USER GUIDE

FM-1000[™] **Integrated Display**

Version 2.00 Revision A Part Number 93023-20-ENG November 2009

Agriculture Business Area

Trimble Navigation Limited Trimble Agriculture Division 10355 Westmoor Drive Suite #100 Westminster, CO 80021 USA

 $trimble_support@trimble.com\\www.trimble.com$

Legal Notices

Copyright and Trademarks
© 2009, Trimble Navigation Limited. All rights reserved.

Trimble, the Globe & Triangle logo, AgGPS, EZ-Boom, EZ-Guide, EZ-Steer, and Tru Count are trademarks of Trimble Navigation Limited, registered in the United States and in other countries. Autopilot, Autoseed, AutoSense, EZ-Office, FieldManager, FM-1000, FreeForm, VRS, VRS Now, T2, Tru Application Control, TrueGuide, and TrueTracker are trademarks of Trimble Navigation Limited.

For STL support, the software uses the Moscow Center for SPARC Technology adaptation of the SGI Standard Template Library. Copyright © 1994 Hewlett-Packard Company, Copyright © 1996, 97 Silicon Graphics Computer Systems, Inc., Copyright © 1997 Moscow Center for SPARC Technology.

Microsoft, Windows, ActiveX, Excel, and Internet Explorer are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

All other trademarks are the property of their respective owners.

Release Notice

This is the November 2009 release (Revision A) of the FM-1000 Integrated Display User Guide, part number 93023-20-ENG. It applies to version 2.00 of the FM-1000 integrated display software.

Legal Notices

The following limited warranties give you specific legal rights. You may have others, which vary from state/jurisdiction to state/jurisdiction.

Product Limited Warranty

Trimble warrants that this Trimble product and its internal components (the "Product") shall be free from defects in materials and workmanship and will substantially conform to Trimble's applicable published specifications for the Product for a period of one (1) year, starting from the earlier of (i) the date of installation, or (ii) six (6) months from the date of original Product shipment from Trimble. This warranty applies only to the Product if installed by Trimble or a dealer authorized by Trimble to perform Product installation services.

Software Components

All Product software components (sometimes hereinafter also referred to as "Software") are licensed solely for use as an integral part of the Product and are not sold. Any software accompanied by a separate end user license agreement ("EULA") shall be governed by the terms, conditions, restrictions and limited warranty terms of such EULA notwithstanding the preceding paragraph.

During the limited warranty period you will be entitled to receive such Fixes to the Product software that Trimble releases and makes commercially available and for which it does not charge separately, subject to the procedures for delivery to purchasers of Trimble products generally. If you have purchased the Product from an authorized Trimble dealer rather than from Trimble directly, Trimble may, at its option, forward the software Fix to the Trimble dealer for final distribution to you. Minor Updates, Major Upgrades, new products, or substantially new software releases, as identified by Trimble, are expressly excluded from this update process and limited warranty. Receipt of software Fixes or other enhancements shall not serve to extend the limited warranty period.

For purposes of this warranty the following definitions shall apply: (1) "Fix(es)" means an error correction or other update created to fix a previous software version that does not substantially conform to its Trimble specifications; (2) "Minor Update" occurs when enhancements are made to current features in a software program; and (3) "Major Upgrade" occurs when significant new features are added to software, or when a new product containing new features replaces the further development of a current product line. Trimble reserves the right to determine, in its sole discretion, what constitutes a Fix, Minor Update, or Major Upgrade.

Warranty Remedies

Trimble's sole liability and your exclusive remedy under the warranties set forth above shall be, at Trimble's option, to repair or replace any Product that fails to conform to such warranty ("Nonconforming Product"), and/or issue a cash refund up to the purchase price paid by you for any such Nonconforming Product, excluding costs of installation, upon your return of the Nonconforming Product to Trimble in accordance with Trimble's product return procedures than in effect. Such remedy may include reimbursement of the cost of repairs for damage to third-party equipment onto which the Product is installed, if such damage is found to be directly caused by the Product as reasonably determined by Trimble following a root cause analysis.

Warranty Exclusions and Disclaimer

These warranties shall be applied only in the event and to the extent that (a) the Products and Software are properly and correctly installed, configured, interfaced, maintained, stored, and operated in accordance with Trimble's relevant operator's manual and specifications, and; (b) the Products and

Software are not modified or misused. The preceding warranties shall not apply to, and Trimble shall not be responsible for defects or performance problems resulting from (i) the combination or utilization of the Product or Software with hardware or software products, information, data, systems, interfaces or devices not made, supplied or specified by Trimble; (ii) the operation of the Product or Software under any specification other than, or in addition to, Trimble's standard specifications for its products; (iii) the unauthorized, installation, modification, or use of the Product or Software; (iv) damage caused by accident, lightning or other electrical discharge, fresh or salt water immersion or spray (outside of Product specifications); or (v) normal wear and tear on consumable parts (e.g., batteries). Trimble does not warrant or guarantee the results obtained through the use of the Product or that software components will operate error free.

THE WARRANTIES ABOVE STATE TRIMBLE'S ENTIRE LIABILITY, AND YOUR EXCLUSIVE REMEDIES, RELATING TO THE PRODUCTS AND SOFTWARE. EXCEPT AS OTHERWISE EXPRESSLY PROVIDED HEREIN, THE PRODUCTS, SOFTWARE, AND ACCOMPANYING DOCUMENTATION AND MATERIALS ARE PROVIDED "ASIS" AND WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND BY EITHER TRIMBLE NAVIGATION LIMITED OR ANYONE WHO HAS BEEN INVOLVED IN ITS CREATION, PRODUCTION, INSTALLATION, OR DISTRIBUTION INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT. THE STATED EXPRESS WARRANTIES ARE IN LIEU OF ALL OBLIGATIONS OR LIABILITIES ON THE PART OF TRIMBLE ARISING OUT OF, OR IN CONNECTION WITH, ANY PRODUCTS OR SOFTWARE. BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW LIMITATIONS ON DURATION OR THE EXCLUSION OF AN IMPLIED WARRANTY, THE ABOVE LIMITATION MAY NOT APPLY OR FULLY APPLY TO YOU.

NOTICE REGARDING PRODUCTS EQUIPPED WITH TECHNOLOGY CAPABLE OF TRACKING SATELLITE SIGNALS FROM SATELLITE BASED AUGMENTATION SYSTEMS (SBAS) (WAAS/EGNOS, AND MSAS), OMNISTAR, GPS, MODERNIZED GPS OR GLONASS SATELLITES, OR FROM IALA BEACON SOURCES: TRIMBLE IS NOT RESPONSIBLE FOR THE OPERATION OR FAILLITE BASED POSITIONING SYSTEM OR THE AVAILABILITY OF ANY SATELLITE BASED POSITIONING SIGNALS.

Limitation of Liability

TRIMBLE'S ENTIRE LIABILITY UNDER ANY PROVISION HEREIN SHALL BE LIMITED TO THE AMOUNT PAID BY YOU FOR THE PRODUCT OR SOFTWARE LICENSE, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL TRIMBLE OR IT'S SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES WHATSOEVER UNDER ANY CIRCUMSTANCE OR LEGAL THEORY RELATING IN ANY WAY TO THE PRODUCTS, SOFTWARE AND ACCOMPANYING DOCUMENTATION AND MATERIALS, (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS), REGARDLESS WHETHER TRIMBLE HAS BEEN ADVISED OF THE POSSIBILITY OF ANY SUCH LOSS AND REGARDLESS OF THE COURSE OF DEALING WHICH DEVELOPS OR HAS DEVELOPED BETWEEN YOU AND TRIMBLE, BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY OR FULLY APPLY TO YOU.

PLEASE NOTE: THE ABOVE TRIMBLE LIMITED WARRANTY PROVISIONS WILL NOT APPLY TO PRODUCTS PURCHASED IN THOSE JURISDICTIONS (E.G., MEMBER STATES OF THE EUROPEAN ECONOMIC AREA) IN WHICH PRODUCT WARRANTIES ARE THE RESPONSIBILITY OF THE LOCAL DEALER FROM WHOM THE PRODUCTS ARE ACQUIRED. IN SUCH A CASE, PLEASE CONTACT YOUR TRIMBLE DEALER FOR APPLICABLE WARRANTY INFORMATION.

Official Language

THE OFFICIAL LANGUAGE OF THESE TERMS AND CONDITIONS IS ENGLISH. IN THE EVENT OF A CONFLICT BETWEEN ENGLISH AND OTHER LANGUAGE VERSIONS, THE ENGLISH LANGUAGE SHALL CONTROL.

Registration

TO RECEIVE INFORMATION REGARDING UPDATES AND NEW PRODUCTS, PLEASE CONTACT YOUR LOCAL DEALER OR VISIT THE TRIMBLE WEBSITE AT www.trimble.com/register. UPON REGISTRATION YOU MAY SELECT THE NEWSLETTER, UPGRADE, OR NEW PRODUCT INFORMATION YOU DESIRE.

Registration

To receive information regarding updates and new products, please contact your local dealer or visit the Trimble website at www.trimble.com/register. Upon registration you may select the newsletter, upgrade or new product information you desire.

Notices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Properly shielded and grounded cables and connectors must be used in order to meet FCC emission limits. TRIMBLE is not responsible for any radio or television interference caused by using other than recommended cables and

connectors or by unauthorized changes or modifications to this equipment. Unauthorized changes or modifications could void the user's authority to operate the equipment.

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions:

(1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Responsible Party:

Trimble Navigation

935 Stewart Drive

Sunnyvale CA 94085

Telephone: 1-408 481 8000

Canada

This Class B digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe B est conforme à la norme NMB-003 du

This apparatus complies with Canadian RSS-GEN, RSS-310, RSS-210, and RSS-119.

Cet appareil est conforme à la norme CNR-GEN, CNR-310, CNR-210, et CNR-119 du Canada.

Australia and New Zealand Class A Statement

Attention: This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Australia and New Zealand

This product conforms with the regulatory requirements of the Australian Communications Authority (ACA) EMC framework, thus satisfying the requirements for C-Tick Marking and sale within Australia and New Zealand.

Notice to Our European Union Customers

Recycling in Europe: To recycle Trimble WEEE (Waste Electrical and Electronic Equipment, products that run on electrical power.), Call +31 497 53 24 30, and ask for the "WEEE Associate". Or, mail a request for recycling instructions to: Trimble Europe BV

c/o Menlo Worldwide Logistics Meerheide 45 5521 DZ Eersel, NL

Safety

Always follow the instructions that accompany a Warning or Caution. The information they provide is intended to minimize the risk of personal injury and/or damage to property. In particular, observe safety instructions that are presented in the following format:

WARNING - This alert warns of a potential hazard which, if not avoided, can cause severe

CAUTION – This alert warns of a hazard or unsafe practice which, if not avoided, can cause injury or damage.

Note – *An absence of specific alerts does not mean that there are no safety risks involved.*

Warnings

WARNING - Incorrect adjustment of the Manual Override Sensitivity calibration setting could cause this critical safety feature to fail, resulting in personal injury or damage to the vehicle. Any adjustment to this setting should only be made by an experienced user.

WARNING - During the Deadzone calibration, the system moves the vehicle's steering wheels. To avoid injury, be prepared for sudden vehicle movement.

WARNING - When you tap the liquid flow calibration Start button, the machine will become operational. Take all necessary precautions to ensure user safety. Failure to do so may result in serious injury or death.

WARNING - When you tap the control valve calibration Start button, the machine will become operational. Take all necessary precautions to ensure user safety. Failure to do so may result in serious injury or death.

WARNING – When you tap the fill disk **Start** button, the machine will become operational. Take all necessary precautions to ensure user safety. Failure to do so may result in serious injury or death.

WARNING – When the implement is down and the master switch is in the On position, the machine is fully operational. Take all necessary precautions to ensure user safety. Failure to do so could result in injury or death.

WARNING – The display contains a single-use Lithium-sulfide LiSO2 battery. Do not expose the battery to temperatures greater than 71 °C (160 °F) as the battery may explode.

Contents

	Safety
	Warnings
1	Introduction
	About the product
	Using this manual
	Related information
	Technical assistance
2	Features and Functions
	System components
	Display unit: Front view
	Display unit: Rear view
	System software
	Folder hierarchy
	Touch screen elements
	Virtual buttons
	Virtual keyboard
	Virtual number pad
	Drop-down box
	Slider bars
	Lists
	View modes
	Zooming
3	Getting Started
	Installing the display
	Connecting the display
	Installing key Tru Application Control components
	Installing an implement master switch
	Installing a test switch
	Installing the working set master module
	Installing working set member (WSMB) modules
	Installing output modules
	Installing the tractor ECU
	Installing a master module harness
	Installing sensors
	Installing the cab harness
	Installing the implement harness
	Installing additional equipment
	Inserting a memory stick into the USB socket
	Turning on the display
	Home screen
	Configuration screen

	Run screen	
	Turning off the display	51
4	Overview of Plugins	53
	Introduction to plugins	54
	Adding or removing a plugin	
	Configuring a plugin	
	Entering the password to activate a plugin	57
5	The System Plugin	61
	Accessing the configuration settings	62
	Password access	
	Calibrating the touch screen	
	Configuring the display	65
	Managing data files	66
	Configuring mapping (including night-mode)	66
	Configuring the status text items	70
	Selecting the language, units of measure, and keyboard layout	
	Using the save/restore settings files	
	Configuring feature mapping	
	Editing the data dictionary.	
	Configuring the lightbar settings	
	Configuring the guidance options	
	Configuring sounds	
	Power management	
	Configuring the system time	
6	The Ag3000 Modem	99
	Introduction to the Ag3000 modem	
	Benefits of using an Ag3000 modem	
	Connecting the Ag3000 modem	
	Activating the Ag3000 modem	
	Configuring the Ag3000 modem	
7	Implement Configuration	. 105
	Introduction	
	Creating an implement	
	Selecting an existing implement.	
	Importing an implement from the <i>Ag</i> GPS 170 Field Computer or the	
	FieldManager Display	
	Adjusting the implement settings	
	Configuring the Guidance settings	
	Configuring the Application settings	
	Configuring the Geometry settings	
	Additional settings	116

The Mapping Plugin
Introduction to field features
Starting a field
Creating a client
Additional settings
The parts of the Run screen
Virtual lightbar
Plugin tabs
GPS receiver information
Engage button
Logging button
Plugin information tabs
Guidance window
External Lightbar
Selecting a swath pattern
Creating a new line
Creating a straight line
Creating a curved line
Creating a headland
Creating a pivot
The Record button
Creating guidance with the FreeForm pattern
Loading a line
Adding an access path
Swath management
Deleting a swath
Renaming a swath
Shifting a swath
Using the "Guide to" tabs
Using Skip to fine-tune navigation
Placing field features on screen
Pausing guidance
Adjusting the status text size
Introduction to coverage logging
Logging varieties
Closing a field
The Manual Guidance Plugin
Configuration
Configuring the GPS receiver
Guidance
The EZ-Steer Plugin

	Installing the EZ-Steer controller	158
	Connecting the EZ-Steer system	158
	Calibrating and configuring the EZ-Steer system	159
	Operating the EZ-Steer system with the FM-1000 integrated display	167
	Engage options	167
	Engaging the system	168
	Disengaging the system	
	EZ-Steer plugin screen	
	Engage status indicators	
	Vehicle-specific performance	
	After using the EZ-Steer system	170
11	The Autopilot Plugin	. 171
	Configuring the Autopilot plugin	172
	Selecting the vehicle	173
	Adjusting the basic Autopilot settings	175
	Introduction to Autopilot calibration	176
	Notes on calibration	176
	Common calibration items	176
	Calibrating the Autopilot plugin	178
	Configuring the controller orientation	179
	Configuring the manual override sensitivity	
	Calibrating the AutoSense device	
	Calibrating the steering angle sensor	
	Calibrating the automated steering deadzone	
	Calibrating the proportional steering gain	
	Configuring the antenna position and roll offset correction	
	Calibrating the line acquisition aggressiveness	
	Calibrating a tracked tractor	
	Saving a vehicle profile	
	Configuring the GPS receiver	
	Adjusting the Aggressiveness setting	
	Display-only mode	
	Connecting the FM-1000 integrated display for display-only mode	201
12	The GPS Receiver Plugin	. 203
	Configuring the GPS receiver	204
	Entering 450 MHz frequencies	205
	Enabling SecureRTK	207
	AgGPS Autoseed fast restart technology	
	Configuring a GPS receiver with the AgRemote software	
	Enabling NMEA message output	
	Enabling radar output	
	Configuring radar output	211

13	The TrueGuide Plugin	213
	<i>Ag</i> GPS TrueGuide implement guidance system	214
	Connecting the TrueGuide implement guidance system	
	Configuring the TrueGuide implement guidance system	
	TrueGuide implement setup	
	Setting up the TrueGuide system	
	TrueGuide Calibration	
	Engaging and disengaging the TrueGuide system	
	Operating the TrueGuide system	
	TrueGuide system aggressiveness settings	
14	The TrueTracker Plugin	223
	About the <i>Ag</i> GPS TrueTracker system	
	Terminology	
	Benefits of the <i>Ag</i> GPS TrueTracker system	
	Requirements of the <i>Ag</i> GPS TrueTracker system	
	Installing the TrueTracker system	
	Configuration	
	Activating the TrueTracker system	
	Enabling the implement controller	
	Configuring the implement controller	
	Engage button	
	Configuring the implement	230
	Calibrating the implement	
	Configuring the antenna position and roll offset correction	
	Calibrating the line acquisition aggressiveness	
	Using the TrueTracker system	244
	Main guidance screen	
	Implement lightbar	
	Implement GPS information button	
	Implement status text items	
	Implement tab	245
15	The EZ-Boom Plugin	247
	AgGPS EZ-Boom 2010 automated application control system	248
	Installing the EZ-Boom controller	
	Connecting the EZ-Boom system	
	Configuring the EZ-Boom system	
	EZ-Boom tab	
	Setting up the EZ-Boom system for automatic section control only	258
	Additional information about the EZ-Boom system	258
	Prescriptions	
	Varying the active boom sections	
	Logging variable rate data	
	EZ-Boom system implement diagnostics	
	Controlling an application device with the EZ-Boom controller	263

	Updating the firmware on the EZ-Boom controller	264
16	The Serial Rate Control Plugin	. 265
	Non-Trimble variable rate controllers	266
	Installing a non-Trimble variable rate controller	
	Enabling the Serial Rate Control plugin	
	Configuring the spray boom in the FM-1000 integrated display	
	Enabling and configuring the variable rate controller	
	(in the FM-1000 integrated display)	267
	Configuring the variable rate controller	268
	Setting any other features of the variable rate controller	274
	Additional information for non-Trimble variable rate controllers	275
	Prescriptions	275
17	The Tru Application Control Plugin	. 277
	Introduction	278
	Introduction to flow and application functionality	
	Definition of terms	
	Planter and drill	
	Air seeder	
	Sprayer	
	Spreader	
	Channel	
	Section	280
	Row	280
	Units of measure	280
	Benefits of the system	281
	Product control	281
	Independent row or section switching	281
	Installation (all implements)	
	Configuration: All models	282
	Configuring the plugin	283
	Saving a configuration file	
	Reloading a configuration file	
	Configuring the modules	284
	Configuring the row sensors on Planter/drill and air seeder modules	
	Other sensors	
	Configuring an external switch	
	Configuring a planter	
	Entering materials	
	6 6	
	Configuring liquid flow	
	Entering materials	
	Configuring the channels	
	COMPUTATION PRAIMAR SEED	518

	Entering materials	318
	Configuring the channels	
	Configuring granular fertilizer	328
	Entering materials	328
	Configuring the channels	331
	Configuring anhydrous	336
	Entering materials	336
	Configuring the channels	339
	Combining channels	345
	Calibrating sensors	346
	Operating a planter or drill	357
	Turning the planter on or off	
	The planter channel (product) tab (overview mode)	
	Detailed channel information button	
	Row Information tab	
	Material accumulator	
	Operating a sprayer (liquid flow)	
	Turning the sprayer on or off	
	The Sprayer tab (overview mode)	
	Detailed channel information button	
	Section Information tab.	
	Operating an air seeder (granular seed)	
	Turning the air seeder on or off	
	Detailed channel information button	
	Row Information tab.	
	Material accumulator	
	Operating a spreader (granular fertilizer)	
	Turning the spreader on or off	
	The Spreader product (channel) tab (overview mode)	
	Detailed channel information button	
	Sensor Information tab	380
	Material accumulator	380
	Operating an anhydrous unit	382
	Turning the anhydrous on or off	382
	The Anhydrous product (channel) tab (overview mode)	
	Detailed channel information button	
	Running the system in Monitor-only mode	
	Obtaining diagnostics information about the Tru Application Control device	
	Resetting the master module	
	Warning messages	391
18	The FieldLevel Survey/Design Plugin	200
10		
	Introduction to field leveling	
	Description	
	Terminology	400

	Benefits of the Ag GPS FieldLevel II system	
	Requirements of the \pmb{Ag} GPS FieldLevel II system	
	Installation	
	Configuration	
	Configuring the implement for leveling	
	Operating the FieldLevel Survey/Design plugin	
	Run screen	
	Creating a survey	
	Field design	
	Options on the screen	
	Creating a design	
	Saving the new design	
	Reloading a field	412
19	The FieldLevel II Plugin	413
	Introduction to field leveling	414
	MultiPlane designs	
	Leveling models	
	Terminology	
	Configuring the FieldLevel II plugin	
	Step 1. Configuring the implement	
	Step 2. Configuring the leveling model	
	Step 3. Calibrating the FieldLevel valve module	
	Step 4. Configuring the FieldLevel GPS receiver	
	Operating the FieldLevel II plugin	422
	Main guidance screen	
	Run screen	422
	Blade position indicators	
	FieldLevel status text items	
	Reloading a field	
	Re-establishing a benchmark	
	Importing control files from the Multiplane software	
	Working with MultiPlane designs	
	Leveling model specific information	
	Driving in Point and Slope mode	
	Driving in Autoslope mode	
	Defining a plane	
	Driving in Contour mode	
20		
20	The Tandem/Dual Plugin	
	Introduction to tandem or dual leveling	
	Tandem scraper configuration	
	Dual scraper configuration	
	Configuring the Tandem/Dual plugin	
	Step 1 Configuring the implement	447

	Step 2. Preparing the FM-1000 integrated display and antenna connections Step 3. Configuring the primary receiver	449 450 451
	Operating the Tandem/Dual plugin	454
21	Remote Output	457
	Connecting remote output	458
	Configuring the Remote Output plugin	458
	Calibrating the lead time for your implement	461
	Setting the front/back offset	461
	Calibrating the front/back offset	
	Setting the lead time	462
22	The Serial Data Input Plugin	465
	Connecting serial data input	
	Configuring serial data input	
23	The Productivity Monitoring Plugin	
	Installation	
	Configuring the Productivity Monitoring plugin	
	Operation	472
24	Advanced Configuration	473
	Configuring remote coverage logging	474
	Installing the logging option	474
	Enable the external switch	475
	Changing the password	
	Locking the display (to re-enable the password)	
	Saving the vehicle configuration	
	Saving an HTML version of the current field	
	Upgrading the FM-1000 integrated display firmware	
	Upgrading the EZ-Boom controller or Multi-Application firmware	
	Unlocking additional devices	480
25	Data Management	481
	Transferring data to an office computer	482
	Data formats	482
	Editing files	
	Generating files in the office	
	Folders on the USB memory stick	
	The AgGPS folder	
	Client folder	
	Farm folder	
	Field folder	488

	Event folder
	Files on the USB memory stick
	Field boundary and AB Line files
	Coverage logging data
	Track logging files
	Event History file
	Features files
	Program Log message file
	Importing AB Lines or boundaries
	The Prescriptions folder
	Copying or deleting data files
	Accessing data files from the Home screen
	Accessing the data files through the Configuration screen
	Copying data
	Deleting data
	Data dictionaries
26	Troubleshooting 505
26	Troubleshooting
26	Advanced diagnostics
26	Advanced diagnostics.506Viewing raw serial data.507Restoring default settings.508Viewing the FM-1000 integrated display diagnostic information.509Display configuration information.509USB memory stick information.509Viewing vehicle diagnostic information.509Vehicle Diagnostics: Guidance screen.510Vehicle Diagnostics: Steering screen.511Vehicle Diagnostics: Details screen.512Autopilot Faults screen.513View Warning screen.513
26	Advanced diagnostics Viewing raw serial data Restoring default settings Viewing the FM-1000 integrated display diagnostic information Display configuration information USB memory stick information Viewing vehicle diagnostic information Vehicle Diagnostics: Guidance screen Vehicle Diagnostics: Steering screen Vehicle Diagnostics: Details screen Autopilot Faults screen View Warning screen S13 GPS Status screen .514
26	Advanced diagnostics.506Viewing raw serial data.507Restoring default settings.508Viewing the FM-1000 integrated display diagnostic information.509Display configuration information.509USB memory stick information.509Viewing vehicle diagnostic information.509Vehicle Diagnostics: Guidance screen.510Vehicle Diagnostics: Steering screen.511Vehicle Diagnostics: Details screen.512Autopilot Faults screen.513View Warning screen.513

Introduction

This manual describes how to install, configure, and use the FM-1000[™] integrated display version 2.00.

Even if you have used other Global Positioning System (GPS) products before, CNH recommends that you spend some time reading this manual to learn about the special features of this product. If you are not familiar with GPS, visit the Trimble website (www.trimble.com) for an interactive look at Trimble and GPS.

About the product

The FM-1000 integrated display, which consists of both software and hardware, is an easy-to-use advanced field management system. The software runs on a 30 cm (12") touch-sensitive, color LCD screen.

The FM-1000 integrated display is CNH's highest level display for agricultural purposes.

It is compatible with the Trimble[®] AgGPS[®] Autopilot™ automated steering system. For several years, the AgGPS Autopilot system has been Trimble's most accurate system for agricultural guidance. Now, with the FM-1000 integrated display, that same accuracy can be controlled with a touch-screen interface to provide easy, precise, and reliable steering.

With the additions to the software in version 1.00 you can use the FM-1000 integrated display to perform many other functions, including implement guidance or field leveling.

Using this manual

The FM-1000 integrated display uses segments of product functionality called *plugins* to add or remove display options.

This manual contains a description of all the plugins, however, it is unlikely that you will use all of the plugins.

Related information

Sources of related information include the following:

- Release notes The release notes describe new features of the product, information not included in the manuals, and any changes to the manuals. The release notes are available at www.trimble.com.
- Trimble training courses Consider a training course to help you use your GPS system to its fullest potential. For more information, go to the Trimble website at www.trimble.com/training.html.

Technical assistance

If you have a problem and cannot find the information you need in the product documentation, contact your local reseller.

CHAPTER

Features and Functions

In this chapter:

- System components
- System software
- View modes

The AgGPS FM-1000 integrated display is a touch-sensitive screen that runs field management software.

This chapter describes the parts of the display and some of the basic operation.

System components

The box contains the following components:

- The FM-1000 integrated display
- The mount bracket and screws.
- GNSS antenna
- GNSS antenna mounting plate
- Power cables
- Quick reference card
- Documentation CD
- Radio antenna (RTK only)

Item	Description
0	FM-1000 integrated display
0	RAM mount and screws

Display unit: Front view

Item	Description
0	Touch-sensitive screen

Screen

The FM-1000 integrated display has a 12" touch-sensitive screen. In the field, the easiest way to interact with the system is to tap an item on the display screen.

CAUTION – Do not use a sharp item, such as a pencil, to press the screen or you may damage the surface of the screen. Use your finger to press the screen.

Control buttons

There are three touch screen buttons on the right of the display.

Press this button	То
	access the Home screen (see page 49)
X	access the Configuration screen (see page 50)
	access the Run screen (see page 51)

These buttons enable you to access all features of the software.

For example, if you tap the Configuration button (X), the *Configuration* screen appears. From here, you can configure the whole system.

Display unit: Rear view

Item	Description
0	Power button
2	Brightness controls
•	USB socket
4	Backup battery housing
6	Power connection socket
0	Primary GPS connector
0	Secondary GPS connector
8	RTK antenna connector
9	CAN communication sockets (A / B)
•	Serial communication sockets (C / D)

Power button

To turn the system on or off, push and hold the Power button for approximately $% \left(1\right) =\left(1\right) \left(1\right) \left($ 0.5 seconds.

Brightness controls

To increase or decrease the brightness of the FM-1000 integrated display, tap the corresponding button.

USB socket

You can connect a USB memory stick to the display to transfer of data to and from the unit

Power connection socket

Connects the power cable (P/N 66694) to the display.

Primary / secondary GPS connector

Connects the GPS cable (P/N 50449) to the display.

RTK connector

Connects the RTK cable (P/N 62120) to the display.

Serial / CAN sockets

Connects external devices to the display. For example, you can use these sockets to attach devices like AgCams or AgGPS $^{\otimes}$ EZ-Boom $^{\otimes}$ automated application control systems.

System software

The FM-1000 integrated display includes the following features:

- Field definition and mapping
- Feature mapping
- Guidance to predefined field patterns
- Logging of coverage data
- Variable rate control
- Boom/Row switching
- Logging of topographic mapping data
- Output of information for analysis in office-based Geographic Information System (GIS) software
- Seed, Liquid, Granular, and Anhydrous Ammonia control
- Seed monitoring

Folder hierarchy

The FM-1000 integrated display stores data in a folder hierarchy according to client, farm, field, and event.

Item	Description
Client	The customer for whom the work is being done
Farm	A collection of fields (see below)
Field	A specific area of land where events are carried out. A "field" can be created on the display to represent an actual field, part of an actual field, or a group of more than one actual fields.
Event	A precision agriculture application or activity on a particular field (see above). For example: - Planting of seed - Application of fertilizer or lime - Spraying with fungicide, herbicide, or insecticide

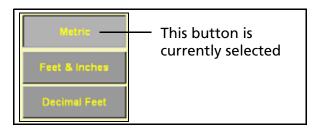
Each client may have several farms, each of the farms may consist of several fields, and each field may be broken into a number of events.

Touch screen elements

The following interactive features appear on the touch screen:

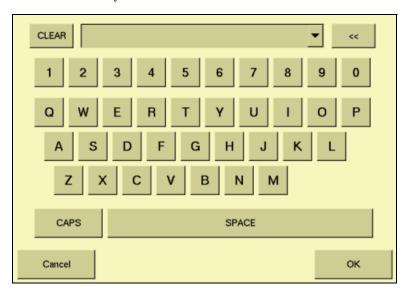
- Virtual buttons
- Virtual keyboard
- Virtual number pad
- Drop-down boxes
- Slider bars
- Lists

For more information, see Slide-out tabs in Configuring the status text items, page 70.


Virtual buttons

The most common way to interact with the system is to use the virtual buttons.

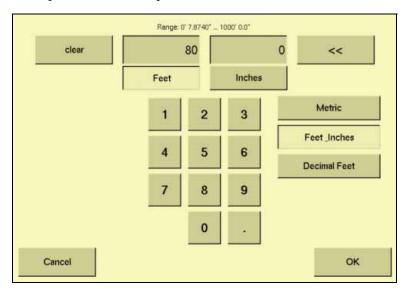
Treat a virtual button as you would a normal button. To "press" the button, tap the area of the screen where it appears:



Some FM-1000 integrated display buttons have a direct action, while others change to show that a feature is enabled or disabled:

Virtual keyboard

Use the virtual keyboard to enter text and numbers:

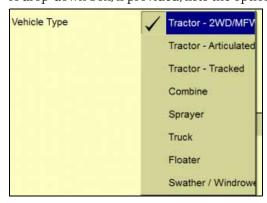


То	Тар
enter a letter or number	the appropriate button
enter caps mode	the CAPS button
leave caps mode	the CAPS button again
erase a letter that you have typed by mistake	the << (backspace) button
clear all the text you have entered	the CLEAR button
finish entering text	the OK button

Virtual number pad

The virtual number pad works in the same way as the virtual keyboard.

For example, the following screen appears when you edit the width of an implement in the Implement Boom Setup screen:


Select the Metric, Feet & Inches, or Decimal Feet button to change the units.

Tip - When you change units, the number value in the window is automatically converted to the new unit, so select the correct units before you enter a number value.

Drop-down box

A drop-down box, if provided, lists the options you can select from the current list:

To select an item:

- 1. Tap the list once to open the drop-down list.
- 2. Tap the required item from the list.

The drop-down list disappears and the selected item appears in the field.

Slider bars

Slider bars appear on several of the configuration screens:

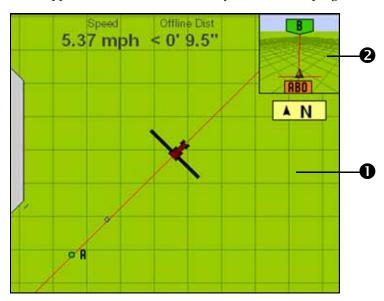
A slider bar shows how extreme a selection is. If you use a slider bar to select the value, it is apparent that you are nearing the extreme value.

There are two ways to use a slider bar:

- To move up by one increment, tap on the slider bar in the direction that you want to move the pointer.
- To slide the pointer:
 - a. Touch the screen where the pointer is located and hold your finger on the screen.
 - b. Move your finger along the axis, in the direction that you want to move the pointer.
 - c. Remove your finger when you are satisfied with the position of the pointer.

Lists

A list shows all the available options. To select an item from a list, tap the item.



View modes

The FM-1000 integrated display screen has two views for representing vehicle guidance on the Run screen:

- Plan view: Shows a bird's-eye view of the field, with the vehicle in it.
- Perspective view: Shows a three-dimensional representation of the field from the driver's perspective.

On the Run screen, both views appear at all times. One is shown as the main view; the other appears as the smaller, auxiliary view in the top right corner:

Item	Description
0	Main view (in this example, Plan view)
2	Auxiliary view (in this example, Perspective view)

To change the view mode, tap the small auxiliary view in the top right corner.

Zooming

The FM-1000 integrated display has five levels of zoom. A close-up view of the vehicle enables you to navigate more accurately, while a long view enables you to see more of the field.

To zoom the screen in, tap the main view.

The fifth level of zoom in the plan view is a summary view of all your coverage. It adjusts, depending on the size of the field. It does not include grid lines.

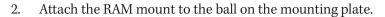
Tip - If you close the field, create a second field and then show the summary view, the summary view may be zoomed to show the area of both fields. To avoid this, restart the display. The view will be correct.

CHAPTER

Getting Started

In this chapter:

- Installing the display
- Connecting the display
- Installing key Tru Application **Control components**
- Inserting a memory stick into the **USB** socket
- Turning on the display
- Turning off the display


This chapter explains how to complete the initial installation and then turn on the display.

Installing the display

Mount the FM-1000 integrated display in the vehicle cab, in a position that is easily accessible.

1. Use the included M6 x $1^{\prime\prime}$ screws to firmly screw the mounting plate to the back of the display.

- Select a position in the cab for the display. The FM-1000 integrated display is 3. mounted in the cab with a bar style RAM mount.
- Use the provided bolts to attach the bar mount to the rail. 4.

- 5. Hold the display in the selected location to ensure that it is comfortably accessible from the driver's seat.
- Attach the other end of the RAM mount to the ball on the bar mount and then tighten the screw.

Connecting the display

Note – The FM-1000 integrated display connects to the AgGPS Autopilot automated steering system. The Autopilot system requires professional installation in your vehicle. If the Autopilot system is not currently installed in your vehicle, consult your local reseller.

- 1. Connect one end of the AgGPS Autopilot harness to the vehicle.
- 2. Connect the Autopilot-to-FM-1000 cable to port C of the FM-1000 integrated display.
- 3. Connect the implement switch. if required.

The following section describes how to install DICKEY-john components for flow and application control with the Tru Application Control [™] plugin. If this is not relevant to you, go to Inserting a memory stick into the USB socket, page 48.

Installing key Tru Application Control components

Installing an implement master switch

When you install a product control system, a master switch is connected to the display.

Note - *When a master switch is installed, you cannot use the* display to manually engage application.

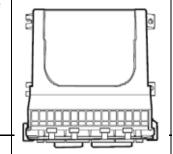
To install the switch:

- Select a location in the cab that is within easy reach of the operator's seat.
- Attach the switch with one of the following:
 - Tie wraps
 - Tape
 - Velcro stripping
 - Bond clamps
- Plug the switch into the FM-1000 integrated display Application Control cab harness.

Installing a test switch

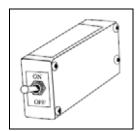
You can install a test switch on the implement to set the number of revolutions so that you can review the seed count that the system calculates over a set number of cycles.

Connect the test switch to the 4 Channel Control harness.

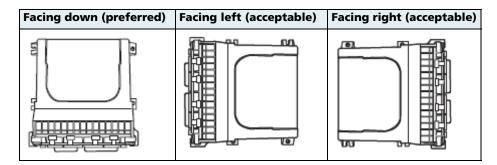


CAUTION – Once you finish testing, remove the test switch. If it accidentally engages, the implement could cause injury.

Installing the working set master module

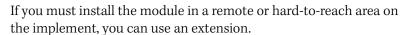

To mount the working set master module (WSMT) on the implement:

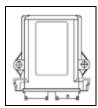
- Select an area on the implement to mount the WSMT that allows for easy hookup and access.
- Use the module enclosure as a template to mark the location of the mounting holes.



CAUTION – Do not use the master module enclosure as a guide when drilling. Do not overtighten the nuts as this may damage the mounting tabs of the enclosure.

- 3. Drill four 9/32 inch diameter holes where marked.
- 4. Select one of the following orientations to mount the WSMT on the vehicle:




Note – Do not install the module in any other orientation. The connection wires must not point upward, or dust and rain may enter the module.

Installing working set member (WSMB) modules

To mount the working set member module(s) (WSMB) on the implement:

1. Select an area on the implement to mount the module.

The acceptable mounting orientations are the same as those for a master module. See Installing the working set master module, page 35. Mount the module with the label facing out.

- 2. Do one of the following:
- To bolt the module to the implement:
 - a. Use the module as a template to mark the position of the 2 bolt holes.

CAUTION – Do not use the member module enclosure as a guide when drilling. Do not overtighten the nuts as this may damage the mounting tabs of the enclosure.

- b. Remove the module and then drill the two 9/32 inch holes that you marked on the frame.
- c. Attach the module to the frame with two ¼ x 20 bolts or a threaded U-bolt.

- To tie-strap the module to the implement:
 - If mounting holes on the implement are required, use the module as a template to mark the position of the 2 bolt holes.
 - b. Drill the two 9/32 inch holes that you marked on the frame.
 - Feed a long tie-strap through the two mounting holes on the module and then through the holes on the implement.
 - d. Securely tighten the tie-strap.
 - Install a second tie-strap around the module at the label end of the enclosure for additional support.
- Connect a WSMB harness to the module. Insert both connectors until the connector locking tabs engage.

The WSMB module harness can accept a standard DICKEY-john style planter harness. Harnesses are available for a number of row configurations.

Repeat these steps for any additional member modules.

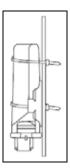
Note - For correct system operation, you must install a CAN terminator on the last module harness.

Installing output modules

To mount the output modules on the implement:

Select an area on the implement to mount the module.

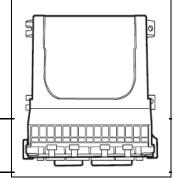
If you must install the module in a remote or hard-to-reach area on the implement, you can use an extension.


The acceptable mounting orientations are the same as those for a master module. See Installing the working set master module, page 35. Mount the module with the label facing out.

- 2. Do one of the following:
- To bolt the module to the implement:
 - Use the module as a template to mark the position of the 2 bolt holes.

CAUTION – Do not use the output module enclosure as a guide when drilling. Do not overtighten the nuts as this may damage the mounting tabs of the enclosure.

- Remove the module and then drill the two 9/32 inch holes that you marked b. on the frame.
- Attach the module to the frame with two ¼ x 20 bolts or a threaded U-bolt.



- To tie-strap the module to the implement:
 - a. If mounting holes on the implement are required, use the module as a template to mark the position of the 2 bolt holes.
 - b. Drill the two 9/32 inch holes that you marked on the frame.
 - c. Feed a long tie-strap through the two mounting holes on the module and then through the holes on the implement.
 - d. Securely tighten the tie-strap.
 - e. Install a second tie-strap around the module at the label end of the enclosure for additional support.
- 3. Connect a Tru Count or Boom Section harness to the module. Insert both connectors until the connector locking tabs engage.
- 4. Repeat these steps for any additional output modules.

Installing the tractor ECU

To mount the tractor ECU in the cab:

- 1. Select an area in the cab to mount the tractor ECU that allows for easy hookup and access.
- 2. Use the ECU enclosure as a template to mark the location of the mounting holes.

CAUTION – Do not use the ECU enclosure as a guide when drilling. Do not overtighten nuts as this may damage the mounting tabs of the enclosure.

3. Drill four 9/32 inch diameter holes where marked.

Installing a master module harness

- 1. Connect the module to the Working Set Master Module harness.
- 2. If necessary, connect the WSMT valve/sensor harness.

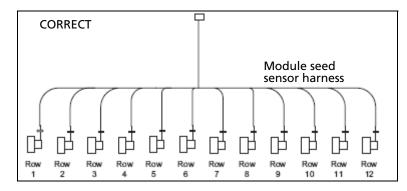
- Connect any additional adaptor harnesses to the module harness. The WSMT module harness can accept the following adaptor harnesses:
 - 4 Channel Control Harness (Actuator Harness): This harness allows for 4 output control channels and associated feedback sensors, a hopper level sensor input, a shaft sensor input, a ground speed input, an implement switch input, and an air pressure input. In addition, a pair of 6-pin connectors are available for Servo connection. Install sensors, valves, and so on according to the instructions included with the items. Install the PWM valve assembly and feedback sensor for each control loop and connect the devices to their respective inputs on the harness, making certain to match PWM 1 with FEEDBACK 1, PWM 2 with FEEDBACK 2, and so on. Secure any unused and excess cable lengths where necessary.
 - **Seed Sensor Harness:** This harness accommodates any standard DICKEY-john Seed Sensor harness (PM or SE style). A wide variety of harnesses are available to accommodate various numbers of sensor inputs. Install all seed sensors per the instructions included with the individual sensors. Secure any unused or excess cable lengths as necessary.
 - Accessory Harness for Air Seeders: This harness enables you to connect 4 additional air pressure sensors, 4 hopper level sensors, and 1 fan/shaft RPM sensor.
 - Accessory Harness for Sprayers: This harness enables you to connect 4 liquid pressure sensors and 2 fan/shaft RPM sensors.
 - **Accessory Harness for Spreaders**: This harness enables you to connect 2 additional hopper level sensors and 2 fan/shaft RPM sensors.

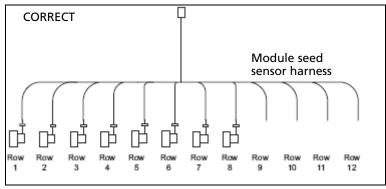
Installing sensors

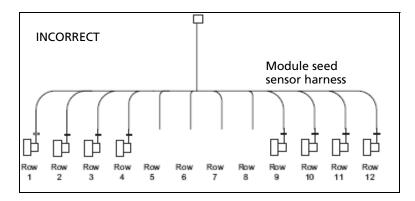
The FM-1000 integrated display can read the following optional DICKEY-john sensors:

Item	Description
Seed sensor	Provides seed population or blockage information to the system.
Application rate sensor	Measures shaft rotation speed by counting pulses over time. This enables accurate feedback for product control.
Hopper level sensor	Is installed low in the hopper (planter seed bin) and reports when the seed level drops to that point.
Shaft speed (RPM) sensor	Measures the RPM of the implement driveshaft, either by counting the teeth on a gear, magnets on a shaft, or lug nuts on a wheel.
Air pressure sensor	Is installed in the hopper and provides real-time air pressure or vacuum readings to the system.
Ground speed sensor	Produces pulses that are multiplied by a constant to calculate the speed of the vehicle.
Pulse Width Modulation (PWM) control valves	Provide flow control for seed, liquid, and grain.
Servo control valves	

Item	Description
Flow meters	Ensures accurate feedback to the liquid control channel for optimal control accuracy.
Tru Count Air Clutch® control	Automatically controls planter rows on/off for precise seed placement.
Implement lift switch	Enables on/off control based on the implement position.


For correct system operation, connect all sensors used with the system as described in the following sections. The system will not identify sensors that are incorrectly installed, resulting in incorrect sensor numbering.


Seed sensors


The system is compatible with DICKEY-john seed sensors. You can connect seed sensors to the WSMT module and all WSMB planter monitor modules. You can connect any number of sensors up to the maximum capacity of the module, with a maximum of 148 seed sensors connected to the system.

When connecting seed sensors to the modules, you must do the following:

- Connect all installed seed sensors to the seed sensor harness sequentially, starting with the Row 1 input.
- If you will not use all of the row inputs on the module, the unused inputs must be the last inputs on *that module:*

Failure to correctly install seed sensors will result in incorrect row assignment on the planter monitor display functions.

Hopper level sensors

The system is compatible with DICKEY-john hopper level sensors. The system supports the following number of hopper level sensors:

Application type	Maximum number of sensors
planter/drill	1
air seeding	4
granular application	3

RPM/Fan sensors

The system is compatible with DICKEY-john RPM/fan sensors. The system supports the following number of RPM/fan sensors:

Application type	Maximum number of sensors
planter/drill	1
air seeding	3
granular/spraying application	3

Air pressure sensors

The system is compatible with DICKEY-john air pressure sensors. The system supports the following number of air pressure sensors:

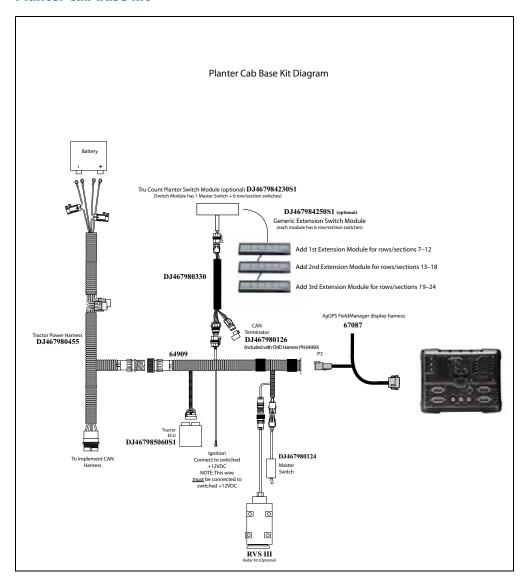
Application type	Maximum number of sensors
planter/drill	1
air seeding	4

Liquid pressure sensors

The system is compatible with DICKEY-john liquid pressure sensors for sprayers. The system supports the following number of liquid pressure sensors:

Application type	Maximum number of sensors
sprayer	4

Application rate sensors

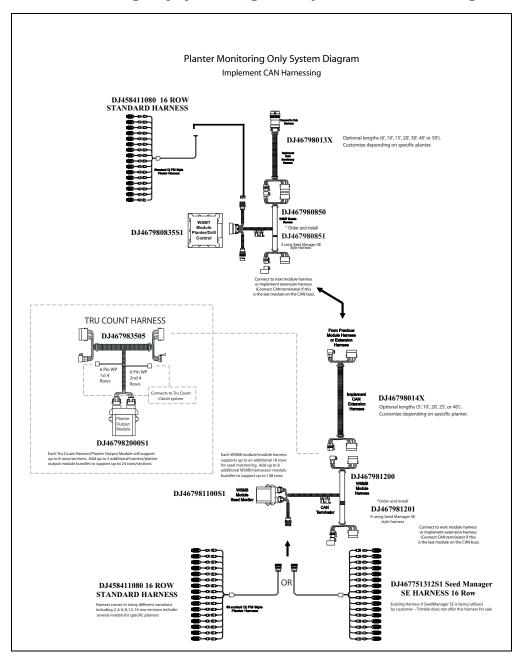

The system is compatible with DICKEY-john application rate sensors. The system supports the following number of application rate sensors:

Application type	Maximum number of sensors
planter/drill	4
air seeding	4
granular application	4

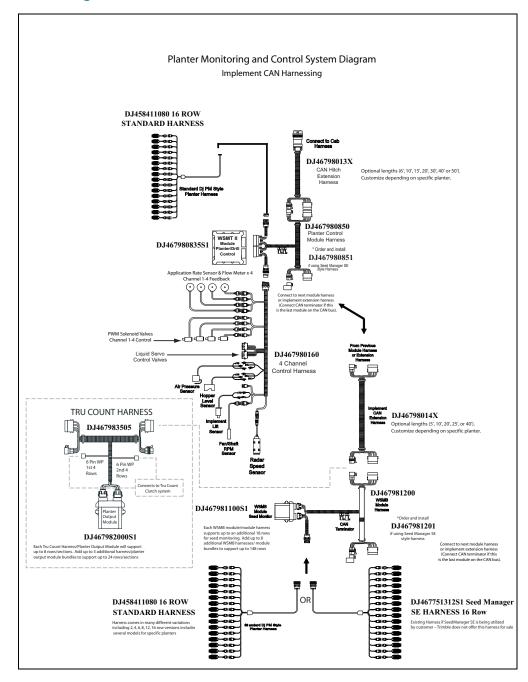
Installing the cab harness

Note – The following harnesses are appropriate when installing the system in a planter. For information on installing the harnesses in a sprayer, air cart, spreader, or anhydrous unit, refer to the Flow and Application Ordering Guide.

Planter cab base kit



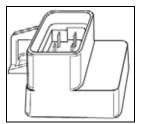
- Connect the power leads directly to the battery. Connect the ignition wire to a 1. switched +12 VDC.
- Connect the chassis ground lead to a bare point of the cab frame that offers a good chassis ground connection. For the system to power correctly, you must connect the ignition lead to switched +12 VDC.
- Connect the master switch, CAN terminator, and tractor ECU to their respective connectors on the cab harness.


4. Connect the radar speed sensor, if required. If you connect the speed sensor to the WSMT, do not connect anything to the speed sensor connector on the cab harness.

Installing the implement harness

Planter monitoring only system diagram: Implement CAN harnessing

Planter monitoring and control system diagram: Implement CAN harnessing


- Lay the implement harness along the frame of the implement to each of the seed sensors. You are unlikely to require extensions.
- 2. Route the sensor wires to where they will not be damaged by parts of the implement.

- 3. Connect the implement CAN breakaway extension to the mating connector of the cab harness.
- 4. Secure the implement harness to the toolbar with tie-straps.
- 5. Coil and secure any unused sensor connections.
- 6. Route the implement harness along the implement hitch to the master module harness (if additional length is required, use an implement extension harness).
- 7. Secure the implement harness as needed.
- 8. Connect the master module harness to the mating connectors of the implement CAN harness and then connect the module to the implement harness. The member module uses a 48-pin connector with a jackscrew to secure the connector to the module. The WSMB uses a pair of 12-pin connectors.
- 9. Secure the module harness as needed.

CAN terminators

For the system to communicate correctly, you must install CAN terminators on cable ends:

- 1. Install one terminator on the cab harness (P/N 64909).
- Install one terminator plug into the implement harness of the last module connected to the CAN bus.

Installing additional equipment

Additional equipment is available to enable specific row/section control. For more information on installing a Tru Count Air Clutch, or boom section valves, contact the specific manufacturer.

Switch boxes

You can install switch boxes to control sprayer (BSM: boom switching module) and planting (CSM: clutch switching module) applications. These are boxes with switches that enable you or the system to turn individual sections on and off.

You can connect up to 4 switch boxes together so you have up to 24 switches. Install the switch boxes in a convenient place in the cab where you can comfortably reach them.

The system uses TCOM modules to control the switch outputs.

Other components

To install flow and application control components (for example, control valves or flow meters) refer to the instructions that are included with them.

Inserting a memory stick into the USB socket

The USB socket (**1**) is on the rear of the display.

CAUTION – Do not remove the USBS memory stick from the socket while the system is writing to or from the device. This will corrupt the data.

To insert the USB memory stick:

- 1. Rotate the display so you that can see the back of it.
- 2. Insert the USB memory stick into the USB socket.

To remove the card:

- 1. Rotate the display so that you can see the back of it.
- 2. Pull the USB memory stick out of the USB socket.

The system automatically detects when a memory stick is inserted or removed. If no memory stick is present, a message appears on the *Configuration* screen.

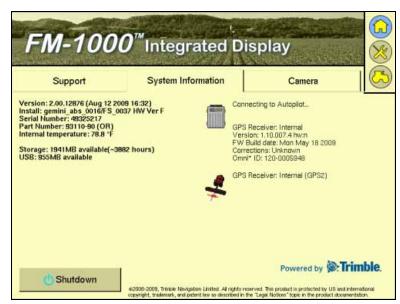
Turning on the display

Briefly hold down the Power button (for approximately half a second). The system turns on and after a pause the Home screen appears.

The FM-1000 integrated display has three main screens:

- Home screen
- Configuration screen

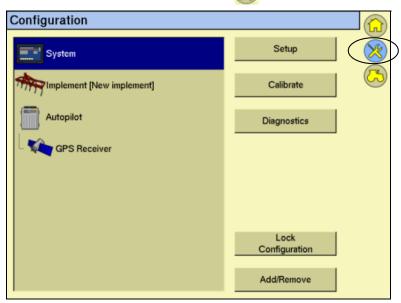
Run screen


To access each of these screens, tap the appropriate button on the right of the display. See page 21.

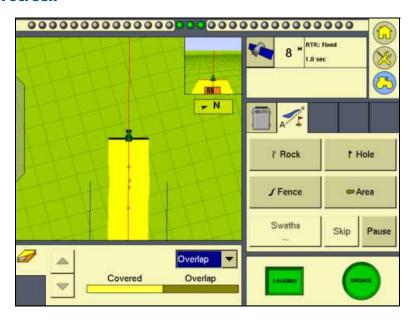
Home screen

The Home screen lists the following information about the system:

- The display build date, firmware, and hardware version
- The AgGPS Autopilot controller version, date, and serial number
- The GPS receiver version, correction source, and subscription information
- The selected vehicle make and model


Note - If you connect two AgGPS Autopilot NavController II controllers, the Home screen shows a summary of both controllers. If you connect a single controller, the Home screen appears as shown below:

Configuration screen


The *Configuration* screen enables you to access most of the system settings that you can change.

To access the *Configuration* screen, tap ::

Note – Some configuration settings are unavailable when a field is open in the Run screen. To access these settings, return to the Run screen and then tap the Home button. When prompted to close the field, tap **Yes**.

Run screen

The Run screen shows the steering navigation. If you select the Run screen and you have a field open, the display shows that field. If you select the Run screen when there is no field open, the *Field Selection* screen appears.

Turning off the display

Note - Close all fields before you turn off the system. To close a field, see Closing a field, page 151.

There are several ways to turn off the system:

- Tap the Home button. From the Home screen, tap **Shutdown**.
- Hold down the Power button (on the reverse of the display) for approximately half a second.

There is sometimes a short delay between the time when you tap the Power button and when the display turns off. This is because the display is saving settings. When the display turns off, it plays a sound.

CHAPTER

Overview of Plugins

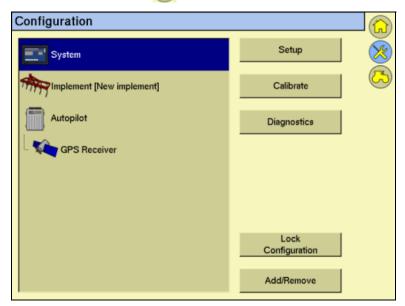
In this chapter:

- Introduction to plugins
- Adding or removing a plugin
- Configuring a plugin
- Entering the password to activate a plugin

This chapter describes plugins are and how to configure them.

Note - Some configuration settings are unavailable when a field is open in the Run screen. To access these settings, return to the Run screen and then tap the Home button. When prompted to close the field, tap Yes.

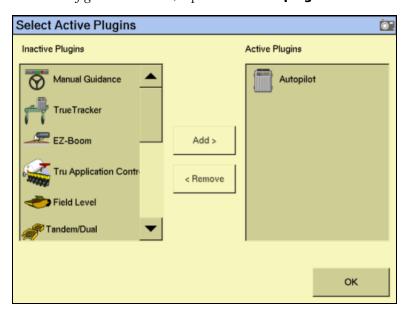
Introduction to plugins


The FM-1000 integrated display version 2.00 has a number of plugins that you can install to expand its functionality:

Item	Status	Description	See
System	Permanent	Configure the appearance of the display.	Chapter 5, The System Plugin
Mapping	Permanent	Configure the field features.	Chapter 8, The Mapping Plugin
Manual Guidance	Optional	Enable GPS diagnostic information for manual steering guidance. Note - You must install the Manual Guidance plugin, the Autopilot plugin, or the FieldLevel plugin.	Chapter 9, The Manual Guidance Plugin
Autopilot	Optional	Configure the AgGPS Autopilot automated steering system	Chapter 11, The Autopilot Plugin
GPS Receiver	Required	Configure the GPS receiver.	Chapter 12, The GPS Receiver Plugin
TrueTracker	Optional	Configure the AgGPS TrueTracker™ system to enable implement steering.	Chapter 14, The TrueTracker Plugin
EZ-Boom	Optional	Configure the EZ-Boom 2010 automated application control system to enable spray boom and rate control.	Chapter 15, The EZ-Boom Plugin
Serial Rate Controller	Optional	Configure a non-Trimble variable rate controller.	Chapter 16, The Serial Rate Control Plugin
Tru Application Control	Optional	Configure a planter, drill, air seeder, spreader, sprayer, or anhydrous ammonia applicator for flow and application purposes.	Chapter 17, The Tru Application Control Plugin
FleldLevel Survey/ Design	Optional	Survey a field and then create a design for it that can later be completed with the FieldLevel II plugin.	Chapter 18, The FieldLevel Survey/Design Plugin
FieldLevell II	Optional	Level the field to a design, install subsurface drainage or surface ditches.	Chapter 19, The FieldLevel II Plugin
Tandem/Dual	Optional	Control leveling with two GPS receivers, in one of two possible scraper configurations.	Chapter 20, The Tandem/Dual Plugin
Remote Output	Optional	Enable and configure remote data output to an external device.	Chapter 21, Remote Output
Serial Data Input	Optional	Enable and configure data input from an external serial device.	Chapter 22, The Serial Data Input Plugin

Item	Status	Description	See
Productivity monitoring	Optional	Enable and configure the display to work with an Enalta display to record workflow.	Chapter 23, The Productivity Monitoring Plugin
Camera	Optional	Enable to configure the four external video inputs.	

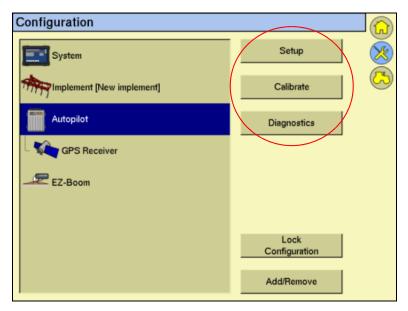
Most of these plugins require additional hardware to work correctly. For example, to use the display to perform water management with the FieldLevel II system, add the FieldLevel II plugin. This enables you to configure the FieldLevel II system settings, and adds the FieldLevel II screen items to the main guidance screen.


To view the plugins, tap (X):

The currently installed plugins are listed on the left of the screen.

Adding or removing a plugin

1. On the *Configuration* screen, tap **Add/Remove plugin**:


- The available but uninstalled plugins are in the *Inactive Plugins* list on the left.
- The currently installed plugins are in the *Active Plugins* list on the right.
- 2. Do one of the following:
 - To install a plugin from the *Inactive Plugins* list, tap it and then tap Add >.
 The plugin moves to the *Active Plugins* list.
 - To remove a currently installed plugin from the *Active Plugins* list, tap it and then tap **< Remove**. The plugin moves to the *Inactive Plugins* list.
- 3. Tap **OK** to return to the *Configuration* screen.

Configuring a plugin

Each plugin requires a different configuration. For a detailed description of how to configure each one, see the appropriate chapter later in this manual.

In general:

Each plugin has several setup screens. To access the screens, tap the plugin and then tap Setup, Calibrate, or Diagnostics:

Most of the plugins add additional features to the main guidance screen.

Entering the password to activate a plugin

To activate some plugins, you must enter the activation password. If you do not have an activation password, contact your local reseller.

You can activate a plugin through a text file, see below, or manually, see page 58.

Option 1. Activating automatically through a text file

Note - This method of activating the system is faster than the manual method.

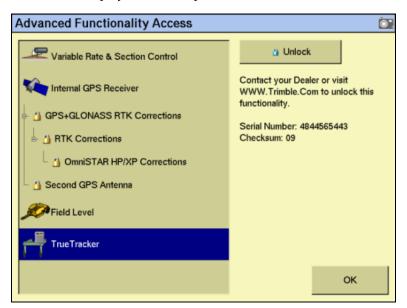
When you purchase the TrueTracker system, the FieldLevel II system, or a variable rate system, your local reseller provides you with a text file containing a password.

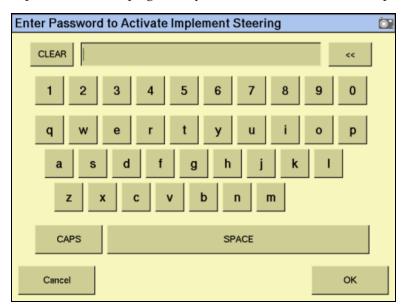
Insert the USB memory stick from the FM-1000 integrated display into a card reader that is attached to an office computer.

2. Rename the text file; delete the section of the name following the password number. For example:

Password 4850576341 FM-1000 2DGPSto2GLONASS.TXT

becomes


Password 4850576341.TXT


3. Copy the password text file from the office computer into the |AgGPS| Firmware | folder on the memory stick.

When you next insert the USB memory stick in the display and turn on the display, the plugin is automatically activated.

Option 2. Activating manually through the display

1. Turn on the display and then tap **Unlocks** in the Home screen:

2. Tap the icon for the plugin that you want to activate and then tap **Unlock**:

- In the screen that appears, enter the activation password that your local reseller provided and then tap **OK**:
 - If you enter a correct password, an **Enabled** message appears.

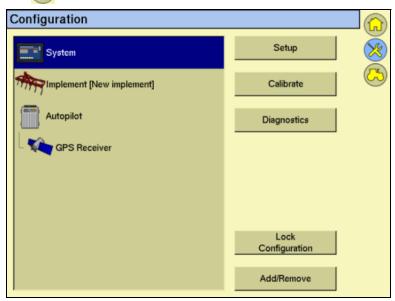
The plugin is now activated.

If you enter an invalid password, an error message appears. Enter the password again. If it still does not work, contact your local reseller.

CHAPTER

The System Plugin

In this chapter:


- Accessing the configuration settings
- Calibrating the touch screen
- Configuring the display

The System plugin controls the basic settings and appearance of the display. This chapter describes how to use the plugin to configure the display.

Note - Some configuration settings are unavailable when a field is open in the Run screen. To access these settings, return to the Run screen and then tap the Home button. When prompted to close the field, tap Yes.

Accessing the configuration settings

Password access

Any **Setup** or **Calibrate** button marked with a padlock icon **1** is protected by two passwords:

Password type	Description
Administration password	Your password. The default is "2009".
Master password	A backup password in case you lose the Administration password. If you require the Master password, contact your local reseller.

The password screen appears the first time that you tap a **Setup** or **Calibrate** button after you turn on the display. Use the virtual keyboard to enter the Administration password and then tap **OK**.

Note - Passwords are case sensitive.

Calibrating the touch screen

Calibrate the touch screen so that it reads your selections accurately.

- Tap (X). The *Configuration* screen appears.
- Tap the System plugin in the *Plugins* list. The **Setup**, **Calibrate**, and **Diagnostics** 2. buttons become available.
- 3. Tap Calibrate.

If you have not entered an Administrator password during this session, the Enter Administration Password screen appears. See Password access, page 62.

Enter your password and then tap **OK**. A warning message appears:

Read the message and then tap **Continue**. The *Screen Calibration* screen appears, with a cross-hair in the top left corner:

Tap in the center of the cross-hair.

CAUTION – Do not use a sharp item, such as a pencil, to press the screen or you may damage the surface of the screen. Use your finger to press the screen.

The cross-hair appears on another part of the touch screen.

7. Repeat Step 6 eight times.

When the calibration sequence finishes, a dialog appears:

- If your responses were accurate enough, the following message appears:
 You have successfully calibrated your touch screen.
- If your responses were not accurate enough, the following message appears:

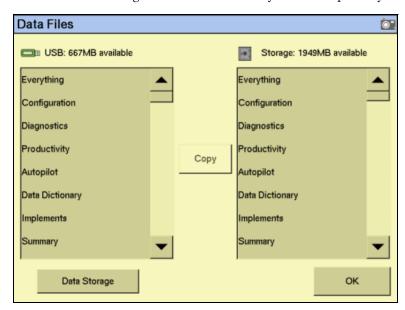
Your screen calibration failed. The difference between actual and calculated points was too large.

8. Tap **OK**. You are returned to the *Configuration* screen.

If the calibration was successful, proceed to Configuring the display. If the calibration failed, tap **Calibrate** again and then repeat Steps 5 through 7 until calibration is successful. If the display calibration continues to fail, consult your local reseller.

Configuring the display

- Tap . The *Configuration* screen appears.
- Select the System plugin and then tap **Setup**.
- 3. If necessary, enter the Administrator password. See Password access, page 62.


From this screen you can configure

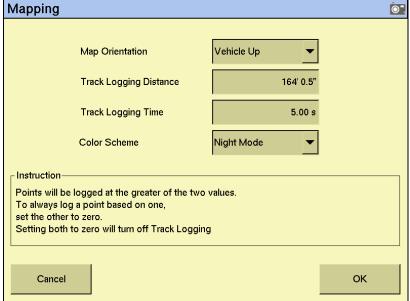
- display preferences
 - map settings (including Night-mode)
 - status item configuration
 - Language and units (including keyboard layout) setup
 - save/restore settings
- mapping preferences
 - feature mapping configuration
 - data dictionary editor
 - data files management (this appears at the top of the *Display Setup* list)
- display options
 - external lightbar setup
 - guidance setup
 - sound settings
- hardware configuration
 - CAN bus settings
 - power management setup
 - time zone configuration

These steps are described in more detail in the following sections.

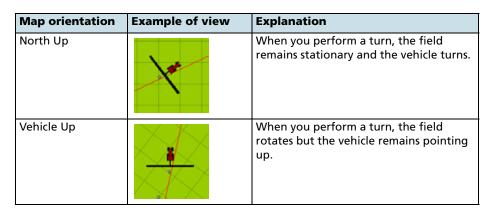
Managing data files

The Data Files management screen enables you to manipulate your saved data:

From either the display's internal memory or the USB memory stick, you can copy implements, prescriptions, data dictionaries, field data, or delete unwanted data.


For more information, see Copying or deleting data files, page 497.

Configuring mapping (including night-mode)


The *Mapping* screen enables you to configure the following items.

Item	Description
Map orientation	The direction that the screen follows the position of the vehicle.
Track logging	How often the display records points along the path that the vehicle has driven.
Night-mode	The night-mode color theme uses darker color themes to make the screen easier to see in low light conditions.

From the Display Setup, screen select Map Settings: Mapping

Tap your preferred map orientation in the Map Orientation list:

Note – *To change the map orientation on the Run screen, tap the north arrow.*

Track logging can be recorded in different ways:

Setting	Description
Distance = 0, Time = 0	Track logging is turned off.
Distance = 1+, Time = 0	Track logging is recorded by distance (m).
Distance = 0, Time = >1+	Track logging is recorded by time (s).
Distance = >1+, Time = >1+	Track logging is recorded by whichever setting is higher.

Track logging files

Track logging files are created whenever you open an event. The track file records points at the rate defined in the *Mapping* screen (see the previous section). At each point, a number of attributes are recorded.

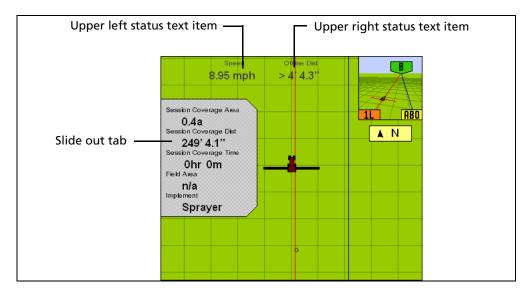
The data stored in the track attribute file (Track3D_<*date time*>.dbf) is in metric units.


The information stored for each point in the track logging attribute file is as follows.

Column	Field description	Units
Version	Track attribute file version	-
UTC_Date	Point creation date	YYYYMMDD
UTC_Time	UTC time	hh:mm:ss.s
Local_Time	Local time	hh:mm:ss.s
Logging_On	Coverage logging flag (1=on, 0=off)	On or off
Auto_Steer	Auto-Steer flag (1=on, 0=off)	On or off
GPS_Status	GPS status value (NMEA)	1, 2, 5, 4
Status_Text	GPS status description	-
Num_Stats	Number of GPS satellites –	
HDOP	Horizontal Dilution of Precision – a measure of the quality of positions based on satellite geometry	
Corct_Age	DGPS signal correction age	seconds
Ant_Lat	Antenna latitude (WGS-84) DD.dddddd	
Ant_Long	Antenna longitude (WGS-84)	DD.dddddddd
Height	Mean sea level height of ground meters	
Ant_HAE	Antenna height above ellipsoid	meters
	Note - Not currently implemented.	
Ground_HAE	Ground height above ellipsoid	meters
	Note – Not currently implemented.	
Speed	GPS-derived ground speed	kph
Heading	Direction of travel with respect to true North.	decimal degrees
Swath_Num	Current swath/headland number.	
Offline	Offline distance from swath center line.	meters
Along_Line	Along line distance from start of swath.	meters
	Note – Not currently implemented.	
Swath_Wdth	Swath width	meters
Appln_Wdth	Application width	meters
Units	Units	metric
	Note – Not currently implemented.	
Field_Name	The name of the field	-
Target	The target rate at the current position –	
As_Applied	Applied rate	_
	Note - Not currently implemented.	
Pitch	The pitch	_
	Note - Not currently implemented.	

Column	Field description	Units
Roll	The roll	_
	Note – Not currently implemented.	
Yaw	The yaw	_
	Note - Not currently implemented.	
Total_Qty	Total volume of material as applied for the current field. Only supported for the <i>Ag</i> GPS Aerial Flow Controller, Autocal Flow controller, and Crophawk Flow Meter.	-
Relative_Height	t Height meters	

Enabling the night-mode option


The night-mode color theme uses darker color themes to make the screen easier to see in low light conditions. It is also useful if you find the default colors difficult to see:

From the Mapping screen, select Night Mode from the Color Scheme drop-down list and then tap **OK**.

Configuring the status text items

The *status text items* are segments of information that appear on the Run screen. The information appears in three different locations:

- In two locations at the top of the screen
- On a slide-out tab at the left of the screen

The slide-out tab overlies the main screen, but is transparent so that you can still see guidance underneath it. To extend the slide-out tab, tap the end of the tab on the left of the screen.

The slide-out tabs automatically slide back in when the specified time-out value is reached. To close the tab before then, tap the tab.

The status text items are ordered by plugin. If a plugin is removed, the status text items associated with it are no longer available. The available items are as follows.

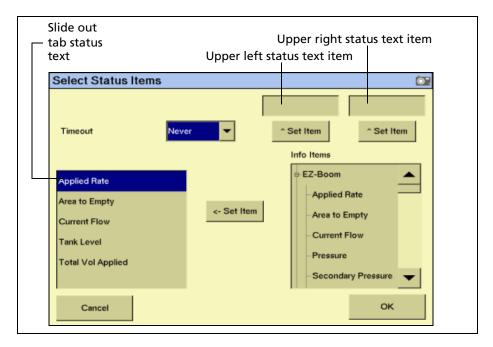
Category	Item	Description
	(blank)	The status text item is not shown.
Autopilot	Altitude	The current height of the vehicle.
(or Manual Guidance)	CMR Percent	The percentage of radio CMR packets received over the last 100 seconds.
	Correction Age	The length of time since the last correction was received.
	Correction Type	The correction type that is being used.
	East	The distance that the vehicle is to the East of the field origin point (a negative number means the vehicle is to the West of the field origin point).
	Engaged Time (Autopilot only)	The length of time that the system has been engaged for.
	GPS Status	The GPS correction type that the GPS receiver is currently using.
	H Error	(Horizontal error) An estimation of the level of precision of the GPS position in 2 dimensions.
	HDOP	Horizontal Dilution of Precision: A measure of accuracy based on the geometry of the satellites in the sky. If the satellites are near each other in the sky, the HDOP is higher (lower is better).
	Heading	The current heading of the vehicle in degrees from direct north.
	Latitude	The vehicle's current latitude.
	Longitude	The vehicle's current longitude.
	Network ID	The RTK network ID of the GPS receiver's corrections.
	North	The distance that the vehicle is to the North of the field origin point (a negative number means the vehicle is to the South of the field origin point).
	Nudge/Trim (Autopilot only)	The amount of Nudge or Trim currently applied.
	Offline Dist	The distance away from the guidance line.
	Satellites	The number of satellites the system is currently receiving.
	Speed	The current vehicle speed.
	Steering Angle (Autopilot only)	The angle reported by the rotary potentiometer or the Ag GPS AutoSense TM device.
	Up	The vertical height of the vehicle relative to the field origin point (a negative number means that the vehicle is lower than the field origin point).
	Vehicle Model (Autopilot only)	The model of vehicle that is configured.

Category	Item	Description
Mapping	Dist to Feature	The distance to the nearest feature.
	Dist to Pause	The distance to the pause position.
	Heading to Feature	Vehicle location relative to the nearest feature (feature is directly ahead = 0°, feature is directly behind = 180°).
	Heading to Pause	Direction vehicle is facing relative to the paused vehicle position (directly ahead = 0°, directly behind = 180°).
	Nearest Point Name	The name of the nearest point feature.
	Swath Length	The length of the current guidance line.
		Note – FreeForm [™] curves are made up of line segments, so the Swath Length value is not appropriate for FreeForm curves.
	Swath Number	The swath number (L=left, R=right).
		Note – FreeForm curves are made up of line segments, so the Swath Number value is not appropriate for counting FreeForm curves.
	Swath Points	The number of points that define the current line.
Tru Application	Average Population	The average rate across all rows.
Control	Avg. Seed Spacing	The average spacing between the planted seeds (across all of the rows).
	Control Speed	The speed reported to the multi-application controller.
System	Available Memory	The available internal memory in the display.
	Coverage Percent	The percentage of the field area that is covered area.
	Event Coverage Area	The area that has been logged during the current event.
	Event Coverage Distance	The distance covered while logging during the current event.
	Event Coverage Time	The length of time that coverage logging has been engaged for during the current event.
	Field Area	The field area within a pivot or headland boundary.
	Free External Storage	The amount of free space on the USB memory stick.
	Free Internal Storage	The amount of free space on the display's built in memory space.
	GMT Time	The current Greenwich Mean Time.
	Implement	The name of the current implement.
	Implement F/B Offset	Distance of front to back offset.
	Implement L/R Offset	Distance left to right offset.
	Implement Width	Width of the implement.
	Local Time	The local time.
	Productive Area	The area of Area Features that are designated as "productive".

Category	Item	Description	
	Session Coverage Area	The area that has been logged during the current session.	
	Session Coverage Dist	The distance covered while logging during the current session.	
	Session Coverage Time	The length of time that coverage logging has been engaged for during the current session.	
	Session Time	The length of the current field session.	
EZ-Boom	Applied Rate	The current rate.	
	Area to Empty	The area that can still be sprayed before the tank is empty.	
	Current Flow	The current flow of the EZ-Boom system.	
	Pressure	The current pressure, as reported by the primary pressure sensor.	
	Secondary Pressure	The current pressure, as reported by the secondary pressure sensor.	
	Tank Level	The current level of the sprayer's tank.	
	Target Rate	The spraying target rate.	
	Total Vol Applied	The total volume of solution applied.	
TrueTracker	Impl. Altitude	The current height of the implement.	
	Impl. CMR Percent	The percentage of radio CMR packets received over the last 100 seconds by the implement GPS receiver.	
	Impl. Correction Age	The age of the corrections used by the implement receiver.	
	Impl. Correction Type	The correction type used by the implement receiver.	
	Impl. East	The distance that the implement is to the East of the field origin point (a negative number means the vehicle is to the West of the field origin point).	
	Impl. Engaged Time	The time that the implement has been engaged.	
	Impl. GPS Status	The status of the GPS correction used for the implement.	
	Impl. H Error	(Horizontal error) An estimation of the level of precision of the implement GPS position in 2 dimensions.	
	Impl. HDOP	The Horizontal Dilution of Precision of the implement receiver: A measure of accuracy based on the geometry of the satellites in the sky. If the satellites are near each other in the sky, the HDOP is higher (lower is better).	
	Impl. Latitude	The implement's current latitude.	
	Impl. Longitude	The implement's current longitude.	
	Impl. Network ID	The RTK network ID of the implement receiver's corrections.	
	Impl. North	The distance that the implement is to the North of the field origin point (a negative number means the vehicle is to the South of the field origin point).	

Category	Item	Description	
	Impl. Nudge/Trim	The amount of Nudge or Trim currently applied to the implement position.	
	Impl. Offline Dist	The implement offline distance.	
	Impl. Satellites	The number of satellites that the implement receiver is reading.	
	Impl. Speed	The speed of the implement.	
	Impl. Steering Angle	The steering angle of the implement.	
	Impl. Up	The vertical height of the implement relative to the field origin point (a negative number means the vehicle is below the field origin point).	
	Impl. Vehicle Model	The implement profile name.	
Serial Rate	Applied Rate	The applied rate.	
Control	Current Flow	The current flow.	
	Target Rate	The current target rate.	
	Total Vol Applied	The total volume applied so far.	
FieldLevel	P Altitude	The current height of the vehicle (as reported by the blade GPS receiver).	
	P Blade Height	The current height of the blade.	
	P CMR Percent	The percentage of radio CMR packets received over the last 100 seconds by the blade GPS receiver.	
	P Correction Age	The time since the GPS corrections were last received from the FieldLevel GPS receiver.	
	P Correction Type	The correction type used by the blade receiver.	
	P Cut/Fill	The difference between the Blade Height and the Target Height:	
		 When Cut is shown, the current ground height is above the target height. The height adjustment indicator shows a red down arrow, which means that the blade needs to move down to reach the Target Height. When fill is shown, the current ground height is below the target height. The height adjustment indicator shows a red up arrow, which means that 	
		the blade needs to move up to reach the Target Height.	
	P Design Height	The height the blade will attempt to reach. This is the Design Height ± the Offset. When the blade reaches the Target Height, the arrows turn green.	
	P Distance Traveled	(For use with Point to Slope mode). The distance traveled since Auto mode was enabled.	
	P East	The distance that the blade receiver is to the East of the field origin point (a negative number means the vehicle is to the West of the field origin point).	
	P GPS Status	The GPS correction type that the blade GPS receiver is currently using.	

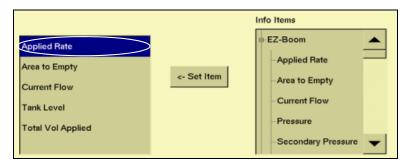
Category	Item	Description
	P H Error	(Horizontal error) An estimation of the level of precision of the blade GPS position in 2 dimensions.
	P HDOP	The current Horizontal Dilution of Precision of the blade receiver: A measure of accuracy based on the geometry of the satellites in the sky. If the satellites are near each other in the sky, the HDOP is higher (lower is better).
	P Heading	The current heading of the blade in degrees from direct north.
	P Latitude	The blade's current latitude.
	P Longitude	The blade's current longitude.
	P Network ID	The RTK network ID of the blade receiver's corrections.
	P North	The distance that the blade receiver is to the North of the field origin point (a negative number means the vehicle is to the South of the field origin point).
	P Offset	A separate plane that is parallel to the design plane. The offset is defined by a single measurement, which is the height that the offset plane is from the design plane.
	P Offset X	The Relative Position X offset from the master benchmark.
	P Offset Y	The Relative Position Y offset from the master benchmark.
	P Satellites	The number of satellites currently being received by the FieldLevel GPS receiver.
	P Speed	The speed of the vehicle as reported by the blade GPS receiver.
	P Target Height	The height the blade will attempt to reach. This is the Design Height ± the Offset. When the blade reaches the Target Height, the arrows turn green.
	P Up	The height of the blade receiver relative to the field origin point (a negative number means the blade is below the field origin point).
	P VDOP	The current VDOP of the FieldLevel GPS receiver.
	P Vertical Error Estimate	The current estimate of error in the height calculated by the FieldLevel GPS receiver.
FieldLevel II Tandem/Dual	S Altitude	The current height of the vehicle (as reported by the blade GPS receiver).
	S Blade Height	The current height of the blade.
	S CMR Percent	The percentage of radio CMR packets received over the last 100 seconds by the blade GPS receiver.
	S Correction Age	The time since the GPS corrections were last received from the FieldLevel GPS receiver.
	S Correction Type	The correction type used by the blade receiver.


Category	Item	Description
	S Cut/Fill	The difference between the Blade Height and the Target Height: • When Cut is shown, the current ground height is
		above the target height. The height adjustment indicator shows a red down arrow, which means that the blade needs to move down to reach the Target Height.
		• When fill is shown, the current ground height is below the target height. The height adjustment indicator shows a red up arrow, which means that the blade needs to move up to reach the Target Height.
	S Design Height	The height the blade will attempt to reach. This is the Design Height ± the Offset. When the blade reaches the Target Height, the arrows turn green.
	S Distance Traveled	(For use with Point to Slope mode). The distance traveled since Auto mode was enabled.
	S East	The distance that the blade receiver is to the East of the field origin point (a negative number means the vehicle is to the West of the field origin point).
	S GPS Status	The GPS correction type that the blade GPS receiver is currently using.
	S H Error	(Horizontal error) An estimation of the level of precision of the blade GPS position in 2 dimensions.
	S HDOP	The current Horizontal Dilution of Precision of the blade receiver: A measure of accuracy based on the geometry of the satellites in the sky. If the satellites are near each other in the sky, the HDOP is higher (lower is better).
	S Heading	The current heading of the blade in degrees from direct north.
	S Latitude	The blade's current latitude.
	S Longitude	The blade's current longitude.
	S Network ID	The RTK network ID of the blade receiver's corrections.
	S North	The distance that the blade receiver is to the North of the field origin point (a negative number means the vehicle is to the South of the field origin point).
	S Offset	A separate plane that is parallel to the design plane. The offset is defined by a single measurement, which is the height that the offset plane is from the design plane.
	S Offset X	The Relative Position X offset from the master benchmark.
	S Offset Y	The Relative Position Y offset from the master benchmark.

Category	Item	Description
	S Satellites	The number of satellites currently being received by the FieldLevel GPS receiver.
	S Speed	The speed of the vehicle as reported by the blade GPS receiver.
	S Target Height	The height the blade will attempt to reach. This is the Design Height ± the Offset. When the blade reaches the Target Height, the arrows turn green.
	S Up	The height of the blade receiver relative to the field origin point (a negative number means the blade is below the field origin point).
	S VDOP	The current VDOP of the FieldLevel GPS receiver.
	S Vertical Error Estimate	The current estimate of error in the height calculated by the FieldLevel GPS receiver.
FieldLevel Survey/Design	Blade Height	The current height of the blade.
	Cut/Fill	The difference between the Blade Height and the Target Height: • When Cut is shown, the current ground height is above the target height. The height adjustment indicator shows a red down arrow, which means that the blade needs to move down to reach the Target Height. • When fill is shown, the current ground height is below the target height. The height adjustment
		indicator shows a red up arrow, which means that the blade needs to move up to reach the Target Height.
	Design Height	The height the blade will attempt to reach. This is the Design Height ± the Offset. When the blade reaches the Target Height, the arrows turn green.
	Offset X	The Relative Position X offset from the master benchmark.
	Offset Y	The Relative Position Y offset from the master benchmark.
	Survey Points	The number of survey points that have been created.
	VDOP	The current VDOP of the FieldLevel GPS receiver.
	Vertical Error Estimate	The current estimate of error in the height calculated by the FieldLevel GPS receiver.

To set the status text items:

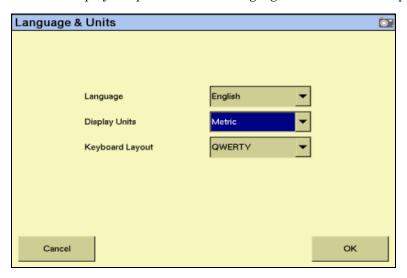
- Тар 💸.
- 2. If necessary, enter the Administration password. The *Configuration* screen appears.
- Select the *System* plugin and then tap **Setup**. The *Display Setup* screen appears. 3.


4. Tap Status Items:

The status text items appropriate for your plugins appear in the *Info Items* list.

- 5. Set the upper left status text item:
 - a. In the Info Items list, tap the item you want to use.
 - b. Tap the left ^ Set Item button.The information appears in the upper left field.
- 6. Set the upper right status text item:
 - a. In the Info Items list, tap the item you want to use.
 - Tap the right **^ Set Item** button.The information appears in the upper right field.
- 7. In the *Timeout* list, select a time. This is how long the tab remains on-screen before retracting. To have the tab extended until you close it manually, select *Never*.

- 8. To add status items to the slide-out tab:
 - Tap the position on the tab that you want to fill. For example, to add an item to the first position on the list, tap at the location shown:



- In the Info Items list, tap the item you want to use. b.
- c. Tap <- Set Item.
- d. To save the configuration, tap **OK**.

Selecting the language, units of measure, and keyboard layout

To select the default language for the display:

From the *Display Setup* screen, select *Language & Units* and then tap **SETUP**:

The Language & Units setup screen appears. Select the language to use from the Language drop-down list.

If you change the language, a message warns that the display will turn off so that the change can take effect.

The default language is *English*.

2. To select the unit of measure for the display, select the preferred option from the *Display Units* drop-down list.

There are three options:

- Metric
- Feet and Inches
- Decimal Feet

The default option is Feet and Inches.

3. Set the keyboard layout.

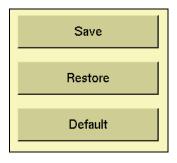
The FM-1000 integrated display uses a virtual keyboard on the touch screen for you to enter characters (see Some FM-1000 integrated display buttons have a direct action, while others change to show that a feature is enabled or disabled; page 26).

The virtual keyboard can be laid out in two ways:

Setting	Description	
ABCDEF	The letters appear in alphabetical order.	
QWERTY	The keyboard is laid out like the Qwerty keyboard on a computer.	

Select your preferred option from the *Keyboard Layout* drop-down list.

The default option is ABCDEF.


Using the save/restore settings files

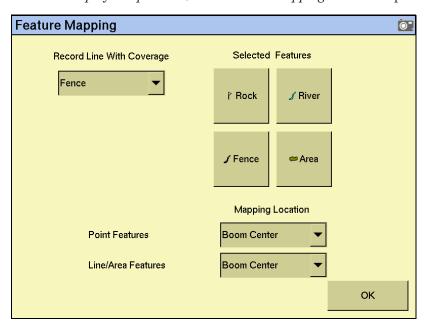
The display configuration is different from the vehicle configuration. The vehicle configuration saves the Autopilot vehicle settings that you *created*. The display configuration saves the display appearance features that you *selected*. For more information, see Saving the vehicle configuration, page 476.

CAUTION – The FM-1000 integrated display saves only one settings file. When you save the current display settings, they overwrite any configuration that you previously saved.

From the Display Setup screen, select Save/Restore Settings. You can apply the following settings to the display:

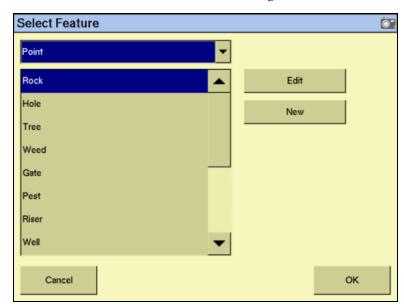
То	Тар
Restore the display default settings	Default
Save the current settings for future use	Save
Restore the saved settings file	Restore

The settings are saved to the $\AgGPS\Diagnostics\Preferences\$ folder.


To apply the same settings to another FM-1000 integrated display:

- Save the settings to the USB memory stick. 1.
- 2. Insert the USB memory stick into the second display.
- 3. Restore the settings on the second display (see above).

For any additional displays, repeat Steps 2 and 3.


Configuring feature mapping

1. From the *Display Setup* screen, select *Feature Mapping* and then tap **Setup**:

The four large buttons represent the field feature buttons that appear on the *Mapping* tab on the Run screen (see page 122).

- 2. In the *Mapping Location* group, select *Boom Left, Boom Center*, or *Boom Right* as the point on the vehicle where the feature will be created:
 - For a Point feature, select from the *Point Features* drop-down list.
 - For a Line or Area feature, select from the *Line/Area Features* drop-down list.

3. Select one of the four feature buttons to assign a feature to:

- Do one of the following:
 - To create a new feature and assign it to the button, select the type of feature to create (point, line, or area) from the drop-down list and then tap **New**. The Edit Feature screen appears.
 - To assign an existing feature to the button, select the type of feature to edit (point, line, or area), select the feature from the list that appears and then tap **OK**. The *Select Active Feature* screen reappears with the feature that you selected assigned to the feature button.

Creating a point feature

Enter values for the following settings.

Item	Description	
Name	The name of the feature. For example, "Tree".	
Alarm Radius	When the vehicle comes within this radius of the feature, the alarm appears. The alarm radius appears on the screen as a solid red block of color. The alarm radius is more serious than the warning radius, so set it to a shorter distance.	
Warning Radius	The distance around the feature that causes a warning message to appear. The warning radius appears on the screen as an orange line.	
Average Position	 This is a way to improve the quality of the point feature position. If you select the Average Position button, the display calculates the average position of the feature over 30 seconds. If you deselect the button, the display places the feature at 	
	calculates the average position of the feature over 30 seconds.	

- 2. To select the feature appearance color, tap **Color**.
- 3. To return to the *Select Feature* screen, tap **OK**. The new feature appears in the *Point* list.
- Select the new feature from the list and then tap **OK**.
 The new feature appears on the button you selected.
- 5. To exit, tap **OK**.

Creating a line feature

- 1. In the *Name* field, enter a name for the feature.
- 2. To select the feature appearance color, tap **Color**.
- 3. To return to the *Select Feature* screen, tap **OK**. The new line feature appears in the *Line* list.
- 4. Select the new feature in the list and then tap **OK**.

 The new feature appears on the button you selected.
- 5. Tap **OK**.

Creating an area feature

You can use area features to define areas of land as *Productive* or *Unproductive*. If the sprayer passes into an area that is defined as unproductive, the boom sections turns off. This can be useful for setting exclusion zones that you do not want to spray, for example, waterways.

- 1. In the *Name* field, enter the name of the feature.
- 2. If the area feature will be a section of land that can be included in area calculations, set the **Productive Area** button to *Yes*. If it is unproductive land, set the button to *No*.
- 3. To select the feature appearance color, tap **Color**.
- 4. If a signal pin is attached to the system, set the **Remote Output** button to *Enabled*. This enables you to trigger a pulse to an external device when you enter or exit this area.
- 5. From the *Trigger Warning* list, select one of the following settings.

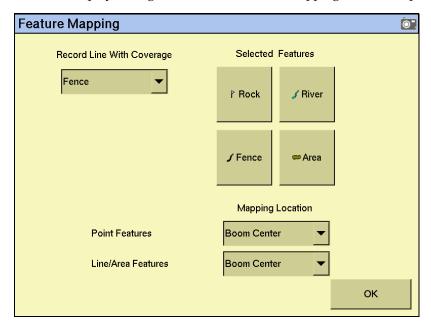
Item	Description
No Warning	No warning appears
Entering Area	A warning appears while you are inside the area
Leaving Area	A warning appears while you are outside the area

Note - The Remote Output and Trigger Warning settings relate only to this type of area feature. They do not apply to any of your other area features. You must set the warning for each type of area feature individually.

6. Tap **OK**.

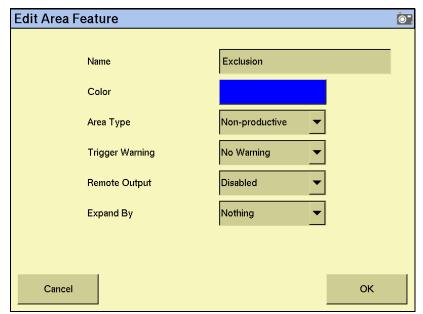
The new area feature appears in the *Area* list.

- Select the new feature from the list and then tap **OK**. The new feature appears on the button you selected.
- 8. Tap OK.

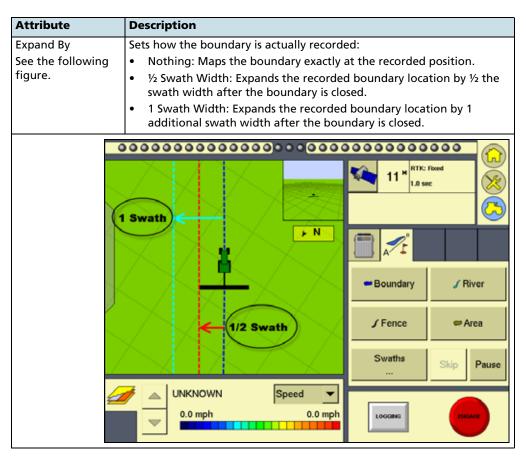

For more information on applying field features during navigation, see Placing field features on screen, page 145.

Activating field boundaries

The FM-1000 integrated display includes the field boundary feature that enables you to map multiple-bounded areas within a field.

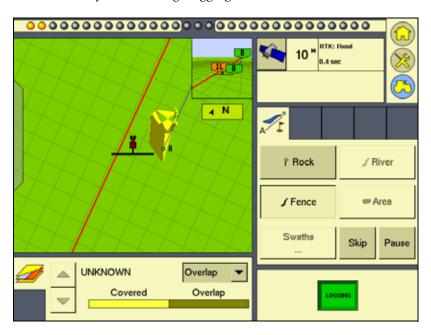

Field boundaries create a separate boundary file that can be used to calculate area and control automatic section switching at the edge of the field.

From the *Display Settings* screen, select *Feature Mapping* and then tap **Setup**:

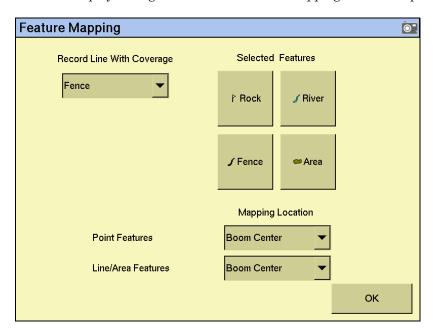

- 2. Tap one of the Selected Features buttons. The Select Feature screen appears.
- 3. From the feature drop-down list, select *Area*.

4. From the list of features, select Boundary and then tap **Edit**:

5. Set one or more of the following the attributes for the boundary features.


Attribute	Description	
Name	a custom name that appears on the Feature Mapping tab.	
Color	sets the color of the boundary outline and also the infill color, if selected.	
Draw As	select either Outline or Filled to set how the boundary appears on the screen.	
Trigger Warning	sets a visual and audible warning when entering or leaving the boundary edge.	
Remote Output	when enabled, this feature restricts remote output pulses from being triggered while outside the boundary.	

- 6. Tap **OK**. The *Select Feature* screen appears.
- 7. Tap **OK**. The *Feature Mapping* screen appears.
- 8. Tap **OK**. The *Display Setup* screen appears.
- 9. Тар **ОК**.


Recording a line feature with coverage logging

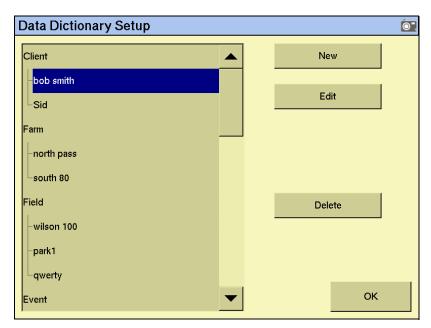
In version 2.0 of the FM-1000 integrated display, you can record a line feature simultaneously with coverage logging:

To activate line feature mapping, do the following:

1. From the *Display Settings* screen, select *Feature Mapping* and then tap **Setup**:

2. Tap one of the four feature buttons to create or select an active line feature and then tap **OK**. The *Feature Mapping* screen appears.

- 3. From the Record Line With Coverage drop-down list, select the required line feature and then tap **OK**. The *Display Setup* screen appears.
- **Тар ОК.** 4.


Editing the data dictionary

The data dictionary editor enables you to predefine the entry options defined below and then select them from a pick-list during field and event definition.

Data dictionary entry fields

Client	Implement	Target pests
Farm	Application method	Custom 1
Field	Wind speed	Custom 2
Event	Wind gust speed	Custom 3
Operator	Wind direction	Custom 4
Operator EPA #	Sky conditions	Material
Harvest year	Soil conditions	Stoppage reason
Farm location	Soil type	
Vehicle	Crop	

From the *Display Setup* screen select, *Data Dictionary* and then tap **Setup**:

- From the data list, select the data field to define and then tap either New or Edit.
- Define the custom entry by manually entering or updating the name and then tap **OK**.

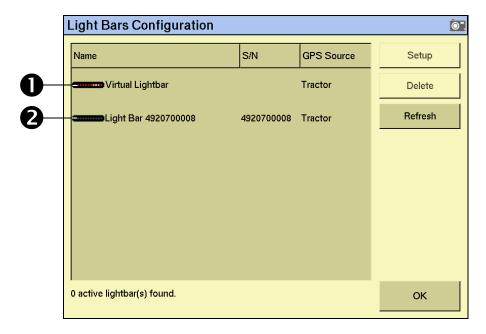
The new or edited entry appears in the data list on the *Data Dictionary Setup* screen.

For more information on editing data dictionary entries, see Data dictionaries, page 502.

For more information on accessing data dictionary entries, see Accessing data dictionary entries, page 124.

Configuring the lightbar settings

The display has two lightbar options:


- the virtual lightbar that appears at the top of the display's Run screen
- an external lightbar

Configuring the virtual lightbar

The FM-1000 integrated display has default settings for the virtual lightbar that should suit most drivers. If the settings are not appropriate, configure the lightbar as follows:

- 1. From the *Configuration* screen, select the *System* plugin and then tap **Setup**.
- 2. If necessary, enter the Administrator password. See Password access, page 62. The *Display Setup* screen appears.
- 3. From the list of devices, select *Lightbar* and then tap **Setup**. The *Light Bars Configuration* screen appears.

The virtual lightbar from the FM-1000 integrated display is shown \bullet , along with any detected external lightbars \bullet :

Lightbar Settings 0 0.00 s Look ahead time 0' 1.2" LED spacing Display Mode Show Correction (Cl ▼ Cancel ок

4. Select the *Virtual Lightbar* and then tap **Setup**:

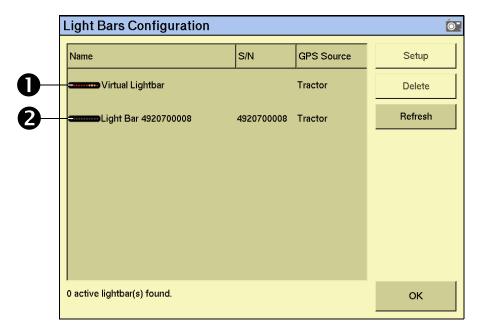
Configure the following settings:

Setting	Affects	Default setting	This setting determines
Look ahead time	AgGPS EZ-Guide® Plus lightbar	0 seconds	the distance ahead of the vehicle that the lightbar will use for LED guidance and offline distance.
LED spacing	Virtual lightbar and EZ-Guide Plus lightbar	3 cm per LED/1" per LED	the distance represented by each LED on the lightbar.
Display Mode	Virtual lightbar and EZ-Guide Plus lightbar	show error (chase mode)	how the LEDs respond to offline distances. When "Show error" is selected, the display shows the direction that you need to move in. When "Show correction" is selected, the display shows your current distance offline.

To set the look ahead time or the LED spacing, do the following:

- 1. Tap the appropriate number field.
- 2. In the dialog that appears, enter the required values.

To set the display mode, do the following:


- From the drop-down list, select the required option.
- 2. Enter the virtual lightbar settings and then tap **OK**. The *Lightbars Configuration* screen appears.
- **Тар ОК.**

The virtual lightbar is now configured.

Configuring an external lightbar

- 1. From the *Configuration* screen, select the *System* plugin and then tap **Setup**.
- 2. If necessary, enter the Administrator password. See Password access, page 62. The Display Setup screen appears.
- From the list of devices, select *Lightbar* and then tap **Setup**. The *Light Bars* 3. Configuration screen appears.

The virtual lightbar from the FM-1000 integrated display is shown **●**, along with any detected external lightbars 2:

Light Bar Settings **O**". •••••••••••••••••••• Light Bar 4920700008 Name Orientation Vertical, Right High Brightness 100 % 0' 0.08" **LED Spacing** Vehicle XTE LightBar Purpose οк Cancel

Select an external lightbar and then tap **Setup**: 4.

- Enter the required settings and then tap \mathbf{OK} . The $\mathit{Light Bars Configuration}$ screen appears.
- 6. Тар **ОК**.


The external lightbar is now configured.

Configuring the guidance options

Selecting *Guidance* enables you to configure advanced guidance settings. If you are setting up the system for the first time, you should not need to adjust these settings.

Enabling the Limit Field Selection filter

1. From *Display Setup* screen, select *Guidance* and then tap **Setup**:



- 2. From the *Limit Field Selection* drop-down list, select the preferred option.
- 3. If you selected *Yes* at Step 2, the *Selection Radius* dialog appears. Enter the required radius value and then tap **OK**.
- 4. In the *Display Setup* screen, tap **OK**.

To review the settings, or if you have any guidance lines originally generated with an AgGPS 170 Field Computer or an AgGPS FieldManager[™] display, see Advanced diagnostics, page 506.

Configuring sounds

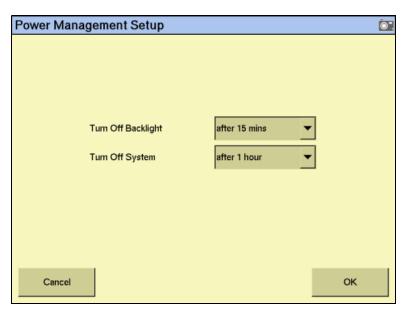
From the *Display Setup* screen, select *Sounds* and then tap **Setup**:

There are two ways that the display can produce sounds:

- FM-1000: through an optional external speaker
- Sonalert: through an optional Sonalert alarm
- 2. To enable a sound, select the option from the drop-down list and then tap **OK.**

Configuring the CAN bus

Note – These settings are very advanced: Use them only under the direct advice of Trimble Technical Support.

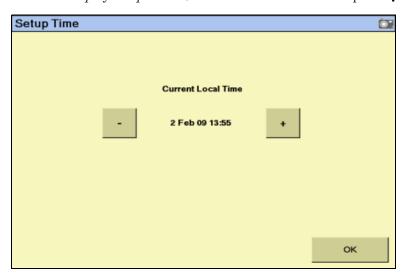

If the CAN bus does not have a physical terminator, enable the *CAN Termination* options.

To control the strength of the edges on the CAN bus, use the CAN Driver Strength setting. CNH recommends that you set the CAN driver Strength to Full.

Power management

The FM-1000 integrated display features advanced power management features to dim the backlight or turn off the display after a pre-set period of inactivity.

1. From the *Display Settings* screen, select *Power Management* and then tap **Setup**:


- 2. From the *Turn Off Backlight* drop-down list, select the required period of inactivity until the backlight dims.
- 3. From the *Turn Off System* drop-down list, select the required period of inactivity until the display shuts down.
- 4. Tap **OK**.

Configuring the system time

Note – Configuring the time zone can cause multiple warning messages to appear. Do not be concerned by this.

To synchronize the system time to the GPS signals:

From the *Display Setup* screen, select *Timezone* and then tap **Setup**:

- If the time is not correct, tap the or + button to change the time by 1-hour increments.
- When the time matches the local time, tap **OK**.

CHAPTER

The Ag3000 Modem

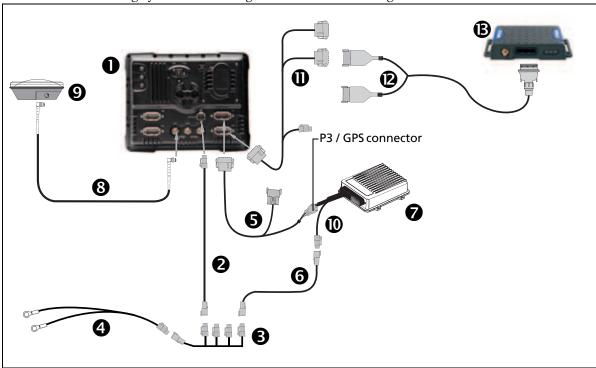
In this chapter:

- Introduction to the Ag3000 modem
- Benefits of using an Ag3000 modem
- Connecting the Ag3000 modem
- Activating the Ag3000 modem
- Configuring the Ag3000 modem

This chapter describes how to install and configure the Ag3000 modem to work with the FM-1000 integrated display.

Introduction to the Ag3000 modem

The Ag3000 modem enables the FM-1000 integrated display to receive RTK corrections from a Trimble VRS™ network, a third-party RTK provider or a Continuously Operating Reference Station (CORS).


Benefits of using an Ag3000 modem

The benefits of using the FM-1000 integrated display and the Ag3000 modem include the following:

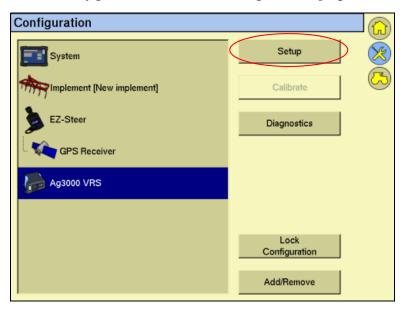
- More acres of RTK accuracy from Trimble VRS Now™ delivered to your display.
- Easy interface and configuration with the display.
- External cell modem GSM antenna for enhanced signal reception to minimize cell phone signal related drop outs.
- Three LEDs to indicate operation status.
- In North America, the Ag3000 modem is bundled with a SIM card (AT&T or Jasper Wireless) and a cell phone service plan.
- In Europe, the reseller will contact the local VRS Now provider for a SIM card and service plan, as this varies from country to country.

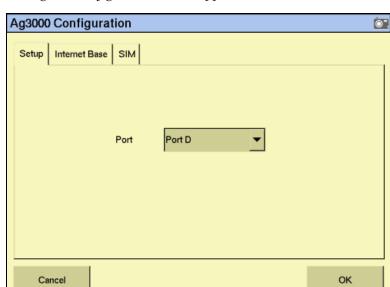
Connecting the Ag3000 modem

The following figure shows how to connect the FM-1000 integrated display to the AgGPS Autopilot Automated Steering System while using corrections from the Ag3000 modem.

Item	Description	Part number
0	FM-1000 integrated display	93100-01
2	FM-1000 power cable	66694
•	FM-1000 power cable with relay and switch (power bus)	67259
4	Basic power cable	67258
6	FM-1000 to NavController II cable with port replicator	75741
6	2 pin DTM to 2 pin DT power adaptor	67095
0	NavController II	55563-00
8	8m GPS TNC/TNC RT angle cable	76442
9	Ag25 GNSS antenna	68040-00S
•	Main NavController II cable	54601
•	Ag3000 to FM-1000 cable	77273
@	Ag3000 break-out cable	70433
₿	Ag3000 modem	80300

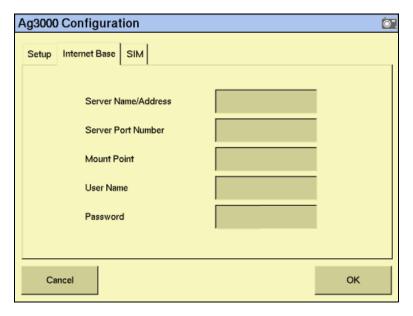
Activating the Ag3000 modem


In the USA, the Ag3000 is bundled with a Trimble-installed AT&T or Jasper Wireless SIM card, which is tied to your Ag3000 unit and cannot be separated. You cannot use any other SIM cards with this device.


Additionally, this modem does not work in a CDMA network.

Outside of the USA, you must contact your local VRS Now or third-party cell provider for a SIM card.

Configuring the Ag3000 modem


- Install the Ag3000 plugin. For more information, see Adding or removing a plugin, page 56).
- From the *Configuration* screen, select the *Ag3000 VRS* plugin and then tap **Setup**:

The *Ag3000 Configuration* screen appears:

- From the Port drop-down list, select the CAN port that the Ag3000 modem is 3. connected to. The default setting is Port D.
- Select the *Internet Base* tab: 4.

Enter the required settings, as provided by your Trimble VRS Now or Network RTK operator, as described below.

Internet base setting	Description
Server Name/Address	RTK/VRS/CORS base station broadcast name
Server Port Number	Base station port number
Mount Point	Base station mount point

Internet base setting	Description
User Name	Assigned username
Password	Assigned password

Tap **OK**. The *Configuration* screen appears.

The Ag3000 modem is now configured.

Note – SIM tab fields:

- In the USA, the Ag3000 modem has an AT&T or Jasper Wireless SIM card; you do not need to enter the details.
- Outside of the USA, you must obtain details of the SIM card from the card provider and then enter them.

Implement Configuration

In this chapter:

- Introduction
- Selecting an existing implement
- Creating an implement
- Importing an implement from the AgGPS 170 Field Computer or the FieldManager Display
- Adjusting the implement settings
- Deleting an implement

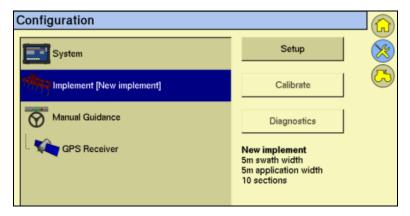
This chapter describes how to configure a vehicle implement. For more information, see Chapter 24, Advanced Configuration.

Configure an implement so that the system can tell:

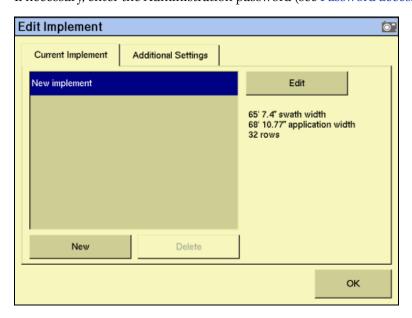
- which type of implement is attached
- how much area it covers
- how far offset it is

Note - Some configuration settings are unavailable when a field is open in the Run screen. To access these settings, return to the Run screen and then tap the **Home** button. When prompted to close the field, tap **Yes**.

Introduction


To obtain an implement, do one of the following:

- Create a new implement, see below.
- Select an existing implement, see page 107.
- Import an implement that was created for the AgGPS 170 Field Computer, see page 107.


Once you select an implement, adjust its settings. See page 108.

Creating an implement

- Tap **(X)**. The *Configuration* screen appears.
- Select *Implement* and then tap **Setup**:

3. If necessary, enter the Administration password (see Password access, page 62).

Note - Additional setup options appear on this screen for the Tru Application Control or the EZ-Boom plugins. See Additional settings, page 116.

- Tap **New**. The *New Implement Name* screen (with a virtual keyboard) appears.
- Enter a name for the new implement and then tap **OK**. The *Implement Setup* 5. screen appears.

For more information on configuring the implement, see Adjusting the implement settings, page 108.

Selecting an existing implement

To configure an implement:

- Tap (XX). The Configuration screen appears. 1.
- 2. Select *Implement* and then tap **Setup**.
- 3. If necessary, enter the Administration password. See Password access, page 62. The Edit Implement screen appears.

Any previously configured implements appear in the *Current Implement* list at the top of the screen.

To select an item, tap the list to open it and then select the appropriate implement.

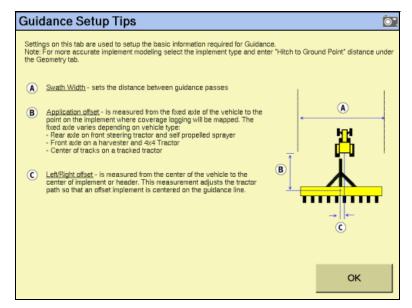
If there is only one available implement, it is selected by default.

Importing an implement from the AgGPS 170 Field Computer or the FieldManager Display

The FM-1000 integrated display can import and use implements that were created in the AgGPS 170 Field Computer or the FieldManager display.

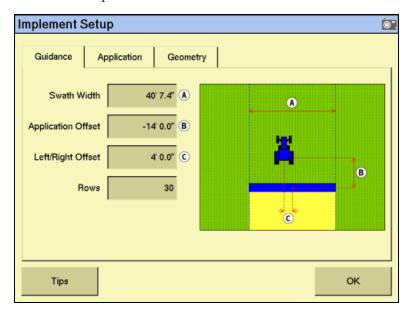
To import an implement:

- Copy the implement file into the *AgGPS* folder on the USB memory stick.
- Insert the memory stick into the FM-1000 integrated display and then turn on the display.
- Tap (X). The *Configuration* screen appears. 3.
- If necessary, enter the Administration password. See Password access, page 62. 4.
- Select *System* and then tap **Setup** 5.
- Select *Data Files* and then tap **Manage**.
- Select *Implement* from the list on the left of the screen and then tap **Copy**. 7. The implements from your AgGPS 170 Field Computer or FieldManager display now appear in the drop-down list.


Adjusting the implement settings

On the FM-1000 integrated display, the implement setup screens are divided into three sections:

In this section	Define
Guidance	The basic information required for guidance with the Ag GPS EZ-Steer $^{\circledR}$ assisted steering system and the Autopilot system.
Application	The specific information for application width and section assignments.
Geometry	More detailed implement dimensions required for better implement modeling both with and without a GPS receiver on the implement.


Tips for implement configuration

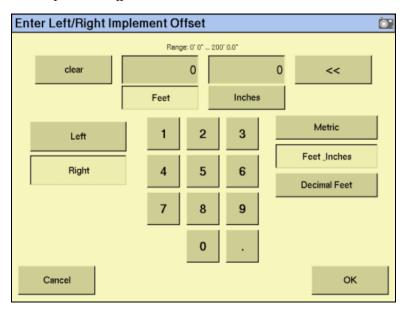
Each of the tabs in the $Implement\ Setup$ screen has a **Tips** button. Tap this button to view information about the settings that you can enter in each tab. Tap **OK** to return to the $Implement\ Setup$ screen.:

Configuring the Guidance settings

In the *Edit Implement* screen, select the implement from the *Current Implement* list and then tap **Edit**:

- If necessary, tap the Swath Width field and then enter a value to create an overlap.
- 3. Enter the front/back offset setting.

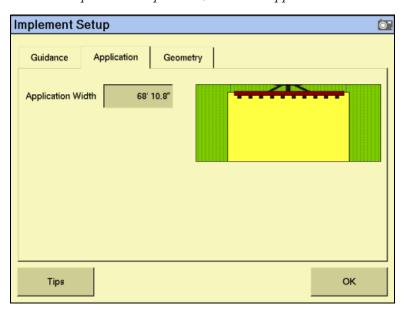
CAUTION – You must configure the correct front/back offset. If you are using an Autopilot system alone, set the front/back offset to the distance from the rear axle of the vehicle to the implement. If you are using any of the plugins that include switching (Serial Rate Control, Tru Application Control, or EZ-Boom), set the front/back offset to the distance from the antenna to the implement.

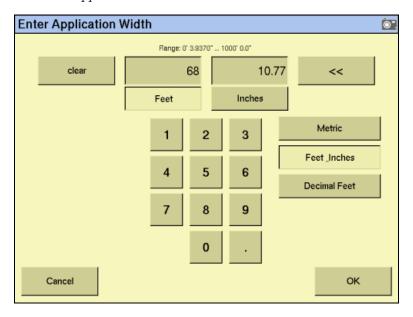

Enter Front/Back Offset **O**". Range: 0' 0" ... 200' 0.0" 19 clear Inches Feet Metric 3 Back Feet Inches Forward 6 **Decimal Feet** 9 8 ок Cancel

Tap Application Offset::

- If necessary, tap Metric, Feet & Inches, or Decimal Feet to change the units that the offset is measured in.
- Enter the offset distance.
- Tap either **Back** or **Forward** to select the direction of the offset. A forward offset that indicates that the implement is located ahead of the antenna position.
- Tap **OK**. The *Implement Setup* screen appears. The image of the vehicle e. shows the offset that you just set.

Note - The screen is scaled to the swath or application width—whichever is larger. If any offset is greater than this, the tractor image may pass the edge of the screen.

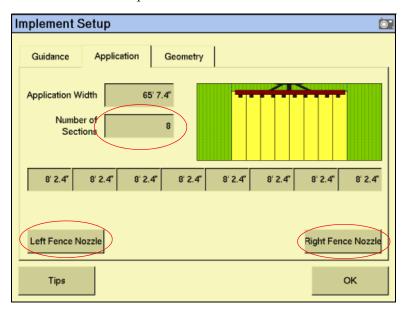

- If the implement is offset to one side, set the left/right offset:
 - Tap the L/R Offset field:


- If necessary, tap Metric, Feet & Inches, or Decimal Feet to change the units that the offset is measured in.Metric, Feet & Inches, or Decimal Feet to select the units that the offset is measured in.
- Enter the offset distance. c.
- Tap either **Left** or **Right** to select the direction of the offset. An offset to the left indicates that the implement extends to the left of the driver when seated in the vehicle.
- Tap **OK**. The *Implement Boom Setup* screen appears. The image of the vehicle shows the offset you have just set.
- Tap the *Rows* field and then enter the number of rows that span across the swath width; this is used for navigation. When you tap **Skip** to adjust the guidance line, the guidance line moves across by this number of rows.

Configuring the Application settings

From the *Implement Setup* screen, select the *Application* tab:

Select the *Application Width* field:


- If necessary, tap Metric , Feet & Inches , or $\mathsf{Decimal}$ Feet to select the units that the offset is measured in.
- Enter the distance from one end of the implement to the other.

Note – Set the *Application Width* value to slightly more than the *Swath Width* value.

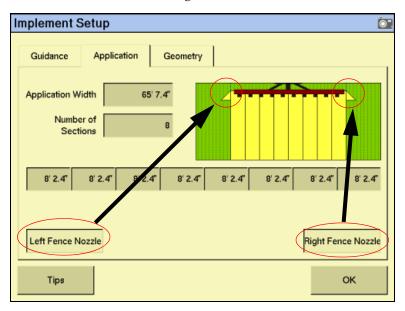
Tap **OK**. The *Implement Setup* screen appears. The yellow area below the image of the implement shows the application width you have just set.

Extra Application tab settings

If you have the EZ-Boom, Tru Application Control, or Serial Rate Control plugin installed, additional options are available on the screen:

Complete the following steps in addition to those in Configuring the Application settings, page 112.

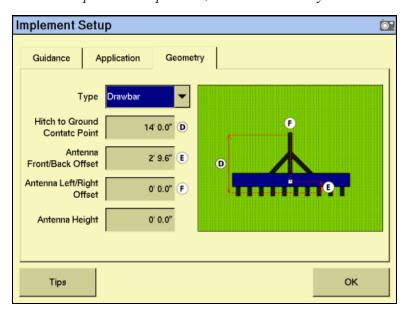
- Enter the number of implement sections:
 - Tap the *Number of Sections* field.
 - b. In the dialog that appears, enter the number of boom sections and then tap


Note – *When you count the total number of sections, do not include fence sections.*

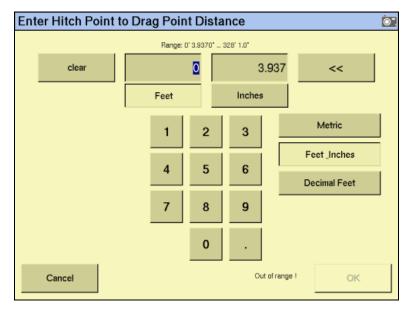
The *Implement Boom Setup* screen reappears. The graphic and the number of buttons along the base of the graphic will match the new number of sections.

Note - The EZ-Boom controller supports up to 10 boom sections. If only one fence section is enabled, you can have a maximum of 9 boom sections. If both fence sections are enabled, you can have a maximum of 8 sections.

- Tap each of the numbered buttons (under the graphic) to set the boom section widths. By default, each section width is set to an equal amount (calculated by dividing the application width by the number of sections).
- 2. Do one of the following:
 - If you are configuring an EZ-Boom system and the implement has a left fence section, tap Left Fence Nozzle.
 - If you are configuring an EZ-Boom system and the implement has a right fence section, tap Right Fence Nozzle.


A *fence section* is a spray section at the far left or right of the spray boom that points out to the side to cover fence lines. The left fence section is controlled by the far left (number 1) switch and the right fence section is controlled by the furthest active switch to the right on the EZ-Boom controller:

3. Tap **OK**. The *Edit Implement* screen appears.


Configuring the Geometry settings

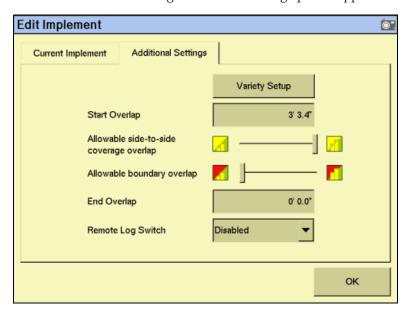
1. From the *Implement Setup* screen, select the *Geometry* tab:

- 2. From the *Type* list, select the implement type:
 - Hitch/3pt: the implement is fixed to the vehicle

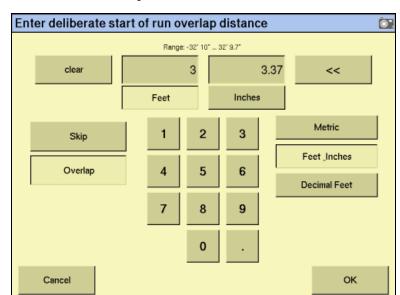
- Drawbar: the implement can pivot (like a trailer)
- 3. Select the *Hitch to Ground Contact Point* field:

Entering a *Hitch to Ground Contact Point* distance improves the modeling of the implement for section control. If you shorten this distance, it brings the implement online more quickly. This setting defaults to the Application Offset entered in the Guidance tab.

- If necessary, tap Metric, Feet & Inches, or Decimal Feet to select the units that the offset is measured in.
- 5. Enter the hitch to ground contact point distance.
- 6. Tap **OK**. The *Implement Setup* screen appears.
- Select the Antenna Front/Back Offset, Antenna Left/Right Offset and Antenna Height fields and repeat Step 4 through Step 6 for each to enter the required distances.
- Tap **OK**. The *Edit Implement* screen appears.

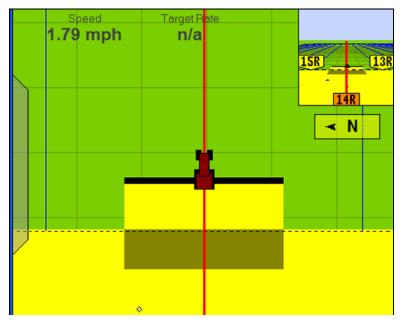

The implement is now configured, and the settings are stored in the FM-1000 integrated display's internal memory.

Additional settings


Configuring the spray boom (in the FM-1000 integrated display)

When you configure an implement with the EZ-Boom or the Tru Application Control plugin installed, additional settings appear on the *Edit Implement* screen.

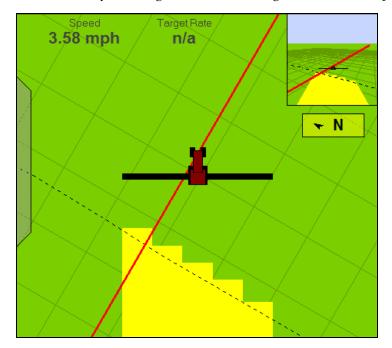
- From the *Configuration* screen, select *Implement* and then tap **Setup**. The *Edit* Implement screen appears.
- Select the *Additional Settings* tab. The following options appear:



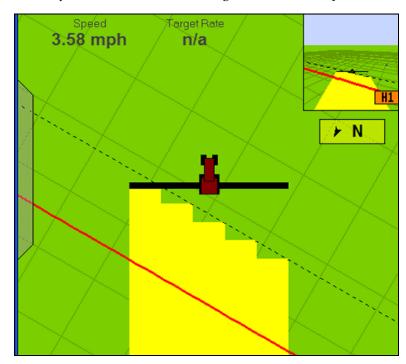
To access the *Variety Setup* menu, tap **Variety Setup**. For more information on allocating and logging varieties, see Logging varieties, page 147.

4. Select the Start Overlap field:

> In some cases, you may want to begin applying material some distance before you reach uncovered ground to ensure that you cover all of the ground. The Start Overlap setting is the distance before uncovered ground that the implement begins operating. The overlap appears as a grey section of the coverage area as shown in the following Run screen example:

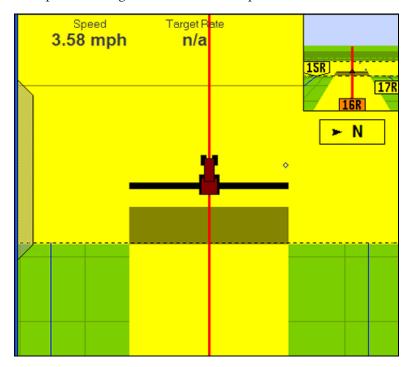

- Tap **Skip** to prevent an overlap of material, or tap **Overlap** to apply an overlap. Enter a value for the overlap/skip mode and then tap **OK**. The *Edit Implement* screen appears.
- Adjust the *Allowable Side-to-side Overlap* slider.

If a section turns off when you are crossing a diagonal covered ground, there needs to be some overlap or some skip. Use this slider to select your preference.


- To ensure that there is no coverage double-up, move the slider fully to the left. This results in some uncovered ground.
- To ensure that the system does not skip any ground, move the slider fully to the right. This results in some double-up.
- To have an even share of overlap and skip, move the slider to the middle.
- Set the *Allowable Boundary Overlap* slider. 7.

This applies to automatic section control. The slider bar adjusts the allowable overlap of the field boundary (headland and pivot patterns also apply) or exclusion zone. This setting is adjusted as a percentage of each section's width.

To ensure that no areas inside a boundary are left uncovered, set the slider all the way to the right. See the following Run screen example:



To ensure that no area outside a boundary is covered, set the slider all the way to the left. See the following Run screen example:

Set the End Overlap value.

In some cases, you may want to stop applying material some distance after you reach covered ground to ensure that you cover all of the ground. The *End Overlap* setting is the distance after covered ground that the implement stops applying. A positive value causes overlap, as shown in the following Run screen example, and a negative value causes skip.

- If your system does not provide automatic coverage control, select a CAN bus connector for the floor-mounted switch from the Remote Log Switch drop-down list.
- 10. Tap **OK**.

Deleting an implement

To delete an implement that you no longer require:

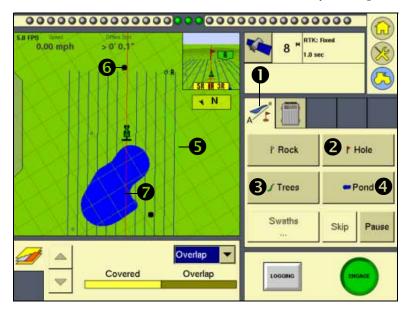
- From the *Edit Implement* screen, select the appropriate implement from the Current Implement list.
- 2. Tap Delete.
- When prompted, tap **Delete** to confirm the deletion.

The Mapping Plugin

In this chapter:

- Introduction to field features
- Starting a field
- The parts of the Run screen
- Selecting a swath pattern
- Creating a new line
- Swath management
- Using the "Guide to" tabs
- Using Skip to fine-tune navigation
- Placing field features on screen
- Pausing guidance
- Adjusting the status text size
- Introduction to coverage logging
- Logging varieties
- Closing a field

The Mapping plugin is permanently installed. It adds field features and guidance patterns to the display.


This chapter describes how to set up and use field features and how to use the plugin to perform steering navigation.

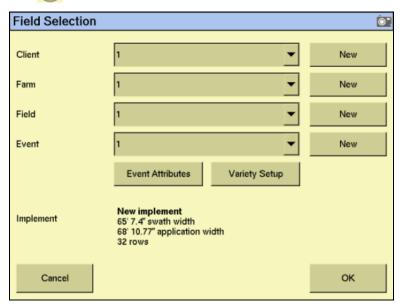
Introduction to field features

You can place field features in the field to define points of interest or areas to avoid. There are three types of field feature:

Feature type What it defines		Example
Point	a single point in a field	Tree
Line	a straight or curved line in a field	Fence
Area	an area of land	Pond

Configure field features that you will want to add to your fields and then assign up to four of them to buttons. These buttons appear on the *Mapping* tab on the Run screen. You can then use the buttons to add field features to your map while driving:

Item	Description
0	Mapping tab
2	Feature button set up to represent a hole in the ground
€	Feature button set up to represent a tree line
4	Feature button set up to represent a pond
6	Line feature drawn with the Tree Line feature button
6	Point feature drawn with the Hole feature button
0	Area feature drawn with the Pond feature button


Note – For more information on setting up the **Feature** *buttons, see Configuring feature* mapping, page 82

Starting a field

This is the screen where you either re-open an existing field or create a new field. You must select a Client, Farm, Field, and Event, in that order.

Note – The first time that you use the Field Selection screen, there are no existing fields so you must create one.

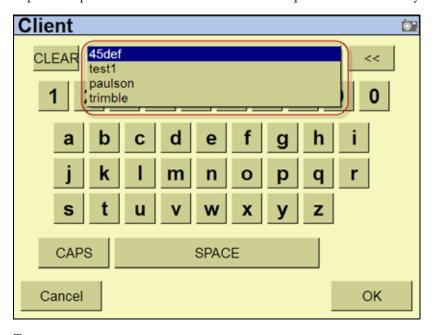
Tap (

- Do one of the following:
 - Create a new client. See Creating a client, page 124.
 - Select an existing client from the *Client* list. The *Farm* list now contains only the farms associated with that client.
- 3. Select the appropriate farm or create a new one.
- 4. Select the appropriate field or create a new one.
- 5. Select the appropriate event or create a new one.
- To add more information for record keeping, tap **Event Attributes**. The *Event* 6. Attributes screen appears. See Adding record-keeping information, page 125.
- 7. To add and edit information on the variety of products that can be distributed from the implement tap Variety Setup. See Logging varieties, page 147
- 8. Tap **OK** to enter the Run screen.

Once you create the field, select a swath pattern to use while you drive the field. See Selecting a swath pattern, page 132.

Creating a client

- 1. Tap **New** beside the *Client* list. The *Client* screen appears.
- 2. Tap the appropriate buttons to enter the name:


Select	ect To	
CAPS	enter capital letters or symbols	
<< delete the previous character		
CLEAR	delete all characters and start again	

- 3. Once the name is entered, tap **OK**.
- 4. Repeat this process to create a farm, field, and event (and record-keeping Event Attributes, if required).
- 5. If necessary, change the implement. See below.
- 6. **Тар ОК.**

Accessing data dictionary entries

If you already created Field Selection entries with the data dictionary editor, you can access them as you open the field:

- From the *Field Selection* screen, tap **New** for any of the field selection attributes. The keyboard input screen appears.
 - If there are predefined data dictionary entries for the current attribute, a drop-down arrow appears next to the text entry field.
- Tap the drop-down arrow and then select the required data dictionary entry:

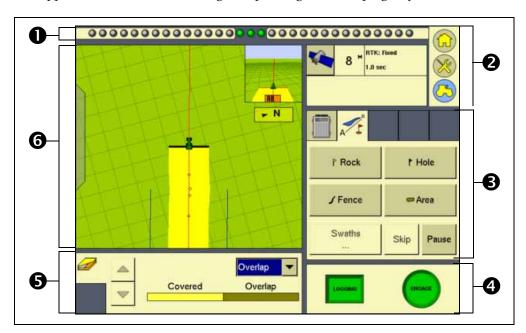
3. **Тар ОК.**

Additional settings

Limit Field Selection Filter

When opening existing fields, the FM-1000 integrated display can limit the number of fields displayed based on a pre-defined distance from the current GPS position. For more information on configuring the filter, see Enabling the Limit Field Selection filter, page 94.

Adding record-keeping information


To add the following categories, tap **Event Attributes**:

Item	Description
Operator name	The name of the vehicle operator
Operator EPA#	The vehicle operator's EPA license number for spreading restricted- use or state-restricted pesticides or herbicides
Harvest Year	The year that the crop is going to be harvested
Farm Location	The country or region where the farm is located
Vehicle	The vehicle used in the operation
Implement	The implement connected to the vehicle
Application Method	The application method used (for example, spraying, seeding, or harvesting)
Wind speed	The average wind speed
Wind gust speed	The maximum speed of any wind gusts
Wind direction	The average wind direction
Sky conditions	The amount of cloud cover
Soil conditions	A description of the state of the soil
Soil type	A description of the soil type in the field
Temperature	The current temperature
Relative humidity	The humidity percentage
Crop	The crop grown in this field
Target pests	(If spraying) the pest that the spray targets
Custom 1	Additional information of your choosing
Custom 2	Additional information of your choosing
Custom 3	Additional information of your choosing
Custom 4	Additional information of your choosing
Material	The material being applied
Material	The material being applied

The parts of the Run screen

The Run screen is where you receive guidance and drive the vehicle.

The appearance of the screen changes, depending on which plugins you have installed.

Item	Description
0	Virtual lightbar
2	GPS receiver(s) information
€	Plugin tabs (Autopilot tab shown)
4	Logging and engage buttons
6	Plugin information tabs (Mapping plugin tab shown)
6	Guidance window

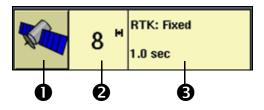
These items are described in more detail below.

Virtual lightbar

The virtual lightbar provides vehicle guidance. When the vehicle is perfectly on the guidance line, the three center (green) LEDs are lit:

When the vehicle moves off the guidance line to the left or the right, the three LEDs that are lit drift to the side:

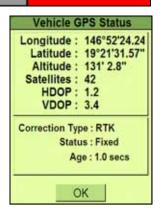
To configure the virtual lightbar, see Configuring the lightbar settings, page 90.


Plugin tabs

Most of the plugins have features that appear on a tab on the Run screen. To select a tab, tap the top of it:

GPS receiver information

The button in the top right of the Run screen provides information about GPS:



Item	Description
0	Satellite Information button
0	Current number of satellites
6	Type and age of correction

If the GPS signal is lost completely, the No GPS message appears.

Tap the satellite information button to view the information on it.

There can be more than one row, depending on the plugin that is installed. If the plugin requires a second GPS receiver (for example, the second GPS receiver mounted on the implement for the TrueTracker system), then the upper information row relates to the vehicle GPS receiver and the lower information row relates to the second GPS receiver.

NO GPS

Engage button

When you create a guidance line, you can use the **Engage** button to engage or disengage the AgGPS Autopilot automated steering system. The button has three states:

Engage butt	on color	Meaning	
Red	ENGAGE	The system cannot be engaged	
Gray	ENGAGE	The system can be engaged but currently is not engaged	
Green	ENGAGE	The system is engaged	

To engage the vehicle, tap **Engage**. The system engages and the button turns green.

To disengage the vehicle, do one of the following:

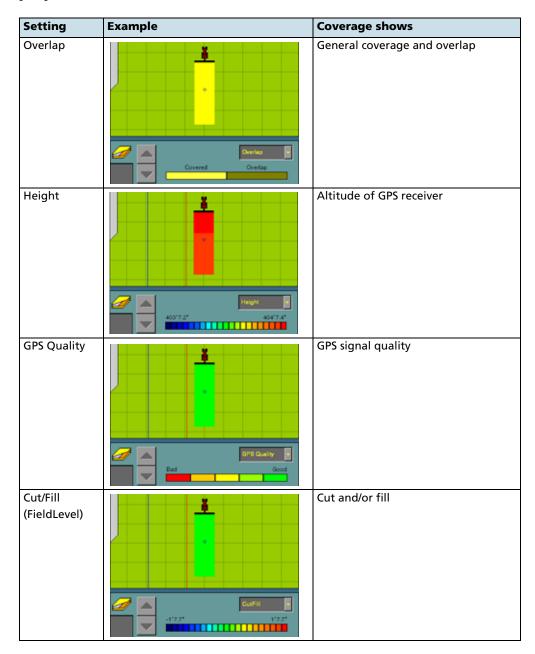
- Turn the steering wheel to trigger the manual override.
- Tap Engage.

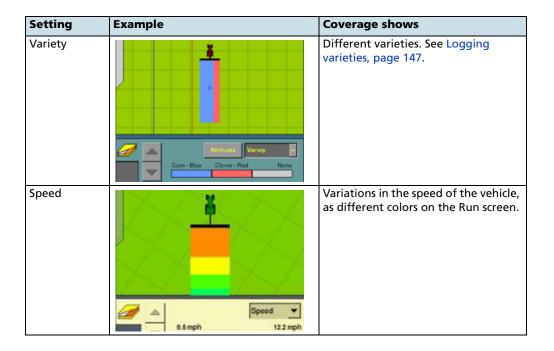
The system disengages and the **Engage** button turns gray.

If the button is red, tap it to find out why.

Logging button

The **Logging** button engages and disengages coverage logging:

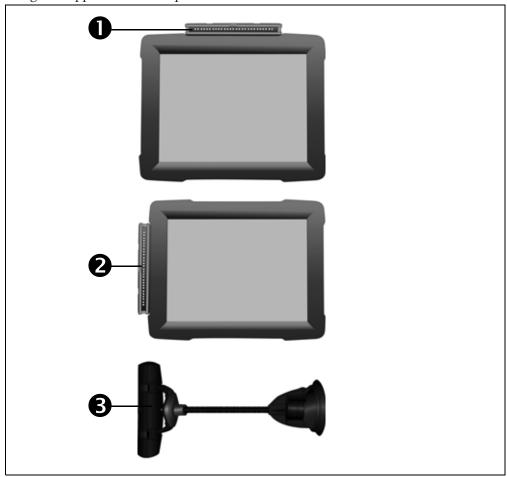

Logging button color		Meaning
Gray	LOGGING	Coverage logging is not engaged
Green	LOGGING	Coverage logging is engaged


Plugin information tabs

As with the plugin tabs, the plugin information tabs that appear differ depending on which plugins are installed:

Mapping information tab

The Mapping information tab enables you to view your coverage from a number of perspectives:


Guidance window

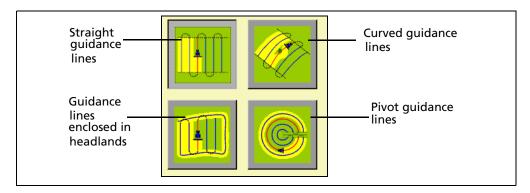
The guidance window shows your vehicle, coverage, field features, and guidance lines. For a description of how you can view the window, see View modes, page 29.

External Lightbar

The FM-1000 integrated display also supports one or more LB25 external lightbars.

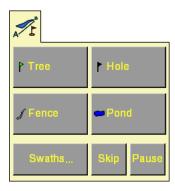
Purchased separately from the display, the LB25 lightbar can be mounted directly on the display, horizontally **①** or vertically **②**, using the hardware that is supplied with the lightbar, or mounted separately from the display in another part of the vehicle's cab using the supplied suction cup mount **3**:

The lights on the external lightbar replicate the operation of the lights on the display's virtual lightbar.

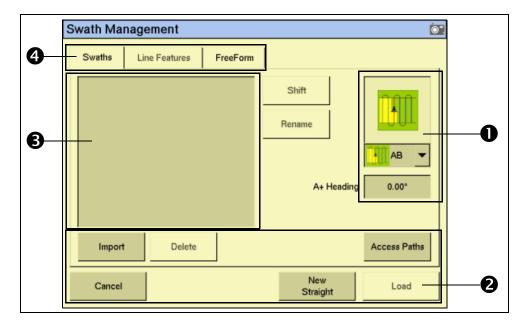

For more information on configuring the external lightbar, see Configuring an external lightbar, page 92.

Selecting a swath pattern

To obtain guidance with the FM-1000 integrated display, you can use:


- One of the four standard swath pattern types
- The FreeForm guidance pattern. See Creating guidance with the FreeForm pattern, page 137.

Use the standard patterns to create different shaped guidance lines on the display.



To select a swath pattern:

On the Run screen, select the *Mapping* tab:

2. Tap Swaths:

Item	Description
0	Guidance patterns
0	Line management buttons
❸	Existing guidance lines
4	Guidance type buttons

Select the appropriate pattern from the drop-down list on the right of the screen.

Creating a new line

The type of line that you can create depends on the swath pattern that you selected.

Creating a straight line

There are two ways to create a straight line:

- *AB Line* Define the start and end points.
- *A*+ *Line* Define a point on the line and the heading direction.

To create a straight AB Line:

- From the Swath Management screen, select the straight line field pattern.
- 2. Enter an access path, if required. See Adding an access path, page 141.

- Tap **New Straight**. The Run screen appears. 3.
- 4. To create the start point of the line, tap **Set A**.
- Drive to the end of the line. The end (B) point must be at least 50 meters 5. (160 feet) from the A point.
- Tap **Set B**. The new AB Line appears on-screen. To extend the line, drive further along it and then tap **Set B** again.
- 7. Tap Done.

To create a straight A+ line by selecting one point and the angle:

- 1. From the *Swath Management* screen, select the AB Line field pattern.
- 2. Enter an access path, if required. See Adding an access path, page 141.
- In the A+ Heading window, enter the angle that you want the line to be on or select a previous AB Line to use its heading. The default angle is the same as the previous AB Line heading.
- Tap **New Straight**. The Run screen appears. 4.
- 5. Drive to the start of the line and then tap **Set A**.
- Tap **Use A+**. The new A+ line appears. 6.
- 7. Tap Done.

Creating a curved line

- From the Swath Management screen, select the Curve field pattern from the drop-down list.
- Enter an access path, if required. See Adding an access path, 2. page 141.

- Tap **New Curve**. The Run screen appears. 3.
- Drive to the start point of the curve and then tap **Set A**. To stop recording your exact path and create a straight section of line, tap the **Record** button. See page 137.
- Drive the curve until you reach the end point and then tap **Set B**. The new curve appears.

Creating a headland

A Headland is a straight AB Line or an A+ line pattern that is confined inside a boundary. This boundary is called the headland.

Note – If you want to create a headland based on the A+ line pattern, select the straight line pattern and then set the A+ heading for the internal line. Then complete the following steps.

- 1. From the Swath Management screen, select the Headlands field pattern from the drop-down list.
- In the # Headlands window, enter the width of the headland boundary in swaths. For example, if you enter 2, the headland will be 2 swaths wide.

Tap **New Headland**. The Run screen appears with the headland definition buttons on the Mapping tab.

Drive to the start point of the headland and then tap **Record**. A red line appears behind the vehicle to show that the headland is being recorded.

Note – You must define the inner pattern **before** you complete the headland.

To define the inner pattern, tap Infill. The Mapping tab changes to show the inner pattern buttons.

- When you reach where you want the A point, tap Set A.
- Do one of the following:
 - To create an internal AB Line, drive to where you want the B point (at least 50 m (164 ft)) and then tap **Set B**.
 - To create an internal A+ line, tap **Use A+**.
- Tap **Back to HL**. The buttons on the Mapping tab change back to their original appearance.

When you complete the headland circuit, the system will draw a straight line from the vehicle back to the start point, so drive the vehicle to a position on the headland circuit where a straight line back to the start will not cut off part of the pattern.

Tap Close HL.

The new headland appears.

Creating a pivot

- From the Swath Management screen, select the Pivot field pattern from the drop-down list.
- 2. Tap New Pivot.

The Run screen appears.

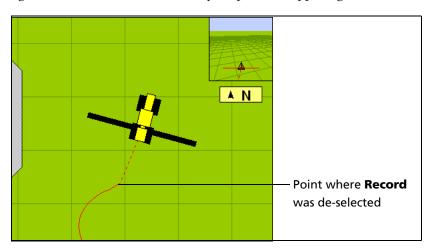
- 3. Drive to a point on the outermost rut of the pivot and then tap **Set A**.
- 4. Follow the pivot rut around to the end and then tap **Set B**. The *Enter Distance to* Pivot Field Edge screen appears.
- Enter the distance or the number of rows from the current path to the outside of the pivot and then tap **OK**.

The pivot appears.

Adjusting the outer edge radius

The pivot has an outer edge radius that is used to calculate coverage area. Once you create a pivot, you can adjust the outer edge radius:

- From the Run screen, tap **Swaths**. The *Swath Management* screen appears.
- 2. Select the pivot to be adjusted from the list of available pivots.


Note - The default is the AB curve.

- In the Outer Edge Radius window, adjust or enter the value that represents the distance from the pivot center to the outer edge and tap **OK**.
 - The Swath Management screen appears.
- To update the pivot, tap **Load**. The Run screen appears with the new pivot dimensions.

The Record button

When you create guidance based on the curve or headland pattern, the **Record** button is available. The **Record** button enables you to insert a straight section of line, rather than having the line follow the exact path of the vehicle (as happens with direct mapping).

When you select (tap) **Record**, the line you are driving is mapped. When you deselect **Record**, the display stops directly mapping your path. Instead, a dotted line spans from the vehicle to the point where you deselected **Record**. When you select the button again, the line becomes solid and your path is mapped again:

Creating guidance with the FreeForm pattern

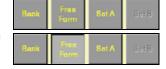
The FreeForm pattern is an advanced pattern that enables you to create multiple lines of different types in a single field to obtain guidance in fields of any shape. You need to record each line that you drive, to generate the next guidance line. You can create:

- Curved line segments
- Straight line segments in the form of straight AB Lines

With this combination, you can use the FreeForm pattern to create non-circular spirals or multiple curved guidance lines for irregular-shaped fields.

Tip – With FreeForm curves, remember that your next guidance line will appear only if you record your vehicle's path along the current guidance line. Record each pass to generate your next guidance line.

Creating a FreeForm section


- From the Run screen, tap **Swaths**. The *Swaths Management* screen appears.
- Select the *FreeForm* tab (in the upper left of the screen). The **New FreeForm** button becomes available (toward the lower right of the screen).

- If necessary, select the **Record FreeForm when logging** button. See Recording FreeForm guidance simultaneously with coverage, page 140.
- Tap **New FreeForm**. The Run screen reappears with the **Define FF**, **Next Path**, and **Pause** buttons on the *Mapping* tab.

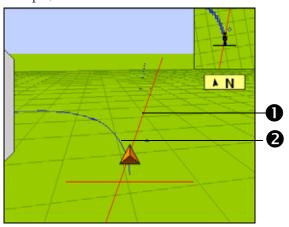
Creating a curved FreeForm section

- Tap **Define FF**. The FreeForm buttons change.
- Tap **FreeForm** to begin drawing a FreeForm line. The line follows the path of the vehicle.

- To complete the FreeForm pattern, do one of the following:
 - De-select the **FreeForm** button.
 - Perform a U-turn.

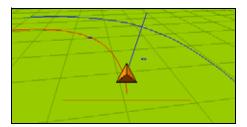
Note – If you are driving an inward spiral, leave the **FreeForm** button selected. The segments will continue to be defined.

Creating a straight FreeForm section


- Tap **Define FF**. The FreeForm buttons change.
- Drive to the start point of the line and then tap Set A.

Drive to the other end of the line and then tap **Set B**. The guidance line appears.

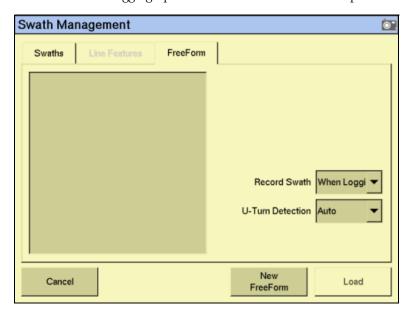
Switching between FreeForm sections


You can switch ("snap") between the different FreeForm sections. In the following example, there are 2 FreeForm sections:

Item	Description	
0	A straight FreeForm AB Line (selected)	
0	A curved FreeForm section	

You may want guidance along either line.

To snap between one section and another, tap the Next Path button on the Run screen (If the Next Path button is not available, tap Back and then tap Next Path). Guidance jumps to the next section:



To cycle through the available sections, keep tapping Next Path.

Note – This selects a curve only if the curve is within the snapping zone.

Recording FreeForm guidance simultaneously with coverage

When you select the FreeForm pattern on the Swaths Management screen, you can select the When Logging option from the Record Swath drop-down list:

When this option is selected, the system activates FreeForm logging whenever coverage is being logged.

You can simultaneously turn on or off coverage and FreeForm logging with the **Logging** button on the Run screen. Or, if you have an external remote logging switch that controls coverage logging, the system records FreeForm curves when the remote logging switch is enabled (the remote switch turns on coverage, which begins FreeForm logging).

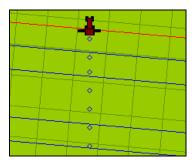
However, if an EZ-Boom or Tru Application Control system is connected, the master switch (on the EZ-Boom controller or the Tru Application Control harness) now controls FreeForm logging and not coverage itself.

Note – Coverage switching will not create large numbers of short FreeForm sections.

Loading a line

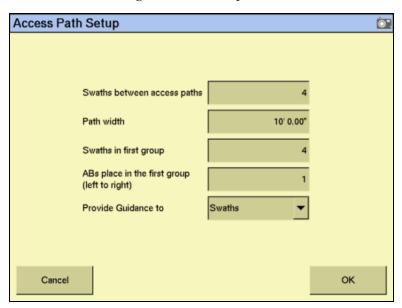
To load a line that you previously created in this field:

- From the Run screen, tap the **Swaths** button. The *Swath Management* screen appears.
- Do one of the following:
 - To load a straight section, select the appropriate section from the list on the left of the screen.
 - To load a FreeForm curve, select a curve from the list on the left of the screen. The system loads the closest line to you.


3. Tap **Load**. The Run screen appears, with the line loaded.

If you try to load a line that is over 100 km (63 miles) away, the following message appears:

Your current position is too far from the field to work in it.


Adding an access path

An access path is a space between your guidance lines. They can be useful if there is road (or other field feature that breaks the consistent flow of swaths) through the middle of your field. You can add access paths on a straight or curved pattern, but not headlands or pivots:

Specify the location and width of the access path when you create the line:

From the *Swath Management* screen, tap **Access Paths**:

Enter a value in the *Swaths between access paths* field. This value must be equal to or higher than the *Swaths in first group* setting. The next access path will appear this number of swaths beyond the first access path, and will continue to repeat after this number of swaths.

Note - You must fill in both of these fields.

- 3. Enter a value in the *Path width* field. This is the width of the access paths.
- Enter a value in the *Swaths between access paths* field. The access path will 4. appear after this number of swaths (including the master line).
- Enter a value in the ABs place in the first group (left to right) field. This setting enables you to specify where the master line appears in the first group (from left to right).
- Select whether the guidance will be based on swaths or access paths from the *Provide Guidance* to drop-down list and then tap **OK**.

Swath management

Several options are available on the Swath Management screen. You can delete swaths, rename swaths, or shift them to the left or right.

To access these features, select the Swaths tab. You cannot delete, rename, or shift line features or FreeForm curves.

Deleting a swath

To be able to delete swaths, you must have entered the Administration password.

- From the Run screen, tap the Swath button. The Swath Management screen appears.
- 2. From the list on the left, select the swath to delete.
- Tap **Delete**. If prompted, enter the password.

The swath is marked as deleted. The next time that you close the field, the swath is removed from the list.

Note - You cannot delete a swath that is currently active.

Renaming a swath

To be able to rename swaths, you must have entered the Administration password.

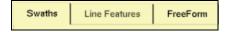
- From the Run screen, tap the Swath button. The Swath Management screen appears.
- 2. From the list on the left, select the swath to rename.
- Tap **Rename**. If prompted, enter the password. The *Enter new swath name* screen appears.
- Enter the new name for the swath and then tap **OK**.

The swath is renamed.

Shifting a swath

- From the Swath Management screen, select the swath to shift from the list on the left.
- 2. Tap **Shift**. The *Enter the Shift Distance* screen appears.
- 3. Select the correct units for the shift (metric, feet and inches, or rows).
- 4. Enter the distance to move the swath.
- 5. Select the direction for the shift.

Note – The swath shifts relative to the AB Line. Therefore, if you are facing from point B to point A on the swath, the line will appear to shift in the wrong direction.


Note - If you shift a line, it will shift the original version of the line and remove any skip that you have applied.

Tap **OK**. The *Swath Management* screen appears.

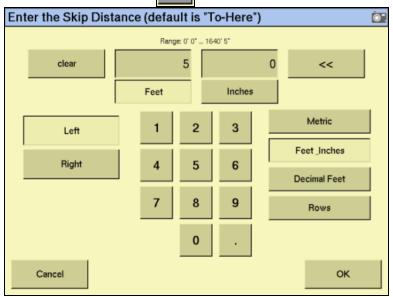
The new shifted swath appears in the swath list on the left of the screen.

Using the "Guide to" tabs

The Guide to tabs allow automated steering along a swath, line feature, or FreeForm curve.

To use the Guide to tabs:

- Tap the **Swaths** button. The *Swath Management* screen appears.
- 2. From the Guide to tabs, select one of the following:
 - Swaths for guidance along a swath.
 - *Line Features* for guidance along a line feature.
 - FreeForm for FreeForm curves.
- If you selected: 3.
 - Swaths, select the appropriate swath from the list on the left and then tap Load.
 - *Line Features*, guidance automatically occurs on the nearest feature. Tap **Load**. The list shows the types and numbers of line features in the current field.
 - *FreeForm*, select the appropriate FreeForm curve and then tap **Load**.


The Run screen appears. The next time that you engage automated steering, you are guided along the swath, line feature, or FreeForm curve.

Using Skip to fine-tune navigation

The software uses the original swath that you drove to automatically generate the position of the other swaths. Occasionally, these new onscreen swaths do not perfectly reflect where your swaths are. For example, you may need to skip to the other side of a road.

To correct the spacing of the automatically generated swaths in a field, use the Skip function. After the swaths are generated:

1. From the Run screen, tap

2. Enter the Skip distance and then tap **OK**. The guidance line moves the required amount. The default is your current position.

Note – The Skip position is temporary; it is not saved to the line permanently. To save a line adjustment, use the Shift feature. See Shifting a swath, page 143.

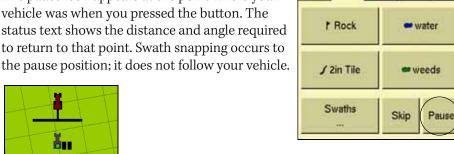
Placing field features on screen

For a description of field features and how to configure the field feature buttons, see Configuring feature mapping, page 82.

For instructions on how to create a separate boundary file that can be used to calculate area and control automatic section switching at the edge of the field, see Activating field boundaries, page 85.

To add a field feature to the map:

Select the *Mapping* tab on the Run screen. The features that you defined appear on the tab:

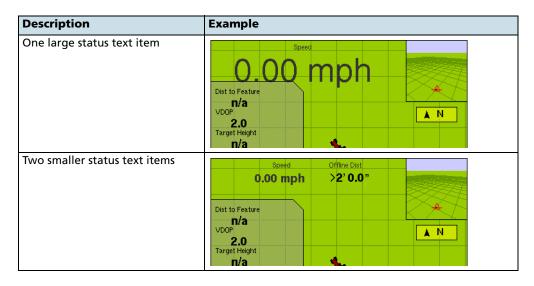

- 2. Begin to drive the field.
- When you reach the point where you want to add a feature, tap the appropriate feature button:
 - If the feature is a Point Feature (such as the **Rock** button in the example above), the feature is added.
 - If the feature is a Line Feature (such as the **2in Tile** button in the example above) or an Area Feature (such as the Water button), the feature will begin. Area and Line features continue until you tap the button a second time.

Note – You can add a Point feature while adding a Line or Area feature. For example, use a Line feature to draw an overhead telephone wire and simultaneously use a Point feature to add the telephone poles.

Pausing guidance

You can pause guidance and return to your position later.

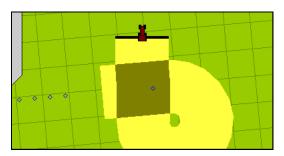
To pause guidance, tap **Pause** in the Run screen. The pause icon appears at the point where your vehicle was when you pressed the button. The status text shows the distance and angle required to return to that point. Swath snapping occurs to



When you return to your former position, tap **Resume**.

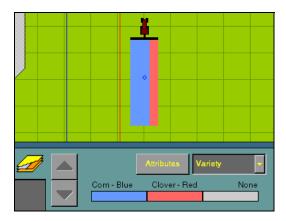
When you pause your position, it is saved to a file on the display. You can close the field and turn off the FM-1000 integrated display. When you next open that field, you will be guided back to your former position.

Adjusting the status text size


You can control the size of the status text items that are shown at the top of the Run screen. You can show one of the status text items in a large size, or both status text items in a smaller size:

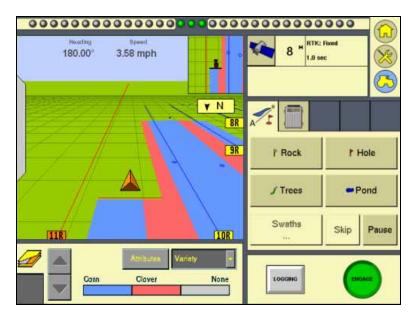
To cycle through the status text item display modes, tap the items at the top of the screen.

Introduction to coverage logging


Coverage logging records the area that you have covered when you carry out an operation, for example applying fertilizer to a field. The covered area appears on the Run screen as a solid yellow area (or as a gray area if you overlapped and covered an area twice):

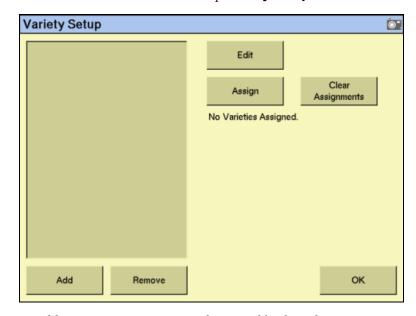
To activate coverage logging, tap the **Logging** button on the Run screen so that it changes from gray to green. Tap the button again to stop coverage logging.

Logging varieties

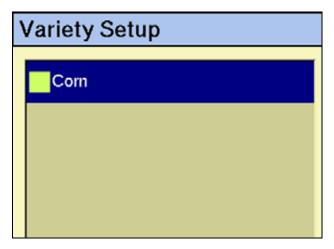

By default, coverage logging appears as a solid yellow block (see above). However, you can set up varieties that make it easy to see the difference between different types of coverage:

This enables you to:

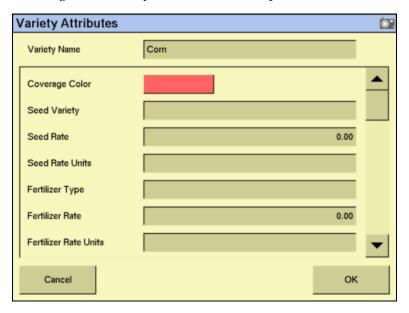
Change product part way through a field, so that you can later identify which parts of the field are covered in which product.


 Plant or apply two or more different products side-by-side and record the locations in your field. For example, you could put corn seed in the left side hoppers on your planter and clover seed in the right side hoppers and track where each set of seeds is planted:

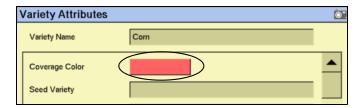
The varieties are assigned to rows on your implement. Specify the number of rows on your implement when you configure it. For more information see Additional settings, page 116.


To configure varieties:

1. From the *Field Selection* screen, tap **Variety Setup**:



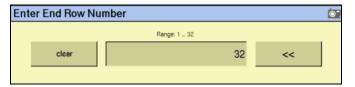
2. To add a new variety, tap **Add**. The virtual keyboard appears.


3. Enter a name for the variety and then tap **OK**. The *Variety Setup* screen reappears with the new variety name in the list:

To configure the variety, select it and then tap **Edit**:

To change the color that represents this variety on the Run screen, tap the Coverage Color color block:

The Select Color dialog appears.

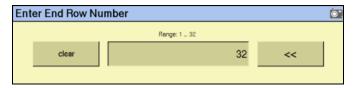

Tap the new color.

- 7. Enter any relevant record-keeping information.
- 8. Tap **OK**. The *Variety Setup* screen appears.
- 9. To add additional varieties, repeat Steps 3 through 9.

Now that the varieties are configured, assign them to segments of the the coverage.

To assign one variety to the entire implement:

- Select it from the list and then tap **Assign**. The *Set row range for for variety* screen appears.
- 2. Ensure that the *Start Row* field is set to 1.
- In the *End Row* field, enter the number that appears at the high end of the range:



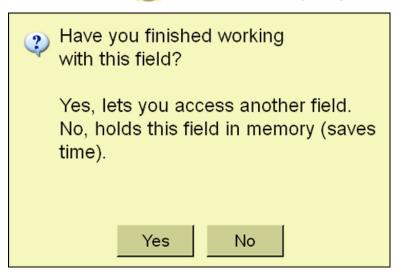
Tap **OK**.

The variety is assigned. When you enable coverage logging and set the Mapping information tab drop-down list to Variety, this variety color appears in the guidance window. See page 129.

To assign multiple varieties to the implement at once:

- On the *Variety Setup* screen, select a variety and then tap **Assign**. The *Set row* range for variety screen appears.
- Tap the *Start Row* field and then enter the row that variety will start at. The default is the first row that is now currently assigned. Row 1 is on the left side of the implement.
- Tap the *End Row* field and then enter the row that variety will end at:

- 4. Tap **OK**. The *Variety Setup* screen reappears.
- 5. Select the next variety and then tap **Assign**.
- 6. Repeat Steps 2 through 5 for any additional varieties.


Tip – For quick access to the Variety Setup screen from the Run screen, set the Mapping information tab drop-down list to Variety and then tap Attributes.

If you select a different implement or change the settings of the current implement, the variety assignments are removed.

Closing a field

Once you finish using a field:

Tap the Home button (a) to close it. The following dialog appears:

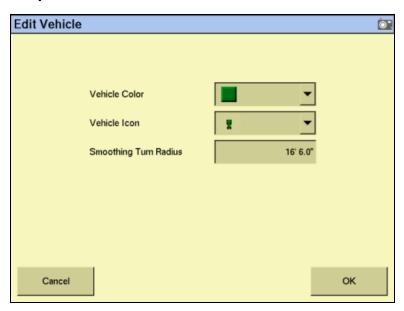
Tap **Yes** to close the field.

The system closes the field and saves an HTML summary of the field. See Saving an HTML version of the current field, page 477.

CHAPTER

The Manual Guidance Plugin

In this chapter:


- Configuration
- Configuring the GPS receiver
- Guidance

You must install the Manual Guidance plugin, the Autopilot plugin, or the FieldLevel plugin. The Manual Guidance plugin enables you to use the display for guidance from the virtual lightbar.

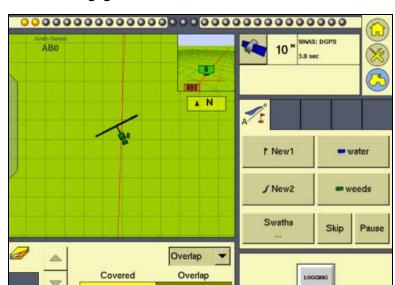
Configuration

The Manual Guidance plugin enables you to configure the onscreen vehicle appearance and color:

1. From the *Configuration* screen, select the Manual Guidance plugin and then tap **Setup**:

- 2. To change the on-screen vehicle color, select a color from the drop-down list.
- 3. To change the vehicle's on-screen appearance, select a vehicle type from the drop-down list.
- 4. Tap **OK**.

Note – Any changes that you make to the vehicle color or appearance remain even if you remove the Manual Guidance plugin and replace it with the Autopilot plugin.


Configuring the GPS receiver

When you install the Manual Guidance plugin, the GPS Receiver plugin is also installed. For instructions on configuring the GPS receiver, see Chapter 12, The GPS Receiver Plugin.

Guidance

When you use the Manual Guidance plugin, the Run screen looks similar to when the Autopilot plugin is installed, except that:

• there is no *Autopilot* tab on the right

there is no **Engage** button

You can still access the Mapping plugin to add field features or create guidance lines.

Since there is no Autopilot system to control steering, you must steer the vehicle manually while you watch the virtual lightbar for guidance.

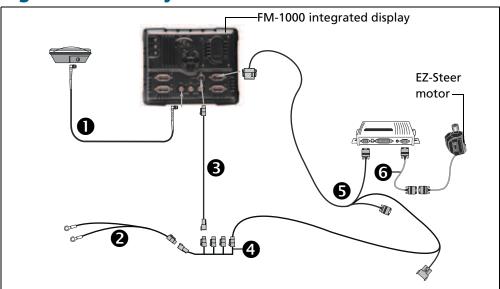
CHAPTER

The EZ-Steer Plugin

In this chapter:

- AgGPS EZ-Steer assisted steering system
- Installing the EZ-Steer controller
- Connecting the EZ-Steer system
- Calibrating and configuring the **EZ-Steer system**
- Operating the EZ-Steer system with the FM-1000 integrated display

This chapter describes how to calibrate, configure and operate the EZ-Steer assisted steering system with the FM-1000 integrated display.


AgGPS EZ-Steer assisted steering system

The AgGPS EZ-Steer[®] assisted steering system works with the FM-1000 integrated display's internal GPS receiver to provide vehicle guidance.

Installing the EZ-Steer controller

For information on installing the EZ-Steer controller in your vehicle, refer to the AgGPS EZ-Steer Assisted Steering System Getting Started Guide and the AgGPS EZ-Steer Assisted Steering System Installation Instructions.

Connecting the EZ-Steer system

Item	Description	Part number
0	Antenna cable	50449
0	FM-1000 basic power cable	67258
6	FM-1000 power cable	66694
4	FM-1000 power bus	67259
6	FM-1000 to EZ-Steer cable	75742
6	EZ-Steer motor cable	62257

Use the FM-1000 to EZ-Steer cable to connect the EZ-Steer system to the 1. display.

Note – The CAN cable connects to either the C or D port on the rear of the FM-1000 integrated display.

Attach the EZ-Steer controller to the dash. Use the provided bracket.

Calibrating and configuring the EZ-Steer system

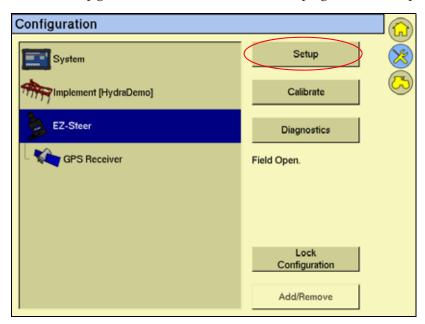
The calibration configures the $T2^{\mathsf{TM}}$ roll calibration and the EZ-Steer system *Angle per* Turn, Aggressiveness, and Freeplay settings.

Before you calibrate the vehicle, do the following:

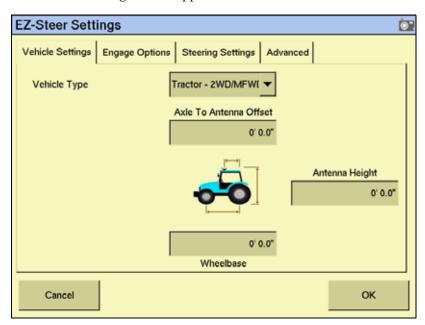
- Ensure that the vehicle's hydraulic oil is up to operating temperature. Refer to the vehicle documentation.
- Ensure that the tire pressure is correct.
- Perform initial calibration without an implement or with the booms folded in on a high-clearance sprayer. After initial calibration is completed, you can fine tune the settings with the implement or booms folded out.
- Choose a field with the smoothest possible surface and perform calibration at the normal operating speed for the vehicle.

The EZ-Steer calibration process requires a straight A-B line. If you do not create an A-B line before you begin the calibration, the system prompts you to open a field and create one.

Calibrating the EZ-Steer system


To calibrate the EZ-Steer system to work with the FM-1000 integrated display, you must complete the following:

- Enter the vehicle settings. See page 160. 1.
- 2. Calibrate T2 roll compensation. See page 161.
- 3. Calibrate the EZ-Steer system. See page 164.
 - Angle per Turn
 - Aggressiveness
 - Freeplay offset
- Confirm the calibration settings.


Note – You may have to perform the EZ-Steer calibration more than once to achieve optimal results.

Entering vehicle settings

- 1. Install the EZ-Steer system plugin (for more information, see Adding or removing a plugin, page 56).
- 2. From the *Configuration* screen, select the *EZ-Steer* plugin and then tap **Setup**:

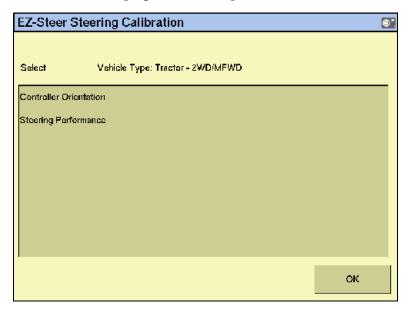
The *EZ-Steer Settings* screen appears:

3. From the *Vehicle Type* drop-down list, select the vehicle type.

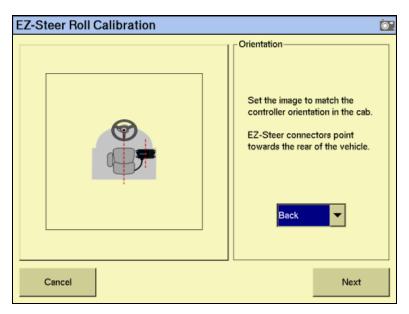
- In the Axle To Antenna Offset field, enter the horizontal distance between the axle and the antenna:
 - If the antenna is in front of the axle, enter a *Forward* distance.
 - If the antenna is behind the axle enter a *Back* distance.

Note – CNH recommends that you measure the offset distance as accurately as possible (within 3"); an incorrect offset may cause poor steering performance.

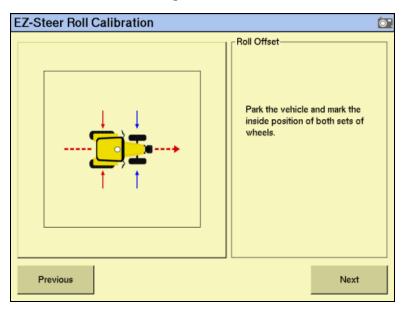
- In the *Antenna Height* field, enter the height of the antenna, measured from the ground up.
- In the Axle to Antenna Offset field, enter the wheelbase measurement (horizontal distance between the front and rear axles).


Note - The Engage Options, Steering Settings, and Advanced tabs on this screen are populated automatically with starting values, based on the vehicle type selected.

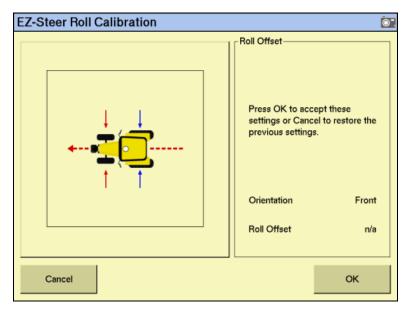
Tap **OK**. The *Configuration* screen appears.


Calibrating T2 roll compensation

The EZ-Steer system contains sensors that use T2 terrain compensation technology to provide roll compensation when the vehicle is on a slope or drives over a bump. For roll compensation to work correctly, the controller must be calibrated.


Select the *EZ-Steer* plugin and then tap **Calibrate**:

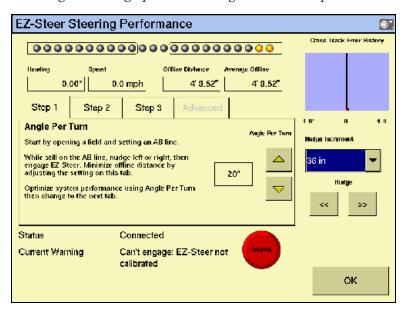
2. Select Controller Orientation:


From the Orientation drop-down list, select the orientation of the SCM (steering control module) and then tap Next:

Park the vehicle, mark the inside position of both sets of wheels and then tap Next.

The display records the roll offset in the first direction. This takes approximately 20 seconds. Do not move the vehicle while the offset is being read.

Turn the vehicle around, ensure the wheels are parked over the marks created in Step 4 and then tap **Next**:

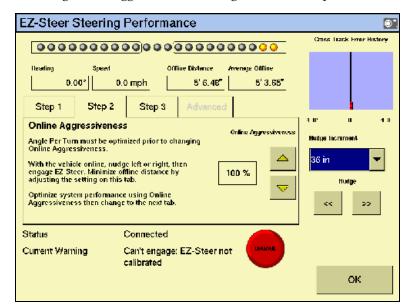

The display records the roll offset in the second direction. This takes approximately 20 seconds. Do not move the vehicle while the offset is being read.

- The T2 calibration results will appear in the *Roll Offset* window. The Roll Offset value should be between 0° and 4°.
- 7. Tap **OK**. The *EZ-Steer Steering Calibration* screen appears.

Calibrating and setting the EZ-Steer parameters

To calibrate the EZ-Steer system, and set the correct steering performance parameters, the following steps must be completed with the vehicle moving forward along the A-B line.

- 1. From the *EZ-Steer Steering Calibration* screen, select *Steering Performance*. The *EZ-Steer Steering Performance* screen appears.
- 2. To configure the *Angle per Turn* settings, select the *Step 1* tab:

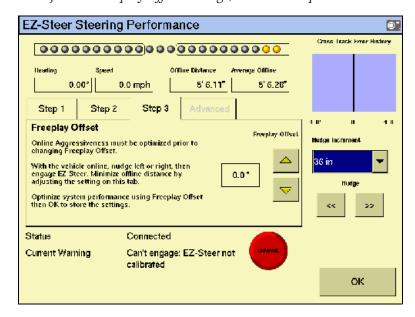

This is the angle that the wheels turn through during one full rotation of the steering wheel. This is a course aggressiveness adjustment. If the setting is too low, the system may require several attempts to reach the line.

With the vehicle moving forward along the A–B line:

- a. Nudge the vehicle left or right 1 m (3') from the A–B line.
- b. Engage the EZ-Steer system.
- c. Adjust the *Angle per Turn* value so that when the system is engaged, the vehicle moves close to the guidance line.

To make	Do the following
More aggressive turns	Decrease the Angle per Turn value.
Less aggressive turns	Increase the Angle per Turn value.

Note – Use the Cross Track Error history plot on the top right of the page and the Average Offline distance to optimize EZ-Steer performance for each step in the calibration.


3. To configure the *Aggressiveness* settings, select the *Step 2* tab:

The Aggressiveness setting fine-tunes how aggressively the system holds the line. If the setting is too low, the vehicle will not hold the line; if the setting is too high, the vehicle may over-correct and make S-turns.

Adjust the *Aggressiveness* setting to get the vehicle as close to the line as possible without going into S-turns.

To make	Do the following	
More aggressive turns	Increase the Aggressiveness value.	
Less aggressive turns	Decrease the Aggressiveness value.	

To adjust the *Freeplay Offset* settings, select the *Step 3* tab: 5.

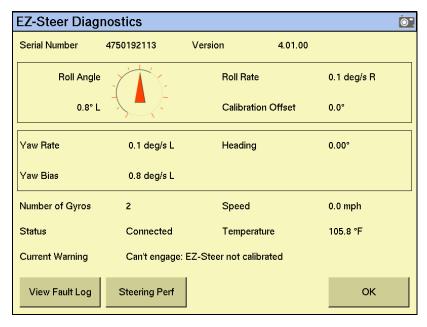
Add a Freeplay Offset if the steering has greater freeplay in one direction than the other, causing it to drive consistently to one side of the guidance line.

Engage the system on the A–B line.

Vehicle is offline	Do the following	
To the left	Increase the freeplay offset to the right.	
To the right	Increase the freeplay offset to the left.	

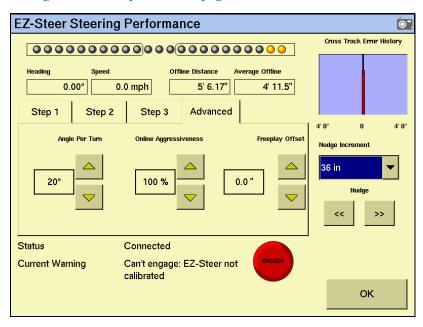
Note - If you are calibrating a 4WD articulated vehicle, you may need to set the Motor Speed setting to Auto Low.

Note – The Advanced Calibration tab is currently not available. To access these options, select the EZ-Steer plugin **Diagnostics** from the main Configuration screen.


- Enter the parameters and then tap **OK**. The *EZ-Steer Steering Calibration* screen appears.
- 8. Tap **OK**. The *Configuration* screen appears.

EZ-Steer plugin diagnostics

The EZ-Steer Diagnostics screen displays the SCM statistics and inertial information.


From the *Configuration* screen, select the *EZ-Steer* plugin and then tap **Diagnostics**. The *EZ-Steer Diagnostics* screen appears.

This screen displays the roll and heading of the vehicle, and the temperature of the steering control module:

Tap **Steering Perf**. The *EZ-Steer Steering Performance* screen appears.

This screen is for advanced users who understand how to adjust EZ-Steer performance. If you are not an advanced user, CNH recommends that you follow the numbered tabs to adjust the steering parameters. See Calibrating and setting the EZ-Steer parameters, page 164:

In the *Advanced* tab, make the required changes and then tap **OK**. The Configuration screen appears.

Operating the EZ-Steer system with the FM-1000 integrated display

Engage options

The Engage Options enables you to control the system's engage and disengage behavior if you need to change the automatically populated settings.

- From the *Configuration* screen, select the EZ-Steer plugin and then tap **Setup**. The EZ-Steer Settings screen appears.
- Select the *Engage Options* tab. The following options appear:

Option	Description
Minimum speed	Minimum speed at which the system can engage. If the system is engaged and the speed drops below this limit, the system disengages.
Maximum speed	Maximum speed at which the system can engage. If the system is engaged and the speed increases above this limit, the system disengages.

Option	Description
Maximum angle	Maximum angle at which the system can engage. If the vehicle approaches the swath at an angle greater than this limit, it cannot be engaged.
Engage offline	Maximum distance from the swath at which the system can engage. If the vehicle approaches the swath at a distance greater than this limit, it cannot be engaged.
Disengage offline	Maximum distance from the swath at which the system can remain engaged. If the vehicle drives offline greater than this limit, the system disengages.
Engage on A–B	Configure whether the system can be engaged on the master A–B line.
Override sensitivity	Amount the steering wheel must be turned manually before the system disengages.
EZ-Steer external switch	Configure the behavior of a seat/foot switch.

Configure the *Engage Options* as required and then tap **OK**. The *Configuration* screen appears.

Engaging the system

To engage the EZ-Steer system, you must have an open field in the Run screen, and have an A-B line defined. The vehicle must be within the engage limits configured in EZ-Steer systems Engage Options.

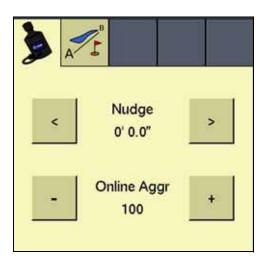
To manually engage the EZ-Steer system, do one of the following:

- Tap the engage button on the main guidance screen, or press the engage button on the optional remote control.
- Press the optional remote engage foot pedal.

Disengaging the system

Turning the steering wheel manually disengages the EZ-Steer system. CNH recommends that you check this setting before you start using the system in a new installation by engaging on a line and then turning the wheel until EZ-Steer disengages. To adjust the amount of force required to disengage the system, change the Override Sensitivity in the EZ-Steer Setup screen. The EZ-Steer system automatically disengages when:

- The vehicle is outside the engage limits configured in the *Engage Options* screen.
- The system is paused.
- GPS positions are lost.
- The Minimum Fix Quality setting is set to a high accuracy correction method and the system receives low accuracy positions (for example, no corrections).
- To manually disengage the system, do one of the following:


- Tap the engage button on the main guidance screen or press the engage button on the optional remote control.
- Turn the steering wheel to override the electric motor.
- Press the optional remote engage foot pedal.

When the system is not in use, hinge the motor away from the steering wheel and then secure it with the lock pin.

EZ-Steer plugin screen

The EZ-Steer tab on the Run screen shows the current nudge increment and online aggressiveness values.

- Tap either the < or > button to increase or decrease the Nudge *Increment* setting by the distance set in the Steering Settings setup screen.
- Tap either the or + button to increase or decrease the Online Aggressiveness setting by \pm - 5%. The default value is set in the Steering Settings setup screen.

Engage status indicators

Engage status	Button color	Vehicle icon color
Ready to engage	INGAX	
Engaged	<u>—</u>	
Cannot engaged		

Vehicle-specific performance

Before you use the EZ-Steer system, CNH recommends that you consider the following vehicle-specific performance suggestions.

Vehicle type	Performance hint	
2WD tractor	For an EZ-Steer system installed on tractors that have SuperSteer (for example, New Holland TG). If the tractor has a SuperSteer front axle, for best performance:	
	Reduce the Online Aggressiveness value.	
	 Line up close to the swath and make certain that the front wheels are straight before engaging the EZ-Steer system. 	
	 To get smoother performance when the vehicle is pulling an implement over tilled ground, enable the Diff-Lock. This prevents the machine from pulling sharply to the left or right. If you are calibrating on a hard surface, turn off Diff-Lock. 	
4WD tractor	The EZ-Steer system can be installed on Case IH STX tractors with Accusteer. For optimal performance, disable Accusteer using the switch in the cab (if possible).	
Sprayer	It is common for these vehicles to have slow steering. To compensate for this, use high aggressiveness.	
	 If you experience large, slow oscillations, increase the aggressiveness. 	
	 When you configure the system on a sprayer, the Sprayer steering delay setting is available on the Vehicle Setup screen. 	
	 Some sprayers have steering that is slow to react after you turn the steering wheel. The system uses the steering delay setting to compensate for this slowness and ensure that steering corrections occur at the correct point. 	
Swather	When you configure the system on a swather, the Swather steering delay setting is available on the Vehicle Setup screen.	
	 Some swathers have steering that is slow to react after the steering wheel is turned. The system uses the steering delay setting to compensate for this slowness and ensure that steering corrections occur at the correct point. 	
	 To improve the performance of your swather, adjust the Swather steering delay setting by a small amount (0.1 seconds) at a time. Test the result between each adjustment 	

After using the EZ-Steer system

After you finish using the EZ-Steer system, do the following:

- Before you leave the vehicle, turn off the EZ-Steer system power switch or remove the power plug.
- If the EZ-Steer system is not being used, pivot the motor away from the steering wheel.

CHAPTER

The Autopilot Plugin

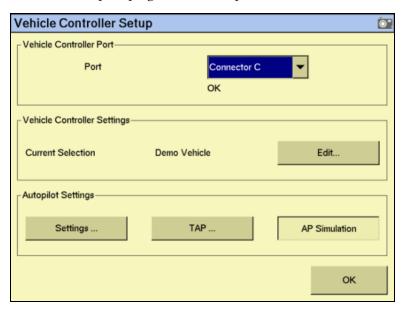
In this chapter:

- Configuring the Autopilot plugin
- Introduction to Autopilot calibration
- Calibrating the Autopilot plugin
- Saving a vehicle profile
- Configuring the GPS receiver
- Display-only mode

This chapter describes how to configure and use the Autopilot plugin, which controls an attached AgGPS Autopilot automated steering system.

You must install the Manual Guidance plugin, the Autopilot plugin, or the FieldLevel plugin.

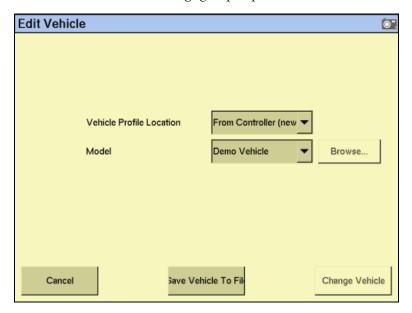
There are two stages to configuring the Autopilot plugin:


- 1. Configure the vehicle: Select the vehicle make and model that the system is installed on.
- Calibrate the Autopilot system for your vehicle: Adjust the settings specifically for your vehicle.

Configuring the Autopilot plugin

Note - This is usually done when the system is professionally installed.

To configure the system for your vehicle:


- Tap . The *Configuration* screen appears.
- Select the Autopilot plugin and then tap **Setup**: 2.

In the Port list, select the port on the FM-1000 integrated display that the Autopilot controller is connected to.

Selecting the vehicle

In the *Vehicle Controller Settings* group, tap **Edit**:

There are a number of pre-configured profiles for the various vehicle makes and models. You can load them from:

- Autopilot controller. The majority of vehicle profiles are stored on the Autopilot controller.
- Vehicle profile database file. As additional profiles become available or are updated, they are added to a vehicle profile database. You can download the database and load profiles from it.
- Saved file. You can install an individual vehicle profile that you have previously saved.

2. In the *Vehicle Profile Location* group, select the source for the make and model.

Tap this button	See	Then go to step
From Controller (new)	Selecting a new vehicle make and model from the list on the Autopilot controller.	3
From Database (new)	Selecting a new vehicle make and model from a database of vehicles (.vdb) on the FM-1000 integrated display. If you need to obtain a .vdb file, contact your local reseller.	4
From Saved File (existing)	Selecting a saved vehicle make and model from the display (.cfg) on the card.	5

Selecting a new vehicle make and model from the list on the Autopilot controller

- From the drop-down list, select *From Controller (New)*.
- b. Tap the *Model* drop-down box and then select the make and model that you require from the list.

Selecting a new vehicle make and model from a database

- From the drop-down list, select *From Database (new)* and then tap **Browse**.
- b. Select the .vdb file that you want to open and then tap **OK**.

Selecting a saved vehicle make and model from the display

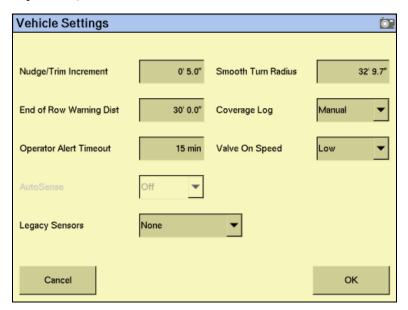
- From the drop-down list, select From Saved File (existing) and then tap Browse.
- b. Select the required file and then tap **OK**.
- Select *Change Vehicle* to save the new settings. The following message appears:

The specified vehicle model will now be selected on the Autopilot controller. This will cause the Autopilot controller to be reset. Do you want to continue?

Note – If you select a vehicle make and model but do not upload that configuration to the AgGPS Autopilot controller, that make and model will not be loaded.

Tap **OK** to load the new configuration.

The following message appears:


The Autopilot controller will now be reinitialized in order to complete the vehicle selection.

Tap **OK**.

The file is now loaded.

Adjusting the basic Autopilot settings

- From the Configuration screen, select the Autopilot plugin and then tap **Setup**. The Vehicle Controller Setup screen appears.
- 2. Tap Settings:

Enter a value in the *Nudge/Trim Increment* field. Use this increment to set the amount by which the **Nudge** buttons move the line back to the correct path, or by which the **Trim** buttons move the vehicle position.

The guidance line can move off target (requiring **Nudge**) as a result of:

- GPS position drift when you return to the field for guidance, for example after you pause or turn off the system.
- GPS satellite constellation changes as you drive in the field.

The vehicle can steer offline (requiring **Trim**) as a result of:

- Uneven drag on a vehicle from an unbalanced implement.
- Uneven drag on a vehicle from soil conditions.

Note - The Nudge buttons become Trim buttons in RTK mode.

- If necessary, adjust the distance associated with the *End of Row* warning. (Longer vehicles that take longer to turn needs an earlier warning and so a greater distance).
- If necessary, adjust the Operator Alert Timeout value. The alert appears if the operator does not respond within the defined period of time. If the operator still fails to respond, the vehicle begins to drive in a tight loop.
- If necessary, adjust the Smoothing Turn Radius value. This smooths out tight turns on curves and headlands. Any changes are not applied until you open the next field.

- Set Valve On Speed:
 - For vehicles that operate at normal speeds, select *Normal*. Additional settings are supported only with NavController II firmware versions 5.10 and later.
 - For vehicles operating at very slow speeds, select *Low* or *Ultra low*.

Speed thresholds that you can select from the display are:

- Normal > 0.4 m/s (1.3 ft/s)
- Low > 0.1 m/s (0.3 ft/s)
- Ultra low > 0.02 m/s (0.07 ft/s)
- Select the Coverage Log method. If you select When Engaged, coverage logging is linked to the **Engage** button. When you engage automated steering, coverage logging also engages.
- Set one of the following controls:
 - AutoSense: Most recent Autopilot systems use an AgGPS AutoSenseTM device; select *On*.
 - *Legacy Sensors:* For older Autopilot systems that the electrical system taps for measuring vehicle states, select the appropriate connection.

Introduction to Autopilot calibration

Once you configure the vehicle make and model, calibrate the system for your individual vehicle.

The Autopilot system calibration process records additional details about your vehicle, which helps the system to steer the vehicle more accurately. For high accuracy systems, you must have all the settings correct.

The vehicle calibration screen tools are similar to those in the Autopilot Toolbox II software.

Notes on calibration

- Before you perform vehicle calibration, select the vehicle make and model on the Vehicle Setup screen. See Selecting the vehicle, page 173.
- No calibration is required if the system is installed on a Cat MT 700/800 series equipped with the ISO option.

Common calibration items

You can calibrate several aspects of the vehicle. The calibrations that are available depend on which components are installed in the vehicle and system.

Four calibration options appear for all types of vehicle.

Note – You must perform the Controller Orientation and the Roll Correction calibrations.

Option	Description
Controller Orientation	Correctly associate the outputs of the Autopilot controller sensors with the direction of the vehicle.
Manual Override	Required for platforms that employ a pressure transducer for the manual override function. Change the default only if the operation of the manual override function is unacceptable.
Roll/Antenna Compensation	Compensates for antenna height and static roll caused by minor variations in the Autopilot controller and the GPS receiver mounting.
Line Acquisition	How aggressively the vehicle approaches the guidance line.

For articulated and front-wheel steered vehicles, three additional calibration options appear:

Note – The steering sensor and automated steering dead zone procedures are required. The steering sensor calibration must be performed first.

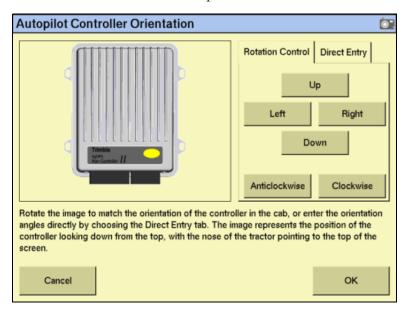

Option	Description
Steering Sensor	Converts the sensor output into commands for steering full left, full right, and any position in between.
Automated Steering Deadzone	Required to learn the vehicle's steering dead zones.
Steering Gain (proportional steering gain)	Required only if system steering performance is unsatisfactory.

The *steering deadzone* is the amount of pressure that the system must apply to the hydraulics before the wheels begin to turn.

To configure this vehicle type	See
Hydraulically-steered tracked tractors	Page 196
Tracked tractor	Page 196

Calibrating the Autopilot plugin

- Tap . The *Configuration* screen appears.
- Select the Autopilot plugin and then tap **Calibrate**: 2.



- 3. Select an item to configure and then tap **OK**.
- Configure the selected item. 4.

To configure	See page
Controller orientation	page 179
Manual override	page 179
Steering sensor	page 182
Automated steering deadzone	page 185
Steering gain	page 187
Roll/antenna correction	page 192
Line acquisition	page 195

Configuring the controller orientation

Select the *Controller Orientation* option from the list:

An image represents the current mounting orientation of the controller.

The image is shown as though:

- You are looking down on the vehicle from above.
- The top of the screen points to the nose of the vehicle.
- 2. Use the buttons to select the orientation of the controller. If the controller is set at a sloped angle, the vehicle profile will set the

NavController orientation. Note - Install the NavController as described in the vehicle install instructions. If custom

Tap **OK** to accept the new orientation or tap **Cancel** to exit.

angles are used, the on-screen image of the controller does not appear.

Configuring the manual override sensitivity

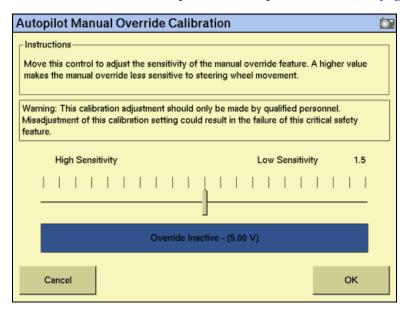
Manual Override sensitivity calibration is valid only for platforms that employ a pressure transducer for the manual override function. The software automatically detects whether or not the vehicle configuration includes this type of sensor and provides this option if required.

One way to disengage the Autopilot system is to turn the steering wheel. This is called the *Manual Override*.

When you turn the steering wheel, there is a voltage spike that then tapers off. This spike and decline occurs at different levels for different models of tractor.

The manual override sensitivity is the level that the voltage must spike to before the override occurs and the system disengages. The voltage must also taper below that level before automated steering can be engaged again.

- If you set a high level of sensitivity, the system will disengage more quickly and you will have to wait longer before you can re-engage.
- If you set a low level of sensitivity, the system will take longer to disengage and you will be able to re-engage more quickly.



WARNING – Incorrect adjustment of the Manual Override Sensitivity calibration setting could cause this critical safety feature to fail, resulting in personal injury or damage to the vehicle. Any adjustment to this setting must be made only by an authorized dealer.

CNH strongly recommends that you perform this calibration only if the default sensitivity is unacceptable under all conditions. *Do not to choose a sensitivity setting that is either too sensitive or not sensitive enough*. In either case, manual override may cease to function correctly. On some platforms, you could set the sensitivity so low that the manual override function will not detect any steering wheel motion. It is vital that you avoid this.

To configure and check the manual override:

1. Select the *Manual Override* option from the procedure list. (See page 176).

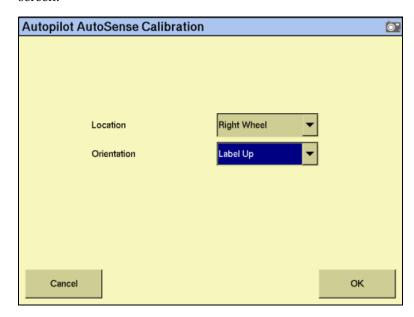
- 2. Test the current manual override setting:
 - a. Turn the steering wheel. The **Override Inactive** button changes color when the Override becomes active. With the system active, assess whether the manual override feature is at an acceptable level of sensitivity for:
 - Speed of steering wheel turn
 - Distance of steering wheel turn

To adjust the manual override sensitivity setting, select the slider bar. Move the slider bar as follows:

Slider bar direction	Result	Triggers manual override
Left	Increased sensitivity	more easily
Right	Decreased sensitivity	less easily

The value to the right of the slider shows the current setting. The total range is 0.5 to 2.5 (where 0.5 is the most sensitive setting and 2.5 is the least sensitive).

- To try the new setting, tap **OK**. The *Vehicle Calibration* screen appears. c.
- Select Manual Override again. The Autopilot Manual Override Calibration d. screen appears again.
- Repeat Steps b, c, and d to test each new setting.



Tip - You can also evaluate the performance of the manual override feature under conditions of loading and/or activities which may affect the pressure of the hydraulic system. For example, you can turn on the auxiliary hydraulics while you evaluate the manual override sensitivity.

Tap **OK** to accept the new setting or tap **Cancel** to exit.

Calibrating the AutoSense device

Select Autosense Calibration from the list on the Vehicle Controller Setup screen:

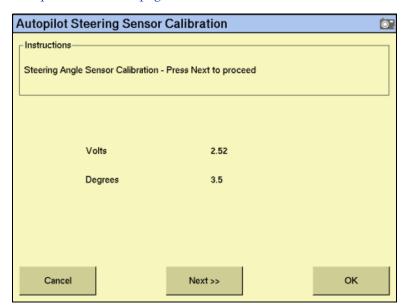
- From the *Location* drop-down list, select the AutoSense position. 2.
- 3. From the *Orientation* drop-down list, select the AutoSense orientation.

Tap **OK** to confirm selections.

Calibrating the steering angle sensor

Perform steering sensor calibration to convert the voltage output of the steering sensor into an equivalent steering angle measurement.

Note – Complete this calibration **before** you attempt to calibrate the steering deadzone or roll correction procedures.

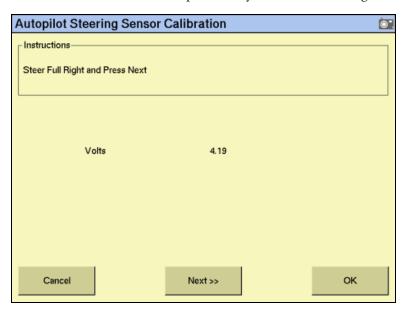

Note - Perform the steering sensor calibration only if a rotary potentiometer is installed on the vehicle. If an AgGPS AutoSense device is selected as the steering angle sensor, the Steering Sensor screen does not appear.

This calibration requires the vehicle to be in motion. Ensure that you:

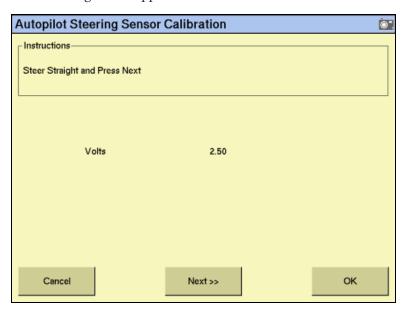
- Perform this procedure on a hard, level surface that is free of obstructions.
- Follow the instructions on each page.
- Maintain a tractor speed above 1.6 kph (1 mph).
- Watch the Sensor Angle field for a symmetrical angle reading at the steering extremes while you manually steer the wheels to full right and full left.
- Watch the *Sensor Angle* field to ensure that the angle reading is near zero while you manually steer the wheels straight ahead.

To run the steering sensor calibration:

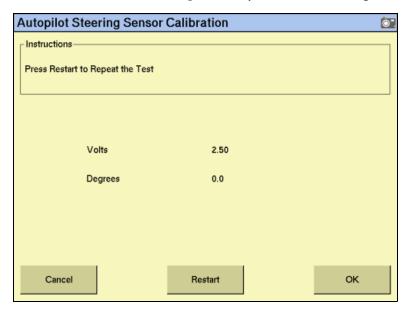
Select the *Steering Angle* procedure from the calibration list. See Introduction to Autopilot calibration, page 176:


Move the tractor forward slowly.

3. Center the steering wheel and then tap **Next**:


Turn the steering wheel completely to the left and then tap **Next.** If the steering wheel is not turned completely to the left or if the steering sensor requires adjustment or replacement, an error message appears.

The value in the *Volts* field is updated as you turn the steering wheel:



Turn the steering wheel completely to the right and then tap **Next**. If the steering wheel is not turned to the full right position or if the steering sensor requires adjustment or replacement, an error message appears.

The following screen appears:

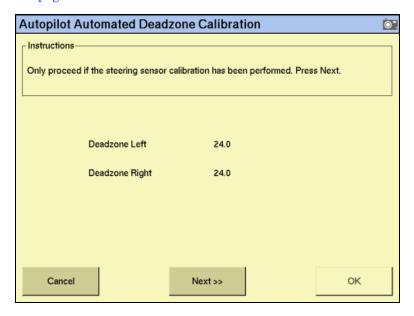
6. Center the steering wheel. While the wheel is at the center position, tap **Next**. The value in the *Volts* field is updated as you turn the steering wheel:

7. Tap **OK** to accept the calibration.

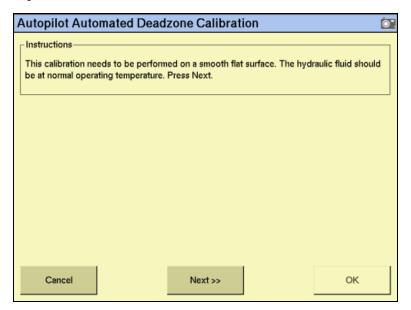
Calibrating the automated steering deadzone

The Automated Deadzone calibration procedure runs a series of tests on the valve and steering hydraulics to determine the point at which steering movement occurs.

WARNING - During the Automated Deadzone calibration, the system moves the wheels that steer the vehicle. To avoid injury, be prepared for sudden vehicle movement.


In this test, the system independently opens and closes each side of the steering system while determining the point at which wheel movement occurs.

Notes on calibrating the automated steering dead zone


- You must complete the Steering Angle procedure before you run this procedure.
- To ensure optimal system performance, the hydraulic fluid must be at normal operating temperature when you run this procedure. On some vehicles with large reservoirs, it may take several hours for the fluid to reach operating level, especially if the implement circuit is lightly loaded. Consult the vehicle documentation to determine if the hydraulic fluid temperature can be shown on a vehicle console.
- If you perform the calibration while the system is still cold, repeat both the Deadzone and the Proportional gain calibration procedures once the system is at operating temperature.

To configure the automated steering deadzone:

- Place the vehicle in a large field that is free of hazards. To minimize the effect of the ground conditions, the field should have smooth soil that is loose but firm.
- Select the Automated Steering Deadzone procedure from the calibration list. See page 178.

3. Tap Next:

- 4. Tap **Next** in the two screens that appear next.
- 5. Follow all instructions. Tap the **Test Right** and **Test Left** buttons to perform the Deadzone calibration.

As ground conditions affect the results of this calibration, CNH recommends that you perform the calibration at least three times, or until the average deadzone values change by less than about 0.5.

To minimize the total amount of space needed for the complete calibration, you can reposition the vehicle between the phases of the test. If the available flat, smooth space is extremely limited, re-align the vehicle after each segment of the calibration.

To reposition the vehicle:

- Wait until the software prompts you that the next phase is ready to begin.
- Look at the screen to determine whether the next phase will require a left or right turn.
- Reposition the vehicle so that the turn will use the space that you have available. 3.
- Tap the button to begin the next phase.

CAUTION – Obstacles in the field can cause collisions, which may injure you and damage the vehicle. If an obstacle in the field makes it unsafe to continue a particular phase of the Automated Deadzone calibration, stop the vehicle to abort the phase and turn the steering wheel to disengage the system. Reposition the vehicle and continue from the current test phase.

Automated Deadzone error messages

If a calibration cycle is unable to complete successfully, one of the following error messages appears:

Message	Meaning	
Error - Manual Override Detected	Manual override was detected before the calibration cycle could be completed. Retry.	
Error - Vehicle Moving Too Slow	The vehicle was moving too slowly for the calibration cycle to successfully finish. Make sure the vehicle is moving at least 0.8 kph (0.5 mph) during each calibration cycle.	
Error - Steering Close To End Stops	Before the calibration cycle could be completed, the measured steering angle approached the end stops. Retry, and if the problem persists, instead of centering the steering at the start of each cycle, try turning the steering in the opposite direction to that which is being tested so that the calibration procedure has a greater range to test over.	
Error - Valve Connectors Could Be Swapped	The calibration test sensed the steering turning in the opposite direction to what was expected. Retry, and if the problem persists either the valve connectors have been accidentally swapped or the steering sensor calibration was performed incorrectly.	
Error - No GPS	A GPS receiver must be connected and outputting positions before the software can run the calibration procedure.	
Error - No Steering Response Detected	During the calibration cycle, insufficient movement was sensed for the calibration to complete. If the problem persists, the hydraulic installation could be faulty.	
Error - Unable To Determine DZ: Try Again	A problem occurred when trying to compute dead zone. Retry, and if the problem persists, contact Technical Support.	
Error - Software Problem Detected	The software was unable to complete the calibration due to insufficient movement of the vehicle. If the problem persists, contact Technical Support.	

Calibrating the proportional steering gain

Note - Complete the steering sensor calibration before you perform the proportional gain calibration. Perform the proportional steering gain calibration only when the Autopilot system performance is less than satisfactory.

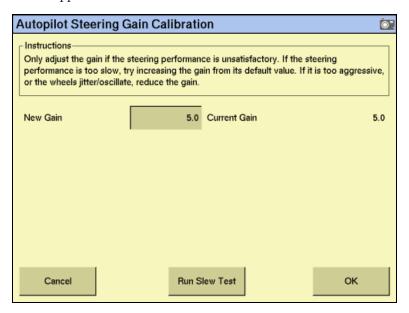
The proportional steering gain (PGain) setting enables you to reach a compromise between rapid steering response and stability. Modifications to the PGain setting affect two steering characteristics:

- Slew Time: The amount of time that the front wheels take to move from the far left to the far right position and vice versa.
- Overshoot: The percentage by which the front wheels exceed the commanded angle before they settle on the correct value.

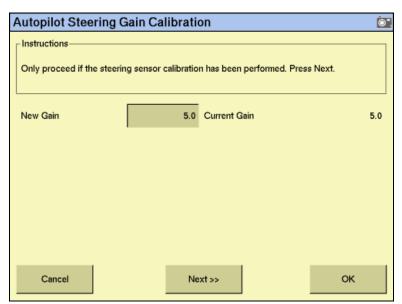
To correct slight variations caused by valve current response, friction, and hydraulic fluid viscosity, alter these settings.

High PGain values	Low PGain values
Decrease the slew time and increase the overshoot. This provides rapid responses, but can cause the steering to exhibit signs of instability (for example, a tendency to excessively overshoot).	Increase the slew time and decrease the overshoot. This improves the stability but can introduce significant delays in the steering response and can cause the vehicle to oscillate from side to side.

Notes on performing the proportional steering gain calibration

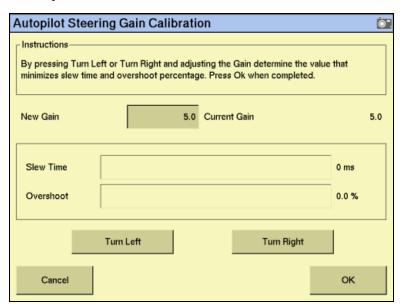

- Perform the Automatic Deadzone calibration immediately before you run the PGain calibration, even if the Automatic Deadzone calibration has been performed in the past.
- Perform this calibration on a hard, level surface that is free of obstructions.
- Maintain a vehicle speed above 1.6 kph (1 mph) while you perform the calibration.

Increase the proportional gain up to the point just before any one of the following occurs:


- Slew times no longer decrease (a low value is required)
- Overshoot exceeds 5–8 % (depending on the vehicle)
- Wheels noticeably shake near end stops

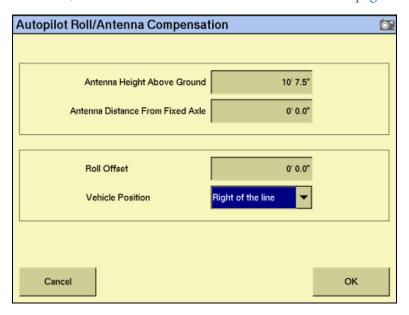
To calibrate the proportional steering gain:

Select the Valve P-gain procedure from the calibration list. See Introduction to Autopilot calibration, page 176. The first Autopilot Steering Gain Calibration screen appears:


- 2. Tap **Run Slew Test**. A warning message appears.
- 3. Tap Next:

CAUTION – The wheels can move abruptly during the Proportional Steering Gain procedure while the AgGPS Autopilot system tests the hydraulic response to the steering commands. These sudden movements can cause collisions with nearby obstacles or cause injury to occupants of the vehicle. Be prepared for sudden wheel movements.

- 4. Tap **Next** in the two screens that appear next.
- 5. Test various gain settings while you monitor the vehicle performance and the values in the *Slew Time* and *Overshoot* fields for the Turn Left phase.
 - a. Adjust the *New Gain* field (if required).
 - b. Turn the front wheels completely to the right to begin the test. (The test is for the stop-to-stop position.)
 - c. Tap **Turn Left**. Both turn buttons are unavailable while the wheels slew:



Note – *The optimum gain setting has short slew time (short millisecond reading) and low overshoot percentage (less than 5–8%).*

- 6. Repeat Step 5 with **Turn Right**. Both turn buttons are unavailable while the wheels slew.
- 7. When you locate the best gain value, do one of the following:
 - Tap **OK** to save the value in the Autopilot controller memory.
 - Tap Cancel to restart the calibration procedure.

Configuring the antenna position and roll offset correction

Select *Roll/Antenna Correction* from the calibration list. See page 176. 1.

Before changing these settings, complete the following procedures.

Notes on configuring the antenna position

- Before configuring the antenna compensation, make sure that:
 - the AgGPS Autopilot system is completely set up
 - the Autopilot software is properly configured
 - the correct GPS corrections are enabled
 - you read this section carefully
- If multiple GPS technologies will be used (for example, RTK and WAAS), use the technology with the highest accuracy when you perform the Roll Correction calibration.

1. Setting the antenna height above the ground

- Place the tractor on a flat, level surface.
- Measure the distance from the ground to the base of the GPS receiver (or antenna).
- Enter this value in the *Antenna Height Above Ground* field.

2. Setting the antenna distance from the fixed axle

- Place the tractor on a flat, level surface.
- Measure the distance from the fixed axle to the center of the GPS receiver (or antenna).
- Enter this value into the Antenna Distance from Fixed Axle field. Enter a negative value if the GPS receiver antenna is to the rear of the fixed axle. The nose of the vehicle is considered the forward direction.

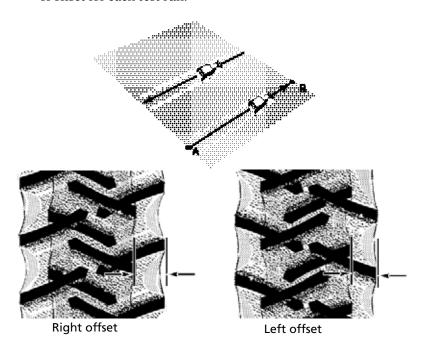
3. Configuring the roll offset correction

Use one of the following methods to calculate the roll offset and then enter the roll offset correction to compensate for it:

- Tire track offset method
- Flag offset method

Choose the method which best matches the conditions.

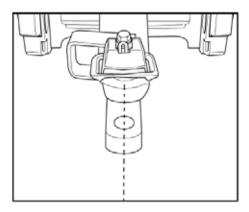
Calculating the roll offset: Tire track offset method


Tip – CNH recommends that you use a highly repeatable GPS correction mode for roll correction. For best results, use a RTK mode or OmniSTAR HP signal that has been converged for at least twenty minutes. If you do a roll calibration with less accurate GPS correction modes, repeat the measurements at least four times to ensure a more consistent result.

- Remove any implement from the vehicle.
- Drive the tractor to a relatively flat field where tire impressions are visible and where you can complete passes of at least 400 m (1320 ft) in length.
- 3. Reset the roll offset value to 0 (zero).
- Create an AB Line. 4.
- Create a clean set of tire tracks in the field. To do this, start a new pass away from the area where the AB Line was created. When the system is stable, engage automatic steering mode and allow the AgGPS Autopilot system to complete the pass.
- At the end of the pass, turn the tractor around to return along the same pass from the opposite direction.
- 7. Engage automated steering mode and allow the system to complete the pass.
- In the middle of the return pass, stop the tractor and confirm that the current position is directly on the AB Line. This ensures there is no cross track error.
- Park the tractor and exit the cab. Evaluate the tire track pattern between the first and return paths.

10. Measure the difference between the track passes and record the distance. Also note whether the return pass is to the left or the right of the original pass. Record the results in Table 11.1 on page 195.

Note – *The offset should be consistently to the left or right.*


11. Repeat Step 5 through Step 10 two more times, for a total of three test runs. Use Table 11.1 on page 195 to record the offset distance and the left or right direction of offset for each test run.

Calculating the roll offset: Flag offset method

- Remove any implement from the vehicle. The vehicle draw-bar must be centered.
- Drive the vehicle to a relatively flat area where you can complete passes that are at least 400 m (1320 ft) in length.
- Reset the *Roll Offset* value to 0 (zero) on the *Roll Correction* screen. See 3. Configuring the roll offset correction, page 192.
- Create an AB Line. 4.
- Start a new pass. Engage automatic steering mode when the system is stable. Stop the tractor midway through the pass. Confirm that there is no cross track error: the current vehicle position should be directly on the AB Line.

Park the vehicle and exit the cab. Use the hitch pin hole in the drawbar as a guide to insert a flag in the ground to mark the vehicle center-line for this pass.

- Complete the pass. Turn the vehicle around to return along the same pass from the opposite direction.
- Engage automatic steering mode. Stop the vehicle midway down the pass with the drawbar pin location very close to the marker flag. Confirm that there is no cross track error: the current vehicle position should be directly on the AB Line.
- Park the vehicle and exit the cab. Use the hitch pin hole in the drawbar as a guide to insert a second flag in the ground to mark the tractor centerline for this pass. Note whether the second pass is to the left or the right of the first pass.
- 10. Measure the difference between the flags for the two passes and record the distance. Also record whether the return pass is to the left or the right of the original pass. Record the results in Table 11.1 on page 195.

Note – *The offset should be consistently to the left or right.*

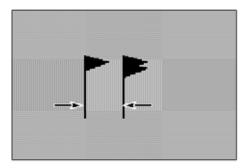
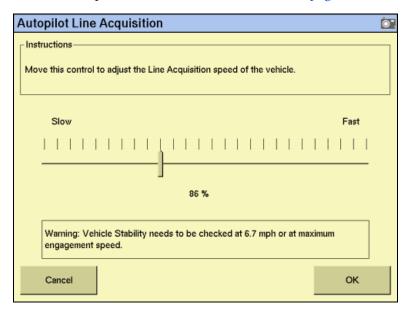


Figure 11.1 Right offset: Measure the distance between the flags

- 11. Repeat Steps 5 to 10 two more times for a total of three test runs. Use Table 11.1 on page 195 to record the offset distance and the left or right direction of offset for each test run.
- 12. Average the results of the three runs. (Total the offset distances from the three passes and divide by three).

Table for recording the roll correction results Table 11.1


Test run	Offset distance	Offset direction
1		
2		
3		
	Total =	
	Total/3 = (Average offset value)	

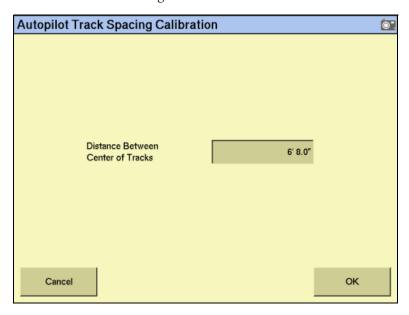
Entering the roll offset

- Enter the average offset value in the *Roll Offset* field. See Configuring the antenna position and roll offset correction, page 191.
- Select one of the offline direction options, depending on whether the roll offset distance is to the left or right.

Calibrating the line acquisition aggressiveness

1. Select *Line Acquisition* from the calibration list. See page 176.

Adjust the line acquisition aggressiveness slider. The slider controls how aggressively the vehicle approaches the guidance line, using a scale from 50% to 150%. The optimal value for each profile is not necessarily 100%: it varies for different vehicle profiles.


Note - When you adjust the slider, check the vehicle stability at the speed shown (4.5 mph in the example above) or at the maximum engage speed.

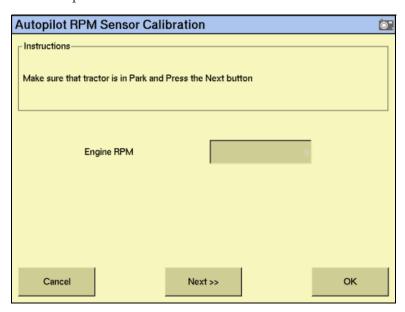
Calibrating a tracked tractor

If you selected a tracked tractor as the make and model, the *Track Spacing* option appears on the calibration list. (This option is not shown in the Vehicle Controller Setup screen shown on page 178).

Track Spacing value

Use this option to configure the width of the tracks on the vehicle. The width of the vehicle tracks is the distance from halfway across the width of the left track to halfway across the width of the right track:

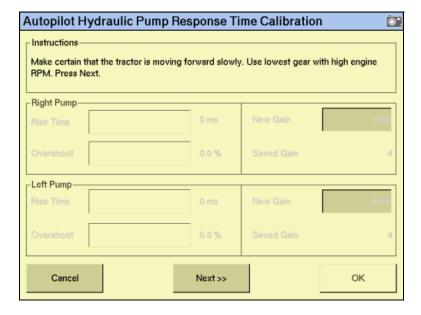
Calibrating a hydraulically-steered tracked tractor


If you selected a hydraulically-steered tracked tractor as the make and model, Engine *Speed* appears on the calibration list.

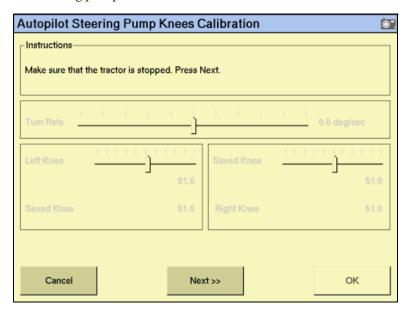
Notes on hydraulically-steered tracked vehicles

- This group of vehicles includes the CAT/AGCO Challenger Tracked family.
- No calibration is required if the system is installed on a CAT MT 700/800 series equipped with the ISO option.

Autopilot Engine Speed Calibration screen


The Autopilot Engine Speed Calibration screen enables you to verify that the RPM sensor output is correct:

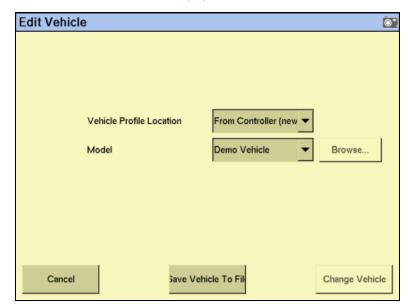
If the *Engine RPM* value is not close to the actual engine RPM, follow the onscreen instructions to adjust the sensor output.


Autopilot Hydraulic Tracked Integral Gain Calibration screen

The Autopilot Hydraulic Tracked Integral Gain Calibration screen verifies and optimizes the response of the hydraulic steering pumps. Follow the onscreen instructions to perform this procedure:

Autopilot Hydraulic Tracked Pump Knees Calibration screen

This calibration procedure determines the compensation required for dead-band in the steering pumps:


CAUTION – The vehicle needs to move during the Hydraulic Tracked Pump Knees calibration procedure. To avoid injury, be prepared for vehicle movement.

The instructions for this calibration test span several pages onscreen. Follow the instructions on each page.

Saving a vehicle profile

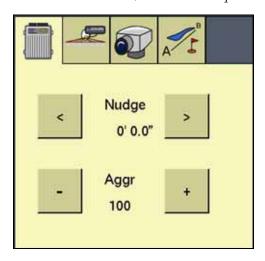
Once you configure and calibrate the Autopilot system for your vehicle, you can save that information for later use. This can be useful if you want to adjust the settings or if you move the display from one vehicle to another.

- Tap. The *Configuration* screen appears.
- Select the Autopilot plugin and then tap **Setup**. The *Vehicle Controller Setup* screen appears.

3. In the *Vehicle Controller Settings* group, tap **Edit**:

Tap Save Vehicle to File.

Your current vehicle profile is saved.


Configuring the GPS receiver

When you install the Autopilot plugin, the GPS Receiver plugin is also installed. For instructions on configuring the GPS receiver, see The GPS Receiver Plugin, page 203.

Adjusting the Aggressiveness setting

Aggressiveness is the measure of how strongly the system makes steering changes.

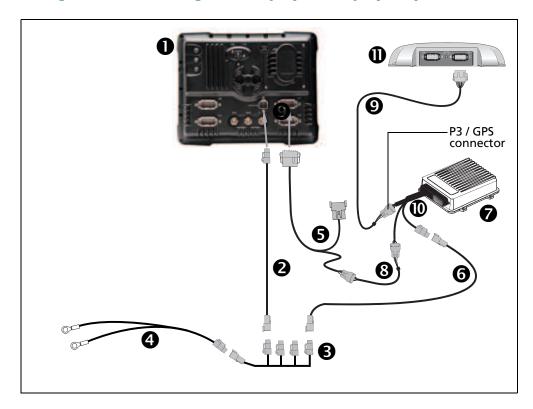
- A higher *Aggressiveness* setting brings the vehicle back online faster, but may cause tight oscillations about the line.
- A lower *Aggressiveness* setting is slower to bring the vehicle back online, but can avoid overshoot.
- 1. From the Run screen, select the *Autopilot* tab:

2. Use the - or + button to adjust the setting.

Note - The default Aggressiveness setting is 100%.

For a description of the Autopilot **Engage** button, see Engage button, page 128.

Display-only mode

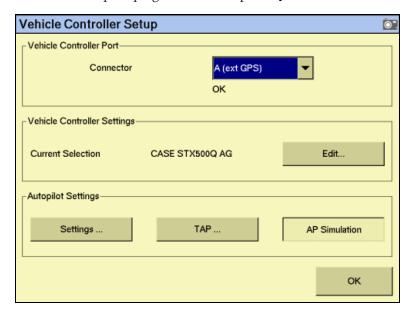

The FM-1000 integrated display can be used as a standalone display for a NavController II that is connected to an external GPS receiver.

When used in this mode, the FM-1000 integrated display's two internal GNSS receivers are not used by the NavController II, but they are still available for other applications.

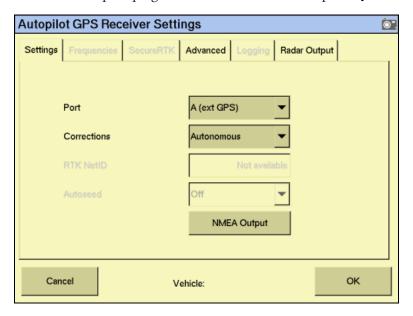
In this mode, you must use the special adaptor cable (P/N 76442) with the standard FM-1000 to NavController II cable (P/N 75741 or P/N 65522) to connect the display to the P4 display port on the NavController II.

Note – You must install the Autopilot plugin to use the display-only functionality of the FM-1000 integrated display.

Connecting the FM-1000 integrated display for display-only mode



Item	Description	Part number
0	FM-1000 integrated display	93100-01
0	FM-1000 power cable	66694
•	FM-1000 power cable with relay and switch (power bus)	67259
4	Basic power cable	67258
6	FM-1000 to NavController II cable with port replicator	75741
0	2 pin DTM to 2 pin DT power adaptor	67095
0	NavController II	55563-00
8	Cable assembly, 8-pin to 12-pin adaptor	76442
9	Cable, AgGPS 252/252 to NavController II	54608
0	Main NavController II cable	54601
0	AgGPS 252/262 receiver	55500-32


To configure the display-only mode, do the following:

Tap . The *Configuration* screen appears.

2. Select the Autopilot plugin and then tap **Setup**:

- 3. From the *Connector* drop-down list, select either *A (ext GPS)* or *B (ext GPS)* and then tap **OK**. The *Configuration* screen appears.
- Select the Autopilot plugin's GPS receiver and then tap **Setup**: 4.

- From the ${\it Corrections}$ drop-down list, select the required correction option. 5.
- Тар ОК. 6.

The GPS Receiver Plugin

In this chapter:

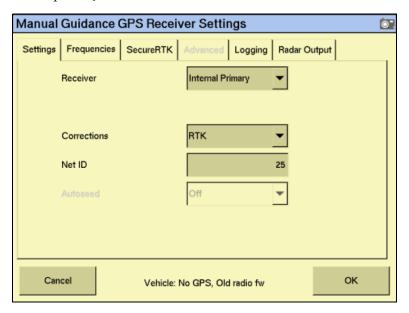
- Configuring the GPS receiver
- AgGPS Autoseed fast restart technology
- Configuring a GPS receiver with the AgRemote software
- **■** Enabling NMEA message output
- **Enabling radar output**

You must install either the Manual Guidance plugin, the Autopilot plugin, or the FieldLevel plugin. When you do so, the FM-1000 system automatically adds a GPS Receiver plugin that controls the internal GPS receiver.

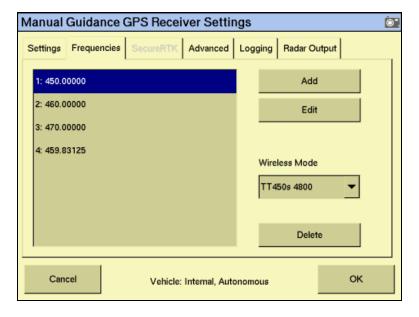
In addition, the system may have another GPS receiver. For example, the AgGPS TrueTracker system uses a second receiver that is configured with a separate GPS Receiver plugin. This chapter describes how to configure the four versions of the GPS receiver plugin.

Configuring the GPS receiver

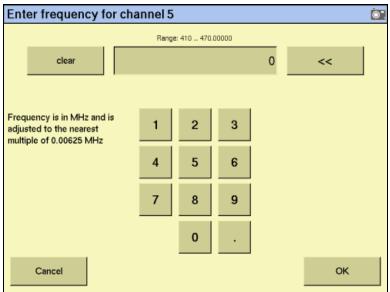
1. From the *Configuration* screen, select the appropriate GPS Receiver plugin and then tap **Setup**:



- 2. In the *Corrections* drop-down list, tap the appropriate corrections to use.
- 3. If RTK corrections are selected, enter the appropriate base-station network ID.
- 4. If HP/XP type corrections are selected, the *Ag*GPS Autoseed[™] technology options become available. For more information see AgGPS Autoseed fast restart technology, page 208.

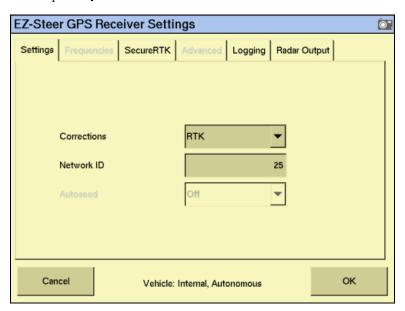

Entering 450 MHz frequencies

If your FM-1000 integrated display has a 450 MHz internal radio, you can set the radio frequency and radio wireless modes.

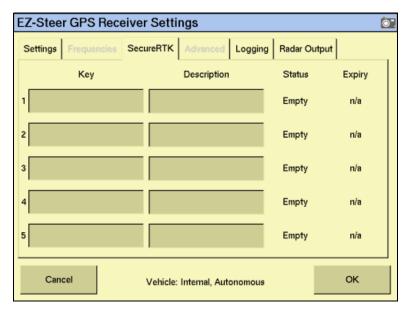

From the Configuration screen, select the appropriate GPS Receiver plugin and then tap **Setup**:

Select the *Frequencies* tab. The list of current frequencies appears:

To add a new frequency, tap **Add**:



- Enter the required frequency for the next available channel and then tap **OK**. 4. The GPS Receiver Settings screen appears.
- 5. From the Wireless Mode drop-down list, select the appropriate mode and then tap **OK**.


Enabling SecureRTK

SecureRTK is a Trimble proprietary base station security feature that enables a Trimble RTK base station service provider to generate time-based access codes for their supported rovers. SecureRTK requires firmware version 1.59, or later, on MS750[™] GPS receivers, and firmware version 3.67 on AgRTK and AgGPS 442 base stations.

From the Configuration screen, select the appropriate GPS receiver plugin and then tap **Setup**:

Select the SecureRTK tab.

In the Key field, enter the base station access code provided by your base station service provider.

The *Status* and *Expiry* fields change to show the current status of the security

- 4. (Optional) In the *Description* field, enter the name of the base station.
- 5. Tap **OK**.

If SecureRTK is enabled on the base station, rovers with authorized access codes can use corrections from that base.

Note - Rovers without a SecureRTK access code are unable to access a secure Trimble RTK base station.

AgGPS Autoseed fast restart technology

AgGPS Autoseed fast restart technology greatly reduces the time needed for OmniSTAR HP/XP/VBS convergence. Once the OmniSTAR signal has initially converged, you can turn off the receiver. When you turn the receiver on again, accuracy levels will be similar to those experienced before shutdown.

To benefit from AgGPS Autoseed technology:

- you must use OmniSTAR HP or XP corrections
- shut down the receiver
- do not move the vehicle before you turn on the receiver again
- the GPS receiver must have a clear view of the sky

Note – Vehicle movement will result in unsatisfactory performance, including longer convergence times and positional offsets.

To enable the *Ag*GPS Autoseed technology:

- On the *Configuration* screen, select the appropriate GPS Receiver plugin and then tap **Setup**. The *GPS Receiver Settings* screen appears.
- In the Corrections drop-down list, select either OmniSTAR HP/XP or OmniSTAR HP/XP-VBS.

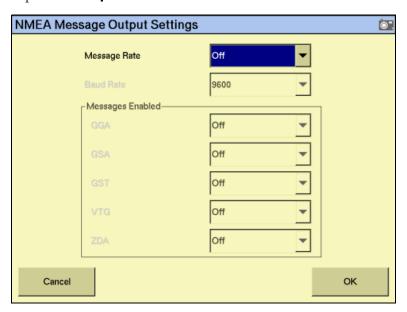
The **Autoseed** button becomes available.

Select **Autoseed** and then tap **OK**.

Configuring a GPS receiver with the AgRemote software

The FM-1000 integrated display has a virtual AgRemote interface for manually adjusting GPS receiver settings. This is recommended for advanced users only. To access the virtual AgRemote interface:

- From the *Configuration* screen, select the appropriate GPS Receiver plugin and then tap **Diagnostics**. The *GPS Status* screen appears.
- Tap **AgRemote**. The virtual AgRemote interface appears. For more information on the correct use of the AgRemote interface, refer to the AgGPS AgRemote Software Guide for AgGPS Receivers on www.trimble.com.

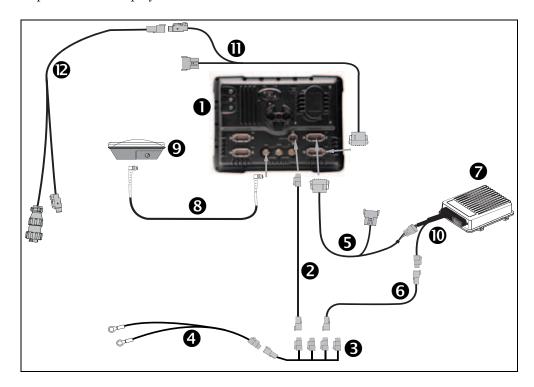

Enabling NMEA message output

The NMEA message formats are a standard format through which GPS receivers can communicate. If you have an external device connected to the AgGPS Autopilot controller, you can enable NMEA message output from the controller so that the device receives NMEA GPS positions.

The messages are output through the NavController harness laptop connector.

Some GPS receivers can output NMEA messages to an external device. To do this:

- On the *Configuration* screen, select the appropriate GPS Receiver plugin and then tap **Setup**. The *GPS Receiver Settings* screen appears.
- 2. Tap NMEA Output:

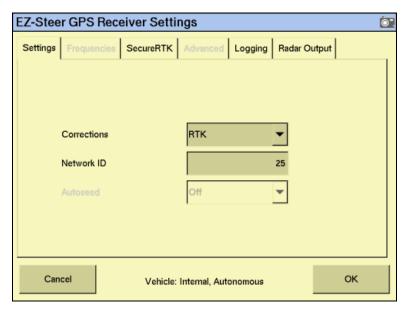


- 3. Select the appropriate Message Rate and then the Baud Rate.
- 4. In the Messages Enabled group, select the appropriate NMEA message types to output. Do not just enable all formats.
- Tap **OK** to continue. 5.

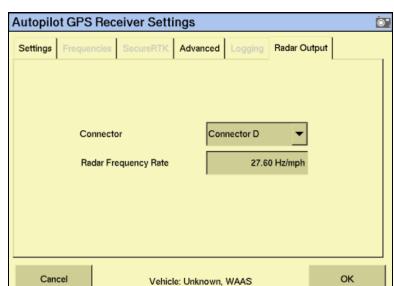
Note - To enable NMEA output from another receiver (for example, the GPS receiver connected to an AgGPS TrueTracker system controller), select the plugin for that receiver in the plugin list.

Enabling radar output

The FM-1000 integrated display can convert GPS speed into an analog frequency that is identical to output from a radar speed sensor. Radar pulses are available from port C or port D of the display.

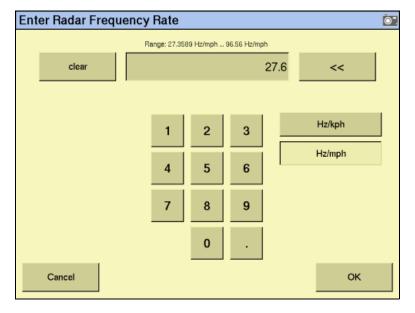


Item	Description	Part number
0	FM-1000 integrated display	93100-01
0	FM-1000 power cable	66694
6	FM-1000 power cable with relay and switch (power bus)	67259
4	Basic power cable	67258
6	FM-1000 to NavController II cable with port replicator	75741
6	2 pin DTM to 2 pin DT power adaptor	67095
0	NavController II	55563-00
8	8m GPS TNC/TNC RT angle cable	50449
9	Ag25 GNSS antenna	68040-00S


Item	Description	Part number
0	Main NavController II cable	54601
0	FM-1000 universal radar adaptor	68461
®	Radar speed output cable	64274

Configuring radar output

From the Configuration screen, select the GPS receiver for any plugin using an internal GPS receiver and then tap **Setup**:



Select the Radar Output tab.

From the Connector drop-down list, select Connector D to enable radar output:

Select the *Radar Frequency Rate* field: 4.

- Enter the required rate and then tap **OK**. The *GPS Receiver Settings* screen 5. appears.
- Тар ОК. 6.

CHAPTER

The TrueGuide Plugin

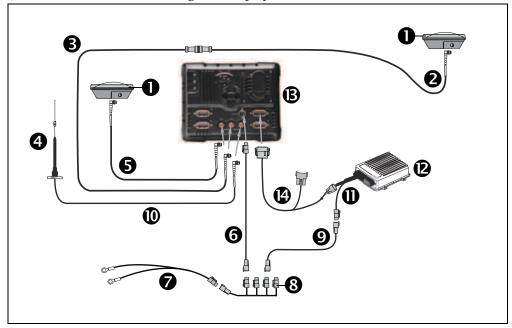
In this chapter:

- AgGPS TrueGuide implement guidance system
- Connecting the TrueGuide implement guidance system
- Configuring the TrueGuide implement guidance system

This chapter describes how to configure the TrueGuide [™] implement guidance plugin to work with the FM-1000 integrated display.

Note - TrueGuide implement guidance requires the FM-1000 integrated display version 2.0 and NavController II firmware version 5.10.

AgGPS TrueGuide implement guidance system

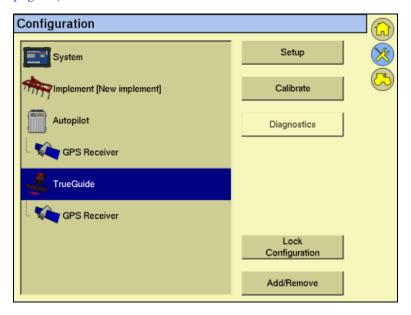

TrueGuide implement guidance is a new feature for use with an AgGPS Autopilot automated steering system and the FM-1000 integrated display. The TrueGuide plugin supports a second GPS receiver (an FM-1000 internal or external AgGPS receiver) on the implement that is used to measure the position of the implement so that the Autopilot system can adjust the position of the tractor to pull the implement on line.

In firmware version 2.0, the TrueGuide system supports towed implements for frontsteered and tracked tractors (4x4 articulated tractors are not supported in version 2.0).

To achieve the highest performance from TrueGuide implement guidance, the Autopilot system on the tractor must have a good calibration. An Autopilot system that is calibrated very aggressively may need to be set up with a more neutral calibration when used with TrueGuide implement guidance.

Connecting the TrueGuide implement guidance system

Once the AgGPS TrueGuide implement guidance system has been professionally installed, add the FM-1000 integrated display as shown:


Item	Description	Part number
0	A25 GNSS antenna (x2)	68040-00S
0	LMR400 65" extension cable	67473
•	Coaxial cable	68295
4	Antenna	2822-10
6	Right-angle cable	50499
0	FM-1000 power cable	66694

Item	Description	Part number
0	Basic power cable	67258
8	Main power bus cable	67259
9	Power adaptor cable	67095
•	NMO to TNC 20' antenna cable and base	62120
0	Main NavController II cable	54601
®	NavController II	55563-00
B	FM-1000 integrated display	93100-02
•	FM-1000 to NavController II cable with port replicator	75741

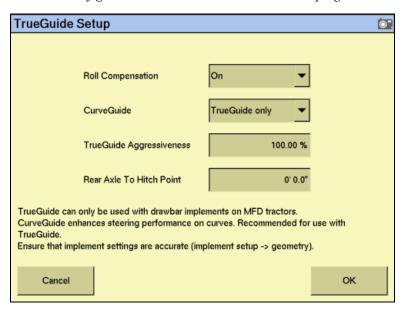
Configuring the TrueGuide implement guidance system

TrueGuide implement guidance must have:

- The Autopilot automated steering system installed on the tractor. For instructions on how to install the Autopilot system, see the AgGPS Autopilot Automated Steering System Installation Instructions relevant to your vehicle.
- Both the *Autopilot* plugin and the *TrueGuide* plugin activated on the FM-1000 integrated display. For more information see Adding or removing a plugin, page 56).

TrueGuide implement setup

Before using the FM-1000 integrated display with the TrueGuide system plugin, select and configure a new or existing implement. For more information, see the chapter Implement Configuration, page 105.


Note - You can update existing (saved) implements with implement geometry to support TrueGuide implement guidance.

Settings on the Geometry tab are required for implement modelling. When configuring an implement for the TrueGuide system, the following antenna offsets are required:

Offset	Description
Hitch to ground contact point	Measured from the tractor hitch pin to the soil engagement point that the implement rotates around.
Antenna front/back	Measured from the implement working point to the center of the GPS antenna (if mounted).
Antenna left/right	Measured from the center of the implement to the center of the GPS antenna (if mounted)
Antenna height	The working height of the GPS antenna

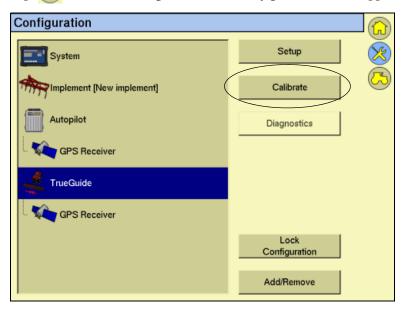
Setting up the TrueGuide system

From the *Configuration* screen, select the TrueGuide plugin and then tap **Setup**:

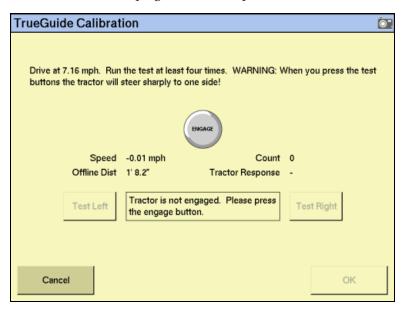
Enter the required global settings:

Setting	Description	
Roll compensation	On: Applies roll corrections from the tractor.	
	Off: Applies no roll corrections.	
Curveguide	Off: The system does not anticipate curves.	
	 TrueGuide only: Enables the system to anticipate curves to make corrections for TrueGuide guidance only. Always On: Keeps CurveGuide on at all times. 	
	Always on. Reeps curveduide on at all times.	

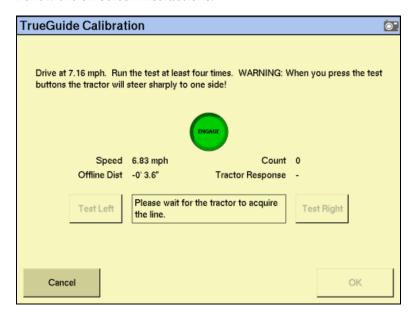
Setting	Description
TrueGuide Aggressiveness	Sets the default aggressiveness; the recommended aggressiveness is 100%. For more information, see TrueGuide system aggressiveness settings, page 221.
Rear axle to hitch point	Enter the distance between the fixed axle of the tractor and the draw bar.


Tap **OK**. The *Configuration* screen appears.

TrueGuide Calibration


To calibrate the TrueGuide system, you must have a field open in the Run screen with an A-B line configured. For more information on opening a field and creating an A-B line, see The Mapping Plugin, page 121

From the Run screen, do the following:


Tap . Without closing the field, the *Configuration* screen appears.

2. Select the TrueGuide plugin and then tap Calibrate:

3. Follow the on-screen instructions:

- Complete the test at least four times and then tap **OK**. The *Configuration* screen appears.
- 为 to return to the open field.

Engaging and disengaging the TrueGuide system

To engage the AgGPS Autopilot and the TrueGuide systems using the FM-1000 integrated display, you must have a guidance line defined and the vehicle must be within the engage limits of the system.

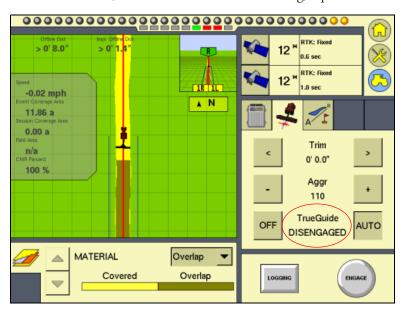
To manually engage the systems, do one of the following:

- Tap the **Engage** button on the main guidance screen.
- Press the optional remote engage foot pedal or rocker switch.

To disengage the systems, do one of the following:

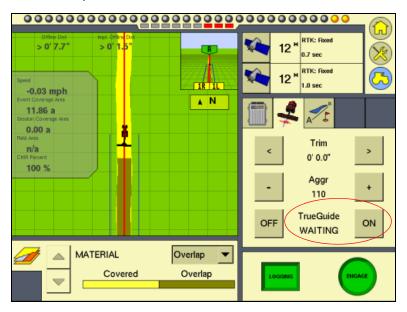
- Tap the **Engage** button on the main guidance screen.
- Press the optional remote engage foot pedal or rocker switch.
- Turn the steering wheel.

The system automatically disengages when:

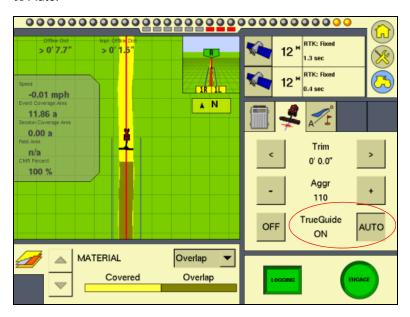

- The vehicle or implement is outside the engage limits.
- GPS positions are lost on the implement or on the vehicle.
- *Minimum Fix Quality* is not maintained and the system receives low accuracy positions (for example, no corrections).

Engage status indicators

Engage status	Button color	Vehicle icon color
Ready to engage	DOCACE	
Engaged		
Cannot engaged		


Operating the TrueGuide system

1. In the Run screen, with the *TrueGuide* tab showing, tap **AUTO**:


The TrueGuide system status is shown as Disengaged.

2. Tap **Engage** to start guidance. The **Auto** button changes to **ON** and the TrueGuide system status is shown as **Waiting**:

The Autopilot system acquires the line before transistioning to the TrueGuide system.

The TrueGuide system status remains at Waiting while the Autopilot system acquires the line. Once the TrueGuide system has taken control, the TrueGuide System status changes to ON and the TrueGuide system Engage button changes to Auto:

To disengage the TrueGuide system at any time, tap **Off**.

Note - To force the TrueGuide system to turn on when the status is Waiting, tap ON again.

Note – As soon as the TrueGuide system is disengaged, the Autopilot system immediately begins providing all guidance.

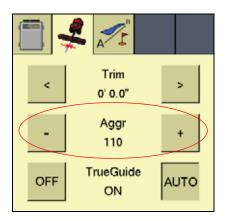
TrueGuide system status indicators

The system status appears on the *TrueGuide* tab between the **Off / On (Auto)** buttons.

TrueGuide status	Description
Off	The TrueGuide system is off.
Disengaged	The TrueGuide system is ready, but not engaged.
Waiting	The Autopilot system is engaged, and the TrueGuide system is preparing to engage after a short pause.
On	The TrueGuide system has engaged and is on.

TrueGuide system aggressiveness settings

To set the default aggressiveness value, see Setting up the TrueGuide system, page 216.


Increasing the aggressiveness increases the response to move the implement back to the guidance line.

Decreasing aggressiveness smooths the response to the implement moving offline.

For	Use as default
Steep slopes (10%– +30%)	150%
Slow-speed applications	125%
Normal operation	100%
High-speed applications (>8 MPH)	33%

Adjusting aggressiveness during operation

From the Run screen, select the TrueGuide Plugin:

- Do one of the following: 2.
 - To increase aggressiveness, tap +.
 - To decrease aggressiveness, tap -.

CHAPTER

The TrueTracker Plugin

In this chapter:

- About the AgGPS TrueTracker system
- Configuration
- Using the TrueTracker system

One of the FM-1000 integrated display features that can be unlocked is the AgGPS TrueTracker implement steering system.

This chapter describes the TrueTracker system and how to configure it to steer implements more accurately.

About the AgGPS TrueTracker system

The AgGPS TrueTracker implement steering system is an upgrade for the Autopilot automated steering system. With the Autopilot system, the vehicle receives guidance and pulls the implement. When the TrueTracker system is added to the Autopilot system, the implement receives separate guidance and steering to increase accuracy.

The system comprises two parts:

- Additional hardware installed on the implement
- Additional FM-1000 integrated display software provided by the TrueTracker plugin

The TrueTracker system extends the sub-inch, year-to-year repeatable accuracy of the Autopilot automated steering system to the implement.

Terminology

The term *implement steering* refers to the ability to actively steer the implement that a vehicle is towing.

Normally, it is not possible to tell the exact location of the implement. When you use the FM-1000 integrated display with the Autopilot automated steering system for sub-inch accuracy, the GPS antenna and receiver are mounted on the vehicle, and it is the vehicle that is guided.

On flat ground the implement will probably be directly behind the vehicle, but in the following conditions the implement can pull (*draft*) to one side:

- On side slopes
- In variable soil conditions
- On curved guidance patterns

The stand-alone Autopilot automated steering system has no way to detect or correct for implement draft:

In these conditions, the draft distance can be significant enough to lose repeatability for successive field operations despite the ±25 mm (±1 inch) accuracy of the tractor equipped with the Autopilot system.

Benefits of the AgGPS TrueTracker system

The TrueTracker implement steering system is an optional upgrade for the Autopilot system. You must unlock and install the second FM-1000 integrated display's internal receiver on the implement. Using the Trimble T3™ inertial terrain compensation technology and the accuracy of the receiver, the TrueTracker system can steer the implement, ensuring it remains online behind the vehicle even on extremely sloped ground.

The TrueTracker system supports the following:

- Steering in reverse
- Straight and curved guidance patterns
- Independent implement offset
- Independent aggressiveness control for the implement
- Zero steering to center the coulters

Requirements of the AgGPS TrueTracker system

- An AgGPS Autopilot system with the FM-1000 integrated display
- An unlock code for the FM-1000 integrated display implement steering functionality

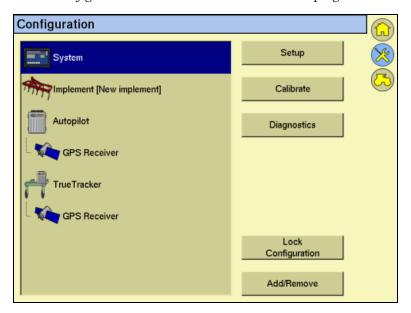
Installing the TrueTracker system

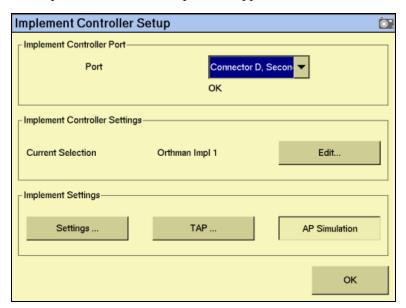
The TrueTracker system requires professional installation. For more information, contact your local reseller.

Configuration

To configure the TrueTracker system, complete the following steps:

- Activate the system. See page 226.
- 2. Enable the implement controller. See page 226.
- Configure the implement controller. See page 228. 3.
- Configure the implement. See page 230. 4.
- Calibrate the implement. See page 231. 5.


Activating the TrueTracker system


Before you can use the TrueTracker system, you must activate it on the FM-1000 integrated display. For step-by-step instructions, see Entering the password to activate a plugin, page 57.

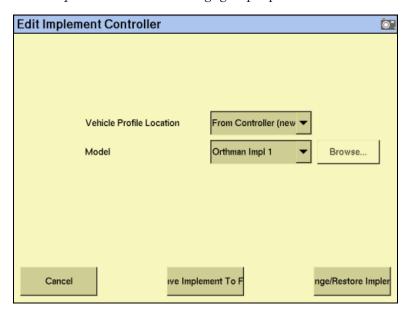
Note – This process requires you to enter the activation password. If you do not have an activation password, contact your local reseller.

Enabling the implement controller

- Tap . The *Configuration* screen appears.
- 2. Ensure that the Autopilot plugin and the TrueTracker plugin are both installed. See Adding or removing a plugin, page 56.
- 3. On the *Configuration* screen, select the TrueTracker plugin and then tap **Setup**:

The *Implement Controller Setup* screen appears:

In the Port list, select the connector on the FM-1000 harness that the True Tracker implement controller is connected to and then tap ${\bf OK}$.


Configuring the implement controller

Your vehicle make and model were selected when your TrueTracker system was installed. If the details in the *Implement Controller Settings* group are correct, skip this step and go to Configuring the implement, page 230. Otherwise, configure the implement controller as described here.

Note – When you configure the implement make and model, the previous calibration settings are lost. If you will want to use the current vehicle settings again, save them before you proceed.

Configuring the implement make and model

1. In the *Implement Controller Settings* group tap **Edit**:

- 2. Do one of the following:
- To select a new make and model from the list in the Autopilot controller firmware:
 - a. Tap From Controller (new).
 - b. Tap the Selected Model drop-down box and then select the required make and model from the list.
- To select a new make and model from a database of vehicles (.vdb) on the FM-1000 integrated display CompactFlash card:
 - a. Tap From Database (new).
 - b. Tap Browse.
 - c. Select the required .vdb file and then tap **Open**.If you need to obtain a .vdb file, contact your local reseller.
- To select an existing vehicle from a previously saved file (.cfg) on the card:

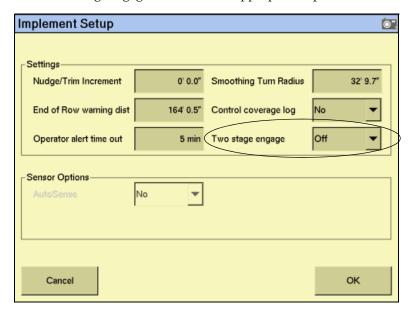
- Tap From Saved File (existing). a.
- b. Tap Browse.
- Select the required file and then tap **Open**.
- Tap **Change/Restore Implement**. The following message appears: 3.

The specified implement model will now be selected on the Autopilot controller. This will cause the Autopilot controller to be reset. Do you want to continue?

- Tap **OK** to load the new configuration or tap **Cancel** to abort. The **Autopilot** Controller will now be reinitialized message appears.
- Tap **OK**. After the **Trained and qualified** warnings have appeared the file is loaded.

Engage button

When implement steering is enabled, the Run screen **Engage** button changes state. It has two status indicators:


- The main button color, which represents vehicle steering
- The small inner color, which represents implement steering

Configuring the Engage button

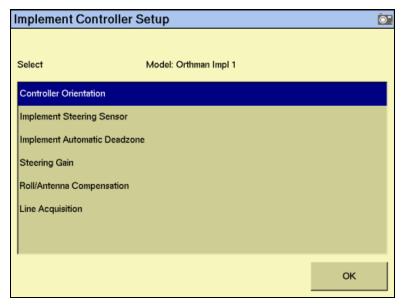
You can set the **Engage** button to work in two different ways.

In the *Two stage engage* list, select the appropriate option:

Item	Description
On	The Engage button requires multiple taps to engage: - The first tap engages implement steering
	- The second tap engages the vehicle steering
	– The third tap disengages both implement and vehicle steering
Off	The Engage button engages with one tap: - The first tap engages implement and vehicle steering - The second tap disengages both implement and vehicle steering

Configuring the implement

Configure an implement so that the system can tell:

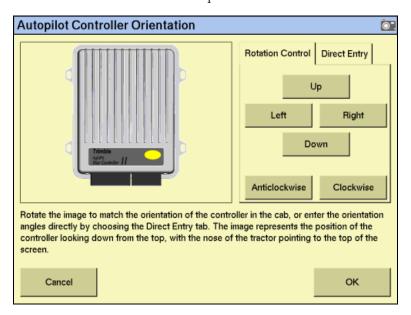

- which type of implement is attached
- how much area it covers
- how far it is offset

See Chapter 7, Implement Configuration.

Note – When you enter the number of implement sections, if the implement does not have sections, enter 1.

Calibrating the implement

From the Configuration screen, select the TrueTracker plugin and then tap Calibrate:



- Select an item to configure and then tap **OK**. 2.
- 3. Configure the selected item.

To configure	See page
Controller orientation	page 232
Steering sensor	page 232
Automated steering deadzone	page 233
Steering gain	page 235
Roll/antenna correction	page 240
Line acquisition	page 243

Configuring the controller orientation

Select the *Controller Orientation* option from the list:

An image represents the current mounting orientation of the controller.

The image is shown as though:

- You are looking down on the vehicle from above.
- The top of the screen points to the front of the vehicle.
- Use the buttons to select the orientation of the controller.

If the controller is set at a sloped angle, tap **Direct Entry** and then enter the yaw, pitch, and roll angles of the controller.

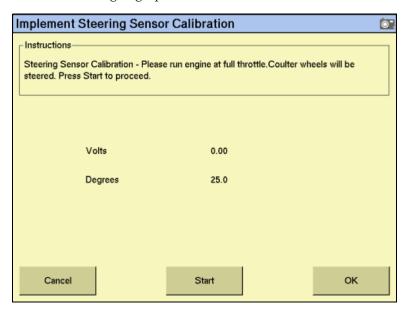
Note - If you use the Direct Entry method to set custom angles, the on-screen image of the controller does not appear.

3. Tap **OK** to accept the new orientation or tap **Cancel** to exit.

Calibrating the Implement Steering Sensor

Perform steering sensor calibration to convert the voltage output of the steering sensor into an equivalent steering angle measurement.

Note - Complete this calibration before you attempt to calibrate the steering deadzone or roll correction procedures.


Ensure that you:

- Perform this procedure on a level surface that is free of obstructions.
- Follow the instructions on each page.
- Run the engine at full throttle.

Raise the implement.

To run the steering sensor calibration:

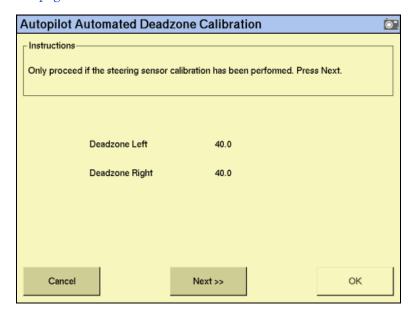
Select the *Steering Angle* procedure from the calibration list:

- 2. Tap Start.
- 3. Perform the calibration. The value in the Volts field is updated as the wheels are steered.

Calibrating the Implement Automatic Deadzone

The Implement Automatic Deadzone calibration procedure runs a series of tests on the valve and steering hydraulics to determine the point at which steering movement occurs.

WARNING - During the Implement Automatic Deadzone calibration, the system moves the wheels that steer the implement. To avoid injury, ensure the area around the vehicle and implement is clear.


In this test, the system independently opens and closes each side of the steering system while determining the point at which wheel movement occurs.

Notes on calibrating the Implement Automatic Deadzone

- You must complete the Steering Angle procedure before you run this procedure. See Calibrating the steering angle sensor, page 182.
- To ensure optimal system performance, the hydraulic fluid must be at normal operating temperature when you run this procedure. On some vehicles with large reservoirs, it may take several hours for the fluid to reach operating level, especially if the implement circuit is lightly loaded. Consult the vehicle documentation to determine if the hydraulic fluid temperature can be shown on a vehicle console.
- If you perform the calibration while the system is still cold, repeat both the Deadzone and the Proportional gain calibration procedures once the system is at operating temperature.

To configure the automated steering deadzone:

- 1. Place the vehicle in an area that is free of hazards.
- 2. Raise the implement.
- 3. Select the Implement Automatic Deadzone procedure from the calibration list. See page 231.

- 4. Tap **Next** to continue. The second *Autopilot Automated Deadzone Calibration* screen appears.
- 5. Tap **Next** in the two screens that appear next.

Note - Read the onscreen instructions on each page.

Follow the instructions. The system will automatically move the coulter wheels in both directions several times.

6. Tap **Start**. The system engages and performs the calibration.

Automated Deadzone error messages

If a calibration cycle is unable to complete successfully, one of the following error messages appears:

Message	Meaning
Error - Steering Close To End Stops	Before the calibration cycle could be completed, the measured steering angle approached the end stops. Retry, and if the problem persists, instead of centering the steering at the start of each cycle, try turning the steering in the opposite direction to that which is being tested so that the calibration procedure has a greater range to test over.
Error - Valve Connectors Could Be Swapped	The calibration test sensed the steering turning in the opposite direction to what was expected. Retry, and if the problem persists either the valve connectors have been accidentally swapped or the steering sensor calibration was performed incorrectly.
Error - No GPS	A GPS receiver must be connected and outputting positions before the software can run the calibration procedure.
Error - No Steering Response Detected	During the calibration cycle, insufficient movement was sensed in order for the calibration to complete. If the problem persists, the hydraulic installation could be faulty.
Error - Unable To Determine DZ: Try Again	A problem occurred when trying to compute dead zone. Retry, and if the problem persists, contact Technical Support.

Proportional steering gain calibration

Note – Complete the steering sensor calibration before you perform the proportional gain calibration. Perform the proportional steering gain calibration only when the TrueTracker system performance is less than satisfactory.

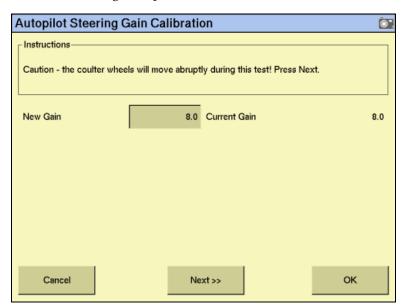
The proportional steering gain (PGain) setting enables you to reach a compromise between rapid steering response and stability. Modifications to the PGain setting affect two steering characteristics:

- Slew Time: The amount of time the steering coulters take to move from the far left to the far right position and vice versa.
- *Overshoot*: The percentage by which the steering coulters exceed the commanded angle before they settle on the correct value.

To correct slight variations caused by valve current response, friction, and hydraulic fluid viscosity, alter these settings.

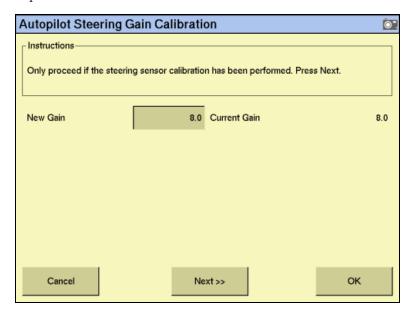
High PGain values	Low PGain values
overshoot. This provides rapid responses, but can cause the steering to exhibit signs of instability (for example, a tendency to	Increase the slew time and decrease the overshoot. This improves the stability but can introduce significant delays in the steering response and can cause the vehicle to oscillate from side to side.

Notes on performing the proportional steering gain calibration


- Perform the Automatic Deadzone calibration immediately before you run the PGain calibration, even if the Automatic Deadzone calibration has been performed in the past.
- Perform this calibration on a level surface, free of obstructions.
- Run the engine at full throttle.
- Raise the implement.

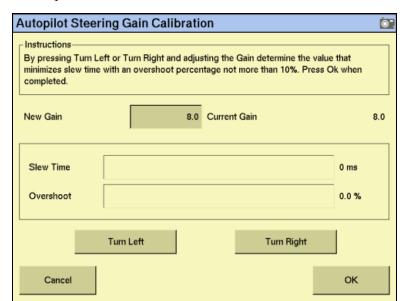
Increase the proportional gain up to the point just before any one of the following occurs:

- Slew times no longer decrease (a low value is required)
- Overshoot exceeds 10 % (depending on the Tracker unit)
- Steering coulters noticeably shake near end stops


To calibrate the proportional steering gain:

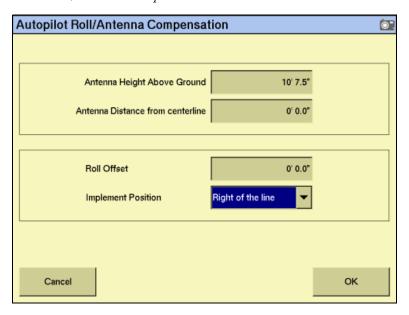
1. Select the Steering Gain procedure from the calibration list:

2. Tap **Run Slew Test**. A warning message appears.


3. Tap Next:

CAUTION – The steering coulters can move abruptly during the Proportional Steering Gain procedure while the AgGPS TrueTracker system tests the hydraulic response to the steering commands. These sudden movements can cause collisions with nearby obstacles or cause injury. Be prepared for sudden steering coulter movements.

- 4. Tap **Next** in the two screens that appear next.
- Test various gain settings while you monitor the implement steering performance and the values in the *Slew Time* and *Overshoot* fields for the Turn Left phase:
 - Adjust the New Gain field (if required).


b. Tap **Turn Left**. Both turn buttons are unavailable while the wheels slew::

Note - The optimum gain setting has short slew time (short millisecond reading) and overshoot percentage less than 10%.

- Repeat Step 5 with **Turn Right**. Both turn buttons are unavailable while the wheels slew.
- When you locate the best gain value, do one of the following:
 - Tap **OK** to save the value in the *Ag*GPS Autopilot controller memory.
 - Tap **Cancel** to restart the calibration procedure.

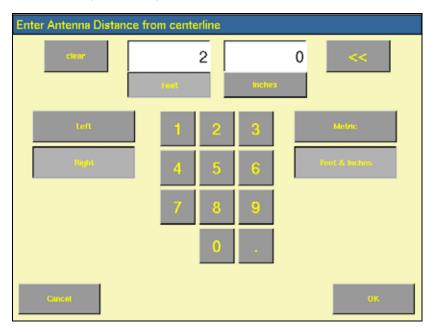
Configuring the antenna position and roll offset correction

Select *Roll/Antenna Compensation* from the calibration list: 1.

Before changing these settings, complete the procedures described below.

Notes on configuring the antenna position

- Before configuring the antenna compensation, make sure that:
 - the AgGPS TrueTracker system is completely set up
 - the Autopilot software is properly configured
 - the correct GPS corrections are enabled


Read this section carefully before you attempt the configuration.

Setting the antenna height above the ground

- Place the tractor and implement on a flat, level surface.
- Measure the distance from the ground to the base of the GPS receiver (or 2. antenna).
- Enter this value in the *Antenna Height Above Ground* field. 3.

Setting the antenna distance from the center-line

- Place the tractor and implement on a flat, level surface.
- Measure the distance from the centerline of the implement to the center of the GPS receiver (or antenna).

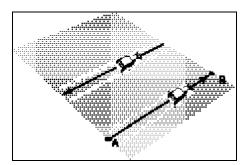
Enter this value into the *Antenna Distance from centerline* field and indicate whether it is left or right of the centerline. Values to the left of the centerline are displayed as negative numbers. The nose of the vehicle is considered the forward direction.

Configuring the roll offset correction

Use one of the following methods to calculate the roll offset and then enter the roll offset correction to compensate for it:

- Coulter wheel track offset method
- Flag offset method

Choose the method which best matches the conditions.

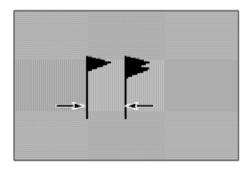

Calculating the roll offset: coulter wheel track offset method

- Drive the tractor to a relatively flat field where tire impressions are visible and where you can complete passes of at least 400 m (1320 ft) in length.
- 2. Reset the roll offset value to 0 (zero).
- 3. Start a new field.
- 4. Create a straight AB Line.

- Create a clean set of tire tracks in the field. To do this, start a new pass away from the area where the AB Line was created. When the system is stable, engage automatic steering mode and allow the AgGPS Autopilot and TrueTracker systems to complete the pass.
- At the end of the pass, turn the tractor around to return along the same pass from the opposite direction.
- Engage automated steering mode and allow the system to complete the pass.
- In the middle of the return pass, stop the tractor and confirm that the current position is directly on the AB Line. This ensures there is no cross track error.
- 9. Park the tractor and exit the cab. Evaluate the coulter wheel track pattern between the first and return paths.
- 10. Measure the difference between the track passes and record the distance. Also note whether the return pass is to the left or the right of the original pass. Record the results in Table 12 on page 242.

Note - The offset should be consistently to the left or right.

11. Repeat Steps 5 to 10 two more times, for a total of three test runs. Use Table 12 on page 242 to record the offset distance and the left or right direction of offset for each test run.



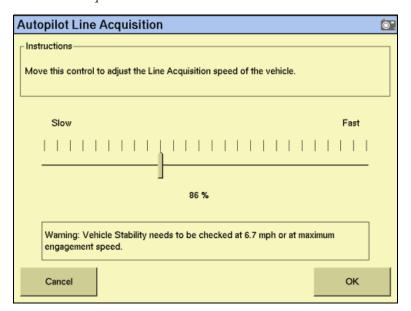
Calculating the roll offset: flag offset method

- Drive the vehicle to a relatively flat area where you can complete passes that are at least 400 m (1320 ft) in length.
- Reset the Roll Offset value to 0 (zero) on the Roll Correction screen. See Configuring the roll offset correction, page 240.
- Start a new field. 3.
- 4. Create a straight AB Line.
- 5. Start a new pass. Engage automatic steering mode when the system is stable. Stop the tractor midway through the pass. Confirm that there is no cross track error: the current vehicle position should be directly on the AB Line.
- Park the vehicle and exit the cab. Insert a flag in the ground to mark the implement centerline for this pass.

- Complete the pass. Turn the vehicle around to return along the same pass from the opposite direction.
- Engage automatic steering mode. Stop the vehicle midway down the pass very close to the marker flag. Confirm that there is no cross track error: the current vehicle position should be directly on the AB Line.
- Park the vehicle and exit the cab. Insert a second flag in the ground to mark the implement centerline for this pass. Note whether the second pass is to the left or the right of the first pass.
- 10. Measure the difference between the flags for the two passes and record the distance. Also record whether the return pass is to the left or the right of the original pass. Record the results in Table 12 on page 242.

Note - The offset should be consistently to the left or right.

- 11. Repeat Step 5 through Step 10 two more times for a total of three test runs. Use Table 12 on page 242 to record the offset distance and the left or right direction of offset for each test run.
- 12. Average the results of the three runs. (Total the offset distances from the three passes and divide by three). Use the following table for recording the roll correction results.

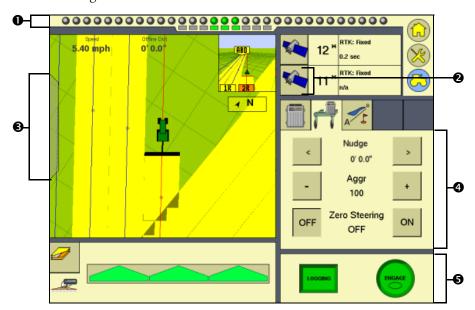

Test run	Offset distance	Offset direction
1		
2		
3		
	Total =	
	Total/3 = (Average offset value)	

Entering the roll offset

- Enter the average offset value in the *Roll Offset* field. See Configuring the antenna position and roll offset correction, page 239.
- Select one of the offline direction options, depending on whether the roll offset distance is to the left or right.

Calibrating the line acquisition aggressiveness

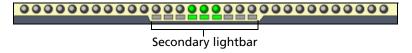
Select *Line Acquisition* from the calibration list: 1.


Adjust the line acquisition aggressiveness slider. The slider controls how aggressively the implement approaches the guidance line, using a scale from 50% to 150%. The optimal value for each profile is not necessarily 100%: it varies for different implement profiles.

Using the TrueTracker system

When you have configured the TrueTracker plugin, you can begin driving in the field with implement steering.

Main guidance screen


The FM-1000 integrated display's main guidance screen changes when implement steering is enabled.

Item	Description	See page
0	Implement lightbar	244
2	Implement GPS information button	245
€	Implement status text items (hidden)	245
4	Implement tab	245
6	Implement steering engage button	230

Implement lightbar

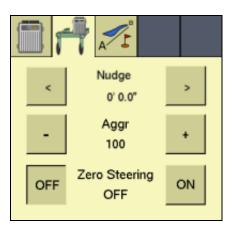
When implement steering is enabled, a second, smaller lightbar appears below the main lightbar:

This lightbar shows the implement guidance relative to the guidance line. Each LED on the second lightbar represents 1 inch.

Implement GPS information button

Tapping the *implement GPS information* button displays extra implement receiver status information. Tap **OK** to return to the Run screen.

Implement status text items


A number of status text items provide information about the implement. For more information, see page 70.

You can set these status text items to appear permanently at the top of the screen or on a slide-out tab. To view the following items, tap the corrections status button at the top right of the screen:

- Implement GPS Status
- Implement Correction Type
- Implement Correction Age
- Latitude
- Longitude
- Altitude
- Satellites
- **HDOP**
- **VDOP**
- Network ID

Implement tab

When the TrueTracker plugin is installed, the TrueTracker tab becomes available on the main Run screen:

The TrueTracker tab enables you to adjust the implement steering independently of the vehicle steering. For example, if you can see that the implement is consistently to one side of the guidance line but the vehicle is correctly online, you can apply Trim to the implement to correct it.

When turned on, Zero Steering commands the steering to zero degrees left/right, centering the steering device on the implement. This option can be turned on in the field, keeping the coulters pointed straight, or just at the ends of the field to center the steering.

Note - Disengaging the TrueTracker system automatically turns off Zero Steering.

Note – If the implement is consistently offline, there may be a roll calibration issue. Recheck the roll calibration.

Configuring the Engage button

You can configure the **Engage** button to work in two different ways:

Item	Description
Single press	The Engage button engages with one tap: - The first tap engages implement and vehicle steering - The second tap disengages automated steering
Two-stage press	The Engage button requires two taps to engage: - The first tap engages implement steering - The second tap engages the vehicle steering - The third tap disengages automated steering

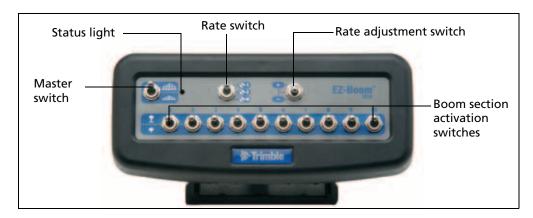
To configure how the **Engage** button works, see Configuring the implement controller, page 228.

CHAPTER

The EZ-Boom Plugin

In this chapter:

- AgGPS EZ-Boom 2010 automated application control system
- **EZ-Boom tab**
- Additional information about the **EZ-Boom system**
- **■** EZ-Boom system implement diagnostics
- Controlling an application device with the EZ-Boom controller
- Updating the firmware on the EZ-**Boom controller**

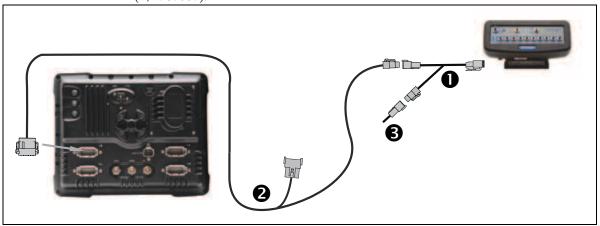

This chapter describes how to configure the EZ-Boom 2010 automated application control system to work with the FM-1000 integrated display to provide sprayer boom switching and rate control.

Note - You can install only one variable rate control plug at once. You cannot run the Serial Rate Control plugin or the Tru Application Control plugin at the same time as the EZ-Boom plugin.

AgGPS EZ-Boom 2010 automated application control system

The AgGPS EZ-Boom® 2010 automated application control system is a variable rate and automated boom switch controller. It enables you to control application rate sprayers, on either self-propelled vehicles or towed sprayers.

This figure shows the front panel of the EZ-Boom controller:


Installing the EZ-Boom controller

For information on installing the EZ-Boom controller, refer to the *Ag*GPS *EZ-Boom* 2010 Automated Application Control System Getting Started Guide.

Connecting the EZ-Boom system

To connect the EZ-Boom system to the FM-1000 integrated display:

- 1. Connect the FM-1000 integrated display.
- 2. Attach the EZ-Boom controller to the dash. Use the provided bracket.
- 3. Connect the EZ-Boom CAN cable (P/N 61437) to the Deutsch socket on the back of the EZ-Boom controller and then to the FM-1000 to CAN cable (P/N 67087).

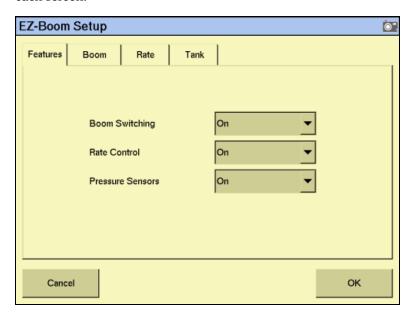
- Connect the FM-1000 to CAN cable 2 to port A on the FM-1000 integrated display.
- Connect the terminator extension 3 to the CAN extension.

Note - To unlock an EZ-Boom controller for use, see Entering the password to activate a plugin, page 57.

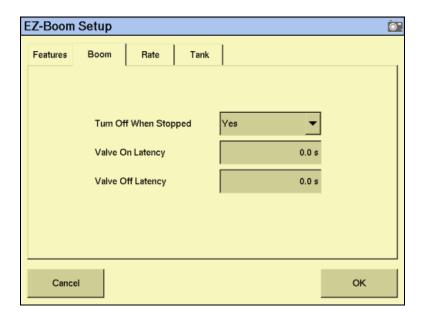
Configuring the EZ-Boom system

To use the EZ-Boom controller to operate a spray boom, complete the following steps:

- Enable the EZ-Boom plugin in the FM-1000 integrated display. See page 56
- 2. Configure the spray boom in the FM-1000 integrated display. See page 249.
- Configure the EZ-Boom system settings. See page 250. 3.
- Calibrate the valve. See page 253. 4.
- 5. Calibrate the flow meter. See page 254.
- Calibrate the pressure sensor. See page 256. 6.

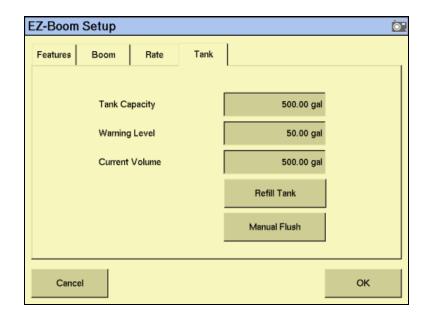

Configuring the spray boom (in the FM-1000 integrated display)

When you configure an implement with the EZ-Boom or the Tru Application Control plugin installed, additional options appear on the *Edit Implement* screen.

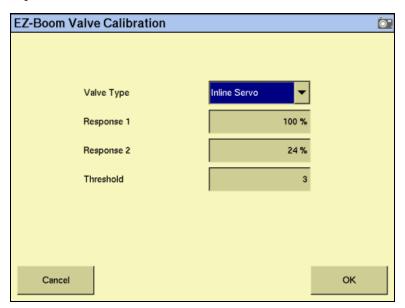

For more information on configuring the additional settings, see Additional settings, page 116.

Configuring the EZ-Boom system settings

From the *Configuration* screen, select the EZ-Boom plugin and then tap **Setup**. The following $\it EZ-Boom\ Setup\ screens$ appear. Set the options as required for each screen:


Features options	Description
Boom Switching	To turn off boom switching, set the <i>Boom Switching</i> option to Off. This lets you manually control the boom sections.
	To use automated boom switching, keep the Boom Switching set to On.

Boom options	Description
Turn Off When Stopped	If the vehicle is a clutch-operated planter, set this option to No so that you can continue planting even when the vehicle is stopped. Otherwise, select Yes.
Valve On Latency	There can be a delay between the time when you send a command to the sprayer and the time when it begins or ends spraying. Set the <i>Valve On Latency</i> setting to the number of seconds that the system takes to respond when a command is sent.


Rate options	Description
Rate1 (default)	This is the volume that the sprayer supplies when the Rate switch is set to 1.
Rate2	This is the volume that the sprayer supplies when the Rate switch is set to 2.
Rate Increment	When the Rate switch is in the Rate 1 or Rate 2 position, the current application rate increases or decreases by this amount each time you tap the Rate adjustment (inc/dec) switch.

Tank options	Description
Tank Capacity	The capacity of the tank when full.
Warning Level	A warning appears when the calculated solution level reaches this point.
Current Volume	The amount of solution that is currently in the tank.
	Note – To do a partial refill, just add the amount to the Current Volume.
Refill Tank	This resets the Current Volume value to the Tank Capacity value.
Manual Flush	Pushes solution through the system at the maximum rate.
	The tank will flush until either empty or stopped by the user.

Calibrating the valve

- From the Configuration screen, select the EZ-Boom plugin and then tap **Calibrate**. The *Implement Calibration* screen appears.
- 2. Tap Valve Calibration:

- Select the valve type from the drop-down list:
 - Inline Servo
 - Bypass Servo
 - Pump PWM
 - Pump Servo
 - Pump PWM Ground
 - **HARDI**
 - None

Note – If you have an existing Raven bypass servo system, it may be wired so that the valve open and close commands are reversed. The EZ-Boom controller reverses the commands in the software. Either select Inline Servo, or rewire the valve. Some systems have a short crossover cable, which can be removed to correct the issue.

If you selected Inline, Bypass, or Pump Servo, enter values in the three fields in the Servo group.

Item	Description	
Response 1 (%)	The responsiveness of the valve when the application rate is far away from the target rate.	

Item	Description
Response 2 (%)	The responsiveness of the valve when the application rate is close to the target rate.
Response Threshold	This ratio is the point at which the application rate is close enough to the target rate for the responsiveness of the valve to switch from <i>Valve Response 1</i> to <i>Valve Response 2</i> .


If you selected Pump PWM or Pump PWM Ground, enter values in the three fields in the PWM group:

Item	Description	
Zero Flow Offset (%)	The shut-off point of the valve.	
Frequency (Hz)	The operating frequency of the valve.	
Gain	The sensitivity of the valve.	

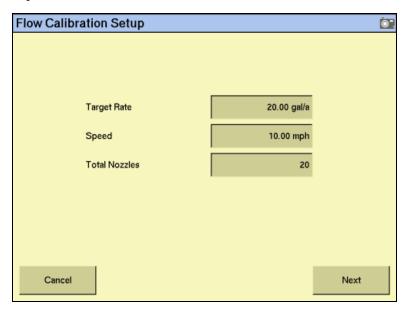
Tap **OK** to return to the *Implement Calibration* screen.

Step 4: Calibrating the flow meter

- From the Configuration screen, select the EZ-Boom plugin and then tap Calibrate. The Implement Calibration screen that appears contains the following options:
 - Flow Calibration
 - Valve Calibration
 - Pressure Calibration
- 2. Tap Flow Calibration:

3. From the *Close Valve on Zero Flow* drop-down list, select *Yes* or *No*:

Setting	Description	
Yes	The valve closes when all the boom sections are closed.	
No	The valve remain in its current position when all the boom sections are closed.	


Enter values in the four fields:

Item	Description	
Flow Control Delay (s)	How long it takes the system to change rates.	
Min Flow (gpm)	The lowest flow rate that the system will allow. If this point is reached, a warning message appears and the flow control valve will not close any further.	
Allowable Error (%)	The level of allowable Rate 1 or Rate 2 error before the control valve adjusts.	
Flowmeter Calibration	– For a Raven flowmeter, enter the number printed on the flowmeter.	
	– For other makes of flowmeter, multiply the number printed on the flowmeter by 10 and then enter it (for example, if the number on the flowmeter is 75 pulses/gallon, enter 750).	

If you are unsatisfied with the performance using the number printed on the flowmeter, run the flowmeter calibration process.

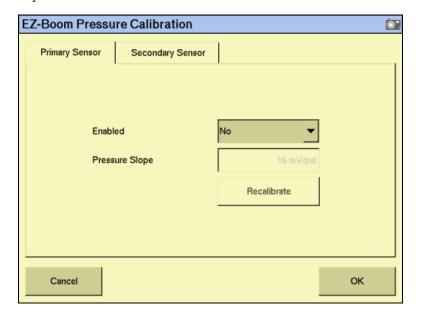
To run the flowmeter calibration:

Tap Recalibrate:

- Set the *Target Rate* field to your normal operating rate. 2.
- 3. Set the *Speed* field to your normal operating speed.

- 4. In the *Total Nozzles* field, enter the total number of nozzles on the spray boom. Do not include any fence nozzles in the nozzle count. (Fence nozzles are nozzles at the far left or right of the boom that point out to the side.)
- 5. Tap **Next**. The *Flow Calibration Test* screen appears.
- 6. On the EZ-Boom controller, set the rate switch to Rate 1.

The test requires using a measuring device (for example, a calibration jug) to collect the flow for one minute. To achieve a more accurate result for the spray boom, collect the flow from at least three nozzles by moving the measuring device from one nozzle to the next during the test.


- 7. Tap **Start Flow** to begin the test.
- 8. Collect the sample volume for one minute.

Note – You can collect for any length of time you like. A longer sample may produce a more accurate result. However, you must then divide the result to determine the volume per minute.

- 9. After one minute has passed, stop collecting. Tap **Stop Flow**.
- 10. Tap **Next**. The *Flow Calibration Result* screen appears.
- 11. Tap the *Measured Flow/Nozzle* field. The *Enter Measured Flow/Nozzle for Calibration* screen appears.
- 12. Select the units and then enter the volume that have collected. Tap **OK** twice.

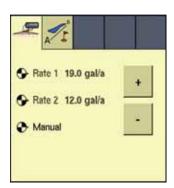
Calibrating the pressure sensor

- 1. From the *Configuration* screen, select the EZ-Boom plugin and then tap **Calibrate**. The *Implement Calibration* screen appears.
- 2. Tap Pressure Calibration:

- 3. In the *Use Pressure Sensor* drop-down list, select the following, as required:
 - If your system does not have a pressure sensor, set both the Enabled options to *No*. The pressure sensor calibration is complete.
 - If your system has only a primary pressure sensor, set the Enabled option in the *Primary Sensor* group to *Yes* and the Enabled option in the *Secondary* Sensor group to No.
 - If your system has two pressure sensors, set both Enabled options to Yes.

If you selected Yes for the *Enabled* option in the Primary Sensor group, the **Recalibrate** button becomes available.

- Tap the *Pressure Slope* field in the *Primary Sensor* group to enter the value. The pressure slope is the relationship between pressure and the output of the sensor. CNH recommends the default of 16mV/psi for a Raven pressure sensor.
- If you enabled the secondary sensor, tap the *Pressure Slope* field in the *Secondary* Sensor group to enter the value. CNH recommends the default of 16mV/psi for a Raven pressure sensor.
- Tap **Recalibrate** in either group to run the pressure calibration sequence. The EZ-Boom Pressure Calibration screen appears. See below.


Pressure calibration sequence

- Read the pressure off the pressure gauge.
- 2. Enter the pressure value in the Actual Pressure field.
- 3. Tap **Send Calibration**. The screen updates to show the current pressure.
- 4. Tap **OK**.

EZ-Boom tab

The EZ-Boom tab on the Run screen shows your Rate 1, Rate 2, and Manual rates. The rate that is currently active is animated.

The + and - buttons enable you to manually increase or decrease the flow. These function the same way as the Rate Adjustment (Inc/Dec) switch on the EZ-Boom controller.

Setting up the EZ-Boom system for automatic section control only

To disable the variable rate control of the EZ-Boom system (and just use the automatic boom-switching function):

- 1. From the *Configuration* screen, select the EZ-Boom plugin and then tap **Calibrate**. The *Implement Calibration* screen appears.
- 2. Tap Valve Calibration. The EZ-Boom Valve Calibration screen appears.
- 3. From the *Valve Type* drop-down list, select *None*.

4. Tap **OK**.

Additional information about the EZ-Boom system

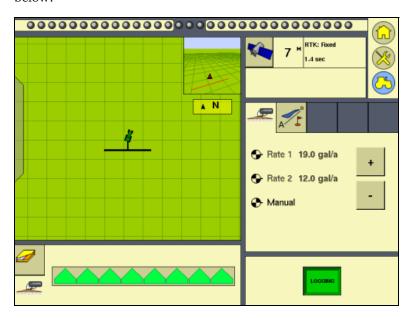
Prescriptions

You can define variable rate controller setup data, and load prescription files that define the rates to be applied in different areas of the field. This information is used to send target rates to the variable rate controller. Applied rates are received from the controller, and both target and applied rates appear on the screen. In addition, you can log data relating to the variable rate application to the card.

The FM-1000 integrated display can load prescription files created by a Geographic Information System (GIS). The method you use to create the prescription depends on which GIS package you use.

Once you create the prescription, store either the three prescription files in ESRI shape-file format or the single .gdx file in the \AgGPS\Prescriptions\ folder. Then, when you are within the proximity criteria, the prescription is available to load.

When you map a new field or select an existing field, you can also select any shapefile (.shp) or AgInfo GDX (.gdx) prescription file created in AgInfo version 3.5.44.0 or later, that is within the following limits:

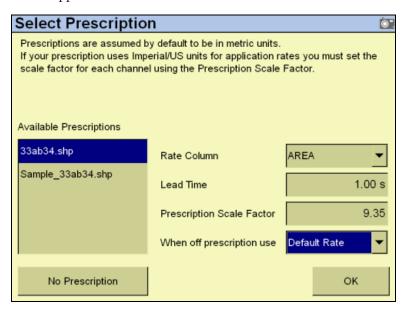

For this type of field	Prescriptions must
Boundary	overlap the field boundary
AB Line	overlap the AB Line
Proximity	be within 1 km of the field

If you load a shapefile prescription, select the rate column.

If you use complex contoured prescriptions, loading the prescriptions can take some time. The FM-1000 integrated display shows progress bars while it loads and converts prescriptions.

You can configure the status sliders on the main navigation screen (the Run screen) to show the target rate specified in the prescription file, and the applied rates returned from the controller for the active channel.

When a field is open, a prescription is loaded, and a controller is connected, the target rates (read from the prescription) and applied rates (received from the controller) can be shown in the status text items. An example with as-applied rates displayed is shown below:


For more information, see Configuring the status text items, page 70.

To load a prescription file:

Map a new field or select an existing field.

The FM-1000 integrated display searches the card for prescription files within the specified limits. If there are many prescriptions on the card, this can take several seconds, and a progress bar appears.

2. If any prescription files are within the specified limits, the *Select Prescription* screen appears:

3. From the *Available Prescriptions* list, select a prescription file.

Note – If an AgInfo GDX prescription has an incorrect format, it does not appear in the Available Prescriptions list.

4. If you select a shapefile prescription, you must select the correct prescription rate column.

CAUTION – When you select a shapefile prescription, if you choose the wrong column when using a variable rate controller, the applied rate will be incorrect.

If you select an AgInfo GDX prescription, the *Rate Column* box does not appear.

- 5. Set the prescription scale factor. If you use a different material that you need to apply more or less of, you can scale the rates by this amount. For example, to apply twice as much, set the scale factor to 2.00.
- 6. Set the lead time. See below.
- 7. In the *When off prescription use* list, select the target rate for when you are outside the area that is covered by the prescription file. See Last, default, or zero rate, page 261.
- 8. Tap **OK** to load the prescription file.

A prescription works only when the EZ-Boom Rate switch is in the Rate 1 position. When the switch is in the Rate 1 position, the Increment/Decrement switch is disabled.

If the Rate switch is in the Rate 2 position, the prescription is disabled but the Increment/Decrement switch does work.

Controller lead time

Lead-time is the average time required by the controller before it can react to a requested rate change. This value can be defined in the Select Prescription screen. For example, a value of 5.0 means that, on average, it takes the controller around five seconds to change from one rate to a new rate.

The lead time value is used by the FM-1000 ntegrated display to project the position of the vehicle into the future. The direction and speed of the vehicle are combined with the lead time to project a future position. The target rate at this projected position is sent to the variable rate controller, giving the controller time to reach the required rate at approximately the same time that the vehicle arrives at the projected position.

You must choose an appropriate lead time. This depends on the controller type and configuration, the type of materials being applied, and the nature and specifications of the delivery equipment.

Last, default, or zero rate

When the vehicle moves outside the area covered by the prescription file, no target rate is available. There are three options for controlling the output rate:

- Continue to use the last rate being output when the vehicle moves off the prescription
- Use a default rate
- Use a zero rate

Specify the required option in the *Select Prescription* screen.

Varying the active boom sections

Some variable rate controllers report to the FM-1000 ntegrated display which boom sections are active at any given time. For these controllers, the width of the coverage polygons displayed on the Run screen vary according to the currently-active boom sections.

The coverage polygons that are logged to the coverage Shape file are identical to those shown on screen; that is, the logged coverage width is also varied according to the active boom sections.

Note - When you use a variable rate controller and you are logging, the FM-1000 ntegrated display shows the active boom width. This may result in nothing being shown if all boom sections are off.

Limitations

Since not all controllers can provide information on the active boom sections, the width and placement of the coverage depends on what information is available:

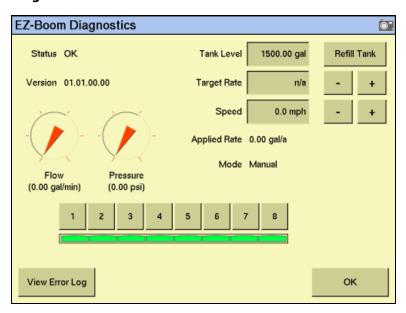
- If the controller provides no information on the active boom sections, then the coverage width is the *Application Width* as defined in the *Implement Setup* screen.
- If the controller provides information on the total active boom width, but not which boom sections are on or off, the coverage width is also the Application Width.
- If the controller provides both active width and offset information, this is reflected accurately in the coverage drawing.

If you have a non-Trimble variable rate controller with a central boom section that is turned off, and boom sections remain on either side of this central section, this is not reflected in the coverage logging.

Logging variable rate data

Data describing the status of various variable rate parameters is logged to ESRI shapefiles. Positions and associated data are logged at 5 Hz. The FM-1000 integrated display logs an average for each polygon, the size of which changes based on a number of tests.

When all boom sections are off, logging is stopped.


Data is recorded in metric units.

Column	Field description	
Version	Coverage attribute file version	
GPS_Status	Numeric GPS status value	
Status_Txt	GPS status description	
Swath	The current swath number when coverage was recorded	
Height	Height in meters	
DateClosed	Date the polygon was closed	
TimeClosed	Time the polygon was closed	
Applied_Rate	Applied rate reported by the variable rate controller	
Material	See page 147	
Material_ID	An index number related to the material	

EZ-Boom system implement diagnostics

When an EZ-Boom system is connected, you can view EZ-Boom system diagnostic information:

From the Configuration screen, select the EZ-Boom plugin and then tap Diagnostics:

The *EZ-Boom Diagnostics* screen includes information on:

- current flow
- current pressure
- boom valve state
- EZ-Boom controller version number

It also shows the status of the EZ-Boom controller to ensure that it is working as expected.

To check that the system is responding as expected, set the Target Rate and Speed fields to a fixed known value.

To view previous errors, tap **View Error Log**.

Controlling an application device with the EZ-Boom controller

You can use the EZ-Boom controller to control an application device (a planter, liquid spreader, or Tru Count Air Clutch). This enables you to:

- use automatic boom switching to automatically turn individual seed boxes off and on
- use the EZ-Boom controller switches to manually turn individual seed boxes off

For more information, see The Tru Application Control Plugin, page 277.

Updating the firmware on the EZ-Boom controller

See Upgrading the EZ-Boom controller or Multi-Application firmware, page 479.

CHAPTER

16

The Serial Rate Control Plugin

In this chapter:

- Non-Trimble variable rate controllers
- Additional information for non-Trimble variable rate controllers

The FM-1000 integrated display can be connected to third-party variable rate controllers manufactured by Flex Air, Raven, Rawson, New Leader, MID-TECH, and Hardi 5500.

This chapter describes how to configure the display for use with these rate controllers.

Note - You can install only one variable rate control plug at once. You cannot run the EZ-Boom plugin or the Tru Application Control plugin at the same time as the Serial Rate Control plugin.

Non-Trimble variable rate controllers

The FM-1000 integrated display supports the following non-Trimble variable rate controllers:

Make	Model	See page
== =		
MID-TECH	TASC 6000, 6100, 6200, 6300, 6500, 6600	page 268
Raven	SCS 440, 440DB, 450, 450DB, 460, 660, 661, 700, 710, 750, 760	page 270
Rawson	Accu-Plant and Accu-Rate	page 272
New Leader	Mark III and Mark IV	page 272
Hardi	5500	page 273
Tyler	Flex-Air	page 273

The FM-1000 integrated display can send control signals to vary only one channel at a time.

Note - Before you can make any changes, you must close all fields.

To use a non-Trimble variable rate controller to operate a spray boom, do the following:

- 1. Install the non-Trimble variable rate controller. See page page 266.
- 2. Enable the Serial Rate Control plugin. See page page 267.
- 3. Select the port for the variable rate controller. See page 267.
- 4. Configure the spray boom in the FM-1000 integrated display. See page page 267.
- 5. Enable and configure the variable rate controller in the FM-1000 integrated display. See page page 267.
- 6. Configure the variable rate controller. See page page 268.
- 7. Set any other features of the variable rate controller. See page page 274.

Installing a non-Trimble variable rate controller

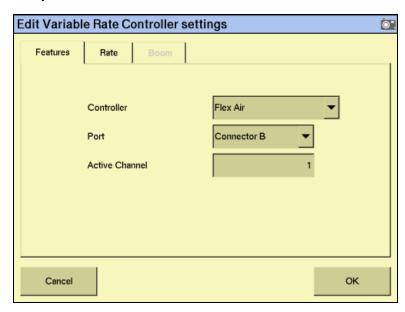
Use the hardware provided with your variable rate controller to mount it in the vehicle cab.

To use a variable rate controller, you must connect it to port D of the FM-1000 integrated display using the connection cable (P/N 67091) and the associated cable for the supported controller. Your controller may need a special adaptor cable to work correctly. If so, contact your local reseller.

Most controllers also need to be configured to accept input data from the FM-1000 integrated display. For additional instructions, see the following section for your controller.

Note – *Always make sure that the serial port connector is in place with screws firmly tightened (if available).*

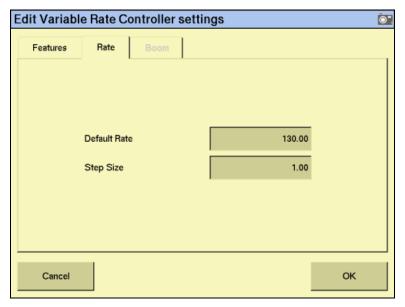
Enabling the Serial Rate Control plugin


For instructions on installing the Serial Rate Control plugin, see Entering the password to activate a plugin, page 57.

Configuring the spray boom in the FM-1000 integrated display

Configure the spray boom as described in Chapter 7, Implement Configuration.

Enabling and configuring the variable rate controller (in the FM-1000 integrated display)


From the *Configuration* screen, select the Serial Rate Control plugin and then tap

Note - The fields that appear on the screen depend on which controller you selected.

- Select the controller make from the *Controller* drop-down list.
- 3. Select the display port the controller is connected to from the *Port* drop-down list.
- 4. If the *Active Channel* field appears, enter the active channel name.

5. In the *Rates* tab, enter the default rate and step size for the controller in the *Default Rate* and *Step Size* text fields.

6. Tap **OK**.

Configuring the variable rate controller

If you specified a variable rate controller type, the FM-1000 integrated display initiates communications with the controller each time that you open a field. Communications are terminated when you close the field.

If the FM-1000 integrated display cannot communicate with the controller:

- A message appears identifying the problem. If the specified controller type has a configurable baud rate, the error message includes details of the baud rate that the FM-1000 integrated display requires the controller to use.
- The *Applied rate* disappears from the Run screen.
- Variable rate logging is suspended while the controller is disconnected.

Mid-Tech

The FM-1000 integrated display can control all TASC 6X00 series controllers that use the Mid-Tech protocol version 4 (released in June 1998).

If your controller does not support the new protocol, contact your local Mid-Tech dealer for a firmware upgrade for your controller.

The minimum software versions required for the various Mid-Tech controllers are:

Controller	Minimum software version
TASC 6000 series	3.20
TASC 6100 series	1.20
TASC 6200 series	2.60
TASC 6300 series	3.20
TASC 6500 series	2.60
TASC 6600 series	3.20
DataLink	5.00

Configuring the controller

To connect the FM-1000 integrated display to a Mid-Tech controller, you need a DataLink interface (Mid-Tech part number 78-05007). This DataLink enables communication with the FM-1000 integrated display at 19200 baud.

Note - You can upgrade the firmware on data links with Mid-Tech PN 406-0069, to enable communication at 19200 baud. Check with your Mid-Tech dealer to determine if an upgrade is necessary.

The interface has a switch marked *External Enable* and *Local Control*:

- When the switch is set to External Enable, the FM-1000 integrated display can send and receive rates to and from the controller.
- When the switch is set to *Local Control*, the FM-1000 integrated display can only log the rates received from the controller as the controller ignores any rates that get sent to it.

CAUTION – If you switch the External Interface / Local Control switch on the DataLink Interface box of a Mid-Tech controller, the changes do not take effect until the variable rate controller is turned off and turned back on again.

Communications

The FM-1000 integrated display requires the Mid-Tech controller to be set to 19200 baud for communications.

To configure the controller to 19200 baud:

- Make sure the controller is turned off.
- Make sure that all switches and signals are turned off (master switch, channel switches, tach, and ground speed).
- Set the OPERATE / SETUP switch to SETUP. 3.
- Using the rotary switch, select SCAN. 4.
- While holding the INC / DEC switch in the DEC position, turn the unit on. (At 5. this stage, the controller may emit a continuous audible tone.)

Once the controller has gone through the power-up sequence, the display shows either 9600 or 19200 baud. Every time that you tap the DEC switch, the rate toggles to the other baud rate.

Before you turn off the display, set the rate to 19200 baud. This is the rate that is saved and used in future sessions.

Application width

When the FM-1000 integrated display is connected to a Mid-Tech controller, the display uses the boom section widths (boom cals) that you set on the controller to determine the application width. The Application Width setting in the Implement Boom Setup screen is ignored.

Note – Make sure that boom sections are used sequentially, starting with boom section 1, and make sure that any unused boom section widths are set to zero. Otherwise, the display may not show the logging correctly.

The controller may not immediately recognize configuration changes, for example, if the switch position of the DataLink interface changes, or if the boom section width changes. If configurations change in this way, turn the variable rate controller off and then back on. This forces it to re-read all settings.

Using the controller

When you use the controller in the field, set the channel for spraying to *Alt-Rate*. This tells the controller to accept rates for that channel from the external computer.

If the channel being controlled has its switch set to OFF or Rate, the rate being sent to the controller by the display is ignored. If a channel switch other than the one corresponding to the channel selected is set to *Alt-Rate*, that rate will be set to zero.

CAUTION - With Mid-Tech controllers, if a channel is set to lbs/ac, any value that is less than 10.0 is interpreted as tons/acre.

The FM-1000 integrated display sends the GPS speed to the Variable Rate Controller. To use GPS speed, you must configure the controller speed source to GPS.

Raven

To use a Raven controller with an FM-1000 integrated display, the controller must:

- be GPS-ready
- use Raven's latest communications protocol, which was introduced in 1996.

If your controller is not GPS-ready or does not use the latest protocol, contact Raven for an upgrade pack.

To use a Raven controller, you need a special adaptor cable (P/N 69729) to connect to the FM-1000 cable (P/N 67091), which is connected to port D on the display.

Configuring the controller

For a Raven controller to operate correctly with an FM-1000 integrated display, the following *Data Menu* settings are required:

BAUD: 9600

GPS: Inac

DLOG: ON

TRIG: 1

UNIT: Sec

Some Raven controllers may "forget" settings if power is disconnected. You must then reconfigure the controller.

Application width

When the FM-1000 integrated display is connected to a Raven controller, the total boom section width must be set to match the *Application Width* setting in the Implement Boom Setup screen.

CAUTION – The first boom section width set on the Raven controller *must* be greater than 0. If you set it to 0, the display will not communicate with the controller.

The FM-1000 integrated display varies the width of the coverage polygons according to the number of boom sections, but it does not know the *absolute* width of each boom section—it only knows the *relative* width of each boom section with respect to the total boom section width.

When recording coverage polygons, each section is considered to be a percentage of the Application Width set in the FM-1000 integrated display Implement Boom Setup screen. For example, if you create an intentional overlap to avoid gaps in the application coverage by making the application width greater than the swath width. This proportionally changes the recorded width of each boom section.

Using the controller

To allow the rates being sent by the FM-1000 integrated display to be used by the Raven controller, the channel must be set to Rate 1 (SCS4XX, SCS6XX) or to Product X Auto (SCS7XX).

If the controller is set to Rate 2 or Manual, the controller ignores the rates being sent, but the display still records the applied rates.

Limitations

Set the baud rate to 9600. Some older controllers are only capable of 1200 baud—these controllers need to be upgraded.

CAUTION - Some Raven controllers do not support zero rates. If the target rate is zero, and spray is still being applied, you must turn off the boom sections manually.

Rawson and New Leader

The Rawson and New Leader controllers use a nominal flow rate (Yield) and a step size to describe rates.

Set the Default rate in the Edit Variable Rate Controller settings screen to match the Yield value (or nominal flow rate) in the Rawson controller.

Any non-zero rate will be adjusted to the nearest value that the controller can select. A rate of zero turns off the hydraulic drive.

If you have a dual-channel Rawson Accu-Rate controller, see page 273.

Configuring the controller

To allow the display to change the rates on the controller, the controller must first be put into GPS mode. Otherwise, display will log only the rates being used:

- Turn on the controller.
- 2. Tap the **MODE** button twice.
- Tap the **SET** button to switch the controller between GPS and non-GPS. 3.

Communications

Connect the FM-1000 integrated display to the controller with Rawson cable (P/N 69730) and Trimble cable (P/N 67091) and set the controller baud rate to 9600.

Using the controller

When in GPS mode, the hydraulic drive operates only when both the switch and the display allow the drive to be on. Set the hydraulic drive switch on the controller to the ON position. If you need to quickly turn off the hydraulic drive, use the switch on the controller.

Non GPS mode

The FM-1000 integrated display sends commands to the controller. If communication cannot be established, it may be because the controller is set to Non GPS mode. A message appears and gives you the option to continue in Non GPS mode.

If the controller is set to Non GPS mode, the display still shows and records as-applied rates. If a prescription is loaded, target rates appear for reference, but these are not used by the controller. In this mode, you must vary rates manually on the controller.

Loss of communication

In GPS mode, if communication with a Rawson controller is lost, the display does not report an error until you cross into a region of the prescription that specifies a different rate.

In Non GPS mode, the display has no way of knowing when communication with a Rawson controller is lost.

Special note on using a Rawson Accu-Rate controller

The display can send rates and record coverage for the Rawson Accu-Rate controller for only one drive at a time: either Drive A or Drive B.

To correctly send rates to the controller and log coverage based on the drive master switch, do the following:

- To operate both drives, set the drive that is *not* being controlled by the display to Non GPS mode (see above).
- Connect the FM-1000 integrated display Variable Rate cable to the COM port that matches the drive:
 - To control Drive A. connect to COM A.
 - To control Drive B, connect to COM B.
- When you use Drive B, set the COM port to COM B. Drive A does not have a configuration for this and will always use COM A.
- Set Bit 7 mode to off. Bit 7 mode sends two prescriptions and is not supported by the FM-1000 integrated display.

Hardi 5500

Note - Information regarding the Hardi 5500 configuration will be published in later versions of this user guide.

Flex-Air

The FM-1000 integrated display can send rates to the Tyler Flex-Air variable rate controller. The controller can have four channels: main, liquid, co-applicator, and supplemental. Rates from all channels are recorded in the variable rate logging .dbf file, but the FM-1000 integrated display can send rates to only one channel at a time—the active channel.

The Tyler Flex-Air controller uses GPS speed sent by the FM-1000 integrated display.

Using the Tyler Flex-Air controller

The *Total_Qty* field in the variable rate logging .dbf file, and the *Avg_Rate* field in the EventHistory .dbf file, record statistics for the active channel. If you want to use these statistics, start a new event *before* you change the active channel.

Application width

You can individually configure the widths of the boom sections on the controller. The FM-1000 integrated display draws coverage logging at the width of the sum of all the boom sections. If you turn boom sections off, the FM-1000 integrated display varies the width of the coverage polygons according to which boom sections are on.

Setting any other features of the variable rate controller

Coverage mapping

The FM-1000 integrated display receives the applied rate and can also receive the number of active boom sections from a variable rate controller. It does not receive any information about the swath or application width.

To accurately record coverage maps, if your controller does not send the number of active boom sections, make sure that you set the application width to match the agricultural equipment that you are using (for example, the width of the spray boom).

Target and applied rates

The FM-1000 integrated display can control only a single channel at any one time. This active channel is specified in the *Edit Variable Rate Controller settings* screen. The target and applied rates shown on the Run screen are specific to this active channel.

Units

Most controllers can be configured to use either US Imperial or metric units of measurement. Each channel can be configured to use different types of units (for example, lb/ac, oz/ac, or gal/ac.).

When constructing prescription maps, make sure that the maps use the same units that the controller is configured for.

Alarms

If you want low limit and target rate alarms, set these on the variable rate controller. You can also set a default rate to be used if you go off the prescription or do not have a prescription. For more information, refer to the documentation provided with your variable rate controller.

Additional information for non-Trimble variable rate controllers

Prescriptions

You can define variable rate controller setup data, and load prescription files that define the rates to be applied in different areas of the field. This information is used to send target rates to the variable rate controller. Applied rates are received from the controller, and both target and applied rates are shown on the screen. In addition, data relating to the variable rate application may be logged to the card.

The information describing prescriptions for the EZ-Boom system also applies to non-Trimble variable rate controllers. See Additional information about the EZ-Boom system, page 258.

The Tru Application Control Plugin

In this chapter:

- Introduction
- Introduction to flow and application functionality
- Definition of terms
- Benefits of the system
- Installation (all implements)
- Configuration: All models
- Configuring the plugin
- Configuring a planter
- Configuring liquid flow
- Configuring granular seed
- Configuring granular fertilizer
- Configuring anhydrous
- Combining channels

- Calibrating sensors
- Operating a planter or drill
- Operating a sprayer (liquid flow)
- Operating an air seeder (granular
- Operating a spreader (granular fertilizer)
- Operating an anhydrous unit
- Running the system in Monitoronly mode
- **Obtaining diagnostics** information about the Tru **Application Control device**
- Resetting the master module
- Warning messages

Introduction

When the Tru Application Control plugin is installed, the FM-1000 integrated display can control application devices, such as a planter, sprayer, drill, air seeder, spreader, or anhydrous ammonia applicator. This chapter explains how to configure and use the Tru Application Control plugin.

Configuration and operation differs depending on which implement type you are using. This chapter is in five sections—see the relevant section for your implement.

CAUTION – In this chapter, the value "0" represents "disabled". For example, the Shut Off Speed option enables you to set the low speed that shuts off the system. If you set the Shut Off Speed to 0, it disables that option. Therefore, when the speed reaches 0, the implement **does not** shut off.

You can only install one variable rate control plugin at once. You cannot run the EZ-Boom plugin or the Serial Rate Control plugin when the Tru Application Control plugin is installed.

Introduction to flow and application functionality

This chapter describes how to use the Tru Application Control plugin with DICKEY-john components to control the following applications:

Item	Description		
Planter	Seed monitoring for up to 70 rows for population or 80 rows for blockage		
	Seed population, liquid, and granular control of up to 4 products		
	 Accessory monitoring of additional optional sensors (hopper, pressure, and RPM) 		
	Variety tracking		
	Variable Rate Technology (VRA) for up to 4 products at once		
	Tru Count Air Clutch support for turning rows or sections on or off automatically		
Drill	Seed monitoring for up to 148 rows for population or blockage		
	Seed population, liquid, and granular control of up to 4 products		
	 Accessory monitoring of additional optional sensors (hopper, pressure, and RPM) 		
	Variety tracking		
	Variable Rate Technology (VRA) for up to 4 products at once		
Air Seeder	Seed monitoring for up to 148 rows for population or blockage		
	Seed population, liquid, and granular control of up to 4 products		
	 Accessory monitoring of additional optional sensors (hopper, pressure, and RPM) 		
	Variety tracking		
	Variable Rate Technology (VRA) for up to 4 products at once		
	Anhydrous ammonia control of up to 2 products		
	Variable Rate Technology (VRA) for up to 2 products at once		

Item	Description		
Sprayer	 Liquid control of up to 4 products Accessory monitoring of additional optional sensors (pressure or RPM) Variable Rate Technology (VRA) for up to 4 products at once Automatic boom section control for turning sections on or off automatically 		
Spreader	 Granular control of up to 4 products Accessory monitoring of additional optional sensors (hopper or RPM) Variable Rate Technology (VRA) for up to 4 products at once 		

Definition of terms

Planter and drill

Traditionally, a *planter* is used for planting corn, soybeans, or other crops that require a specific row spacing:

Traditionally, a *drill* is used for sowing wheat, barley, grass, or other crops that do not require row spacing.

When controlled with the Tru Application Control plugin, the planter or drill can support up to four channels of material at once, enabling you to plant combinations of seed or to plant the seeds with liquid or granular fertilizer.

Air seeder

An *air seeder* also plant seeds, but it uses pressurized air to push seeds from an external seed cart to the planter:

When controlled with the Tru Application Control plugin, the air seeder can support up to four channels of material at once, enabling you to plant combinations of seed or to plant the seeds with liquid, granular fertilizer, or anhydrous ammonia.

The *anhydrous unit* is used to inject anhydrous ammonia (NH3) into the soil:

Anhydrous ammonia is stored as a liquid in a cooler tank towed behind the vehicle, but because it has a boiling point of -34°C (-29°F), it becomes a gas as soon as it is released. It is injected into the ground as a gas, where it enriches the soil with nitrogen.

With the Tru Application Control plugin, an anhydrous unit can control up to two channels of product at once.

Sprayer

You can use a *sprayer* for liquids, such as liquid fertilizer and pesticides:

When controlled with the Tru Application Control plugin, the sprayer can control up to four products at once.

Spreader

A *spreader* spreads granular product over the ground:

With the Tru Application Control plugin, a spreader can control up to four channels of product at once.

Channel

A *channel* is a product that is controlled by a valve with feedback (for example, an application rate sensor or flow meter). You can use a seed, granular seed, granular fertilizer, liquid, or anhydrous product type, which have different set-up parameters.

Section

A *section* is any number of spray nozzles or rows that are controlled by either a boom section valve or by Tru Count clutches.

A section can be either a single row/nozzle or multiple rows/nozzles depending on how the system is set up.

Note - The FM-1000 integrated display allows for up to 24 sections.

Row

A *row* is the individual row unit that seed comes from on the planter. This can be a single section, or can belong to a section that also controls other rows.

Units of measure

The units of measure differ depending on the type of material:

Туре	Unit	Symbol	Description
Seed	Metric	kS/ha	Thousands of seeds per hectare
	US/Imperial	kS/a	Thousands of seeds per acre
Granular seed	Metric	kg/ha	Kilograms of seed per hectare
	US/Imperial	lbs/a	Pounds of seed per acre
Liquid application	Metric	L/ha	Liters per hectare
	US/Imperial	Gal/a	Gallons per acre
Granular fertilizer	Metric	kg/ha	Kilograms of fertilizer per hectare
	US/Imperial	lbs/a	Pounds of fertilizer per acre
Anhydrous	Metric	kg/ha	Kilograms of nitrogen per hectare
	US/Imperial	lbs/a	Pounds of nitrogen per acre

Benefits of the system

Product control

To control the product that is output, the system uses valves and feedback sensors. This gives you precise control over product application at varying speeds.

The values read by the valves are shown on the display.

Independent row or section switching

Planting, seeding, and application equipment has traditionally been limited to fully-on or fully-off operation. However, with the following additional components, you can now control individual rows and sections for precise product application:

- the FM-1000 integrated display Tru Application Control plugin
- one or more Tru Count Air Clutches or boom section valves
- a CSM (Clutch Switch Module) or a BSM (Boom Switching Module)

This gives you two additional options:

- manual section or row control through the switches on the CSM or BSM
- automatic boom and/or row switching

So, when you reach the edge of the field or a waterway, the system automatically turns off the rows or sections that would cover already planted or sprayed ground, and switches them on again when you return to an area that is not yet planted or sprayed.

Controlling row/section switching with a CSM or BSM

The CSM or BSM is a control module with a master switch and six row/section control switches:

The switches enable you to perform manual section control, or the FM-1000 integrated display can use the module to automatically switch sections or rows on and off.

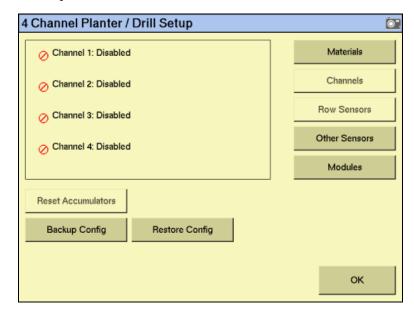
The LEDs show section status, not switch position status. If a section turns off automatically, the light goes off even if the switch is still on.

Note - The CSM and BSM are used for NH3 section control and planting and spraying applications.

You can join up to 3 generic switch modules to the control module to provide up to 24 switches. The generic switch modules look similar to the control module but do not have a master switch.

You can control one row with each switch, or you can configure more than one row to each switch to control multiple rows at once.

Installation (all implements)


See Installing key Tru Application Control components, page 35.

Configuration: All models

- Install the Tru Application Control plugin. See Adding or removing a plugin, page 56.
- Configure the implement. For more information on configuring the implement, see the chapter Implement Configuration, page 105.
- Configure the spray boom. For more information on configuring the spray boom, see Configuring the spray boom (in the FM-1000 integrated display), page 249.

Configuring the plugin

From the Configuration screen, select the Tru Application Control plugin and then tap **Setup**:

The first time that you configure the plugin, the channels are not set.

Configure each of the sections as described below.

Saving a configuration file

- From the 4 Channel Setup screen, tap Backup Config. The Save Tru Application Control Configuration screen appears.
- Tap the Filename field to enter a new file name for the current configuration backup. Tap **OK** to create the backup file. The Save Tru Application Control Configuration screen appears.
- 3. Tap **OK** to save the configuration file. The *4 Channel Setup* screen appears.

Reloading a configuration file

When you reload a configuration, it restores all of the Tru Application Control plugin settings. Multiple backup files are supported so that you can save different configurations to support different modes and user preferences.

Configuring the modules

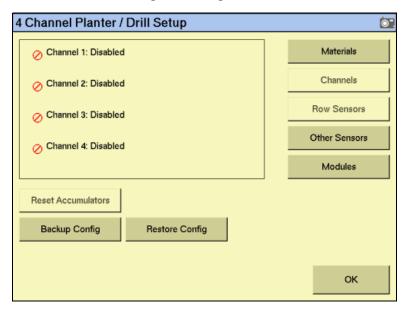
The implement is controlled by a *master module* that is usually mounted on the implement. The master module comes in five different configurations, depending on the required application:

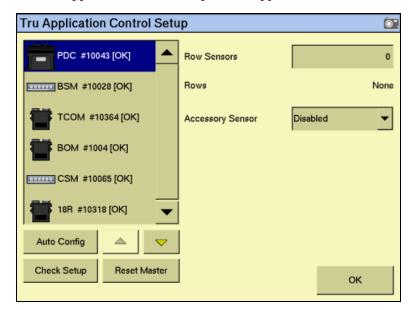
- Planter/drill
- Air seeder
- Sprayer
- Spreader

The master module stores all of the system settings and can control the following:

Master module type	Supports
Planter	Up to 16 seed sensors (the system can support up to 80 rows with the addition of member modules)
	Up to 4 control valves and 4 feedback sensors
	1 hopper level sensor
	1 air pressure or 1 RPM sensor
	1 implement lift switch
	GPS or radar-based speed sources
	Up to 24 Tru Count clutches (Requires the addition of 3 output modules/harnessing and 4 switch boxes)
Air seeder	Up to 4 control valves and 4 feedback sensors
	Up to 4 hopper levels sensors
	Up to 4 air pressure sensors
	Up to 3 RPM sensors
	1 implement lift switch
	GPS or radar-based speed sources
	Up to 148 seed sensors with the addition of member modules
	Support for up to 24 sections for row/boom control
	Up to 2 servo control valves and 2 feedback sensors
	1 implement lift switch
	GPS or radar-based speed sources
Sprayer	Up to 4 control valves and 4 feedback sensors
	Up to 4 liquid pressure sensors
	Up to 3 RPM sensors
	GPS or radar-based speed sensors
	Up to 24 boom section valves (Required the addition of 4 output modules/harnessing and 4 switch boxes)
Spreader	Up to 4 control valves and 4 feedback sensors
	Up to 3 hopper level sensors
	Up to 3 RPM sensors
	GPS or radar-based speed sources

To control more than 16 seed sensors, you can add additional modules called *member* modules. You can have up to 8 member modules, and each member module can monitor up to 18 seed sensors. For air seeder blockage monitoring, this allows up to 148 rows of seed sensors in total (16 + (18 \times 8)). The member modules pass information back to the master module. They can be installed anywhere on the implement.


Note - The air seeder master module does not directly accept seed sensors (all seed sensors must connect through the member modules). Therefore, air seeder master modules require a total of 9 member modules to reach the 148 row limit.


You can do either of the following:

- **Auto Config:** Automatically configure the components that are connected. This replaces any current settings. See below.
- **Check Setup**: Send the current settings to the controller to be checked. See Checking the module setup, page 288.

Auto-configuring the modules

From the 4 Channel Setup screen, tap Modules:

The Tru Application Control Setup screen appears:.

The system can automatically configure the modules.

- 2. Ensure that all sensors are correctly connected to the modules.
- 3. Tap **Auto Config.** The display automatically detects how many:
 - Master, Member, and Output modules are connected
 - Seed sensors are attached to each module
 - Hopper sensors are connected to the system
 - Pressure sensors are connected to the system
 - RPM sensors are connected to the system
 - Switch boxes (BSM: Boom Switch Modules, or CSM: Clutch Switch Modules) are connected to the system

The master module prefix changes to describe which sort you have:

Implement type	Prefix
Planter	PDC # xxxxx
Air seeder	AS # xxxxx
Sprayer	2CL or 4CL # xxxxx
Fertilizer spreader	2CG or 4CG # xxxxx
Anhydrous ammonia	NH3 # xxxxx
Multi granular liquid	MGL # xxxxx

Where *xxxxx* represents the module serial number.

In the following example, the master module is for an planter:

Ensure that the modules in the list appear in the order that they are connected to the harness. The master module is not necessarily the first module.

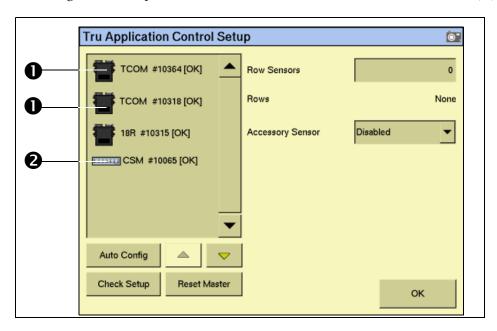
For example, you may have rows 1-8 connected to a member module, while rows 9-16 are connected to the master. The module with rows 1-8 connected would come first in the list due to the row arrangement.

Tip - CNH recommends that you arrange the modules, both physically and in the software, in order of their serial numbers.

To reorder the list of modules, select a module and then tap \triangle or it up or down.

- Select each module and then ensure that the number of sensors in the *Row* Sensors field is correct. If necessary, edit the number.
- Select the master module and then select the connected accessory sensor in the Accessory Sensor list:

Item	Description
Disabled	No accessory sensor is connected.
Hopper sensors	The hopper level sensor is installed low in the seed tank or hopper and reports when the seed level drops to that point.
RPM Sensors	The sensor is a fan or shaft RPM sensor. If you select this option, RPM Sensor 1 is enabled in the <i>Other Sensor Setup</i> screen. You must manually configure the sensor there yourself.
Pressure Sensors	The sensor is an air pressure sensor. If you select this option, Pressure Sensor 1 is enabled and automatically configured in the <i>Other Sensor Setup</i> screen.
Liquid pressure sensors	The number of connected liquid pressure sensors is shown. You cannot adjust this setting.


Note - For a planter or drill, you can have only an RPM or an air pressure sensor. You cannot have both.

Note - The FM-1000 integrated display can show a maximum of six accessory sensors on the screen at once.

Tap **OK**. The 4 Channel Setup screen reappears.

Configuring the switch box(es)

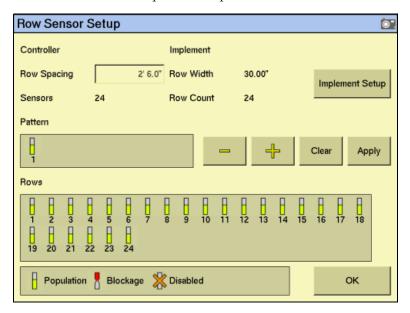
Switch boxes enable you to use clutches to switch sections on and off. The system uses TCOM modules (or BOM modules for liquid) to control the switch boxes. The system automatically detects the number of outputs on the attached TCOM modules and then assigns those outputs to the switches available on the attached switch box(es):

Item	Description
0	Automatically detected TCOM modules (or BOM modules for liquid)
0	CSM (switch box) (BSM for liquid distribution)

In the example above, the system detected 16 outputs on the TCOM modules and 6 switches on the available CSM. On the CSM configuration screen, those 16 outputs are assigned to the 6 switches.

The first and last switches control two outputs, while the middle switches control three outputs. Where possible, the system assigns fewer outputs to the first and last switch so that the left and right sections that are most likely to turn on or off during overlap affect less of the width.

Switch box and module configuration is completed automatically. You cannot adjust it.


Checking the module setup

To send the current settings to the controller to check if they are correct, tap ${f Check}$ ${f Setup}.$

If necessary, you can reset the master module from the *Tru Application Control Setup* screen. For more information, see Resetting the master module, page 390.

Configuring the row sensors on Planter/drill and air seeder modules

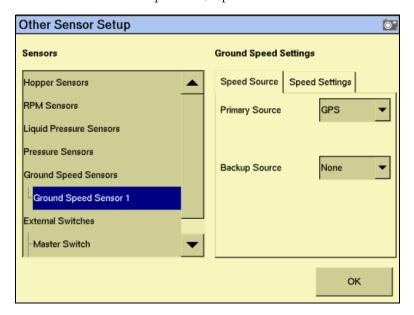
From the *4 Channel Setup* screen, tap **Row Sensors**:

This screen enables you to configure the sensors on the planter, drill, or air seeder rows. You can enable up to 148 rows.

The information at the top of the screen shows:

- The row width
- The implement width
- The row count (based on the number of rows set in the implement setup)
- The number of sensors (based on the total number of sensors controlled by all the modules, as defined in the module setup)
- 2. If necessary, tap **Implement Setup** to configure the implement.

3. Set the rows. There are four possible settings for a sensor:


Heading	Appearance	Description	
Population (ON)	B	The sensor is configured as a population or Hi Rate sensor that can count each seed as it passes the sensor.	
		Note – To utilize this option, a Hi Rate/population style seed sensor must be installed on the planter, drill, or air seeder.	
Blockage (ON)	8	The sensor is configured as a blockage type sensor that can detect seed passing by the sensor. When this option is selected, the user is notified when there is a blockage on a specific row; This style of seed sensor is not accurate enough to provide population information.	
		Note – To use this option, a blockage style seed sensor must be installed on the planter, drill, or air seeder.	
Disabled (OFF)	×	The row is disabled	
Absent		The sensor is not there.	
		Note - You cannot select this setting; it is automatically assigned if the system does not detect a sensor.	

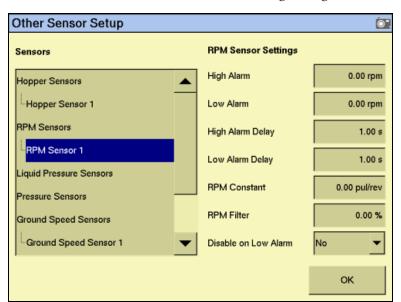
There are two ways to set the row sensors:

- You can use the *Pattern* group to apply a repeating pattern to the sensors. Tap + to add or - to remove a sensor until you have the correct number of sensors for the repeating pattern and then tap each sensor to adjust its setting. When the pattern is complete, tap **Apply**. The pattern you entered is applied to all sensors. To clear an existing pattern and start again, tap Clear.
- To adjust each sensor in the Rows group, tap it. To access additional sensors, tap
- **Тар ОК.**

Other sensors

From the *4 Channel Setup* screen, tap **Other Sensors**:

There are five different types of sensor you can connect:

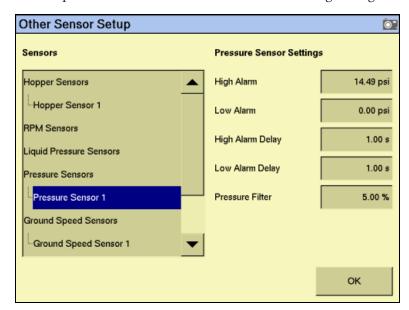

Sensor type	Description		
Hopper Sensor	A hopper sensor mounts inside a tank/bin and reports when that tank/bir is empty. The hopper sensor does not report the current level of the tank/bin—it reports when the product level drops below where the sensor is mounted.		
	To monitor current tank levels, see Material accumulator, page 363.		
RPM Sensor	An RPM sensor monitors the speed of a shaft in an implement. It measures the number of shaft rotations per minute.		
Pressure Sensor 0.0 KPas	 There are two types of pressure sensors that can be connected to the system: An air pressure sensor measures the air or vacuum pressure within a tank for implements that use air to move product. A liquid pressure sensor can be used in spraying applications to measure the liquid pressure at a given point within the system. 		
Ground Speed Sensor	There are three different types of ground speed sensors: GPS Radar Manual input		
External switch	The system can support two external switches: a master switch that turns on or off operation (required) an implement lift switch that turns on or off operation, depending on implement position		

Other Sensor Setup **O**". Sensors **Hopper Sensor Settings** Hopper Sensors Active Low Logic Level Hopper Sensor 1 Alarm Delay 1.00 s RPM Sensors Liquid Pressure Sensors Pressure Sensors Pressure Sensor 1 Ground Speed Sensors Ground Speed Sensor 1

If a hopper sensor is connected, set the following:

Setting	Description			
Logic Level	A hopper sensor outputs either a low condition when active or a high condition when active. Select the appropriate setting for your sensor: • ACTIVE LO: An alarm is triggered when the sensor's output is in a			
	low state. Use this setting if the connected sensor outputs a low condition when active.			
	• ACTIVE HIGH: An alarm is triggered when the sensor's output is in a high state. Use this setting if the connected sensor outputs a high condition when active.			
	Note – If the sensor is a DICKEY-john Hopper Level sensor, set the logic level to ACTIVE LO.			
Alarm Delay	When a hopper alarm is triggered, the system waits for this length of time before reporting it. This can be useful for filtering out occasions when the alarm is briefly triggered. The value is entered in seconds.			

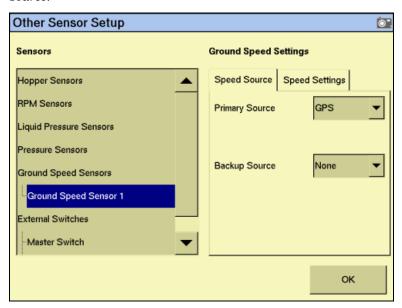
ок


If an RPM sensor is connected, set the following settings: 3.

Setting	Description	
High Alarm	If the RPM sensor detects a shaft RPM that is higher than this, a warning appears.	
Low Alarm	If the RPM sensor detects a shaft RPM that is lower than this, a warning appears.	
High Alarm Delay	You can set a delay so brief changes in shaft RPM speed do not trigger the warning. The High Alarm warning does not appear until the <i>High Alarm</i> limit is exceeded for this length of time.	
Low Alarm Delay	You can set a delay so brief changes in shaft RPM speed do not trigger the warning. The Low Alarm warning will not appear until the <i>Low Alarm</i> limit is exceeded for this length of time.	
RPM Constant	This is the number of pulses that the shaft speed sensor generates in one revolution of the monitored shaft. Typically, this is the number of teeth (sense points) on the gear attached to the monitored shaft. For example, for a gear with 12 teeth, enter 12.00 .	
	If the sense gear is not directly attached to the monitored shaft, enter 0.01 .To disable the Shaft Speed function, enter 0.00 .	
RPM Filter	The RPM filter value applies a filter to the signal from the RPM sensor.	
	Typically, no filtering is required so the standard value is set at 0%. If the RPM readout on the Run screen oscillates in excess of 10%, increase the filter value to filter the signal to reduce the oscillation. For a true RPM value, set this number to 0%.	
Disable on Low Alarm	ENABLED: All of the control channels shut down if the RPM value of the selected sensor falls below the Low Alarm value.	
	DISABLED: Disables the function. The control channels continue to operate normally regardless of the RPM value.	

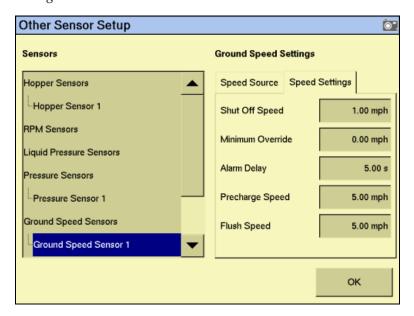
Other Sensor Setup Sensors Pressure Sensor Settings Hopper Sensors High Alarm 14.49 psi Hopper Sensor 1 Low Alarm 0.00 psi RPM Sensors High Alarm Delay 1.00 s Liquid Pressure Sensors Liquid Pressure Sensor 1 Low Alarm Delay 1.00 s Ground Speed Sensors Pressure Filter 5.00 % Ground Speed Sensor 1 οк

If a liquid pressure sensor is connected, set the following settings:


Setting	Description	
Range	The pressure range that the sensor is capable of.	
	Select DISABLED to disable the sensor.	
High Alarm	If the liquid pressure sensor detects a pressure that is higher than this, a warning appears.	
Low Alarm	If the liquid pressure sensor detects a pressure that is lower than this, a warning appears.	
High Alarm Delay	You can set a delay so brief changes in pressure do not trigger the warning. The High Alarm warning does not appear until the <i>High Alarm</i> limit is exceeded for this length of time.	
Low Alarm Delay	You can set a delay so brief changes in pressure do not trigger the warning. The Low Alarm warning does not appear until the <i>Low Alarm</i> limit is exceeded for this length of time.	

If an air pressure sensor is connected, set the following settings: 5.

Setting	Description	
High Alarm	If the pressure sensor detects a pressure that is higher than this, a warning appears.	
Low Alarm	If the pressure sensor detects a pressure that is lower than this, a warning appears.	
High Alarm Delay	You can set a delay so brief changes in pressure do not trigger the warning. The High Alarm warning does not appear until the <i>High Alarm</i> limit is exceeded for this length of time.	
Low Alarm Delay	You can set a delay so brief changes in pressure do not trigger the warning. The Low Alarm warning does not appear until the <i>Low Alarm</i> limit is exceeded for this length of time.	
Pressure Filter	The <i>Pressure Filter</i> value applies a filter to the signal from the pressure sensor.	
	Typically, no filtering is required so the standard value is set at 0%. If the pressure readout on the Run screen oscillates in excess of 10%, increase the filter value to filter the signal to reduce the oscillation. For a true pressure value, this number should be set to 0%.	


If a ground speed sensor is connected, set the following settings for the *Speed* Source:

Setting	Description	
Primary Source	The primary source of ground speed information:	
	 CAN ground – A radar/digital (3-wire) sensor is connected to the cab harness or a radar/forward ground speed sensor is connected to the CAN bus. Digital Freq – A radar/digital (3-wire) sensor provides ground speed data through the 4 Channel Control (actuator) harness. 	
	Reluct Freq – A reluctance (2-wire) sensor provides ground speed data through the 4 Channel Control (actuator) harness.	
	User Manual – Sets the system to operate using an internally generated ground speed. No ground speed sensor is required when using the <i>User Manual</i> setting.	
	GPS – Speed information is provided by the GPS system.	
Backup Source	(Only available when the Primary Source is set to GPS)	
	This is the secondary source of ground speed information:	
	CAN ground – Used when ground speed is provided by a radar/digital (3-wire) type sensor connected to the cab harness or if radar/forward ground speed is available on the CAN bus.	
	Digital Freq – Used when ground speed is provided by a radar/digital (3-wire) type sensor connected to the 4 Channel Control (actuator) harness.	
	Reluct Freq – Used when ground speed is provided by a reluctance (2-wire) type sensor connected to the 4 Channel Control (actuator) harness.	
	User Manual – Sets the system to operate using an internally generated ground speed. No ground speed sensor is required when using the <i>User Manual</i> setting.	

Setting	Description	
Speed Constant	(Only available when the Primary or Backup Source is set to CAN Ground, Digital Freq, or Reluct Freq)	
	The constant required to convert the sensor data to the correct value. This is the number of pulses the sensor makes over a 400 ft distance. To calibrate this, see Ground speed constant, page 346.	
Manual Speed	(Only available when the Primary or Backup Source is set to User Manual)	
	The speed at which you wish the control channel to run to if GPS- or Radar-based speed is not available. The control system will simulate the manual speed entered independent of your actual speed.	

If a ground speed sensor is connected, set the following settings for the *Speed* Settings:

Setting	Description	
Shut Off Speed	(Not available when the Primary Source is set to User Manual.)	
Minimum Override	The low speed that will cause the system to shut off. (Not available when the Primary Source is set to User Manual.)	
William Gverride	When the vehicle ground speed drops below this level, the minimum override takes over and runs the system at this speed until the vehicle ground speed rises above this level or drops below the Shut Off Speed value and stops altogether.	
Alarm Delay	(Not available when the Primary Source is set to User Manual.)	
	When the ground speed drops to 0 but seed flow continues, the alarm triggers after this delay.	
	This alarm triggers only when all control channels are disabled and the system is running in a planter monitor only mode.	

Setting	Description
Precharge Speed	Precharging is rotating the planter disk so that it is full of seed when you begin planting. This setting is the ground speed that the system uses when you perform a pre-charge while the vehicle is moving. (0 = Off).
Flush Speed	For Flush mode to work, the vehicle must not be moving. However, the system will flush solution as if the vehicle is traveling at this speed.

Configuring an external switch

A *master switch* is a switch installed in the vehicle cab that enables you to turn the implement on or off. A master switch is required for all applications. To calibrate it:

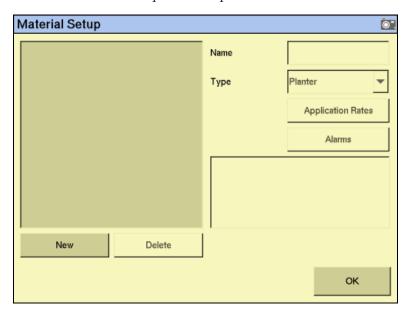
- On the Other Sensor Setup screen, select Master Switch from the Sensors list.
- 2. From the *Switch Status* list, select *Installed*.
- Set the *Timeout* value in seconds. When the vehicle ground speed drops to 0 and 3. the master switch remains on, the system waits for this length of time and then stops operation. You must turn the Master switch off and on again to restart operation.

The optional implement lift switch provides On/Off control based on implement position. To enable it:

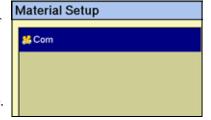
- From the Sensors list, select Implement Lift Switch.
- 2. From the Switch Status list, select Enabled.
- 3. Tap **OK** and then tap **OK** again.

Continuing the configuration

The rest of the configuration process differs depending on the type of implement that the plugin will control:

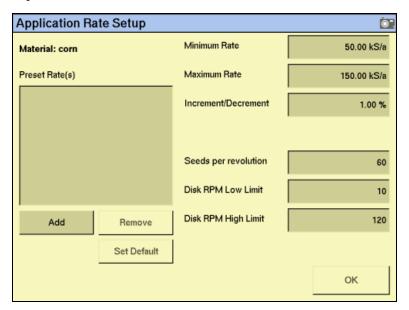

To configure	See
a planter (seed)	Configuring a planter, page 299
liquid flow	Configuring liquid flow, page 309
a drill or air seeder (granular seed)	Configuring granular seed, page 318
granular fertilizer/ material	Configuring granular fertilizer, page 328
an anhydrous unit	Configuring anhydrous, page 336

Configuring a planter


Entering materials

Enter the materials that the planter will apply. This may include different types of seed, liquid, or granular fertilizer.

From the 4 Channel Setup screen, tap Materials:


- Tap **New**. The *Enter material name* screen appears. 2.
- Tap **CLEAR** and then enter a name that describes the material. 3.
- Tap **OK**. The *Material Setup* screen reappears 4. with the new material in the list on the left of the screen.
- In the *Type* list on the right of the screen, select the type of material. The icon beside the material name changes to reflect the type.

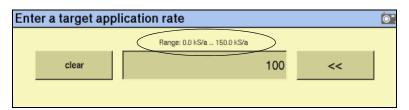
Product	Select	lcon
Seed	Planter	86
Liquid	Liquid Flow	AL.
Granular seed	Granular Seed	#
Granular fertilizer	Granular Fertilizer	籌

Note – You must select the correct type, as this determines which options you see later in the setup process.

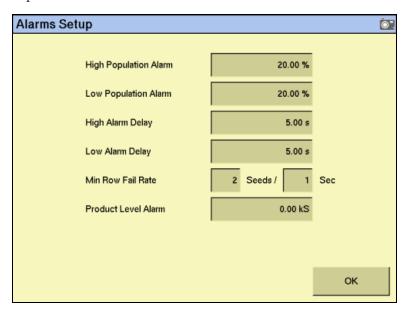
6. Tap Application Rates:

Seed planting rates are measured in the following units:

Unit	Symbol	Description
Metric	kS/a	Thousand seeds per hectare
US/Imperial	kS/ha	Thousand seeds per acre


7. Enter the following values:

Item	Description
Minimum Rate	The minimum preset rate that the system will allow you to select.
Maximum Rate	The maximum preset rate that the system will allow you to select.
Increment/ Decrement	When you tap the + or - button on the Run screen planter tab, you increase or decrease the planter target rate. The <i>Increment/Decrement</i> value is the percentage that the target rate changes by.
Seeds per revolution	The number of seeds being planted per rotation of the seed disks.
Disk RPM Low Limit	The lowest disk RPM at which control channel will operate. The control will not allow the disk to rotate slower than this setting.
Disk RPM High Limit	The highest disk RPM at which control channel will operate. The control will not allow the disk to rotate faster than this setting.


The *target rate* is the rate at which the planter will distribute this material. You must add at least one target rate before you can exit this screen.

8. To add a target rate:

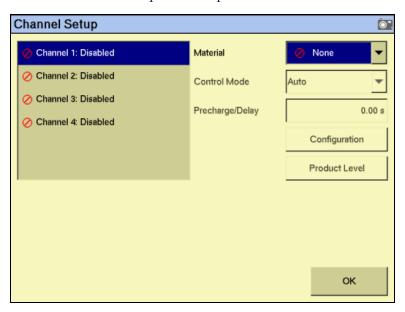
- Tap **Add**. The *Enter a target application rate* screen appears. a.
- b. Tap **kS/ha** or **kS/a** as appropriate.
- Enter the new rate and then tap **OK**. The rate must be higher than the Minimum Rate and lower than the Maximum Rate. These limits are shown on the screen:

- Repeat this process to enter additional rates, if required. This enables you to switch between multiple rates on the Run screen. You can add up to eight preset target rates. If you create multiple rates, select the one that is to be the default rate and then tap **Set Default**.
- 9. Tap **OK**. The *Material Setup* screen reappears.
- 10. Tap Alarms:

11. Enter the alarm trigger rates:

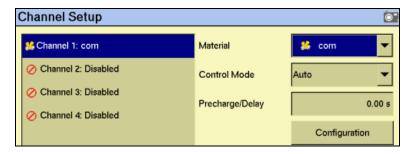
Item	Description
High Population Alarm	When a sensor detects that the seed rate has risen to this percentage above the preset rate, a warning appears. For example, if the setting is 20%, the warning appears when the sensor detects that the seed rate has risen to 120% of the preset rate.
Low Population Alarm	When a sensor detects that the seed rate has fallen to this percentage below the preset rate, a warning appears. For example, if the setting is 20%, the warning appears when the sensor detects that the seed rate has fallen to 80% of the preset rate.
High Alarm Delay	This setting is in seconds. The alarm must be triggered constantly for this many seconds before it activates and alerts you of a high population.
Low Alarm Delay	This setting is in seconds. The alarm must be triggered constantly for this many seconds before it activates and alerts you of a low population.
Min Row Fail Rate	The rate of failure that is acceptable before the Row Fail alarm is triggered. Increase the number in the Seeds field to reduce the reporting of errors.
Product Level Alarm	The weight of product (Kg/lbs) that will trigger the low seed level alarm.

12. Tap **OK** and then tap **OK** again.


The material is now configured. Repeat this process to add an additional material.

Configuring the channels

Once you configure a material, you can configure the channels. The FM-1000 integrated display can control up to four channels of different materials at once.


To configure a channel for liquid or granular fertilizer, see page 312 or page 331 respectively.

From the 4 Channel Setup screen, tap Channels:

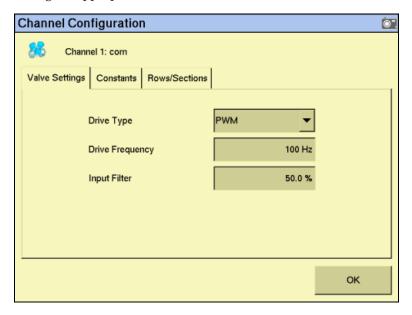
If you do not have population sensors to supply rate information (you only have block sensors), you can run the system in Monitor-only mode. For more information, see page 387.

- From the list on the left, select a channel to configure. The materials that you set up are available in the *Material* list.
- 3. From the list, select one of the materials.

Note – The material being controlled must reflect the sequence of what is connected to the 4 channel control harness.

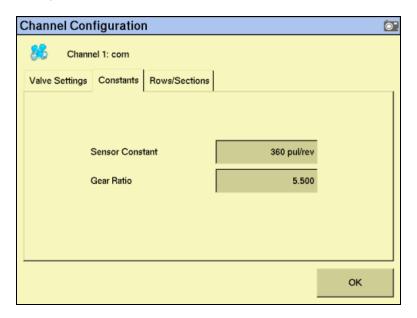
Select the appropriate entry from the *Control Mode* list:

Item	Description
Auto	The control channel automatically calculates application rates and adjusts them according to speed under normal operating conditions.
Manual with Feedback	Overrides the current system when not operating correctly. When you tap the Increase/Decrease buttons on the Run screen, you adjust the Control Channel PWM % rate. The system shows the actual application rate being applied.
Manual w/out Feedback	Overrides the current system when not operating correctly. When you tap the Increase/Decrease buttons on the Run screen, you adjust the Control Channel PWM % rate. No application rate feedback is shown.
Monitor only	The system monitors seed population or row blockage and/or allows Tru Count row shut-off control when the system detects that auto rate control is being used.


Change the *Precharge/Delay* setting, if necessary. 5.

The *Precharge time* is the length of time that a control channel will operate or be active when there is a minimum Precharge ground speed of greater than 1 (for precharge ground speed setup information, see Ground speed constant, page 346).

Typically, the Precharge feature is used in applications with a significant distance between the storage bulk fill tank and the implement row unit, where seed/fertilizer travel time takes several seconds. The feature operates until the Precharge time lapses or the Precharge ground speed is exceeded. If ground speed stops while in Precharge mode, the Precharge feature aborts. Any time the Preset feature is established or changed and the Master Switch is turned on, a Precharge alarm appears.


After you turn on the master switch and lower the implement, the system waits for the *delay time* before the control channel starts operating. When you raise the implement or turn on the master switch, the system immediately shuts down the channel.

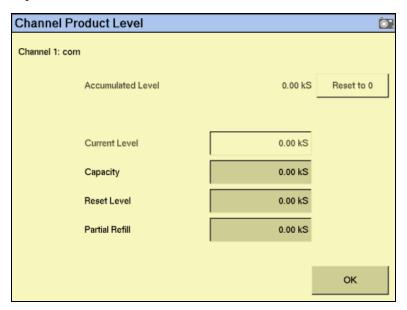
Tap **Configuration**. On the *Channel Configuration* screen, configure the *Valve* 6. *Settings* as appropriate:

Item	Description
Drive Type	Select the planter drive type:
	PWM – (Pulse Width Modulation) A proportional valve that varies the oil flow to a hydraulic motor based on the electric current supplied. This type of valve consists of a flow cartridge and coil assembly.
Drive Frequency	The frequency of the drive. This information is supplied by the drive manufacturer.
Input Filter	The amount of filtering that is applied to the flow meter feedback. Do not adjust this setting unless instructed to by Technical Support. Otherwise, you must calibrate the drive.

Configure the *Contants* as appropriate:

Item	Description
Sensor Constant	The number of pulses per revolution of the sensor.
	For DICKEY-john application rate sensors, set the value to 360.
Gear Ratio	Gear Ratio specifies the actual ratio from the application rate sensor to the seed meter shaft RPM. This is the number of revolutions the application rate sensor turns for each revolution of the seed meter.

Channel Configuration ©". Channel 1: com Valve Settings | Constants | Rows/Sections Channel Settings Channel Width 40' 0.0" Number of Rows Channel Rows None Coverage Settings 0.00 s Channels as Sections Disabled Off Latency 0.00 s On Latency ок


Configure the *Rows/Sections* as appropriate: 8.

Item	Description
Channel Width	The combined width of the rows assigned to this channel.
Number of Rows	Enables entry of a specific number of seed rows to the control channel. Row assignment is given a priority based on the channel and is assigned sequentially thereafter. Channel 1 is always assigned to the first set of rows, Channel 2 to the next set of rows, and so on.
Off Latency	Measured in seconds and is the time it takes for the control channel to go from a running state to a stopped state. Enter a time here for the TAC system to automatically turn the channel off earlier to ensure that the system is off at the proper location when entering a covered area.
On Latency	Measured in seconds and is the time it takes for the control channel to go from a stopped state to a running state. Enter a time here for the TAC system to automatically turn the channel on earlier using the on latency value to ensure that the system is at operating speed when entering an uncovered area.
Channels as Sections	When enabled, the TAC system turns the control channel on and off automatically based on event coverage logging data.
New Toolbar	Appears when there are two or more channels of the same material type. When Enabled, this setting sets the second channel to be in parallel, or be stacked in relation to the first.

The system lists the rows currently used with these settings in the *Channel Rows* field.

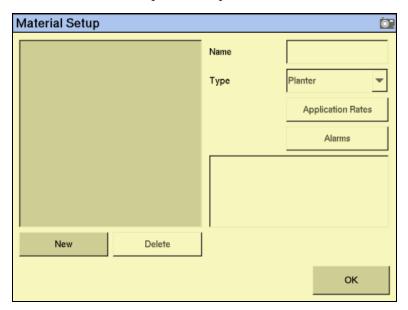
Tap **OK**. The *Channel Setup* screen reappears. 9.

10. Tap Product Level:

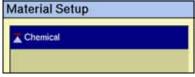
On this screen, you set the Capacity, Reset Level, and Partial Refill values, so that you can quickly adjust the planter volume in the field.

Note - You set the Current Level and Accumulated Level from the Run screen.

- 11. Tap the *Capacity* field and then enter the number of seeds (in thousands) that the planter holds when full.
- 12. Tap the *Reset Level* field and then enter the number of seeds (in thousands) that the planter can be reset to, for example, if you only fill it to the halfway point. You must set the capacity for this setting to work.
- 13. Tap the *Partial Refill* field and then enter the number of seeds (in thousands) that you will add to the planter if you do a partial refill.
- 14. Tap **OK**. The *Channel Setup* screen reappears.
- 15. Repeat this process for Channels 2, 3, and 4, if necessary.

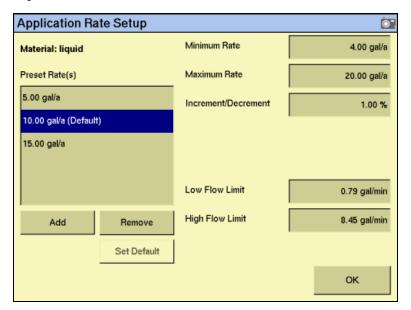

After you assign the materials to channels, see Combining channels, page 345.

Configuring liquid flow


Entering materials

Enter the solution (material) that the implement or sprayer will distribute.

From the 4 Channel Setup screen, tap Materials:


- 2. Tap **New**. The *Enter material name* screen appears.
- 3. Tap **CLEAR** and then enter a name that describes the material.
- Tap **OK**. The *Material Setup* screen reappears 4. with the new material in the list on the left of the screen:

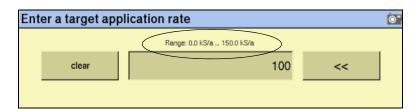
In the *Type* list on the right of the screen, set the product type to Liquid Flow. The icon beside the material name changes to reflect the type:

Note - You must select the correct type, as this determines which options you see later in the setup process.

6. **Tap Application Rates**:

Liquid rates are measured in the following units:

Unit	Symbol	Description
Metric	L/ha	Liters per hectare
	L/min	Liters per minute
US/Imperial	gal/a	Gallons per acre
	gal/min	Gallons per minute


Enter the following values:

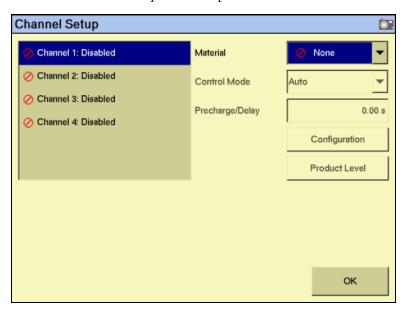
Item	Description
Minimum Rate	The minimum preset rate that the system will allow you to select.
Maximum Rate	The maximum preset rate that the system will allow you to select.
Increment/ Decrement	When you tap the + or – button on the Run screen tab, you increase or decrease the sprayer target rate. The Increment/Decrement value is the percentage that the target rate changes by.
Low Flow Limit	The lowest flow at which the system will operate.
High Flow Limit	The highest flow at which the system will operate.

The *target rate* is the rate at which the implement or sprayer will distribute this material. You must add at least one target rate before you can exit this screen.

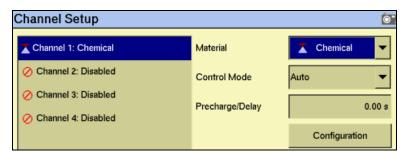
- To add a target rate:
 - a. Tap **Add**. The *Enter a target application rate* screen appears.
 - b. Tap **kS/ha** or **kS/a** as appropriate.

Enter the new rate and then tap **OK**. The rate must be higher than the *Minimum Rate* and lower than the *Maximum Rate*. These limits are shown on the screen:

- Repeat this process to enter additional rates, if required. This enables you to switch between multiple rates on the Run screen. You can add up to eight preset target rates. If you create multiple rates, select the one that is to be the default rate and then tap **Set Default**.
- Tap **OK**. The *Material Setup* screen reappears. 9.
- 10. Tap **Alarms**. The *Alarms Setup* screen appears. There is only one setting on the *Alarms Setup* screen for liquid flow.
- 11. Enter the product level alarm. When the solution in the tank drops to this level, a warning appears.
- 12. Tap **OK** and then tap **OK** again.


The material is now configured. Repeat this process to add an additional material.

Configuring the channels


Once you configure a material, you can configure the channels. The FM-1000 integrated display can control up to four channels of different materials at once.

Note - The system can control a combination of four of the following: Up to two servo control valves and/or up to four PWM valves for a total of four valves controlled at once.

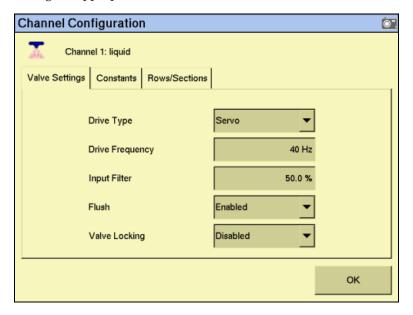
From the 4 Channel Setup screen, tap Channels:

- From the list on the left, select a channel to configure. The materials that you set up are available in the *Material* list.
- 3. From the list, select one of the materials:

Note - The material being controlled must match the sequence of what is connected to the 4 channel control harness.

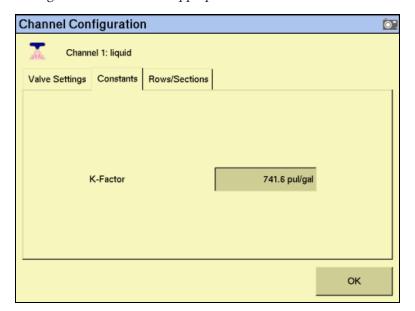
Select the appropriate entry from the *Control Mode* list:

Item	Description
Auto	Control Channel automatically calculates application rates and adjusts according to speed under normal operating conditions.
Manual with Feedback	Overrides the current system when not operating correctly. When you tap the Increase/Decrease button on the Run screen, you adjust the Control Channel PWM % rate. The system shows the actual application rate being applied.
Manual w/out Feedback	Overrides the current system when not operating correctly. When you tap the Increase/Decrease buttons on the Run screen, you adjust the Control Channel PWM % rate. No application rate feedback is shown.

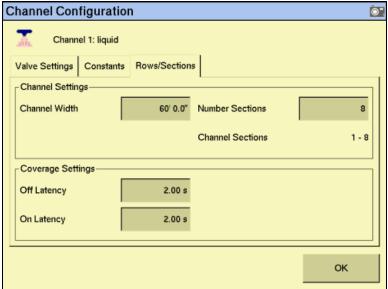

Change the *Precharge/Delay* setting, if necessary.

The *Precharge time* is the length of time that a control channel will operate or be active when there is a minimum Precharge ground speed of greater than 1 (for precharge ground speed setup information, see Ground speed constant, page 346).

Typically, the Precharge feature is used in applications with a significant distance between the storage bulk fill tank and the implement row unit, where seed/fertilizer travel time takes several seconds. The feature operates until the Precharge time lapses or the Precharge ground speed is exceeded. If ground speed stops while in Precharge mode, the Precharge feature aborts. Any time the Preset feature is established or changed and the Master Switch is turned on, a Precharge alarm appears.


After you turn on the master switch and lower the implement, the system waits for the *delay time* before the control channel starts operating. When you raise the implement or turn on the master switch, the system immediately shuts down the channel.

Tap **Configuration**. On the *Channel Configuration* screen, configure the *Valve* Settings as appropriate:


Item	Description
Drive Type	 Select the liquid drive type: PWM – (Pulse Width Modulation) A proportional valve that varies the oil flow to a hydraulic motor based on the electric current supplied. This type of valve consists of a flow cartridge and coil assembly. Servo – A ball valve or butterfly valve driven by an electric motor gearbox and installed in the main product delivery line. Servo Return – A ball valve or butterfly valve driven by an electric motor gearbox and installed in the tank return line.
Drive Frequency	The frequency of the drive. This information is supplied by the drive manufacturer.
Input Filter	The amount of filtering that is applied to the flow meter feedback. If you adjust this setting, you must calibrate the drive.
Flush	Flush Enable is a manual override mode that opens the valve and dispenses granular fertilizer, granular seed, or liquid material for a period of time in relation to a user-defined flush speed. The Flush Enable feature can only be activated when the tractor is stopped. You should have already configured the rate at which Flush dispenses when you configured the ground sensor. See Other sensors, page 291.
Valve Locking	Valve locking locks the valves in their last position when the booms are turned off. Use this mode to maintain pressure when doing turns and for tank agitation. If valve locking is not required, set the <i>Valve Locking</i> setting to Not Installed.

7. Configure the *Constants as appropriate*:

Item	Description
K-Factor	The number of pulses per liter (or gallon) that the sensor produces.
	If you already know the K-Factor, enter it here.
	• If you do not know the K-Factor, perform a flow-meter calibration. See Flow meter constant, page 348.
	• If the system has a Raven flow meter, divide the number by 10 and then enter the result as the K-Factor.

8. Configure *Rows/Sections as appropriate*: **Channel Configuration**

Item	Description
Channel Width	The combined width of the rows assigned to this channel.
Number of Rows	Enables entry of a specific number of seed rows to the control channel. Row assignment is given a priority based on the channel and is assigned sequentially thereafter. Channel 1 is always assigned to the first set of rows, Channel 2 to the next set of rows, and so on.
Off Latency	Measured in seconds and is the time it takes for the control channel to go from a running state to a stopped state. Enter a time here for the TAC system to automatically turn the channel off earlier to ensure that the system is off at the proper location when entering a covered area.
On Latency	Measured in seconds and is the time it takes for the control channel to go from a stopped state to a running state. Enter a time here for the TAC system to automatically turn the channel on earlier using the on latency value to ensure that the system is at operating speed when entering an uncovered area.

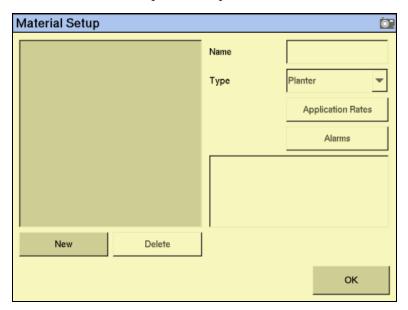
Tap **OK**. The *Channel Setup* screen reappears.

10. Tap **Product Level**:

On this screen, you set the Capacity, Reset Level, and Partial Refill values, so that you can quickly adjust the sprayer volume in the field.

Note – You set the Current Level and Accumulated Level from the Run screen.

- 11. Tap the *Capacity* field and then enter the volume (in Liters or gallons) that the implement/sprayer holds when full.
- 12. Tap the *Reset Level* field and then enter the volume (in Liters or gallons) that the implement/sprayer can be reset to, for example, if you only fill it to the halfway point. You must set the capacity for this setting to work.
- 13. Tap the Partial Refill field and then enter the volume (in Liters or gallons) that you will add to the implement/sprayer if you do a partial refill.
- 14. Tap **OK**. The *Channel Setup* screen reappears.
- 15. Repeat this process for Channels 2, 3, and 4, if necessary.


After yo assign the materials to channels, see Combining channels, page 345.

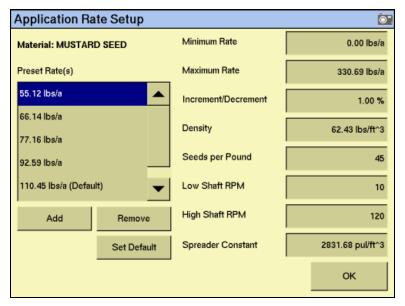
Configuring granular seed

Entering materials

Enter the materials that the drill/seeder will plant.

From the 4 Channel Setup screen, tap Materials:

- 2. Tap **New**. The *Enter material name* screen appears.
- Tap **CLEAR** and then enter a name that describes the material. 3.
- Tap **OK**. The *Material Setup* screen reappears with the new material in the list on the left of the screen:



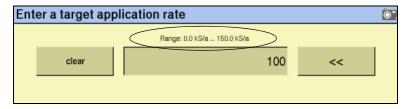
In the *Type* list on the right of the screen, set the product type. The icon beside the material name changes to reflect the type.

Product	Select	Icon
Seed	Planter	8 €
Liquid	Liquid Flow	*
Granular seed	Granular Seed	#
Granular fertilizer	Granular Fertilizer	饕

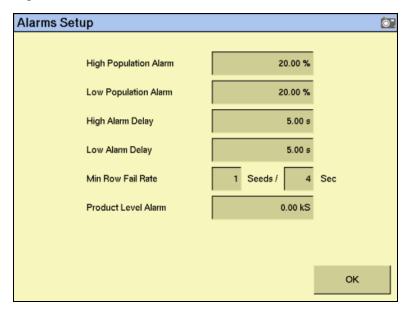
Note – You must select the correct type, as this determines which options you see later in the setup process.

6. **Tap Application Rates**:

Granular seed distribution rates are measured in the following units:


Unit	Symbol	Description
Metric	kg/ha	Kilograms of seeds per hectare
	kg/l	Kilograms per liter (density)
US/Imperial	lbs/a	pounds of seeds per acre
	lbs/ft^3	pounds per cubic foot (density)

Enter the following values:


Item	Description
Minimum Rate	The minimum preset rate that the system will allow you to select.
Maximum Rate	The maximum preset rate that the system will allow you to select.
Increment/ Decrement	When you tap the + or – button on the Run screen channel tab, you increase or decrease the granular seeder target rate. The <i>Increment/Decrement</i> value is the percentage that the target rate changes by.
Density	The weight per volume of the material to dispense.
	If you do not know the density, enter 1.
Seeds per Pound	The number of seeds per pound. This is used to convert the current application rate to kS/ha (kS/a).
Low Shaft RPM	The lowest shaft speed at which the control channel will operate.
High Shaft RPM	The highest shaft speed at which the control channel will operate.
Spreader Constant	Each material has its own constant that is the number of application rate sensor pulses per liter (cubic ft) of material.
	Note – Ensure that this is as accurate as possible. Using the Spreader Constant Calibration wizard is recommended. See Spreader constant, page 353.

The *target rate* is the rate at which the implement will distribute this material. You must add at least one target rate before you can exit this screen.

- 8. To add a target rate:
 - Tap **Add**. The *Enter a target application rate* screen appears.
 - b. Tap **kS/ha** or **kS/a** as appropriate.
 - Enter the new rate and then tap **OK**. The rate must be higher than the Minimum Rate and lower than the Maximum Rate. These limits are shown on the screen:

- Repeat this process to enter additional rates, if required. This enables you to switch between multiple rates on the Run screen. You can add up to eight preset target rates. If you create multiple rates, select the one that is to be the default rate and then tap **Set Default**.
- 9. Tap **OK**. The *Material Setup* screen reappears.
- 10. Tap Alarms:

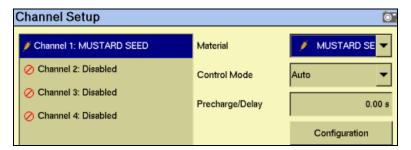
11. Enter the alarm trigger rates:

Item	Description
High Population Alarm	When a sensor detects that the seed rate has risen to this percentage above the preset rate, a warning appears. For example, if the setting is 20%, the warning appears when the sensor detects that the seed rate has risen to 120% of the preset rate.
Low Population Alarm	When a sensor detects that the seed rate has fallen to this percentage below the preset rate, a warning appears. For example, if the setting is 20%, the warning appears when the sensor detects that the seed rate has fallen to 80% of the preset rate.
High Alarm Delay	This setting is in seconds. The alarm must be triggered constantly for this many seconds before it activates to alert you of a high population.
Low Alarm Delay	This setting is in seconds. The alarm must be triggered constantly for this many seconds before it activates to alert you of a low population.
Min Row Fail Rate	The rate of failure that is acceptable before the Row Fail alarm is triggered. Increase the number in the <i>Seeds</i> field to reduce the reporting of errors.
Product Level Alarm	When the product gets down to this level, a warning is triggered.

12. Tap \mathbf{OK} and then tap \mathbf{OK} again.

The material is now configured. Repeat this process to add an additional material.

Configuring the channels


Once you configure a material, you can configure the channels. The FM-1000 integrated display can control up to four channels of different materials at once.

From the 4 Channel Setup screen, tap Channels:

If you do not have population sensors to supply rate information (you only have block sensors), you can run the system in Monitor-only mode. For more information, see page 387.

- From the list on the left, select a channel to configure. The materials that you set up are available in the *Material* list.
- 3. From the list, select one of the materials:

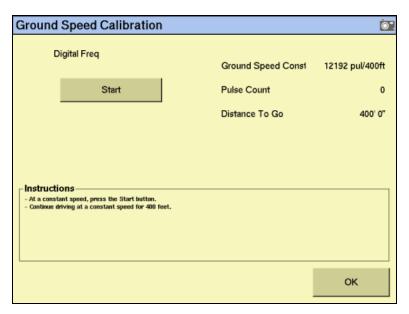
Note - The material being controlled must match the sequence of what is connected to the 4 channel control harness.

Select the appropriate entry from the *Control Mode* list:

Item	Description
Auto	The Control Channel automatically calculates application rates and adjusts according to speed under normal operating conditions.
Manual with Feedback	Overrides the current system when not operating correctly. When you tap the Increase/Decrease button on the Run screen, you adjust the Control Channel PWM % rate. The system shows the actual application rate being applied.
Manual w/out Feedback	Overrides the current system when not operating correctly. When you tap the Increase/Decrease buttons on the Run screen, you adjust the Control Channel PWM % rate. No application rate feedback is displayed.

Change the *Precharge/Delay* setting, if necessary.

The *Precharge time* is the length of time that a control channel will operate or be active when there is a minimum Precharge ground speed of greater than 1 (for precharge ground speed setup information, see Ground speed constant, page 346).


Typically, the Precharge feature is used in applications with a significant distance between the storage bulk fill tank and the implement row unit, where seed/fertilizer travel time takes several seconds. The feature operates until the Precharge time lapses or the Precharge ground speed is exceeded. If ground speed stops while in Precharge mode, the Precharge feature aborts. Any time the Preset feature is established or changed and the Master Switch is turned on, a Precharge alarm appears.

After you turn on the master switch and lower the implement, the system waits for the *delay time* before the control channel starts operating. When you raise the implement or turn on the master switch, the system immediately shuts down the channel.

Channel Configuration O". Channel 1: MUSTARD SEED Constants Rows/Sections Valve Settings PWM Drive Type 100 Hz Drive Frequency Input Filter 50.0 % Flush Disabled ок

Tap **Configuration**. Configure the appropriate *Valve Settings*: 6.

Item	Description
Drive Type	Select the granular seeder drive type:
	PWM – (Pulse Width Modulation) A proportional valve that varies the oil flow to a hydraulic motor based on the electric current supplied. This type of valve consists of a flow cartridge and coil assembly.
	Servo – A ball valve or butterfly valve driven by an electric motor gearbox and installed in the main product delivery line.
Drive Frequency	The frequency of the drive. This information is supplied by the drive manufacturer.
Input Filter	The amount of filtering that is applied to the flow meter feedback. If you adjust this setting, you must calibrate the drive.
Flush	Simulates operation to clear the system of unwanted product.

Configure the appropriate settings for the *Constants*:

Item	Description
Sensor Constant	The number of pulses per revolution of the sensor. For DICKEY-john application rate sensors, set the value to 360.0.
Gear Ratio	The ratio of the number of turns of application rate sensor to each turn of the seed meter.

Channel Configuration O". Channel 1: MUSTARD SEED Valve Settings | Constants | Rows/Sections Channel Settings Channel Width 0' 0.0" Number of Rows 0 Channel Rows None Coverage Settings Disabled 0.00 s Channels as Sections Off Latency 0.00 s On Latency οк

8. Configure the appropriate *Row/Sections* settings:

Item	Description	
Channel Width	The combined width of the rows assigned to this channel.	
Number of Rows	The specific number of seed rows for the channel. Channel 1 will always be assigned to the first set of rows, Channel 2 to the next set of rows, and so on.	
Off Latency	Measured in seconds and is the time it takes for the control channel to go from a running state to a stopped state. Enter a time here for the TAC system to automatically turn the channel off earlier to ensure that the system is off at the proper location when entering a covered area.	
On Latency	Measured in seconds and is the time it takes for the control channel to go from a stopped state to a running state. Enter a time here for the TAC system to automatically turn the channel on earlier using the on latency value to ensure that the system is at operating speed when entering an uncovered area.	
Channels as Sections	When enabled the TAC system will turn the control channel on and off automatically based on event coverage logging data.	

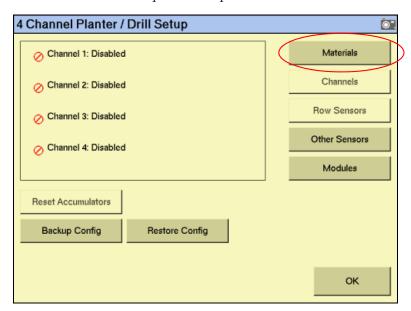
9. Tap **OK**. The *Channel Setup* screen reappears.

10. Tap Product Level:

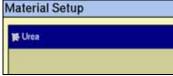
On this screen, you set the Capacity, Reset Level, and Partial Refill values, so that you can quickly adjust the drill/seeder volume in the field.

Note – You set the Current Level and Accumulated Level from the Run screen.

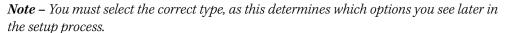
- 11. Tap the Capacity field and then enter the weight of seeds (in kilograms or pounds) that the drill/seeder holds when full.
- 12. Tap the *Reset Level* field and then enter the weight of seeds (in kilograms or pounds) that the drill/seeder can be reset to, for example, if you only fill it to the halfway point. You must set the capacity for this setting to work.
- 13. Tap the Partial Refill field and then enter the weight of seeds (in kilograms or pounds) that you will add to the drill/seeder if you do a partial refill.
- 14. Tap **OK**. The *Channel Setup* screen reappears.
- 15. If necessary, repeat this process for Channels 2, 3, and 4.


Once you assign the materials to channels, see Combining channels, page 345.

Configuring granular fertilizer


Entering materials

Enter the materials that the planter or spreader will apply. This may include different types of fertilizer or other granular materials.


From the 4 Channel Setup screen, tap Materials.

- 2. In the *Material Setup* screen, tap **New**. The *Enter material name* screen appears.
- 3. Tap **CLEAR** and then enter a name that describes the material.
- Tap **OK**. The *Material Setup* screen reappears with the new material in the list on the left of the screen:

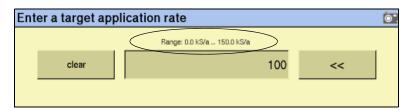
In the *Type* list on the right of the screen, set the type of material to Granular Fertilizer. The icon beside the material name changes to reflect the type $\frac{1}{3}$.

OK

Application Rate Setup ©". Minimum Rate 3.00 lbs/a Material: Urea Preset Rate(s) Maximum Rate 50.00 lbs/a Increment/Decrement 1.00 % Density 62.43 lbs/ft^3 Low RPM Limit 10 High RPM Limit 120 Add Remove 2831.68 pul/ft^3 Spreader Constant Set Default

6. **Tap Application Rates:**

Seed planting rates are measured in the following units:

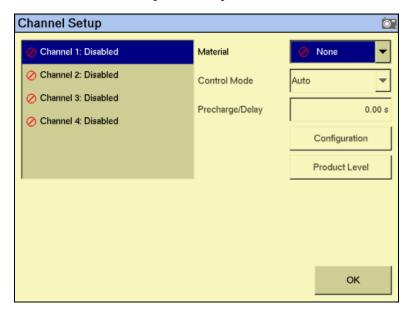

Unit	Symbol	Description
Metric	kg/ha	Kilograms of fertilizer per hectare
	kg/l (density)	Kilograms of fertilizer per liter
US/Imperial	lb/a	Pounds of fertilizer per acre
	lb/ft^3 (density)	Pounds of fertilizer per cubic foot

Enter the following values:

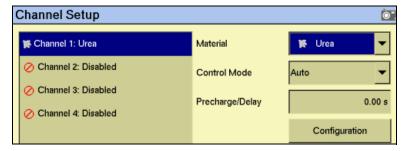
Item	Description	
Minimum Rate	The minimum preset rate that the system will allow you to select.	
Maximum Rate	The maximum preset rate that the system will allow you to select.	
Increment/ Decrement	When you tap the + or – button on the Run screen channel tab, you increase or decrease the granular fertilizer target rate. The Increment/Decrement value is the percentage that the target rate changes by.	
Density	The weight per volume of the material to dispense.	
	If you do not know the density, enter 1.	
Low RPM Limit	The lowest shaft speed at which the control channel will operate.	
High RPM Limit	The highest shaft speed at which the control channel will operate.	
Spreader Constant	Each material has its own constant that is the number of application rate sensor pulses per liter (cubic ft) of material.	
	Ensure that this is as accurate as possible. If you know the spreader constant, enter it, but using the Spreader Constant Calibration wizard is recommended. See Spreader constant, page 353.	

The *target rate* is the rate at which the implement will distribute this material. You must add at least one target rate before you can exit this screen.

- 8. To add a target rate:
 - Tap **Add**. The *Enter a target application rate* screen appears.
 - b. Tap **kg/ha** or **lbs/a**, as appropriate.
 - Enter the new rate and then tap **OK**. The rate must be higher than the Minimum Rate and lower than the Maximum Rate. These limits are shown on the screen:


- Enter additional rates, if required. This enables you to switch between multiple rates on the Run screen. You can add up to eight preset target rates. If you create multiple rates, select the one that is to be the default rate and then tap **Set Default**.
- 9. Tap **OK**. The *Material Setup* screen reappears.
- 10. Tap **Alarms**. The *Alarms Setup* screen appears.
- 11. Enter the *Product Level Alarm* time. When the product drops to this level, a warning is triggered.
- 12. Tap **OK** and then tap **OK** again.

The material is now configured. Repeat this process to add an additional material.


Configuring the channels

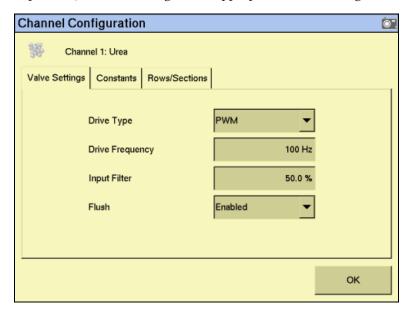
Once you configure a material, you can configure the channels. The FM-1000 integrated display can control up to four channels of different materials at once.

From the 4 Channel Setup screen, tap Channels:

- 2. From the list on the left, select a channel to configure. The materials that you set up are available in the *Material* list.
- From the list, select one of the materials:

Select the appropriate entry from the *Control Mode* list: 4.

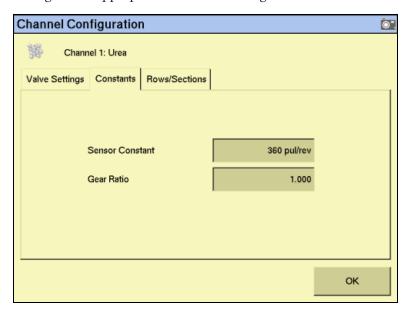
Item	Description
Auto	Control Channel calculates application rates under normal operating conditions.
Manual with Feedback	Overrides the current system when not operating correctly. When you tap the Increase/Decrease button on the Run screen, you adjust the Control Channel PWM % rate. The system shows the actual application rate being applied.
Manual w/out Feedback	Overrides the current system when not operating correctly. When you tap the Increase/Decrease buttons on the Run screen, you adjust the Control Channel PWM % rate. No application rate feedback is displayed.


If necessary, change the *Precharge/Delay* setting.

The *Precharge time* is the length of time that a control channel will operate or be active when there is a minimum Precharge ground speed of greater than 1 (for precharge ground speed setup information, see Ground speed constant, page 346).

Typically, the Precharge feature is used in applications with a significant distance between the storage bulk fill tank and the implement row unit, where seed/fertilizer travel time takes several seconds. The feature operates until the Precharge time lapses or the Precharge ground speed is exceeded. If ground speed stops while in Precharge mode, the Precharge feature aborts. Any time the Preset feature is established or changed and the Master Switch is turned on, a Precharge alarm appears.

After you turn on the master switch and lower the implement, the system waits for the *delay time* before the control channel starts operating. When you raise the implement or turn on the master switch, the system immediately shuts down the channel.


Tap **Configuration**. Configure the appropriate Valve Settings:

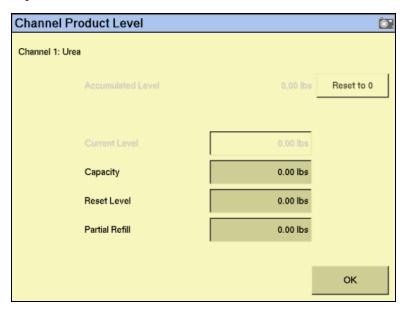
Item	Description	
Drive Type	 Select the granular fertilizer drive type: PWM – (Pulse Width Modulation) A proportional valve that varies the oil flow to a hydraulic motor based on the electric current supplied. This type of valve consists of a flow cartridge and coil assembly. Servo – A ball valve or butterfly valve driven by an electric motor gearbox and installed in the main product delivery line. 	
Drive Frequency	The frequency of the drive. This information is supplied by the drive manufacturer.	

Item	Description
Input Filter	The amount of filtering that is applied to the flow meter feedback. If you adjust this setting, you must calibrate the drive.
Flush	

7. Configure the appropriate *Constants* settings:

Item	Description
Sensor Constant	The number of pulses per revolution of the sensor. For DICKEY-john application rate sensors, set the value to 360.0.
Gear Ratio	The ratio of the number of turns of application rate sensor to each turn of the granular fertilizer metering shaft.

Channel Configuration O". 斃 Channel 1: Urea Valve Settings | Constants | Rows/Sections Channel Settings Channel Width 3' 0.0" Number Sections 0 Channel Sections None Coverage Settings 0.00 s Off Latency 0.00 s On Latency


8. Configure the appropriate *Rows/Sections* settings

Item	Description
Channel Width	The width of fertilizer applied for this channel.
Number Sections	Enables entry of a specific number of sections to the control channel. Section assignment is given priority based on the section and is assigned sequentially thereafter.
Off Latency	Measured in seconds and is the time it takes for the control channel to go from a running state to a stopped state. Enter a time here for the TAC system to automatically turn the channel off earlier to ensure that the system is off at the proper location when entering a covered area.
On Latency	Measured in seconds and is the time it takes for the control channel to go from a stopped state to a running state. Enter a time here for the TAC system to automatically turn the channel on earlier using the on latency value to ensure that the system is at operating speed when entering an uncovered area.

ок

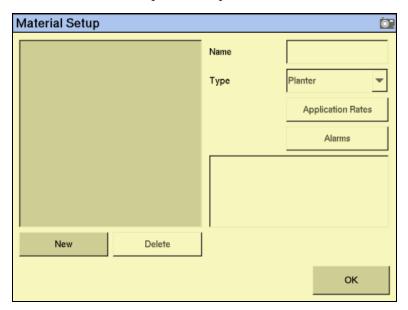
Tap **OK**. The *Channel Setup* screen reappears. 9.

10. Tap Product Level:

On this screen, you set the Capacity, Reset Level, and Partial Refill values, so that you can quickly adjust the fertilizer weight in the field.

Note - You set the Current Level and Accumulated Level from the Run screen.

- 11. Tap the *Capacity* field and then enter the weight of fertilizer (in kilograms or pounds) that the planter/spreader holds when full.
- 12. Tap the *Reset Level* field and then enter the weight of fertilizer (in kilograms or pounds) that the planter/spreader can be reset to, for example, if you only fill it to the halfway point. You must set the capacity for this setting to work.
- 13. Tap the Partial Refill field and then enter the weight of fertilizer (in kilograms or pounds) that you will add to the planter/spreader if you do a partial refill.
- 14. Tap **OK**. The *Channel Setup* screen reappears.
- 15. If necessary, repeat this process for Channels 2, 3, and 4.


Once you assign the materials to channels, see Combining channels, page 345.

Configuring anhydrous

Entering materials

Enter the material to be applied:

From the 4 *Channel Setup* screen, tap **Materials**:

- 2. Tap **New**. The *Enter material name* screen appears.
- Tap **CLEAR** and then enter a name that describes the material. 3.
- Tap **OK**. The *Material Setup* screen reappears 4. with the new material in the list on the left of the screen:

Material Setup

₽NH3

In the *Type* list on the right of the screen, set the type of material to Anhydrous. The icon beside the material name changes to reflect the type

Note - You must select the correct type, as this determines which options you see later in the setup process.

ок

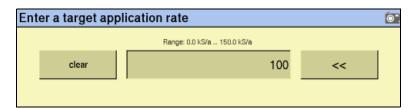
Application Rate Setup ©". Minimum Rate 3.00 lbs/a Material: NH3 Preset Rate(s) Maximum Rate 50.00 lbs/a 25.00 lbs/a (Default) Increment/Decrement 1.00 % Add Remove

6. **Tap Application Rates**:

Seed planting rates are measured in the following units:

Set Default

Unit	Symbol	Description
Metric	kg/ha	Kilograms of nitrogen per hectare
US/Imperial	lbs/a	Pounds of nitrogen per acre

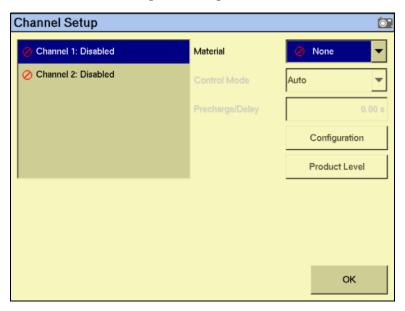

Enter the following values:

Item	Description
Minimum Rate	The minimum preset rate that the system will allow you to select.
Maximum Rate	The maximum preset rate that the system will allow you to select.
Increment/ Decrement	When you tap the + or – button on the Run screen planter tab, you increase or decrease the planter target rate. The Increment/Decrement value is the percentage that the target rate changes by.

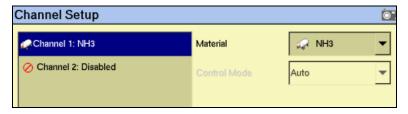
The *target rate* is the rate at which the implement will distribute this material. You must add at least one target rate before you can exit this screen.

- To add a target rate:
 - Tap **Add**. The *Enter a target application rate* screen appears.
 - b. Tap **kg/ha** or **lbs/a**, as appropriate.

Enter the new rate and then tap **OK**. The rate must be higher than the Minimum Rate and lower than the Maximum Rate. These limits are shown on the screen:


- Enter additional rates, if required. This enables you to switch between multiple rates on the Run screen. You can add up to eight preset target rates. If you create multiple rates, select the one that is to be the default rate and then tap **Set Default**.
- 9. Tap **OK**. The *Material Setup* screen reappears.
- 10. Tap **Alarms**. The *Alarms Setup* screen appears.
- 11. Enter the Product Level Alarm weight. When the amount of product drops to this level, a warning is triggered.
- 12. Tap **OK** and then tap **OK** again.

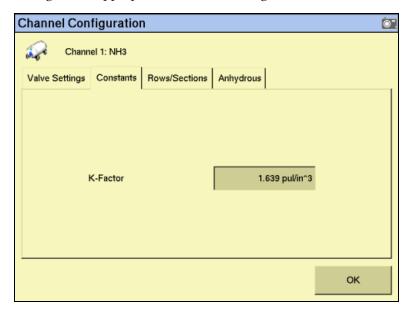
The material is now configured. Repeat this process to add an additional material.


Configuring the channels

Once you configure a material, you can configure the channels. With anhydrous application, the FM-1000 integrated display can control up to two channels of material at once.

From the 4 Channel Setup screen, tap Channels: 1.

- From the list on the left, select a channel to configure. The materials that you set up are available in the *Material* list.
- From the list, select one of the materials:


Channel Configuration O". Channel 1: NH3 Valve Settings | Constants | Rows/Sections | Anhydrous Drive Type Servo 40 Hz Drive Frequency Input Filter 50.0 %

Tap **Configuration**. Configure the appropriate Valve Settings:

Item	Description
Drive Type	Servo – A ball valve or butterfly valve driven by an electric motor gearbox and installed in the main product delivery line.
Drive Frequency	The frequency of the drive. This information is supplied by the drive manufacturer.
Input Filter	The amount of filtering that is applied to the flow meter feedback. If you adjust this setting, you must calibrate the drive.

ок

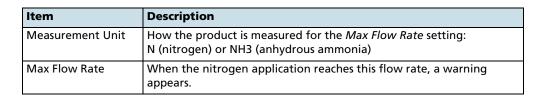
Configure the appropriate *Constants* settings: 5.

Item	Description
K-Factor	Every flowmeter has a K-Factor, which is the number of pulses per unit of measure. The K-Factor may be marked on the assembly. This K-Factor is a good starting point before doing a flowmeter calibration. In order to do an anhydrous flowmeter calibration, the system must be run in the field. With the K-Factor entered and accumulators cleared, record the weight of the nurse tank and proceed to apply nitrogen on at least ten acres at normal operating speeds and conditions. Verify that the control is stable during the calibration. Once the area is covered, record the tank weight. Calculate the amount of nitrogen used and compare that to the controller's accumulated values. Determine the percent of error and adjust the K-Factor accordingly. A typical DICKEY-john anhydrous flowmeter K-Factor starting point is 2.15 P/in^3.
	Fine-tuning the calibration: If the actual application is 5% above the <i>Target Application</i> rate, the K-Factor needs to be decreased by 5%. Therefore, if the K-Factor is 2.250, a 5% decrease would be $2.250 \times 0.95 = 2.1375$. The opposite applies for under application.

On Latency

Channel Configuration O". Channel 1: NH3 Valve Settings | Constants | Rows/Sections | Anhydrous -Channel Settings Channel Width 3' 0.0" Number Sections 0 None Channel Sections Coverage Settings 0.00 s Off Latency

0.00 s


6. Configure the appropriate *Rows/Sections* settings:

Item	Description
Channel Width	The combined width assigned to this channel.
Number Sections	Enables entry of a specific number of sections to the control channel. Section assignment is given priority based on the section and is assigned sequentially thereafter.
Off Latency	Measured in seconds and is the time it takes for the control channel to go from a running state to a stopped state. Enter a time here for the TAC system to automatically turn the channel on later using the off latency value to ensure that the system is at operating speed when entering an uncovered area.
On Latency	Measured in seconds and is the time it takes for the control channel to go from a stopped state to a running state. Enter a time here for the TAC system to automatically turn the channel on later using the on latency value to ensure that the system is at operating speed when entering an uncovered area.


ок

Channel Configuration Ō". Channel 1: NH3 Constants Rows/Sections Anhydrous Measurement Unit 7402.08 lbs/hr Maximum Flow Rate ОК

7. Configure the appropriate *Anhydrous* settings:

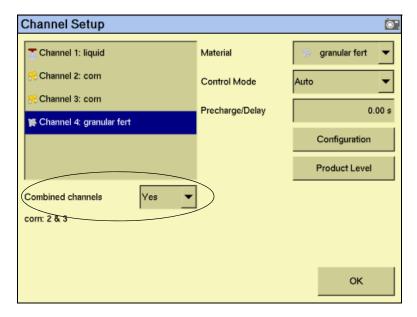
- Tap **OK**. The *Channel Setup* screen reappears. 8.
- 9. **Tap Product Level:**

On this screen, you set the Capacity, $Reset\ Level$, and $Partial\ Refill\ values$, so that you can quickly adjust the weight in the field.

Note - You set the Current Level and Accumulated Level from the Run screen.

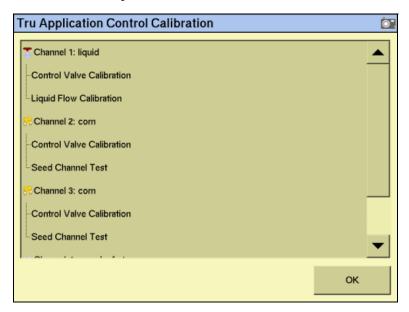
- 10. Tap the *Capacity* field and then enter the quantity (in kilograms or pounds) that the anhydrous tank holds when full.
- 11. Tap the *Reset Level* field and then enter the quantity (in kilograms or pounds) that the anhydrous unit can be reset to, for example, if you only fill it to the halfway point. You must set the capacity for this function to work.
- 12. Tap the *Partial Refill* field and then enter the quantity (in kilograms or pounds) that you will add to the anhydrous unit if you do a partial refill.
- 13. Tap **OK**. The *Channel Setup* screen reappears.
- 14. If necessary, repeat this process for Channels 2, 3, and 4.

Combining channels


Once you assign all of the products, you can combine channels of the same product type that have the same name. This enables you to control multiple channels with one target rate.

If you have more than one product with the same name, the Combine Channels button appears on the Channel Setup screen.

In the example to the right, there are two channels of planter seed named "Corn". You can combine the two channels that these seeds run through to use the same target rate.



When you select Yes from the Combine channels drop-down list, the channels with the same names are combined:

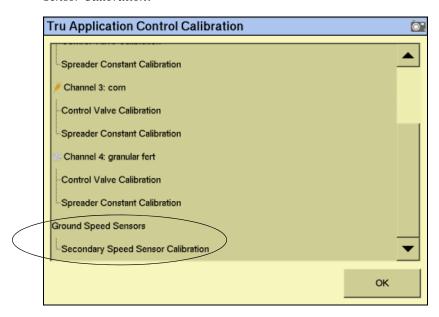
Calibrating sensors

To calibrate the sensors, select the Tru Application Control plugin on the *Configuration* screen and then tap Calibrate:

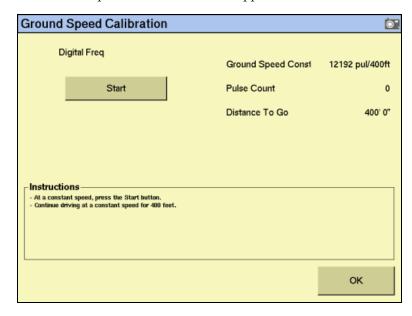
Do the following:

To calibrate a	See
ground speed constant	page 346
flow meter constant	page 348
control channel valve for a planter, granular seed, granular fertilizer, or liquid fertilizer	page 350
control channel valve for anhydrous application	page 352
spreader constant	page 353
planter seed count	page 354

Once you calibrate the system, see Continuing, page 356.


Ground speed constant

If you set either the primary ground speed sensor or the backup ground speed sensor to CAN Ground, Digital Sensor, or Reluctance Sensor, you must perform a calibration to determine the ground speed constant. To determine the constant, the system must count the number of pulses that the sensor produces while driving at a constant speed over:


- a 400 ft distance when driving in US/Imperial mode.
- a 100 m distance when driving in metric mode.

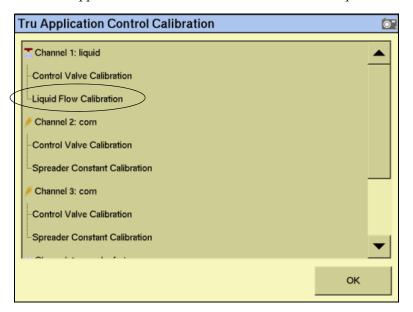
To configure the sensor:

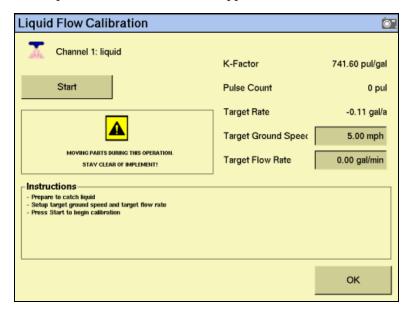
- Position the vehicle where you can drive the required distance without stopping or changing speed.
- 2. From the Tru Application Control Calibration screen, select Secondary Speed Sensor Calibration:

The *Ground Speed Calibration* screen appears:

Note - This screen shows the values for a system using US/Imperial units.

Begin to drive the vehicle at a constant speed (3.2–8 kph, or 2–5 mph).


- When you are moving at a constant speed, tap **Start**:
 - The Pulse Count field increases.
 - The *Distance To Go* field reduces as you get closer to the end of the stretch.
- Drive at the same speed until the *Distance To Go* field reads **0**. The number of 5. pulses counted appears in the New Ground Spd Const field.
- 6. To ensure accuracy, repeat step 3 through step 5 two more times
- 7. To save the new sensor constant, tap **Save**.
- 8. To leave the *Ground Speed Calibration* screen, tap **OK**. If you did not save the sensor constant that you calculated, it is not used.


Flow meter constant

The flow meter constant is derived by finding the number of pulses of the flow meter that occur for a known quantity of liquid. This ratio of pulses to volume is called the K-Factor.

To calibrate the sensor:

- Put the vehicle transmission in park or in a locked, neutral position.
- 2. Run the engine at normal operating speed until the hydraulic fluid is at normal operating temperature.
- From Tru Application Control Calibration screen, select Liquid Flow Calibration: 3.

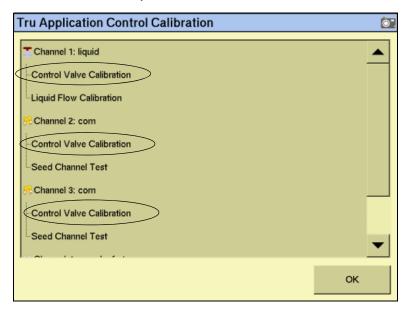
The Liquid Flow Calibration screen appears:

- Adjust the Target Ground Speed or the Target Flow Rate.
 - The *Target Ground Speed* is the vehicle speed that the system will simulate.
 - The *Target Flow Rate* is the simulated application rate.

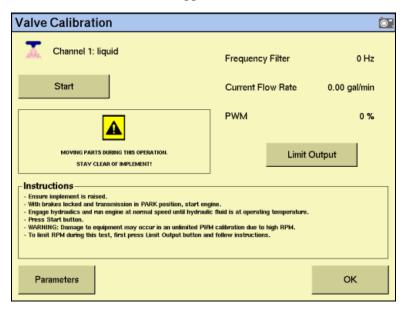
The Target Ground Speed and Target Flow Rate are linked. If you adjust one, the other also adjusts because the faster the vehicle is traveling, the higher the flow rate must be to obtain the same level of application.

WARNING - When you tap the liquid flow calibration Start button, the machine will become operational. Take all necessary precautions to ensure user safety. Failure to do so may result in serious injury or death.

- Make sure that the tank contains liquid. 5.
- Place a container under the spray nozzles to catch the liquid output by the channel.
- 7. Tap **Start** and then turn on the master switch.
- 8. Allow the system to run for a while and then tap **Stop**. The longer that you run the system, the more accurate the result will be.
- Calculate the volume of liquid collected and then enter it into the *Amount Dispensed* window.
- 10. Tap **Continue**. The system calculates the *New K-Factor* value.
- 11. Tap **Save**. The new K-Factor is saved.
- 12. Tap **OK**.


Control channel valve calibration: Planter, granular seed, granular fertilizer, or liquid fertilizer

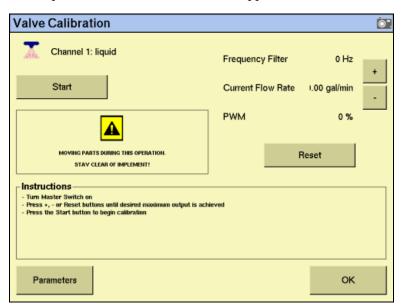
The control channel valve calibration sets the vehicle hydraulic system parameters. Perform this calibration for each control channel that you set up.


The hoppers can be empty for this calibration. If they contain material, it will fall on the ground.

To calibrate the valve:

From the *Tru Application Control Calibration* screen, tap the appropriate Control Valve Calibration entry:

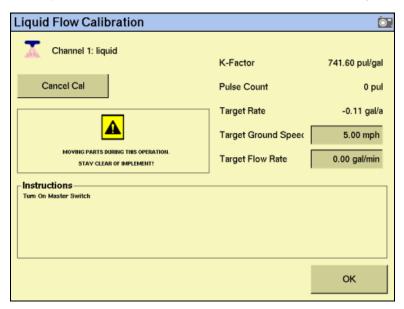
The Valve Calibration screen appears:


Note - The Limit Output button does not appear for planters.

- 2. Raise the implement.
- 3. Apply the tractor brakes and lock them in the applied position.
- 4. Put the transmission in park or in a locked, neutral position.
- 5. Start the tractor and engage PTO if used to drive the hydraulic system.
- Run the engine at normal operating speed until the hydraulic fluid is at normal operating temperature.

CAUTION – Do not adjust the calibration parameters unless instructed to do so by Technical Support.

- 7. Turn on the master switch.
- 8. If the material is granular seed, granular fertilizer, or liquid fertilizer and you want to limit the range of the PWM valve:
 - Tap **Limit Output**. + and buttons appear on the screen:



tap + or - to adjust the limit of the valve.

WARNING - When you tap the control valve calibration Start button, the machine will become operational. Take all necessary precautions to ensure user safety. Failure to do so may result in serious injury or death.

- When you find the maximum limit, tap **Start**:
- If you used the Limit Output function, the calibration begins:

If you did not use the Limit Output function, turn on the Master switch. The calibration begins.

The PWM value increases and then decreases. The calibration proceeds through several steps. When calibration is complete, the message Calibration complete appears in the *Instructions* window and the system turns off. The settings are automatically saved.

- 9. Tap OK.
- Calibrate each of the valves on other channels.

Control channel valve calibration: Anhydrous

The anhydrous control channel valve calibration sets the vehicle hydraulic system parameters for anhydrous application.

From the *Tru Application Control Calibration* screen, tap the anhydrous entry. The Valve Calibration screen appears.

Note – The **Limit Output** button that was present for the other control channels does not appear for anhydrous.

- In the *Max Speed* window, enter the upper speed limit.
- In the *Max App Rate* window, enter the maximum application rate.

CAUTION – Only adjust the calibration parameters if instructed to do so by Technical Support.

- If necessary, adjust the calibration parameters:
 - Tap **Parameters**. The *Edit calibration parameters* screen appears. a.
 - b. Adjust any settings and then tap **OK**. The *Valve Calibration* screen reappears.

WARNING - The anhydrous valve calibration requires the vehicle and implement to be moving and the implement must be in the ground (the implement lift switch must be down). Take all necessary precautions to ensure user safety. Failure to do so may result in serious injury or death.

- 5. Begin to drive the vehicle.
- Tap **Start** and then turn on the master switch. The calibration begins. If the vehicle speed drops too low, or the vehicle stops moving, the calibration will abort.

The value increases and then decreases. The calibration proceeds through several steps. When the calibration is complete, the message Calibration **complete** appears in the *Instructions* window and the system turns off. The settings are automatically saved.

7. Tap **OK**.

Spreader constant

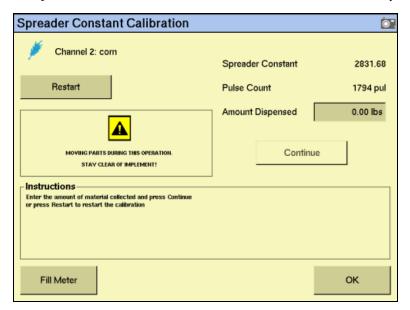
Note - This is available only for granular seed and fertilizer applications.

The spreader constant establishes the value for the amount of material dispensed through the application rate sensor. The value entered defines the pulses from the feedback sensor per ft³ of material discharged. Each material (and gate setting as applicable) has its own spreader constant. For best results, the value must be as accurate as possible.

This value may be set manually. However, using the spreader constant calibration sequence is recommended for the most accurate results.

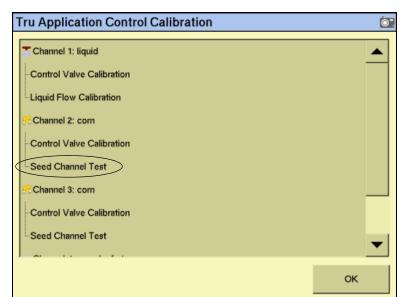
Note - This calibration requires scales to measure the amount of material collected.

To calibrate the sensor:

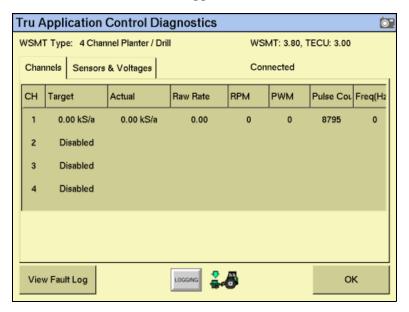

- Make sure that the hopper contains material.
- 2. Place a container under the spreader tubes to catch the output material.
- Raise the implement. 3.
- 4. Apply the tractor brakes and lock them in the applied position.
- Put the transmission in park or in a locked, neutral position. 5.
- Start the tractor and engage PTO if used to drive the hydraulic system.
- Run the engine at normal operating speed until the hydraulic fluid is at normal operating temperature.

WARNING – When you tap the fill disk **Output Shaft** button, the machine will become operational. Take all necessary precautions to ensure user safety. Failure to do so may result in serious injury or death.

- 8. Tap **Output Shaft** to rotate the shaft through one full rotation.
- 9. Adjust the *Target Meter RPM* value. This is the speed at which the seed meter shaft turns while the calibration is performed.
- 10. Adjust the *Number of Revs* value. This is the number of revolutions the meter will turn during the calibration. This constitutes the length of the test. The higher the number, the more accurate the calibration.
- 11. Tap Start.
- 12. Tap **Master** or turn on the external master switch in the cab. The calibration begins.


The system runs the dispensing unit (meter/conveyor) at the specified RPM for the specified number of meter revolutions and then automatically shuts down:

- 13. Weigh the material dispensed and then enter the value into the *Amount Dispensed* field. Remember to subtract the weight of the bucket or other receptacle.
- 14. Tap **Continue** and then tap **Save** to save the new spreader constant. Otherwise, tap **OK** to exit.


Planter seed count

This test uses the test switch. It enables you to run the system without lowering it. In this test, you run the planter for a known number of disk rotations and then count the seeds to ensure that they match the system's count.

1. From the Tru Application Control Calibration screen, select Seed Channel Test:

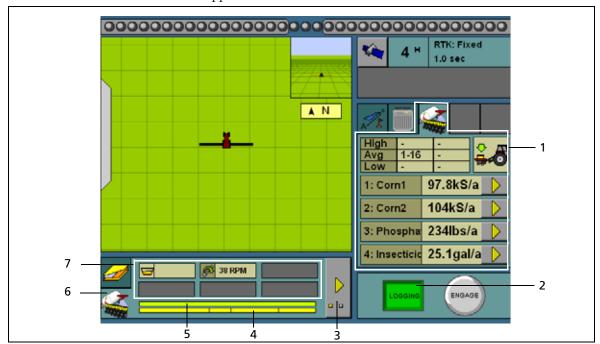
The Seed Channel Test screen appears:

- Select the number of revolutions that you want the disk to turn through. The default is 5.
- Select the ground speed that the system will simulate. 3.
- Select the row to monitor. You can select from the rows that are assigned to this 4. channel, so the first row may not be 1.
- Select the target planting rate. 5.
- Make sure that the hopper contains seed. 6.

- Place a container under the planter tube to catch the output material.
- Tap **Start** and then tap the test switch. The disk turns and dispenses seed for the specified number of revolutions and then stops. The Seed Count value increases as the seed is dispensed.
- Count the number of seeds collected to ensure that the quantity matches the Seed Count value.

Continuing

The sensors are now calibrated. Select one of the following:

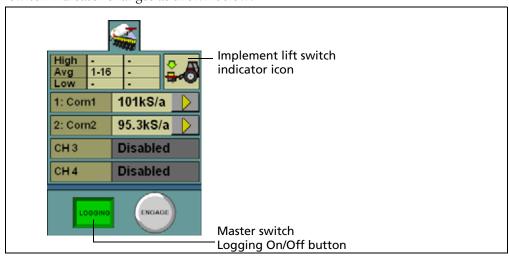

To operate a	See
planter or drill	Operating a planter or drill, page 357
sprayer	Operating a sprayer (liquid flow), page 365
air seeder	Operating an air seeder (granular seed), page 368
spreader	Operating a spreader (granular fertilizer), page 377
anhydrous unit	Operating an anhydrous unit, page 382

Operating a planter or drill

WARNING - When the implement is down and the master switch is On, the machine is fully operational. Take all necessary precautions to ensure user safety. Failure to do so could result in injury or death.

When you are controlling a planter or drill with the Tru Application Control plugin, several new items appear on the Run screen:

Item	Description
1	Planter tab
2	Logging on/off button
3	Planter row details button
4	Channel-to-row assignment bar
5	Row status bar
6	Row and sensor information tab
7	Additional sensor readings


Turning the planter on or off

Implement lift switch installed

If an implement lift switch is *not* installed, see page 359.

To plant seed when an optional implement lift switch is installed, you must engage both the *master switch* and the *implement lift switch*.

When the master switch is engaged, the **Logging** button is engaged. When the implement lift switch is engaged so that the implement is down, the implement lift switch indicator changes as shown below:

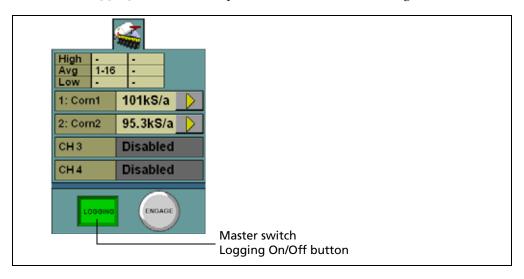


Illustration	Status	Description
- B	Implement switch is Off	The implement is raised and the system is off.
LOGGING	Master switch is Off	
? 	Implement switch is Off	The implement is raised. The master switch is turned on but logging does not occur because the planter is not applying
LOGGING	Master switch is On	seed.
≗.6	Implement switch is On	The implement is lowered, but the system is off and therefore not planting seed (or logging coverage).
LOGGING	Master switch is Off	coverage).
≟ 8	Implement switch is On	The implement is lowered and the system is on and logging coverage.
LOGGRIG	Master switch is On	

Implement lift switch not installed

For the planter to plant seed, you must engage the *master switch*.

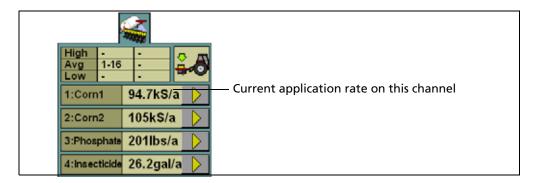
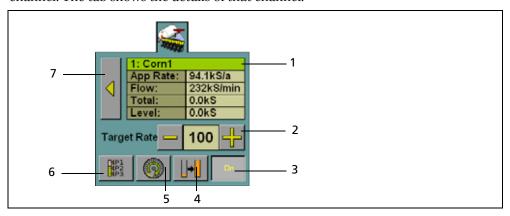

When the master switch is engaged, the **Logging** button engages and the implement lowers. The **Logging** button and the position switch indicator change to show this:

Illustration	Status	Description
High	Master switch is Off	The implement is raised and the system is off.
LOGGING		
High	Master switch is On	The implement is lowered and the system is on and logging coverage.
LOGGRIG		


The planter channel (product) tab (overview mode)

The Tru Application Control plugin can control up to 4 products on a planter at once, enabling you to plant seed while spreading granular fertilizer, and/or spraying liquid. The planter tab on the right of the Run screen shows all the configured channels and their current status:

Detailed channel information button

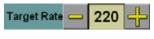
To adjust the settings for an individual channel, tap the arrow next to the channel. The tab shows the details of that channel:

Item	Description
1	Channel name
	Current application rate
	Channel flow rate
	Total applied so far
	Tank level
2	Target rate (with Increase/Decrease buttons)
3	Channel on/off button
4	Quick link to the Channel Product Level screen. See page 308.
5	Fill disk button

Item	Description	
6	Preset target rate selection button: Select a different application rate from your preset entries. See page 299.	
	Note – This button is available only if you entered more than one target rate.	
7	Return button: Leave the detailed channel view and return to the overview.	

Turning individual channels on or off

On the detailed channel tab, tap **On**. The channel is turned off when the **On** button is raised


When you return to the channel status tab, the channel's current planting rate appears as Off. See Figure 17.1.

To return to the overview, tap

Adjusting the target rate (manually)

The Target Rate is the rate that you want the planter to plant at. To manually increase the target rate, tap +. To manually decrease the target rate, tap -.

The target rate adjusts by the Increment/Decrement value. See page 329.

Adjusting the target rate (with a preset rate)

If you created more than one preset rate for a material, the Preset Rate Selection button is available . Tap the button to select between the preset target rates.

The new preset rate appears between the + and - buttons.

Filling the planter disks before driving (Pre-prime button)

The planter has disks that rotate and drop seeds one-at-a-time. When the vehicle is moving, the seeds in the disk are continually replenished.

However, when you begin driving, the disks are empty. To avoid this, before you begin moving, tap the Fill Disk button

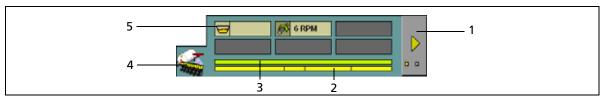
This rotates the disks through one revolution to ensure that they are loaded with seed before you begin.

To fill the disks on this channel (and any channels combined with this one):

- Tap the Fill Disk button. The *Fill Disk* screen appears.
- Raise the implement. 2.
- Lock the vehicle brakes and put the vehicle in park. 3.
- 4. Start the vehicle engine.

Run the vehicle until the hydraulic fluid is at operating temperature.

WARNING - When you tap the fill disk Start button, the machine will become operational. Take all necessary precautions to ensure user safety. Failure to do so may result in serious injury or death.


6. Tap Start.

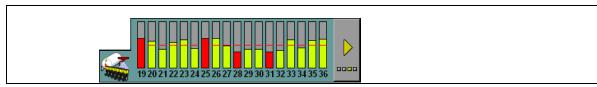
The planter disks rotate and fill with seed. Repeat this process for any uncombined channels.

Row Information tab

A planter can have up to 148 rows. Each row on the planter can have a sensor that reports the row's planting state.

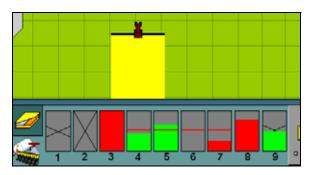
The information that is reported by the sensors appears on the Row Information tab, which appears under the guidance screen:

Item	Description
1	Show next screen (row details)
2	Channel-to-row assignment bar
3	Row status bar
4	Row Information tab selector
5	Additional sensor readings


The first screen of the tab shows a summary of all the rows, and any additional screens show the output of the rows in detail.

To view the next screen, tap

Row details

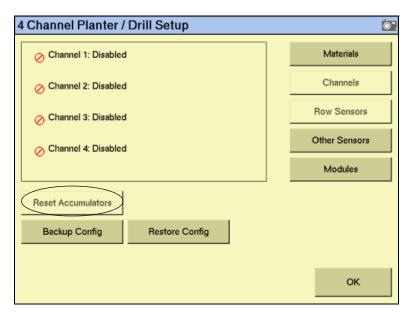

The row detail screens show the status of the rows in detail:

The row status is represented by its color:

Color	Description
Green	The row is operating within bounds
Red	The row is outside the acceptable bounds
A cross	The row is disabled

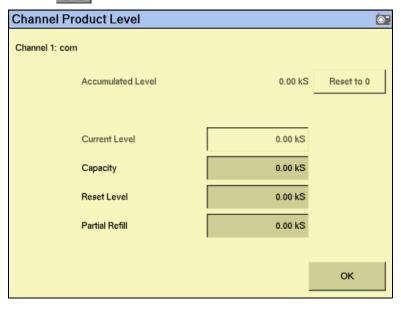
The onscreen width of the rows varies, depending on how many of them there are. In this example, the planter only has 9 rows:

Row number	The row is
1	off by clutch
2	off by channel
3	blocked (block sensor) or failed (population sensor)
4	operating (slightly below the target rate line)
5	operating (slightly above the target rate line)
6	passive (master switch is off)
7	operating (but below the acceptable bounds)
8	operating (but above the acceptable bounds)
9	operating (block sensor)


Note - Coverage is drawn even if an individual row is not operating (unless Tru Count Air Clutches are installed and switching is used).

Material accumulator

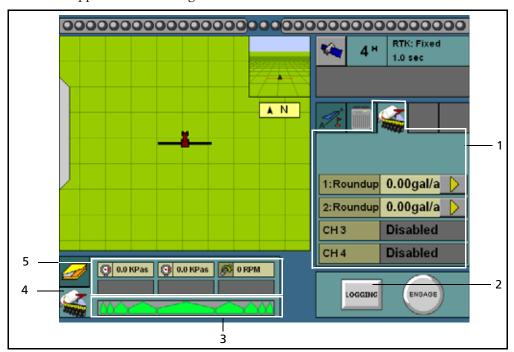
The *material accumulator* counts the amount of material that passes through each channel. The material accumulator value appears as the *Total* value on the Run screen.



You can reset this value on the application setup screen or by selecting the *Channel Product Level* screen from the Run screen:

To access the Channel Product Level screen from the Run screen:

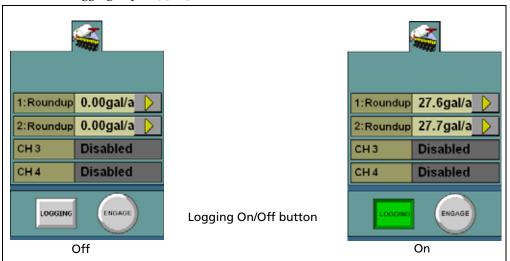
- 1. Show the details of one of the channels. See Detailed channel information button, page 360.
- 2. Tap the button:


To reset the material accumulator and the tank level, tap Reset to 0.

Operating a sprayer (liquid flow)

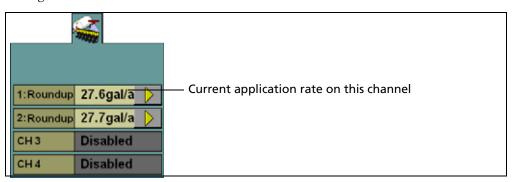
WARNING - When the master switch is in the On position, the machine is fully operational. Take all necessary precautions to ensure user safety. Failure to do so could result in injury or death.

When you are controlling a sprayer with the Tru Application Control plugin, several new items appear on the main guidance screen:

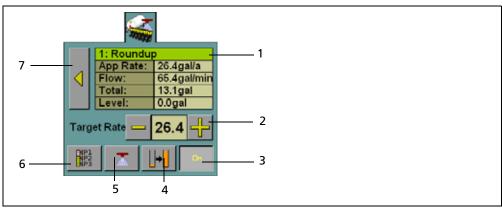


Item	Description
1	Sprayer tab
2	Logging on/off button
3	Sprayer bar
4	Sprayer section and sensors information tab
5	Additional sensor readings

Turning the sprayer on or off


The master switch controls spraying. When you turn on the master switch, logging begins and the **Logging** button is engaged.

To turn off logging, tap **Logging**:


The Sprayer tab (overview mode)

The Tru Application Control plugin can control up to four liquid products on a sprayer at once. The sprayer tab on the right of the main guidance screen shows all of the configured channels and their current status:

Detailed channel information button

To adjust the settings for an individual channel, tap the arrow next to the channel. The tab shows the details of that channel:

Item	Description
1	Channel name
	Current application rate
	Channel flow rate
	Total applied so far
	Tank level
2	Target rate (with Increase/Decrease buttons)
3	Channel on/off button
4	Quick link to the Channel Product Level screen. See page 317.
5	Flush button (only available when Flush is enabled. See page 314 and page 368)
6	Preset target rate selection button: Select a different application rate from your preset entries. See page 309.
	Note – This button is available only if you entered more than one target rate.
7	Return button: Leave the detailed channel view and return to the overview.

Turning individual channels on or off

On the detailed channel tab, tap **On**. The channel is turned off when the **On** button is raised

When you return to the channel status tab, the channel's current spraying rate appears as Off.

To return to the overview, tap

Adjusting the target rate (manually)

The Target Rate is the rate that you want the sprayer to spray at. To manually increase the target rate, tap +. To manually decrease the target rate, tap -.

The target rate adjusts by the *Increment/Decrement* value. See page 310.

Adjusting the target rate (with a preset rate)

If you created more than one preset rate for a material, the Preset Rate Selection button is available . Tap the button to select between the preset target rates.

The new preset rate appears between the + and - buttons.

Flush mode

Flush is a manual override mode that opens the valve and dispenses material for a period of time for a defined flush speed. The Flush Enable feature can be activated only when the vehicle is stopped.

Section Information tab

A sprayer can have up to 24 sections. Each section is represented on the section layout bar.

The information that is reported by boom sections and additional sensors appears on the Section Information tab, which appears under the guidance screen:

Item	Description
1	Section layout bar
2	Sprayer Information tab selector
3	Additional sensor readings

The first screen of the tab shows a summary of all the sections.

Operating an air seeder (granular seed)

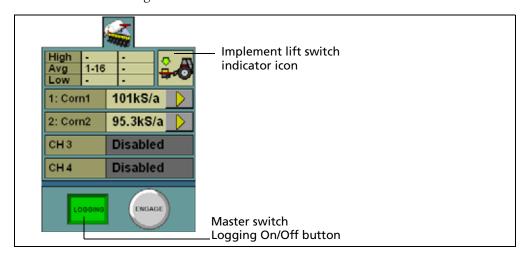
WARNING - When the implement is down and the master switch is On, the machine is fully operational. Take all necessary precautions to ensure user safety. Failure to do so could result in injury or death.

RTK: Fixed 1.0 sec À N High Avg Low 0.00lbs/a 1: Mustard Seed 0.00lbs/a 0.00lbs/a CH4 Disabled Ø 0 RPM 0.0 KPas ENGAGE LOGGING

When you are running an air seeder with the Tru Application Control plugin, several new items appear on the main guidance screen:

Item	Description
1	Air seeder tab, see page 372
2	Logging on/off button
3	Air seeder row details button, see page 374
4	Channel-to-row assignment bar
5	Row status bar
6	Row Information tab
7	Additional sensor readings

3


Turning the air seeder on or off

Implement lift switch installed

If an implement lift switch is *not* installed, see page 371.

To apply seed if an optional implement lift switch is installed, you must engage both the *master switch* and the *implement lift switch*.

When the master switch is engaged, the **Logging** button is engaged. When the implement lift switch is engaged so that the implement is down, the implement lift switch indicator changes as shown below:

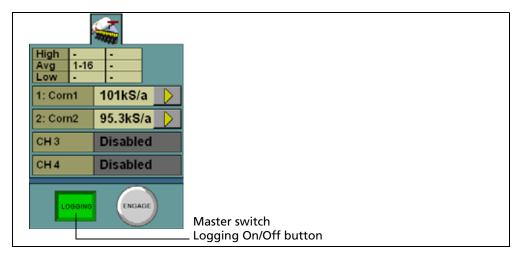


Illustration	Status	Description
₹ -6	Implement switch is Off	The implement is raised and the system is off.
LOGGING	Master switch is Off	
₹~	Implement switch is Off	The implement is raised. The master switch is turned on but logging does not occur because the air
LOGGING	Master switch is On	seeder is not applying seed.
	Implement switch is On	The implement is lowered, but the system is off and therefore not applying seed
LOGGING	Master switch is Off	(or logging coverage).
≗ - 3	Implement switch is On	The implement is lowered and the system is on and logging coverage.
LOGGING	Master switch is On	

Implement lift switch not installed

For the air seeder to apply seed, you must engage the *master switch*.

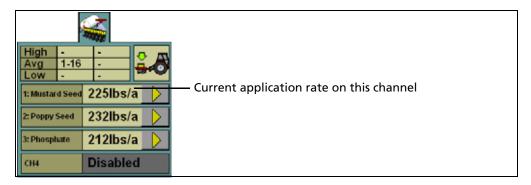
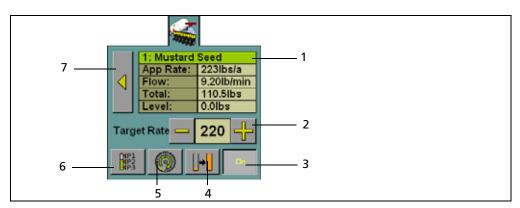

When the master switch is engaged, the **Logging** button engages and the implement lowers. The **Logging** button and the position switch indicator change as shown below:

Illustration	Status	Description
High	Master switch is Off	The implement is raised and the system is off
LOGGING		
High	Master switch is On	The implement is lowered and the system is on and logging coverage.
LOGGING		


The air seeder product (channel) tab (overview mode)

The Tru Application Control plugin can control up to four products on an air seeder at once, enabling you to distribute seed while spreading granular fertilizer, spraying liquid, and/or applying anhydrous ammonia. The air seeder tab on the right of the main guidance screen shows all the configured channels and their current status:

Detailed channel information button

To adjust the settings for an individual channel, tap the arrow next to the channel. The tab shows the details of that channel:

Item	Description
1	Channel name
	Current application rate
	Channel flow rate
	Total applied so far
	Tank level
2	Target rate (with Increase/Decrease buttons)
3	Channel on/off button
4	Quick link to the Channel Product Level screen. See page 327.
5	Precharge button. This button changes to the Flush button turn on the master switch.
	See page 368.

Item	Description
6	Preset target rate selection button: Select a different application rate from your preset entries. See page 318.
	Note – This button is available only if you entered more than one target rate.
7	Return button: Leave the detailed channel view and return to the overview.

Turning individual channels on or off

On the detailed channel tab, tap **On**. The channel is turned off when the **On** button is raised

When you return to the channel status tab, the channel's current application rate appears as Off.

To return to the overview, tap

Adjusting the target rate (manually)

The target rate is the rate that you want the air seeder to plant at. To manually increase the target rate, tap +. To manually decrease the target rate, tap -.

The target rate adjusts by the Increment/Decrement value. See page 319.

Adjusting the target rate (with a preset rate)

If you created more than one preset rate for a material, the Preset Rate Selection . Tap the button to select between the preset target rates. button is available

The new preset rate appears between the + and - buttons.

Precharging the air seeder before driving

When the vehicle is moving, the air seeder is continually distributing seed.

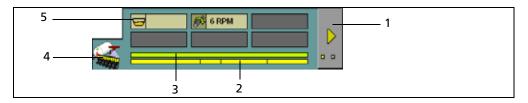
However, when you begin driving, the seed can take time to reach the tubes. To avoid before you begin moving. this, tap Precharge

This ensures that seed distribution begins when you stat planting.

To precharge this channel (and any channels combined with this one):

- Tap the Precharge button. The *Precharge* screen appears.
- 2. Raise the implement.
- 3. Lock the vehicle brakes and put the vehicle in park.
- 4. Start the vehicle engine.
- Run the vehicle until the hydraulic fluid is at operating temperature.

WARNING - When you tap the fill disk Start button, the machine will become operational. Take all necessary precautions to ensure user safety. Failure to do so may result in serious injury or death.


Tap the **Start** button. 6.

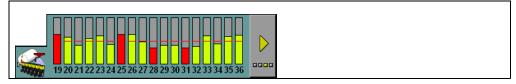
The air seeder moves seed from the seeder bin. Repeat this process for any uncombined channels.

Row Information tab

An air seeder can have up to 148 rows. Each row on the air seeder can have a sensor that reports the row's planting state.

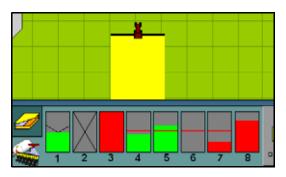
The information that is reported by the sensors appears on the *Row Information* tab, which is under the guidance screen:

Item	Description		
1	Show next screen (row details)		
2	Channel-to-row assignment bar		
3	Row status bar		
4	Row Information tab selector		
5	Additional sensor readings		


The first screen of the tab shows a summary of all the rows, and any additional screens show the output of the rows in detail.

To view the next screen, tap

Row details

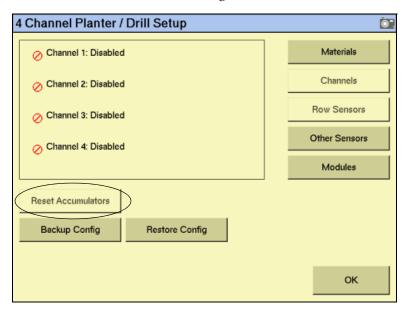

The row detail screens show the status of the rows in detail:

The row status is represented by its color:

Color	The row is
Green	operating within bounds
Red	outside the acceptable bounds
A cross	disabled

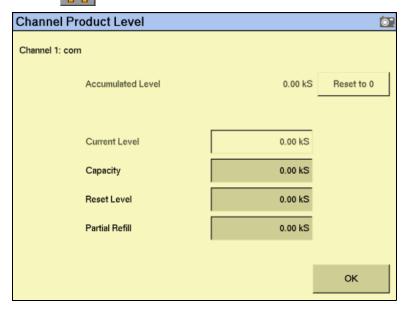
The onscreen width of the rows varies, depending on how many of them there are. In this example, the planter only has 8 rows:

Row number	The row is
1	operating (block sensor)
2	off by channel
3	blocked or failed
4	operating (slightly below the target rate line)
5	operating (slightly above the target rate line)
6	passive (master switch is off)
7	operating (but below the acceptable bounds)
8	operating (but above the acceptable bounds)


Note - Coverage is drawn even if an individual row is not operating.

Material accumulator

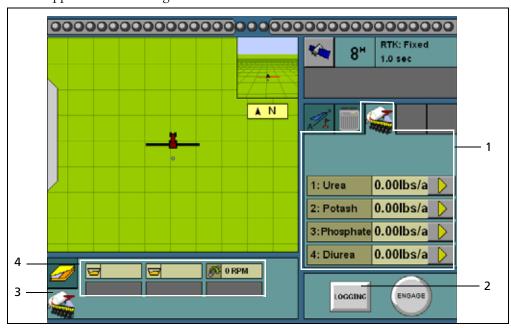
The *material accumulator* counts the amount of material that passes through each channel. The material accumulator value appears as the *Total* value on the main guidance screen.



You can reset this value on the application setup screen or by selecting the Channel Product Level screen from the main guidance screen:

To access the *Channel Product Level* screen from the main guidance screen:

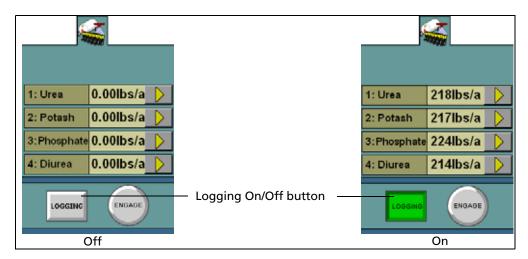
- Show the details of one of the channels. See Detailed channel information button, page 360.
- 2. Tap the button:


To reset the material accumulator and the air cart level, tap **Reset to 0**.

Operating a spreader (granular fertilizer)

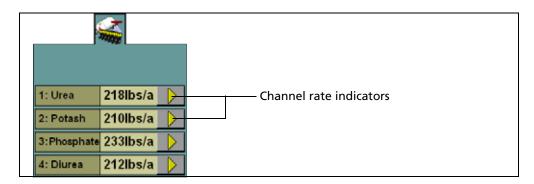
WARNING - When the master switch is in the On position, the machine is fully operational. Take all necessary precautions to ensure user safety. Failure to do so could result in injury or death.

When you are running a spreader with the Tru Application Control plugin, several new items appear on the main guidance screen:

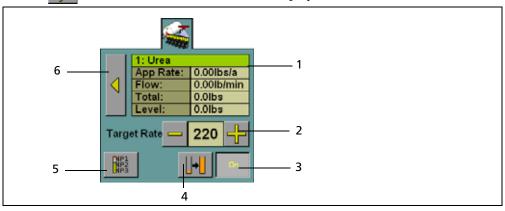


Item	Description
1	Spreader tab
2	Logging on/off button
3	Spreader Information tab
4	Additional sensor readings

Turning the spreader on or off


The Tru Application Control plugin is controlled by the master switch and the **LOGGING** button. When logging is engaged, the spreader application is on, and when logging is disengaged, the spreader application is off.

The tractor icon appears as shown below:


The Spreader product (channel) tab (overview mode)

The Tru Application Control plugin can control up to 4 products on a spreader at once. The spreader tab on the right of the main guidance screen shows all the configured channels and their current status:

Detailed channel information button

To adjust the settings for an individual channel, tap the detailed channel information next to the channel. The tab will display the details of that channel:

Item	Description	
1	Channel name	
	Current application rate	
	Channel flow rate	
	Total applied so far	
	Tank level	
2	Target rate (with Increase/Decrease buttons)	
3	Channel on/off button	
4	Quick link to the Channel Product Level screen. See page 335.	
5	Preset target rate selection button: Select a different application rate from you preset entries. See page 328.	
	Note – This button is available only if you entered more than one target rate.	
6	Return button: Leave the detailed channel view and return to the overview.	

Turning individual channels on or off

On the detailed channel tab, tap \mathbf{On} . The channel is turned off when the \mathbf{On} button is raised

When you return to the channel status tab, the channel's current planting rate appears as Off.

To return to the overview, tap

Adjusting the target rate (manually)

The Target Rate is the rate that you want the spreader to spread at. To manually increase the target rate, tap +. To manually decrease the target rate, tap -.

The target rate adjusts by the *Increment/Decrement* value. See page 329.

Adjusting the target rate (with a preset rate)

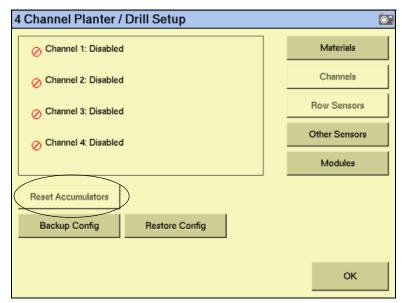
If you created more than one preset rate for a material, the Preset Rate Selection button is available. Tap the button to select between the preset target rates.

The new preset rate appears between the + and - buttons.

Sensor Information tab

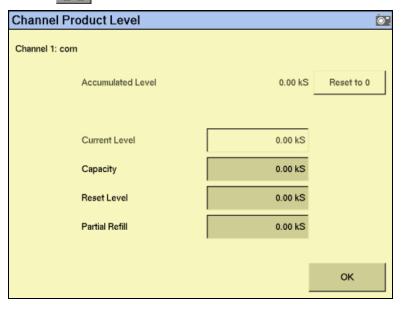
A spreader can be fitted with a hopper or an RPM sensor.

The information that is reported by the sensors appears on the Row Information tab, which is under the guidance screen:


Item	Description
1	Row Information tab selector
2	Additional sensor readings

Material accumulator

The *material accumulator* counts the amount of material that passes through each channel. The material accumulator value appears as the *Total* value on the main guidance screen.



You can reset this value on the application setup screen or by selecting the *Channel* Product Level screen from the main guidance screen:

To access the *Channel Product Level* screen from the main guidance screen:

- Show the details of one of the channels. See Detailed channel information button, page 360.
- 2. Tap the button:

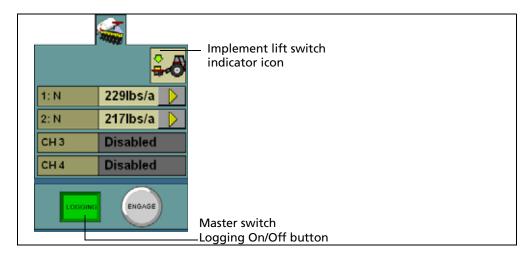
To reset the material accumulator and the air cart level, tap **Reset to 0**.

Operating an anhydrous unit

WARNING - When the implement is down and the master switch is in the On position, the machine is fully operational. Take all necessary precautions to ensure user safety. Failure to do so could result in injury or death.

When you are running an anhydrous unit with the Tru Application Control plugin, several new items appear on the main guidance screen:

Item	Description
1	Anhydrous tab, see page 385
2	Logging on/off button
3	Row Information tab
4	Additional sensor readings. The sensors show the percentage of capacity.


Turning the anhydrous on or off

Implement lift switch installed

If an implement lift switch is *not* installed, see page 371.

To apply ammonia when an optional implement lift switch is installed, you must engage both the *master switch* and the *implement lift switch*.

When the master switch is engaged, the **Logging** button is engaged. When the implement lift switch is engaged so the implement is down, the implement lift switch indicator changes to show this:

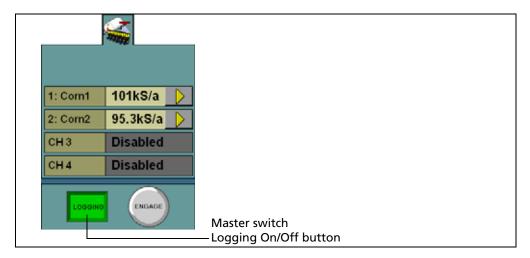


Illustration	Status	Description
- B	Implement switch is Off	The implement is raised and the system is off.
LOGGING	Master switch is Off	
₹ -8	Implement switch is Off	The implement is raised. The master switch is turned on but logging does not occur because the anhydrous unit is not
LOGGING	Master switch is On	applying ammonia.
≗ .8	Implement switch is On	The implement is lowered, but the system is off and therefore not applying ammonia (or logging coverage).
LOGGING	Master switch is Off	logging coverage).
<u> </u>	Implement switch is On	The implement is lowered and the system is on and logging coverage.
LOGGRIG	Master switch is On	

Implement lift switch not installed

For the anhydrous unit to apply ammonia, you must engage the *master switch*.

When the master switch is engaged, the **Logging** button engages and the implement lowers. The **Logging** button and the position switch indicator change to show this:

Illustration	Status	Description
	Master switch is Off	The implement is raised and the system is off.
LOGGING		
	Master switch is On	The implement is lowered and the system is on and logging coverage.
LOGGING		

The Anhydrous product (channel) tab (overview mode)

The Tru Application Control plugin can control up to 2 products on an anhydrous unit at once. In overview mode, the anhydrous tab on the right of the main guidance screen shows all of the configured channels and their current status:

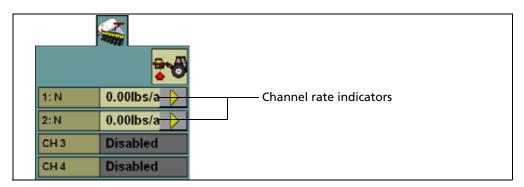
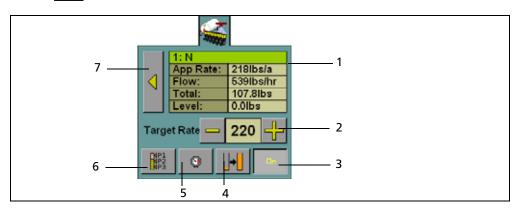



Figure 17.1 The anhydrous tab

Detailed channel information button

To adjust the settings for an individual channel, tap the detailed channel information button next to the channel. The tab shows the details of that channel:

Item	Description	
1	Channel name	
	Current application rate	
	Channel flow rate	
	Total applied so far	
	Tank level	
2	Target rate (with raise/lower buttons)	
3	Channel on/off button	
4	Quick link to the Channel Product Level screen. See page 343.	
5	Tank pressure button	

Item	Description
6	Preset target rate selection button: Select a different application rate from your preset entries. See page 336.
	Note – This button is available only if you entered more than one target rate.
7	Return button: Leave the detailed channel view and return to the overview.

Note - For anhydrous application, the actual channel rate and the target rate are shown in lbs/acre of N (nitrogen), not NH_3 (anhydrous ammonia).

Turning individual channels on or off

On the detailed channel tab, tap **On**. The channel is turned off when the **On** button is raised

When you return to the channel status tab, the channel's current application rate appears as Off.

To return to the overview, tap

Adjusting the target rate (manually)

The Target Rate is the rate that you want the planter to plant Target Rate at. To manually increase the target rate, tap +. To manually decrease the target rate, tap -.

The target rate adjusts by the Increment/Decrement value. See page 337.

Adjusting the target rate (with a preset rate)

If you created more than one preset rate for a material, the Preset Rate Selection is available. Tap the button to select between the preset target rates. button

The new preset rate appears between the + and - buttons.

Tank pressure button

The tank pressure button enables you to enter the tank pressure from the nurse tank gauge. The system then calculates the density of the nitrogen or anhydrous ammonia.

To calculate the density:

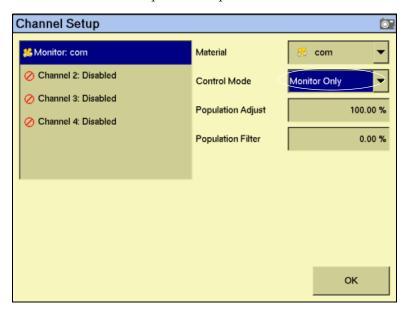
- Read the nurse tank pressure gauge.
- 2. Round the pressure down to the nearest pressure shown below.

Nurse tank temperature (F°)	Nurse tank pressure (PSI)	Pounds per cubic foot NH ₃	Pounds per cubic foot Nitrogen
-28	0	42.5	35.0
-8	10	41.7	34.3
6	20	41.1	33.8
16	30	40.6	33.4
26	40	40.2	33.1
34	50	39.8	32.8
42	60	39.4	32.4
50	75	39.0	32.1
58	90	38.6	31.8
68	110	38.1	31.4
77	130	37.7	31.0
86	155	37.2	30.6
96	185	36.6	30.2
105	215	36.1	29.7
115	250	35.6	29.3

For example, if the nurse tank pressure gauge reads 49 psi, use the 40 psi listing in the table. If the tank pressure gauge is inoperative, you can use the tank temperature to determine the approximate density values.

Enter the appropriate density.

Running the system in Monitor-only mode


Note – *To use Monitor-only mode, the vehicle must have an implement switch installed.*

To receive rate information, the system must have the appropriate sensors (such as population sensors). If the system has block sensors (which do not report rate, they only report blockages), the display is unable to determine the current rate or calculate whether the rate needs to increase or decrease.

However, you can still run the system without rate information in Monitor-only mode.

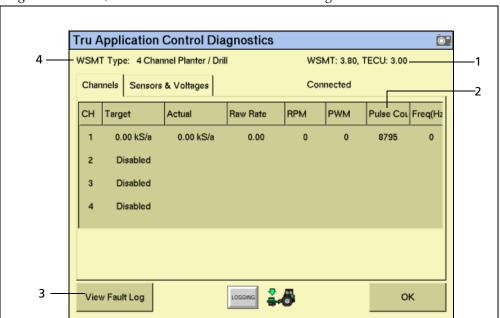
After you configure the modules and enter the materials, but *before* you assign the materials to channels, do the following:

1. From the 4 Channel Setup screen, tap Channels:

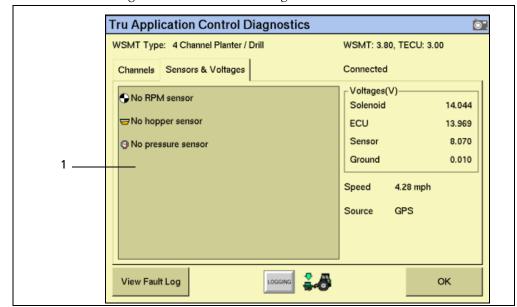
- 2. Select the channel to monitor and then select *Monitor Only* from the *Control Mode* drop-down list. A warning message appears.
- 3. Read the warning and then tap **OK**.
- 4. If necessary, adjust the *Population Adjust* and *Population Filter* settings:

Item	Description
Population Adjust	Scales the displayed population by a percentage (100% = no scaling).
Population Filter	Stabilizes the monitored population display ($0\% = no$ filtering, $99\% = maximum$ filtering).

5. Tap **OK**.


When you operate the plugin in the field, the system does not show rate information—it shows the text Monitor only. The channel detail button is not available.

To disable Monitor-only mode:


- 1. Select the *Channel Setup* screen.
- 2. From the *Channel* list, select *Monitor*.
- 3. Set the *Material* list to *None*. A warning message appears.
- 4. Tap **OK**.
- 5. Re-assign materials to the channels.

Obtaining diagnostics information about the Tru Application Control device

To obtain diagnostics information regarding the current status of the Tru Application Control device and the sensors, from the Configuration screen, select the Tru Application Control plugin and then tap **Diagnostics**. In the *Tru Application Control Diagnostics* screen, the *Channels* tabs shows the following information:

Item	Description	
1	WSMT and TECU firmware versions.	
2	The pulse count.	
	The <i>pulse accumulator</i> , which appears on the table as Pulse Count, counts the number of pulses that the system makes. You cannot reset the pulse accumulator value.	
3	The View Fault Log button. Tap this button to view the Tru Application Control plugin faults.	
4	The WMST module type.	

The Sensors & Voltages tab shows the following information:

Item	Description	
1	Sensor information.	

Resetting the master module

CAUTION – Do not reset the master module unless you want to reset the channel calibration settings. CNH recommends that you do not reset the system unless instructed to by Technical Support.

When you reset the master module, it clears the value on the module. The next time that you exit the setup menu, the FM-1000 integrated display re-sends the settings to the module.

To reset the memory (NOVRAM) of the master module:

- 1. From the *Configuration* screen, select the Tru Application Control plugin and then tap **Setup**. The *4 Channel Setup* screen appears.
- 2. Tap **Modules**. The *Tru Application Control Setup* screen appears.
- 3. Tap **Reset Master**. A confirmation dialog appears.
- 4. Tap **Reset**. The module is reset.

Tip – If you reset the master module, you may need to run the auto configuration twice.

Warning messages

When the Tru Application Control plugin is active, the system can display warning messages. The following messages, causes of the messages, and how to correct the situations are as follows:

Alarm #	Alarm	Probable cause	Solution
200	Master Switch Timeout – toggle Master to clear	1. Master switch ON at power up.	1. Move master switch to the OFF position.
		2. Master switch ON after leaving a setup screen.	2. Move master switch to the OFF position.
		3. Shorted or damaged tractor harness.	3. Check for damage on the tractor harness at the master switch connector.
		4. Defective master switch.	4. Inspect master switch for damage or replace.
201	Invalid Master Switch Assignment	External master switch is not assigned to the Auxiliary Input.	1. Assign master switch to the Auxiliary Input. Refer to Auxiliary Input/Function Assignment.
			2. Decline use of Auxiliary Input Switch.
202	Ground Speed Failure	Active only in planter monitor mode. Seeds are detected when there is no ground speed.	
		1. Incorrect speed source setting or calibration.	1. Verify correct speed source setting and speed calibration on the <i>Ground Speed Calibration</i> screen.
		2. Defective speed sensor or harness.	2. Inspect speed sensor/harness for damage or replace speed sensor.
		3. Defective module or display.	3. Replace module or display.
203	Continuous Test Failure	Control conditions exceed the disk RPM limits.	
		1. Test Speed setting is set too high or low.	1. Enter an appropriate test speed.
		2. <i>Disk High Limit</i> and/or <i>Disk Low Limit</i> settings are incorrect.	2. Verify or enter appropriate <i>Disk High Limit</i> and/or <i>Disk Low Limit</i> values.
205	Control Channel Failure	1. Defective control valve.	1. Inspect control valve for damage or replace.
		2. Defective feedback sensor.	2. Inspect feedback sensor for damage or replace.
		3. Defective module harness or module harness fuse.	3. Inspect module harness for damage. Replace harness fuse.
		4. Defective module.	4. Inspect module for damage or replace.
206	Control Channel Unable to Control	1. Incorrect control channel settings.	1. Verify correct setup constants on the <i>Channel Configuration</i> screen. Perform a valve calibration.
		2. Incorrect feedback sensor installation.	2. Verify correct installation of the feedback sensor.
		3. Defective feedback sensor.	3. Inspect feedback sensor for damage or replace.

Alarm #	Alarm	Probable cause	Solution
207	Control Channel Unstable	1. Incorrect control channel settings.	1. Verify correct setup constants on the <i>Channel Configuration</i> screen. Perform a valve calibration.
		Incorrect feedback sensor installation.	Verify correct installation of the feedback sensor.
		3. Defective feedback sensor.	3. Inspect feedback sensor for damage or replace.
208	Control Channel Saturation Exceeded	 Excessive speed. Incorrect control channel settings. Desired rate too high for implement. Target Rate too high. 	 Reduce speed. Verify correct setup constants on the Channel Configuration screen. Perform a valve calibration and a spreader constant calibration. Reduce target rate.
209	Control Channel High Limit Exceeded	Control is limited by high limit. Under-application is occurring. Note - The system will not run faster than the High Limit value.	 Check and/or reduce speed. Verify control channel setup (high RPM). Perform new valve calibration. Check and/or reduce target rate. Inspect feedback sensor for damage. Inspect control valve for damage. Inspect harness/module for damage. Decrease target rate.
210	Control Channel Low Limit Exceeded	Control rate is limited by low limit. Over-application is occurring.	 Increase speed. Verify correct setup constants (low RPM). Perform valve calibration. Increase target rate.
211	All Rows Failed	 Seed meter drive malfunction. Rows are not assigned to channel and channels are turned off. 	 Check seeding drive(s). Assign rows to channels.
212	Row Failure	The seed rate has fallen below the Min Row Fail Rate setting on the Alarms Setup screen. 1. Seed meter malfunction. 2. Dirty or defective seed sensor.	 Verify proper planter operation. Inspect seed sensor for dirt or damage. Replace if necessary.
		3. Damaged planter harness.	3. Inspect planter harness for damage. Repair or replace.
		4. Defective module harness or module.	4. Inspect harness and module for damage. Replace if necessary.
213	High Population Limit Exceeded	5. Out of seed. The seed rate has exceeded the High Population Alarm setting on the Alarms Setup screen.	5. Fill with seed.
		1. Seed meter malfunction or incorrect setup.	1. Verify proper planter operations/setup.
		2. Defective seed sensor.	2. Inspect seed sensor for damage. Replace if necessary.

Alarm #	Alarm	Probable cause	Solution
		3. Defective module.	3. Inspect module for damage. Replace if necessary.
214	Low Population Limit Exceeded	The seed rate has dropped below the <i>Low Population Alarm</i> setting on the <i>Alarms Setup</i> screen.	
		 Seed meter malfunction or incorrect setup. 	1. Verify proper planter operation/setup.
		2. Defective seed sensor.	2. Inspect seed sensor for damage. Replace if necessary.
		3. Defective module.	3. Inspect module for damage. Replace if necessary.
		4. Running out of seed.	4. Fill with seed.
215	High Pressure Limit Exceeded	The sensed pressure exceeds the High Alarm setting on the Other Sensor Setup screen.	
		1. Implement malfunction or incorrect setup.	 Verify proper implement operation/setup.
		2. Defective pressure sensor.	Inspect pressure sensor for damage.Replace if necessary.
		3. Defective module.	3. Inspect module for damage. Replace if necessary.
216	Low Pressure Limit Exceeded	The sensed pressure is below the Low Alarm setting on the Other Sensor Setup screen.	
		1. Implement malfunction or incorrect setup.	 Verify proper implement operation/setup.
		2. Defective pressure sensor.	Inspect pressure sensor for damage.Replace if necessary.
		3. Defective module harness or module.	3. Inspect module and/or module harness for damage. Replace if necessary.
217	Member Module Detection	The number of member modules does not match the system configuration.	
		1. Too few modules connected to system.	1. Verify correct module configuration setup on the <i>Tru Application Control Setup</i> screen.
		2. Too many modules connected to system.	2. Verify correct module configuration setup on the <i>Tru Application Control Setup</i> screen.
		3. Defective CAN/module harness.	3. Identify missing module in the <i>Tru Application Control Setup</i> list. Inspect CAN/module harness of the missing module for damage. Repair or replace harness.
		4. Blown module harness fuse.	4. Inspect module harness fuse of the identified module. Replace if necessary.
		5. Defective module.	5. Identify missing module in the <i>Tru</i> Application Control Setup list. Inspect missing module for damage or replace.

Alarm #	Alarm	Probable cause	Solution
		6. New module has been added to system.	6. Verify correct module configuration setup on the <i>Tru Application Control Setup</i> screen.
218	Pressure Sensor Detection	The number of pressure sensors connected differs from the number of sensors configured on the <i>Other Sensor Configuration</i> screen.	
		1. Defective Sensor.	1. Inspect pressure sensor for damage or replace.
		2. Defective module or damaged module harness.	2. Inspect module and/or module harness for damage. Replace if necessary.
		3. Additional pressure sensor detected.	3. Verify correct # ACC setting for each module.
219	Row Sensor Detection	The number of seed sensors connected differs from the number of sensors configured on the <i>Tru Application Control Setup</i> screen.	
		1. Defective seed sensor.	 Inspect seed sensor for damage or replace.
		2. Damaged planter harness.	2. Inspect planter harness for damage. Repair or replace.
		3. Defective module or damaged module harness.	3. Inspect module and/or module harness for damage. Replace if necessary.
		4. Additional seed sensor detected.	4. Verify correct # ROWS setting for each module.
220	Row Sensors Installed Incorrectly	Rows are not detected sequentially on a module.	
		1. Incorrect seed row connections.	1. Verify seed sensors are connected sequentially on all modules as instructed in installation.
		2. Defective seed sensor.	2. Inspect seed sensor for damage or replace.
		3. Damaged planter harness.	3. Inspect planter harness for damage. Repair or replace.
		4. Defective module or damaged module harness.	4. Inspect module and/or module harness for damage. Replace if necessary.
221	Control Channel Invalid State	Internal system software error.	Turn system power Off/On. If condition persists, contact Technical Support.
222	Control Channel Setup Height Error	Implement hydraulic system malfunction.	Verify implement hydraulic system operation.
		2. Defective control valve.	2. Inspect control valve for damage. Replace if necessary.
		3. Incorrect feedback sensor installation.	3. Verify correct installation of the feedback sensor.
		4. Defective feedback sensor.	4. Inspect feedback sensor for damage or replace.

Alarm #	Alarm	Probable cause	Solution
		5. <i>Limit Max Output</i> is set too low. Re-calibrate the valve.	5. Set <i>Limit Max Output</i> to a higher PWM% on the <i>Valve Calibration</i> screen. Perform a new valve calibration.
223	Control Channel Max Feedback Unreachable	1. Limit Max Output set too low.	1. Set <i>Limit Max Output</i> to a higher level on the <i>Valve Calibration</i> screen. Perform a new valve calibration.
		2. Incorrect feedback sensor installation.	Verify correct installation of the feedback sensor.
		3. Defective feedback sensor.	3. Inspect feedback sensor for damage or replace.
224	No Control Channel Gain Steps Calculated	Implement hydraulic system malfunction.	Verify implement hydraulic system operation.
		2. Defective control valve.	2. Inspect control valve for damage. Replace if necessary.
		3. Incorrect feedback sensor installation.	3. Verify correct installation of the feedback sensor.
		4. Defective feedback sensor.	4. Inspect feedback sensor for damage or replace.
225	Hopper Sensor Low	1. Incorrect logic level setting on the <i>Other Sensor Setup</i> screen.	1. Verify correct logic level setting on the Other Sensor Setup screen.
		2. Dirty or defective hopper sensor.	2. Clean/inspect hopper sensor. Replace if necessary.
		3. Defective module harness or module.	3. Inspect harness and module for damage. Replace if necessary.
		4. Hopper empty.	4. Fill hopper.
226	RPM Sensor High Limit Exceeded	The sensed RPM exceeds the High Alarm setting on the Other Sensor Setup screen.	
		1. Implement malfunction or incorrect setup.	1. Verify proper implement operation/setup.
		2. Defective RPM sensor.	2. Inspect RPM sensor for damage. Replace if necessary.
		3. Defective module.	3. Inspect module for damage. Replace if necessary.
227	RPM Sensor Low Limit Exceeded	The sensed RPM is below the Low Alarm setting on the Other Sensor Setup screen.	
		1. Implement malfunction or incorrect setup.	1. Verify proper implement operation/setup.
		2. Defective RPM sensor.	2. Inspect RPM sensor for damage. Replace if necessary.
		3. Defective module harness or module.	3. Inspect module for damage. Replace if necessary.
228	Hopper Sensor Detection	The number of hopper sensors connected differs from the number of sensors configured on the <i>Tru Application Control Setup</i> screen.	

Alarm #	Alarm	Probable cause	Solution
		1. Defective hopper sensor.	1. Inspect hopper sensor for damage or replace.
		2. Defective module or damaged module harness.	2. Inspect module and/or module harness for damage. Replace if necessary.
		3. Additional hopper sensors detected.	3. Verify correct hopper setting for each module.
229	Hopper Sensors Installed Incorrectly	Hopper sensors are not installed sequentially on a module.	
		1. Incorrect hopper sensor connections.	1. Verify hopper sensors are connected sequentially on all modules.
		2. Defective hopper sensor.	2. Inspect hopper sensor for damage or replace.
		3. Defective module or damaged module harness.	3. Inspect module and/or module harness for damage. Replace if necessary.
230	Pressure Sensors Installed Incorrectly	Pressure sensors are not installed sequentially on a module.	
		1. Incorrect pressure sensor connections.	1. Verify pressure sensors are connected sequentially on all modules.
		2. Defective pressure sensor.	2. Inspect pressure sensor for damage or replace.
		3. Defective module or damaged module harness.	3. Inspect module and/or module harness for damage. Replace if necessary.
232	RPM Sensor Low Limit Exceeded With Control Channel Shutdown	The RPM has dropped below the Low Alarm level and the Disable Control On Low Alarm setting is enabled on the Other Sensor Setup screen.	
		1. Defective RPM sensor.	1. Inspect RPM sensor for damage. Replace if necessary.
		2. Damaged module harness.	2. Inspect module harness for damage. Repair or replace.
		3. Defective module.	3. Inspect module for damage. Replace if necessary.
		4. Low RPM.	4. Increase RPM.
233	Channel Delay or Precharge Enabled	Channel Delay or Precharge is enabled. During this, the control will run without ground speed or	Acknowledge alarm to activate control channels.
	Litablea	without the implement down.	2. Acknowledge alarm and disable Delay or Precharge to stop control.
234	Control Channel Precharge Activation Timeout	Control Channel Precharge time has expired while the system is stationary. Control channel has stopped.	
		 Ground speed is at zero. Ground speed is less than Precharge Speed after Precharge time is expired. 	Acknowledge the alarm and increase ground speed.

Alarm #	Alarm	Probable cause	Solution
235	New Member Module Detected	New member module has been found.	Assign sensors to the new module at the <i>Tru Application Control Setup</i> screen and its position.
236	Intermittent Member Module Detected	A member module that had previously failed communication has come online.	Inspect harness connections to this module.
237	Product Level Low	Calculated product level has dropped below alarm level.	Fill product bin and reset level.
240	Seeding Detected on a Control Off Row	Control Channel turned off and seed continue to be detected.	Check seed dispensing unit for proper shut off.
241	Control Not Active With Implement	Control will not operate while on a setup screen.	 Navigate to the Run screen to activate the control. Raise the implement and stop forward
	Lowered and Speed		speed to clear alarm.
246	Master Switch Softkey Press	Warning of action associated with keypress.	Press the Control Start key to activate control.
602	8 Volt Supply Failure	The 8 V supply voltage is below 7.2 V or higher than 16 V.	
		1. Damaged planter or module harness.	1. Inspect planter harness or module harness for damage. Repair or replace harness.
		2. Defective seed or hopper sensor.	2. Inspect seed or hopper sensors connected to the identified module for damage. Replace sensors if necessary.
		3. Defective module.	3. Replace identified module.
603	Member Module Communication Failed	Communication with an active module has failed	
		1. Damaged CAN or module harness.	1. Identify missing module in the <i>Tru Application Control Setu</i> p screen list. Inspect CAN/module harness of the missing module for damage. Repair or replace harness.
		2. Blown module harness fuse.	2. Inspect module harness fuse, replace if necessary.
		3. Defective module.	3. Identify missing module in the <i>Tru</i> Application Control Setup screen list. Inspect missing module for damage or replace.
604	ECU Voltage Out of Range Alarm	The ECU voltage is below 11 V or higher than 16 V.	
		1. Damaged CAN or module harness.	1. Inspect CAN/module harness of the identified module for damage.
		2. Defective module.	2. Inspect identified module for damage or replace.

Alarm #	Alarm	Probable cause	Solution
605	Solenoid Voltage Out of Range	The solenoid voltage is below 11 V or higher than 16 V.	
		1. Damaged CAN or module harness.	1. Inspect CAN/module harness of the identified module for damage. Repair or replace harness.
		2. Blown module harness fuse.	2. Inspect module harness fuse or replace.
		3. Defective module.	3. Inspect identified module for damage or replace.
606	Ground Offset Voltage Out of Range	1. Damaged/shorted Actuator Harness.	1. Inspect Actuator Harness for damage around the PWM and Servo valve connections. Repair or replace harness.
		2. Defective PWM valve driver or Servo valve driver.	2. Inspect PWM or Servo valve drivers for damage and replace if necessary.
		3. Defective module.	3. Inspect identified module for damage and replace if necessary.

The FieldLevel Survey/Design Plugin

In this chapter:

- Introduction to field leveling
- Installation
- Configuration
- Operating the FieldLevel Survey/Design plugin
- Field design

The FM-1000 integrated display has three FieldLevel II plugins:

- FieldLevel Survey/Design
- FieldLevel II
- Tandem/Dual

This chapter describes the function of each plugin, followed by a detailed description of how to configure and use the FieldLevel Survey/Design plugin to create and manipulate field surveys.

Introduction to field leveling

Traditionally, farmers level their fields for uniform drainage. The consistent water flow over the crops improves crop yields and crop consistency, which improves profits.

Description

The FieldLevel system is designed in three parts:

• The FieldLevel Survey/Design plugin enables you to use a high-accuracy GPS receiver on the leveling implement to create a topographic *survey* of the layout of your field. The three-dimensional data shows the surface topography of the land.

Note – If you are working in a field that has already been leveled, you may not need to perform a survey and you can go straight to leveling with the FieldLevel II system.

Once you complete the survey, you can use it to *design* the optimum drainage slope that can be graded with minimal dirt movement.

- After you create a survey of the field and a design for how to modify it, you can use the FieldLevel II plugin to control a land-leveling implement on your vehicle and to adjust the land to an optimal slope. The FieldLevel II system uses a high-accuracy GPS receiver mounted on the implement blade to measure and control its elevation. The FieldLevel II design defines the three-dimensional height for the field and controls how the implement reshapes the ground. The FieldLevel II system automatically raises and lowers the blade on the implement to match the design height anywhere in the field. The color cut/fill map, simple on-screen adjustments, and automatic blade control makes leveling easy.
- For improved productivity when leveling a field, the FieldLevel II system supports tandem or dual scraper implements. The second scraper is also controlled by GPS, which means that you can work in areas requiring cuts, and fill two scraper buckets before you have to empty the scrapers.

Terminology

A *cut* is a point on the field where dirt needs to be removed. A cut occurs when the existing field is higher than the proposed field surface.

A *fill* is a point on the field where dirt must be added. A fill occurs when the existing field is lower than the proposed field surface.

A *neutral* is a point on the field where the existing and proposed elevations are the same. No dirt needs to be moved at this location.

Benefits of the AgGPS FieldLevel II system

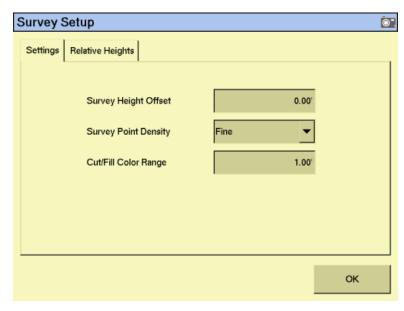
The AgGPS FieldLevel II system enables you to:

- Conserve precious water resources.
- Reduce erosion and conserve topsoil.
- Perform touch-up leveling each year, to avoid expensive land leveling services.
- Use RTK GPS technology, which has a significantly larger operating range than a laser, and no vertical limit.
- Work with your existing AgGPS guidance products to manage your fields with one collective system. For example, you can connect the AgGPS Autopilot system to the FM-1000 integrated display at the same time as the FieldLevel implement.

Requirements of the AgGPS FieldLevel II system

The FieldLevel II system requires:

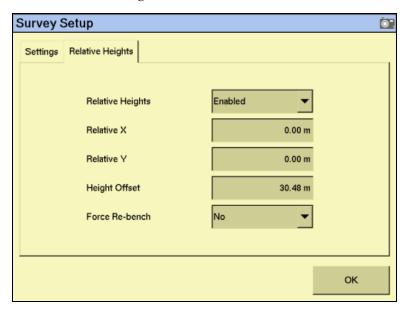
- An FM-1000 integrated display (firmware version 4.00 or later), with or without the Autopilot system
- An unlock code for the FM-1000 integrated display field leveling functionality
- A leveling implement


Installation

For installation instructions, refer to the AgGPS FieldLevel II System Installation *Instructions* that are specific to your vehicle.

Configuration

Install the FieldLevel Survey/Design plugin (for more information, see Adding or removing a plugin, page 56). To configure the plugin:


From the Configuration screen, select the FieldLevel Survey/Design plugin and then tap Setup:

- Set the Survey Height Offset. This value represents the difference between the height of the blade when surveying, and the height of the blade when moving dirt. To measure this value, park the vehicle on a flat surface and raise the blade up to it's highest limit and then measure the distance from the bottom of the blade to the surface of the ground. The Survey Height Offset will be applied to all surveys to avoid the need to re-bench between Survey mode and moving dirt.
- Set the survey point density from the *Survey Point Density* drop-down menu. When you create a survey of a field, this setting determines the distance between the collected survey mapping points. The approximate distances between points are:

Item	Distance
Coarse	7.8 m (25 ft)
Medium	3 m (10 ft)
Fine	1.5 m (5 ft)

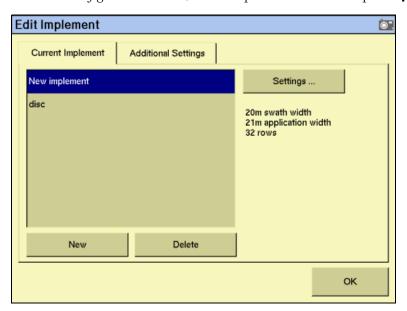
Set the *Cut/fill Color Range*.

5. Select the *Relative Heights* tab:

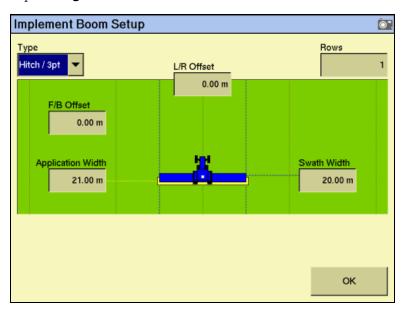
Select *Enable* from the *Relative Heights* drop-down list.

By default, coordinates are recorded relative to the master benchmark. Setting the relative positions establishes the coordinates of the master benchmark when it is set. These coordinates are then used for field leveling and topographic mapping every time the field is opened. You can set the relative position using these values:

- the X-axis coordinate (Relative X)
- the Y-axis coordinate (Relative Y)
- the height (Height Offset)
- Enter the appropriate offset in each field and then tap **OK** to return to the *Survey* Setup screen.


Tip – To view relative offset values on the Run screen, set the offsets as status text items on the slide-out tab.

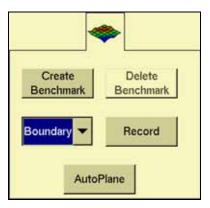
Select whether or not the system will force you to rebench each time that you reload the field.


Note – If you configure the Force Rebench setting to No, the RTK base station must be placed in exactly the same position for the field to be correct.

Configuring the implement for leveling

1. From the *Configuration* screen, select Implement and then tap **Setup**:

- 2. Do one of the following:
 - Tap **New** and then enter a new implement name.
 - Select an existing implement from the list.
- 3. Tap Settings:


4. Enter the details of the leveling implement:

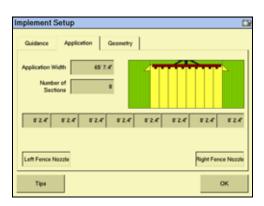
- Enter the appropriate implement width and offsets. a.
 - For a multiplane survey, set the Swath Width field to the width that you will use for collecting interior points.
 - When you are not using FieldLevel GPS, set the front/back offset (F/B Offset) to 0.
- In the *Rows* field, enter **1**.
- Tap **OK**. 5.

Operating the FieldLevel Survey/Design plugin

Run screen

When the FieldLevel Survey/Design plugin is installed, the following tab appears on the main guidance screen (the Run screen):

Creating a survey


Benchmarks

Before you can create a survey, you must set a benchmark—a point at a known location. When you are leveling, you can use benchmarks to do two things:

- Return to a point in the field with known coordinates to re-calibrate your exact position. This may include setting the bucket on the ground or on a solid surface that will not be disturbed while you perform field leveling.
- Move the design up or down to match the field surface at that point

A benchmark appears on the screen as follows:

View	Shown as
Plan	A red circle
Perspective	A red flag in a red circle

The first benchmark you create on a field is called the *master benchmark*. Field coordinates are calculated from this point. Subsequent benchmarks are called benchmarks.

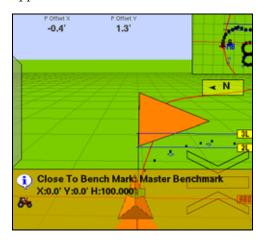
Note - You can choose for coordinates to be recorded with X, Y, and Height offsets from the master benchmark position. See Configuration, page 402.

Creating a benchmark

Place the GPS antenna in a known, repeatable location that will not change throughout the leveling of a field.

Tip - Mark this location with flags or some other marker so that you can return to the exact spot.

- 2. Stop the vehicle.
- Tap **Bench** on the *FieldLevel Survey/Design* tab.

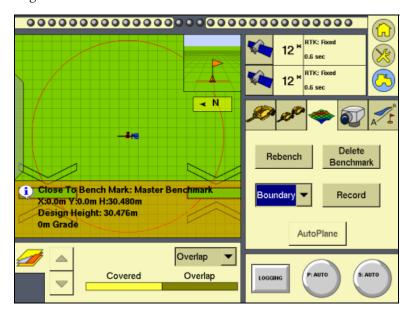

Note – If the FieldLevel II plugin is installed, you can tap **Bench** on that instead. Both **Bench** buttons have the same effect.

A countdown timer runs for 30 seconds and then the system creates the benchmark. To stop the averaging during the countdown, tap **Bench** again.

Note – If you are within the circle around an existing benchmark, a new mark is not created.

Rebenching

When you are within the circle around an existing benchmark, the following message appears on the Run screen:


If you tap either of the **Rebench** buttons when the receiver is within the circular radius of a benchmark, the receiver is calibrated over the existing benchmark.

Re-establishing a benchmark

In the FieldLevel II configuration, under the *Relative Heights* tab, there is an option to Force Re-Bench. If you plan to use the same base receiver setup each time you use this survey data, you can set the option to No.

However, if you plan to shift the location of the base, set this option to Yes.

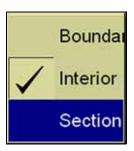
If you open a field that has an existing master benchmark and have selected *Force* Rebench, a large red circle is shown for 100 m (300 ft) around the master benchmark flag:

This indicates that you need to rebench over the master benchmark location to ensure that the design is aligned with the previous position.

You must be within this circle before you can re-establish the master benchmark. To ensure that the design is properly aligned:

- Return exactly to the master benchmark location that you marked on the ground (for example, with flags, see Creating a benchmark, page 406), regardless of where your current onscreen position appears to be.
- 2. Re-establish the benchmark.

This process accommodates RTK base station setup differences from the last time the field was open.


Collecting field data

After you create the benchmark(s), collect field layout data.

You can define three types of data:

Item	Description
Boundary	The outside of the field
Interior	Points on the inside of the boundary
Section	Can be used to divide the field into smaller sections

To define an item, select it from the list on the tab and then tap **Record**:

To stop recording, tap **Record** again.

Defining the boundary

Define a boundary to establish the confines of your field. Drive around the boundary, while you record the shape.

Defining interior points

The boundary is defined on the screen by a single red line. The current position is strung back to the start point of the boundary until you finish recording, so the boundary is always a closed loop.

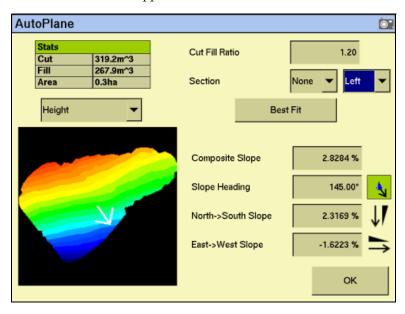
After you survey the boundary of the field, select *Interior* from the list and then tap **Record**. As you drive, the system records interior points.

To complete a full survey, create guidance lines and then drive over all of the interior of the field boundary, while the system records interior points.

Defining a section

After you define a boundary, you can define sections to split the field into parts. This enables you to create a design for just that section, rather than the whole field.

There are two ways to define a section:


- Begin recording the section line outside the boundary. Drive through the field to
 define the section line and then cross outside the boundary again. The section is
 defined.
- Record a section line inside the boundary. The ends of the line will extend to meet the boundary.

For example, sections can be useful after you finish working on the field for the day. Define the area that you completed as a section; when you return to the field, you can level the remaining area to a second best-fit plane. See Operating the FieldLevel II plugin, page 422.

Field design

Once you define the field points, the **AutoPlane** button becomes available.

To create a design for the field, tap the button. The field points are processed and then the *AutoPlane* screen appears:

This screen shows field information and enables you to create the design for your field. The AutoPlane functionality uses the topographic survey of your field to estimate the field surface elevations. Once completed, you can establish a design either by manually editing the slopes or by using the display to calculate a best-fit plane. The best-fit

calculation optimizes the height and slopes of a design plane to minimize the amount of dirt that has to be moved. Once a design is completed, and before you exit the AutoPlane design screen, select the topographic height map or the cut/fill color theme to transfer it to the Run screen with the design.

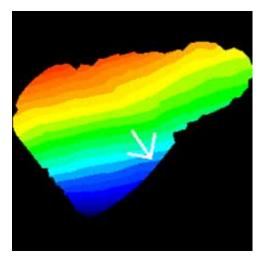
Options on the screen

Item	Description
Cut/Fill Ratio	When you move dirt, compaction or expansion can change the volume that it covers.
	The Cut/Fill Ratio is the amount of cut dirt that equals one volume of fill dirt.
	For example, the default <i>CutlFill Ratio</i> is 1.20. This means you lose 20% of your cut yards to compaction when you put the cut yards back down in the fill areas.
Section	If you set up sections when you defined the field, you can select one from the list.
Left/Right list	The section to the left of the section line, or the section to the right of the section line.

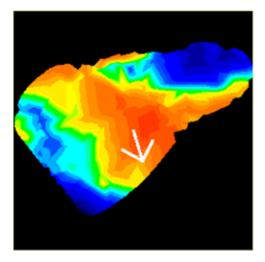
The design slope values show the angles and heading of the slope:

Item	Description
North -> South Slope	The angle of the design slope from North to South.
East -> West Slope	The angle of the design slope from East to West.
Composite Slope	The true angle of fall of the design. This is the angle of the slope when the two angles above are combined.
Slope Heading	The heading direction of the slope, when the two slopes are combined.

The icon beside each slope option shows the direction of the slope:


Because this is a negative slope, it drops from East to West.

The *Stats* table at the top-left of the screen shows field information:


Item	Description
Cut	The volume of dirt that must be cut for the current design.
Fill	The volume of dirt that must be added for the current design.
	Note – If the Cut and Fill values are the same, you will only be moving dirt. The volumes will balance out.
	The system includes the Cut/Fill Ratio when configuring these amounts. See page 410.
Area	The area of the field inside the boundary.

The image of the field on the left of the screen can show one of two things:

When the **Height** button is selected, the image shows the topographical height of the field:

- When the **Cut/Fill** button is selected, the image shows where dirt needs to be removed and where it needs to be added:
 - Areas that require dirt to be cut are shaded red.
 - Areas that require dirt to be filled are shaded blue.
 - Neutral areas that do not need adjusting are shaded green.

Creating a design

To create a design for the optimum slope for your field that requires the minimum amount of dirt to be moved:

- 1. Enter the *Cut/Fill Ratio*.
- In the *Section* list, do one of the following:

- Select the section to level.
- Select *None* to level the whole field.

3. Tap Best Fit.

The system uses the interior points that you collected to calculate the optimum slope of the field. The design information appears in the design slope options and the *Stats* table. An arrow appears on the image of the field to show the direction of fall.

If necessary, you can manually adjust the angle of the slope. However, this may require a greater amount of dirt to be moved, because the original design was the optimum.

Saving the new design

Tap **OK** to close the *AutoPlane* screen. The new design is saved as the default plane for this field. When the field is opened, the design loads but the color theme is not saved. To re-establish the color theme, tap **AutoPlane** and then select **Height** or **Cut/Fill**.

Reloading a field

When you create a design for a field (for example, a target leveling plane), the design is saved in the /field/ folder.

The design files are associated with the field, so if you close the field and then open it again, the design reloads with the field.

With RTK GPS, the position of the RTK base station is important to the heights used when the field was previously open. If the base station is not accurately positioned in the same physical location, you must reestablish the design over an existing benchmark to reestablish the height.

CHAPTER

The FieldLevel II Plugin

In this chapter:

- Introduction to field leveling
- Configuring the FieldLevel II plugin
- Operating the FieldLevel II plugin

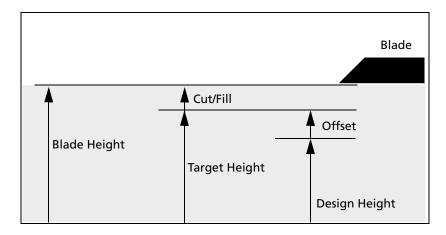
Once you complete a field survey and design with the FieldLevel Survey/Design plugin, you can use the FieldLevel II plugin to either level the field to that design or install subsurface drainage or to surface ditches.

This chapter describes how to configure and use the FieldLevel II plugin to be effective and accurate with your water management.

Introduction to field leveling

MultiPlane designs

The FieldLevel II system supports external leveling designs from MultiPlane design software. MultiPlane software can run a wide range of "what if" scenarios, enabling you to create complex designs with multiple field sections. You can export these design control files and then load them into the FieldLevel II system to shape the field surface based on the work in the office.


Leveling models

In addition to AutoPlane and MultiPlane design support, the FieldLevel II system has five additional leveling models:

- Point and Slope The system levels at a consistent upward or downward slope, regardless of the vehicle's direction. This can be useful for installing tile and field drainage.
- Autoslope You define a section line and a set of constraints for the system to
 use to design either a tile or surface ditch profile. The system will then install tile
 or cut a surface ditch to that design.
- Flat plane (laser) Use this leveling model to level a field that has previously been measured with a laser. The FieldLevel II GPS system will correct the design heights to a plane surface to match your previous laser system.
- Flat plane (GPS) Use this model to level a field using the FieldLevel II GPS system. No corrections will be made to a flat plane, so the surface will be curved to match the surface of the Earth. This is the most accurate model to use so that water sits at an equal depth across a field.
- Contour The system guides you around a contour. The system indicates
 whether to drive up or down to maintain your current level. This is designed for
 marking rice levees.

Terminology

The FieldLevel II system uses the following terms:

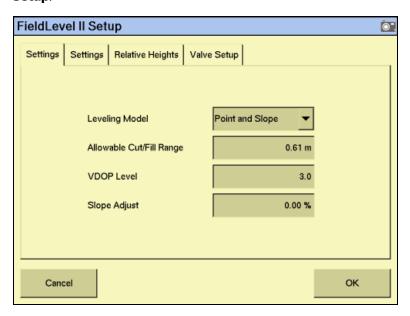
Item	Description
Blade Height	The current height of the blade.
Design Height	The height at the current location determined by the design plane.
Offset	The difference between Design Height and Target Height. Using the offset buttons creates a plane that is parallel to the original design.
Target Height	The height on the target plane that the blade will attempt to reach. This is the Design Height ± the Offset. When the blade reaches the Target Height, the height indicator arrow turns green.
Cut/Fill	 The difference between the Blade Height and the Target Height: When Cut is displayed, the current ground is above the target. The height indicator arrow turns red and points down, which means that the blade needs to move down to reach the Target Height. When Fill is displayed, the current ground is below the target. The height indicator arrow turns red and points up, which means that the blade needs to move up to reach the Target Height.

Configuring the FieldLevel II plugin

Note - Before you can configure the system, it must be professionally installed. For more information, contact your local reseller.

There are five steps to complete:

- Step 1. Configuring the implement, page 416
- Step 2. Configuring the leveling model, page 416
- Step 3. Calibrating the FieldLevel valve module, page 420
- Step 4. Configuring the FieldLevel GPS receiver, page 421


Step 1. Configuring the implement

If you have not already configured the implement, see Configuring the implement for leveling, page 404.

Step 2. Configuring the leveling model

Install the FieldLevel II plugin (for more information, see Adding or removing a plugin, page 56).

From the Configuration screen, select the FieldLevel II plugin and then tap Setup:

2. Select the leveling model from the drop-down list:

Leveling model	Description
Point and Slope	Creates consistently sloped tile or surface drainage.
	From the starting point, the vehicle levels at a constant slope, regardless of its direction. See Slope adjust for Point and Slope leveling, page 417.
Autoslope	Creates a tile or surface drainage design at an optimal depth within a set of constraints. The slope will not be constant, providing the most efficient tile or ditch design. See Driving in Autoslope mode, page 432
Flat Plane (laser)	Levels the field to a design plane. The plane can be configured in the onboard software using benchmarks and slopes, or by creating a plane of best-fit over a surveyed surface (Autoslope). It uses a high-accuracy GPS receiver mounted on the leveling implement. However the design heights are corrected to a plane surface to match your old laser leveled fields. See Configuring settings for all leveling models, page 418.

Leveling model	Description
Flat Plane (GPS)	Levels the field to a design plane. The plane can be configured in the software using benchmarks and slopes, or by creating a plane of best-fit over a surveyed surface (Autoslope). It uses a high-accuracy GPS receiver mounted on the leveling implement. See Configuring settings for all leveling models, page 418.
Multiplane	Uses more complex surface designs imported from the MultiPlane design software. See Working with MultiPlane designs, page 429
Contour	Uses the FM-1000 integrated display virtual lightbar, or an LB25 external lightbar to guide the vehicle along contours to keep the vehicle at the same elevation. This can be used for levee marking and applications that require guidance to elevations. See Configuring settings for all leveling models, page 418.

The FieldLevel II plugin Setup screen has four tabs: Relative Heights tab, Valve Setup, and two Settings tabs.

The first *Settings* tab is the same for all leveling models, except for Point and Slope, which includes an extra field for Slope Adjust. The other three tabs are the same regardless of which leveling model you choose, and are described in the following sections.

Slope adjust for Point and Slope leveling

When you select Point and Slope leveling, the *Slope Adjust* setting appears in the first settings tab of the FieldLevel II Setup screen.

Item	Description
	The Slope Adjust field controls the amount that the gradient changes each time you tap the up arrow or the down arrow on the Level tab. For example, if the leveling gradient is set to -3%, and the Slope Adjust field is set to 2%, when you tap the down arrow on the Level tab, the leveling gradient increases to -5%.

Configuring settings for all leveling models

Item	Description
Allowable Cut/Fill Range	Select the Allowable CutlFill Range field and then enter the acceptable warning distance.
	When Auto mode is engaged and the blade is outside this range for more than three seconds, a warning appears.
VDOP Level	Vertical Dilution of Precision (VDOP) is a measure of the vertical accuracy of the GPS signal. If the VDOP reaches this value, a warning message appears.
	CNH recommends a VDOP setting of less than 3.
Blade Step	Tap the <i>Blade Step</i> field and then enter the amount that you require the blade to move, each time it is "stepped" up or down by the ^ or v offset buttons.
Course Blade Step	Coarse mode enables you to offset the target height in large increments with a single tap, such as a 0.2' fill. Select the <i>Coarse Blade Step</i> field and then enter the amount that you require the blade to move each time it is stepped up or down in <i>Coarse</i> mode.
Antenna Height	Select the <i>Antenna Height</i> field and then enter the height of the antenna above the lower edge of the blade.
On-grade	Select the On-grade Limit field and then enter the limit.
Limit	This sets the distance the blade can move before the green blade height indicators change to thin red arrows. At twice this distance, the height indicators become thick red arrows. See Blade position indicators, page 424.
Disengage Raise	When you disable <i>Auto</i> while scraping a field, you can set a time value that will automatically raise the blade. For example, if you set 0.5s, the blade will raise for half a second when you turn off <i>Auto</i> mode.
Remote Input Auto	You can attach a remote for enabling and disabling <i>Auto</i> mode. This remote is controlled with the <i>Remote Input Auto</i> setting.

Configuring relative heights for all leveling models

By default, relative heights are enabled (meaning coordinates are recorded relative to the master benchmark). For field leveling or data collection, you can set relative offsets so that the coordinates are recorded relative to the offsets set for the master benchmark. You can set offsets in any of the following directions:

- the X-axis
- The Y-axis
- The height

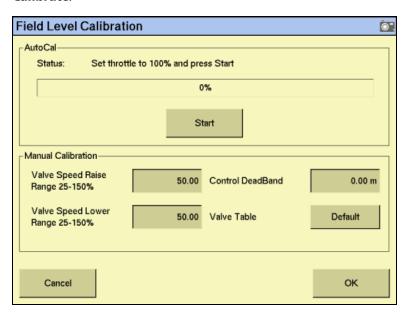
The *Relative Heights* tab of the FieldLevel II *Setup* screen shows the following items:

Item	Description
Relative Heights	Select <i>Enabled</i> to use relative heights from the master benchmark. Choose <i>Disabled</i> to use GPS heights at all times.
Relative X	If relative heights are enabled, this is the X coordinate that will be applied to the master benchmark.
Relative Y	If relative heights are enabled, this is the Y coordinate that will be applied to the master benchmark.

Item	Description
Height Offset	If relative heights are enabled, this is the height value that will be applied to the master benchmark.
Force Rebench	If Force Rebench is set to Yes, and the field has been closed and opened again, the system will not let you start work until you have re-benched. Use this setting if you are using a different base station setup between work sessions. If you have a permanent base station setup that is never moved, then it is OK to not force a rebench.

Tip – To view relative offset values on the Run screen, set the offsets as status text items on the slide-out tab.

Configuring the Valve Setup for all leveling models:


When you select the *Valve Setup* tab on the FieldLevel II *Setup* screen, the following items are available:

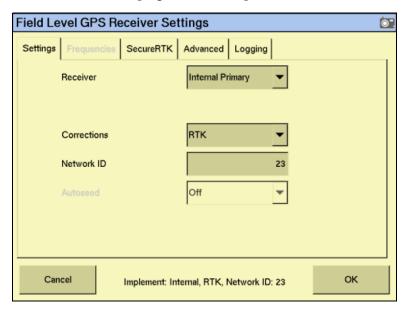
Item	Description
Valve Type	Select the Valve Module field and then select the type of valve that is connected.
CAN Bus	Select the port on the FM-1000 integrated display that the valve module is connected to.

Step 3. Calibrating the FieldLevel valve module

Note - Depending on the make and manufacturer of your vehicle, the tractor computer may need to be put into a special mode. Refer to the FieldLevel II Installation Guide for your vehicle type.

From the *Configuration* screen, select the FieldLevel II plugin and then tap Calibrate:

- Set the vehicle throttle to 100%.
- 3. Tap Start.


The system performs its calibration sequence to test the speed at which the blade raises and lowers. This process takes approximately 8–10 minutes.

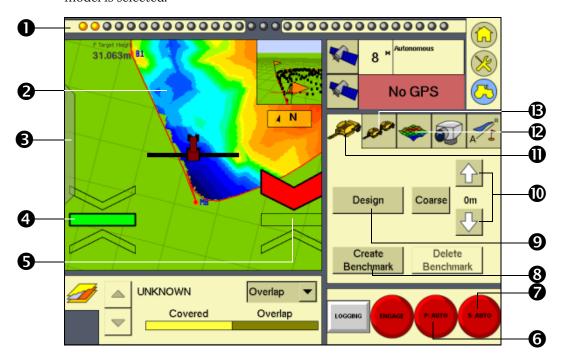
To manually calibrate the valve, enter values in the three Manual Calibration fields and then tap **OK**.

Step 4. Configuring the FieldLevel GPS receiver

The FieldLevel system uses its own GPS receiver to record the exact position of the leveling blade. To configure this receiver:

From the Configuration screen, select the GPS Receiver plugin that is associated with the FieldLevel II plugin and then tap **Setup**:

- From the Receiver drop-down list, select which GPS receiver you will use for your FieldLevel system. CNH recommends that you select Internal Primary when configuring the display as a stand-alone FieldLevell II system, but you can use an external GPS receiver. If you are also using the Autopilot system, CNH recommends that you use Internal Secondary, as the Autopilot system will be occupying the Internal Primary receiver.
- From the *Corrections* drop-down list, select *RTK* for all FieldLevel II applications. 3.
- 4. Set the Network ID to the same network ID that is set in the base station receiver
- 5. Tap **OK**.

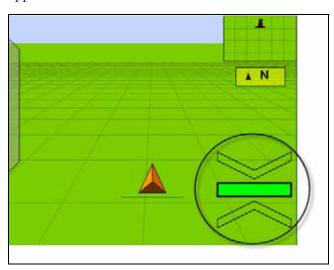

The FieldLevel II plugin is now configured and ready to use.

Operating the FieldLevel II plugin

Main guidance screen

Run screen

The FM-1000 integrated display's main guidance screen (the Run screen) changes when the FieldLevel II plugin is installed. It can also change depending which leveling model is selected:


Item	Description	Description
0	Virtual lightbar	Provides guidance with illuminated LEDs. When using the FieldLevel II Contour leveling model, the virtual lightbar can be used for levee marking. Also, in the Autoslope leveling model, it will guide you onto the design alignment when installing tile or cleaning a surface ditch.
2	Cut/fill map	Shows the difference between the design plane and the survey. Green areas are on grade, blue areas require fill, and the red areas require cut.
6	Status items tab	Open to view a variety of text information regarding the operation of the FM-1000 integrated display.
4	Primary cut/fill indicator	Primary cut/fill indicator. When the blade is below grade, the up arrow is red (thin is close, thick is a long way off). When the blade is above grade and cut is required, the down arrow is red. When on grade, the center is green. See Blade position indicators, page 424.

Item	Description	Description
6	Secondary cut/fill indicator	For use with tandem and dual scrapers. For dual scrapers it is the right side. For tandems, it is the rear scraper. See Blade position indicators, page 424.
6	Primary Auto	This button engages the automatics to the hydraulic valve controlling the blade. When using dual scrapers, this is the left side of the blade. When using tandem scrapers, this is the front scraper.
0	Secondary Auto	This button engages the automatics to the hydraulic valve when using dual or tandem scrapers. When using dual scrapers, this is the right side of the blade. When using tandem scrapers, this will control the rear scraper.
8	Create Benchmark	You must create benchmarks that FieldLevel II operations use as a point of horizontal and vertical reference.
0	Design button	Engage this button to design a field slope and orientation, or in the case of Autoslope, you can set the design parameters for the tile or surface ditch profile.
•	Blade step	Use the up and down arrows to manually adjust the grade of the scraper or tile plow blade.
Ф	FieldLevel II single control	Used when there is a single antenna on a scraper or tile plow.
Ø	FieldLevel II Survey/design control	Used for surveying boundaries, interior lines, or section lines. It is also for designing an "Autoplane" surface where you can create a best-fit plane through a surveyed field and balance the cut and fill to your requirements.
₿	FieldLevel II dual control	Used for either a dual or tandem scraper configuration.

Blade position indicators

When you use the FM-1000 integrated display to provide guidance (for example, guiding to a contour), guidance is displayed on the virtual lightbar at the top of the screen.

When you use the display to show field leveling information, blade position indicators appear on the Run screen:

Item	Description	Example
Green bar in center	The blade is at the correct target height (it is within the On-Grade Limit).	
Small red arrow pointing up	The blade is beyond the On-Grade Limit value below the target height.	
Large red arrow pointing up	The blade is considerably below the target height (more than double the <i>On-Grade Limit</i> value).	
Small red arrow pointing down	The blade is beyond the On-Grade Limit value above the target height.	
Large red arrow pointing down	The blade is considerably above the target height (more than double the <i>On-Grade Limit</i> value).	

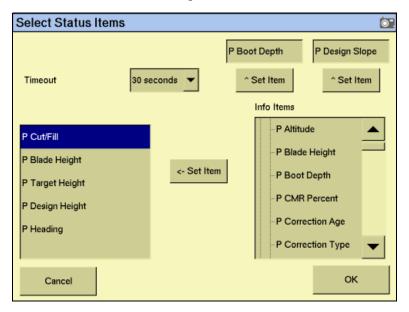
The arrow points in the direction that the blade needs to move for the blade to be on grade. The size of the up or down arrow indicates the amount of movement required.

FieldLevel status text items

Status text items describe factors in leveling models.

Note - The FieldLevel status items all begin with P which denotes the Primary GPS receiver. If you have the Tandem/Dual plugin installed, you will also have "S" status items available which denotes Secondary.

Item	Description
P Altitude	The current GPS altitude of the blade.
P Blade Height	The current height of the blade shown as a relative height or a GPS height depending on settings selected.
P Boot Depth	The depth of the boot when installing tiles or the depth of the blade when cleaning surface ditches (used with the Autoslope leveling model).
P CMR Percent	The percentage of data being successfully received from the base GPS receiver.
P Correction Age	The time since the last GPS correction was received from the GPS base station.
P Correction Type	The solution type (for example: RTK Fixed, or RTK Float, etc.)
P Cut/fill	The difference between the blade height and the target height. When <i>Cut</i> is displayed, the current ground height is above the target height, and the height adjustment indicator shows a red down arrow, which means that the blade needs to moved down to reach the target height. When <i>Fill</i> is displayed, the current ground height is below the target height.
P Design Height	The originally planned or designed height at the current location.
P Design Slope	When using the Autoslope leveling model, this displays the design slope with respect to the current location along the section line.
P Distance Travelled	For use with Point to Slope mode, this is the distance traveled since Auto mode was enabled.
P East	The difference in the East component from the Local Tangent Plane (LTP).
P GPS Status	The solution type (for example: RTK Fixed, or RTK Float, etc.)
P H Error	The current estimate of the error in the horizontal component.
P HDOP	The horizontal dilution of position.
P Heading	The current direction that the vehicle is heading in.
P Latitude	The latitude as recorded by the GPS receiver.
P Longitude	The longitude as recorded by the GPS receiver.
P Network ID	The network ID that the GPS receiver is set to, which needs to be the same as the base receiver network ID.
P North	The difference in the North component from the <i>Local Tangent Plane</i> (LTP).
P Offset	The relative offset in the vertical component.
P Offset X	The relative offset in the X component.
P Offset Y	The relative offset in the Y component.
P Satellites	The number of satellites in the GPS/GLONASS solution.
P Speed	The current speed of the vehicle.


Item	Description
P Target Height	The height the blade will attempt to reach. This is the design height ± the offset. When the blade reaches the target height, the arrows turn green.
P Up	The difference in the up component from the Local Tangent Plane (LTP).
P VDOP	The vertical dilution of precision.
P Vertical Error Estimate	The current estimate of error in the height calculated by the FieldLevel GPS receiver.

These status text items can be set to appear permanently at the top of the screen or on a slide-out tab. The following items can also be viewed from the Run screen:

- FieldLevel GPS status
- FieldLevel Number of satellites
- FieldLevel correction age

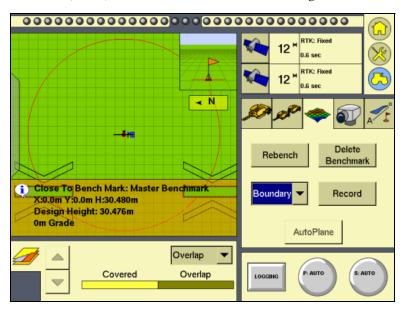
You can either choose the individual status text items that are on the slide-out tab, or you can use the default selections:

- From the *Configuration* screen, select the System plugin and then tap **Setup**. The Display Setup screen appears.
- Select *Status Items* and then tap **Setup**:

- To manually add a status text item to the tab:
 - From the list on the left, select the position to fill. a.
 - b. From the *Info Items* list, select the status text item to be added.
 - Tap <- Set Item.

Note - From the Timeout menu, select Never to prevent the Status tab from automatically retracting. The Status tab will then only retract when tapped.

Reloading a field


When you create a design for a field (for example, a target leveling plane), the design is saved in the /field/ directory.

The design files are associated with the field, so if you close the field and then open it again, the design reloads with the field.

With RTK GPS, the position of the RTK base station is important to the heights used when the field was previously open. If the base station is not accurately positioned in the same physical location, you must reestablish the design over an existing benchmark to reestablish the height.

Re-establishing a benchmark

If you open a field that has an existing master benchmark, a large red circle is shown for 100 m (300 ft) around the master benchmark flag:

This indicates that you need to rebench over the master benchmark location to ensure that the design is aligned with the previous position.

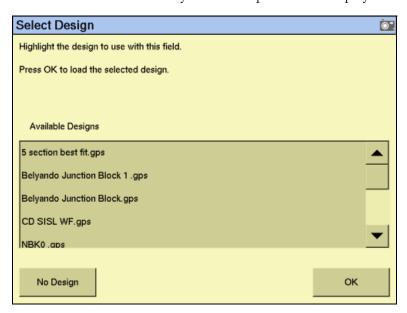
You must be within this circle before you are allowed to re-establish the master benchmark. To ensure that the design is properly aligned:

- Return exactly to the master benchmark location that you marked on the ground (for example, with flags, see Benchmarks, page 405), regardless of where your current on-screen position appears to be.
- Re-establish the benchmark.

This process is designed to accommodate RTK base station setup differences from the last time the field was open.

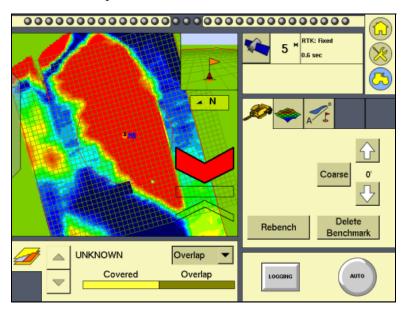
Importing control files from the Multiplane software

Once you finish manipulating a topographic survey file in *MultiPlane*, you can export a control file (*.GPS) for use with the FieldLevel II system. Copy the design control file into the $\AgGPS\Designs\$ folder on a USB memory stick.


If the USB memory stick has not yet been used with the FM-1000 integrated display, the $\AgGPS \Designs$ folder will not exist. To create the directory on the USB memory stick, do the following:

- Insert the USB memory stick into the back of the FM-1000 integrated display.
- 2. From the *Configuration* screen, select *System* and then tap **Setup**. The *System Setup* screen appears.
- 3. From the list of system settings on the left, select *Data Files* and then tap **Manage**. The *Data Files* management screen appears.
- From the list on the right (directories that already exist in the display), select the *Designs* directory and then tap **Copy**. The directory is copied to the USB memory stick.
- When the **Copy completed** message appears, tap **OK**. The copied directory appears in the list of directories on the left side of the *Data Files* screen.

Working with MultiPlane designs

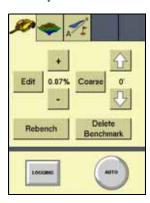

When the leveling model is set to Multiplane Design and the FM-1000 integrated display opens a field, it scans the $\AgGPS\Designs\$ folder and any MultiPlane .GPS control files that are close to your current position are displayed:

Select the appropriate control file and then tap **OK**.

The control file will be loaded, displaying a color cut/fill map of the field (red = cut; blue = fill).

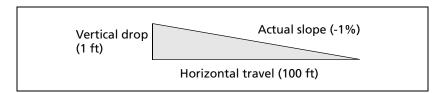
When you use a MultiPlane design control file, the FieldLevel II system remains in Auto mode if you drive off the design, but maintains the design height it had when you left the design. If you disengage Auto mode when you are off the design, the display will not allow you to re-engage the FieldLevel II system until your position is back over the color cut/fill map.

Leveling model specific information


You have different leveling options, depending on the leveling mode that you selected (see Step 2. Configuring the leveling model, page 416):

For information specific to the leveling model:

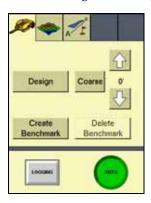
- For Point and Slope mode, see below.
- For Autoslope mode, see page 432.
- For Flat Plane (Laser) mode, see page 436.
- For Flat Plane (GPS) mode, see page 436.
- For Contour mode, see page 442.


Driving in Point and Slope mode

When you drive in Point and Slope mode, the *FieldLevel II* tab appears as follows:

Тар	То
Edit	Edit the design slope.
+ button	Increase the design slope by the Slope Adjust amount.
- button	Decrease the design slope by the Slope Adjust amount.
Bench or Rebench	Create a benchmark, see Benchmarks, page 405.
	Set the Design Height equal to the Blade Height.
Delete Benchmark	Delete the benchmark at the current location.
Up Arrow	Raise the blade by the Blade Step amount.
Down Arrow	Lower the blade by the Blade Step amount.
Auto	Engage automatic blade height control:
	starts the slope calculation
	resets the height
	resets the cut/fill
Coarse	When selected, the Up and Down arrows change the blade height by the <i>Coarse Blade Step</i> amount. This enables you to move the blade by a large amount instead of small increments.
Logging	Log the coverage, so that you can see on the map where you have been dependent on your Implement Width. A shape file is created with cut/fill and height information

The slope is defined as the percentage vertical drop against horizontal travel. A positive slope goes upwards and a negative slope goes downward. For example, if the slope is set to -1%, the slope will drop 1 ft for every 100 ft horizontally traveled:

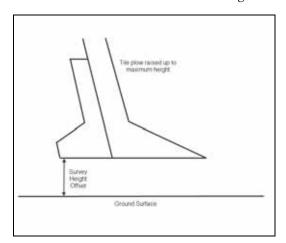


To view or change the Point and Slope gradient, tap **Edit** on the *FieldLevel II* tab. Alternatively, tap the + or - buttons to move the slope by the *Slope Adjust* amount (defined in the *FieldLevel* settings, under *Leveling model - Point and Slope/Slope Adjust*).

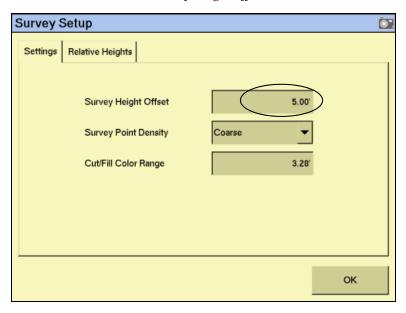
Driving in Autoslope mode

The AutoSlope leveling model can be used for both tile and ditching applications. For tile applications, the system runs on both self-propelled tile machines and pull-type plows towed behind a tractor. For ditching applications, the AutoSlope system works with any type of scraper supported by the FieldLevel II system.

When driving in Autoslope mode, the *FieldLevel II* tab appears as follows:

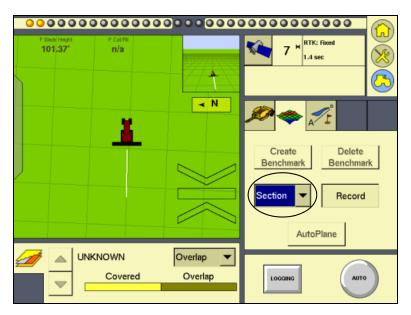

Тар	То
Design	Set the Autoslope constraints for your tile or ditch design. Finalize the design before installing the tile or cleaning the ditch.
Up arrow	Raise the tile boot or blade by the Blade Step amount.
Down arrow	Lower the tile boot or blade by the Blade Step amount.
Coarse	When selected, pressing the Up or Down arrows will move the blade by the Coarse Blade Step amount. This enables the operator to move the blade by a large amount instead of small increments.
Auto	Set Automatics to the hydraulic valve. The blade or tile boot will be driven to the design depth depending on where you are relative to the section line.
Logging	Log the coverage, so that you can see on your map where you have been dependent on your Implement Width. A shape file will also be created with cut/fill and height information.

Surveying your alignment for tile or ditch


Before you begin using Autoslope, you must set the Survey Height Offset. This offset will be applied to the heights of your surveyed alignment, preventing the need to rebench before installing tile. This means that you can survey the alignment, and then install tile straight away.

To set the Survey Height Offset, do the following:

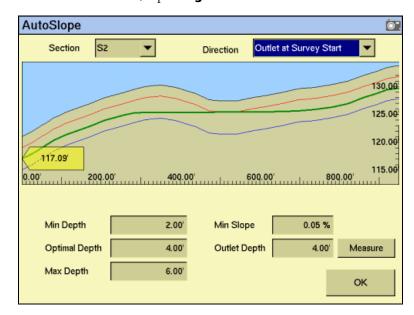
- From the Configuration screen, select the FieldLevel Survey Design plugin and then tap **Setup**. The *Survey Setup* screen appears.
- On the tile plow, raise the boot as high as it will go and measure the distance from the bottom of the tile boot to the ground:


Enter this value into the Survey Height Offset field:

Note - CNH recommends that you change the Survey Point Density from Coarse to Fine. The FieldLevel II system will then record survey points every 1.5m (5 ft) and provide a more accurate profile of the ground surface.

- 4. **Тар ОК.**
- In the Run screen, drive to a point that will be untouched to use as a reference point. Measure a master benchmark and then flag this point so you can easily find it again.

6. Drive the vehicle to the start of the line where you wish to install tile or clean a ditch (for the most efficient method, CNH recommends that this is the high end of the line). Open the *Survey/Design* tab and then select *Section* from the dropdown list:



7. Tap **Record** and then drive the line all the way to the end point (for the most efficient method, CNH recommends the end point is where the tile line is to be connected to a main or outlet). Tap **Record** again to stop the recording.

You have now successfully surveyed the line where the tile is to be installed or the ditch is to be cleaned.

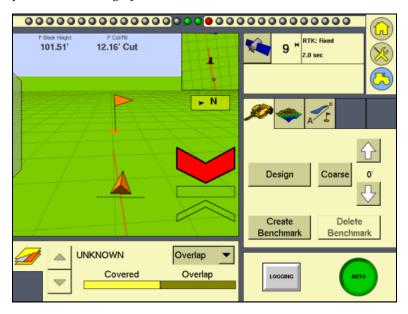
Creating the design

From the Run screen, tap **Design** in the *FieldLevel II* tab:

From the Section drop-down list, select the section line that you want to design.

Note – *The section lines are labeled from S1 in the order that they surveyed in.*

- The design screen works from the outlet at the left side of the screen, and runs the design uphill to the right. The direction of the profile is defined by the direction that it was surveyed. If your survey profile is displayed the wrong way around, change the setting in the *Direction* drop-down list from *Outlet at Survey* Start to Outlet at Survey End, or from Outlet as Survey End to Outlet at Survey Start.
- Edit the constraint fields to your requirements.


Constraint	Description
Min Depth	The minimum depth for the tile or ditch installation. The system will not allow the design profile to be any shallower than the minimum depth. The minimum depth is shown on the profile as a red line.
Optimal Depth	The depth to install the tile or ditch. The design will keep to this depth where it can. It will move off the optimal depth to be within the other constraints where it needs to.
Max Depth	The maximum depth for the tile or ditch installation. The system will not allow the design profile to be any deeper than the maximum depth. The maximum depth is shown on the profile as a blue line.

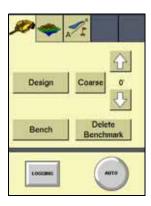
Constraint	Description
Min Slope	The minimum slope for the tile or ditch installation. The system will not allow the design slope to be any less than the minimum slope.
Outlet Depth	The depth at which the design profile will be at the outlet. The Outlet Depth can either be entered or measured. To measure the Outlet Depth, you can drop the tile plow into the ground so that the boot is at the same height as the main or outlet. Tap Measure ; the outlet Depth is entered automatically. When you do this, another point is added onto the section line, providing that you are within 20m (65 ft) of the end of the surveyed section line. The height of the outlet is displayed on the profile in a yellow tag.

Note – For ditching applications, the Min Depth and Optimal Depth are set close to the surface.

- 5. Тар ОК.
- In the Run screen, you can install the tile or clean the ditch from either the outlet or the top end of the profile. The section line that you install to appears as red on the screen, where other section lines are white.

The virtual lightbar at the top of the FM-1000 integrated display's screen guides you onto the design profile:

Note - Specifically for the Autoslope leveling model, P Boot Depth displays the depth of the tile boot or the blade for ditching applications, and P Design Slope displays the current slope that the tile or ditch is being installed to. See FieldLevel status text items, page 425).

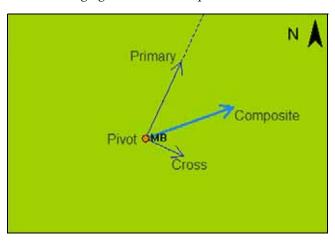

Driving in Flat Plane (Laser) and Flat Plane (GPS) modes

When driving in Flat Plane mode, the *Laser* and *GPS* options operate the same.

The FlatPlane (Laser) model results in a mathematically flat surface. This means that the plane does not follow the curvature of the Earth, but remains on a plane. Use this model when the land has previously been leveled with a laser system and you want to touch up the field.

The FlatPlane (GPS) model results in an equipotential surface meaning that the design surface is curved with surface of the Earth.

Note - Neither of these models can be used with a laser system; the entire FieldLevel II system only works with GPS.

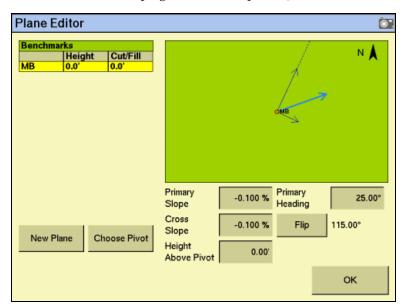


Тар	То	
Design	Enter the Plane Editor where you can edit the Design plane.	
Bench or Rebench	Create a benchmark, see Benchmarks, page 405.	
	Set the Design Height equal to the Blade Height.	
Down Arrow	Raise the blade by the Blade Step amount.	
Up Arrow	Lower the blade by the <i>Blade Step</i> amount.	
Auto	Engage automatic blade height control:	
	starts the slope calculation	
	resets the height	
	resets the cut/fill	
Coarse	When the Coarse button is selected, pressing the + or - button will move the blade by the <i>Coarse Blade Step</i> amount.	
Delete Benchmark	Delete the benchmark at the current location.	
Logging	This will log the coverage, so that you can see on your map where you have been dependent on your implement width. A shape file is created with cut/fill and height information.	

Defining a plane

You can define a plane in the *Plane Editor* on the FM-1000 integrated display. To define a plane, use at least one point as a pivot point and extra information based on direction and slope requirements.

The following figure show the required elements:



Element	Description
Pivot Benchmark	The single benchmark where the plane is defined. All slopes will pivot around this point.
Primary	The first axis upon which the slope is defined. It has a Primary Slope and Primary Heading component. The Primary Slope is defined as a negative number, where water will fall along the primary axis.
Cross	The second axis upon which the slope is defined. The Cross Heading will always be 90° or 270° from the Primary Heading. The Cross Slope is defined as a negative number, where water will fall along the cross axis. To define the plane by a single heading and slope, then you should set the Cross Slope value to 0.000%
Composite	When both Primary and Cross slopes are defined, the Composite Slope direction shows the actual heading where water will fall. If you have 0.000% slope on the Cross axis, the Composite Heading will be the same as the Primary Heading.

Defining a plane using a single point

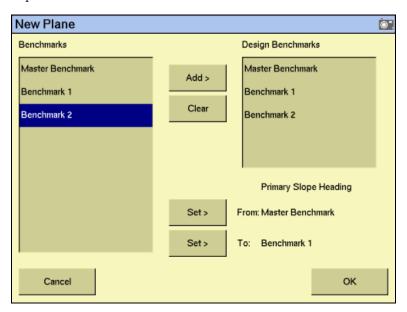
From the Run screen, select the Survey/Design plugin and then create a benchmark that will be used to define the direction of the slope and its heading.

Note – It can be useful to create the benchmark at the critical point; for example, where the water will enter or exit the field. This ensures that where the benchmark is, the plane is on grade.

2. Select the *FieldLevel II plugin* and then tap **Design**:

- If more than one benchmark is stored, tap **Choose Pivot** and then select the 3. benchmark that you want to be on grade.
- Tap **OK**. The *Plane Editor* screen appears. 4.
- If using a known offset, enter it into the Height Above Pivot field. 5.
- Enter the values for *Primary Slope*, *Primary Heading*, and *Cross Slope*: 6.
 - For water to run along the Primary and Cross axis, the slope values must be keyed in as negative values.
 - If you want to define the primary heading by measuring a second point, see Defining a plane using multiple benchmarks, page 439.
- To change the direction of the Cross Slope, tap Flip. This changes the *Cross* Heading between 90° and 270° from the Primary Heading.
- The plane is now defined. Tap **OK**. The Run screen appears.

Note – The FieldLevel II plugin searches for a survey on the field. If there is a survey, a Cut/Fill map appears on the new design plane.

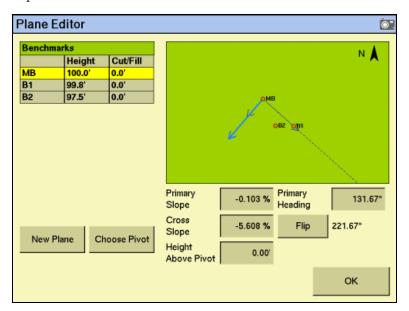

Defining a plane using multiple benchmarks

You can use multiple benchmarks to define a plane based on your specific requirements. If multiple benchmarks are created, you can design a plane of best-fit through those points.

If you use three benchmarks to design the plane, then the cut and fill values will be "0.0" through those points as the plugin can create a perfect plane. If you use more than three benchmarks to design the plane, the cut/fill values will be the residual difference between the plane of best-fit and the benchmark elevations.

To define a plane using multiple points, do the following:

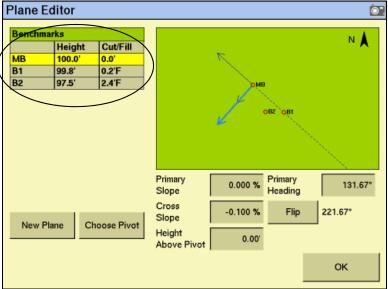
- From the Run screen, select the Survey/Design plugin and then create two or more benchmarks to help define the plane. If a primary heading definition is required you only need two benchmarks. If all the slopes of a field are to be defined, then you need at least three benchmarks.
- 2. Select the FieldLevel II plugin and tap the **Design** button. The *Plane Editor* screen appears.
- 3. Tap New Plane:



- 4. From the *Benchmarks* list, select the benchmark to be used as the primary pivot and then tap **Add**. The benchmark is be copied to the *Design Benchmarks* list.
- 5. Repeat Step 4 until all the required benchmarks are copied to the *Design Benchmarks* list. The *Design Benchmarks* list contains the benchmarks for the multi-point plane.
- 6. To set the *Primary Slope Heading*, choose the first benchmark to define the heading and then tap the *From:* **Set>** button.

Note – *CNH* recommends that this point is the uphill point of the two points to be used to define the primary slope.

7. Select the second point of the primary slope and then tap the *To*: **Set>** button.


8. Tap **OK**:

The selected benchmarks appear in the Benchmarks table along with their associated cut/fill values. The Primary Slope and Cross Slope values reflect the calculated slopes based on the benchmarks entered in the New Plane screen.

- 9. To update the slope values:
 - Identify the benchmark to be used as the new pivot. a.
 - Tap the **Choose Pivot** button. The *Choose Pivot* screen appears. b.
 - From the *Choose Pivot* screen, select the benchmark to be used as a the pivot for the new slope from the screen.
 - Tap **OK**. The *Plane Editor* screen appears.

10. Select the *Primary Slope*, *Cross Slope*, or *Height Above Pivot* areas to edit the slope values as required:

Note – *The cut/fill values in the Benchmarks table will update automatically.*

11. The plane is now defined. Tap **OK**. The Run screen appears.

Note - The FieldLevel II system will search for a survey on the field. If there is a survey, a cut/fill map appears as the new design plane.

Driving in Contour mode

When you drive in Contour mode, the *FieldLevel II* tab appears as follows:

Item	Description	
Up Hill Left	Select whichever of these buttons is appropriate:	
Up Hill Right	If you are driving around the contour with the uphill slope on your left and the downhill slope on your right, select Up Hill Left .	
	• If you are driving around the contour with the uphill slope on your right and the downhill slope on your left, select Up Hill Right .	

Item	Description	
Coarse	When selected, the Up and Down arrows change the blade height by the <i>Coarse Blade Step</i> amount. This enables you to move the blade by a large amount instead of small increments.	
Up arrow	Increase the design height by the Blade Step amount.	
Down arrow	Decrease the design height by the Blade Step amount.	
Bench or Rebench	Create a benchmark, see Benchmarks, page 405.	
	Set the Design Height equal to the Blade Height.	
Guide	Select Guide to get lightbar guidance at the current level.	
Logging	Logs the coverage, so that you can see on your map where you have been dependent on your Implement Width. A shape file is created with cut/fill and height information.	

The FieldLevel II height indicators show you whether to raise or lower the blade so the contour remains at the same level.

- In the Run screen, drive the vehicle to where you want to start the first levee and then set the master benchmark at this point.
- Set which side of the vehicle is uphill. Tap **Guide**, drive the vehicle forward, following the lightbar to keep the vehicle on the same contour:
 - To move to the next levee, turn the vehicle around and change the *Up Hill* direction.
 - To step the blade up or down, use the and ${}^{\blacktriangle}$ and ${}^{\blacktriangledown}$ buttons to achieve the required offset and then follow the lightbar to keep the correct grade.

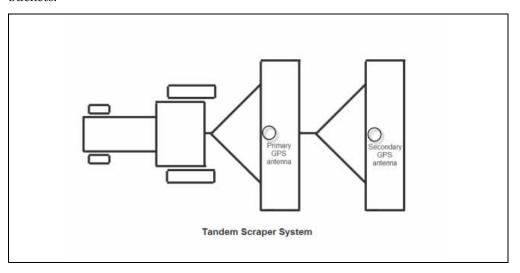
CHAPTER

20

The Tandem/Dual Plugin

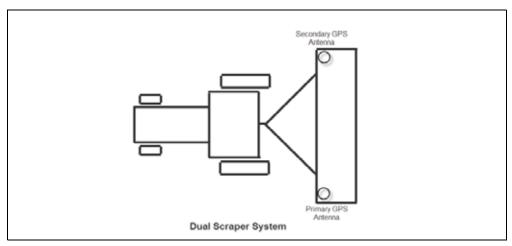
In this chapter:

- Introduction to tandem or dual leveling
- Configuring the Tandem/Dual plugin
- Operating the Tandem/Dual plugin


The Tandem/Dual plugin requires the FieldLevel II plugin to be already installed on the FM-1000 integrated display. Once configured, it allows you to control leveling with two GPS receivers in one of two possible scraper configurations.

This chapter describes how to configure and use the Tandem/Dual plugin to modify fields.

Introduction to tandem or dual leveling


Tandem scraper configuration

The tandem scraper configuration describes the practice of towing two scrapers, one behind the other. This type of leveling provides increased efficiency as it allows for the blade of each scraper to be controlled independently from the other. This means more dirt can be cut before you have to drive to a fill area and remove dirt from the scraper buckets.

Dual scraper configuration

The dual scraper configuration describes a single scraper with two GPS antennas, one at each end of the blade. This allows for control of the roll of the blade, giving a more accurate surface. This configuration is ideal for complex surfaces with high variability slopes.

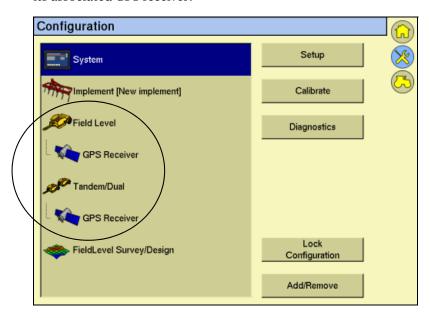
Note – For the FieldLevel II dual system you must use a scraper with dual hydraulic controls.

Configuring the Tandem/Dual plugin

Note – Before you can configure the system, it must be professionally installed. For more information, contact your local reseller.

There are six steps to complete:

- Step 1. Configuring the implement
- Step 2. Preparing the FM-1000 integrated display and antenna connections
- Step 3. Configuring the primary receiver
- Step 4. Configuring the secondary receiver
- Step 5. Configuring the Tandem/Dual plugin
- Step 6. Calibrating the Tandem/Dual valve module


Step 1. Configuring the implement

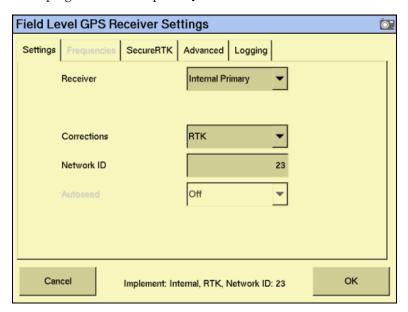
If you have not already configured the implement, see Configuring the implement for leveling, page 404.

Step 2. Preparing the FM-1000 integrated display and antenna connections

If not already installed on the FM-1000 integrated display, install the FieldLevel II plugin, followed by the Tandem/Dual plugin (for more information, see Adding or removing a plugin, page 56)

When both plugins are installed, the *Configuration* screen will show both the FieldLevel II plugin with its associated GPS receiver, and the Tandem/Dual plugin with its associated GPS receiver:

Connect the FieldLevel II plugin (primary) antenna to the GPS1 connector (1) on the rear of the display, and connect the Tandem/Dual plugin (secondary) antenna to the GPS2 connector (2) on the rear of the display:

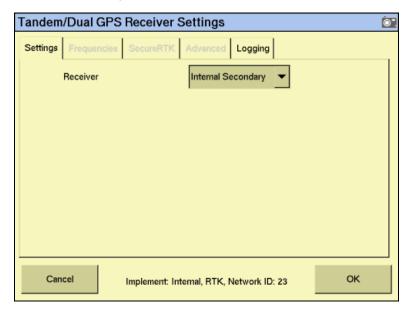

The correct configuration for the antennas on the implement/s is as follows:

FM-1000 integrated display port	Plugin	Receiver position (Tandem set-up)	Receiver position (Dual set-up)
GPS1 (①)	FieldLevel II	Front	Left
GPS2 (②)	Tandem Dual	Rear	Right

Step 3. Configuring the primary receiver

The primary receiver is controlled by the *FieldLevel II* plugin.

From the Configuration screen, select the GPS receiver listed below the Field Level plugin and then tap **Setup**:

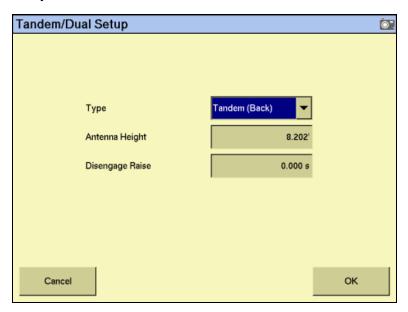


- From the *Receiver* drop-down list, select *Internal Primary*. 2.
- 3. From the *Corrections* drop-down list, select *RTK*.
- Set the *Network ID* to the same network ID that is set in the base receiver. 4.

Step 4. Configuring the secondary receiver

The secondary receiver is controlled by the Tandem/Dual plugin.

From the Configuration screen, select the GPS receiver listed below the Tandem/Dual plugin and then tap **Setup**:



2. From the *Receiver* drop-down list, select *Internal Secondary*.

Step 5. Configuring the Tandem/Dual plugin

The FM-1000 integrated display must be configured to control the Tandem/Dual plugin in either a tandem configuration or a dual configuration, depending upon the implement/s being used.

From the Configuration screen, select the Tandem/Dual plugin and then tap Setup:

By default, the Type field is set to Tandem (Back) and can control two implements, one towed behind the other. If a single implement is to be used in a dual configuration, select *Dual (Right)* from the *Type* drop-down list:

3. Enter the appropriate value in the *Antenna Height* field. This value relates to the antenna installed on either the rear implement, or the antenna installed on the right side of a single implement.

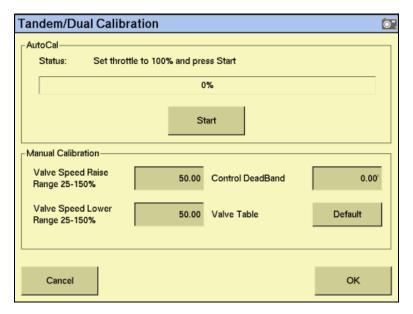
Note - In the FieldLevel II plugin, the Antenna Height value can be altered from the Blade Settings tab and relates to the antenna installed on either the front implement, or the antenna installed on the left side of a single implement.

Enter the appropriate value in the *Disengage Raise* field.

This value is used to control the rear implement or the right side of a single implement when Auto is disengaged. If you set it to 0.000s then the blade will not move up when you disengage.

Note - In the FieldLevel II plugin, the Disengage Raise value can be altered from the Blade Settings tab and relates to the front implement's blade, or the left side of the blade on a single implement.

Note - For a tandem system, you will want to move the blade up when Auto is disengaged on both the front and back implements as you will be swapping between the two. For a dual setup with a single implement, CNH recommends that you have the left and right Disengage Raise values set to the same value.


Step 6. Calibrating the Tandem/Dual valve module

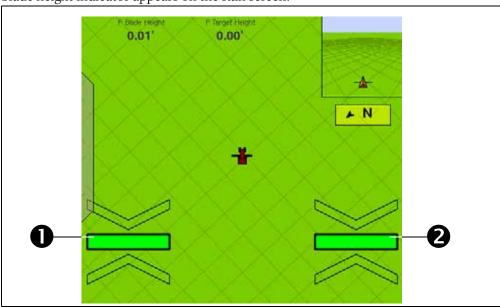
When working with a tandem/dual configuration, the valve module must be calibrated for both the FieldLevel II plugin and the Tandem/Dual plugin.

- The Fieldlevel II plugin valve calibration relates to the front implement cylinder in a tandem configuration, or the left side cylinder of a single implement.
- The Tandem/Dual plugin valve calibration relates to the rear implement cylinder in a tandem configuration, or the right side cylinder of a single implement.
- Depending on the make and manufacturer of your vehicle, the tractor computer may need to be put into a special mode. Please refer to the FieldLevel II Installation Guide for your vehicle type.

To calibrate the valve module, do the following:

From the Configuration screen, select the Tandem/Dual plugin and then tap Calibrate:

- Set the vehicle throttle to 100%. 2.
- 3. Tap Start.


The system performs its calibration sequence to test the speed at which the blade raises and lowers. This process takes approximately 8-10 minutes.

To manually calibrate the valve, enter values in the three Manual Calibration fields and then tap **OK**.

Operating the Tandem/Dual plugin

Blade height indicators

Once you install and configure tandem mode (two implements each with a GPS receiver), or dual mode (a single implement with a GPS receiver at each end), a second blade height indicator appears on the Run screen:

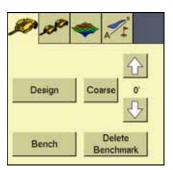
Item	Description	
0	Primary (left side) implement height indicator	
2	Secondary (right side) implement height indicator	

These operate in the same way as the single receiver FieldLevel height indicators. See Blade position indicators, page 424.

Auto buttons

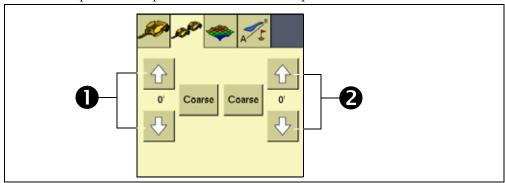
With a tandem/dual configuration, the Autopilot **Engage** button is replaced with two FieldLevel **Auto** buttons:

- With a tandem configuration, the **P:Auto** button controls the automatics of the primary (front) implement and the **S:Auto** button controls the automatics of the secondary (rear) implement.
- With a dual configuration, the **P:Auto** button controls the automatics on the primary (left) side of the implement and the **S:Auto** button controls the automatics on the secondary (right) side of the implement.


Note – *To control both sides of the implement simultaneously when using a dual configuration, you must tap both buttons.*

Note - With the addition of an external GPS receiver, you can use the Autopilot system with tandem and dual systems. An **Engage** button appears next to the **P:Auto** and S:Auto buttons.

The FieldLevel II tab (dual mode)


The *standard FieldLevel II* tab in dual mode has a single set of up and down buttons.

These buttons control the height of the whole implement. Use them to raise or lower both sides of the implement simultaneously. For example, if the blade is on an angle and you raise it with the up arrow on the standard FieldLevel II plugin, the blade remains at the original angle.

The Tandem/Dual tab

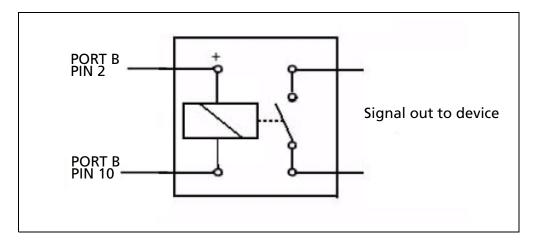
The Tandem/Dual tab in either tandem or dual mode has a double set of up and down buttons that provide independent control of the implement offset:

Item	Description	
0	Primary (front or left side) implement height control	
0	Secondary (rear or right side) implement height control	

- With a tandem configuration, the left up and down buttons offset the height of the primary (front) implement and the right buttons offset the height of the secondary (rear) implement.
- With a dual configuration, the left buttons offset the height of the primary (left) side of the implement and the right buttons offset the height of the secondary (right) side of the implement.

Remote Output

In this chapter:


- Connecting remote output
- Configuring the Remote Output plugin
- Calibrating the lead time for your implement

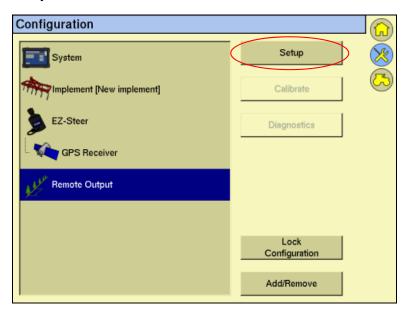
When remote output is activated, the FM-1000 integrated display outputs pulses for an external device. For example, you can use a remote output signal to control a tree planter.

This chapter explains how to configure the Remote Output plugin so that the display can output data.

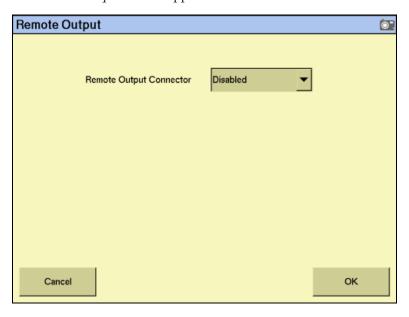
Connecting remote output

The signal that is output on pin 2 of the FM-1000 integrated display's B port is a 5 volt signal with a rating of approximately 70 mA; this signal controls the device that requires the remote output. The relay is grounded to pin 10 of the display's B port.

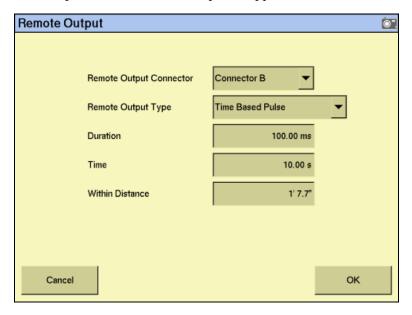
Configuring the Remote Output plugin


When remote output is activated, the FM-1000 integrated display sends pulses to an external device. For example, you can use a remote output signal to control a tree planter.

Note - Pulse output occurs only when coverage logging is enabled.


To enable pulse remote output:

Install the Remote Output plugin. See Adding or removing a plugin, page 56.


From the Configuration screen, select the Remote Output plugin and then tap 2. Setup:

The *Remote Output* screen appears:

3. From the *Remote Output Connector* drop-down list select *Connector B*. The default option is *Disabled*. More options appear:

4. From the *Remote Output Type* drop-down list, select one of the following:

If you select	Then enter		
Time Based	the pulse interval in seconds in the <i>Time</i> field.		
Pulse	• the pulse duration in milliseconds in the <i>Duration</i> field.		
Distance Based Pulse	• the <i>Lead Time</i> . See Calibrating the lead time for your implement, page 461.		
	the Distance in meters/decimal feet/feet and inches in the Distance field. The pulse occurs at each increment of this distance.		
	Note – The first pulse occurs at the A point. Pulse remote output is not recommended for Headland patterns.		
	• the duration of the pulse in milliseconds (ms) in the <i>Duration</i> field.		
	the distance in the Within Distance field. The pulse occurs only when the vehicle is within this distance of being online. If the vehicle is more than this distance offline, no pulse occurs.		
When Within Area Feature	the <i>Lead Time</i> . See Calibrating the lead time for your implement, page 461.		
	Note – The pulse occurs only when Remote Output is enabled. You must also enable Remote Output for each area feature individually in the Mapping plugin setup. See Creating an area feature, page 101.		
When Engaged	nothing: There are no options to set. Remote output occurs when the system is engaged.		

5. Tap **OK**.

Remote output is now configured. If you are using Distance Based Pulse or When Within Area Feature, calibrate the *Lead Time* setting to match your implement.

Calibrating the lead time for your implement

There is usually a gap between the time when the system generates a pulse and the time when that pulse triggers an action on the implement. To compensate for this system delay, you can set a *lead time* to trigger the pulse slightly early, so that the action occurs at the correct location.

For this calibration, you drive the vehicle along a line and back, using the Remote Output plugin to mark points on the ground. If the remote output is correctly calibrated, the points that you generate when driving in both directions will be close together.

This section describes some implement calibration steps. See also, Chapter 6, Implement Configuration.

Do the following:

- Set the front/back offset. See page 461.
- 2. Calibrate the front/back offset. See page 461.
- 3. Set the lead time. See page 462.

Setting the front/back offset

CAUTION – You must configure the correct front/back offset. If you are using an Autopilot system, set the front/back offset to the distance from the fixed axle of the vehicle to the implement. If you are using manual guidance, set the front/back offset to the distance from the **antenna center-point** to the implement.

- Accurately measure whichever of the following options is appropriate:
 - Autopilot systems: The distance between the fixed axle of the vehicle and the part of the implement where the trigger marks will be applied on the ground.
 - Manual guidance systems: The distance between the antenna center-point and the part of the implement where the trigger marks will be applied on the ground.
- From the *Configuration* screen, tap **Implement Setup** and then enter this value as the *F/B Offset* distance on the *Implement Boom Setup* screen.

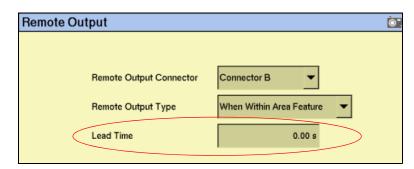
Calibrating the front/back offset

- Create a straight AB Line.
- 2. In the Remote Output plugin, set the *Lead Time* to 0.
- Drive *as slowly as possible* down the AB Line from point A to point B, marking points on the ground where the remote output triggers.
- At the end of the line, turn the vehicle around.

- Drive back down the line from point B to point A, marking another set of trigger points.
- Measure the distance between the points from the first run and the points from the second run.
- Divide the distance by two. 7.
- Adjust your Front/Back Offset value by this amount:
 - If the return points are nearer where you originally started than the first set of points, increase the F/B offset.
 - If the return points are further from where you originally started than the first set of points, lower the F/B offset.

Setting the lead time

- Drive *at your intended application speed* down the AB Line from point A to point B, marking points on the ground where the remote output triggers. Ensure that your speed remains constant.
- At the end of the line, turn the vehicle around. 2.
- Drive back down the line from point B to point A, marking the trigger points. 3.
- Measure any offset distance between the points from the first run and the points 4. from the second run.
- 5. Divide the distance by two.
- Convert your speed from mph to inches/second:


inches/second = mph x 17.6

To calculate the *Lead Time* setting, divide the distance between the points (in inches) from Step 5 by the vehicle speed (in inches/second):

Half the distance between points (inches) = Lead Time (seconds) Speed (inches / second)

Remote Output Ō". Remote Output Connector Connector B Remote Output Type Distance Based Pulse Lead Time 0.00 s3' 3.4"

8. Enter the lead time on the *Remote Output* screen:

For example, if a 4 mph pass creates a 14" distance between each set of points:

- Divide the distance between the points by 2. a. In this example, 14'' / 2 = 7''.
- Convert the speed from mph to inches/second. b.

$$4 \text{ mph} = (4 \text{ x } 17.6) = 70.4 \text{ inches/second.}$$

Divide the halved distance between the points by the speed:

- Drive along the AB line and then back at your application speed while you create trigger points.
- Ensure that the trigger points are sufficiently close to one another.

If the gap between the points is unacceptable, repeat the calibrations.

CHAPTER

22

The Serial Data Input Plugin

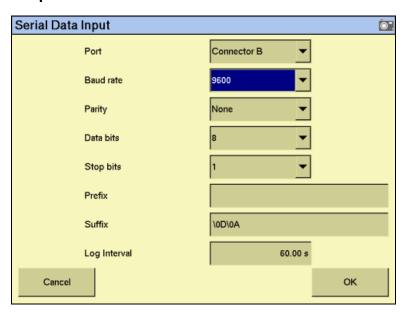
In this chapter:

- Connecting serial data input
- Configuring serial data input

When serial data input is activated, the FM-1000 integrated display can receive and log NMEA messages from an external device (for example, an infra-red sensor).

This chapter explains how to configure the display to receive data.

Connecting serial data input

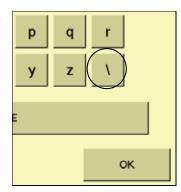

To connect a device to the FM-1000 integrated display, connect the Variable Rate Control cable (P/N 67091) to the port D connector on the display.

The other end of the Variable Rate Control cable connects to a serial connector.

Note – An additional adaptor may be required depending on the pin-out for the serial device.

Configuring serial data input

- 1. Install the Serial Data Input plugin. See Adding or removing a plugin, page 56.
- 2. On the *Configuration* screen, select the Serial Data Input plugin and then tap **Setup**:


- 3. In the *Port* list, select the port that the device is connected to. It is usually P5 Serial I/O. Configuration settings for that port appear on the right of the screen.
- 4. Set the following to the values at which the sensor outputs data:
 - Baud rate
 - Parity
 - Data bits
 - Stop bits
- 5. The *Prefix* and *Suffix* fields are the start and end points of the data you want to collect.
 - To log data from the start of the line, leave the *Prefix* field empty.

To drop introductory characters, enter them in the *Prefix* field. For example, if you receive data that begins "\$GPGGA...", enter "\24GP" in the Prefix field. The logged data will begin "GGA..."

Note - "\24" is the ASCII code for "\$".

- To log to the end of the line, keep the default Suffix field (" $\backslash OD \backslash OA$ ").
- Enter the log interval. This determines how regularly the data is written to the file.

The system is now configured to receive remote data from an external device.

23

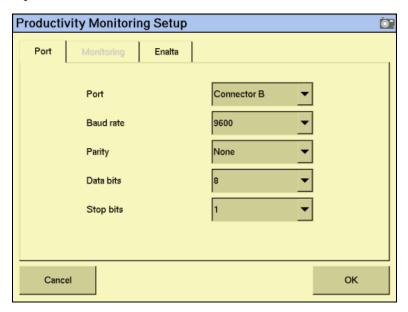
The Productivity Monitoring Plugin

In this chapter:

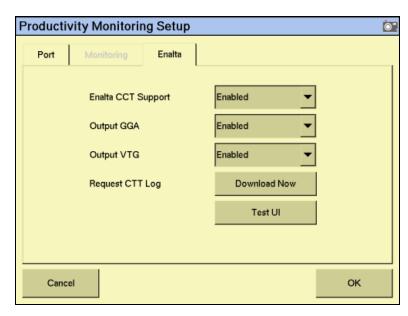
- Installation
- Configuring the Productivity Monitoring plugin
- Operation

The Productivity Monitoring plugin enables the FM-1000 integrated display to interface with an Enalta CDA 1000 display, for sugar cane harvesting.

This chapter explains how to combine the two systems so that the information from both displays appears on the FM-1000 integrated display.


Note - To use this plugin, you must have an Enalta CCT system.

Installation


- Install the FM-1000 integrated display, harness, and GPS receiver. See Installing the display, page 32.
- Connect the Enalta sensors to a serial port on the FM-1000 integrated display

Configuring the Productivity Monitoring plugin

- Install the Productivity Monitoring plugin. See Adding or removing a plugin, page 56.
- On the Configuration screen, select the Productivity Monitoring plugin and then 2. tap Setup:

- In the Port list, select the port on the FM-1000 integrated display harness that the Enalta sensors are connected to.
- 4. Adjust the port settings.

- In the *Enalta* list select **Enable Enalta CCT** to enable the Enalta system.
- Select the NMEA messages that the systems will use to communicate. You can select:
 - GGA: Select Enable GGA.
 - VTG: Select **Enable VTG**.
 - GGA and VTG messages: Select both buttons.
- Enter the following settings:

Item	Description	
Logging Rate While Field Open	The rate at which data is logged when a field is open. (1 sec–300 sec).	
Logging Rate While Field Closed	The rate at which data is logged when the field is closed (1 sec–300 sec).	
Minimum Operating Speed	When a field is open and the vehicle speed drops below this speed, a pop-up message appears onscreen asking the driver to select a reason for the low speed. The system will not operate until the driver selects a reason.	
Maximum Stoppage Time	When a field is open and the vehicle stops moving for longer than this time, the system prompts the driver for reason for the stoppage. The system will not operate until the driver responds.	
Productive When	 The system is marked "productive" when a condition is active: None: The system is not productive. Logging: On = productive; Off = non-productive AP Engaged: Engaged = productive; Disengaged = non-productive Minimum Speed: Above = productive; Below = non-productive 	

Operation

When you open a field, enter the additional details.

When the conditions that you set in the configuration are met, they trigger pop-up messages on the FM-1000 integrated display.

Advanced Configuration

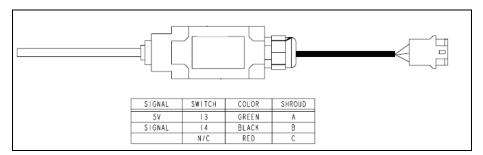
In this chapter:

- Configuring remote coverage logging
- Changing the password
- Saving the vehicle configuration
- Saving an HTML version of the current field
- Upgrading the FM-1000 integrated display firmware
- Upgrading the EZ-Boom controller or Multi-Application
- Unlocking additional devices

Once you complete the basic configuration, you can:

- Use this chapter to configure more advanced features for higher accuracy or better performance.
- Begin driving. See Chapter 8, The Mapping Plugin.

Note - Some configuration settings are unavailable when a field is open in the Run screen. To access these settings, return to the Run screen and then tap the Home button. When the display prompts you to close the field, tap Yes.


Configuring remote coverage logging

You can configure the FM-1000 integrated display to control coverage mapping by using a switch on the implement instead of the button on the Run screen.

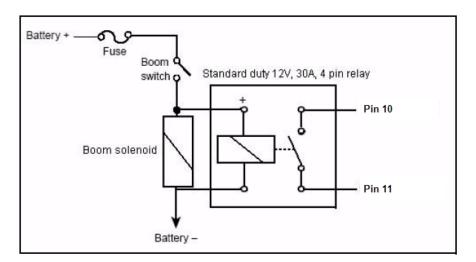
Installing the logging option

To connect an implement switch to the FM-1000 integrated display and configure the display to use the switch to control the logging do the following:

1. Install a switch on the implement to allow for correct switch activation when the implement is raised or lowered. For example, a switch similar to the Trimble P/N 60477S (shown below), can be used to activate the coverage logging

The switch must make and break the connection on pins 10 and 11 on the FM-1000 port connector.

For example, to use the 60477S switch:


- a. Connect pin A of the switch to pin 10 of the 12-pin Deutsch connector on Port A or Port B of the display.
- b. Connect pin B of the switch to pin 11 of the 12-pin Deutsch connector on Port A or Port B of the display.

Doing this results in the connection being made between pins 10 and 11 of Port A or B of the display when the implement is raised or lowered.

Notes:

- -If Ports A or B are used by other cabling, you can use the port replicator on the cable to connect the remote logging switch.
- -If you use a different switch, the connections may be different than described in this example.

A relay must be used to control coverage logging when voltage is present at the switch. The following schematic shows the relay between the display and the switch:

For more information on configuring the implement, see Adjusting the implement settings, page 108.

Enable the external switch

To enable the external switch:

- Tap (X). The *Configuration* screen appears.
- Tap Implement/Vehicle Setup. The *Edit Implement* screen appears. 2.
- 3. Set *Remote Logging* to *Log on high* or *Log on low*:

Item	Description
Log on high	The system records logging when the switch is turned on and stops recording when the switch is turned off.
Log on low	The system records logging when the switch is turned off and stops recording when the switch is turned on.

Note - When remote logging is on, the Logging button on the Run screen is disabled. Use the external switch to turn logging on or off.

Changing the password

Note - To change the Administration password, you require the Master password. If you do not know it, contact your local reseller. See also Password access, page 62.

- Do one of the following:
 - If you have not entered the password during the current session, tap **Setup** or **Calibrate** from the *Configuration* screen.
 - If you have already entered the password during this session, tap the Home button and then tap **Lock Configuration**. On the *Configuration* screen tap **Setup** or **Calibrate**.

The Enter Administration Password screen appears.

Enter an *incorrect* password.

The Wrong Password screen appears.

- 3. Tap Enter Master Password.
- 4. Enter the Master password and then tap **OK**.

The Change Administration Password screen appears.

5. Enter your new Administration password in both fields.

The new Administration password is now active.

Locking the display (to re-enable the password)

To re-enter the password if you have already entered the Administration Password:

- 1. From the Home screen, tap **Lock Configuration**.
- Tap (XX). The *Configuration* screen appears.

Tap **Setup** or **Calibrate**. The *Enter Administration Password* screen appears.

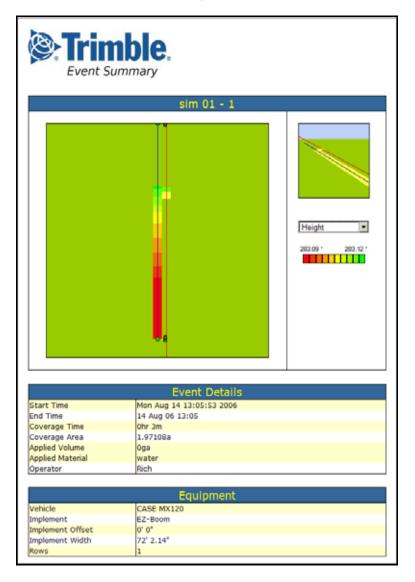
Saving the vehicle configuration

Note – The vehicle configuration is different from the display configuration. The vehicle configuration saves the Autopilot vehicle settings that you created. The display configuration saves the display appearance features that you **selected**. See Using the save/restore settings files, page 80.

- From the *Configuration* screen, select the Autopilot plugin and then tap **Setup**. The *Edit Vehicle* screen appears.
- Tap **Save Vehicle to File.** The *Save Vehicle Configuration* screen appears.

The default file name contains the date and time.

To select a different file name, tap the field.


- To overwrite a previous configuration file, select the previous file from the Configuration list.
- To save the file, tap **OK**. 3.

When the configuration file is saved, the following message appears:

File Download Complete.

Saving an HTML version of the current field

When you close a field, the system automatically creates an HTML summary file. The file *index.html* is saved in the |*AgGPS*|*Summaries*|*<client_farm_field_event>*| folder:

The Event Summary file can show the following images of the field:

- Overlap the coverage and any overlaps.
- Height the vertical height of the GPS position.
- Applied rate the volume at which the spray boom applied solution.
- GPS quality the quality of the GPS signal.

The file also shows information about:

- The event
- The vehicle setup

Tap the appropriate buttons to show or hide coverage area and/or area features. If any Prescriptions are available, a prescriptions button is also available.

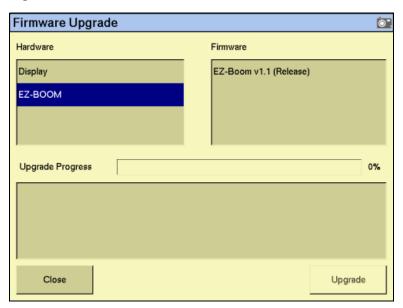
To view a summary report on an office computer:

- Remove the CompactFlash card from the display and then insert it into an office computer.
- 2. Select the folder |*AgGPS*|*Summaries*| and then open the file Index.html.
- Select the appropriate field from the list. 3.

Note – If you use the Microsoft® Internet Explorer® internet browser, you may need to allow $ActiveX^{(\mathbb{R})}$ technology to see all of the summary file.

Upgrading the FM-1000 integrated display firmware

- Transfer the new firmware file from www.trimble.com to your office computer.
- 2. Connect the FM-1000 integrated display USB memory stick to your office computer.
- Unzip the firmware file and then save it to the root folder of the USB memory stick.
- Insert the USB memory stick into the USB socket on the rear of the FM-1000 integrated display.
- Press the Power button on the rear of the display to turn on the FM-1000 integrated display and then wait for the Home screen to appear.
- 6. Tap **Upgrade**. The *Firmware Upgrade* screen appears.
- 7. Select a firmware file from the *Firmware* list and tap **Upgrade**.
- 8. Once the upgrade is complete, tap **OK**. The system restarts.


Upgrading the EZ-Boom controller or Multi-Application firmware

You can use the display to upgrade the firmware in the following components:

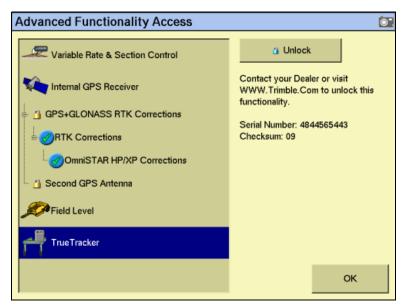
Plugin	Item
EZ-Boom	EZ-Boom controller
Tru Application Control	Working Set Master Module (WSMT)
Tru Application Control	Tractor ECU

To upgrade a component's firmware:

- Transfer the new firmware file from www.trimble.com to your office computer.
- 2. Connect the FM-1000 integrated display USB memory stick to your office computer.
- Copy the firmware upgrade file to the *Firmware* folder on the USB memory stick. 3.
- Insert the USB memory stick into the USB socket on the FM-1000 integrated 4. display.
- Press the Power button on the rear of the display to turn on the FM-1000 integrated display and then wait for the Home screen to appear.
- Tap Upgrade:

- Select the appropriate plugin from the *Firmware* list. Any available firmware upgrade files appear in the lower left list.
- 8. Select the appropriate firmware file.
- Once the upgrade is complete, tap **OK**. The system restarts.

The component's firmware is updated.


Unlocking additional devices

You can purchase enhanced features for the FM-1000 integrated display from your local reseller.

Note - When you purchase an EZ-Boom or Tru Application Control system, you receive a text file containing the unlock password. Place this file in the \AgGPS\Firmware \| folder on the CompactFlash card. You can now skip the following steps.

To enable the additional features:

- Turn on the FM-1000 integrated display. The Home screen appears.
- 2. Tap **Upgrade**. The *Upload Firmware* screen appears.
- 3. Tap Unlock:

- Tap the button for the feature that you want to unlock. The *Enter Password to* Activate screen appears.
- Enter the password and then tap **OK**. The feature is enabled. The password is saved to the card for future use.

Data Management

In this chapter:

- Transferring data to an office computer
- Data formats
- Folders on the USB memory stick
- Files on the USB memory stick
- Importing AB Lines or boundaries
- Data dictionaries

This chapter describes the files and folders on the FM-1000 integrated display USB memory stick.

Transferring data to an office computer

All field data collected by the FM-1000 integrated display is saved onto the USB memory stick.

To transfer data to an office computer:

- Remove the USB memory stick from the FM-1000 integrated display.
- 2. Insert the USB memory stick into your office computer.

CAUTION – If you place the files in a series of folders, the combined filename and folder path may become too long and the operating system may not allow you to open the files. To avoid this, CNH recommends that you place data in your computer's C:\ folder.

Copy the appropriate folder to the office computer using an application such as Microsoft[®] Windows[®] Explorer. This copies all the sub-folders and files in the

Note - When you copy or move files using Windows Explorer, you must keep all the shape-files (.dbf, .shp, and .shx) together so that office software can open the theme file. To ensure that the files stay together, always copy the entire folder rather than just the individual files.

If you create a new event in a field, and you already have the |Field| folder containing any previous events on the office computer, you should still copy the | *Field* | folder so that the new EventHistory information is copied across.

CAUTION – If you use the same farm, field, or event names on more than one display, you could accidentally overwrite existing files when you copy data to the office computer. To prevent this, create a separate folder for each unit. For example:

C:\AgGPSFMD_SN123456\ C:\AgGPSFMD_SN123457\ C:\AgGPSFMD SN123458\

Data formats

The FM-1000 integrated display uses the Environmental Systems Research Institute (ESRI) 3D shape-file format for storing the layers of graphical information collected in the field (for example, spray coverage, track logging points, and features). The three files in a shapefile "set" are:

- The *<filename*>.dbf file, which contains the feature attributes.
- The *<filename*>.shp file, which contains position information.
- The *<filename*>.shx file, which is an index file that links the position information with its attributes.

In this manual, the term *shapefile* is used to refer to the three files collectively.

The FM-1000 integrated display records all latitude, longitude, and height data in decimal degrees.

Note - The FM-1000 integrated display reads and writes ESRI ArcView version 2.0 or 3.1 3D polylines, polygons, and points. The M and Z entity types introduced in ArcView 3.1 can be generated in the track logging files, but cannot be read by the FM-1000 integrated display. For more information, go to the ESRI website (www.esri.com).

Editing files

ESRI shape (.shp) and attribute (.dbf) files can be used in many other software packages that can import or use .shp and .dbf formats.

CNH recommends the EZ-Office[™] software. For more information, go to www.EZ-OfficeSoftware.com.

Data collected by the FM-1000 integrated display can be opened directly into the EZ-Office software. You can make changes to the files and save them on an office computer.

Do not save changes back to the USB memory stick as this could mean that you cannot select the field with the FM-1000 integrated display.

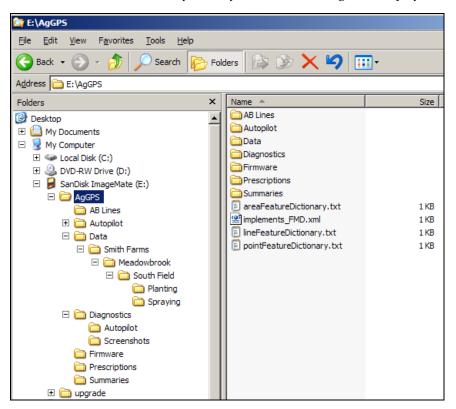
The Microsoft Excel[®] spreadsheet software and most database software also let you open and view the data in the attribute (.dbf) file.

Generating files in the office

The FM-1000 integrated display can load files that you created in office software. Save Shapefile or Agfile (.gdx) prescriptions to the \(AgGPS \) \(Prescriptions \) folder on the card to send rates to a variable rate controller.

Folders on the USB memory stick

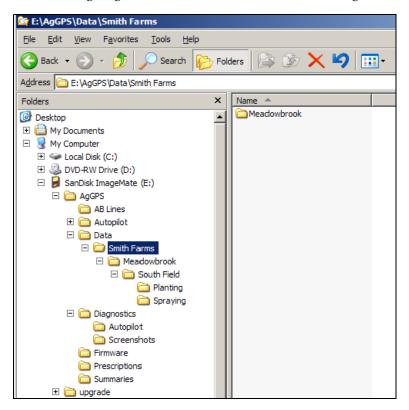
The names and types of files containing mapping and logging information, and the folder where the FM-1000 integrated display saves these files on the USB memory stick are as follows.


Data	Description	Files	folder
Field AB Line	Boundary and/or AB Lines polylines	Swaths.shp Swaths.dbf Swaths.shx	VField\ For more information, see Field folder, page 488.
Field boundary	Polygon	Boundary.shp Boundary.dbf Boundary.shx	
Event history	Event information	EventHistory.dbf	
Point features	Attribute ID and latitude, longitude, and height	PointFeature.shp PointFeature.dbf PointFeature.shx	
Line features	Line with attribute ID	LineFeature.shp LineFeature.dbf LineFeature.shx	
Area features	Area polygons with attribute ID	AreaFeature.shp AreaFeature.dbf AreaFeature.shx	
Coverage	Series of polygons	Coverage.shp Coverage.dbf Coverage.shx	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Track	Series of 3D points with attributes	Track3D_ <date time="">.shp Track3D_<date time="">.dbf Track3D_<date time="">.shx</date></date></date>	
Summary	HTML	<eventname>_Summary.txt</eventname>	\AgGPS\Summaries\ <clien t_Farm_Field_Event>\ For more information, see Event folder, page 490.</clien

Data	Description	Files	folder
Diagnostic	Folder files	ProgramLog.txt	\Diagnostics\
		ProgramLog.old	
		(FM-1000 integrated display logs)	
		FaultLog.txt	
		(Autopilot faults)	
		EZ-BoomFaultLog.txt	
		(EZ-Boom faults)	
		service	
		messages	
		messagesgz	
		messagesgz.19	
		(Operating system logs)	
		core.gz	
		(Debug data)	
		<date></date>	
	Autopilot config	Vehicle.cfg	\Diagnostics\Autopilot\
	System settings	<preferences>.xml</preferences>	\Diagnostics\Preferences\
	_	Screenshot_< <i>num</i> >.png	\Diagnostics\screenshots\

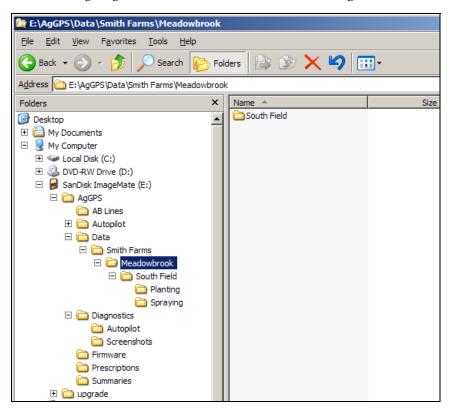
The AgGPS folder

The |AgGPS| folder stores system utility files and subfolders that contain the input and output files of the FM-1000 integrated display. See Prescriptions, page 258 and Folders on the USB memory stick, page 484.


The following diagram shows system utility files and the data folders in the |AgGPS|folder saved on a USB memory stick by the FM-1000 integrated display:

Client folder

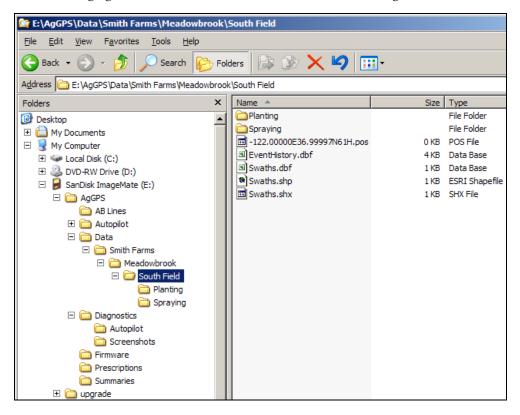
The |Client| folder stores a sub-folder for each farm defined for the client.


The following diagram shows the |Client| folder and file organization:

Farm folder

The |Farm| folder stores a subfolder for each field defined for the farm.

The following diagram shows the |Farm| folder and file organization:

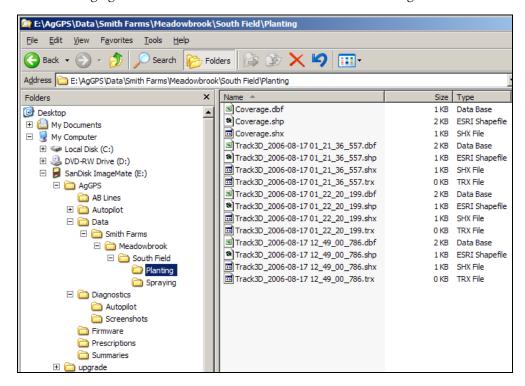


Field folder

Each | *Field* | folder stores the following:

- A subfolder for each event performed on the field. See Event folder, page 490.
- Three Swaths files.
- If it is a bounded (headland) field, three Boundary files. See Field boundary and AB Line files, page 490.
- An empty file whose name represents the coordinates of the field boundary file (for example: 172.000E43.000S12H.pos locates the boundary at latitude 172.000 East, longitude 43.000 South, and altitude 12 m high).
- Any recorded features files. See Features files, page 493.
- Any paused files. See Pausing guidance, page 146.
- The field event history file: EventHistory.dbf. It contains information about each event carried out in the field. See Event History file, page 493.

The following figure shows how a \Field\ folder and its files are organized:



Event folder

Each | *Event* | folder stores:

- coverage logging shapefiles that are recorded during the event, called Coverage.*. See Coverage logging data, page 491.
- track logging shapefiles that are recorded during the event, called Track3D < date time>.*.

The following figure shows how an | *Event* | folder and its files are organized:

Files on the USB memory stick

Field boundary and AB Line files

There is one set of boundary and AB Line shapefiles for each field called:

- Boundary.*
- Swaths.*

Information stored in the Boundary.shp file for fields with boundaries includes a boundary polygon. Fields without boundaries do not contain a boundary file.

Information stored in the Swaths.shp file for fields with boundaries includes AB polylines.

Units are always metric in files created by the FM-1000 integrated display.

The following information is stored in the boundary and ABLine attribute files.

Column	Field description	Notes
Date	Date the field was created	YYYYMMDD
Time	Field creation time (local time, am/pm format)	hh:mm:ss
Version	Boundary or ABLine attribute file version	
ID	AB Line number ID	
Name	Name assigned to the AB Line	
Area	Field area (Boundary area)	ha
Perimeter	Field perimeter distance (Boundary only)	meters
Length	Length of the AB Line	meters
SwathsIn		
Dist1		
Dist2		
PrefWeight		

Unless a field has a boundary, the size of the field is not defined. Therefore, for fields without boundaries the *%_Complete* in the EventHistory.dbf file is always zero.

Note - If you browse the .dbf files using an Excel spreadsheet, date fields may appear in a different format, depending on your local settings.

Coverage logging data

Coverage logging files are created whenever any application coverage is recorded. The following information is stored for each coverage polygon in the coverage logging attribute file.

Column	Field description
Version	Coverage attribute file version
GPS_Status	Numeric GPS status value
Status_Txt	GPS status description
Swath	The current swath number when coverage was recorded
Height	Height in meters
DateClosed	Date the polygon was closed
TimeClosed	Time the polygon was closed
AppliedRate	Applied rate reported by the variable rate controller

Track logging files

Track logging files are created whenever the event is opened. See page 67. At each point, a number of attributes are recorded.

The units stored in the track attribute file (Track3D_<date time>.dbf) are in metric units.

The following information is stored for each point, in the track logging attribute file.

Column	Field description	Units/notes
TRACK_ID	Date and time stamp	-
Version	Track attribute file version	-
UTC_Date	Point creation date	YYYYMMDD
UTC_Time	UTC time	hh:mm:ss.s
Local_Time	Local time	hh:mm:ss.s
Logging_On	Coverage logging Flag (1=on, 0=off)	On or off
Auto_Steer	Auto-Steer Flag (1=on, 0=off)	On or off
GPS_Status	GPS status value	1 to 12
Status_Text	GPS status description	-
Num_Stats	Number of GPS satellites	-
DOP	Horizontal Dilution of Precision – a measure of the quality of positions based on satellite geometry	-
Corct_Age	DGPS signal correction age	seconds
Ant_Lat	Antenna latitude (WGS-84)	DD.dddddddd
Ant_Long	Antenna longitude (WGS-84)	DD.dddddddd
Height	Mean sea level height of ground	meters
Ant_HAE	Antenna height above ellipsoid	meters
Ground_HAE	Ground height above ellipsoid	meters
Speed	GPS derived ground speed	kph
Heading	Direction of travel with respect to true North.	decimal degrees
Swath_Num	Current swath/headland number.	
Offline	Offline distance from swath center line.	meters
Along_Line	Along Line distance from start of swath.	meters
Swath_wdth	Swath width	meters
Appln_Wdth	Application width	meters
Units	Units	metric
Field_Name	The name of the field	-
Target	The target rate at the current position	-
Pitch	The pitch	-
Roll	The roll	-
Yaw	The yaw	-
	Note – Not currently implemented.	
Total_Qty	Total volume of material as applied for the current field. Only supported for the <i>Ag</i> GPS Aerial Flow Controller, Autocal Flow controller, and Crophawk Flow Meter.	-
Relative_Height	Height	meters

Event History file

The EventHistory.dbf file contains information on every event carried out in the field:

Data	Description
Version	FM-1000 integrated display firmware version
Client	Client name
Farm	Farm name
Field	Field name
Event	Event name
Operator	Operator name
Material	Material name
Date open	Date the field was opened
Time open	Time the field was opened
Date close	Date the field was closed
Time close	Time the field was closed
Duration	Length of time that the field was open (seconds)
PrimaryAB	Number of the primary AB Line
ABLine	
Cover area	Area covered
Cover distance	Distance covered
Cover time	
Engage time	Time engaged

Features files

When features are recorded in the field, each type of feature is saved in three feature shapefiles in the |Field| folder as follows:

These features	Are saved in these files
Point	PointFeature.*
Line	LineFeature.*
Area	AreaFeature.*

One row of data is stored in the <type>.dbf file for each feature of that feature type recorded in the field. The following information is stored in the <type>.dbf file for each feature.

Column	Field description	Notes
Date	Date the feature was created.	yyyy/mm/dd
Time	Time the feature was recorded.	hh:mm:ss.s
Version	Features attribute file version.	
ID	Feature ID	
Name	Feature name	
Area	Field area (Area only)	ha

Column	Field description	Notes
Perimeter	Field perimeter distance (Area only)	meters
Length	Length of the AB Line.	meters
SwathsIn		
Dist1		
Dist2		
PrefWeight		
Only recorded in p	oint features:	
Latitude	Antenna latitude	decimal degrees
Longitude	Antenna longitude	decimal degrees
Height	Ground mean sea level height at antenna position. If you are mapping on a slope, the height may be wrong.	meters
AlarmRad	Alarm radius	meters
WarningRad	Warning radius	meters
Status_Txt	GPS status	meters

Program Log message file

The FM-1000 integrated display performs checks:

- when the display is turned on or off
- periodically, while running

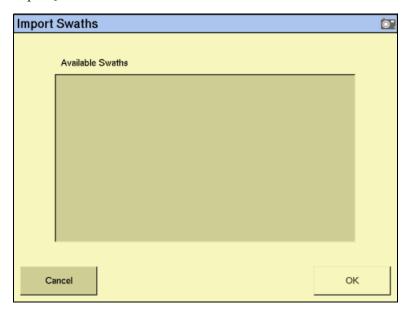
This information is saved to the ProgramLog.txt file, which is in the |AgGPS| Diagnostics | folder. When this file becomes larger than 1024 KB, it is backed up to a file called ProgramLog.old.

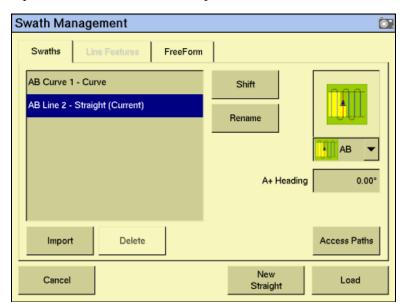
The ProgramLog.txt file may be useful for troubleshooting. The file can be read with a text editor such as Notepad.

Importing AB Lines or boundaries

The FM-1000 integrated display can load field boundaries and AB Lines, created by an AgGPS 170 Field Computer, Remote Data Logger (RDL), or a Geographic Information System (GIS).

To load GIS boundaries, files must be in WGS-84 latitudes, longitudes, and heights in decimal degrees.


Use the following method to import an AB Line or a boundary into the FM-1000 integrated display:


Attach the USB memory stick to an office computer.

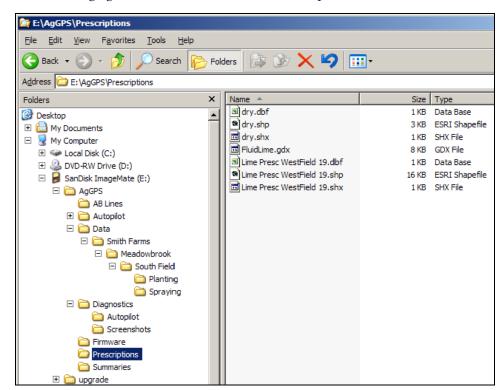
CAUTION - The three files that define a line or field (.shp, .shx, and .dbf) must have identical names. Otherwise, they are not recognized. If you put multiple sets of files in the folder, ensure that you do not have more than one set of files with each name or your files will be overwritten.

- 2. Copy the following files to the |*AgGPS*|*AB Lines*| folder on the USB memory stick:
 - <field name>.shp
 - <field name>.shx
 - <field name>.dbf
- 3. Start the FM-1000 integrated display and then tap Run.
- Do one of the following: 4.
 - Open an existing field.
 - Start a new field.
- 5. Tap Swaths.
- 6. Tap Import:

Select the field or AB Line to import from the list of available swaths and then tap **OK**. The field or AB Line is imported:

If the AB Line file contains more than one AB Line, all AB Lines in the file are imported.

- 8. Select the AB Line that you want to use and then tap **Load**. A warning message appears.
- 9. Tap **OK**. The imported field or AB Line is ready to use.
- 10. For best results, close the field and then reopen it.


The Prescriptions folder

For each prescription that you generate, the |AgGPS|Prescriptions| folder stores three prescription files in ESRI shapefile format, or a single .gdx file.

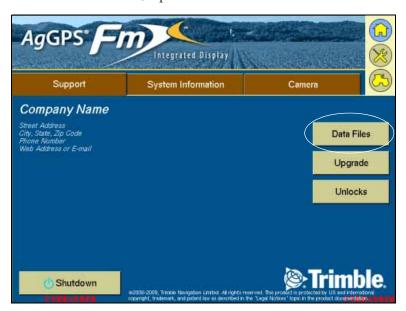
The shapefiles required are the .dbf, .shp, and .shx files. Some GIS software packages generate other files and include different contents in the files; if they are on the USB memory stick, they are ignored.

The names and types of files that are used to supply input information to the FM-1000 integrated display, and the folder where these files must be located on the card, are as follows.

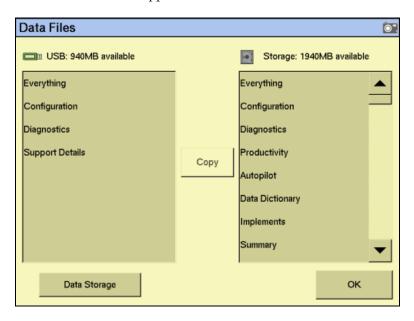
Data	Description	Files	folder
Prescription files	Polygons	<pre><pre><pre>criptionname>.shp</pre></pre></pre>	\AgGPS\Prescriptions\
	ESRI shapefiles	, ,	For more information, see Prescriptions, page 258.
	AgInfo GDX	<pre><pre><pre>criptionname</pre>.gdx</pre></pre>	

The following figure shows the contents of a | Prescriptions | folder::

Copying or deleting data files


The Data Files screen enables you to copy or delete card data. It shows the fields, varieties, prescriptions, and data dictionaries that are in the internal memory and on the USB memory stick.

On the FM-1000 integrated display, there are two methods to access the Data Files screen. See the following sections:


- Accessing data files from the Home screen, page 498
- Accessing the data files through the Configuration screen, page 498

Accessing data files from the Home screen

From the *Home* screen, tap **Data Files**.

The Data Files screen appears:

Accessing the data files through the Configuration screen

- From the Home screen, tap (). The *Configuration* screen appears. 1.
- 2. Select *System* and then tap **Setup**.
- 3. If necessary, enter the administration password and then tap **OK**.

Select Data Files from the list and then tap Manage. The Data Files screen appears.

Copying data

To copy data from the USB memory stick to the internal memory or from the internal memory to the USB memory stick:

- From the list, select the item to copy:
 - If the item is in the *USB* list, the **< Copy** button becomes available.
 - If the item is in the *Storage* list, the **Copy** > button becomes available.
- 2. Tap **Copy**. The data is copied to the other column.

To copy data from the current USB memory stick (the source) to another USB memory stick (the destination):

- Copy all of the data from the source to the internal memory.
- When copying is complete, remove the source from the USB slot and then insert the destination.
- 3. Copy all of the data from the internal memory to the destination.

Deleting data

If you need to create more space, you can use the FM-1000 integrated display to:

- Delete any unused clients, farms, fields, events, or all of the data in the internal memory
- Delete any unused clients, farms, fields, events or all of the data on the USB memory stick

Deleting selected data from the internal memory

CAUTION - Deleting data is permanent. You cannot undo the deletion or restore the data.

- 1. From the *Configuration* screen, select *System* and then tap **Setup**.
- If necessary, enter the administration password and then tap **OK**. 2.
- 3. Select Data Files from the list and then tap Manage. The Data Files screen appears.
- 4. Tap Data Storage. The Delete Data Storage screen appears.
- Select Internal Memory from the Select Storage drop-down list and then select the Fields tab.
- Select the item to delete from the Client, Farm Field or Event drop-down lists and then tap Delete.

7. When prompted, tap **Yes**. The data in the internal memory is deleted.

Deleting all of the data from the internal memory

CAUTION – Deleting data is permanent. You cannot undo the deletion or restore the data.

- 1. From the *Configuration* screen, select *System* and then tap **Setup**.
- 2. If necessary, enter the administration password and then tap **OK**.
- 3. Select *Data Files* from the list and then tap **Manage**. The *Data Files* screen appears.
- 4. Tap *Data Storage*. The *Delete Data Storage* screen appears.
- 5. Select *Internal Memory* from the *Select Storage* drop-down list and then select the *Advanced* tab.
- 6. Tap Delete All Fields, Delete All Events, or Delete Diagnostics.
- 7. When prompted, tap **Yes**. The data in the internal memory is deleted.

Deleting selected data from the USB memory stick

CAUTION – Deleting data is permanent. You cannot undo the deletion or restore the data.

- 1. From the *Configuration* screen, select *System* and then tap **Setup**.
- 2. If necessary, enter the administration password and then tap **OK**.
- 3. Select *Data Files* from the list and then tap **Manage**. The *Data Files* screen appears.
- 4. Tap *Data Storage*. The *Delete Data Storage* screen appears.
- 5. Select *External USB Drive* from the *Select Storage* drop-down list and then select the *Fields* tab.
- 6. Select the item to delete from the *Client, Farm Field* or *Event* drop-down lists and then tap **Delete**.
- 7. When prompted, tap **Yes**. The data in the internal memory is deleted.

Deleting all of the data from the USB memory stick

CAUTION – Deleting data is permanent. You cannot undo the deletion or restore the data.

- 1. From the *Configuration* screen, select *System* and then tap **Setup**.
- 2. If necessary, enter the administration password and then tap **OK**.

- 3. Select Data Files from the list and then tap Manage. The Data Files screen appears.
- Tap Data Storage. The Delete Data Storage screen appears. 4.
- Select *External USB Drive* from the *Select Storage* drop-down list and then select 5. the Advanced tab.
- 6. Tap either Delete All Fields, Delete All Events or Delete Diagnostics.
- 7. When prompted, tap **Yes**. The data in the internal memory is deleted.

Data dictionaries

The FM-1000 integrated display can load data dictionaries in the AgGPS 170 Field Computer format. These data dictionaries enable you to select field entry data (for example, Client, Farm, Field, and Event) from a list of predefined values, which saves you from having to re-enter commonly used items.

You can create a data dictionary either through the display, or on an office computer.

For more information on editing data dictionary entries on the FM-1000 integrated display, see Editing the data dictionary, page 89.

To create a data dictionary on an office computer:

- On an office computer, create a text file. The text file can have any name, but the file extension *must* be .txt.
- 2. Enter the body text.
- 3. Copy the .txt file to the $\AgGPS \mid Data \ Dictionary \mid$ folder on the display's USB memory stick.

On screen (for example, in the *Client* screen), the file entries appear as shown below:

```
[Client]
J Smith
G Wilson
[Farm]
MeadowBrook
ABC Farms
[Field]
Field 1
Field 2
Back 40
Hogan Section
[Event]
Feature mapping
Tillage
Fertilization
Strip-till
Plant
[Operator]
Bob
Jim
Chris
Josh
Jose
Rob
[Material]
2, 4-D
Atrazine
35Y09
M93
NH3
```

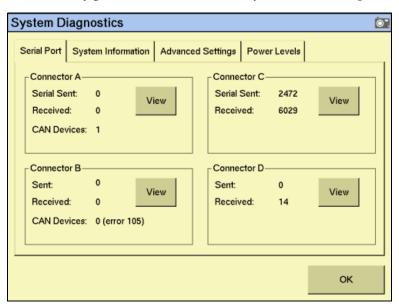
To access the entries in the dictionary:

- In the Field Setup screen, tap New. 1.
- To view the available items, tap the down arrow. 2.
- Select the appropriate item from the list. 3.
- Тар **ок**. 4.

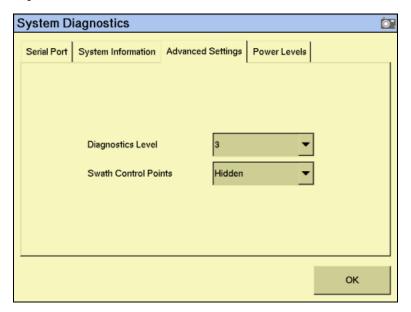
You can still enter new information as before, but these entries are not added to the data dictionary. To add items to the data dictionary, edit the .txt file on an office computer.

Troubleshooting

In this chapter:

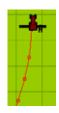

- Advanced diagnostics
- Viewing raw serial data
- Restoring default settings
- Viewing the FM-1000 integrated display diagnostic information
- GPS Status screen
- Screen snaps
- Forcing the system to turn off

This chapter describes how to analyze problems that may occur with the FM-1000 integrated display.


Advanced diagnostics

The System plugin's Diagnostics mode enables you to configure advanced guidance settings. Most users will not need to adjust these settings.

From the ${\it Configuration}$ screen, select the System and then tap ${\it Diagnostics}$:

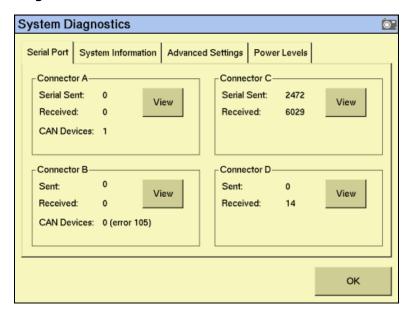

2. Tap Advanced:

3. Select the diagnostics level. This determines how much debugging information is logged in the program files:

Item	Description
1	Minimal level of information
6 (default)	Medium level of information
9	Highest level of information

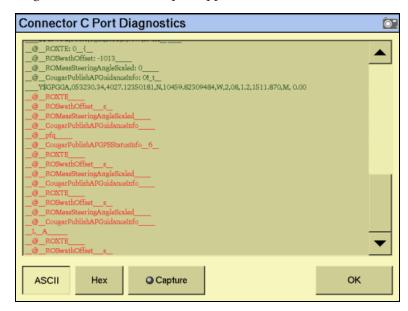
Select whether or not to show swath control points. When the guidance line is a curve, it appears on-screen as a series of short straight sections joined together. The Swath Control Points appear where these line segments meet:

Item	Description
Hidden (default)	Normal guidance lines
Visible	Guidance lines show the control points


You can also use the System Diagnostics screen to view raw port data. For more information, see Viewing raw serial data, page 507.

Viewing raw serial data

You can view raw serial data as the display receives it. This can be useful for analyzing the GPS signal.


To view the raw serial data:

From the Configuration screen, select the System plugin and then tap Diagnostics:

This screen shows each of the connectors (ports) on the FM-1000 harness and the number of data packets that have been sent and received.

To view the raw data from a port, tap the appropriate **View** button. The port diagnostics screen for that port appears:

The screen shows either ASCII text or Hex code, depending on which button you select. Tap **ASCII** to view incoming data from the NMEA data string.

The Hex code is for engineering use only.

The data appears only when tap **Capture**.

A virtual LED on the *Capture* button flashes to show that data is being sent or received on that serial port.

To view the data, tap **ASCII** or **Hex** and then tap **Capture**. Approximately five seconds of serial data is captured and then appears on the screen. You can review the data or capture another snapshot.

Note - Data shown in green is incoming data; data shown in red is outgoing data.

Restoring default settings

You can reset the display to its default values. This can be useful if:

- you made changes to the display settings; the results are poor, but you cannot determine which setting was the cause.
- you move the display from one vehicle to another.

Note – If you restore the defaults, the Autopilot vehicle setup information is not reset. See *Using the save/restore settings files, page 80.*

To restore the default settings:

- From the *Configuration* screen, select the System plugin and then tap **Setup**. The Display Setup screen appears.
- Tap **Default**. A confirmation screen appears. 2.
- 3. Tap Yes.

The default settings are restored.

Viewing the FM-1000 integrated display diagnostic information

Display configuration information

To view display configuration information, tap at the top right of the display.

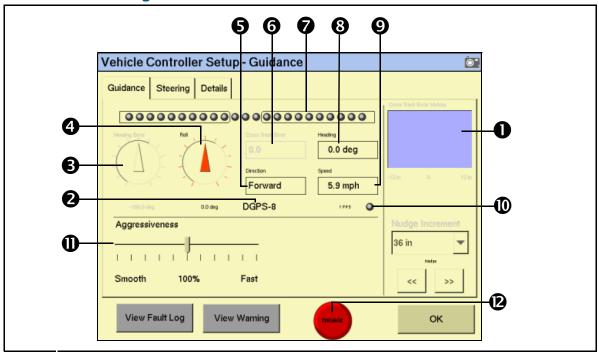
The Home screen shows:

- Display firmware information
- AgGPS Autopilot controller information
- GPS receiver and correction method information
- Vehicle make and model

USB memory stick information

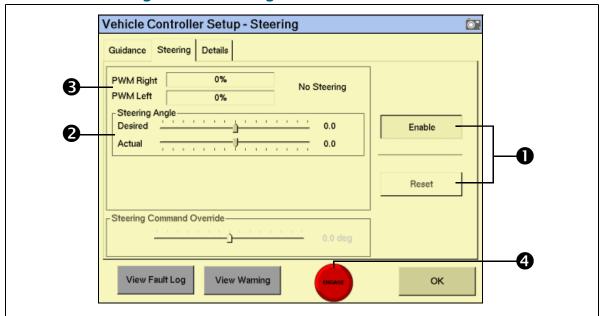
To view information about the USB memory stick that is in the display, select the System plugin and then tap **Diagnostics** on the *Configuration* screen.

The card information tab appears on the *System Diagnostics* screen.

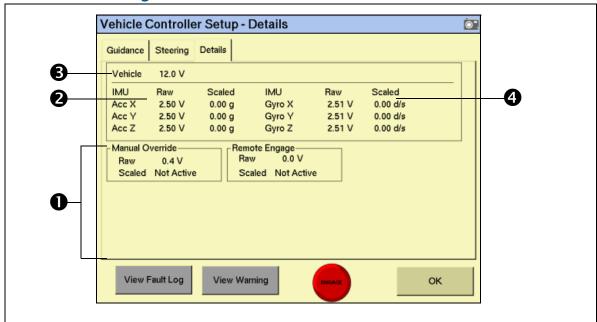

Viewing vehicle diagnostic information

From the *Configuration* screen, select the Autopilot plugin and then tap **Diagnostics**. The Vehicle Controller Setup - Guidance screen appears.

There are five parts to the Vehicle Diagnostics menu:

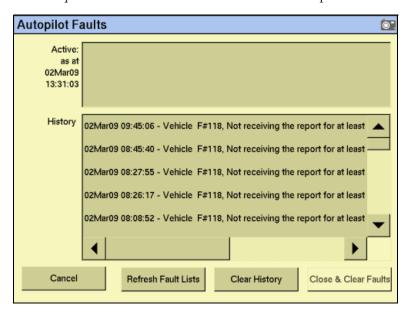

- Guidance screen
- Steering screen
- Details screen
- Fault log screen
- View warning screen

Vehicle Diagnostics: Guidance screen


Item	Section	Description	
0	Offline distance graph	A graph of offline distance over time. It is useful for diagnosing problems with the vehicle coming online and staying online.	
0	GPS status	The current GPS position fix quality and number of satellites.	
€	Heading error Shows the difference between vehicle heading a heading.		
4	Roll Shows the current roll value calculated by the sys		
6	Direction	The current vehicle direction – forward, backward, or stopped.	
0	Cross Track Error	A numeric value of the offline distance.	
0	Virtual lightbar	Visual representation of offline distance.	
8	Heading	The current vehicle heading calculated by the system.	
9	Speed The current vehicle speed calculated by the system		
0	1PPS	PS Shows whether the 1PPS signal from a GPS receiver is detected.	
0	Aggressiveness A slider for adjusting the Aggressiveness of the ste system.		
®	Engage button	Engages/disengages the system and shows the current engage state. When this button is red, tap it to see the fault that is preventing automatic mode.	

Vehicle Diagnostics: Steering screen

Item	Section	Description
0	Steering command override	Bypasses the normal steering command to the wheels. With this feature, you can force a certain angle of turn and make sure that the system responds as expected.
2	Steering angle	Shows the required and actual steering angles. The required angle is that which the system is trying to attain and the actual is where the system calculates the wheels are pointing.
€	PWM status	Shows the current PWM signals being sent to the electro-hydraulic valve. This is an indication of whether the system is attempting to turn left or right.
4	Engage button	Engages/Disengages the system and shows current engage status.


Vehicle Diagnostics: Details screen

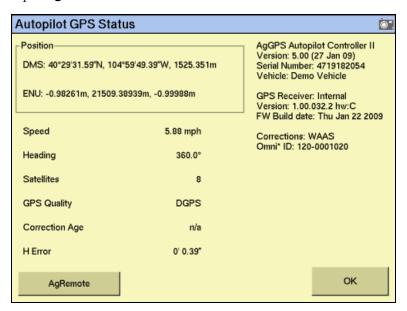
Item	Name	Description
0	Diagnostics	Vehicle and configuration specific diagnostics - up to 9 diagnostics can be shown.
2	Accelerometers	The raw voltage and scaled G-force for each of the system's accelerometers
€	Vehicle voltage	The input voltage currently being fed into the Autopilot system from the vehicle's electrical system
4	Gyroscopes	The raw voltage and scaled degrees per second of each of the system's gyroscopes

Autopilot Faults screen

The Autopilot Faults screen lists all faults on the Autopilot controller:

Two separate lists show:

- Any faults that are currently active
- A history of faults that have occurred


View Warning screen

When you are viewing the vehicle diagnostics screens, the **View Warning** button flashes red if there is an active warning on the display. To view any active warnings, tap the button.

GPS Status screen

The *GPS Status* screen provides information on the current GPS data from the GPS receiver. Use this screen to check that the GPS receiver is outputting the expected data.

• From the *Configuration* screen, select the Autopilot *GPS Receiver* plugin and then tap **Diagnostics**:

This screen shows:

- Your current GPS position
- The number of satellites
- GPS quality
- The Autopilot system and receiver version numbers

Screen snaps

To save images in the FM-1000 integrated display, tap the button on the right of the screen that matches the current screen.

For example, to create a screen snap of the Run screen:

- 1. Tap **Run**. The Run screen appears.
- 2. Tap **Run** again. The screen snap is saved in the |AgGPS|Diagnostics|Screenshots| folder. A warning sound indicates that you have created a screen snap.

Note – The screen snap is of the lowest level folder under each button. So if you take a screen snap while in the Implement Setup screen, the snap is of the Configuration screen. The screen snap feature is most useful for capturing images of the Run screen.

Forcing the system to turn off

CAUTION – Do not do this unless absolutely necessary. If the display is writing to the USB memory stick, this method of shutting down the system could corrupt the data on the card. If possible, use one of the other shutdown methods. See Turning off the display, page 51.

If the display stops responding, hold down the Power button for 10 seconds to force the system to turn off.