) INIT('ABCDEFGH ');
PUT SKIP lIST (CHR);
CAll SEPARATE(SUBSTR(CHR,1,3});

END HOST;
? END JOB.

PL/I Subprogram

? BEGIN JOB COMP I LE/SEPARA TE;
COMPILE SEPARATE/SEPARATE PL/I LIBRARY;
Pl/I DATA

SEPARATE:PROC(C};
DCl C CHAR(*);
PUT SKIP lIST(C};

END SEPARATE;
? END JOB.

Binder Input File

? BEGIN JOB BIND/SEPARATE;
BIND BOUND BINDER LIBRARY;
BINDER DATA

HOST IS HOST/HOST;
BIND SEPARATE FROM SEPARATE/SEPARATE;
STOP;

? END JOB.

When executed, the code file, BOUND, produces the following output in the
SYSPRINT print file:

ABCDEFGH
ABC

8600 0304-000 4-23

Section 5
Binding Programs Written in Different
Languages.

The process of binding one or more subprograms and a host program written in
different languages is known as interlan~age binding. This section provides
information about binding all of the allowable language combinations:

ALGOL-COBOL
ALGOL-FORTRAN
ALGOL-FORTRAN77
ALGOL-NEWP
ALGOL-Pascal

COBOL-FORTRAN .
COBOL-FORTRAN77
COBOL-Pascal
FORTRAN-FORTRAN77

Table 5-1 shows the allowable binding combinations.

Table 5-1. Allowable Binding Combinations

Subprogram
Host Program Language

Language ALGOLt C COBOL FORTRAN FORTRAN77 NEWP:I:

ALGOLt Yes Yes Yes Yes Yes

C Yes

COBOL Yes Yes Yes Yes

FORTRAN Yes Yes Yes Yes

FORTRAN77 Yes Yes Yes Yes

PL/I

Pascali PL/I

Yes

Yes

Yes

t All references to ALGOL include the various extensions of ALGOL, such as BDMSALGOL, DCALGOL. and
DMALGOl.

:I: The NEWP Master Control Program (MCP) can serve only as a host program in binding.

§ Pascal programs can serve only as host programs in binding.

8600 0304-000 5-1

Binding Programs Written in Different Languages

ALGOL·COBOL Interlanguage Binding

5-2

ALGOL-COBOL interlanguage binding consists of binding either an ALGOL
subprogram into a COBOL host program or a COBOL subprogram into an ALGOL
host program.

Table 5-2 matches identifier types between ALGOL and COBOL.

Table 5-2. Corresponding Identifier Types between ALGOL and COBOL

ALGOL COBOL COBOL74

REAL ARRAY COMP OCCURS REAL OCCURS

INTEGER ARRAY COMP OCCURS BINARY OCCURS

BOOLEAN ARRAY COMP OCCURS BINARY OCCURS

DOUBLE ARRAY

COMPLEX ARRAY

HEX ARRAY COMP·2

ASCII ARRAY ASCII

EBCDIC ARRAY DISPLAY DISPLAY

EBCDIC ARRAY [*] + DISPLAY LOWERBOUNDS DISPLAY LOWER BOUNDS
INTEGER + LEVEL 77 + LEVEL 77

REAL VARIABLE COMp·4 REAL

INTEGER VARIABLE COMP or COMP·l BINARY (1 to 11 digits)

BOOLEAN VARIABLE COMP or COMP·l BINARY (1 to 11 digits)

DOUBLE VARIABLE COMp·5 DOUBLE

COMPLEX VARIABLE

UNTYPED PROCEDURE SECTION SECTION

TYPED PROCEDURE

UNTYPED PROCEDURE + SECTION + 2 SECTION + 2
2 PARAMETERS (EBCDIC PARAMETERS (DISPLAY PARAMETERS (DISPLAY
ARRAY [*] + INTEGER) LOWERBOUNDS + LEVEL LOWERBOUNDS + LEVEL

77) 77)

FILE FILE FILE

DIRECT FILE DIRECT FILE DIRECT FILE

8600 0304-000

Binding Programs Written In Different Languages

Global Items

Global items can be shared between COBOL and ALGOL programs. If a COBOL
subprogram references a global variable in an ALGOL host program, you must
declare the variable in COBOL by using the GLOBAL clause or by setting the
GLOBAL compiler control option in the COBOL subprogram to TRUE.

Similarly, when an ALGOL subprogram references a global variable in a COBOL
host program, you must declare the variable in ALGOL by using either the
brackets method or the INFO file method described in Section 4.

Parameters

You must observe the following requirements when passing parameters between
ALGOL and COBOL:

• If the ALGOL host program passes arrays to or receives arrays from COBOL
subprograms, you must declare the arrays in the ALGOL host program with a
lower bound of zero.

• When a word-oriented (integer, real, or Boolean) array or variable is passed
between ALGOL and COBOL68, you must declare the word-oriented entity as
COMPUTATIONAL in the COBOL68 program.

In a COBOL74 program, you must declare a real array or variable as REAL,
and an integer or Boolean array or variable as BINARY.

• ALGOL EBCDIC arrays correspond to COBOL DISPLAY items.

• You can pass files and direct files between ALGOL and COBOL.

• If a file is declared to have a file record in COBOL, the ALGOL program must
declare the file or direct file followed by a by-value pointer to match the file
record.

• You cannot pass a procedure as a parameter between ALGOL and COBOL.

• Binder allows a procedure with unknown parameters to match and bind with
a procedure of the same name with.either known or unknown parameters. .

Libraries

You do not need to declare attributes for a global library in a procedure to be
bound. Instead, Binder uses the attributes found in the host program.

Record Binding

You can bind records retrieved from a data dictionary. However, Binder does not
check the format of the records involved, nor does it make any distinction
between records and EBCDIC arrays. Thus, Binder allows any record to be bound
to any other record, and allows any record to be bound to any star-bounded

8600 0304-000 5-3

Binding Programs Written in Different Languages

EBCDIC array and vice versa. Specifically, this means that you can bind an'
ALGOL record to a COBOL EBCDIC array.

Binding ALGOL,and COBOL74 Programs That Use COMS

5-4

ALGOL and COBOL74 use different titles for the COMS support library. ALGOL
names the library COMSSUPPORT, while COBOL74 names the library
DCILIBRARY.

To prevent library mismatch errors when binding a COBOL 74 subprogram to an
ALGOL host program, add the following Binder statement to the Binder input file:

USE COMSSUPPORT FOR DCILIBRARY

When binding an ALGOL subprogram to a COBOL74 host program, add the
following Binder statement to the Binder input file:

USE DCILIBRARY FOR COMSSUPPORT

If you are using COMS service functions, you can avoid possible binding problems
by using a naming convention for the library in the COBOL74 subprogram similar
to that used in the ALGOL host program. Thus, use an internal name other than
DCILIBRARY for the library in which the service functions reside and give the
library the function name of COMSSUPPORT, as shown in the following example.

Examples

The following is an example of declaring a COMS service function in ALGOL. For
more information on the declaration and use of COMS service functions, see the
ALGOL Reference Manual, Volume 2.

LIBRARY SERVICE_LIB
(FUNCTIONNAME = "COMSSUPPORT", LIBPARAMETER = "02");

INTEGER PROCEDURE GET_NAME_USING-DESIGNATOR
(ENTY_DESIGNATOR, ENTY_NAME);

REAL ENTY_DESIGNATOR;
EBCDIC ARRAY ENTY_NAME[O];

LIBRARY SERVICE_LIB;

The following is an example of declaring a COMS service function in COBOL74.
For more information on the declaration and use of COMS service functions, see
the COBOL ANSJ-74 Reference Manual, Volume 2.

CHANGE ATTRIBUTE LIBACCESS OF "SERVICE_LIB"
TO BYFUNCTION.

CHANGE ATTRIBUTE FUNCTIONNAME OF "SERVICE_LIB"
TO·COMSSUPPORT.

CALL "GET-NAME-USING-DESIGNATOR OF SERVICE_LIB"

8600 0304--000

Binding Programs Written In Different Languages

USING WS_DESG,
WS_NAME

GIVING SF-RSLT.

ALGOL·FORTRAN Interlanguage Binding
ALGOL-FORTRAN interlanguage binding consists of binding either an ALGOL
subprogram into a FORTRAN host program ·or a FORTRAN subprogram into an
ALGOL host program.

Table 5-3 matches the identifier types between ALGOL and FORTRAN.

Table 5-3. Corresponding Identifier Types between ALGOL and FORTRAN

ALGOL FORTRAN

REAL ARRAY REAL ARRAY/COMMON BLOCK

INTEGER ARRAY INTEGER ARRAY/COMMON BLOCK

BOOLEAN ARRAY LOGICAL ARRAY/COMMON BLOCK

DOUBLE ARRAY DOUBLE PRECISION ARRAY/COMMON
BLOCK

COMPLEX ARRAY COMPLEX ARRAY/COMMON BLOCK

HEX ARRAY

ASCII ARRAY

EBCDIC ARRAY

EBCDIC ARRAY [*] + INTEGER

REAL VARIABLE REAL VARIABLE

INTEGER VARIABLE INTEGER VARIABLE

BOOLEAN VARIABLE LOGICAL VARIABLE

DOUBLE VARIABLE DOUBLE PRECISION VARIABLE

COMPLEX VARIABLE COMPLEX VARIABLE

UNTYPED PROCEDURE SUBROUTINE

TYPED PROCEDURE FUNCTION

UNTYPED PROCEDURE + 2 PARAMETERS
(EBCDIC ARRAY [*] + INTEGER)

FILE FILE

DIRECT FILE

8600 0304-000 5-5

Binding Programs Written inDifferent Languages

Parameters

5-6

When ALGOL and FORTRAN program units are bound, only simple variables,
arrays, and labels can be passed as parameters between program units.
Procedures, functions, and subroutines cannot be passed as parameters between
ALGOL and FORTRAN.

Binder allows a procedure with unknown parameters to match and bind with a
procedure of the same name with either known or unknown parameters.

When simple variables and arrays are passed as parameters, the following special
conditions apply:

• All FORTRAN arrays are implemented as one-dimensional arrays. Thus, only
one-dimensional ALGOL arrays (or array rows) can be passed between
ALGOL and FORTRAN program units.

• When passing an ALGOL array to a FORTRAN routine, you must declare the
ALGOL array with a lower bound of 0 (zero). The ALGOL subscript 0 (zero)
corresponds to the FORTRAN array's lower bound, usually l.

• When passing a FORTRAN array to an ALGOL routine, you must declare the
ALGOL array with an asterisk (*) for the lower bound. If you use a FORTRAN
subscript value to evaluate the parameter, the FORTRAN subscript
corresponds to an ALGOL subscript value of 0 (zero). If you do not specify a
subscript, the lower bound of the FORTRAN array (usually 1) is used.

ALGOL describes all simple variable arguments to imported subprograms as
call-by-name. FORTRAN describes them as call-by-reference. When calling a
library object, Binder allows call-by-reference and call-by-name arguments to
match at run time.

• When passing simple variables between FORTRAN and ALGOL, you can mix
by-name and by-value parameters. Note, however, that FORTRAN by-value
parameters are different from ALGOL by-value parameters. Thus the
following conditions apply:

If FORTRAN calls an ALGOL procedure and passes a variable as a
parameter, the variable acts like an ALGOL by-name parameter in all
situations.

If FORTRAN calls an ALGOL procedure and passes an expression as a
parameter, the expression acts like an ALGOL by-value parameter in all
situations.

If ALGOL calls a FORTRAN program unit and passes a by-name
parameter to a by-value formal parameter, the parameter acts like a
FORTRAN by-value parameter.

If ALGOL calls a FORTRAN program unit and passes a by-value
parameter, the parameter acts like an ALGOL by-value parameter in all
situations.

86000304-000

Binding Programs Written in Different Languages

Global Items

Files

The only global items that can be shared between ALGOL and FORTRAN
programs are files, subprograms, and common blocks matched to ALGOL arrays.
No restrictions are imposed on the referencing of subprograms between the two
languages.

An ALGOL file with a declared internal name of FILEnn, where nn is a I-digit or
2-digit number from 1 to 99 (without a leading zero), is identified as the same file
as a FORTRAN file with that number. Thus, an ALGOL file declaration of FILE6
and a FORTRAN subprogram file statement of WRITE (6,1) refer to the same file.

This also applies to the use of ALGOL files as variable files within a FORTRAN
program. For example, aSSUIt:te that an ALGOL host program declares a global file
as FILE12 and declares a FORTRAN subprogram with the following statements:

IX=12
REAO(IX,7)Y

With these statements, the FORTRAN subprogram is bound into the ALGOL host
program, and then the ALGOL global file is read.

Note: The ALGOL print routine performs its carriage control after writing to a
printer file. The FORTRAN print routine performs carriage control
before writing to a printer file. To prevent potential printing problems,
set the WRITEAFTER compiler control option when the ALGOL program
is compiled.

Common Blocks

A FORTRAN common block is a one-dimensional, single-precision array
immediately followed by a double-precision copy descriptor. The copy descriptor
allows the same data items to be referenced from the single-precision array.

An ALGOL subprogram can access a common block in a FORTRAN host program
as a single-precision array, a double-precision array, or both. A common block in
a FORTRAN subprogram can access ALGOL single- or double-precision arrays.

When equating ALGOL arrays and FORTRAN common blocks, you must declare
the arrays as global.

You must enclose common block names in slashes (!), as in the following example:

IABCI

8600 0304-000 5-7

Binding Programs Written in Different Languages

To indicate a blank common block, use the following syntax:

I.BLNK.I

A FORTRAN common block in a subprogram cannot contain an initial value when
bound into an ALGOL host array. However, an ALGOL array can be bound to a
host common block that contains initial values.

If' a FORTRAN common block is equated to an ALGOL host array of a different
length, the resulting array in the bound code file will be the longer of the two
lengths. However, if the ALGOL array is an equivalence array, the resulting
common block will be the size of the array that the equivalence array references.

(Note that an equivalence array is an array that is declared to refer to the same
data as another array.)

Array B in the following example is an equivalence array:

ARRAY A[0:99];
ARRAY B[I] = A;

Simulating Common Blocks in ALGOL

You can determine the contents of a FORTRAN common block by mapping the
elements of the common declaration onto a contiguous array. You can simulate
this procedure in ALGOL as shown in the following example:

FORTRAN Statements

DOUBLE PRECISION OA(IO)
COMMON ICI RA(7),X,OA

ALGOL Statements

ARRAY C[0:27];
DOUBLE ARRAY 0[0] = C;
DEFINE DA(N) = D[(N)+3] #,

RA(N) = C[(N)-I] #,

X = C [7] #;

In this example, subscripts are adjusted so that DACN) and RA(N) in the ALGOL
code reference DACIO) and RA(7) in the FORTRAN common block.

Accessing FORTRAN Common Blocks as ALGOL Arrays

5-8

The following paragraphs describe how an ALGOL subprogram can access a
FORTRAN common block as a single-precision array, a double-precision array, or
as both.

8600 0304-000

Binding Programs Written in Different Languages

Single-Precision Array

To access a FORTRAN common block as a single-precision array, declare a global
ALGOL array and equate it to the FORTRAN common block by using the Binder
USE statement. For example, the USE statement for a single-precision ALGOL
array A and a FORTRAN host common block /BLK/ is as follows:

USE IBLKI FOR A;

Double-Precision Array

To access a FORTRAN common block as a double-precision array, declare the
ALGOL array as double-precision, and then use the USE statement as shown in
the previous example for a single-precision array.

Single- and Double-Precision Arrays

To access a FORTRAN common block as both single-precision and
double-precision ALGOL arrays, declare both types of ALGOL array and. equate
the arrays to the FORTRAN common block by using a Binder USE statement.

For example, with a single-precision ALGOL array A, a double-precision ALGOL
array D, and a FORTRAN host commQn block /BLK/, the Binder USE statement is
as follows:

USE IBLKI FOR A,D;

If the common block and all of the global ALGOL arrays equated to it are of
different lengths, the length of the resulting common block will be the longest of
all of the lengths. If one of the ALGOL arrays is an equivalence array, the
resulting common block will be the size of the array that the equivalence array
references.

Accessing ALGOL Global Arrays from a FORTRAN Common Block

The following paragraphs describes how a common block in a FORTRAN
subprogram can access single- and double-precision arrays in an ALGOL host
program.

Single-Precision Array

To access an ALGOL Single-precision array through a FORTRAN common block,
equate the array to the common block with a Binder USE statement. For example,
given an ALGOL single-precision array A and a FORTRAN common block /BLK/,
the Binder USE statement is as follows:

USE A FOR IBLK/;

Double-Precision Array

To access an ALGOL double-precision array through a FORTRAN common block,
you must perform the following steps:

8600 0304-000 5-9

Binding Programs Written in Different Languages

• Declare the double-precision array immediately following the declaration of
the single-precision array and equate the double-precision array to the
single-precision array by using the equal sign (=).

• Equate the single-precision array to the FORTRAN common block by using a
Binder USE statement.

For example, to access ari ALGOL single-precision array A and an ALGOL
double-precision array D through a FORTRAN common block /BLK/, you
would declare the ALGOL arrays in the ALGOL host program as follows:

REAL ARRAY A[O:99];
DOUBLE ARRAY D[O]=A;

Then you would use the following Binder USE statement:

USE A FOR /BlK/;

FORTRAN references to single-precision items in /BLK/ are· changed by Binder to
refer to array A, and FORTRAN references to double-precision or complex items
in /BLK/ are changed to refer to array D. It is not sufficient for array D to be a
copy of array A; array D must also be declared immediately following array A.

Example of. ALGOL·FORTRAN Binding

5-10

The following example illustrates the binding of ALGOL and FORTRAN
subprograms into a FORTRAN host program. The WFL job used to compile each
program appears in italic type.

FORTRAN Host Program

? BEGIN JOB COMPILE/HOST;
COMPILE FORT/HOST FORTRAN LIBRARY;
FORTRAN DATA
DIMENSION X(1), Y(1)
X (1) = I I MENTAT I I

Y(1) = I 'RESDED' I

WRITE (6,1) X,Y
1 FORMAT (2(X,A6»)

CAll SUB (X,Y)
WRITE (6,1) X,Y
CAll SUBA (X,Y)
WRITE (6,1) X,Y
STOP
END

? END JOB.

ALGOL Subprogram

? BEGIN JOB COMPILE/FTEST/ALGOL;
COMPILE FTEST/ALGOL ALGOL LIBRARY;

. ALGOL DATA

8600 0304-000

Binding Programs Written In Different Languages

PROCEDURE SUBA(A,B); ARRAY A,B[*];
BEGIN

REAL C;
C := A[O];
REPLACE POINTER (A) BY B[O] FOR 3;
REPLACE POINTER (B) BY C FOR 3;

END; .
? END JOB.

FORTRAN Subprogram

? BEGIN JOB COMPILEIFTESTIFORTRAN;
COMPILE FTESTIFORTRAN FORTRAN LIBRARY;
FORTRAN DATA

$ SET SEPARATE
SUBROUTINE SUB(A,B)
DIMENSION A(l), B(l)
C = A(l) .
A(1) = B(1)
B(1) = C
RETURN
END

? END JOB.

Binder Input File

? BEGIN JOB BINDIROUNDIPROGM;
BIND ROUNDIPROGM BINDER;
BINDER DATA
HOST IS FORT/HOST;
BIND = FROM FTEST/=;

? END JOB.

The result of the bind is a program titled, ROUND/PROGM. The execution of
ROUND/PROGM generates the following output:

MENTAT RESDED
RESDED MENTAT
MENDED RESTAT

ALGOL·FORTRAN77 Interlanguage Binding
ALGOL·FORTRAN77 interlanguage binding consists of binding either an ALGOL
subprogram into a FORTRAN77 host program or a FORTRAN77 subprogram into
an ALGOL host program.

You cannot bind a FORTRAN77 subroutine with a label parameter into an ALGOL
host program.

8600 0304-000 5-11

Binding Programs Written in Different Languages

Table 5-4 matches identifier types between ALGOL and FORTRAN77.

Table 5-4. Corresponding Identifier Types between ALGOL and FORTRAN77

ALGOL FORTRAN77

REAL ARRAY REAL ARRAY/COMMON BLOCK

INTEGER ARRAY INTEGER ARRAY/COMMON BLOCK

BOOLEAN ARRAY LOGICAL ARRAY/COMMON BLOCK

DOUBLE ARRAY COMMON BLOCK

COMPLEX ARRAY COMMON BLOCK

HEX ARRAY

ASCII ARRAY

EBCDIC ARRAY' CHARACTER COMMON BLOCK

EBCDIC ARRAY [*] + INTEGER CHARACTER ARRAY/CHARACTER
VARIABLE

DOUBLE PRECISION ARRAY

COMPLEX ARRAY

REAL VARIABLE REAL VARIABLE

INTEGER VARIABLE INTEGER VARIABLE

BOOLEAN VARIABLE LOGICAL VARIABLE

DOUBLE VARIABLE DOUBLE PRECISION VARIABLE

COMPLEX VARIABLE COMPLEX VARIABLE

UNTYPED PROCEDURE SUBROUTINE/MAIN PROGRAM

TYPED PROCEDURE FUNCTION

UNTYPED PROCEDURE + 2 PARAMETERS CHARACTER FUNCTION
(EBCDIC ARRAY [*] + INTEGER)

FILE FILE

DIRECT FILE

Global Items

5-12

The only global items that can be shared between ALGOL and FORTRAN77
programs are subprograms, files, and common blocks. The common blocks map
onto ALGOL arrays.

8600 0304-000

Binding Programs Written in Different Languages

Subprograms

Files

Following are the restrictions to referencing subprograms between ALGOL and
FORTRAN77:

• You can replace a FORTRAN77 main program with any ALGOL untyped
procedure without parameters by binding a separate file containing an
ALGOL procedure to a FORTRAN77 host program. Use the following Binder
syntax to indicate the title of the file containing the ALGOL procedure and to
indicate the name of the ALGOL procedure to use in place of the main
program, .MAIN.:

BIND .MAIN. FROM <file specifier>.
USE .MAIN. FOR <identifier>

• A FORTRAN77 character function can map only onto an ALGOL untyped
procedure that has two required leading parameters. The first parameter
must be a star-bounded EBCDIC array and the second parameter must be an
integer variable. The EBCDIC array maps onto the value of the character
function, and the integer variable maps onto the length of the character
function.

• Subroutines and functions can be bound or replacement bound into a host
program that references libraries.

• New exported subprogram units cannot be added to a host program.

• Libraries can be added to the host program.

An ALGOL file with a declared internal name of FILEnn, where nn is a I-digit or
2-digit number from O.to 99 (without a leading zero), is identified as the saine file
as a FORTRAN77 file with that number. Thus, an ALGOL output statement
writing to a file declared globally as FILE6 and a WRITE (6,1) statement in a
FORTRAN77 subprogram bound to that ALGOL host program refer to the same
file. This method of matching an ALGOL file name with a FORTRAN77 file name
also applies to the use of ALGOL files as variable files within a FORTRAN77
program. For example, if the ALGOL subprogram declares a global file FILE12
and writes to it, and the FORTRAN77 host program contains the following
statements, they both access the same global file, FILE12: .

IX=12
READ (IX, 7) Y

Note: The ALGOL print routine performs its carriage control after writing to a
printer file. The FORTRAN print routine performs carriage control
before writing to a printer file. To prevent potential printing proble?nS,
set the WRITEAFTER compiler control option when the ALGOL program
is compiled.

8600 0304-000 5-13

Binding Programs Written In Different Languages

Common Blocks

In FORTRAN77, there are two types of common blocks: character and arithmetic.
The character common block maps onto an ALGOL EBCDIC array. The arithmetic
common block can be accessed by ALGOL as a single-precision array, a
double-precision array, or as both.

FORTRAN77, unlike FORTRAN, accesses the common block only through a
single-precision descriptor and is not affected by odd offsets.

You must enclose common block names in slashes (/) as in the following example:

IABCI

To indicate a blank common block, use the following syntax:

I.BLNK.I

When a host common block is bound, its resulting length is the longest of all the
lengths declared for that block in the host program and bound subprograms,
provided that the FORTRAN77 CODEFILEINIT compiler control option is not set
in the host program. You cannot extend any common block that has been code file
initialized. If you attempt an extension, Binder issues the following error
message:

COMMON BLOCK CANNOT BE EXTENDED BECAUSE IT IS CODEFILE INITIALIZED

Accessing FORTRAN77 Common Blocks as ALGOL Arrays

5-14

The following paragraphs describe how an ALGOL subprogram can access
FORTRAN77 arithmetic and character common blocks as ALGOL arrays.

Single-Precision ~ay .

To access an arithmetic common block as a single-precision array, declare a global
ALGOL array and equate it to the FORTRAN77 common block· by using the
Binder USE statement. For example, with a single-precision ALGOL array titled A
and a FORTRAN77 host common block titled /BLK/, the USE statement is as
follows:

USE IBLKI FOR A;

Double-Precision Array

To access an arithmetic common block as a double-precision array, declare the
ALGOL array as double precision and use the same statement as shown in the
previous example for a single-precision array.

Single- and Double-Precision Array

To access an arithmetic common block as both single- and double-precision
arrays, declare a single- and a double-precision ALGOL array and equate both

8600 0304-000

Binding Programs Written In Different Languages

arrays to the FORTRAN77 common block with the Binder USE statement. For
example, with a single-precision array titled A, a double-precision array titled D,
and a host common block titled /BLK/, the USE statement is as follows:

USE /BlK/ FOR A,D;

EBCDIC Array'

To access a character common block as an EBCDIC array, declare a global ALGOL
EBCDIC array and equate it to the FORTRAN77 common block by using a Binder
USE statement.

Using Initial Values with Common Blocks

You can bind an ALGOL array to a FORTRAN common block that contains
data-initialized values. Similarly, you can bind a FORTRAN77 common block
containing initial values to an ALGOL host array if the common block is in a main
program or a block data subprogram and the FORTRAN77 compiler control option
CODEFILEINIT is not set during compilation.

The following are additional restrictions on the use of initial values with common
blocks in binding:

• If you plan to data initialize a common block in a given program unit, set
CODEFILEINIT to avoid losing the data in the common block if the program
unit is ever replaced. The program unit that replaces the original program
unit might or might not initialize the common block.

• If you data initialize a common block in one program unit, and then you bind
in a different program unit that also initializes the common block, either
program unit can supply data for the common block. Thus, the results are
unpredictable. For this reason, you should avoid initializing values for the
same common block in more than one program unit.

Accessing ALGOL Arrays from a FORTRAN77 Common Block

The following paragraphs describe how to access single-precision and EBCDIC
arrays in an ALGOL host program from the common block of a FORTRAN77
subprogram. Double-precision arrays in ALGOL hosts cannot be accessed through
FORTRAN77 common blocks.

Single-Precision Array

To access a single-precision array through an arithmetic common block, declare
the ALGOL' array as a single-precision array and equate the array to the
FORTRAN77 common block by using the Binder USE statement. For example,

USE A FOR /BlK/;

If a common block is equated to an ALGOL array of a different length, the
resulting array in the bound code file will be the longer of the two lengths, unless

8600 0304-000 5-15

Binding Programs Written in Different Languages

the ALGOL array is an equivalence array. If the ALGOL array is an equivalence
array, the resulting common block will be the size of the array that the
equivalence array references.

An equivalence array is an array that is declared to refer to the same data as
another array. Array B in the following example is an equivalence array.

ARRAY A[O:99];
ARRAY B[1] = A;

EBCDIC Array

To access an EBCDIC array through a character common block, equate the
ALGOL array to the FORTRAN77 common block by using the Binder USE
statement.

Simulating Common Blocks in ALGOL

A FORTRAN77 common block is represented internally as a one-dimensional,
single-precision array. You can determine the contents of the array by mapping
the elements of the common declaration onto a contiguous array. You can
simulate this procedure in ALGOL, as shown in the following example:

FORTRAN77 Statements

DOUBLE PRECISION DA(lO)
COMMON ICI RA(7),X,DA

ALGOL Statements

ARRAY C[0:27];
DOUBLE ARRAY 0[0] = C;
DEFINE DA(N) = D[(N)+3] #,

RA(N) = C[(N)-1] #,
X = C [7] #;

In this example, subscripts are adjusted so that DA(N) and RA(N) in ALGOL
reference DA(lO) and RA(7) in the common block.

Parameters

5-16

When ALGOL and FORTRAN77 program units are bound, only simple variables,
arrays, and labels can be passed as parameters between program units.
Procedures, subroutines, functions, and intrinsics cannot be passed as parameters
between ALGOL and FORTRAN77.

Binder allows a procedure with unknown parameters to match and bind with a
procedure of the same name with either known or unknown parameters.

8600 0304-000

Binding Programs, Written in Different Languages

When simple variables and arrays are passed as parameters, the following special
conditions apply:

• All FORTRAN77 arrays are implemented as one-dimensional arrays. Thus,
only one-dimensional ALGOL arrays (or array rows) can be passed between
the two languages.

• When passing a FORTRAN77 array to an ALGOL array, declare the ALGOL
array as a star-bounded array. '

• If you use a FORTRAN77 subscript value to evaluate the actual parameter,
the subscript corresponds to the ALGOL subscript value of 0 (zero).

• If you do not specify a subscript, the FORTRAN77 array's lower bound is
used (usually 1).

• To pass an ALGOL array to a FORTRAN77 subprogram, you must declare the
array in ALGOL with a 0 (zero) lower bound (or as star bounded if the array
is a formal parameter in the ALGOL subprogram). The specified or default
FORTRAN77 lower bound corresponds to the ALGOL 0 (zero) lower bound.

• The following conditions apply to arrays:

FORTRAN77 double-precision and complex arrays are implemented as
single-precision arrays that need not be even-word aligned.

Thus, double-precision and complex arrays do not correspond to any
ALGOL array and cannot be passed as parameters between the two
languages. In some cases, you can override this restriction by using the
DOUBLEARRA YS compiler control option described in the FORTRAN77
Programming Reference Manual.

To pass FORTRAN77 character variables and character arrays to ALGOL,
you must use two consecutive formal arguments in the ALGOL
subprogram: an ALGOL EBCDIC array with star bounds, and an integer
variable.

The characters are passed with a descriptor, an offset, and a character
length. The descriptor and offset correspond to the EBCDIC array
argument, and the character length corresponds to the integer variable
'argument.

• When passing simple variables between FORTRAN77 and ALGOL, you can
, mix by-name and by-value parameters. Note, however, that FORTRAN77

by-value parameters are different from ALGOL by-value parameters -because
FORTRAN77 passes noncharacter variables by value-result.

(Passing by value-result is also known as copy-restore. See "FORTRAN77
Intralanguage Binding" in Section 4 for more information about passing
arguments by value-result.)

• When mixing by-name and by-value parameters, the following conditions
apply:

If FORTRAN77 calls an ALGOL procedure and passes a variable as a
parameter, the variable acts like an ALGOL by-name parameter in all
situations.

If FORTRAN77 calls an ALGOL procedure and passes an expression as a

8600 0304-000 5-17

Binding Programs Written in Different Languages

parameter, the expression acts like an ALGOL by-value parameter in all
situations.

- If ALGOL calls a FORTRAN77 program unit and passes a by-name
parameter to a by-value-result formal parameter, the parameter acts like
a FORTRAN77 by-value-result parameter.

- If ALGOL calls a FORTRAN77 program unit and passes a by-value
parameter, the parameter acts like an ALGOL by;"value parameter in all
situations.

Example of Binding an ALGOL Subprogram Into a FORTRAN77
Host Program

5-18

The following example illustrates a FORTRAN77 host program, an ALGOL
subprogram, and the Binder input file used to bind them together. The WFL job
used to compile each program appears in italic type.

FORTRAN77 Host Program

? BEGIN JOB COMPILE/HOST;
COMPILE F77/HOST WITH FORTRAN77 LIBRARY;
FORTRAN77 DATA

$ SET BINDINFO

C EMPTY MAIN PROGRAM - IT WILL BE BOUND IN

END

SUBROUTINE WORK
REAL A(3)
DO 20 I = 1,4

C THIS LOOP WILL CAUSE AN INVALID INDEX TO OCCUR

A(I) = 1
20 CONTINUE

END
? END JOB.

ALGOL Subprogram

Note that the ALGOL procedure contains an ON INVALIDINDEX statement that
provides error recovery for the FORTRAN77 program.

? BEGIN JOB COMPILE/ALGOL;
COMPILE ALGOL/SUBS ALGOL LIBRARY;
ALGOL DATA
[PROCEDURE WORK; EXTERNAL;]
PROCEDURE MAIN;

BEGIN

8600 0304-000

Binding Programs Written In Different Languages

LABEL XIT;
FILE RMT (KIND=REMOTE);
ON INVALIDINDEX:

BEGIN
WRITE (RMTt<1 I INVALID INDEX II»;

GO TO XIT;
END;

WORK;
XIT:

END;
? END JOB.

Binder Input File

? BEGIN JOB BIND/INVALID/INDEX;
BIND PROG BINDER LIBRARY;
BINDER DATA
HOST IS F77/HOST;
BIND .MAIN. FROM ALGOL/MAIN;
USE .MAIN. FOR MAIN;

? END JOB.

The result of the bind is a file titled PROG. The execution of PROG generates the
following output:

INVALID INDEX

Example of Replacing a FORTRAN77 Character Function by an
ALGOL Procedure

The following example shows how a FORTRAN77 character function can be
replaced by an ALGOL procedure with two leading parameters. The first
parameter is an EBCDIC array with star bounds. The second parameter is an
INTEGER variable that contains the length. The WFL job used to compile each
program appears in italic type.

FORTRAN77 Host Program

? BEGIN JOB COMPILE/HOST;
COMPILE F77/HOST WITH FORTRAN77 LIBRARY;
FORTRAN77 DATA

$ SET BINDINFO
EXTERNAL C
CHARACTER*6 C, CL
CL = C(2)
PRINT *,CL
END

? END JOB.

8600 0304-000 5-19

Bindl.ng Programs Written In Different Languages

ALGOL Subprogram

? BEGIN JOB COMPILE/ALGOL;
COMPILE ALGOL/SUBS ALGOL LIBRARY;
ALGOL DATA
PROCEDURE C (A,L,I);
EBCDIC ARRAY A[*];
INTEGER L, I;

BEGIN
REPLACE A[O] BY "2" FOR I, "4" FOR L-I;
END;

? END JOB.

Binder Input File

? BEGIN JOB BIND/CHARACTERS;
BIND PROG BINDER LIBRARY;
BINDER DATA
HOST IS F77/HOST;
BIND = FROM ALGOL/=;

? END JOB.

The result of the bind is a file titled PROG. The execution of PROG generates the
following output: .

224444

Example of Binding FORTRAN77 Program Units Into an ALGOL
Host Program

5-20

During a CANDE session, the following two files are created and compiled:

File Name: ALGOL/HOST

$ SET WRITEAFTER
BEGIN

FILE FILE6 (KIND=PRINTER);
REAL ARRAY COMM [0:4];
%
% Array COMM is implicitly initialized when MAIN is bound in,
% even though MAIN is not referenced as a subprogram.
%
PROCEDURE MAIN; EXTERNAL;
PROCEDURE F77SUB; EXTERNAL;
%
WRITE (FILE6, */, COMM);
F77SUB;

END.

8600 0304-000

Binding Programs Written in Different Languages

File Name: F77/SEP

$ SET SEPARATE
PROGRAM MAIN

REAL C(S) .
COMMON ICOMMI C
DATA C 11, 2, 3, 4, SI

END

SUBROUTINE F77SUB
REAL C(S)
COMMON ICOMMI C
WRITE (6, *) lIN SUBROUTINE F77SUB, C = I C

END

The two code files are bound together by the following Binder program:

HOST IS OBJECT/ALGOL/HOST;
BIND MAIN, F77SUB FROM OBJECT/F77/SEP;
USE COMM FOR ICOMM/;.

The execution of the resulting code file produces the following printed output:

COMM[0]-1.0, COMM[1]=2.0, COMM[2]=3.0; COMM[3]=4.0, COMM[4]=S.0,
IN SUBROUTINE F77SUB, C = 1.0 2.0 3.0 4.0 S.O

ALGOL·NEWP Interlanguage Binding
ALGOL-NEWP interlanguage binding is restricted to binding DCALGOL
subprograms into a Master Control Program (MCP) host program compiled in
NEWP. Binder cannot bind DCALGOL subprograms to other host programs
compiled in NEWP.

Replacement binding is not allowed for procedures in the NEWP host program,
except for externals that were bound in and must be rebound.

Observe the following requirements when binding a DCALGOL subprogram into
an MCP host program compiled in NEWP:

• You must compile the subprogram in DCALGOL.

• You must declare the subprogram as external in the MCP code file.

• The subprogram ~annot add globals to the MCP host program or contain OWN
variable declarations.

• The only global variables that the subprogram can reference are those that
are declared in the outer block of the MCP host program.

Note: Because of the interaction with the NEWP SEPCOMP facility, the old
object code of procedures being rebound is retained in the MCP code file.

8600 0304-000 5-21

· Binding Programs Written In Different Languages

The old object code is not referenced and cannot be executed. If many
rebindings occur, the MCP code file can grow undesirably large with the
accumulation of useless object code. You can reallocate segments in the
MCP by recompiling the MCP with the NEWP compiler.

ALGOL·Pascal Interlanguage Binding
ALGOL-Pascal interlanguage binding consists of binding an ALGOL subprogram
into a Pascal host program. Table 5-5 matches identifier types between ALGOL
and Pascal.

Table 5-5. Corresponding Identifier Types between ALGOL and Pascal

ALGOL Pascal

REAL ARRAY [*] array of real
array of record
array of set
array of vlstring
array· of packed array
array of explicit type
long set (> 48 elements in set)
record
vlstring
explicit record (by-value)
packed array of real
packed array of set
packed array of record
packed array of vlstring

INTEGER ARRAY [*] array of integer
array of char
array of enumeration
array of fixed (n < 12)
array of sfixed (n < 12)
array of integer subrange
array of char subrange
array of enumeration subrange
packed array of integer
packed array of fixed (n < 12)
packed array of sfixed (n < 12)
packed array of subrange

(> 256 elements in subrange)
packed array of enumeration

(> 256 elements in enumeration)

BOOL~AN ARRAY [*] array of Boolean

DOUBLE ARRAY [*] array of fixed (n > 11)
array of sfixed (n > 11)
packed array of fixed (n > 11)
packed array of sfixed (n > 11)

5-22 8600 0304-000

Binding Programs Written In Different Languages

Table 5-5. Corresponding Identifier Types between ALGOL and Pascal (cont.)

ALGOL Pascal

HEX ARRAY [*] hex (n)
digits (n)
s_digits (n)
digitLS (n)
Boolean 1
Boolean4
packed array of Boolean
packed array of subrange

(0-16 elements in subrange)
packed array of enumeration

(0-16 elements in enumeration)

EBCDIC ARRAY [*] bits (n)
binary (n)
u-display (n)
z....display (n)
display-z (n)
s-display (n)
display-s (n)
word48 (n)
word96 (n)
integer48
integer96
rea 148
explicit record (var)
packed array of char
packed array of subrange

(17-256 elements in subrange)
packed array of enumeration

(17-256 elements in enumeration)

REAL VARIABLE real
short set

(1-48 elements in set)

INTEGER VARIABLE integer
char
enumeration
fixed (n < 12)
sfixed (n < 12)
integer subrange
char subrange
enumeration subrange

BOOLEAN VARIABLE Boolean
Boolean subrange .

DOUBLE VARIABLE fixed (n > 11)
sfixed (n > 11)

PROCEDURE procedure

REAL PROCEDURE function : real

8600 0304-000 5-23

Binding Programs Written in Different Languages

Table 5-5. Corresponding Identifier Types between ALGOL and Pascal (cont.)

ALGOL Pascal

~

INTEGER function : integer
PROCEDURE function : char

function : enumeration
function : fixed (n < 12)
function: sfixed (n < 12)
function: integer subrange
function : char subrange
function : enumeration subrange

BOOLEAN function : Boolean
PROCEDURE function: Boolean subrange

DOUBLE function: fixed (n > 11)
PROCEDURE function : sfixed (n > 11)

Global Items

5-24

Pascal·and.ALGOL programs can share global items. When binding global items
from an ALGOL· subprogram into a Pascal host program, you must write a Pascal
module heading that describes the ALGOL subprogram in Pascal terms. You
include ALGOL global variables in the export declaration of the Pascal module
heading as shown in the following portion of Pascal syntax:

MODULE m EXTERNAL;
EXPORT int(a, p, f);

VAR a : integer;
PROCEDURE p (param : integer);
FUNCTION f: integer;

END;

The EXTERNAL directive indicates that the module is written in a language other
than Pascal. When a Pascal host program is compiled with modules that are
declared with the EXTERNAL directive or modul~s that use other modules that
are declared as external, the Pascal compiler creates a BINDERINPUT file. This
file contains a set of suggested commands for Binder to use when binding the
procedures compiled in the other language.

For example, when binding an ALGOL subprogram into a Pascal host program,
the Pascal compiler puts USE statements in the BINDERINPUT to equaie variable
identifiers in Pascal and ALGOL. The USE statements are necessary because the
Pascal compiler names the Pascal identifier by assigning the module name
followed by a slash (f) and the ALGOL identifier name.

For example, assuming that the external module is titled m and an ALGOL
variable is declared as a, as in the preceding example, the BINDERINPUT file
would contain the following Binder USE statement:

8600 0304-000

Binding Programs Written in Different Languages

USE MIA FOR A

There might be times when you need to edit the BINDERINPUT file. The internal
name of the file for file equation is BINDERINPUT.

For more information about the BINDER INPUT file, the EXTERNAL directive,
and modules, refer to the A Series Pascal Programming Reference Manual,
Volume 1.

Parameters

The following restrictions apply to parameters passed between ALGOL and
Pascal:

• You cannot pass text files between ALGOL and Pascal.

• You can pass standard files between ALGOL and Pascal; however, you must
declare in the Pascal host program the files that can be passed. Refer to the
example following this discussion to see the code for a Pascal host program
that passes standard files. For more information on Pascal file syntax, refer
to the Pascal Reference Manual, Volume 1.

• Procedures and functions are allowed as parameters to ALGOL procedures
bound to Pascal programs.

• Parameters passed between a Pascal host program and an ALGOL subprogram
must match.

• Variables passed by reference (that is, variable parameters) in a Pascal host
program must match by-name parameters in the ALGOL subprogram.

• Variables passed by value in a Pascal host program must match by-value
parameters in the ALGOL subprogram.

• Binder allows a procedure with unknown parameters to match and bind with
a procedure of the same name with either known or unknown parameters.

Examples of Binding An ALGOL Subprogram Into a Pascal Host
Program

Example 1

The following example shows how a Pascal program can incorporate a module
written in ALGOL. The module heading describes an ALGOL procedure with one
global variable, one untyped procedure, and one typed procedure to be bound into
a Pascal program or library. The WFL job used to compile each program appears
in italic type.

Pascal Host Program

? BEGIN JOB COMPILE/HOST;
COMPILE PASCAL/HOST WITH PASCAL LIBRARY;
PASCAL DATA CARD

8600 0304-000 5-25

Binding Programs Written in Different Languages

5-26

MODULE m EXTERNAL;
EXPORT int (a, p, f);
VAR a: integer;
PROCEDURE p (param : integer);
FUNCTION f: integer;

END;
PROGRAM prog;

IMPORT int;
VAR ig : integer;

BEGIN
p (42);
i 9 := f;
DISPLAY (concat ('value of a is " str;ng(a»);
DISPLAY (concat ('value of ig is " str;ng(;g»);
END.

? END JOB.

The BINDERINPUT file created by the Pascal compiler is as follows. You can use
this file to bind the Pascal host program, PASCAL/HOST, and the ALGOL
subprogram, OBJECT /M.

$ RESET LIST
USE MIA FOR A;
USE MIF FOR F;
USE MIP FOR P;
BIND

MIF,
MIP,

DUMMY FROM OBJECT 1M;
HOST IS PASCAL/HOST;

ALGOL Subprogram

? BEGIN JOB MODULE/BODY;
COMPILE OBJECTIM WITH ALGOL LIBRARY;
ALGOL DATA CARD

$ SET LEVEL 3 LIBRARY
[INTEGER A;]
PROCEDURE P (I);

VALUE I; INTEGER I;
BEGIN
DISPLAY ("CALL ON P EXECUTED WITH 1= " CAT STRING(I,*»;
A := 399;
END;

INTEGER PROCEDURE F;
BEGIN
DISPLAY ("CALL ON F EXECUTED");
F:= 7;
END;

? END JOB.

8600 0304-000

Binding Programs Written in Different Languages

When executed, the newly bound program displays the following:

CALL ON P EXECUTED WITH I = 42
CALL ON F EXECUTED
value of a is 399
value of i9 is 7

Example 2

The following example shows a Pascal host program that has an ALGOL
procedure bound into it. In this example, the formal parameter f represents an
ALGOL file. In the Pascal host program, this formal parameter is compatible with
any standard file parameter.

For this example, FILE OF char is the standard file parameter. Note that the
Pascal buffer variable f@, is not affected by any input or output that occurs
during the execution of the bound-in procedure.

MODULE m EXTERNAL;
EXPORT i(p);
PROCEDURE P (VAR f: stdfile)

END;

PROGRAM p;
IMPORT i;
TYPE tf= FILE OF char;
VAR myf:' tf;

BEGIN
p(myf)

END.

COBOL·FORTRAN Interlanguage Binding
COBOL-FORTRAN interlanguage binding consists of binding a COBOL program
into a FORTRAN host program or binding a FORTRAN subprogram into a COBOL
host program. Table 5-6 matches identifier types between COBOL and FORTRAN.

Table 5-6. Corresponding Identifier Types between COBOL and FORTRAN

COBOL COBOL74 FORTRAN

COMP OCCURS REAL OCCURS REAL ARRAY/COMMON
BLOCK

COMP OCCURS BINARY OCCURS INTEGER
ARRAY/COMMON BLOCK

COMP OCCURS BINARY OCCURS LOGICAL
ARRAY/COMMON BLOCK

DOUBLE PRECISION
ARRAY /COMMON BLOCK

8600 0304-000 5-27

Binding Programs Written In Different Languages

Table 5-6. Corresponding Identifier Types between COBOL and
FORTRAN (cont.)

COBOL COBOL74 FORTRAN

COMPLEX
ARRAY/COMMON BLOCK

COMP·2

ASCII

DISPLAY DISPLAY

DISPLAY LOWERBOUNDS DISPLAY LOWERBOUNDS
+ LEVEL 77 + LEVEL 77

COMP·4 REAL REAL VARIABLE

COMP or COMP·1 BINARY (1 to 11 digits) INTEGER VARIABLE

COMP or COMP·1 BINARY (1 to 11 digits) LOGICAL VARIABLE

COMP·S DOUBLE DOUBLE PRECISION
VARIABLE

COMPLEX VARIABLE

SECTION SECTION SUBROUTINE

FUNCTION

SECTION + 2 SECTION + 2
PARAMETERS (DISPLAY PARAMETERS (DISPLAY
LOWERBOUNDS + LEVEL LOWERBOUNDS + LEVEL
77) 77)

FILE FILE FILE

DIRECT FILE DIRECT FILE

Global Items

5-28

Only files and FORTRAN subprograms can be shared globally between COBOL
and FORTRAN. Files in FORTRAN are given the internal name, FILEnn, where nn
is a I-digit or 2-digit number (without a leading zero) that refers to the unit
number in a FORTRAN I/O statement.

For example, a WRITE(6,1) statement in a FORTRAN subroutine writes to FILE6.
To share a common file with FORTRAN, a COBOL file must be named and
declared accordingly.

86000304-000

Binding Programs Written in Different Languages

Parameters

The following restrictions apply when passing parameters between COBOL and
FORTRAN:

• You can pass only arrays and simple variables (declared as 77 -level items in
COBOL) as parameters between FORTRAN and COBOL.

• You must declare COBOL array parameters as REAL or BINARY in COBOL74
and COBOL85, or COMPUTATIONAL in COBOL68, because FORTRAN works
. only with word-oriented arrays.

• When passing an array from FORTRAN to COBOL, include a LOWER-BOUNDS
clause in the OI-Ievel description for the array. When passing an array from
COBOL to FORTRAN, you must also include a LOWER-BOUNDS clause in the
LOCAL-STORAGE SECTION description of the formal parameters.

• COBOL always assumes that the lower bound of an array that is passed or
received is 0 (zero).

• Unpredictable results can occur if you pass to COBOL a FORTRAN
subscripted variable with a value other than 0 (zero).

• You should pass only the first array appearing in a FORTRAN common block
to COBOL. Otherwise, results are unpredictable.

• You cannot pass subroutines and functions as parameters between COBOL
and FORTRAN.

• Binder allows a procedure with unknown parameters to match and bind with
a procedure of the same name with either known or unknown parameters.

COBOL·FORTRAN77 Interlanguage Binding
COBOL-FORTRAN77 interlanguage binding consists of binding either a COBOL
program into a FORTRAN77 host program or a FORTRAN77 subprogram into a
COBOL host program. Table 5-7 matches identifier types between COBOL and
FORTRAN77.

Table 5-7. Corresponding Identifier Types between COBOL and FORTRAN77

COBOL COBOL74 FORTRAN77

COMP OCCURS REAL OCCURS REAL ARRAY/COMMON
BLOGK

COMP OCCURS BINARY OCCURS INTEGER
ARRAY/COMMON BLOCK

COMP OCCURS BINARY OCCURS LOGICAL
ARRAY/COMMON BLOCK

COMP-2

8600 0304-000 5-29

Binding Programs Written in Different Languages

Table 5-7. Corresponding Identifier Types between COBOL and
FORTRAN77 (cont.)

COBOL COBOL74 FORTRAN77

ASCII

DISPLAY DISPLAY CHARACTER COMMON
BLOCK

DISPLAY LOWERBOUNDS DISPLAY LOWERBOUNDS CHARACTER
+ LEVEL 77 + LEVEL 77 ARRAY/CHARACTER

VARIABLE
"

DOUBLE PRECISION
ARRAY

COMPLEX ARRAY

COMP-4 REAL REAL VARIABLE

COMP or COMP-l BINARY (1 to 11 digits) INTEGER VARIABLE

COMP or COMP-l BINARY (1 to 11 digits) LOGICAL VARIABLE

COMP-5 DOUBLE DOUBLE PRECISION
VARIABLE

COMPLEX VARIABLE

SECTION SECTION SUBROUTINE/MAIN
PROGRAM

FUNCTION

SECTION + 2 SECTION + 2 CHARACTER FUNCTION
PARAMETERS (DISPLAY PARAMETERS (DISPLAY
LOWERBOUNDS + LEVEL LOWERBOUNDS + LEVEL
77) 77)

FILE FILE FILE

DIRECT FILE DIRECT FILE

Global Items

5-30

Only files and FORTRAN77 subprograms can be shared globally between COBOL
and FORTRAN77. Files in FORTRAN77 are given the internal name, FILEnn,
where nn is a I-digit or 2-digit number (without a leading zero) that refers to the
unit number in a FORTRAN77 I/O statement. For example, a WRITE(6,I)
statement in a FORTRAN77 subroutine writes to FILE6. To share a common file
with FORTRAN77, a COBOL file must be named and declared accordingly.

You can simulate a character function in COBOL with a COBOL section that has
two leading parameters. These parameters must be a DISPLAY array with the
LOWER-BOUNDS clause and a 77-level item declared BINARY in COBOL74 and

86000304-000

Binding Programs Written In Different Languages

COB0L85, or COMP-l in COBOL68. The second parameter corresponds to the
character length of the character function.

Parameters

The following restrictions apply to parameters passed between FORTRAN77 and
COBOL:

• You can pass only simple characters, arrays, and variables (declared as
77-level items in COBOL) as parameters between FORTRAN77 and COBOL.

• When passing an array from FORTRAN77 to COBOL, include a
LOWER-BOUNDS clause in the Ol-level description for the array. When
passing an array from COBOL to FORTRAN77, you must also include a
LOWER-BOUNDS clause in the LOCAL-STORAGE SECTION description of the
formal parameters.

• COBOL always assumes that the lower bound of an array that is passed or
received is 0 (zero).

• Unpredictable results can occur if you pass to COBOL a FORTRAN77
subscripted variable with a value other than 0 (zero).

• You should pass only the first array appearing in a FORTRAN77 common
block to COBOL. Otherwise, the results are unpredictable.

• All FORTRAN77 character variables are stored in a character pool. You
should pass to COBOL only the first FORTRAN77 character variable in the
pool. Otherwise, the results are unpredictable.

• You cannot pass subroutines and functions as parameters between COBOL
and FORTRAN77.

• Binder allows a procedure with unknown parameters to match and bind with
a procedure of the same name with either known or unknown parameters.

Example of Passing a FORTRAN77 Character Variable to a
COBOL74 Section

The following example shows a FORTRAN77 host program, a COBOL subprogram,
and the Binder input file used to bind them together. The WFL job used to
compile each program appears in italic type.

FORTRAN77 Host Program

? BEGIN JOB COMPILE/HOST;
COMPILE F77/HOST WITH FORTRAN77 LIBRARY;
FORTRAN77 DATA

$ SET BINDINFO
CHARACTER*7 C
CAll SUB (C)
PRINT *,C

8600 0304-000 5-31

Binding Programs Written in Different Languages

5-32

END
? END JOB.

COBOL Subprogram

? BEGIN JOB COMPILEICOBOL74;
COMPILE COBOL741SUB COBOL74 LIBRARY;
COBOL74 DATA
$ SET LEVEL = 3

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. A-15.
OBJECT-COMPUTER. A-15.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 COBARY DISPLAY LOWER-BOUNDS RECEIVED BY REFERENCE.

03 DUMMY PIC X(l} OCCURS 7 TIMES.
01 FAKEIT REDEFINES COBARY.

03 NUMB PIC X(7}.
77 LEN BINARY PIC 9(ll}.
PROCEDURE DIVISION USING COBARY, LEN.
CB SECTION .

. STORE-VALUE.
MOVE I I ABCDEFG I I TO NUMB.

? END JOB.

Binder Input File

? BEGIN JOB BINDICOBOL14;
BIND PROG BINDER LIBRARY;
BINDER DATA
HOST IS F77/HOST;
BIND SUB FROM COBOL74/SUB;
USE SUB FOR CB;

? END JOB.

The result of the bind is an object file titled PROG. When executed, PROG
generates the following output:

ABCDEFG

8600 0304-000

Binding Programs Written in Different Languages

COBOL·Pascal Interlanguage Binding
COBOL-Pascal interlanguage binding consists of binding a COBOL subprogram
into a Pascal host program.

Table 5-8. Corresponding Identifier Types between COBOL and Pascal

COBOL COBOL74 Pascal

COMP OCCURS REAL OCCURS array of real
array of record
array of set
array of vlstring
array of packed array
array of explicit type
long set (> 48 elements in set)
record
vlstring
explicit record (by-value)
packed array of real
packed array of set
packed array of record
packed array of vlstring

COMP OCCURS BINARY array of integer
OCCURS array of char

array of enumeration
array of fixed (n < 12)
array of sfixed (n < 12)
array of integer subrange
array of char subrange
array of enumeration subrange
packed array of integer
packed array of fixed (n < 12)
packed array of sfixed (n < 12)
packed array of subrange

(> 256 elements in subrange)
packed array of enumeration

(> 256 elements in enumeration)

COMP OCCURS BINARY array of Boolean
OCCURS array of fixed (n > 11)

array of sfixed (n > 11)
packed array of fixed (n > 11)
packed array of sfixed (n > 11)

8600 0304-000 5-33

Binding Programs Written In Different Languages

Table 5-8. Corresponding Identifier Types between COBOL and Pascal (cont.).

COBOL COBOL74 Pascal

array of fixed (n > 11)
array of sfixed (n > 11)
packed array of fixed (n > 11)
packed array of sfixed (n > 11)

COMp·2 hex.(n)
digits (n)
s_digits (n)
digits-s (n)
Boolean 1
Boolean4
packed array of Boolean
packed array of subrange

(0-16 elements in subrange)
packed array of enumeration

(0-16 elements in enumeration)

DISPLAY DISPLAY bits (n)
binary (n)
u_display (n)
z-display (n)
display-z (n)
Ldisplay (n)
display-s (n)
word48 (n)
word96 (n)
integer48
integer96
rea 148
explicit record (var)
packed array of char
packed array of subrange

(17-256 elements in subrange)
packed array of enumeration

(17-256 elements in enumeration)

COMP·4 REAL real
short set

(1-48 elements in set)

5-34 8600 0304-000

Binding Programs Written in Different Languages

Table 5-8. Corresponding Identifier Types between COBOL and Pascal (cont.)

COBOL COBOL74 Pascal

COMP OR BINARY (1 to integer
COMP-l 11 digits) char

enumeration
fixed (n < 12)
sfixed (n < 12)
integer subrange
char subrange
enumeration subrange

COMP OR BINARY (1 to Boolean
COMP-l 11 digits) Boolean subrange

COMP-5 DOUBLE fixed (n > 11)
sfixed (n > 11)

SECTION SECTION procedure

function : real

function : integer
function : char
function: enumeration

\

function : fixed (n < 12)
function: sfixed (n < 12)
function : integer subrange
function : char subrange
function : enumeration subrange

function : Boolean
function: Boolean subrange

function: fixed (n > 11)
function: sfixed (n > 11)

G.lobal Items

You can share global items between Pascal and COBOL. If a COBOL subprogram
is to reference a global variable in a Pascal host program, you must declare the
variable by using the GLOBAL clause or the GLOBAL compiler control option in
the COBOL subprogram.

8600 0304-000 5-35

Binding Programs Written in Different Languages

When binding global items from a COBOL subprogram into a Pascal host program,
you must write a Pascal module heading that describes the COBOL subprogram in
Pascal terms. You include COBOL global variables in the export declaration of the
Pascal module heading as shown in the following portion of Pascal syntax:

MODULE m EXTERNAL;
EXPORT int(a, p);

VAR a: integer;
PROCEDURE p (var param integer);

END;

The EXTERNAL directive indicates that the module is written in a language other
than Pascal. When a Pascal host program is compiled with modules that are
declared with the EXTERNAL directive or modules that use other modules that
are declared as EXTERNAL, the Pascal compiler creates a BINDERINPUT file.
This file contains a set of suggested commands for Binder to use when binding
the procedures compiled in the other language.

For example, when binding a COBOL subprogram into a Pascal host program, the
Pascal compiler puts USE statements in the BINDERINPUT to equate variable
identifiers in Pascal and COBOL. The USE statements are necessary because the
Pascal compiler names the Pascal identifier by assigning the module name
followed by a slash (/)and the COBOL identifier name.

For example, assuming that the external module is named m and the COBOL
variables are declared as a and p, as in the preceding example, the
BINDERINPUT file would contain the following Binder USE statement:

USE MIA FOR A;
USE MIP FOR P;

There might be times when you need to edit the BINDERINPUT file. The internal
name of the file for file equation is BINDERINPUT.

For more information about the BINDER INPUT file, the EXTERNAL directive,
and modules, refer to the Pascal Reference Manual, Volume 1.

Parameters

The following restrictions apply when passing parameters between Pascal and
COBOL:

• When passing a word-oriented variable or array (integer, real, or Boolean)
between Pascal and COBOL68, declare the word-oriented entity as
COMPUTATIONAL in the COBOL68 program. You can declare real variables
as COMPUTATIONAL-4.

• In a COBOL74 program, you must declare a real array or variable as REAL,
and an integer or Boolean array or variable as BINARY.

• You cannot pass text files between Pascal and COBOL.

5-36 8600 0304-000

Binding Programs Written In Different Languages

• You can pass standard files between COBOL and Pascal; however, you must
declare in the Pascal host program the files that can be passed. Refer to the
example following this discussion to see the code for a Pascal host program
that passes standard files. For more information on Pascal file syntax, refer
to the Pascal Reference Manual, Volume 1.

• Binder allows a procedure with unknown parameters to match and bind with
a procedure of the same name with either known or unknown parameters.

Example of Binding a COBOL74 Procedure Into a Pascal Host
Program

The following example shows how a Pascal program can incorporate a module
written in another language. The module heading describes a COBOL 7 4 procedure
with one global variable to be bound into a Pascal program or module. The WFL
job used to compile each program appears in italic type.

Pascal Host Program

?BEGIN JOB COMPILE/HOST;
COMPILE PASCAL/HOST WITH PASCAL LIBRARY;
PASCAL DATA CARD
MODULE m EXTERNAL;

EXPORT int(a, p);
VAR a ~ integer;
PROCEDURE p(var param integer);

END;
PROGRAM prog;

IMPORT inti
VAR ; : integer;

BEGIN
p(i) ;
DISPLAY (concat ('value of i is ',string(i»);
DISPLAY (concat ('value of a is ',string(a»);
END.

? END JOB.

The Pascal compiler produces the following BINDERINPUT file. You can use this
file to bind the Pascal host program, PASCAL/HOST, and the COBOL subprogram,
OBJECT/M.

$ RESET LIST
USE MIA FOR A;
USE MIP FOR.P;
BIND

MIP,
. DUMMY FROM OBJECT 1M;

HOST IS PASCAL/HOST;

8600 0304-000 5-37

Binding Programs Written in Different Languages

COBOL74 Subprogram

? BEGIN JOB MODULE/BODY;
COMPILE OBJECT/M WITH COBOL74 LIBRARY;
COBOL74 DATA CARD
$ SET LEVEL = 3

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 A PIC S9(11) GLOBAL BINARY.
77 I PIC S9(11) LOCAL BINARY RECEIVED BY REFERENCE.
PROCEDURE DIVISION USING I.
LBL.

? END JOB.

DISPLAY "CALL ON SUBPROGRAM EXECUTED".
MOVE III TO I.
MOVE 399 TO A.
EXIT PROCEDURE.

When executed, the bound program generates the following output:

CALL ON SUBPROGRAM EXECUTED
. value of i is III

value of a is 399

Example of Binding a COBOL Procedure Into a Pascal Host
Program

5-38

The following example shows a Pascal host program that has a procedure bound
into it. In this example, the formal parameter (f) represents a COBOL file. In the
Pascal host program, this formal parameter is compatible with any standard file
parameter. For this example, FILE OF char is the standard file parameter. Note
that the Pascal buffer variable f@ is not affected by any input or output that
occurs during the execution of the bound-in procedure.

MODULE m EXTERNAL;
EXPORT i(p);
PROCEDURE P (VAR f: stdfile)

END;
PROGRAM p;

IMPORT i;
TYPE tf= FILE OF char;
VAR myf: tf;

BEGIN
p(myf)

END.

8600 0304-000

Binding Programs Written in Different Languages

FORTRAN-FORTRAN77 Interlanguage Binding
FORTRAN-FORTRAN77 interlanguage binding consists of binding a FORTRAN
subprogram into a FORTRAN77 host program or binding a FORTRAN77
subprogram into a FORTRAN host program. You cannot bind a FORTRAN77
subroutine with. a label parameter into a FORTRAN host program.

Table 5-9 matches identifier types between FORTRAN and FORTRAN77.

Table 5-9. Corresponding Identifier Types between FORTRAN and
FORTRAN11

FORTRAN FORTRAN77

REAL ARRAY/COMMON BLOCK REAL ARRAY/COMMON BLOCK

INTEGER ARRAY/COMMON BLOCK INTEGER ARRAY/COMMON BLOCK

LOGICAL ARRAY/COMMON BLOCK LOGICAL ARRAY/COMMON BLOCK

DOUBLE PRECISION ARRAY/COMMON COMMON BLOCK
BLOCK

COMPLEX ARRAY/COMMON BLOCK COMMON BLOCK

CHARACTER COMMON BLOCK

CHARACTER ARRAY /CHARACTER
VARIABLE

DOUBLE PRECISION ARRAY

COMPLEX ARRAY

REAL VARIABLE REAL VARIABLE

INTEGER VARIABLE INTEGER VARIABLE

LOGICAL VARIABLE LOGICAL VARIABLE

DOUBLE PRECISION VARIABLE DOUBLE PRECISION VARIABLE

COMPLEX VARIABLE COMPLEX VARIABLE

SUBROUTINE SUBROUTINE/MAIN PROGRAM

FUNCTION FUNCTION

CHARACTER FUNCTION

FILE FILE

Subprograms .

A FORTRAN subprogram can be a FORTRAN subroutine 'or function. A
FORTRAN77 subprogram can be a FORTRAN77 main program, subroutine,
function, or block data subprogram.

8600 0304-000 5-39

Binding Programs Written in Different Languages

A FORTRAN77 main program is compatible with a FORTRAN subroutine that has
no parameters. Thus, you can bind a FORTRAN77 main program into a
FORTRAN77 host program by replacing the main program with a separately
compiled FORTRAN subroutine.

Use the following Binder syntax to indicate the title of the file containing the
FORTRAN subroutine and to indicate the name of the' FORTRAN subroutine to
use in place of the FORTRAN77' main program, .MAIN.:

BIND .MAIN. FROM <file specifier>
USE .MAIN. FOR <identifier>

Unlike FORTRAN77 main programs, FORTRAN main programs cannot be bound
or replacement bound by a host program.

Exported subroutines and functions can be replacement bound. It is not possible
to add new exported program units to a host program.

Common Blocks

FORTRAN77 arithmetic common blocks correspond to FORTRAN common blocks.
However, FORTRAN77 accesses the common block only through a single-precision
descriptor and is not affected by odd offsets.

When a common block is bound, its resulting length is the longest of all the
lengths declared for that block in the host program and bound subprograms,
unless the FORTRAN77 compiler control option CODEFILEINIT is set in the host
program.

Any common block that has been code file initialized cannot be extended.

Parameters

5-40

FORTRAN77 double-precision and complex arrays are passed to subprograms as
single-precision descriptors. The array elements do not have to be on even-word
boundaries. For this reason, the FORTRAN77 arrays do not correspond to any
FORTRAN array and, thus, cannot be passed as parameters between the two
languages. (In some cases, you can override this restriction by using the
DOUBLEARRA YS compiler control option described in the FORTRAN77 Reference
Manual.)

You cannot pass subroutines and functions as parameters between FORTRAN77
and FORTRAN.

Binder allows a procedure with unknown parameters to match and bind with a
procedure of the same name with either known or unknown parameters.

8600 0304-000

Binding Programs Written in Different Languages

Characters

FORTRAN77 character variables, character arrays, and character common blocks
do not correspond to any FORTRAN data structure.

Libraries

You can bind or replacement bind subroutines and functions into a host program
that references libraries. You can also add libraries to the host program.

When compiling subprograms, declare all libraries used by the subprograms
before the first executable program unit.

Libraries in subprograms to be bound to a host program do not have to be
explicitly declared in the host program. If libraries are not declared in the host
program, Binder builds a lib~ary template from the binding information in the
subprogram file. Once the template is built, Binder can add library objects not
explicitly declared in the host.

Subprograms that do not reference libraries can be bound into host programs that
reference libraries or that are themselves libraries.

FORTRAN describes all simple variable arguments to imported subprograms as
call-by-reference. FORTRAN77 describes them as call-by-name. When calling a
library object, Binder allows call-by-reference and call-by-name arguments to
match at run time.

Example of Binding a FORTRAN Common Block Into a
FORTRAN77 Host Program

The following example shows a FORTRAN77 host program, a FORTRAN
subprogram, and the Binder input file used to bind them together. The WFL job
used to compile each program appears in italic type.)

FORTRAN77 Host Program

? BEGIN JOB COMPILE/HOST;
COMPILE F77/HOST WITH FORTRAN77 LIBRARY;
FORTRAN77 DATA

$ SET BINDINFO
COMMON A,B,C,D
DATA A,B,C,D 11,1,1,11
CALL SUB
WRITE (6,*) A,B,C,D
END

? END JOB.

8600 0304-000 5-41

Binding Programs Written In Different Languages

FORTRAN Subprogram

? BEGIN JOB COMPILE/FORTRAN;
COMPILE FORTRAN/SUB FORTRAN LIBRARY;
FORTRAN DATA

$ SET SEPARATE
SUBROUTINE SUB
COMMON ONE, TWO
DOUBLE PRECISION ONE, TWO
TWO = 2
END

? END JOB.

Binder Input File

? BEGIN JOB BIND/CHARACTERS;
BIND PROG BINDER LIBRARY;
BINDER DATA
HOST IS F77/HOST;
BIND = FROM FORTRAN/=;

? END JOB.

The result of the bind is an object file titled PROG. When executed, PROG
generates the following output:

2*1.0 2.0 0.0

Example of Interlanguage Binding Involving FORTRAN77,
COBOL74, and ALGOL

The following is a complex example of interlanguage binding. The host program is
a FORTRAN77 program that passes an array as a parameter to a COBOL 74
program. The COBOL 7 4 program calls an ALGOL procedure, that in turn calls
another COBOL 7 4 program. The WFL job used to compile each program appears
in italic type.

FORTRAN77 Host Program

The WFL job compiles and saves the program.

? BEGIN JOB COMPILE/HOST;
COMPILE FORTRAN77/HOST FORTRAN LIBRARY;
FORTRAN77 DATA
DIMENSION A(7)

C PLACE ALPHABET IN A(1)-A(5)
CALL MOVE (A(l),IIABCDEFGHIJKLMNOPQRSTUVWXYZ 11,30)

C NOW CALL THE COBOL PROGRAM
CALL COBPRO(A)
STOP

5-42 8600 0304-000

Binding Programs Written In Different Languages

END
? END JOB.

COBOL74 Subprogram

The following WFL job compiles the COBOL 7 4 program called from the
FORTRAN77 host program and saves it in the file named SEP /COBPRO.

? BEGIN JOB COMPILEISEPICOBPROj
COMPILE SEPICOBPRO COBOL74 LIBRARYj
COBOL74 DATA
$ SET LEVEL ... 3

IDENTIFICATION DIVISION.
PROGRAM-ID. NUMBERS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. A-IS.
OBJECT-COMPUTER. 'A-IS.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 COBARY COMP LOWER-BOUNDS REFERENCE.

03 DUMMY PIC 9{11) OCCURS 7 TIMES~
01 FAKEOUT REDEFINES COBARY.

03 FILLER PIC X(30).
03 NUMB PIC X(12).

LOCAL-STORAGE SECTION.
LD PASS.
01 LARY COMPo

03 OTHER-DUMMY PIC 9{11) OCCURS 7 TIMES.
PROCEDURE DIVISION USING COBARY.
DECLARATIVES.
Al SECTION.

USE EXTERNAL PROCEDURE WITH PASS USING LARY.
END DECLARATIVES.
Sl SECTION.
PUT-IN-NUMBERS.

? END JOB.

MOVE "0123456789 •• TO NUMB.
ENTER Al USING COBARY.

ALGOL Subprogram

The following WFL job compiles the ALGOL procedure called from the COBOL
program and saves it in the file named SEP / ALG.

? BEGIN JOB COMPILEISEPIALGj
COMPILE SEPIALG ALGOL LIBRARY;
ALGOL DATA
[PROCEDURE COBPRINT{A,B); ARRAY A,B[O]; EXTERNAL;]

$ SET LEVEL 4

8600 0304-000

PROCEDURE ALG (ARGOLD);
ARRAY ARGOLD[O];

5-43

Binding Programs Written In Different Languages

5-44

B'EGIN
INTEGER M;
ARRAY ARGNU [0:6];
POINTER PN,PO,POT;
PO := POT := POINTER(ARGOLD[6])+5;
PN := POINTER(ARGNU);
FOR M := 0 .STEP 1 UNTIL 41 DO

BEGIN
PO := POT-M;
REPLACE PN+M BY PO FOR 1;

END;
COBPRINT(ARGOLD,ARGNU);

END;
? END JOB.

COBOL74 Subprogram

The following WFL job compiles the COBOL 74 program called from the ALGOL
procedure and saves it in the file named SEP/COBPRINT.

? BEGIN JOB COMPILEISEPICOBPRINT;
COMPILE SEPICOBPRINT COBOL74 LIBRARY;
COBOL74 DATA
$ SET LEVEL - 3

IDENTIFICATION DIVISION.
PROGRAM-ID. PRINT/ARRAYS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. A-15.
OBJECT-COMPUTER. A-15.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PR ASSIGN TO PRINTER.
DATA DIVISION.
FILE SECTION.
FD PRo
01 PR-RCD PIC X(42).
WORKING-STORAGE .SECTION.
01 A COMP REFERENCE. ,

03 DUMMY PIC 9(11) OCCURS 7 TIMES.
01 B COMP REFERENCE.

03 OTHER-DUMMY PIC 9(11) OCCURS 7 TIMES.
PROCEDURE DIVISION USING A B.
CB SECTION.
OPEN-PRo

? END JOB.

OPEN OUTPUT PRo
WRITE PR-RCD FROM A.
WRITE PR-RCD FROM B.

8600 0304-000

Binding Programs Written in Different Languages

Binder Inpot File

The four files are then bound and executed by the following WFL job:

? BEGIN JOB BINDIEXAMPLEIPROG;
BIND EXAMPLEIPROG BINDER;
BINDER 'DATA
HOST IS FORTRAN77/HOST;
USE Al FOR ALG;
BIND Al FROM SEP/ALG;
BIND = FROM SEP/=;
STOP;

? END JOB.

The result of the bind is an object file named EXAMPLE/PROG. When executed,
EXAMPLE/PROG generates the following output:

ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789
9876543210 ZYXWVUTSRQPONMLKJIHGFEDCBA

8600 0304-000 5-45

Section 6
Binding Intrinsics

This section provides the information you need to compile, bind, and access an
intrinsic file. For additional information about intrinsics, refer to the appropriate
language manual. .

What Is an Intrinsic?
An intrinsic is a program routine that performs common mathematical and other
operations. An intrinsic file consists of standard system intrinsics such as SIN,
SQRT, and formatting routines, as well as user-written intrinsics commonly
referred to as installation intrinsics.

Although intrinsics can be written only in ALGOL, COBOL, and FORTRAN, almost
any language that defines binding can access an intrinsic file. All compilers
automatically recognize and access standard system intrinsics. COBOL and PL/I
programs can automatically access installation intrinsics as well. FORTRAN and
ALGOL programs must be compiled with the INST ALLA TION compiler control
option set in order to access installation intrinsics.

Compiling Intrinsics
When compiling an intrinsic, observe the following requirements:

• You must set the INTRINSICS compiler control option for all compilations.

• When compiling ALGOL and FORTRAN programs that access installation
intrinsics, you must set the INSTALLATION compiler control option.

• When compiling an intrinsic in COBOL, you cannot reference global items.

• When compiling an intrinsic in DCALGOL, you can only reference other
intrinsics or Master Control Program (MCP) items.

Creating a Binder Input File
To bind an intrinsic, you must create a Binder input file that includes the
following:

• A $SET INTRINSICS Binder control record.

• A BIND statement specifying the source file or files for standard system
inti-insics. Using the BIND = form of the BIND statement causes Binder to

8600 0304-000 6-1

Binding Intrinsics

look for all the standard system intrinsics whose names and intrinsic numbers
are tabulated within Binder.

• One or more BIND statements that specify the installation intrinsics.

Once an intrinsic is bound into an intrinsic file, you cannot alter the intrinsic
number, type of subprogram, or parameters by performing replacement binding.
If you need to modify any of these items in an installation intrinsic, you must
specify the necessary changes, and then bind the intrinsic into a new intrinsic
file. To modify a standard system intrinsic, you must update the Binder internal
tables and create a new intrinsic file.

Intrinsic Specification

Syntax

Use the intrinsic specification construct with the BIND statement to bind
installation intrinsics.

<intrinsic specification>

- <subprogram identifier> - = - <intrinsic number pair> - <language list> -----1

<intrinsic number pair>

- <integer> - ,- <integer> -----------------------1

<language list>

- {

FORTRAN

NEWP

PllI

Explanation

6-2

<intrinsic number
pair>

Specifies an installation number and an intrinsic
number. The first integer of the intrinsic number pair
metatoken specifies an installation number, which can
range in value from 0 through 2046; however, numbers
o through 99 are reserved for system use.

The second integer specifies an intrinsic number, which
can range in value from 0 through 8191.

8600 0304-000

Details

Example

<language list>

Binding Intrlnsics

. No two intrinsics within an intrinsic file can have the
same intrinsic number pair.

Specifies the compilers that are authorized to reference
a given intrinsic. A referencing language is not
necessarily the same language in which the intrinsic is
written. For example, the DCALGOL language identifier
allows a specified intrinsic to be accessed by the
DMALGOL and DC ALGOL compilers.

Binder automatically binds standard system intrinsics that are referenced as
EXTERNAL in a program. Thus, you do not need to specify such system intrinsics
in a BIND statement.

This example shows a Binder input file that is used to bind intrinsics.

$ SET INTRINSICS
BIND = FROM INTR/=;
BIND MYSIN = 101, 1 (ALGOL,FQRTRAN) FROM INTL/=;
BIND COFFEE = 102, 2 (COBOL) FROM POT;
STOP;

8600 0304-000 6-3

Section 7
Binding Programs That Access
Databases, '

You can bind programs that access Data Management System II (DMSII) or
Semantic Information Manager (SIM) Databases. To do so, you must declare the
database in the host program and meet the criteria discussed in this section.

Note that the examples in this section illustrate the possible combinations in
which the host program and the subprogram can declare a SIM database for
binding. These examples are not complete and cannot be compiled as shown.
Comments are placed within the examples to indicate portions of missing code.

References made to compiler in the examples in this section refer to the language
compiler used to compile the host program and the subprogram.

Binding DMSII Databases
You can bind subprograms that access DMSII databases to host programs
compiled with ALGOL, COB0L85, COBOL74, COBOL68, and PL/I compilers.
Observe the following requirements:

• The database code files must be compiled with a Mark 3.5 or later compiler.

• You must declare the DMSII database as global in the host program.

Binding 81M Databases
You can bind subprograms that access SIM databases to host programs compiled
in ALGOL, COBOL 7 4, and Pascal. (Pascal programs can serve only as host
programs.) You can bind subprograms that reference the following elements:

• A database declared in the host program

• An entity reference variable declared in the host program

• A query variable declared in the host program

Binder performs type checking of the variables for compatibility.

For an explanation of SIM concepts and instructions for using SIM, refer to the
A Series l1ifoExec(!) Administration Guide and the A Series lrl/oExec(!) Semantic
Information Manager (SIM) Programming Guide.

InfoExec is 'a trademark of Unisys Corporation.

8600 0304-000 7-1

Binding Programs That Access Databases

SIM Data Types

Binder recognizes three data types when binding programs that use 81M
databases: the DMRECORD variable, the entity reference variable, and the query
variable. Before binding programs, Binder verifies that these data types reference
the same class in the same database. The three data types are as follows:

• DMRECORD

A DMRECORD is 'made up of fields that hold information retrieved from 81M.
You can bind DMRECORDs to each other.

• Entity reference variable

An entity reference variable refers to an entity with the attributes of a given
database class.

The compiler queries 81M about' this database class and gets information
about the format of the entity reference variable. The format determines the
number of words that are allocated for this variable. If a subprogram
references an entity reference variable, the variable must be declared in the
global declarations and must be preceded by the database declaration.

• Query variable

A query variable represents an active query and contains information about
the state of a query.

The compiler queries 81M when class information is required. The class
information is stored in the binding information of the code file.

If the subprogram declares the query variable in the global declarations, the
database declaration must precede the query variable declaration.

If the query variable is associated with a DMRECORD, the DMRECORD must
be declared before the query variable. Binder verifies that the host program
and the subprogram query variables reference the same database class or
DMRECORD.

Referencing a SIM Database

7-2

You must declare a 81M database in the host program and in the subprogram.
When the compiler encounters the database declarations, it generates a 81M ,
library template in the outer block of the host program and generates a 81M
library template in the subprogram. These templates import all the library objects
in the 81M system.

Binder changes all code references of the 81M library objects in the subprogram
to match the 81M library objects in the host program. The following example
shows the 81M library template generated by the compiler and the 81M library

'objects in the subprogram that Binder will change to match those of the host
program.

8600 0304-000

Binding Programs That Access Databases

Example

H08t Program HI

BEGIN
SEMANTIC DATABASE UNIVDB:(INSTRUCTOR,STUDENT);

(2,2) - FUNNY SIRW
(2,3) - SUPPORT LIBRARY TEMPLATE
(2,4) - LIBRARY TEMPLATE MARKER

(2,5) - SUPPORT LIBRARY PROCEDURE

(2,15) - SUPPORT LIBRARY PROCEDURE

PROCEDURE REPLACEJME (R);
(2,IB) - REPLACE-HE

REAL R;
EXTERNAL;

OPEN UNIVDB;

% These lines of code for
% the SIM library template
% are generated by the
% compiler.
%
% Several support library
% procedures generated by
% the compiler are bound.
%
% Other data structures
% are generated by the
% compiler and placed here.

S Additional program statements
S could be included here.

DELETE STUDENT WHERE CURRENT(STUQ} = STU;
REPLACE-HE .(IO); .
CLOSE UNIVDB;
END.

Subprogram SI

[REAL I, J; % Global
SEMANTIC DATABASE UNIVDB:(INSTRUCTOR,STUDENT);] % declaration

(2,4) - FUNNY SIRW
(2,5) - SUPPORT LIBRARY TEMPLATE
(2,6) - LIBRARY TEMPLATE MARKER

(2,7) - SUPPORT LIBRARY PROCEDURE

(2,17) - SUPPORT LIBRARY PROCEDURE

8600 0304-000

% These lines of code for
% the SIM library template
% are generated by the
% compiler.
%
% Several support library
% procedures generated by
% the compiler are bound.
%

7-3

Binding Programs That Access Databases

PROCEDURE REPLACEJME (Rl);
(2,10) = REPLACEJME

REAL Rl;
BEGIN
DELETE INSTRUCTOR WHERE SALARY> Rl;
END;

In the preceding example, the host program, HI, declares a 81M database in the
outer block and an external procedure, REPLACE-ME, to be bound. The compiler
builds the 81M library template.

The subprogram 81 declares REPLACE-ME, which references the database. The
compiler builds the 81M library template for the subprogram. However, the stack
locations in the subprogram for the 81M library objects and the procedure do not
match the stack locations for those elements in the host program. Binder fixes
these code references in the subprogram so that they match those in the host
program. For example, Binder changes the stack location (2,D) of the procedure
REPLACE-ME in the subprogram to match the stack location (2,B) of the
procedure REPLACE-ME in the host program.

Referencing a SIM Entity Reference Variable in a Host Program

7-4

In this example, the subprogram references an entity reference variable declared
in the host program. The database must be declared before the entity reference
declaration in the global declarations of the host program. '

Example

~ost Program H2

BEGIN
SEMANTIC DATABASE UNIVDB:(STUDENT);
ENTITY REFERENCE STU_REF (STUDENT);

(2,B) = STU_REF

PROCEDURE REPLACEJME (R);
(2,E) = REPLACEJME

REAL R;
EXTERNAL;

<rest of declarations>

OPEN UNIVDB;

<program statements>

DELETE STUDENT WHERE CURRENT(STUQ) = STU_REF;
REPLACE_ME (10);
CLOSE UNIVDB;
END.

8600 0304-000

Binding Programs That Access Databases

Subprogram 82

[REAL I, J, K;
SEMANTIC DATABASE UNIVDB:(STUDENT);
ENTITY REFERENCE STU_REF (STUDENT);]

(2,0) = STU_REF

PROCEDURE REPLACE-HE (R1);
(2,10) = REPLACE-HE

REAL R1;
BEGIN

% Global declaration
%
%

DELETE STUDENT WHERE CURRENT(STUQ) = STU_REF;
END;

In this example, the host program, H2, declares the entity reference variable
STU_REF. The compiler determines whether STUDENT is a valid database class
and, if so, allocates the proper number of stack cells for it. The compiler also
supplies class and size information about STU-REF in the binding information.

Binder also verifies that STU-REF references the same class in the same
database in both the host program and the subprogram. As an added check,
Binder verifies the size of STU-REF. Binder fixes the code references in the
subprogram so that all code references to STU-REF match those of the host
program.

Referencing a SIM Query Variable in a Host Program

In this example, the subprogram references a query variable declared in the host
program. The database and an optional DMRECORD must be declared before the
query variable declaration in the global declarations.

Example

Host Program H3

BEGIN
SEMANTIC DATABASE UNIVDB:{STUDENT);
QUERY STUQ (STUDENT);

(2,B) = STUQ

PROCEDURE REPLACE_ME (R);
(2,C) = REPLACE-HE

REAL R;
EXTERNAL;

8600 0304-000 7-5

Binding Programs That Access Databases

<rest of declarations>

OPEN UNIVDB;

<program statements>

DELETE STUDENT WHERE CURRENT(STUQ) = STU~REF;

REPLACE_ME (10);
CLOSE UNIVDB;
END.

Subprogram S3

[REAL I, J, K;
SEMANTIC DATABASE UNIVDB:(STUDENT);
QUERY STUQ (STUDENT);]

(2,0) = STUQ

PROCEDURE REPLACE_ME (Rl);
(2,10) = REPLACE_ME

REAL Rl;
BEGIN

% Global declaration
%
%

DELETE STUDENT WHERE CURRENT(STUQ) = STU_REF;
END;

In the preceding example, the host program, H3, declares the query variable
STUQ. The compiler determines whether STUDENT is a valid database class and,
if so, supplies information about STUQ in the binding information. The compiler
verifies that STUQ declared in the host program and in the subprogram
references the same class (or DMRECORD) in the same database.

Binder fixes the code references in the subprogram so that all code references to
the global query variable STUQ match those of the host program.

Adding Query Variables as New Globals

7-6

The following example·illlustrates how a query variable that does not exist in the
host program can be declared in the global declarations portion of the
subprogram. A database declaration must precede the query variable declaration.
If the query variable is associated with a DMRECORD, the DMRECORD must be
declared before the query variable.

When a query variable is declared in this way, Binder adds the query variable as
a new global item and alters all subprogram code references to the query variable
to match the host program code references to that query variable. Locally
declared query variables are unaffected by Binder.

8600 0304-000

Binding Programs That Access Databases

Example

Host Program H8

BEGIN
SEMANTIC DATABASE UNIVDB;

PROCEDURE REPLACE_ME (R);
(2,B) = REPLACEJME

REAL R;
EXTERNAL;

<remaining declarations>

OPEN UNIVDB;

<program statements>
REPLACEJME (10);
CLOSE UNIVDB;
END.

Subprogram S8

[REAL I, J, K; %Global declaration
SEMANTIC DATABASE UNIVDB;
QUERY STUQ (STUDENT);]

(2,0) = STUQ
PROCEDURE REPLACE_ME (Rl);

(2,E) = REPLACE_ME
REAL Rl;.
BEGIN
DELETE STUDENT WHERE CURRENT (STUQ) = STU_REF;
END.

In the preceding example, the subprogram, S8, declares the query variable STUQ.
STUQ is a SIM construct used for querying database information, which is the
database class STUDENT in this example. The compiler determines if STUDENT
is a valid database class and supplies information about STUQ in the binding
information. The compiler also allocates STUQ as a new global for the host.
Binder alters the subprogram code references to the global query variable STUQ .
to match the host program code references to that query variable.

Referencing a SIM Database in a Pascal Host

To create a host program, the Pascal program must declare an external module.
The variables, procedures, functions, and databases of the host program become
visible to an external subprogram if the following occurs:

• These items are exported by host modules before the declaration of the
external module.

• These items are imported by the EXTERNAL module.

8600 0304-000 7-7

Binding Programs That Access Databases

7-8

Refer to the Pascal Reference Manual, Volume 1 for more information about
compiling modules in the Pascal host program.

The following example shows a Pascal host program that accesses a 81M
database. Appropriate Pascal syntax is used to enable modules to bind external
modules (subprograms) written in other languages. The Pascal compiler creates a
file titled, BINDERINPUT, which contains Binder instructions to bind the external
modules.

Two modules are declared in the example program: datB-access and datB-user.
The datB-access module defines' the database and the 81M variables used in the
program. The 81M variables are exported, which makes them available to other
modules such as datB-user.

The datB-user module is declared external. The export list of this module
contains an ALGOL subprogram, named ALGOLsubroutine, to be bound. The
datB-user module imports all the interface identifiers from the datB-access
module, including the database and other variables. This makes the database and
the variables visible to the external program.

The implementation section of the datB-access module imports the ALGOL
subprogram, ALGOLSUBROUTINE, and uses it in a function call.

Example

Host Program H4

MODULE DATA-ACCESS INTERFACE
(univdb: database,
Mydict: DICTIONARY <FUNCTIONNAME = '39DATADICTIONARY'»;

export data_access (intq, stuq, univdb, ent_ref, dmrec, dostuff);
from' univdb import instructor, student;
type stu_rec_type = record

stu_no : integer;
end;

stu_rec = dmrecord (stu_rec_type);
var intq query (instructor);

stuq query (student);
ent_ref entityreference (student);
dmrec stu_rec,;

procedure dostuff;
end;

module data_user external;
export ALGOL_external (ALGOL_subroutine);
import data_access;
function ALGOL-subroutine: integer;
end;

module data_access implementation;
import ALGOL_external;
var salary_increase : Boolean;

8600 0304-000

Binding Programs That Access Databases

1 imres
int

dmstatetype;
integer;

procedure dostuff;
var i : integer;
begin

i := ALGOL-subroutine;
open(univdb, update);
begintransaction;

startinsert (intq);
If salary_increase then

assign (intq.salary, 50000);
applyinsert (intq);
close (univdb);

end; {End DOSTUFF}
end. {Module implementation}

program p; {Main program}
import data_access;

begin
dostuff;

end;

8600 0304-000 7-9

Section 8
Printing Binding Information

You can compile a program so that it generates the binding information used to·
bind the code file to another code file. Binding information consists of a
description of the elements in the code file, such as

• The lex level and code segment location for each procedure

• A description of the items in the local directory of each procedure, including
variables and arrays and their characteristics

• A description of the information in the global directory of a procedure

• A description of the information in an external procedure

• The identification of various other elements, including.the block exit pointer,
the first executable code segment, and the global stack size

Generattng Binding Information
Language compilers differ slightly in the instructions they require to generate
binding information. These differences are described in the following list:

• ALGOL and FORTRAN

A program compiled in ALGOL or FORTRAN will have binding information
generated when the NOBINDINFO compiler control option is set to FALSE.
The default setting is FALSE.

• COBOL

A program compiled in COBOL will have binding information generated if any
of the following conditions exist:

- Its lexical (lex) level is greater than 2.

- It contains a procedure declared as EXTERNAL.

- The BIND INFO compiler control option is set to TRUE.

• FORTRAN77

A program compiled in FORTRAN77 will have binding information generated
, when the BINDINFO compiler control option is set to TRUE.

• Pascal

A program compiled in Pascal will have binding information generated when
a module is declared as external in the program.

8600 0304-000 8-1

Printing Binding Information

Using the PRINTBINDINFO Utility

8-2

You can print an analysis of the binding information of a bound or unbound code
file by using a utility named SYSTEM/PRINTBINDINFO (hereafter referred to as
the PRINTBINDINFO utility). The binding information for each separate
procedure of a multiprocedure library file (an ALGOL, FORTRAN, or
FORTRAN77 program compiled with the LIBRARY option set to TRUE) is
analyzed and printed. A list of the identifiers in the separate procedures is
written at the beginning of the printed output.

You can start the PRINTBINDINFO utility from a WFL job or from a CAN DE
session.

The WFL syntax for running PRINTBINDINF10 is as follows:

? BEGIN JOB PRINT/BINDER/INFO;
RUN SYSTEM/PRINTBINDINFO;
FILE CODE = <code file title>;
FILE LINE = <line printer output file title>;

? END JOB.

The CAN DE syntax for running PRINTBINDINFO is as follows:

RUN $SYSTEM/PRINTBINDINFO; FILE CODE = <code file title>;
FILE LINE = <line printer output file title>

The <code file title> and <line printer output file title> constructs are used in
both the WFL and the CANDE syntaxes.

The <code file title> construct 'specifies the code file whose binding information
is to be analyzed. Its default file characteristics are as follows:

KIND=PACK, FAMILYNAME="DISK.", FILETYPE=8, INTMODE=SINGLE

The <line printer output file title> construct specifies the output file created by
PRINTBINDINFO when the LIST option is set. Its default file characteristics are
as follows:

KIND=PRINTER, INTMODE=EBCDIC, MAXRECSIZE=22

Note: If you try to ron PRINTBINDINFO on a code file that does not contain
binding in/ormation, the system generates an error message and
terminates execution.

86000304-000

Printing Binding Information

Example

Consider the following ALGOL program:

BEGIN

END.

INTEGER I;
REAL ARRAY ARY[0:4,0:9];
REAL PROCEDURE RP(A);

VALUE A; BOOLEAN A;
BEGIN

INTEGER J;
END RP;

If this program is compiled and its code file is given the title
OBJECT/EXAMPLE/I, then the following CAN DE command can be used to run
PRINTBINDINFO to print a complete analysis of the binding information of
OBJECT /EXAMPLE/I:

RUN $SYSTEM/PRINTBINDINFO; FILE CODE = OBJECT/EXAMPLE/l

The output produced by PRINTBINDINFO appears as follows:

PROGRAM DESCRIPTION:

0001
0002

0003

PROCEDURE DIRECTORY **
PROCEDURE BLOCK#l; LEX LEVEL: H02; CBIT CODE SEGMENT H0003

LOCAL DIRECTORY
VARIABLE (INTEGER)
ARRAY (REAL)

NUMBER OF DIMENSIONS: 02
FUNCTION (REAL)

PARAMETERS
NUMBER OF PARAMETERS: 01
VARIABLE (BOOLEAN)

H(02,0002)
H(02,0003)

H(02,0004)

ARY

RP

"LIT48 POINTER FOR MAKING PCW: H(0003:0007:3,LL=00)
PROCEDURE RP; LEX LEVEL: H03; CODE SEGMENT HOOOS

LOCAL DIRECTORY
0004 VARIABLE (REAL) H(03,0003) RP.VALUE
0005 VARIABLE (BOOLEAN) H(03,0002) A
0006 VARIABLE (INTEGER) H(03,0004) J

END OF PROCEDURE DIRECTORY *************************************

GLOBAL DIRECTORY ******************************
0007 INTRINSIC (REAL) H(01,0004) ?007
0008 INTRINSIC (REAL) H(01,0006) ?010

8600 0304-000

END OF GLOBAL DIRECTORY ************************

BLOCK EXIT POINTER: H(0003:0006:2, LL=02)
FIRST EXECUTABLE CODE: H(0003:0000:1, LL=02)
POINTER TO END OF 02 STACK: H(0003:0009:0, LL=OO)

8-3

Printing Binding Information

GLOBAL STACK SIZE: 5
SOFTWARE CONTROL WORD IMAGE: H800000001000

NO EXTERNAL PROCEDURES.

Printing Binding Information for Specific Procedures

8-4

You can select certain procedures and blocks, and items within those procedures
and blocks for which you want to print the binding iriformation. You make
selections by using a SELECTIDS file.

The SELECTIDS file consists of a list of one or more EBCDIC identifiers separated
by one or more blanks. If a SELECTIDS file is present when PRINTBINDINFO is
run, binding information is analyzed and printed for only the listed items.

If an identifier appears in the SELECTIDS file, information about that identifier
is printed only if one of the following conditions is true:

• The identifier belongs to a procedure or block in the program.

• The identifier is described in the program description outside the global
directory and the own directory.

• The identifier is described in the global directory.

• The identifier is described in the own directory.

• The identifier is described in the local directory of a procedure or block, and
th~ identifier of that procedure or block also appears in the SELECTIDS file.

For example, if identifier M is declared in procedure P, then information about M
is printed only if both M and P appear in the SELECTIDS file.

If identifier J is declared in the outer block of an ALGOL program, then
information about J is printed only if both J and the identifier of the outer block
appear in the SELECTIDS file.

(The identifier of the outer block of an ALGOL program is BLOCK#l for
programs compiled with Mark 3.5 and later compilers and B.OOOO for programs
compiled with compilers earlier than Mark 3.5.)

The default characteristics for the SELECTIDS file are as follows:

KIND=READER, INTMODE=EBCDIC, FILETYPE = 8

To use. a disk file for SELECTIDS, specify KIND= DISK when file-equating.

8600·0304-000

Printing Binding Information

Example

The following WFL job runs PRINTBINDINFO to analyze OBJECT/EXAMPLE/I,
the ALGOL program shown in the previous example, but restricts the analysis by
providing a SELECTIDS file:

? BEGIN JOB 'RUN/PRINTBINDINFO;
RUN SYSTEM/PRINTBINDINFO;
FILE CODE = OBJECT/EXAMPLE/I;
DATA SELECTIDS
BLOCK#l
ARY
J

? END JOB.

The output produced by this job appears as follows:

SELECTED IDENTIFIERS:

BLOCK#l
ARY
J

PROGRAM DESCRIPTION:

PROCEDURE DIRECTORY **
PROCEDURE BLOCK#l; LEX LEVEL: H02; CBIT CODE SEGMENT H0003

LOCAL DIRECTORY
0001 ARRAY (REAL) H(02,0003) A'RY

NUMBER OF DIMENSIONS: 02
END OF PROCEDURE DIRECTORY *************************************

GLOBAL DIRECTORY ******
END OF GLOBAL DIRECTORY ******

NO EXTERNAL PROCEDURES.

In this output, no information is printed for J because J is described in the local
directory of the procedure RP, and RP does not appear in the SELECTIDS file.
Information about ARY was printed because ARY appears in procedure
BLOCK# I, and BLOCK# 1 appears in the SELECTIDS file.

Output Options
You can use the following three options to affect the format of the output from
the PRINTBINDINFO utility. To enable one or more of these options, you must
assign a negative value to the TASKV ALUE attribute. To do this, set bit 46 of the

8600 0304-000 8-5

Printing Binding Information

8-6

T ASK V ALUE attribute to 1. In addition, you must set a bit for each specific
option as indicated below. A list of the enabled options appears at the beginning
of the printed output.

DEBUG Prints binding information in unanalyzed as well as
analyzed form. To enable the DEBUG option, set bit 0
(zero) of the TASKVALUE attribute to l.

IGNORELOCALDIR Prevents local directories from being analyzed and printed.
To enable the IGNORELOCALDIR option, set bit 1 of the
TASKVALUE attribute to 1.

NOREFERENCES Prevents code references from being analyzed and printed.

Example

To enable the NOREFERENCES option, set bit 2 of the
TASKVALUE attribute to 1.

The following CAN DE command causes PRINTBINDINFO to analyze the code file,
OBJECT /TEST, with the options IGNORELOCALDIR and NOREFERENCES
enabled:

RUN $SYSTEM/PRINTBINDINFO; VALUE~-6; FILE CODE = OBJECT/TEST

8600 0304-000

Appendix A
Warning and Error Messages

This appendix contains an alphabetical listing of the warning and error messages
that you might encounter when using Binder and provides corrective action when
applicable.

COMMA EXPECTED

• This error message is given in the following situations:

- In an INITIALIZE sta~ement, the comma in the address couple is missing.

- In a BIND statement of the form BIND <intrinsic specification>, the
comma after the first integer of the intrinsic number pair is missing.

A COMPILER ERROR WAS DETECTED AT BINDER LINE NUMBER nnnnnnnn

• Refer this problem to your Unisys Customer Service Representative.

A <DIRECTORY SPECIFIER> IS NOT ACCEPTABLE HERE

• This error results when a directory specifier appears in a HOST statement.

A <FILE NODE> WAS EXPECTED IN TmS FILE NAME

• There is an error in the format of the file name.

A GLOBAL VARIABLE (THAT WAS REFERENCED FROM AN INTRINSIC
BEING BOUND) COULD NOT BE FOUND. USE A BIND STATEMENT

• An intrinsic being bound to an intrinsic file references a global variable that

- Is not an MCP global item

- Is not initialized to a correct address couple by an INITIALIZE statement

- Does not already exist in the intrinsic file

- Is not specified to be bound on a BIND statement

A LEFT PARENTHESIS IS MISSING HERE

• In an INITIALIZE statement, the left parenthesis at the beginning of the
address couple is missing.

A NEW GLOBAL VARIABLE MAY NOT BE ADDED TO A HOST THAT IS A
.SUBPROGRAM WITH NO GLOBAL DECLARATIONS

8600 0304-000 A-l

Warning and Error Messages

• . The host program is a subprogram that contains no global declarations.
Binder does not allow a new global to be added to such a host in the course of
binding a nested subprogram.

A QUOTE MARK WAS EXPECTED

• An identifier that begins with a quotation mark is missing the ending
quotation mark.

A RIGHT PARENTHESIS WAS EXPECTED HERE

• This error is given in the following situations:

In an INITIALIZE statement, the right parenthesis at the end of the
address couple is missing.

In a BIND statement of the form BIND <intrinsic specification>, the
right parenthesis at the end of the language list is missing.

In a file specifier or directory specifier, the right parenthesis following
the usercode is missing.

A SEMICOLON WAS EXPECTED HERE

• The semicolon (i) at the end of the Binder input statement is missing.

A SUBPROGRAM IDENTIFIER WAS EXPECTED HERE

• In a BIND statement, the word BIND is not followed by an identifier or an
equal sign (=).

A VALID INTEGER WAS EXPECTED HERE

• This error is given in the following situations:

In an INITIALIZE statement, either the first or second number of the
address couple is not a valid integer.

In a BIND statement of the form BIND <intrinsic specification>, either
the first or second number of the intrinsic number pair is not a valid
integer.

A VALID LANGUAGE IDENTIFIER WAS EXPECTED HERE

• In a BIND statement of the form BIND <intrinsic specification>, an item in
the language list is not a valid language identifier.

AN ARRAY PARAMETER MUST BE DECLARED BEFORE THE 24TH
PARAMETER

• The procedure to be bound has more than 24 parameters, and an array was
discovered after the 24th parameter.

• A void this error by declaring arrays within the first 24 parameters.

A-2 8600 0304-000

Warning and Error Messages

AN ARRAY THAT WAS ADDED AS A NEW GLOBAL VARIABLE HAD NO
LENGTH SPECIFIED FOR IT

• The array that was added as a new global array to the host program had no
length specified for it.

In ALGOL, this results from not declaring an upper bound for the array
within the brackets used for declaring such global items for separate
compilation. '

In COBOL, this message occurs when a new array is added to a host program
by Binder. New global arrays are not allowed for COBOL binding.

AN ENTRY POINT CANNOT BE ADDED AT OTHER THAN THE GLOBAL
LEVEL

• If a FORTRAN subprogram containing entry points is compiled at a lexical
level higher than 3 and bound to a host program in which one of the entry
point variables was not previously declared, an error results. The entry point'
would have to be added at the global level, which is incompatible with its
execution level.

• When binding a higher level subprogram containing entry points, declare all
entry points directly within the program unit to which the subprogram is
bound.

AN INTERNAL BINDER ERROR HAS OCCURRED

• Refer this problem to your Unisys Customer Service Representative.

AN INTERNAL BINDER ERROR HAS OCCURRED-THE PROCEDURE
DIRECTORY AND THE INFO TABLE ARE MISMATCHED

• Refer this problem to your Unisys Customer Service Representative.

BINDER CONTROL OPTIONS MAY NOT APPEAR IN THE MIDDLE OF A
BINDER STATEMENT

• Binder control records can appear between Binder statements but cannot
appear within a Binder state~ent contained on more than one input record.

BOUND CODE LEVEL CHANGED FROM rr.lll TO rr.W.

• . This error message is given in the following situations:

- You tried to bind a subprogram compiled with an earlier· version of the
compiler than that used to compile the host program or previously bound
subprograms.

- . Binder is an earlier version than the bound programs.

The bound code file is set to the earliest version found.

8600 0304-000 A-3

Warning and Error Messages

DUE TO THE ABOVE ERROR(S), THE BINDING OF THIS PROCEDURE IS
DISCONTINUED

• The definition of a subprogram within a subprogram file was found to be
incompatible with the subprogram's definition in the host. The reason for the
incompatibility was indicated by the error messages emitted prior to this
message.

Binder discontinues binding the procedure at this point, resets the error count
back to the value it had before the start of binding the subprogram, and
continues the binding process. The given subprogram is treated as if no
attempt had been made to bind it.

If two subprograms within the host program are known by the same identifier
and Binder attempts to bind both occurrences of the identifier from the same
subprogram, the definition of the separate subprogram probably would be
incompatible with one of the occurrences, but might be compatible with the
other occurrence. Thus, the subprogram would be bound correctly to its
compatible occurrence, and the incompatible occurrence would not affect the
bind in an adverse way. This result might have been the original intention of
the user who did not realize that a subprogram identifier occurred twice
within the host.

<NAME> EXPECTED

• This error is given when the following situations occur within a file specifier
or directory specifier:

- The usercode is not a valid name.

The family name is not a valid name.

- The specifier does not begin with a valid name or the equal sign.

- A right parenthesis, an asterisk, or a slash is not followed by a valid name
or an equal sign.

- A name is specified to be two quotation marks with no characters in
between.

FILE <FILENAME> NOT AVAILABLE

• A BIND? FROM <file> statement was issued and Binder did not find the
file.

FORTRAN77 SUBPROGRAMS MAY NOT BE BOUND INTO A MARK 3.6
FORTRAN77 HOST

• Compile the host program with a Mark 3.7 level or newer compiler.

IN A CODE FILE THAT CANNOT RUN ON ANY MACHINE, A COMMON
BLOCK CANNOT BE EXTENDED BECAUSE IT IS CODEFILE INITIALIZED

• The FORTRAN77 host program was compiled with CODEFILEINIT set, and
locations in the common block were initialized. A subprogram being bound

A-4 8600 0304-000

Warning and Error Messages

declared the common block to be longer than the common block in the host.
Because the initial value of the common block was initialized within the code
file, the common block could not be extended.

IN THIS BIND STATEMENT, AN EQUAL SIGN. WAS EXPECTED HERE

• In this statement, the equal sign after the identifier is missing.

MARK nn CODE FILES MAY NOT BE BOUND; ONLY MARK mm, OR LATER
CODE FILES MAY BE BOUND

• You tried to bind a code file that was more than three system software
releases old. The letters nn indicate the release level of the code file. The
letters mm indicate the earliest release level of software that can be used
with Binder, which is software that is three releases older than the current
level of Binder.

MEMORY MODEL MISMATCH: THE HOST USES THE nnnnnnnn MODEL,
THE SUBPROGRAM USES THE nnnnnnnnn MODEL.

• The value of the MEMORY -MODEL option must be the same for a C host
program and a C subprogram.

NEW GLOBAL AND <OWN> VARIABLES CANNOT BE ADDED TO THE
HOST

• If the host is a NEWP program, new global variables and own variables
cannot be added.

NEW GLOBAL VARIABLES CANNOT BE ADDED WHILE BINDING SEGMENT
1 OF THE MCP

• While MCP segment 1 is being bound, new globals cannot be added to the·
MCP.

OFFSET OF 4096 CANNOT BE REACHED FROM LEX LEVEL 2

• The number of stack cells that can be referenced at lex level 2 cannot be
increased, because A Series .operators, such as NAMC and V ALC, have a
12-bit displacement field. Thus, 4095 is the maximum offset that can be
referenced.

• To avoid exceeding the maximum offset at lex level 2, limit the number of
variables declared as GLOBAL or OWN to only those that must have a global
address.

ONLY MULTIPROCEDURE FILES ARE ALLOWED IN UNIVERSAL BIND
STATEMENT

• One of the following two types of statements was given as input to Binder:

8600 0304-000 A-5

Warning and Error Messages

BIND = FROM AlB
BIND Pt Q, SUBR FROM AlB;

In these examples, AlB is not a library or multiprocedure file. Because AlB
contains only one subprogram, it should not be used in the above BIND
statements.

ONLY THE LAST BIND STATEMENT ENCOUNTERED WILL BE USED

• If more than one BIND statement is found, the last statement entered is used.

OUTPUTMESSAGE ARRAY NAMES MUST BE UNIQUE THROUGHOUT THE
ENTIRE PROGRAM

• Output message array names are an exception to the rules of scope for an
identifier. They must be unique throughout the entire program.

PLjI PROGRAMS MAY ONLY BE BOUND TOPLjI PROGRAMS

• A subprogram compiled by the PL/I compiler can be bound only to host
programs compiled by the PL/I compiler.

REPLACEMENT BINDING IS NOT ALLOWED

• If the host program is a NEWP program, only output message arrays or
procedures declared as EXTERNAL can be bound.

<10> <LIBRARY OBJECT> REQUIRES LIBRARY <11>

• Binder did not find the library <.II> in the host program, so it did not bind
the libr~ry object <10>. This error can occur if the library names are
different in the host program and the subprogram.

• To match different names, include a USE statement in the primary input file.
For the syntax and explanation of the USE statement, see Section 3.

Refer this problem to your Unisys Customer Service Representative if the
preceding solution is not applicable.

SINCE NO INTRINSIC NUMBER WAS GIVEN, THIS INTRINSIC CANNOT BE
REFERENCED OUTSIDE OF THE INTRINSICS FILE

• You did not specify an intrinsic number pair for a new intrinsic being added
to an intrinsic file. The intrinsic can be called by other intrinsics within the
file, but cannot be invoked from a user program.

THE AREASIZE OF THE BOUND CODE FILE IS TOO SMALL~ INCREASE IT
BY SETTING THE AREASIZE FILE ATTRIBUTE DURING THE BIND

• During the conclusion of intrinsic binding, Binder found that the area size of
the bound code file was smaller than required.

• Increase the area size of the bound code file by using the AREASIZE file
attribute as shown in the following example:

A-6 8600 0304-000

Warning and Error Messages

BEGIN JOB MAKE/INTRINSICS;
BIND NEW/INTRINSICS WITH BINDER LIBRARY;

BINDER FILE CODE (AREASIZE = 2016);
BINDER DATA
$ SET INTRINSICS

BIND = FROM INTR/=;
, BIND MYINT = 101,1 (ALGOL, FORTRAN) FROM INTlI=;

? ! END DATA
END JOB.

THE BIND STATEMENT FOR THIS PROCEDURE WAS NOT USED -(EITHER
THE ABOVE BIND STATEMENT(S) WERE OVERRIDDEN BY ANOTHER
STATEMENT, OR THE PROCEDURE IDENTIFIER DID NOT EXIST IN THE
HOST AND WAS NOT CALLED BY ANY PROCEDURE BOUND IN.)

• If a subprogram identifier specified in a BIND statement is not declared in the
host program or otherwise encountered during the binding process, the
subprogram is not bound~

THE BINDER OPTION DEBUG HAS BEEN DEIMPLEMENTED. INSTEAD USE
THE TEST AND DEBUG SYSTEM (TADS)

• The Binder DEBUG option is no longer valid.

• Use the Test and Debug System (TAOS) appropriate to the program in error
to identify the binding problem.

THE BINDER WAS UNABLE TO BIND ONE OR MORE PROCEDURES BUT
THE CODE FILE IS STILL EXECUTABLE

• This warning message is given when Binder has been un,able to bind one or
more of the procedures declared as EXTERNAL or explicitly named in a BIND
statement. The bound code file can be executed. However, if an attempt is
made to execute an external subprogram that was not bound, the following
error message is given:

<identifier> NOT BOUND

If Binder is unable to replacement bind a subprogram, the original
subprogram remains in the bound code file.

THE BINDER'S INTERNAL CONSTANT ARRAY HAS OVERFLOWED - THE
BINDER'S CAPACITY HAS BEEN EXCEEDED

• Refer this problem to your Unisys Customer Service Representative.

THE BINDER'S INTERNAL INFO TABLE HAS OVERFLOWED - THE
BINDER'S CAPACITY HAS BEEN EXCEEDED

• Refer this problem to your Unisys Customer Service Representative.

8600 0304-000 A-7

Warning and Error Messages

THE CODE FILES CONTAIN DATA MANAGEMENT LEVELS THAT ARE
INCOMPATIBLE AND CANNOT BE BOUND

• This error message refers to the binding of DMSII databases. The host
program and all subprograms that reference a DMSII database must all be
compiled with the same level of DMSII software.

THE COMMON BLOCK CANNOT BE EXTENDED FOR THIS HOST. YOU MUST
RECOMPILE THE HOST

• A subprogram tried to extend a global array by declaring it larger in the
subprogram than in the host. The new size was too large to fit in the array
declaration parameters of the host. This situation can occur only with hosts
compiled before release 3.6.

THE DECLARATION IN SUBPROGRAM MUST BE COMPATIBLE WITH THE
DECLARATION IN HOST

• The description of a library object in the subprogram is not compatible with
the description of the same library object in the host program. This
incompatibility can occur with mismatched parameter types or with
mismatched by-reference or by-value usage.

THE FORTRAN77 HEAP VECTOR EXCEEDS MAXIMUM LENGTH.
RECOMPILE THE SEPARATE FILE WITHOUT THE 'HEAP' OPTION

• New heap vector entries in a FORTRAN77 subprogram would make the length
of the heap vector exceed its maximum of 65,535.

THE HOST AND THE SUBPROGRAM DO NOT HAVE THE SAME LIBRARY
SHARINGCLASS

• This error occurs if the subprogram and the host program being bound are
libraries, but have a mismatched SHARINGCLASS. For example, the
subprogram is a share-by-all library, whereas the host program is a private
library.

THE HOST CODE FILE WAS PRODUCED BY A PREVIOUS BIND.
ADDITIONAL BINDING IS.NOT ALLOWED

• A bound C program cannot be used as the host of a subsequent bind.

THE HOST FILE IS NOT AN INTRINSICS FILE

• The INTRINSICS option has the value TRUE in Binder, but the host program
is not an intrinsics file.

THE HOST WAS COMPILED AT A LEXICAL LEVEL TOO HIGH

• Compile the host program at lexical level 2 or 3.

A-8 8600 0304-000

Warning and Error Messages

THE IDENTIFIER OF THE SEPARATE PROCEDURE DOES NOT MATCH THE
DECLARATION IN THE HOST

• Binder was directed by a BIND statement to bind the given subprogram from
a specific file. The subprogram identifier in the subprogram file does not
match the declaration in the host. Binder generates this message and creates a
USE statement that matches the two identifiers. Note that this situation
cannot occur when binding from a specific library file or multiprocedure file.

THE INITIALIZE STATEMENT IS LEGAL FOR INTRINSIC OR MCP BINDING
ONLY

• The INITIALIZE statement is legal only for intrinsic or MCP binding.

THE INTERNAL BINDER ARRAY, CRIT-BLILAC, HAS OVERFLOWED - THE
BINDER CAPACITY HAS BEEN EXCEEDED

• Refer this problem to your Unisys Customer Service Representative.

THE LIBRARY ATTRIBUTES IN THE SUBPROGRAM DIFFER FROM THE
HOST. THE HOST LIBRARY ATTRIBUTES WILL BE USED.

• The subprogram.and the host program have a different number of attributes
or else the attributes do not match. You need not have attributes in the
subprogram because the attributes of the host program are always used.

THE MATCHING LIBRARY <NAME> COULD NOT BE FOUND IN THE HOST

• Binder could not find the named library referenced by the library object.

THE MERGE OF THE TARGET LEVELS HAS RESULTED IN A CODE FILE
THAT CANNOT BE RUN ON ANY MACHINE

• Either the host program or previously bound subprograms have machine
features not available for the target level of this subprogram, or this
subprogram has machine features not available in the host program or
previously bound subprograms.

THE NUMBER OF ARRAY DIMENSIONS IN THE SUBPROGRAM DIFFERS
FROM THE NUMBER OF DIMENSIONS IN THE HOST

• When an array is shared as a global item between two programs, it must be
declared with the same number of dimensions in both programs.

THE NUMBER OF INTERNAL BINDER FILES REQUIRED IS TOO GREAT -
THE BINDER'S CAPACITY HAS BEEN EXCEEDED

• The number of file declarations reserved by Binder for subprogram files has
been exceeded. Each time Binder regresses to a previous level to bind a nested
external subprogram, an additional subprogram file declaration is required. In
addition, each library or multiprocedure file opened by Binder is left open

8600 0304-000 A-9

Warning and Error Messages

until all subprograms have been bound from it. Thus, if the number of library
files is greater than the number of file declarations, this message results.

• Refer this problem to your Unisys Customer Service Representative.

THE NUMBER OF PARAMETERS IN THE SUBPROGRAM DIFFERS FROM
THE NUMBER OF PARAMETERS IN THE HOST

• For binding to occur, you must declare the same number of parameters in .
both the host program and the subprogram to be bound.

THE OFFSET OF xxxx CANNOT BE REACHED FROM LEXICAL LEVEL xx

• As the execution lex level of a subprogram increases, the offset that can be
specified in a V ALC or NAMC operator decreases. If a program or subprogram
at a low lex level declares many variables, it is possible that a subprogram at
a higher lex level will not be able to reference all of them.

THE PROCEDURE THAT IS BEING PASSED AS A PARAMETER WAS NOT
DECLARED IN A FORMAL DECLARATION

• When the parameters expected by a formal procedure are specified in a
formal declaration by both the program unit passing the procedure as an
argument and the subprogram receiving the procedure as a parameter, then
no parameter checking for the formal procedure is performed at execution
time. This error results when either the receiver or caller specifies the
procedure formally, but the program unit passing or receiving the formal
procedure does not contain a formal declaration of the procedure.

THE RESERVED WORD 'FOR' WAS EXPECTED HERE

• In a USE statement, the word FOR after the first identifier is missing.

THE RESERVED WORD 'FROM' WAS EXPECTED HERE

• In a BIND statement that begins with BIND =, the word FROM is missing
after the equal sign (=).

THE RESERVED WORD ~IS' WAS EXPECTED HERE

• In a HOST statement, the word IS is missing after the word HOST.

THE RESULTING CODE FILE WILL RUN ON A MORE RESTRICTED SET OF
MACHINES THAN THE HOST

• This warning message is given when a subprogram must run on a ,more
restricted set of computers than the host program. The resulting bound code
file will run only on the more res~ricted set of computers.

A-IO 8600 0304-000

Warning and Error Messages

THE SDF FORM LIBRARY APPLICATION RECORD DESCRIPTION IN THE
HOST DID NOT MATCH THE SUBPROGRAM.

• SDF form record libraries in the host program and the subprogram are
different versions, although they have identical names. This might indicate
that one or more forms in the form library were altered between compilation
of the host program and the subprogram.

• Recompile the host program and the subprogram.

THE SUBPROGRAM IDENTIFIER CONTAINED TOO MANY QUALIFIERS

• The subprogram identifier contains more qualifiers (OF <identifier>
clauses) than are legal.

THERE ARE TOO MANY ADDRESSED PROCEDURES

• The number of addressed C functions exceeds the limits of Binder.

THERE ARE TOO MANY CALLS TO FORMAL OR ADDRESSED PROCEDURES

• The number of calls to C functions through pointers exceeds the limits of
Binder.

THERE HAS BEEN A COMPILER ERROR. THE COMPILER EMITTED A
BRANCH OPERATOR WITH AN OFFSET THAT IS TOO LARGE FOR THE
LEXICAL LEVEL D2

• Refer this error to your Unisys Customer Service Representative.

THERE HAS BEEN A COMPILER ERROR. THE COMPILER EMITTED TOO
MANY BRANCHES IN THE LEXICAL LEVEL D2

• Refer this error to your Unisys Customer Service Representative.

THERE IS A MISMATCH IN THE PARAMETER TYPE. IT IS BEING PASSED
BY·NAME AND SHOULD BE PASSED BY·VALUE OR VICE VERSA

• This message is given in the following situations:

- During the binding of an exported procedure, the host program declares a
parameter by value, and the subprogram declares it by name, or vice
versa.

- During ALGOL-ALGOL, COBOL-COBOL, or ALGOL-COBOL binding, the
host program declares a parameter by value, and the subprogram declares
it by name, or vice versa.

8600 0304-000 A-11

Warning and Error Messages

THERE IS A MISMATCH IN THE ROW SIZE OF THE HEAP (POSSIBLY
CAUSED BY DIFFERENT LONGLIMITS): THE SIZE IN THE HOST = nnnn,
THE SIZE IN THE SUBPROGRAM = nnnn.

• The value of the LONGLIMIT compiler control option must be the same for a
C host program and a C subprogram.

THERE IS A MISMATCH IN THE SIM CLASS INFORMATION. THE
INTERNAL VALUE IN THE HOST = <VALUE>. THE INTERNAL VALUE IN
THE SUBPROGRAM = <VALUE>.

• The CLA881NFOs of the 81M entity reference variable, entity reference- array,
or query variable used in the host program are different from those used in
the subprogram. This error occurs when items with the same name are
declared with different field sizes.

THERE IS A MISMATCH WITH THE (SIM) SEMANTIC QUALIFICATION.
THE NAME IN THE HOST = <NAME>. THE NAME IN SUBPROGRAM =
<NAME>.

• The database ID used to qualify the 81M entity reference variable, entity
reference array, or query variable for the host program is different from the
ID used for the subprogram. This error message can result if you tried to bind
a host program and a subprogram compiled with different 81M databases.

THERE IS AN INCOMPATIBILITY IN THE ARRAY LOWER BOUNDS
SPECIFICATION

• This error message results when Binder detects that a subprogram expects
lower bounds for an array and they are not passed, or a subprogram does not
expect lower bounds and is called with lower bounds passed to it.

FORTRAN and FORTRAN77 always pass an array descriptor and an offset.

COBOL rarely passes an offset, although it accepts and passes an offset if the
WITH LOWER BOUNDS clause is used. However, the offset value itself is
ignored in calculating subscripts within the COBOL subprogram.

In ALGOL, the user can specify whether the array parameter is passed with
lower bounds.

THERE IS AN INCORRECT NUMBER OF ADDRESS COUPLES DECLARED
FOR THIS VARIABLE

• A PL/I structure of another variable type has a number of address couples
associated with it, in accordance with the way it is declared in the program
unit. This error occurs when two program units reference the same variable
with a different number of address couples, indicating an incompatibility in
the declarations within the separate program units.

THERE WERE NO SUBPROGRAMS BOUND TO THE HOST

• No subprograms were bound to the host program during the binding proces~.

A-12 8600 0304-000

Warning and Error Messages

THIS BINDER OPTION IS NOW OBSOLETE AND WILL BE IGNORED

• The Binder option you tried to use is obsolete.

THIS CODE FILE IS THE RESULT OF A PREVIOUS BIND AND IS SUITABLE
AS A HOST ONLY

• The resultant code file from. a previous bind cannot be bound to another host.
Such a file may be.used only as a host program in subsequent binds.

THIS CODE FILE USES AN UNRECOGNIZABLE MEMORY MODEL

• Refer this error to your Unisys Customer Service Representative.

THIS FILE CANNOT BE ACCESSED BY THE BINDER

• Binder is unable to access this file.

THIS FILE IS NOT A CODE FILE

• Check to make sure that the file title is complete and that a directory is not
. specified by the title.

THIS ITEM DEFINITION HAS ALREADY BEEN SEEN. ONLY ONE
NON-EXTERNAL DECLARATION IS ALLOWED.

• The same variable or function is exported from more than one C subprogram
or C host program.

mIS ITEM IS A COpy OF TWO OR MORE DIFFERENT ITEMS

• Refer this error to your Unisys Customer Service Representative.

mIS ITEM WAS INITIALIZED IN TWO OR MORE DECLARATIONS

• A C variable, array, or structure can be initialized only once. Binder has
found an initialization in more than one C subprogram or C host program.

THIS NEW GLOBAL VARIABLE HAS BEEN ADDED TO THE HOST

• This is a warning message that indicates that a variable referenced in the
subprogram does not exist in the host. Binder adds the variable to the host
program at the global level.

mIS NUMBER IS TOO LARGE

• In an intrinsic number pair, either the first integer has a value greater than
the largest possible installation number or the second integer has a value
greater than the largest possible intrinsic number.

8600 0304-000 A-13

Warning and Error Messages

THIS IS A MISSPELLED CONTROL OPTION

• The specified compiler control option is not a valid Binder compiler control
option. Binder recognizes only a specific set of compiler control options.
Binder does not recognize user options.

THIS IS AN ILLEGAL <FAMILY NAME>

• The family name in a file specifier or directory specifier contains invalid
characters. Valid characters are A through Z and 0 (zero) through 9.

THIS IS AN ILLEGAL IDENTIFIER

• This error is given in the following situations:

- In a Binder control record, the item following the dollar sign ($) is not of
identifier format.

- In a BIND statement, an item following OF in a subprogram identifier is
not an identifier.

- In an EXTERNAL statement, either the item at the beginning of a
subprogram identifier or an item following OF in a subprogram identifier
is not an identifier.

- In an INITIALIZE statement, the item following INITIALIZE or following a
comma (,) is not an identifier.

- In a USE statement, the item following USE or FOR or the item following
OF in the subprogram identifier is not an identifier.

THIS IS AN INCORRECT INTRINSIC NUMBER BECAUSE ANOTHER
INTRINSIC HAS THE SAME NUMBER

• Two intrinsics within the same intrinsic file cannot have the same intrinsic
number pair.

THIS IS AN INCORRECT INTRINSIC NUMBER BECAUSE THE SAME
INTRINSIC IDENTIFIER ALREADY EXISTS WITH A DIFFERENT NUMBER

• An intrinsic with the same identifier already exists within the intrinsic file.
The existing intrinsic has an 'intrinsic number pair different from that
specified for the intrinsic being bound.

THIS IS AN INVALID DATA DICTIONARY INVOCATION OR USAGE LIST

• Refer this problem to your Unisys Customer Service Representative.

THIS IS NOT A VALID BINDER STATEMENT

• The input to Binder is not one of the valid Binder statements.

A-14 8600 0304-000

Warning and Error Messages

THIS OBJECT CODE FILE HAS NO BINDER INFORMATION

• The file cannot be used for binding, either as a host program or as a
subprogram. The option NOBINDINFO may have been set during the file's
creation, or the respective compiler may have determined that the file
contained no external references, so it did not require binding.

THIS PROCEDURE CANNOT BE PASSED BETWEEN THESE TWO
LANGUAGES

• A procedure cannot be passed as a parameter from the language in which the
procedure call is written to the language in which the procedure declaration
is written.

THIS PROCEDURE WAS NOT FOUND IN THE MULTIPROCEDURE FILE(S)

• Binder was unable to find the subprogram within the library files designated
in the BIND statement. The subprogram is left in the host program in its
present form, and binding of other subprograms continues.

THIS PROGRAM UNIT WAS COMPILED AT A LEXICAL LEVEL
INCOMPATIBLE WITH THE LEXICAL LEVEL IN THE HOST. RECOMPILE
USING THE· OPTION $ SET LEVEL N

• The given subprogram was compiled at a lex level incompatible with its
execution lex level within the host.

• Recompile the subprogram with the correct execution lex level by using the
LEVEL option of the compiler.

THIS PROGRAM UNIT IS SUITABLE AS A HOST PROGRAM ONLY, SO IT
CANNOT BE BOUND INTO ANOTHER HOST

• The designated subprogram file is actually a host program or main program.
You cannot bind a host program to another host program.

THIS VARIABLE TYPE CANNOT BE ADDED TO THE HOST

• A variable referenced in a subprogram does not exist in 'the host. Usually
Binder adds the variable to the host program. However, Binder is incapable of
adding the following types of variables to a host:

86000304-000

DATABASE
FORMAT'
LABEL
LIBRARY
LIST
PICTURE
SDF form record libraries
Switch-type items
TRANSACTION BASE

A-I5

Warning and Error Messages

TO ADD A NEW LIBRARY OBJECT, LIBRARY <NAME> MUST BE
COMPILED WITH A MARK 3.8 OR LATER COMPILER

• To add a new library object, the host program must be compiled with a Mark
3.8 or later version of the compiler.

TOO MANY ENTRIES-INCREASE MAXENTRIES

• Refer this problem to your Unisys Customer Service Representative.

A-16 8600 0304-000

Appendix B
Using Binder Control Record Options

You can control the manner in which Binder processes the subprogram file and
the host program file by including Binder control records in the WFL job or
CANDE file used to execute Binder. In each Binder control record, you include
one or more Binder options. These options allow you to

• Determine the content of printed output

• Determine whether error messages get sent to the ERRORS file and get
printed

• Indicate whether a host file is required

• Determine whether lineinfo and bindinfo are included in the code file

• Determine whether a bound subprogram array is resized to match the host
program array

• Enable intrinsic binding

• Prevent the code file from being locked when Binder cannot locate a
subprogram

• Temporarily suspend binding when a subprogram is not available

Binder Control Record Format
A Binder control record is identified-by a dollar sign ($) in the first column of the
record. Binder options follow the dollar sign in the succeeding columns through
column 72. A percent sign (%) appearing in any column from 2 through 72 of a
Binder control record indicates that the remaining columns of the record are to be
ignored by the Binder. Binder control records can occur at any point in the Binder
input file.

There are two formats for including options in Binder control records. Syntax 1
allows you to specify options that are effective throughout the binding process.
Syntax 2 allows you to assign the value TRUE to certain options for the duration
of the binding of specific subprograms.

Syntax 1, Version A

-$ ~mIT-i~-----~-----------~ L SIT --.l [<Binder options>]

8600 0304-000 8-1

.Using, Binder Control. Record Options

Syntax 1, Version B

r - $ --I.-""'[-RE-s-n-Jr-- <Binder options> -.1-------------------1

LSET~
<Binder options>

CODE.----I

CODEN ---I

ERRLIST

ERRORLIST

HOST ----I

LIST ----I

MAP -----I

NOBINDINFO

SEGS ----I

STACK ---I

STRICT

TIME ----I

USEHOSTSIZE

WAIT -----I

WARN -----'

Explanation

8-2

Syntax 1 lets you specify Binder options that are effective throughout the
binding process. Syntax 1 has two versions, A and B.

Version A

The Binder control record contains a dollar sign ($), followed by either SET or
RESET, followed by one or more Binder options. If the action is SET, the named
options are assigned a value of TRUE. If the action is RESET, the named options
are assigned a value of FALSE.

8600 0304-000

Syntax 2

Using Binder Control Record Options

If you do not name any options, all options are set or reset according to the
action you specify.

Example

$ SET CODE STACK LIST
$ RESET SEGS

Version B

The Binder control record contains a dollar sign ($) followed by one or more
Binder options. SET and RESET are not used to indicate values of TRUE or
FALSE. Rather, the named options are assigned a value of TRUE, and the
unnamed options are assigned a value of FALSE. If the control record contains a
dollar sign and no options, Binder ignores the record. (Note that ERRORLIST
(ERRLIST), LINEINFO, and STRICT cannot be used in this syntax, so they assume
their default values.)

Example

$ CODE STACK LIST

- $ - <identifier> CODE

CODEN

LIST

MAP

SEGS

WAIT

WARN

Explanation

Syntax 2 lets you set certain options to TRUE for the binding of a specified
subprogram. All named options are assigned a value of TRUE. All unnamed
options are assigned a value of FALSE.

The options assume the assigned values only during the binding of the
subprogram specified by the identifier. Once the subprogram is bound, all options
are restored to their previous values. For any option, the last setting in a control
record of Syntax 1 takes precedence over all other settings.

You can include only one subprogram identifier in each Binder control record.
You must include one or more Binder options after the identifier.

8600 0304-000 8-3

Using Binder Control Record Options

Example

$ PROCEDUREl CODE WAIT WARN

For information about identifiers, see Section 2.

Binder Options
Binder options are discussed in alphabetical order in Table B-1:

Table B·l. Binder Control Record Options

Option Default Value Function

CODE False Indicates whether the resultant code file will
be printed in hexadecimal form

CODEN False Indicates whether the input code files will be
printed in hexadecimal form

ERRORLIST False Indicates whether Binder will write error
(True for binds initiated by messages to the file titled, ERRORS. If
CANOE) Binder is initiated from WFL, ERRORS is a

printer file. If Binder is initiated from CANOE,
ERRORS is a remote file, and messages are
written to the remote station that initiated
the bind. (ERRORlIST is the preferred
synonym for ERRlIST.)

ERRlIST False See the preferred synonym, ERRORlIST.
(True for binds initiated by
CANOE)

HOST False Indicates whether a host file is required.
When the INTRINSICS options is FALSE, a
host file is always required, and the HOST
option has no effect. When the HOST option
is TRUE and the INTRINSICS option is TRUE,
a host file is required and is used for intrinsic
binding. When the HOST option is FALSE and
the INTRINS1CS options is TRUE, a host file
is not required and is not used.

INTRINSICS False Indicates whether an intrinsic file will be
created or intrinsic binding will be enabled.
When FALSE, the INTRINSICS option can still
create an intrinsic code file if the host file is
the object file of a previous intrinsic bind. If
the INTRINSICS option is FALSE, a host file
is always required and the HOST option has
no effect.

8-4 8600 0304-000

· Using Binder Control Record Options

Table B·l. Binder Control Record Options (cont.)

Option Default Value Function

LlNEINFO True Indicates whether the resulting code file will
contain all LlNEINFO encountered in the host
and subprogram files.

LIST True Indicates whether input records, identifiers
(F;alse for binds initiated by and their address couples, and BEGIN
CANOE) BINDING and END BINDING messages will

be printed.

MAP False Indicates whether the address couples of all
identifiers in the resultant code will be
printed, both in alphabetical order by
identifier and in address couple order. (The
MAP option is the preferred synonym for the
STACK option.)

NOBINDINFO False Indicates whether. the Binder will purge all
Binder information from the resultant code
file. The resultant code file cannot then be
used as a host for a subsequent bind if the
value of NOBINDINFO is TRUE.

SEGS True Indicates whether the segment dictionary
(False for binds initiated by changes will be printed. Assigning a value to
CANOE) the LIST option causes the same value to be

assigned to the SEGS option.

STACK False See the preferred synonym, MAP.

STRICT False Indicates whether the resultant code file will
(True for MCP binds) be locked if a subprogram specified in a

BIND statement is not bound. When FALSE,
the code file is locked.

TIME False Indicates whether header and trailer
information for the bind will be printed.
Because the information is printed when LIST
is TRUE, the value of TIME is significant only
when LIST is FALSE.

USEHOSTSIZE False Indicates whether an array global to a bound
subprogram is resized to the size of its
corresponding array in the host. If the
USEHOSTSIZE option is not set (FALSE), the
larger array size from either the host or the
subprogram is used.

8600 0304-000 8-5

Using Binder Control Record Options

Table B·1. Binder Control Record Options (cont.)

Option Default Value Function

WAIT False Indicates whether Binder will suspend the
binding process if a specified subprogram file
is not present. Upon suspension, the operator
is allowed to make the file present, to
terminate the Binder, or to enter the OF
(Optional File) or FA (File Attribute) OOT
command. Any OF or FA command applies to
that file only. Subsequent non present files
again cause the Binder to suspend binding.
For more information about the OF and FA
commands, refer to the System Commands
Reference Manual.

WARN True Indicates whether warning messages will be
(False for binds initiated by printed upon the occurrence of certain
CANOE) conditions. When WARN is FALSE, these

warning messages are suppressed. Assigning
a value to the LIST option causes the same
value to be assigned to the WARN option.

8-6 8600 0304-000

Appendix C
Understanding Railroad Diagrams

What Are Railroad Diagrams?
Railroad diagrams are diagrams that show you the rules for putting words and
symbols together into commands and statements that the computer can
understand. These diagrams consist of a series of paths that· show the allowable
structure, constants, and variables for a command or a statement. Paths show the
order in which the command or statement is constructed. Paths are represented
by horizontal and vertical lines. Many railroad diagrams have a number of
different paths you can take to get to the end of the diagram. For example:

- REMOVE t SOURCE J
OBJECT

If you follow this railroad diagram from left to right, you will discover three
acceptable commands. These commands are

• REMOVE

• REMOVE SOURCE

• REMOVE OBJECT

If all railroad diagrams were this simple, this explanation could end here.
However, because the allowed ways of communicating with the computer can be
complex, railroad diagrams sometimes must also be complex.

Regardless of the level of complexity, all railroad diagrams are visual
representations of commands and statements. Railroad diagrams are intended to

• Show the mandatory items.

• Show the user-selected items.

• Present the order in which the items must appear.

• Show the number of times an item can be repeated.

• Show the necessary punctuation.

To familiarize you with railroad diagrams, this explanation describes the
e.lements of the diagrams and provides examples.

Some of the actual railroad diagrams you will encounter might be more complex.
However, all railroad diagrams, simple or complex, follow the same basic rules.

8600 0304-000 C-l

Understanding Railroad Diagrams

They all consist of paths that represent the allowable structure, constants, and
variables for commands and statements.

By following railroad diagrams, you can easily understand the correct syntax for
commands and statements. Once you become proficient in the use of railroad
notation, the diagrams serve as quick references to the commands and
statements.

Constants and Variables
A constant is an item that cannot be altered. You must enter the constant as it
appears in the diagram, either in full or as an allowable abbreviation. If a
constant is partially underlined, you can abbreviate the constant by entering only
the underlined letters. In addition to the underlined letters, any of the remaining
letters can be entered. ·If no part of the constant is underlined, the constant
cannot be abbreviated. Constants can be recognized by the fact that they are
never enclosed in angle brackets « » and are in uppercase letters.

A variable is an item that represents data. You can replace the variable with data
that meets the requirements of the particular command or statement. When
replacing a variable with data, you must follow the rules defined for the
particular command or statement. Variables appear in railroad diagrams enclosed
in angle brackets « ».

In the following example, BEGIN and END are constants, and <statement list> is
a variable. The constant BEGIN can be abbreviated since it is partially
underlined. Valid abbreviations for BEGIN are BE, BEG, and BEGI.

- BEGIN -<statement list>- END ---------------------1

Constraints

C-2

Constraints are used in a railroad diagram to control progression through the
diagram. Constraints consist of symbols and unique railroad diagram line paths.
They include

• Vertical bars

• Percent signs

• Right arrows

• Required items

• User-selected items

• Loops

• Bridges

.8600 0304-000

Understanding Railroad Diagrams

A description of each item follows.

Vertical Bar

The vertical bar symbol (I) represents the end of a railroad diagram and indicates
that the command or statement can be followed by another command or
statement.

- SECONDWORD - (-<arithmetic expression>-) --------------\

Percent Sign

The percent sign (%) represents the end of a railroad diagram and indicates that
the command or statement must be on aline by itself.

Right Arrow

The right arrow symbol (>) is used when the railroad diagram is too long to fit
on one line and must continue on the next. A right arrow appears at the end of
the first line, and another right arrow appears at the beginning of the next line.

- SCALERIGHT - (-<arithmetic expression>- , -------------...

)-<arithmetic expression>-) -----------------------1

Required Items

A required item can be either a constant, a variable, or punctuation. A required
item appears as a single entry, by itself or with other items, on a horizontal line.
Required items can also exist on horizontal lines within alternate paths or nested
(lower-level) diagrams. If the path you are following contains a required item,
you must enter the item in the command or statement; the required item cannot
be omitted.

In the following example, the word EVENT is a required constant and
<identifier> is a required variable:

- EVENT -<identifier>------------------------t

User-Selected Items

User-selected items appear one below the other in a vertical list. You can choose
anyone of the items from the list. If the list also contains an empty path (solid
line), none of the choices are required. A user-selected item can be either. a
constant, a variable, or punctuation. In the following railroad diagram, the plus

8600 0304-000 C-3

Understanding Railroad Diagrams

Loop

Bridge'

C-4

sign (+) or minus sign (-) can be entered before the required variable
<arithmetic expression>, or the symbols can be disregarded because the diagram
also contains an empty path.

~ar;thmet;c expression>

A loop represents an item or a group of items that you can repeat. A loop can
span all or part of a railroad diagram. It always consists of at least two
horizontal lines, one below the other, connected on both sides by vertical lines.
The top line is a right-to-Ieft path that contains information about repeating the
~~ .

Some loops include a return character. A return character is a character-often a
comma (,) or semicolon (;)-required before each repetition of a loop. If there is
no return character, the items must be separated by one or more blank spaces.

~f;eld V:l~-~--~

Sometimes a loop also includes a bridge, which is used to show the maximum
number of times the loop can be repeated. The bridge can precede the contents of
the loop, or it can precede the return character (if any) on the upper line of the
loop.

The bridge determines the number of times you can cross that point in the
diagram. The bridge is an integer enclosed in curved lines (1 \.). Not all loops
have bridges. Those that do not can be repeated any number of times until all
valid entries have been used.

In the first bridge example, you can enter LINKAGE or RUNTIME no more than
two times. In the second bridge example, you can enter LINKAGE or RUNTIME
no more than three times.

8600 0304-000

Understanding Railroad Diagrams

{

2'

LIN~GE ~~--~

RUNTIME]

In some bridges, an asterisk (*) follows the number. The asterisk means that you
must cross that point in the diagram at least once. The maximum number of times
that you can cross that point is indicated by the number in the bridge.

~I~~GE~~I------------------------------------~
~~UNTIMEJ
In the previous bridge example, you must enter LINKAGE at least once but no
more than twice, and you can enter RUNTIME any number of times.

The following table illustrates the constraints used in railroad diagrams.

Symbol Explanation

I Vertical bar. Indicates that the command or statement can be followed by another
command or statement.

-.--% Percent sign. Indicates that the command or statement must be on a line by itself.

>
>

Right arrow. Indicates that the diagram occupies more than one line.

-<required>- Required item. Indicates the constants, variables, and punctuation that must be
entered in a command or statement.

User-selected items. You select the item or items to include.

B NO

~ I
Loop. Indicates that an item or group of items can be repeated.

L:l Bridge. Indicates the maximum number of times a loop can berepeated.

Following the Paths of a Railroad Diagram
The paths of a railroad diagram lead you through the command or statement
from beginning to end. Some railroad diagrams have only one path, while others
have several alternate paths. The following railroad diagram indicates there is
only' one path that requires the constant LINKAGE and the variable <linkage
mnemonic> :

8600 0304-000 C-5

Understanding Railroad Diagrams

- LINKAGE -<linkage mnemonic>---------------------f

Alternate paths provide choices in the construction of commands and statements.
Alternate paths are provided by loops, user-selected items, or a combination of
both. More complex railroad diagrams can consist of many alternate paths, or
nested (lower-level) diagrams, that show a further level of detail.

For example, the following railroad diagram consists of a top path and two
alternate paths. The top path includes an ampersand (&) and the constants that
are user-selected items in the vertical list. These constants are within a loop that
can be repeated any number of times until all options have been selected. The
first alternate path requires the ampersand followed by the required constant
ADDRESS. The second alternate path requires the ampersand followed by the
required constant ALTER and the required variable <new value>.

-& TYPE--~~-~------------------~

HEX

OCTAL

ADDRESS -----/

ALTER ---<new value>

Railroad Diagram Examples with Sample Input

C-6

The following examples show five railroad diagrams and possible command and
statement constructions based on the paths of these diagrams.

Example·1

- LOCK - (-<file identifier>-) ------------------t
Sample Input

LOCK (Fl)

LOCK (FILE4)

LOCK is a constant and cannot be altered. Because no part of the word is
underlined, the entire word must be entered. The parentheses are required
punctuation, and Fl and FILE4 are sample file identifiers.

8600 0304-000

Understanding Railroad Diagrams

Example 2

<open statement>

-- OPEN g<database name>

INQUIRY

UPDATE

Sample Input

OPEN DATABASE!

The constant OPEN is followed by the variable DATABASE!, which is a database
name. The railroad diagram shows two user-selected items, INQUIRY and
UPDATE. However, because there is an empty path (solid line), these entries are
not required.

OPEN INQUIRY DATABASEl

The constant OPEN is followed by the user-selected constant INQUIRY and the
variable DATABASE!.

OPEN UPDATE DATABASEl

The constant OPEN is followed by the user-selected constant UPDATE and the
variable DATABASE!.

Example 3

<generate statement>

-- GENERATE --<subset>--- - 1 NULL

<subset>--r-------t

AN~<subset
OR

+

Sample Input

GENERATE Z - NULL

The GENERATE constant is followed by the variable Z, an equal sign (-), and the
user-selected constant NULL.

8600 0304-000 C-7

Understanding Railroad Diagrams

C-8

GENERATE Z = x

The GENERATE constant is followed by the variable Z,an equal sign, and the
user-selected variable X.

GENERATE Z = X AND B

The GENERATE constant is followed by the variable Z, an equal sign, the
user-selected variable X, the AND command (from the list of user-selected items
in the nested path), and a third variable, B.

GENERATE Z = X + B

The GENERATE constant is followed by the variable Z, an equal sign, the
user-selected variable X, the plus sign (from the list of user-selected items in the
nested path), and a third variable, B.

Example 4

<entity reference declaration>

- ENTITY REFERENCE i<entity ref Ill>-- (~ClaSS ID>-) --'---------1

Sample Input

ENTITY REFERENCE ADVISORl (INSTRUCTOR)

The required item ENTITY REFERENCE is followed by the variable ADVISORl
and the variable INSTRUCTOR. The parentheses are required.

ENTITY REFERENCE ADVISORl (INSTRUCTOR), ADVISOR2 (ASST_INSTRUCTOR)

This sample illustrates the use of a loop by showing the input that appears in the
first sample followed by a comma, the variable ADVISOR2, and the variable
ASST -INSTRUCTOR. The parentheses are required.

8600 0304-000

Understanding Railroad Diagrams

Example 5

-- PS- MODIFY ---------~------------......

~-.-----L.-r- <request number'>---------~r_-___,r__-----..

<request number>-- - -- <request number>

All~--------------------~

EXCEPTIONS ----------------1

L......L...---...--<file attribute phrase>

I---~<print modifier phrase>

Sample Input

PS MODIFY 11159

The constants PS and MODIFY are followed by the variable 11159, which is a
request number.

PS MODIFY 11159,11160,11163

This sample illustrates the use of a loop by showing the input that appears in the
first sample followed by a comma, the variable 11160, another comma, and the
final variable 11163.

PS MODIFY 11159-11161 DESTINATION = "LP7"

The constants PS and MODIFY are followed by the user-selected variables
11159-11161, which are request numbers, and the user-selected variable
DESTINATION = "LP7 ", which is a file attribute phrase.

PS MOD ALL EXCEPTIONS

The constants PS and MODIFY are followed by the user-selected constant ALL
and the user-selected constant EXCEPTIONS. Note that in this sample input, the
constant MODIFY has been abbreviated.

8600 0304-000 C-9

Glossary

A

address couple

ALGOL

ASCII

B

A representation of the address of an item in a program. An address couple
consists of two numbers: the first number is a lexical level, and the second
number is a displacement (offset) within that lexical level. ,

Algorithmic language. A structured, high-level programming language that
provides the basis for th,e stack architecture of the Unisys A Series systems.
ALGOL was the first block-structured language developed in the 1960s and
served as a basis for such languages as Pascal and Ada. It is still used extensively
on A Series systems, primarily for systems programming.

American Standard Code for Information Interchange. A standard 7 -bit or 8-bit
information code used to represent alphanumeric characters, control characters,
and graphic characters on a computer system.

BDMSALGOL

c

A Unisys language based on Extended ALGOL that contains extensions for
accessing Data Management System II (DMSII) databases.

C programming language

CANDE

COBOL

A language developed by Bell Laboratories for the UNIX~ operating system. The
C language is a block-structured language that features a rich set of operators,
few restrictions on data type conversions, and economy of expression~

See Command and Edit.

Common Business-Oriented Language. A widely used, procedure-oriented
language intended for use in solving problems in business data processing. The

UNIX is a registered trademark of AT&T Information Systems.

8600 0304-000 Glossary-l

Glossary

code file

main characteristics of COBOL are the easy readability of programs and a
considerable degree of machine independence. COBOL is the most widely used
procedure-oriented language.

See object code file, source file.

Command and Edit (CANDE)
A time-sharing message control system (MCS) that enables a user to create and
edit files, and to develop, test, and execute programs, interactively.

copy descriptor

D

A duplicate of a mom descriptor except the copy bit is set to 1. A copy <iescriptor
is derived from a mom descriptor, and multiple copy descriptors can reference
the same data segment.

Data Communications ALGOL (DCALGOL)
A Unisys language based on ALGOL that contains extensions for writing message
control system (MCS) programs and other specialized system programs.

Data Management ALGOL (DMALGOL)
A Unisys language based on ALGOL that contains extensions for writing Data
Management System II (DMSII) software and other specialized system programs.

Data Management System II (DMSII)
A specialized system software package used to describe a database and maintain
the relationships among the data elements in the database.

DCALGOL

directory

See Data Communications ALGOL.

(1) A table of contents listing the files contained on a device. The device is
usually a disk or a tape.
(2) A list of file names organized into a hierarchy according to similarities in
their names. File names are grouped in a directory if their first name constants
(and associated usercodes) are identical. These groups are divided into
subdirectories consisting of those file names whose first two name constants are
identical, and so on.'
(3) In Data Management System II (DMSII), a file with the layout for each field
of the record that it describes. A directory describes the layout of records within
a file.
(4) The partial name of a disk file up to one of the following terminators: a slash
followed by an equal sign C/=) or a right parenthesis followed by an equal sign
0=)·

DMALGOL
See Data Management ALGOL.

Glossary-2 8600 0304-000

DMSII

E

EBCDIC

entity

Glossary

See Data Management System II.

Extended Binary Coded Decimal Interchange Code. An 8-bit code representing 256
graphic and control characters that are the native character set of most
mainframe systems.

(1) An item about which information is stored. An entity can be tangible or
intangible and is further defined by attributes, which are the characteristics of
the entity.
(2) In the Communications Management System (COMS), a category of items
within the configuration file.
(3) Any object defined in the Advanced Data Dictionary System (ADDS). To
ADDS, an entity can be a Screen Design Facility (SDF) field, form, or formlibrary;
an attribute or class in a Semantic Information Manager (SIM) database; a data
set, group, or item in a Data Management System II (DMSII) database; or the
entire SIM or DMSII database. Note that the definitions that are stored in
ADDS~objects and their relationships-are themselves known as entities.
(4) In the InfoExec environment, the basic unit of a Semantic Information
Manager (SIM) database. A SIM entity can be any member of a SIM class, such as
an employee, a department, or a project.

entity reference variable
In Semantic Information Manager (SIM) programs, a variable that refers
explicitly to an entity.

entry point
A procedure or function that is a library object.

external reference
A reference to an external subprogram that is not bound into the host.

F

FORTRAN
Formula Translation. A high-level, structured programming language intended
primarily for scientific use.

FORTRAN77
A version of the FORTRAN language that is compatible with the ANSI X3.9-1978
standard. A version of the FORTRAN language that is compatible with the
ANSI X3.9-1978 standard.

8600 0304-000 Glossary-3

Glossary

G
global item

H

host file

In the Binder, an item that, in a host, is declared at the outermost lexical level or,
in a subprogram, is declared at a lexical level less than that of the subprogram.

The object code file to which separate subprograms are bound. A host file can be
the resultant object code file of a previous bind and always contains the first
executable object code segment of the resultant bound program.

host program

I

InfoExec

A program to which separately compiled procedures can be bound by using the
Binder program or by using the SEPCOMP facility.

Information Executive. The name of a family of Unisys products that define,
maintain, retrieve, and update databases.

Information Executive (lnfoExec)
See InfoExec.

intrinsic

L

lex level

A system-supplied program routine for common mathematical and other
operations that is loaded onto the system separately. An intrinsic can be invoked
by the operating system or user programs.

See lexical level.

lexical level (lex level)

Glossary-4

(1) A number that i~dicates the relative level of an addressing space within the
stack of an executing program. Lexical levels range from 0 through either 15 or
31, depending on the computer family. A lower lexical level indicates a more
global addressing space.
(2). A measure of the number of other blocks a block is nested within. The outer
block of a program has a lex level of 2 or 3, depending on whether the program
has a procedure heading. Each block has a lex level one higher than the block it
is nested within.

8600 0304-000

library

Glossary

(1) A collection of one or more named routines or library objects that are stored
in a file and can be accessed by other programs.
(2) A program that exports objects for use by user programs.

library object
An object that is shared by a library and one or more user programs.

M

master control program (MCP)

MCP

N

NEWP

o
object

The central program of the A Series operating system. The term applies to any
master control program that Unisys may release for A Series systems.

See master control program.

A structured, high-level programming language used in developing some Unisys
system software. Based on the ALGOL language, NEWP contains facilities
necessary for the operating system to interact with A Series hardware.

(1) Any item declared in a program. Arrays, files, procedures, tasks, and
variables are all examples of objects.
(2) The basic unit of data in the semantic data model (SDM), object-oriented
databases (OODBs), and systems based on these technologies, such as the
Semantic Information Manager (SIM). An object possesses both structure and
behavior. In SIM, an object is also called an entity. See also entity.

object code file

ODT

A file produced by a compiler when a program, is compiled successfully. The file
contains instructions in machine-executable object code.

See operator display terminal.

operator display terminal (ODT)
(1) A terminal or other device that is connected to the system in such a way that
it can communicate directly with the operating system. The ODT allows
operations personnel to accomplish system operations functions through either of
two operating modes: system command mode or data comm mode.
(2) The name given to the system control terminal (SeT) when it is used as an
ODT. '

8600 0304-000 Glossary-5

Glossary

p

Pascal

PL/I

A high-level programming language developed by Niklaus Wirth, based on the
block structuring nature of ALGOL 60 and the data structuring innovations of
C.A.R. Hoare. Pascal is a general-purpose language.

Programming Language I. A high-level, structured programming language
designed primarily for scientific and commercial use.

primary input rIle
In the Binder, the input file that contains the Binder control records and the
Binder statements. '

Q
query variable

s

In Semantic Information Manager (SIM) application programs, a variable that
represents the query statement.

Semantic Information Manager (SIM)

SIM

The basis of the InfoExec environment. SIM is a database management system
used to describe and maintain associations among data by means of
subclass-superclass relationships and linking attributes.

See Semantic Information Manager.

source rIle
(1) A file in which a source program is stored.
(2) A file containing instructions written in a programming language.
(3) See SOURCE file.

SOURCE rIle
A secondary input file from which certain compilers read previously stored
source images.

subprogram me

w
WFL

In the Binder, an object code file that contains one or more separate subprograms
to be bound to a host file.

. See Work Flow Language.

Glossary-6 8600 0304-000

Glossary

Work Flow Language (WFL)
A Unisys language used for constructing jobs that compile or run programs on
A Series systems. WFL includes variables, expressions, and flow-of-control
statements that offer the programmer a wide range of capabilities with regard to
task control.

8600 0304-000 Glossary-7

Bibliography

A Series ALGOL Programming Reference Manual, Volume 1: Basic
Implementation (form 86000098). Unisys Corporation.

A Series C Programming Reference Manual (form 3950 8775). Unisys
Corporation.

A Series CANDE Operations Reference Manual (form 8600 1500). Unisys
Corporation.

A Series COBOL ANSI-68 Programming Reference Manual (form 8600 0320).
Unisys Corporation.

A Series COBOL ANSI-74 Programming Reference Manual, Volume 1: Basic
Implementation (form 8600 0296). Unisys Corporation.

A Series COBOL ANSI-85 Programming Reference Manual, Volume 1: Basic
Implementation (form 8600 1518). Unisys Corporation.

A Series DMSII Application Program Interfaces Programming Guide (form
5044225). Unisys Corporation. (Formerly A Series DMSII User Language
Interface Programming Guide.)

A Series DMSII Data and Structure Definition Lan{,uage (DASDL) Programming
Reference Manual (form 8600 0213). Unisys Corporation.

A Series FORTRAN Programming Reference Manual (form 1222691). Unisys
Corporation.

A Series FORTRAN77 Programming Reference Manual (form 3950 8759). Unisys
Corporation.

A Series In/oExec Administration Guide (form 8600 0221). Unisys Corporation.

A Series In/oExec Semantic In/ormation Manager (SIM) Programming Guide
(form 1195104). Unisys Corporation.

A Series Pascal Prograrrtming Reference Manual, Volume 1: Basic
Implementation (form 8600 0080). Unisys Corporation.

A Series PL/I Reference Manual (form 1169620). Unisys Corporation.

A Series System Commands Operations Reference Manual (form 8600 0395).
Unisys Corporation.

8600 0304-000 Bibliography-l

Bibliography

A Series System Software Utilities Operations Reference Manual (form
86000460). Unisys Corporation.

A Series Work Flow Language (WFL) Programming Reference Manual (form
8600 1047). Unisys Corporation.

Bibliography-2 8600 0304-000

Index

A

<address couple>
use in INITIALIZE statement, 3-8

ALGOL
arrays

accessing from a FORTRAN common
block, 5-9

accessing from a FORTRAN77
common block, 5-15

corresponding COBOL
identifiers, 5-2

corresponding FORTRAN
identifiers, 5-5

corresponding FORTRAN77
identifiers, 5-12

corresponding Pascal
identifiers, 5-22

declaring, 4-2
in COBOL binding, 5-3

binding combinations, 1-2
binding information, generating, 8-1
binding with ALGOL, 4-1
binding with COBOL, 5-2

corresponding identifiers, 5-2
global items, declaring, 5-3
libraries, 5-3
parameters, 5-3
re<;ords, 5-4
rectifying name of COMS library

during, 5-4
binding with COBOL and FORTRAN77

example, 5-42
binding with FORTRAN, 5-5

arrays, accessing from a common
block,. 5-9

common blocks, accessing as an
ALGOL array, 5-8

common blocks, equating, 5-7, 5-8
corresponding identifiers, 5-5
example, 5-10
file declarations, 5-7
global items, sharing, 5-7

8600 0304-000

ALGOL (cont.)
binding with FORTRAN (cont.)

parameters, 5-6
printing problems, avoiding, 5-7

binding with FORTRAN77, 5-11
arrays, accessing from a common

block, 5-15
arrays, declaring, 5-17
common blocks, accessing as an

ALGOL array, 5-14
common blocks, equating, 5-14,

5-16
corresponding identifiers, 5-12
example, 5-18, 5-19, 5-20
file declarations, 5-13
global items, sharing, 5-12
parameters, 5-17
printing problems, avoiding, 5-14
subprogram restrictions, 5-13

binding with NEWP, 5-21
subprogram requirements, 5-21

binding with Pascal, 5-22
corresponding identifiers, 5-22
example, 5-25, 5-27
global items, 5-27
global items, sharing, 5-24
parameters, 5-25

compiler control options
DUMPINFO, 4-3
LOADINFO, . 4-3
SEPCOMP, 4-4

'DUMPINFO record, 4-3
extensions included in binding, 1-2,

5-1
files

corresponding COBOL
identifiers, 5-2

corresponding FORT~AN
identifiers, 5-5

corresponding FORTRAN77
identifiers, 5-12

corresponding Pascal
identifiers, 5-22

Index-1

Index

ALGOL (cont.)
host program

declaring global items in, 4-3, 4-4
description, 4-1
example, 4-5, 4-6, 4-7, 5-20

INSTALLATION option, 6-1
intralanguage binding, 4-1

example, 4-5, 4-6, 4-7
LABEL item restriction when

binding, 4-2
lexical level in intralanguage

binding, 4-1
library binding in, 4-5

example, 4-6, 4-7
LOADINFO record, 4-3
NOBINDINFO option, 8-1
procedures

corresponding COBOL
identifiers, 5-2

corresponding FORTRAN
identifiers, 5-5

corresponding FORTRAN77
identifiers, 5-12

corresponding Pascal
. identifiers, 5-22

restriction in binding, 5-3
record binding in, 4-5
SEPCOMP option, 4-4
subprograms

declaring global items in, 4-2, 4-3
description, 4-1
example, 4-6, 4-7, 4-8, 5-10,

5-18,5-20,5-26,5-43
switch items, declaring, 4-2
valid extensions for binding, 4-1
variables

corresponding COBOL
identifiers, 5-2

corresponding FORTRAN
identifiers, 5-5

corresponding FORTRAN77
identifiers, 5-12

corresponding Pascal
identifiers, 5-22

allowable binding combinations, 1-2
arithmetic common blocks

accessing a single-precision array
through, 5-15'

arrays
ALGOL

accessing from a FORTRAN common
block, 5-9

Index-2

arrays (cont:)
ALGOL (cont.)

B

accessing from a FORTRAN77
common block, 5-15

corresponding COBOL
identifiers, 5-2

corresponding FORTRAN
identifiers, . 5-5

corresponding FORTRAN77
identifiers, 5-12

corresponding Pascal
identifiers, 5-22

declaring in ALGOL, 4-2
double-precision

accessing FORTRAN common blocks
as, 5-9

accessing FORTRAN77 common
blocks as, 5-14

accessing from a common
block, 5-9

EBCDIC
accessing FORTRAN77 common

blocks as, 5-15
accessing through a FORTRAN77

common block, 5-16
equivalence

length in bound code file, 5-16
passing between ALGOL and

COBOL, 5-3
passing between ALGOL and

FORTRAN77, 5-17
single-precision

accessing FORTRAN common blocks
as, 5-9

accessing FORTRAN77 common
blocks as, 5-14

accessing from a common
block, 5-9

accessing through a FORTRAN77
common block, 5-15

size in bound code file, 4-2

BDMSALGOL (See also ALGOL), 4-1
BIND statement

affect on named subprograms, 1-7
binding external subprograms

with, 3-3
conflict with DONTBIND

statement, 3-6

8600 0304-000

BIND statement (cont.)
discussion, 3-2
examples, 3-4
for C programs, 3-3
purpose, 3-2
syntax, 3-2

Binder
action on named subprograms, 1-7
code file restrictions, 1-1
control record options, B-4
control records

explanation, B-1
explanation of syntax, B-2, B-3
ignoring columns in, B-1
including options in, B-1
syntax, B-1, B-2, B-3

description, 1-1
error messages, A-I
executing

with CANDE, 1-6.
with WFL, 1-7

execution process, description, 1-7
input files, 1-2

CARD, 1-2
for intrinsics, 6-1, 6-3
host program, 1 ~3
primary, 1-2
subprogram, 1-3

intrinsics file, 6-1, 6-3
language constructs

file specifier, 2-1
identifier, 2-3
intrinsic specification, 2-3
subprogram identifier, 2-5

output files
bound code file, 1-4
description, 1-4
error, 1-5
printer, 1-4

records
ignoring, 3-1
use of percent sign in, 3-1
use of semicolon (i) in, 3-1

reserved words, 1-7
statements

BIND, 3-2
DONTBIND, 3-5
EXTERNAL, 3-7
HOST, 3-7
INITIALIZE, 3-8
PURGE, 3-9
STOP, 3-9

8600 0304-000

Bifl(~er (cont.)
statements (cont.)

table, 3-1
USE, 3-10
use of percent sign in, 3-1
use of semicolon in, 3-1

BINDERINPUT file

Index

created by the Pascal compiler, 5-24,
5-36

created by the Pascal compiler
(example), 5-26,5-38

BINDINFO option
in COBOL, 8-1
in FORTRAN77, 8-1

binding
ALGOL and COBOL, 5-2

corresponding identifiers, 5-2
declaring global items, 5-3
parameters, 5-3

ALGOL and COBOL 7 4 programs that
. use COMS, 5-4

ALGOL and FORTRAN, 5-5
arrays, acceSSing from a common

block, 5-9
common blocks, accessing as ALGOL

arrays, 5-8
common blocks, declaring, 5-7
corresponding identifiers, 5-5
example, 5-10
file declarations in, 5-7
parameters, 5-6
printing problems, avoiding, 5-7
sharing global items, 5-7

ALGOL and FORTRAN77, 5-11
arrays, accessing from a common

block, 5-15
arrays, declaring, 5-17
common blocks, accessing as ALGOL

arrays, 5-14
common blocks, declaring, 5-14
corresponding identifiers, 5-12
example, 5-18, 5-19, 5-20
file declarations in, 5-13
parameters, 5-17
printing problems, avoiding, 5-14
sharing global items, 5-12
subprogram restrictions, 5-13

ALGOL and NEWP, 5-21
subprogram requirements, 5-21

ALGOL and Pascal, 5-22
corresponding identifiers, 5-22
example, 5-25, 5-27

Index-3

Index

binding (cont.)
ALGOL and Pascal (cont.)

parameters, 5-25
sharing global items, 5-24

ALGOL, COBOL, and FORTRAN77
example, 5-42

ALGOL with ALGOL,' 4-1
allowable language combinations, 1-2
C with C, 4-9
COBOL and FORTRAN, 5-27

corresponding identifiers, 5-27
parameters, 5-29
sharing global items, 5-28

COBOL and FORTRAN77, 5-29
corresponding identifiers, 5-29
example, 5-31
parameters, 5-31
sharing global items, 5-30

COBOL· and Pascal, 5-33'
corresponding identifiers, 5-33
example, 5-37,5-38
parameters, 5-36
sharing global items, 5-35

COBOL with COBOL, 4-10
errors during, 1-8
FORTRAN and FORTRAN77, 5-39

common blocks, 5-40
corresponding identifiers, 5-39
example, 5-41
parameters, 5-40

FORTRAN with FORTRAN, 4-15
FORTRAN77 with FORTRAN77, 4-17
interlanguage

definition, 5-1
valid language combinations, 5-1

intralanguage
definition, 4-1
languages excluded from, 4-1

intrinsics, 6-1
syntax, 6-2
without host program, 3-3

libraries
ALGOL and COBOL, 5-3
FORTRAN and FORTRAN77, 5-41
in ALGOL, 4-5
in ALGOL (example), 4-6, 4-7
in COBOL, 4-13
in FORTRAN, 4-16
in FORTRAN77, 4-18

PL/I with PL/I, 4-21
records

ALGOL and COBOL, . 5-4

Index-4

binding (cont.)
records (cont.)

in ALGOL, 4-5
reducing I/O time used in, 1-9
replacement (See also replacement

binding), 1-3
subprograms, 1-8

that access DM8II databases, 7-1
that access 81M databases, 7-1

subprograms that access 81M
databases, 7-2

binding information
description, 8-1
generating

for ALGOL, 8-1
for COBOL, 8-1
for FORTRAN, 8-1
for FORTRAN77, 8-1
for Pascal, 8-1

printing, 8-2
blank common block, declaring, 5-8,

5-14
blocks, common (See common blocks)
bound code file

description, 1-4
length of common block in, 4-16,

4-18
size of array in, 4-2

brackets method for declaring global
items in ALGOL
subprograms, 4-2

c
C

BIND statement for, 3-3
binding combinations, 1-2
binding with C, 4-9
host program

description, 4-9
example, 4-9

intralanguage binding, 4-9
example, 4-9

subprogram
description, 4-9
example, 4-10

CALL verb, in COBOL, 4-11
COBOL

BINDINFO option, 8-1
binding an external procedure, 4-11
binding combinations, 1-2

8600 0304-000

COBOL (cont.)
binding information, generating, 8-1
binding with ALGOL, 5-2

corresponding identifiers, 5-2
global items, declaring, 5-3
libraries, 5-3
parameters, 5-3
records, 5-4
rectifying name of COMS library

during, 5-4
binding with ALGOL and FORTRAN77

example, 5-42
binding with COBOL, 4-10
binding with FORTRAN, 5-27

corresponding identifiers, 5-27
global items, sharing, 5-28
parameters, 5-29

binding with FORTRAN77, 5-29
corresponding identifiers, 5-29
example, 5-31
global items, sharing, 5-30
parameters, 5-31

binding with Pascal, 5-33, 5-35
corresponding. identifiers, 5-33
example, 5-37, 5-38
global items,' sharing, 5-35
parameters, 5-36

CALL verb, 4-11
ENTER verb, 4-11
GLOBAL clause, 4-11
host program

description, 4-11
example, 4-13

intralanguage binding, 4-10
CODE FILE TITLE option in, 4-11
example, 4-13

library binding in, 4-13
LOCAL option, 4-12
OWN option, 4-12
subprogram

example, 5-32, 5-43, 5-44
subprograms

declaring global items in, 4-11
declaring global items in

(example), 4-11
description, 4-11
example, 4-14
lexical level of, 4-11

COBOL68 (See COBOL)
COBOL74 (See COBOL)
COBOL85 (See COBOL)

8600 0304-000

Index

code file
bound

description, 1-4
length of common block in, 4-16
size of array in, 4-2
unresolved external references

in, 1-5
indicating title in COBOL

binding, 4-11
CODE option in Binder control

record, B-4
CODEN option in Binder control

record, B-4
common blocks

accessing ALGOL arrays from, 5-9,
5-15

accessing as ALGOL arrays, 5-8,
5-14

arithmetic
accessing a single-precision array

through an, 5-15
binding in FORTRAN77, 4-18
blank, 5-8, 5-14 J

declaring, 5-7, 5-14
description, 5-7
equating with ALGOL arrays, 5-7,

5-14
FORTRAN

corresponding COBOL
identifiers, 5-27

FORTRAN77
corresponding COBOL

identifiers, 5-29
length in bound code file, 4-16, 4-18
passing between FORTRAN and

FORTRAN77, 5-40
simulating in ALGOL, 5-8,5-16
using data-initialized values

with, 5-15
compiler control options

ALGOL
DUMPINFO, 4-3
INSTALLATION, 6-1
LOADINFO, 4-3
NOBINDINFO, 8-1
SEPCOMP, 4-4

COBOL
BINDINFO, 8-1
GLOBAL, 4-12,5-3
LOCAL, 4-12
OWN, 4-12

Index-5

Index

compiler control options (cont.)
FORTRAN

INSTALLATION, 6-1
NOBINDINFO, 8-1

FORTRAN77
BINDINFO, 8-1

COMS
binding ALGOL and COBOL74

programs that use, 5-4
library

rectifying name between ALGOL and
COBOL, 5-4

conflict between BIND and DONTBIND
statements, 3-6

constructs
Binder language

file specifier, 2-1
identifier, 2-3
intrinsic specification, 2-3
subprogram identifier, 2-5

SIM
DMRECORD variable, 7-2
entity reference variable, 7-2
query variable, 7-2

control records, Binder
explanation, B-1

D

explanation of syntax, B-2, B-3
ignoring columns in, B-1
including options in, B-1
options for, B-4
syntax, B-1, B-2, B-3

data types, SIM, 7-2
database binding

referencing from a subprogram, 7-2
databases

binding a DMSII, 7-1
binding a SIM, 7-1

data-initialized values
using with FORTRAN common

blocks, 5-15
DC ALGOL (See also ALGOL), 4-1
DEBUG option, PRINTBINDINFO

utility, 8-6 .
declaring

blank common blocks, 5-8,5-14

Index-6

declaring (cont.)
files in FORTRAN77, 4-18.
FORTRAN common blocks, 5-8
FORTRAN77 common blocks, 5-14
functions

when binding C with C, 4-9
global items

in ALGOL host programs, 4-3, 4-4
in ALGOL subprograms, 4-2, 4-3
in COBOL subprograms, 4-11
when binding ALGOL and

COBOL, 5-3
when binding ALGOL and

FORTRAN, 5-7
when binding ALGOL and

Pascal, 5-24
when binding COBOL and

Pascal, 5-35
parameters

in COBOL intralanguage
binding, 4-11

SIM databases, 7-2
STATIC EXTERNAL variables in

PL/I, 4-22
variables

when binding C with C, 4-9
<digit>, 2-2, 3-8
directory name in a file specifier, 2-2
<directory specifier>, 2-3
DMALGOL (See also ALGOL), 4-1
DMRECORD variable in SIM, 7-2
DMSII databases

binding programs that access, 7-1
dollar sign ($)

use in Binder control record, B-1
DONTBIND statement

conflict with BIND statement, 3-6
discussion, 3-5
examples, 3-6
purpose, 3-5
syntax, 3-5

double-precision arrays
accessing FORTRAN common blocks

as, 5-9
accessing FORTRAN77 common blocks

as, 5-14
accessing from a common block, 5-9

DUMPINFO
record, in ALGOL, 4-3

8600 0304-000

E

EBCDIC array
accessing a FORTRAN77 common block

as an, 5-15
accessing through a FORTRAN77

common block, 5-16
EBCDIC character

use in file specifier, 2-2
efficiency

in binding, 1-9
in object-code, 1-9

ENTER verb, in COBOL, 4-11
entity reference variable in 81M, 7-2
equal sign (=)

use in BIND statement, 3-3
use in file specifier, 2-2

equivalence array
length in bound code file, 5-16

ERRLI8T option in Binder control
record, B-4

error file
description, 1-5

error messages, A-I
ERRORLI8T option in Binder control

record, B-4
errors

during binding, 1-8
examples

ALGOL host program, 4-5,4-6,4-7,
5-20

ALGOL intralanguage binding, 4-5,
4-6,4-7

ALGOL subprogram, 4-6, 4-7, 4-8,
5-10,5-18,5-20,5-26,5-43

BIND statement, 3-4
BINDERINPUT file created by the

Pascal compiler (example), 5-26
binding ALGOL and FORTRAN, 5-10
binding. ALGOL and

FORTRAN77, 5-18, 5-19, 5-20
binding ALGOL and Pascal, 5-25,

5-27
binding ALGOL, COBOL, and

FORTRAN77, 5-42
binding COBOL and

FORTRAN77, 5-31
binding COBOL and Pascal, 5-37,

5-38
binding FORTRAN and

FORTRAN77, 5-41

8600 0304-000

examples (cont.)
C host program, 4-9
C intralanguage binding, 4-9
C subprogram, 4-10
COBOL host program, 4-13

Index

COBOL intralanguage binding, 4-13
COBOL subprogram, 4-14,5-32,

5-43,5-44
control records, using SET and RESET

options, B-3
declaring 8T ATIC EXTERNAL

variables in PL/I, 4-22
<directory specifier>, 2-3
DONTBIND statement, 3-6
<file specifier>, 2-3
FORTRAN host program, 4-16, 5-10
FORTRAN intralanguage

binding, 4-16
FORTRAN subprogram, 4-17, 5-11,

5-42
FORTRAN77 host program, 4-19,

5-18,5-19,5-31,5-41,5-42
FORTRAN77 intralanguage

binding, 4-18
FORTRAN77 subprogram, 4-19, 5-21
global items in COBOL

subprograms, 4-11
GLOBAL option in COBOL

binding, 4-12
H08T statement, 3-8
INITIALIZE statement, 3-9
Pascal host program, 5-25, 5-37
PL/I host program, 4-23
PL/I intralanguage binding, 4-23
PL/I subprogram, 4-23
primary input file, 4-6, 4-7, 4-8,

4-10,4-15,4-17,4-19,4-23,
5-11,5-19,5-20,5-21,5-32,
5-42,5-45

PURGE statement, 3-9
referencing a 81M database by a

subprogram, 7-2
restricting PRINTBINDINFO utility

analysis, 8-4
running the PRINTBINDINFO

utility, 8-3
81M database

accessed by Pascal host
program, 7-8

81M entity reference variable,
referenced by subprogram, 7-4

Index-7

Index

examples (cont.)
SIM query variable referenced by

subprogram, 7-5
STOP statement, 3-10
USE statement, 3-11

executing Binder
with CANDE, 1-6
with WFL, 1-7

execution process of Binder,
description, 1-7

EXTERNAL
directive in Pascal, 5-24, 5-36

external procedure
binding in COBOL, 4-11

external references, unresolved
. avoiding, 1-5
causes of, 1-5
definition, 1-5

EXTERNAL statement (See also
DONTBIND statement)

effect on named subprograms, 1-7
purpose, 3-7
syntax, 3-7

external subprograms

F

BIND statement for, 3-3
description, 1-3

<family name>, 2-2
family name, use in file specifier, 2-2
file specifier

directory name in, 2-2
equal sign in, 2-2
examples, 2-3

<file specifier>
examples of, 2-3

file specifier
explanation, 2-2
syntax, 2-1

<file specifier>
syntax, 2-1
use in BIND statement, 3-2
use in HOST statement, 3-7
use in PURGE statement, 3-9

files
ALGOL

corresponding COBOL
identifiers, 5-2

corresponding FORTRAN
identifiers, 5-5

Index-8

files (cont.)
ALGOL (cont.)

corresponding FORTRAN77
identifiers, 5-12

corresponding Pascal
identifiers, 5-22

Binder input, 1-2
CARD, 1-2
for intrinsics, 6-1, 6-3
host program, 1-3
primary input, 1-2
subprogram, 1-3

Binder output '
bound code file, 1-4
description, 1-4
error, 1-5
printer, 1-4

BINDERINPUT
created by the Pascal

compiler, 5-24,5-36
created by the Pascal compiler

(example), 5-26, 5-38
bound code

description, 1-4
length of common block in, 4-16,

4-18
size of array in, 4-2
unresolved external references

in, 1-5
CARD, description, 1-2
declarations in ALGOL and FORTRAN

binding, 5-7
declarations in ALGOL and

FORTRAN77 binding, 5-13
declaring in FORTRAN77, 4-18
host program

definition, 1-1
description, 1-3

passing between ALGOL and
COBOL, 5-3

primary input
description, 1-2
example, 4-6, 4-7, 4-8, 4-10,

4-15,4-17,4-19,4-23,5-11,
5-19, 5-20, 5-21, 5-32, 5-42,
5-45

printer output, description, 1-4
SELECTIDS in PRINTBINDINFO

utility, 8-4
subprogram

affect of BIND statement on during
binding, 1-7

8600 0304-000

files (cont.) "
subprogram (cont.)

binding of, 1-8
definition, 1-1
description, 1-3
effect of EXTERNAL statement on

during binding, 1-7
nesting structure of, 2-6
processing by Binder, 1-7
titling of, 1-4

FORTRAN
binding combinations, 1-2
binding information, generating, 8-1
binding with ALGOL, 5-5

arrays, accessing from a common
block, 5-9

common blocks, accessing as an
ALGOL array, 5-8

common blocks, declaring, 5-7
corresponding identifiers, 5-5
example, 5-10
file declarations, 5-7
global items, sharing, 5-7
parameters, 5-6
printing problems, avoiding, 5-7

binding with COBOL, 5-27
corresponding identifiers, 5-27
global items, sharing, 5-28
parameters, 5-29

binding with FORTRAN, 4-15
binding with FORTRAN77, 5-39

common blocks, 5-40
corresponding identifiers, 5-39
example, 5-41
libraries, 5-41
parameters, 5-40
replacing a main program with a

subroutine, 5-40
common blocks

accessing ALGOL arrays from, 5-9
accessing as ALGOL arrays, 5-8
corresponding COBOL

identifiers, 5...,27
decla~ing, 5-7
description, 5-7
equating with ALGOL arrays, 5-7
length after binding, 4-16
simulating in ALGOL, 5-8
using data-initialized values

with, 5-15
host program

description, 4-15

8600 0304-000

FORTRAN (cont.)
host program (cont.)

example, 4-16,5-10
INSTALLATION option, 6-1
intralanguage binding, 4-15

"example, 4-16
library binding in, 4-16
NOBINDINFO option, 8-1
subprogram

description, 4-15
example, 4-17,5-11,5-42

variable
corresponding COBOL

identifiers, 5-27
, FORTRAN77

BINDINFO option, 8-1
binding combinations, 1-2

Index

binding information, generating, 8-1
binding with ALGOL, 5-11

arrays, accessing from a common
block, 5-15

arrays, declaring, 5-17
common blocks, accessing as an

ALGOL array, 5-14
common blocks, declaring, 5-14
corresponding identifiers, 5-12
example, 5-18, 5-19, 5-20
file declarations, 5-13
global items, sharing, 5-12
parameters, 5-17
printing problems, avoiding, 5-14
subprogram restrictions, 5-13

binding with ALGOL and COBOL
example, 5-42

binding with COBOL, 5-29
corresponding identifiers, 5-29
example, 5-31
global items, sharing, 5-30
parameters, 5-31

binding with FORTRAN, 5-39
common blocks, 5-40
corresponding identifiers, 5-39
example, 5-41
libraries, 5-41
parameters, 5-40

binding with FORTRAN77, 4-17
common blocks

accessing ALGOL arrays
from, 5-15

accessing as ALGOL arrays, 5-14
corresponding COBOL

identifiers, 5-29

Index-9

Index

FORTRAN77 (cont.)
common blocks (cont.)

declaring, 5-14
equating with ALGOL arrays, 5-14
simulating in ALGOL, 5-16

file declarations, 4-18
host program

description, 4-17
example, 4-19, 5-18, 5-19, 5-31,

5-41,5-42
intralanguage binding, 4-17

example, 4-18
length of common block after

binding, 4-18
library binding in, 4-18
subprogram

description, 4-17
example, 4-19, 5-21

variable
corresponding COBOL

identifiers, 5-29
<from part>

use in BIND statement, 3-2
functions, declaring

when binding C with C, 4-9

G

GLOBAL
clause in COBOL, 4-11
option in COBOL, 5-3

global items
ALGOL-Pascal binding, 5-27
declaring in ALGOL host

programs, 4-3,4-4
declaring in ALGOL subprograms, 4-2

with brackets method, 4-2
with INFO file method, 4-3

declaring in COBOL, 4-11
sharing between

ALGOL and COBOL; 5-3
ALGOL and FORTRAN, 5-7
ALGOL and FORTRAN77, 5-12
ALGOL and Pascal, 5-24
COBOL and FORTRAN, 5-28
COBOL and FORTRAN77, 5-30
COBOL and Pascal, 5-35

Index-IO

H

HOST option in Binder control
record, B-4

host program
ALGOL

declaring global items in, 4-3, 4-4
description, 4-1
example, 4-5, 4-6, 4-7, .5-20

C
description, 4-9
example, 4-9

COBOL
description, 4-11
example, 4-13

definition, 1-1
description, 1-3
examples of, 1-3
FORTRAN

description, 4-15
example, 4-16, 5-10

FORTRAN77
description, 4-17
example, 4-19,5-18,5-19, 5-31,

5-41,5-42
Pascal

example, 5-25, 5-37
PL/I

description, 4-21
example, 4-23

HOST statement
effect of multiple, 3-8
effect on file equation, 3-8
examples, 3-8
purpose, 3-7
syntax, 3-7

<hyphen>, 2-2
hyphen character

use in file specifier, 2-2

I

<identifier>
examples, 2-7
syntax, 2-3
use in INITIALIZE statement, 3-8
use in USE statement, 3-10

identifiers, corresponding
ALGOL and COBOL, 5-2
ALGOL and FORTRAN, 5-5

8600 0304-000

identifiers, corresponding (cont.)
ALGOL and FORTRAN77, 5-12
ALGOL and Pascal, 5-22
COBOL and FORTRAN, 5-27
COBOL and FORTRAN77, 5-29
COBOL and Pascal, 5-33
FORTRAN and FORTRAN77, 5-39

IGNORELOCALDIR option,
PRINTBINDINFO utility, 8-6

INFO file method for declaring global
items in ALGOL
subprograms, 4-3

initial values, using with FORTRAN
common blocks, 5-15

INITIALIZE statement
examples, 3-9
purpose, 3-8
syntax, 3-8

input files, Binder, 1-2
CARD, 1-2
host program, 1-3
primary, 1-2
subprogram, 1-3

<integer>, 3-8
interlanguage binding

ALGOL and COBOL, 5-2
corresponding identifier types, 5-2
declaring global items, 5-3
libraries, 5-3
parameters, 5-3
records, 5-4
rectifying name of COMS library

during, 5-4
ALGOL and FORTRAN, 5-5

arrays, accessing from a common
block, 5-9

common blocks, accessing as ALGOL
arrays, 5-8

common blocks, declaring, 5-7
corresponding identifier types, 5-5
example, 5-10
file declarations, 5-7
parameters, 5-6
printing problems, avoiding, 5-7
sharing global items, 5-7

ALGOL and FORTRAN77, 5-11
arrays, accessing from a common

block, 5-15
arrays, declaring, 5-17
common blocks, accessing as ALGOL

arrays, 5-14
common blocks, declaring, 5-14

8600 0304-000

interlanguage binding (cont.)
ALGOL and FORTRAN77 (cont.)

corresponding identifier
types, 5-12

example, 5-18, 5-19, 5-20
file declarations, 5-13
parameters,· 5-17

Index

printing problems, avoiding, 5-14
sharing global items, 5-12
subprogram restrictions, 5-13

ALGOL and NEWP, 5-21
subprogram requirements, 5-21

ALGOL and Pascal, 5-22
corresponding identifier

types, 5-22
example, 5-25,5-27
parameters, 5~25
sharing global items, 5-24

ALGOL, COBOL, and FORTRAN77,
example, 5-42

COBOL and FORTRAN, 5-27
corresponding identifier

types, 5-27
parameters, 5-29
sharing global items, 5-28

COBOL and FORTRAN77, 5-29
corresponding identifier

types, 5-29 .
example, 5-31
parameters, 5-31
sharing global items, 5-30

COBOL and Pascal, 5-33, 5-35
corresponding identifier

types, 5-33
example, 5-37, 5-38
parameters, 5-36
sharing global items, 5-35

definition, 5-1
FORTRAN and FORTRAN77, 5-39

common blocks, 5-40
corresponding identifier

types, 5-39
example, 5-41
libraries, 5-41
par~eters, 5-40

valid language combinations, 5-1
intralanguage binding

ALGOL
description, 4-1
example of, 4-5, 4-6, 4-7
lexical level !n, 4-1

Index-II

Index

intralanguage binding (cont.)
C

description, 4-9
example of, 4-9

COBOL
description, 4-10
example of, 4-13

definition, 4-1
FORTRAN

description, 4-15
example of, 4-16

FORTRAN77
description, 4-17
example of, 4-18

languages excluded from, 4-1
PL/I

description, 4-21
example of, 4-23

<intrinsic number pair>, 2-3, 6-2
<intrinsic specification>, 2-3

use in BIND statement, 3-2
intrinsics

Binder input file for, 6-1
example, 6-3

binding, 6-1
without a host program, 3-3

compiling, requirements for, 6-1
description, 6-1
number pair construct, 2~4

specification construct
examples, 2-4
explanation, 2-4
syntax, 2-3

INTRINSICS option in Binder control
record, B-4

invoking Binder
with CANOE, 1-6
with WFL, 1-7

I/O time
reducing during binding, 1-9

L

LABEL item, restriction in ALGOL
binding, 4-2

language combinations valid for
. binding, 5-1

language constructs, Binder
file specifier, 2-1
identifier, 2-3
intrinsic specification, 2-3

Index-12

language constructs, Binder (cont.)
subprogram identifier, 2-5

<language list>, 2-3,6-2
<letter>, 2-2
lexical level

in ALGOL intralanguage binding, 4-1
of COBOL subprograms, 4-11

library
binding

ALGOL, 4-5,4-6,4-7
ALGOL and COBOL, 5-3
COBOL, 4-13
FORTRAN, 4-16
FORTRAN and FORTRAN77, 5-41
FORTRAN77, .4-18

mismatch errors, preventing, 5-4
LINEINFO option in Binder control

record, B-5
LIST option in Binder control

record, B-5
LOAOINFO

record, in ALGOL, 4-3
LOCAL option

in COBOL, 4-12

M
main program, replacing with a

subroutine, 5-40
MAP option in Binder control

record, B-5
matching identifiers between

ALGOL and COBOL, 5-2
ALGOL and FORTRAN, 5-5
ALGOL and FORTRAN77, 5-12
ALGOL and Pascal, 5-22
COBOL and FORTRAN, 5-27
COBOL and FORTRAN77, 5-29
COBOL and Pascal, 5-33
FORTRAN and FORTRAN77, 5-39

messages, warning and error, A-I

N

nesting structure, program, 2-6
NEWP

binding combinations, 1-2
binding with ALGOL, 5-21

subprogram requirements, 5-21

8600 0304-000

NOBINDINFO option
in ALGOL, 8-1
in ALGOL and FORTRAN, 8-1
in Binder control record, B-5
in FORTRAN, 8-1

<nonquote EBCDIC character>, 2-2
<nonquote identifier>, 2-2
nonquote identifier, use in file

specifier, 2-2
NOREFERENCES option,

PRINTBINDINFO utility, 8-6

o
object-code efficiency, 1-9
options

Binder control record, B-4
in ALGOL

DUMPINFO, 4-3
INSTALLATION, 6-1
LOADINFO, 4-3
NOBINDINFO, 8-1
SEPCOMP, 4-4

in COBOL
BINDINFO, 8-1
GLOBAL, 4-12
LOCAL, 4-12
OWN, 4-12

in FORTRAN.
INSTALLATION, 6-1
NOBINDINFO, 8-1

in FORTRAN77
BINDINFO, 8-1

in PRINTBINDINFO utility
DEBUG, 8-6
IGNORELOCALDIR, 8-6
NOREFERENCES, 8-6

output files, Binder
bound code file, 1-4
description, 1-4
error, 1-5
printer, 1-4

OWN option
in COBOL, 4-12

OWN option, in COBOL, 4-12

8600 0304-000

Index

p

parameters
declaring

in COBOL intralanguage
binding, 4-11

passing between
ALGOL and COBOL, 5-3
ALGOL and FORTRAN, 5-6
ALGOL and FORTRAN77, 5-17
ALGOL and Pascal, 5-25
COBOL and FORTRAN, 5-29
COBOL and FORTRAN77, 5-31
COBOL and Pascal, 5-36
FORTRAN and FORTRAN77, 5-40

Pascal
binding combinations, 1-2
binding information, generating, 8-1
binding with ALGOL, 5-22

corresponding identifiers, 5-22
example, 5-25, 5-27
global items, 5-27
global items, sharing, 5-24
parameters, 5-25

binding with COBOL, 5-33, 5-35
corresponding identifiers, 5-33
example, 5-37, 5-38
global items, sharing, 5-35
parameters, 5-36

EXTERNAL directive in, 5-24,5-36
host program, example, 5-25,5-37

passing a system file
from Pascal host to COBOL

subprogram, 5-38
percent sign (%), use in Binder control

record, B-1
percent sign (%), use in Binder control

records, . 3-1
PL/I

binding combinations, 1-2
binding with PL/I, 4-21
host program

description, 4-21
example, 4-23

intralanguage binding, 4-21
example, 4-23

STATIC EXTERNAL variables, 4-22
subprogram

description, 4-21
example, 4-23

Index-13

Index

primary input file
. description, 1-2
example, 4-6,4-7,4-8,4-10,4-15,

4-17,4-19,4-23,5-11,5-19,
5-20, 5-21, 5-32, 5-42, 5-45

PRINTBINDINFO utility
DEBUG output option, 8-6
description, 8-1
IGNORELOCALDIR output

option, 8-6
NOREFERENCES output option, 8-6
printer format options, 8-6
restricting the' analysis, 8-4
running (example), 8-3
SELECTIDS file, 8-4

. starting, 8-2
TASKVALUE attribute, 8-6

printer
format options, PRINTBINDINFO

utility, 8-6
listing, 1-4
output file, description, 1-4

'printing
avoiding problems in ALGOL and

FORTRAN binding, 5~ 7
avoiding problems in ALGOL and

FORTRAN77 binding, 5-14
binding information, 8-2

procedures
ALGOL

corresponding COBOL
identifiers, 5-2

corresponding FORTRAN
identifiers, 5-5

corresponding FORTRAN77
identifiers, 5-12

. corresponding Pascal
identifiers, 5-22

restriction when binding ALGOL and
COBOL, '5-3

program
host (See also host program), 1-1
nesting structure of, 2-6

PURGE statement
examples, 3-9
purpose, 3-9
syntax, 3-9

Index-14

Q

query variable in SIM, 7-2
question mark (?), use in BIND

statement, 3-3

R

records
Binder control

explanation, B-1
explanation of syntax, B-2, B-3
ignoring, 3-1
ignoring columns in, B-1
including options in, B-1
options for, B-4
syntax, B-1, B-2, B-3
use of percent sign in, 3-1

binding ALGOL and COBOL, 5-4
binding in ALGOL, 4-5
DUMPINFO, in ALGOL, 4-3
LOADINFO, in ALGOL, 4-3

reducing I/O time during binding, 1-9
referencing a SIM database from a

subprogram, 7-2
replacement binding, 1-3,3-2
reserved words, 1-7
restricting PRINTBINDINFO utility

analysis, 8-4

s
SEG option in Binder control

record, B-5
SELECTIDS file, using with

PRINTBINDINFO. utility, 8-4
semicolon (;), use in Binder records, 3-1
SEPCOMP option, in ALGOL, 4-4
SIM

constructs
DMRECORD variable, 7-2
entity reference variable, 7-2
query variable, 7-2

data types, 7-2
databases

accessed by a Pascal host program
(example), 7-8

8600 0304-000

SIM (cont.)
databases (cont.)

. binding programs that access, 7 -1
declaring, 7-2
referenced by subprogram

(example), 7-2
referenced in subprograms by entity

reference variable, 7-4
referenced in subprograms by query

variable (example), 7-5
single-precision arrays

accessing FORTRAN common blocks
as, 5-9

accessing FORTRAN77 common blocks
as, 5-14

accessing from a common block, 5-9
accessing through FORTRAN77

common blocks, 5-15
slash (f), use in common block

declaration, 5-7
8T ACK option in Binder control

record, B-5
starting Binder

with CANDE, 1-6
with WFL, 1-7

statements, Binder
BIND

binding external subprograms
with, 3-3

conflict with DONTBIND
statement, 3-6

discussion, 3-2,3-5
examples, 3-4,3-6
for C programs, 3-3
purpose, 3-2
syntax, 3-2

DONTBIND
conflict with BIND statement, 3-6
purpose, 3-5
syntax, 3-5

EXTERNAL
purpose, 3-7
syntax, 3-7

EXTERNAL (See also DONTBIND
statement), 3-7

HOST
effect of multiple, 3-8
effect on file equation, 3-8
examples, 3-8
purpose, 3-7
syntax, 3-7

8600 0304-000

statements, Binder (cont.)
INITIALIZE

examples,
purpose,
syntax,

PURGE

3-9
3-8

3-8

examples, 3-9
purpose, 3-9
syntax, 3-9

STOP
example, 3-10
purpose, 3-9
syntax, 3-9

table, 3-1
USE

discussion, 3-10
examples, 3-11
purpose, 3-10
syntax, 3-10

use of semicolon in, 3-1
STATIC EXTERNAL variables in

PL/I, 4-22
STOP statement

example, 3-10
purpose, 3-9
syntax, 3-9

STRICT option in Binder control
record, B-5

subprogram

Index

referencing a 81M database from, 7-2
<subprogram identifier>, 2-5

syntax, 2-5
use in BIND statement, 3-2
use in DONTBIND statement, 3-5
use in EXTERNAL statement, 3-7
use in USE statement, 3-10

subprograms
ALGOL, 4-1

declaring global items in, 4-2
example, 4-6,4-7,4-8,5-10,

5-18,5-20,5-26,5-43
binding process, description, 1-8
C, 4-9

example, 4-10
COBOL, 4-11

declaring global items in, 4-11
declaring global items in

(example), 4-11
example, 4-14, 5-32, 5-43, 5-44

definition, 1-1
description, 1-3

Index-IS

Index

subprograms (cont.)
effect of BIND statement on, during

binding, 1-7
effect of EXTERNAL statement on,

. during binding, 1-7
examples of, 1-4
external, 1-3

BIND statement for, 3~3

file
titling of, 1-4

FORTRAN, 4-15,5-39
example, 4-17,5-11,5-42

FORTRAN77, 4-17, 5-39
example, 4-19, 5-21

identifier
examples, 2-5
explanation, 2-5
syntax, 2-5

nesting structure, 2-6
PL/I, 4-21

example, 4-23
processing by Binder, 1-7
requirements when binding ALGOL and

NEWP, 5-21
restrictions when binding ALGOL and

. FORTRAN77, 5-13
titling of, 1-4

subroutines, titling, 5-40
switch items, declaring in ALGOL

binding, 4-2
SYSTEM/PRINTBINDINFO utility

description, 8-1

T

T ASKV ALUE task attribute,
PRINTBINDlt-fFO utility, 8-6

TIME option in Binder control
record, B-5

title
of a subprogram, 1-4

u
<underscore>, 2-2
underscore character, use in file

specifier, 2-2
unresolved external references

avoiding, 1-5
causes of, 1-5

Index-16

unresolved external· references (cont.)
description, 1 ~5

USE statement
discussion, 3-10
examples, 3-11
for COMS library match between

ALGOL and COBOL, 5-4
purpose, 3-10
syntax, 3-10
use in equating ALGOL and Pascal

identifiers, 5-24
use in replacing a main program with a

subroutine, 5-40
USEHOSTSIZE option in Binder control

record, B-5
<usercode> , 2-2
usercode

use in file specifier, 2-2

v
values, initial, using with FORTRAN

common blocks, 5-15
variables

ALGOL
corresponding COBOL

identifiers, 5-2
corresponding FORTRAN

identifiers, 5-5
corresponding FORTRAN77

identifiers, 5-12
corresponding Pascal

identifiers, 5-22
declaring

when binding C with C, 4-9
FORTRAN

corresponding COBOL
identifiers, 5-27

FORTRAN77
corresponding COBOL

identifiers, 5-29
global

sharing between ALGOL and
COBOL,· 5-3

sharing between ALGOL and
FORTRAN, 5-7

sharing between ALGOL and
FORTRAN77, 5-12

sharing between ALGOL and
Pascal, 5-24

8600 0304-000

variables (cont.)
global (cont.)

sharing between COBOL and
FORTRAN, 5-28

sharing between COBOL and
FORTRAN77, 5-30

sharing between COBOL and
Pascal, 5-35

STATIC EXTERNAL in PL/I, 4-22

w
WAIT option in Binder control

record, B-6
WARN option in Binder control

record, B-6
warning messages, A-I
words

reserved, 1-7

8600 0304-000

Special Characters

$ (dollar sign), use in Binder control
record, B-1

= (equal sign)
use in BIND statement, 3-3
use in file specifier, 2-2

Index

% (percent sign), use in Binder control
record, 3-1, B-1

? (question mark), use in BIND
statement, 3-3

; (semicolon), use in Binder records, 3-1
/ (slash), use in common block

. declaration, 5-7

Index-l7

NOTES

• UNISYS Help Us To Help You
Publication Title

Form Number

Unisys Corporation is interested in your comments and suggestions regarding this manual. We will use them
to improve the quality of your Product Information. Please check type of suggestion:

o Addition D Deletion o Revision o Error

Comments:

Name Telephone number
()

Title Company

Address

City State Zip code

· X au!! pauop ~uole lflO

r--------------------------
adel alde~s ~oN 00 aseald adel

8J8H PIO~ r--------------------------
I: ; ; ;; NEC~~

BUSINESS REPLY MAIL
ARST CLASS MAIL PERMIT NO. 817 DETROIT, MI

POSTAGE WILL BE PAID BY ADDRESSEE

UNISYS CORPORATION
ATTN: PUBLICATIONS
25725 JERONIMO ROAD
MISSION VIEJO, CA 92691·9826

11.111111.1.11111.11111.111.111"111111.1.1.11 •• 1111.1

IF MAILED
IN THE

UNITED STATES

"""' ""1111'" "'" 11'11 ""'11'" 111""1" "'" ""'111' III' 86000304-000

