
Xerox Extended Data Ma~agement System (EDMS)
Sigma 6/7/9 Computers

Reference Manual

90 30 12C

XEROX

Xerox Extended Data Management System (EDMS]

([) Xerox Corporation, 1973,1974, 1!375

Xerox 560 and Sig.na6/7/9 Computers

Reference Manual

90 30 12C
90 30 12C-1

. June 1975

File No.: 1 X33
XP82, Rev. 0

Printed in U.S.A.

NOTICE

This publication is a revision of the Xerox Extended Data Management System (EOMS) Reference Manual 90 30 12C.
This revision incorporates the Revision Package dated June 1975. A change in the text from that of the previous
manual is indicated by a vertical line at the margin of the page. EOMS provides all of the features of Basic OMS
plus additional features.

RELATED PUBLICATIONS

Title

Xerox Sigma 6 Computer/Reference Manual

Xerox Sigma 7 Computer/Reference Manual

Xerox Sigma 9 Computer/Reference Manual

Xerox Sigma Glossary of Computer Terminology

Xerox Control Program-Five CP-V/TS Reference Manual

Xerox Control Program-Five CP-V/OPS Reference Manual

Xerox Control Program-Five CP-V/TS User's Guide

Xerox ANS COBOL/LN Reference Manual

Xerox ANS COBOL (BPM)/OPS Reference Manual

Xerox Extended FORTRAN IV /LN Reference Manual

Xerox Extended FORTRAN IV/OPS Reference Manual

Xerox Meta-Symbol/LN, OPS Reference Manual

Xerox Data Management System (OMS)/Reference Manual

Xerox Extended Data Management System (EDMS);tJser's Guide

Xerox Interactive Database Processor ODP)/LN, OPS Reference Manual

Xerox APL/LN, OPS Reference Manual

Publication No.

90 17 13

900950

90 17 33

900957

900907

90 1675

90 16 92

90 15 00

90 15 01

900956

90 11 43

900952

90 17 38

903037

903066

90 19 31

Manual Content Codes: BP - batch processing, LN -language, OPS - operations, RP - remote processing, RT - real-time,
SM - system management, TS - time-sharing, UT - utilities

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory.

ii 90 30 12C-1(6;75)

CONTENTS

) . INTRODUCTION Error Processing 52
Journal ing 53
Database Lockout 53
Summary Statistics Collection 53

2. EXTENDED DMS OVERVIEW 2 DBM Operational Interface 54
Total Nonshared Library 54

Data Relationships 2 Combination Public and Shared Library 54
System Functions 6 DBM DeB Requirements 54
Database File Structure ______ 6 DCB Assignments 55

Data Pages 6
Index Pages 9
Inventory Pages_ 9

Database Restructuri ng Subsystem __ 9 5. EDMS UT!~ITY PROCESSORS 56
Subsystem Functions 10
Information Required from the User 10 Database Initialization (DMSINIT) 56

AREA Statements 56
Dump Processor (DMSDUMP) 56

Dump Directives 59
3. FILE DEFINITION PROCESSOR 11 Load Processor (DMS LOAD) 59

DMSLOAD Directives 60
Data Definition Language Syntax _ 11 Summary Statistics Processor (DMSSUMS) 61
Schema Generation_ 14 Statistics Selection 62

Schema Entry 14 Uti lities Operational Interface 62
Area Entries 15 DMSINIT 62
Group Entries 16 DMSDUMP 63
Set Entries 23 DMSLOAD 64
END Entry 27 DMSSUMS 65

Subschema Generati()n 27
Subschema Entry _ 28
Set Entry 29
Area Entries 29 6. DATABASE ANALYSIS PROCESSOR 66
Group Entries 30
END Entry 32 RPCL Syntax 68

DMSFDP Operational Interface __ 32 Words 68
DCB Assign",ents_ 33 Literals 68
Terminal Usage 33 Fi Ie Identifiers 69

Fi Ie Identifier Format 69
RPCL Entr,' Formats 70

Schema Entries 70
4. DATABASE MANAGER 34 Area Entries 70

Load Entry 72
DBM Routine Call Format 34 End Entry 73

Meta-Symbol Call Format ___ 36 Component Association and Attribute Change
FORTRAN Call Format _____ 36 Analysis 74
COBOL Ca II Format 36 Data Loading Sequence 74

DBM Routi ne Usage 38 Default Data Loading Sequence 74
Beginning of ProcElssing _____ 38 User Influenced Data Loadi ng Sequence ___ 77
Adding Occurrences 39 Conveyance Process Generation 83
Deleti ng Occurrences ____ 41 Internal File Handling 83
Modifying Data Vc]lues 42 Unloading the Source Database 84
Modifying Linkages 42 Selecting Set Occurrences 85
Retrieving 44 Loading the Target Database 86
Moving to Workin!~ Storage ___ 47 Relinking Set Occurrences 86
Run- Time Statistics 47 Error Reporting 86
Run-Time Tracing 48 DMSAN LZ Reports 86
Error Control 50 Data Load Sequence Listing 86
Prepari ng for Deadlock 51 Scheduled Process Sequence Listing 87
Checkpointing 52 Scheduled File Listing 87
Terminating Processing ____ 52 I DMSANLZ Control Command 87

ii i

7. DATABASE RESTRUCTURING PROCESSOR 90 A-1. Schema Da'tabase Diagram 100

DMSREST Operational Interface 90 A-2. Schema DDL for Schema 105
! DMSREST Control Command 90
Breakpo i nt/Restart 93 B-l. Subschema Definition Structure 114
Bac kup/Recovery 93
Operator Communication 94 B-2. Area Definition 115
DCB Assignments 96

B-3. Group Definition 115
8. APL/EDMS Interface 98-1

B-4. Owner Definition 117
INDEX 169

B-5. Member Definition 117

APPENDIXES B-6. Item Definition 119

A. SCHEMA FILE 99 B-7. Control Definition 120

B. SUBSCHEMA FILE 114
B-8. Subschema Definition 120

C. SAMPLE DATABASE DEFINITION 125

D. DATABASE PAGE FORMATS 130 B-9. Password Definition 121

E. SEQUENTIAL FILE FORMATS 133 B-l0. Indexed-Sequential (ISEQ) Definition 121

F. ERROR MESSAGES 137
B-11. Check Definition 122

G. DATA VALIDATION 155

H. ENQUEUE/DEQUEUE 156 B-12. Alias Definition 123

I. DMSREST PROCESS FLOW 157 B-13. Name Table Entry Format 123

J. SAMPLE DATABASE RESTRUCTURING 161
B-14. Subschema File Directory Block Format

K. DMSREST SEQUENTIAL FILE FORMATS 168 (Blockzero) 124

C-l. Schema DOL Listing for Sample Database __ 125

FIGURES C-2. Schema Generation Summary Output for
Sample Database 126

1. Shorthand Notation for Data Relationships ___ 3
C-3. Subschema-1 DDL and Summary Output for

2. NEXT Po inters in an Occurrence of Sample Database 127
SET-A 4

C-4. COpy Listing Corresponding to
3. NEXT and OWNER Pointers in an Occurrence Subschema-1 for Sample Database 127

of SET-B 5
C-5. Subschema-2 DDL and Summary Output

4. NEXT and PRIOR Pointers in an Occurrence for Sample Database 128
of SET-C 5

C-6. SYSTEM Correspondi ng to Subschema-2
5. System Overview 7 for Sample Database 129

6. Restructing Subsystem 8 D-1. Data Page Format 130

7. DMSFDP Outputs 12 0-2. Data Group Occurrence with Three-Byte
Set Pointers 130

8. Run-Time Statistics Sample 49
D-3. Data Group Occurrence with Four-Byte

9. Run-Time Trace Sample 49 Set Pointers 131

10. DMSDUMP Output Sample (Batch Job) 57 0-4. Index Page Format 131

11. Sample DMSDUMP Terminal Job 58 D-5. Inventory Page Format 132

12. DMSSUMS Sample Output 61 E-1. Journal/Dump Begin Record 133

iv 9030 12C-1(6/75)

E-2. Journa I/Dump End Record __ 134 TABLES

E-3. Journa I/Dump I'age- Image Record 134 1. PIC TURE - TYPE Corr~ -oondences 21

E-4. Journal/Dump Fi Ie Format Summary 135 2. Contents of the Communications
Control Block 35

E-5. Statistics Job Id Record ___ 135
3. Meta-Symbol Addresses 36

E-6. Area Statistics Record 136
4. FORTRAN Addresses 37

/:-7. Group Statistics Record ___ 136
5. COBOL Arguments 37

£:-8. Set Statistics Records 136
6. Trace C6c:les for DBM Calls 50

1-1. DMSREST Flow Diagram ___ 157
7. Legal Database Attribute Changes 66

J-1. Schema DDL Listing for Sample Target
Database 161 8. Rostr",cturing Processes 84

J-2. DMSANLZ Con~rol Command Option 9. Internal File Descriptors (IFIDs) 85
Listi ng for Sample ScnemcJ Ana Iysis __ 162

10. Control Command Options 87
J-3. DMSANLZ RPCl Listing for SClmple

Schema Ancllysis _____ 162 11. Diagnostic t.iessages for Option Errors 89

J-4. DMSANLZ Source and Target Schema 12. DMSREST Options 91
Component Analysis Listing for
Sample Schema Analysis __ 163 13. DMSREST Keyins and Responses 95

J-5. DMSANLZ Target Database Load Sequence 14. DMSREST DCBs and Fi Ie Contents 97
Listing for Sample Schemal Analysis ___ 163

15. Examples of Illegal Left Arguments 98-10

J-6. DMSAN LZ Scheduled Process Sequence
16. FROMDMS Result: Item Type 98-10

Listing for Sample Schema Analysis __ 163

17. FROMDMS Result: Item Rank 98-10
J-7. DMSAN LZ Scheduled Fi Ie Usclge Listing

for Sample Schema Analysis 164 18. FROMDMS Result: Item Dimensions .. <i8-1I

J-8. DMSREST Control Command Option
19. FROMDMS Sample Results 98-11

Listing for Sample Restrucj'uring 165
A-1. Schema Items 101

J.-9. DMSREST Executed Scheduled Process F-1. DMSFDP Error Messages 137
Sequence Listing for Sample
Restructuri ng 165 F-2. DBM Data-Dependent Errors 143

J-10. DMSREST RPCC Cataloged Files Listing
F-3. DBM Non-Data-Dependent Errors 144

for Sample Restructuring (Listing
F-4. DMS IN IT Error Messages 147

Produced as the Result of CATALOG
Keyin) 166

F-5. DMSDUMP Error Messages 148

J-11. DMSREST Error Summary ListinSI for F-6. DMS LOAD Error Messages 149
Sample Restructuring __ . 166

F-7. DMSSUMS Error Messages 150

J-12. DMSREST Operat'or Console Lisf'ing
F-8. RPC L Error Messages 151

for Sample Restructuring __ 167

F-9. DMSREST Error Messages 153
K'-l. Conveyed Group's Reference Code

(CGRC) Record Format __ 168 F-I0. APL/EDMS Errors 154-1

90 30 12C -1 (6/75) v

1. INTRODUCTION

The Xerox Extended Data Mana'gement System (EDMS) opemtes on Sigma 6/7/9 and Xerox 560 computers unddr the
control of the Xerox Control Program-Five (CP-V), and in conjunction with COBOL, Meta-Symbol, FORTRAN
applications programs or the APt. processor. It is designed specifically for use by organizations that require the
same data to be used for many purposes and by many different applications programs.

Extended DMS provides a capability for accumulating large volumes of data into a single database, which may be
structured to reflect any desired data relationships. The structuring and related concepts are explained in Chap
ter 2, "Extended DMS Overview".

A special Extended DMS process()r, the File Definition Processor (DMSFDP), creates a database description in two
phases. The first phase generates a schema file that describes the complete daf'abase, its file size requirements, stor
age and retrieval~echniques, privacy controls, etc. In the second phase, the DMSFDP creates the subschema file
by extracting information from the schema file. The subschema may descriSe the complete database or only those
portions that are required by a specific appl ication. The DMSFDP, its Data Definition Language (DDL) input, and
its operational interface with CP-V are explained in Chapter 3.

The Database Manager (DBM) consists of a number of library routines, which are explained in. Chapter 4. Included
in the explanation are the routine call formats for COBOL, Meta-Symbol, and FORTRAN, and descriptions of error
processing, journaHng, tracing, and statistics collection. Also included are instructions for loading applications
programs with the library routine!i under C P-V. The APL,/EDMS interface is described in Chapter 8.

The Extended DMS Utility processors (DMSi:~~IT, DMSDUMP, DMSLOAD, and DMSSUMS)are described in Chapter 5.
The use of these processors for ini tializing files, saving and restoring the database, and printing summary statistics is
explained. Also explained are the operational interfaces of these processors with CP-V.

The Extended DMS Restructuring processors (DMSANLZand DMSREST) are described in Chapters 6 and 7, respectively.
The requirements analysis function performed by DMSAN LZ and the rest~ucturing function performed by DMSREST
for the purpose of altering an exiSi'ting database, are explained.

90 10 12C-1(6/75) Introduction

2. EXTENDED DMS OVERVIEW

The Extended Data Management System (EDMS) serves an an interface between a user and his data. The user defines
his database and generates applications programs that communicate with EDMS in terms of the defined data charac
teristics and re lationships. EDMS, in turn, communicates with the host operating system in terms of fi les, granu les,
etc., to transfer the specified data- values to and from the database in response to user program requests.

The concept of a database is central to the design of EDMS. An EDMS database is an organized, interrelated col
lection of information required for various types of activities (e.g., a company's accounting, inventory, and personnel
records). Its purpose is to make the same information available for many different uses without incurring the over
head of redundant storage. The value of an EDMSdatabase is realized when there is a need to access the same data
values in several different ways, for several different purposes. For example, purchase order data may be used by
both accounts payable and inventory control. Accounts payable may need all data for all purchase orders to each
vendor. Inventory control may need the total number of parts ordered from all vendors foreach type of part ordered.
To reduce the number of times the counts of parts ordered must be stored or to reduce the number of times a file must
be sorted to produce the information in the desired order, purchase-order data may be stored in an EDMS database
and simply linked in the desired ways. Similarly, information on, for example, students assigned to a particular
class may be linked in several different ways for use in generating class rosters and in generating student grade
reports.

The EDMS capability for accommodating multiple relationships among data values in a database is the most important
aspect of the system. Data relationships are described in the following paragraphs along with the system features
provided for managing the database, the physical structure of the database files, and the facilities available for
database restructuring.

Data Relationships

The term "network-structured" refers to the relationships that can exist in an EDMS database. It implies that a unit
of data may be associated with more than one other data unit. For example, information specifying parts on order
can be associated with information describing the vendors from whom the parts were ordered, and with stock infor
mation on the parts. Relationships in an EDMS database are described in terms of items, groups, and sets.

An item is a logical construct that defines the characteristics of a number of simi lar data values. The concept of
an item is analogous to that of a field. An item occurrence is a single data value with the specified characteristics.
For example, Smith might be an occurrence of an item called IASTNAME.

A group is a logical construct that defines a number of similar collections of item occurrences. A group occurrence
includes a fixed number of item occurrences, each in a fixed position relative to the others. For example, an
occurrence of a group called EMPLOYEE might include an occurrence of the item lAST NAME, an occurrence
of the item FIRSTNAME, and an occurrence of the item EMPLOYEENUMBER. Two group occurrences could be
depicted as

SMITH

1001

JOHN

etc.

STOUT

1002

REX

etc.

A group occurrence can be considered as analogous to a record and the group itself to a record description or
definition.

A set is a logical construct that defines and controls the links existing between occurrences of specified groups. A
set occurrence consists of one occurrence of the group defined as owner, plus zero, one or more occurrences of the
group (or groups) defined as members. For example, a DEPARTMENT group, with an item DEPT -NAME could be

Extended DMS Overview

defined as the owner of DEPT-PERSONNEL set. If John Smith and Rex Stout were the only two employees in
the research departmen'~ and EMPLOYEE the only group defined as a member of DEPT-PERSONNEL set, an oc
currence of the set could be depicted as follows:

I
I
I
I
I
I
I

Set Occurrence

SMITH

1001

I RESEARCH 1,,-_

1002

REX J:J-[HN ·STOUT

~---------- ----------------~
L ____ _

I
I
I
I

I
I
I

--.J

A set occurrence is also somewhat simiilar to a record, in the sense that it contains all of a certain type of informa
tion about an entity (th~~ names of all employees in a department, in the example above).

The links defining a set occurrence am established between the one owner occurrence and the member occurrences,
if any. A notation such as shown in Figure 1 can be used to depict the relationships that exist between the one
owner group occurrence and the member group occurrences in each occurrence of the set. It shou Id be noted that
Figure 1 shows a shorthand notation in which each box may represent many data values, and each connecting line
may represent many different set occurrences, each .;onsisting of ()ne owner group occurrence and zero, one, or many
member group occurrences.

Given these cautions, we can then describe groups as bei.~~ owners or members of sets, and a set as consisting of one
owner group and one or more member groups. A group can particnpate in one or more sets as owner and one or more
sets as a member. For example, the group named GROUP-2 in Figure 1 is a member of the set named SET-A and the
owner of the sets named SET -B and SET-C.

~GROUP-l .:~
~wner SET -A J

SET-A
,r

GROUP-2

M~!mber SET-A
Owner SET-B
Owner SET-C

SET-C

.•

.•

.•

_. __ . ..

SET-B

r

GROUP-3

Member SET-B
Owner SET-D

GROUP-4
SET-D

Member SET-C -
Member SET - D

Figure 1. Shorthand Notation for Delta Relationships

Data Relationships 3

Though not shown in Figure 1, sets with two or more member groups are legal configurations. For example, a
group named GROUP-S could also be defined as a member of SET-D. Or referring to the previous example,
the DEPT-PERSONNEL set could have a CONSULTANT group as well as the EMPLOYEE group as a member. This
configuration would be depicted ..,s follows:

DEPARTMENT

DE PT -PERSON NEL

The data relationships are incorporated in the database by means of set pointers. Every group occurrence has a
NEXT pointer for each set in which the group participates (see Figure 2). In addition to the NEXT pointers, occur
rences of member groups may have OWNER pointers as illustrated in Figure 3, and both member and owner group oc
currences may have PRIOR pointers, as illustrated in Figure 4. Only the NEXT pointers are always inserted in the
database, OWNER and PRIOR pointers are user options. Appendix C describes the database that is illustrated in
Figures 1 through 4.

G ROUP-l Occurrence. -
SET -A NEXT pointer. t

GROUP-2 (first occurrence)tt. -
SET-A NEXT pointer.

Other set pointers. t r------ Occurrences of GROUP-3 and GROUP-4

GROUP-2 (2nd occurrence)tt. -
SET-A NEXT pointer.

I Other set pointers. t
~ Occurrences of GROUP-3 and GROUP-4

i
G ROUP-2 (nth occurrence)tt. --

SET-A NEXT pointer.

Other set pointers. t f---t-- Occurrences of GROUP-3 and GROUP-4

tOoes not represent actual size or position of pointers.

tt In the occurrence of SET -A.

Figure 2. NEXT Pointers in an Occurrence of SET-A

4 Data Re lationshi ps

r--+ GROUP-2 {an occurre,.

Other set poi nters. I

SET -8 NEXT pointe

Other set pointers.

GROUP

ncel·
...

I
-+ Occurrences of GROUP-2 or GROUP-l

r.

I

-..Occurrences of GROUP-4 or GROUP-2

·3 (1 st occurrence). t .--
SET-B NEXT pointer.

.. SET--
OthEI

~ OWNER pointer.

r set pointer. t-____ (;ccurrence of GROUP-4

E 1------......:------1

GROUP· ·3 (2nd occu rrence) • tt --
SET-:

.. SET-:

NEXT pointer.

I OWNER pointer.

8
~-------------~

B
~----------~----------I

Othe r set pointer. --... Occurrence of G RO UP-4

GROUP· 3 (nth occurrence). Ff I ... I
SET- B NEXT pointer.

SET-

Othe
OWNER pointer.

I' set pointer. - Occurrence of GROUP-4

IS
~~~-------~------~ 

t Does not represent actual size c r position of pointers. 
tt 

In the occurrence of SET -B. 

Figure 3. '''IEXT and OWNER p ... inters in an Occurrence of SET-8 

~ GROUP-2 Occurrence. ... -
Other set pointers. ( ~ Occurrences of GROUP-2, GROUP-3, GROUP-l 

SET-C PRIOR pointE:r. 

SET-C NEXT pointer. 

GROUFi'-4 (1st occurrence). tt .... 

SET··C PRIOR pointer. 

SET-·C NEXT pointer. 

C 
Oth:r set pointers. r--....... Occurrences of GROUP-3 and G~'JUP-4 

GROUp·-4 (2nd occurrence). tt -
SET-,C PRIOR pointer. 

SET-'.C NEXT pointer. . . I 
I 

.. Other set pointers • - ..... Occurrences of GROUP-3 and GROUP-4· 

. tt ~ --GROUP.-4 (nth occurrence). -
L SET -,C PRIOR pointer. 

SET-~C NEXT pointer. 

Other set pointers. t---"'Occurrences of GROUP-3 and GROUP-4 

tD t I . . . f . oes no represent' actua $1 ze or POSI tI on 0 po Inters. 
tt In the occurrence of SET -C. 

Figure 4. NEXT and PRIOR Pointers in an Occurrence of SET-C 

Data Relationships 5 



System Functions 

The combination of free-standing processors and library routines that comprise EDMS perform five basic categories 
of system functions: 

• Database Definition. 

• Database Initialization (null values). 

• Data Manipulation (storing, updating, retrieving, etc.). 

• Auxi liary Support (maintaining security and integrity, collecting and printing statistics, supplying de
bugging support to user's programs, etc.). 

• Database Restructuring (altering an existing database). 

See Figure 5 for a graphic representation of EDMS and Figure 6 for a graphic representation of the restructuring 
subsystem. 

The definition function, centralized in the File Definition Processor (DMSFDP), provides for user specification of 
database fi Ie size, item, group, and set characteristics, and security and integrity requirements. Definition is the 
required first step in any database activity, and affects the performance of all subsequent functions. 

Database initialization prepares the database files for receiving group occurrences. This step is necessary before 
any actual data vaJues can be added to the database. It creates the complete, maximum-size files, with pages left 
blank except for control information. This step is performed by a free-standing utility processor, DMSINIT. 

Data manipulation is the actual storing, retrieving, and changing of data values. It is performed, in response to 
user program requests, by the set of library routines referred to collectively as the Data Base Manager (DBM). A 
working storage area in the user's program, in a format determined by the database definition, is used for communi
cation with the DBM, which performs any necessary file manipulation. 

Auxi liary support functions include ensuring database integrity by saving copies of the fi les, journaling changes, 
tracing program action, keeping and printing statistics, and other techniques. These features are provided partly 
by the DBM, and partly by three uti lity processors, DMSDUMP, OMS LOAD, and DMSSUMS. 

Database restructuring provides facilities for altering database size and format. These facilities are provided by 
two· free-standing processors, DMSANLZ and DMSREST. 

Database File Structure 

The EDMS database exists in rannom access storage (RAD or disk) as one or more areas, each of which is a file rec
ognizable by the host operating system. EDMS subdivides each area into 512-word page segments. There are three 
types of pages: data, inventory, and index pages. The number of data pages in each area is specified when the 
database is defined. If the EDMS inventory faci I ity is selected, one inventory page is added for each 2032 data pages 
in the area. Pages for the primary index are added if the area is designated for storage of group occurrences in in
dex sequential order. Each area maycontain from 1 to 220_1 (1,048,575) pages. Pages are numbered consecutively 
within each area, from 1 to the number defined for the area, plus the number added for inventory and index. 

Data Pages 

Data pages are used for storing the group occurrences in the area. A data page has a two-word page header and may 
contain as many as 256 group occurrences and an optional checksum. (See Appendix 0, Figure D-1, for an illustra
tion of the data page format.) 

The maximum number of group occurrences that can be stored on a data page depends on the size of the occurrences 
and the number of available line numbers. The size of a group occurrence, which is a collection of item occur
rences, control data, and set pointers, is determined by the number and characteristics of tl-e items defined for the 

6 System Functions;Database Fi Ie Structure 



fl. DATABASE DEFINITION I 

I ] I 
, g:;~n ition : 

I Language I 

I I 
I 
I _-----1--;]' File Definition 
I Processor (DMSFDP) 

I 

I 

I 
I 

L ___ _ _J 

/ 

Note: Printed output from several 
system featur'es is not shown. 

User's Raw 
Data Input 

IIi DATABASE INITIALIZATION - - - - -1 
I I 

" 

Initialization I 
Utility (DMSIN IT) 

I I 
L ____________ ~ 

I 

I 
, 

User's Appl ications Programs 
Combined with Database Manager 
(DBM) library Routines 

-, 
I 
I , 

L ____ _ 
I 
I 

_-.J 

I 
I 
I 

Summary Stati sti cs 
Uti! ity (DMSSUMS) 

L ______ _ 

Summary 
Statistics 
Listing 

Figure 5. System Overview 

Database Fi Ie Structure 7 



)o'.;rct: 8atabase'~ 

~"ta C)e;inition 

Lan("j',J/)qe 

F i Ie Derin i tion 

Processor 
,DMSFDP, 

Various listing 
Outputs 

8 Database Fi Ie Structure 

Restructuring 
Process Control 
language 

Database 
Analysis 
Processor 
(DMSANLZ) 

Restru cturi ng 
Process 
Control 

Database
Restructuri ng 
Processor 
(DMSREST) 

Figure 6. Restructuring Subsystem 

larget Database's 
Data Defin i tion 

Language 

File Definition 
Processor 
(DMSFDP) 

In i tiali zation 
Utility 
(DMSINIT) 



group and t-he number of sets in which it participates. All occurrences of a given group are the same size, 
but many groups, each with its own size, may be defined for a given database. 

The maximum number of available line numbers is determined by the number of pages in the area. When a group oc
currence is inserted in the database, it is assigned a line number that is appended to the page number and the area 
number to form a referenCE! code that uniquely identifies the occurrence. The reference code consists of eight bits 
of area number and 24 bits shared between page number and line number. The default allocation 24 bits allows repre
sentation of the page numb.~rsofall pagesinthearea, with the remaining bits of the 24available for line number. For 
example, if the area contains the maximum number of pages, 20 bits are reserved for page number and only four are 
available for line number. Similarly, fewer pages allow more bits, up to a maximum of eight, for line number. Thus, 
in a one-page area or in a 65,535-page area, 16 bits are reserved for page number and eight bits for line number. 
The user may override the default allocation of bits to allow fewer than the maximum available for line numbers. In 
a one-area database, set pointers consust of only the 24-bit page-line-number portion of the reference codes. The 
complete 32-bit codes, in<:luding area number, are used for set pointers in databases of two or more areas. 

Index Pages 

An index page is composed! of a three-word page header, a variable number of index entries, and an optional check
sum. See Appendix 0, Fioure 0-4, for index page format. The number of pages necessary to contain the indexes is 
added to the number of data pages specified for an area. Thus, after an area is initialized by the OMSINIT utility, 
the index pages wi II follow the data pages of the area. The numb,er of index pages is based on the number of data 
pages defined to contain group occurrences in index sequential order, and the length of the items defined as the 
index -key Uems for the group. 

The contents of the index pages are automatically updated by the DBM. As a data page is filled, the highest key 
value on the data page becomes the index entry in a level-O index page. When a level-O index page is filled, 
the highest key value on that page becomes an index entry on a level-l index page. The creation of higher level 
indexes wi II continue to a maximum of eight levels. The relative position of an entry within an index level corres
ponds to the relative page !number of the page that the entry represents. 

Once an index entry is crellted, it is not removed; i. e., deleting the highest key value on a data page wi II not 
change the index for that page. 

Inventory Pages 

A database area has inventc,uoy pages if the user specifies an inventory percentage when he defines the area (see "Area 
Entries" in the section titled "Schema Generation" in Chapter 3). Each inventory page accommodates space
available counts for 2032 data pages. Figure D-5 in Appendix D shows the inventory page format. The inventory 
pages, initialized with zem space-available counts by DMSINIT, immediately follow the area's data pages or index 
pages, if any exist. 

The DBM automatically maintains the space-available c:ount for a data page when group occurrences occupy more 
than the specified percentage of the nonheader words on the page. 

Database Restructuring Subsystem 

The EDMS Restructuring Subsystem permits the user to change the size or logical structure of an existing database 
when his requirements chan!~e. The Subsystem consists of two free-standing processors, the Database Analysis Pro
cessor (DMSANlZ) and the Database Restructuring Processor (DMSRES T). DMSANlZ performs an analysis of the 
user's restructuring requirements and DMSREST uses the results ;'f the analysis to restructure the existing database. 

Prior to the availability of CJ generalized databose restructuring facility, a user whose requirements necessitated a 
change in the databose had no recourse except to write :special-purpose programs to transfer the data from his exist
ing databose into a new databose. This process was sometimes prohibitively expensive, both in programming effort 
and in execution time. lac:king an intimate knowledge of the physical attributes of his database, the user was 

90 30 12C-2(4/76) Database Restructuring Subsystem 9 



required to traverse every set occurrence in his existing database .in order to transfer the logical data relCltionship 
into the new database. In so doing, he had to access the same data pggemany times. 

The EDMS Restructuring Subsystem minimizes this overhead by accessing the existing (source) database in physical 
page sequenc~ and outputting the data groups and set linkages to intermediate files. A base or "home" page in the 
desired (targer) d.aiul--ose is assjgned to each of the dotS] groups and th,y are then loa.ded, in one ,or more physically 
sequential passes, into the target datoc'::!se. All data groups in the target database ore then relinked, in physical 
page sequence, with the adjusted set pointers. 

Sub$ystem Funttif)ns 

The requirements analysis function, performed by DMSANLZ, associates the various components (areas, groups, 
items, and sets) of the source and target databases, checks the I,egality of all changes, and determines the processes 
that will be perf,,}rmed by DMSREST and the order in which they will be executed. DMSANLZ conveys this informa
tion to DMSREST via the Restructuring Process Control Context (RPCC) fi Ie (an EDMS database whose subject is the 
user's databose tl Jt is to be restructured). The data in the RPCC fi Ie includes descriptions of the vorious components 
in the user's database, descriptions (schemas) for the source and target database areas, Clnd a variety of procedural 
information. . 

The qctual conveyance of the USer's data i$ accomplished by DMSREST on the basis of the information in the RPCC 
databose. Data conveyance consists of a variable number of intermediate processes that may be executed in a single 
job step or in several successive job steps, at the user's option. 

Inton.tion Required from the User 

All information relating to the structure of the user's database, the physical allocation of space within this data
base, and ony access monitoring and control attributes associated with the user's data ore obtained from the schema 
files for the source and target databases. Thus the user must supply DMSANLZ with two schemas: one for the exist
in.g, or source, database, and one for the desired, or target, database. These schemas are referred to in this monual 
os the source schema and the target schema, respectively. 

Any information required to access schema fi les and database area fi les must be supplied to DMSAN LZ by the user 
via the Restructuring Process Control Language (RPCL). This information includes schema file n(lmes ond extroct 
keys, area cipher keys, volume seriol numbers for tape files Clnd private disk packs, and account numbers ond moni
tor passwords Clssociated with schemCls and database oreas. The RPCL may also specify the user's preference with 
regard to the sequence in which his data groups are to be loaded into the target areas, 

The user must provide DMSREST with an existing EDMS database. This may be either in database format (i. e., a 
random file) or a database dump file created by the Dump Processor (DMSDUMP). The user must also supply DMSREST 
with an initialized target database. DMSREST is so designed that the source and target databases are not both ac
cessed at the same time. 

10 [)qtaixJse Restructuring Subsystem 



jL FILE DEFINITION ?ROCESSOR 

The EDMS user defines his database tel the Fi Ie Definition Processor (DMSFD P) in terms of items, groups, sets, and 
areas. DMSFDP processes the user's definition, stated in a Data Definition Language (DOL), and converts it to a 
form that is usable by the Database Manager (DBM). The conversion is in two phases. The first phase results in a 
schema and a listing of error messages, summary information and, optionally, the DOL input. 

The schema is established as a file, rElsident on a random access device. This file contains the names and descrip
tions of all the items, £Iroups, sets, and areas of the database, and is available for use by the second-phase DMSFDP 
and the EDMS uti lities. Because of hs size and complexity, the schc:ma is an inefficient tool that cannot be used by 
the DBM in directly controlling appli,cation program interface with the database. Instead, a subschema, resulting 
from the second phase of DMSFD P, is used by the D BM as a guide for processing the database. 

The second phase of DMSFDP also develops the subschema-specific working storage format that is required for user
program communication with the DBM. Declarations to generate the required formats may be output in files suitable 
for use in assembling/c,:>mpiling the user's applications programs, as may listings of the declarations and of the sub
schema DDL. Figure 7 illustrates DMSFDP outputs and their use in other processes. 

Data Definition language Syntax 

The major element of the DDL is the ~mtry. A DDL entry is either a simple entry consisting of one subentry, or a 
compound entry consisting of two or more subentries. A subentry is composed of one or more clauses and is term i
nated by a period. The first clause in the first (or only) subentry of an entry identifies the entry, and the first clause 
in the second, or a succeeding, subentry identifies the subentry. Every clause after the first in a subentry starts with 
a word, optionally preceded by a semicolon, that identifies the clause. The second and subsequent clauses in a 
subentry may appear in any order, but· the syntactical un:+s within a clause must appear in the specified order. 

Clauses consist of words, which include system words and user-generated names, and I iterals. A word is a string of 
not more than 30 characters selected from the letters A through Z, the digits 0 through 9, and the hyphen. A word 
may not begin or end with a hyphen clnd must have at least one nonnumeric character. Although many system-words 
having a special meaning in their DDL may also appear as user-generated names, some would result in ambiguity if 
so used and are reserved for the system. These reserved words are listed below, along with some system-generated 
names, which must not be duplicated by user names. 

ALIASES 
ALL 
ARE 
AREA 
AREA-MASTERS-xx t 

AREA-TABLE 
CCB 
COMPONENTS 
COpy 
DU PLICATES 

END 
FOR 
GROUP 
INVERT 
IS 
KEY 
MEMBER 
NAME 
NUMBER 
ON 

PRIVACY 
SCHEMA 
SET 
SET-TABLE 
STATISTICS 
STORAGE 
SYSTEM 
THRU 
USING 
WITHIN 

Literals can be numeric: or nonnumeric:. A numeric literal is a string of characters selected from the digits Othrough 9, 
the plus sign, the minus sign, the decimal point, and the letter E. Integers, the most commonly used numeric literals 
in the DOL, are composed of digits only. The number of digits allowed in an integer depends on its use in a clause. 
Noninteger numeric literals appear only in CHECK clauses (see "Group Entry" in the section titled "Schema 
Generation ", below). 

A nonnumeric literal is a string of characters enclosed in a pair of apostrophes. To include an apostrophe in 
a literal, two apostrophes must be us.ed. The second apostrophe does not become part of the literal. Nonnumeric 

t d' . x represents any Iglt. 

Fi Ie Definition Processor 11 



Schema DDL. 

/ 
/ 

/ 

/ 

I 
{ EDMS Uti I ities} 

DMSFDP 
Phase I. 

Schema DDL 
Listing. 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

Subschema DDL 
Listing. 

DMSFDP 
PHASE II. 

Subschema DOL. 

SYSTEM Listing. 

Figure 7. DMSFDP Outputs 

12 Data Definition Language Syntax 

{
COBOL} 
:Compiler 

1 
Meta- I 
Symbol 
Assembler 

{ 
DBM and I 
User 
Program 



literals are used for passwords and privacy locks (see Schema Entry and Subschema Entry, below) and in CHECK 
clauses. The specific: usage determines the allowable size. 

The space, the comma, the period,cmd the semico Ion are considered punctuation marks (except in comments and 
nonnumeric literals) and are used 015 follows: 

1. The space (blank) is a sepOlrator, required after words Clnd literals in the absence of any other separator. A 
space may precede or follow any oth~r separator, and many spaces are the same as one (except in comments 
and nonnumeric literals). 

2. A comma is a separator that is legal onlywhere it is specifically indicated in a language format. The comma, 
where it is legal, can also serve as a terminator for words ane numeric literals. The comma is never required. 

3. A semicolon is an optional separator that may be used between clauses but is not needed to indicate the 
end or beginning of a clause. The semicolon, where it is legal, can also serve as a terminator for words 
and numeri c literals. 

4. The period (followed by a space) is required to terminate an entry or subentry. 

A comment may be included at any point where a space is legal. Comments are delimited on the left by the con
tiguous characters /* Clnd on the right by */. A comment may not contain the */ character pair. 

The DOL is essentially free-form in terms of length (up to 80 characters) of units of input. The input "unit" is 
termed a line, though the original input sourc~ ma> be cards, keyboard terminal messages, or any other character
string source. There i$ no provision in the language for designating a continuation to a new line (card, etc.). An 
entry or subentry is considered continued unti I it is terminated by a period, regardless of the number of lines used. 
However, the end of a line terminatos a word or n ... ""'eric literal. 

In this manual, the following notatic)n is used to show the DOL entry/subentry format: 

1. An underlined word in uppe'li case is required if the part of the format containing it is used. 

2. Uppercase words not underlined are optional, but are legal only in the indicated positions. 

3. Words in lower case represent names or values that are supplied by the user. 

4. Brackets indicate that the ·enclosed part of the format is optional. If two or more language elements are 
vertically stacked within brackets, none of the elements is required <.:iild no more than one may be included. 
For example, 

ra:] l a, or b, or c, or none. 

5. Braces indicate a required (:hoice. Of the two or more elements vertically stacked within braces, only one 
may be used, and one is required. For example, 

{:
a} a, or b, or c. 

6. An ellipsis indicates that repetition is allowed. The portion of a format that may be repeated is the total 
enclosed element whose out'ermost right bracket or brace immediately precedes the ellipsis. For example, 

[[abJcJ ••. 

[[a bJ [cJ ••. ] 

The whole sequence abc may be repeated. 

Only c may be repeated. 

Data Definition Language Syntax 13 



Schema Generation 

The DMSFD P processes schema DO L and creates a schema fi Ie, an EDMS database whose subject is the user's 
database being defined. The data values in the schema database describe the areas, groups, items, and sets of the 
user's database. The schema database is described in detai I in Appendix A. The schema DO L provides the data 
input for the schema database as weI! as information about the schema file itself. 

The schema DO L consists of fi ve types of entries. 

1. Schema entry -one only. 

2. Area en try - one for each area of the database. 

3. Group entry - one for each group defined in the database. 

4. Set entry - one for each set in the database. 

5. End entry -one only. 

The schema entry is required and must be the first DOL entry. It is followed by the area entries (at least one), 
which are followed by the group entries (at least one), which are followed by the set entries (none required). The 
end entry is the last schema entry. The schema, area, and end entries are simple entries, each consisting of a 
single subentry. Group entries may be simple or compound. Set entries are always compound, with at least two 
subentri es. 

Schema Entry 

The schema entry supplies the file name for the schema file and specifies locks and passwords for limiting access to 
the schema itself and to the user's database. 

SCHEMA NAME IS schema-name 

(; PRIVACY LOCK FOR EXTRACT IS privacy-Iock-l] 

(; PRIVACY LOCK FOR ALTER IS privacy-lock-2] 

[ r {RETRIEVE} [KEYS ARE] • • J] ; PASSWORD IS password-l t UPDATE KEY IS Integer-l (, Integer-2]. •• •...••• • 

Usage Rules 

1. The SCHEMA clause, which must be the first clause in the entry, specifies the file name for the schema. 
The specified schema-name must conform to the file naming conventions of the host operating system as 
well as to the DO L rules for names. 

2. The PRIVACY LOCK clauses specify the locks to be used to prevent unauthorized subschema generation 
using the schema (EXTRACT) and unauthorized modifications (ALTER) of the schema file. (The ALTER 
lock is not currently used and is provided for use by future enhancements.) The form for privacy-Iock-l 
and privacy-lock-2 is a nonnumeric literal of up to eight characters. If fewer than eight characters are 
specified, blanks are added on the right to make an eight-character lock. A key that exactly matches the 
EXTRACT lock must be supplied in the subschema entry (see IISubschema Generation II, below) when a sub
schema is to be generated. 

3. The PASSWORD clause provides information for the DBM to use in controlling access to the user's data-
base. A user's program must supply the DBM with one of the specified passwords to gain access to any 
database area. The passwords are specified as nonnumeric literals of up to eight characters. Blanks are 

14 Schema Generation 



added on the right to make eight t::haracters if fewer are sr~cified. Any number of passwords can be specified, 
within the limits of physical storage space available for the schema file. Access to individual groups and items 
may be further controlled by the RETRIEVE!ll PDATE keys, specified as integers from 1 throug .. 255. A user program 
is allowed to access the groups and it'ems whose retrieve/update keys match those associated with the password it sup
plied. (See description of DDL group and item entries, below.) From 0 to 255 retrieve keys and from 0 to 255 up
date keys may be specified for each password. 

Area Entries 

Area entries supply (1) the fi Ie name:; by which the database areas are identified for the host operating system and in 
the user's working storage declaratiolns generated by the FD Pi (2) information on the size of the area fi Ie; and (3) in
formation on how the fi Ie space is to be managed by the DBM. 

Format 

AREA NAME IS area-name-l CONTAINS integer-l PAGES 

; NUMBER IS i nteger-2 

[; INVENTORY PERCENT IS integer-3] 

[; CHECKSU~ IS [NOT]REQUIRED] 

[; JOURNAL.IS [NOT]REQUIRED] 

[; ENCIPHERING IS [NOT] REQU IRED] 

[; OVERFLOW RANGE IS PAGE integer-4 THRU PAGE integer-5] 

(} FILL PERCENT IS integer··6] 

[; LINES PER PAGE ~RE] integer~7]. 

Usage Rules 

1. The AREA NAME clause mu:st be the first in the area entry. Since area-name-l is subsequently used by the 
EDMS initialization uti lity (see Chapter 5) for the fi Ie name of the area, the name must conform to the fi le
naming conventions of the host operating system as well as to the DDL rules for names. The mandatory 
CONTAINS subclause, which must immediately follow the NAME subclause, specifies the number of data 
pages required for all occurlrences of a" groups defined as within the area, including groups defined in in
vert . subentries (see "Group Entries", below). The EDMS initialization uti lity calculates the size of the 
area file by adding (to the number of pages specified) the number of pages, if any, required for inventory 
and indexes. The number specified by integer-l must be low enough to ensure that the total area size is 
not greater than 1,048,575. 

2. The required NUMBER clause provides a unique integer identifier for the area. The number specified by 
integer-2 forms the area-number part of the reference codes for group occurrences in the area. The value 
specified for integer-2 must be in the range 1 to 64, inclusive, and must not duplicate the number of any 
other area in the database. 

3. The INVENTORY clause indicates that inventory pages are to be included in the area, and specifies the 
percentage of data words on a page that may be occupied by group occurrences without requiring main
tenance of space-avai lable counts. {Data words here means any words not required for header or check
sum.} Integer-3 must be in the range 50 to 99, inclusive. For example, INVENTORY PERCENT IS 50 
means that spClce-avai lable counts are to be maintained for a II data pages on which more than 255 words 
(254 if there is a checksum) me occupied by group occurrences. If the inventory clause is not included, no 
pages will be added to the area file for inventory. 

4. The CHECKSUM clause indicates whether or not arithmetic checksums are to be included on the EDMS 
data pages to provide an error detection capability. If the checksum clause is not included, the data 
pages will be checksummed, so the clause is needed only if the NOT option is desired. CHECKSUM NOT 

Schema Generation 15 



is illegal if an ENCIPHERING IS REQUIRED clause (see below) is included. The DBM ane! the EDMS 
Uti lity routines generate and monitor checksums when the data pages are written and read. The user re
ceives an indication if a checksum error is detected. 

5. The JOURNA L clause indicates whether or not a journal fi Ie is to be maintained when a user program up
dates the database. (~(::e IIJournaling ll

, in Chapter 4.) If the journal clouse is not included, no journal
ing will occur. Specifying JOURNAL NOT, therefore, has the some effect as omitting the clouse. 

6. The ENCIPHERING clause indicates whether or not the area's data pages and index pages are to be en
ciphered before being written in the fi Ie. Specifying ENCIPHERING IS REQUIRED causes the DBM to use 
a four-byte key-value supplied by the user's program at runtime to modify the words on each page so that 
they cannot be easily interpreted. To access the data in the area, the user must supply to the DBM or to 
the EDMS utility routine the same value that was used as a key to encipher the pages. Pages are always 
checksummeci before enciphering, and the checksum is tested after the deciphering. A checksum error in
dication from the DBM or from on EDMS utility may, therefore, signal either a data error or an improper 
enciphering key. Specifying ENCIPHERING IS NOT REQUIRED or omitting the enciphering clause in
dicates that the pages are not to be enciphered. 

7. The OVERFLOW clause has meaning and is legal only if a group with location mode of indexed is defined 
as within the area (see "Group Entries", below). Integer-4specifies the first, and integer-5 the last,page 
of a range that is to be reserved exclusively for overflow from the range specified for the indexed group. 
The overflow pages wi II be used when a group occurrence that wou Id normally be stored on a page within 
the indexed group range will not fit on that page. (See "Adding Occurrences 11 in Chapter 4.) Integer-4 
must be one or greater and integer-5 must be less than or equal to the total number of data pages specified 
by integer-l in the CONTAINS subclause. 

8. The FILL PERCENT clause is also applicable and legal only if the area is to contain indexed group occur
rences. The percent specified by integer-6 controls the number of words on a page within the page-range 
of the indexed group that wi II be used for storing group occurrences when the area is first created. Integer-6 
may be any integer from 1 through 100. (Specifying 100 is the same as not specifying fill percent.) The 
percent specified by integer-6 is applied to 510 (or 509, if checksum is specified) to determine the maxi
mum number of words to be used.whi Ie the area is open in create mode. (See "Begin Processing ", in Chap
ter 4, for an explanation of open in create mode.) It is the user's responsibility to select- a reasonable per
centage figure based on the size of his group occurrences and the relative number of occurrences he will 
store during create mode. 

9. The LINES clause allows the user to decrease the default value for the maximum number of group occur
rences that may be contained in anyone page in the area. The default value for the number of lines per 
page is a function of the number of data pages in the area, as follows: 

Number of Data Pages inA rea Default Lines Per Page 

1 to 65,535 255 

65,536 to 131,071 127 

131,072 to 262, 143 63 

262, 144 to 524,287 31 

524,288 to 1,048,575 15 

Legal values for integer-7 are 15, 31, 63, 127 and 255. The value of integer-7 may not exceed the de
fault lines per page for the area. 

Group Entries 

Group entries specify the size, form and order of appearance of item values within group occurrences, the method 
for locating occurrences, the privacy locks that are to control access to the occurrences, and which items, if any, 
are to serve as secondary indexes. Corollary groups or subgroups, used to manipulate secondary indexes, are de
fined to designate items as secondary indexes. 

A group entry consists of a group subentry, followed by item subentries for all items in the group, followed by invert 
subentries for all of the corollary groups that control secondary indexes for the main group. 

16 Schema Generation 



Group Entry Skeleton 

Group subentry 

Fi rst item subentry 

Last item subentry 

First invert subentry 

Last invert subentry 

The required group subentry identifies the group entry. Item subentries and invert subentries are optional, but a 
group entry with invert subentries must have corresponding ih~m subentries. Other considerations usual! y necessitate 
item subentries. Indexed and calc location modes require item values to determine storage and retrieval algorithms; 
item values are used to determine linking order for member group occurrences in sorted sets; and finally, only items 
have actual data values; thereforl~, occurrences of groups with no items are null occurrences, useful only for linking 
other group occurrences. An itemless group might be useful on two occasions: (1) to serve as the owner of a set that 
links all group occurrences of a sl:ngle type, and (2) to serve as a member of two sets and establish connections be
tween specific occurrences of independent groups. 

Example 1 

An application needs to access de'partment information in order by department. A simple way to provide for this is 
to define a set whase sole purpose is to link department group occurrences. 

DEPARTMENT -HEADER I 

DEPTSET 

DEPARTMENT 

The group named DEPARTMENT-HEADER would not need to have any items (if its location mode were DIRECT, see 
below), as all the data would be j::arried in occurrences of the group named DEPARTMENT, which could be accessed 
through the set named DE PTSET. 

Example 2 

A department responsible for man)/ projects and with many employees must process project information and employee 
information and determine which j:Jmployees are assigned to which project. 

~)EPARTMENT ] 

DEPT -EMP DEPT-PROJ 
SET SET 

EMPLOYEE 

EMP-PROJ 
SET 

~K-EMP-PROJ ] 

Since occurrences of the LNK-EMP-PROJ group serve only to linkspecific occurrences of EMPLOYEE tospecific occur
rences of PROJECT, this group does not require any item subentries (assuming its location mode is via one of the sets). 

G.roup Subentry 

Group subentries specify the narne of the group, the criteria for identifying a specific group occurrence, the 
guidelines for placing the group in physical storage, and the privacy controls for the group. 

Schema Generation 17 



GROU P NAME IS group-name-l 

; WITHIN area-name-l [,RANGE IS PAGE integer-l THRU PAGE integer-2] 

DIRECT[,STORAGE IS set-name-l SET] 1 
INDEXED. USING data-item -name-l [, data-item -name -2J ••• 

; LOCATION MODE IS CALC USING data-item-name-3 [, data-item-name-4] ••• 

DUPLICATES ARE [NOTJALLOWED 

VIA set-name-2 SET [, STORAGE IS set-name-3 SET] 

; NUMBER IS integer-3 

[; PRIVACY LOCK FOR RETRIEVE IS integer-4] 

[; PRIVACY LOCK FOR UPDATE IS integer-S] 

[; STATISTICS ARE [NOT] REQUIRED]. 

Usage Rules 

I. The GROUP NAME clause is required as the first clause in the subentry. The specified name identifies the 
group for reference in subsequent set entries, subschema selection entries, and in working storage declara
tions generated by DMSFDP. The name is used as specified for COBOL declarations but may be modified 
for Meta-Symbol declarations. (See "Subschema Entry" under "Subschema Generation", below.) Group
name-I must conform to the DOL rules for names and must not be the same as the name specified for any 
other group or for any item or s~t in the database. 

2. The WITHIN clause specifies the area in which all occurrences of the group are to be stored, with area
name-l the name of an area defined for the database (see "Area Entries ", above). The RANGE subclause 
specifies the range of pages (1 ~ integer-I ~ integer-2) in the area on which group occurrences will be 
stored. The pages are not reserved exclusively for the group, but there are some restrictions on overlapping 
page ranges if a group with indexed location mode is defined as within the area. No group's range may 
overlap that specified for OVERFLOW (see "Area Entries", above), and only a limited selection of other 
groups may be ranged with the indexed group. Specifically, a group's range may coincide with that of 
the indexed group only if its storage owner may be legally ranged with the indexed group. The storage 
owner (i.e., the owner of the set specified in the STORAGE clause or the owner of the via set if there is 
no STORAGE clause) may be the indexed group itself, or it may be a group whose storage owner is the 
indexed group, etc., down as many levels as desired. The range of a group whose location mode is calc 
may not overlap the range of an indexed group. Any range that overlaps the range of an indexed group 
must exactly coincide with it. If RANGE is specified, integer-l must be greater than or equal to 1 and 
less than or equal to integer-2, and integer-2 must be less than or equal to the number of data pagesspeci
fied for the area. If RANGE is not specified, the range used is 1 through the highest numbered data page 
in the area. 

3. The LOCA nON MODE clause specifies the most important group characteristic. The location mode deter
mines how the DBM selects physical locations for group occurrences and the primary means by which the 
user identifies a specific occurrence to the DBM for retrieval and set-linking purposes. It also affects the 
types of set linkages that are legal for the group. There are four location modes available: direct, indexed, 
calc, and via set. 

DIRECT - The user identifies a specific group occurrence to the DBM by supplying the reference code that 
is returned by the DBM when the occurrence is stored. The location selected by the DBM for storing an 
occurrence depends on whether there is a STORAGE set specified in thedefinition. If a STORAGE set is 
specified, a group occurrence will be stored physically near its associated owner occurrence. If a STOR
AGE set is not specified, the user must supply the area number and may supply a base page number in his 
working storage for the DBM to use in selecting a physical location. (See "Adding Occurrences" in Chap
ter 4.) If STORAGE is specified, the set owner must be defined as within the area identified by area
name-1. The group'05 inclusion in the set must not be manual (see "Member Subentry", below). 

18 Schema Generation 



4. 

5. 

6. 

INDEXED - Indexed group occurrences are stored in s"'quential order of increasing key values. A key value 
is formed by the catenation of the values of the items identified by data-item-name-l, data-item-name-2, 
etc. From one to seven itelms may bespecified. The number of items used should bt; )ufficient to provide 
a unique key value for ea(:h occurrence of the group, as duplicate key values are not allowed. The high
est key value stored on a page is also stored on an index page as the key for the data page. Group occur
rences .may t'hen be retrieved either individually by means of specific key values, or sequentially in either 
direction. Not more than one group with indexed location mode may be defined for any given area. 

CALC - User supplies, in working storage, the control item values of the specific group occurrence to be 
retrieved. Group occurrences are stored on or near a base page whose page number is determined through 
a hashing of the values of t'he control items identified bydata-item-name-3, data-item-name':'4, etc. From 
one to seven control items may be identified, all to l:,.: =.: ~;o1ed in item subentries in the group entry. The 
DU PLICATES phrase is required in the calc specification. If duplicates are not allowed, a data-dependent 
error return wi II be made t·o a user's program that attempts to store a group occurrence whose combined con
tro� item va lues duplicate those of an existing group occurrence. If duplicates are allowed, more than one 
group occurrence may havE~ a specific control-item value combinathn and the user will have to make more 
than one retrieval request to obtain all group occurrences with that value. 

VIA SET - Each occurrencel of the group, which must be defined as an automatic member of the set identi
fied by set-name-2, is stomd physically near the owner occurrence with which it is associated. However, 
if a range is speci fied for the group, the occurrences will be stored within that range regardless of the lo
cation of the selected OWnE!r occurrences. The set-narne-3 set of the optional STORAGE clause replaces 
set-name-l set for positioning of occurrences, but it does not override a RANGE specification. The pri
mary means of identifying (l specific occurrp'1ce of the group to the DBM for retrieval is by relating it to 
a specific occurrence of the set iden~ifieu by set-name-2. If STORAGE is specified, the set owner must be 
defined as within the area, and the group's inclusion in the set must not be manual. 

The mandatory NUMBER clause assigns a uniqut. :nteger identifier to the group. All occurrences of the 
group will contain this number, which will also be part of the .working storage identi.fie.r used

ll 
to store the 

reference code of the most recently accessed occurrence of thIs group (see the descrtptlon of Current-of
Type II under "Adding Occurrences II in Chapter 4). The value of integer-3 may range from 1 to 999, but 
must not duplicate the vall/Ie assigned to any other group defined for the database. 

The PRIVACY LOCK claus·es supply lock values (integers 1 to 255) that DBM and the dump uti lity use to 
determine if a user has authority to retrieve or update the group occurrences. If locks are specified, group 
(or item) occurrences cannc)t be retrieved or updated unless a key that matches the lock is associated with 
the password supplied to the D BM in the user program's working storol:le or as input to the dump uti lity. The 
va lue of integer-4 and inte,ger-5 must, therefore, match appropriate keys specified in a PASSWORD clause 
in the schema entry. 

The STATISTICS clause indicates whether or not the DBM is to keep summary-type statistics when group oc
currences are stored, retriElved, or deleted. If the clause indicates that STATISTICS ARE REQUIRED, the 
DBM will collect the statis·tics automatically during user program operation, though the user must assign a 
fi Ie (see DBM "Operationa I Interface II in Chapter 4) for storing the statistics. If NOT is specified or if the 
clause is omitted, no summlClry statistics wi II be kept on the group. 

Item Subentries 

Item subentries specify the characteristics of the items in the group. All of the item subentries for a group to
gether provide an image of the data portion of the group occurrences in the database. The item values exist 
in the group occurrences in the exact order in which the item subentries occur, with no intervening slack bytes. 
For this reason, the ,:>rder of the item subentries can affect the efficiency of subsequent accesses of the defined 
database. For greatest efficiency, the item subentries should be arranged in an order that results in binary and 
floating-point (long cmd short) item values beginning on word boundaries. 

90 30 12C-l(6/75) Schema Generation 19 



Format 

data -i tem -name -1 

[ { PICTURE} IS characi9r-string] 
; PIC 

TYPE IS 

BINARY 

FLOATING {
SHORT} 
LONG 

PACKED DECIMAL[, integer-I] 

l CHARACTER(, integer-2] 

[; OCCURS integer-3 TIMES] 

[; PRIVACY LOCK FOR RETRIEVE IS integer-4] 

[i PRIVACY LOCK FOR UPDATE IS integer-5] 

[ CHECK IS {:'~~~EOF literal-l THRU Iiteral-2}]. • • 

Usage Rules 

1. Data -item-name-1 must appear first in the item subentry, must conform to the DO L rules for names, and 
must not be the same as the name specified for another item in the group or for any set or group defined for 
the database. The specified data-item-name is used in the working storage declarations that are gener
ated for use in COBOL and Meta-Symbol applications programs. (In the COBOL definition the name ap
pears as specified, but it may be 'mo~ified for Meta -Symbol usage; see "Subschema Generation II, below.) 

2. The PICTURE clause may be used to indicate the form of the values of certain types of items. The picture 
is included in the COBOL working storage declarations and may be used by the DBM to perform validity 
checks on input data values (see CHECK clause, below). Characters in the picture character-string 
represent characters and character positions in data va lues. The picture-character-string characters have 
the following meaning. 

A - letter or space 

X - any character 

9 -digit 

V -assumed decimal point 

P - assumed sca ling position 

S -sign (+or -) - must be leftmost character if used. 

To indicate a number of characters, the representative character (except S) may either be repeated or 
followed by an integer enclosed in parentheses. For example, AA and A(2) both signify two letters. 
The maximum number of characters in the picture character string is 30. The maximum item size depends 
on a combination of the picture information and the specified item type. The PICTURE clause is required if 
the TYPE clause (below) is not included, and is illegal for certain values of TYPE (see Table 1). 

3. The TYPE clause is used in conjunction with the PICTURE clause to determine (1 )the database representation 
of the item va lues and (2) the method DBM uses to process the va lues. The a lIowable item size depends on 
the TYPE-PICTURE combination. The TYPE clause may specify item size if TYPE is PACKED DECIMAL 
(i nteger -1) or CHARACTER (integer-2). If a size is specified, it must be the same as the size implied by the 
picture clause. The size is requi red if the PICTURE clause is omitted. Table 1 shows PICTURE-TYPE relation
ships, the EDMS interpretation of each combination, and the allowable item sizes for each. 

20 Schema Generation 



Table 1. PICTURE-TYPE Correspondences 

Type Picture DMS Interpretation Size 

Binary Illegal Binary Fixed - one word. 

Floating Long Illegal Double Precision Fi xed - two words. 
Floating-Point 

Floating Short Illegal Single Precision Fi xed - one word. 
Floating-Point 

Packed Decimal 9's, PIS, S, a nd V Packed Decimai Variable - maximum 31 ,=,igi ts 
(16 bytes). 

Character or not 9's, PIS, S, , a nd V Signed Numeric Variable - maximum 31 digits 
specified (21 bytes) (only 9's counted). 

Character or not 9's, PIS, and V Numeric Variable - maximum 31 digits 
specified (no S) (31 bytes) (only 9's counted). 

Character or not A's Alphabetic Variable - maximum 255 characters. 
specified 

Character or not X '5, or A's, Alphanumeric Variable - maximum 255 characters. 
specified XIS, and 9'5 

4. The OCCURS clause indicates the numbe- of times an item value is repeated in a group occurrence. The 
size of the group occurrences wi II be made lar~~ enough to accommodate an item that is integer-3 times 
the size of the specified itf~m. EDMS wi II treat the tota I as one large item. The OCCURS clause must 
not b~ included if the item is a control item for a calc or indexed group, if the item is a sort key for a 
set (see "Set' Entries", belclw), or if the item is a secondary index item (see "Invert Subentries", below). 

5. The PRIVACY LOCK claus,es have the same effect as those in the group subentry except that the lockS are 
for the item values only. Authority to access a group does not imply authority to access all items if any 
item has a privacy lock. 

6. The CHECK dause indicates that the DBM is to validity-check values supplied for the item when a group 
occurrence is stored or modified. Refer to Appendix G for a discussion of data validation by the DBM. If 
PICTURE is specified, an attempt to store an item value that does not agree with the item's PICTURE clause 
will result in an error return from the DBM. PICTURE is not allowed in a CHECK clause if there is no 
PICTURE clause. 

If RANGE is specified, an attempt to store an item value that is less than literal-lor greater than literal-2 
will result in an error return from the DBM. The values specified by literal-1 and literal-2 may be equal 
and must be compatible with the item's size and form, as determined by the PICTURE-TYPE combination. 
The RANGE option is not legal if the item size amounts to more than four words of computer storage. 
literal-l and literal-2 ma),' be numeric or nonnumeric literals, depending on the item. 

A numeric literal is a string of characters selected frOM the digits 0 through 9, the plus sign, the minus sign, 
the decimal point, and the letter E. Rules for the formation of numeric literals are 

a. The literal must contain at least one digit. 

b. The literal may contairl at most two sign characters. A sign character is ·Iegal as the leftmost char
acter of the literal and immediately to the right of the letter E. If either sign character is omitted, a 
positive value is impli ed. 

c. The literal must not contain more than one decimal point, which must be to the left of the let
ter E. If no E is inc:luded, the decimal point may appear anywhere in the literal except as the 
rightmost character. The number of digits to the leftof the Emustnotbegreaterthan31 or less than 1. 

Schema Generation 2l 



A nonnumeric literal is a string of any characters (up to 16) enclosed in apostrophes. If the value 
is to contain an apostrophe, two apostrophes must be included. 

Invert Subentries 

Invert subentries identify the items in the group that are to serve as secondary indexes, providing an alternative tech
nique of identifying specific group occurrences for retrieval. (The primary technique is determined by the group's 
location mode.) A secondary-index-item value (supplied by the user in his working storage) can be used in the re
trieval of the group occurrences in which that value exists. 

The secondary index capability is implemented in EDMS by means of a corollary group, called an invert group. An 
invert group, which has some of the characteristics of a regular calc group, must be defined for each item that is to 
be a secondary index. Each occurrence of an item identified as a secondary index item causes the item value to be 
stored in an occurrence of the invert group as well as in the occurrence of the main group in which the item is de
fined. The occurrence of the invert group consists of the value of the secondary index item and the reference code 
of the main-group occurrence that contains the value, plus control infonnation and set pointers. 

The first invert subentry in a group entry follows the last item entry for the group. 

Format 

INVERT ON data-item-name-l 

; NUM BER IS i nteger-l 

; WITHIN area-name-1 [RANGE IS PAGE integer-l THRU PAGE integer-2] 

; DUPLICATES ARE [NOT]ALLOWED. 

Usage Rules 

1. The INVERT clause must appear first in the subentry, and data-item-name-1 must be the name of an item 
defined in an item subentry that does not contain an OCCURS clause. 

2. The NUMBER clause provides the unique integer group identifier (see "Group Subentry ", above) for the 
corollary invert group. The va lue of integer-1 must be in the range from 1 to 999 and must not be the 
same as the integer specified in the NUMBER clause of any other group defined for the database. 

3. The WITHIN clause identifies the area in which occurrences of the invert group are to be stored (see "Area 
Entries", above). Because the invert group occurrences need not be stored in the same area as the occur
rences of the associated main group, the area name in the invert subentry may either be the same or differ
ent from that specified in the group subentry. The RANGE subclause specifies the pages within the area 
on which the group occurrences are to be stored and must be included if a group with indexed location mode 
is defined as within the specified area. Integer-l must be greater than or equa I to 1 and less than or equal 
to integer-2. Integer-2 must be less than or equal to the integer that specified the number of data pages 
in the area (see "Area Entries ", above). If there is an indexed group in the area, the range indicated by 
integer-1 and integer-2 must not overlap its range. Nor may the invert group range overlap the OVERFLOW 
range (if one was specified). 

4. The required DU PLICATES clause specifies whether or not two or more main group occurrences with the 
same secondary-index item value wtll be allowed. If DUPLICATES ARE NOT ALLOWED, a user pro
gram's attempt to store a group occurrence that wou Id cause a duplicate invert group occurrence wi II 
receive an error return from the D BM. If DU PLICA TES ARE ALLOWED, more than one retrieval request 
may be needed to retrieve all group occurrences with a specific secondary-index item value. 

22 Schema Generation 



Set Entries 

The set entries define all the user··specified relationships among group occurrences by inol.""i'ing which groups 
are to participate in which sets, what set pointers are to be inc luded in the group occurrE:n ... E:S, what is to determine 
which owner group occurrence a particular member group occurrence is to be associated with, and how the member 
occurrences are to be associated with each other. 

Set Entry Skeleton 

Set Subentry 

Member subentr~' 

[Member subentry] ••• 

Set Subentry 

Asetsubentryprovidesthe name by which the set is referenced in other DDL entries (e.g., in group entries of groups 
whose location mode is via set, and in subschema set entries), and in DMSFD P-generated working storage de
clarations; name the group type that is to be the owner of the set; and specify the mode of linking member 
group occurrences to each other and to the owner occurrence. 

A set occurrence is defined as one l,ccurrenr:C' nf r:,e owner group and a collection of associated occurrences of the 
group or groups defined as members., as illustrated below for a WARD-ASSIGNMENT set whose owner is a WARD 
group and whose members are a NURSE group and a DOCTOR group. 

SMITH 
----I 

Member Group 
Occurrence 

(Nurse Smith) ., 

JO I'JES 

Member Group 
Occurrence 

(Nurse Jones) 

.... ... 

ownerA Grou~ 
Occurrence 

(Ward A) 
'----.-----r' 

I~ 

FRANK 

Member Group 
Occurrence 

(Doctor Frank) 

SMITH 

Member Group 
Occurrence 

(Doctor Smith) 

(The WARD-ASSIGNMENT set as depicted is in sorted order with group number as major sort key and a NAME item 
as sort key in both member groups, see below.) 

Schema Generation 23 



Format 

SET NAME IS set-name-1 

i OWNER IS 

; ORDER IS 

{
group -name -1 } 
AREA area -name-l 

r SORTED [WITH GROUP-NO 

FIRST 

LAST 

NEXT 

PRIOR 

[; LIN KED TO PRIOR] 

[; STATISTICS ARE[NOr] REQUIRED]. 

Usage Rules 

AS{MAJOR }] 
MINOR 

1. The SET NAME clause must be the first clause in the subentry. Set-name-1 must conform to the DOL rules 
for names and must not be the same as the name used for any item or group, or for any other set defined for 
the database. 

2. The OWNER clouse identifies the group that is to participate in the set as owner. Group-name-1 is the 
name specified in the group subentry that defined the group. If AREA is specified, the DMSFD P wi II gen
erate a group definition for a special group to serve as owner. A single occurrence of this g"roup will be 
maintained by the DBM, at page 1, line 1, of each area, to serve as the owner occurrence for every set for 
which the area is owner. A set whose owner is area will, therefore, have only one set occurrence, which 
will consist of the one area-group occurrence plus all the occurrences of the groups defined as members of 
that set. The special EDMS-defined area group may be owner of many sets as illustrated in the data struc
ture diagram shown below, where the OWNER IS AREA feature is used to link all the occurrences of the 
NURSE group (e. g., for all nurses employed at a hospital) to each other, and to link all the occurrences of 
the A IDE group to each other. 

All-Aides Set 
Owner is Area 

AIDE 

" 

EDMS 
generated 
area group 

" 

A II-Nurses Set 
Owner is Area 

NURSE 

The EDMS-generated area-group occurrence has no data values and is not accessible as a group to the 
user. It serves only to link occurrences of a member-group to other occurrences of the same member group. 

3. The ORDER clause specifies the manner in which DBM is to generate and modify set pointers so that they 
wi" link a member occurrence into a set occurrence. It determines if the owner occurrence or a member 

24 Schema Generation 



occurrence is to be modified to point to the newlv linked occurrence and, if a member occurrence, 
which on~!. Since set order is applied after the proper owner occurrence has been selected (see IIMem
ber Subentryll, below), it refers only to logical sequence within a set occurrenc~. Five modes of pointer 
maintenance are possible: sorted, first, last, next, and prior. 

SORTED -- The DBM links a new member occurrence to other member occurrences according to the values 
of the daf'a items defined as KEYs in the member subentries. If WITH GROUP-NO is specified, the 'unique 
numbers included in the occurrences of the member groups (see NUMBER clause in IIGroup Subentires II, 
above) will be considemd in selecting a set position for a new member occurrence. GROUP-NO is legal 
only if more than one group type is designated as a member of the set. MAJOR or MINOR defines the 
role of the GROUP-NO in the order of the set occurrences. The WARD-ASSIGNMENT SET occurrence 
depicted above is an example of a set sorted with group-no as major (assuming the group subentries speci
fied NUMBER IS 100 for the DOCTOR group and 20v fer rhe NURSE, and both groups had a NAME item 
designated as an ascending key in a member subentry, see below). If GROUP-NO AS MINOR was speci-

. fied, the occurrence wOiluld appear as follows: 

A 

(Ward A) 

J,. 

1~ 

~ITH FRANK 

(Nurse Smith) (Doctor Frank) 

,l 

,r 
SMITH JONES 

(Doctor Smith) - (Nurse Jones) 

FIRST - The DBM creates LIFO-ordered set occurrences by inserting a new member occurrence as the first 
occurrence following th~! owner occurrence. The NEXT pointer for the set in the occurrence of the group 
designated as owner will point to the most recently linked member occurrence. 

LAST - The DBM createl; FIFO-ordered set occurrences by inserting a new member occurrence immediately 
preceding the owner occlJrrence. This order impl icitly defines a prior pointer for the owner occurrence. 

NEXT - A new member c)ccurrence is inserted immediately following the occurrence identified as current 
of the set. This order requires that the user establ ish a position in a set occurrence (by storing or retriev
i ng the grc)up occurrence to wh i ch the new occurrence is to be linked) before Ii nki ng the new occurrence. 

PRIOR - causes a new member occurrence to be inserted immediately before the occurrence identified 
as current of the set. This order also requires that the user establish a current position in a set occur
rence, as well as implidtly defining prior pointers for the owner and member occurrences. 

Schema Generation 25 



4. The LINKED TO PRIOR clause defines the optional backward pointers for the set's owner and member 
groups, so that each occurrence of the owner or a member will point to the preceding occurrence. 

5. The STATISTICS clause indicates that the DBM is to maintain statistics for the set. If the clause is omitted 
or if NOT is specified, st""tistics will not be collected. 

Member Subentries 

Member subentries identify the groups that are to be members of the set and specify all the controls that are to apply 
when a new occurrence is stored or whenever a member occurrence is I inked into a set occurrence. These controls 
are (1) the technique for selecting the owner occurrence that the member is to be I inked to, (2) whether or not 
pointers to the owner occurrence are to be included in member occurrences, and (3) the itmes that are to control a 
member occurrence's logical position in a set for which the specified order is sorted. 

Format 

MEMBER IS group-name-1 

. INCLUSION IS ((OPTIONAL] AUTOMATIC J 
I MANUAL 

(; LIN KED TO OWNER] 

; SET OCCURRENCE SELECTION IS THRU 

CURRENT OF SET 
LOCATION MODE OF OWNER[ALIAS FOR data-item-name-l 

IS data-item-name-2] ••• 

[{

o ASCENDING} 0.] 
DESCENDING (RANGEl KEY IS data-ltem-name-3 ••• 

{
FIRST J] DU PLICA TES ARE LAST • 
NOT ALLOWED 

Usage Rules 

1. The MEMBER clause, which must be the first clause in the subentry, must specify the name of a group that 
is defined for the database and not specified in any other member subentry in this set entry. 

2. The INCLUSION clause specifies that linking or del inking a member group occurrence from a set occur
rence will be AUTOMATIC or MANUAL. 

AUTOMATIC - Member-group occurrences are automatically I inked or delinked by the DBM when they are 
stored or deleted. If OPTIONAL is specified, the occurrences may also be linked and del inked by specific 
user's calls to the DBM. (See "Linking or Delinking Member Occurrences" in the section titled "Modify
ing Linkages ", Chapter 4.) 

MANUAL - The user will specifically link and delink member group occurrences by calls to the DBM 
I inking/del inking routines. The mode is not legal for the set identified as the VIA set or in a STORAGE 
clause for the group identified by group-name-l. 

3. LINKED TO OWNER defines a set pointer for the member group such that each member occurrence will 
point to its associated owner occurrence. 

4. SET OCCURRENCE SELECTION specifies the technique to be used to identify the set occurrence into which 
a specific member occurrence is to be linked. 

CURRENT - Requires that the user establish a set occurrence as current by interacting with the DBM to store 
or retrieve the owner occurrence or a member occurrence. This is the only mode that is allowed for sets 
whose order is next or prior or whose owner is AREA. 

26 Schema Generation 



LOCA nON MODE OF OWNER - Indicates that a unique set occurrence is selected bysupplying the values 
required to retrieve the unique owner-group occ ... ;rence. If the owner1s mode is direct, indexed, or calc, 
a reference code or spc~cific values for the control item{s) identify a unique occurrence. 

If the owner1s location mode is via set, there is no way of identifying a unique owner-group occurr"!nce 
unless the via set is sorted. If the owner1s via set is sorted, a unique owner-group occurrence can be iden
tified by specific values for the sort-key items (or approximate values, if RANGE was speci fied for the key). 

ALIASes may be specified to identify additional working storage locations to contain occurrence-selecting 
values when a group is a member of two or more SE~ts with the same owner, and two or more owner occur
rences need to be identified at the same time. For example, the structure shown below could be used to 
record which documen1'S referenced, or were referenced by which other documents. 

WHERE-REFERENCED 

DOCUM~ 
~WHAT-REFERENCED 

I 
Two occurrences of the DOCUMENT group may need to be identified simultaneously to be linked with a 
CROSS-REFERENCE o<:currence. If the location mode of DOCUMENT is calc using DOCUMENT-ID, one 
occurrence can be identified by supplying the proper value in working storage for DOCUMENT-ID. An 
ALIAS for DOCUMENT-ID, say DOCUMENT-ID-2, could be defined inthe member subentry for CROSS
REFERENCE in one of 'rhe sets. This wC"~ld cause working storage to be available for identifying the other 
occurrence of DOCUME NT. 

Selection through locc/tion mode of C'''''ner may not· be used when the set order is prior or next, or when the 
owner is AREA. 

5. The ASCENDING and DESCENDING subclauses identify the items in the member group that are to be 
sort-key items for a set in sorted order. Values of the specified items are used (in conjunction with the 
group number, if WITH GROUP-NO is specified in the set subentry), to establish the logical sequence of 
member occurrences within a set occurrence. The optional RANGE modifier applies to any sets in which 
the group identified by' group-name-l participates as owner and in which the set occurrence selection for 
a member is through lelcation mode of owner. RANGE is not meaningful if group-name-l does not identify 
a group whose location mode is via set. 

One ASCENDING or DESCENDING subclause is required if the set is sorted, and up to seven may be 
specified. Every item specified by data-item-name-3, etc., must be defined as within the member group 
and defined without OCCURS clauses. 

One, and only one, DUPLICATES subclause must be included if any ASCENDING or DE.)CENDING sub
clauses are included. The DUPLICATES specification controls the logical sequence of two or more member 
occurrences with the same sort-key value, or prohibits dupl icate values. 

END Entry 

The end entry is required after lrhe last set entry. It has th~~ form END. 

Subschema Generation 

The DMSFDP generates a subschema from a schema as specified in subschema Data Definition Language (DOL). The 
subschema, which contains the information required for the OBM to identify data values and relationships within the 
database, may describe a compiete database or it may describe only that portion needed for a specific application. 
It mayor may not include the names of the sets, groups, and items it defines. 

Subschema Generati on 27 



28 

The contents of the subschema determine the format of a working storage area that the user's program must contain in 
order to communicate with the DBM. To simplify establishing user's storage to subschema correspondences, the 
DMSFDP will (optionally) create COBOL COpy files or Meta-Symbol SYSTEM files containing the working storage 
format definitions that correspond to the subschema it is creating. 

The information extracted from a schema to form a subschema may describe either all the components (groups, data
items, sets) of the database, all the components whose occurrences are to be stored in a specified area (or in speci
fied areas), or only selected components. If a subschema is not to describe a complete database, certain rules must 
be observed when selecting the elements that are to be defined in the subschema. 

If an area's definition is not included in the subschema, groups specified as within the area may not be defined in 
the subschema. Nor may any set be defined in the subschema if its owner or any member is specified as within the 
area. In addition, if an invert group for secondary indexes was specified as within the area, either the associated 
item must be excluded from the subschema or it must be specifically selected with an indication that inversion is not 
to occur. 

If a group definition is to be omitted from the subschema, all sets in which the group participates as owner or mem
ber must also be excluded. (All items in the groups are automatically excluded.) 

Not all data manipulation capabil ities are allowed when a subschema does not define a complet., database. For 
example, a program may not store or delete occurrences of a group that is the owner or a member of a set that is not 
defined in the subschema the program is using; nor may it store group occurrences if the definition of any item in the 
group is omitted. Refer to the description of the DBM routines for more details on which are restricted when operat
ing with a I imited subschema. 

The subschema DO l consists of entries in the following order: 

1. The Subschema entry must be the first entry. 

2. The set entry (there is only one) follows the subschema and precedes all area entries. 

3. The area entry (or entries) for any areas to be included follow the set entry and precede all group entries~ 

4. The group entries follow the area entries. Group entries consist of a group subentry and, optiona lIy ,one 
or more item subentries. 

5. The end entry must be last. 

Subschema Entry 

A subschema entry provides the name for the subschema file, specifies whetherall or part of the database is to be de
fined by the subschema, and indicates the form of working storage declarations that are to be generated. 

Format 

SUBSCHEMA NAME IS sub-schema-name OF SCHEMA schema-name 

[; COBOL COpy IS copy-name] 

[; META SYSTEM IS system-name [, NAMECHECK] ] 

[; PRIVACY KEY FOR EXTRACT IS privacy-lock] 

[{ 
PASSWORD 15 } [ n] 
PASSWORDS ARE password-l, password-2J •• • 

{
All } 

; COM PONENTS ARE '"SPeCIFIED 

Subschema Generation 90 30 12C -1 (6/75) 



Usage Rules 

1. The SUBSCHEMA NAME clause must be the first clause in the entry. SubschemCA-llame is the file name 
by which i'he subschema n Ie is to be referenced. Hence it must conform to the host operating system's fi Ie 
naming conventions as well as the DOL rules for names. The schema-name must be the file name of an ex
isting schema file. 

2. The COBOL clause provides the name fora COBOLsource file that is to contain declarations that define the 
user's working storage needed for database operations based on this subschema. The copy-name must con
form to tho DOL rules fo/' names as well as to the conventions of the host operating system. 

3. The META clause providE~s the name for a Meta-Symbol source file that is to contain the directives needed 
to define the user's working storage that corresponds to rhis subschema. The system-namr> must conform to 
the DOL rules for names <snd to the conventions of the host operating system. The names of the groups, 
items, and sets selected For the subschema will be modified to conform to Meta-Symbol standards by re
placing all hyphens with dollar signs. 

Additionally, if the NAMECHECK option is specified, a symbol consisting of the "at" character (::-¢:) fol
lowed by the group name' wi" be appended to each item name to ensure uniqueness with regard to like
named items in other groups. If the NAMECHECK option is not specified, the user is responsible for en
suring that his item name,s are unique. 

4. The PRIVACY clause supplies the key required to enable the generation of a subschema if the specified 
schema has a PRIVACY L.OCK FOR EXTRACT attached to it. The specified privacy-lock must be a nonnu
meric literal and must m(~tch the lock on the schema, or the subschema will not be generated. 

5. The COMPONENTS clause speciP"'c that either the whole database (ALL) or selected parts of the database 
(SPECIFIED) are to be defined in the subschema. SPECIFIED indicates that a set entry follows the sub
schema entry. ALL indicates that the only other entry is an End entry. 

6. The PASSWORD clause allows the user to spet..i;·,' which passwords from the schema are to be included in 
the subschema. Passwords are specified as nonnumeric literals, and all passwords specified must have been 
previously defined in the schema DDL. If the PASSWORD clouse is omitted, all passwords defined in the 
schema DDL are included in the subschema. 

Set Entry 

The set entry lists the sets that are to be defined in the subschema. 

! SET IS 1 
SETS ARE 

Usage Rules 

!set-name-l 

ALL 

[,set-name-2] "'1 

1. The specified set names rnust be names of sets that are defined in the schema. 

2. For each set listed, the owner and all the member groups must be defined in the subschema. The groups may 
be specified by group entdes,or they maybe impliedby theCOMPONENTSAREALLoption on an area entry. 

Area Entries 

Area entries specify the areas of the database that are to be available through this subschema, and indicate 
whether all or part of the speciHed areas ore to be defined. A single area entry may name several areas that 

90 30 12C -1 (6/75) Subschema Generation 29 



have the same components specification or a separate area entry may be included for each area. No area 
entries are allowed if the subschema entry specified COMPONENTS ARE ALL. 

[
AREA IS 1 
AREAS ARE {

area -name - 1 

ALL 

[,area-name-2] "'1 

i COM PONENTS ARE {
ALL } 
SPECIFIED 

Usage Rules 

1. The AREA/AREAS clause must be the first clause in the entry. The area-names must be names that exist as 
area names in the schema. The naming of selected areas or ALLareas indicates that some portion of the groups 
that may occur in the areas will be defined in the subschema. 

2. The COMPONENTS clause determines that either ALL or SPECIFIED groups and items identified for the 
specified areas in the schema are to be defined in the subschema. If COMPONENTS ARE SPECIFIED, 
group entries must be included for any of the areas' groups that are to be included in the subschema. 

Group Entries 

Group entries are used to select the groups that are to be defined in the subschema. NO'group selection is needed 
or allowed if no area entries indicated COMPONENTS ARE SPECIFIED. To be defined in the subschema, any non
invert group within an area whose components are specified must be selected by a group entry. Invert groups' defi
nitions are automatically included if the secondary index item is defined in the subschema and inversion is not spe
cifically suppressed. 

Group Entry Skeleton 

Group Subentry 

[Item SubentryJ •.. 

Group Subentry 

A group subentry identifies the group, optionally renames it (for working storage declarations), and indicates whether 
some or all of the group's items are to be defined in the subschema group defintion. 

Format 

GROU P NAME IS group-name-l [, RENAMES group-name -2J 

{
ALL } 

; COMPONENTS ARE SiiECIFIED 

Usage Rules 

1. The GROUP NAME clause must be the first clause in the entry. If the RENAMES option is not specified, 
group-name-l must be the name of a group defined in the schema as within an area that is named in a 

30 Subschema Generation 



subschema area entry. If RENAMES is specified. group-name-2 must be the name of a group that is 
so defined. If RENAMES is specified, group-name-l must conform to the DDL rules for names and 
must not duplicate the n(lme of any group or set in the subschema. 

2. The COMPONENTS clause specifies that either ALL of the items defined for the group in the schema are 
to be defined in the subsc:hema {exactly as they are defined in the schema} or that item definitions are 
SPECIFIED in item subentries that immediately follow the group subentry. If a chan~e in anyone item de
finition is desired, then 0111 of the data items must be described in item subentries. 

Item Subentries 

Item subentries designate and optionally rename the items that are to compose the ,group as defined in the subschema. 

If the group subentry specified COM PONENTS ARE A LL, no item subentries are legal. If the group subentry indi
cated COMPONENTS ARE SPECIFIED, all items that are to be included must be described in item subentries. 

Format 

[level-number] data-item-name-l [, RENAMES data-item-name-2] 

[; INVERSION IS [NOT] REQUIRED] 

r; CONDITION NAME IS condition-name-l 
L 

{
VALUE IS }. 
VALUES ARE I,teral-l [THRU I iteral-2][, literal-3 [THRU Iiteral-4]] .. J .. 

Usage Rules 

1. 

2. 

3. 

4. 

The level number is optional, and if omitted is assumed to be the lowest level number specified for the ~roup, 
or 02 if no previous level number has been encountered. Item level numbers may have values in the range 
from 02 through 49. Usage of level numbers is syntactically consistent with that described in the ANS 
COBOL/LN Reference Manual, 90 15 00. 

Data -item-'name-l must immediately follow the level number {or must be the first element in the entry if no 
level number is included}. If RENAMES is not specified and data-item-name-l is not defi, '"}d in the schema 
as being part of the group, it is assumed that the user desires to superimpose data-item-name-l over one or 
more data items which arE~ so defined. In this instance, DMSFDP requires that the item subentry contain
ing data-item-name-l be followed by at least one item subentry containing a data-item-name which is de
fined as part of the group being analyzed and contains a level number higher than that of data-item-name-l. 
Note that this feature is included solely for the convenience of COBOL programmers and that data-item
name-1 may not appear as an argument in a DBM call. 

The INVERSION clause, unless NOT is included, specifies that the invert group associated with the sec
ondary indE~x item identified by data-item-name-l is to be defined in the subschema. This clause is legal 
only for data items which appeared as data-item-name-1 in an INVERT entry of the schema DOL. If the 
INVERSION clause is omitted, it is assumed that the invert group definition is required. 

The CONDITION NAME clause causes a level-SS data description entry to be included in the COBOL 
Copy file. Condition-nolme-l must conform to DOL rules for names. Literal-l, literal-2 etc. are numeric 
or nonnumeric literals depending on the schema definition of the item identified by data-item-name-l and 
must conform to the size and form of the item. 

Subschema Generation 31 



END Entry 

The end entry signifies the end of the subschema description. 

Format 

END. 

DMSFDP Operational Interface 

The File Definition Processor may be operated in a batch mode or from a terminal. The operation of DMSFDP 
relative to the amount and format of output is controlled by control command options. The control command has the 
fo Ilowing form: 

IDMSFDP L NODDl][, NOSCHEM]G NOSUB][, NOCBL][, NOMETA][, NO LIST}, NONAMES] 

The order in which the options are specified is immaterial but repetition of an option is not allowed. 

Exercising the options suppresses the normal output. The IDMSFDP with no options causes the f~"owing: 

1. A schema will be created if the first DDLentry is a schema entry, no DDlerrors are encountered, and there 
is not an existing fi Ie in the user's account that has the same name as that specified in the schema entry. 

2. A subschema will be created if the first DOL entry or the first entry after a schema-DDLend entry is a sub
schema entry, no DO l errors are encountered, and the fi I e name speci fied in the subschema entry is not the 
name of an existing fi Ie in the user's account. 

3. All DOL entries wi II be listed (both schema and subschema entries, if both are included in one run). 

'4. All error messages and summary messages wi II be listed. Error messages include a $ character printed 
under the DOL line at the point where the error was detected and an explanatory message. Table F-l in 
Appendix F shows the DMSFD P error messages. Summary messages include information on fi Ie size and 
structure plus number of diagnostic messages. A number of diagnostic messages other than zero indicates 
that the generated schema/subschema file was not saved. Figure C-2 in Appendix C illustrates the summary 
messages output by DMSFDP. 

5. A COBOL COpy file will be created and its contents listed if the subschema entry includes a COBOL 
clause. Figure C-4 shows a simple COpy file listing. 

6. A Meta-Symbol SYSTEM file is created and its contents listed if the subschema entry includes a META 
clause. Figure C-6 in Appendix C shows a sample SYSTEM listing output. The FORTRAN user may use 
either the COpy or the SYSTEM listing to determine the format of the working storage area to be declared 
in his program. 

7. A name table relating set, group, and item names to their subschema definitions, is included in the sub
sc hema fil e. 

The suppress options operate as follows: 

1. NODDL -only erroneous DOL input statements are to be listed, correctDDl statements are nottobe listed. 
This does not affect the listing of COBOL and META files. 

2. NOSCHEM - the schema file is not to be saved. (This mayor may not affect the creation of a sub
schema in the same run; the subschema creation requires a valid, existing schema file, but it may have 
been created on an earlier run.) 

32 DMSFDP Operational Interface 



3. NOSUB - 01 subschema fj I·e~ is not to be saved. Thi~ effects only the subschema fi Ie; any I isting or other 
fi Ie creation is controlled separately. 

4. NOCBL - I'he COBOL COpy file is not to be created even though the subschema entry may include :r 
COBOL cloluse. 

5. NOMETA -- the Meta-Symbol SYSTEM file is not to be generated even if the META clause is included on 
the subschema entry. 

6. NOLIST - COBOL or Meira-Symbol data is not to be listed even if the corresponding file is created. 

7. NONAMES - the subschE~ma file is not to include the name table. 

The NODDL option clpplies to both schema DDL and subschema DDL. NOSCHEM is obviously meaningless if only 
subschema DDL is input; it is therefore ignored. Similarly, NOSUB, NOCBL, NOMETA, NOLIST and NONAMES 
are meaningless if only schema DDt is specified. 

DCB Assignments 

Normally, no interface is required between the DM~FDP user clnd the CP-Vmonitor to create the schema, subschema, 
COBOL COpy, and Meta-Symbol SYSTEM til~s. The user may assign the M:SI and M:LO DCBs to accept the 
DDL input or to direct the listing output to other than the system standard devices. 

The F:SCHE (schema), F:SSCH (subschema), F:COPY ((O~Y fHe), and F:META (SySTEM file) DCBs maybe assigned 
if desired. One or more such assignments might be needed, for example, to place the fi les on a removable device 
or I in the case of thlB schema, to specify WRITE accounts so that subschema generation can be run in an account dif
ferent from that used to generate the schema. (Subschema generation involves writing into the schema file.) 

lenninal Usage 

DMSFDP may be run from a terminal with DDL either input directly or (preferably) stored in an EDIT file. In 
either case, the user initiates oper.ation by entering DMSFDP in response to the system prompt and then entering the 
control command options (or carriage return if there are no options) in respotl.:»e to the prompt from DMSFDP. 

DMSFDP Operational Interface 33 



4. DATABASE MANAGER 

Database manager (DBM) is the term applied to the collection of library routines that are used with a user's 
applications program to accomplis,. the storage, retrieval, and updating of the data values and pointers in a data
base. Other features of the DBM provide for collecting run-time and summary statistics, tracing a user program's 
interaction with the DBM, maintaining a journal of changed pages, and recovering a shared database in case of 
deadlock or upon user request. 

The user's program communicates with the DBM by means of calls to the I ibrary subroutines. Most arguments for the 
calls refer to addresses within the program's working storage, which must be formatted to correspond to the values 
in the subschema being used. 

The user's program area that is referred to as working storage consists of two parts. The first part has the same for
mat in all EDMS programs, regardless ofthe nature of the database used. The second part must be formatted to re
flect the specific subschema referenced by a program. The first part of working storage is designated the Communi
cation Control Block (CCB) because it is used to communicate control and current-condition information between 
the user program and the DBM. The format of the CCB is described in Table 2, which uses the COBOL COpy file 
form for identifying the contents. In the Meta-Symbol SYSTEM file the hyphens are replaced by dollar signs and 
the characters @CCB are appended, e.g., REF$CODE@CCB instead of REF-CODE. 

The format of the database-specific part of the user's working storage must provide for a set table for each set de
fined in the subschema, a group table for each group defined in the subschema, a statistics table if any statistics 
are specified for the database, and a table for al iases if any are defined. The number and order of occurrence of 
these entities depend on the subschema being used. The proper order is best obtained by using or following one of 
the working storage descriptions generated by the File Definition Processor. Figure C-4 shows an example of the 
COBOL COpy working storage, and Figure C-6 shows an example of Meta-Symbol SYSTEM working storage, both 
generated for the sample database shown in Figure 1, but for separate subschemas. (The FORTRAN user may use 
either of the generated descriptions as a guide for manually generating declarations.) 

The group tabl es are used to commun i cate i tern val ues and the reference code of the current occurrence of the group. 

The set tables are used by the DBM to maintain the position of the user in each set. Each time a group occurrence 
is retrieved explicitly by the user or implicitly by the DBM, the set table for each set defined in the subschema for 
that group is updated. The address of the set table is used as an argument for set-processing DBM-routine calls in 
the same manner as group or item arguments. 

DBM Routine Call Format 

The DBM routines that store, retrieve, etc., are initiated by calls in the user's applications program. The format 
of the call depends on the language in which the user's program is written; but whatever the language, the call re
fers to a DBM function name, which is an entry point in the DBM library routines. 

The general fOnT! used in the manual to describe the DBM calls is 

ENTER DBM-function-name, argument-l(,argument-2] •.. 

where the arguments represent addresses (optionally indirect) within the user's program area, either word addresses 
or byte addresses, depending on the programming language used and on the characteristics of the entity located at 
the specified address. In the descriptions of the DBM calls, below, the address arguments are referred to by de
scriptive terms. REF-CODE, area-name, item-name, group-name, and set-name denote addresses in the user's pro
gram areas that correspond to DMSFDP-generated working storage declarations; error-code-name and recovery-name 
denote addresses in the user's program area other than that corresponding to the DMSFDP-generated working storage 
declarations; and procedure-name denotes an address in the user's program area to which the DBM is to return control 
under certain conditions. The metalanguage used below to show DBM call formats is the same as that used to depict 
the Data Definition Language (see "File Definition Processor," Chapter 3). 

34 Database Manager 



Contents 

REF-CODE 

PAGE-NO 

LINE-NO 

FRST-REF 

LAST-REF 

GRP-NO 

ERR-CODE 

ERR-NO 

ERR-REF 

PASSWORD 

AREA-NO 

TablE! 2. Contents of the Comrnu:1ications Control Block 

Descriptior 

A 32-bit b inary number whose value is the reference code of the Qroup last accessed 
by the user • At the successful completion of any call that accesses a group occurrence 

base, the reference code of the group is placed in this cell bY' the DBM. in the data 

The referel ,ce code is also used when an area is opened to specify the number of buffers, 
ea is closed to indicate whether or not core is to be released, and when a 
rrence is to be stored or retrieved directly. 

when an aI' 
group OCCll 

Contains th e eight-character EBCDIC value of the page-number partof the reference code. 
is suppl ied by the DBM atthe successful completion ofa call in the same manner 
DE. 

This value 
as REF-CO 

Contains t~ Ie .three-chara cter E BC D IC va I ue of the line-number part of the referen ce 
value is supplied by the DBM in the same manneras PAGE-NO. code. Thi:s 

A communi cation cell used in conjunction with the FINDS or FINDSI procedural calls. 
ust initialize this cell with the reference code at which the DBM is to start 

01 scan of an areu of the database. 
The user m 
the physic 

A communi cation cell usea in conjunc:tion with the FINDS or FINDSI procedural call. 
ust initialize this cell with the value which will control the termination of 

(J I scan of an area of the database. 
The user rTI 

the physic 

Contains n lO-bit binary number whose value is the numeric synonym for the group 
etrieved by the user. stored or ,. 

Initialized 
some type 

by the DBM with an eight··bit binary number whose value indicates that 
of error occurred in executing the previous procedural call. 

A lO-bit b inary number initial ized by the DBM for certain types of errors, with the 
nonym for the group responsible for the error. numeric sy 

A 32-bit fbi nary value initialized by the DBM for certain types of errors, with the ref
e of the group responsible for the error. erence cod 

A communi 
EBCDIC va 

cation cell that must be initialized by the user with the eight-character 
I ue of the password that a II ows the user access to the database. 

Contains t he two-character EBCDIC value of the area number part of reference code. 
s supplied by the DBM in the same manner as PAGE-NO. This valuE! i 

DBM Routine Call Format 35 



Meta-Symbol Call Format 

A Meta-Symbol call takes the following form: 

REF DBM-function-name 

LI, 14 

BAL, 15 

* * 

* * 

n 

DBM-function-name 

address-1 

address-n 

number of arguments 

The asterisks indicate that the addresses are right-justified and may be generated by any of several Meta-Symbol 
techniques. The addresses supplied may be indirect (but not indirect in a register), in which case the DBM 
will obtain the proper effective address, either word-oriented or byte-oriented as shown below in Table 3. 
The examples in Table 3 are from a Meta-Symbol program that includes the SYSTEMJile shown in Figure C-6, and 
processes part of the data base shown in Figure 1. 

FORTRAN Call Format 

A FORTRAN program call of a DBM library subroutine takes the form of a standard calling sequence, as follows: 

CA LL DBM-function-name (argument-1, ••• ) 

The arguments used must result in addresses supplied to the DBM that conform to the DBM function description shown 
in Table 4. All addresses are word addresses. 

COBOL Call Format 

The call from a COBOL program provides the model for the form of the DBM function description. It takes the form 
of the ENT ER statement. 

ENTER DBM-function-name[,argument-1] ••• 

Arguments to the ENTER statement of COBOL are either the data names of the appropriate data segment in the data 
division or the procedure name in the procedure division. 

Table 5 shows the values of the arguments to generate the types of addresses required. The examples reference the 
COpy fi Ie names shown in Figure C-4. 

If the DBM Function 
Description Specifies 

REF-CODE 

Area-name 

Group-name 

Item-name 

36 DBM Routine Call Format 

Table 3. Meta-Symbol Addresses 

The Address Supp lied Must Be 

Word address of the firstwordoftheCCB. WA(REFSCODE@CCB). 

Byte address of the appropriate area name word of the area table. 
For example, BA(AREA$2). 

Byte address of the first word of user's working storage reserved for 
the group. For example, BA(FtRST). 

First byte of working storage reserved for the item, if the item is 
EBCDIC or packed decimal; first word of working storage reserved 
for the item if the item is binary or floating point. For example, 
BA(lTEMS31), but WA(lTEMS44). 



If the DBM Function 
Description Specifies 

Set-name 

Procedure-name 

Error-code··name 

Recovery-name 

If the DBM Function 
Description Specifies 

REF-CODE: 

Area-name 

Group-name 

Item-name 

Set-name 

Procedure··name 

Error-code-name 

Recovery-name 

If the DBM Function 
Description Specifies 

REF-CODE 

Area-name 

Group-name 

Item-namE~ 

Set-name 

Procedure-name 

Error-code-name 

Recovery··name 

Table 3. Meta-Symbol Addres5es (cont.) 

The Address Suppl ied Must Be 

Byte address of the first word of the user's working storage reserved 
for the set table of th~~ set. For example BA(SET$D). 

Word address of the location to which the DBM is to return control. 

Word address of a location in the user's program area that contains an 
EDMS data-dependent error code in binary. 

Word address of a location in the user's program area that -::ontains the 
EBCDIC characters RECV. 

Table 4. FORTRAN Addresses 

The Argument Must BE! 

The identifier of the first variable in E OMS working storage. 

The identifier of the variable used to establish to appropriate area entry. 

The identif: ar of the first variable used to reserve working storage for 
the ~,oup. 

The identifier of the appropriate item variable. 

The identifier of ihe first variable used to reserve working storage for 
the' set s tabl e. 

A statement label. 

The identifier of a location establ ished by the user. The val ue in the 
location must be between 1 and twenty, inclusive. 

The identifier of a location establ ished by the user. The value in the 
location must be the Hollerith constant RECV. 

Table 5. COBOL Arguments 

The Argument Used Must Be 

Data-name REF-CODE of the CCB. 

The name assigned to the area in the DOL. For example, AREA-1. 

The data-name of thE~ 01 level entry of the group. For example, 
GROUP-1, GROUP-2-R. 

The data-name of thE~ appropriate item. For example, ITEM-21-22-23. 

The data-name of the 02 level entry generated for the set table for 
the set. For exampIE~, SET-C. 

A name in the procedure division. 

The data-name of an entry generated by the user. The entry must be 
COMP usage and have a VALUE of 1-20. 

The data-name of an entry generated by the user. The entry must be 
alphabetic or alphanumeric and contain the value 'RECV'. 

I 

DBM Routine Call Format 37 



DBM Routine Usage 

Database manager routines are used to accompl ish all user-program interaction with the database. The first step of 
a user-program IS interaction is to open all areas that are to be accessed by the program. After all required areas 
are opened and depending on tr~ type of open, new group occurrences may be added to the database, obsolete data 
may be deleted, data values or set linkages may be modified, existing group occurrences may be retrieved, and 
various miscellaneous functions may be performed by call ing the appropriate DBM routines. The last DBM call from 
a user program is to close the areas (or the last area in use) of the database to terminate processing. All of these 
interactions are described below. 

Beginning of Processing 

Before any data manipulation activity can occur, the files in which the data is stored must be oRened. The DBM 
interacts with the operating system to open the file in response to an open-call from the using program. The open
call identifies the area to be opened, and indicates what type of activity is intended. 

Format 

OPENRET 

OPRETSHD 

ENTER OPENUPD , REF-CODE , area-name-1[,area-name-2] ••• 

OPUPDSHD 

CREATE 

Usage Rules 

1. An area must be opened before any other EDMS call that references the area (either directly or indirectly) 
is executed. A call to open an olready opened area is ignored, if no calls other than open calls are made 
between the two opens. 

2. A call to open an area may not be made if the user is currently executing in some other area, i. e., there 
may be two or more successive calls to open different areas only if there are no other intervening proce
dural calls that reference the first area. 

3. OPENRET opens an area for retrieval purposes only. Other programs may concurrently open the area in 
OPENRET and OPENUPD mode. The user should be aware that this mode does not provide for protection 
against changes made to the database by another program concurrently executing in the OPENUPD mode. 

4. OPRETSHD opens an area for retrieval purposes and specifies that the area may be accessed concurrently 
by other programs in this mode or for shared update. 

5. OPENUPD opens an area for both retrieve and update purposes. Other programs may concurrently open 
the area in OPENRET mode only. 

6. OPUPDSHD opens an area for retrieve and update and specifies that the area may be accessed concurrently 
by other programs in this mode or for shared retrieval. 

7. If any areas are opened in a shared mode (OPRETSHD or OPUPDSHD) by a program, no other areas may be 
concurrently opened in a non-protected mode (OPENRET, OPENUPD, or CREATE) by the program. 

8. CREATE is a special open mode for an areathat has a group defined with location mode of indexed. While 
an area is open in CREATE mode, the key values of an indexed group occurrence to be stored must be 
higher than those of the occurrence most recently stored; i. e., the group occurrences must be presented 
to the DBM for storage in ascending key order (see "Adding Occurrences", below). The area may be con
currently opened in OPENRET mode by other programs. 

9. For all open modes, REF-CODE refers to the address of the beginning of the user's formatted working stor
age. This location should contain the number of data buffers to be used (3 to 10, inclusively) at the time 
the first open call is made. If a number less than 3 is specified, 3 will be used; if a number greater than 10 
is specified, 10 will be used. 

38 D BM Routi ne Usage 



10. If any PClsswords were :;pecified for the database, "he call PASSWORD in the CCB must be initial ized before 
an open call is made. An eight-character password that is associated with keys that allow access to the 
desired ~~roups and items should be supplied. 

11. If an area to be opened is an enciphered area, the user must supply the enciphering key in the appropriate 
area-name cell pri or te) the open call. 

12. If any area of the datclbase has been closed and is to be reopened, all areas must first be closed; i.e., re
opening an area may not viol?te usage rule 2 above. 

DBM Response 

If anyone of the required parameters is not supplied in the CCB; if any of the named areas is not assigned; if pro
cessing has begun in an area; or if mixed mode (shared and non-prote( teo) opens are attempted, the DBM returns an 
error indication in ERR-CODE in the CCB. If all conditions are satisfactorily met, the DBM sets up the controls 
necessary for processing the areas. The area files are not opened until a subsequent DBM call references one of 
the areas. 

When an area is opened in exclusive mode (OPENRET, OPENUPD, or CREATE), no provision' is made for dynamic 
recovery in case of deadlock, because deadlock cannot occur, and there is no rc;quirement for locking of individual 
pages. 

When an area is opened in shareld mode (OPRETSHD, OPUPDSHD) individual pages are locked, by means of the 
CP-V enqueue/dequeue facility, as required (see Appendix Hfor additional information on Enqueue/Dequeue). 

If an area is reopened, the DBM will zero out the contents of the set tables and current-of-type for all sets and 
groups defined for the area. Thus, a program may no+ maintcJin a logical position in an area between close and open. 

Adding OccurranclBs 

The first activity iinvolving the data in the database is to load, or store, group occurrences in the area files. This 
activity continues with varying frequency over the life of the database. The required conditions and thE" action of 
the DBM when a request is made to add a group occurrence to a database area depends ona variety of factors such 
as whether or not inventory pages exist for the area, whether or not there is an indexed group within the area, what 
the location mode of the group is, what sets it participates in and how, etc. 

Format 

ENTER STOR~ group-name 

Usage Rules 

1. The data values that are to constitute the group occurrence should be in the working-storage designated for 
the group. 

2. If the group is an automatic member of any set, the desired set occurrence must be selected. This is done 
either by retrieving thE~ owner occurrence or a member occurrence if the set selection is current (unneces
sary if the occurrence !'nost recently stored or retrieved is part of the desired set occurrences), or by putting 
the uniqueness-determining value in working storage if selection is through location mode of owner. Note 
that the uniqueness-determining values may be calc keys, index keys, set sort keys, or a combination of 
sort keys and one ot the others if several levels of owner are required to establish uniqueness. 

3. STORE is not permitted if the specified group is the owner or a member of a set that is not defined in the 
subschema being used; if any item in the group is not defined in the subschema; if the subschema item sub
entry for a secondary index item specified no inversion; or if the group is a member of a multimembersorted 
set withc)ut group number as major, and the definition of a sort key item in one of the other member groups 
is not included in the siubschema. 

DBM Routine Usage 39 



DBM Response 

The DBM must physically and logically position the occurrence in the area. To physically position the occurrence, 
the DBM determines a base page for the occurrence and stores it on that page if there is space. The base page for 
a group occurrence is determin..:-i differently for each location mode as follows: 

CALC - The values of the calc control items are randomized across the page range for the group to determine 
the base page. 

INDEXED - The values of the index c.ontrol items are compared to the primary index entries. The base page 
for the group occurrence is that page which contains the occurrence of the group that has the next-higher values 
in its index control items. If no occurrence of the group currently in the area has higher values, the base page 
is the last page currently containing indexed group occurrences. 

DIRECT - The base page is provided by the user in cell REF-CODE. If a storage parameter is selected for a 
direct group, the base page is determined as if the group were a via group. 

VIA SET - The base page is determined by the order of the via set, or storage set if appropriate, and the exist
ing members of the set: 

a. Sorted - base page is the data page of the current group occurrence logically before the new occur
rence in its sorted sequence. 

b. First and Last - base page is the data page of the set owner occurrence. 

c. Next and Prior - base page is the data page of the current member occurrence of the set. 

If there is not sufficient space, or no avai lable I ine number on the base page, the DBM systematically searches 
until space is found, or if no space can be found, the DBM returns an error code in the CCB. The search is based 
on the location mode of the group and whether or not there is an indexed group and an overflow range in the area. 

If the occurrence cannot be stored because of subschema limitations, if the password supplied at open does not pro
vide an update key required for storing occurrences of the group; if values in the occurrence are duplicates of values 
for which duplicates are not allowed (calc keys, sort keys, secondary indexes for which duplicates are not allowed, 
or indexed location mode keys); if key values for an indexed group are not in ascending order in create mode; If 
any values do not meet data validation criteria; or if a deadlock is precipitated during the store processing, the 
DBM returns an error code in the CCB. Additional action is taken in the case of deadlock (see "Preparing for 
Deadlock ", below). 

The group occurrence is logically positioned in all sets in which it participates according to the set selection and 
the set order. The occurrence is I inked into all sets in which it is an automatic member. If the occurrence cannot 
be linked for some reason e.g., the correct owner occurrence cannot be retrieved, the DBM returns an error code 
in the CCB. 

At the successful conclusion of a STORE call, the group occurrence is recorded as 

Current-of-file - Assigned reference code is in REF-CODE of CCB. 

Current-of-type - Assigned reference code is in the CURR-XXX cell in user's working storage. 

Current-of-set - Assigned reference code is in SET-CURR of all sets of which the group is an owner orauto
mati c member. 

The numeric synonym for the group is also placed in GRP-NO of the CCB. 

40 DBM Routine Usage 



Deleting Occurrences 

A group occurrence can be physically removed from the datclbase or marked as unavailar'''! and flagged for future 
removal, or thedE~lete call can specify conditions under which the group is to be deleted. If the subschema being 
used does not describe the complete database, there may be some EDMS-imposed restrictions on deleting 9'ouP 
occurren ces. 

DELETE 

REMOVE 

ENTER DElETSEl ,group-name 

REMOVSEl 

DElETAUT 

Usage Rules 

1. The group occurrence f'o be deleted is the occurrence identified as current-of-type for the group named. 

2. The occurrence cannot be deleted if any set of which the group is an CNner or member is not defined in 
the subsc:hema or if any invert group associated with the group is not defined in the subschema. 

3. The occurrence cannot be deleted if so: .. e member group at a lower level cannot be deleted because of 
subschema omissions. 

DBM Response 

If the occurrence cannot be delnted because of subschema I imitations; if the password suppl ied at open does not 
provide update keys for one or more of the groups affected; if the current-of-type is not establ ished, or if the de
lete processing precipitates a deadlock, the DBM returns an error code in the CCB (there is additional processing 
in the case of deadlock, see "Preparing for Deadlock" below). . 

If necessary conditions are met, the response is as follows: 

DELETE - Tho group occurn:llnce and any associated member group occurrences in a set of which it is the owner 
are logically deleted from the database. The deleted group occurrences will only be physically removed from 
the database if this does not' require examining a complete set to establish the prior occurrence of the deleted 
group. 

REMOVE - The group occurrence and all of its associated member occurrences are logically a"d physically re
moved from the database. 

DElETSEl - The group occurrence is logically removed from the database only if it does not have associated 
member occurrences. If thc:!1 group occurrence is the owner of a nonempty set occurrence, the DElETSEl call 
is not executed and an error code is returned in the CCB. 

REMOVSEl-· The group occurrence is logically and physically removed from the database only if it does not 
have associat'ed member occurrences. If the object group is the owner of a nonempty set occurrence, the 
REMOVSEl call is not executed and an error code is returned in the CCB. 

DElETAUT - The group occurrence is logically deleted from the database. If the group is defined as the owner 
of a set with automatic members, all automatic-member occurrences will be logically deleted from the database. 
Any deleted (automatic-member occurrences wi II be treated as if they were the object of a DElET AUT call. If 
the group is defined as the owner of a set with manual members, the manual-member occurrence will be de
linked from the set. Execution of this call makes all deleted group occurrences unavailable for subsequent ac
cess by the user. The current-of-type for groups whose occurrences are del eted and the current-of-fi I e 
(REF-CODE) are set to zerCl. 

DBM Routine Usage 41 



Modifying Data Values 

The values of one or more items in a single group occurrence can be modified. 

Format 

ENTER MODIFY, group-name [, item-nome]. .. 

Usage Rules 

1. Before executing this call, the user must initialize working storage with the new values for the items to 
be modified. 

2. The object of the call is the group occurrence that is current-of-type for the group named. 

3. The I ist of item-name arguments identifies the specific items to be modified. If no I ist is given, it is as
sumed that all defined items in the group are to be modified. 

4. This call may not ~e used under any of the following conditions: 

a. If the item is a calc control item and definitions of other calc control items are omitted from 
the subschema. 

b. If the item is a sort key for a set and definitions of other sort keys from the same set are omitted from 
the subschema. 

c. If the item is a sort key and the definition of the sorted set is omitted from the subschemas. 

d. If the item is a sort key fo~ a multimember set sorted without group number as major sort key and 
the definitions of the sort keys in the other member groups are not all included in the subschema. 

e. If the item is a secondary index and the invert-group definition is omitted from the subschema. 

f. If the item is an indexed location mode control item. 

DBM Response 

If one of the above conditions is not met; if the password supplied at open does not provide an update key required 
for modifying the item (s); if a new value dupl icates an existing value for which dupl icates are not allowed (a calc 
key, sort key or secondary index item wi th no dup I i cates); if the current-of-type for the group has not been establ i shed 
(e. g., by a previous retrieval or store action); or if the modify attempt results in a deadlock with another program, 
the DBM returns an error code in theCCB. (Additional actions in the deadlock case are described under "Preparing 
for Deadlock", below.) 

If there are no errors, the item value(s) is replaced with the new value(s}. 

If an item to be modified is a calc control item for the group, the item values are changed and the pointers in the 
group occurrences affected are modified to indicate the new base page. The group occurrence with the modified 
value, however, is not physicallymoved to the new base page. If an item to be modified is a sort control item for a 
set in which this group is a member, the item values are changed and the group occurrence logically repositioned 
in the set based upon the modified item values. 

Modifying Linkages' 

An occurrence of a group whose membership in a set is defined as optional or manual can be I inked to or del inked 
from a set occurrence (LINK and DELlNK). Also, a member group occurrence can be changed from one owner oc
currence to another in any set in which it participates (RELINK). 

42 DBM Routine Usage 



Linking, Delinking, or Relinking Member Occurrences 

Format 

ENT ER {~I~~N ~ 1J' group-name, set-name 

RELINK ----

Usage Rules 

1. The object of the call is the group occurrence that is current-oF-type for the group named. 

2. To DELIN K a group OCCllrrence from the named set, the group must be defined as an OPTIONAL member 
or a MANUAL member, ·and the occurrence must be linked into a set occurrence. 

3. To LINK OJ group occurrElnce into the named set, the group must be defined as a MANUAL member or an 
OPTIONAL member, and the occurrence must not be currently linked illto a set occurrence. 

4. To RELINK a group occurrence from 01'19 occurrence of the named set into another, the group must be de
fi ned as a member of the named set, and the ob ject group occurrence must be linked into an occurrence 
of the set. 

5. For LIN K or RELIN K, the set occurrence into which the object group occurrence is to be I inked must be 
selected. If the defined set selection technique is through location mode of owner, working storage must 
be initialized with the control-item values that uniquely identify the owner occurrence. If set selection 
is through current-of-set, the set occurrence should be establ ished as current by means of a DBM call. This 
would normally be done by retrieving the owner occurrence or an occurrence of a different group type that 
is also defined as a member of the set. For RELINK, the current set occurrence should not be establ ished by 
retrieving an already-linked' occurrence of the named group, because that would make the already-linkea 
occurrence current-of-type and the object of the call, which is contrary to the purpose of the call, and 
is effectively a null action. 

DBM Response 

If any of the above conditions is not met; if the passwordsuppliedatopendidnotprovideupdate access to the named 
group; if processing the call would result in non-allowed duplicate values of sort-keys; or if deadlock with another 
program occurs, the DBM returns an error code in the CCB {additional action in the case of deadlock is described 
under "Preparing for Deadlock ", below}. 

If the LINK call is successful, thf! object group occurrence is current of the named set. 

If the DELINK procedure is successful, the group occurrence that was prior to the object group occurrence is current 
of the named set. 

If the RELIN K is successful, the clbject group occurrence is del inked from its previous set occurrence and I inked into 
the new one. The DBM will not c:heck to determine that the new set occurrence is indeed different from the previous 
set occurrence. If the order of the named set is sorted, the DBM will initial ize working storage with the values 
of the sort control items from the object group occurrence to ensure that the object group occurrence is rei inked 
into the proper logical position in the new set occurrence. 

DBM Routine Usage 43 



Retrieving 

Various techniques are used for retrieving specified group occurrences from the database and making them avai lobi e 
in the buffers. (Subsequent GET calls must be made to move the data into user's working storage.) The selection 
of the technique depends upon tk~ specific application. Technique selection must be governed by the group and 
set characteristics of the occurrences to be retrieved. A single general format applies for the various techniques. 

Format 

FIN DG, group-name 

F IN DC, group-name 

FINOD 

FINOM, set-name 

FIN ON, {set-name } 
--- group-name, procedure-name 

FIN DP, {set-name } 
--- group-name, procedure-name 

ENTER 
FIN OS procedure-name 

Usage Rules 

F IN OS I, procedure-name 

FIN OX I group-name, item-name I procedure-name 

FINDSEQ I group-name, item':'name, procedure-name 

FIN OFRST, group-name 

FINOlAST, group-name 

FIN 0 OU P, group-name 

1. In each form of the retrieve (FIN D) call, it is assumed that any data items necessary to identify the spe
cific occurrence of the group to be retrieved have been initialized in working storage. The data 
items that are necessary depend on the specific call and are described under IIOBM Response ll

, below. 

2. FINOG will not be allowed if 

a. Cal c or index control items for the group are not defined in the subschema. 

b. The via set is not defined in the subschema. 

c. The via set is defined and one or more sort keys are not defined in the subschema. 

d. The via set is sorted without grOJp numbers as major, and sort keys of another member group are not 
defined in the subschema. 

3. FIN OG is also not allowed for the area group establ ished to function as set owner. 

4. FINOOUP is not allowed if any of the calc control items for the group are not defined in the subschema. 

5. FINOX and FINOSEQ are not allowed if the invert-group is not defined in the subschema. 

44 OBM Routine Usage 



DBM Response 

1. The action in each case c:auses the group occurrence to be made available in one or the DBM buffers. No 
other action, such as moving the group to working storage, is implied. 

2. At the succ:essful condusiion of any retrieve call eXCE!pt FINDX, the object group occurrence is recorded 
as follows: 

Current-of-file - Thl3! reference code of the group occurrence is stored in the REF-CODE entry of 
the CCB. 

Current-of-type - The reference code of the group occurrence is stored in the CURR-XXX entry of 
user working storage (XXX is the numeric synonym Tor the group). 

Current-of-set - The reference code of the group occurrence is stored in the SET -CURR entry of the 
set tables for each SE~t in which the group participates. 

Group-type - The numeric synonym for the group whose occurrence is retrieved is stored in the GRP
NO entry of the CCB. When using any retrieve call that does not explicitly identify the group name, 
an occurrence of any of several groups may be retrieved depending on the data structure involved. After 
execution of the procedure, the user program may determine the group whose occurrence was retrieved 
by referring to the GRP-NO entry of the CCB. 

3. FINDG -lhe FINDG (find-group) call retrieves a specific occurrence of the named group. The group 
occurrence retrieved is a function of the location mode of the group. When the group isdefinedasdirect, 
the occurrence retrieved is identified by +~le reference code stored in the REF-CODE entry of the CCB. 
When the ~~roup is defined as cai..:, ~he occurrence retrieved is identified by the randomizing procedure, 
using the values of those items defined as randomize control items. When group is defined as via set, the 
occurrence must be retrieved via the owner occurrence of the set. In this last case, the values that uniquely 
identify the owner occurr'ence must havg Seen initialized in working storage in addition to the values of 
those items (which must bEt SORT KEY items) thor v.liquely identify the via group occurrence. When the group 
is defined as indexed, the occurrence retrieved is identified by referencing the primary index to find the 
"base II page for the group and then us i ng the val ues :supp lied for those items defi ned as the index i terns for 
the group to searc h the page set. 

4. FINDC -lhe FINDC (find-current) call retrieves the group occurrence identified by the reference code 
currently stored in CURR··XXX, where XXX is the integer identifier of the group named. This call is used 
to again retrieve the current-of-type group occurrence. 

5. FINDD -lhe FINDD (find-direct) call retrieves the group occurrence identified by the referenc.e code 
stored in the REF-CODE entry of the CCB. If there is no occurrence with the specified reference code, or 
if the occurrence has benn logically deleted, the DBM returns an error code in the CCB. 

6. FIN OM - 'The FINDM (Hnd-master-of-set) call retrieves the owner group occurrence of the set named. 
The action of this call d'3!pends on the contents of the set table for the named set. 

7. FIN DN - The FIN ON (f~nd-next) call retrieves the next group occurrence in logical sequence of the set 
named if the argument tel the call is a set name. The actual group occurrence retrieved depends on the 
user's position in the set as indicated by the set table. 

If the argument to the celli is a group name, the group must be an indexed group and the call retrieves 
the group occurrence wi'th the next higher key value. If, prior to the call, the user is positioned at the 
group occurrence with the highest key value, no group occurrence is retrieved, and control is returned 
to the user at the address specified by the procedure-name. 

8. FINDP - The FIN DP (find prior) call retrieves the prior group occurrence in logical sequence of the set 
named if the argument tC) the call is a set-name. The actual group occurrence retrieved depends on the 
user's position in the set as indicated by the set table. 

If the argument to the c(:lI1I is a group name, the group must be an indexed group and the call retrieves 
the group occurrence with the next-lower key value. If, prior to the call, the user is positioned at the 
group occurrence with the lowest key value, no group occurrence is retrieved and control is returned to 
the user at the address specified by procedure-name. 

D BM Routi ne Usage 45 



9. FINDS - The FINDS (find-serial-search) call provides for a serial search of an area for the first group 
occurrence that falls within a range of reference codes. The range is defined by the user by the initial
ization of both the FRST -REF entry of the CC B with the first reference code of teh range and the LAST
REF entry of the CCB with the last reference code of the range. Control is returned to the user with each 
group occurrence found wit •. in the range after the DBM has incremented the value of the FRST-REF. Re
peated execution of the call causes retrieval of each group within the range until the val ue of FRST -REF 
exceeds the value of LAST -REF. At this point, the call exits to the address specified by procedure-name. 

10. FINDSI - The FINDS I (find-serial-search-from-initial-reference) call operates in the same manner as 
FINDS except that search limits are defined in terms of an initial reference code in FRST-REF and a num
ber of group occurrences in LAST-REF. With FINDSI, the LAST-REF value is decremented with each group 
retrieved and the call exits to the address specified by procedure-name either when the LAST -REF value 
reaches zero or when the end of the area is reached. 

11. FINDX - The FIN DX (find-indexed) call locates and places into REF-CODE the reference code of the 
first group occurrence that contains a value (of the item named) equal to the value in working storage for 
that item. This call is only valid when the item-name has been defined as a secondary index (invert) item 
for the group named. Return from this call is to the first statement following the call when a group oc
currence is identified that contains the value supplied in working storage. To find 011 group instances that 
match, the call must be used repeatedly within a loop without chonging the value of the item in working 
storage. When no matching instances are found or when no additional instances exist,. control is returned 
to the location specified by procedure-name. Any time the value of either the item in working storage 
or the FINDX arguments is changed, the DBM assumes that a new retrieval loop is involved and identifies 
the first matching group occurrence. Unlike other types of retrieval calls, FINDX does not actually re
trieve the identified group occurrence. The only action apparent to the user program is the availability 
of the reference code of the qualifying data group occurrence in the CCB entry REF-CODE. Should the 
user wish to retrieve the selected group, he may do so by using the FIN DD call. 

12. FINDSEQ - The FINDSEQ (find-sequential) call sorts all occurrences of the specified secondary index 
(invert group) and serially retrieves the main group occurrences that correspond to the sorted invert group 
occurrences. This call is only valid when the named item is defined as an inverted item for the group 
named. The initiol use of this call with a given set of arguments causes the DBM to build a sort input file 
consisting of all occurrences of the invert group for the secondary index, specified by item-name. The 
DBM then relinquishes control to the Sort processor, which sorts the invert group occurrences on the values 
of the invert item. At the completion of the sort, the DBM regains control, reads the first sorted invert 
group occurrence, retrieves the corresponding main group occurrence, and updates the CCB and set tables, 
as appropriate. Control is then returned to the first statement following the FIN DSEQ call. Subsequent 
use of the call results in the retrieval of the next sequential main group occurrence until an end of file 
is reached on the sorted file, at which point control is returned to the location specified by procedure
name. Any time group-name or item-name is changed, it is assumed that a new sort is involved and the 
above-described initial procedure is executed. 

13. FINDFRST - The FINDFRST (find-first) call retrieves the logically first indexed group occurrence, that 
is, the group occurrence with the lowest key val ue. This call is only val id when the group named has a 
location mode of indexed. 

14. FINDLAST -The FINDLAST call retrieves, the logically last indexed group occurrence, that is, thegroupoc
currence with the highest key value. This call is only val id when the group named has a location mode of indexed. 

15. FINDDUP - The FINDDUP (find-duplicates) call retrieves the next calc group occurrence that has random
izing control values equal to the current contents of user's working storage. This call is only valid when 
the group named has a location mode of calc and duplicates ore allowed. 

Prior to this call the user must have retrieved a calc group whose randomizing control values are equal 
to the current contents of user's working storage. To execute this call, the DBM will find the next group 
of the calc set looking for a group with duplicate values. If none is found, an error will be returned in 
ERR-CODE of the CCB. . 

16. If the password suppl ied at open does not provide all necessary retrieve keys; if the volues suppl ied in work
ing storage are not sufficient to identify an occurrence; or if processing the call resulted in deadlock with 
another program (see "Preparing for Deadlock" below), the DBM returns an error code in the CCB. 

46 D BM Routj ne Usage 



Moving to Working Storage 

The FIND calls only couse the pagE! containing the selected group occurrence to be placecl .. the buffer and the 
current indicators to be updated for the group and for the sets in which it participates. If the user wonts to process 
the data in the group occurrence, the program must make an additional call. The GET call is used for this purpose. 
The HEAD call may be used to both retrieve and move a set owner-occurrence. 

GET Call 

Purpose. To move a retrieved group occurrence to working storage. 

Format 

ENTER GET, group-name [, litem-nome] ... 

Usage Ru.les 

1. The object of the GET ca~ I is the group occurrence identified as the current-of-type for the group named. 

2. The items to be moved to working storage may be any items defined within the group. 

3. The list of item-names idEmtifies the specified items to be moved. If no list is given, it is assumed that 
all items are to be moved. 

DBM Response 

The data values in the group occurrence are mo,,~'"' to working storage. 

HEAD Call 

Purpose. To both retrieve and move to working storage the owner group occurrence of a set occurrence. 

Format 

ENTER HEAD, set-name 

Usage Rule 

Before using this call I a previous database reference must have been made to establ ish a group occul'ence as SET
CURR for the named set. 

DBM Response 

This call provides a function similar to the FINDM and GET calls except for the manner in which the set tables are 
updated. After execution of the HEAD call, the owner group occurrence is establ ished as the current-of-type and 
as current-of-set for those sets in which the group is a member. It is not established as current-of-set for those sets 
in which it is owner. 

Run-Time Statistics 

Purpose. To initiate and terminat'e, by calls to the DBM, thE~ collection of statistics on the performance of a pro
gram as it accesses a database. The statistics reflect the activity of that job only. 

DBM Routine Usage 47 



Format 

! DMSSTATS) 
ENTER EN DST ATS 

RPTSTATS 

Usage Rule 

Run-j.ime statistics collection can be initiated at any time during the operation of the program. 

DBM Response 

1. DMSSTATS causes the DBM to collect statistics on the activity of the specific job within the database. 
Statistics include the number of EDMS calls executed, the number of groups accessed by caH ana the 
number of physical p.age I/Os. 

2. ENDSTATS causes the collection of the above statistics to be discontinued. 

3. RPTSTATS causes a report of the statistics to be printed. After the report is written, the internal DBM 
counters for the statistics are reset to zero. A sample of the report is given in Figure 8 .. 

Run-Time Tracing 

Two types of trace information are accumulated by the DBM. The first type is initiated and terminated 'at the re
quest of the user program and produces printed output. The second type is automaticalty maintained by the DBM 
and is not output. 

User Initiated Trace 

Purpose. To record and print the access record of DMS calls made by a program during program operation. (listing 
output can be assigned to a file and printed later.) 

Format 

ENTER {DMSTRACE} 
-- ENDTRACE 

Usage Rule 

The trace can be initiated and terminated at any time during the operation of the program being tested. 

DBM Response 

1. DMSTRACE causes the DBM to print the following information in its order of occurrence: 

DBM function name and user's call ing address. 

Group number of group accessed and reference code of the occurrence. 

Number of page reads and writes. 

A sample of the trace is given in Figure 9. 

2. EN DTRACE terminates the trace reporting. 

48 DBM Routine Usage 



PROCEDURE 
FINDC 
STORE 

CALLS 
9 

85 
PAGE READS 
PAGE WRITES 

DBM Trace Table 

GROUPS 
9 

381 
6 

Figure 8 . Run-Time Statisti cs Sample 

PA~[ ~~A~ ~1.)J)C~0'~ 

:) c; .. ~ A C U· .,;~, .:. 1 • J~; ll~:; 0 1 .j.: i ;-: 1 . 2. 
~,;.; :' A ( C ~ :~; ., 1 • :h:; ~'L) (, ) ~.:' r' 1 . ; , , 
,' ...... AC(,~ :~s ~Il.)).'v~t'i' .'I-:,')! '? 
I, ;.;> t., r r- ' ; - r '.; 1 - ')' ') I) -' l. ,,-; - L .~ 1 ". 2 

< '''-, '3 > :., T : .. ~_ 

1 j j.... :: .:. CJ :: ~,(" :. 1 • J :: ") f') ~i i)· , -:) ~J 1 ":1 ~ 
:.J>.;':) 4U.:"';:;:1-.~; \::C<"~,, J-(')1 :'?' 
r,;: ~ A C :: ~ :;):~ ) 1 - ,: :1 J r::", C' , \) -~: ,": , '? ~" 
!, ... -' A ( r ~ c.: S ~~ 1 - .~. J ) (' J;; ., 1 - 'V: 1 ' oj .' 

" ... ... .1\::' .. ;~ ~: .. 1 • ~ .I ) I; :_ Co ~;\ - "(: , ., :1 
11j.:.~ II' .. ~ ':7 :;1 -:;!:·!n.JC';1-):,1 'J'" 

<"':":;> "1'T .. lr\~ ; '~"'~';"~'.," j..::;!·'i ~:.r (IC'!'(,~ 

I II,,; :' ,"- ~ C ~ c. ~ '\! _ J'.J ~,(i., \ ,1 [I- 0 Ci 1 ".? .~ 

I, ~:oJ A ( C,=- ) ~ .:' 1- j ::<:,.J '. ':,1 ~:. J (\ .:, ~'4 ~. 

'.1 ~. ~. po. ,;;:0: 't .' 1 - .) :.} j (, ,.; r. , :,. C :; i? -, ~ , 
< ,.. 'i ,~ :> "'1 ; 1 '" ~ ~ • ,'T ~. _, r' :~ r t~ ~. • L t ": ;. c..? .. ~ 

'I,,~) t.({;"~~:. -'1_j'_,>~j):'1:'J_)i')? "". 
',~ :'. "cr ~ .:., ~J ,; 1 • .)'J) CJ It , ~~ •. -)!J 'J -.;; '. 
(, ~ ~J A ( n ;; (" -:' 1 - J ~,)"L't· ) 1 - ,J (' , .\ ., , 

h t<;"1 II C ( t. ... ~ ..J 1 • '):i '),~ :. (, , :; - ,j (1 ,~, S : 
. I t~;'l I ~ '.:. '" .; T '. 1 • ) ..; . .1 ~ ... ' ,1 ~\ - j:) ~ : ':;, .', 

< '" , " .3 :> ..., 1 ..... t ~ T ~. :;. : . , ~ - r '~ L. ~ :: i' C. ~ ,( '" 
" t;.:' A C '~. :.:'~ .: 1 _ Yi,::; '. r. 1 ~,- ,'J? ';" ' 
r,p:-, A(.J :,~ "Il.):'~)O.ln1 J-u(j~ .:;~:-

(iP.,) "tr'~:":~: .. ~1-Fi.l\-;..,l,1, .• J~ .. f,'i .. \ 
(,~~') A( C[~·f; )l-J'~~O':"'.)1 ~')·,):'1 )5: 

Figure 9. Run-Time Trace Sample 

The DBM maintains a record of user's calls in a trace table. No user action is required to initiate or terminate the 
maintenance of the table, nor can the table be displayed. The table may be examined in a memory dump or by using 
monitor SNAP commands. The trclce table is a circular list of ten entries, controlled by a stack pointer at DEF 
Q:TRCTBL in the DBM. The tablEl itself immediately follows the stack pointer doubleword, whose first word will 
contain the address of the current trace entry in the circular list. A trace entry has the following format: 

bits 0-7 - binar'y value of an error code or zero. 

bits 8-14 - binc]ry code for type of DBM call (see Table 6). 

bits 15-31 - address in the user's program from which the call was made. 

DBM Routine Usage 49 



Table 6. Trace Codes for DBM Calls 

1- OPENUPD 17. GET 33. FINDM 

2. OPRETSHD 18. MODIFY 34. HEAD 

3. OPENRET 19. LINK 35. DMSRlSE 

4. OPUPDSHD 20. DELINK 36. DMSCHKPT 

5. CREATE 21. RELINK 37. CLOSEDB 

6. CLOSAREA 22. STORE 38. FINDD 

7. DELETE 23. F IN ON (group) 39. DMSRETRN 

8. DELETAUT 24. FINDP (group) 40. DMSTRACE 

9. DELETSEL 25. FINDSEQ 41. ENDTRACE 

10. REMOVE 26. FINDX 42. DMSSTATS 

11. REMOVSEL 27. FINDS 43. ENDSTATS 

12. FIN DC 28. FINDSI 44. RPTSTATS 

13. FINDG 29. Not Used 45. DMSABORT 

14. FINDDUP 30. Not Used 46. SETERR 

15. FINDFRST 3l. FINDN (set) 47. RESETERR 

16. FINDLAST 32. FIN DP (set) 48. DMSLOCK 

Error Control 

Purpose. To enable the user's program to maintain a degree of control over the handling of DBM-detected errors 
by issuing a call that specifies a location to which the DBM is to return control in the event of a specified error 
condition. 
Format 

SETERR, procedure-name [, error-code-name] .•• 

RESETERR [, error-code-name] ... 

ENTER DMSRETRN 

Usage Rule 

DMSABORT, procedure-name 

DMSLOCK, procedure-name 

All locations specified by procedure-name must be within the user's program area. 

DBM Response 

1. SETERR - Establishes the location that is to receive control in the event of a data-dependent error 
(codes 1-20). If no error-code-name arguments are given, procedure-name will receive control on any 
data-dependent error. If SETERR is entered with an error-code-name value that already has a procedure
name establ ished for it, the new procedure-name wi" replace the previous one. 

2. RESETERR - Disassociates a data-dependent error code value from a procedure-name so that the DBM wi" 
no longer trap to that procedure name if the error is encountered. If no error-code-names are given, all 
error code values are dissassociated. 

50 DBM Routine Usage 



3. DMSRErRN - Causes c:ontrol to be returned to the statement immediately following the last DBM function 
call that resulted in al1l error for whi ch the user had establ ished an error-control procedure. The DMSRETRN 
call is used to exit from a procedure established by the SETERR call. The DBM 'ill only retain the address 
of the last function call that resul ted in an error. 

4. DMSABORT - Establ ishes the location that is to receive control in the event of a non-data-dependent er
ror other than deadlock (codes 31-137). The location establ ished to receive control should be a wrapup 
routine as no additionClI DBM calls wi" be allowed. . 

5. DMSLOCK - Establishes the location that is to receive control if it causes a deadlock (error code 30) with 
another program that i!) sharing an area. 

Preparing for Deadlock 

There is a possibi I ity of deadlock whenever two or more programs are concurrently accessing the same area, if at 
least one of them is updating thf~ area (i. e., at least one program has used OPUPDSHD to open the area and at least 
one other program has used eithE~r OPRETSHD or OPU PDSHD). The deadlock occurs when two programs are each 
waiting for the other to release <1 locked page in order to proceed. An example is: Program A reads page 1 causing 
it to be locked with shared status. Program B then also reads page 1 locking it with shared status (many programs 
may lock a page with shared sta:tus without interfering with each other). Program A then attempts to update page 1, 
resulting in a request to promote the lock status to exclusive. This promotion is delayed waiting for Program B to 
remove the shared lock on page 1. If, instead of removing the shared lock on page 1, Program B also attempts to 
promote to exclusive lock status to update page 1, it will be delayed, waiting fC'; Program A to remove its shared 
lock. The two programs are in deadlock and neither can proceed. 

The monitor EnquElue/Dequeue flunction will detect (J deadlock situation and return an error code to the program 
that finally caused the deadlock (Program B in tl,e above example). The DBM will recover the database using any 
before images on the program's transient journal, thus undoing the program's database changes back to its most recent 
DMSRLSE call, or back to the bt:tginning of its operation, if there was no DMSRLSE. 

DMSRLSE Call 

Purpose. To release pages that me locked for the program and make them available for reading and/or updating by 
other concurrently operating prolS/rams. The DMSRLSE call ellso establ ishes a point in the sequence of a program's 
operation as a base point for recovery in case of deadlock. The call notifies the DBM that some defined portion 
of the program's logic and/or input data has been completed, and that only subsequent database changes should be 
nullified if a deadlock occurs. The call may also be used, with the optional recovery-name specified, to erase pre
vious changes to a shared database (for example if the program detects that a portion of its input has been in error). 

ENTER DMSRlSE [, recovery·-name] 

Usage Rules 

The call may be made at any time after all areas are open, but is effectively a null action if no area is opened for 
shared access, or if no database ,CJccesses have been made. 

DBM Response 

If there are no open areas, the DBM returns an error code in the CCB. If there are areas open, and the optional 
recovery-name is specified, the DBM restores any before images from the transient journal to the database. If 
recovery-name is not specified, the DBM writes all modified pages currently in core back to the database. In 
both cases the DBM: 

1. Deletes all before images currently on the transient journal. 

2. Sets the program's position in the database to zero; i. e., zeros out all set tables and current-of-type for 
each group. 

3. Releases ell I locked pages. 

Database areas opened to the prO!3ram are not closed. 

DBM Routine Usage 51 



Checkpointing 

Purpose. To add an additional protection to the integrity of the database by allowing the user's program to period
ically request that the DBM write all modified pages to the database. 

ENTER DMSCHKPT 

Usage Rule 

The using program may call the checkpoint routine at any time during its operation. 

DBM Response 

The DBM will write all modified pages currently in the data buffers to the database area file. After-images will be 
written to the journal file if joumaling is being done. No areas are closed, nor are any currenty indications 
changed. The database lockout bit will be reset in all updated areas. 

Terminating Processing 

Purpose. To close opened areas when a program's database activity is finished. 

Format 

ENTER{CLOSEDB } 
-- CLOSAREA, area-name-1 [, area-name-2] ..• 

Usage Rules 

1. CLOSEDB terminates processing in all currently opened areas. 

2. CLOSAREA terminates processing of those areas specified byarea-name-1, area-name-2, etc. 

3. When the last opened area is closed, the user may request that the OBM release back to the monitor any 
common dynamic core acquired for the subschema and data buffers. The user requests this release of core 
by setting the contents of cell REF-CODE to a negative value before executing the close call. 

DBM Response 

The DBM interacts with the host operating system to close the are files. If, however, CLOSAREA is used to termi
nate processing in an area which has pages enqueued or if the area is open for update and other areas are left open 
for update then the pages are not released and the operating system close is not issued until the remaining areas are 
closed with.a CLOSAREA or CLOSEDB procedure call. 

Error Processing 

During execution of anEDMS program, two types of error conditions may occur and be recognized by the DBM. The 
first type involves data-dependent situations and must be anticipated by the user program. The second type involves 
situations that result from inproper use of the DBM routine calls, from inval id database definitions reflected in the 
subschema, from hardware or software mal functions that cannot be recovered by the DBM, and from deadlock with 
another program that is shari ng an area. 

52 Error Processing 



If an error is detected by the OHM, an identifying error code is placed in the ERR-C ODE entry of the CCB.. If an 
error-control location was established for the error code c;.&Icountered, the DBM returns control to that location. If 
no error-control location exists, control is returned to the location immediately foll""41ing the DBM function 
call. 

If the error encountered is dahl-dependent (see Table F-2 in Appendix F), the DBM returns the database to 
its logical position before the call and makes the appropriate return to the user. Additional DBM calls wi II 
be accepted. 

If the error is non-data-dependent other than deadlock (see Table F-3), the DBM closes all open areas before 
returning to the user. If any further calls are made to +hp n~M, the job is terminated abnormally. 

If there is a deadlock, the program's position in the database (i. e., values in the set tables and current-of-type 
for each group) will be set to zero. The database areas are not closed and subsequent DBM calls will be processed. 

Journaling 

The DBM includes a facility to ()ptionally create a journal file for each job step that updates an area of the 
database, thus providing the datc:! necessary to recover the content of the database in the event of hardware or 
software fail ure. 

The journal file will be generate1d if an area defi;.ition specHied journaling, provided the proper DCB assignments 
are made (see !lD8M Operational InterfaCe ", below). The journal file is described in Appendix E. 

A separate journat, called a transient journal, IS created to contain before images for recovery of shared databases. 
No DCB assignments are needed. The b~fore images orl the transient journal contain only the database page image. 
(See Figure D-1.) 

Database Lockout 

The DBM will maintain a databa!ie lockout but in page 1 of each area to determine the integrity of the area. If an 
area is opened for exclusive update, the lockout bit wi II be set to 1 in the database, just prior to the first write ini
tiated by a user update. The loc:kout bit is reset to zero when the area is checkpointed or closed by the user. Ter
mination of a program without a user-initiated EDMS close will leave the lockout bit set. If the DBM detects that 
the lockout bit is set when a usel' opens an area, an error code is returned to the user in the CCB. The DBM wi II 
not set the lockout' bit if the are(l is opened for shared update. It wi II, however, check if the bit was left set by a 
previous program. 

Summary Statistics Collectio,n 

The DDL allows for the specificaf'ion of statistics collection on group and/or set activity. The DBM will collect 
the statistics during execution of the user program. These statistics, which are distinct from the run-time statistics 
described above, provide a historical summary of all jobs affecting the database. The statistics are accumulated 
in space reserved f'or them in the user's working storage area and written to a file when the area is closed. The 
contents of the file may be examined subsequently by means of the Summary Statistics Utility processor (DMSSUMS, 
see Chapter 5 for CI description of this processor). Appendix E shows the format of the statistics file. The statistics 
collected are 

Area-Open Mode, Retrieve, Update, or Create 

T ota I Page Reads and Wri tes 

Total Groups Accessed 

Total Groups Inserted 

Total Groups Deleted 

Journaling/Database Lockout/Summary Statistics Collection 53 



Group-Total Accesses 

T ota I Inserts 

Total Deletes 

Set-Total FIN DN calls 

Total FINDP calls 

Total HEAD and FINDM calls 

oBM Operational Interface 

The DBM will exist either as a nonshared library or as a combination public library and nonshared library at the in
stallation's option. Linking of a user's program to the DBM will depend on the option selected. 

Total Nonshared Library 

The DBM will exist as three files, :DIC, :LlB, and :BLlB, in account DMSLlB. The files :DIC and :L1B are for use 
by the overlay loader while :BLlB is used by the one-pass loader. 

To link a program to the DBM using the overlay loader, account DMSLlB should be specified as an UNSAT option 
on the LOAD command. For example, 

!LOAD (GO), (EF, (SUB1», (UNSAT, (DMSLlB)) ••• 

To link a program to the DBM using the one-pass loader, file :BLlB in account OMS LIB should be specified as a 
library identification in the LINK command. For example, 

!L1NK MYROM ON MYLMN;:BLlB. DMSLlB ••• 

Combination Public and Shared Library 

The nonshared portion of the DBM will exist as three files, :DIC, :LlB, and :BLlB, in account DMSLlB. The shared 
portion will exist as file :Pn, where n is a digit selected at the time the DBM is SYSGENed. 

To link a program to the DBM using the overlay loader, account DMSLlB and the file :Pn should be specified as 
UNSAT options on the LOAD command. For example, 

! LOAD (GO), (EF, (SUB 1)), (UN SAT, (DMSLlB), (:P2» ••• 

To I ink a program to the DBM using the one-pass loader, Pn (the colon is omitted) should be specified as a library 
search option and file :BLlB, in account DMSLlB, should be specified as a library identification in the LINK com
mand. For example, 

!LINK (P2) MYROM ON MYLMN;:BLlB. DMSLlB •.. 

DBM DCB Requirements 

The names for the DCBs used by the DBM are as follows: 

Journal DCB - F:JRNL. 
Subschema DCB - F:SSCH. 

54 DBM Operational Interface 



Transient Journa I DCB-F: T JRL 
Statistics DCB - F:STAT. 
Database Area DeBs - F: DBnn, where nn may be any two digits from 01 through 64. 

The F:JRNL, F:SSCH, F:T JRL, and F:STAT DCBs are automatically included in the user's load module by the loader. 
DCBs for the database areas must be included by the user as input to the loader. Element files are included in 
account DMSLIB for this purpose. The element file names and the DCBs in each file are as follows: 

DCBl F:DB01 1 DCB 

DCB2 F:DB02 and F:DB03 2 DCBs 

DCB4 F: DB04 through F: DB07 4 DCBs 

DCB8 F: DB08 through F: DB 15 8 DCBs 

DCB16 F:DB16 through F:DB31 16 DCBs 

DCB32 F:DB32 through F:DB64 33 DCBs 

The user must specify, in the LOAD or LINK command, the proper eleme.nt file(s) to provide a DCB for each area 
defined in the subschema used by his program. 

Example 

Three areas defined in the subschemcl: 

ILOAD (GO), (EF, (DCB 1, DMS LIB), (DCB2, DMSLIB)), (MAP), (UNSAT, (DMSLIB)) 

"The DCBs thus included are F:DB01, F:DB02, and :-:DB03. The files for the three areas of the database must be 
assigned to these three DCBs. It is immaterial which file is assigned fo which DCB. 

Example 

Four areas defined in ~he subschema: 

lLINK MYROM, DCB4. DMSLIB ON MYLMN;:BLIB. DMSLIB 

The DCBs included are F:DB04, F:DI~05, F:DB06 and F:DB07. 

DCB Assignments 

The database area files and the subs,chema file may exist in public RAD or disk storage, or on a private disk peck. 
If they are on a private pack, the appropriate serial numbers must be included in the ASSIGN command. If the 
fi les exist in an account other than 'rhe one in which the job is to be run, the account-name of the oc -:ount that 
owns the files must be specified in the ASSIGN command. A mode is not necessary in the assignment because the 
DBM will open the files with a modE~ corresponding to the type ()f open call initiated by the user for the area. 

Example 

Subschema and databclse area named! AREA 1 on publ ic storage database area, AREA2 on private peck number P 124: 

lASSIGN F:SSCH, (FILE,MYSUBSCH) 

lASSIGN F:DB02, (FILE,AREA 1) 

IASSIGN F: DBO:3, (FILE, AREA2), (SN, P124) 

The journal and statistics files may be assigned to a file on RAD or disk storage, or to a labeled tape. A mode is 
not required because the DBM will default the mode to OUT when the first database area is opened by a program. 
If the program executes multiple opens and closes of the database areas, the DBM will initiate subsequent opens of 
the journal and statistics files as INOUT, thus concatenating all of the output for anyone job step through these 
DCBs. If the user wishes to concatEmate the output of several job steps, he may assign the DeBs as mode INOUT. 

DBM Operational Interface 55 



5. EDMS UTILITY PROCESSORS 

The utility processors perform a service function in support of the other EDMS capabilities: initializing areas before 
any data is stored; dumping the total contents of an area and saving it for backup; updating the saved data with jour
naled pages for recovery purposes; printing selected portions of an area, journal, or backup file for visual checking; 
and printing summary statistics collected by the DBM i,rto a statistics file. 

Database Initialization (DMSINIT) 

DMSINIT initializes an area or areas of a database, or specified pages in an area. If a whole area is involved, 
DMSINIT determines the required size for the area and creates the file by writing page headers and optional check
sums on all data and index pages. If inventory is specified in the area definition, DMSINIT writes page headers 
and optional checksums on the inventory pages and fi lis in unused space with zeros. 

DMSINIT Error Messages are shown in Table F-5, Appendix F. 

The user may select the areas to be initialized, or specific pages within selected areas. If no areas are selected, 
all the areas defined for the database will be initialized. In all cases, the area file must be assigned (see "Utilities 
Operational Interface", below) if an area is to be wholly or partially initialized. Areas are selected by one or more 
area statements. 

AREA Statements 

Purpose. To cause DMSINIT to completely initialize one or more areas, or reinitialize a range of pages within each 
of one or more areas. A single AREA statement may designate many areas to be completely initialized, but a sepa
rate statement is required for each area in which specified pages are to be reinitialized. 

AREA = area-name-l [, area-name-2Carea-name-3] .. 'J 
RANGE=(r

1
,r

2
)G (r

3
,r

4
)]··· . 

Usage Rules 

1. The AREA statement must eAd with a period. 

2. At least one space must precede the word RANGE. 

3. A space may precede or follow an equals sign, a comma, a left or right parenthesis, or a period. 

4. The RANGE option defines the page range or ranges to be initialized for an existing area. Each page range 
specified is val idity-checked to determine that q is equal to or less than r2, and that the page numbers used 
fa" within the tota I number of data pages in the area. The RANG E must not include index or inventory pages. 

5. Each AREA statement should begin on a new input line, but a statement may be continued on as many lines 
(records) as are needed. No continuation character is required, as a statement is considered continued 
unti I a period is encountered. 

6. If the specified RANGE includes any pages within the page range of an indexed group, it must include all 
pages in that range. The specified RANGE may not include pages within the area IS overflow range if it does 
not include the indexed groupls pages, and itmust includeall pages of the overflow range if it includes any. 

Dump Processor (DMSDUMP) 

This processor dumps either all or selected parts of existing data base areas to a sequential file or to a printer. When 
the output is defined as a sequential file, the file has the same format as the journal file except that each data page 
image is dumped as an after-image. Figures E-1 through E-4 in Appendix E show the journal/dump file format. 

56 E DMS Uti I ity Processors 



When the output from DMSDUMP is defined as printed output ar.d the job is run in batch, each page is formatted as 
shown in Figure 10. The line indicated by 0 is a print header line containing relative page number and the number 
of words of available space. The line indicated byG) contains the two-word page header. The line indicated by 
8 contains the dec:imal represent'otion of the line number of the group occurrence, the group number, the relative 
position on the page, and the group occurrence's reference code. The line indicated by 0 is the beginning of the 
actual values in the group occurrence. The line indicated by 0 shows the EBCDIC representation of the data (data 
that does not convert to printable characters are represented by dots). 

When printed output is requested by a terminal job, the output is as shown in Figure 11. The 0 indicates the header 
line containing page number and rlumber of words of available space. The0 indicates the two-word EDMS page 
header (see Figure D-l for data page header format). The first word of the page header shown in Figure 11 contains 
page number (1), page type (01, dlota page), the must-write-flag reset, and the number of words of available space 
(lEC). The second word contains the Control Set pointer (areu ~, j)age 1, line 2). The printed line in Figure 11, 
indicated by the 0 , contains the' line number, group number, relative word position in page, and reference code 
of the first group occurrence. Group number, printed as zero in this case because page 1 line 1 contains a DBM
generated dummy group occurrenCE~, is in the range 1 to 999 for user-defined groups. The line indicated by the0 
in Figure 11 is the beginning of the actual group occurrence, and the lin~ i:,dicated by 0 is the che6ksum for the 
page. 

DMSDUMP Error me$sages are shown in Table F-6 in Appendix F. The processing options of DMSDUMP are selected 
by input directives consisting of a type identifier followed by one or more area selection specifications. 

If the database is password-protect'ed, a password specification must precede the first directive. The password speci
fication has the following form: 

PASSWORD = 'user-password' 

Should a request be made for a selection of groups whose access codes are not authori zed by the password given, the 
groups will be skipped. Items for vvhich the password is not authorized will be zero filled. 

(0 
~INlaPN/W~O/REF.CO OAT~ PAGE 0000005 SPACE .VAI~AB~E 453 

(;') (VOO0tl55C5 02000501 

~1/200/002/000501 

002/200/009/000502 

003/200/016/000503 

005/201/030/000505 

006/201/037/000506 

007/201/044/000507 

001/201/051/000508 

(~01320007 02000502 000eo014 F2FOFOFO OOOOOOOA 020e0508 02000504 

02320007 02000503 000C002A F2FOFOFO 0000001 4 02000502 02000502 

03320007 020005~0 00000032 F2FOFOFO 00000018 02000503 020C0503 

043~4007 00000006 02000501 020005e5 02000504 0200050. 00000000 

05324007 00000007 02000504 02000506 02000505 02000505 00000000 

06324007 00000008 02000505 0200C507 02000506 02000506 oooeoooo 

07324007 00000009 02000506 02000501 02000507 02C00507 00000000 

01324007 OOOOOOOA 02000507 02000501 02000508 02000501 00000000 

CHECKSUM 3A650028 

Figure 10. DMSDUMP Output Sample (Batch Job) 

0 ............. 200e •••••••••••• 

•••• •• •• ••••• 2000 ••••••• , •••• 

-, ••••••••••• 200C •••••••••••• 

-.t .................. , ..... . 

... . ....................... . 

... .., ..................... . 
• t. • ••••••••••••••••••• t •••• 

••• ., •••••••••••••••• t •••••• 

Dump Processor (OMS DUMP) 57 



!S~T F:5CH~ DC/MSTRSCH 

!5F.T F:DROl DC/AREA-2 

!DMSDUMP. 

[XVlsnut-':p - EXTENDED DMS 
>PASSWORD='11111111' 
>PRINT ARF.A=ARF.A-2 CIPHKF.Y='1234' RANGE.(1~2). 

o LIN/GPN/toJHn/RF.F-CD DATA PAGE 0000001 

~ 000015EC 02000102 

o 001/000/002/000101 

~ 01FAB003 02000308 02q00408 

002/200/005/000102 

SPACF. AVAILABLF. 492 

02320007 02000103 00000016 F2FOFOFO OOOOOOOA 02000102 02000102 

003/200/012/000103 

03320007 02000100 0000002C F2FOFOFO 00000016 02000103 02000103 

CHECKSUM FF40865F 

LIN/GPN/WRD/REF-CD DATA PAGE 0000002 SPACE AVAILABLE 488 

000025£8 02000201 

001/200/002/000201 

"01320007 02000202 00000006 F2FOFOFO 00000002 02000201 02000201 

002/200/009/000202 

02320007 02000203 00000010 F2FOFOFO 00000008 02000202 02000202 

003/200/016/000203 

03320007 02000200 00000026 F2FOFOFO 00000012 02000203 02000203 

CHECKSIJM F3690D39 

Figure 11. Sample DMSDUMP Terminal Job 

58 Dump Processor (OMS DUMP) 



Dump Birectives 

Purpose. To specify the type of ou~put desired and to identify areas, lines, and groups to .. _ processed. Multiple 
directives may be supplied. They me processed serially by DMSDUMP in order of input, ,\ith no attempt made to 
minimize passes through the databa!ie area. 

Format 

. ARE~ = area-name 

[CIPH KEY = user-cipher-key J 

{
DUMP} 
PRINT [ {~~~UP}= (Nl' N 2 ) ] 

GROUE = N3[, N 4J ... 

[RANGE = (r
1
,r

2
)[,(r

3
,r

4
)]. .. J 

Usage Rules 

1. The directive type identifier may begin in any character position and may be followed by any number of 
spaces, and selection parClmeters may consist of several lines. A period is used to terminate a directive. 
At least one space is requiired to separate t-vo selection parameters. Spaces may precede or follow an 
equals sign, a comma, a left or rirt,t ? ..... enthesis, or a period. 

2. DUMP/PRINT - Specifies that the selected portion of the database is to be output to a sequential file 
(DUMP), or to a formatted print repor: ~PRINT). The formatted print report contains the hexadecimal 
representation with EBCDIC alongside, if the ;.;h is rUin in batch. The output of a terminal job does not in
clude EBCDIC. 

3. AREA - Identifies the spec:ific area to be processed. Should AREA not be supplied by the user, all areas 
of the database wi" be pnJcessed. (Area-name is the name of an existing area to be processed. ) 

4. CIPHKEY - Specifies that deciphering is required in order to produce the requested print report. (User
cipher-key is the cipher key associated with the data in the area to be printed. ) 

5. LINE - Specifies the span of lines within a data page to be printed. Not legal if GROUP is specified. 

6. GROUP - I!i group number, which specifies a span of groups or somt. specific groups to be printed. Note 
that CIPHKEY, LINE, and GROUP are not allowed with DUMP and are valid only when the AREA param
eter is selec:ted. (Nl' N2') permits the user to specify a span of lines or a span of group numbers to be pro
cessed. N3 [, N4] ... a /lows the user to specify up to ei ght group numbers of groups whose <...ccurrences are 
to be processed. GROUP may not be duplicated for a single area. 

7. RANGE - Defines one or more page ranges to be selected from an area of a database. Each range specified 
is checked to confirm that" it falls within the page range of an area (including inventory pages), and the 
rl value is checked to determine that it is equal to or less than the r2 value. No check is made for over
lapping ranges; i. e., all :selected pages in each range are output. If no RANGE parameter is supplied, 
the complete area is selected and sent to the output file. In this case, data, index, and inventory pages 
are written to the output file. RANGE must be the last parameter specified for an area. 

Load Process~i iu~SLOAD) 

DMS LOAD restores all or selected parts of existing database areas from a sequential fi Ie on magnetic tape, RAD, or 
disk. Its output may be directed to· another sequential output C>r to a printer. 

The input file must be a single file created as a journal file by the DBM or a dump file created by the EDMS Dump 
processor. In either case, the fi Ie format is as defi ned in AppEmdix E. 

Load Processor (DMS LOAD) 59 



When the output is directed to a database area, each page selected is written over (replaces) the corresponding 
area page. Optionally, the area is reciphered and the inventory pages are updated to reflect the condition of each 
data page restored. 

DMSLOAD must always refer to existing areas of a database. Note that if a specific area no longer exists in the 
database, the user should initial:ze it before using DMSLOAD to restore it. 

When the output is directed to a sequential file, the selected pages are written to the file in the same sequence 
and format as they are found on the input fi Ie. The abi Ii ty to wri te to a second sequential fi Ie makes it possible to 
preselect before- or after-images from a journal file for use in recovering the datab~se. 

When the output is directed to a printer, the selected pages are formatted the same as in DMSDUMP output (see 
Figures 9 and 10). 

The processing options of the Database Restore routine are driven by directives supplied via the SI input file. A 
directive consists of a type identifier optionally followed by an AREA selection specification. Each area specifica
tion consists of an area identifier optionally followed by one or more area-level selection parameters. 

DMSLOAD Directives 

Purpose. To specify the form of the output and to select specific types of page images or specific pages to be 
processed. 

Format 

!LOAD} [BEFOR~l[DA TE = mm/dd/yy~mm/dd/yy] 
TAPE AFTER J 
PRINT [TIME =hh:mm~hh:mmJJ 

Usage Rules 

[CIPHKEY = user-cipher-key] 

[NEWCKEY = new-user-cipher-keyJ 

[INVUPD] 

[RANGE = (r l' r 2)[' (r 3' r 4)]" .J 

1. Each selection parameter must be separated from the next by at least one space (many spaces are the same 
as one space). A period is required to terminate a directive. Spaces may precede or follow an equals 
sign, a comma, a left or a right parenthesis, or a period.-

Each directive must begin on a new input line (record). 

2. LOAD - Reloads all or selected parts of an existing database from a sequential file on magnetic tape, RAD, 
or disk. 

3. TAPE - Recreates a sequential fi Ie on another magnetic tape, RAD, or disk with its selected output. 

4. PRINT - Displays all or parts of the database from a DMS dump tape or journal tape to the printer or _ 
terminal. 

5. BEFORE or AFTER - Specifies that only the before or after page images are to be selected from the input 
file. If not specified, both types of page images are selected. . 

6. DATE and TIME are used to select pages from the input file. When a single date is given, only pages for 
that date are selected. When two dates are given, an inclusive range is defined and all input pages within 
that range are selected. Also, the first date must chronologically precede the second. The time param
eter is a logical extension of the date parameter and is used in the same manner. If both are used for a 
given directive, the first time value is assumed to be the time for the first date and the second time value 
for the second date. 

60 Load Processor (DMS LOAD) 



7. AREA - Allows user to specify the area he intend~ to process. If AREA is not supplied by the user, none of 
the following area-level selection parameters s!lo".Id appear, and all areas of the dotabase will be pro
cessed. (Area-name is the name of an existing area to Le processed. ) 

B. CIPHKEY - Specifies that deciphering is required in order to produce the requested print report in PRINT 
option or that an area ()f the database in LOAD option is to be reciphered. 

9. NEWCKEY - Specifies that the area defined in the area identifier will be reciphered using a new cipher 
key. NEWCKEY can o'nly be specified when LOAD directive is selected. (New-user-cipher-key is a 
one- to four-character string that will be used as a new cipher key to recipher the area specified.) 

10. INVUPD - Has meaninSI only when used with the Lul'.:.! directive. When INVUPD is sl'ecified, DMSLOAD 
updates the inventory pages of the area specified with the space available as defined by each page re
stored. When INVUPD is not specified, it is assumed either that the inventory pages were restored from the 
tape file by adirectivet'hat included the inventory pages or that it is not necessary to update the inventory. 

11. RANGE -- Selects one Olr more page ranges within the specified area to be processed. Must be the last pa
ramater spec i fi ed for an area. 

Summary Statistics Processor (DMSSUMS) 

DMSSUMS outputs in print formal' the total contents of the statistics file generated by the DBM or selected counts 
from that file. The user may select area counts, proup count's, or set counts for all or specified area, groups, and 
sets by means of statistics selection specif:catk.,s ir.jlut to DMSSUMS. A valid schema must· also be input. 

The output from DMSSUMS is in I'he form shown in Figure 12. The information is output in the order in which it 
occurs in the statisHcs file. DMSSUMS error me::asages are shown in Table F-B, Appendix F. Statistics File format 
is shown in Appendix E. The statistics file is not modih~d or deleted by DMSSUMS, it may be extended in subse
quent jobs (see "D8M Operational Interface", Chapter 4) or it may be deleted. 

DMSSUMS I-IERE 

DMS SUMMARY STATISTICS 
CBLLECTED DURING J6d.OOOC~ 12/26112 13:50 

AREA.ST ",TIST leS #GRtluP IIGReUp .::R6Up 'PAGE BPEN.MeDE 
ACCESSES INSERTle~s DEL.ElIBNS ACCESSES 

AREA. A 216 21 1 118 UPDATE 

GReUP.STATlSTICS *GRBUP *GReUp *GRBUP 
ACCESSES INSERTI6NS OELETIBNS 

GRBUP-A 95 10 2 

SET.STATISTICS F'If\;ON F'l NOP "'C:AO+F'INOM 
CALLS CALLoS CALLS 

SET"A 50 16 

GReUP·ST~·:~TICS #GR6UP NGReUp .GRBuP 
ACCESSES INSERTIBf\;S OELETIBNS 

GRBUp"e 20 

Figure 12. DMSSUMS Sample Output 

Summary Statistics Processor (DMSSUMS) 61 



Statistics Selection 

Purpose. To designate the areas, groups, and sets for which statistics are to be printed. 

Format 

[AREA = {;r~-name [, ,rea-name-2] ... }] ... 

[GROUP = {~~~p-name-l [, group-name-2] •.• }] 

rSET = {set-name-l [, set-name-2] ... }] ...• 
t- ALL 

Usage Rules 

1. The AREA, GROtJP, and SET clauses may be input in any order and may span as many input lines as neces
sary. The period is required to terminate the input. ALL may be specified only once each for AREA, 
GROUP, and SET. 

2. At least one space is required preceding the words AREA, GROUP, and SET, and many spaces are the same 
as one except that a complete line of spaces is treated as an end-of-file. Spaces may precede or follow 
the equals sign, the comma, and the period. 

3. AREA indicates that statistics for the designated areas are to be printed. The area-names must be in the schema. 

4. GROUP indicates that the statistics for the designated groups are to be printed. The group-names must be 
in the schema. 

5. SET indicates thatthe statistics for the designated sets are to be printed. The set-names must be in the schema. 

Utilities Operational Interface 

All OMS utilities may be operated in batch mode or from a terminal inCP-V. All four prompt with a > character and 
treat a line-feed or carriage-return in response to the first prompt as an end-of-file on the input. Input directives 
and selections are read through the M:SI DCB and print output and error messages are written through M: LO. 

OMS IN IT 

DMSINIT requires file assignments for the schema that describes the areas to be initialized and for the areas them
selves. It uses the DCB F:SCHE for the schema and F:DBnn (where nn is any two-digit combination between 01 and 
64) for the areas. Any DBnn can be used for any area. If an area is to be updated or dumped by a job run in an 
account other than the one in which DMSINIT is run, WRITE account should be specified in the area assignment. 

Typical Deck Setup Examples (DMSINIT) 

1. Initialize all areas of a database: 

IASSIGN F:SCHE, (FILE, SCHEMA) 
!ASSIGN F:DB01,(FILE,AREA1) 
IASSIGN F:DB02,(FILE,AREA2) 
IASSIG N F: DB03, (FILE, AREA3) 
IDMSINIT 

No input is supplied because the database contains three areas, all of which are to be initialized. 

2. Initialize selected areas of a database: 

IASSIG N F:SCHE, (FILE, SCHEMA) 
IASSIGN F:DB01,(FILE,AREA 1) 
IASSIGN F: DB03, (FILE,AREA3) 
IDMSINIT 
AREA = AREA3,AREA 1. 

IEOD . 

62 Uti! ities Operational Interface 



3. Reinitialize a portion of an existing area: 

IASSIGN F:SCHE, (F1ILE, SCHEMA) 
'ASSIGN F:DBOl, (FILE, AREA3) 
IDMSINIT 
AREA = AREA3 RANGE = (3,8), (16,20), (51,60). 

IEOD 

The result from the above :;etup is that pages 3 through 8, 16 through 20, and 51 through 60 of AREA3 
are reinitialized. 

DMSDUMP 

The user must supply !ASSI GN cards for the following fi les used by the Dump processor: 

Database schema file (F:SCHE)" 

Output dump sequential file (re!quired only when Dump directive is used (F:DUMP). 

Each area to be processed (F:DBnn). 

Typical Deck Setup Examples (DMSI?UMP) 

1. Dump all arE~as of the database to a sequential fi Ie: 

IASSIGN F:SCHE, (FILE, SCH,:"AA,A, 
.lASSIGN F:DUMP, (LABEL, DUMPDB), (SAVE),; 
I (SN,1234) 
JASSIGN F:DB01, (FILE, AREA-I) 
JASSIGN F:DB02, (FILE, AREA-2) 
IASSIGN F:DB03, (FILE, AREA-3) 
!DMSDUMP 
DUMP 

IEOD 

The above setup is to dump the database with t~ree areas (AREA-l, AREA-2, and AREA-3) to a sequential 
file (DUMPDB) on a labeled tape (SN, 1234). 

2. Dump a portion of an area of the database to a sequential file: 

IASSIGN F:DUMP, (LABEL, DUMPDB), (SAVE),; 
, (S N, 1234) 
!ASSIGN F:DBOl, (FILE, AREA-3) 
!ASSIGN F:SCHE, (FILE, SCHEMA) 
IDMSDUMP 
DUMP AREA = AREA-3 

RANGE = (51,80). 
IEOD 

The above shows that the contents of pages 51 through 80 of AREA.;.3 are dumped to a sequential fi Ie on a 
labeled tape. 

3. Output on printer a portion of an area: 

J/',:S!GN F:DBOl, (FIL.E, AREA-2) 
,P,:::iSIGN F:SCHE, (FILE, SCHEMA) 
IDMSDUMP 
PASSWORD = 'TEST3001' 
PRINT 
AREA=AREA-2 GROUP=16, 30, 101,298 • 

IEOD 

Utilities Operational Interface 63 



The result from the above setup is to have all occurrences of group 16, 30, 101, and 298 of AREA-2 
printed on printer output. Note that occurrences of groups whose access codes are not authorized by the 
password wi" not be printed and zeros wi" be printed instead of the values of items not authorized. 

DMSLOAD 

The user must supply !ASSIGN cards for the following files used by the Database Restore processor: 

• Input journal or dump file (F:LOAD). 

Database schema fj Ie (F:SCHE). 

Depending on output functions specified, IASSIGN cards are required for the following: 

Each area (file) of OMS database (F:DBnn). 

Output dump tape fi Ie (F:DUMP). 

Typical Deck Setup Examples (OMS LOAD) 

1. Restore database from a dump tape: 

!ASSIGN F: LOAD, (LABEL, DMSDP), (SN, 1234) 
fASSIGN F:SCHE, (FILE, DMSCHEMA) 
IASSIGN F:DB01, (FILE, AREA-A) 
lASSIGN F:DB02, (FILE, AREA-B) 
IASSIGN F:DB03, (FILE, AREA-C) 
IDMSLOAD 
LOAD. 

IEOD 

The above setup is to restore from labeled tape # 1234. Before doing so, user must be sure that AREA-A, 
AREA-B, and AREA-C exist in the database. (For a nonexisting area, user should initialize one and then 
use OMS LOAD to restore it.) 

2. Display a portion of the database on printer: 

IASSIGN F:SCHE, (FILE, DMSCHEMA) 
IASSIGN F: LOAD, (LABE L, DMSDP), (SN, 1234) 
IDMSLOAD 
PRINT 
AREA=AREA-B CIPHKEY='BUG' 

RANGE=(2, 5). 

This setup wi II print pages 2 through 5 of AREA-B from a journal fi Ie or dump fj Ie. 

3. Recover an area using BEFORE images from a journal tape. 

(ASSIGN F:SCHE, (FILE, DMSCHEMA) 
IASSIGN F:LOAD, (LABEL, JOURNAL), (SN, 1234) 
IASSIGN F:DB01, (FILE, AREA-A) 
IDMSLOAD 
LOAD BEFORE AREA=AREA-A. 

IEOD 

The above setup enables a user to recover AREA-A to its condition prior to the creation of the journal tape. 

4. Recipher an area: 

lASSIGN F:SCHE, (FILE, DMSCHEMA) 
IASSIGN F:DB01, (FILE, AREA-C) 

64 Uti I Hi es Operati ona I Interface 



IASSIGN F:LOAD,'(LABEL, DMSCHEMA), (SN, 1234) 
IDMSLOAD 
LOAD 
CIPHKEY='BUG' 

IEOD 

AREA=AREA-C 
NEWC KEY=' DOGS' . 

This setup changes the cipher-key associated with the area from 'BUG' to 'DOGS'. 

DMSSUMS 

The user must supply !ASSIGN cards for the followill1g files processed by the summary statistics processor: 

The statistics file ClutpUt by the DBM (F:STAT). 

The schema fi Ie for the database (F:SCHE). 

Typical Deck Setup Example (DMS5UMS) 

IASSIGN F:SCHE, (FILE, DMSSCHEMA) 
IASSIGN F:STAT, (LABEL,SUMSTAT), (SN,5678) 
IDMSSUMS 
AREA=ALL GROUP:;:GROUP-l, GROUP-2, GROUP-3 SET=ALL. 

This setup caUSQS all art~a statistics, all set statistics, and the statistics for GROUP-l and GROUP-2 to be printed 
from a statistics file on labeled tape. 

Utilities Operational Interface 6S 



66 

6. DATABASE ANALYSIS PROCESSOR 

The Do tabase Anal ysis PrOC"Assor (DMSANLl) is the portion of the subsystem that performs the restructuring 
requirements anC1ly~;~ ,:lnd s<"!lC::iules processes for actual database restructuring. DMSANLZ performs the following 
major functions: 

1. Restructuring Process Control Language (RPCL) processing. 

2. Component association and attribute change analysis. 

3. Dalo load sequence determination. 

4. Conveyance process generation. 

5. Restructuring process and file usage reporting. 

By use of the ~PCL, the user provides the Restructuring Subsystem with the information needed to access the source 
and target schemas and database areas. The RPCL also allows the user to specify a preferred sequence for loading 
the data groups into the target areas and the translation of certain types of items from the source to the target 
database. 

RPCL Syntax 

The entry is the major element of RPC L syntax. Each entry is composed of one or more clauses and is terminated by 
a period, followed by a space. The first clause in an entry identifies that entry. Each succeeding clause begins 
with a keyword (optionally preceded by a semicolon) identifying the clause. The second and subsequent clauses in 
an entry may appear in any order, but the syntactic units within each clause must appear in a specified order. 

Clauses are composed of words, literals, file identifiers, volume serial numbers, and separators; each of these is 
considered to be a syntactic unit. 

Words 

A word is a string of characters that may be either alphabetic or numeric and may contain embedded hyphens. A 
word must not begin or end with a hyphen and must contain at least one nonnumeric character. 

There are two basic types of words, reserved and nonreserved. Reserved words in the RPCL are the same as those 
in the DDL (see Chapter 3}and are legal only where specifically required. Nonreserved words may be either names 
or fill words; their usage is context dependent. A given nonreserved word may be considered a fill word at one place 
in an entry and interpreted as a name at another. For example, the word SEQUENCE in the RPC L pass sequence 
subentry is considered () fill word if it appears immediately following the keyword PASS, but may also appear as a 
group name without ambiguity. . 

Lite rl Is 

Literals can bE! either numeric or nonnumeric. A numeric literal is a string of numeric characters having an integer 
value in the ran~"! 1 through 100. 

Database AnalysiS Processor 90 30 12C-2(4/76) 



DDL 
Entry/Subentry 

GROUP 

Item 

INVERT 

SE~ 

Table 7. Legal Database AttribL'" Changes (cont. J 

DDL 
C/cuse/Subc/ause 

NAME 

WITHIN 

RANGE 

LOCA nON MODE 

STORAGE 

USING 

DUPLICATES 

NUMBER 

PRIVACY LOCK FOR RETRIEVE 

PRIVACY LOCK FOR UPDATE 

STA nSTICS 

Item-name 

PICTURE 

TYPE 

OCCURS 

PRIVACY LOC K FOR RETRIEVE 

PRIVACY LOCK FOR UPDATE 

CHECK 

In ve rted -d~ta -i tem -no me 

NUMBER 

WITHIN 

RANGE 

DUPLICATES 

NAME 

OWNER 

ORDER 

Lega I Change? 
-

no 

no 

yes 

no 

no 

no 

no 

no 

yes 

yes 

yes 

no 

no 

no 

no 

yes 

yes 

no 

riO 

no 

no 

yes 

no 

no 

no 

no 

Database Analysis Processor 67 



Table 7. Legal Database Attribute Changes (cont. ) 

DOL I DOL 
Entry/Subentry Clause/Subclause Lega I Change? 

SET (cont. ) GROUP-NO (as sort key) no 

UN KED TO PR10R no 

STA TlSTlCS yes 

MEMBER Member-group-name no 

INCLUSION no 

LIN KED TO OWNER no 

SELECTION no 

ALIAS no 

A SCE NO ING /DE SC ENDING no 

RANGE KEY no 

DUPLICATES no 

RPCL Syntax 

The entry is the major element of RPCL syntax. Each entry is composed of one or more clauses and is terminated by 
a period, followed by a space. The first clause in on entry identifies that entry. Each succeeding clause begins 
with a keyword (optionally preceded by a semicolon) identifying the clouse. The ~econd and subsequent clauses in 
on entry may appear in any order, but the syntactic units within each clause must appear in a specified order. 

Clauses are composed of words, literals, fi Ie identifiers, volume serial numbers, and separators; each of these is 
considered to be a syntactic unit. 

Words 

A word is a string of characters that may be either alphabetic or numeric and may contain embedded hyphens. A 
word must not begin or end with a hyphen and must contain ot least one nonnumeric character. 

There are two basic types of words, reserved and nonreserved. Reserved words in the RPC L are the some as those 
in the DOL (see Chapter 3) and are legal only where specifically required. Nonreserved words may be either names 
or fill words; their usage is context dependent. A given nonre!.erved word may be considered a fill word at one place 
in on entry and interpreteu os a name at another. For exampl~, the word SEQUENCE in the RPCL pass sequence 
subentry is considered a fill word if it appears immediately following the keyword PASS, but may also appear as a 
group name without ambiguity. 

Uteri" 

literals can be either numeric or nonnumeric. A numeric literal is 0 string of numeric characters having an integer 
value in the range 1 through 100. 

68 RPCL Syntax 



A nonnumeric literal is a string of characters enclosed in apostrophes. To include an apostrophe in such a literal, 
two apostrophes must appeclr in adjacent character positions. The second apostrophe does not become part of the 
literal. Nonnumeric litemls appear only in the PRIVACY EXTRACT clause in the schema entry and the CIPHKEY 
clause of the area entry. The specific usage determine3 the maximum size allowed. 

File Idantifiers 

Fi Ie identifiers are used to provide DMSAN LZ with the information needed to access the source and target schemas 
and databaSE! area files. Fi Ie identifier syntax is described below. 

Volume Serial Numbers 

Volume sericd numbers (VSNs) identify the private disk packs or tape volumes on which schemas, database areas, 
and DMSDUMP created fi lEts reside. Volume serial numbers for devices other than ANS labeled tape may contain 
from one to four alphabetic. or numeric characters. ANS labeled tape serial numbers must always contain six alpha
betic, numedc, or blank characters. If blank characters are to be included in ANS labeled tape serial numbers, 
the volume serial number must be enclosed in apostrophes. 

Separators 

Separators are required after all syntactic units. They are as follows: 

1. ThEI space (blank) is a separator; it must follow all syntactic units In the absence of any other separator. 
A space may precede or follow any other separator; any number of spaces is equivalent to a single space 
(except in nonnumeric literals). Every input unit is implicitly followed by a space; thus, no syntactic unit 
may span multiple input units. . 

2. The comma is a !ieparator which is legal only where specifically indicated in the syntax; it is never 
required. 

3. The number sign (N) is a separator used exclusively to introduce a volume serial number. It is always re
quired where indicated in the syntax. 

4. The semicolon may be used as a separator between clauses; it is never required. 

5. The period is a separator when followed by a space or when it Is the last character In an input unit. A 
period is required as the last separator in an entry. 

The RPCL is essentially freEl-form in terms of length of input units (up to 80 characters). The input unit is termed 
a "line", although the ori!~inal source input may be from cards, keyboard, or any other character string source. 
The language! has no provision for indicating the continuation of lines; an entry is considered continued until termi
nated by a period, regardless of the number of lines used. The end of a line, however, terminates a syntac
tic unit. 

The syntax notation used f'o show the RPCL entry formats is the same as that used in the DOL description (see 
Chapter 3). 

fila Idantifialr For.t 

A fi Ie identifier is used to provide DMSAN LZ with the information needed to access a schema or database area fi Ie. 

file name [. [account] [. password]] 

RPCL Syntax 69 



70 

Usage Rules 

1. Fi Ie-name is the name associated with a monitor fi Ie on disk or labeled tape. Account is the account 
number under which the file was created, if different from the current user's account. Password is the 
moniror p ... ssword, iI any, associated with the file. 

2. The fj Ie identifier may not contain any separators, and neither the fi Ie name, account, nor password may 
contain a period. 

3. The file identifier may not span multiple input units. 

RPCL Entry Formats 

The RPCl consists of seven types of entries: 

1. Schema entry - one each for the source and target schemas. 

2. Area entry - one for each source and target area, as required. 

3. load entry -as required. 

4. Override entry - one entry, as required. 

5. Refcode entry - one entry for each item, as required. 

6. Bypass entry - one entry, as required. 

7. End entry - one entry. 

The first two RPCL entries must be the schema entries, followed by any required area entries, followed by any re
quired load entries, followed by any override entries, followed by any refcode entries, followed by any bypass 
entries. The end entry must be last in the RPCL. 

Schema Entries 

The schema entries supply all information required to access the schema files. 

Format 

{SOURCE} SCHEMA IS fi Ie-identifier 
TARGET 

[iPRIVACY KEY FOR EXTRACT IS privacy-lock] 

[iDP ~vsn [~vsn] ... ]. 

Usage Rules 

1. There must be one schema entry for the source schema and one for the target schema. One of these must 
be the first entry in the RPCl, followed immediately by the other. 

2. The SCHEMA clause must be the first clause in the entry. The file-identifier must identify an exist
ing schema file. 

3. The PRIVACY clause supplies the key required to access the schema, if the schema has a PRIVACY LOCK 
FOR EXTRACT attached to it. The privacy key must exactly match the lock of the schema, or the pro
cess will be aborted. The privacy-lock is a !1onnumeric literal of up to eight characters. If less than eight 
characters are ·supplied, trailing blanks are added to make up an eight-character key. 

4. The DP clause provides the volume serial numbeds) of the private disk pack(s) on which the schema resides, 
if the schema is not in public storage. 

Area Entries 

The area entries supply all information necessary to access database area files, as well as information on how in
dexedgroup storage :;pace is to be util ized during loading of the target database area. 

RPCl Entry Formats 9030 12C-2(4/76) 



{
SOURCE} AREA IS {area-r~.ame. DM~~UMP FILE IS dump-file-identifier} 
TARGET -- area-hle-Identlfler 

[iCIPH KEY IS user-cipher-key] 

[iINDEXED GROUP FILL PERCENT IS integer] 

[ '([ANS] 
[ANS] 

Usage Rules 

~:) ~vsn [~vsn] ..• J . 
7T 

1. An area entry is required for any source or target area for w:,ich any of the following is true: 

a. The area is a sourCE~ area and the user wants to use a DMSDUMP fj Ie as input to the unload process 
(see Chapter 7). 

b. The database area file is not in public storage in the run account. 

c. The database area file has a monitor password associated with it. 

d. The area is enciphered. 

2. The AREA clause must b{~ the first clause in the entry. If the area is a source area and is to be input from 
a DMSDUMP file, area'-name must t.. ... the name of a database area defined in the source schema, and 
dump-fi le·-identifier mUSi't identify an existi.:, DMSDUMP fi Ie containing the named area in its entirety. 
The DMSDUMP option iSi legal for source areas only. If the area is a target area, or if it is a source area 
in random fj Ie format, area-fi Ie-identifier must identify an existing database area fi Ie. Also, if the area 
is a target area, it must exist in an initialized state (i. e., it must not contain any group occurrences). 

3. The CIPHI<EY clause supplies the enciphering.key, if any, associated with the area. The form for user
ciper-key is a nonnumeric literal of up to four chclracters. If less than four characters are supplied, 
trai ling blanks are added to make up a four-character key. 

4. The INDEXED clause allows the user to specify an intermediate fill percent to be used when loading the 
indexed delta group occurrences into the target area. This clause is only required if the user has included 
groups wh()se location mode is via or direct in the same page ran~e as the indexed group. In this case, 
at least two load passes (:Ire made over the indexed group's page range. The first pass wi II load only the 
indexed group occurrences; the second pass, and any subsequent passes, will load the direct or via group 
occurrenCE3S. The fi" pElrcent in the INDEXED clause wi II be used instead of the fi 1/ perc~nt in the target 
schema DDL in the first pass only. In all subsequent.passes, the fill percent in the DDL will be used. 

This technique allows the direct and via detai Is to coreside with the indexed group occurrences in the 
indexed group's page range. Otherwise, all via and direct member group occurrences would be placed 
in the overflow range, sInce the first load pass would have exhausted the available space (up to the per
cent specified in the tar{~et schema DD L) in storing .. he indexed group occurrences. 

The integer specifying the fill percent must lie in the range 1 through 100, and must be less than or equal 
to the fi II percent specified in the target schema DDL. 

The ''''DEXED clause is legal for target areas only. If the INDEXED clause is not specified, the fi II per
cer, : 1 tfle target schem(] DDL is used for all load passes. 

5. The volume serial number (vsn) clause specifies the device type (7-track tape, 9-track tape, or private 
disk pack) and volume se,rial numbers of the private volumes on which the database area or DMSDUMP file 
resides. Tape devices are legal only when the area is to be unloaded from a DMSDUMP fi Ie. Database 
area files must always reside on random access devices. 

R PCl Entry Formats 71 



Load Entry 

The load entries provide the user with a means of influencing the sequence in whi ch his data wi II be loaded into 
the target database (see "Data Loading Sequence", below, for a complete discussion of the data loading sequence 
and the effects and impl icat>lMs of the use of load entries). 

A load entry consists of a load subentry, followed by the preserve subentry, followed by the pass sequence subentries. 
Load entries are never required. 

Load Entry Skeleton 

Load suben try 

[Preserve subentry] 

[Pass sequence subentry 1 ... 

The required load subentry identifies the load entry. The preserve subentry and the pass sequence subentries are 
optional. 

Load Subentry 

The load subentry identifies the area to be loaded. 

Format 

LOAD AREA area-name. 

Usage Rules 

1. Area-name must identify an area defined for the target database. 

2. Only one load subentry may be specified for a. given area. 

3. Wherever possible, target areas will be loaded in the sequence defined by the load subentries. 

Preserve Subentry 

The preserve subentry provides the user with the capability of directing the Restructuring Subsystem to convey the 
selected groups from the source database to the target database in such a way as to preserve their physical location. 

Format 

{
GROUP} {group-name } [ {group-name }] 

PRESERVE LOCA nON OF GROUPS group-number 'group-number •••• 

Usage Rules 

1. The groups identified by group-name or group-number must be defined in the target database as having via 
or direct location mode, and must reside in the area named in the associated load subentry. Via or direct 
groups that share their page range with a group whose location mode is indexed, may not be specified in a 
preserve subentry. 

2. If specified, the preserve subentry must immediately follow its associated load subentry, and only one pre
serve subentry may be specified for a given area. 

72 R PC L Entry Formats 



, I 

3, The Restructuring Subsyst'em is implemented so that the reference codes of all groups specified in preserve 
subentries will be the same in the target database as they were in the source database, so long as the num
ber of lines per page in the target area is the same as in the source area. 

If the number of lines pelr page has changed and the source page number and line number are either un
available or nonexistent, the groups will be placed in the target database as close to their source page 
and line as possible. 

4. The target' page range of any group specified in a preserve subentry must be a superset of the source page 
range. 

5. All groups s.pecified in the preserve subentry for an area will be loaded in a special load pass before any 
other data groups are looded. 

"pass Sequence Subentry 

Pass sequence subentries allow the· user to define the exact loading sequence of all or any part of the data groups 
within an area. 

PASS SEQUENCE IS {
group.-name } [ {group-name }] 
group···number 'group-number . .. • 

Usage Rules 

1. The groups identified b:v group-name or group-number must be defined in the target database as being 
within the area named in the associated load subentry, and must not have been specified in a preserve sub
entry or in any preceding pass sequence subentry. 

2. Each pass sequence subentry defines a separate load pass, and all groups specified in one pass sequence 
subentry wi II be loaded iin the same load pass. Within the defined pass, group occurrences wi II be loaded 
in the order specified in the pass sequence subentry. 

3. The normell loading precedence is: direct groups without storage sets, followed by calc and indexed groups, 
followed by via groups and direct groups with storage sets. These precedence groupings are given weight 
factors of 1, 2, and 3, respectively. Note that direct groups with storage sets are conveyed as via groups. 
Further, Elach pass sequence subentry is assigned a weight factor equal to tha·t of the lowest-weighted group 
specified in the subentry'" For example, a pass sequence subentry containing a direct group and a calc 
group would be assigned a weight factor of 1, whi Ie (me containing a calc group and a via group would 
have a weight factor of 2. Pass sequence subentries must be sequenced in ascending order by weight factor. 

4. No via or direct group may be specified for loading prior to, or in the same pass as, the owner group of its 
storage set if the storage' set owner is in the same area as the via or direct group. Note that this restriction 
does not clpply to the spflcia I load pass performed as the result of a preserve subentry. 

Override Entry 

The override entry allows the usef' to override the default justification of an item being conveyed from the source to 
the target database if the size of t'he item is being increased. The normal justification is left justified for alpahbetic 
or alphanumeric itc~ms and right justified for numeric items. 

90 30 12C-2(4/76) RPCL Entry Formats 73 



73-1 

OVERRIDE DEFAULT JUSTIFICATION OF 

data -i tem-na rr.e-l n~}grv .... ~-name-1J [data-item-name-2[{~}group-name -2]]. •. • 

Usage Rules 

1. If data-item-name-n is not unique within the source schema then the optional group-name qualifier must 
be used. 

2. All items defined in the override entry must be one in which the number of characters and or digits has been 
increased from the source to the target schema. 

3. All items defined in the override entry must be one whose internal data format is either EBCDIC or pocked 
decimal and if it is a numeric value it must consist solely of integral digits in both the source and target 
schema. 

4. A change in internal data format between the source and target database is not allowed for any item 
specifiea in the override entry. 

5. An item may not be specified in both an override entry and a refcode entry. 

Refcode Entry 

The refcode entry provides for identification of those items in the source database which contain reference code 
values. The source database value of aU refcode item occurrences will be replaced in the target database by its 
target database reference code equivalent. 

REFCODE data-item-name-3[{~} group-name-3] [SOURCE AREA IS area-name]' 

Usage Rules 

1. If data-item-name-3 is not unique within the source schema then the optional group-name qualifier must 
be used. 

2. If a reference code is defined as a three byte value in the source database,' then the item values will be 
remapped using the area number in which the data group containing the item resides unless the optional 
source area clause is used. The optional source area clouse may be used to specify that the reference code 
values are for on area other than the one in which the containing data group resides. 

3. The internal data type for items specified in the entry must be EBCDIC or binary. An occurs clouse for 
the item is permitted. 

4. If on item defined in a refcode entry is increased from three bytes to four bytes then the area number will 
be added as the higher order byte of each reference code value. 

5. An item may not be specified in both on override and refcode entry. 

Bypass Entry 

The bypass entry allows the user to omit the selection and ordering of nonstorage setsduring the restructuring process. 
For on explana;!on of the set ordering process see the following subsection 'Selecting Set Occurrences'. The set 
ordering process may be very time consuming particularly when there are a large number of member occurrences for 

RPCL Entry Formats 9030 12C-2(4/76) 



a set occurrence and the mf!mber occurrences physically I ie in disjoint database pages. The benefits of ordering 
nonstorage sets are the removal of logically deleted member occurrences and the val idation of the accuracy of the 
pointers within a set occurrence. In addition changes may be made to a set description if the set occurrences are 
ordered. 

. {('ET } 
BYPASS ORDERJNG OF ~:ETS set-name-l L set-name-2J .•. 

Usage Rules 

1. Sets defined in the bypass entry may not have an optional prior or owner pointer defined in the target 
schema unless the optional pointer was defined in the source schema. 

2. Sets defined in the bypass entry must have all members defined for the set in the target schema that were 
defined as membelrS in the source schema. 

3. Sets defined in the bypass entry must not have the set order changed such that a prior pointer exists in an 
owner group OCCUHence of the target database where none existed in the source database (e. g., FJRST 
to LAS n. 

4. If 01 set defined in the bypass entry includes a member whose location mode is IN DE XED in the target data
base then a warning will be issued by DMSANLZ. If such a set has any logically deleted member occur
rences in the source database then the unload step of the DMSREST process will terminate with an error 
message and the mstructuring process will not be carried out. 

5. Sets defined in thc~ bypass entry must not be defined as the VIA or STORAGE set for a group in the target 
database. 

End Entry 

The last entry in the RPCL must be the end entry. 

Format 

END. 

9030 12C-2(4/76) RPCL Entry Formats 73-2 



The user should be aware that there is no capabi I ity in the Restructuring Subsystem for introduction of new data into 
the target database. Thu5 1 if a new area is defined, then that area will not be accessed by DMSREST unless exist
ing data groups have been :specified as being resident in the new area. If a new data group has been defined, 
there will be no occurrences of that group in the target database. If data items are added to an existing group then 
the item occurrences will be set to appropriate null value, i.e., zero for numeric and space for alphanumeric. If 
an existing data item has all"l occurs clause added or increased then the n values from a source database item will be 
placed in the first n values of the target database item and the new value occurrences set to a null value. If an 
existing data group is defined as a member of a new set then the group occurrences will be designated as unlinked 
in that set. If an existing data group is defined as the owner of a new set, then all group occurrences will be des
ignated a5 the owner of an empty set. If the order of an existing set is changed (e. g., NEXT to LAST) the order 
of the member occurrences in the target database is not changed by DMSREST. 

Data Loading Sequence 

The single most important f(:lIctor in database restructuring is the data loading sequence. The order in which group 
occurrences are loaded into the target database can significantly affect performance, especially with respect 
to page overflows. An example of this would be the case where the user has two invert groups sharing a common 
page range. The first of these (group A) is used primari Iy as an alternate retrieval path to the parent group (e. g. , 
the parent is retrieved by the sequence: FINDX, A ; FINDD). The second invert group (group B) is used as the 
object of a FINDSEQ ca I L If all occurrences of group B are loaded first, the probabi /ity that an occurrence of 
group A wi II overflow its a:isigned base page is significantly increased. This can severely slow down the FINDX, 
since there is a potentia I for multiple I/O operations to retrieve a single occurrence of group A that has overflowed 
its base pag€!. Conversely,' if occurrences of group A are loaded first, the overflow probability is greatly reduced. 
Since occurrences of group B are seldom, if ever, retrieved directly, it is of little consequence whether they over
flow, at least from the standpoint of retrieval. 

Default Data Loading Sequence 

The creation of the data 10(:lIding sequence can be thought of as a two-step process. In the first step, the sequence 
is established within each clrea; in the second, the order for processing the areas is determined. 

In terms of the data 10adin~1 sequence, there are three categories of groups. Each group is categorized according 
to its location mode, and each category is assigned a weight factor, as follows: 

Weight Factor ~;ategory 

Direct groups for which no storage set is specified'. 

2 Ca Ic groups and indexed groups. 

3 Via groups and direct groups for which a storage set is speCified. 

In the default case (i. e., where no RPCL preserve or pass sequence subentries are specified) groups are organized 
into load passes by category. Each load pass is assigned a weight factor equal to that of the category being loaded, 
and load passes are scheduled for execution in ascending order by weight factor. There wi II be one load pass each 
for categories 1 and 2, and one for each level of category 3 groups. It is important to note that level determination 
is based on storage sets onl)', and that no group with a storage set will be loaded by default prior to, or in the same 
pass as, the owner group of the storage set. Note also that groups whose location mode is via are stored relative to 
their via set, unless otherwise specified in the DOL. Example 3 shows a sample default loading sequence. 

In cases where consecutive default load posses contain groups of different location modes, some optimization may 
occur when there is' no pogEl range overlap. Example 4 shows how such optimization may occur; Example 5 illustrates 
a case of partial optimization. 

9030 12C-2(4/76) Data Loading Sequence 74-1 



74 

Component Association and Attribute Change Analysis 

In the schema DDl, every database component (i. e., area, group, item, and set) is assigned a name that is either 
unique in itself or is capable of being uniquely referenced {e. g., by qualification}. DMSANlZ uses this unique 
name to associate corresponding components in the source and target schemas. If a component with a specific name 
exists in the SOurce sl.npTr...:J but not in the target schema then that component is considered as deleted from the source 
database. If a component with a specifl: 'lame exists in the target schema but not in the source schema then that 
component is considered as added to the target database. 

There are very few restrictions placed on the changes made to the logical structure of the source database. Bear 
in mind, however, that changes made to the structure may require changes to existing programs and subschemas 
generated to access that structure. The structure changes which are not allowed are as follows: 

• The number assigned to an area may not be changed between the source and target schemas. 

• The number assigned to a data group or invert item may not be changed between the source and target 
schemas. 

• The location mode of a data group may not be changed to INDEXED in the target schema unless it was 
defi;-. -4 as CALC DUPLICATES NOT AllOWED in the source schema. 

• A group defined with location mode of INDEXED may not have it's indexed control items changed, re
placed, or deleted so that duplicate keys may exist in the target database where they did not in the source 
database. 

• The target database page range specified for a group with DIRECT location mode or one specified in an 
RPCl preserve entry must be a superset of the source database page range. 

• A member of a set defined with MANUAL or OPTIONAL AUTOMATIC inclusion in the source schema may 
not be changed to AUTOMATIC inel usion in the target schema. 

• If a data group which exists in the source schema is defined as a member of a new set in the target schema 
then its inclusion in that set must be MANUAL a,' OPTIONAL AUTOMATIC. 

• The order of a set may not be changed to SORTED between the source and target SCHEMAS. 

• A set which exists in the source and target schemas with order SORTED may not have the sort control items 
for the members of the set changed so as to potentially alter the order of the member occurrences in a set 
occurrence. 

• The internal data type for a data item may not be changed as follows: 

Non-integer numeric to alphanumeric. 

Alphabetic to signed numeric, numeric, binary, floating point, or packed decimal. 

Alphanumeric to signed numeric, binary, floating point, or packed decimal. 

Signed numeric to alphabetic or alphanumeric. 

Numeric to alphabetic. 

Binary to .alphabetic or alphanumeric. 

Floating point to :llphabetic or alphanumeric. 

Packed decimal to alphabetic or alphanumeric. 

All differences in the description of the source and target database are reported by DMSANlZ. Any such differ
ences that al~ within the scope of the capabilities of the Restructuring Subsystem are reported as warnings; all other 
differences are reported as errors. 

Component Association and Attribute Change Analysis 90 30 12C-2(4/76) 



Example 3. Default Loading Sequence 

Consider the following structure for a single area. AI: sets shown are storage sets. Note that group B is 
in category 3 (even though its location mode is direct) since it has a storage set. 

Group A 
Cal c-ccltegory 2 

Set AB 

Group B 
Direct-category 3 

Set BC , 

Group C 
Via-caregory 3 

Group D 
Direct-category 1 

Set DE 

Group E 
Vi a-category 3 

Set EF 

Group F 
Vi a-category 3 

Set FG 

G~oup G 
Vi a-category 3 

Assuming that aU groups have overlapping page ranges, the default load sequence would be: 

Pass .Groups Loaded -- .. 

1 D 

2 A 

3 B, E 

4 C, F 

5 G 

Example 4. Loading Sequence with Optimization 

Consider the structure of Example 3, and assume that groups D and A have disjoint page ranges. 
Optimization would occur as f,o I lows: 

Pass ~roups Loaded 

D, A 

2 B, E 

3 C, F 

4 G 

Data Loading 'Sequence 75 



Example 5. Loading Sequence with Partial Optimization 

When an entire load pass cannot be optimized, partial optimization may sti" occur. Consider the following 
single-area structure: 

Group A 
Direct-category 1 

The unoptimized loading sequence would be: 

Pass Groups Loaded 

A 

2 B, D 

3 C, E 

4 F 

Group B Group D 
Cal c-category 2 Indexed-category 2 

II , 

Group C Group E 
Vi a-category 3 Via-category 3 

Group F 
Via-category 3 

However, since groups A and D have disjoint page ranges, by definition, DMSANLZ would include group 0 
in the first pass with group A, as follows: 

Pass Groups Loaded 

A, D 

2 B 

3 C, E 

4 F 

In this case, even though the optimization occurred, there was no saving with regard to the number of load 
passes. If, however, groups Band E also had disjoint page ranges, one pass could have been eliminated: 

Pass Groups Loaded 

A, D 

2 B, E 
3 C, F 

Here, two partial optimizations occurred, resulting in a saving of one load pass. 

76 Data Loading Sequence 



DMSREST loads group occurrenc.:lS into the target database by first ~_~igning a base p"'ge to each group occurrence 
in the load pass. The base page assigned is dependent upon the group's location mode. The assignment is accom
plished as follows: 

Location Mode 

Direct without 
storage set 

Calc 

Indexed 

Via and Direct 
with storage set 

The :source database page is assigned as the base page in the target database. The 
group is placed at the same line in the target database that it occupied in the source 
database if that line is available. 

The t::alc control items are hashed (using the D BM hashing algorithm) to determine the 
base page. 

The !~roup occurrences are sorted in ascending sequence on the index control items. A 
base page is then determined b}1 +h", I ::>ading process depending upon the space avai 1-
able in the indexed group's page range and any fill percent specifit.d in the RPCL or 
targElt schema DDL. 

If a preserve subentry was specified, the source Jot-abase page containing the group 
occurrence is assi gned as the target base page. If there was no preserve subentry for 
the group, then the base page for a group vccurrence is the page in the ~arget database 
that contains the owner group of the storage set occurrence of which the group occur
renCH is a member. 

After a base page is assigned, group occurrences are loadea :n a pass ordered on base page and pass sequence nu.nber for 
the group. If the base page does not contain space for a group occurrence, the loading process wi II search forward in the 
area for available 5pace. This search is constrained byany page range specified for the group in the target schema. 

When more than one group is loaded in a single pa~s, the order in which the groups are stored into pages may be a 
factor affecting the efficiency of the tarf'E"t da;· ... oaso. This situation is somewhat simi lor to that described earl ier, 
wherein occurrences of the first ~Jroup loaded into a page are less I ikely to overflow that page than are occurrences 
of subsequent groups. There is 01"1 inherent difference, however, in the net result of loading two groups in separate 
passes versus loading them in the same sequenc'" but in a single pass. Example 6 illustrates this difference. In 
default load passes, groups are ordered in their targt.: c:r.hema DDL sequence. Thus, if occurrences of groups A 
and B are being loaded into the same page in the same load pass, all occurrences of group A wi /I be loaded first, 
followed by all occ:urrences of group B, if group A precedes group B in the target schema DDL. 

In the default case, the loading :sequence for areas is the order in which they are specified in the target schema 
DDL. Once an area is scheduled for loading, all groups within that area wi 1/ be loaded before switching to the 
next area, provided the storage set owners for any category :3 groups reside in the current area or in another pre
viously loaded arecl. Example 7 :shows the loading sequence for a multi-area structure containing a storage set that 
crosses area boundclri es. 

User Influenced Dab Loading Sequence 

The user can influence the data loading sequence by means of the RPCL load entry. It is strongly recommended, 
however, that the user run DMSANLZ first, without any RPCl'oad entries, and examine the genera.~d default load
ing sequence. If the default sequence does not meet the user's requirements, he can include whatever load entries 
are needed. 

The easiest way for the user to influence the loading sequence is with the preserve subentry .. AII groups specified 
in a preserve subentry are designclted for loading in the first load pass fO.r the area with which the preserve subentry 
is associated. The reference codc~s of a II groups specified in a preserve subentry are guaranteed to be the same in 
the target database as in the source database, provided the number of lines per page in the target area has not 
changed from its source value, and that all source database pages also exist in the target database. If the number 
of lines per page has changed, groups wi II be stored at the same page number and line number whenever possible, 
or at the closest avai lab Ie location. Note that the on Iy way the user can have a category 3 group loaded before 
the owner grouo of its storage set, is to specify the category 3 group in a preserve subentry. Example 8 shows how 
the preserve ,,' .. cr try could be USE!d to preserve the location of all occurrences of a group. 

The user can also influence the dClta loading sequence by use of RPCL pass sequence subentries. Each pass sequence 
subentry defines one load pass. DMSANLZ wi II not try to optimize load passes by adding groups to a user-defined 
load pass (i. e., one defined by a preserve or pass sequence subentry). Any groups not specified in pass sequence 
subentries are handled by the defclult mechanism described earlier. 

Data Loading Sequence n 



Example 6. Loading Two Groups in a Single Pass 

Assume that groups A and B share a common page range and that they are being loaded in the same pass. 
The following illustrates the result when page overflow occurs on page n. 

Data Page n 

Occurrences of group A assigned to page n 

Occurrences of group B assigned to page n 

Data Page n + 1 

Overflow of group B occurrences assigned to page n 

Occurrences of group A assi gned to page n + 1 

Data Page n + 2 

Overflow of group A occurrences assigned to page n + 1 

Overflow of a II group B occurrences assigned to page n + 1 

Occurrences of group A assigned to page n + 2 

Occurrences of group B assigned to page n + 2 

Note the overflow of group A occurrences from page n + 1 into page n + 2, and contrast this result with 
the fo I low i ng case illustrating a similar situation, where group A is loaded in a separate pass before 
group B is loaded. 

Data Page n 

Occurrences of group A assigned to page n 

Occurrences of group B assigned to page n 

Data Page n + 1 

Occurrences of group A assigned to page n + 1 

Overflow of group B occurrences assigned to page n 

78 Data Loading Sequence 



Data Page n + 2 

Occurrences of group A assigned to page n + 2 

Overflow of group B occ:urrences assigned to page n 

Overflow of all group B occurrences assigned to page n + 1 

Occurrences of group B assigned to page n + 2 

In this case overflow of group A is eliminated at the expense of allowing giOUp B occurrences assigned to 
page n to overflow two pages. Note that in the first example, ~ver, though group A occurrences over
flowed page n + 1, no occurrences of either groups A or B overflowed to more than one page. 

Example 7. Loading Sequence for a Multi-Area Structure 

Consider the fc)IIowing structure; where a II sets shown are storage sets. 

AREA-l AREA-2 

1 [EUPA Group D 
Ca Ie-category 2 Calc-category 2 

i J 

+ 

:1 

, 
1 

~OUPB Group C Group E 
Vill-category 3 Via-category 3 Via-category 3 

The default loading sequence would be as follows: 

Pass Groups Loade~~ Area 

A AREA-l 

2 B AREA-l 

3 D AREA-2 

4 E AREA-2 

5 C AREA-l 

Data Loading Sequence 79 



Example 8. Loading Sequence Using Preserve Subentry 

Consider the structure of Example 3 and assume that a requirement exists to preserve the location of all 
occurrences of group 3. If only group B is specified in a preserve subentry, the loading sequence would be: 

Pass Groues Loaded 

1 B 
2 0 
3 A 
4 C, E 
5 F 
6 G 

Note that even though there is no apparent potential for conflict should groups Band 0 be loaded in the 
same pass, OMSAN LZ wi II not attempt to optimize load passes. If the user desires to have groups Band 0 
loaded in the same pass he must specify both Band 0 in the preserve subentry. 

Each user-defined load pass is assigned a weight factor in a manner similar to that of default load passes. Since 
user-defined load passes may be specified to contain groups from different categories, the weight factor of a user
defined load pass is equal to that of the lowest weighted group in that load pass. User-defined load passes are 
scheduled for execution immediately preceding default load passes of the same weight. Where multiple user-defined 
load passes have the same weight, they are executed in the order in which they are defined in· the RPCL. Examples 9 
and 10 illustrate how pass sequence subentries could be used to influence the order in which groups are loaded. 

The user can also influence the area loading sequence by the order of his RPCL load entries. In the default case, 
areas are scheduled for loading in the order in which they are specified in the target schema DOL. If load entries 
are specified, the indicated areas are scheduled to be loaded first (in the order specified) and any areas for which 
no load entry is supplied are scheduled last, in their DOL order. 

Once an area is scheduled for loading, all groups within that area are loaded before any groups are loaded into 
the next area, provided the storage set owners for any category 3 groups reside in the current area or in another pre
viously loaded area. Example 11 shows how a load subentry could be used to improve upon the default loading 
sequence. 

Example 9. Loading Sequence Using Pass Sequence Subentry, I 

Consider the following single-area structure, bearing in mind that only storage sets are shown. 
is logically divided into four mutually exclusive page ranges, depicted by the dotted lines. 

... 

Group A 
Direct 

Group B 
Calc 

t 
Group·C 
Via 

~ 
Group 0 
Via 

Group E 
Calc 

80 Data Load i ng Sequence 

Group F I 
Inversion for I 

group K I 
I I 
t----------~ 
I I 
I Group G I 
I Calc I 
I I 
'--- --

Group I 
Via 

Group J 
Via 

----; 

Group H 
Via 

Group K 
Indexed 

t 
Group L 
Via 

t 
Group M 
Via 

t 
Group N 
Via 

The area 



The defaul t loading sequence for this area would be: 

Pass ~roups Loaded 

1 A, F, G, K 
2 B, E, L 
3 C, H, I, M 
4 D, J, N 

If the user had a specific requirement to load group B before group E, he might include the following load 
entry in his RPC L: 

LOAD SAMPLE-AREA 
PASS SEQUENCE IS B. 

This would generate the loading sequence: 

Pass Grou~s Loaded 

1 A 
2 B 
3 E, F, G, K 
4 C, H, I, L 
5 D, J, M 
6 N 

Notice that since group B was specified in a separate load pass, groups F, G, and K were not included in 
the first pass with group A. This resulted in two extra load passes. One of these extra passes could be 
avoided by specifying groups F, G, and K to be loaded in the same pass with B, resulting in the load
ing sequence: 

Pass .9rou~s Loaded 

1 A 
2 8, F, G, K 
3 E, L 
4 C, H, I, M 
5 D, J, N 

Sti" another pass could be eliminated if the user allowed groups C, H, and I to be loaded in the same pass 
as group E. This alternative, however, may pose a problem with respe~t to page overflow, as shown in 
Example 6. The user should carefully analyze the activity level of group E, and the usage frequency of 
all retrieval paths by which group E is accessed before mClking this decision. Also, groups K, L, and M 
would have to be loaded in .. he first, second, and third passes, respectively. This poses no tJroblem, 
however, since the page range for the K-L-M-N substructure is exclusive. The following RPCL load entry 
would provide this optimized Ic)ading sequence: 

LOAD AREA SAMPLE-AREA. 
PASS SEQUENCE IS A, K. 
PASS SEQUENCE IS B, F, G, L. 
PASS SEQUENCE IS E, C, H, I, M. 

The generated loading sequence would be: 

Pass 9roups Loaded 

1 A, K 
2 B, F, G, L 
3 E, C, H, I, M 
4 D, J, N 

Data Loading Sequence 81 



Example 10. Loading Sequence Using Pass Sequence Subentry, II 

Consider the structure of Example 9 and assume that groups I and J are to be loaded before group H. This 
could be accomplished with the following RPCL load entry: 

LOAD SAMPLE-AREA. 
PASS SEQUENCE IS I. 
PASS SEQUENCE IS J. 

Seven load passes would be generated: 

Pass GrouEs Loaded 

1 A, F, G, K 
2 B, E 
3 I 
4 J 
5 C, H, L 
6 D, M 
7 N 

There are several ways the user could optimize this loading sequence. One pass could readily be elim
inated, with no side effects, by loading group L in the fourth pass with group J. Groups M and N would 
then be loaded in the fifth and sixth passes, respectively, eliminating the need for a seventh pass. 

Another possibi lity is to load groups Band E in the first pass. This, however, might cause the reference 
codes of occurrences of group A to change. For example, if three occurrences of groups Band E overflow 
from data page n into data page n + 1, they wi" be assigned line numbers one, two, and three. If a 
group A occurrence assigned to page n + 1, line two, is then encountered, it wi II be reassigned to the 
first avai lable line number; in this case, line number four. 

If group A were a single-occurrence header group residing in page one, loading groups Band E in the same 
pass as group A would not cause a problem, provided group A precedes groups Band E in the group se
que,:,ce subentry. The following RPCL load entry would cause five load passes to be generated: 

LOAD SAMPLE-AREA. 
PASS SEQUENCE IS A, B, E, F, G, K. 
PASS SEQUENCE IS I. 
PASS SEQUENCE IS J, L. 

The generated loading sequence would be: . 

Pass GrouE Loaded 

1 A, B, E, F, G, K 
2 I 
3 J, L 
4 C, H, M 
5 0, N 

One additional pOss can be eliminated if the user is willing to let group C be loaded in the same pass as 
group J. Again, this decision should take into account activity levels and retrieval strategies. Also 
groups L, M, and N would have to be loaded in the second, third, and fourth pas~es, respectively. 

LOAD AREA SAMPLE-AREA. 
PASS SEQUENCE IS A, B, E, F, G, K. 
PASS SEQUENCE IS I, L. 
PASS SEQUENCE IS J, C, M. 

82 Data Loading Sequence 



The following loading sequence would be generated: 

1 A, 8, IE, F, G, K 
2 I, L 
3 J, C, M 
4 D, H, N 

Example 11. Load Subentry Used to Improve Default Loading Sequence 

Consider the structure of Example 7. The user could improve upon the default loading sequence by 
including a load subentry for AREA-2. The generated loading sequence would be: 

Pass Groups _ Loaded Area 

1 D AREA-2 
2 E AREA-2 
3 A AREA-l 
4 8, C AREA-1 

Conveyance Process Generation 

DMSAN LZ determines the processes that must be performed and the sequence of execution required to accurately 
convey the user1s data from his source database to his target database. This determination is based solely upon the 
structure of the source and target databases; no consideration is made regarding the volume of data to be conveyed. 

The major functions required to restructure an EDMS database are: 

1. Unloading of all data group occurrences from the source database. 

2. Identification of tlhe storage set occurrences for all via groups and direct groups with storage sets. 

3. Loading of all dato group occurrences into the target database. 

4. Relinking of all set occurrences in the target database. 

5. Reporting of any errors found. 

In performin~~ these functiclns, the Restructuring Subsystem makes use of 11 separate processes (see Table 8). 
Typically, each of these pmcesses is executed a number of times during the course of restructuring a database. The 
unload process, for example, is executed once for each source database area. Each process execution is termed 
a IIstepll. When he is running DMSREST, the user controls step execution to the extent that he may specify the 
number of restructuring steps to be executed in a single CP-V job step. The user may also stop DMSREST at the end 
of any step (see Chapter 7). 

Internal File Hlndling 

The data conveyance process potentially involves the creation of a large number of intermediate fi les. To faci Ii ta te 
the identification and handling of these fi les, DMSAN LZ names each scheduled intermediate fi Ie. These names 
are composed of an Internal Fi Ie Descriptor (IFID) followed by the number of the DMSREST step which wi II create 
the file. When a file is cre(lted, a time suffix is optionally appended to the intermediate name. All intermediate 
files created and used by DMSREST are thus cataloged in the RPCC and cataloged by the CP-V file system using a 
name consisting of IIIFID - s,tep number [- time]". 

90 30 12C-2(4/76) Conveyance Process Generation B3 



Table 8. Restructuring Proce~scs 

Process Mnemonic Description 

Unload UNLD Unload group occurrences fromone source 
area. 

----- -----

Polyphase set recovery PPSR Recover all sets whose owner resides in a 
given source area. 

Set extraction XSET Extract and validate occurrences of sets 
recovered in one set recovery step. 

Assign source base ASBP Identify the owner group occurrences for all 
page via groups residing in one source area. 

Assign target base ATBP Assign a target database page number to all 
page via groups for one load pass. 

Load LOAD Make one load pass across a target database 
area. 

Link LINK Relink all set occurrences in one target 
database area. 

Update UDAT Update an intermediate fi Ie with data from 
another intermediate fi Ie. 

Sort all SRTA· Sort an entire intermediate fi Ie. 

Sort select SRTS Sort selected records from an intermediate 
file. 

Wrap up WRAP Li st a II detected conveyan ce errors and gen-
erate the reference code correspondence fi Ie. 

An IFID indi cates (to some extent) the format of a fi Ie and the nature of the data contained in the fi Ie. Many 
intermediate fi les may have the same IFID (but different step numbers), and some potential IFIOs may ne·ver be 
needed for a given database. Table 9 lists the IFJDs that may be scheduled .by the Restructuring Subsystem. 

When a given process is scheduled for execution, only those files that could be generated by that process are 
scheduled for creation. The unload process, for example, has the capabi lity of creating a CIDG file. The ClOG 
file, however, is scheduled for creation only if the area to be unloaded is defined as containing an indexed data 
group. In the case where such a group is defined, but no occurrences of that group exist, the CIDG fi Ie is not 
created even though it is scheduled for potential creation. This convention of not physically creating null files is 
followed throughout the Restructuring Subsystem. 

When DMSREST is preparing to execute a process, it first determines which input fi les that process may require. If 
all input files scheduled for a given process were not created, that process is not executed. Thus, if the source 
database schema defines components for which no occurrences exist, DMSAN LZ may schedule fi les for creation that 
in fact are not created, and may schedule processes that wi" not be executed. Appendix I illustrates the flow 
of scheduled fi les through scheduled processes. 

Unlc::~ing the Source D.tab~S8 

The first major operation required to restructure an EDMS database is the unloading of all data group occurrences 
from the source database. DMSAN LZ schedu I es one un load step for each source database area. 

AftAr all of the unload steps, DMSAN LZ schedules one sort for each potential CIDG fi Ie. These sorts order the 
indexed J(]ta groups by their index key values in preparation for loading them into the target database. 

84 Conveyance Process Generation 



Table 9. Internal File Descriptors (IFIDs) 

IFID Mnemonic Contents 

Conveyed calc and direct data CCDG Calc and direct group images. 
groups 

Conveyed indexed data gr oups ClOG Indexed group images. 
------ _. 

Conveyed via data groups CVDG Via group images. 
---------

Conveyed target data grol JPS CTOG Group images for one load pass. 
--

Conveyed reference code CRCO Set pointer occurrences. 
occurrences 

Conveyed set key data CSKO Set pointer occurrences. 

Conveyed sets topologica~ Iy CSTO Set pointer occurrences. 
ordered 

Conveyed group occurrent :es CGOR Reference codes of a" conveyed data group 
reference code occurrences. 

Conveyed error group refE lrence CEGR Reference codes of group occurrences causing 
codes errors. 

Conveyed storage master I "efer- CSMR Reference codes of storage set owner 
ence codes occurrences. 

Conveyed group's referent :.e CGRC Corresponding source and target database refer-
codes ence codes for conveyed group occurrences. 

Source datclbase area SOBA User's source database. 

Target database area TDBA User's target database. 

Set recovery work files WRKl Scratch fi les for set recovery. 

WRK8 

Selecting Set Occurrences 

To ensure that occurrences of via groups and direct groups with storage sets are loaded into the target database 
properly, it is necessary to identify the storage set owner occurrence associated with each such via or direct group 
occurrence. This entai Is the "'recovery" of every occurrence of each storage set, since head pointers may not be 
present in some or a" of the member group occurrences. Set recovery consists of ordering a file of set pointers so 
that each set occurrence appears as an owner group occurrence physically followed by all of its member group 
occurrences. 

A significant by-product of set recovery is the ability to validate set occurrences and to detect any inconsistencies 
in the set pointers. For example, if group occurrence A contains a next pointer for some set pointing to group 
occurrence B, and group occurrence B contains a prior pointer for that some set that does not point bock to group 
occurrence A, something is obviously wrong. The set recovery procedure detects and reports any such irregularities 
regarding set pointers. Also, a Ithough set recovery is required only for storage sets, recovery is performed for 
nonstorage sets in order to vali'date these sets for logical consistency. 

Conveyance Process Generation 85 



86 

The major processes involved in selecting set occurrences are: set recovery, set extraction, sorting, and source 
bose page assignment. The number of times each of these processes is executed depends upon the source database 
structure. The basic pattern in which DMSANLZ schedules these processes is: 

1. Recover and validate the storage sets for each source area. One set recovery process and one set extrac
tion process are scheduled for each source area containing a group defined as owner of a storage set. 

2. Identify the storage set owner o<....:urrencesfor all via group occurrences and for all direct group occurrences 
that have storage sets. Two sort processes and one source base poge assignment process are scheduled for 
each source area containing via groups or direct groups with storage sets. 

3. Recover and validate the nonstorage sets for each area. One set recovery process and one set extraction 
process are scheduled for each source area containing a group defined as the owner of a nonstorage set. 

Loading the Target Database 

The main factor influencing the loading of the target database is the data loading sequence, described earlier in 
this chapter. One sort process and one load process are scheduled for each load pass. If via groups or direct groups 
with storage sets are to be loaded, however, DMSAN LZ schedu les another sort process and a target bose poge as-
si gnmen t process prior to the. usua I sort and load. 

Relinking Set Occurrences 

After all required load posses have been scheduled, DMSANLZ schedules the processes needed to mop source ref
erence code items and set pointers to their target values, and to rei ink the set occurrences in the target database. 
These processes include five sorts and two updates, followed by one rei ink process for each area. 

Error Reporting 

The lost processes scheduled by DMSANLZ will include two sorts, one update, and a reporting process. These will 
produce a listing of all errors encountered during DMSREST execution and on equivalence fi Ie of source and target 
database reference codes. 

DMSANLZ Reports 

DMSAN LZ produces three reports that provide the information necessary to interface with DMSREST. These are the 

1. Data Load Sequence Listing 

2. Scheduled Process Sequence Listing 

3. Scheduled Fi les Listing 

Appendix J contains samples of these reports. 

Data Load Sequence Listing 

This report details the sequence in which groups will be loaded into the target database. It itemizes the sequential 
load pass number, the DMSREST step number scheduled to execute the load pass, the area that wi" be loaded, 
and the names of all groups being loaded. The groups are listed in the order in which they wi II be loaded in 
each poss. 

DMSANLZ Reports 90 30 12C-2(4/76) 



Scheduled Process Sequence Listing' 

All DMSREST processes scheduled for execution are listed in their order of execution. The names of all groups or 
sets scheduled for use by' a process are listed for that process. If the scheduled process is an unload, the group 
names are listed following the IFID assigned to the fi Ie on which the groups wi" be written. This information may 
be used to determine the volume of data that wi" be output through an IFIO, and thus any resource assignments that 
may be desirable for execlJtion of DMSREST. In addition, all files used by a process are listed for that process. 

Scheduled File Listing 

All fi les scheduled for USie by DMSREST are listed in their order of creation. The default device type, a cipher 
indicator, logical record ~ength, and any volume serial numbers are listed for each file. In addition, the report 
wi II contain the DMSREST step number of the process creating the fi Ie, as well as those that wi II read the fi Ie. 

!DMSANLZ Control Command 

The batch monitor control command to execute DMSAN LZ has the form: 

IDMSAN LZ [option][, ..... J 

The corresponding on-line command is: 

IDMSANLZ 

DMSAN LZ prompts the on-·line user with a colon (:) for any options. A carriage return or line feed is interpreted 
as indicating the end of tht9l list of options. 

Options may be specified in any order; no options, however, may be repeated. Table 10 lists the options and their 
meanings. The control command and a listing of the specified and default options is output via the M: LO DCB. 
Any errors in the I DMSAN LZ command are listed via the M:DO DCB; the RPCC is not created, and DMSAN LZ 
terminates. Table 11 lists the diagnostic messages for option errors. 

Table 10. Control Command Options 

Option Meaning 

LOG Record in the RPCC that all processes executed in DMSREST shall log a start 
NOLOG message on the operator's console. 

Alternatively, record in the RPCC that logging shall not be performed. 

The DMSANLZ default is LOG. 

WORK == w Record in the RPCC that all set recoveries to be executed by DMSREST shall 
employ w work fi Ie DCBs, where 

35 w 5 8. 

The DMSANLZ default is 8. 

DMS Record in the RPCC that the database being restructured is a Basic versus Extended 
DMS database. This option is required if the database is a Basic DMS database. 

90 30 12C-2(4/76) IDMSANLZ Control Command 87 



88 

Option 

SORT = 5 

BUFFERS = g} 

BLOCK = k 

ANS 
LABEL 
FILE 

SAVE 
RELEASE 

CHECKSUM 
NOCHECKSUM 

CIPHER 
NOCIPHER 

liME 
NOllME 

Table 10 .. Control Command Options (cont. ) 

Meaning 

Record in the RPCC that all sorts to be executed by OMSREST shall use s work 
file DeBs, where 

3:Ss:s17 

The OMSANLZ default is 17. 

Record in the RPCC that either one or two buffers may be allocated by OMSRES T 
to each IFID intermediate file, and the source and target database areas. 

The OMSANLZ default is 2. 

Record in the RPCC that all IFIO intermediate files to be created by OMSREST 
shall have a nominal blocksize of k bytes, where 

8 + max record byte size :s k :s 32, 767 

The OMSANLZ default is 2048 for disk/RAO files and CP-V labeled tape, and 
is 4096 for ANS labeled tape. 

Record in the RPCC that all IFIO intermediate files to be created shall be allo
cated to ANS labeled tape, or to CP-V labeled tope, or to disk/RAO fi les. 

The OMSANLZ default is ANS labeled tape. 

Record in the RPCC that DMSREST shall save all the intermediate files that it 
creates. 

Alternatively, record in the RPCC that OMSREST shall release all intermediate 
files upon completion of the last process scheduled to use each file. 

The OMSANLZ default is SAVE. 

Note that this option does not apply to IFIO files SOBA, TOBA, and CTOG, 
which are always saved. 

Record in the RPCC that all IFIO intermediate files to be created shall be 
checksummed. 

Alternatively, record in the RPCC that checksumming shall not be performed. 

The OMSANLZ default is CHECKSUM. 

Record in the RPCC that all IFIO intermediate files to be created shall be 
enciphered. 

Alternatively, record in the RPCC that enciphering shall not be performed. 

Note that this option is meaningless if enciphering was not present in the source 
database. 

The OMSANLZ default is CIPHER. 

Record in the RPCC that all IFIO intermediate files to be created shall include 
the time as part of the file name. 

Alternatively, record in the RPCC that time shall not be used. 

The OMSANLZ default is NOllME. 

!OMSANLZ Control Command 9030 12C-2(4/76) 



Table 11. Diagnostic M('~sages for Option Errors 

Message Meaning 

UNRECOGNIZED OPTION. The scanned characters do not constitute a valid option. 

DUPLICATE OPTIO N The current option dupli cates or contradi cts a previously scanned 
option. 

UNRECOGNIZED DIGIT A character following an equal sign is not numeric. 

INVA LID OPTION VALUE The value following an equal sign is not within the a Ilowed range for 
the option. 

SYNTAX COMMA MISSING Required comma separating two options has been omitted. 

JDMSANLZ Control Command 89 



7. DATABASE RESTRUCTURING PROCESSOR 

The Database Restructuring Processor (DMSREST) restructures a source database into a target database that has been 
initialized by use of the DMSINIT utility. Restructuring is accomplished by executing those processes that have 
been scheduled and stored in the RPCC by DMSANLZ. All processes for which nonnull files exist are executed by 
DMSREST in the order in which they were scheduled by DMSANLZ. This step-by-step execution of scheduled pro
cesses is entriely automatic. 

The execution of scheduled processes consists of four phases. Phase 1 unloads the source database and prepares the 
data required to lood the target database. Phase 2 loads the target database. Phase 3 prepares data needed to 
relink all reference codes, and then relinks and validates the target database. Phase 4 reports any errors detected 
by DMSREST during the first three phases. Appendix I shows where shceduled IFID fi les are created, the flow of 
data through all four phases, and all possible processes that may be scheduled by DMSANLZ. 

DMSREST Operational Interface 

The DMSREST Processor may be executed in a batch mode or on-line from a termir:'lal. The operation of DMSREST 
relative to the number of scheduled processes to be executed is determined by control command options. The spec- . 
ification of some of these options is recorded in the RPCC. The computer operator or terminal user may also 
influence the execution of DMSREST via console interrupts and keyins. User-assigned DCBs control the allocation 
of all intermediate files to public and private storage volumes. Allocation of all intermediate files is catalogued 
in the RPCC. DMSREST includes operational features that provide for execution breakpoints and restart, along with 
execution fault protection through backup/recovery procedures. 

Each of the DMSREST operational interfaces is described below. 

IDMSREST Control Com.nd 

The batch monitor control command to execute DMSRESr has the form: 

IDMSREST [option][, ... ] 

The corresponding on-line command is: 

IDMSREST 

DMSREST prompts the on-line user with a colon (:) for any options. A carriage return or line feed is regarded as 
indicating the end of the list of options. 

Options may be specified in any order, but no option may be repeated. The options and their meanings are listed 
in Table 12. Note that some options cause information to be stored in the RPCC. Once an option has been recorded 
in the RPCC, it remains in effect unti I a subsequent execution of DMSREST respecifies the option. The IDMSREST 
command and options are listed via the M: LO DCB. Any errors in the command are listed via the M:DO DCB. 
Table 11 lists the diagnostic messages for option erron. 

If the IDMSREST command is given without options, each of the scheduled processes is executed, in the order 
specified by DMSAN LZ, until all have been executed or unti I execution is interrupted by the terminal user or com
puter operator. 

Ordinarily, execution can be resumed after interruption by a IDMSREST command without options. If DMSREST is 
interrupted during the re-execution of a step number range of processes, however, the originally specified RERUN 
range is not completed. To complete the range after an interruption, the user must specify the balance of processes 
to be re-executed. This can be accomplished via the RERUN and BREAK options in a subsequent job step. 

90 Database .~estructuring Processor 



Option 

LOG 
NOLOG 

RUN = n 

RERUN = r 

RELOAD = a 

BREAK = b 

WORK:= w 

9030 12C-2(4/76) 

Table 12. DMSREST Options 

Meaning 

Record in the RPCC that all future processes to be executed shall be logged on the 
operotor1s console. 

Alternatively, record in the RPCC that logging shall not be performed. 

The DMSANLZ default is LOG. 

Breakpoint process execution after n steps, where 

last process step executed + n ,~ highest process step number. 

The first process executed is the next scheduled process not yet executed. RUN is 
an illegal option when RERUN or BREAK options are specified. If n is zero, no 
scheduled processes are executed, but the exercise of some other options which 
may access the RPCC is permitted. 

The DMSREST default is to run all scheduled processes not yet executed., 

Re-execute processes beginning with process step r, where 

1 ~ r ~ last process step executed. 

All processes beginning with step r through the highest process step number are 
executed unless an option or operator BREAK intervenes. 

Re-execute all processes that load target database area number a, where 

1 ~ a ~ 64. 

RELOAD is an illegal option when the RERUN option is also specified. 

The user must reinitialize the target database a~ea using DMSINIT before specify
ing this option. DMSREST wi II re-execute the processes necessary to load the 
target database area and then continue normal process execution. Concurrent 
specification of the BREAK or RUN options are only effective during this con
ti nued norma I process executi on. 

Breakpoint process execution after process step b, where 

last process step executed < b ~ highest process step number. 

RERUN in conjunction with BREAK permits a range of process steps to be re
executed. If RERUN is specified, then 

r S b S highest process step number. 

Record in the RPCC that all future set recoveries to be executed shall employ 
w work fi Ie DCBs, where 

3 S. w 5. 8. 

The DMSANLZ default is 8. 

DMSREST Operational Interface ,9) 



92 

Option 

SORT = s 

BUFFERS::: g} 

BLOCK = k 

ANS 
LABEL 
FILE 

SAVE 
RELEASE 

CHECKSUM 
NOCHECKSUM 

CIPHER 
NOCIPHER 

CATALOG 

TIME 
NOTIME 

· Table 12. DMSREST Options (cant. ) 

Meaning 

Record in the RPCC that all future sorts to be executed sholl employ s work file 
DCBs, where 

3:5: s S 17. 

The DMSANLZ default is 17. 

Record in the RPCC that either one or two buffers may be allocated to each IFID 
intermediate file, and the source and target database areas. 

The DMSANLZ default is 2. 

Record is the RPCC that all future IFID intermediate files to be created shall have 
a nominal block size of k bytes, where 

8 + max record byte size :5: k:5: 32,767. 

The DMSANLZ default is 2048 for disk/RAD files and for CP-V labeled tope, and 
is 4096 for ANS labeled tape. 

Record in the RPCC that all future IFID intermediate files to be created sholl be 
allocated to ANS labeled tape, or to CP-V labeled tope, or to disk/RAD files. 
The DMSANLZ default is ANS. 

Record in the RPCC that DMSREST sholl save all intermediate files that it creates. 

Alternatively, record in the RPCC that DMSRESTshall release all intermediate 
files upon completion of the last process scheduled to use each file. The 
DMSANLZ default is SAVE. 

Note that this option does not apply to IFID files SDBA, TDSA, or CTDG which 
are always saved. 

Record in the RPCC that all future IFID intermediate files to be created shall be 
checksummed. 

Alternatively, record in the RPCC that such files sholl not be checksummed. 

The DMSANLZ default is CHECKSUM. 

Record in the RPCC that all future IFID intermediate files to be created and en
ciphered shall be enciphered. 

Alternatively, record in the RPCC that such files shall not be enciphered. 

Note that this option is meaningless if enciphering was not present in the source 
database. 

The DMSANLZ default is CIPHER. 

list through the M:ll DCB all saved IFID files. Any volume serial numbers for 
each IFID file are IisteJ. The listing is attached to the L1 logical device for 
immediate output and is produced before any scheduled process is executed. An 
example of the listing is shown in Appendix J, Figure J-l0. 

Record in the RPCC that all IFID intermediate files to be created shall include the 
time as port of the file name. 

Alternatively, record in the RPCC that time sholl not be used. 

The DMSANLZ default is NOTIME. 

DMSREST Operational Interface 9030 12C-2(4/76) 



Brelkpoint! Restart 

Breakpoint/restart features permit a database to be restructured in a series of monitor job steps by selective execution 
of scheduled processes. A breakpoint occurs in DMSREST at the completion of each scheduled process and before 
execution of the next scheduled process. DMSREST completes each scheduled process with the following activities: 

1. All IFID files created are closed and catalogued in the RPCC. 

2. The executed process is marked "completed" in the RPCC. 

3. The RPCC is closed. 

4. A checkpoint RPCC: file is created to enable DMSREST recovery. 

If a breakpoint is not activE~ at the end of the process, DMSREST wi 1/ then open the RPCC and execute the next 
scheduled process. 

Activation of a breakpoint Us control/ed by the control command options RUN or BREAK, as described earlier. 
Either option may be used to- select the number of scheduled processes DMSREST shall execute during a job step. 
The computer operator may also activate the next breakpoint by use of the operator keyins described below. An 
operator activated breakpoint has priority over any activated by a control command option. DMSREST terminates 
when an activated breakpoint occurs. 

Restart from an activated blreakpoint is accomplished by re-executing DMSREST in a batch or on-line mode. 
DMSREST examines the RPCC: to determine the last process completed prior to the activated breakpoint. It wi 1/ 
then automatically begin eXElcution with the nextscheduied process. New breakpoints may be activated when 
DMSREST is restarted. 

Blckupl Recovery 

DMSREST includes functions that permit recovery and restart of an abnormally terminated job step. These are the 
RPCC checkpoint fi Ie and thf~ RERUN and RE LOAD control command options. 

The RPCC checkpoint fi Ie is created by DMSREST after the successful execution of each process. The fi Ie is named 
DMSRESTRPCCH KPT. Creation of a new checkpoint fi Ie automatically releases the checkpoint file created by the 
previous process. 

Recovery and re-execution of a partially completed job step is performed by restarting DMSREST. When DMSREST 
is restarted it wi II examine the current contents of the RPCC. If the RPCC was not closed properly after the last 
executed process, DMSREST wi" automatically recover the RPCC using the current RPCC checkpoint fi Ie. Execution 
wi" then proceed with the process that was in execution when the job step terminated. DMSREST wi II output the 
following message: 

~REST AUTOMATICALLY RECOVERED FROM INCOMPLETE PROCESS 
L..:..:::UTION IN STEP n 

Recovery of the restructuring process may be necessary if an intermediate file created by DMSREST cannot be 
accessed. The con.trol commcmd option RERUN may be used to re-execute previously completed processes and thus 
recreate the intermediate filEls. When a process is re-executed, all scheduled output IFID files are recreated and 
catalogued in the RPCC. Cataloging of the files in the RPCC replaces those catalogued during the previous execu
tion of the process. The previous output IFID files, however, are not released by DMSREST if the TIME option was 
in effect. Re--execution of !icheduled processes continues until an activated breakpoint occurs, at which time 
DMSREST will terminate. 

OMS REST executes two types of processes that place information in the target database. These are the LOAD and 
LIN K processes. One or more LOAD processes and one LIN K process wi II be schedu led for each target database 
area. The eXlecution of each of these processes depends upon information placed in the target database by the 

90 30 12C-2(4/76) DMSREST Operational Interface 93 



previous process; it is impossible, therefore, to restart DMSREST if a LOAD or LIN K process was partially completed. 
If this type of restart is attempted, DMSREST wi II output the following message and then terminate. 

DMSREST REQUIR~S INITIALIZATION OF TARGET AREA n name 
RE-EXECU. t: DMSKEST WITH RE LOAD = n CONTROL COMMAND 

The user must first reinitialize target area n using DMSINIT. DMSREST may then be restarted with the RELOAD 
option. This wi II cause DMSREST to re-execute all LOAD steps already completed for the specified area. After 
these steps are re-executed, processing wi II then continue beginning with the process that was in execution when 
the job step terminated. 

Operator Communication 

DMSREST accepts operator interrupts and keyins to faci IHate run-time control when executing in batch mode or 
from an on-line terminal. If DMSREST accepts the control command options, it wi II then output the following mes
sage on the OC device in batch mode, or on the user's terminal. 

DMSREST - WILL ACCEPT OPERATOR INTERRUPTS 

This message is not produced if the NOLOG option is active. 

The operator may then interrupt DMSREST to establ ish communications. In botch mode, the INTt keyin is used to 
effect an interrupt. Depressing the BREAK key causes an interrupt when DMSREST is executing from an on-line 
terminal. Upon receipt of an interrupt, DMSREST responds with the following message: 

DMSREST - INTERRUPTED BY OPERA TOR, YOU MAY INPUT: 

Operator keyins are then solicited by the following multi-line message: 

IGNORE 

PAUSE 

BREAK 

GO 

- TO IGNORE YOUR INTERRUPT 

- TO PAUSE DMSREST AFTER CURRENT STEP 

- TO TERMINATE DMSREST AFTER CURRENT STEP 

- TO CANCEL YOUR PRIOR 'PAUSE' OR 'BREAK' 

CATALOG - TO LIST ALL FILES AFTER CURRENT STEP 

QUIT - TO IMMEDIATELY TERMINATE DMSREST 

DMSREST then requests a keyin by prompting with the message: 

DMSREST - YOUR INPUT: 

DMSREST responds to invalid keyins with the following message: 

DMSREST - YOUR RESPONSE IS INVALID, YOU MAY INPUT: 

The operator may Then type a corrected keyin. 

Keyins may be preceded or followed by blank characters; only the first 15 characte~s, however, are accepted by 
DMSREST. Operator keyins that may be entered, and the resulting actions and messages by DMSREST, are given 
in Table 13. 

t See the CP-V Operations Reference Manual (90 16 75). 

94 DMSREST Operational Interface 



Table 13. DMSREST Keyins and ResDonses 

Operator 
Keyin DMSREST Response 

IGNORE DMSREST returns to the interrupted process without taking any action other than issuing 
the message: 

~REST - YOU'RE IGNORED I 
PAUSE DMSREST activates a pseudo breakpoint after the currently executing process. It then 

issues the message: 

~REST - WILL PAUSE AFTER STEP n I 
When the pseudo breakpoint is reached, DMSREST wi II issue the following message at 
five minute interva Is: 

~REST - PAUSE FOR Or ERA TOR INTERRUPT AFTER STEP n I 
The operator may then interrupt DMSREST and enter another keyin. The PAUSE keyin 
cancels any previous BREAK kpyins. 

BREAK DMSREST activates a break;-"'int after the currently executing process and then issues 
the message: 

~REST - BREAKPOINT SET AFTER STEP n I 
When the brec:tkpoint is reached,' DMSREST issues the following message and then term-
inates executiion. 

~REST - OPERATOR BREAKPOINT TERMINATION BEFORE STEP n J 
The BREAK kE!yin cancels any previous PAUSE keyin. 

GO DMSREST deactivates any breakpoint activated by a previous PAUSE or BREAK keyin 
and then iSSUElS the following message: 

~REST - YOUR PAUSE OR BREAKPOINT CANCELLED J 
If no prior PAUSE or BREAK keyin was entered, DMSREST issues the message: 

[:"REST - NO PRIOR PAUSE OR BREAKPOINT SET - YOU 
MAY INPUT I 

The operator ~;hould then enter some other keyin. Breakpoints activated by the control 
command options RUN or BREAK are not cancelled by a GO keyin. 

DMSREST Operational Interface 95 



Table 13. DMSREST Keyins and Responses (cont.) 

Operator 
Keyin DMSREST Response 

CATALOG DMSREST prepares to produce a file catalog listing and then issues the following 
message: 

I DMSREST - FILES WILL BE LISTED AFTER STEP n I 
When step n is completed, DMSREST wi II produce a fi Ie catalog listing and then con-
tinue execution with the next scheduled process. The catalog listing is attached to the 
L1 logical device for immediate output. A sample of the catalog listing is provided in 
Appendix J. 

QUIT DMSREST issues the following message: 

I DMSREST - TERMINATED BY OPERATOR I 
The DMSREST processor is then immediately aborted. 

DCB Assignments 

No interface is required between the DMSREST user and the CP-V monitor, with respect to the assignment of the 
RPCC, IFID fi les, sort work fi les, or listing output DCBs. Table 14 lists all DMSREST output DCBs and the contents 
of the associated files. IFID input DCBs are dynamically assigned by DMSANLZ. 

If the RPCC is assigned to a private disk pack when it is created by DMSANLZ, an IASSIGN command (or ISET 
command, on-line) is required for the F:RPCC DCB. The private pack serial number is entered with the SN pa
rameter of the IASSIGN command. The fi Ie name must be DMSRESTRPCC. An example is shown below. 

IASSIGN F:RPCC, (FILE, DMSRESTRPCC), (SN, DISK) 

DMSREST defaults all output IFID files to ANS labeled tape. This default assignment may be changed by use of 
the LABEL or FILE option in the IDMSREST control command (see Table 12). The user may temporarily override the 
default assignment during a given job step by use of an IASSIGN command for an output IFID DCB. The output 
IFID DCBs are F:WF01 through F:WF15. Only the IASSIGN command keywords FILE, LABEL, and ANSLBL are 
permitted for these DCBs. DMSREST will issue an error diagnostic and abort if any IASSIGN command for an IFID 
DCB specifies the DEVICE keyword. Note that stondard DMSREST fi Ie names replace the fi Ie names specified in 
IASSIGN commands for IFID DCBs. Only one IFID file is written to any tape volume, but many IFID files may be 
output to a private disk volume set. An example of output IFID file assignment for a job step is shown below. In 
this example, all fi les output through F:WF01 during the next job step wi II be public disk/RAD fi les, those output 
through F:WF02 wi II be on CP-V labeled tape, and those output through F:WF03 wi" be on ANS labeled tape. 

IASSIGN F:WF01, (FILE, WF01) 

IASSIGN F:WF02, (LABEL, WF02.) 

IASSIGN F:WF03, (ANSLBL, WF03) 

The Xerox Sort program, used by DMSREST, defaults all sort work files to public files. See the Xerox Sort and 
Merge (for CP-V/BPM) Reference Manual (90 11 99) for information on assigning sort work file DCBs. 

96 DMSREST Operational Interface 



DCB Mod.~ 

F:RPCC inouf'. 

F:WF01 out 

F:WF02 out 

F:WF03 out 

F:WF04 out 

F:WF05 out 

F:WF06 out 

F:WF07 out 

F:WF08 outin 

F:WF09 outin 

F:WF10 outin 

F:WF11 outin 

F:WF12 outin 

F:WF13 outin 

F:WF14 outin 

F:WF15 outin 

F:SCRF1 outin 

F:SCRF17 outin 

M:LO out 

M:DO out 

M:LL out 

Table 14. DMSREST DCBs and Fi Ie Contents 

Contents 

RPCC 

CIDG, CSMR 

CCDG 

CVDG 

CSKD, CSTO, CGOR 

CRCO 

CEGR, CGRC 

CTDG 

WRK1 

WRK2 

WRK3 

WRK4 

·.M~K~ 

WRK6 

WRK7 

WRK8 

Xerox Sort !ntermediate fi Ie 

Xerox Sort intermediate fi Ie 

Li sti ng output 

Diagnostic output 

Listing log (for control command and operator keyins requesting 
fj Ie catalog listings) 

Volume serial numbers used by IFXD fi les output on ANS labeled tape, CP-V labeled tape, and private disk packs 
are copied from the IFID output DeB into the RPCC when each IFID fi Ie is closed. Volume serial numbers are 
entered into DCBs by an IASSIGN command or by MOUNT or ANSMOUNT keyins in response to a monitor mes
sage (see the CP-V Operations Re!ference Manual, 90 16 75). DCBs F:WF01 through F:WF15 each permit up to 
10 volume serial numbers. 

The SN parameter c)f an fASSIGN command for DCBs F:WF01 through F:WF15 may preallocate up to 10 volume 
seria I numbers. Any IFID fi Ie output through an assigned DCB may use some number of these preallocated volumes. 
Tape volumes may contain only a single IFID file, but private disk packs may contain many IFID files. 

DMSREST Operational Interface 97 



Tape volume serial numbers for each assigned DCB are saved by DMSREST. When an output IFID uses a DCB, 
DMSREST reallocates to that DCB any saved, unused tape volume serial numbers that were preallocated to the DCB 
by an !ASSIGN command. After the IFID fi Ie is closed, all unused tape volume serial numbers are again saved by 
DMSREST and become avai lable for allocation to some other IFID fi Ie that may be output through that DCB. An 
example is shown below. 

!ASSIGN F:WF04, (ANSLBL, WF04), (SN, 111111,222222,333333,444444) 

In this example, if a CSKD output IFID file created in step 1 uses tape·l11111, then volume serial numbers 222222, 
333333, and 444444 are avai lable for the next IFID fi Ie output through F:WF04. If another CSKD fi Ie output in 
step 2 uses tapes 222222 and 333333, then only the preallocated volume serial number 444444 is available for the 
next IFID fi Ie output through F:WF04. If a CSKD fi Ie output in step 3 needs a second tape, then 444444 is the first 
volume and whatever tape is mounted by the operator is the second volume. Any IFID files output through F:WF04 
in subsequent steps wiii also have serial numbers of tapes mounted by the operator. 

Private disk file volume serial numbers may accommodate multiple IFIO files. The monitor allocates each file to 
those volumes of a private volume set that have unused space. DMSREST only records in the RPCC the first volume 
serial number of a private volume set containing an output IFID file. A private volume set may also be extended 
by means of an IASSIGN command, as shown below. 

lASSIGN F:WF03, (FILE, WF03), (SN, 1111,2222,3333) 

In this example, if a CVDG IFID fi Ie output in step 1 is wholly contained by disk volume 1111, then this volume 
serial number is recorded in the RPCC. If another CVDG file output by step 2 is spread across disk volumes 2222 
and 3333, then the first volume serial number of the private volume set is recorded in the RPCC, namely 1111. 
Note that CP-V uses the first volume serial number of a private volume set to locate a fi Ie on any volume or volumes 
of that set. 

Another example of private volume set allocation is shown below. 

fASSIGN F:WF03, (FILE, WF03), (SN, 1111,4444,5555) 

In this example, if the private volume set was 1111, 2222, 3333, then the JASSIGN command extends the set to 
include volumes 4444 and 5555. An output IFID file may be allocated by the monitor anywhere within this five
pack set of volumes. DMSREST only records the first volume (1111 in this example) in the RPCC for any IFIO file 
output to the extended private volume set. . 

DCBs M: LO and M:DO use vertical format control and may be assigned to logical devices, fi les, or tape. The M: LO 
DCB lists all processes executed and fi les created; the M:DO DCB lists all error diagnostics. An example of M:LO 
assignment is shown below. 

IASSIGN M:LO, (FILE, SAVELO) 

In this example, all listings output through M:LO in the next job step will go to a public file named SAVELO. 

Fi Ie catalog listings are output through M: LL in response to control command options and operator keyins. OMS REST 
connects M:LL to the L1 logical device, to enable immediate release of the symbiont file to an output device. 
Vertical format control is present in the output. 

98 DMSREST Operational Interface 



8. APL/EDMS INTERFACE 

A special interface allows APL pr~grams access to EDMS databases. The interface consists of an intrinsic fL'nction, 
within APL, and a" set of AF'L functions that perform argument formatting operations and execute the intrinsic 
function. These functions normally reside in workspace DMSFNS in the DMSLIB account. See Figure 13 far a 
graphic representation of the APL/ED MS interface. 

Since all user-function communication with the EDMS intrinsic function will be accomplished via the functions in 
the DMSFNS workspace, the material in this chapter describes these functions only, and not the intrinsic function 
itself. It is assumed that the reader is familiar with both APL and the services provided by the EDMS Database 
Manager (DBM), as described in Chapter 4. 

The functions described in this chapter provide the APL programmer with most of the EDMS services available to the 
COBOL, FORTRAN or assembly language programmer. Not avai lable to the APL programmer are 

FINDSEQ 

DMSRTRN 

DMSSTATS 

ENDSTATS 

RPTSTATS 

~s:'~~~ Functio: _~ 
APL/EDMS Interface 

Funct lions from 
DMS FNS Workspace 

APL Processor 

EDMS Intrinsic 
Func:tion 

Dynamically Associated-

Figure 13. APL/EDMS Interface 

9030 12C-1(6/75) 

APL Dynamic Data 

Dynamic Storage 
for Subschema, 

EDMS Working Storage, 
Data Buffers, etc. 

APL/EDMS Interface 98-1 



Additiona lIy, functions that provide servi ces unique to the APL environment include: 

Dtv\SSUB TODtv\S 

DMSPKSN FROMDMS 

Dtv\S PASS CURRGRP 

REFCODE CURRSET 

FRSTREF DMSEND 

LAST REF DMSERCOD 

BREFCODE ECDREF 

BGRPNO DCDREF 

BERRCODE 

APL/EDMS Overview 

The first time an ED MS function is called, the EDMS intrinsic function within APL associates the EDMS Public library 
and allocates dynamic memory to contain the user's subschema, working storage, name table and data buffers. This 
dynamic storage is released, and the EDMS Public library is disassociated, when the user executes a DMSEND ca II 
or successfully exe~utes an APL Load Clear, Off, Save or Continue command. 

Unless otherwise stoted, the functions described in this chapter will return a null integer vector instead of a mean
ingful, explicit result. Typically, however, there would still be an implicit result of changes to the database and 
to the user's logical "position" within the database stru.cture, which would be reflected in the contents of the EDMS 
working storage maintained by the Database IVtanager (DBM). These values are available to the user -functions 
through the use of special working storage communication functions. 

Errors 

Two levels of errors are possible when using the APL/EDMS interface: EDMS-Ievel and APL-Ievel errors. EDMS
level errors are the standard EDMS errors, as defined in Appendix F. These are handled as they would be for 
FORTRAN, COBOL and assembly language programs; i. e., the ERR-CODE cell in the Communication Control Block 
(CCB) is set to indicate the type of error encountered. APL-Ievel errors are errors detected by the EDMS intrinsic 
function, and are handled in a manner similar to APL domain, rank and length errors. 

98-2 

Chal8cter Translations 

Because of the variety of terminal types that can be used for APL all input characters are translated into an internal 
APL code. The only character translation of importance to the APL/EDMS interface is that of the hyphen as used in 
EDMS data names. As an aid to the APL/EDMS user,. all functions in the DMSFNS workspace will automatically 
translate hyphens in data-name text vectors to the appropriate code for use by the EDMS intrinsic. No translation, 
however, is done on character data values. It is the user's responsibility to insure that character data going into 
EDMS working storage (i .e., via the TODMS function) have the correct hexadecimal configuration. Appendix B of 
the APL reference manual describes the internal APL character set. 

APL/EDMS Overview 90 30 12C-l(6;75) 



Item Identifiers 

The item identifier is a special form of argument accepted by the TODMS, FROMDMS and FINDX functions. It 
consists of the item name, optionally qualified by a group nome or set nome. Examples: 

'OTY-ON-HAND' No qualification 

'DATE IN STATUS-GRP' Group qualification 

'PARTNO OF WHERE-USED-SET' Set qualification 

The prepositions 'of' and 'in' are i'''Iterchangeable in all qualification formats. 

Group-name qualific:ation is required only when on item namt. :: ... J! unique. Set-name qualification isa mechanism 
that allows the user to reference aHas working storage areas. In this case, the named set must be one on which the 
subject item has on alias defined. Note that the named item ,·esides in the group defined as owner of the named set. 
Item identifiers are always used in the form of text vectors. 

Reference Codes 

Two reference code formats are rec:ognized by the functions in the DMSFNS workspace: encoded and decoded. A 
decoded reference code is a three--element integer vector consisting of area number, page number, and line number. 
An encoded reference code is an integer scalar that is the hexadecimal equivalent of a standard 32-bit reference 
code, with the area number in bits 0 through 7 but limited to 6410' and page and line numbers sharing the remaining 
24 bits. Thus, the integer value of an encoded reference code is in the range 224 through 64 x 224. 

The only function tht:Jt recognizes reference -Me~ in decoded format is ECDREF, which converts decoded reference 
codes to encoded format. All other functions that accept reference code arguments require them in encoded format. 

Function Usage 

Functions accomplish all user-function interaction with the database and EDMS working storage. The function de
scriptions given in the following pClragraphs assume that the user is fami lar with both the APl language syntax and 
EDMS services described in Chapter 4. 

Beginning of Processing 

Before manipulating any data, the user must identify the subschema for the database he intends to process, open the 
database, and specify volume serial numbers and EDMS password. 

Identifying the Subschema 

DMSSUB, used to identify the subsc::hema, is a monadic function whose argument is a text vector composed of sub
schema name and, optionally, accc)unt and monitor password, separated by periods. 

DMSSUB 'subschema name [.[account] ~possword]]' 

Examples 

DMSSUB 'TESTSUB' Subschema name only 

DMSSUB 'PERSONNEL.. PRSPASS' Subschema nClme and monitor password only 

DMSSUB 'PARTSUB. MFGACCT' Subschema name and account only 

DMSSUB 'HOSPSUB. HOSPITAL. PASS01' Name, account, and password 

90 30 1 z:: -1(6/75) Function Usage/Beginning of ProcessIng 98-3 



98-4 

Usage Rules 

1. DMSSUB must be_ the fi rst EDMS function that is executed, except for the error control functions which 
may be executed at any ti me. 

2. The specified subsch .. 'T1a must include a nome table. 

3. The argument text vector must not contain any blanks. 

4. The account and monitor-password portions of the argument are optional. 

5. The DMSSUB call is legal at any time when there are no open database areas. 

Response 

DBM places subschema file identification information in the DeB through which the subschema will be read,. and 
associates the public library. On the first EDMS call after the DMSSUB call (with the exception of the DMSPKSN 
call, described below), the EDMS intrinsic function acquires dynamic memory to contain the subschema, working 
storage, nome table and three data buffers. 

Openning the Database 

The functions used by APl to open the database are the some as the open-calls described in Chapter 4. Function 
type is monadic. Argument is a text vector containing area name and, optionally, account, monitor password, and 
cipher key, separated by periods. 

OPENRET 

1

0PENUPD I 
OPUPDSHD 
OPRETSHD 
CREATE 

'area name[.[account][.[monitor password] [.cipher key]]]' 

Examples 

OPEN RET tTESTAREA' no account, monitor password or cipher key 

OPENUPD 'PAYROLL.. PAYPASS. XPAY' monitor password and cipher key 

OPUPDSHD 'PARTSDB.MFGACCT' account only 

OPRETSHD 'HOSPDB ••• HOSP' cipher key only 

Usage Rules 

1. Database open functions are subject to the same usage ru les as their standard EDMS counterparts. 

2. Indicated area must be an existing EDMS database area file that is defined in the subschema. 

3. Account, monitor password and cipher key portions of argument are optional. 

4. Database open fu~ctions are legal any time after the DMSSUB call as long as there are no active data
base areas. 

Respanse 

In addition to the standord open procedures described in Chapter 4, the EDMS intrinsic function acquires dynamic 
memory for an inventory buffer, if required, and allocates on APL file I/O DCB for use in accessing the area. 

Beginning of Processing 90 30 12C-1(6/75) 



Specifying Volume Serial Numbers 

DMS PKSN is a monadi c function, whose argument is a text voctor containing volume seria~ 'mbers. 

Format 

DMPKSN 'volume-serial-numbers' 

Usage Rules 

1. The argumfmt must be text vector, from 1 to 12 characters in length containing volume serial numbers. 

2. If a pack serial number assigned to, or contained in, the argument text vector consists of fewer than four 
characters and is not the last (or only) serial number in ~he string, then the user must pcd that serial 
number with trailing blanks to make its length an even four characters. 

3. No intervening EDMS calls are allowed between a DMSSUB or open call and its associated DMSPKSN call. 

Response 

If the length of an argument test vector is not an even multiple of four, the EDMS intrinsic function pads it with 
trailing blanks to make it so. The first four characters of the padded argument are then taken as the first volume 
serial number, the sE~cond four as the second volume serial number, and the last four as the third. The EDMS intrin
sic function then applies the serial numbers to the most recent DMSSUB or open call 

Example 

In the following example the subschema and f ,"'" database areas reside on the private volume set consisting of PK 1, 
PK2 and PK3. Note the trailing blank after the first two volume serial numbers. 

DMSSUB 'TESTSUB' 

DMSPKSN VSNS -'PK1 PK2 PK3' 

OPENRET 'TESTAREA l' 

DMSPKSN VSNS 

OPENU PD 'TESTAREA2' 

DMSPKSN VSNS 

Specifying an EDMS Password 

DMSPASS is a monadic function whose argument is a text vector containing the EDMS password. 

DMSPASS 'password' 

Usage Rules 

1. The argument must be a te:d vector consisting of a string zero to eight characters long. A null vector 
causes the password portiol1l of the Communication Control Block (CCB) to be set to blanks. 

2. The OMS PASS function may be used at any time after the DMSSUB call and before the first access to the 
database. 

Response 

The EDMS intrinsic pads the argument with trailing blanks to a length of eight characters, as required, and moves it 
into the PASSWORD cell of the CCEI. 

90 30 12C -1(6;75) Beginning of ProcessIng 98-5 



98-6 

Updating the Database 

Updating Group Occurrences 

APL functions for adding and deleting group occurrences in the database are subject to the same usage rules as their 
standard EDMS counterparts. A difference exists in modifying data values. From APL this can be done only for an 
entire group, whereas other host-language procedures can modify selected items within a group. The APl updating 
functions are monadic. Argument is a text vector containing the group name. 

STORE 
DELETE 
DELETAUT 
DELETSEL 
REMOVE 
REMOVSEL 
MODIFY 

'grou p-na me , 

ModHying Set Unkages 

The occurrence of a group whose membership in a set is defined as optional or manual can be linked to, or delinked 
from, a set occurrence. Also, a member group occurrence can be changed from one owner occurrence to another in 
any set in which it participates. The functions to accomplish these modifications are dyadic and subject to the same 
usage rules as the equivalent standard EDfv\S calls. Both arguments are text vectors. 

{
UNK } 

'group-name' DEUNK 'set-name' 
REUNK 

G roup-Relative Retrieval 

The group-relative retrieval functions are equivalent to their standard EDfv\S counterparts and subject to the same 
usage rules. They are monadic functions. Argument is a text vector containing group-name. 

FINDC 
FINDG 
FINDDUP 
FINDFRST 'group-name' 
FIND LAST 
FINDN 
FINDP 

Response 

The specified occurrence of the named group is retrieved according to the criteria implicit in the type of call. When 
the last applicable group occurrence has been retrieved as the result of a FINDN or FINDP call, DBM sets the GRP
NO cell in the CCB to zero as on indication of the "at-end" condition. 

Usage Rules 

1. For the FINDFRST, FIND LAST , FINDN, and FINDP calls, the indicated group must be defined with 
INDEXED location mode. Note that the FINDN and FINDP calls also accept set-name arguments when 
used to traverse sets (see below). 

2. The group-relative retrieval functions are subject to the same usage rules as their standard EDMS counterparts. 

Updating the Database 9030 12C-l(6/75) 



Set Traversal 

The functions are equivalent to their standard EDMS counterparts and subject to the sa""''''! usage rules. They are 
monadic. Argument is a text voctor containing set-narne. 

Format 

{~l~~t) 'set-name' 

HEAD 

Response 

DBM traverses the named set in the direction implicit in the type of call. Note that the HEAD function includes an 
implicit move of the data items to working storage. 

Retrieving Secondary-Index Items 

FINDX, used for retrieving secondary indexes, is subject to the same usage rules as the standard EDMS FINDX pro
cedure. It is a monadic function whose argument is a text vector containing on item identifier. The format of the 
item identifier was given earlielr in this chapter (under "Cverview"). 

Format 

FINDX 'ltem-namen~} group-name} 

Response 

DBM retrieves the first (or next) secondary index for the indicated item. When the last applicable secondary index 
O"'ccurrence has been retrieved, DBM sets the GRr-.-.i 0 cell in the CCB to zero as on indication of the "at-end II condition. 

Direct Retrieval 

The direct retrieva~ functions are nyladic and subject to the same usage rules as their standard EDMS counterparts. 

IFINDD I 
FINDS 
FINDS} 

Response 

DBM retrieves a group occurrence on the basis of a reference code in the CCB according to the method implicit in 
the type of call. When the last applicable group occurrence has been retrieved as the result of a FINDS or FINDSI 
cal" DBM sets the GRP-NO cell in CCB to zero as on indication of the "at-end" condition. 

Moving to Working Storage 

The GET function is monodic and subject to the same usage rules as the standard EDMS GET procedure. The GET 
function's argument is a text vector containing group nome. 

GET 'group-nome' 

Response 

DBM moves the contents of all it'ems in the most recently retrieved occurrence of the indicated group from the DBM 
data buffers to EDMS working stc)rage. There is no faci lity for moving selected items. 

9030 12C-l(6;75) Updating the Database 98-7 



98-8 

Communicating with Working Storage 

The working storage communication functions let the user (1) initialize selected areas of the EDMS CCB and working 
storage, and (2) obtain specific values from the CCB and working storage areas in the form of on APt result. 

eea Initialization 

The CCB initialization functions are monadic. Argument is on integer scalar reference code, in encoded format, 
or a retrieval count. (Encoding and decoding of reference codes is explained below under "Reference Code 
Conversions".) Reference code arguments will typically be the result of either the ECDREF or BREFCODE 
functions. 

Format 

IFRSTREF ) 
LAST REF 
REFCODE 

Exam~les 

1. SAVEREF-BREFCODE 

REFCODE SAVEREF 

2. FRSTREF ECDREF 3 

LAST REF ECDREF 3 

3. FRSTREF ECDREF 

LAST REF 10 

Reseonse 

255 

12 1 

Saving and restoring the reference code of a specific group 
occurrence. 

Retrieve all group occurrences on page 1 of area 3. 
(First column is area; 2nd, page number; 3rd, line number.) 

Retrieve ten group occurrences starting at page 12 of area 1 .. 

The EDMS intrinsic function places the value of the a;gument in the indicated cell of the CCB. 

Usage Rules 

1. The retrieval count form of the argument is acceptable only by the LAST REF function. It is intended for 
use in conjunction with the FINDSI function. 

2. The CCB initialization functions may be used at any time after the DMSSUB call and before a DMSEND 
call. 

eea Inquiry 

The purpose of the CCB inquiry functions is to obtain on integer scalar representing the contents of the REF-CODE, 
GRP-NO, or ERR-CODE cell of the CCB, as indicated by the function name specified. 

{ 

BREFCODE) 
BGRPNO 
BERRCODE 

The functions are ny/odic. They can be used at any time after the DMSSUB call and before a DMSEN 0 call. 

Communicating with Working Storage 90 30 12<: -1 (6;75) 



Data Item Initia6za1lion 

TODMS is a dyadic function whose left argument is a data value and whose right argument is a text vector containing 
an item identifier. The data vallJe must be either an APL variable or the result of an APL expression. Item name, 
optionally qualified by group-name or set-name, constitutes the item identifier. The data value is moved to tt,e 
EDMS working storage area for the indicated item. 

• [{OF} {grouP'-name}] value TODMS I,tem-name IN set-name I 

Usage Rules 

1. If the item type is defined so as to be interpreted by EDMS as alphabetic or alphanumeric, then the data 
type of the left argumer)"~ must be character or a domain error wi" result (see Table 1, Chapter 3). If the 
item definition were to result in an EDMS interpretation other than alphabetic or alphanumeric, the left 
argument must be real, logical or integer. The TODMS function r:utomatically converts the data value to 
the type defined by the DDL. Truncation errors are possible whenever a real APL value is moved to a 
binary or floating short EDMS item, or whenever the object of the TODMS call is a numeric or packed 
decimal item. Truncation is defined as any loss of integral or significant functional digits. 

Conversions to numeric ()r packed decimal items are rounded to the number of digits specified by the item's 
picture wDth a maximum of 15 digits. All conversions involving floating j.>oint numbers yield results identi
cal to those of APL; however, this does not guarantee that converted numbers wi 1/ exactly match those 
produced via another pr1ocessor. 

2. The shape and dimensions of the "k.:.:. value must conform to the DDL description of the EDMS item. In no 
event is an array of greclter than two dimensions acceptable. 

For alphabetic and alphanumeric EDM~ .;cms that do not contain an OCCURS clause, the data value must 
be either a scalar or a vector. A scalar is acceptable only for single-character items (e. g., PIC X). For 
items containing more than a single character, a character-vector data value is required. The length of 
the vectol' must be exac:rly the same as that of the EDMS item. For example, an item defined as PIC X(12) 
requires a twelve element character vector as left argument for TODMS. If the EDMS item description 
contains eln OCCURS clc:lIUse, the data value must be a matrix with its first dimension equal to the item's 
occurs count and its secI)nd dimension equal to the number of characters in the item description. Example: 
An item defined as PIC X OCCURS 5 requires' a 5 by 1 matrix as the left argument for TODMS. 

For EDMS items whose type is not alphabetic or alphanumeric and that do not contain an OCCURS clause, 
only a scalar left argumc3Int is acceptable. If the EDMS item description contains an OCCURS clause, then 
the left argument for TODMS must be a vector whose length is equal to the item's occurs count. 

3. For numeric or packed decimal EDMS items whose picture does not specify a sign, only a positive value 
may appear as left argument. Any attempt to move negative values to an unsigned item will result in an 
APL-Ievel EDMS error. 

Table 15 gives examples of illegal left arguments along with a form of the argument that would be legal, or an ex
pression describing the legal range~ of values that the argument may assume. 

Data Item Inquiry 

FROMDMS obtains the contents of a data-item from working storage. The form of the result is determined by the 
item's DDL description with respe,e:t to type, rank, and dimensions, in accordance with Tables 16, 17, and 18 shown 
below. The function is monadic. Its argument is a text vector containing item identifier. 

90 30 12C-1 (6/75) Communicating with Working Storage 98-9 



Table 15. Examples of Illegal Left Arguments 

I Ilega I Left 
Item Description Argument Reason for Error Lega I Form or Range 

PIC X(9) 'ABCD' INCORRECT LENGTH 9 t 'ABCD' 

PIC X(8) 24p 'BETA' INC ORRECT RAN K ,2 4p 'ALPHABETA' 

PIC X(9) OCCURS 2 'ALPHABETA' INCORRECT RAN K 29p 'ALPHABETA' 

PIC XXX 123 INCORRECT TYPE '123' 

PIC 999 '123' INCORRECT TYPE 123 

PIC 99\199 '34.5 1 INCORRECT TYPE 34.5 

PIC 99\199 OCCURS 3 34.5 INCORRECT LENGTH 3p 34. 5 

PIC 99\199 123.4 TRUNCATION 100 > arg 

PIC PP999 .01234 TRUNCATION .01 >arg 

BINARY 10*10 TRUNCATION -~ 1 ~ arg S 231 _1 

FLOATING SHORT r / to TRUNCATION 7. 237E75 ~ I arg 

PIC 999.9 -12 SIGN 12 

Table 16. FROMDMS Result: Item Type 

EDMS Interpretationt Character Real Integer 

Alphabetic or Alphanumeric X 

Binary X 

Floating Point (Short or Long) X 

Fewer than 10 Digits X 

Numeric or Packed and no 'V' in Picture 

Decimal 
10 or more digits or X 
'V' in Picture 

tSee Table 1, Picture-Type Correspondences. 

Table 17. FROMDMS Result: Item Rank 

EDMS 
Item Description Scalar Vector Matrix 

Alphabetic or Alphanumeric X 
OCCURS Clause 
not Specified Not alphabetic or X 

Alphanumeric 

Alphabetic or Alphanumeric X 
OCCURS Clause 
Specified Not Alphabet.ic or X 

Alphanumeric 

98-10 Communicating with Working Storage 90 30 12C-l (6/75) 



Table 18. FROMDMS Result: Item Dimensions 

~ Not Alphabetic or 
Result Rank Alphabetic or Alphanumeric Alphanumeric 

Vector Length is number of characters in item Length is OCCURS Count 
description. 

Matrix First dimension is OCCURS count; Second 
dimension is number of characters in item 
description. 

Usage Rules 

1. FROMDMS may be used at any time after the DMSSUB call and b~fore a DMSEN D call. 

2. If FROMDMS encounters a negative number in an unsigned numeric or packed decimal item, the absolute 
va lue of the item is returned. 

3. If the item1s picture specifies a scaling factor thClt does not allow thf2 item value to be accurately 
represenh~d in a floating point long number, e. g., PIC P(78)999 or PIC 999(78), an APL-Ievel EDMS error 
is re ported. 

4. If an illegal digit is enc:ountered in a numeric or packed decimal item value, an APL-Ievel EDMS error is 
reported. 

5. For numeric or packed decimal items, the maximum significance of the result value is approximately 
15 digits. Thus, for items whose picture exceeds 1.5 digits of significance, e. g., PIC 9(17), only the first 
15 digits are represented in the results; however, the scaling is retained. 

Table 19 gives examples of the results of FROMDMS. 

Table 19. FROMDMS Sample Results 

Item1s DDL 
(Description) 

PIC 999P(6) 

PIC P(6)999 

PIC 99 OCCURS 5 

PIC 9V9 OCCURS 5 

PIC 9(5) OCCURS 2 

PIC X(10) 

PIC XX OCCURS 5 

PIC A(3)X(4 )9(3) 

90 30 12C -1 (6/75) 

. 

Item 
Contents 

123 

123 

1122334455 

1122334455 

1122334455 

ABCDEFG123 

ABCDEFG 123 

ABCDEFG 123 

FROMDMS Result 

1.23E8 

1. 23E-7 

11 2233 44 55 

1. 1 2. 2 3.3 4.4 5.5 

11223 34455 

ABCDEFG 1 23 

AB 
CD 
EF 
G1 
23 

ABCDEFG123 

Communicating with Working Storage 98-11 



Cunent of Type Inquiry 

CURRGRP returns the contents of the current-of-type cell for the indicated group as an integer scalar reference code 
in encoded format. The function is monadic. Its argument is a text vector containing the group-name. 

CURRGRP 'group-name' 

Usage Rule 

The CURRGRP function may be used at any time after the DMSSUB call and before a DMSEND call. 

Examples 

CURRGRP 'PART-GRP' 

33555095 

DCDREF CURRGRP 'PART -GRP' 

2 5 23 

DCDREF is the Function used for decoding reference codes, explained below under "Reference Code Conversions". 

Cunnt of Set Inquiry 

CURRSET returns the contents of the set-table for the indicated set as on integer vector of reference eodes in encoded 
format. The function is monadic. Its argument is a text vector containing set-name. CURRSET may be used at any 
time after the DMSSUB call and before a DMSEN 0 call. 

CURRSET 'set-name' 

Example 

CURRSET 'CALL-OUT-SET' 

16m473 0 16nS243 16n9321 

o 

DCDREF 

1 

o 
1 

o 
4 3 

S 57 

CURRSET 'CALL-OUT-SET' 

DCDREF is the function used for decoding reference codes, explained below under "Reference Code Conversions". 

Terminating Processing 

The termination functions provide facilities for closing the user's database and releasing dynamic memory. 

98-12 Terminating Processing 90 30 12C-l (6/75) 



Closing a Database Area 

CLOSAREA closes the area indicated by its argument - a text vector containing the area name. The function is 
monadic. It is subject to the SCllme usage rules as the standard EDMS CLOSAREA procedur_. 

CLOSAREA larea-name l 

Closing all Database Areas 

CLOSEDB, a nylcldic function, causes all database areas to be closed. The function is subject to the same usage 
rules as the standard EDMS C LOSEDB procedures. 

CLOSEDB 

Releasing Dynamic Memory 

DMSEN D, a nyladic function, c:auses all dvnarr.:.: memory t'o be released and the EDMS public library to be dis
associated. The function may bE! used at any time after the DMSSUB call, provided no database area files are open. 

DMSEND 

EDMS'- Level Error - Control Functions 

The error-control functions are used to simulate the actions of their standard EDMS counterparts. See "Dynamics of 
EDMS-Level Error Control ", belc)w, for a discussion of the simulation technique. 

Setting Error Control for DatanDependent Errors 

SETERR, a dyadic function, spec:ifies the name of the function that is to be invoked if a data-dependent error 
occurs. The function's left arglilment specifies the error numbers to be set. The right argument is a text vector con
taining the name of the function to be invoked if one of the specified errors occurs. 

error code{s) SETERR 'function-name I 

Examples 

(t 0) SETERR 'ERRORFUNC' Catch and report all data-dependent errors. 

3 5 7 SETERR 'CODES357J Catch and report errors 3, 5, and 7. 

90 30 12C-1 (6/75) EDMS-Level Error Control Functions 98-13 



Usage Rules 

1. The error code specification may be in the form of any APL expression that, evaluated, equals an integer 
scalar or vector with values between 1 and 29 inclusive. 

2. The named function must be a nyladic, no-result function. If, at the time a specified error occurs, the 
named function is defined as other than a nyladic, no-result function, an APL-Ievel error is generated. 
(See "APL-Level EDMS Errors" below.) 

3. The SETERR function may be used at any time. 

f 

4. -If the evaluated error code specification equals a null vector, the function-name of the right argument is 
applied as error control for all data-dependent errors. 

Resetting Error Control far Dam-Dependent Errors 

RESETERR resets error control on data-dependent errors. The function is monadic. Argument is error code specifica
tion that identifies which errors are to be reset. 

RESETERR error code specification 

Examples 

RESETERR 10 Reset all data-dependent errors 

RESETERR 4 Reset error code 4 

Usage Rules 

1. The error code specification may be in the form of any APL expression that, evaluated, equals an integer 
scalar or vector with values between 1 and 29, inclusive. 

2. If the evaluated error code specification equals a null vector, a" data-dependent errors are reset. 

3. The RESETERR function may be used at any time. 

Setting Error Control for Deadlock and Non-Data-Dependent E nors 

DMSABORT and DMSLOCK specify the name of the function that is to be invoked ifdeadlockora non-data-dependent 
error occurs. The function is monadic. Argument is a text vector containing the name of the function to be invoked 
if the indicated error occurs. 

Format 

{
DMSABORT} If' I 
DMSLOCK unction name 

Examples 

DMSABORT IABORTFUNCI 
DMSLOCK " 

Quote marks signify a null -character vector: Reset deadlock control. 

98-14 EDMS-Level Error Control Functions 90 30 12C-l (6/75) 



Usage Rules 

1. The named function must be a nyladic, no-result function. If at the time of occ"rrence. of a deadlock or 
non-data-dependent error, the named function is defined as other than a nyladic, no-result function, an 
APL-Ievel error is generated. (See "APL-Level EDMS Errors" below.) 

2. If the right argument i:i a null text vector, control for deadlock or non-data-dependent errors is reset. 

3. The DMSABORT and DMSLOC K functions may be used at any time. 

Obtaining the EOMS Error Code for an APL-Level Error 

DMSERCOD is a nyladic function that results in an integer value representi:lg an APL-Ievel EDMS error as listed in 
Table F-10 (Appendix F), or in zero if no such error has occurred. Ty~ically, this function will be used in an APL 
sidetracking procedure. See "APL-Level EDMS Errors", below. The DMSERCOD function may be used at any time. 

Checkpointing Database Opewations 

DMSCHKPT, DMSRLSE, and DMSRECV are nyladk functions used to checkpoint processing or purge the monitor 
enqueue tables and, optionally, roll back :~~~ database to it's state at the time of the last DMSRLSE. DMSCHKPT 
and DMSRLSE are subject to the same usage rules as their stcmdard EDMS counterparts. DMSRECV, being equiva
lent to EDMS DMSRLSE with recovery, is simi larly subject to its usage rules. 

Reference Code Conversions 

Two functions are avai lable: ECDREF to encode reference codes in the form of integer matrixes containing area, 
page, and line numbers, and DCDREF to decode the encoded reference code. 

Encoding Reference Codes 

ECDREF is a monadic function whose argument is a three-element integer vector or an n x 3 integer matrix. The re
sult of the function is an integer vector of encoded reference codes. The length of the vector is the same as the 
first dimension of matrix argumenirs, i. e., the number of reference codes constituting the vector will be the same as 
the number of matrix rows. If the argument is a vector, the result wi II be a single-element vector. See encode/ 
decode examples below. 

Usage Rules 

1. A matrix argument may have any number of rows but it must have three columns. The first column is area 
number, t'he second column is poge number and the third column is line number. If the argument is a vec
tor, it is 'treated as a 1 )( 3 matrix. 

2. All area numbers in the argument must be defined in the subschema. The value specified for poge number 
must not exceed 24 bits minus the number of bits required to specify the line number. Line numbers may 
not exceed the maximum number of lines per poge for the given area. 

3. The ECDREF function melY be used at any time after the DMSSUB call and before a DMSEND call. 

90 30 12C-1 (6/75) Obtaining the EDMS Error Code for an APL-Level Error/Checkpointing Database Operations 
Reference Cod,e Conversions 

98-15 



98-16 

Decoding Reference Codes 

DCDREF is a monodic function whose argument is on integer scalar or vector of encoded reference codes. Result is 
on integer matrix whose first dimension (number of rows) is the number of reference codes in the argument, and whose 
second dimension (number of columns) is three: area numbers, page numbers, and line numbers, in this order. 

Usage Rules 

1. The values given by LARG + 2*24 must all be numbers of areas defined in the subschema. 

2. The DCDREF function may be used at any time after the DMSSUB call and before the DMSEND call. 

Examples 

1. BREFCODE CCB inquiry 

16779010 Result 

DCDREF BREFCODE 

7 2 

ECDREF DCDREF BREFCODE 

16779010 

2. CURRSET 'SETD' Current of set inquiry 

16777473 16778758 16779010 16779558 Result 

(a) DCDREF 16777473 16778758 16779010 16779558 

1 Result 

6 6 

7 2 

9 38 

(b) DCDREF CURRSET 'SETD' Argument is Current of Set inquiry 

Result 

6 6 

7 2 

9 38 

3. ECDREF DCDREF CURRSET 'SETD' Composite argument 

16777473 16778758 16779010 16779558 Result 

Execution Tracing 

DMSTRACE initiates and ENDTRACE terminates the DBM procedural trace which performs the execution tracing. 
The functions are nyladic and may be used at any time. 

Reference Code Conversions 90 30 12C-1(6/75) 



APL Command Restrictions 

The following APL commands are disa 1I0wed whi Ie database areas are open and wi II result in an APL-Ieve I EDMS 
error if any attempt is made to e>(ecute them. 

LOAD 
CLEAR 
OFF 

CONTINUE 
SAVE 

APL-Level EDMS Errors 

All EDMS-associat.~d errors detected by the EDMS intrinsic funci"ion are handled at the APL level. A special error 
type exists within APL for EDMS errors. This error (numbered 99) may be sidetracked like any other APL error. If 
the user chooses to sidetrack on the EDMS.error, he may use the DMSERCOD function to determine the nature of 
the error. Table F·-lO in Appendix F details the possible errors and· their associated codes. 

If the user chooses not to sidetrack on the EDMS error, a message indicating the type of error is printed immediately 
before the APL-Ievel error is iniHated. A list of these messages appears in Table F-lO. 

Errors in EDMS Functions 

Errors detected by the EDMS intrinsk function are reported by APL as having occurred in one of the functions 
supplied in the DMSFNS workspace. This does not .nean that the error was caused by the function that called the 
intrinsic function; rather it means that the :r,:-;-;nSIC caJi was the point in the APL program at which the error was 
detected. Usually a domain, rank, or length error that occurs during execution of a function from the DMSFNS 
workspace is an indication that thE~ EDMS intrinsic is rejecting one of the user's arguments. 

Dynamics of EDMS - Level Error Control 

Nearly aJ J of the stc:mdard EDMS errors are possible under the APVEDMS interface. These errors are reported in the 
usual manner, i. e., the error code is placed in the ERR-CODE cell in the CCB. Due to the interpretive nature of 
the execution of APL programs and the inability to unconditionally transfer control to an arbitrary point ouhide of 
the currently executing function, an error control interface has been devised that operates in a manner simi lar to 
the APL CATCH debugging facility. 

When an EDMS error occurs for which error control has been set, the function named to receive control is tested to 
insure that it is a nyladic, no-result function. If it is not, an APL-Ievel error occurs. If it is, the function is in
voked just as if it hCld been called explicitly by the user function that called the EDMS function. If the error con
trol function chooses to ignore the error, it may resume execution merely by exiting. Thus a DMS~TRN call is 
implicit in the fact that the error control function exits. 

DMSFNS Workspace 

The DMSFN S workspace wi II normc:tlly reside in the DMS LIB account. In addition to the functions described earlier 
in this chapter, this workspace contains several uti lity functions that perform various argument-formatting and 
validation services. The user does not need to be concerned with them beyond being C1ware of their existence. This 
category of functions is characteri:z:ed by a delta-underscore character (~) which is both the first and last character 
in the function name. 

The workspace contains three intrinsic functions: L::.DMS, the EDMS intrinsic; L::.WM, the workspace-management 
intrinsic; and, L::.TE, the text-editing intrinsic. The L::.TE and I.:::.WM intrinsics are used to assist in argument manipu
lation and to insure that all of the functions in the workspace are independent of the ORIGIN setting. 

One APL "group" of functions, narned RTRVGRP and associated with retrieval, is contained in the workspace. Thus, 
the user who is writing a workspaCE! to do only retrieval may include only those functions associated with retrieval 

9030 12C-1(6/75) APL Command Restrictions/APL-Level EDMS Errors/Errors in EDMS Functions/ 
Dynamics of EDMS - Level Er'ror Control/DMSFNS Workspace 

98-17 



and exc lude a II those associated wi th updating. Also, the user may selectively exc lude entry-point functions that 
are not used. For example, a user who is writing a workspace to generate a report that does not require the FINDS 
procedure, may copy the RTRVGRP out of DMSFN S and then erase the FINDS function. 

Subschema File 

The APL/EDMS interface requires a subschema that (1) was generated by DMSFDP, version COO or later, and 
(2) contains a name table. If either condition is not met, an APL-Ievel EDMS error is reported. 

Area File DeBs 

Since database area files are accessed via the APL file I/o DCBs, APVEDMS users are limited to a total of eight 
concurrently open fi les and database areas. No assignment of the associated DeBs is necessary or possible. Execu
tion of an EDMS open function initializes the DCBs with file name, account number and password. Files on private 
disk packs may be accessed with the DMSPKSN call. Area fi les use fi Ie tie numbers that are the negative of the 
area number (i. e., area number 16 has fi Ie tie number -16). Use of the APL I/o primitive operator 19 wi II thus 
identify which DCBs are currently in use by EDMS. 

The user should note that the EDMS intrinsic allocates a DeB during each open call and deallocates all DeBs when 
the last database area is closed. This means that database areas may have DCBs tied up even though they are not 
actually in use. 

Journal and Statistics DeBs 

The permanent journal is written through DCB F:JRNL. It will be written if the schema DOL specifies journaling for 
an area and that area is opened for update. The EDMS intrinsic function uses a journal default assignment to file 
name I JRNL-ID', where ID is the system job ID. This file is created in the run account. If the database is opened 
several times in a single APVEDMS session, the EDMS intrinsic will extend the file on each open. The user may 
set DCB F:JRNL to labeled tape or to a different file name prior to entering the processor. 

If the schema DDL specifies that statistics are to be created on any group or set in the subschema, the EDMS intrinsic 
function writes the statistics through the F:ST AT DCB. The fi Ie name is defaulted to 'STAT -10', where 10 is 
the system job ID. The user may set DCB F:STAT to labeled tape or to a different file name prior to entering the 
processor. 

Subschema File/Area File DeBs/Journal and Statistics DeBs 90 30 12C-1 (6/75) 



APPENDIX A. SCHEMA F::"E 

The schema file is itself an EDWS dCltabase of only Or:'le area. The "data" in this database is information about the 
user database that is defined by the schema DDL. The user's database is defined in the schema in terms of its area, 
group, item, and set components. The schema also contains the subschema names of all subschemas that have been 
generated using the schema. (Subsc:hema information does not exist in the schema when it is initially created.) 
Figure A-l illustrates the schema database relationships. The groups and sets are explained below. Table A-l con
tains explanations of the items. Figl.lre A-2 shows the schema Data Definition Language used to define the schema 
database. 

There is only one occurrence of the group SC HEMAHD. It is store~ un page 1, line 1 of the fi Ie and is the basic 
e,ntry po i nt to the schema database. 

Linked to the SCHEMAHD occurrenc:e are 

1. One occurrence of the ASOWNER group for each sel- defined in the user's database (schema database 
set W). 

2. One occurrence of the PASSWORD group for each password defined for the user's database (schema set A). 

3. One occurrence of the SSCHEM group for each subschema defined (set B). These occurrences are added 
by the FDP when subschemcls are generated. 

4. One occurrence of AREAG P group for each area in the user's database (set C). 

If an area contains an indexed-sequential group, its AREAGP occurrence has associated INDX group occurrences 
describing the several significant page ranges in the area (set F). The significant page ranges are the range speci
fied for the indexed group, the overflow range, and the range of pages used for each level of ihdexing. 

An AREAGP occurrence also serves ClS an entry point (thj'ough set E) to information on all the groups in the area, in
cluding information on the sets of which the groups are defined as owners and members. 

The UNIT group occurrences contairl the basic information on user's groups (size, location mode, etc.). Linked to 
each UNIT group occurrence (through set H) is one occurrence of the ELEMENi group for each item defined for the 
group. Also linked to each UNIT group is an occurrence of the ASOWNER group for each set of which the referent 
group is an owner (set J), and an occurrence of the ASMEMBER group for each set of which the reference group is a 
member (set I). 

Each ASMEMBER occurrence is linked (set M) to an ASOWNER occurrence for the referent set. (An AStvEIV,BER 
and an ASOWNER occurrence that me linked together are, of course, linked to separate UNIT occurrences.) An 
ASMEMBER occurrence may be linkE~d to one or more ASCONTROL group occurrences through set N. The ASCON
TROL occurrences associate an ASMEMBER occurrence with the ELEMENT occurrence(s) that describe the item(s) de
fi ned as sort keys for the set. 

An ASMEMBER occurrence may be associated indirectly with an ELEMENT occurrence by means of an ALIAS group 
occurrence using sets 0 and U. Eac:h UNIT group occurrence is linked to one or more GROUPRET group occurrences 
(set G) and may be linked to one GSTATS group occurrence. 

There is an occurrence of a NAMEGi P group for each item, group, or set defi ned for the user's database. There is 
also a NAMEGP occurrence for eac:h alias name specified. Each NAMEGP occurrence is linked to SNAMLINK, 
INAMLINK, GNAMLINK, and/or ALIAS occurrence. 

Appendix A 99 



W 

R 

SCHEMAHD 

A 

" 
.PASSWORD 

ASOWNER 

1 
T 

, 

SSTATS 

[ 

o 

M 

, r 

ALIAS 

~ SNAMLINK 

100 Appendix A 

c 

B 

SSCHEM 

J 

S 

GSTATS 

ASMEMBER r----

N , 
ASCNTROL 

NAMEGP 

v 

-
o 

~Ir 

INAMLINK 

" 
AREAGP F 

E 

" 
UNIT G 

1 H Q 

ELEMENT 

L 

U 

P 

CHECK 1 

Figure A-l. Schema Database Diagram 

INDX 

GROUPRET 

K 

" 
CHECK2 

PICTURE 

G NAMLI N K .... ~'--__ -J 



Group Item 

(1) AREAGP NAMESIZE 

AREANAME 

AREANO 

INVPERCT 

NBROFLIN 

CHECKSUM 

FILPERCT 

JOURNAL 

ENCIPHER 

INDEXED 

AOWNER 

AREft,FILl 

DATAPGES 

PAGESIZE 

KEYSIZE 

RETUSERS 

UPDUSERS 

PAGEIO 

G RPSACSD 

G RPSXNSD 

GRPSDLTD 

AREAFl L2 

(2) UNIT GROUPNO 

LOCATMOD 

INVTllTEM 

GRPRLOCK 

GRPUl.OCK 

STRGESET 

SECII'-IDEX 

NUMKEYS 

DEFRGE 

G RPFILL 1 

G RPSIZE 

BEGPGRGE} 
ENDPGRGE 

PRIMVALU 

GRPFH.2 

Table A-l. Schema Items 

-
Explanation 

Number of characters in area name. 

User-suppl ied name. 

User-assigned number. 

Inventory percent assigned by user- 50% minimum. 

Lines per data page: 1 implies 16, 2 impli es 32, 3 impl ies 64, 
4 impl ies 128, 5 impl ies 256. 

o - no checksum on data pages; 1 - checks um. 

Percentage of page DBM is to use when are a is created. 

0- no journal; 1 - journal. 

o - do not cipher data PC'gesi 1 - cipher p ages. 

o - area not indexed; 1 - area indexed. 

o - area not owner of any sets; 1 - area ow ns sets. 

Unused. 

Number of data pages. 

Number of words per data page (currently fixed at 512). 

Size of indexed key in bytes if area is ind exed. 

Number of retrieve users. 

Number of update users. 

'" _ ..... ber of physi cal page I/Os. 

Number of groups accessed. 

Number of groups inserted. 

Number of groups deleted. 

Unused. 

User-suppl ied number. 

Location Mode: 1 for direct; 2 for indexed; 3 for calc; 
4 for calcdup; 5 for via. 

0- no inverted items in group; 1 - inverte 

User-supplied retrieve lock (maximum valu 

User-suppl ied update lock (maximum value 

d items. 

e = 255). 

= 255). 

0- no storage set; 1 - storage set specified 

0- not secondary index; 1 - group is secon dory index. 

Number of calc:, index of sort key items (0 -7}. 

o - user suppl ied page range; 1 - default. 

Unused. 

Size of group in bytes. 

Page range for group. 

Prime number for hash of cal c groups. 

Unused. 

Appendix A 101 



Group 

(3) ASOWNER 

(4) ASMEMBER 

(5) ELEMENT 

102 Appendix A 

Item 

SET:-ILL 1 

SETNO 

OPSTNEXT 

OPSTNPRI 

SETFILL2 

ORDER 

GRPNOKY 

DUPSIND 

OPTIONAL 

AUTOMANL 

PRIMARY 

STORAG 

SELOWNER 

OWNERNO 

MEMBFIL 1 

MPSTNEXT 

MPSTNPRI 

PSTNHEAD 

MEMBFIL2 

ITEMTYPE 

LEVELNBR 

OCCURCNT 

ITMRLOCK 

ITMULOCK 

INVTDNO 

DATAVLID 

CONTROL 

DEFPIC 

ITEMFIL 1 

ITEMPSTN 

ITEMSIZE 

ITEMFIL2 

ITEMFIL3 

ITEMFIL4 

Table A-I. Schema Items (cont.) 

Explanation 

Unused. 

Sequential number for set. 

Relative byte position of set NEXT pointer. 

Relative byte position of set PRIOR pointer. 

Unused. 

0- implies last; 1 - prior; 4 - sorted; 8 - first; 9 - next. 

Group number as sort key; 0 impl ies not appl icable; 1 - ignore; 
2 - major; 3 - minor. 

Duplicates indicated: 0 implies not allowed; 1 - first; 2 - last. 

o for membership not optional; 1 - membership is optional. 

o for membership is automatic; 1 - membership is manual. 

o - not primary set for group; 1 - set is primary. 

o - not storage set for group; 1 - set is storage set. 

0- owner selection is unique; 1 - owner selection is current. 

Unused. 

Unused. 

Relative byte position of set NEXT pointer. 

Relative byte position of set PRIOR pointer. 

Relative byte position of set HEAD pointer. 

Unused. 

0- signed numeric; 1 - alphanumeric; 2 - numeric; 3 - alphabetic; 
4 - binary; 5 - floating-point short; 6 - floating-point long; 
7 - packed decimal. 

Will not be used in the current FDP. 

Number of occurrences of this item. 

User-suppl ied retrieve lock (maximum value = 255). 

User-suppl ied update lock (maximum value = 255). 

Number of secondary index group. 

Data validation type: 0 implies none; 1 - picture; 2 - range; 
3 - both. 

o - item not cal c or index control; 1 - item is contro/. 

1 - Defaults picture supplied for packed decimal item. 

Unused. 

Relative byte position of item in group. 

Size of item in bytes. 

Unused. 

Unused. 

Unused. 



Group 

(6i ASCNTROL 

(7) SCHEMAHD 

(8) PASSWORD 

(9) SSCHEM 

(10) INDX 

(11) PICTURE 

(12) CHECK 1 

Item 

MATCHIND 

CTRL TYPE 

CTRLFIL 1 

COP' (PSWD 

ALTR PSWD 

PTRSI ZE 

SCHF III 

SCHD ,A TIM 

SCHE SIZE 

NUM PSWDS 

NUM OWNRS 

NUM MBRS 

PASSWORD 

RETKEYS 

UPDKEYS 

SUBSNAME 

ACCTINBR 

SUBDATE 

SUBSTIME 

BEGPGNBR } 
ENDPGNBR 

DEFNTYPE 

INDXL.EVL 

INDXFILl 

PICTCI'IT 

ITEMPleT 

SCALE 

PICFIL 1 

LOWL1IT l} 
HILIT 

CK1FIl.1 

Table A-l. Schema It,. :,IS (cont.) 

Explanation 

Type of sort mC:ltch: 0 for equal; 1 for range. 

Sequence Control Type: 1 for ascending; 2 for descending. 

Unused. 

EXTRACT priV(]cy lock. 

ALTER privacy lock (not currently used). 

Size of set poi/IOcr" in bytes. 

Unused. 

Date and time when schema wcs created. 

Size of schema in pages. 

Count of password groups. 

Count of ASOWNER groups. 

Count of AS,'{\EMBER groups. 

User-suppl ied database access password. 

Retri r "e keys for this password - one bit for each value up to 255. 

Update keys for this password - one bit for each value up to 255. 

Subsche;-" name. 

Account number under which subschema was created. 

Date cre,ated (halfword binary year and hal fword binary jul ian 
day). 

Time created: byte 0 = hour (0-23); byte 1 = minutes (0-59); 
byte 2 = second (0-59); byte 3 = hundredths of a second (0-99). 

Beginning and ending page numbers which together define an INDX 
overflow range or index level. 

Type of definition: 0 for overflow range; 1 for index level. 

Index level number (0 impl ies indexed data group page range). 

Unused. 

Number of characters in picture. 

User-supplied picture for item 

Scal ing factor for pi cture. 

Unused. 

Low and high literals for data validation (CHECK clause) of binary 
and floating-point short items. 

Unused. 

Appendix A 103 



Group 

(13) CHECK2 

(14) ALIAS 

(15) G ROUPRET 

(16) NAMEGP 

(17) INAMLINK 

(18) GNAMLINK 

(19) SNAMLINK 

(20) GSTATS 

(21) SSTA TS 

104 Appendix A 

Item 

LOV,'LIT2 } 
HILIT2 

CK2FIL 1 

(No items) 

DATNAME 

RTVLTYPE 

GRFILL 1 

NAMEVALU 

PRIMNAME 

NAMETYPE 

DUPNAME 

NAMFIL 1 

(No items) 

(No items) 

(No items) 

NBRACSD 

NBRIN,SD 

NBRDLTD 

HEADACCS 

NEXTACCS 

PRIRACCS 

Table A-l. Schema Items (cont.) 

Explanation 

Low and high literals for data val idation (CHECK clause) of 
floating-point long, packed decimal, and EBCDIC items. Floating
point long literals will be in the first two words of each item. 
Packed decimal will always be 16 bytes. EBCDIC I iterals will 
be left-justified in each item. 

Unused. 

Name of retrieval item or set, or sort key. 

Retrieval type: 1 impl ies index name; 2 - cal c item name; 
3 - via setname; 4 - storage setname; 5 - sort key name. 

Unused. 

User-suppl ied name for set, group or item. 

Not used in current version. 

1 impl ies set'name; 2 - group name; 3 - item name; 0 - none. 

o if no other item in schema has this name; 1 - duplicates exist. 

Unused. 

(Reserved for future implementation.) 

Number of group occurrences accessed. 

Number of group occurrences inserted. 

Number of group occurrences deleted. 

(Reserved for future implementation.) 

Number of head accesses through this set. 

Number of next accesses through this set. 

Number of prior accesses through this set. 



APEA IS SCHEBl\SE CONTAINS 1 P]\.("E~ 
Nut~r R If) 1 
ENCIPIIERIW'~ IS NOT Rr'()CIPS-n 
CHE:CKSm~ IS REQUIRED 
JOURlTAL IS no~r REQUInED 

r:ROlTP IS AREA(;P 
NITHIN SCHEBJI.S:r. 
LOCATIOn 1-!OOE IS CALC Uf)INr. 1'.REJ\.;1AHE DUPLICATE~ nOT ALr,ONED 
NUT-"BE R If) 1 

NAHESIZE: PIC X .. 
AP.EANA1·4J;: PIC x ( 3 r) • 

AP.EJI.NO J PIC X. 
INVPERCTi PIC 9'l. 
NBROFLHl i PIC 9 .. 
CHEcKStn~i PIC 9 .. 
FILPERCT: PIC 9"9. 
~TOURNAI.l1 PIC 9. 
ENCIPHER; PIC 9., 
INDEXIND: PIC 9., 
AOHNER; PIC 9. 
AREAFIL 1: TYPE IS BINARY. 
DATAP~ES: TYPE ]:S BIlTARY. 
PA~ESI7.E1 TYPE :CS BINARY. 
KEYSIZE: TYPE IB BINARY .. 
RETUSERS: TYPE :[S BINARY. 
UPOUS:P.RS: TYPE :rs BI}lARY. 
PA(;EIO: TYPE IS BINARY. 
GRPf)ACSD: TYPE IS BINARY. 
GRPSINSD: TYPE IS BInARY. 
GRPSDLTD: TYPE IS BINARY. 
AREAF:IL2; TYPE :rs BINARY. 

GROUP IS UNIT 
{'HTHI!-! SCHEBASr: 
LOCATION ~"onE IS CALC usnm r:POtTPNO DUPLICATES NOT Ar .. LOT,TED 
NUl·'.BER IS 2 

GROUPNO, PIC 9(L~). 
LOCATtvrOD: PIC 9., 
I't-1VTITEl·1, PIC 9., 
GRPRLOCK; PIC 9~19. 
GRPULOCK; PIC 99~. 
STRGESET; PIC 9 •. 

\ SECINDEX; PIC 9. 
NUHKEYS; PIC X. 
DEFRG1~ 1 PIC 9. 
GRPFIL1: TYPE IS BINARY. 
GRPSIZE: TYPE 1:S BINARY. 
BEGPGR(;E, TYPE IS BINARY. 
ENOPGRGE; TYPE IS BINARY. 
PRI1-WALU, TYPE IS BINARY. 
GRPFIIJ2; TYPE IS BINARY. 

GROUP IS ASOWNER 
t'1ITHIN SCHEBASE 
LOCATION "~OOE :IS VII'. O~TNERSF.T 
NUMBER IS 3 

Figure A-2. Schema DDL for Schema 

Appendix A 105 



SETFILL 1; TYPE IS Brll\PV. 
SETUO; PIC 9 (L1) • 
OPSTlTEXT; TYPE IS BnT~.RY. 
OPSTNPRI: TYPE IS BIN~.P.Y. 

SETFILL2: TYPE IS BrTAPV. 

f;RClUP IS ASr'Er'BFR 
lVITHIN SCHEBl\Sr: 
LOCATION PODE IS VIl ... r'r.r~RSI:T 

nmmF.R IS 4 

ORDER: PIC 9. 
f:RPNOKY 1 PIC 9. 
OUPS IND: PIC 9. 
OPTIONAL: PIC 9. 
AUTOrfAHL; PIC 9. 
PRIr1ARY; PIC 9. 
STORAG; PIC 9. 
sELOt-nmR; PIC 9. 
OHNRNO; PIC 9 (4) • 
l-1ElfBFIL 1; TYPE IS B IrTARY • 
r1PSTNEXT; TYPE IS BINARY. 
l'PSTNPP.I; TYPE IS BINARY. 
PSTrrnEAD: TYPE IS BINARY. 
r'!E~~rIL2; TYPE IS BINARY. 

GROUP IS ELEr"ENT 
NITHIN SCHEBASE 
LOCATION l'ODE IS VIA ITF.l'SF.T 
UUr"BER IS 5 

ITErofTYPE: PIC 9. 
LEVELNBR; PIC 9~9. 
OCCURCNT; PIC 999. 
ITMRLOCK; PIC 99~. 
ITrruLocK; PIC 999. 
INVTDNO, PIC 99~. 
DATAVL+D; PIC 9. 
CONTROL; PIC 9. 
DEFPIC; PIC 9. 
ITEHFIr~ 1; TYPE IS BINARY. 
ITEMPSTr.h TYPE IS BINAPY. 
ITEl·!SIZE; TYPE IS BINARY. 
ITEl-1FIL2; TYPE IS BINARY. 
ITEr~FIL3; TYPE IS BINJ..RY. 
ITE1--!FIL4; TYPE IS BInARY. 

GROtJP IS ASCNTROL 
WITHIN SCHEBASE 
LOCATION MODE IS VIP.. CTRLSET 
NU1·mER IS 6 

HATCHIND; PIC 9. 
CTRLTYFE; PIC 9. 
CTRLFIL1; PIC 99. 

~ROUP IS SCHE~~D 
WITHIN SCHEBASE, Rl\NrrE IS PA(:E 1 THRlT PAr:E 1 
LOCATION HODE IS DIRECT 
NUMBER IS 7. 

Figure A-2. Schema DDL for Schema (cont.) 

106 Appendix A 



COPYPSWD: PIC X(O). 
ALTRPfH1D: PIC X (3) • 
PTRSIZE: PIC 9. 
SCHFIL 1; PIC XXX. 
SCHDATrr~; PIC X(20). 
BCHESI7.E; TYPE IS BInARY. 
!m~TPSHnS: TYPE IS B IrlJ1.P.Y • 
Nm,foNNRS; TYPE IS BInARY. 
nuru'BRs; TYPE IS BINARY. 

GROtTP IS PASSNORD 
tUTHIN SCHEBJ1.sE 
LOCATION l~ODE IS VI1\. PJ1SSNS~T 
nm1BER IS 8 

Pl\SSNP,n: PIC x (B) • 
RF.TKEYS; PIC X(32). 
UPDKEYS; PIC X ( 32) • 

GROUP IS SSCIIE1" 
WITHIN SCHEBASE 
LOC,~TION !fODF. IS VIA S~CH~fSET 
Nur-mER IS 9 

SUBSNA1'T. ; PIC X I( 3 t) • 

ACCTNBn; PIC XeO). 
SUBSDATEJ TYPE IS BINARY. 
SUBSTn~E; TYPE IS BINAPV .. 

(;ROUP IS JCNDX 
lVITHIN SCHEB]\SE 
LOCATION r"ODF. IS VI,.. P,TfiEy.~r"" 

NUHBF.R IS 10 

BE(;PnNBR; TYPE IS BI~T1t.RY. 

ENDP~NBR: TYPE IS BINARY. 
DEFNTYPE; PIC 9. 
INDXLE:VL; PIC 9. 
INDXFIL17 PIC 99. 

GROUP IS PICTURE 
l'lITHIN SCHEBASE 
LOCATION HODE :[S VIJ'I. DESC:OSF.T 
N't1MBF. R IS 11 

PICTCNT; PIC X. 
ITEPPICT; PIC X(30). 
SCALE; PIC X. 
PI CFILL 1; TYPE IS BInARY. 

GROUP IS CHECK1 
WITHIN SCHEBJ1.sE: 
LOCATION r.~ODE IS VIA nESCP~ET 
Nur·mER IS 12 

LOl'lLIT1; TYPE IS BINl'.RY. 
HILIT1; TYPE IS BINARY. 
CK1FIL1; TYPE IS BINARY. 

Figure A-2. Schema DDL for Schema (cont.) 

Appendix A 107 



r;nor:p IS CHECK2 
~'lITHIN SCHEB~SE 

LOC;'.TION l'~OnE IS VIA DFSCP~F'T 
~1UNBF.R IS 13 

LONLIT2; PIC X(16). 
HILIT2; PIC X(1ll). 
CK2FIL 1; TYPE IS BINARY. 

r;RotJP IS ALII-.S 
t'lITHIN SCHEBASE 
LOCATION !·~ODE IS VI;'. ALIJI.,SC;ET 
NUrmF.R IB 14 

(;POUP IS r,ROUPP.ET 
NITHIN SCHEBASE 
LOCATION r"ODE IS VI"- r'!RP?F'J' 
Ut1~BER IS 15 

DATNI-J.m; PIC X (30) • 
RTVLTYPE; PIC 9. 
GRFILL1; PIC 9. 

GROUP IS nAJm(;p 
WITHIN SCHEBASE 
LOCATION ~~ODE IS CALC USIrTr'! NAr"EV'ALtJ DU'PLICA'rF:8 N0T ALLOT-'TED 
NUMBER IS 1ll 

IlAMEVALU; PIC X(3(). 
PRnrNAHE; PIC 9. 
i~A"~TYPE; PIC 9. 
DUPN;'~; PIC 9. 
UM!FIL1; PIC 9 (3). 

GROUP IS INM~LINI< 
WITHIN SCHEBASE 
LOCATION MODE IS VIA INMT,BET 
UtltBER IS 17 

GROUP IS GrTAl-!LINI< 
NITHIN SCHEBASE 

1 LOCATION ,...ODE IS VII!, r,rTN'IF,S~T 

NUHBER IS 19 

GROUP IS SN A1~LINK 
WITHIN SCHEBASE 
LOCATION HODE IS VIA BrlAl'''ESET 
NUMBER IS -19 

GROUP IS GSTATS 
WITHIN SCHEBASE 
LOCATION 1~ODE IS VIA (;STATSET 
Nur-mER IS 21'1 

NB RAcsn 1 TYPE IS BINARY. 
NBRINSD; TYPE IS BINARY. 
NBRDLTD; TYPE IS BIN;'.RY. 

Figure A-2. Schema DDL for Schema (cont.) 

108 Appendix A 



r::rotJP IS SSTATS 
NITHIN SCHEB~.SE 

1* 

LOCJ1.TION ~~ODE IS VIl'_ S~TJ1.rn~r'T' 

~mHBr:R IS 21 

m:::p.nACCS; TYPE IS nIrll'_RY. 
ilr.~TACCS; TYPE IS BInARY. 
PRIRACCS; TYPE IS BIN~RY. 

SET S 
*/ 

SET IS PAS5HSET 
; OWNEr IS SCHEr~AHD 
; ORDER IS SORTED 

Imt··BER IS PASSHORD 
INCLtlSION IS APTO~'ATIC 
SELECTION :cs CURPE~!':'" 
ASCBHDItTr: KEY IS PJ1.~SNpn DfTPr.ICATF:S NnT ALI.Ot'1F.D 

SET IS SSCfU1SET 
ONNER IS SCHEr.AUD 

; ORDE'R IS SORTED 

T!El 'BE R IS 55 CHE1-.f 
InCLUSION IS AUT01.fJl""IC 
SELECTIon IS CURRF.NT 
ASCENDIlT(; KEY IS STm~!TAVF. DUPLICP-TES NOT Al.LONED 

SET IS AREASE'l' 
~ a'lt,TER IS SCHEHAHD 
: ORDER IS LAST 

I !El!BE R 1: S AREA GP 
INCLUSION l:S At:T01-1ATIC 
SELECTION IS CURREN~ 

SET IS NNmSET 
: Ol'lNER IS NAr~rp 
; ORDER IS FIRST 

l·IEl'-ffiE R IS INN-!LINK 
INCLUSION IS AUTor-'ATIC 
SF.LECTION IS CURPENT 
I.INKED TO OWNER 

Figure A-2. Schema DDL for Schema (cont.) 

Appendix A 109 



nEr,'BER IS Q,lru"LINK 
D1CLUSION IS JI,r7OT·']\TIr. 
~r:LF.CTION IS CtTRRErTT 
LInKED TO Olv'W.R 

PErf BE R IS SNA}TLIHK 
INCLUSION If; A[!TO"~]\7.IC 

SELECTIon IB CURP.FN~ 
LINKED TO OlmEp. 

SET IS (";RotTPC 
OlINE R IS AP-EAGP 

; ORnER IS LAST 

!!.E~·BEP. IS UNIT 
Ir1CI .. tTSIOn IS AU"r'O~~.n"'I(" 

SELECTIon IS CtTRRF.~lT 
LINKED TO Ol-P.'Tr.R 

BET IS Ir!DEXSET 
; Ol-ntER IS AREA~P 
; ORDER IS LAST 

nE~'BER IS IUDX 
INCLUSION IS "',t1TO~!I]1.~Ir. 
SELECTION IS CUPP.E~:rT 

SET IS GP.PRET 
: ONNE? IS tnlIT 
, ORDER IS LA..C;T 

~mrffiER IS (,;P.OUPRET 
INCLUSION I~ AUTorf.n.TIC 
SELECTION IS CtRP.F.1.TT 

SET I S ITEr~SET 
; at'7NER IS UNIT 
; ORDER IS LAST 

HE~ffiE R IS ELEl'!ENT 
INCLUSION IS Al1Tm']1,TIC 
SELECTION IS CURRF.NT 
LIl1KED TO OlitmR 

SET IS r.1E1'BRSET 
; Qt'·7NER IS UNIT 
; ORDER IS LAST 

HE1-!BER IS ASr"E1'!BEF 
INCLUSION IS AnTO~')\_TIC 

SELECTION IS CURrENT 
LINKED TO Ot'mER 

Figure A-2. Schema DDL for Schema (cent.) 

J J 0 Appendix A 



SBT I~ otvNERSET 
; m·nmn. IS mTIT 
; ORnI:R IS LAST 

!!Lr·Br.l~ IS ASOWNE:R 
I~~CLUSION IS AUTO~~;'':''TC 

SEI..ECTIOn I~ CURRFN~ 
LIlTKED TO m'H-TER 

~F.T If) DESCPSET 
; m-7ur.:n IS ELBr'l.ENr:' 
; ORDER IS I ... AST 

rrF.~fBF.R IS PICTUPF. 
IUCLUSION IS At:T0?'JlTTC 
SELECTION I~ CURPENT 

~~r'BER IS cnr:::CK 1 
nTCLVSrO!l I~ ]\.V':'OY·T)I..':'J:C 
SELECTIon IS cnnp.F.nm 

r!EITBER IS CHECl(2 
INCLUSIon IS Jl..t1TfWl'?Ir. 
SELECTIon IS CtRRF.Wr 

SET IS r~()DFYSET 
1 ONNER IS ELF,r'ENT 
: ORDER IS LAST 

r 'lEr·~BE R I S AS CNTROL 
InCLUSIO!·T IS AtTOM~_'!'IC 

SELECTION IS CPRP~N":' 
LINKED TO Ol,nmR 

SET IS SETLnTK 
; m'iNER IS ASOWtn~:R 
; ORDER IS LAST 

MEHBER IS ASPErml=':R 
INCLUSIO}T IS AT1Tor'A~IC 
SELECTIOtr IS CnRP.B!1~ 
LINKED TO m~TER 

SET IS CTRLSET 
; ONNE:R IS AS~"E!!BER 
: ORDER IS LAST 

m:r·'lBER IS ASCNTR()L 
7 INCLUSION IS AUTOH1\TIC 

SELECTION IS CURRENT 
LINKED TO ONNE R 

SET IS ALIAS SET 
; ONNER IS ASrlfEr-~IER 

Figure A-2. Schema DOl. for Schema (cont.) 

Append ix A 111 



; ORDER IS LA..C;T 

! T.I-mE R IS ll.LIAS 
INCLUSION IS AnTO~.fl\':':'Ir 
SELECTIon IS ctlRHFH'!' 
LInKED TO OHNER 

SET IS INN'ESET 
; ONNE R I S ELL~'ErlT 

; ORDER IS LAST 

:"ErmLn IS I!TAPLIrtK 
INCLUSION IS Af:TO~"ATIC 
SELECTION IS CUPPEnT 
LINKED TO ONNER 

SET IS ('mAl~ESET 
; ONNER IS UNIT 
; ORDER IS LAST 

ttr.'''BER IS GNM·LINK 
InCLUSION IS ALTOl'ATIC 
SELECTION IS CURPI.NT 
LINKED TO ON!TER 

SET IS SNAr·'!ESET 
; OWNER IS ASOWNER 
; ORDER IS LAST 

l~r:l'~BER IS SNAMLINK 
INCLUSION IS AUTor"ATIC 

; SELECTION IS CPRRENT 
7 LINKED TO at·mE R 

SET IS (.;STATSET 
; OWNER IS unIT 
; ORDER IS FIRST 

r·'!EMBER IS GSTATS 
INCLUSION IS AnTOHATIC 
SELECTIon IS CUP-REnT 

SET IS SSTATSET 
; OWNER IS ASmvNER 
7 ORDEn IS FIRST 

11EHBER IS SSTATS 
INCLUSION IS AUTO~JI.TIC 
SELECTION IS CURRENT 

Figure A-2. Schema DDL for Schema (cont.) 

112 Appendix A 



SET IS .~1<~.LT~ET 
m'nmR IS EL:crT,!'!T 

i ORDEF IS LAST 

J'u:r~Rr.R IS ALIAS 
IrlCLVSION IS ]I.PTO~',n.TIC 

SELECTImr IS CUP-REnT 
LINKED TO ONnER 

SET IS ALNAt"SET 
OT·mER I S rlM~(~p 

; ORDER IS LAST 

:lE~mEH IS ~.LIAS 
INCLU~ION IS AUTOHATIC 
SELECTIOn I S CPR~NfT'I 

LINKEn TO ONNE~ 

SET IS HDRSET 

r::ND. 

m·rNE:p. IS SCHE~~AIID 

i ORDER IS LAST 

: mrlBE f{ I S AS a-1UER 
INCLUSION IS .MTTO~IIATJ:r. 

SELECTIOn IS CT;p:-'..":'~1rr' 

Figure A-2. Schema DOL for Schema (cont.) 

Appendix A 113 



APPENDIX B. SUBSCHEMA FILE 

The subschema file contains a control block, a list structure that defines all or a part of a database for the Database 
Manager (DBM) and an optional block of name table entries. Figure B-1 illustrates the relationship among the dif
ferent categories of data within the I ist structure used by the DBM. 

The list structure contains encoded information on the structure of the database to guide the DBM in its interpretive 
execution of user's procedural accesses to the database. The list structure also contains a layout of the user's work
ing storage that will exist in every program using this subschema when processing in the database. A complete lay
out of the list structure is included in Figures B-2 through B-12. Figure B-13 shows the format of the entries in the 
optional name-table. Figure B-14 shows the subschema file directory block fonnat. 

Except for the PASSWORD definition, all the values for LIN K NEXT and LINK HEAD in the definitions are offsets 
from the beginning of the subschema, word 0 of the subschema definition. These values are translated to actual core 
locations when the subschema is read into core by the DBM. PASSWORD LINK NEXT in the subschema definition 
refers to a block number of the first block of passwords; PASSWORD LINK NEXT in the PASSWORD definition is 
nonzero for all but the last definition in the password list. 

Subschema links roughly correspond to schema set pointers, though the subschema is not a database. 

I 
I 
I 
I 
I 
I 
I 
I 

Password Li nk 

, . 
Password 

Definition 

,---------.. 
I 
I 
L - ....... 

---+ Item Definition 

Check 

• Link 

Check 
Definition 

Modify 
Link 

, , r 

Control 
Link 

Control Definition 

Item 

Link 

Subschema 
Definition 

Area Link 

" 

Area Definition ISEQ Link 

Group link 
u 

Group Definition 

Owner 
Link 

,. 
Member 
Link 

Set Member 
Definition 

Alias Link 

Alias Definition 

... ... 

, 
-

Set Link 

Figure 8-1. Subschema Definition Structure 

114 Appendix B 

,. 

ISEQ Definition 

Set Owner 
Definition 



o 2324 

Word 0 Working Storage Increment 

Number of Data Pages in Area 

2 Area Number Area Link Next 

3 Inventory Percent ISEQ Link Next 

4 Fill Percent Group Link Next 

5 Size of Index Key in Bytes Pag~ Size in Words 

Words 6 through 13 contain the area name in TEXTC format. 

where 

A = 1 if arec] has checksums. 

B = size of data-page line numbers in bits (4, 5, 6, 7, or 8). 

C = 1 if datel pages are to be enciphered. 

D = 1 if areel is to be journaled. 

Figure B-2. Area Definition 

o 7 8 9 101112 1314 1516 2324 

Word 0 X'02' ABCI DEF Working Storage Increment 

Group Number Owner Link Next 

2 Retrieve Lock Member Li nk Next 

Figure B-3. Group Definition 

31 

31 

Appendix 8 115 



0 2324 31 

Word 3 Update Lock Item Link Next 

4 Group Link Next 

5 Group Link Head 

6 Page Range Minimum 

7 Page Range Maximum 

8 Page Range Prime Value 

9 Statistics Working Storage Increment 

Words 6 and 7 are optional and present only if bit D is set. Word 8 is optional and present only if 
bit C is set. Word 9 is optional and present only if bit H is set. 

where 

A = 1 if group is stored relative to a storage set. 

8 = 1 if this is a direct group. 

C = 1 if this is a calc group. 

D = 1 if page range is present. 

E = 1 if group has any inverted items. 

F = 1 if this is an indexed group. 

G = 1 if group cannot be stored because of missing items, sets, or secondary indexes. 

H = 1 if statistics shall be generated for the group. 

I = 1 if group cannot be deleted because of missing sets or secondary indexes. 

t 
In words. 

Figure 8-3. Group Definition (cont.) 

116 Appendix 8· 



Word 0 

2 

3 

4 

Word 0 

2 

3 

0 2324 

X'03' Working Storage Increment 

G roup Number Owner Li nk Next 

Position Next Owner Link Head 

Position Prior Set li nk Next 

Set Number Statistics Worki ng Storage 

Word 4 is optiomJlI and present only ifbit A is set. 

where 

A = 1 if statistics are to be generated. 

Figure 8-4. Owner Definition 

31 

o 02122 25 26 27. 8 29 30 31 

X'04' A 8 E F G H J K L 

Group Number Control link Next 

Posi tion Next Member li nk Next 

Position Prior Set Link Next 

Figure B-5. Member Definition 

Appendix 8 117 



2324 31 

Word 4 Set Li nk Head 

5 Member Li nk Head 

6 Alias Link Next 

Word 6 is optional; it is present only if bit N is set and it is used only if bit A is set. 

where 

A = 1 if there are any a I iases defi ned for the set. 

8 = 1 if member is optional. 

C = 1 if member is manual. 

D = 1 if PAGESET member. 

E = 01 if group number is major sort key; = 10 if minor. 

F indicates set order: 0000 implies last; 0001 - prior; 0100 - sorted; 1000 - first; 1001 - next; 
0110 - sorted by group number. 

G = 01 implies duplicates first; 10 - duplicates last; 00 - duplicates not allowed. 

H = 1 if CALCSET member. 

J = 1 if selection is current; = 0 if location mode of owner. 

K = 1 if this is storage set for group. 

L = 1 if this is prime retrieval set. 

M = 1 if control items are omitted. 

N = 1 if definition is seven words; = 0 if six words. 

Figure 8-5. Member Definition (cont.) 

118 Appendix 8 



o 31 

Word 0 X'05' A 

Item Size in Bytes Fi Ie Increment 
----.--~~~~~~~~~~~~~-----------I 

2 Retrieve Loc:k Modify Link Next 

3 Update Lock Item Link Next 

4 Item Link Head 

5 Index Head Pointer 

6 Check Link Next 

Word 5 is optional and present only if bit C is set and bit F is reset. Word 6 is 
optional and prE!Sent only if bit D :..nd/or bit E is set. 

where 

A = 1 if this is control item (calc, index, or sort key on via set). 

B indicates item type: 0 implies signed number; 1 - alphanumeric; 2 - numeric; 
3 - alphabetic:; 4- binary; 5 - floating short; 6 - floating long; 7 - packed. 

C = 1 if item is inverted. 

D = 1 if there is a check on range. 

E = 1 if there is a c:heck on picture. 

F = 1 if this is an inverted item (bit C is set) and the secondary index group has been omitted 
(i. e., item cannot be modified). 

G = 1 if item is a sort key in a set which is omitted (i.e., item cannot be modified). 

Figure B-6. Item Definition 

Appendix B 119 



Word 0 

2 

3 

4 

where 

o 789 

X '06 1 

A is match indicator: 0 if equal; 1 if range. 

Control ~ink Next 

Modify Link Next 

Control Link Head 

Modify Link Head 

B is control type: 0010 implies calc; 0100 - ascendi"9 sort; 0110 - descending sort. 

Figure B-7. Control Definition 

o 23 24 

Word 0 X '07 1 Password Link Next 

Year Created (Binary) Julian Day Created (Binary) 

2 Area Link Next 

where 

A = 1 if set pointers are four bytes long (i .e., multiple area database). 

31 

B = 1 if subschema was created using the COMPONENTS ARE All option on the subschema entry. 

Figure B-8. Subschema Definition 

120 Appendix B 



Word 0 

2 

Word 0 

2 

3 

where 

o 23 4 

x·os· Password Link Next 

Password (First Half) 

Password (Sec:ond lialf) 

Words 3 through 10 contain the retrieve authority indicators. Words 11 through 18 
contain the updclte authority indicators. 

Figure B-9. Password Definition 

31 

o 9 31 

B 

Beginning Page Number 

Ending Page Number 

ISEQ Link Next 

A = 0 if overflow range, = 1 if index level. 

B = index level number, 0 through 8. (Note that index level zero actually contains the page 
range of the i nclexed data group.) 

Fi'gure B-10. Indexed-Sequential (ISEQ) Definition 

Appendix B 121 



Word 0 

J22 Appendix B 

o 23,24 31 

X'OB' Check Link Next 

Words 1 through N contain the check value(s), with N calculated as follows: 

• If check value is a picture, N = 8. The picture is in TEXTC format starting at byte 0 of 
word 1. 

• If check value is a range, N is based on the item type 

Item Type N -
Binary 2 

F I oat i ng short 2 

Floating long 4 

Packed 8 

EBCDIC 8 

If the item type is binary or floating short, the low/high values will be in words 1 and 2 and 
the total definition size will be three words. 

If the item type is floating long, the low value will be in words 1 and 2 and the high value 
in words 3 and 4. Total definition size wi" be five words. 

If the item type is packed decimal, the low/high range values will be in packed format and 
always 16 bytes in length. If item type is EBCDIC, the low/high range values wi" be left
justified in a 16-byte field and blank fi lied. In both of these cases, the low value wi II be 
in words 1 through 4, the high value in words 5 through 8, and total definition size will be 
nine words. 

A = 1 if check value is PICTURE. 

B = 1 if check value is RANGE. 

C is definition size code: 0 implies three words; 1 - five words; 2 - nine words. 

Figure 8-11. Check Definition 



Word 0 

2 

Word 0 

2 

3 

WC 

SCALDISP 

Dup 

CMPN 

Name 

Scale 

PICTCNT 

PICTURE 

o 

2324 31 

Alias Link Next 

Alias Working Storage Increment 

Primary Head Pointer 

Figure B-12. Alias Definition 

SCALDISP 
'4

1

ir6 2324 31 

CMPN WC 

Name 

NClme (cont. ) Scale PICTCNT 

PICTURE 

Word count (zero indicates last entry). 

Byte displacement to scaling factor (zero implies no scaling factor and hence n'a PICTURE). 

1 if dupl icates exist (i. e., name must be qual ified). 

Subschema increment of component. 

DATA NAME with one trailing blank. 

Number of frac:tional digits (negative value indicates unused integral digits. 

length of PICTURE (bytes). 

Character ima~,e of PICTURE. 

Figure B-13. Name Table Entry Format 

Appendix B 1~ 



Word 0 

Word 1 

Word 2 

Word 3 

Word 4 

Word 5 

Word 6 

Word 7 

Word 8 

124 Appendi x B 

o 31 

Number of Significant Words (currently = 8) 

Block Number of First Subschema Block 

Count of Subschema BI (leks 

Block Number of First Password Bl.ock 

Count of Password 'Siocks 

Block Number of First Name Table Block 

Count of Name Table Blocks 

Count of Words in Subschema 

Checksum 

Figure B-14. Subschema File Directory Block Format (Blockzero) 



APPENDIX C. SAMPLE DATAB~3E DEFINITION 

This appendix illustrates (in Figures C-1 through C-7) the vClrious aspects of the database definition function, and 
the operation of DMSFDP. The schema DDL for the sample database pictured in Figure 1 in the text is included, 
and two subschemCl DDL configurations using the schema are shown. The DMSFDP outputs in each of its two phases 
are shown, including a COpy and a SYSTEM listing. 

1···200··· EXTE~DED D~S FILF DFFTNITI6N PRBCESSRR -. VERSIBN AOn • 
• 
··.21u··· EXTE~DF.D DMS SC~FMA DOL. 

1: 1* THE DDL Ce~TAINFO IN THIS FI~E IS ERR6R FREE, *1 
2: 
3: 
41 
51 
61 
7: 
SI 
91 

10: 
11: 
12: 
13: 
14: 
15: 
161 
171 
lSI 
191 
20: 
211 
22: 
23: 
2~: 
251 
26. 
21. 
2S. 
291 
301 
31: 
321 
331 
341 
351 
361 
31. 
3S. 
391 
~Ol 

411 
1t2' 
~3' 
~., 

~51 
~6' 
It" 

SC~E~A NAME IS SAMPLESCHEMA, PRIV 6 CY LeCK FA~ 
~XT~ACT IS 'E~LeCK'J PASSw6RD IS 'PASWR01' 
RET~IEVE KEYS ARE 1~17~25 UPDATE KEY I~ 231,24' 
PA5S~eRD IS 'PASWRD2' RET~IEVE KEY IS 1 
~~DATE KEYS ARf 56~q"76. 

AREA NAME IS AREA-1 C6NTAIN~ 100 PAGES, NUMR~R IS 1 
~1\JvENT6RY 75 
, CHEC~SuM IS ~51 REQUIRrO, J8URNAL IS N8T 
HEQUIREOI ENCIPHERING IS NeT REQUIRED. 

AREA '~A"1E' IS AREA-2 C6NTAINS 50 p~GESI NU!'1B~~ 
IS 21 INVENTeRV 
PERCENT IS 50, .,jBURNAL IS I~~T REQUIRED. 

GReUp NAME Is GR8UP.l ~ITHIN AREA.1J NUMBER rS 
1001 LOCATION MeDE IS DIRECT, PRIVACY LAC( 
FBR RETRIEVE IS 11 PRIVACY ~BCK FeR u~nATE IS 
231, STATISTIC~ ARE RECUIRED. 

GR~UP NA~E IS GReUP.2 wIT~IN AREA.l RANGE l~ 1 THRU 
30~ Nu~aER IS 200J L8CATt8N M8DE IS VIA 
SET.A SET PRIVACY LeC( FeR "RETRIEVE IS 17 
PRIVACY LeCK FRR UPOATE IS 2310 

ITEM_211 pICTURE IS A(16), TypE IS CHARACTER 
PRIVACY LeCK FAR RETRIEVE IS 171 ~RIVACV 
LBC~ FeR UPDATF IS 231, 
ITEM-22 TY~E IS BINARY, SCCURS It. 

ITEM-23, TYPE IS FL8ATING ~eNG. 

GReUp NAME Is GReUP.3 WIT~IN AREA.2 ~eCATteN Me DE 
I S CA~C US I NG r TEM_32 .DUPL! CATES ARE AL~ewED' 
~UMBER IS 300, PRIVACY LeCK FeR RETRIEv~ 
IS 17 PRIVACY LBCK ~eR UPDATE IS 2.7. 

ITEM_31 PICTuRE IS ~(31) eCCURS It TIMES. 
ITEM.32, TYP[ IS C~ARACTFR,31. 

GROUp NAME IS GReup.~ hIT~IN AREA.2 RANGE Iq 1 T~RU ~5 
NU~BER IS 40~' LBCATIBN M80E IS CALC U~TNG 
ITEM.41 DUPLICATES NeT ALLSweD. 

rTEM-~l pICTuRE IS 99V991 pRIVACY LeC~ FeR RETRIEVE 
IS 1. 

ITEM __ 2 PICTURE IS AA9(4)A, 
IT£M.43 TYPE IS CHARACTEq,4, 
ITEM.44 TYPE IS BINARY. 

Figure C-1. Schema DDL Listing for Sample Database 

Appendix C 125 



481 
.91 5£T NAME IS SET.A, BwNER IS GR8Up.1J SRDER rs ;IRST. 
50. MEMBER IS GReUP.2 
511 II~C~USrSN IS AUT8MAT%C SrT eCCURR£NCE RE~ECTI8N 
521 IS ~eCATIBN MeO! ~F eWNER. 
53. 
54' SET NAME IS SET.SJ 8wNER IS aR8up.2 
551 BROER IS NEXT. STATISTICS ARE REQUIRED. 
561 MEMBER IS GReUP.3 rNC~USleN IS AUTSMATIC 
51' I~INKED T8 eWNrR. SET 8CCURRENCE SrLECTrSN 
58: IS THRU CURRENT 8F SET. 
5" 
60' SET NAME IS SET.C, AROER IS NEXT 
61' ,ewNER IS GRSUP.2, ~IN~ED T8 PRreR 
62' ,STAT[ST[CS AR~ REQUIRED, 
63' MEMBER IS GRSUP •• INC~USleN IS MANUAL 
64' SE~ECTI8N IS T~RU CURRENT SF SET. 
65. 
66' SET NAME IS SET.OJ8wNER IS GRSUP-3 
61' J eROER IS SSRTED, STATISTICS ARE 
68' REQUIRED. 
691 MEMBER Is GReUp.4 fNC~USISN IS AUTSMATIC 
101 ILINKED Te eWN£R 
11' ,SET eCCURRENC, SELECTreN IS T~RU L8CATrSN 
12. MSOE SF SwNER, ASCENOING RANGE KEV IS 
73' ITEM.41 DUPLICATES ARE N~T ALLeWED, 
7'" 
75. END. 

••• 2~7.** 
••• 20ti* •• 

Figure C-1. Schema DOL Listing for Sample Database (cont.) 

SCh£I-1A CeNTArf\S (')005 PAGE'S, 
T~t~E ~lRE 0000 nIAG~eSTIC MESSAG~S • 

AREA ~1J"lBr::R 
01 
02 

STBRA3E REQI/TREME~T C::UMMARV 
DATA P~G~S TNDrv PAG~S 

0000100 0000000 
OJ0005J oonnooo 

••• 2~1 •• * SCHEMA GEN[RATI8N ~dMPLETE. 

Figure C-2. Schema Generation Summary Output for Sample Database 

126 Appendix C 

rNVENT8RV PAGES 
0000001 
0000001 



• * •• 2C2 ••• EXTENDFO D~S S~~SC~E~. DOL. 
11 SUBSC~f~A ~A~~ IS C~B~LSU8 eF SC~E~. SAMPlFSCHEMA 
41 C6~PB~ENTS ARE SFECIFIED. 
51 
61 SFTS ARF. SET •• SET.B SET.C. 
7' 
81 ARE~S ARE ALL, Ce~~6~F.NTS ARE SPECIFIED. 
91 

101 G~eLP ~AME IS GR8UP.ll ce~~e~ENTS ARE ALL. 
11: 
121 G~eLP NAMF IS GRBUP.2.R RE~AMES GHeUP.2, CBMP8NENTS ARE SPECIFIED. 
131 Q3 ITFMu21.?2-23. 
1~1 C5 JTE~.21C, RE~.MES ITEM.?1. 
151 C5 lTE~.22.~3. 
16: C7 TTEM.22.ALT. 
17: 11 yTEM-22. 
181 07 ITEM.23. 
191 
201 GR6UP NAME IS GReUP.3, C6~peNE~TS ARE SPECIFIEO. 
211 
221 G~6LP IS GR6UP_~' Ce~p6hE~TS ARE SPECIFIED. 
e31 C2 ITEMu41. 
24: 
251 E~D • 

• *.21~· •• ~UHSCHfMA 'IlE eCCUPIES OC3 GRA~ULES • 
• ·.215· •• I~ C6RE sueSC~EMA REQUIRES OCl CbRE PAGES • 
••• 20@ ••• T~~RF wERE OOOC DtAG~6STtC MESSAGES • 
••• 2C3* •• ~U~SC~EM. GE~ER.TteN ceMPLETE. 

Figure C-3. Subschema-l DOL and Summary Output for Sample Database 

01 cee. 
02 REF.CerE C6~P VALUE ZERA, 
02 P.GE-N~ PIC 9(8), 
C2 LI~E-~A PIC 9(3), 
02 FRST-RrF CP~P. 
C? LAST-REF c~~p. 
02 GRP-~e ce~p, 
02 ER~.C6~E ce~p. 
02 EHR_N6 ce~p, 

02 ERR-REr C~MP. 
C2 PASSW6~D PIC X(8) VALUE SPACES, 
02 AREA_~e Ptc 99-

01 SET.TA~LES ce~F, 
02 SET-A, 

03 SET-e\~"R, 
03 SEr.PFfIR, 
03 SET.ClJRH, 
03 SET-hE)!T, 
03 SET -G~,j;, 

Ct? SET.e. 
Ol SET-fh~~R, 
03 SET-P~!IH. 
03 SET-ClJRH, 
03 SET-N[)IT. 
03 SE'T·G~!F". 

O(~ SET-C. 
03 SET.fH#~~. 

03 SET-pJ;rl~. 
03 SET.ClI~R, 

03 SET-"'E:XT. 
03 SET-GJ;!F'. 

01 AfoI£A.TAtsLE. 
02 AREA-1 ~IC X(~) VALUF SPACFS. 
02 ARFA_2 prc X(4) VALUE S~AC~~. 

01 GFt6UP-1. 
02 CU~R.1cO CRM~. 

01 ·GJol61.}P-~.R. 

C3 ITEM-21-22-23. 

Figure C-4. COpy Listing Corresponding to Subschema-l for Sample Database 

Appendix C 127 



• 

05 rTr~.21C PtC A(1~), 
05 rTF'''' -22-23. 

07 ITF.""-22-ALT, 
11 ITE~-2~ ce~p eCCURS C04 Tr~ES. 
o~ IT~""·23 ceMP-2,007SI, 

03 C~RR.200 C~~P, 

01 GRelJ P-3, 
03 C~RR-300 e~~p. 

01 G~eUIoJ.4l. 
02 ITFM.41 pre 99v99. 
C2 C~~R-40C C~MP, 

01 ARE.·~ASTEPS·Oe ce~p, 
02 CI,,;RH_1cOO, 
02 CALe~ET. 

03 SE~-e\tl~R. 
03 SET-PRtR. 
Ol SET-eURH. 
03 SET-~E)(T. 
03 SET-GRP. 

01 STATISTICS ee~p. 
02 GRP-STATS.l00 C~~P. 

03 SU T·eTHL. 
03 STAT-ACC. 
03 STAT·I~S. 
03 ST.6T-O£I.. 

02 SET.STATS.C002 ceM~. 
03 ST.A T-eTRL. 
03 STAT·NEXT. 
03 STAT-PRIR, 
03 ST.6T· ... £AO. 

02 SET.STATS.COOl eeM~. 
03 STAT-eTRL. 
03 5TA1."I£)(T. 
03 5TAT-P~IR. 
03 5TAT .... £AO. 

Figure C-4. COPY Listing Corresponding to Subschema-l for Sample Database (cont.) 

••• 2C2 ••• F)(TENOEO C~S SU8SC~E~A DOL. 
11 SU~SC~£~A ~A~~ IS M~TASU~ eF SC~EMA SAM~LESCHEMA 
.: I Ce~p~NE~TS ARE SPECIFIF.O. 
51 
61 SET rg SET.O. 
7: 
8: .AR~A IS A~EA.2 Ce~p~N~~TS ARE SPEtIFIE~. 

9: 
1 C I 
111 
121 
141 
151 
16: 

GPeL~ ~.A~f IS SEC~NO, RENA~ES GHeuP.41 CBMPeNENTS .ARE 
rTEM-41. 
t1£M·44. 

17: £1\;0 • 
••• 21~ ••• ~U~SeHEM' FILE eCCUPI~~ 003 GRANULES • 
••• 215··· II\; C~RE SUPSC~EM.6 ~EQUIRES OCl ceRE PAGES • 
••• 2C~- •• THERF ~ER~ coco Ot.6G~eSTtc MESSAGES • 
•• -2C3 ••• SU~SCHE~A G£~ERATIe" Ce~PLF'TE. 

Figure C-5. Subschema-2 DOL and Summary Output for Sample Database 

128 Appendix C 



foI"IU~r; 8 
eeA ~ES 0 
R~FfCACF~CCH CATA 0 
~AG~'~H~CC~ "(S,1 8 
LrNF'~R~CC8 ~FS,l 4 
F~~Tt~f.F~CC8 ~c~,l 4 
LAST'~EF~CC~ ~ES'l ,. 
GkP!~M~r.C~ ~£S,l 4 
rC~'CHDF~CCA cFS,l 4 
E~~'~A~CCfol ~FS'l 4 
f~R.~F~~C(H ~ES,1" 
PAS~~A~n~cc~ rATA 
A~F.t~~~CC~ ~~S'l. 

~6IJ~!:' ~ 

SET'TA~LES ~[~ 0 
~C::T,,,~~~ FrJl1 C 
SfT fP~ TR t~IJ 1 
SFTtCL.;~R rr.u t= 
S~T."EXT FGllJ :3 
srT!GRj;1 ~r';lJ" 

SFTtC CAT. ~,r,o,c,o 
f::I"tU"'1; 8 

A~FAtTAPLF ~E~ 0 
AJ:;EAI::? DATA , 

~~u~!:' R 
FIReT I;rs 0 
!T~~.ll R~S/1 ~12" 
rTF~t32 RFS / 1 CC31 

El"'U~!r, 4 
C1jRFt'?CO ~E~:,l 4+ 

!-IRUNC ~ 

sl='c~"r RES r.~ 
rTE~'41 Rr.S,l COC4 

~"U~C 4+ 
rT~~f44 R~~,1 CCC4 

P.RUf\'C ,. 
CUR~.4CO wE~,1 4 

~9UI\:C 8 
A~~A,~A~TrRS'C2 RrS ° 

P~UI\:C 4 
CURF'1COC~O? RES,1 ,. 
CALCSFT~C~ nATA c,o,O,o,o 

peu!\'c 8 
STATrSTTC~ QE~ 0 
STATtCTRL E~I,; C 
ST.T'ACC,STATS~EXT ~Gu 1 
ST.T'J"!'ST.T'PRJ~ EQV ~ 
STAT.r~e:L,STA·r''''EAr. Et:l' 3 
SFT'STATS'OCC4 CAT. O,c,o,c 

rr-.:D 

Figure C-6. SYSTEM Corresponding to Subschema-2 for Sample Database 

Appendix C 129 



APPENDIX D. DATABASE PAGE FORMATS 

This appendix contains Figures 0-1 through 0-5, showing detai Is of the various page formats in an EDMS database. 

0 7 18 I 19 0 2122 3,24 

Word 0 PgTy M 
Page Number W Space Avai lable 

01 F 

Control Set Pointer 

1 
Data l,auP' 

Optional Checksum 

T 
51.1 

Available Space 

l 
Pg Ty - Page Type = 01 for data page, 10 for inventory page, 11 for index page 
MWF - Must-Write Flag 

Figure 0-1. Data Page Format 

0 7 8 15116 171819 122 23124 

Line Number Group Number 
D 

Zero Group Size 
I 

Zero Control Set Pointer 
t 

Data item values - no slack bytes 

Set 1 Next Pointer 

~et 1 Next Pointer 
Set 1 Prior Pointer 

(cont. ) 

where DI is the Delete Indicator: 1 means group has been logically deleted. 

tControl Set Pointer is included only for groups defined with calc or indexed location modes. 

Figure D-2. Data Group Occurrence with Three-Byte Set Pointers 

130 Appendix D 

31 

I Page 
Header 

31 



0 7 8 151 16 171819 2223 31 

Line NumbE~r Group Number 
0 

Zero Group Size I 

Control Set Pointer 

Data Item Va lues (No slack bytes) 

--
Set 1 Next 

Set' 1 Next (cont.) Set 1 Prior 

Set" 1 Prior (cont.) Zero 

where 01 is the Delete Indicators: 1 means group has been logically deleted. 

Figure 0-3. Data Group Occurrence with Four-Byte Set Pointers 

o 24 31 

Word 0 Page Number Space Avai lable 

Area Number Zero Next Index Page Number for this Level 

2 
Number of Index Entries 

Page Number for First Index Entry on this Page 
on this Page 

~----------------------~------------~----------------------------------T-------------------~ 

3 Page n Index Entry (Assuming 3 byte Key) Page 

n + 1 Index Entry Page n + 2 

Index Entry Page n + 3 Index Entry 

Page n + 676 Index Entry 

511 
Checksum of Page (optional) 

Pg Ty - Page Type = 01 for data page, 10 for inventory page, 11 for index page 
MWF - Must-Write Flag 

Figure 0-4. Index Page Format 

Appendix 0 131 



Word 0 

511 

I I I I 

PgTy M Space Avai lable 
Page Number W (10) 

F 
(always zero) 

Area Number Next Inventory Page Number (this page numbel' + 1) 

Number of Data Pages on this 
Inventory Page t 

Page Number of First Data Page on this 
Inventory Page (page n) 

Space Availablett Space Available Space Avai lable Space Available 
Page n Page n + 1 Page n + 2 Page n + 3 

. 

Space Available Space Available Space Available Space Avai lable 
Page n + 2028 Page n + 2029 Page n + 2030 Page n + 2031 

Checksum of Page (optional) 

Pg Ty - Page Type = 01 for data page, 10 for inventory page, 11 for index poge 
MWF - Must-Write Flag 

t Always 2032 (except for last inventory page). 

l Page 
Header 

tto if page is less than specified percent full; 1 if page is exactly full; >1 = actual space available. 

Figure 0-5. Inventory Page Format 

132 Appendix 0 



APPENDIX E. SEQUENTIAL ~ILE FORMATS 

This Appendix describes the two types of sequential files that are generated and processed by Extended DMS, the 
Journal/Dump fi Ie and the Statistics fi Ie. 

Sequential files of the Journal/Dump format are created by the DBM during user program (journal) and by the dump 
and load utilities (dump format). Journal/Dump files have records in three formats: Begin records, End records, and 
Page-Image records. Figures E·-1 through E-3 illustrate these individual records. Figure E-4 shows a summary of 
the three. 

Statistics files are created by the DBM during program operation. and contain records in four formats: Job ID rec
ords, Area records, Group recClrds, and Set records. These records are illustrated in Figures E-5 through E-8. 

Word 0 

2 

3 

4 

5 

6 

13 

14 

15 

16 

Byte 0 

0 

0 

0 

area number 

Byte 1 Byte 2 I Byte 3 . 

Record type = 3 Record length = 68 

0 0 I open mode 

Date 

Time 

0 0 I 0 

0 System-Id 

Area-Name 

Account Number 

Checksum 

Figure E-1. Journal/Dump Begin Record 

Appendix E 133 



Word 0 

2 

3 

4 

5 

6 

13 

14 

15 

16 

Word 0 

2 

3 

4 

5 

6 

N+5 

N+6 

Byte 0 Byte 1 Byte 2 
I 

Byte 3 

0 Record Type = 4 Record Length = 68 

0 0 0 J Close Mode 

Date 

Time 

0 0 0 I 0 

Area Number 0 System-Id 

~ 

Area Name 

Account Number 

Checksum 

Figure E-2. Journal/Dump End Record 

Byte 0 Byte 1 Byte 2 , Byte 3 

0 Record Type 
t 

Record Length 
tt 

Sequence Number 

Date 

Time 

0 0 0 I 0 

Area Number 0 System-Id 

Data Page image N is number of actual data words, does not include empty space. 

Checksum 

tRecord type is 5 for Before- and 6 for After-Image Records. 

ttRecord length varies from 36 bytes (9 words) to 2076 (519 words), since the smallest data page image 
is 2 words, and the largest is 512 words. 

Figure E-3. Journa I/Dump Page- Image Record 

134 Appendix E 



Word Byte Begin, End Before or After 

0 () MBZt MBZt MBZt 

Record type (3) Record type (4) Record type (=5 before; =6 after) 

2-3 Record length in bytes Record length in bytes Record length in bytes 

1" 0-2 MBZt MBZt 

3 Open mode Close mode Sequence number 

2 0-3 Date Date Date 

3 0-3 Time Time Time 

4 0-3 MBZt MBZt MBZt 

5 0 Area number Area number Area number 

MBZt 
t 

MBZt MBZ 

2-3 System- Id System-Id System- Id 

6-13 Area-name Area-name tt 

14-15 Account number Account number 

16 Checksum Checksum 

where 

t 

Record length (word 0) is that of journal rect:,'d. (Record size varies from 9 to 519 words). 

Open mode (word 1) = 1 for retrieve, 2 for update, 3 for create, 4. for DMSDUMP. 

Close mode (word 1) = 0 for normal, 1 for abnormal. 

Sequence number (word 1) ' .• before start, at -1 ,~:"rJ decrementing; after start, at +1 and incrementing. 

Date (word 2) is binary halfword year an~ binary halfword Julian day. 

Time (word 3) is binary value HHMMTTTT (hour,minute,calculated time approximately milliseconds 
since last minute). 

Word 4 is reserved for use in future enhancements. 

System-Id (word 5) is a twc.,-byte binary value. 

Must be zero. 

ttEach Before/After record conl'oins a data page image in words 6 through N+5, and a checksum in word N+6 
(where N is the number of data words actually stored on the page). 

Figure E-4. Journal/Dump File Format Summary 

B t 0 B t 2 B t 3' Btl 

Word 0 

ye 

I 
ye 

I 
ye I ye 

Record-T ype='1 System-Id 

Binary Year and Day 

2 Binary Time 

Figure E-5. Statisti cs Job Id Record 

Appendix E 135 



B t 0 ye Btl ye I B t 2 ye I B t 3 ye 

Word 0 Record T ype=2 I Open Mode 
t I Area Number 

Total Page Reads and Writes 

2 Total Groups Accessed 

3 Total Groups Inserted 

4 Total Groups Deleted 

t 1 = Retrieve, 2 = Update, 4 = Create. 

Figure E-6. Area Statistics Record 

B t 0 .Y~ e Btl )y:e B t 2 .ye I B t 3 lYle 

Word 0 Record T ype=3 Group Number 

Total Accesses 

2 Total Inserts 

3 Total Deletes 

Figure E-7. Group Statistics Record 

B t 0 ·Yle I Btl we I B t 2 lyle I B t 3 .y'e 

Word 0 Record Type=4 I I Set Number 

Total FINDN Calls 

2 Total FINDP Calls 

3 Total HEAD and FINDM Calls 

Figure E-S. Set Statistics Records 

136 Appendix E 



APPENDIX F. ERROR MES~AGES 

This appendix contains error messages generated by the EDMS File Definition Processor, the Database Manager, and 
the EDMS uti lity routines, as follows: 

Source Table 

DMSFDP F-1 

DBM, Data -Dependent F-2 

DBM, Non-Data-Dependent F-3 

DMSINIT F-4 

DMSDUMP F-5 

DMSLOAD F-6 

DMSSUMS F-7 

RPCL F-8 

DMSREST F-9 

APLjEDMS F-10 

Table F-l. DMSFDP Error Messages 

Message Meaning 

***100*** REDUNDANT CLAUS E NOT ALLOWED. A clause other than password, check, ascend-
ing/descending, or condition was repeated in 
a subentry. 

*** 101 *** WITHIN CLAUSE MI! iSING. A schema-DDL group or invert subentry did 
not specify the area that is to contain 

- occurrences. 

***102*** NUMBER CLAUSE IS MISSING. An area, group, or invert subentry did not 
specify a unique identifier for the area or 
group. 

***103*** LOCATION CLAUSE IS MISSING. A group subentry did not specify a location 
mode (direct, calc, indexed, or via) for the 
group. 

***105*** OWNER CLAUSE IS t-, I\lSSING. A set subentry did not identify a group to 
participate as owner. 

***106*** ORDER CLAUSE IS M ISSING. A set subentry did not specify logical sequence 
(first, last, next, or sorted) for set occurrences. 

***107*** INCLUSION CLAUSE IS MISSING. A member subentry did not specify whether in-
clusion of member occurrences in set occurrences 
would be automatic or manual. 

***108*** SELECTION CLAUSE IS MISSING. A member subentry did not specify the method 
(current or location mode of owner) of identi-
fying set occurrences for' inking member 
occurrences. 

90 30 12C-1(6/75) Appendix F 137 



Table F-1. DMSFDP Error Messages (cont.) 

Message 

***109*** DUPLICATES CLAUSE/SUBCLAUSE MISSING. 

***110*** USING SUBCLAUSE MISSING. 

***111 *** COMPONENTS CLAUSE IS MISSING. 

***204*** REDUNDANT OPTION -- ILLEGAL. 

***205*** ILLEGAL OPTION. 

***206*** NOSCHEM OPTION IGNORED -- NO 
SCHEMA DOL. 

***218*** NOSUB OPTION IGNORED -- NO 
SUBSCHEMA DOL. 

***219*** NOCBL OPTION IGNORED -- NO SUB
SCHEMA DOL OR NO COpy FILE NAME. 

***220*** NOMETA OPTION IGNORED -- NO SUB
SCHEMA DOL OR NO SYSTEM FILE NAME. 

***221*** NOLIST OPTION IGNORED -- NO SUB
SCHEMA DOL OR NO SYSTEM OR COpy 
FILE NAMES. 

***301*** SYNTAX ERROR. 

***302*** AREA ENTRY OUT OF ORDER. 

***303*** GROUP ENTRY OUT OF ORDER. 

***304*** ITEM ENTRY OUT OF ORDER. 

***305*** INVERT ENTRY OUT OF ORDER. 

***306*** SET ENTRY OUT OF ORDER. 

***307*** MEMBER SUBENTRY OUT OF ORDER. 

***308*** END ENTRY OUT OF ORDER. 

***309*** ONLY ONE SCHEMA/SUBSCHEMA 
ALLOWED. 

***310*** UNEXPECTED END OF FILE. 
PROCESSING TERMINATED. 

***311*** PRECEDING ENTRY HAS BEEN DIS
CARDED BECAUSE OF ERRORS. 

138 Appendix F 

Meaning 

Clause was not included in an invert subentry; or 
subclause was not included with calc location 
mode in a group subentry, or with ascending/de
scending sort keys for a member of a sorted key. 

Calc or indexed location mode in group subentry 
did not name control items. 

A subschema-DDL subschema, area, or group 
entry did not indicate if components were all or 
specified. 

A contro I option was repeated. 

A control card option was not a DMSFDP option. 

A control card option has specified suppression 
of an output that could not have resulted from 
the inputs in any case. 

Any of severa I errors, such as i Ilega I characters, 
misspelling, use ofa reserved word as a name, etc. 

The DOL-required entry/subentry order has be~n 
violated. This may have resulted from an entry 
being discarded for errors. 

More than one was included. 

The last entry processed was not an end entry. 

This may cause succeeding entries to be out of 
order. 



Table F-1. DMSFDP Error Messa~~s (cont.) 

Message Meaning 

***401 *** SYMBOL TOO LONG. A name was more than ~u characters long. 

***402*** ILLEGAL VALUE. An integer value, group number, area number, 
etc. was greater than the specified limits • . 

***404*** NON-UNIQUE AREA NAME. The name specified in a schema-DDL area entry 
duplicated that of another area in the database. 

***405*** NON-UNIQUE GROUP OR SET NAME. The name specified in a schema-DDL group or 
set subentry duplicated the name of a previously 
defi ned g roup, set, or item. 

***406*** UNDEFINED AREA" The area named in a group or invert subentry 
within clo'Jse was not defined in an area entry. 

***407*** TOO MANY CONTROL/SORT KEYS. More than seven keys were specified in a calc or 
indexed location mode specification, or in 
ascending/descending clauses in a member 
subentry • 

***408*** CONTROL ITEM item-name FOR group-name The item identified by item-name was designated 
GROUP IS UNDEFINED. as a control item for location mode of calc or 

indexed, but was not defined in an item subentry 
for the group identified by group-name. 

***409*** GROUP group-name INTERSECTS INDEX/ The page range spec ified for the named group 
OVERFLOW RANGE. overlaps the range of an indexed group or the 

overflow range for the area. 

***410*** MULTIPLE INDEXED GROUPS DEFINED IN Two or more subschema-DOL group subentries 
THE SAME AREA. specified location mode of indexed and the same 

"area-name in the within clauses. 

***411 *** NON··UNIQUE GROUP OR INVERT NUMBER. The integer in a schema-DDL group or invert 
subentry number clause duplicated the number in 
a previous group or invert subentry. 

***412*** UNDEFINED KEY. A retrieve lupdate key in a schema-DDL group 
or item subentry did not match any key specified 
ina password cI ause. 

-

***413*** ITEM NAME DUPLICATES GROUP OR SET The name specified in a schema-DDL item sub-
NAME. entry dupl icated the name of a previously de-

fined set or group. 

***414*** ITEM NAME CANNOT BE UNIQUELY The name specified for an item results in a dupli-
IDENTIFIED. cation even when qualified (two items within the 

same group with the same name). 

***415*** PICTURE AN D TYPE INCONSISTENT. Specifications for picture and type in a schema-
DDL item subentry conflicted (e.g., a numeric 
picture and character type). 

***416*** ILLEGAL CHECK VALUE IN CHECK CLAUSE A check clause in a schema-DDL item subentry 
NUMBER nne contained an illegal value. The nn refers to the 

sequence of input of the clauses. 

Appendix F 139 



Table F-1. DMSFDP Error Messages (cont.) 

Message Meaning 

***417*** group-name GRO\,.;P SIZE EXCEEDS ONE PAGE •. The combination of items (including occurs) de-
fined for the named group resulted in a group 
size of more than 510 (or 509 if there is a check-
sum) words. 

***418*** ITEM NOT DEFINED IN PRECEDING GROUP. The item designated as secondary index in an in-
vert subentry was not defined in an item subentry 
for the group. 

***419*** MULTIPLE INVERT ENTRIES USE SAME ITEM. The same item was specified as the secondary 
index item in two or more invert subentries. 

***420*** UNDEFINED GROUP. The group identified as owner in a set subentry, 
or as member ina member subentry was not de-
fined in a group entry. 

***421 *** SIZE OF DATA ITEM INDETERMINATE. A schema-DDL item subentry did not include a 
picture clause, and the type clause did not in-
clude or imply an item size •. 

***422*** TRUNCATION. An integer value consisted of more than the 
legal number of digits (e.g., three digits used 
for area number). 

***423*** MANUAL OR OPTIONAL INCLUSION A schema-DDL member subentry specified man-
ILLEGAL FOR SET WHICH GROUP IS VIA. ual or optional automatic inclusion and the group 

location mode is via the set. 

***424*** UNDEFINED ITEM. An item-name specified did not match any name 
specified in an item subentry. 

***425*** SORT ITEM NOT DEFINED IN MEMBER GROUP. An item designated as a set sort key in a member 
subentry was not defined in the group specified 
as member. 

***426*** DATA ITEM NOT DEFINED IN OWNER GROUP. The item for which an alias was specified in a 
member subentry was not defined in the group 
named in the owner subentry. 

***427*** NON-UNIQUE ALIAS. The same item-name was used for two or more 
alias clauses in a member subentry. 

***428*** WARNING -- ALIASES FOR set-name SET The aliases specified in a member subentry did 
INCONSISTENT WITH OWNER'S CONTROLS. not exactly correspond to the control items for 

the owner group. For example, the owner group 
was calc using four items, and only three were 
given aliases. This situation is not illegal, only 
dangerous, and does not interfere with schema 
generation. 

***429*** FILL PCT/OVERFLOW RANGE USED IN AREA No group defined as within the named area had 
area-name WHICH HAS NO INDEXED GROUP. a location mode of indexed, making the fill per-

cent or overflow range specification meaningless. 

***430*** STORAGE/VIA SET set-name UNDEFINED. A schema-DDL group subentry specified the 
named set in a via location mode or in a storage 
subclause, but there was no set entry defining 
the set. 

140 Appendix F 



Table F-1. DMSFDP Error Messo~es (cont.) 

Message Meaning 

***431 *** STORAGE IS set-·name SET FOR group- The owner group of the named set was defined as 
nome -- AREA CONFLICT. in a different area than the group identi fieJ by 

group-nome, therefore the use of that set as the 
storage set is illegal • . 

***432*** ILLEGAL PICTURE. The character-string in a picture clouse was not 
a legal combination of characters. 

***433*** ITEM SIZE EXCEEDS 255 BYTES PER The total size of the item in the DMS group oc-
OCCURRENCE. . currence would exceed maximum item-size. 

***434*** CHECK ILLEGAL WITH OCCURS OR WHEN A restriction on the use of the check clouse was 
ITEM SIZE EXCEEDS 16 BYTES. violated. 

***435*** CAN'T INVERT ON AN ITEM WHICH OCCURS. An i;em that was defined with on occurs clouse 
was specified as the secondary index item in on 
invert subentry. 

***436*** ITEM WHICH OCCURS CAN'T BE CONTRO~ An item defined with on occurs clouse was desig-
KEY. noted as a set sort key. 

***437*** GROUP group-nome CONTROL ITEM item- The named item, specified as the control item in 
name ILLEGAL OCCURS. a location mode using-subclause for the named 

group, was defined with on occurs clouse. 

***438*** MEMBER group-nome IN SET set-name NEEDS The named set was defined as sorted, but the 
SORT KEYS. member subentry designating the named group 

did not include ascending/descending clauses. 

***439*** INCONSISTENT SORT KEY TYPE/SIZE FOR The items specified as sort keys in member sub-
MEMBERS OF set-"ame SET. entries for two or more groups did not correspond. 

***440*** GROUP NUMBER USED AS SORT KEY ON set- The order clause for the named set specified 
nome SET WHICH HAS BUT ONE MEMBER. sorted with group number as major or minor, but 

only one group was identified as a memi:Jer of the 
set. 

***441 *** OCCURRENCE SEI'..ECTION MUST BE CURRENT The set occurrence selection clouse in a member 
FOR AREA OWNER, OR FOR SETS ORDERED subentry "iolated one of the indicated restrictions. 
NEXT OR PRIOR. 

***442*** MEMBER NOT IN AREA WHICH OWNS THIS SET. Area-is-owner was specified for t~ e set and a 
group designated as a member was not defined as 
within the area. 

***443*** STORAGE IS set-nclme SET FOR group-nome -- The named set was identified as the storage set 
NOT MEMBER. in the group subentry defining the named group, 

but the group was not identified in a member 
subentry for the set . 

. . 
***444*** GROUP CANNOT PARTICIPATE MORE THAN A group was designated as both a member and an 

ONCE IN SINGLE SET. owner or as a member twi ce in the same set entry. 

***446*** MEMBER group'-name OF set-name SET GIVES The member subentry for the named group inc I uded 
ALIAS FOR item-nejlme -- NOT CONTROL an alias subclause for an item that was not a 
ITEM. control item for the owner of the named set. 

Appendix F 141 



Table F-l. DMSFDP Error Messages (cont.) 

Message Meaning 

***447*** STORAGE MASTER FOR GROUP group-name The page range for the owner of the set specified 
NOT IN INDEXED DATA RANGE -- MUST BE. in a storage subclause for the named group was 

not within the range specified for the area's in-
dexed group. 

***448>*** NO STORAGE SET SUPPLIED FOR GROUP The group subentry for the named group included 
group-nome. a storage subclause, but the specified set was 

not defined in a set entry. 

**·"'449*** MEMBER group-name OF set-nome SET The member subentry for the named group in the 
NEEDS UNIQUE OWNER. named set specified location mode of owner for 

set occurrence selection, but the owner's loca-
tion mode does not provide uniqueness. 

***450*** ILLEGAL RANGE IN CHECK CLAUSE Range of values specified in improper order. 
NUMBER nn. (I. E. LO > HI). The nn refers to sequence of input of the clauses. 

***451*** MUST HAVE CHECKSUMS ON ENCIPHERED Checksums were prohibited and enciphering re-
AREA. quested in the some area entry. 

***452*·** SORT KEYS ARE NOT ALLOWED UNLESS A member subentry included ascending/descend-
SET ORDER IS SORTED. ing keys but the set order specified in the set 

subentry was not sorted. 

***453*** CHECK ON PICTURE ILLEGAL An item subentry included a CHECK clause spec-
IF NO PICTURE CLAUSE. ifying PICTURE, but no PICTURE clause. 

***501*** PRIVACY LOCK VIOLATION. PROCESSING An attempt was made to generate a subschema 
TERMINATED. from an extract-protected schema without supply-

ing the proper key in the subschema entry. 

***502*** UNDEFINED OR DUPLICATE SET. The subschema~DDL set entry named a set not 
defined by the schema or named the same set 
twice. 

***503*** UNDEFINED OR DUPLICATE AREA. An area not defined in the schema was specified 
in a subschema-DDL area entry or one area was 
named twice in one or more area entries. 

***504*** GROUP IS IN AREA NOT DEFINED FOR The group named in a subschema-DDL group 
SUBSCHEMA. entry was defined in the schema as within an 

area that is not defined in the subschema. 

***505*** UNDEFINED OR DUPLICATE GROUP. The group specified in a subschema-DDL group 
entry was not defined in the schema or the same 
group was named in two or more group entries. 

***506*** 'ALL' OPTION ILLEGAL HERE. SKIP TO A LL was specified after specifi c areas were 
NEXT'.'. named ina subschema area entry. 

***508*** GROUP IS IN AREA WHICH INCLUDES ALL A subschema-DDL group entry specified a group 
COMPONENTS. that was defined as within an area for which a 

components clause indicated all. 

***509*** SEC INDEX FOR item-name IN group-name The named item in the named group was desig-
IS IN OMITTED AREA. nated a secondary index and the area that was 

to contain the invert group occurrences is not 
defined for. the subschema. 

142 Appendix F 



Table F-1. DMSFDP Er . .:>r Messages (cont.) 

Message Meaning 

***511 *** BAD SCHEMA -- GROUPRET EXISTS These two messages indicate a defective schema 
FOR ITEM NOT DfF,INED IN GROUP. file. Neither should occur if the schema was 
PROCESSING TERMINATED. generated s:orrectly and not subsequently 

modified. 
***512*** BAD SCHEMA -- CAN'T FIND SCHEMAHD. 

PROCESSING TERMINATED. 

***513*** ILLEGAL LEVEL NUMBER. The level number specified in a subschema-
DDL item subentry did not confCJrm to the rules 
for leve I-number sequence. 

***514*** DUPLICATE ITEM. The same item name was specified in two or 
more sub!chema-DDL item subentries. 

***515*** SET set-name REQUIRES GROUP group-name. The named set was selected for the subschema 
but the named group (which is the owner or a 
member of the set) was not. 

***516*** LAST ITEM IN PRECEDING GROUP WAS The item name h a subschema-DDL item sub-
NOT DEFINED. entry did not refer to an ite~ defined in the 

schema (not discovered unti I after processi ng 
had begun on the following group subentry). 

***517*** RENAMES ILLEGAL WITH UNDEFINED ITEM The item name in a renames clause was not the 
NAME. name of an item defined in the schema. 

***518*** ILLEGAL ALPHANUMERIC LITERAL. The size of the literal specified in a condition 
clause in a subschema-DDL item subentry was 
greater than the space allocated for it in a 
COpy record. 

***522*** EXPECTED SUBSCHEMA ENTRY NOT Input that followed the schema-DDL end was 
FOUND. 

Error Number 

2 

3 

4 

5 

PROCESSING TERMINATED. not a subschema entry. 

Table F-2. DBM Data-Dependent Errors 

Error Condition 

Space is insufficient to insert a new group occurrence in that portion of the data
base in which the group type may be placed. 

An a'~tempt was made by the DBM to retrieve an occurrence of a given group. The 
reference code used was from REF-CODE in the CCB, CURR-XXX for the group, or 
a set table for a set in which the group 'participates. The occurrence retrieved was 
not the group intended. 

Attempt was made to retrieve a group on the basis of its location mode. The value~ 
suppl ied for the control items did not define a group occurrence. 

Attempt was made to establ ish a group occurrence that violated a dupl icate clause 
for the group. 

Attempt to use FINDD with REF-CODE equal to zero. 

Appendix F 143 



Error Number 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20. 

Error Number 

30 

31 

32 

33 

144 Appendix F 

Table F-2. DBM Data Dependent Errors (cont.) 

Error Condition 

Reference code supplied for the FINDD call resulted in retrieval of a group occur
rence that was logically deleted. 

The reference code of a group occurrence to be retrieved is not present in the page. 

Page number of a data page is outside the range of data pages for the area. 

Attempt to retrieve a direct-group occurrence with value of REF-CODE eQual to 
zero. 

The area number portion of the reference code suppl ied for retrieval of a group occur
rence is incorrect. 

The area number portion of the reference code suppl ied for storing a direct-group 
occurrence is incorrect. 

Attempt to traverse a set without establishing a position in the set because of the op
tional or manual status of the set member. 

Attempt to use DELETSEL or REMOYSEL, with the object group occ~rrence the owner 
of a non empty set occurrence. 

Attempt to link a manual or optional group, with the object group occurrence already 
I inked into an occurrence of the set. 

Attempt to del ink a manual or optional group, with the object group occurrence not 
linked into an occurrence of the set. 

Attempt to store an indexed group in create mode, with the values for the index con
trol items not greater than those already in the area. 

Attempt to modi fy or store a data group where the val ues of a data item do not pass the 
data validation checks specified in the schema. 

FINDDUP of a calc group resulted in inability to find a group having duplicate val
ues for the calc control items. 

An area was opened for retrieval and the database lockout bit was set. 

Attempt to rei ink a manual or optional group, with the object group occurrence not 
I inked into an occurrence of the set. 

Table F-3. DBM Non-Data-Dependent Errors 

Error Condition 

Monitor returned a deadlock indication on an attempt to enqueue at pages in a 
shared area. 

Group to be retrieved or stored depends upon retrieval of a current owner group. 
The user has not retri eved an occurrence of the owner group. 

Attempt to use a procedure whose object is the current of group type without having 
a current occurrence of the group type. The procedures are Get, Modify, Delete 
(all forms), Link, Del ink, Rei ink, and FINDDUP. 

Attempt was made to traverse a set wi th no current posi ti on in the set. 



Error Number 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

61 

62 

63 

64 

65 

66 

67 

68 

Table F-3. DBM Non-Dak Dependent Errors (cont.) 

Error Condition 

Attempt to use the HEAD procedure without a current position in the set. 

AttE!mpt to use the FINDC procedure without having a current of the group 
type. • 

Use of FIN DG call with the object group occurrence having location mode via set. 
The' set is not sorted. 

Attempt to HEA D a set whose owner is defined to be the AREA. 

Attempt to modify a data item that is an index control item. 

Attempt was made to update an area of the database that was opened for re
trie've only. 

Proc:edural cali to open any area while execufoing in another area. 

Attempt to access an unopened area. 

Proc:edural cali without any areas open. The only calls allowed without an open 
areel are DMSTRACE, ENDTR"CE, DMSSTATS, ENDSTATS, RPTSTATS, DMSABORT, 
SETERR, RESETERR, and DMSLOCK. 

Grc)up referenced by FINDX or FINDSEQ call does not contain any inverted 
items. 

Item referenc-"d by ;:INDX or FINDSEQ call is not an inverted item. 

DMSRETRN call without an available return address. 

Password specified ~",as not allow the intended procedural action. 

Password not suppl i ed for a password-secu red database. 

An area was open for update and the database lockout bit was set. 

Either invalid argument in a procedural call, or the subschema definition of working 
stol"Oge does not match the definition in the program. 

DBM call other than release with recovery made after a previous call was 
interrupted. 

Attempt to open an area in shared mode after opening one or more in exclusive 
mode or vice versa. 

Attempt to open an area with shared mode 'and the monitor version does not in
clude enqueue/dequeue. 

ThE! users account authorization does not include use of enqueue/dequeue. 

Attempt to store a group with items or sets omitted in the subschema. 

Attempt to delete a group with sets or inverted items omitted in the subschema. 

Attempt to link or delink a group that is not defined as an optional or manual member. 

Attempt to use the FIN DG procedural call without having all of the control items 
defined for the group or its owners. 

Attempt to I ink a group in a sorted set without having a" sort keys defined. 

Attempt to modify a secondary index item or a sort control item and the invert 
grollJP or the sorted set definition is omitted from the subschema. 

Att'empt to modify a data item that is a control item and one or more other control 
items are omitted. 

Att'empt to execute a FIN DX or FIN DSEQ procedure but the inverted option has 
beEln omitted for the item. 

Appendix F 145 



Error Number 

69 

70 

71 

72 

73 

80 

81 

82 

83 

84 

85 

86 

91 

92 

93 

94 

95 

96 

97 

98 

99-101 

121 

122 

123 

146 Appendix F 

Table F-3. DBM Non-Data-Dependent Errors (cont.) 

Error Condition 

A group has been retrieved that is not defined in the subschema. 

Attempt to traverse a set that does not have the owner and all member groups defined. 

The via set has not been defined for the referenced group. 

Unable to store the new invert group occurrence for a modified secondary index item. 

Unable to store an invert group occurrence for the secondary index item value in the 
group occurrence just stored. 

The storage set has not been defined for a group. 

A group occurrence has been retrieved that is of a different size than that specified 
by the subschema. 

An operation was attempted on an indexed data group but the subschema does not 
contain a complete definition of the indexed area. 

Group establ ished to control secondary indexes is not a ca I c group. 

The subschema does not define the invert group for a secondary index item. 

Set control items are not defined correctly in the subschema. 

Sort or random control items are not defined within the group by the subschema. 

An area to be opened has not been assigned. 

An area of the database is sti" unava ilable after five attempts to open it. 

The monitor has detected an illegal operation and returned to the trap routine. 

The monitor has returned an error or abnormal code as the result of an I/O operation. 

A page read from the database or subschema has an invalid checksum or the en
ciphering key presented by the user is not correct. 

The page read from the database is not the correct page for the random block accessed. 

Dynamic core memory is insufficient to load the subschema. 

Dynamic memory available is insufficient to interface with Sort for a FINDSEQ 
procedure. 

T he memory spa ce a 110 co ted for a 

User Argument table (99) 
Area definition table (100) 
Deta i I Pushdown list (101) 

has been exceeded. 

Detail definition list is incorrect. 

Group retrieved is not defined for set accessed. 

Attempt to del ink a group with set-next zero. 



Error Number 

124 

125 

126 

127 

128 

129 

131 

133 

134 

135 

136 

137 

Message 

Table F-3. DBM Non-Data-Dependent Errors (cont.) 

Error Condition 

Attempt to link a group with set-next zero. 

Group specified by set-next cannot be retrieved. 

Group just stored cannot be retrieved to complete set linkages. 

Prior group of set cannot be retrieved. 

Gmup specified by set-prior CUIIIIUI 6e retrieved. 

Unable to retrieve the main group while in the process of deleting the invert group 
occurrence for a secondary index item. 

Unable to retrieve the invert group OCCUl""ence for the secondary index item of the 
current main group. 

Sort processor has abnormally terminated while executing FINDSEQ sort. 

ThE! main group defined by a secondary index is not retrievable. 

Un':1ble to retrieve the group occurrence that was just created. 

Inval id internal D!l~,' argument. 

Error has occurred in handling area owner group. 

Table F-4. DMSINIT Error Messages 

Meaning 

***ASSIGN CARD MISSING FOR area-name. Area fi Ie identified by area-name was not as-
signed or was not properly assigned. 

***F:DBnn NOT OUT OR IN( )UT FILE. Function assigned for the F:DBnn is not OUT 
or INOL;;. 

***1/0 ERROR F:SCHE - xx y y. An I/O error return from the monitor occurred 
whi Ie processing the schema fi Ie - xx and yy 
are the major and minor codes returned byCP-V. 

***1/0 ERROR F:DBnn - xx y: {. An I/O error return from the monitor occurred 
while processing the area fi Ie assigned to 
F:DBnn - xx and yy are the major and minor 
status returned by CP-V. 

***UNEXPECTED END OF FII ' .. E ON SI. Period missing at end of statement, or additional 
input was expected. 

***ILLEGAL RANGE. Range specified was not within data pages of 
area. 

***INCORRECT AREA NAME An area-nome specified did not match any of 
the area names in the schema. 

***RANGE NOT SPECIFIED F 'OR RE-INIT OR AN Range parameter is required to reinitialize on 
EXISTING AREA. existing area. 

Appendix F 147 



Table F-4. DMSINIT Error Messages (cont.) 

. 
Message Meaning 

***PARTIAL RE-INIT OF INDEXED GROUP RANGE OR If any pages in the indexed group's page range 
OVERFLOW RANGE NOT ALLOWED or in the overflow range are to be rein itial ized, 

all must be reinitialized. 

***ILLEGAL RE-INIT OF OVERFLOW-RANGE Overflow range may not be reinitial ized if 
indexed group range is not. 

***SYNTAX ERROR Missing equals sign or comma, misspell ing of 
AREA or RANGE, etc. 

***SCHEMA FILE IS BAD DBM ERROR CODE - xx Error encountered in schema file - xx is the 
error code returned by the DBM. 

T abl e F -5. DMS DUM P Error Messages 

Message Meaning 

***SCHEMA FILE IS BAD, DBM ERROR CODE - xx An error in the schema was· detected by the 
DBM routines used to process it - xx is the 
DBM error code. 

***INCORRECT AREA NAME An area-nome in a dump or print directive 
did not match any of the area names in the 
schema. 

***SYNTAX ERROR Missing equals sign, comma, etc. 

***UNEXPECTED END OF FILE ON SI Additional input was expected to complete on 
area, line, or group specification, or period 
was missing. 

***INCORRECT DATA PAGE READ FROM area-nome Page read from database was not the desired 
page. 

***ILLEGAL DIRECTIVE Directive not PRINT or DUMP. 

***ILLEGAL PASSWORD Password not given or it was not a correct one. 

***ILLEGAL RANGE Range specified was not within the area. 

***ASSIGN CARD MISSING FOR area-nome Area file identified by area-name was not as-
signed or not correctly assigned. 

***1/0 ERROR F:SCHE -- xx yy An I/O error return from CP-V occurred while 
processing the schema file - xx and yy are the 
major and minor codes returned by CP-V. 

***1/0 ERROR, F:DBnn -- xx yy An I/o error return from C P-V occurred on area 
file assigned to F: DBnn - xx and yy are the 
major and minor codes from CP-V. 

***1/0 ERROR F:DUMP -- xx yy An I/o error return from CP-V occurred on se-
quential output file - xx and yy are the major 
and minor codes from CP-V. 

148 Appendix F 



Table F-S. DMSDUMP Error Messages (cont.) 

Message 

***BAD LINE # OR GROUP LENGTH 

***CHECKSUM ERROR OR PROPER CIPHER KEY 
REQUIRED 

Meaning 

Duplicate line numbers, zero group lengtn, or 
inval id group length found on page being pro
cessed. Contents of page are printed in hexa
decimal following this message. 

Either there was a checksum error, or the cipher 
key was not the proper key, or not in correct 
input order. The checksummed page is printed 

" 

following this message. Cherksum for the page 
is the last word printed. 

Table F-6. DMSLOAD Error Messages 

Message Meaning 

***SCHEMA FILE IS BAD, DBM ERROR CODE - xx An error in the schema was detected by the 
DBM routines used to access it - xx is the 
error code returned by the DBM. 

***INCORRECT AREA NAME An area name in a LOAD, TAPE, or PRINT 
directive did not match any of the area names 
in the schema. 

***INSUFFICIENT MEMORY FOR DMSLOAD Not enough core space can be obtained for 
buffers. 

***ASSIGN CARD MISSING FOR area-name Area file identified by area-name was not as-
signed or not properly assigned. 

***CIPHKEY /NEWCKEY NOT REQUIRED Cipher key or new cipher key was specified 
for an area that is not enciphered. 

***ILLEGAL RANGE A range specified for an area did not corre-
spond to the size of the area, was I ess than 
one, or was greater than the area size. 

***UNEXPECTED END OF FILE ON SI The input directive was incomplete, perhaps 
missing only the period. 

***ILLEGAL DIRECTIVE Directive identifier was not LOAD, TAPE, 
or PRINT. 

***SYNTAX ERROR Any of severa' format errors: missing comma, 
parenthesis, etc. 

***1/0 ERROR, F:SCHE -- X;I( yy An I/o error return from the monitor occurred 
while processing the schema file - xx and yy 
are the major and minor codes returned by 
CP-V. 

***1/0 ERROR,AREA#=nn -_. xx yy An I/O error return from the monitor occurred 
whi Ie processing the area whose number is 
specified by nn - xx and yy are the major and 
minor codes returned by C P-V. 

Appendix F 149 



Table F-6. DMSLOAD Error Messages (cont.) 

Message Meaning 

***1/0 ERROR, F:LOAD -- xx yy An I/o error return from the monitor occurred 
while reading the dump or journal file input-
xx and yy are the .major and minor codes re-
turned by CP-V. 

***1/0 ERROR,F:DUMP -- xx yy An I/o error return from the monitor occurred 
while writing the sequential file output - xx 
and yy are the major and minor codes returned 
by CP-V. 

***BAD LINE # OR GROUP LENGTH Duplicate line numbers, zero group length, or 
invalid group length found on a page being 
processed. Page in question is printed in 
hexadecimal following this message. 

***CHECKSUM ERROR OR PROPER CIPHER KEY Either there was a checksum error, or the cipher 
REQUIRED key was not the proper key, or not in correct 

input order. The checksummed page is printed 
following this message. The checksum for the 
page is the last word printed. 

***WRONG INVENTORY PAGE -- xxxxxxxx The page that was read in was not the inventory 
page expected. xxxxxxxx is the number of the 
desired page. The page read is printed in 
hexadecimal following this message. 

Table F-7. DMSSUMS Error Messages 

Message Meaning 

***CANNOT OPEN STATISTICS FILE Statistics file was not assigned or did not exist. 
Processing is terminated. 

***STATISTICS FILE WRONG FORM The first record read from the statistics file was 
not a job ID record. Processing terminates. 

***1/0 ERROR ON STATISTICS FILE An error return from the monitor occurred while 
processing the statistics file. Processing is 
term i nated • 

***CANNOT OPEN SCHEMA FILE The schema file does not exist, is not assigned, 
or is read-protected. Processing is terminated. 

***1/0 ERROR ON SI An I/O error return from the monitor occurred 
while reading input. Processing is terminated. 

***SCHEMA FILE IS BAD An error return from the DBM routines used to 
process the schema occurred. Processing is 
terminated. 

***UNRECOGNIZEO SELECTION Selection specification was not AREA, GROUP, 
or SET. Remaining selection input is scanned 
for errors but no statistics wi" be printed. 

***INCORRECT AREA NAME A specified area-name did not match any of 
the area names in the schema. 

150 Appendix F 



Table F-7. DMSSUMS Error Messages (cont.) 

Message Meaning 

***SYNTAX ERROR Missing comma, equals sign, etc. Remailling 
input is scanned. 

***USE OF ALL MADE SPE( :IFIC SELECTION ILLEGAL ALL may be used only once and no other se-
lection is legal after ALL. Remain ing input is 
scanned but no statistics are printed. 

***UNEXPECTED END OF f:ILE ON SI Missing period or partial sel ection was spec-
ified. Processing is terminated. 

***INCORRECT GROUP N) ~ME Group-name specified was not in schema. 
Remaining input is scanned but no statistics 
are prirted. 

***INCORRECT SET NAME Specified set-name was not in schema, remain-
ing input is scanned but no statistics are 
output. 

Table F-8. RPCL Error Messages 

Message Meaning 

UNDEFINED ENTRY -- SKIPPED DMSANLZ"does not recognize the first word 
in the RPCL entry as a lega I entry type. 
The entry is skipped. 

ENTRY IS ILLEGAL DUPLICATE OR OUT OF The entry is not in the correct sequence 
ORDER -- ENTRY SKIPPED within the RPCl or it is a duplicate of a 

previous entry. The entry is skipped. 

SYNTAX ERROR -- SKIPPING TO NEXT ENTRY The syntax of the entry violates the RPCL 
form for the entry. The entry is skipped. 

CIPHER KEY EXCEEDS 4 CHARS IN LENGTH -- The cipher key for an area is greater than 
IGNORED four ch'Jracters. The cipher key is ignored. 

FILL PERCENT IS NOT IN 'RANGE 1-100 OR IS GREATER The indexed group fi II percent specified for 
THAN FILL PERCENT IN T)~RGET SCHEMA an area in the RPCL is either an illegal per-

centage value or is greater than the fi" 
percent for the area in the target schema 
DDL. 

MAX NUMBER OF SERIAL NUMBERS EXCEEDED Assembly parameter limit for maximum num-
ber of schema or area volume serial numbers 
has been exceeded. For AOO, this limit 
is 10. 

DATABASE AREA MUST BE ON RANDOM DEVICE The volume serial number clause specified 
a device type for a database area that was 
other than DP. 

AREA NOT EXCIPHERED -- CLAUSE MEANING LESS A cipher key has been specified for an area 
that is not enciphered. The clouse is ignored. 

Appendix F 151 



Table F-S. RPCL Error Messages (cont.) 

Message 

AREA HAS NO INDEXED DATA GROUP -- CLAUSE 
MEANINGLESS 

UNDEFINED AREA -- ENTRY SKIPPED 

TARGET AREA MUST BE DATABASE FORMAT 

FILL PERCENT MEANING LESS FOR SOURCE AREA 

DUPLICATE CLAUSE -- ILLEGAL 

PRIVACY KEY EXCEEDS 8 CHARS IN LENGTH -
IGNORED 

ILLEGAL NONNUMERIC LITERAL -- SKIPPING TO 
NEXT ENTRY 

ILLEGAL CHARACTERS IN VOLUME NUMBER 

VOLUME SERIAL NUMBER HAS ILLEGAL NUMBER 
OF CHARS 

PASS NOT IN WEIGHT FACTOR SEQUENCE 

UNDEFINED GROUP 

DUPLICATE GROUP SPECIFICA nON 

152 Appendix F 

Meaning 

An indexed group fi II percent has been 
specified for an area that does not con
tain an indexed data group. The clause 
is ignored. • 

The area name specified in the RPCL area 
entry is not defined in the source or target 
schema. The entry is skipped. 

User attempted to specify a target area in 
DMSDUMP format. 

An indexed group fi" percent clause has 
been specified for a source area. The 
clause is ignored. 

A clause has been il/egaJly duplicated. 
The clause is ignored. 

The length of a schema privacy key is greater 
than eight characters. The key is ignored. 

Either the closing apostrophe for a non
numeric litera I has been omitted or the user 
attempted continuation of a nonnumeric 
literal across multiple input units. The 
entry is skipped. 

A volume serial number contains characters 
other than A through Z and 0 through 9. 

The number of characters in a CP-V volume 
seria I number is greater than four, or the 
number of characters in an ANS labeled 
tape volume serial number is not 6. 

A pass sequence subentry attempted to vio
late the rules for ordering load passes. 

A group has been specified in a preserve or 
pass sequence subentry that is not defined 
in the target schema. 

The user specified a group in more than one 
preserve or pass sequence subentry, or the 
same group appeared more than once in a 
single preserve or pass sequence subentry. 



Table F-8. RPCL Er"-Jf Messages (cont.) 

Message Meaning 

UNDEFINED AREA The area named in a load subentry is not 
defined in the target schema. 

CAN'T PRESERVE CALC OR INDEXED GROUP The user specified a group whose location 
mode is ca Ic or indexed in a preserve 
subentry. 

ATTEMPT TO LOAD GROUP group-name AHEAD OF ITS A pass sequence subentry specified the 
STORAGE MASTER named group to be loaded prior to loading 

its storage set owner or in the same load 
pass as its storage set owner. 

CAN'T PRESERVE GROUP JHAT SHARES PAGE RANSE A group which resides in the same page 
OF INDEXED DATA GROUP range as an indexed data group has been 

specified in .J preserve subentry. 

Tab Ie F-9. D,v'l: REST Error Messages 

Message 

DCB F:WFnn ASSIGNED TO UNRECOGNIZED DEVICE 

DCB F:WFnn NOT ASSIGNED TO FILE, LABEL, 
OR ANSLBL 

SORT ERROR n 

I/O ERROR AT LOC nnn IN name CODE nn SUBCODE nn 
ON dcbname 

n K WORDS ADDITIONAL MEMORY REQUIRED 

Meaning 

DCB F:WFnn is assigned to a device type 
that is not recognized by DMSREST. The 
device types recognized are DP, 7T, and 9T. 

DCB F:WFnn has an explicit or default de
vice assignment. Assignment must be to 
FILE, LABEL, or ANSLBL. 

DMSREST has linked to the XEI\OX SORT 
program and the sort has completed with 
error code n. See the Xerox Sort and 
Merge Reference Manual for an explana
tion of error codes returned by SORT in 
register 6. 

A error or abnorma I return was made by the 
monitor to the I/O CAL near location "nnn" 
in DMSREST module "name". The message 
includes the error code and subcode along 
with the DCB referenced. 

Insufficient memory is avai lable to 
DMSREST. A memory increment of at least 
nK words is required. 

Appendix F 153 



Table F-9. DMSREST Error Messages (cont. ) 

Message 

ERROR nri ... FILE INCONSISTENCY IN fi lename 

ERROR nn ... PROGRAM FAULT ... REPORT TO 
XEROX ANALYST 

154 Appendix F 

Meaning 

DMSREST has detected a fi Ie error, where 
code nn is: 

21 - fi Ie I/O error 

22 - fi Ie I/O abnormal 

23 - number of blocks processed do not 
equal number of blocks required 

24 - block or database page number 
transmitted is not the one required 

25 - checksum or encipher error in block 
or database page 

26 - RPCC recovered from wrong check
point file 

27 - number of records processed do not 
equal the number of record required 

28 - invalid record length 

29 - invalid origin for a block or data
base page 

30 - illegal line number present in data
base page 

31 - available space invalid in data
base page 

32 - duplicate line number present in 
database page 

33 - too many SNs present 

34 - SN lost by monitor 

A program error nn has occurred from which 
recovery is not possible. 



Table F-l0. APt /EDMS Errors 

Error 
Code Message Text Commenls 

501 INSUFFICIENlf SUBSCHEMA FOR APL./EDMS OR FILE If file named in DMSSUB call 
NAMED IN DMSSUB NOT SUBSCHEMA is indeed a subschema, then it 

was created by a DMSFDP 
version before COO. 

502 CHECKSUM ERROR IN SUBSCHEMA FILE 

503 DMS CALL AFTER FATAL ERROR nnn HAS OCCURRED nnn is error code listed in 
Table F-3. 

504 lIIo ERROR READING SUBSCHEMA FILE The monitor error code is 
avai lable via APL ERRX 
intrinsic. 

505 FIRST EDMS CALL NOT 'DMSSUB' 

506 NO DCB AVAILABLE FOR AREA TO BE UPENED 

508 EDMS PUBLIC LIBRARY IS NOT IN ':P22' 

509 ATTEMPT TO EXECUTE DMSEN D OR DMSSUB WITH 
ACTIV E AREAS 

510 ILLEGAL DIGH IN ZONED OR PACKED ITEM VALUE 

511 VALUE IN NUMERIC OR PACKED h;:.'.~ WILL NOT FIT 
IN FLOATING LONG NUMBER 

512 ARGUMENT NAME NOT IN NAME TABLE 

513 NON-UNIQUE ITEM REFERENCE WAS NOT 
(~UALIFIED 

514 UNABLE TO ASSOCIATE ITEM-NAME WITH 
QUALIFIER 

515 TRUNCATION 

516 ATTEMPT TO ASSIGN NEGATIVE VALUE TO UNSIGNED 
HTEM 

517 DMS CALL WITH NO OPEN AREAS 

518 ATTEMPT TO EXECUTE OPEN CALL WITH ACTIVE AREAS 

519 CAN'T GIVE YOU ERROR CONTROL-ERROR FUNC IS 
NOT NYLADIC:, NO-RESULT 

520 LOAD, CLEAR, OFF, CONTINUE AND SAVE 
COMMANDS NOT LEGAL WITH ACT1VE AREAS 

9030 12C-1 (6/75) Appendix F 154-1 



APPENDIX G. DATA VALIDATION 

EDMS provides for the validation of data item values when they are stored or modified in the database. Through 
clauses in the Schema DDL, validation may be specified against a picture of the item and a range of values for the 
item. 

If picture validation is requested, the value of each character in the item is compared to a set of allowed values for 
the corresponding picture character. If the values do not agree, a data dependent error is returned. The picture 
character and the allowed val ue'~ for EBCDIC items are: 

Picture 

9 
A 
X 

Values ---
Hexadecimal FO-F9 (numeric values only) 
Hexadecimal C 1-C9, D l-D9 and E2-E9 (alphabeti c values) and hexadecimal 40 (space). 
Hexadecimal OO-FF (all values). 

If the item type is signed numeri c, the a !lowed va lues for the low order character position are AO-A9, 80-89, 
CO-C9, DO-D9, EO-E9 and FO-F9. Packed decimal values are checked to ensure that each half byte contains a 
valid numeric value, i.e., 0-9. If the number of characters in the item is even, the value of the first half byte of 
the item must be zero. The half byte for the sign character 's checked for a hexadecimal value in the range A through 
F, inclusive. 

If range validation is requested, the value of the data item is compared to the converted values for the literals sup
pi ied in the check clause of the DDL. The item valu( must be equal to either I iteral value or it must be greater than 
the low I iteral and less than the high literal. Vt"! Idation against a single value may be accompl ished by using the 
same literal for the low and high values in tne DDL check clause. The user is cautioned against using this approach 
for the extremes in floating point short and floating point long values. Different programming languages may con
vert the same literal to different floating point representations. The File Definition Processor converts literals in the 
DDL by using the same routines as the Xerox C OBUl compiler. If a program is written in FORTRAN or Meta-Symbol, 
literals supplied for item values may not be converted to identical floating point representations. The DBM may thus 
return an error condition if a range of values was not specified in the check clause. 

When comparing signed numeric or numeric EBCDIC item values to the literals, the DBM will ignore the first half 
byte 'of each character position except the low order character. In the low order character position hexadecimal 
values A, C, E or F are considered as a positive sign and val ues B or D as a negative sign. 

The DBM uses the decimal instruc:tions of the hardware for comparison of packed decimal values. Thus, sign values 
A, C, E and F are considered pOliitive and values Band D as negative. 

In the comparison of data items 1'0 range literals, no check is made to en .. ure that the characters in the item are 
valid characters for the item tYPE!. This is only done for picture validation. 

Appendix G 155 



APPENDIX H. ENOUEUE/DEQUEUE 

The DBM uses the enqueue/dequeue function of the CP-V operating system to control the interaction of programs 
concurrently accessing an area of the database. The enqueue function provides for control of a global resource (the 
database area) and/or an element of that resource (a page of the area) at two levels, shared use or exclusive use. 

The DBM issues ~n enqueue request for shared use of an element just prior to the read of each page from the area. 
If the request is successful the page is locked to the program for shared use. If the request is not successful, the 
program is suspended by the operating system until the request can be satisfied. When an element is enqueued for 
shared use, other programs may also enqueue the element for shared use (i. e., can read the page). 

The DBM issues an enqueue request for exclusive use of an element just prior to modifying the data page in the DBM 
buffer. If the ,request is successful the page is locked to the program for exclusive use. If the request is not success
ful the program is suspended until the request can be satisfied. The operating system will not allow an enqueue re
quest for exclusive use if some other program has that element enqueued for shared use. Once an element is enqueued 
for exclusive use no other program may enqueue that element for shared use. 

When the user program issues a DMSRLSE procedural call or closes the last open area, the DBM will dequeue all 
elements locked for that program. Other programs that may have been suspended because of conflicting enqueue 
requests may then be placed back in execution by the operating system. 

Through DBM use of enqueue/dequeue, concurrently executing programs are protected from interfering with each 
other. When the DBM sends a page andretumsdata or a set position to the program, that data or set position cannot 
be changed by another program until the reading program explicitlyreleases the page. When a program has updated 
a page no other program may read the modified data or set pointers until the updating program releases the page. 

As previously stated, each DBM enqueue request is for a global resource (the area) and an element (a page) of that 
resource. The area is defined in the enqueue request by a 3-byte hashed value of the area name and the account 
under which it exists. The page is identified by the 20-bit EDMS page number. A hashed value is used in place of 
the full area name and account number to reduce the space and time required in accessing the operating system en
queue tables. When a hashing technique is used there is a possibility that the values derived from two or more area 
names may result in duplicates. If this should occur the result would be an overprotection of the programs accessing 
the two areas. The user should also be aware of the conflicts that may result if the enqueue/dequeue function is 
used in a program to protect a resource other than a database area and that resource has the same resource name as 
a database area. 

A program has been included on the EDMS release tape to enable the user to identify potential conflicts in resource 
names. This program, named Hash, reads area name/account number pairs through M:SI DCB. The format is 
AREA-NAME.ACCOUNT-NUMBER. Each pair must begin on a new input record (i.e., card, edit line etc.). 
Output is through the M: LO DCB and is the 3-byte hash value derived from the A REA-NAME/ACCOUNT -NUMBER 
pair. The hash value is displayed as six hexadecimal characters. 

Following is a sample run of the program. 

IBUILD BASHVALUE 
1.000 AREA-l.a93AA3JP 
a.ooo MF8-D8-01.0131 
3.000 OUR-DATABASB-ARBA-Ol.MYACCT 
4.000 

ISET M.51 DCIHASHVALUE 

IHASH. 
AREA-I. G93AA3JP 
HASH VALUE ~.eB4a15 
MJ'8-D8-01.0131 
HASH VALUE • 69DF64 
OUR-DATABASJ-AREA-Ol.MYACCT 
HASH VALUE • 43FDJPB 

156 Appendix H 



APPENDIX I. DMSREST PROCESS FLOW 

'Assign Sou~J 
Ba .. Page J 

Phase 1: Unload 

Sort 

Figure 1-1. DMSREST Flow Diagram 

An Unlood process is scheduled for each source 
dotabase area. Group occurrence unloading is 
accomplished by a sequential read of all source 
database poges. Unload processes ore scheduled to 
be executed in the order of AREA DO L statements 
for the source database. All unload processes are 
scheduled to be executed be rare the following 
processes. 

A Sort process is scheduled for each source database 
area containing INDEXED groups. This is an ascend
ing sort of the INDEXED groups unloaded from a 
source area. The sort keys are the INDEXED groups' 
key items. These sort processes are scheduled to be 
executed before the following processes. 

A Set Recovery process is scheduled for each source 
database area containing the owner groups of sets. 
One process wi II recover those sets that control the 
storrge of a group (i.~., the STORAGE set of a VIA 
or DIRECT group), The other process will recover 
those sets that do not control the storage of a group. 

All Set Pointer Extract processes are scheduled 
immediately after each Set Recovery process (3). 
This extract process produces the data necessory to 
rei ink the target database reference codes (CRCO) 
and to recover the source database base poge for 
every group occurrence that is controlled by a 
storage set. 

A Sort process is scheduled for all source areas con
taining groups that are controlled by a storage set. 
This sort orders the extracted base poge reference 
codes to permit an orderly update of groups that are 
controlled by a storage set. 

An Assign Source Base Page process is scheduled for 
all source areas containing groups that are controlled 
by a storage set. This process basically updates the 
member group occurrences with their recovered 
source database base poge. 

A Sort process is scheduled for all source areas con
taining groups that are controlled by a storage set. 
This sort orders the groups so that their recovered 
source database base poge can be converted into 
target database base poge values by a later process. 

Appendix 1 157 



9 

158 Appendix I 

Sort 

Assign Target 

Base Page 

Sort 

Phase 2: Load 

A Sort process is scheduled prior to a load pass for 
groups that are controlled by a storage set. This 
sort orders the source and target database base page 
so that the target database base page may be as
signed to member group occurrences by the next 
scheduled process. 

An Assign Target Base Page process is scheduled prior 
to a load pass for groups that are controlled by a stor
age set. This process basically updates these group 
occurrences with their actual target database base 
page prior to loading them. 

10 A Sort process is schedu led for a II group occurrences 
that are to be loaded in the next load pass. This sort 
orders group occurrences according to the data load
ing sequence criteria. 

11 A Load process is scheduled for each load pass neces
sary to meet the DMSANLZ default or user influenced 
data loading sequence. Group occurrence loading is 
accomplished by a sequential update of some target 
database pages. Any group that controls the storage 
of another group through a storage set, causes source 
and target base page reference codes to be saved 
(CSMR) for later use in loading such storage controlled 
group occurrences. The source and target database 
reference codes of each loaded group occurrence are 
saved (CGOR) to permit relinking the target database 
sets and inverted group occurrences. 

Figure 1-1. DMSREST Flow Diagram (cont.) 



[

4 

~Jpdate 

L_so..,.r_t_ .... 

r," 
L~pdate 

[~-.-rt_-J 

~
9 " 

Relink and 
Vall~date 

Phase 3: Relink and Validate 

13 

Sort 
12 A Sort process is scheduled after t~e last scheduled 

load process (11). This sort orders all source and 
target database reference codes of the loaded group 
occurrences so that the set pointer and inverted group 
source database reference codes may be assi gned thei r 
equivalent target database reference code values. 

13 A Sort process is scheduled to order all set pointer 
and inverted group source database reference codes. 
This sort orders the 5.iUrCe database location of these 
reference cod~s so that they may be assigned their 
target database '''cation by the next process. 

14 An Update process is scheduled and assigns the target 
database location to eoch source database set pointer 
and inverted group reference code. 

15 A Sort process is scheduleci to order all source database 
set pointer and inverted group reference codes on 
their source database values. This sort permits the 
assignment of target database reference codes to 
these set pointer and inverted group source database 
reference codes by the next process. 

11 An Update process is scheduled and assigns the target 
database reference code values of each set pointer 
and inverted group occurrence. 

17 A Sort process is scheduled to order all set pointer 
and inverted group occurrence reference codes on 
their target database locotions. 

'I A Sort process is scheduled to order all locations of 
loaded group occurrences. . 

18 A Relink and Validate process is scheduled for each 
target database area. This process relinks all set 
pointers and inveri-.#d groups by substituting target 
reference codes for their source reference codes. The 
set pointers are validated to assure that this substitu
tion is correct. All target group occurrences are 
validated to verify that no source group occurrence~ 
were lost and that no spurious target group occurrences 
were loaded into the target database area by DMSREST. 

Figure 1-1. DMSREST Flow Diagram (cont.) 

Appendi x I -159 



20 

Sort 

21 

Update 

Sort 

Wrap Up 

160 Appendix I 

Phase.4: Wrap Up 

20 A Sort process is scheduled to order all DMSREST 
detected source database errors on their source data-
base locations. This sort permits the assignment of 
target database locations to these errors by the next 
process. 

21 An Update process is scheduled and assigns the target 
database location to each source database error de-
tected by DMSREST. 

22 A Sort process is scheduled to order al/ DMSREST de-
tected source and target database errors on their target 
database locations. 

23 A Wrap Up process is scheduled to report all source 
and target database errors detected by DMSREST, and 
to produce a correspondence fi Ie of a /I source and 
target database reference codes. 

Figure 1-1. DMSREST Flow Diagram (cont.) 



APPENDIX J. SAMPLE DATABASE RESTRUCTURING 

This appendix illustrates variou:s aspects of the Restructuring Subsystem and the operation of DMSAN LZ and DMSREST 
(see Figures J-l through J-12). The database being restructured is the sample database of Figure 1 in this manual. 
The source database schema DD L is presented in Figure C-l; the target database schema is that shown in Figure J-l. 
The DMSANLZ and DMSREST outputs and an IFID file catalog listing are provided. 

* •• 200*.* EXT~NDED DM~ ~Z~~ DEFINITI6~ PR~CESSeR .~ VERSleN BCO~ 

•• *210*.* EXT~NDEn DM~ StHEMA DDL. 
t: SCH~MA ~AMr IS SAMPLESCH~M4~~Dj PR'VACV L6~~ F~R 
2' EXTRACT IS 'EXLRCK', PASS~BRD IS 'PAswRD1' 
l: R~TRIEVE KEYS A~E 1111 UPDATE KEy 1S 231'247 
~; p.Ss~eRD IS 'PASW~D2' RET~rEVE KEv IS 1J17 
51 pASS~eRD IS 'PASWR D1" 
6: AREA NAM~ IS A~EA·l C6NTAINS 100 PAGESI ~u~aE~ Is 1 
1 j!NVENT6RV MO 
8 J~H£CKSUM IS ~fQUIREDI JB~RNAL l~ NBT 
9 R~QUIRE~; f.NtIP~E~ING IS ~eT REGUIRED. 

10 ARE~ NAME IS AREA.? C6NTAINS leO pAGES~ ~UMBER 
11 I::. 2} tNVE"'T~RV 
12 ~~RCENT IS 80; J6URNAL IS N6T REQUIREU. 
13 GR~UP ~AME IS GR~UP.l ~ITHIN AREA_II NUM8E~ IS 
14 100; LBCATl6N ~6DE IS DIRECTI P~IVACY L6CK 
15 F~R R[TRIEVE IS 1) PRIVACY LecK FeR U~OATE IS 
16 2~lJ STATISTlts ARE REQUI~ED, 
17 GR3UP NAME IS GR~UP.2 WITHP ARE:A .. 1 
lBI NUMBER IS 2001 L~:~T!~N MeDE IS VIA 
191 S~T·A Sf.T P~lVACY LeCK FBR RETRIEVE Ib 1 
20: P~IVACV L~CK F~R UPDATE I~ 231. 
211 tTEM-211 PICTURE A(16) Tyg~ IS CHARACTER 
22' P~IVACY LACK faR RFTRIEVf IS 111 PRIVACY 
231 L~CK ~A~ UP~ATE IS ?31. 
2~1 ITEM·2~ TYPE IS ~lN~RV; RCCURS ~. 
25' ITE~-23J TYPE IS ~L~ATING LeNG. 
~61 GRB~P ~AME IS GR6UP.3 WITHIN AREA.2 ~A~GE 1 TH~U 50 LBCATIBN ~~DE 
271 IS CALC USIN~ ITEM-32 DUPLICATES ARE ALL8wEO, 
28; NUMBER IS 300; PRIvACY L6eK FeR ~ETRI~VE 
29: IS 17 PRIVACY LeCK FeR UPr.AT£ IS 247. 
301 IT~M~31 PICTURE X(31' ~CCU~S ~ rIMES. 
311 ITE~·32i TYPE IS ~HARACTER'31' 
32& GR~UP ~AME IS ~R~UP~4 WITHIN A~EAw2 ~A~GE 'S !1 THRU 100 
33: NU~BER IS 400, L6CATIeN M~DE IS CALC USING 
34' -lTEM-41 OUP~ICATES NeT AL~eWED PMIVACT LeCK FBR RETRIEVE IS 17 
351 P~IVACY LBCK FeR UPDATE IS 2.'. 
361 ITE~-41 PICTURE IS 99V99. 
371 ITEM-42 PfCTURE IS AA9(4)A PRIVACY L~CK F6~ RETRIEVE 
181 IS 11, 
391 ITEM.43 TYPE IS CMARACTER,4. 
40' ITEM-4. TYPE IS ~lNARY. 
411 S~T NAME IS SET-AI eWNER IS GReUP~11 e~DER IS FIRST. 
421 ME~BER IS GR6UP.2 
~3t J (~CLUSleN IS AUTRMATIC SET eCCUR~E~C~ SELECTI6N 
441 IS LSCATI6N M6DE RF eWNER. 
4S1 SET NAME IS SET.~' eWNER IS aR6uP.2 
_61 eROER IS NEXTJ STATISTICS ARE REQUIREU. 
4', MEMBER IS GReUP.3 INCLUSIBN IS AUTB~ATIC 
481 J~INKEO T~ 6WNERi SFT ~CC~RRENCE SELE~Tle~ 
49: IS THRU CURRENT eF SET. 
501 S£T NAME IS 5E1.C, eROER IS NE~T 
51' I~WNER IS G~~UP.2J LINKED Te PRle~ 
521 J~TATISTICS ARE REQUI~EO. 
531 MEMBER IS GR6Up.4 INCLusrBN 15 MANUAL 
541 S~LECTIeN 15 T~RU CURRENT SF SET. 
551 SET NAME IS SET.O~ eWN£R IS GReUP_l 
56: J BROER IS S6RTEDJ STATISTICS ARE 
511 R~QUIRED. 

Figure J-l. Schema DD L Listing for Sample Target Database 

Appendix J 161 



58: MF~egR IS GR6UP •• INCLUSle~ IS AUT6~ATIC 
59: J~INKED T~ ~wNER 
60: ~~~T 8CCVR~ENCF SEL.ECTleN IS T~~U L~CATle~ 
~1: ~~CE e~ eW~~~J .SCENOING ~ANGF KEY IS 
~21 ITfM.~l DUPklCATES ARE N6T ALta~ED. 
~3: E.t\,Q. 

··.207*** SC~e~A C~NTAIN~ 0005 PAGES • 

• ·.20~ ••• THE~E WERE COOO OlAGN8STIC ~ESS4GES. 

01 
02 

DATA p.lGE'S 

0000100 
0:)00100 

INDEX PAGES 

00001')00 
ooooono 

INVENTeloCy PGS 

~O~OOOl 
JOOOOOl 

TeTAL. PAliES 

OOOOlel 
0000101 

Figure J-l. Schema DOL Listing for SampJe TCI'get Database (cont.) 

0~:30 JUL 181'7~ 'J~SANLZ FILE,REL.EASE 

C'JR~E"JT e~T I eNS: Le3 

00:30 
1 a 
!I 
31 
• 1 
51 

W~RK" a 
S~RT. 17 

BUFF~RS· 2 

BLeCK. 20~8 

F' I LE 

REI.E::ASE 

CI-IECKSUM 

CIPHE.R 

Figure J-2. DMSANLZ Control Command Option Listing for Sample Schema Analysis 

JUL l!,f,_ * •• PRe C E S S C e N T R eLL A N G U AGE 
seURCE SC~EMA IS SA~PLESCHEMA pRIVACY EXTRACT 'EXL6CK'. 
TARGET SC~EMA IS SAMPLESCMEMAMeo PRIVACy EXTRACT 'EXL6CK" 
seURCE AREA AREA-l OMSOUMP SAMPOBOUMP. 
seURCE AREA AREA.! OMSDUMP SAMPceou~p • 
END. 

.T~ERE WERE 000 OIAGN6ST%C ~ESSAGES 

RPCL PReCESSING C6MPLETE 

Figure J-3. DMSANLZ RPCL Listing for Sample Schema Analysis 

l62 Appendix J 



00:30 JUL 18,'74 • * * C e ~ ~ B ~ ~ N TAN A ~ Y S % S 
PA~S~eRDS A~D/MR ACC~SS CBCES C~ANGED 
!NVFNT6RY PE~LENT OF AREA AREA.1 CHA~G~O 
CH~CKS~M ePTI~N BF A~EA AREA_1 C~ANGED 
ACLESS KEVS ~f GRBUP GReU P.2 C~A~uEO 
PAbE RANGE OF GReup GR6UP.2 CHA~U~D 
INVENTeRY PE~~ENT OF AQEA AREA_2 CHA~G~O 
DATA PAGES eF AREA AREA-a CHA~GEO 
ACL~SS KEVS e~ G~OUP G~euP.4 C~ANGEO 
P~~E RANGE 8F GRHUP GR~UP •• CHANGED 
AC~ESS KEYS e~ ITEM ITEM.41 IN G~~UP GMOUP.~ CHANGED 
ACL[SS KEYS Bf ITEM ITEM.42 IN G~~UP GMBUP.4 C~ANGEO 

THtRE We:~E 

TH~RE \oje:~E 

11 L,EGAL CHANGES 

o ILLEGAL CHANGES 

• • * 

Figure J-4. [)MSANLZ SouJrce and Target Schema Component Analysis Listing for Sample Schema Analysis 

00:30 JUL 18,'14 

PASS STEP AREA 

2 

:3 

13 

17 

19 AREA.2 

• • • OAT L. C1 A C SEQ U ENe E • • • 
GROUPS LeADED 

Figure J-5. DMSANLZ Target Database Load Sequence Listing for Sample Schema Analysis 

00:30 JllL 1'1, I, .. 

!F'rD (jRII\~~S 

CCDG GFPjUP.~ 

INPl;T F1L.ES 
IF'IO FXL.E N~"4~ 

eUTPuT I'IL.ES 
IF'JD F'XL.E 1\j~I'!E 

CCOG ccnG-0,,2"' 
C:SKO C!;I(O-0002-
CRee enee.0002-
CEGR Cr.GR-OJ02. 

GROUP ... 

STt.P CREATfD 

D~"'P 

oc~ 

FlwF02 
FlwF'OIt 
F,WF'05 
F'IWF06 

. . . 

BY DEV let. CIP"'EREC ACCet~IIiT V6L.~"'ES 

PlJtsL.Jt. I\e 

OEVICE CIP~EREC 

PI,.I:5I.It. f\e 
Pl.ttLlt. f\8 
P~tsLJt. f\e 
!llJttLlt f\e 

Figure J-6. DMSANLZ Scheduled Process Sequence Listing for Sample Schema Analysis 

Appendix J 163 



~O:30 JUL 11!, 17,. . . . 5 C ... E !) U L E. D ,.. 101 e c E' S S S E Cil \. E ~ C £ • • • 23 

STEP: l~ ~~~CESSI L.eAO LOAO GR6LP OCCUR"E~C[5 I"'Te URGET A"fA A~fA·2 

(]Rel,;'"'S 

GReU"'-3 IJROUP ... 

I .... P\,iT ~lL.ES 
IF'10 ~ILE N."E STt.P e~EA TE'O BY OEVICt. CIpwEIoIEC ACcel..I'IT VeLI."'ES 

eTOG CTca-OOll3- 1~ Pl"tH.IC I\,e 

"UTPuT "IL.ES 
1FID FIL.E NA"E CCB DEVICE CIP"'E,A£C 

CSMA CS.MQ-001'- ~1"'F01 fll,,~LIC I\,e 
C('JeR CG!R-0019- FI"'FO" PI,,~LIC; 1\,8 
CEGR CEGR-0019- F,,,,,F06 P\"~L.lt. 1\8 

t~euT F1LoES 
1F'IO FIL.E N''''E STI:.P CREATED BY DEVItt. CIP"'ERED ACCOUNT veL\,,"!S 

TOBA ARE"-2 USER "'\"tlLIC; lIIe 

Figure J-6. DMSANLZ Scheduled Process Sequence Listing for Sample Schema Analysis (cont.) 

:lJ:30 JUL 18, , 71+ S C M f U ..; L t t; F' I L F. l. S .to G '= 37 

lq~ '"fLE "'A~F' DI:.VIC. trPH BYTS snp C~FATEC iSV STEPS I"SECBv veL"'''rS 

SJBA 'aMPUBOu"'P ~\..tlLIC "'6 2Cll.8 C\."'.- - I..,.,I.C 

:con CCOG-COO1· r.>\J~i..IC "'6 12 • 1"I\,LC If! · SRTS 

:vOG CVOG-OOOl- "l.I~L.IC '1'3 J!lI. - I,; I\, LC 6 .. AStlP 

C51(O C!:iKO-OOO1- 5Jl.IbLIC ,.,,, 
e'" • IJM.C 3 • PFlse 

8 • PFlse 

c~ce C,"Ct!-~OOl· PlieL.IC "e fl., • ",I\,LC 21 · SRrA 

Ce:G~ CfGIo1-COO1- IJ\';~LIC 'lie 32 · \.~LC 2' · SRTA 

5'BA S.MIJU~DU"'P PI..t:lL.IC III" 2::-8 DI.."''- 2 - I,.NI.O 

CCOG CCOli .. :OO?· "1,j~1.1C 'lie t9~ 2 - l.;~LC 18 .. 5RTS 

C51(I) C51(0·OO02- PI,,~I.IC "'e ?- 2 - I,;I\,LC 8 · PFlS8 
10 .. ppse 

Cqc'j c~ce-COO?· PU~L.IC "ott 2- 2 .. l.;I\,LC 21 • SRTA 

CECiQ C'E'C;IoI·COOC'· Pl.itJL.IC ,,~ 3? ? .. 1,."'1.[; 29 - SRTA 

csr-, CSTtI·COC3. PI,;/:SL.IC "'" 2- 3 .. PI'S" -· xSET 

CS" ":STe .. Ooo~· PUIiII.IC ~e " .. .. · )(5ET 5 • SRTA 

C.;jce Cqcet·coo,.. 5:lUt!LIC ~e 2- • · )(5ET 21 - SRTA 

CEGR C£OIoi·OOO .... Pl.ItiL.IC I>.e '32 • · )(5ET 29 .. SRTA 

CSTe c<;re-oOOs· PI,j~LIC ... e 2" 5 • s"rA 6 - ASSP 

Figure J-7. DMSANlZ Scheduled File Usage listing for Sample Schema Analysis 

164 Appendix J 



0~133 JU~ 18~'14 CI'1Sl'<e:ST 

CURRENT eF'TIBNS: ~eG 

wtH~KII 8 

SFjRTa 11 

BUFft.R'SI 2 

BI.6CK. 20~8 

F'Il.E 

REI.EASE 

C~ECKSUH 

C:IPHER 

Figure J-8. ()MSREST ~ontrol Command Option Listing for Sample Restructuring 

:)):)3 JUL HI,' 7~ STE, ... 2 .J"'Lr: .. uNLeAD G~~LP eCtuR~F~C~S F~P~ S"~"CE AlifA 3 

IFIO FILE DeB & 1/1" 'i t'Ri.JA"'. FI\.f. IIIA"'e: ~II, ~PCC t;ATAL,ttG eYTE SIlE eF: M","8ER e' j:'ILEI 
STA TL.S TVPE Ot.vYC:E ACCESS Ii F'lofeTEI.Tle'" ATTRIB\..n:s Bl.ACK "ECeRD t:lL.6eKS REce"Cs 

S)EU SAvEr, FIWF'08 I "'''''l, 1 I; A'''''''' SA~PlJl:lr" .. p ;?r76 2Clt8 50 90 
FIL.E I<>U6LIC Cl~eCT C~:CKSV'l"'EO 

CCO:; SAvEC F:wF02 6UTJ;LIT ce ... ~E.C CC~r,·OOO2·~P~593 1~72 195 ~ 90 
FILE" Pl.ltlLIC Sf(~li~N C"'ECKSvl"'''''I:,C 

A~:·~'T C1911lJP 

C51(0 SAII~r. FIIIIFO". eu,pt.T Cer-,;SEC CS~O·0'02·~~6S93 ::».,_8 l'''' 3 1~0 

FIL.E PUt:lLtC C;e:';uEI\j C~ECKSv"''''!:.C 
ACC~I."'T ~19113JP 

c:~ce UNuSED F:WF05 eUTPl."T C6"'SEC CRce·OO02·2~6593 2~-~ "". 0 0 

CE3R U"'uSED FlwF06 etUTPVT Ce .... SEl. CEGR·OOC?·~~6SQ3 e'02. :a2 0 0 

ELAPSEO STEP TIME oleo STEP EXECuTte", TIME J.037;' STEP SE~VICE Tt"'E" 0·0312 61 360 

0:>135 JUL PI, • "~ STEf> l~ ~6AD •• ~eAC G~evp eCC~~RE~CES II\TI:I TAIOGET AHEA 23 

IQO FILE DC~ & 1/6 ~ 'HH;A"J. FIl.E /\jAr-'f: III, RPCC CAULBG eYTE SIlE eFI "'UI"eER e" FILEI 
su TUS TYPE Dr.v !CI~ ACCESS ~ ~~BTE~Tlell, ATT~rB~Te:s SL.RCI( IOEceRC t;~eCKS RECeltOI 

CTOG SAvED FlwF09 IN'"'L.T ceNSEC CT~G·O~1~·c~6595 1972 t~5 R 90 
F'I LE "'~JtlL I r. SEtOUE'" C''''Ec.:KS\.i'''~E:.C 

ACC~L.~T ~19113JP 

CS"'I~ U~USE'D FlwF'Ol 6UT"U'r ceNSEC CS~Q·OOt9·~~~5q~ ?,.,-S 12 0 C 

C:GB~ SAvfC FlwF"O_ ItUTj:'.,rr cer-..SEC CG~~·Oj19·~~6!95 20-8 12 90 
FILE PU~LIC SE(,lUEN C"'ECKSI.i"'~E.D 

ACC'v~T K19113JP 

CEGQ UNUSED FIWF06 6UTPu'r Ce"lSEC CEGQ·O~19·~865~S 21'\2_ 32 0 0 

T!JSA SAvED FIIo/FOS INeWT RA"lDeM 1I~F:A·2 21')"8 20_8 100 0 
FIL.E I<>UBLIC DI~ECT CIoIECKSU"''''ED 

E~APSED STEP qME 0100 S'rEP EXEC\.iTye", TIME J.0!et3 STEP SERvICE TI~e: e·0321 109 180 

Figure J-9. DMSREST Executed Schedu led Process Sequence Listing for Sample Restructuring 

Appendix J 165 



01:38 Jl.iL 1!!' '? .. . . . " ~ C C C A T A L e G U E 0 F I L t. S L I S T 1 ~ G • . • 
::v'Ja ~~l~"St:: 1="1 .. ·03 OvT~\.;T C~"'SEC Cv~G·OJ06-~~~593 2--:28 s- a 

"lL- "'J'"!LIC SE'~uEN C~Et.J(S~"'~EO 

C'IOG ~e:L~'5E l=": wF 03 f:!UTI:IUT C~'I,SEC CVca·0107·c~6593 ::?~28 s- 2 
Fllf ,",Vl;!llC SE,(.lU[N C'-'E c.-. 51,,""'[0 

CSTe QrLr"SE "I .. FO. "UT~UT ce~SEC CST!·O~O!!-~~65q. 2~"8 fI- 2 
FIL~ '"UoLIC !;e::;UEN CIote:CKSU"'I"EO 

=~ce QrLE4SE Fp.FO!5 t1UT~lJT C6"SE.C CF:lC~·OOO9·2"':t59" ?O-8 2-
FILE PU~LIC SEr.UEN CIoIe:CI(SU"'''''EO 

CSTe ~e:LEASE FIIoFO. ttVTOUT C8NSEC: cSTe-OOtO-c8659- " ..... 8 2- 2 
FILE PUSI.IC SEQu£,N C~Ec.;I(SI,,"'''EO 

c~ce ~e:LEASE FlIoF05 t:lUT~UT CBNSEC CRC'·OOll·c8659- '~"8 l.!- 2 
FILE Pl.JcLIC SE~U£,N CIolECKSUI"IMEC 

C:::lR FJEl.EA5E Fpi':"06 eUTI'UT ce"'SEC CEGR-0011-~a659_ :I{"!_ ~2 

FIL.E IIUSLlC !;Er.lUEN CIo4ECKSU"''"'EO 

CTJG S4vEO F,"'':07 ttUTPUT ce~SEC: CTOG·OO12·c~6!q. ?~28 32 
FILE Il'VI:SLIC SE:JUE~ CHECI(SU"'~EO 

T'BA SAVED Fp.Foe P\f~L:T ~."oe~ ARfA-l 2e-e 20 .. 3 100 
Fll.E PUi:!LIC Dl~ECT C'-'[CKSu"''''ED 

Figure J-lO. DMSREST RPCC Cataloged Files Listing for Sample Restructuring 
(Listing Produced as the Resu It of CATALOG Keyin) 

G~~u~ G~~~P- .. ce~TAI"S ~AU ~~A~ ~~I~T~~ A~ ~¥TE ,q ~e~ SET SFT-G -- se~~CE ~EAC pel~'E~ ~AS 

C?OO~SOl s~eulO ~AVl 9F~' ~?C~~9:1 _. seURCE ~~e~p RE~CBCE WAS O~OC'lc2 
•• TA~GEI G~~U~ ~~~~~c£ IS O~005901 

Figure J-ll. DMSREST Error Summary Listing for Sample Restructuring 

166 Appendix J 

-
30 

3C 

1!50 

2?e 

90 

120 

10 

~o 



41 : 
OMSREST - WILL ACCEPT OPERATOR INTERRUPTS 

41 : 
DMSRES T - UNL D 0001 
00:33 

41 : 
QMSREST - UNLD 0002 
41 : 
OMSREST - PPSR 0003 
tINT ,41 

41 : 
DMSREST - XSET 0004 .1 : 
DMSREST - INTERRUPTED BY OPERATOR, YOU MAY INPUT: 
41 : 

41: 

41: 

41: 

41 : 

41: 

IGNORE .• TO IGNORE VOUR INTERRUPT 

PAUSE •• ,TO PAUSE DMSREST AFTER CURRENT STEP 

GO 

•• TO TERMINATE DMSREST AFTER CURRENT STEP 

•• TO CANCEL YOLR PRIOR • PAUSE' OR 'BREAK' 

CATAL OG ~. TO LIST ALl. FILES AFTER CU!':RENT STEP 

QUIT •• TO IM~DIAl'El Y TERMINATE OMSREST 

[)MSRES T - YOUR INPUT I GNCIRE 

00:3-

-, : 
OMSREST - YOU'RE IGNORED 
41: 
DMSREST - SRTA 0005 

Figure J-12. DMSREST Operator Console listing for Sample Restructuring 

Appendix J '67 



APPENDIX K. DMSREST SEQUENTIAL FILE FORMATS 

This appendix defines the forrr ..... t of the sequential file generated by DMSREST that may be accessed by a user. This 
fi Ie is the Conveyed Group's Reference Code (CGRC) fi Ie that is produced by the wrap-up process of DMSREST. It 
contains a record for each group occurrence conveyed from the source database to the target database. The record 
includes the referens:e code for the group in the source database and in the target database. 

Byte 0 I Byte 1 Byte 2 I Byte 3 

Word 0 Checksum or zero 
Number of DMSREST step 
that created the file 

Sequence number 
t 

2 Group number in target database 

3 Group's reference code in target database 

4 Group number in source database 

5 Group's reference code in source database 

tSequence numbers start at one and are incremented by one. 

Figure K-1. Conveyed Group's Reference Code (CGRC) Record Format 

168 Appendix K 



INDEY. 

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed 
in numeri cal sequence. 

! DMSFDP options, 30 

A 
adding occurrences, 37 
alias, 25 
AREA clause, 28,60 
area entries, 13,27 
area name, 13 
AREA NAME clause, 13 
area number, 13 
AREA statements, 54 

B 
backward pointers, 24 
beginning of processing, 36 

c 
CHEC K clause, 19 
checkpointing, 50 
checksum, 13 
CHECKSUM clause, 13 
CLOSAREA call, 50 
C LOSEDB call, 50 
COBOL call format, 34 
COBOL clause, 27 
combination public and shared library, 52 
comments, 11 
commun i cations control block, 33 
COMPONENTS clause, 28,29 
CONDITION NAME clause, 29 
continuation, 11 
CREATE call, 36 

o 
data definition languagE~ syntax, 9 
data item name, 18 
dota item type, 18 
data pages, 6 
data relationships, 2 
data val idation, 117 
database fi Ie structure, 6 
database initialization (DMSINIT), 54 
database manager, 32 
DBM DCB requirements, 52 
DBM operational interface, 52 
DBM routine call format, 32 
DBM routine usage, 36 
DCB assignments, 31,53 

deadlock, 49 
deci pheri ng, 57 
DELETAUT call, 39 
DE LETE call, 39 
deleting occurrences, 39 
LJ c: u: : S E L co II , 39 
DE LIN K call, 41 
DMSABORT call, 48,49 
DMSCHKPT call, 50 
DMSFDP opera~ ional interface, 30 
DMSFDP outputs, 10 
DMSINIT, 60 
DMSLOAD, 62 
DMS LOAD directives, 58 
DMSLOCK call, 48,49 
DMSRETRN call, 48,49 
DMSRLSE call, 49 
DMSSTATS call, 46 
DMSSUMS, 63 
DMSTRACE call, 46 
DUMP directive, 57 
dump directives, 57 
dump processor (DMSDUMP), 54 
DUMSDUMP, 61 
duplicate invert group occurrence, 20 
DUPLICATES clause, 20 

E 
enciphering, 14,37 
ENCIPHERING clause, 14 
EN D entry, 25,30 
END S TAT S co II, 46 
ENDTRACE co:!, 46 
error control, 48 
error messages, 102 
error processing, 50 

F 
fjle definition processor, 9 
fj Ie name for the schema fi Ie, 12 
fj les used by the database restore processor, 62 
fj les used by the dump processor, 61 
fi II percent, 14 
FILL PERCENT clause, 14 
FINDC call, 43,42 
FINDD call, 43,42 
FINDDUP call, 44,42 
FINDFRST ca", 44,42 
FINDG call, 43,42 
FINDLAST call, 44,42 
FINDM call, 43,42 
FIN DN call, 43,42 

Index 169 



Note: For each entry in this ind'8x, the number of the most significant page is listed first. Any pages thereafter are listed 
in numerical sequence. 

FINDP call, 43,42 
FINDS ca", 44,42 
FINDSEQ call, 44,42 
FIN DSI call, 44,42 
FINDX call, 44,42 
FORTRAN call format, 34 

G 
GET call, 45 
group, 2 
group area, 16 
GROUP clause, 60 
group entries, 14,28 
group identifier, 17,20 
group name, 16 
GROUP NAME clause, 16,28 
group subentries, 15 

H 
HEAD call, 45 

INC LUSION clause, 24 
index pages, 8 
invent subentry, 20 
INVENTORY clausE~, 13 
inventory pages, 8, 13 
INVERSION clause, 29 
INVERT clause, 20 
invert group, 20 
item, 2 
item name, 18 
item subentries, 17,29 
item type, 18 
item value occurrences, 19 
itemless group, 15 

J 
JOURNAL clause, 14 
journal file, 14 
journaling, 51 

L 
level number, 29 
LINK cali, 41 
LIN KED TO OWNER clause, 24 
LIN KED TO PRIOR clause, 24 
LOAD directive, 58 
load processor (DMS LOAD), 57 
location mode, 16 

170 Index 

LOCA nON MODE clause, 16 
locks, 12 

M 

MEMBER clause, 24 
member subentries, 24 
META clause, 27 
meta-symbol call format, 34 
MODIFY call, 40 
modifying data values, 40 
modifying linkages, 40 
moving to working storage, 45 

N 

name checking, 27 
NEXT pointer, 4 
nonnumeric literal, 20 
NUMBER clause, 13, 17,20 
numeric literal, 19 

o 
OCCURS clause, 19 
OPENRET call, 36 
OPENUPD call, 36 
OPRETSHD call, 36 
OPUPDSHD call, 36 
ORDER clause, 22 
OVERFLOW clause, 14 
overflow pages, 14 
overview, 2 
OWNER clause, 22 
OWNER pointer, 4 

p 

PASSWORD clause, 12 
passwords, 12 
picture, 18 
PICTURE clause, 18 
pointer modes, 23 
PRINT directive, 57,58 
PRIOR pointer, 4 
PRIVACY clause, 27 
privacy lock, 12, 17, 19 
PRIVACY LOC K clause, 12, 17, 19 
punctuation, 11 

R 
range of a group, 16 
RELINK call, 41 
REMOVE call, 39 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed 
in numerical sequence. 

REMOVSEL call, 39 
reserved words, 9 
RESETERR call,48 
retrieving specified group occurrences, 42 
RPTSTATS call, 46 
run-time statistics, 45 
run-time tracing, 46 

s 
sample database definition, 90 
SCHEMA clause, 12 
schema entry, 12 
schema fi Ie, 65 
schema generation, 12 
secondary index item, 20 
SE LECTION clause, 24 
sequentia I fi Ie formats, 98 
set, 2,3 
SET clause, 60 
set entries, 21 
set entry, 27 
set name, 22 
SET NAME clause, 22 
set occurrence, 21 
set order, 23 
set owner, 22 
set position for a new member occurrence, 23 
set subentry, 21 
SETERR call, 48 
sets with two or more member groups, 4 
statistics, 17,24,45,51 
STATISTICS clause, 17,24 
statistics selection, 60 
STORE call, 37 

subschema entry, 26 
subschema fi Ie, 80 
subschema generation, 25 
SUBSCHEMA NAME clause, 27 
summary statistics, 17 
summary statistics collection, 51 
summary statistics processor (DMSSUMS), 59 
system functions, 6 

T 
TAPE directive, 58 
termina I usaqe, 31 
terminating processing, 50 
total nonshared library, 52 
trace table, 47 
track information, 46 
TYPE clause, 18 

u 
utilities operational interface, 60 
uti lity processors, 54 

v 
validity check, 19 

w 
WITHIN clause, 16,20 

Index 171 



XEROX Publication Revision Sheet 

20424 
2C478 

APRIL, 1976 

CORRECTIONS TO THE XEROX EXTENDED DATA MANAGEMENT SYSTEM (EDMS) REFERENCE MANUAL 
(Xerox 560 and Sigma 6/7/9 Computers) 

PUBLICA TION NO. 9030 12C, December, 1974 

The attached pages contain changes reflecting the BOO version of EDMS restructuring which is a non-supported 
product. All changes marked by revision bars are not in the standard product; they are only in the product released 
from the Usc~r's Group I ibrc:llry. 

Pages in the C edition (and C-1 revision package) that are to be replaced are: 9, 65-70, 73-74, 83-84, 85-88, 
and 91-94. 

File No.: 1 X33 

Printed In U.S.A. 
XP82B. Rev. 0 

XEROX-I. elredemerk 0' XEROX CORPORATION. 9030 12C-2(4/76) 



XEROX 

Reader Commen1t Form 

! We would IIppreciate your commants and suggestions for improving this publication 

Publication No. IR ... L.tt·~L I Current Date 

I 

How did you use this publication' Is the material presented effectively? 

0 Learning [J Installing 0 Sales o Fully Covered o Well o Well organized o Clear o Reference o Maintaining 0 
Illustrated 

Operating 

What is your overall rating of this publication? What is your occupation? 

o Very Good [J Fair o Very Poor 

o Good [J Poor 

Your other comments may bet entered here. Please be specific and give page, column, and line number references where 
applicable. To report errors, please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form. 

I 

I 
I 

I 

j 
.. 

Your name & Return Address 

r 

Thank You For Your Interest (fOld & fasten as shown on back. no postage needed if mailed In USA.) 



PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms 

IIIIII 
BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 59153 LOS ANGELES,CA 90045 

POSTAGE WILL BE PAID BY ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
5250 W. CENTURY BOULEVARD 
LOS ANGELES, CA 90045 

ATTN: PROGRAMMING PUBLICATIONS 

Honeywell 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

w 
z 
:J 
CJ z 
o 
-' 
c( 

I
:l 
U 

I 
I 
I 
I 
I 
I ~ 
I :J 
I CJ 
I Z 41(9 

c( 

o 
-' o 
~ 

w 
Z 
:; 
CJ 
Z 

..... 0 
-' 
c( 

o 
-' o 
~ 



Honeywell Information Systems 
In the U.S.A: 200 Smith Street, MS 486. Waltham, Massachusetts 02154 
In Canada: 2025 Sheppard Avenue East. Willowdale. Ontario M2J 1 W5 

In Mexico: Avenida Nuevo Leon 250. Mexico 11. D.F. 

23001, 2.5C379, Printed in U.S.A. XP82, Rev. 0 


	0000
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073-0
	073-1
	073-2
	074-1
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098-00
	098-01
	098-02
	098-03
	098-04
	098-05
	098-06
	098-07
	098-08
	098-09
	098-10
	098-11
	098-12
	098-13
	098-14
	098-15
	098-16
	098-17
	098-18
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154-0
	154-1
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	_01
	replyA
	replyB
	xBack

