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Preface

Graph colouring is one of those rare examples in the mathematical sciences of a

problem that is very easy to state and visualise, but that has many aspects that are

exceptionally difficult to solve. Indeed, it took more than 160 years and the collec-

tive efforts of some of the most brilliant minds in nineteenth and twentieth century

mathematics just to prove the simple sounding proposition that “four colours are

sufficient to properly colour the vertices of a planar graph”.

Ever since the notion of “colouring” graphs was first introduced by Frances

Guthrie in the mid-1800s, research into this problem area has focussed mostly on

its many theoretical aspects, particularly concerning statements on the chromatic

number for specific topologies such as planar graphs, line graphs, random graphs,

critical graphs, triangle free graphs, and perfect graphs. Excellent reviews on these

matters, together with a comprehensive list of open problems in the field of graph

colouring, can be found in the books of Jensen and Toft (1994) and Beineke and

Wilson (2015).

In this book, our aim is to examine graph colouring as an algorithmic problem,

with a strong emphasis on practical applications. In particular, we take some time

to describe and analyse some of the best-known algorithms for colouring arbitrary

graphs and focus on issues such as (a) whether these algorithms are able to provide

optimal solutions in some cases, (b) how they perform on graphs where the chro-

matic number is unknown, and (c) whether they are able to produce better solutions

than other algorithms for certain types of graphs, and why.

This book also devotes a lot of effort into looking at many of the real-world op-

erational research problems that can be tackled using graph colouring techniques.

These include the seemingly disparate problem areas of producing sports schedules,

solving Sudoku puzzles, checking for short circuits on printed circuit boards, as-

signing taxis to customer requests, timetabling lectures at a university, finding good

seating plans for guests at a wedding, and assigning computer programming vari-

ables to computer registers.

This book is written with the presumption that the reader has no previous expe-

rience in graph colouring, or graph theory more generally. However, an elementary

knowledge of the notation and concepts surrounding sets, matrices, and enumerative
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combinatorics (particularly combinations and permutations) is assumed. The initial

sections of Chapter 1 are kept deliberately light, giving a brief tour of the graph

colouring problem using minimal jargon and plenty of illustrated examples. Later

sections of this chapter then go on to look at the problem from an algorithmic point

of view, looking particularly at why this problem is considered “intractable” in the

general case, helping to set the ground for the remaining chapters.

Chapter 2 of this book looks at three different well-established constructive algo-

rithms for the graph colouring problem, namely the GREEDY, DSATUR, and RLF

algorithms. The various features of these algorithms are analysed and their perfor-

mance (in terms of running times and solution quality) is then compared across a

large set of problem instances. A number of bounds on the chromatic number are

also stated and proved.

Chapters 3 and 4 then go on to look at some of the best-known algorithms for

the general graph colouring problem. Chapter 3 presents more of an overview of

this area and highlights many of the techniques that can be used for the problem,

including backtracking algorithms, integer programming methods, and metaheuris-

tics. Ways in which problem sizes can be reduced are also considered. Chapter 4

then goes on to give an in-depth analysis of six such algorithms, describing their

relevant features, and comparing their performance on a wide range of different

graph types. Portions of this chapter are based on the research originally published

by Lewis et al. (2012).

Chapter 5 considers a number of example problems, both theoretical and practi-

cal, that can be expressed using graph colouring principles. Initial sections focus on

special cases of the graph colouring problem, including map colouring (together

with a history of the Four Colour Theorem), edge colouring, and solving Latin

squares and Sudoku puzzles. The problems of colouring graphs where only lim-

ited information about a graph is known, or where a graph is subject to change over

time, are also considered, as are some natural extensions to graph colouring such as

list colouring, equitable graph colouring and weighted graph colouring.

The final three chapters of this book look at three separate case studies in which

graph colouring algorithms have been used to solve real-world practical problems,

namely the design of seating plans for large gatherings, creating schedules for sports

competitions (Lewis and Thompson, 2010), and timetabling events at educational

establishments (Lewis and Thompson, 2015). These three chapters are written so

that, to a large extent, they can be read independently of the other chapters of this

book, though obviously a full understanding of their content will only follow by

referring to the relevant sections as instructed by the text.

A Note on Pseudocode and Notation

While many of the algorithms featured in this book are described within the main

text, others are more conveniently defined using pseudocode. The benefit of pseu-

docode is that it enables readers to concentrate on the algorithmic process without
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worrying about the syntactic details of any particular programming language. Our

pseudocode style is based on that of the seminal textbook Introduction to Algo-
rithms by Cormen, Leiserson, Rivest and Stein, often simply known as the “The

Big Book of Algorithms” (Cormen et al., 2009). This particular pseudocode style

makes use of all the usual programming constructs such as while-loops, for-loops,

if-else statements, break statements, and so on, with indentation being used to indi-

cate their scope. To avoid confusion, different symbols are also used for assignment

and equality operators. For assignment, a left arrow (←) is used. So, for example,

the statement x ← 10 should be read as “x becomes equal to 10”, or “let x be equal

to 10”. On the other hand, an equals symbol is used only for equality testing; hence

a statement such as x = 10 will only evaluate to true or false (x is either equal to 10,

or it is not).

All other notation used within this book is defined as and when the necessary

concepts arise. Throughout the text, the notation G = (V,E) is used to denote a

graph G comprising a “vertex set” V and an “edge set” E . The number of vertices

and edges in a graph are denoted by n and m respectively. The colour of a particular

vertex v ∈V is written c(v), while a candidate solution to a graph colouring problem

is usually defined as a partition of the vertices into k subsets S = {S1,S2, . . . ,Sk}.

Further details can be found in the various definitions within Chapters 1 and 2.

Additional Resources

This book is accompanied by a suite of nine graph colouring algorithms that can be

downloaded from www.rhydlewis.eu/resources/gCol.zip. Each of these heuristic-

based algorithms are analysed in detail in the text and are also compared and con-

trasted empirically through extensive experimentation. These implementations are

written in C++ and have been successfully compiled on a number of different com-

pilers and platforms. (See Appendix A.1 for further details.) Readers are invited to

experiment with these algorithms as they make their way through this book. Any

queries should be addressed to the author.

In addition to this suite, this book’s appendix also contains information on how

graph colouring problems might be solved using commercial linear programming

software and also via the free mathematical software Sage. Finally, an online im-

plementation of the table planning algorithm presented in Chapter 6 can also be

accessed at www.weddingseatplanner.com.

Cardiff University, Wales. Rhyd Lewis
August 2015
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In mathematics, a graph can be thought of as a set of objects in which some pairs

of objects are connected by links. The interconnected objects are usually called ver-
tices, with the links connecting pairs of vertices termed edges. Graphs can be used to

model a surprisingly large number of problem areas, including social networking,

chemistry, scheduling, parcel delivery, satellite navigation, electrical engineering,

The graph colouring problem is one of the most famous problems in the field of

graph theory and has a long and illustrious history. In a nutshell it asks, given any

graph, how might we go about assigning “colours” to all of its vertices so that (a) no

vertices joined by an edge are given the same colour, and (b) the number of different

colours used is minimised?

and computer networking. In this chapter we introduce the graph colouring problem

Statements on the complexity of the problem are also made.

Fig. 1.1 A small graph (a), and corresponding 5-colouring (b)

Figure 1.1 shows a picture of a graph with ten vertices (the circles), and 21 edges

(the lines connecting the circles). It also shows an example colouring of this graph

that uses five different colours. We can call this solution a “proper” colouring be-

cause all pairs of vertices joined by edges have been assigned to different colours,

as required by the problem. Specifically, two vertices have been assigned to colour

1, three vertices to colour 2, two vertices to colour 3, two vertices to colour 4, and

one vertex to colour 5.

and give a number of examples of where it is encountered in real-world situations.
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Colour 
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4 

Fig. 1.2 If we extract the vertices in the dotted circle, we are left with a subgraph that clearly needs
more than four colours

Actually, this solution is not the only possible 5-colouring for this example graph.

For example, swapping the colours of the bottom two vertices in the figure would

give us a different proper 5-colouring. It is also possible to colour the graph with

anything between six and ten colours (where ten is the number of vertices in the

graph), because assigning a vertex to an additional, newly created, colour still en-

sures that the colouring remains proper.

But what if we wanted to colour this graph using fewer than five colours? Is

this possible? To answer this question, consider Figure 1.2, where the dotted line

indicates a selected portion of the graph. When we remove everything from outside

this selection, we are left with a subgraph containing just five vertices. Importantly,

we can see that every pair of vertices in this subgraph has an edge between them.

If we were to have only four colours available to us, as indicated in the figure we

would be unable to properly colour this subgraph, since its five vertices all need to

be assigned to a different colour in this instance. This allows us to conclude that the

solution in Figure 1.1 is actually optimal, since there is no solution available that

uses fewer than five colours.

1.1 Some Simple Practical Applications

Let us now consider four simple practical applications of graph colouring to further

illustrate the underlying concepts of the problem.

1.1.1 A Team Building Exercise

An instructive way to visualise the graph colouring problem is to imagine the ver-

tices of a graph as a set of “items” that need to be divided into “groups”. As an

example, imagine we have a set of university students that we want to split into

groups for a team building exercise. In addition, imagine we are interested in divid-
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ing the students so that no student is put in a group containing one or more of his

friends, and so that the number of groups used is minimal. How might this be done?

Consider the example given in the table in Figure 1.3(a), where we have a list of

eight students with names A through to H, together with information on who their

friends are. From this information we can see that student A is friends with three

students (B, C and G), student B is friends with four students (A, C, E, and F), and

so on. Note that the information in this table is “symmetric” in that if student x lists

student y as one of his friends, then student y also does the same with student x.

This sort of relationship occurs in social networks such as Facebook, where two

people are only considered friends if both parties agree to be friends in advance. An

illustration of this example in graph form is also given in the figure.

A B 

C 

D 

E F 

G 

H 

B 
D 
G 

F 
A 

E 
C 
H 

Insertion order: 
 (A, B, C, D, E, F, G, H) 

Insertion order: 
(B, F, E, D, G, A, C, H) 

(a) 

(b) (c) 

Name Friends with 
A B, C, G 
B A, C, E, F 
C A, B 
D E, F 
E B, D, F 
F B, D, E, H 
G A, H 
H F, G 

Fig. 1.3 Illustration of how proper 5- and 4-colourings can be constructed from the same graph

Let us now attempt to split the eight students of this problem into groups so that

each student is put into a different group to that of his friends’. A simple method to

do this might be to take the students one by one in alphabetical order and assign them

to the first group where none of their friends are currently placed. Walking through

the process, we start by taking student A and assigning him to the first group. Next,

we take student B and see that he is friends with someone in the first group (student

A), and so we put him into the second group. Taking student C next, we notice that

he is friends with someone in the first group (student A) and also the second group

(student B), meaning that he must now be assigned to a third group. At this point

we have only considered three students, yet we have created three separate groups.

What about the next student? Looking at the information we can see that student D

is only friends with E and F, allowing us to place him into the first group alongside

student A. Following this, student E cannot be assigned to the first group because he

A 

D 

H 

B 

G 

C 

E 

F 
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is friends with D, but can be assigned to the second. Continuing this process for all

eight students gives us the solution shown in Figure 1.3(b). This solution uses four

groups, and also involves student F being assigned to a group by himself.

Can we do any better than this? By inspecting the graph in Figure 1.3(a), we

can see that there are three separate cases where three students are all friends with

one another. Specifically, these are students A, B, and C; students B, E, and F; and

students D, E, and F. The edges between these triplets of students form triangles

in the graph. Because of these mutual friendships, in each case these collections of

three students will need to be assigned to different groups, implying that at least
three groups will be needed in any valid solution. However, by visually inspecting

the graph we can see that there is no occurrence of four students all being friends

with one another. This hints that we may not necessarily need to use four groups in

a solution.

In fact, a solution using three groups is actually possible in this case as Fig-

ure 1.3(c) demonstrates. This solution has been achieved using the same assignment

process as before but using a different ordering of the students, as indicated. Since

we have already deduced that at least three groups are required for this particular

problem, we can conclude that this solution is optimal.
The process we have used to form the solutions shown Figures 1.3(b) and (c) is

generally known as the GREEDY algorithm for graph colouring, and we have seen

that the ordering of the vertices (students in this case) can influence the number of

colours (groups) that are ultimately used in the solution it produces. The GREEDY

algorithm and its extensions are a fundamental part of the field of graph colouring

and will be considered further in later chapters. Among other things, we will demon-

strate that there will always be at least one ordering of the vertices that, when used

with the GREEDY algorithm, will result in an optimal solution.

1.1.2 Constructing Timetables

A second important application of graph colouring arises in the production of

timetables at colleges and universities. In these problems we are given a set of

“events”, such as lectures, exams, classroom sessions, together with a set of “times-

lots” (e.g., Monday 09:00–10:00, Monday 10:00–11:00 and so on). Our task is to

then assign the events to the timeslots in accordance with a set of constraints. One of

the most important of these constraints is what is often known as the “event-clash”

constraint. This specifies that if a person (or some other resource of which there

is only one) is required to be present in a pair of events, then these events must

not be assigned to the same timeslot since such an assignment will result in this

person/resource having to be in two places at once.

Timetabling problems can be easily converted into an equivalent graph colouring

problem by considering each event as a vertex, and then adding edges between any

vertex pairs that are subject to an event clash constraint. Each timeslot available in
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the timetable then corresponds to a colour, and the task is to find a colouring such

that the number of colours is no larger than the number of available timeslots.

Timeslot 1 2 3 4 

Event 1 Event 2 Event 7 Event 4 

Event 5 Event 3 Event 9 Event 8 

Event 6 

v1 
v2 

v3 v4 v5 

v6 

v7 
v8 

v9 

v1 
v2 

v3 v4 v5 

v6 

v7 
v8 

v9 

(a) (b) (c) 

Fig. 1.4 A small timetabling problem (a), a feasible 4-colouring (b), and its corresponding
timetable solution using four timeslots (c)

Figure 1.4 shows an example timetabling problem expressed as a graph colouring

problem. Here we have nine events which we have managed to timetable into four

timeslots. In this case, three events have been scheduled into timeslot 1, and two

events have been scheduled into each of the remaining three. In practice, assuming

that only one event can take place in a room at any one time, we would also need

to ensure that three rooms are available during timeslot 1. If only two rooms are

available in each timeslot, then an extra timeslot might need to be added to the

timetable.

It should be noted that timetabling problems can often vary a great deal between

educational institutions, and can also be subject to a wide range of additional con-

straints beyond the event-clash constraint mentioned above. Many of these will be

examined further in Chapter 8.

1.1.3 Scheduling Taxis

A third example of how graph colouring can be used to solve real-world problems

arises in the scheduling of tasks that each have a start and finish time. Imagine that a

taxi firm has received n journey bookings, each of which has a start time, signifying

when the taxi will leave the depot, and a finish time telling us when the taxi is

expected to return. How might we assign all of these bookings to vehicles so that

the minimum number of vehicles is needed?

Figure 1.5(a) shows an example problem where we have ten taxi bookings. For

illustrative purposes these have been ordered from top to bottom according to their

start times. It can be seen, for example, that booking 1 overlaps with bookings 2, 3

and 4; hence any taxi carrying out booking 1 will not be able to serve bookings 2, 3

and 4. We can construct a graph from this information by using one vertex for each

booking and then adding edges between any vertex pair corresponding to overlap-

ping bookings. A 3-colouring of this example graph is shown in Figure 1.5(b), and

the corresponding assignment of the bookings to three taxis (the minimum number

possible) is shown in Figure 1.5(c).
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(a) 
v1 

v2 

v3 

v8 v9 

v4 

v5 v6 v7 

v10 

1 5 8 10 

2 4 6 9 

3 7 

Taxi 1 

Taxi 2 

Taxi 3 

1 
2 3 

4 
5 

7 
6 

8 
9 

10 

(b) 
(c) 

Time  
Time  

Fig. 1.5 A set of taxi journey requests over time (a), its corresponding interval graph and 3-
colouring (b), and (c) the corresponding assignment of journeys to taxis

In this particular case we see that our example problem has resulted in a graph

made of three smaller graphs (components), comprising vertices v1 to v4, v5 to v7

and v8 to v10 respectively. However, this will not always be the case and will depend

on the nature of the bookings received.

A graph constructed from time-dependent tasks such as this is usually referred to

as an interval graph. In Chapter 2, we will show that a simple inexpensive algorithm

exists for interval graphs that will always produce an optimal solution (that is, a

solution using the fewest number of colours possible).

1.1.4 Compiler Register Allocation

Our fourth and final example in this section concerns the allocation of computer

code variables to registers on a computer processor. When writing code in a partic-

ular programming language, whether it be C++, Pascal, FORTRAN or some other

option, the programmer is free to make use of as many variables as he or she sees fit.

When it comes to compiling this code, however, it is advantageous for the compiler

to assign these variables to registers1 on the processor since accessing and updating

values in these locations is far faster than carrying out the same operations using the

computer’s RAM or cache.

Computer processors only have a limited number of registers. For example, most

RISC processors feature 64 registers: 32 for integer values and 32 for floating point

values. However, not all variables in a computer program will be in use (or “live”)

at a particular time. We might therefore choose to assign multiple variables to the

same register if they are seen not to interfere with one another.

Figure 1.6(a) shows an example piece of computer code making use of five vari-

ables, v1, . . . ,v5. It also shows the live ranges for each variable. So, for example,

variable v2 is live only in lines (2) and (3), whereas v3 is live from lines (4) to (9).

It can also be seen, for example, that the live ranges of v1 and v4 do not overlap.

Hence we might use the same register for storing both of these variables at different

periods during execution.

1 Registers can be considered physical parts of a processor that are used for holding small pieces
of data.
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(1)  v1 ← … 
(2)  v2 ← … 
(3)  … v2 … 
(4)  v3 ← … 
(5)  … v1 … 
(6)  v4 ← … 
(7)  v5 ← … 
(8)  … v4 … 
(9)  … v3 … 

(10)  … v5 … 

v1 

v4 

v2  

v3 

v5 

Colour /  
Register    
     

        1 
 

        2 
 

        3 

v1 v2 

v3 

v4 v5 

(a) (b) 

Fig. 1.6 (a) An example computer program together with the live ranges of each variable. Here, the
statement “vi ← . . .” denotes the assignment of some value to variable vi, whereas “. . .vi . . .” is just

some arbitrary operation using vi. (b) shows an optimal colouring of the corresponding interference
graph

The problem of deciding how to assign the variables to registers can be modelled

as a graph colouring problem by using one vertex for each live range and then adding

edges between any pairs of vertices corresponding to overlapping live ranges. Such

a graph is known as an interference graph, and the task is to now colour the graph

using equal or fewer colours than the number of available registers. Figure 1.6(b)

shows that in this particular case only three registers are needed: variables v1 and v4

can be assigned to register 1, v2 and v5 to register 2, and v3 to register 3.

Note that in the example of Figure 1.6, the resultant interference graph actually

corresponds to an interval graph, rather like the taxi example from the previous

subsection. Such graphs will arise in this setting when using straight-line code se-

quences or when using software pipelining. In most situations however, the flow

of a program is likely to be far more complex, involving if-else statements, loops,

goto commands, and so on. In these cases the more complicated process of liveness
analysis will be needed for determining the live ranges of each variable, which could

result in an interference graphs of any arbitrary topology (see also Chaitin (2004)).

1.2 Why “Colouring”?

We have now seen four practical applications of the graph colouring problem. But

why exactly is it concerned with “colouring” vertices? In fact, the graph colouring

problem was first noted in 1852 by a student of University College London, Fran-

cis Guthrie (1831–1899), who, while colouring a map of the counties of England,

noticed that only four colours were needed to ensure that all neighbouring counties

were allocated different colours.

To show how the colouring of maps relates to the colouring of vertices in a graph,

consider the example map of the historical counties of Wales given in Figure 1.7(a).

This particular map involves 16 “regions”, including 14 counties, the sea on the left

and England bordering on the right. Figure 1.7(d) shows that this map can indeed be
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(a) (b) 

(c) (d) 

* 

* 

* 

* 

Fig. 1.7 Illustration of how graphs can be used to colour the regions of a map

coloured using just four colours (light grey, dark grey, black, white). But how does

the graph colouring problem itself inform this process?

In Figure 1.7(b), we begin by placing a single vertex in the centre of each region

of the map. Next, edges are drawn between any pair of vertices whose regions are

seen to share a border. Thus, for example, the vertex appearing in England on the

right will have edges drawn to the seven vertices in the seven neighbouring Welsh

counties and also to the vertex appearing in the sea on the far left. If we take care

in drawing these edges, it can be shown that we will always be able to draw a

graph from a map in this way so that no pair of edges needs to cross one another.

Technically speaking, a graph that can be drawn with no crossing edges is known as

a planar graph, of which Figure 1.7(c) is an example.

Figure 1.7(c) also illustrates how we might now colour this planar graph using

just four colours. The counties corresponding to these vertices can then be allocated

the same colours in the actual map of Wales, as shown in Figure 1.7(d).
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We might now ask whether we always need to use exactly four colours to suc-

cessfully colour a map. In some cases, such as a map depicting a single island region

surrounded by sea, less than four colours will obviously be sufficient. On the other

hand, for the map of Wales shown in Figure 1.7, we can deduce that exactly four

colours will be needed, (a) because a solution using four colours has already been

constructed (as shown in the figure), and (b) because a solution using three or fewer

colours is impossible. The latter point is due to the fact that the planar graph in

Figure 1.7(c) contains a set of four vertices that each have an edge between them

(indicated by asterisks in this figure). This obviously tells us that different colours

will be needed for each of these vertices.

The fact that, as Francis Guthrie suspected, four colours turn out to be sufficient

to colour any map (or, equivalently, four colours are sufficient to colour any planar

graph) is due to the celebrated Four Colour Theorem, which was ultimately proved

in 1976 by Kenneth Appel and Wolfgang Haken of the University of Illinois—a full

124 years after it was first conjectured (see Section 5.1). However, it is important

to stress at this point that the Four Colour Theorem does not apply to all graphs,

but only to planar graphs. What can we say about the number of colours that are

needed for colouring graphs that are not planar? Unfortunately, as we shall see,

in these cases we do not have the luxury of a strong result like the Four Colour

Theorem.

1.3 Problem Description

We are now in a position to define the graph colouring problem more formally. Let

G = (V,E) be a graph, consisting of a set of n vertices V and a set of m edges E.

Given such a graph, the graph colouring problem seeks to assign each vertex v ∈ V
an integer c(v) ∈ {1,2, . . . ,k} such that:

• c(v) �= c(u) ∀{v,u} ∈ E; and

• k is minimal.

In this interpretation, instead of using actual colours such as grey, black, and white

to colour the vertices, we use the labels 1, 2, 3, up to k. If we have a solution in which

a vertex v is assigned to, say, colour 4, this is then written c(v) = 4. According to the

first bullet above, pairs of vertices in G that are joined by an edge (usually known

as adjacent vertices) must be assigned to different colours. The second bullet then

states that we are seeking to minimise the number of different colours that are used.

To illustrate these ideas, the example graph depicted in Figure 1.8 has a vertex

set V containing n = 10 vertices,

V = {v1,v2,v3,v4,v5,v6,v7,v8,v9,v10},

and an edge set E containing m = 21 edges,
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v1 v2 

v3 v4 
v5 

v6 
v7 

v8 

v9 v10 

v1 v2 

v3 v4 
v5 

v6 
v7 

v8 

v9 v10 

Colour 
1 

 

2 
 

3 
 

4 
 

5 

Fig. 1.8 A small graph with ten vertices and 21 edges (a), and (b) a corresponding 5-colouring

E ={{v1,v2},{v1,v3},{v1,v4},{v1,v6},{v1,v7},{v2,v5},
{v3,v4},{v3,v6},{v3,v7},{v4,v5},{v4,v6},{v4,v7},
{v4,v8},{v5,v7},{v5,v8},{v5,v10},{v6,v7},{v6,v9},
{v7,v9},{v8,v10},{v9,v10}}.

Here, we see that each element of the set E is a pair of vertices {vi,v j} indicating

that these two vertices are adjacent to one another. Note that edges of the form

{vi,vi}, commonly referred to as “loops”, are not allowed, since this would make it

impossible to colour the vertex vi.

Figure 1.8 also shows a 5-colouring of the example graph. Using our notation,

this solution can be written as follows:

c(v1) = 3, c(v2) = 2, c(v3) = 4, c(v4) = 2, c(v5) = 4,

c(v6) = 5, c(v7) = 1, c(v8) = 1, c(v9) = 2, c(v10) = 3.

We now give some useful definitions that will help us to describe a graph colour-

ing solution and its properties.

Definition 1.1 A colouring of a graph is called complete if all vertices v ∈ V are
assigned a colour c(v) ∈ {1, . . . ,k}; else the colouring is considered partial.

Definition 1.2 A clash describes a situation where a pair of adjacent vertices u,v ∈
V are assigned the same colour (that is, {u,v} ∈ E and c(v) = c(u)). If a colouring
contains no clashes, then it is considered proper; else it is considered improper.

Definition 1.3 A colouring is feasible if and only if it is both complete and proper.

Definition 1.4 The chromatic number of a graph G, denoted by χ(G), is the mini-
mum number of colours required in a feasible colouring of G. A feasible colouring
of G using exactly χ(G) colours is considered optimal.

For example, the 5-colouring shown in Figure 1.8 is feasible because it is both

complete (all vertices have been allocated colours) and proper (it contains no

clashes). In this case the chromatic number of this graph χ(G) is already known

to be 5, so the colouring can also be said to be optimal.
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Some further useful definitions for the graph colouring problem involve colour

classes, and structures known as cliques and independent sets.

Definition 1.5 A colour class is a set containing all vertices in a graph that are
assigned to a particular colour in a solution. That is, given a particular colour
i ∈ {1, . . . ,k}, a colour class is defined as the set {v ∈V : c(v) = i}.

Definition 1.6 An independent set is a subset of vertices I ⊆ V that are mutually
nonadjacent. That is, ∀u,v ∈ I, {u,v} /∈ E.

Definition 1.7 A clique is a subset of vertices C ⊆ V that are mutually adjacent:
∀u,v ∈C, {u,v} ∈ E.

To illustrate these definitions, two example colour classes from Figure 1.8 are

{v2, v4, v9} and {v8}. Example independent sets from this figure include {v2, v7,

v8} and {v3, v5, v9}. The largest clique in Figure 1.8 is {v1, v3, v4, v6, v7}, though

numerous smaller cliques also exist, such as {v6, v7, v9} and {v2, v5}.

Given the above definitions, it is also useful to view graph colouring as a type of

partitioning problem where a solution S is represented by a set of k colour classes

S = {S1, . . . ,Sk}. In order for S to be feasible it is then necessary that the following

constraints be obeyed:

k⋃
i=1

Si = V, (1.1)

Si ∩S j = /0 (1 ≤ i �= j ≤ k), (1.2)

∀u,v ∈ Si, {u,v} /∈ E (1 ≤ i ≤ k), (1.3)

with k being minimised. Here, Constraints (1.1) and (1.2) state that S should

be a partition of the vertex set V (that is, all vertices should be assigned to ex-

actly one colour class each). Constraint (1.3) then stipulates that no pair of adja-

cent vertices should be assigned to the same colour class (i.e., all colour classes

in the solution should be independent sets). Referring to Figure 1.8 once more,

the depicted solution using this interpretation of the problem is now written S =
{{v1,v10},{v2,v4,v9},{v3,v5},{v6},{v7,v8}}.

1.4 Problem Complexity

Now that we have properly defined the graph colouring problem, the natural ques-

tion to ask is: “what algorithm can be employed to solve it?” In this question we use

the word “solve” in the strong sense—that is, an algorithm is said to solve the graph

colouring problem if it is able to take any graph (of any size and any topology) and

return an optimal solution in all cases. Is such an algorithm achievable?
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1.4.1 Solution Space Growth Rates

One possible, though perhaps foolhardy, method for solving the graph colouring

problem is to check every possible assignment of vertices to colours and then return

the best of these (that is, return the solution from the set of all possible assignments

that is both feasible and seen to be using the fewest colours). Such a method would

indeed be guaranteed to return an optimal solution, but would it work in practice?

Following this approach, given a particular graph with n vertices, we would first

need to decide the maximum number of colours that the solution might use. In prac-

tice, this could be estimated as some value between 1 and n, but for now we will

assume this value to simply be n, since no feasible solution will ever require more

colours than vertices.

Consider now the number of assignments that would need to be checked. Since

there would be n choices of colour for each of the n vertices, this would give a so-

lution space containing a total of nn candidate solutions. This number obviously

grows very rapidly with regard to n, meaning that the number of candidate so-

lutions to be checked will quickly become too large for even the most powerful

computer to tackle. To illustrate, a graph with n = 50 vertices would lead to over

5050 ≈ 8.8× 1084 different assignments: a truly astronomical number. This would

make the task of creating and checking all of these assignments, even for this mod-

estly sized problem, far beyond the computing power of all of the world’s computers

combined. (For comparison’s sake, the number of atoms in the known universe is

thought to be around 1082.) In addition, even if we were to limit ourselves to candi-

date solutions using a maximum of k < n colours labelled 1, . . . ,k, this would still

lead to kn assignments needing to be considered, a function that is still subject to a

similar combinatorial explosion for any k > 1.

A slightly better, though still ultimately doomed approach would be to make

note of the symmetry that exists in the assignment method just described. It is worth

noting at this point that when we allocate “colours” to vertices, these are essentially

arbitrary labels, and what we are more interested in is the number of different colours
being used as opposed to what these labels actually are. To these ends, a solution

such as

c(v1) = 3, c(v2) = 2, c(v3) = 4, c(v4) = 2, c(v5) = 4,

c(v6) = 5, c(v7) = 1, c(v8) = 1, c(v9) = 2, c(v10) = 3

can be considered identical to the solution

c(v1) = 1, c(v2) = 2, c(v3) = 4, c(v4) = 2, c(v5) = 4,

c(v6) = 5, c(v7) = 3, c(v8) = 3, c(v9) = 2, c(v10) = 1,

because the makeup of the five colour classes in both cases are equivalent, with

only the labels of the being different (in this example, colours 1 and 3 have been

swapped). Stated more precisely, this means that if we are given a candidate solution

using k different colours with labels 1,2, . . . ,k, the number of different assignments
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that would actually specify the same solution would be k! = k× (k−1)× (k−2)×
. . .×2×1, representing all possible assignments of the k labels to the colour classes.

The space of all possible assignments of vertices to colours is therefore far larger

(exponentially so) than it needs to be.

Perhaps a better approach than considering all possible assignments is to there-

fore turn to the alternative but equivalent statement of the graph colouring problem

from Section 1.3. Here we seek to partition the vertex set into a set of k colour

classes S = {S1, . . . ,Sk}, where each set Si ∈ S is an independent set, with k being

minimised. The number of ways of partitioning a set with n items into nonempty

subsets is given by the nth Bell number, denoted by Bn. For example, the third bell

number B3 = 5 because a set with three elements v1, v2, and v3, can be partitioned

in five separate ways:

{{v1,v2,v3}},
{{v1},{v2},{v3}},
{{v1},{v2,v3}},
{{v2},{v1,v3}},and

{{v3},{v1,v2}}.

In contrast to the previous case where up to nn assignments need to be considered,

the use of sets here means that the labelling of the colour classes is not now rel-

evant, meaning that the issues surrounding solution symmetry have been resolved.

This also has the effect of reducing the size of the solution space considerably. A

suitable approach for colouring a graph with n vertices might now simply involve

enumerating all Bn possible partitions and simply checking for the one that com-

prises the fewest independent sets. Further improvements could also be achieved

if we were to limit the number of available colours to some value k < n, reduc-

ing the size of the solution space even further. Stirling numbers of the second kind,

commonly denoted by
{n

k

}
, define the number of ways of partitioning n items into

exactly k nonempty subsets, and can be calculated by the formula:

{
n
k

}
=

1

k!

k

∑
j=0

(−1)k− j
(

k
j

)
jn. (1.4)

So, for instance, the number of ways of partitioning three items into exactly two

nonempty subsets is
{

3
2

}
= 3, because we have three different options:

{{v1},{v2,v3}},
{{v2},{v1,v3}},and

{{v3},{v1,v2}}.

Note that summing Stirling numbers of the second kind for all values of k from

1 to n leads to the nth Bell number:
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Bn =
n

∑
k=1

{
n
k

}
. (1.5)

We might now choose to employ an enumeration algorithm that starts by considering

k = 1 colour. At each step the algorithm then simply needs to check all
{n

k

}
possible

partitions to see if any correspond to a feasible solution (k-colouring). If such a

solution is found, the algorithm can halt immediately with the knowledge that an

optimal solution has been found. Otherwise, k would need to be incremented by 1,

with the process continuing as before. Ultimately such an algorithm would therefore

need to consider a maximum of
χ(G)

∑
k=1

{
n
k

}
(1.6)

candidate solutions. But is such an approach suitable for solving the graph colouring

problem? Unfortunately not. Even though our original solution space size of nn

has been reduced quite considerably by representing solutions as partitions, Stirling

numbers of the second kind still exhibit exponential growth rates for most values

of k. As an example, if we were seeking to produce and examine all partitions of

50 items into 10 subsets, which is again quite a modestly sized graph colouring

problem, this would lead to
{

50
10

}
≈ 2.6×1043 candidate solutions. Such a figure is

still well beyond the reach of any contemporary computing resources.

1.4.2 Problem Intractability

The above discussions have demonstrated that any graph colouring algorithm based

on enumerating and checking the entire solution space is not sensible because, on

anything except trivial problem instances, its execution will simply take too long.

However, the exponential growth rate of the solution space is not the sole reason why

the graph colouring problem is so troublesome, since many “easy to solve” problems

also feature similarly large solution spaces. As an example, consider the computa-

tional problem of sorting a collection of integers into ascending order. Given a set

of n unique integers, there are a total of n! different ways of arranging these, and

only one of these candidate solutions will give us the required answer. However, it

would be completely unnecessary to employ an algorithm that went about check-

ing all possible n! candidate solutions, because a multitude of efficient algorithms

whose complexities are not subject to a combinatorial explosion are available for the

sorting problem, including the QUICKSORT and MERGESORT algorithms. Detailed

descriptions of these can be found in the comprehensive textbook of Cormen et al.

(2009), amongst other places.

In contrast to the problem of sorting, the fact that a problem like graph colouring

can be considered “hard”, or “intractable”, is due to the pioneering work of Stephen

Cook in the early 1970s (Cook, 1971). In this work Cook introduced the concepts of
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NP-completeness and polynomial-time reductions, and also showed that a problem

known as the “satisfiability problem” is NP-complete.

In short, given a particular Boolean expression, the satisfiability problem asks

whether there exists some assignment of values to the variables such that the

expression evaluates to “true”. For example, the Boolean expression (x1 ∧ ¬x2)
is satisfiable because an assignment of, say, true to x1 and false to x2 leads to

(T∧¬F) = (T∧T) = T as required. On the other hand the expression (x1 ∧¬x1)
is not satisfiable since all possible assignments to the variables evaluate to a false:

(T∧¬T) = (T∧ F) = F, and (F∧¬F) = (F∧T) = F. Cook proved that there is

no known algorithm for efficiently solving all instances of the satisfiability prob-

lem, labelling this characteristic as NP-complete. It is this finding that leads to the

conclusion that graph colouring is also an NP-complete problem, as we shall now

see.

In the field of computational complexity, problems are typically posed as “de-

cision problems” requiring “yes” or “no” answers. Graph colouring problems can

easily be stated as decision problems by simply posing the problem in the form

“Can a graph G be coloured feasibly using k colours?”, as opposed to asking what

the minimum number of colours actually is. Decision problems for which there exist

“good” algorithms—that is, algorithms whose growth rates (and therefore execution

times) can be expressed via polynomials and are therefore not subject to a combi-

natorial explosion—are said to belong to the class P, standing for polynomial-time

problems.

Another class of decision problems is NP, standing for nondeterministic polyno-

mial time. A problem is said to be a member of NP if, given a particular candidate

solution together with a claim that it gives a “yes” answer, there exists a polynomial-

time algorithm for verifying whether this is the case. For example, the decision vari-

ant of the graph colouring problem (“Can G be feasibly coloured using k colours?”)

belongs to NP because, given any candidate solution and value for k, it is easy to

check in polynomial time whether it is both feasible and using exactly k colours.

Clearly any problem belonging to P also belongs to NP, since for any problem

in P, we can simply use its available polynomial-time algorithm to solve (and there-

fore verify) it. This means that P ⊆ NP. However, despite decades of research, it is

not known whether in fact P = NP. Indeed, it is generally believed across the aca-

demic fields that the opposite is true and that P �= NP. This brings us to the class

of NP-complete problems. Problems that are NP-complete belong to the set NP

and can therefore have potential solutions verified in polynomial time. However,

an algorithm for locating a “yes” solution to such problems in the first place will

still have to resort to enumerating and checking a significant portion of the solu-

tion space. Since NP-complete problems feature solution spaces that are known to

grow exponentially in relation to problem size, this implies that there is no known

polynomially bounded algorithm for achieving this task.

So how do we know that the decision variant of the graph colouring problem is

NP-complete? As mentioned, Cook showed in 1971 that the satisfiability problem

is NP-complete, proving the existence of at least one NP-complete problem. For-

tunately, however, this result can be used to prove the NP-completeness of a whole
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host of other problems via the use of what are known as polynomial transformations.

A polynomial transformation is essentially a way of efficiently transforming one de-

cision problem into another. Let D1 and D2 be two separate decision problems. We

say that D1 can be polynomially transformed into D2, written D1 ∝ D2, if there is

a polynomial-time method of transforming any instance of D1 into an instance of

D2, such that the answer to D1 is “yes” if and only if the corresponding answer

to D2 is also “yes”. Another way of looking at this is to say that if D1 ∝ D2, then

D2 generalises D1 in that all instances of D1 can be converted into corresponding

instances of D2 (though D2 might feature other instances that do not have corre-

sponding instances in D1). The reason why polynomial transformations are useful

is that, if D1 is known to be NP-complete and D1 ∝ D2, then this also proves that

D2 is NP-complete, since all possible instances of D1 can be transformed and stated

as a corresponding problem in D2. (If, for purposes of contradiction, D1 was known

to be NP-complete, and D1 ∝ D2, but D2 was known to be in P, this would imply

that all instances of D1 could also be solved in polynomial time, since we could

just use a polynomial transformation process to convert any instance of D1 into D2

and then solve this using an efficient (polynomially bounded) algorithm. This would

contradict the initial statement that D1 was NP-complete.)

The decision variant of graph colouring is known to be NP-complete because

it has been shown to generalise the NP-complete problem of 3-satisfiability (i.e.,

the 3-satisfiability problem is polynomially reducible to the graph colouring prob-

lem). In turn, the 3-satisfiability problem generalises the satisfiability problem it-

self, which we have already established as being NP-complete due to the findings

of Cook (1971).

Graph colouring Maximum 
clique 

Travelling Salesman 
Problem 

Satisfiability 

3-Satisfiability 

Hamiltonian 
Cycle 

Vertex cover 
Maximum 

independent set 

Chromatic 
Number 

Fig. 1.9 Some paths of polynomial reductions

The tree in Figure 1.9 depicts this chain of reductions, along with some other fa-

mous examples of NP-complete problems. Related to graph colouring, these prob-

lems include:

• The chromatic number problem: Given a graph G and some integer k, is G’s

chromatic number χ(G) = k?

• The maximum clique problem: Given a graph G and some integer k, is there a

clique in G containing k vertices?
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• The maximum independent set problem: Given a graph G and some integer k, is

there an independent set in G containing k vertices?

Proofs of many of these reductions can be found in the seminal paper of Karp

(1972). A number of similar proofs are also detailed in Cormen et al. (2009).

When talking about the graph colouring problem, or indeed many other compu-

tationally intractable problems, it is also common to see the term “NP-hard” instead

of NP-complete. NP-hard problems are at least as hard as NP-complete problems

because they are not required to be in the class NP (i.e., they do not have to be

stated as decision problems). Consequently, NP-hard problems will often be stated

as an optimisation version of a corresponding NP-complete decision problem. So

with graph colouring for instance, rather than asking “is there a feasible colouring

of G that uses k colours?” (for which the answer will be “yes” or “no”), the problem

will now be stated: “how might we colour the vertices of G such that the minimum

number of different colours is being used?” Note that the non-decision variant ver-

sion of the graph colouring algorithm as stated in Section 1.3 is itself NP-hard, as are

the corresponding optimisation versions of the chromatic number, maximum clique

and maximum independent set problems.

Rounding off this section, we should note that the existence of NP-complete and

NP-hard problems is based wholly on the conjecture that P �= NP. The question of

whether this conjecture is actually true is one of the most famous unsolved problems

in the mathematical sciences. Indeed, the Clay Mathematics Institute has offered

a prize of one million US dollars to anyone who is able to offer a formal proof

one way or the other. As we have mentioned, it is largely believed that P �= NP,

but if the opposite were found to be true, it would have hugely profound scientific

consequences, not least because it would lead to the availability of polynomial-time

algorithms for large numbers of computational problems previously thought to be

intractable, including graph colouring itself. The reader is referred to the excellent

textbook of Garey and Johnson (1979) for a full introduction to this topic.

1.5 Can We Solve the Graph Colouring Problem?

In the previous section we arrived at the inconvenient conclusion that, as with all

NP-hard problems, an efficient (polynomial-time) algorithm for solving the graph

colouring problem is almost certainly beyond our grasp. In this context we have

again used the word “solve” in the strong sense—that is, an algorithm “solves”

a particular problem if and only if it returns the optimal solution for all problem

instances. For the colouring of any arbitrary graph, we will therefore need to turn

towards approximation algorithms and/or heuristic methods.

Approximation algorithms and heuristic methods are used for achieving approx-

imate solutions to intractable problems and typically operate in polynomial time.

They do not “solve” their intended problem, but they do attempt to provide solu-

tions that are hopefully acceptable for the user. Considering the graph colouring

problem, we might choose to employ a particular algorithm A on graph G. After



18 1 Introduction to Graph Colouring

a short amount of time, A might then return a feasible k-colouring for G. If a so-

lution using k colours is acceptable for use, we might stop there; however, if it is

unsuitable, we may then choose to modify the behaviour of A or indeed try another

algorithm B which will hopefully give us better solution, perhaps using fewer than

k colours. This sort of process highlights the underlying issue with approximation

algorithms and heuristics in that they will often return suboptimal solutions. Indeed,

even if they do happen to return the optimal solution, we may not be able to prove

this fact. Further, they may happen to produce quite good solutions in comparison

to other algorithms on some types of graph, but poor solutions on others.

The fact that graph colouring is NP-hard does not mean that no problem in-

stances are solvable in polynomial time, however. As a trivial example, consider a

graph comprising a vertex set V = {v1, . . . ,vn} and edge set E = /0 (such a graph

is commonly known as an empty graph on n vertices). Obviously, since no pairs of

vertices are adjacent in this graph, the n vertices can all be feasibly assigned the

same single colour, giving a chromatic number of 1. In practice it would be easy

to write an algorithm to check whether E = /0 and, if this is the case, produce the

corresponding optimal solution.

In the following subsections we will now take a look at a selection of some less

trivial graph topologies for which exact results on the chromatic number are known.

In Chapter 2, we will also see two heuristic algorithms for graph colouring that, in

addition to producing good results on arbitrary graphs, also turn out to be exact for

some of these examples.

1.5.1 Complete Graphs

Complete graphs with n vertices, denoted by Kn, are graphs that feature an edge

between each pair of vertices, giving a set E of m = n(n−1)
2 edges. It is obvious that

because all vertices in the complete graph are mutually adjacent, all vertices must be

assigned to their own individual colour. Hence the chromatic number of a complete

graph χ(Kn) = n. Example optimal solutions for K1 to K5 are shown in Figure 1.10.

Fig. 1.10 Optimal colourings of the complete graphs (from left to right) K1, K2, K3, K4 and K5
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1.5.2 Bipartite Graphs

Bipartite graphs, denoted by G = (V1,V2,E), are graphs whose vertices can be par-

titioned into two sets V1 and V2 such that edges only exist between vertices in V1

and vertices in V2. As a result V1 and V2 are both independent sets, meaning that

bipartite graphs can be coloured using just two colours, with all vertices in V1 being

assigned to one colour, and all vertices in V2 being assigned to the other. It is obvi-

ous, therefore, that a graph G features a chromatic number χ(G) = 2 if and only if

it is bipartite.

Fig. 1.11 Optimal colourings of (from left to right) an arbitrary bipartite graph, a tree, and a star

graph

Figure 1.11, shows three examples of bipartite graphs and their optimal colour-

ings: an arbitrary bipartite graph; a tree (that is, a bipartite graph that contains no

cycles); and a star graph.

1.5.3 Cycle, Wheel and Planar Graphs

Cycle graphs, denoted by Cn, where n≥ 3, comprise a set of vertices V = {v1, . . . ,vn}
and a set of edges E of the form {{v1,v2},{v2,v3}, . . . ,{vn−1,vn},{vn,v1}}. The cy-

cle graphs C3, C4, C8, and C9 are shown in Figure 1.12(a).

(a) 

(b) 

Fig. 1.12 Optimal colourings of (a) cycle graphs C3, C4, C8, and C9, and (b) wheel graphs W4, W5,

W9, and W10
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It is known that only two colours are needed to colour Cn when n is even (an

even cycle); hence even cycles are a type of bipartite graph. However, three colours

are needed when n is odd (an odd cycle). This is illustrated in the figure, where

χ(C4) = χ(C8) = 2 whereas χ(C3) = χ(C9) = 3.

To explain this result, first consider the even cycle case. To construct a 2-

colouring we simply choose an arbitrary vertex and colour it white. We then proceed

around the graph in a clockwise direction colouring the second vertex grey, the third

vertex white, the fourth grey, and so on. When we reach the nth vertex, this can be

coloured grey because the two vertices adjacent to it, namely the first and (n−1)th
vertex will both be coloured white. Hence only two colours are required.

On the other hand, when n is odd (and n ≥ 3), three colours will be required.

Following the same pattern as the even case, an initial vertex is chosen and coloured

white, with other vertices in a clockwise direction being assigned grey, white, grey,

white, as before. However, when the nth vertex is reached, this will be adjacent

to both the (n− 1)th vertex (coloured grey), and the first vertex (coloured white).

Hence a third colour will be required to feasibly colour the graph.

Wheel graphs with n vertices, denoted by Wn, are obtained from the cycle

graph Cn−1 by adding a single extra vertex vn together with the additional edges

{v1,vn},{v2,vn}, . . . ,{vn−1,vn}. Example wheel graphs are shown in Figure 1.12(b).

It is clear that similar results to cycle graphs can be stated for wheel graphs. Specif-

ically, when n is odd, three colours will be required to colour Wn because the graph

will be composed of the even cycle Cn−1, requiring two colours, and the additional

vertex vn which, being adjacent to all vertices in Cn−1, will require a third colour.

Similarly, when n is even, χ(Wn) = 4 because the graph will be composed of the

odd cycle Cn−1, requiring three colours, together with vertex vn, which will require

a forth colour.

It is clear from the illustrations in Figure 1.12 that cycle graphs and wheel graphs

(of any size) are both particular cases of planar graphs, in that they can be drawn

on a two-dimensional plane without any of the edges crossing. This fits in with the

Four Colour Theorem, which states that if a graph is planar then it can be feasibly

coloured using four or fewer colours (see Sections 1.2 and 5.1). However, the Four

Colour Theorem does not imply that if a graph is 4-colourable then it must also be

planar, as the next example illustrates.

1.5.4 Grid Graphs

Grid graphs can be formed by placing all vertices in a lattice formation on a two-

dimensional plane. In a sparse grid graph, each vertex is adjacent to four vertices:

the vertex above it, the vertex below it, the vertex to the right, and the vertex to the

left (see Figure 1.13(a)). For a dense grid graph, a similar pattern is used, but vertices

are also adjacent to vertices on their surrounding diagonals (Figure 1.13(b)).

A practical application of such graphs occurs in the arrangement of seats in exam

venues. Imagine a large examination venue where the desks have been placed in a
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(a) (b) 

Fig. 1.13 Optimal colourings of (a) a sparse grid graph and (b) a dense grid graph

grid formation. In such cases we might want to avoid instances of students copying

from each other by making sure that each student is always seated next to students

taking different exams. What is the minimum number of exams that can take place

in the venue if this is the case? This problem can be posed as a graph colouring

problem by representing each desk as a vertex, with edges representing pairs of

desks that are close enough for students to copy from.

If it is assumed that students can only copy from students seated in front, behind,

to their left, or to their right, we get the sparse grid graph shown in Figure 1.13(a).

Though perhaps not obvious by inspection, this graph is a type of bipartite graph

since it can be coloured using just two colours according to the pattern shown. Hence

a minimum of two exams can take place in this venue at any one time.

In circumstances where students are able to copy from students sitting on any

of the eight desks surrounding them, we get the dense grid graph shown in Fig-

ure 1.13(b). As illustrated, this grid can be coloured using four colours according

to the pattern shown. In this graph each vertex, together with the vertex above, the

vertex on the right, and the vertex on the upper diagonal right, forms a clique of size

four. Hence we can conclude that a feasible colouring using fewer than four colours

does not exist.

The dense grid graph also provides a simple example of a graph that is nonplanar

but is still 4-colourable. Although cliques of size 4 are themselves planar, the nature

by which the various cliques interlock in this example means that some edges will

always need to cross one another. This illustrates that a graph does not have to be

planar in order for it to be colourable with four or fewer colours.

1.6 About This Book

As we have seen in this introductory chapter, this book focusses on the problem

of colouring the vertices of a graph. Sometimes the term “graph colouring” is also

applied to the task of colouring the edges of a graph or the faces of a graph. How-

ever, as we shall see in Chapter 5, edge and face colouring problems can easily be

transformed into an equivalent vertex colouring problem via the concepts of line

graphs and dual graphs respectively. Consequently, unless explicitly stated other-
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wise, the term “graph colouring” in this book refers exclusively to the problem of

vertex colouring.

This book is aimed primarily at the algorithmic and heuristic aspects of graph

colouring. That is, rather than providing in-depth treatments of the large number of

theorems and conjectures surrounding certain graph topologies, we choose to focus

on the characteristics of different algorithms for the general graph colouring prob-

lem. Do these algorithms provide optimal solutions to some graphs? How do they

perform on various different topologies where the chromatic number is unknown?

Why are some algorithms better for some types of graphs, but worse for others?

What are run time characteristics of these algorithms?

In addition, this book also examines many of the real-world operational research

problems that can be tackled using graph colouring techniques. As we will see,

these include problems as diverse as the colouring of maps, the production of round-

robin tournaments, Sudoku, assigning variables to computer registers, and checking

for short circuits on printed circuit boards. Individual chapters are also allocated

to in-depth examinations of the problems of designing seating plans for weddings,

scheduling fixtures for sports leagues, and timetabling lectures at universities.

1.6.1 Algorithm Implementations

This book is accompanied by a suite of nine graph colouring algorithm implemen-

tations, which can be downloaded from:

http://rhydlewis.eu/resources/gCol.zip

Each of the algorithms included in this suite will be described and analysed in detail

in this book. Specifically, the GREEDY, RLF, and DSATUR algorithms are discussed

in Chapter 2, and the TABUCOL, PARTIALCOL, hybrid evolutionary algorithm,

ANTCOL, hill-climbing, and backtracking algorithms are described in Chapter 4.

All of these implementations are written in the C++ programming language and can

be executed from the command line using common input and output protocols. A

user manual and compilation instructions are provided in Appendix A. Readers are

encouraged to make use of these algorithms on their own graph colouring instances

and are also invited to modify the code in any way they see fit.

As we shall see, when gauging the effectiveness of a graph colouring algorithm

(or any algorithm for that matter) it is important to consider the amount of compu-

tational effort required to produce a solution of a given quality. Ideally, we should

try to steer clear of measures such as wall-clock time or CPU time because these are

largely influenced by the chosen hardware, operating systems, programming lan-

guages and compiler options. (That said, CPU and wall-clock time are still measures

that are, perhaps regrettably, widely used in the graph colouring literature.)

A more rigorous approach to measuring computational effort involves examining

the number of atomic operations performed by an algorithm during execution. For

classical computational problems such as searching through or sorting the elements
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of a vector, these are usually considered to be the constant-time operations of com-

paring two elements and swapping two elements. For others, such as the bin packing

problem, where we seek to partition a set of weighted items into a set of bins with

limited capacity, these are often considered to be the operations of looking up some

feature of the problem instance, such as referencing the weight of one of the items.

For graph colouring algorithms, it is useful to follow this scheme by gauging

computational effort via the number of constraint checks that are performed. Es-

sentially, a constraint check is considered to occur whenever an algorithm requests

some information about a graph, such as whether two vertices are adjacent or not.

We will define these operations presently, though it is first necessary to describe

how graphs are to be stored in computer memory.

1.6.1.1 Representing Graphs

We saw in Section 1.3 that a graph G can be defined by a set V of n vertices and

a set E of m edges. While the use of sets in this way is mathematically convenient,

implementations of graph algorithms, including our own, usually make use of two

different structures, namely adjacency lists and adjacency matrices. We now define

these.

Definition 1.8 Given a graph G = (V,E), an adjacency list is a vector of length n,
where each element Adjv corresponds to a list containing all vertices adjacent to
vertex v, for all v ∈V .

v1 v2 

v3 v4 
v5 

v6 
v7 

v8 

v9 v10 

Vertex Adjacent Vertices 
v1 (v2, v3, v4, v6, v7) 
v2 (v1, v5) 
v3 (v1, v4, v6, v7) 
v4 (v1, v3, v5, v6, v7, v8) 
v5 (v2, v4, v7, v8, v10) 
v6 (v1, v3, v4, v7, v9) 
v7 (v1, v3, v4, v5, v6, v9) 
v8 (v4, v5, v10) 
V9 (v6, v7, v10) 
v10 (v5, v8, v9) 

0 1 1 1 0 1 1 0 0 0 

1 0 0 0 1 0 0 0 0 0 

1 0 0 1 0 1 1 0 0 0 

1 0 1 0 1 1 1 1 0 0 

0 1 0 1 0 0 1 1 0 1 
1 0 1 1 0 0 1 0 1 0 

1 0 1 1 1 1 0 0 1 0 

0 0 0 1 1 0 0 0 0 1 

0 0 0 0 0 1 1 0 0 1 

0 0 0 0 1 0 0 1 1 0 

(a) (b) (c) 

Fig. 1.14 A ten-vertex graph (a), its adjacency list (b), and its adjacency matrix (c)

An example adjacency list for a ten-vertex graph is shown in Figure 1.14. The

length of the list, |Adjv|, tells us the number of vertices that are adjacent to a vertex v.

This is usually known as the degree of a vertex (see Definition 2.2). So, for example,

vertex v2 in this graph is seen to be adjacent to vertices v1 and v5, and therefore has

a degree of 2. Note that the sum of all list lengths ∑∀v∈V |Adjv| = 2m since, if v
appears in a vertex u’s adjacency list, then u will also appear in v’s adjacency list.

In algorithm implementations, adjacency lists are useful when we are interested

in identifying (and presumably doing something to) all vertices adjacent to a particu-
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lar vertex v. On the other hand, they are less useful when we want to quickly answer

the question “are vertices u and v adjacent?”, as to do so would require searching

through either Adju or Adjv. For these situations it is therefore preferable to use an

adjacency matrix.

Definition 1.9 Given a graph G = (V,E), an adjacency matrix is a matrix An×n for
which Ai j = 1 if and only if vertices vi and v j are adjacent, and Ai j = 0 otherwise.

An example adjacency matrix is also provided in Figure 1.14. When considering

graph colouring problems, note that edges are not directed, and graphs cannot con-

tain loops. Consequently A is symmetric (Ai j = A ji) and only has 0s along its main

diagonal (Aii = 0).

When implemented, adjacency matrices require memory for storing n2 pieces of

information, regardless of the number of edges in the graph. Consequently, they are

sometimes considered quite unwieldy, particularly for sparse graphs. However, for

modern-day graph colouring algorithms, including those contained in our suite, it is

beneficial to make use of both adjacency lists and adjacency matrices. This allows

for increased speed at the cost of increased memory requirements.

Finally, as we shall see in Chapter 4, our graph colouring algorithms will often

attempt to improve solutions by changing the colours of certain vertices. In our im-

plementations it is therefore also useful to make use of an additional matrix Cn×k for

representing graphs where, given a particular k-coloured solution S = {S1, ...,Sk},

the element Cv j gives the number of vertices in colour class Sj that are adjacent to

vertex v. Full descriptions of how this matrix is used are given in Sections 4.1.1 and

4.1.2.

1.6.1.2 Measuring Computational Effort

Having specified the way in which graphs are stored by our algorithm implementa-

tions, we are now in a position to define how constraint checks are counted:

1. The task of checking whether two vertices u and v are adjacent is performed

using the adjacency matrix A. Accessing element Auv counts as one constraint

check.

2. The task of going through all vertices adjacent to a vertex v involves accessing

all elements of the list Adjv. This counts as |Adjv| constraint checks.

3. Determining the degree of a vertex v involves looking up the value |Adjv|. This

counts as one constraint check.

4. Determining the number of vertices in colour class Si ∈ S that are adjacent to a

particular vertex v involves accessing element Cvi. This counts as one constraint

check.
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1.7 Chapter Summary

In this chapter we have introduced the graph colouring problem, provided a number

of examples of its practical applications, and considered the reasons as to why, in the

general case, graph colouring should be considered “intractable”. In the next chapter

we will seek to gain deeper insights into this problem by analysing and comparing

three well-known heuristic-based constructive algorithms for this problem. We will

also discuss some of the upper and lower bounds that can be established on the

chromatic number of a graph, both for the general case and for special types of

topologies.
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The fact that graph colouring is an intractable problem implies that there is a

limited amount that we can say about the chromatic number of an arbitrary graph in

general. One simple rule is that, given a graph G with n vertices and m edges, if m >
�n2/4 then χ(G) ≥ 3, since any graph fitting this criteria must contain a triangle

and therefore cannot be bipartite (Bollobás, 1998); however, even the problem of

deciding whether χ(G) = 3 is NP-complete for arbitrary graphs.

In spite of this rather bleak situation, a variety of heuristic-based approximation

algorithms are available for graph colouring that are often able to produce very

pleasing results. In this chapter we will consider three fast constructive methods

which operate by assigning each vertex to a colour one at a time using rules that are

intended to keep the overall number of colours as small as possible. As we will see,

for certain graph topologies some of these algorithms turn out to be exact, though in

most cases they only produce approximate solutions. The first of these algorithms,

the so-called GREEDY algorithm, is perhaps the most fundamental method in the

field of graph colouring and is also useful for establishing bounds on the chromatic

number. Towards the end of the chapter we also present an empirical comparison

of the three constructive algorithms in order to provide information on their relative

strengths and weaknesses.

At this point it is useful to introduce some further graph terminology. Recall that

a graph G = (V,E) is defined by a vertex set V of n vertices and an edge set E of m
edges.

Definition 2.1 If {u,v} ∈ E, vertices u and v are said to be adjacent. Vertices v and
u are also said to be incident to the edge {u,v} ∈ E. If {u,v} /∈ E, then vertices u
and v are nonadjacent.

relatively straightforward to colour optimally, including complete graphs, bipartite

graphs, cycle and wheel graphs, and grid graphs. With regard to the chromatic num-

ber, we also saw that it is easy to determine when is an empty graph),

and when is bipartite). But can we go further than this? In this chapter

we review and analyse a number of fast constructive algorithms for the graph colour-

ing problem. We also make statements on how we are able to bound the chromatic

number.

χ(G) = 1 (G
χ(G) = 2 (G

Towards the end of Chap. 1 we saw a variety of different types of graphs that are
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Definition 2.2 The neighbourhood of a vertex v, written ΓG(v), is the set of vertices
adjacent to v in the graph G. That is, ΓG(v) = {u ∈V : {v,u} ∈ E}. The degree of a
vertex v is the cardinality of its neighbourhood set, |ΓG(v)|, usually written degG(v).
When the graph being referred to is made clear by the text, these can be written in
their shorter forms, Γ (v) and deg(v), respectively.

Definition 2.3 The density of a graph G = (V,E) is the ratio of the number of edges
to the number of pairs of vertices. For a simple graph with no loops this is calculated
m/((n(n−1))/2). Graphs with low densities are often referred to as sparse graphs;
those with high densities are known as dense graphs.

Definition 2.4 A graph G′ = (V ′,E ′) is a subgraph of G, denoted by G′ ⊆ G, if
V ′ ⊆V and E ′ ⊆ E. If G′ contains all edges of G that join two vertices in V ′ then G′

is said to be the graph induced by V ′.

Definition 2.5 Let W ⊆ V , then G−W is the subgraph obtained by deleting the
vertices in W from G, together with the edges incident to them.

Definition 2.6 A path is a sequence of edges that connect a sequence of distinct
vertices. A path between two vertices u and v is called a uv-path. If a uv-path exists
between all pairs of vertices u,v ∈V , then G is said to be connected; otherwise it is
disconnected.

Definition 2.7 The length of a uv-path P = (u = v1,v2, . . . ,vl = v), is the number
of edges it contains, equal to l−1. The distance between two vertices u and v is the
minimal path length between u and v.

Definition 2.8 A cycle is a uv-path for which u = v. All other vertices in the cycle
must be distinct. A graph containing no cycles is said to be acyclic.

v1 

v3 
v5 

v2 

v4 v6 

(a) (b) v1 

v3 
v5 

v6 

Fig. 2.1 (a) A graph G, and (b) a subgraph G′ of G

To illustrate these definitions, Figure 2.1(a) shows a graph G where, for example,

vertices v1 and v3 are adjacent, but v1 and v2 are nonadjacent. The neighbourhood

of v1 is Γ (v1) = {v3,v5}, giving deg(v1) = 2. The density of G is 7/(1/2× 6×
5) = 0.467. The subgraph G′ in Figure 2.1(b) has been created via the operation

G−{v2,v4}, and in this case both G and G′ are connected. Paths in G from, for

example, v1 to v6 include (v1,v3,v4,v5,v6) (of length 4) and (v1,v5,v6) (of length 2).

Since the latter path is also the shortest path between v1 to v6, the distance between

these vertices is also 2. Cycles also exist in both G and G′, such as (v1,v3,v5,v1).
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2.1 The Greedy Algorithm

Recall the example from Section 1.1.1 where we sought to partition some students

into a minimal number of groups for a team building exercise. The process we used

to try and achieve this is known as the GREEDY algorithm, which is one of the sim-

plest but most fundamental heuristic algorithms for graph colouring. The algorithm

operates by taking vertices one by one according to some (possibly arbitrary) or-

dering and assigns each vertex its first available colour. Because this is a heuristic

algorithm, the solutions it produces may very well be suboptimal; however, it can

also be shown that GREEDY can produce an optimal solution for any graph given

the correct sequence of vertices (see Theorem 2.2 below). As a result, various algo-

rithms for graph colouring have been proposed that seek to find such orderings of

the vertices (see Chapter 3).

GREEDY (S ← /0, π)
(1) for i ← 1 to |π | do
(2) for j ← 1 to |S|
(3) if (S j ∪{πi}) is an independent set then
(4) S j ← S j ∪{πi}
(5) break
(6) else j ← j+1

(7) if j > |S| then
(8) S j ←{πi}
(9)

Fig. 2.2 The GREEDY algorithm for graph colouring

Pseudocode for the GREEDY algorithm is given in Figure 2.2. To start, the al-

gorithm takes an empty solution S = /0 and an arbitrary permutation of the vertices

π. In each outer loop the algorithm takes the ith vertex in the permutation, πi, and

attempts to find a colour class S j ∈ S into which it can be inserted. If such a colour

class currently exists in S , then the vertex is added to it and the process moves on to

consider the next vertex πi+1. If not, lines (8–9) of the algorithm are used to create

a new colour class for the vertex. An example run of the algorithm on a small graph

is shown in Figure 2.3.

Let us now estimate the computational complexity of the GREEDY algorithm

with regard to the number of constraint checks that are performed. We see that one

vertex is coloured at each iteration, meaning n = |π | iterations of the algorithm are

required in total. At the ith iteration (1 ≤ i ≤ n), we are concerned with finding

a feasible colour for the vertex πi. In the worst case this vertex will clash with

all vertices that have preceded it in π , meaning that (i− 1) constraint checks will

be performed before a suitable colour is determined. Indeed, if the graph we are

colouring is the complete graph Kn, the worst case will occur for all vertices; hence

S ← S∪Sj
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Fig. 2.3 Example application of GREEDY using the permutation πi = vi (1 ≤ i ≤ n). Here, un-
coloured vertices are shown in white

a total of 0+ 1+ 2+ . . .+(n− 1) constraint checks will be performed. This gives

GREEDY an overall worst-case complexity O(n2).
In practice, the GREEDY algorithm produces feasible solutions quite quickly;

however, these solutions can often be quite poor in terms of the number of colours

that the algorithm requires compared to the chromatic number. Consider, for ex-

ample, the bipartite graph G = (V1,V2,E) in which n is even and where the ver-

tex sets and edge set are defined V1 = {v1,v3, . . . ,vn−1}, V2 = {v2,v4, . . . ,vn}, and

E = {{vi,v j} : vi ∈ V1 ∧ v j ∈ V2 ∧ i+ 1 �= j} . Figure 2.4 shows examples of such

a graph using n = 10. Clearly for n ≥ 4 such graphs will have a chromatic num-

ber χ(G) = 2 because V1 and V2 constitute independent sets. However, colouring

this graph using GREEDY with the permutation π = (v1,v2,v3, . . . ,vn) will actually

lead to a solution using n/2 colours, as Figure 2.4(a) illustrates. On the other hand,

a permutation of the form π = (v1,v3, . . . ,vn−1,v2,v4, . . . ,vn) will give the optimal

solution shown in Figure 2.4(b). Clearly then, the order that the vertices are fed into

the GREEDY algorithm can be very important.

One very useful feature of the GREEDY algorithm involves using existing feasible

colourings of a graph to help generate new permutations of the vertices which can

then be fed back into the algorithm. Consider the situation where we have a feasible

colouring S of a graph G. Consider further a permutation π of G’s vertices that has

been generated such that the vertices occurring in each colour class of S are placed

into adjacent locations in π. If we now use this permutation with GREEDY, the result

will be a new solution S′ that uses no more colours than S , but possibly fewer. This

is stated more concisely as follows:
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Fig. 2.4 Two different colourings of a bipartite graph achieved by the GREEDY algorithm

Theorem 2.1 Let S be a feasible colouring of a graph G. If each colour class Si ∈S
(for 1 ≤ i ≤ |S|) is considered in turn, and all vertices are fed one by one into the
greedy algorithm, the resultant solution S′ will also be feasible, with |S′| ≤ |S|.

Proof. Because S = {S1, . . .S|S|} is a feasible solution, each set Si ∈ S is an inde-

pendent set. Obviously any subset T ⊆ Si is also an independent set. Now consider

an application of GREEDY using S to build a new candidate solution S′. In applying

this algorithm, each set S1, . . . ,S|S| is considered in turn, and all vertices v ∈ Si are

assigned one by one to some set S′j ∈ S′ according to the rules of GREEDY (that

is, v is first considered for inclusion in S′1, then S′2, and so on). Considering each

vertex v ∈ Si, two situations and resultant actions will occur in the following order

of priority:

Case 1: An independent set S′j<i ∈ S′ exists such that S′j ∪{v} is also an indepen-

dent set. In this case v will be assigned to the jth colour class in S′.
Case 2: An independent set S′j=i ∈ S′ exists such that S′j ∪{v} is also an indepen-

dent set.

In both cases it is clear that v will always be assigned to a set in S′ with an index

that is less than or equal to that of its original set in S . Of course, if a situation arises

by which all items in a particular set Si are assigned according to Case 1, then at

termination of GREEDY, S′ will contain fewer colours than S .

Now assume that it is necessary to assign a vertex v ∈ Si to a set S′j>i. For this to

occur, it is first necessary that the proposed actions of Cases 1 and 2 (i.e., adding v
to a set S′j≤i) cause a clash. However, S′i ⊂ Si and is therefore an independent set. By

definition, S′i ∪{v} ⊆ Si is also an independent set, contradicting the assumption.

��

To show these concepts in action, the colouring shown in Figure 2.5(a) has been

generated by the GREEDY algorithm using the permutation π = (v1,v2,v3,v4,v5,v6,
v7,v8), giving the 4-colouring S = {{v1,v4,v8},{v2,v7},{v3,v5},{v6}}. This solu-

tion might then be used to form a new permutation π = (v1,v4,v8,v2,v7,v3,v5,v6)
which could then be fed back into the algorithm. However, our use of sets in defin-

ing a solution S means that we are free to use any ordering of the colour classes in

S to form π , and indeed any ordering of the vertices within each colour class. One

alternative permutation of the vertices formed from solution S in this way is there-

fore π = (v2,v7,v5,v3,v6,v4,v8,v1). This permutation has been used with GREEDY
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Fig. 2.5 Feasible 4- and 3-colourings of a graph

to give the solution shown in Figure 2.5(b), which we see is using fewer colours

than the solution from which it was formed.

These concepts give rise to the following theorem:

Theorem 2.2 Let G be graph with an optimal graph colouring solution S =
{S1, . . . ,Sk}, where k = χ(G). Then there are at least

χ(G)!
χ(G)

∏
i=1

|Si|! (2.1)

permutations of the vertices which, when fed into GREEDY, will result in an optimal
solution.

Proof. This arises immediately from Theorem 2.1: Since S is optimal, an appropri-

ate permutation can be generated from S in the manner just described. Moreover,

because the colour classes and vertices within each colour class can themselves be

permuted, the above formula holds. ��

Note that if χ(G) = 1 or χ(G) = n then, trivially, the number of permutations de-

coding into an optimal solution will be n!. That is, every permutation of the vertices

will decode to an optimal colouring using GREEDY.

2.2 Bounds on the Chromatic Number

In this section we now review some of the upper and lower bounds that can be

stated about the chromatic number of a graph. Some of the bounds that we cover

make use of the GREEDY algorithm in their proofs, helping us to further understand

the behaviour of the algorithm. While these upper and lower bounds can be quite

useful, or even exact for some topologies, we will see that in many cases they are

either too difficult to calculate, or give us bounds that are too inaccurate to be of any

practical use. This latter point will be demonstrated empirically later in Section 2.5.
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2.2.1 Lower Bounds

To start, we make the observation that if a graph G contains as a subgraph the

complete graph Kk, then a feasible colouring of G will obviously require at least

k colours. Stating this in another way, let ω(G) denote the number of vertices con-

tained in the largest clique in G (this is sometimes known as G’s clique number).

Since ω(G) different colours will be needed to colour this clique, we deduce that

χ(G)≥ ω(G).
From another perspective, we can also consider the independent sets of a graph.

Let α(G) denote the independence number of a graph G, defined as the number of

vertices contained in the largest independent set in G . In this case, χ(G) must be

at least �n/α(G)� since to be less than this value would imply the existence of an

independent set larger than α(G).
These two bounds can be combined into the following:

χ(G)≥ max{ω(G),�n/α(G)�} (2.2)

The accuracy of the bounds given in Inequality (2.2) will vary on a case to case

basis. Their major drawback is the fact that the tasks of calculating ω(G) and α(G)
are themselves NP-hard problems, namely the maximum clique problem and the

maximum independent set problem. However, this does not mean that the bounds

are useless: in some practical applications the sizes of the largest cliques and/or

independent sets might be quite obvious from the graph’s topology, or even specified

as part of the problem itself (see, for example, the sport scheduling models used in

Chapter 7). In other cases, we might also be able to approximate ω(G) and/or α(G)
using heuristics or by applying probabilistic arguments.

To illustrate how we might estimate the size of a maximum clique in probabilistic

terms, consider a graph G with n vertices that has been generated such that each

pair of vertices is joined by an edge with probability p. Assuming independence,

the probability that a subset of x ≤ n vertices forms a clique Kx is calculated to be

p(
x
2), since there are

(x
2

)
edges that are required to be present among the x vertices.

The probability that the x vertices do not form a clique is therefore simply 1− p(
x
2).

Since there are
(n

x

)
different subsets of x vertices in G, the probability that none of

these are cliques is calculated to be (1− p(
x
2))(

n
x). Hence the probability that there

exists at least one clique of size x in G is defined as

P(∃Kx ⊆ G) = 1− (1− p(
x
2))(

n
x) (2.3)

for 2 ≤ x ≤ n. In practice we might use this formula to estimate a lower bound with

a certain confidence. For example, we might say “with greater than 99% confidence

we can say that G contains a clique of size y”, where y represents the largest x value

for which Equation 2.3 is greater than 0.99. We might also collect similar informa-

tion on the size of the largest maximum independent set in G by simply replacing p
with p = (1− p) in the above formula. We must be careful in calculating the latter,
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however, because dividing n by an underestimation of α(G) could lead to an invalid

bound that exceeds χ(G). We should also be mindful that, for larger graphs, the

numbers involved in calculating Equation (2.3) might be very large indeed, perhaps

requiring rounding and introducing inaccuracies.

Fig. 2.6 Optimal 4-colouring of the Grötzch graph

Even if we are able to estimate or determine values such as ω(G), we must still

bear in mind that they may still constitute a very weak lower bound in many cases.

Consider, for example, the graph shown in Figure 2.6, known as the Grötzch graph.

This graph is considered “triangle free” in that it contains no cliques of size 3 or

above; hence ω(G) = 2. However, as illustrated in the figure, the chromatic number

of the Grötzch graph is four: double the lower bound determined by ω(G). In fact,

the Grötzch graph is the smallest graph in a set graphs known as the Mycielskians,

named after their discoverer Jan Mycielski (1955). Mycielskian graphs demonstrate

the potential inaccuracies involved in using ω(G) as a lower bound by showing that

for any q ≥ 1 there exists a graph G with ω(G) = 2 but for which χ(G)> q. Hence

we can encounter graphs for which ω(G) gives us a lower bound of 2, but for which

the chromatic number can actually be arbitrarily large.

2.2.1.1 Bounds on Interval Graphs

While topologies such as the Mycielskian graphs demonstrate the potential for ω(G)
to produce very poor lower bounds, in other cases this bound turns out to be both

exact and easy to calculate. One practical application where this occurs is with in-
terval graphs. Given a set of intervals defined on the real line, an interval graph is

defined as a graph in which adjacent vertices correspond to overlapping intervals.

More formally:

Definition 2.9 Let I = {I1, . . . , In} be a set of intervals defined on the real line such
that each interval Ii = {x ∈ R : ai ≤ x < bi}, where ai and bi define the start and
end values of interval Ii. The interval graph of I is the graph G = (V,E) for which
V = {v1, . . . ,vn} and where E = {{vi,v j} : Ii ∩ I j �= /0}.
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An example interval graph has already been provided in Section 1.1.3 where we

sought to assign taxi journeys with known start and end times to a minimal number

of vehicles. Figure 1.5(a) in this section shows ten taxi journeys corresponding to

ten intervals over the real line (representing time in this case). These intervals are

then used to construct the interval graph shown in Figure 1.5(b).

One feature of interval graphs are that they are known to contain a “perfect elim-

ination ordering”. This is defined as an ordering of the vertices such that, for every

vertex, all of its neighbours to the left of it in the ordering form a clique.

Theorem 2.3 Every interval graph G has a perfect elimination ordering.

Proof. To start, arrange the intervals of I in ascending order of start values, such that

a1 ≤ a2 ≤ . . .≤ an. Now label the vertices v1,v2, . . . ,vn to correspond to this order-

ing. This implies that for any vertex vi, the corresponding intervals of all neighbours

to its left in the ordering must contain the value ai; hence all pairs of vi’s neighbours

must also share an edge, thereby forming a clique. ��

The presence of a perfect elimination ordering is demonstrated in the example

interval graph in Figure 1.5. Here we see, for example, that v3 forms a clique of

size 3 with its neighbours v2 and v1, and that v10 forms a clique of size 2 with its

neighbour v9. The fact that all interval graphs contain a perfect elimination ordering

allows us to produce optimal colourings to such graphs according to the following

theorem.

Theorem 2.4 Let G be a graph with a perfect elimination ordering. An optimal
colouring for G is obtained by labelling the vertices v1, . . . ,vn such that a1 ≤ a2 ≤
. . .≤ an, and then applying the GREEDY algorithm with the permutation πi = vi, for
i ≤ i ≤ n. Moreover, χ(G) = ω(G).

Proof. During execution of GREEDY, each vertex vi = πi is assigned to the lowest

indexed colour not used by any of its neighbours preceding it in π . Clearly, each

vertex has less than ω(G) neighbours. Hence at least one of the colours labelled 1

to ω(G) must be feasible for vi. This implies χ(G) ≤ ω(G). Since ω(G) ≤ χ(G),
this gives χ(G) = ω(G). ��

The optimal 3-colouring provided in Figure 1.5(c) shows the result of this colour-

ing process using the permutation π = (v1,v2,v3,v4,v5,v6,v7,v8,v9,v10).
More generally, graphs featuring perfect elimination orderings are usually known

as chordal graphs. All interval graphs are therefore a type of chordal graph. The

problem of determining whether a graph is chordal or not can be achieved in poly-

nomial time by algorithms such as lexicographic breadth-first search (Rose et al.,

1976). Hence any chordal graph can be recognised and coloured optimally in poly-

nomial time.
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2.2.2 Upper Bounds

Upper bounds on the chromatic number are often derived by considering the degrees

of vertices in a graph. For instance, when a graph has a high density (that is, a

high proportion of vertex pairs that are neighbouring), often a larger number of

colours will be needed because a greater proportion of the vertex pairs will need

to be separated into different colour classes. This admittedly rather weak-sounding

proposal gives rise to the following theorem.

Theorem 2.5 Let G be a connected graph with maximal degree Δ(G) (that is,
Δ(G) = max{deg(v) : v ∈V}). Then χ(G)≤ Δ(G)+1.

Proof. Consider the behaviour of the GREEDY algorithm. Here the ith vertex in

the permutation π , namely πi, will be assigned to the lowest indexed colour class

that contains none of its neighbouring vertices. Since each vertex has at most Δ(G)
neighbours, no more than Δ (G) + 1 colours will be needed to feasibly colour all

vertices of G. ��

Another bound concerning vertex degrees can be calculated by examining all

of a graph’s subgraphs and identifying the minimal degree in each case, and then

taking the maximum of these. For practical purposes this might be less useful than

Theorem 2.5 for computing bounds quickly since the total number of subgraphs

to consider might be prohibitively large. However, the following result still has its

uses, particularly when it comes to colouring planar graphs and graphs representing

circuit boards (see Chapter 5).

Theorem 2.6 Given a graph G, suppose that in every subgraph G′ of G there is a
vertex with degree less than or equal to δ . Then χ(G)≤ δ +1

Proof. We know there is a vertex with a degree of at most δ in G. Call this vertex

vn. We also know that there is a vertex of at most δ in the subgraph G−{vn}, which

we can label vn−1. Next, we can label as vn−2 a vertex of degree of at most δ to form

the graph G−{vn,vn−1}. Continue this process until all of the n vertices have been

assigned labels. Now assign these vertices to the permutation π using πi = vi, and

apply the GREEDY algorithm. At each step of the algorithm, vi will be adjacent to at

most δ of the vertices v1, . . . ,vi−1 that have already been coloured; hence no more

than δ +1 colours will be required. ��

Let us now examine some implications of these two theorems. It can be seen

that Theorem 2.5 provides tight bounds for both complete graphs, where χ(Kn) =
Δ(Kn)+ 1 = n, and for odd cycles, where χ(Cn) = Δ(Cn)+ 1 = 3. However, such

accurate bounds will not always be so forthcoming. Consider, for example, the

wheel graph comprising 100 vertices, W100. This features a “central” vertex of de-

gree Δ (W100) = 99, meaning that Theorem 2.5 merely informs us that the chromatic

number of W100 is less than 100, despite the fact that it is actually just four! On

the other hand, for any wheel graph it is relatively easy to show that all of its sub-

graphs will contain a vertex with a degree of no more than 3 (i.e., δ = 3). For
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wheel graphs where n is even, this allows Theorem 2.6 to return a tight bound since

δ +1 = χ(Wn) = 4.

Beyond complete graphs and odd cycles, Theorem 2.5 can also be marginally

strengthened due to the result of Brooks (1941). This proof is slightly more involved

than that of Theorem 2.5 and requires some further definitions.

Definition 2.10 A component of a graph G is a subgraph G′ in which all pairs of
vertices are connected by paths. A graph that is itself connected has exactly one
component, comprising the whole graph.

Definition 2.11 A cut vertex v is a vertex whose removal from a graph G (together
with all incident edges) increases the number of components. Thus a cut vertex of a
connected graph is a vertex whose removal disconnects the graph. More generally,
a separating set of a graph G is a set of vertices whose removal increases the number
of components.

Definition 2.12 A graph G is said to be k-connected if it remains connected when-
ever fewer than k vertices are removed. In other words, G will only become discon-
nected if a separating set comprising k or more vertices is deleted.

Definition 2.13 A component of a graph is considered a block if it is 2-connected.

Cut vertex Separating Set 

(a) (b) 

Fig. 2.7 Illustrations of a cut vertex and separating set

To illustrate these definitions, Figure 2.7(a) shows a graph G comprising one

component. Removal of the indicated cut vertex would split G into two components.

Figure 2.7(b) can be considered a block in that it does not contain a cut vertex (i.e., it

is 2-connected). However, it is not 3-connected, because removal of the two vertices

in the indicated separating set increases the number of components from one to two.

Having gone over the necessary terminology, we are now in a position to state

and prove Brooks’ theorem.

Theorem 2.7 (Brooks (1941)) Let G be a connected graph with maximal degree
Δ(G). Suppose further that G is not complete and not an odd cycle. Then χ(G) ≤
Δ(G).

Proof. The theorem is obviously correct for Δ (G) ≤ 2. For Δ(G) = 0 and Δ(G) =
1, the corresponding graphs will be K1 and K2 respectively, and are therefore not

included in the theorem. For Δ (G) = 2 on the other hand, G will be a path or even
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cycle (giving χ(G) = 2) or will be an odd cycle, meaning it is not included in the

theorem.

Assuming Δ(G)≥ 3, let G be a counterexample with the smallest possible num-

ber of vertices for which the theorem does not hold: i.e., χ(G)>Δ (G). We therefore

assume that all graphs with fewer vertices than G can be feasibly coloured using

Δ(G) colours.

Claim 1: G is connected. If G were not connected, then G’s components would be

a smaller counterexample, or all of G’s components would be Δ(G)-colourable.

Claim 2: G is 2-connected. If G were not 2-connected, then G would have at least

one cut vertex v, and each block of G would be Δ(G)-colourable. The colourings

of each block could then be combined to form a feasible Δ (G)-colouring.

Claim 3: G must contain three vertices v, u1 and u2 such that (a) u1 and u2 are non-

adjacent; (b) both u1 and u2 are adjacent to v; and (c) G−{u1,u2} is connected.

Two cases can now be considered:

Case 1: G is 3-connected. Because G is not complete, there must be two ver-

tices x and y that are nonadjacent. Let the shortest path between x and y in

G be x = v0, . . . ,vl = y, where l ≥ 2. Since this is the shortest path, v0 is not

adjacent to v2, so we can choose u1 = v0, v = v1 and u2 = v2. This satisfies

Claim 3.

Case 2: G is 2-connected but not 3-connected. In this case, there must exist

two vertices u and v such that G−{u,v} is disconnected. This means that the

graph G−{v} contains a cut vertex (i.e., u), but there is no cut vertex in G
itself. In this case, v must be adjacent to at least one vertex in every block of

the graph G−{v}. Let u1 and u2 be two vertices in two different end blocks

of G−{v} that are adjacent to v. The vertices u1, u2 and v now satisfy Claim

3.

Having proved Claims 1, 2, and 3, we now construct a permutation π of the n ver-

tices of G such that π1 = u1, π2 = u2, and πn = v. The remaining parts of the per-

mutation π3, . . .πn−1 are then formed such that, for 3 ≤ i < j ≤ n− 1, the distance

from πn to πi is greater than or equal to the distance from πn to π j. If we now apply

GREEDY to this permutation, the vertices π1 = u1 and π2 = u2 will first both be

assigned to colour S1, because they are nonadjacent. Moreover, when we colour the

vertices πi (3 ≤ i < n), there will always be at least one colour S j≤Δ(G) available for

πi. Finally, when we come to colour vertex πn = v, at most Δ (G)− 1 colours will

have been used to colour the neighbours of v (since its neighbours u1 and u2 have

been assigned to the same colour) and so at least one of the Δ(G) colours will be

feasible for v. This shows that χ(G)≤ Δ(G) as required. ��

Having analysed the behaviour of the GREEDY algorithm and reviewed a number

of bounds on the chromatic number, the following two sections will now consider

two further heuristic-based constructive algorithms for the graph colouring problem.

As we will see, these algorithms are guaranteed to produce optimal solutions for

some simple graph topologies and also often construct solutions that improve on the

upper bounds mentioned above. Later, in Chapters 3 and 4, we will also see that
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these algorithms, along with GREEDY, are often used as building blocks in many of

the more sophisticated algorithms available for graph colouring.

2.3 The DSATUR Algorithm

The DSATUR algorithm (abbreviated from “degree of saturation”) was originally

proposed by Brélaz (1979). In essence it is very similar in behaviour to the GREEDY

algorithm in that it takes each vertex in turn according to some ordering and then

assigns it to the first suitable colour class, creating new colour classes when nec-

essary. The difference between the two algorithms lies in the way that these vertex

orderings are generated. With GREEDY the ordering is decided before any colour-

ing takes place; on the other hand, for the DSATUR algorithm the choice of which

vertex to colour next is decided heuristically based on the characteristics of the cur-

rent partial colouring of the graph. This choice is based primarily on the saturation
degree of the vertices, defined as follows.

Definition 2.14 Let c(v) = NULL for any vertex v ∈ V not currently assigned to a
colour class. Given such a vertex v, the saturation degree of v, denoted by sat(v),
is the number of different colours assigned to adjacent vertices. That is, sat(v) =
|{c(u) : u ∈ Γ (v)∧ c(u) �= NULL}|

DSATUR (S ← /0, X ←V )

(1) while X �= /0 do
(2) Choose v ∈ X
(3) for j ← 1 to |S|
(4) if (Sj ∪{v}) is an independent set then
(5) Sj ← Sj ∪{v}
(6) break
(7) else j ← j+1

(8) if j > |S| then
(9) S j ←{v}

(10)

(11) X ← X −{v}

Fig. 2.8 The DSATUR algorithm for graph colouring

Pseudocode for the DSATUR algorithm is shown in Figure 2.8. It can be seen

that the majority of the algorithm is the same as the GREEDY algorithm in that once

a vertex has been selected, a colour is found by simply going through each colour

class in turn and stopping when a suitable one has been found. Consequently, the

worst-case complexity of DSATUR is the same as GREEDY at O(n2), although in

practice some extra bookkeeping is required to keep track of the saturation degrees

of the uncoloured vertices.

S ← S ∪S j
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The major difference between GREEDY and DSATUR lies in lines (1), (2) and

(11) of the pseudocode. Here, a set X is used to define the set of vertices currently

not assigned to a colour. At the beginning of execution X = V . In each iteration of

the algorithm the next vertex to be coloured is selected from X according to line

(2), and once coloured, it is removed from X in line (11). The algorithm terminates

when X = /0.

Line (2) of Figure 2.8 provides the main power behind the DSATUR algorithm.

Here, the next vertex to be coloured is chosen as the vertex in X that has maximal

saturation degree. If there is more than one vertex with maximal saturation degree,

then ties are broken by choosing the vertex among these with the largest degree.

Any further ties can then be broken randomly. The idea behind the maximum sat-

uration degree heuristic is that it prioritises vertices that are seen to be the most

“constrained”—that is, vertices that currently have the fewest colour options avail-

able to them. Consequently, these “more constrained” vertices are dealt with by the

algorithm first, allowing the less constrained vertices to be coloured later.
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Result 

Fig. 2.9 Example application of DSATUR. Here, uncoloured vertices (members of X) are shown

in white, and have their saturation degrees written alongside

Figure 2.9 shows an example run-through of the algorithm on a small graph.

To begin, all vertices have a saturation degree equal to 0, so the first vertex to be

coloured is the one with the highest degree. As shown in Step (1), this is assigned

to colour 1. This also leads to five vertices having a saturation degree of 1, so the

next vertex to be chosen is the one among these that has the highest degree. This is

then assigned to colour 2 as shown in Step (2). Next, three vertices have saturation

degrees of 2, so we again choose the vertex among these with the highest degree.

Since colours 1 and 2 are not feasible for this vertex, it is assigned to colour 3.
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This process continues as shown in the figure until a feasible colouring has been

achieved.

Earlier we saw that the number of colours used in solutions produced by the

GREEDY algorithm depends on the order that the vertices are fed into the proce-

dure, with results (in terms of the number of colours used in the solution produced)

potentially varying a great deal. On the other hand, the DSATUR algorithm reduces

this variance by generating the vertex ordering during a run according to its heuris-

tics. As a result, DSATUR’s performance is more predictable. Indeed DSATUR turns

out to be exact for a number of elementary graph topologies. The first of these is the

bipartite graph, and to prove this claim it is first necessary to show a classical result

on the structure of these graphs.

Theorem 2.8 A graph is bipartite if and only if it contains no odd cycles.

Proof. Let G be a connected bipartite graph with vertex sets V1 and V2. (It is enough

to consider G as being connected, as otherwise we could simply treat each compo-

nent of G separately.) Let v1,v2, . . . ,vl ,v1 be a cycle in G. We can also assume that

v1 ∈ V1, v2 ∈ V2, v3 ∈ V1, and so on. Hence, a vertex vi ∈ V1 if and only if i is odd.

Since vl ∈V2, this implies l is even. Consequently G has no odd cycles.

Now suppose that G is known to feature no odd cycles. Choose any vertex v in

the graph and let the set V1 be the set of vertices such that the shortest path from

each member of V1 to v is of odd length, and let V2 be the set of vertices where the

shortest path from each member of V2 to v is even. Observe now that there is no edge

joining vertices of the same set Vi since otherwise G would contain an odd cycle.

Hence G is bipartite. ��

This result allows us to prove the following theorem.

Theorem 2.9 (Brélaz (1979)) The DSATUR algorithm is exact for bipartite graphs.

Proof. Let G be a connected bipartite graph with n ≥ 3. If G is not connected, it

is enough to consider each component of G separately. For purposes of contradic-

tion assume that one vertex v has a saturation degree of 2, meaning that v has two

neighbours, u1 and u2, assigned to different colours. From these two neighbours we

can build two paths which, because G is connected, will have a common vertex u.

Hence we have formed a cycle containing vertices v, u1, u2, u and perhaps others.

Since G is bipartite, the length of this cycle must be even, meaning that the u1 and

u2 must have the same colour, contradicting our initial assumption. ��

To illustrate the usefulness of this result, consider the bipartite graphs shown in

Figure 2.4 earlier. Here, many permutations of the vertices used in conjunction with

the GREEDY algorithm will lead to colourings using more than two colours. Indeed,

in the worst case they may even lead to (n/2)-colourings as demonstrated in the

figure. In contrast DSATUR is guaranteed to return the optimal solution bipartite

graphs, as it is for some further topologies:

Theorem 2.10 The DSATUR algorithm is exact for cycle and wheel graphs.
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Proof. Note that even cycles are 2-colourable and are therefore bipartite. Hence they

are dealt with by Theorem 2.9. However, it is useful to consider both even and odd

cycles in the following.

Let Cn be a cycle graph. Since the degree of all vertices in Cn is 2, the first vertex

to be coloured, v, will be chosen arbitrarily by DSATUR. In the next (n− 2) steps,

according to the behaviour of DSATUR a path of vertices of alternating colours will

be constructed that extends from v in both clockwise and anticlockwise directions.

At the end of this process, a path comprising n−1 vertices will have been formed,

and a single vertex u will remain that is adjacent to both terminal vertices of this

path. If Cn is an even cycle, n− 1 will be odd, meaning that the terminal vertices

have the same colour. Hence u can be coloured with the alternative colour. If Cn
is an odd cycle, n− 1 will be even, meaning that the terminal vertices will have

different colours. Hence a u will be assigned to a third colour.

For wheel graphs Wn a similar argument applies. Assuming n ≥ 5, DSATUR will

initially colour the central vertex vn because it features the highest degree. Since vn
is adjacent to all other vertices in Wn, all remaining vertices v1, . . . ,vn−1 will now

have a saturation degree of 1. The same colouring process as the cycle graphs Cn−1

then follows. ��

Colour 
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(a) (b) 

Fig. 2.10 An optimal 3-colouring (a) and a suboptimal 4-colouring produced by DSATUR (b)

Although, as these theorems show, DSATUR is exact for certain types of graph,

the NP-hardness of the graph colouring problem obviously implies that it will be

unable to produce optimal solutions for all graphs. Figure 2.10, for example, shows

a small graph that, while actually being 3-colourable, will always be coloured us-

ing four colours by DSATUR, regardless of the way any random ties in the algo-

rithm’s heuristics are broken. In fact, Janczewski et al. (2001) have proved that this

is the smallest such graph where this suboptimality occurs, but there are countless

larger graphs where DSATUR will also not return the optimal. In other work, Spin-

rad and Vijayan (1984) have also identified a graph topology of O(n) vertices that,

despite being 3-colourable, will actually be coloured using n different colours using

DSATUR.

2.4 The Recursive Largest First (RLF) Algorithm

While the DSATUR algorithm for graph colouring is similar in behaviour and com-

plexity to the classical GREEDY approach, the next constructive method we exam-
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ine, the Recursive Largest First (RLF) algorithm, follows a slightly different strat-

egy. The RLF algorithm was originally designed by Leighton (1979), in part for

use in constructing solutions to large timetabling problems. The method works by

colouring a graph one colour at a time, as opposed to one vertex at a time. In each

step the algorithm uses heuristics to identify an independent set of vertices in the

graph, which are then associated with the same colour. This independent set is then

removed from the graph, and the process is repeated on the resultant, smaller sub-

graph. This process continues until the subgraph is empty, at which point all vertices

have been coloured leaving us with a feasible solution. Leighton (1979) has proven

the worst-case complexity of RLF to be O(n3), giving it a higher computational cost

than the O(n2) GREEDY and DSATUR algorithms; however, this algorithm is still

of course polynomially bounded.

RLF (S ← /0, X ←V, Y ← /0, i ← 0)

(1) while X �= /0 do
(2) i ← i+1
(3) Si ← /0

(4) while X �= /0 do
(5) Choose v ∈ X
(6) Si ← Si ∪{v}
(7) Y ← Y ∪ΓX (v)
(8) X ← X − (Y ∪{v})
(9) S ← S ∪{Si}

(10) X ← Y
(11) Y ← /0

Fig. 2.11 The RLF algorithm for graph colouring. Here, ΓX (v) denotes the subset of vertices in the

set X that are adjacent to vertex v

Pseudocode for the RLF algorithm is given in Figure 2.11. In each outer loop

of the process, the ith colour class Si is build. The algorithm also makes use of two

sets: X , which contains uncoloured vertices that can currently be added to Si without

causing a clash; and Y , which holds the uncoloured vertices that cannot be feasibly

added to Si. At the start of execution X =V and Y = /0.

Lines (4) to (8) of Figure 2.11 give the steps responsible for constructing the ith
colour class Si. To start, a vertex v from X is selected and added to Si (i.e., v is

coloured with colour i). Next, all vertices neighbouring v in the subgraph induced

by X are transferred to Y , to signify that they cannot now be feasibly assigned to

Si. Finally, v and its neighbours are also removed from X , since they are not now

considered candidates for inclusion in colour class Si.

Once X = /0, no further vertices can be added to the current colour class Si. In

lines (9) to (11) of the algorithm Si is therefore added to the solution S and, if

necessary, the algorithm moves on to constructing colour class Si+1. To do this, all

vertices in the set of uncoloured vertices Y are moved into X , and Y is emptied.

Obviously, once both X and Y are empty, all vertices have been coloured.



44 2 Bounds and Constructive Algorithms

The heuristics suggested by Leighton (1979) for selecting the next vertex v∈X to

colour in line (5) follow a similar rationale to those of the DSATUR algorithm in that

the most “constrained” vertices are prioritised. Consequently the first vertex chosen

for insertion into each colour class Si is the member of X that has the highest degree

in the subgraph induced by X . The remaining vertices v for Si are then selected as

the member of X that has the largest degree in the subgraph induced by Y ∪{v} (that

is, the vertex in X that is adjacent to the largest number of vertices in Y ). As with

DSATUR, any ties in these heuristics can be broken randomly.

(1) (2) (3) 

(4) (5) (6) 

(7) (8) Colour 
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S1 being constructed 

S2 being constructed S3 being constructed 

S4 being constructed 

Fig. 2.12 Example application of the RLF algorithm. Here, dotted vertices denote those currently

assigned to the set Y . Vertices with solid lines and no colour denote members of X

Figure 2.12 gives an example step-by-step run-through of the RLF algorithm.

Steps that involve the creation of a new colour class Si are indicated. In Step (1) the

vertex v with the highest degree in the graph is added to colour class S1. In Step (2),

all vertices adjacent to v have now been moved to Y , leaving a subgraph induced by

the set X which contains just two vertices, both of which are subsequently added to

colour class S1 in Steps (2) and (3). In Step (4) a new colour class is created and the

process is repeated on the subgraph induced by the remaining uncoloured vertices.

This continues until all vertices have been coloured, as shown.

Like DSATUR, the RLF algorithm is also exact for a number of fundamental

graph topologies.

Theorem 2.11 The RLF algorithm is exact for bipartite graphs.

Proof. Let G be a connected bipartite graph with n ≥ 3 and vertex sets V1 and V2. If

G is disconnected, it is enough to consider each component separately.
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Assume without loss of generality that vertex v ∈ V1 has the highest degree and

is therefore assigned to the first colour. Consequently all neighbours of v (that is,

Γ (v) ⊆ V2) will be added to Y . It is now sufficient to show that the next |V1| − 1

vertices assigned to the first colour will all be members of V1. This is indeed the

case because, in the next |V1| − 1 steps, uncoloured vertices will be selected that

have the largest number of adjacent vertices in the set Y . Since uncoloured vertices

from the set V2 −Y will be nonadjacent to those in Y , only vertices from V1 will

be selected. This applies until all vertices from V1 have been assigned to the first

colour. At this point the subgraph induced by V2 will have no edges, allowing RLF

to colour all remaining vertices with the second colour. ��
Theorem 2.12 The RLF algorithm is exact for cycle and wheel graphs.

Proof. Even cycles are 2-colourable and are thus dealt with by Theorem 2.11.

However, for convenience we shall consider both even and odd cycles in the fol-

lowing. Let Cn be a cycle graph with vertices V = {v1, . . . ,vn} and edges E =
{{v1,v2},{v2,v3}, . . . ,{vn−1,vn},{vn,v1}}. For bookkeeping purposes, also assume

that ties in the RLF selection heuristic (line (4) of Figure 2.11) are broken by taking

the vertex with the lowest index, as opposed to choosing arbitrarily. It is easy to see

that this theorem holds without this restriction, however.

The degree of all vertices in Cn is 2, so the first vertex to be coloured will be

v1. Consequently, neighbouring vertices v2 and vn−1 are added to Y . According to

the heuristics of RLF the next vertex to be coloured will be v3, leading to v4 being

added to Y ; then v5, leading to v6 being added to Y ; and so on. At the end of this

process, we will have colour class S1 = {v1,v3, . . . ,vn−1} when n is even, and the

colour class S1 = {v1,v3, . . . ,vn−2} when n is odd. In the even case, this leaves an

uncoloured subgraph with vertices {v2,v4, . . . ,vn} and no edges. Consequently RLF

will assign all of these vertices to the second colour. In the odd case, we will be left

with uncoloured vertices {v2,v4, . . . ,vn−1,vn} together with a single edge {vn−1,vn}.

Following the heuristic rules of RLF, all even-indexed vertices will then be assigned

to the second colour, with vn being assigned to the third.

For wheel graphs Wn similar reasoning applies. Assuming n ≥ 5, the central ver-

tex vn will coloured first because it has the highest degree. Since vn is adjacent to

all other vertices, no further vertices can be added to this colour, so the algorithm

will move on to the second colour. The remaining uncoloured vertices now form the

cycle graph Cn−1, and the same colouring process as above follows. ��

2.5 Empirical Comparison

In this section we now present a comparison of the GREEDY, DSATUR, and RLF

algorithms looking particularly at their run time requirements and the quality of

solutions that they tend to produce. The algorithm implementations used in these

experiments can be found in the online suite of graph colouring algorithms men-

tioned in Section 1.6.1 and Appendix A.1.
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2.5.1 Experimental Considerations

When new algorithms are proposed for the graph colouring problem, the quality of

the solutions it produces will usually be compared to those achieved on the same

problem instances by other preexisting methods. A development in this regard oc-

curred in 1992 with the organisation of the Second DIMACS Implementation Chal-

lenge (http://mat.gsia.cmu.edu/COLOR/instances.html), which resulted in a suite of

differently structured graph colouring problems being placed into the public do-

main. Since this time, authors of graph colouring papers have often used this set (or

a subset of it) and have concentrated on tuning their algorithms (perhaps by alter-

ing the underlying heuristics or run time parameters) in order to achieve the best

possible results.

More generally, when testing and comparing the accuracy of two graph colour-

ing algorithms (or, indeed, any approximation/heuristic algorithms), an important

question is “Are we attempting to show that Algorithm A produces better results

than Algorithm B on (a) a particular problem instance, or (b) across a whole set of

problem instances?” In some cases we might, for example, be given a difficult prac-

tical problem that we only need to solve once, and whose efficient solution might

save lots of money or other resources. Here, it would seem sensible to concentrate

on answering question (a) and spend our time choosing the correct heuristics and

parameters in order to achieve the best solution possible under the given time con-

straints. If our chosen algorithm involves stochastic behaviour (i.e., making random

choices) multiple runs of the algorithm might then be performed on the problem

instance to gain an understanding of its average performance for this case. In most

situations however, it is more likely that when a new algorithm is proposed, the sci-

entific community will be more interested in question (b) being answered—that is,

we will want to understand and appreciate the performance of the algorithm across

a whole set of problem instances, allowing more general conclusions to be drawn.

If we choose to follow (b) above, it is first necessary to decide what types of

graphs (i.e., what population of problems instances) we wish to make statements

about. For instance, this might be the set of all 2-colourable graphs, or it could be

the set of all graphs containing fewer than 1,000 vertices. Typically, populations

like these will be very large, or perhaps infinite in size, and so it will be necessary

to test our algorithms on randomly selected samples of these populations. Under

appropriate experimental conditions, we might then be able to use the outcomes of

these trials to make general statistical statements about the population itself, such

as: “With ≥ 95% confidence Algorithm A produces solutions with fewer colours

than Algorithm B on this particular graph type”.

In this section, in order to compare the performance of the GREEDY, DSATUR,

and RLF algorithms, we make use of the following facts to define our population.

Given a graph with n vertices, let l denote the number of vertex pairs in G. That is,

l =
(n

2

)
. Any graph with n vertices can therefore be represented by an l-dimensional

binary vector b(n) for which element b(n)i = 1 if and only if the corresponding pair

of vertices are adjacent, and b(n)i = 0 otherwise.
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Now let B(n) define the set of all l-dimensional binary vectors. Obviously this

means that |B(n)| = 2l . The set B(n) can therefore be considered as the set of all

possible ways of connecting the vertices in an n-vertex graph. However, we must

be careful in this interpretation as this is not quite the same as saying that B(n)

represents the set of all graphs with n vertices (which it does not), because it fails to

take into account the principle of graph isomorphisms.

Consider the example in Figure 2.13, where we show two different six-dimensional

binary vectors and illustrate the graphs that they represent, called G1 and G2 here.

Note that when we come to colour G1 and G2 the vertex labels are of little impor-

tance and, indeed, without the labels the two graphs might be considered identical.

In these circumstances G1 and G2 are considered isomorphic as there exists a way

of converting one graph into the other by simply relabelling the vertices (in this ex-

ample we can convert G1 to G2 by relabelling v1 as v2, v2 as v4, v3 as v3 and v4

as v1). Because the set B(n) fails to take these isomorphisms into account, it must

therefore be interpreted as the “set of all n-vertex graphs and their isomorphisms”,

as opposed to the set of all n-vertex graphs itself.

v1 v2 

v3 v4 

v1 

v2 

v3 

v4 

v1,v2 v1,v3 v1,v4 v2,v3 v2,v4 v3,v4 

1 1 0 1 1 0 

v1,v2 v1,v3 v1,v4 v2,v3 v2,v4 v3,v4 

0 0 1 1 1 1 

G1 G2 

Fig. 2.13 Illustration of how different binary vectors can represent graphs that are isomorphic

To generate a single member of the set B(n) at random (i.e., to choose an element

of B(n) such that each element is equally likely to be selected), it is simply neces-

sary to generate an l-dimensional vector b(n) in which each element b(n)i = 1 with

probability 0.5, and 0 otherwise. This is the same process as producing a random
graph with p = 0.5:

Definition 2.15 A random graph, denoted by Gn,p, is a graph comprising n vertices
in which each pair of vertices is adjacent with probability p. The degrees of the
vertices in a random graph are consequently binomially distributed: deg(v)∼B(n−
1, p).

Random graphs will be the focus of our algorithm comparison in this chapter,

though we will also look at other types of graphs in later chapters.
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Table 2.1 Summary of results produced by the GREEDY, DSATUR and RLF algorithms on ran-
dom graphs Gn,0.5

Algorithma

n LBb GREEDY DSATUR RLF UBc

100 9 21.14 ± 0.95 18.48 ± 0.81 17.44 ± 0.61 62.22

500 10 72.54 ± 1.33 65.18 ± 1.06 61.04 ± 0.78 284.06

1000 10 126.64 ± 1.21 115.44 ± 1.23 108.74 ± 0.90 550.76
1500 10 176.20 ± 1.58 162.46 ± 1.42 153.44 ± 0.86 841.92

2000 10 224.18 ± 1.90 208.18 ± 1.02 196.88 ± 1.10 1076.26

a Mean plus/minus standard deviation in number of colours, taken from runs across 50 graphs.
b Largest value x for which Equation (2.3) is greater than or equal to 0.99.
c Generated according to Theorem 2.7. Mean taken across 50 graphs.

2.5.2 Results and Analysis

Table 2.1 summarises the number of colours used in solutions produced by the

GREEDY, DSATUR, and RLF algorithms for random graphs with edge probabil-

ity p = 0.5 and varying numbers of vertices. For each value of n, 50 random graphs

were generated and each algorithm was executed on it once. In applications of the

GREEDY algorithm, the vertex permutation π was generated randomly. Table 2.1

also shows lower and upper bounds that were generated for these problem instances.

The results in Table 2.1 indicate that for all tested values of n, the DSATUR algo-

rithm tends to produce solutions using fewer colours than the GREEDY algorithm.

Indeed, in all five cases, these differences were seen to be significantly different.1 In

turn, significant differences were also observed between the results of DSATUR and

RLF, indicating that, for all of the tested values of n, the RLF algorithm produces

the best solutions across the set of all graphs and their isomorphisms.

The data in Table 2.1 also reveals that the generated lower and upper bounds seem

to be some distance from the number of colours ultimately used by the algorithms.

This indicates that Brooks’ Theorem (2.7) tends to provide a rather inaccurate up-

per bound for random graphs. It also suggests two factors with regard to the lower

bound: (a) that the probabilistic bound determined by Equation (2.3) is also quite in-

accurate and/or (b) that the GREEDY, DSATUR, and RLF algorithms are producing

solutions whose numbers of colours are some distance from the chromatic number.

The graphs shown in Figure 2.3 expand upon the results of Table 2.1 by consider-

ing a range of different values for p. Bounds are also indicated by the shaded areas.

We see that the unshaded areas of these graphs are generally quite wide, with the

algorithms’ results falling in a fairly narrow band within these. This again indicates

the inadequacy of the upper bound, particularly for larger values of n.

The differences between the three algorithms themselves across these values of

p are presented more clearly in Figure 2.15. Here, the bars in the graphs show the

1 The samples collected for each algorithm and value of n were not generally found to be derived

from an underlying normal distribution according to a Shapiro-Wilk test. Consequently, statistical

significance is claimed here according to the results of a nonparametric related samples Wilcoxon
Signed Rank test at the 0.1% significance level.
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points are the mean across 50 graphs
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number of colours used in solutions produced by the GREEDY algorithm, and the

lines indicate the percentage of this figure used by DSATUR and RLF. We see that

the latter two algorithms achieve percentages of less than 100% across all of the

tested values for p, indicating their superior performance across the range of random

graphs, from sparse to dense. We also see that RLF consistently produces the low-

est percentages, once again indicating its general superiority to DSATUR on these

graphs.

We now turn to the implications of the computational complexity of the GREEDY,

DSATUR, and RLF algorithms. Earlier in this chapter we noted that GREEDY and

DSATUR both have worst-case complexities of O(n2), while for the RLF this is

O(n3). What effects does this have when running the algorithms on different graph

colouring problems? Figure 2.16 shows the number of constraint checks required

by the algorithms for random graphs with p = 0.5 using values of n up to 2,000.

For larger graphs the RLF algorithm clearly requires more computational effort to

complete a run than both GREEDY and DSATUR. Indeed, as n increases, this gap

seems to widen quite significantly. In contrast, the GREEDY algorithm requires by

far the fewest constraint checks, with its line being barely distinguishable with the

horizontal axis in the figure.

The next graph, Figure 2.17, shows the computational requirements of the three

algorithms for different values of p. It can be seen that the number of constraint

checks required by GREEDY and DSATUR remains fairly stable over the range,

suggesting that it is the number of vertices n, and not the edge connectivity p, that

is the driving force in determining the two algorithms’ computational requirements.

In contrast, RLF’s requirements once again increase quite rapidly over this range.

Finally, Figure 2.18 demonstrates the strong correlation that exists between the

number of constraint checks the algorithms require and the subsequent CPU time

that is used (coefficient of determination R2 = 0.939).2 In fact, the majority of this

figure is once again dominated by data generated from runs of the RLF algorithm

with GREEDY and DSATUR’s results being tightly clustered in the bottom left cor-

ner (the GREEDY algorithm never required more than 16 ms on any of the graph

colouring problem instances considered in this section; similarly the DSATUR al-

gorithm never required more than 47 ms). This figure demonstrates that the use of

constraint checks as a measure of computational effort is suitable for estimating

CPU time, but also has the obvious advantage of being independent of any issues to

do with computer hardware, programming languages and operating systems.

2.6 Chapter Summary and Further Reading

In this chapter we have reviewed a number of bounds for the graph colouring prob-

lem and have also compared and contrasted three constructive algorithms. For ran-

dom graphs of different sizes and densities (including sets of graphs and their iso-

2 The CPU times relate to a 3.0 GHz Windows 7 PC with 3.87 GB RAM.
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Fig. 2.15 Mean quality of solutions achieved on random graphs Gn,p by the RLF and DSATUR

algorithms compared to GREEDY. All points are the mean across 50 graphs using n = 100, 1,000,

and 2,000 respectively
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Fig. 2.17 Number of constraint checks required by the GREEDY, DSATUR and RLF algorithms
on random graphs Gn,p with n = 1,000. All points are the mean of 50 trials

morphisms), we have seen that the RLF algorithm generally produces solutions with

the fewest colours, though this also comes at the expense of added computation time,

particularly for graphs with larger numbers of vertices.

In the next two chapters we will analyse a number of techniques that seek to im-

prove upon the solutions produced by these algorithms. We now end this chapter by

providing points of reference for further work on bounds for the chromatic number.

Reed (1999) has shown that Brooks’ Theorem (2.7), can be improved by one

colour when a graph G has a sufficiently large value for Δ(G) and also has no

cliques of size Δ(G). Specifically:

Theorem 2.13 (Reed (1999)) There exists some value δ such that if Δ (G)≥ δ and
ω(G)≤ Δ (G)−1 then χ(G)≤ Δ (G)−1.
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Fig. 2.18 Scatter diagram showing the relationship between number of constraint checks and CPU
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In the work a sufficient value for δ is shown to be 1014. Reed’s Conjecture, also

stated in this work, suggests that for any graph G,

χ(G)≤
⌈

1+Δ(G)+ω(G)

2

⌉
. (2.4)

A good survey on these issues can be found in the work of Cranston and Rabern

(2014).

In Section 2.2.1.1 of this chapter we also saw that interval graphs (and more

generally chordal graphs) feature chromatic numbers χ(G) equal to the their clique

numbers ω(G). Chordal graphs form part of a larger family of graphs known as per-
fect graphs which, in addition to satisfying this criterion, are also known to maintain

this property when any of its vertices are removed.

Definition 2.16 A graph G = (V,E) is perfect if, for every subgraph G′ ⊆ G,
χ(G′) = ω(G′).

Defining the structures needed for a graph to be perfect has been the subject of much

research in the field of graph theory and was eventually settled by Chudnovsky

et al. (2006), who proved the earlier conjecture of Berge (1960), which states that

a graph is perfect if and only if it contains no odd hole and no odd antihole. (A

hole is an induced subgraph which is a cycle of length at least 4; an antihole is the

complement). See MacKenzie (2002) for further details.

Looking at other topologies, bounds on the chromatic number of random graphs

have also been determined by Bollobás (1988), who states that with very high prob-

ability, a random graph Gn,p will have a chromatic number χ(Gn,p):

n
s
≤ χ(Gn,p)≤

n
s
+

(
1+

3loglogn
logn

)
(2.5)
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where

s = �2logd n− logd logd n+2logd(e/2)+1� (2.6)

with q= 1− p and d = 1/q. The finding is based on calculating the expected number

of disjoint cliques within a random graph, and provides much tighter bounds than

Equation (2.3) and Brooks’ Theorem (though recall that the latter applies to all
graphs, not just random graphs). Further bounds on general graphs have also been

given by Berge (1970), who finds

n2

n2 −2m
≤ χ(G), (2.7)

and Hoffman (1970), who has shown

1− λ1(G)

λn(G)
≤ χ(G), (2.8)

where λ1(G) and λn(G) are the biggest and smallest eigenvalues of the adjacency

matrix of G. Both of these often give very loose lower bounds in practice, however.

Note that, strictly speaking, the three constructive algorithms reviewed in this

section should be classed as heuristic algorithms as opposed to approximation al-

gorithms. Unlike heuristics, approximation algorithms are usually associated with

provable bounds on the quality of solutions they produce compared to the optimal.

So for the graph colouring problem, using A(G) to denote the number of colours

used in a feasible solution produced by algorithm A with graph G, a good approxi-

mation algorithm should feature an approximation ratio A(G)/χ(G) as close to 1 as

possible. Those seeking an algorithm with a low approximation ratio for the graph

colouring problem, however, should take note of the following theorem:

Theorem 2.14 (Garey and Johnson (1976)) If, for some constant r < 2 and con-
stant d, there exists a polynomial-time graph colouring algorithm A which guaran-
tees to produce A(G) ≤ r× χ(G)+ d, then there also exists an algorithm A′ which
guarantees A′(G) = χ(G).

In other words, this states that we cannot hope to find an approximation algorithm

A for the graph colouring problem that, for all graphs, produces A(G) < 2× χ(G)
unless P = NP.



Chapter 3
Advanced Techniques for Graph Colouring

In this chapter we now review many of the algorithmic techniques that can be (and

have been) used for the graph colouring problem. The intention is to give the reader

an overview of the different strategies available, including both exact and inexact

methods. As we will see, a variety of different approaches are available, including

backtracking algorithms, integer programming, evolutionary algorithms, neighbour-

hood search algorithms, and other metaheuristics. Full descriptions of these different

techniques are provided as they arise in the text.

3.1 Exact Algorithms

Exact algorithms are those that will always determine the optimal solution to a com-

putational problem, given excess time. One way of exactly solving NP-complete

problems such as the graph colouring problem is to exhaustively search the solution

space; however, as highlighted in Chapter 1, as problem sizes grow, the running time

for exhaustive search soon becomes restrictively large. That said, it is still possible to

design exact algorithms that are significantly faster than exhaustive search, though

still not operating in polynomial time. Two such approaches are now considered.

3.1.1 Backtracking Approaches

We saw in Chapter 2 that algorithms such as GREEDY, DSATUR, and RLF can be

used to quickly build feasible, though not necessarily optimal, solutions to instances

of the graph colouring problem. It is also possible to extend these constructive al-

gorithms to form what are known as backtracking algorithms. Backtracking is a

general methodology that can be used for determining an optimal solution (or pos-

sibly all optimal solutions) to a computational problem such as graph colouring. In

essence backtracking algorithms work by systematically building up partial solu-

� Springer International Publishing Switzerland 2016
R.M.R. Lewis, A Guide to Graph Colouring,
DOI 10.1007/978-3-319-25730-3_3
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tions into complete solutions. However, during this construction process as soon as

evidence is gained telling us that there is no way of completing the current partial

solution to gain an optimal solution, the algorithm backtracks in order to try to find

suitable ways of adjusting the current partial solution.

A simple backtracking algorithm for graph colouring might operate as follows.

Given a graph G = (V,E), the vertices are first ordered in some way so that vertex

vi (1 ≤ i ≤ n) corresponds to the ith vertex in this ordering. We also need to choose

a value k denoting the number of available colours. Initially this might be simply

k = ∞. The backtracking algorithm then performs a series of forward and backward
steps. Forward steps colour the vertices in the given order until a vertex is identified

that cannot be feasibly coloured with one of the available k colours. Backward steps

on the other hand go back through the coloured vertices in reverse order and identify

points where different colour assignments to vertices can be made. Forward steps are

then resumed from these points. If a complete feasible colouring is found, then k can

be set to the number of colours used in this colouring minus 1, with the algorithm

then continuing. Ultimately the algorithm terminates when a backward step reaches

the root vertex v1, or when some other stopping criterion such as a maximum time

limit is met.

c(v1) = 1 

c(v2) = 2 

c(v3) = 1 

c(v4) = 3 

c(v5) = 4 

(1) 

(2) 

(3) 

(4)    (10) 

 (13) 

2 
3 

4 

1 

(4-colouring found. 
Number of available 
colours is set to 3.) 

(3-colouring found. 
Number of available 
colours is set to 2.) 

(No feasible 2-colouring  
for G found. Chromatic 
number is proved to be 3.) 

G =  
 v3  v1  v2 

 v4  v5 

c(v3) = 3 

c(v4) = 3 

 (7)  

(8) 

(9) 

 (11) 

c(v5) = 1 

 (5) 

(6) 

 (12)  

Fig. 3.1 Example run of a backtracking algorithm

Figure 3.1 illustrates an example run of a simple backtracking algorithm on a

small graph. Here the vertices are considered according to the sequence v1,v2, . . . ,v5.

Vertices are also coloured with the lowest available feasible colour in the same fash-

ion as in the GREEDY algorithm. As can be seen, the sequence of steps that the

backtracking algorithm follows can be depicted as a tree. Each grey node in this

tree represents a decision (an assignment of a vertex to a colour), and grey leaf

nodes give a feasible solution. For clarity, the order in which the decision nodes are
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visited is shown by the numbers next to the corresponding edges in the tree. This

corresponds to a depth first search of the tree.

In Steps (1) to (4) of Figure 3.1 we see that, following the behaviour of the

GREEDY algorithm, all vertices are assigned to the feasible colour with the lowest

index. The resultant solution is a 4-colouring, as shown in the figure. At this point

we are now interested in finding a solution with fewer colours; hence the number

of available colours k is set to three. In Step (5) the algorithm has performed a

backtrack and now tries to assign vertex v5 to a new colour. However, colours 1,

2, and 3 are all infeasible for v5; hence no further branches of the tree need to

be explored from this node. This is signified by the black node in the search tree.

Similarly, in Step (6) the algorithm has backtracked further in order to find a new

colour for vertex v4. However, colour 3 has already been tried, and colours 1 and 2

are not feasible so, again, no further branching from this node is required.

In the next step, Step (7), a new feasible colour is sought for vertex v3. Colour

1 has already been tried, colour 2 is infeasible, but colour 3 is feasible. Hence v3 is

assigned to colour 3, and further forward steps are then carried out until a feasible 3-

colouring of G is achieved. At this point, the number of available colours is lowered

to two, and the algorithm continues. According to the tree, when only two colours

are available, there remain no other colour options for any of the previous vertices,

so the algorithm backtracks all the way to the root of the tree, at which point it can

terminate with the knowledge that no 2-colouring is available. This proves that the

chromatic number of the graph is 3.

Of course, due to the NP-hardness of graph colouring, the time requirements of

this sort of approach will often be excessively large, and executions will therefore

need to be terminated prematurely, perhaps leaving the user with a suboptimal solu-

tion. On the other hand, the systematic construction of different solutions, together

with the way in which the algorithm is able to ignore large swathes of the solution

space (indicated by the black nodes in Figure 3.1), means that backtracking is usu-

ally far more efficient than approaches attempting a brute force enumeration of all

candidate solutions.

Kubale and Jackowski (1985) have reviewed a number of ways in which back-

tracking algorithms for graph colouring might be enhanced through the addition of

various heuristics, thereby encouraging good solutions to be encountered earlier in

the search tree. These heuristics might include:

• Ordering the vertices in decreasing order of degree;

• Ordering vertices such that those with the fewest available colours are coloured

first (in a similar fashion to that of the DSATUR algorithm);

• Assigning vertices to the largest colour classes first (with the rationale that form-

ing large colour classes may lead to an overall reduction in the number of colour

classes); and similarly

• Prioritising colour classes that contain large numbers of high-degree vertices.

A backtracking algorithm using the most effective heuristics seen in the survey

of Kubale and Jackowski (1985) is considered further in Chapter 4.
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3.1.2 Integer Programming

A second way of achieving an exact algorithm for graph colouring is to use integer

programming (IP), which is a specialised type of linear programming model. Lin-

ear programming can be considered a general methodology for achieving optimal

solutions to linear mathematical models. Such models can be said to consist of vari-

ables, linear constraints, and a linear objective function. The variables (or decisions)

take on numerical values, and the constraints are used to define feasible ranges of

values for these variables. The objective function is then used to measure the qual-

ity of a solution and to define which particular assignment of values to variables is

considered optimal.

In general, the decision variables of linear programming models are continuous

in the sense that they are permitted to be fractional. On the other hand, integer
programming problems are a special type of linear programming model in which

some, if not all, of the decision variables are restricted to integer values. Though

this might seem like a subtle restriction, this insistence on integer-valued decision

variables greatly increases the number of problems that can be modelled. Indeed,

IP models can be used in a wide variety of applications, including supply chain

design, resource management, timetabling, employee rostering and, as we shall see

presently, the colouring of graphs.

Whereas algorithms such as the well-known simplex method are known to be ef-

fective for solving linear programs, there is no single preferred technique for solving

integer programs. Instead a number of exact methods have been proposed, includ-

ing branch-and-bound, cutting-plane, branch-and-price, as well as various hybrid

techniques. Because of their wide applicability, a number of off-the-shelf software

applications have also been developed in recent decades for solving linear and inte-

ger programming models, including commercial packages such as Xpress, CPLEX,

and AIMMS, and free open source applications such as the Scip Optimisation suite

(scip.zib.de) and Coin-OR (coin-or.org). Such packages allow users to input their

particular model (in terms of variables, constraints, and objective function) and then

simply click a button, at which point the software goes on to produce solutions using

the exact methods just mentioned.

It is not our intention here to provide an in depth analysis of methods for solving

IP models; instead we choose to focus on the ways in which the graph colouring

problem can be formulated using IP principles. Readers interested in finding out

more on the former are invited to consult the textbook of Wolsey (1998), which

provides a thorough overview of the subject. Before considering graph colouring IP

formulations however, the following points must be made:

• IP solution techniques such as branch-and-bound typically operate by subdivid-

ing the integer-valued region of the solution space in order to develop and refine

bounds on the optimal cost. For problems where the aim is to minimise the ob-

jective function, an upper bound is defined as the cost of the best integer-valued

solution found so far, while the lower bound is given by the optimal value of

the associated linear programming model (that is, the IP formulation without the
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requirement of the decision variables being integer-valued). As a run of the al-

gorithm progresses, these bounds will be improved until, eventually, an optimal

solution is determined.

• There are often many different ways in which a particular problem can be for-

mulated as an IP model. The task of finding a “good” formulation that can be

solved effectively via techniques such as branch-and-bound is very important

but might often be quite empirical in nature. However, avoiding features such as

“symmetry” in the formulation will often help, as we shall see below.

• Many NP-hard problems, including graph colouring itself, can be formulated

using integer programming; hence IP is an NP-hard problem in general. This

implies that exact techniques such as branch-and-bound and cutting-planes will

often be unable to determine optimal solutions in reasonable time. Indeed, in

some cases the algorithms might even fail to determine any integer valued solu-

tion in acceptable run time, meaning the user will be left with no valid solution

with which to work.

Let us now consider some IP formulations of the graph colouring problem. As

usual, let G = (V,E) be a graph with n vertices and m edges. Perhaps the most

simple formulation involves using two binary matrices Xn×n and Yn for holding the

variables of the problem. These are interpreted as follows:

Xi j =

{
1 if vertex vi is assigned to colour j,
0 otherwise.

(3.1)

Yj =

{
1 if at least one vertex is assigned to colour j,
0 otherwise.

(3.2)

Note that the elements of X and Y are required not only to be integers here, but

also binary. This is a common restriction in integer programming models and is

necessary here because only two options are available: vertex vi is either assigned

to colour j, or it is not. The objective in this model is to now minimise the number

of colours being used according to the objective function

min
n

∑
j=1

Yj (3.3)

subject to the following constraints being satisfied:

Xi j +Xl j ≤ Yj ∀{vi,vl} ∈ E, ∀ j ∈ {1, . . . ,n} (3.4)
n

∑
j=1

Xi j = 1 ∀vi ∈V. (3.5)

Here, Constraint (3.4) ensures that no pair of adjacent vertices are assigned to the

same colour and that Yj = 1 if and only if some vertex is assigned to colour j.
Constraint (3.5) then specifies that each vertex should be assigned to exactly one

colour.
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 v3 

 v1  v2 

 v4 

 v5 

 v6 

 v7  v8 

Fig. 3.2 Example graph with n = 8 vertices and m = 12 edges

An implementation of this model in the Xpress-Mosel language together with ex-

ample input and output is given in Appendix A.3. To illustrate this model, consider

the small graph given in Figure 3.2, which comprises n = 8 vertices and m = 12

edges. On running the Xpress optimisation algorithm (which utilises a standard

branch-and-bound framework), the following optimal solution is returned:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Y =
(

1 1 0 0 0 0 1 0
)

As can be seen, the cost of this optimal solution is ∑n
j=1 Yj = 3, which is the chro-

matic number for this graph. Specifically, the colours labelled 1, 2 and 7 are assigned

to the vertices as follows: c(v1) = 1, c(v2) = 2, c(v3) = 7, c(v4) = 2, c(v5) = 1,

c(v6) = 1, c(v7) = 1, and c(v8) = 7.

If we now remove the requirement that the elements in X need to be binary, we

get the following optimal solution to the associated linear programming problem:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.5 0 0 0 0 0.5 0

0 0.5 0 0 0 0 0.5 0

0 0.5 0 0 0 0 0.5 0

0 0.5 0 0 0 0 0.5 0

0 0.5 0 0 0 0 0.5 0

0 0.5 0 0 0 0 0.5 0

0 0.5 0 0 0 0 0.5 0

0 0.5 0 0 0 0 0.5 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Y =
(

0 .10 0 0 0 0 .10 0
)

The cost of this solution is 2, but it is obviously not valid from the point of view

of graph colouring because each vertex is specified as being (nonsensically) “half

assigned” to colour 2 and “half assigned” to colour 7. However, this relaxation does

provide us with a lower bound to the problem, telling us that at least two colours are

needed in any feasible solution.
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One of the major drawbacks with the above IP model is its underlying symmetry.

Indeed, it can be observed that any feasible k-colouring of a graph can be expressed

in nPk =
n!

(n−k)! ways by simply permuting the columns of the X matrix. This has

the potential to make any IP optimisation algorithm very inefficient as it can drasti-

cally increase the number of solutions that it needs to consider in order to find and

prove optimality. One way to alleviate this problem might be to introduce a further

constraint,

Yj ≥Yj+1 ∀ j ∈ {1, . . . ,n−1}, (3.6)

which ensures that any k-coloured solution only uses the colours labelled 1 to k.

Using this constraint, an optimal solution to our current problem is now

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Y =
(

1 1 1 0 0 0 0 0
)

which, as shown, only uses colours 1, 2, and 3. Observe that this partition of the

vertices is different from that of the previous case, though it is still optimal. In this

case the algorithm has simply returned the first optimal solution it has encountered,

which just happens to be different under Constraint (3.6). Note, however, that al-

though this extra constraint provides a significant improvement on the first model,

there are still equivalent solutions that arise due to the k! ways in which the first k
colours can be permuted. To eliminate some of these equivalent solutions we might

instead choose to replace Constraint (3.6) with the following:

n

∑
i=1

Xi j ≥
n

∑
i=1

Xi j+1 ∀ j ∈ {1, . . . ,n−1}. (3.7)

This ensures that the number of vertices assigned to colour j is always greater than

or equal to the number of vertices assigned to colour j+1. This again presents im-

provements over the preceding model, but there still exists some symmetry due to

colour classes of the same size being interchangeable. One final improvement sug-

gested by Méndez-Dı́az and Zabala (2008) might therefore be obtained by replacing

Constraint (3.7) with the following two constraints:

Xi j = 0 ∀vi ∈V, j ∈ {i+1, . . . ,n} (3.8)

Xi j ≤
i−1

∑
l= j−1

Xl j−1 ∀vi ∈V −{v1}, ∀ j ∈ {2, . . . , i−1}. (3.9)
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Together, these constraints specify a unique permutation of the first k columns for

each possible k-colouring. Specifically, vertex v1 must be assigned to colour 1, v2

must be assigned to either colour 1 or colour 2, and so on. (Or in other words, the

columns are sorted according to the minimally labelled vertex in each colour class.)

Under these constraints the optimal solution to our example problem is now:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Y =
(

1 1 1 0 0 0 0 0
)

as required.

Obviously, although a model with reduced symmetry might lead to improved

solution times, we must also pay heed to other features of the model such as the

number of variables and constraints, and the performance of our chosen solver on the

associated linear programming relaxation. As mentioned earlier, the effectiveness of

an IP formulation for a specific problem will often only be confirmed after empirical

observation.

3.1.2.1 Independent Set Selection

An alternative IP formulation for the graph colouring problem involves considering

the independent sets of a graph. Suppose, given a graph G, we were able to form

a complete list of all of its independent sets I = {I1, I2 . . . , Il}. Given this set, we

could then define a binary vector Yl such that

Yj =

{
1 if independent set I j is included in the solution,

0 otherwise,
(3.10)

with the objective function

min
l

∑
j=1

Yj (3.11)

and the single constraint

∑
j:vi∈I j

Yj = 1 ∀vi ∈V. (3.12)

In this formulation we are therefore concerned with selecting a subset of indepen-

dent sets from I so that each vertex of the graph is included in exactly one of these



3.2 Inexact Heuristics and Metaheuristics 63

independent sets (Constraint (3.12)), with the number of selected independents sets

being minimised. The selected independent sets then correspond to colour classes,

and a feasible solution minimising the objective function corresponds to an optimal

colouring.

Such a formulation is both elegant and avoids any issues of symmetry. Unfortu-

nately, however, it is impractical for most graphs because the number of different

independent sets grows exponentially in relation to the number of vertices, leading

to a formulation that is far too large to compute. One way of dealing with this fea-

ture is to make use of variable generation, whereby decision variables (in this case

the independent sets) are only generated as and when they are needed. A typical

approach might operate by first generating a relatively small number of independent

sets, perhaps via heuristics, and then solving the linear relaxation of the formula-

tion. Information might then be gleaned from this solution as to whether there exist

independent sets that are not included in the model, but whose addition has the po-

tential to improve the solution. If such sets are seen to exist, these can be generated

(again perhaps via heuristics) and then added to the formulation. This process might

then be used in conjunction with branch-and-bound (or something similar) until an

acceptable integer solution is obtained.

IP formulations and associated algorithms for the graph colouring problem have

been presented by, amongst others, Mehrotra and Trick (1996), Hansen et al. (2009),

and Malaguti et al. (2011). As with backtracking algorithms, a distinct advantage of

using IP is that the associated algorithms are complete and can therefore prove the

optimality of their returned solutions given excess time. In addition IP can also often

return good lower bounds on the chromatic number for many graphs. In practice

however, these advantages are often only apparent with smaller graphs or those with

certain types of topologies.

3.2 Inexact Heuristics and Metaheuristics

Perhaps the most active and fruitful avenue in the design of algorithms for graph

colouring in recent decades has been in the application of heuristic- and meta-

heuristic-based approaches. In contrast to backtracking and IP methods, these ap-

proaches are typically inexact and as such are not guaranteed to return an optimal

solution, even if granted excess time. Worse, even if they do happen to achieve an

optimal solution, these methods will often fail to recognise this and will continue to

execute until some user-defined stopping criterion is met.

On the other hand, heuristics and metaheuristics have the advantage of being

highly adaptable to different problems. As a result, various algorithms of this type

have been shown to produce excellent results on a large range of different graph

colouring problems. Often heuristics and metaheuristics are also considered to pro-

duce better solutions than exact algorithms for larger instances, though this depends

on the makeup of the graph, together with the amount of time the user is willing to

wait. An oft-quoted rule of thumb in the literature seems to be that heuristic algo-
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rithms are considered to be more useful than exact graphs whenever n is roughly

larger than 100 (see for example Galinier and Hertz (2006)); however, there are

many exceptions to this rule, as we will see in Chapter 4.

In this section we survey a number of these algorithms. In our descriptions we

will often make reference to different types of metaheuristics and will describe these

in more detail as they arise in the text. For now, it suffices to say that metaheuristics

can be considered types of higher level algorithmic frameworks that are intended

to be applicable to a variety of different optimisation problems with relatively few

modifications needing to be made in each case. Examples of metaheuristics include

evolutionary algorithms, simulated annealing, tabu search, and ant colony optimisa-

tion. Typically they operate by navigating their way through a large set of candidate

solutions (the solution space), attempting to optimise an objective function that re-

flects each member’s quality. In some cases metaheuristics will also attempt to make

educated decisions on which parts of the solution space to explore next based on the

characteristics of candidate solutions already observed. This allows them to “learn”

about the solution space during a run and therefore hopefully make good decisions

about where the best solutions can be found.

In terms of the graph colouring problem, it is helpful to classify heuristic and

metaheuristic methods according to how their solution spaces are defined. Specifi-

cally, we can consider feasible-only solution spaces, spaces of complete improper k-

colourings, and spaces of incomplete proper k-colourings. Each of these categories

is now considered in turn.

3.2.1 Feasible-Only Solution Spaces

The first set of algorithms we consider are those that operate within spaces of feasi-

ble colourings. Approaches of this type seek to identify solutions within this space

that feature small numbers of colours. Often these methods make use of the GREEDY

algorithm to construct solutions; hence, they are concerned with identifying good

permutations of the vertices. (Recall from Theorem 2.2 that, for any graph, a per-

mutation of the vertices always exists that decodes into an optimal solution via the

application of GREEDY.)

One early example of this type of approach was the iterated greedy algorithm

of Culberson and Luo (1996). This rather elegant algorithm exploits the findings

of Theorem 2.1: namely that, given a feasible colouring S , a permutation of the

vertices can be formed that, when fed back into the GREEDY algorithm, results

in a new solution S′ that uses equal or fewer colours than S . To start, DSATUR

is used to produce an initial feasible solution. Then, at each iteration, the current

solution S = {S1, . . . ,S|S|} is taken and its colour classes are reordered to form a

new permutation of the vertices. This permutation is then used with GREEDY to

produce a new feasible solution before the process is repeated indefinitely.

Culberson and Luo (1996) suggest a number of ways in which reorderings of the

colour classes can be achieved at each iteration. These include:
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• Largest First: Arranging the colour classes in order of decreasing size;

• Reverse: Reversing the order of the colour classes in the current solution; and

• Random: Rearranging the colour classes randomly.

The Largest First heuristic is used in an attempt to construct large independent sets

in the graph, while the Reverse heuristic encourages vertices to be mixed among

different colour classes. The Random heuristic is then used to prevent the algorithm

from cycling, allowing new regions of the solution space to be explored. Culberson

and Luo (1996) ultimately recommend selecting these heuristics randomly at each

iteration according to the ratio 5:5:3 respectively.

Two other algorithms operating within this solution space are the evolutionary

algorithms (EAs) of Mumford (2006) and Erben (2001). EAs are a type of meta-

heuristic inspired by biological evolution and they operate by maintaining a popula-
tion of candidate solutions representing a small sample of the solution space. During

a run, EAs attempt to improve the quality of members of the population using the

following operators:

Recombination. This aims to create new solutions by combining different parts

of existing members of the population. Often these “parts” are referred to as

“building blocks”, and the existing and new solutions are known as “parent” and

“offspring” solutions respectively;

Mutation. This makes changes to a candidate solution in order to allow new re-

gions of the solution space to be explored. These changes might be made at

random, or perhaps via some sort of local search or improvement operator.

Evolutionary Pressure. As with biological evolution, EAs usually also exhibit

some bias towards keeping good candidate solutions in the population, and re-

jecting bad ones. Hence, high-quality solutions might be more likely to be used

for recombination, and weaker solutions might be more susceptible to being re-

placed in the population by newly created offspring solutions.

The evolution, and hopefully improvement, of an EA’s population takes place

with the repeated application of the above operators; however, it is often necessary

to design specialised recombination and mutation operators that can suitably exploit

the underlying structures of the problem at hand. The recombination operator of Er-

ben (2001) seeks to do this by considering colour classes as the underlying building

blocks of the graph colouring problem. Specifically, their recombination operates

by first taking two feasible parent solutions S1 and S2. A subset of colour classes

are then selected from S2 and copied into a copy of S1 to form a new offspring so-

lution, say S′. At this point, S′ will contain multiple occurrences of some vertices,

and so the algorithm goes through the colour classes of S′ and deletes all colour

classes containing a duplicate that came from parent S1. This operation results in an

offspring solution that is proper, but most likely partial; thus any missing vertices

are randomly permuted and reinserted back into S′ using the GREEDY algorithm to

form a feasible solution. An example of this process is shown in Figure 3.3.

One notable feature of this recombination operator is that, before the GREEDY

algorithm is used to reinsert missing vertices, each colour class in the offspring will

be a copy of a colour class existing in at least one of the parents. That is:
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Parent S1 Parent S2 Offspring S ′ Comments

1) {{v1,v2,v3}, {{v3,v4,v5,v7}, {{v1,v2,v3}, S ′ is initially a copy of Parent S1

{v4,v5,v6,v7}, {v1,v6,v9}, {v4,v5,v6,v7},
{v8,v9,v10}} {v2,v8}, {v8,v9,v10}}

{v10}}
2) {{v1,v2,v3}, {{v3,v4,v5,v7}, {{v1,v2,v3}, Randomly select colour classes

{v4,v5,v6,v7}, {v1,v6,v9}, {v4,v5,v6,v7}, from S2 and copy them to S ′

{v8,v9,v10}} {v2,v8}, {v8,v9,v10},
{v10}} {v2,v8},

{v10}}
3) {{v1,v2,v3}, {{v3,v4,v5,v7}, {{v4,v5,v6,v7}, Remove classes from S′ that came

{v4,v5,v6,v7}, {v1,v6,v9}, {v2,v8}, from S1 and that contain duplicates.
{v8,v9,v10}} {v2,v8}, {v10}} In this case vertices v1, v3 and

{v10}} v9 and are now missing from S ′

4) {{v1,v2,v3}, {{v3,v4,v5,v7}, {{v4,v5,v6,v7}, Reinsert missing vertices into S ′

{v4,v5,v6,v7}, {v1,v6,v9}, {v2,v8,v9,v1}, using GREEDY to form a
{v8,v9,v10}} {v2,v8}, {v10,v3}} feasible colouring.

{v10}}

Fig. 3.3 Example application of the recombination operator of Erben (2001)

Si ∈ S′ =⇒ Si ∈ (S1 ∪S2). (3.13)

In particular, if a colour class is seen to exist in both parents then this colour class

will be guaranteed to be present in the offspring solution. Features such as these

are generally considered desirable in a recombination operator in that they provide

a mechanism by which building blocks (colour classes in this case) can be passed

from parents to offspring. For this particular operator however, there is also the

possibility that an offspring might inherit all of its colour classes from the second

parent due to the policy of deleting colour classes originating from the first parent.

The mutation operator of this algorithm works in a similar fashion to recombina-

tion by deleting some randomly selected colour classes from a solution, randomly

permuting these vertices, and then reinserting them into the solution via GREEDY.

In his EA for graph colouring, Erben also proposes the following heuristic-based

objective function:

f1(S) =
∑Si∈S

(
∑v∈Si deg(v)

)2

|S| (3.14)

where ∑v∈Si deg(v) gives the total degree of all vertices assigned to the colour class

Si. Here, the aim is to maximise f1 by making increases to the numerator (by form-

ing large colour classes in which high-degree vertices are grouped together) and

decreases to the denominator (by reducing the number of colour classes). It is also

suggested that this objective function allows evolutionary pressure to be sustained in

a population for longer during a run compared to the more obvious choice of using

the number of colours |S|, because it allows greater distinction between individuals.

The EA of Mumford (2006) also seeks to construct offspring solutions by com-

bining the colour classes of parent solutions. In her research, two recombination

operators are suggested, the Merge Independent Sets (MIS) operator and the Per-

mutation One Point (POP) operator. The MIS operator starts by taking two feasible
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parent solutions, S1 and S2, and constructing two permutations. As with the Iter-

ated Greedy algorithm, vertices within the same colour classes are put into adjacent

positions in these permutations. For example, the two solutions

S1 = {{v1,v2,v3},{v4,v5,v6,v7},{v8,v9,v10}}
S2 = {{v1,v6,v9},{v2,v8},{v3,v4,v5,v7},{v10}}

might result in the following two vertex permutations:

π(1) = (v1,v2,v3 : v4,v5,v6,v7 : v8,v9,v10)
π(2) = (v1,v6,v9 : v2,v8 : v3,v4,v5,v7 : v10).

(For convenience, colons are used in these permutations to mark boundaries be-

tween different colour classes). In the next step of the operator, the two permuta-

tions are merged randomly such that the boundaries between the colour classes are

maintained. For example, we might merge the above examples to get:

(v1,v6,v9 : v1,v2,v3 : v4,v5,v6,v7 : v2,v8 : v3,v4,v5,v7 : v8,v9,v10 : v10).

Finally, two offspring permutations are then formed by using the first occurrence

of each vertex for the first offspring, and the second occurrence for the second off-

spring:

π ′(1) = (v1,v6,v9,v2,v3,v4,v5,v7,v8,v10)
π ′(2) = (v1,v6,v2,v3,v4,v5,v7,v8,v9,v10).

These two permutations are then converted into two feasible offspring solutions by

feeding them into the GREEDY algorithm.

The POP operator of Mumford (2006) follows a similar scheme by first forming

two permutations, π(1) and π(2), as above. A random cut point is then chosen, and

the first portion of π(1) up to the cut point becomes the first portion of the second

offspring. The remainder of the second offspring is then obtained by copying the

vertices absent from the first portion of the offspring in the same sequence as they

occur in the second parent π(2). The first offspring is found in the same way, but with

the roles of the parents reversed. For example, using “|” to signify the cut point, the

permutations

π(1) = (v1,v2,v3,v4 | v5,v6,v7,v8,v9,v10)
π(2) = (v1,v6,v9,v2 | v8,v3,v4,v5,v7,v10)

result in the following new permutations:

π ′(1) = (v1,v2,v3,v4,v6,v9,v8,v5,v7,v10) and

π ′(2) = (v1,v6,v9,v2,v3,v4,v5,v7,v8,v10).

As before, two offspring solutions are then formed by feeding these new permuta-

tions into the GREEDY algorithm.

As we have seen, the recombination operators used in the EAs of both Erben

(2001) and Mumford (2006) attempt to provide mechanisms by which good colour

classes within a population can be propagated, thereby hopefully allowing good off-

spring solutions to be formed. However, it is evident that the overall performance of
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their algorithms as presented in their papers does not seem as strong as that of other

algorithms reported in the literature. That said, as we shall see later some of the

best results in the field have been actually been produced when evolutionary-based

algorithms have been hybridised with more aggressive local search-based proce-

dures. Future research might also determine whether this is also the case with these

operators.

Moving away from EAs, the technique of Lewis (2009) also operates in the space

of feasible solutions. In this case their algorithm makes use of operators based on

the Iterated Greedy algorithm for making large changes to a solution, and combines

these with specialised local search operators for making smaller, refining changes.

These are the so-called Kempe chain interchange and pair swap operators, which

are defined as follows:

Definition 3.1 Let S = {S1, . . . ,Sk} be a feasible solution. Given an arbitrary ver-
tex v ∈ Si and a second colour class S j (1 ≤ i �= j ≤ k), a Kempe chain is de-
fined as a connected subgraph that contains v, and that only comprises vertices
coloured with colours i and j. The set of vertices involved in such a chain is denoted
by KEMPE(v, i, j). A Kempe chain interchange involves taking a particular Kempe
chain and swapping the colours of all vertices contained within it.

Definition 3.2 Let the Kempe chains KEMPE(u, i, j) and KEMPE(v, j, i) both con-
tain just one vertex each (therefore implying that u and v are nonadjacent.) A pair

swap involves swapping the colours of u and v.

Fig. 3.4 An example 5-colouring (a); the result of a Kempe chain interchange using
KEMPE(v7,1,2) (b); and the result of a pair swap using v1 and v5 (c)

Figure 3.4 shows examples of these operators. In Figure 3.4(a) we see that

KEMPE(v7,1,2) = {v4,v7,v8,v9}. Interchanging the colours of these vertices gives

the colouring shown in Figure 3.4(b). For an example pair swap, observe that in Fig-

ure 3.4(a) the Kempe chains identified by both KEMPE(v1,3,4) and KEMPE(v5,4,3)
contain just one vertex each. Hence a pair swap can be performed, as is the case in

Figure 3.4(c).

The fact that applications of these operators will always preserve the feasibility

of a solution is due to the following theorem:

Theorem 3.1 Given a proper solution S = {S1, . . . ,Sk}, the application of a Kempe
chain interchange or a pair swap will result in a new solution S′ that is also proper.
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Proof. For the Kempe chain interchange operator, consider the situation where S
is proper but S′ is not. Because a Kempe chain interchange involves two colours i
and j, S′ must feature a pair of adjacent vertices u and v that are assigned the same

colour. Without loss of generality, assume this to be colour i. Moreover, u and v must

have both been in the Kempe chain used for the interchange since they are adjacent,

implying u and v are both assigned to colour j in S . However, this is impossible

since S is known to be proper.

According to the conditions given in Definition 3.2, v cannot be adjacent to any

vertex coloured with j, and u cannot be adjacent to any vertex coloured with i. Hence

swapping the colours of u and v will also ensure that S′ is proper. ��

The method of Lewis (2009) has been shown to outperform those of both Erben

(2001) and Culberson and Luo (1996) on a variety of different graphs. Consequently,

this forms one of our case study algorithms discussed in Chapter 4.

3.2.2 Spaces of Complete, Improper k-Colourings

Perhaps the majority of metaheuristic algorithms proposed for graph colouring have

been designed for exploring the space of complete improper colourings. Such meth-

ods typically start by proposing a fixed number of colours k, with each vertex then

being assigned to one of these colours using heuristics, or possibly at random. Dur-

ing this assignment there may exist vertices that cannot be assigned to any colour

without inducing a clash, but these will be assigned to one of the colours anyway.

(Recall that a clash occurs when a pair of adjacent vertices are assigned to the same

colour—see Definition 1.2.)

The above assignment process leaves us with a k-partition of the vertices that

represents a complete, but most likely improper k-colouring. A natural way to mea-

sure the quality of this solution is to then simply count the number of clashes. This

can be achieved via the following objective function:

f2(S) = ∑
∀{u,v}∈E

g(u,v) (3.15)

where

g(u,v) =
{

1 if c(u) = c(v)
0 otherwise.

The aim of algorithms using this solution space is to make alterations to the k-

partition so that the number of clashes is reduced to zero. If this is achieved, k might

then be reduced and the process restarted. Alternatively if all clashes cannot be

eliminated, k can be increased. Note that at each setting for k, we are thus attempting

to solve the NP-complete decision variant of the graph colouring problem: “can the

graph G be feasibly coloured using k colours?”

Perhaps the first algorithm to make use of the above strategy was due to Chams

et al. (1987), who made use of the simulated annealing metaheuristic. Soon after
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this, Hertz and de Werra (1987) proposed a similar algorithm called TABUCOL

based on the tabu search metaheuristic of Glover (1986). Simulated annealing and

tabu search are types of metaheuristics based on the concept of local search (some-

times known as neighbourhood search). In essence local search algorithms make use

of neighbourhood operators which are simple schemes for changing (or disrupting)

a particular candidate solution. In the examples just cited, this operator is simply:

• Take a vertex v currently assigned to colour i, and move it to a new colour j
(where 1 ≤ i �= j ≤ k).

Given a particular candidate solution S , the neighbourhood of S , denoted by N(S),
is then defined as the set of all candidate solutions that can be found from S via

some application of this operator.

A very simple way of performing local search with such a neighbourhood op-

erator is to make use of the elementary random descent method. This starts by

generating an initial solution S by some means, and then evaluating it according

to the chosen objective function f (S) which, for now, we assume we are seeking

to minimise. At each iteration of the algorithm a move in the solution space is at-

tempted by randomly applying the neighbourhood operator to the incumbent solu-

tion S to form a new solution S′ (that is, the new solution S′ is chosen randomly

from the set N(S)). If this new solution is seen to be better than the incumbent (i.e.,

f (S′)< f (S)) then it set as the incumbent for the next iteration (i.e., S ← S′); oth-

erwise no changes occur. The algorithm can then be left to run indefinitely or until

some stopping criterion is met.

Though the random descent method is very intuitive, it is highly susceptible

to getting caught at local optima within the solution space. This occurs when all

neighbours of the incumbent solution feature an equal or inferior cost—that is,

∀S′ ∈ N(S), f (S′)≥ f (S). It is obvious that if a random descent algorithm reaches

such a point in the solution space, then no further improvements (or changes to the

solution) will be possible. The simulated annealing algorithm is a generalisation of

random descent which offers a mechanism by which this issue might be circumnav-

igated. In essence, the main difference between the two methodologies lies in the

criterion used for deciding whether to perform a move or not. As noted, for ran-

dom descent this criterion is simply f (S′) < f (S). Simulated annealing uses this

criterion, but also accepts a move to a worse solution with probability exp(−δ/t),
where δ = | f (S)− f (S′)| gives the proposed change in cost and t is a parameter

known as the temperature. Typically, in simulated annealing t is set to a relatively

high value at the beginning of execution. This results in nearly all moves in the solu-

tion space being accepted, meaning that the exploration method closely resembles a

random walk. During a run t is then slowly reduced, meaning that the chances of ac-

cepting a worsening move become increasingly less likely, causing the algorithm’s

behaviour to approach that of the random descent method. This additional accep-

tance criterion often allows the algorithm to escape from local optima, allowing SA

to explore a greater span of the solution space compared to random descent.

A pseudocode description of an example simulated annealing algorithm is given

in Figure 3.5. In this case the temperature t is reduced every z iterations by mul-
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SIMULATED-ANNEALING (i ← 0)

(1) Produce an initial solution S
(2) Choose an initial value for t
(3) while (not stopping condition) do
(4) Randomly choose S ′ ∈ N(S)
(5) if f (S ′)≤ f (S) then
(6) S ← S ′

(7) else if r ≤ exp(−δ/t) then
(8) S ← S ′

(9) i ← i+1

(10) if i (mod z) = 0 then
(11) t ← αt

Fig. 3.5 The Simulated Annealing algorithm. Here, a random value for r ∈ [0,1] is generated in
each iteration. All other notation used here is described in the accompanying text

tiplying it by a cooling rate α ∈ (0,1). Many other cooling schemes are possible,

however. Since its introduction by Kirkpatrick et al. (1983), simulated annealing

has become a well-known and often very successful method for combinatorial opti-

misation problems, including applications in areas such as scheduling (Sekiner and

Kurt, 2007), university timetabling (Lewis and Thompson, 2015), packing prob-

lems (Egeblad and Pisinger, 2009), and bridge construction (Perea et al., 2008).

Methods based on simulated annealing were also winners in first two International

Timetabling Competitions held in 2003 and 2007, where competitors were asked

to design algorithms for producing timetables for a set of benchmark problem in-

stances (see cs.qub.ac.uk/itc2007/ and Chapter 8).

One potentially problematic feature of the simulated annealing metaheuristic is

that it does not maintain any memory of the solutions previously observed within

the solution space. Indeed, it may often visit the same solution multiple times, or

could even spend significant amounts of time cycling within the same subset of

solutions. In contrast to this, the tabu search metaheuristic contains mechanisms

that are intended to help avoid cycling, therefore encouraging the algorithm to enter

new regions of the solution space.

In the same way that simulated annealing can be considered a generalisation of

random descent, the tabu search algorithm can be seen as an extension of steepest
descent methodology. Steepest descent acts in a similar fashion to random descent in

that it starts with an initial solution S and then repeatedly applies a neighbourhood

operator to try to make improvements. In contrast however, at each iteration of the

steepest descent algorithm all solutions in the neighbourhood are evaluated, with the

best of these then being chosen as the next incumbent. A pseudocode description of

this process is given in Figure 3.6.

One advantage of using steepest descent over random descent is that it is abun-

dantly clear when a local optimum has been reached (the algorithm will not be able

to identify any solution S′ ∈ N(S) that is better than S). Tabu search extends steep-

est descent by offering a mechanism for escaping these local optima. It does this by
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STEEPEST-DESCENT (improved ← true)

(1) Produce an initial solution S
(2) while (improved = true) do
(3) Choose S ′ ∈ N(S) : ∀S ′′ ∈ N(S), f (S ′)≤ f (S ′′)
(4) if f (S ′)< f (S) then
(5) S ← S ′

(6) else
(7) improved ← false

Fig. 3.6 The Steepest Descent algorithm. Here we are seeking to minimise the objective function

f

also allowing worsening moves to be made when they are seen the be the best avail-

able in the current neighbourhood. To avoid cycling, tabu search also then makes

use of a memory structure called a tabu list which keeps track of previously visited

solutions, and bans the algorithm from returning to these for a certain period of time.

This therefore encourages the algorithm to enter new parts of the solution space.

As we have discussed, the papers of Chams et al. (1987) and Hertz and de Werra

(1987) suggested some time ago that both the simulated annealing and tabu search

metaheuristics are suitable for helping to tackle graph colouring problems. A tabu

search method called TABUCOL in particular has proved to be very popular, both

when used in isolation and when used as an improvement procedure as part of

broader algorithmic schemes. This algorithm will be discussed further in Chapter 4.

In more recent years, many methods for exploring the space of complete im-

proper k-colourings have also been proposed, including techniques based on:

• Evolutionary algorithms (Dorne and Hao, 1998; Eiben et al., 1998; Fleurent and

Ferland, 1996; Galinier and Hao, 1999);

• Iterated local search (Chiarandini and Stützle, 2002; Paquete and Stützle, 2002);

• GRASP algorithms (Laguna and Marti, 2001);

• Variable neighbourhood search (Avanthay et al., 2003);

• Ant colony optimisation (Thompson and Dowsland, 2008).

Two of the most notable examples from the above list, particularly due to the

quality of results that they are reported to produce, are the hybrid evolutionary al-

gorithm of Galinier and Hao (1999) and the ant colony optimisation algorithm of

Thompson and Dowsland (2008). Both of these algorithms make use of population-

based methods combined with the TABUCOL algorithm. The idea behind this hy-

bridisation is to use the population-based elements of the algorithms to guide the

search over the long term, gently directing it towards favourable regions of the so-

lution space, with the TABUCOL element then being used to identify high-quality

solutions within these regions. Both of these algorithms will be considered in further

detail in Chapter 4.
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3.2.3 Spaces of Partial, Proper k-Colourings

A further strategy for graph colouring that has perhaps received less attention his-

torically involves exploring the space of proper partial solutions. In general, this

scheme again involves stipulating a fixed number of colours k at the outset; however,

when vertices are encountered that cannot be feasibly assigned to a colour, they are

transferred to a set of uncoloured vertices U . The aim is to then make changes to

the solution so that all vertices in U can be feasibly coloured, resulting in U = /0. If

this goal is achieved, k can then be reduced and the algorithm repeated, as with the

previous scheme.

An effective example of this strategy is the PARTIALCOL algorithm of Blöchliger

and Zufferey (2008). This approach uses tabu search and operates in a very similar

fashion to the TABUCOL algorithm, albeit with a different neighbourhood operator.

Specifically, a move in the solution space is achieved as follows:

• Select an uncoloured vertex v ∈U and assign it to a colour class S j in the partial

solution S . Next, take all vertices u ∈ S j that are adjacent to v and move them

from S j to U .

In their work, Blöchliger and Zufferey (2008) make use of the simple objective func-

tion f3 = |U | to evaluate solutions. A second objective function, f4 = ∑v∈U deg(v),
is also suggested, but was found to only give better solutions in a small number of

cases. This algorithm is discussed in more detail in Chapter 4.

An earlier algorithm using this scheme was also suggested by Morgenstern and

Shapiro (1990). This used the above neighbourhood operator and objective function

in conjunction with simulated annealing. However, it also employed an additional

operator that was periodically applied to the partial solution to help reinvigorate

the search process. Specifically, this mechanism shuffled vertices between colour

classes in the partial solution while not introducing any clashes. This has the effect

of moving the algorithm into a different part of the solution space, without changing

its objective function value.

High-quality results based on exploring the space of partial proper k-colourings

have also been reported by Malaguti et al. (2008). This algorithm is similar to the

hybrid evolutionary algorithm of Galinier and Hao (1999) and uses an analogous

recombination operator together with a local search procedure based on PARTIAL-

COL. Their approach also makes use of the objective function f4 in an attempt to

sustain evolutionary pressure in the population. Due to its use of proper partial so-

lutions, note that all colour classes built by this algorithm are also independent sets.

One novel feature of this work is that, during a run of the EA, a set of these indepen-

dent sets is maintained and added to. Upon termination of the EA, this set is then

used in conjunction with an IP model similar to our final model in Section 3.1.2 in

order to try to make further improvements.
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3.2.4 Combining Solution Spaces

Interesting work has also been carried out by Hertz et al. (2008), who propose

a method for operating in different solution spaces during different stages of a

run. Specifically, TABUCOL is used to explore the space of complete improper k-

colourings, and PARTIALCOL is used for the space of partial, proper solutions. The

main idea here is that a local optimum in one solution space is not necessarily a

local optimum in another. Hence, when the search is deemed to have stagnated in

one space, a procedure is used to alter the incumbent solution so that it becomes a

member of another space. (For example, a complete improper solution formed by

TABUCOL is converted into a partial proper solution by considering clashing ver-

tices in a random order, and moving them into the set U until no clashes remain.)

The search can then be continued in this new space where further improvements

might be made, with the process being repeated as long as necessary. The authors

also propose a third solution space based on the idea of assigning orientations to

edges in the graph and then trying to minimise the length of the longest paths within

the resultant directed graph (see also the work of Gendron et al. (2007)). The au-

thors note, however, that improvements are rarely achieved during exploration of

the latter space, but that its inclusion can still be useful because it tends to make

large alterations to a solution, helping to diversify the search.

3.2.5 Problems Related to Graph Colouring

Concluding this review, it is relevant to note that many of the schemes mentioned

above are also commonly used in algorithms tackling problems related to graph

colouring. For example, we can observe the existence of timetabling algorithms that

use constructive heuristics with backtracking (Carter et al., 1996); algorithms that

allow additional timeslots (colours) in a timetable and then only deal with feasible

solutions (Burke et al., 1995; Cote et al., 2005; Erben, 2001; Lewis and Paechter,

2007); methods that fix the number of timeslots in advance and then allow con-

straints to be violated (i.e., clashes to occur) (Carrasco and Pato, 2001; Colorni et al.,

1997; Di Gaspero and Schaerf, 2002); and also algorithms that deal with partial

timetables, never allowing constraint violations to occur (Burke and Newall, 1999;

Paechter et al., 1998; Lewis and Thompson, 2015). Similar examples can also be

noted in other related problems such as the frequency assignment problem (Aardel

et al., 2002; Valenzuela, 2001).

3.3 Reducing Problem Size

When applying any of the algorithmic techniques mentioned above, it will often be

in our interest to reduce the size of the problem instance at hand by eliminating
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vertices and edges. In turn this could lead to shorter run times and/or more accu-

rate results. The following two subsections now discuss ways in which this can be

achieved.

3.3.1 Removing Vertices and Splitting Graphs

Given a graph G = (V,E):

• Let u,v ∈ V such that Γ (u) ⊆ Γ (v). This implies that u and v are nonadjacent.

Now let G′ = G−{u}. We can now colour the smaller graph G′ using any al-

gorithm. Once a feasible colouring for G′ has been established, u can then be

reinserted into the graph and assigned to the same colour as vertex v.

• Let C ⊆ V be a subgraph of G such that (a) C is a clique and (b) the ver-

tices of C are a separating set (see Definition 2.11). Now label as G1, . . . ,Gl
the components that are formed by deleting C from G, and let G′

1 = G1 ∪C,

G′
2 = G2 ∪C, . . . ,G′

l = Gl ∪C. Feasible colourings of the smaller subgraphs

G′
1, . . . ,G

′
l can now be produced separately and then merged into a feasible

colouring of G.

u v 

(b) (a) Separating Set 

 

Fig. 3.7 Examples of graphs that can be reduced in size before colouring

As an example of the first bullet above, consider Figure 3.7(a) where, as required,

Γ (u) ⊆ Γ (v). It is clear from this figure that u can always be assigned to the same

colour as v. Hence, u can be removed from the graph together with all its incident

edges. These can be reinstated once the remaining vertices have been coloured.

To illustrate the second bullet, consider Figure 3.7(b). As indicated, this graph

contains a separating set of size 3 which is also a clique. In this case, the two smaller

subgraphs G′
1 and G′

2 can now be coloured separately. If the vertices in the separat-

ing set are not allocated to the same colours in each subgraph (as is the case here),

then a colour relabelling can be applied to make this so. The subgraphs can then

be merged to form a complete feasible colouring for G. Note that, by definition,

this feature includes cases where a graph G is disconnected (giving |C| = 0) or G
contains a cut vertex (|C|= 1). Also note that χ(G) = max{χ(G′

1), . . . ,χ(G
′
l)}.
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In practice, it is easy to check whether there exist vertices u,v such that Γ (u) ⊆
Γ (v) and, depending on the topology of the graph, it might be possible to remove

many vertices before applying a graph colouring algorithm. The problem of identi-

fying separating sets is also readily solvable by various polynomial-time algorithms

(such as the approach of Kanevsky (1993)), and it only takes the addition of a simple

checking step to determine whether these separating sets also constitute cliques or

not.

In addition to these steps, in situations where we are trying to solve the decision

variant of the graph colouring problem (given an integer k, identify whether a feasi-

ble k-colouring exists), we are also able to eliminate all vertices with degrees of less

than k. That is, we can reduce the size of G by removing all vertices from the set

{v ∈V : deg(v) < k}. This is permitted since, obviously, vertices with fewer than k
adjacent vertices will always have a feasible colour from the set {1, . . . ,k} to which

they can be assigned. Hence these colours can be allocated to these vertices once

the remaining subgraph has been coloured.

3.3.2 Extracting Independent Sets

A further method for reducing the size of a graph involves the identification and re-

moval of independent sets. A suitable process can be summarised as follows. Given

a graph G = (V,E):

1. Let G′ =G. Identify an independent set I1 in G′ and remove it. Repeat this step on

G′ a further l−1 times to form a set of l disjoint independent sets {I1, I2, . . . , Il}.

Call G′ the residual graph.

2. Next, use any graph colouring algorithm to find a feasible colouring for the resid-

ual graph G′. Call this solution S′ = {S1, . . . ,Sk}.

3. A feasible (k+ l)-colouring for the original graph G is obtained by setting S =
S′ ∪{I1, I2, . . . , Il}.

For Step 1 above it is usually helpful to identify large independent sets because

this will leave us with a smaller residual graph. Recall, however, that the problem of

identifying the maximum independent set in a graph is itself an NP-hard problem,

implying the need for heuristics and/or approximation algorithms in most cases.

Methods for identifying large independent sets in a graph range from simple greedy

techniques such as the RLF algorithm (Section 2.4) and the heuristics of Chams et al.

(1987) to advanced metaheuristic algorithms such as the tabu search approach of Wu

and Hao (2012). A typical local search-based scheme might operate by seeking to

establish an independent set of size q in a graph G = (V,E). Its solution space might

be the set of all q-subsets of V (that is, a candidate solution I ⊆V with |I|= q), and

its objective function, f5, might simply be a count on the number of edges in the

subgraph of G induced by I:

f5(I) = ∑
∀u,v∈I

g(u,v) (3.16)
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where

g(u,v) =
{

1 if {u,v} ∈ E
0 otherwise.

For this solution space, a suitable neighbourhood operator might simply swap

a vertex u ∈ I with a vertex v ∈ (V − I), with the aim of identifying a solution I
with zero cost, leaving us with an independent set of size q. If this set is deemed

large enough, it might then be removed from the graph; else q can be increased

and the process repeated. We might also seek to fulfil additional criteria, such as

identifying an independent set that, when removed, leaves a residual graph with the

fewest number of edges, thereby hopefully giving it a lower chromatic number.

Note that if we choose to reduce a problem’s size by extracting independent sets,

a suitable balance will need to be struck between the time dedicated to this task and

the time used for colouring the residual graph itself. We should also be mindful of

the fact that extracting the wrong independent sets may also prevent us from being

able to identify the optimal solution to the original graph colouring problem.

Finally, note that the problem of identifying a maximum independent set in a

graph G is actually equivalent to identifying a maximum clique in G’s complement

graph Ḡ = (V, Ē) (where Ē = {{u,v} : {u,v} /∈ E}). A helpful survey on heuristic

algorithms for both of these problems is provided by Pelillo (2009).



Chapter 4
Algorithm Case Studies

In this chapter we present detailed descriptions of six high-performance algorithms

for the graph colouring problem. Implementations of each of these can be found

in the online suite of graph colouring algorithms described in Section 1.6.1 and

Appendix A.1. In Section 4.2 onwards we then compare the performance of these

algorithms over a wide range of graphs in order to gauge their relative strengths and

weaknesses.

4.1 Algorithm Descriptions

4.1.1 The TABUCOL Algorithm

As we mentioned in the previous chapter, since its proposal by Hertz and de Werra

in 1987, TABUCOL has been used as a local search subroutine in a number of high-

performing hybrid algorithms, including those of Avanthay et al. (2003), Dorne and

Hao (1998), Galinier and Hao (1999), and Thompson and Dowsland (2008). The

specific version of TABUCOL that we consider here is the so-called “improved”

variant, which was originally used by Galinier and Hao (1999). The various features

of this algorithm are now reviewed.

TABUCOL operates in the space of complete improper k-colourings using an

objective function that simply counts the number of clashes, as defined by f2 in

Equation (3.15). Given a candidate solution S = {S1, . . . ,Sk}, moves in the solution

space are performed by selecting a vertex v ∈ Si whose assignment to colour class

Si is currently causing a clash, and then assigning it to a new colour class S j �= Si.

Note that previous incarnations of this algorithm also allowed nonclashing vertices

to be moved between colours, though this is generally seen to worsen performance

(Galinier and Hertz, 2006).

The tabu list of the algorithm is stored using a matrix Tn×k. If, at iteration l of the

algorithm, the neighbourhood operator transfers a vertex v from Si to S j, then the
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element Tvi is set to l + t, where t is a positive integer that will be defined presently.

This signifies that the moving of v back to colour class Si is tabu (i.e., disallowed)

for t iterations of the algorithm (or, in other words, that v cannot be moved back to

Si until at least iteration l + t). Note that this has the effect of making all solutions

containing the assignment of vertex v to Si tabu for t iterations.

As is typical in applications of tabu search, in each iteration of TABUCOL the

entire set of neighbouring solutions is considered. That is, the cost of moving each

clashing vertex into all other k − 1 colour classes is evaluated. This process con-

sumes the majority of the algorithm’s execution time; however, it can be sped up

considerably through the use of appropriate data structures. To explain, let x denote

the number of vertices involved in a clash in the current solution S . This leads to

x(k−1) members in the set of neighbouring solutions N(S). (Obviously, there is a

strong positive correlation between x and the objective function, so better solutions

will tend to have smaller neighbourhoods.) A naı̈ve implementation of the TABU-

COL would set about separately performing the x(k − 1) different neighbourhood

moves and evaluating all the resulting solutions. However, this is not necessary, par-

ticularly because only two colour classes are effected by each neighbourhood move.

A more efficient approach involves making use of an additional matrix Cn×k
where, given the current solution S = {S1, . . . ,Sk}, element Cv j denotes the number

of vertices in colour class S j that are adjacent to vertex v. When an initial solution is

generated, all elements in C will need to be calculated. However, in each subsequent

iteration of TABUCOL, the act of moving a vertex v from Si to S j will result in a new

solution S′ whose cost is simply:

f2(S′) = f2(S)+Cv j −Cvi. (4.1)

Since f2(S) will already be known, this means that the cost of all neighbouring

solutions can be determined by simply scanning each row of C corresponding to

clashing vertices in S .

Once a move has been selected and performed (i.e., once v has been moved from

Si to Sj), the matrix C can be updated using the procedure shown in Figure 4.1. As

shown in this pseudocode, neighbours of v are now marked as being adjacent to one

fewer vertex in colour class Si and one additional vertex in colour class Sj .

UPDATE-C (v, i, j)
(1) forall u ∈ Γ (v) do
(2) Cui ←Cui −1

(3) Cu j ←Cu j +1

Fig. 4.1 Procedure for updating the matrix C once TABUCOL has moved a vertex v from colour i
to colour j. As usual, Γ (v) denotes the set of all vertices adjacent to vertex v

Having evaluated all neighbouring solutions, TABUCOL selects and performs the

non-tabu move that brings about the largest decrease (or failing that, the smallest
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increase) in cost. Any ties in this criterion are broken randomly. In addition, TABU-

COL also employs an aspiration criterion which allows tabu moves to be made on

occasion. Specifically, they are permitted if they are seen to improve on the best

solution found so far during the run. This is particularly helpful if a tabu move is

seen to lead to a solution S′ with zero cost, at which point the algorithm can halt.

Finally, if all moves are seen to be tabu, then a vertex v ∈ V is selected at random

and moved to a new randomly selected colour class. The tabu list is then updated as

usual.

In the version of TABUCOL that we use here, an initial candidate solution is con-

structed by taking a random ordering of the vertices and applying a modified version

of the GREEDY algorithm in which only k colours are permitted. Thus, if vertices are

encountered that cannot be assigned to any of the k colours without inducing a clash,

these are assigned to one of the existing colours randomly. Of course, we could use

more sophisticated constructive methods here, but it is stated by both Galinier and

Hertz (2006) and Blöchliger and Zufferey (2008) that the method of initial solution

generation is not critical in TABUCOL’s performance.

Finally, with regard to the tabu tenure, Galinier and Hao (1999) have suggested

making t a random variable that is proportional to the incumbent solution’s cost. The

idea here is that when the incumbent solution is poor, its high cost will lead to large

values for t, which will hopefully force the algorithm into different regions of the

solution space where better solutions can be found. On the other hand when the in-

cumbent solution has a low cost, the algorithm should focus on the current region by

using low values for t. Galinier and Hao (1999) suggest using t = 0.6 f2 + r, where

r is an integer uniformly selected from the range 0 to 9 inclusive. These particu-

lar settings have been used in various other applications of TABUCOL (Blöchliger

and Zufferey, 2008; Galinier and Hao, 1999; Thompson and Dowsland, 2008) and

are generally thought to give good results; however, it should be noted that other

schemes for determining t are likely to be more appropriate for certain graphs.

4.1.2 The PARTIALCOL Algorithm

The PARTIALCOL algorithm of Blöchliger and Zufferey (2008) operates in a similar

fashion to TABUCOL in that it uses the tabu search metaheuristic to seek a proper

k-colouring. However, in contrast to TABUCOL, PARTIALCOL does not consider

improper solutions; instead, vertices that cannot be assigned to any of the k colours

without causing a clash are put into a set of uncoloured vertices U . The aim of

PARTIALCOL is to thus make alterations to the partial solution S so that U can be

emptied, giving f3 = |U |= 0 and, consequently, a feasible k-coloured solution.

Because of its use of partial proper solutions, the neighbourhood operator of

PARTIALCOL is somewhat different from that of TABUCOL. Specifically, a move in

the solution space is achieved by selecting an uncoloured vertex v∈U and assigning

it to a colour class S j ∈ S . The move is then completed by taking all vertices u ∈ S j
that are adjacent to v and transferring them from S j into U . Having performed such
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a move, all corresponding elements Tu j in the tabu list are then marked as tabu for

the next t iterations of the algorithm.

In each iteration of PARTIALCOL, the complete set of |U |×k neighbouring solu-

tions is examined. The move to be performed is then chosen using the same criteria

as TABUCOL. As with TABUCOL the matrix C can again be used to speed up the

process of evaluating the neighbourhood set. In this case, the act of moving vertex

v from U to colour class S j leads to a new solution S′ whose cost is simply:

f3(S′) = f3(S)+Cv j −1. (4.2)

Once a move has been performed (that is, the vertex v ∈U has been transferred to S j
and all vertices in the set {u ∈ S j : u ∈ Γ (v)} have been moved to U), the C matrix

is updated using the procedure given in Figure 4.2.

UPDATE-C (v, j)
(1) forall u ∈ Γ (v) do
(2) Cu j ←Cu j +1

(3) if c(u) = j then
(4) forall w ∈ Γ (u) do
(5) Cw j ←Cw j −1

Fig. 4.2 Procedure for updating C once PARTIALCOL has moved vertex v from the set U to colour

j

An initial solution to PARTIALCOL is generated using a greedy process analo-

gous to that of TABUCOL. The only difference is that when vertices are encountered

for which there exists no clash-free colours, these are put into the set U . The only

other operational difference between the two algorithms relates to the calculation

of the tabu tenure t. In their original paper, Blöchliger and Zufferey (2008) use an

algorithm variant known as FOO-PARTIALCOL. Here, FOO abbreviates “Fluctua-

tion Of the Objective-function”, and indicates their use of a mechanism that alters

t based on the algorithm’s search progress. In essence, if during a run the objective

function has not altered for a lengthy period of time, it is assumed that the search has

stagnated in a particular region of the solution space and so t is increased to try to

encourage the algorithm to leave this region. Similarly, when the objective function

is seen to be fluctuating, t is slowly reduced, counteracting these effects. Note that

this scheme requires values to be assigned to a number of parameters, the meanings

of which are described by Blöchliger and Zufferey (2008). In our case, we choose

to use settings recommended by the authors and these are included in our source

code of this algorithm. We are perfectly at liberty to use other simpler schemes for

calculating t if required, however.
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4.1.3 The Hybrid Evolutionary Algorithm (HEA)

The third algorithm that we shall consider is the hybrid evolutionary algorithm

(HEA) of Galinier and Hao (1999). The HEA operates by maintaining a popula-

tion of candidate solutions that are evolved via a problem-specific recombination

operator and a local search method. Like TABUCOL, the HEA operates in the space

of complete improper k-colourings using cost function f2.

The algorithm begins by creating an initial population of candidate solutions.

Each member of this population is formed using a modified version of the DSATUR

algorithm for which the number of colours k is fixed at the outset. To provide di-

versity between members, the first vertex is selected at random and assigned to

the first colour. The remaining vertices are then taken in sequence according to the

maximum saturation degree (with ties being broken randomly) and assigned to the

lowest indexed colour class Si seen to be feasible (where 1 ≤ i ≤ k). When vertices

are encountered for which no feasible colour class exists, these are kept to one side

and are assigned to random colour classes at the end of this process. Upon construc-

tion of this initial population, an attempt is then made to improve each member by

applying the local search routine.

As is typical for an evolutionary algorithm, for the remainder of the run the al-

gorithm evolves the population using recombination, mutation, and evolutionary

pressure. In each iteration two parent solutions S1 and S2 are selected from the

population at random, and copies of these are used in conjunction with the recombi-

nation operator to produce one child solution S′. This child is then improved via the

local search operator, and is inserted into the population by replacing the weaker of

its two parents. Note that there is no bias towards selecting fitter parents for recom-

bination; rather evolutionary pressure only exists due to the offspring replacing their

weaker parent (regardless of whether the parent has a better cost than its child).

Parent S1 Parent S2 Offspring S ′ Comments

1) {{v1,v2,v3}, {{v3,v4,v5,v7}, {} To start, the offspring solution S = /0.

{v4,v5,v6,v7}, {v1,v6,v9},

{v8,v9,v10}} {v2,v8,v10}}
2) {{v1,v2,v3}, {{v3}, {{v4,v5,v6,v7}} Select the colour class with most vertices and copy it

{v8,v9,v10}} {v1,v9}, into S′. (Class {v4,v5,v6,v7} from S1 in this case.)

{v2,v8,v10}} Delete the copied vertices from both S1 and S2.

3) {{v1,v3}, {{v3}, {{v4,v5,v6,v7}, Select the largest colour class in S2 and copy it into S ′.
{v9}} {v1,v9}} {v2,v8,v10}} Delete the copied vertices from both S1 and S2.

4) {{v9}} {{v9}} {{v4,v5,v6,v7}, Select the largest colour class in S1 and copy it into S ′.
{v2,v8,v10}, Delete the copied vertices from both S1 and S2.

{v1,v3}}
5) {{v9}} {{v9}} {{v4,v5,v6,v7}, Having formed k colour classes, assign any missing

{v2,v8,v10,v9}, vertices to random colours to form a complete

{v1,v3}} but not necessarily proper offspring solution S.

Fig. 4.3 Example application of the Greedy Partition Crossover of Galinier and Hao (1999), using
k = 3
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The recombination operator proposed Galinier and Hao (1999) is the so-called

Greedy Partition Crossover (GPX). The idea behind GPX is to construct offspring

using large colour classes inherited from both parent solutions. A demonstration

of how this is done is given in Figure 4.3. As shown, the largest (not necessarily

proper) colour class from the parents is first selected and copied into the offspring

(ties are broken randomly). In order to avoid duplicate vertices occurring in the

offspring at a later stage, these copied vertices are then removed from both parents.

To form the next colour, the other (modified) parent is then considered and, again,

the largest colour class is selected and copied into the offspring, before these vertices

are removed from both parents. This process is continued by alternating between the

parents until the offspring’s k colour classes have been formed.

At this point, each colour class in the offspring will be a subset of a colour class

existing in one or both of the parents. That is:

∀Si ∈ S′ ∃S j ∈ (S1 ∪S2) : Si ⊆ Sj (4.3)

where S′, S1, and S2 represent the offspring, and the first and second parents respec-

tively. However, some vertices may be missing in the offspring (as is the case with

vertex v9 in Figure 4.3). This issue is resolved by assigning the missing vertices to

random colour classes.

Once a complete offspring solution is formed, it is then modified and improved

via a local search procedure before being inserted into the population. For this pur-

pose the TABUCOL algorithm is used for a fixed number of iterations I using the

same tabu tenure scheme as described in Section 4.1.1. In their original paper,

Galinier and Hao (1999) present results for a small sample of problem instances

and manually tune I for each case. In our case we choose not to follow this strategy

and require a setting for I to be determined automatically by the algorithm. We also

need to be wary that if I is set too low, then insufficient local search will be carried

out on each newly created solution, while an I that is too high will result in too much

effort being placed on local search as opposed to the global search carried out by

the evolutionary operators. Ultimately we choose to settle on I = 16n, which corre-

sponds roughly to the settings used in the most successful runs reported by Galinier

and Hao (1999). In all cases, we also use a population size of 10, as recommended

by the authors.

4.1.4 The ANTCOL Algorithm

Like the HEA, the ANTCOL algorithm of Thompson and Dowsland (2008) is an-

other metaheuristic-based method that combines global and local search operators,

in this case using the ant colony optimisation (ACO) metaheuristic.

ACO is an algorithmic framework that was originally inspired by the way in

which real ants determine efficient paths between food sources and their colonies.

In their natural habitat, when no food source has been identified, ants tend to wan-
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der about randomly. However, when a food source is found, the discovering ants

will take some of this back to the colony leaving a pheromone trail in their wake.

When other ants discover this pheromone, they are less likely to continue wander-

ing at random, but may instead follow the trail. If they go on to discover the same

food source, they will then follow the pheromone trail back to the nest, adding their

own pheromone in the process. This encourages further ants to follow the trail. In

addition to this, pheromones on a trail also tend to evaporate over time, reducing the

chances of an ant following it. The longer it takes for an ant to traverse a path, the

more time the pheromones have to evaporate; hence shorter paths tend to see a more

rapid build-up of pheromone, making other ants more likely to follow it and deposit

their own pheromone. This positive feedback eventually leads to all ants following

a single, efficient path between the colony and food source.

As might be expected, initial applications of ACO were aimed towards problems

such as the travelling salesman problem and vehicle routing problems, where we

seek to identify efficient paths for visiting the vertices of a graph (see for example

the work of Dorigo et al. (1996) and Rizzoli et al. (2007)). However, applications to

many other problems have also been made.

The idea behind the ANTCOL algorithm is to use ants to produce individual can-

didate solutions. During a run each ant produces its solution in a nondeterministic

manner, using probabilities based on heuristics and also on the quality of solutions

produced by previous ants. In particular, if previous ants have identified features

that are seen to lead to better-than-average solutions, the current ant is more likely

to include these features in its own solution, generally leading to a reduction in the

number of colours during the course of a run.

A full description of the ANTCOL algorithm is provided in Figure 4.4. As shown

in the pseudocode, in each cycle of the algorithm (lines (3) to (19)), a number of

ants each produce a complete, though not necessarily feasible, solution. In line (16)

the details of each of these solutions are then added to a trail update matrix δ and,

at the end of a cycle, the contents of δ are used together with an evaporation rate ρ
to update the global trail matrix t.

At the start of each cycle, each individual ant attempts to construct a solution

using the procedure BUILDSOLUTION. This is based on the RLF method (see Sec-

tion 2.4) which, we recall, operates by building up each colour class in a solution

one at a time. Also recall that during the construction of each class Si ∈ S , RLF

makes use of two sets: X , which contains uncoloured vertices that can currently be

added to Si without causing a clash; and Y , which holds the uncoloured vertices that

cannot be feasibly added to Si. The modifications to RLF that BUILDSOLUTION

employs are as follows:

• In the procedure a maximum of k colour classes is permitted. Once these have

been constructed, any remaining vertices are left uncoloured.

• The first vertex to be assigned to each colour class Si (1 ≤ i ≤ k) is chosen ran-

domly from the set X .

• In remaining cases, each vertex v is then assigned to colour Si with probability
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ANTCOL (G = (V,E))
(1) tuv ← 1 ∀u,v ∈V : u �= v
(2) k = n
(3) while (not stopping condition) do
(4) δuv ← 0 ∀u,v ∈V : u �= v
(5) best ← k
(6) foundFeasible ← false
(7) for (ant ← 1 to nants) do
(8) S ←BUILDSOLUTION(k)
(9) if (S is a partial solution) then

(10) Randomly assign uncoloured vertices to colour classes in S
(11) Run TABUCOL

(12) if (S is feasible) then
(13) foundFeasible ← true
(14) if (|S| ≤ best) then
(15) best ← |S|
(16) δuv ← δuv +F(S) ∀u,v : c(u) = c(v)∧u �= v
(17) tuv ← ρ × tuv +δuv ∀u,v ∈V : u �= v
(18) if (foundFeasible=true) then
(19) k ← best−1

Fig. 4.4 The ANTCOL algorithm. At termination, the best feasible solution found uses k + 1
colours

Pvi =

⎧⎪⎨
⎪⎩

τα
vi ×ηβ

vi

∑u∈X (τα
ui ×ηβ

ui)
if v ∈ X

0 otherwise

(4.4)

where τvi is calculated

τvi =
∑u∈Si tuv

|Si|
. (4.5)

Note that the calculation of τvi makes use of the global trail matrix t, meaning

that higher values are associated with combinations of vertices that have been

assigned the same colour in previous solutions. The value ηvi, meanwhile, is

associated with a heuristic rule which, in this case, is the degree of vertex v in the

graph induced by the set of currently uncoloured vertices X ∪Y . Larger values

for τvi and ηvi thus contribute to larger values for Pvi, encouraging vertex v to

be assigned to colour class Si. The parameters α and β are used to control the

relative strengths of τ and η in the equation.

The ANTCOL algorithm also makes use of a “multi-sets” operator in the BUILD-

SOLUTION procedure. Since the process of constructing a colour class is proba-

bilistic, the operator makes ν separate attempts to construct each colour class. It

then selects the one that results in the minimum number of edges in the graph in-

duced by the set of remaining uncoloured vertices Y (since such graphs will tend to

feature lower chromatic numbers).
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On completion of BUILDSOLUTION, the generated solution S will be proper, but

could be partial. If the latter is true, all uncoloured vertices are assigned to random

colour classes to form a complete, improper solution, and TABUCOL is run for I
iterations. Details on the solution are then written to the trail update matrix δ using

the evaluation function:

F(S) =
{

1/ f2 if f2 > 0

3 otherwise.
(4.6)

This means that higher-quality solutions contribute larger values to δ , encouraging

their features to be included in solutions produced by future ants.

The parameters used in our application, and recommended by Thompson and

Dowsland (2008), are as follows: α = 2, β = 3, ρ = 0.75, nants = 10, I = 2n, and

ν = 5. The tabu tenure scheme of TABUCOL is the same as in previous descriptions.

4.1.5 The Hill-Climbing (HC) Algorithm

In contrast to the preceding four algorithms, the Hill-Climbing (HC) algorithm of

Lewis (2009) operates in the space of feasible solutions, with the initial solution

being formed using the DSATUR heuristic. During a run, the algorithm operates on a

single feasible solution S = {S1, . . .S|S|} with the aim of minimising |S|. To begin, a

small number of colour classes are removed from S and are placed into a second set

T , giving two partial proper solutions. A specialised local search procedure is then

run for I iterations. This attempts to feasibly transfer vertices from colour classes in

T into colour classes in S such that both S and T remain proper. If successful, this

has the effect of increasing the cardinality of the colour classes in S and may also

empty some of the colour classes in T , reducing the total number of colours being

used. At the end of the local search procedure, all colour classes in T are copied

back into S to form a feasible solution.

The first iteration of the local search procedure operates by considering each

vertex v in T and checking whether it can be feasibly transferred into any of the

colour classes in S. If this is the case, such transfers are performed. The remaining

iterations of the procedure then operate as follows. First, an alteration is made to

a randomly selected pair of colour classes Si,S j ∈ S using either a Kempe chain

interchange or a pair swap (see Definitions (3.1) and (3.2)). Since this will usually

alter the make-up of two colour classes,1 this then raises the possibility that other

vertices in T can now also be moved to Si or S j. Again, these transfers are made

1 Note that in some cases a Kempe chain will contain all vertices in both colour classes: that is,

the graph induced by Si ∪Sj will form a connected bipartite graph. Kempe chains of this type are

known as total, and interchanging their colours serves no purpose since this only results in the two
colour classes being relabelled. Consequently total Kempe chains are ignored by the algorithm.
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if they are seen to retain feasibility. The local search procedure continues in this

fashion for I iterations.

On completion of the local search procedure, the independent sets in T are copied

back into S to form a feasible solution. The independent sets in S are then ordered

according to some (possibly random) heuristic, and a new solution S′ is formed

by constructing a permutation of the vertices in the same manner as that of the

Iterated Greedy algorithm (see Section 3.2.1) and then applying the GREEDY algo-

rithm. This latter operation is intended to generate large alterations to the incumbent

solution, which is then passed back to the local search procedure for further opti-

misation. Note that none of the stages of this algorithm allow the number of colour

classes being used to increase, thus providing its hill-climbing characteristics.

As with the previous algorithms, a number of parameters have to be set with this

algorithm, each that can influence its performance. The values used in our experi-

ments here were determined in preliminary tests and according to those reported by

Lewis (2009). For the local search procedure, independent sets are moved into T
by considering each Si ∈ S in turn and transferring it with probability 1/|S|. The

local search procedure is then run for I = 1,000 iterations, and in each iteration the

Kempe chain and swap neighbourhoods are called with probabilities 0.99 and 0.01

respectively. Finally, when constructing the permutation of the vertices for passing

to the GREEDY algorithm, the independent sets are ordered using the same 5:5:3

ratio as detailed in Section 3.2.1.

4.1.6 The Backtracking DSATUR Algorithm

The sixth and final algorithm considered in this chapter is the backtracking approach

of Korman (1979). Essentially, this operates in the same manner as the basic back-

tracking approach discussed in Section 3.1.1, though with the following modifica-

tions:

• The initial order of the vertices is determined by the DSATUR algorithm. Hence

vertices with the fewest available colours are coloured first, with ties being bro-

ken by the degrees, and further ties being broken randomly.

• After performing a backward step, vertices are dynamically reordered so that the

next vertex to be coloured is also the one with the fewest available colours. If the

vertex has no feasible colours available, the algorithm takes a further backward

step.

An example run-through of this algorithm is shown in Figure 4.5. This should

be interpreted in the same manner as Figure 3.1. Note that a number of parameters

can be set when applying this algorithm, some of which might alter the performance

quite drastically. These include specifying the maximum number of branches that

can be considered at each node of the tree and prohibiting branching at certain levels

of the tree. In practice, it is not obvious how these settings might be chosen a priori

for individual graphs, so in our case we opt for the most natural configuration, which
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Fig. 4.5 Example run of the backtracking algorithm of Korman (1979)

is to simply attempt a complete exploration of the search tree.2 This means that the

algorithm is exact under excess time, though of course such run-lengths will not be

possible in most cases.

4.2 Algorithm Comparison

In this section we now compare the above six algorithms using a selection of dif-

ferent graph types. As with our comparison of constructive algorithms in Chapter 2,

we begin by considering random graphs. We then go on to consider a further type

of artificially generated graph, the flat graph, before looking more closely at sets of

graphs arising in two real-world practical problems, namely university timetabling

and social networking.

As with our previous experiments, computational effort for these algorithms is

measured by counting the number of constraint checks (see Section 1.6.1). Due to

the operational differences of the algorithms, during a run solution quality is mea-

2 These parameters can be altered in the implementation, however.
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sured by simply observing the smallest number of colours used in a feasible solution

up until that point. Note that because TABUCOL, PARTIALCOL and the HEA op-

erate using infeasible solutions, settings for k are also required which might then

need to be modified during a run. In our case initial values are determined by ex-

ecuting DSATUR on each instance and setting k to the number of colours used in

the resultant solution. During runs, k is then decremented by 1 each time a feasible

k-colouring is found, with the algorithms being restarted. In all trials a computation

limit of 5×1011 constraint checks was imposed. This value is chosen to be deliber-

ately high in order to provide some notion of excess time in the trials. Example run

times (in seconds) using this computation limit are given in Table 4.6 later.

4.2.1 Artificially Generated Graphs

According to Definition 2.15, random graphs are generated such that each pair of

vertices is made adjacent with probability p. For the following experiments we used

values of p ranging from 0.05 (sparse) to 0.95 (dense), incrementing in steps of 0.05,

with n ∈ {250,500,1000}. Twenty-five instances were generated in each case.

The second type of artificial graph we consider are flat graphs. These are pro-

duced by taking a graph G = (V,E = /0) and then partitioning the n vertices into

q almost equi-sized independent sets (i.e., each set contains either �n/q or �n/q�
vertices). Edges are then added between pairs of vertices in different independent

sets with probability p in such a way that the variance in vertex degrees is kept to a

minimum.

It is well known that q-coloured solutions to flat graphs are quite easy to achieve

for most values of p. This is because for lower values for p, problems will be

under-constrained, perhaps giving χ(G)< q, and making q-coloured solutions eas-

ily identifiable. On the other hand, high values for p can result in over-constrained

problems with prominent global optima that are easily discovered. Hard-to-solve

q-colourable graphs are known to occur for a region of p’s at the boundary of these

extremes, commonly termed the phase transition region (Cheeseman et al., 1991;

Turner, 1988). Flat graphs, in particular, are known to have rather pronounced phase

transition regions because each colour class and vertex degree is deliberately similar,

implying a lack of heuristic information for algorithms to exploit.

For our experiments, flat graphs were generated using publicly available software

designed by Joseph Culberson which can be downloaded at web.cs.ualberta.ca/∼joe/

coloring. Graphs were produced for q ∈ {10,50,100} using various settings of p in

and around the phase transition regions. In each case we used n = 500, implying

approximately 50, ten, and five vertices per colour respectively. Twenty instances

were generated in each case.

Note that according to the structure of random graphs, vertex degrees are char-

acterised by the binomial distribution B(n−1, p). This means that the standard de-

viation of the vertex degrees, calculated
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σ =
√

(n−1)p(1− p), (4.7)

does not exceed 15.8 in this test set of random graphs. It also implies that the degree

coefficient of variation (CV), which is defined as the ratio of the standard deviation

to the mean σ/μ , never exceeds 28% (being maximised at n = 250, p = 0.05).

In a similar fashion, flat graphs are constructed such that variance in degrees is

minimised, and for our generated instances this means that the CV never exceeds

28.5%. Compared to many of the more real-world graphs considered later, these

values imply a rather high level of vertex homogeneity (i.e., vertices tend to “look

the same”), helping to explain some of the following results.

4.2.1.1 Performance on Random Graphs

Table 4.1 shows the number of colours used in solutions produced by the six algo-

rithms for random graphs with edge probability p = 0.5 and varying numbers of

vertices. The results indicate that for the smaller graphs (n = 250), the TABUCOL,

PARTIALCOL and HEA algorithms produce solutions with fewer colours than the

remaining algorithms.3 However, no statistical difference between these three algo-

rithms is apparent. For larger graphs however, the HEA produces the best results,

allowing us to conclude that, for n = 500 and n = 1,000, the HEA algorithm is able

to produce the best solutions across the set of all graphs and their isomorphisms

under this particular computation limit.

Table 4.1 Summary of results produced at the computation limit using random graphs Gn,0.5

Algorithma

n TABUCOL PARTIALCOL HEA ANTCOL HC Bktr

250 28.04± 0.20 28.08 ± 0.28 28.04 ± 0.33 28.56 ± 0.51 29.28 ± 0.46 34.24 ± 0.78
500 49.08 ± 0.28 49.24 ± 0.44 47.88 ± 0.51 49.76 ± 0.44 54.52 ± 0.77 62.24 ± 0.72

1000 88.92 ± 0.40 89.08 ± 0.28 85.48 ± 0.46 89.44 ± 0.58 101.44 ± 0.82 112.88 ± 0.97

a Mean plus/minus standard deviation in number of colours, taken from runs across 25 graphs.

Moving on to other densities, the graphs shown in Figure 4.6 summarise the mean

solution quality achieved by the six algorithms on all random graphs generated. In

each figure, the bars show the number of colours used in solutions produced by

DSATUR and the lines then give the proportion of this number used in the solutions

of the six algorithms. Note that all algorithms achieve a reduction in the number

of colours realised by DSATUR, though in all but the smallest, sparsest graphs, the

backtracking algorithm exhibits the smallest margins of improvement, apparently

due to the high levels of vertex homogeneity in these instances, which makes it

difficult for favourable regions of the search tree to be identified.

3 As in Chapter 2, statistical significance is claimed here according to the nonparametric Related

Samples Wilcoxon Signed Rank test (for pairwise comparisons), and the Related Samples Fried-

man’s Two-way Analysis of Variance by Ranks (for group comparisons). For the remainder of this
chapter statistical significance is claimed at the 1% level.
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Fig. 4.6 Mean quality of solution achieved on random graphs using n = 250, 500, and 1,000

(respectively) for various edge probabilities p. All points are the mean of 25 runs on 25 different
instances

It is clear from Figure 4.6 that TABUCOL, PARTIALCOL, and the HEA in partic-

ular, produce the best results for the random graphs. For n = 250 these algorithms

produce mean results that, across the range of values for p, show no significant

difference among one another, perhaps indicating that the achieved solutions are
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consistently close to the optimal solutions. For larger graphs however, the HEA’s

solutions are seen to be significantly better, though its rates of improvement are

slightly slower than those of TABUCOL and PARTIALCOL, as illustrated by Fig-

ure 4.7. Similar behaviour during runs was also witnessed with the smaller random

instances.
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Fig. 4.7 Run profiles on random graphs of n = 1,000 with edge probabilities p = 0.25, 0.5, and

0.75 respectively. Each line represents a mean of 25 runs on 25 different instances
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Overall, the patterns shown in Figure 4.6 indicate that the HEA’s strategy of ex-

ploring the space of infeasible solutions using both global and local search operators

is the most beneficial of those considered here. Indeed, although the HC algorithm

also uses both global and local search operators, here its insistence on preserving

feasibility implies a lower level of connectivity in its underlying solution space,

making navigation more restricted and resulting in noticeably inferior solutions.

Figure 4.6 also reveals that ANTCOL does not perform well with large sparse

instances, though it does become more competitive with denser instances. The rea-

sons for this are twofold. First, the degrees of vertices in sparse graphs are naturally

lower, reducing the heuristic bias provided by η and perhaps implying an over-

dominant role of τ during applications of BUILDSOLUTION (see Equation (4.4)).

Secondly, sparse graphs also feature greater numbers of vertices per colour—thus,

even if very promising independent sets are identified by ANTCOL, their recon-

struction by later ants will naturally depend on a longer sequence of random trials,

making them less likely. To back these assertions, we also repeated the trials of

ANTCOL using the same local search iteration limit as the HEA, I = 16n. How-

ever, though this brought slight improvements for denser graphs, the results were

still observed to be significantly worse than the HEA’s, suggesting the difference in

performance indeed lies with the global-search element of ANTCOL in these cases.

4.2.1.2 Performance on Flat Graphs

Similar patterns are also revealed when we turn our attention towards the perfor-

mance of the six algorithms with flat graphs, as shown in Figure 4.8. Again, we

see that the HEA, TABUCOL, and PARTIALCOL exhibit the best performance on in-

stances within the phase transition regions, with the HC and backtracking algorithms

proving the least favourable. One pattern to note is that for the three values of q, the

HEA tends to produce the best-quality results on the left side of the phase transi-

tion region, but PARTIALCOL produces better results for a small range of p’s on the

right side. However, this difference is not due to the “FOO” tabu tenure mechanism

of PARTIALCOL, because no significant difference was observed when we repeated

our experiments using PARTIALCOL under TABUCOL’s tabu tenure scheme. Thus,

it seems that PARTIALCOL’s strategy of only allowing solutions to be built from

independent sets is favourable in these cases, presumably because this restriction

facilitates the formation of independent sets of size n/q—structures that will be less

abundant in denser graphs, but which also serve as the underlying building blocks

in these cases.

Another striking feature of Figure 4.8 is the poor performance of ANTCOL on

the right side of the phase transition regions. This again seems to be due to the

diminished effect of heuristic value η , which in this case is due to the variance

in vertex degrees being deliberately low, making it difficult to distinguish between

vertices. Furthermore, in denser graphs fewer combinations comprising n/q vertices

will form independent sets, decreasing the chances of an ant constructing one. This

reasoning is also backed by the fact that ANTCOL’s poor performance lessens with



4.2 Algorithm Comparison 95

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 0.05  0.1  0.15  0.2

C
ol

ou
rs

 a
t c

ut
-o

ff

p

TabuCol
PartialCol

HEA
AntCol

HC
Bktr

 50

 52

 54

 56

 58

 60

 62

 64

 66

 0.4  0.45  0.5  0.55  0.6  0.65  0.7  0.75  0.8

C
ol

ou
rs

 a
t c

ut
-o

ff

p

TabuCol
PartialCol

HEA
AntCol

HC
Bktr

 100

 102

 104

 106

 108

 110

 112

 114

 0.76  0.78  0.8  0.82  0.84  0.86  0.88  0.9  0.92  0.94  0.96

C
ol

ou
rs

 a
t c

ut
-o

ff

p

TabuCol
PartialCol

HEA
AntCol

HC
Bktr

Fig. 4.8 Mean quality of solution achieved with flat graphs of n = 500 with q = 10, 50, and 100

(respectively) for various edge probabilities p. All points are the mean of 20 runs on 20 different
instances
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larger values of q where, due to there being fewer vertices per colour, the reproduc-

tion of independent sets is dependent on shorter sequences of random trials.

4.2.2 Exam Timetabling Problems

Our first set of “real world” problem instances in this comparison concerns graphs

representing university timetabling problems. As we saw in Section 1.1.2, timetabling

problems involve assigning a set of “events” (exams, lectures, etc.) to a fixed num-

ber of “timeslots”, and a pair of events “conflict” when they require the same single

resource: e.g., there may be a student or lecturer who needs to attend both events, or

the events may require use of the same room. As a result conflicting events need to

be assigned to different timeslots. Under this constraint, timetabling problems can

be modelled as graph colouring problems by considering each event as a vertex,

with edges occurring between pairs of events that conflict. Each colour then repre-

sents a timeslot, and a feasible colouring corresponds to a complete timetable with

no conflict violations.

In practice, universities will often have a predefined number of timeslots in their

timetable and their task will be to determine a feasible solution using fewer or

equal timeslots. In many cases however, it might be difficult to ascertain whether

a timetable with a given number of timeslots is achievable for a particular problem,

or it may be desirable to use as few timeslots as possible, particularly if it provides

extra time for marking, or allows for a shorter teaching day. Here we concern our-

selves with the latter problem, and use a well-known set of real-world timetabling

problems compiled by Carter et al. (1996). This set contains 13 exam timetabling

problems encountered in various universities from across the globe during the 1980s

and 1990s.

Degree
Instance n Density Min;Med;Max Mean μ CV (σ/μ)
hec-s-92 81 0.415 9; 33; 62 33.7 36.3%

sta-f-83 139 0.143 7; 16; 61 19.9 67.4%

yor-f-83 181 0.287 7; 51; 117 52 35.2%

ute-s-92 184 0.084 2; 13; 58 15.5 69.1%
ear-f-83 190 0.266 4; 45; 134 50.5 56.1%

tre-s-92 261 0.180 0; 45; 145 47 59.6%

lse-f-91 381 0.062 0; 16; 134 23.8 93.2%
kfu-s-93 461 0.055 0; 18; 247 25.6 120.0%

rye-s-93 486 0.075 0; 24; 274 36.5 111.8%

car-f-92 543 0.138 0; 64; 381 74.8 75.3%
uta-s-92 622 0.125 1; 65; 303 78 73.7%

car-s-91 682 0.128 0; 77; 472 87.4 70.9%

pur-s-93 2419 0.029 0; 47; 857 71.3 129.5%

Table 4.2 Details of the 13 timetabling instances of Carter et al. (1996)
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A summary of these problem instances is provided in Table 4.2. The names of

the graphs start with a three-letter code denoting the name of the university. This is

followed by an “s” or “f” specifying whether the problem occurred in the summer

or fall semester, and this is then followed by the year. We see that the set contains

problems ranging in size from n = 81 to 2,419 vertices, and densities of 2.9% up to

41.5%.

It is also known that many of these problem instances feature high numbers of

rather large cliques. As Ross et al. (2003) have noted:

Consider the instance kfu-s-93, by no means the hardest or largest in this set. It involves

5,349 students sitting 461 exams, ideally fitted into 20 timeslots. The problem contains two
cliques of size 19 and huge numbers of smaller ones. There are 16 exams that clash with

over 100 others.

Colours at Cut-off: Mean (best)

Instance TABUCOL PARTIALCOL HEA ANTCOL HC Bktr

hec-s-92 17.22 (17) 17.00 (17) 17.00 (17) 17.04 (17) 17.00 (17) 19.00 (19)
sta-f-83 13.35 (13) 13.00 (13) 13.00 (13) 13.13 (13) 13.00 (13) *13.00 (13) [100%, <0.1%]

yor-f-83 19.74 (19) 19.00 (19) 19.06 (19) 19.87 (19) 19.00 (19) 20.00 (20)

ute-s-92 10.00 (10) 10.00 (10) 10.00 (10) 11.09 (10) 10.00 (10) 10.00 (10)
ear-f-83 26.21 (24) 22.46 (22) 22.02 (22) 22.48 (22) 22.00 (22) *22.00 (22) [100%, 0.7%]

tre-s-92 20.58 (20) 20.00 (20) 20.00 (20) 20.04 (20) 20.00 (20) 23.00 (23)

lse-f-91 19.42 (18) 17.02 (17) 17.00 (17) 17.00 (17) 17.00 (17) *17.00 (17) [100%, 1.3%]

kfu-s-93 20.76 (19) 19.00 (19) 19.00 (19) 19.00 (19) 19.00 (19) 19.00 (19)
rye-s-93 22.40 (21) 21.06 (21) 21.04 (21) 21.55 (21) 21.00 (21) 22.00 (22)

car-f-92 39.92 (36) 32.48 (31) 28.50 (28) 30.04 (29) 27.96 (27) *27.00 (27) [100%, 8.2%]

uta-s-92 41.65 (39) 35.66 (34) 30.80 (30) 32.89 (32) 30.27 (30) 29.00 (29)
car-s-91 39.10 (32) 30.20 (29) 29.04 (28) 29.23 (29) 29.10 (28) 28.00 (28)

pur-s-93 50.70 (47) 45.48 (42) 33.70 (33) 33.47 (33) 33.87 (33) 33.00 (33)

Total 341.05 (315) 302.36 (294) 280.16 (277) 286.84 (281) 279.20 (276) 282.00 (282)
Rank (6) (5) (2) (4) (1) (3)

Table 4.3 Summary of algorithm performance on the 13 timetabling instances of Carter et al.

(1996). All statistics are collected from 50 runs on each instance. Asterisks in the rightmost column
indicate where the backtracking algorithm was able to produce a provably optimal solution. In

these cases, the square brackets indicate the % of runs where this occurred, and the average % of

the computation limit that this took

Table 4.3 summarises the results achieved at the computation limit with the six

graph colouring algorithms. Note that in contrast to the artificial instances from the

previous section, the worst overall performance now occurs with those methods re-

lying solely on local search: that is, TABUCOL and to a lesser extent PARTIALCOL.

Indeed, we find that these methods are often incapable of achieving feasible solu-

tions even using the initial setting for k determined by DSATUR.4 The cause of this

poor performance seems to lie in the fact that, as shown in Table 4.2, the degree co-

efficient of variations (CVs) of these 13 problems are considerably higher than that

of the artificially generated instances seen in the previous subsection. The effects

4 Consequently, the reported results for TABUCOL and PARTIALCOL in Table 4.3 are produced

using an initial k generated by executing the GREEDY algorithm with a random permutation of the
vertices.
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of this are shown in Figure 4.9 where, compared to a random graph of a similar

size and density, the differences in cost between neighbouring solutions vary much

more widely. This suggests a more “spiky” cost landscape in which the use of local

search mechanisms in isolation is insufficient, exhibiting a susceptibility to becom-

ing trapped at local optima.
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Fig. 4.9 Cost-change distributions for a random graph (n = 500, p = 0.15, CV= 10.7%, using
k = 16) and timetable graph car-f-92 (n = 543, p = 0.138, CV= 75.3%, using k = 27). In all cases

samples are taken from candidate solutions with costs of 8

Table 4.3 also shows that the most consistent performance with these graphs is

achieved by the HC and HEA algorithms (no significant difference between the

two methods across the instances is apparent). This demonstrates that the issues

of using local search in isolation are alleviated by the addition of a global search-

based operator. On individual instances, the relative performances of HC and HEA

do seem to vary, however. With the problem instances car-f-92 and car-s-91, for

example, the HEA’s best observed solutions are determined within approximately

1% of the computation limit, while HC’s progress is much slower. On the other

hand, with instances such as rye-s-93, HC consistently produces the best observed

results in less that 0.3% of the computation limit, suggesting that its operators are

somehow suited to this instance. This issue is considered further in Section 4.4.1.

In contrast to the artificially generated graphs seen earlier, we also observe that

the backtracking algorithm is quite competitive with these instances. For four of the

problem instances the algorithm has managed to find and prove the optimal solu-

tions in all runs using a small fraction of the computation limit; however, these do

not correspond to the smallest instances as we might have expected. In addition, the
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algorithm has produced the best average performance out of all algorithms with the

four largest problem instances, seeming to contradict the often-held belief that com-

plete algorithms are only suitable for graphs with less that 100 vertices or so (see

Section 3.2). It seems in these cases that the large degree CVs characterise an abun-

dance of heuristic information that is being successfully exploited by the algorithm.

Indeed, for the four largest instances, all of the solutions reported in Table 4.3 were

actually found in less than 2% of the computation limit, implying that the algorithm

quickly arrives at the correct regions of the search tree. However, counterexamples

in which the backtracking algorithm consistently produces the worst performance

can also be seen in Table 4.3, such as with the smallest instance, hec-s-92.

Finally, we also note the sporadic performance of ANTCOL with these instances.

For all but the four largest problems, ANTCOL’s best solutions equal those of the

other algorithms; however, its averages are less favourable, particularly compared

to the HEA and HC algorithms. Consider, for example, the results of ute-s-92 in the

table. This problem is consistently solved using ten colours by all methods except

ANTCOL, which often requires 11 or 12 colours. In fact, we find that for instances

such as these, ANTCOL’s performance depends very much on the quality of solu-

tions produced in the first cycle of the algorithm. Due to the low vertex degrees (and

reduced influence of η that results), Equation (4.4) is predominantly influenced by

the pheromone values τ; however, if an 11- or 12-colour solution is produced dur-

ing the first cycle, features of these suboptimal solutions are still used to update the

pheromone matrix t, making their reoccurrence in later cycles more likely. The up-

shot is that ANTCOL is rarely seen to improve upon solutions found in the initial

cycle of the algorithm with these instances.

4.2.3 Social Networks

Our final set of experiments in this chapter involves graphs representing social net-

works. Social networks consist of “nodes” (usually individual people) that are “tied”

by some sort of inter-dependency such as friendship or belief. Here we consider

the social networks of school friends, compiled as part of the USA-based National

Longitudinal Study of Adolescent Health project (Moody and White, 2003). The

colouring of such networks might be required when we wish to partition the stu-

dents into groups such that individuals are kept separate from their friends, e.g., for

group assignments and team-building exercises (see also Section 1.1.1).

To construct these networks, surveys were conducted in various schools, with

each student being asked to list all of his or her friends. In some cases, students

were only allowed to nominate friends attending the same school, while in others

they could include friends attending a “sister school” (e.g., middle-school students

could include friends in the local high school), leading to single-cluster and double-

cluster networks respectively. In the resultant graphs, each student is represented by

a vertex, with edges signifying a claimed friendship between the associated individ-

uals (see Figure 4.10). Note that in the original data, edges signifying friendships
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are both directed and weighted; however, in our case directions and weights have

been removed to form a simple graph.

Fig. 4.10 Illustration of a double-cluster social network collected in the National Longitudinal

Study of Adolescent Health project (Moody and White, 2003)

Degree

Instance n Density Min;Med;Max Mean μ CV (σ/μ)
Single-Cluster
#1 380 0.021 0; 8; 23 8.1 50.5%
#2 542 0.013 0; 7; 35 7.1 61.7%

#3 563 0.013 0; 7; 23 7.3 55.4%

#4 578 0.015 0; 8; 24 8.8 52.7%

#5 626 0.013 0; 7; 30 7.8 58.7%
#6 746 0.010 0; 7; 28 7.3 58.6%

#7 828 0.008 0; 6; 23 6.2 59.3%

#8 877 0.009 0; 7; 29 7.8 58.2%
#9 1229 0.003 0; 4; 17 4.1 54.6%

#10 2250 0.002 0; 4; 25 4.3 78.0%

Double-Cluster
#11 291 0.027 0; 8; 21 7.8 54.6%

#12 426 0.018 0; 7; 26 7.5 56.2%

#13 457 0.016 0; 7; 23 7.4 58.8%

#14 495 0.017 0; 8; 22 8.5 46.8%
#15 569 0.017 0; 9; 34 9.4 50.9%

#16 586 0.016 0; 9; 30 9.6 48.4%

#17 689 0.010 0; 6; 22 6.8 62.0%
#18 795 0.011 0; 9; 24 8.7 53.7%

#19 1089 0.007 0; 8; 29 8.1 57.9%

#20 1246 0.007 0; 9; 33 8.6 54.4%

Table 4.4 Details of the 20 social networks used

Pajek
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In our tests we took a random sample of ten single-cluster networks and ten

double-cluster networks from the Adolescent Health data set. Summary statistics of

these graphs are given in Table 4.4. These figures indicate that the vertex degrees

are far lower that the timetabling graphs from the previous section, with the highest

degree across the whole set being just 29. Consequently, the densities of the graphs

are also much lower.

Colours at Cut-off: Mean (best)

Instance TABUCOL PARTIALCOL HEA ANTCOL HC Bktr

Single-Cluster
#1 8 (8) 8 (8) 8 (8) 8.15 (8) 8 (8) 8 (8)
#2 6 (6) 6 (6) 6 (6) 6.76 (6) 6 (6) *6 (6) [100%, <1%]

#3 7 (7) 7 (7) 7 (7) 7.45 (7) 7 (7) 7.02 (7)

#4 8 (8) 8 (8) 8 (8) 8.75 (8) 8 (8) 8 (8)

#5 8 (8) 8 (8) 8 (8) 8.41 (8) 8 (8) 8 (8)
#6 6 (6) 6 (6) 6 (6) 6 (6) 6 (6) *6 (6) [90%, <1%]

#7 6 (6) 6 (6) 6 (6) 6.38 (6) 6 (6) 6 (6)

#8 8 (8) 8 (8) 8 (8) 8.23 (8) 8 (8) 8 (8)
#9 6 (6) 6 (6) 6 (6) 6.10 (6) 6 (6) 6 (6

#10 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) *5.38 (5) [52%, <1%]

Double-Cluster
#11 6 (6) 6 (6) 6 (6) 6.70 (6) 6 (6) 6.02 (6)

#12 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) *5 (5) [96%, 4%]

#13 6 (6) 6 (6) 6 (6) 6 (6) 6 (6) *6.32 (6) [46%, 1%]

#14 7 (7) 7 (7) 7 (7) 7.46 (7) 7 (7) *7 (7) [42%, <1%]
#15 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) *7 (7) [100%, <1%]

#16 10 (10) 10 (10) 10 (10) 10.13 (10) 10 (10) 10 (10)

#17 7 (7) 7 (7) 7 (7) 7.28 (7) 7 (7) 7 (7)
#18 6 (6) 6 (6) 6 (6) 6 (6) 6 (6) *6.14 (6) [86%, 1%]

#19 7 (7) 7 (7) 7 (7) 7.65 (7) 7 (7) 7.13 (7)

#20 7 (7) 7 (7) 7 (7) 7.69 (7) 7 (7) 7.02 (7)

Total 136 (136) 136 (136) 136 (136) 142.14 (136) 136 (136) 137.03 (136)

Rank (1) (1) (1) (6) (1) (5)

Table 4.5 Summary of algorithm performance on the 20 Social Networks. All statistics are col-

lected from 50 runs on each instance. Asterisks in the rightmost column indicate where the back-

tracking algorithm was able to produce a provably optimal solution. In these cases, the square
brackets indicate the % of runs where this occurred, and the average % of the computation limit

that this took

As before, each algorithm was executed 50 times on each instance. The relatively

straightforward outcomes of these trials are summarised in Table 4.5. Here, we see

that the number of colours needed for these problems ranges from five to ten, though

no obvious correlations exist to suggest any links with instance size, density, or the

presence of clusters. We also see that the HEA, HC, TABUCOL, and PARTIALCOL

methods have all produced the best observed (or optimal) solutions for all instances

in all runs. It seems, therefore, that the underlying structures and relative sparsity of

these graphs make their solving relatively “easy” with these algorithms.

In addition, for six of the instances, the backtracking algorithm has managed to

find provably optimal solutions, though this does not occur in all runs. Indeed, when

this does happen, it seems to occur early in the process (<5% of the computation

limit), suggesting that the random elements of the algorithm can have a large ef-

fect on the structure of the search tree. We also observe the poor performance of
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ANTCOL, which seems to be due to the negative performance features noted in the

previous subsection, with a high-quality solution either being produced very quickly

(in the first cycle), or not at all.

4.3 Conclusions

As we have seen, the results of the comparison above reveal a complicated picture,

with different algorithms outperforming others on different occasions. This suggests

that the underlying structures of graphs are often critical in an algorithm’s resultant

performance. In terms of overall patterns we offer the following observations:

• Algorithms that rely solely on local search (in this case TABUCOL and PAR-

TIALCOL) often struggle with instances whose cost landscapes are “spiky”, com-

monly characterised by high coefficient of variations (CVs) in vertex degrees. On

the other hand, these methods do show more promise when the degree CV is quite

low, such as with random and flat graphs, suggesting that they have a natural ap-

titude for navigating spaces in which neighbouring solutions feature costs that

are often close or equal to that of the incumbent.

• One obvious advantage of the backtracking algorithm is its ability to produce

provably optimal solutions. This has occurred for a number of the real-world

problem instances considered in our trials, including some rather large instances;

however, predicting when this will happen seems difficult. For graphs that are

more “regular” in structure, such as the random and flat instances, the perfor-

mance of the backtracking algorithm is also significantly worse than that of the

other approaches.

• Across the trials, HEA has proved to be by far the most consistent of the six

approaches. We suggest this is due to a combination of the following attributes:

– The HEA operates in the space of infeasible solutions. Unlike the HC algo-

rithm, which only permits changes to a solution that maintain feasibility, the

strategy of allowing infeasible solutions seems to offer higher levels of con-

nectivity (and thus less restriction of movement) within the solution space,

helping the algorithm to navigate its way towards high-quality solutions more

effectively.

– The HEA makes use of global as well as local search operators. On many

occasions TABUCOL performs poorly when used in isolation; however, the

HEA’s use of global search operators in conjunction with TABUCOL seems to

alleviate these problems by allowing the algorithm to regularly escape from

local optima.

– The HEA’s global search operators are robust. Unlike ANTCOL’s global

search operator, which sometimes hinders performance, the HEA’s use of re-

combination in conjunction with a small population of candidate solutions

seems beneficial across the instances. This is despite the fact that across all

of our tests, recombination was never seen to consume more than 2% of the
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available run time. Note in particular that the GPX operator does not consider

any problem-specific information in its operations (such as the connectivity

or degree of vertices), yet it still seems to strike a useful balance between (a)

altering the solution sufficiently, while (b) maintaining useful substructures

formed in earlier iterations of the algorithm.

One of our intentions in this comparison has been to test the robustness of our six

algorithms by executing them blindly on each problem instance. As we have seen,

this has involved using the same parameter values (or methods for calculating them)

across all trials. However, it should be noted that different settings may lead to better

results in some cases. A broader issue concerns how me might go about reliably pre-

dicting the performance of a particular graph colouring algorithm on a previously

unseen graph. Accurate predictions would obviously be useful here because, given a

particular graph, we would then be able to apply the most appropriate method from

the available portfolio of algorithms. Work in this area with this chapter’s six algo-

rithms has been carried out by Smith-Miles et al. (2014), who use machine learning

to classify the types of graph that the different algorithms are seen to perform well

with. This information is then used to help predict the best performing algorithm on

future unseen problem instances.

Finally, as with Chapter 2, this chapter’s comparison has been carried out using

a platform independent measure of computational effort. In terms of CPU time,

Table 4.6 shows the relative run times of the algorithms for a small sample of graphs.

Perhaps the most striking feature is that the HEA is among one of the quickest to

execute, a fact that further endorses the method. On the other hand, the ANTCOL

and the HC algorithms seem to require significantly more time, apparently due to

the computational overheads associated with their BUILDSOLUTION and Kempe

chain operators respectively.

n = 250 500 1000

TABUCOL 1346 1622 1250
PARTIALCOL 1435 1372 1356

HEA 1469 1400 1337

ANTCOL 4152 3840 4349
HC 5829 5473 5320

Bktr 6328 4794 3930

Table 4.6 Time (in seconds) to complete runs of 5× 1011 constraint checks with random graphs
Gn,0.5 using a 3.0 GHz Windows 7 PC with 3.87 GB RAM
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4.4 Further Improvements to the HEA

We now conclude this chapter by looking at some of the individual elements of the

HEA and proposing some ideas as to how its performance might be further improved

in some cases.

4.4.1 Maintaining Diversity

In general, an important factor behind the behaviour of an evolutionary algorithm

(EA) is the level of diversity that is maintained within its population during a run.

Typically, in early iterations of an EA the diversity of a population will be high, al-

lowing the algorithm to consider many different parts of the solution space. This is

often known as the “exploration” phase of the algorithm. As the population evolves

over time this diversity then generally falls as the algorithm “homes in” on promis-

ing regions of the solution space and seeks to search within these areas more thor-

oughly. This is often called the “exploitation” phase.

It is clear that when applying an EA to a computational problem, a suitable bal-

ance will need to be established between exploration and exploitation. A fall in

diversity that is too slow is undesirable because the algorithm will devote too much

energy into broadly scanning the whole solution space, as opposed to intensively

searching specific regions within it. On the other hand, a fall in diversity that is too

rapid can also be problematic because the EA will spend too much time focussing

on limited regions of the solution space. The latter issue is often called premature
convergence.

To examine the issue of diversity with the HEA for graph colouring, let us first

define a metric for measuring the distance between two candidate solutions.

Definition 4.1 Given a solution S , let PS = {{u,v} : u,v∈V ∧u �= v∧c(u) = c(v)}.
The distance between two solutions S1 and S2 can then be evaluated using the Jac-
card distance measure on the sets S1 and S2. That is:

D(S1,S2) =
|PS1

∪PS2
|− |PS1

∩PS2
|

|PS1
∪PS2

| . (4.8)

This distance measure gives the proportion of vertex pairs (assigned to the same

colour) that exist in just one of the two solutions. Consequently, if the solutions S1

and S2 are identical, then PS1
∪PS2

=PS1
∩PS2

, giving D(S1,S2) = 0. Conversely,

if no vertex pair is assigned the same colour, PS1
∩PS2

= /0, implying D(S1,S2)= 1.

Given this distance measure, we are also able to define a population diversity

metric. This is defined as the mean distance between each pair of solutions in the

population.

Definition 4.2 Given a population of solutions defined as a multiset S= {S1,S2, . . .,
S|S|}, the diversity of S is calculated:
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Diversity(S) =
1(|S|
2

) ∑
∀Si,S j∈S:i< j

D(Si,S j). (4.9)

When applying the HEA to the graphs considered in this chapter, we found that

satisfactory levels of diversity were maintained in most cases. However, for some

of the timetabling problem instances we also observed that large colour classes of

low-degree vertices are often formed in early stages of the algorithm, and that these

quickly come to dominate the population, causing premature convergence. Indeed,

as can be seen in Table 4.3, the HEA often produces inferior results with these

problems.

One method by which population diversity might be prolonged in EAs is to make

larger changes (mutations) to an offspring in order to increase its distance from its

parents. However, this must be used with care, particularly because changes that are

too large might significantly worsen a solution, undoing much of the work carried

out in previous iterations of the algorithm. For the HEA, one obvious way of mak-

ing more changes to a solution is to increase the iteration limit of the local search

procedure. However, although this might allow further improvements to be made to

a solution, it might also slow the algorithm unnecessarily.

An alternative method for maintaining diversity might be to alter the HEA’s re-

combination operator so that it works exclusively with proper colourings. As noted

in Section 4.1.3, the GPX operator considers candidate solutions in which clashes

are permitted; however, in practice this could allow large colour classes containing

clashes to be unduly promoted in the population, when perhaps the real empha-

sis should be on the promotion of large independent sets. Consequently, we might

refine the GPX operator by first removing all clashing vertices from each parent

before performing recombination. This implies that, before assigning missing ver-

tices to random colours, an offspring will always be proper. A further effect is that

a greater number of vertices will usually need to be recoloured because the vertices

originally removed from the parents may also be missing in the resultant offspring.

Hence the resultant offspring will tend to be less similar to its parents.

If the above option is chosen, then before randomly reassigning missing vertices

to colours, we also have the opportunity to alter the partial proper solution using

Kempe chain interchanges. Recall from Theorem 3.1 that this operator, when ap-

plied to a proper solution, does not introduce any clashes. Thus we are provided

with a mechanism by which we can make changes to a solution without compro-

mising its quality in any way.

To illustrate the potential effects of this latter scheme, Figure 4.11 shows the

levels of diversity that exist in the HEA’s population for the first 3,000 iterations

of a run using the timetabling graph car-s-91, which has a chromatic number of 28.

When using the original HEA, the population has converged at around 500 iterations

and, as we saw in Table 4.3, the algorithm produces solutions using more than 29

colours on average. On the other hand, by applying a series of random Kempe chain

moves (2k moves per iteration in this case), population diversity is maintained at a

much higher level. In our tests this modification enabled the algorithm to determine

optimal 28-colourings in all runs.
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Fig. 4.11 Population diversity using a population of size 10 with the timetabling problem instance

car-s-91, using k = 28

We should note that using Kempe chain interchanges in this way is not always

beneficial, however. For instance, similar tests to the above were also carried using

random and flat graphs. When using a suitably low value for k in these cases, we

found that the Kempe chain interchange operator was usually unable to alter the

underlying structures of solutions because its application nearly always resulted in

colour relabellings (or in other words, the bipartite graphs induced by each pair of

colour classes in these solutions were nearly always connected, giving total Kempe

chains). As an aside, it would be interesting to investigate whether this property in

a solution gives any clues as to how close it is to the optimal solution.

Note that within this book’s suite of graph colouring algorithms, the HEA con-

tains run-time options for outputting the population diversity and for applying

Kempe chain interchanges in the manner described above. (Refer to the algorithm

user guide in Appendix A.1 for further information.)

4.4.2 Recombination

Since the proposal of the GPX by Galinier and Hao (1999), further recombination

operators based on their scheme have also been suggested, differing primarily on

the criteria used for deciding which colour classes to copy to the offspring. Porum-

bel et al. (2010), for example, suggest that instead of choosing the largest available

colour class at each stage of the recombination process, classes with the least num-
ber of clashes should be prioritised, with class size and information regarding the

degrees of the vertices then being used to break ties. Lü and Hao (2010a), on the

other hand, have proposed extending the GPX operator to allow more than two par-

ents to play a part in producing a single offspring. In this multi-parent operator,

offspring are constructed in the same manner as the GPX, except that at each stage
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the largest colour class from multiple parents is chosen to be copied into the off-

spring. The intention behind this increased choice is that larger colour classes will

be identified, resulting in fewer uncoloured vertices once the k colour classes have

been constructed. In order to prohibit too many colours being inherited from one

particular parent, the authors make use of a parameter q, specifying that if the ith
colour class in an offspring is copied from a particular parent, then this parent should

not be considered for a further q colours. Note that GPX is simply an application of

this operator using two parents with q = 1.

Another method of recombination with the graph colouring problem involves

considering the individual assignments of vertices to colours as opposed to their par-

titions. Here, a natural way of representing a solution is to use a vector (c(v1),c(v2),
. . . ,c(vn)), where c(vi) gives the colour of vertex vi. However, it has long been

argued that this sort of approach has disadvantages, not least because it leads to a

solution space that is far larger than it needs to be, since any solution using k colours

can be represented in k! ways (refer to Section 1.4.1). Furthermore, authors such as

Falkenauer (1998) and Coll et al. (1995) have also argued that “traditional” recom-

bination schemes such as 1-, 2-, and n-point crossover with this representation have

a tendency to recklessly break up building blocks that we might want promoted in a

population.

 1 2 3 4 5
1  0 0 2 0 0
2 0 0 0 2 0
3 2 0 0 0 0
4 0 2 0 1 0
5 0 0 0 0 1

Parent 1 

(1, 4, 3, 4, 3, 5, 2, 2, 4, 1) 
 

Partition S1 

S1,1 = {v1, v10} 
S1,2 = {v7, v8} 
S1,3 = {v3, v5} 
S1,4 = {v2, v4, v9} 
S1,5 = {v6} 

Parent 2 

(3, 2, 1, 2, 1, 5, 4, 4, 4, 3) 
 

Partition S2 
S2,1 = {v3, v5} 
S2,2 = {v2, v4} 
S2,3 = {v1, v10} 
S2,4 = {v7, v8, v9} 
S2,5 = {v6} 

Wi,j = |S1i ∩ S2j | 

Parent 2 relabelled 
(1, 4, 3, 4, 3, 5, 2, 2, 2, 1) 

Fig. 4.12 Example of the relabelling procedure proposed by Coll et al. (1995). Here, parent 2 is

relabelled 1 → 3, 2 → 4, 3 → 1, 4 → 2, and 5 → 5

In recognition of the perceived disadvantages of the assignment-based represen-

tation, Coll et al. (1995) have proposed a procedure for relabelling the colours of

one of the parents before applying one of these “traditional” crossover operators.

Consider two (not necessarily feasible) parent solutions represented as partitions:

S1 = {S1,1, . . . ,S1,k} and S2 = {S2,1, . . . ,S2,k}. Now, using S1 and S2, a complete

bipartite graph Kk,k is formed. This bipartite graph has k vertices in each parti-

tion, and the weights between two vertices from different partitions is defined as

Wi, j = |S1,i ∩ S2, j|. Given Kk,k, a maximum weighted matching can then be deter-

mined using any suitable algorithm (such as the Hungarian algorithm (Munkres,

1957) or Auction algorithm (Bertsekas, 1992)), and this matching can be used to

relabel the colours in one of the parents. Figure 4.12 gives an example of this pro-

cedure and shows how the second parent can be altered so that its colour labellings

maximally match those of the first parent. In this example we see that the colour
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classes {v1,v10}, {v3,v5}, and {v6} occur in both parents and will be preserved in

any offspring produced via a traditional operator such as uniform crossover. How-

ever, this will not always be the case and will depend very much on the best matching

available in each case.

An interesting point regarding the structure of solutions and the resultant effects

of recombination has also been raised by Porumbel et al. (2010). Specifically, they

propose that when solutions involve a small number of large colour classes (such

as solutions to sparse graphs), good quality solutions will tend to occur through

the identification of large independent sets, perhaps suggesting that the GPX and

its multi-parent variant are naturally suited in these cases. On the other hand, if a

solution involves many small colour classes, quality seems to be determined more

through the identification of good combinations of independent sets.

Parent S1 

S1,1 = {v1, v10} 
S1,2 = {v7, v8} 
S1,3 = {v3, v5} 
S1,4 = {v2, v4, v9} 
S1,5 = {v6} 

Parent S2 
S2,1 = {v1, v9} 
S2,2 = {v7} 
S2,3 = {v3, v5} 
S2,4 = {v2, v4, v8} 
S2,5 = {v6, v10} 

Offspring S’ 
S’1 = {v1, v10} 
S’2 = {v7, v8} 
S’3 = {v3, v5} 
S’4 = {v2, v4, v8} 
S’5 = {v6}   Uncoloured = {v9} 

Fig. 4.13 Demonstration of the GGA recombination operator. Here, the colour classes in parent 2

have been labelled to maximally match those of parent 1

To these ends a further recombination operator for graph colouring is also pro-

posed by Lewis (2015) which, unlike GPX, shows no bias towards offspring inher-

iting larger colour classes, or towards offspring inheriting half of its colour classes

from each parent. An example of this operator is given in Figure 4.13. Given two

parents, the colour classes in the second parent are first relabelled using Coll et al.’s

procedure from above. Using the partition-based representations of these solutions,

a subset of colour classes from the second parent is then selected randomly, and

these replace the corresponding colours in a copy of the first parent. Duplicate ver-

tices are then removed from colour classes originating from the first parent, and any

uncoloured vertices are assigned to random colour classes. Tests by Lewis (2015)

indicate that this recombination operator can produce marginally better solutions

than the GPX operator when colour classes are small (approximately five vertices

per colour), though worse results are also seen to occur in other cases.

Note that the recombination operators listed in this subsection are also included

as run-time options within this book’s suite of graph colouring algorithms (see Ap-

pendix A.1).

4.4.3 Local Search

Finally, from the analyses in this chapter it is apparent that graph colouring algo-

rithms such as the HEA usually benefit when used in conjunction with an appro-
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priate local search procedure. For algorithms operating in the space of complete

improper solutions, this has often been provided by the TABUCOL algorithm. The

tabu search metaheuristic seems to be very suitable for this purpose because, by ex-

tending the steepest descent algorithm, it allows rapid improvements to be made to

a solution.
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Fig. 4.14 Example run profiles of TABUCOL and an analogous SA algorithm using a random graph

G1000,0.5 with k = 86. Here the SA algorithm uses an initial value for t = 0.7, with z = 500,000

To contrast this, consider the rates of improvement achieved by an analogous

simulated annealing algorithm that uses the same neighbourhood operator as TABU-

COL but which follows the pseudocode given in Figure 3.5. For this algorithm,

values need to be determined for the initial temperature t, the cooling rate α , and

the frequency of temperature updates z. Figure 4.14 compares the run profile of

TABUCOL to this simulated annealing algorithm on an example random graph. It

can be seen that TABUCOL quickly reduces the objective function (Equation (4.1)),

while the SA approach takes much longer. In addition, the SA algorithm seems quite

sensitive to adjustments in its parameters, with inappropriate values potentially hin-

dering performance. On the other hand, it is well known that when the temperature

is reduced more slowly, runs of SA tend to produce better quality solutions (van

Laarhoven and Aarts, 1987). Hence, with extended run times SA may have the po-

tential to produce superior solutions to TABUCOL in some cases.



Chapter 5
Applications and Extensions

We are now at a point in this book where we have seen a number of different al-

gorithms for the graph colouring problem and have noted many of their relative

strengths and weaknesses. In this chapter we now present a range of problems, both

This chapter also considers a variant of the graph colouring problem where not all

of the graph is visible to an algorithm, or where the graph is subject to change over

time. Such problems can arise when setting up wireless ad hoc networks and also

in some timetabling applications. We then go on to consider problems that extend
and therefore generalise the graph colouring problem, specifically list colouring,

equitable colouring and weighted graph colouring. Detailed real-world applications

of graph colouring are also the subject of Chapters 6, 7 and 8.

Note that, in contrast to the rest of this book, the first two sections of this chapter

are concerned with colouring the faces of graphs and the edges of graphs as opposed

to the vertices. As we will see, the latter two problems can be converted into equiva-

lent formulations of the vertex colouring problem using the concepts of dual graphs
and line graphs respectively. However, it is often useful for face and edge colouring

problems to be considered as separate problems; hence we will often use the term

“vertex colouring” instead of “graph colouring” to avoid any ambiguities.

5.1 Face Colouring

In the face colouring problem we want to colour the spaces between vertices and

edges, as opposed to the vertices themselves. Face colouring is specifically con-

cerned with planar graphs which, as we saw in Chapter 1, are graphs that can be
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theoretical- and practical-based, for which such algorithms might be applied includ-

ing face colouring, edge colouring, pre-colouring, solving Latin squares and sudoku

puzzles and testing for short circuits on printed circuit boards. Note that these prob-

lems actually represent special cases of the general graph colouring problem in that

their underlying graphs conform to specific topologies, as we shall see.
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drawn on a plane so that no edges cross one another. When drawn in this way pla-

nar graphs can be divided into faces, including one unbounded face that surrounds

the graph. Figure 5.1, for example, shows a planar graph comprising ten faces: nine

bounded faces and one unbounded face (numbered 10 in the figure). The boundary
of a face is the set of edges that surrounds it and, when the face is bounded, these

edges form a cycle.

It is evident by inspecting Figure 5.1 that the number of faces seems to be re-

lated to the number of vertices and edges of the graph. In fact, this relationship can

be stated explicitly due to an elegant theorem that was first noted in the 1700s by

mathematician Leonhard Euler (1707–1783):

1 3 

2 4 

5 
6 

7 
9 

8 
10 

Fig. 5.1 Planar graph with n = 15 vertices, m = 23 edges and f = 10 faces

Theorem 5.1 (Euler’s characteristic) Let G be a planar graph with n vertices, m
edges, and f faces. Then

n−m+ f = 2

Proof. The proof is via induction on the number of faces f . If f = 1, then the graph

contains no cycles and must therefore be a tree. Since the number of edges in a tree

m = n−1, the theorem holds because n− (n−1)+1 = 2.

Now assume f ≥ 2, meaning that G must now contain at least one cycle. Let

{u,v} be an edge in one of these cycles. Since this cycle divides two faces, say F1

and F2, removing {u,v} from G to form a subgraph G′ will have the effect of joining

F1 and F2 with all other faces remaining unchanged. Hence G′ has f −1 faces.

Let n′, m′, and f ′ be the number of vertices, edges, and faces in G′. Thus, n′ = n,

m′ = m−1, f ′ = f −1, and n−m+ f = n′ −m′+ f ′ = 2. ��
We see that Euler’s characteristic does indeed hold for the example graph in

Figure 5.1 since n−m+ f = 15−23+10 = 2 as required.

When considering the face colouring problem it is necessary to restrict ourselves

to planar graphs that contain no bridges. A bridge is defined as an edge in a graph

G whose removal increases the number of components. When a graph contains a

bridge {u,v}, the unbounded face will surround the graph, but will also feature

{u,v} on its boundary twice, making it impossible to colour. Hence planar graphs

containing bridges are not considered further in this section.

Let us now consider the maximum number of edges that a graph can feature

while retaining the property of planarity. Consider a connected planar graph G with

n vertices, m edges, and f faces. Also write fi for the number of faces in G that are

surrounded by exactly i edges in their boundaries. Clearly ∑i fi = f and, assuming

that G does not contain a bridge,
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∑
i
= i fi = 2m (5.1)

since every edge is on the boundary of exactly two faces. We can use this rela-

tionship in conjunction with Euler’s characteristic to give an upper bound on the

number of edges in a planar graph. This result also involves knowledge of the girth
of a graph, defined as follows.

Definition 5.1 The girth of a graph G is the length of the shortest cycle in G. If G
is acyclic (i.e., contains no cycles), then its girth equals infinity.

Theorem 5.2 Let G be a planar graph with n ≥ 3 vertices, m edges, f faces and
no bridges. Then G has at most 3n− 6 edges. Furthermore, if G has a girth g (for
3 ≤ g ≤ ∞), then:

m ≤ max

{
g

g−2
(n−2),n−1

}

Proof. For g = 3, we get max{ 3
3−2 (n−2),n−1}= 3(n−2), giving m ≤ 3n−6 as

required. Hence we only need to prove the second assertion above.

If g > n, then this implies g = ∞ meaning that G has no cycles and is therefore

a tree. Hence, m = (n−1)≤ n. Now assume that g ≤ n and that the assertion holds

for smaller n’s. Also assume without loss of generality that G is connected. From

earlier we know that:

2m = ∑
i

i fi = ∑
i≥g

i fi ≥ g∑
i

fi = g f .

Hence by Euler’s characteristic (Theorem 5.1), we get:

m+2 = n+ f ≤ n+
2

g
m

and so

m ≤ g
g−2

(n−2)

as required. ��

Theorem 5.2 can often be used to decide whether a graph is planar or not. For

example, the complete graph with five vertices K5 cannot possibly be planar because

it has n = 5 vertices and m = 10 edges, meaning m ≤ 3n−6 is not satisfied. As an-

other example, the complete bipartite graph with six vertices G = (V1,V2,E), where

E = {{v,u} : v ∈ V1,u ∈ V2} and |V1| = |V2| = 3, is also not bipartite since it has

m = 9 edges, n = 6 vertices, and a girth of 4, meaning that m = 9 > 4
4−2 (6−2) = 8.

Less obvious, but profoundly more useful, however, is the amazing fact that a graph

is planar if and only if it does not contain a subgraph that is a subdivision of ei-

ther of these two examples. This result, due to Kuratowski (1930), has been used

alongside similar results to help construct a number of efficient (polynomial-time)
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algorithms for determining whether a graph is planar or not, including the Path Ad-

dition method of Hopcroft and Tarjan (1974) and the more recent Edge Addition

method of Boyer (2004).

5.1.1 Dual Graphs, Colouring Maps, and the Four Colour
Theorem

The close relationship between the problems of vertex colouring and face colouring

becomes apparent when we consider the concept of dual graphs. Given a planar

graph G, the dual of G, denoted by G∗, is constructed according to the following

steps. First, draw a single vertex v∗i inside each face Fi of G. Second, for each edge

e in G, draw a line e∗ that crosses e but no other edge in G, and that links the two

vertices in G∗ corresponding to the two faces in G that e is separating.

G G* 

Fig. 5.2 Illustration of how to convert a planar graph G to its dual G∗

This procedure is demonstrated in Figure 5.2. Here, the vertices in G are shown in

grey, and the vertices in G∗ are shown in black. G has six faces in total, five bounded

faces and one unbounded face. The unbounded face is represented by the top vertex

of G∗ in the example and is made adjacent to all vertices in G∗ whose corresponding

faces in G have an edge on the exterior of the graph. Note that G∗ may also have

multiple edges between a pair of vertices, as is occurring on the right-hand side of

the example graph.

It is clear from the figure that the process of forming duals is reversible: that is,

we can use the same process to form G from G∗. It is also clear that because G is

planar, its dual G∗ must also be planar. We are also able to state simple relationships

between the number of vertices, faces and edges in G and G∗ such as the following:

Theorem 5.3 Let G be a connected planar graph with n vertices, m edges, and f
faces. Also, let G∗ be the dual of G, comprising n∗ vertices, m∗ edges, and f ∗ faces.
Then n∗ = f , m∗ = m and f ∗ = n.

Proof. It is clear that n∗ = f due to the method by which duals are constructed.

Similarly m∗ = m because all edges in G∗ intersect exactly one edge each in G (and

vice versa). The third relation follows by substituting the previous two relationships

into Euler’s characteristic applied to both G and G∗. ��
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Recall from Chapter 1 that the Four Colour Theorem (or “conjecture” as it was

at the time) was originally stated in 1852 by Francis Guthrie, who hypothesised

that four colours are sufficient for colouring the faces of any map such that neigh-

bouring faces have different colours. In the context of graph theory, a map can be

Fig. 5.3 The territories of mainland Australia (left), and the corresponding planar graph (right)

represented by a bridge-free planar graph G, with the faces of G representing the

various regions of the map, edges representing borders between regions, and ver-

tices representing points where the borders intersect. An illustration using a map of

Australia (excluding the Australian Capital Territory) is given in Figure 5.3.

The following theorem now reveals the close relationship between the vertex

colouring and face colouring problems:

Theorem 5.4 Let G be a connected planar graph without loops, and let G∗ be its
dual. Then the vertices of G are k-colourable if and only if the faces of G∗ are
k-colourable.

Proof. Since G is connected, planar, and without loops, its dual G∗ is a planar graph

with no bridges. If we have a k-colouring of the vertices of G, then each face of G∗

can now be assigned to the same colour as its corresponding vertex in G. Because

no adjacent vertices in G have the same colour, it follows that no adjacent faces in

G∗ will have the same colour. Thus the faces of G∗ are k-colourable.

Now suppose that we have a k-colouring of the faces of G∗. Since every vertex

of G is contained in a face of G∗, each vertex in G can assume the colour of its

corresponding face in G∗. Again, since no adjacent faces in G∗ are allocated the

same colour, this implies no adjacent vertices in G are given the same colour. ��

This result is important because it tells us that the faces of any map, represented

as a planar graph G∗ with no bridges, can be k-coloured by simply determining

a vertex k-colouring of its dual graph G. The result also tells us that we can take

any theorem concerning the vertex colouring of a planar graph and then state a

corresponding theorem on the face colouring of its dual, and vice versa. One elegant

theorem that arises from this characteristic demonstrates a link between a special

type of topology known as Eulerian graphs and graphs that are bipartite.

Definition 5.2 A graph G is Eulerian if and only if the degree of all vertices in G
are even.
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This gives rise to the following theorem:

Theorem 5.5 The faces of a planar graph with no bridges G are 2-colourable if
and only if G is Eulerian.

Proof. Recall that a graph’s vertices are 2-colourable if and only if it is bipartite.

Hence we need to show that the dual of any planar Eulerian graph is bipartite, and

vice versa.

Let G be an Eulerian planar graph. By definition, all vertices in G are even in

degree. Since the degree of a vertex in G corresponds to the number of edges sur-

rounding a face in the dual G∗, the edges surrounding each face in G∗ constitute

cycles of even length. Hence according to Theorem 2.8, G∗ is bipartite.

Conversely, let G∗ be bipartite. This means G∗ contains no odd cycles and, since

G is planar, all faces are surrounded by an even number of edges. Hence all vertex

degrees in G are even, making G Eulerian. ��

(a) (b) (c) 

Fig. 5.4 Examples of face colourings using two colours

Practical examples of Theorem 5.5 arise in the tiling industry where we are often

interested in laying tiles of two different colours such that adjacent tiles do not

have the same colour. Two example patterns are shown in Figure 5.4(a) and (b).

Close examination of these patterns reveals the underlying graphs to be Eulerian as

expected. Another example arises in the childhood doodling game in which a single

connected line is drawn on a piece of paper, with the faces then being coloured

using just two colours. Figure 5.4(c) shows an example of this game. We see that

each time the line crosses itself, the degree of the vertex existing at this intersection

increases by 2; hence vertex degrees are always even as expected.

The connection between face k-colourings of maps and vertex k-colourings of

their planar duals allows us to conclude that the Four Colour Theorem for maps

is equivalent to the statement that the vertices of all loop-free planar graphs are 4-

colourable.1 This concept was hinted upon in Section 1.2 where, in Figure 1.7, we

took a map of Wales, constructed its (planar) dual graph, 4-coloured its vertices, and

then converted this solution back into a 4-colouring of the faces of original map. The

task of proving that four colours are sufficient for the vertices of any planar graph

(and therefore the faces of any map) was formally one of the most famous unsolved

problems in the whole of mathematics. It was eventually solved in controversial

circumstances by Kenneth Appel and Wolfgang Haken in 1976. Their proof is both

1 Recall that loops (i.e., edges of the form {vi,vi}) are disallowed in the vertex colouring problem.
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very long and involved using months of computation time to test and classify a

large number of different graph configurations. Consequently, we end this section

by restricting ourselves to proving the weaker Six and Five Colour Theorems, before

giving a general history of the Four Colour Theorem itself.

Theorem 5.6 The vertices of any loop-free planar graph are 6-colourable.

Proof. Let G be a planar graph with n ≥ 3. According to Theorem 5.2, G has at

most 3n−6 edges. This means that the minimal degree of G cannot exceed 5. Thus

in every subgraph G′ of G there is a vertex with degree of at most δ = 5. Therefore,

according to Theorem 2.6, we get χ(G)≤ 5+1. ��
With some additional reasoning we can improve this result to get the following:

Theorem 5.7 (Heawood (1890)) The vertices of any loop-free planar graph are 5-
colourable.

Proof. For contradictory purposes, suppose this statement to be false, and let G be a

planar graph with chromatic number χ(G) = 6 and a minimal number of vertices n.

Because of Theorem 5.2, G must have a vertex v with deg(v)≤ 5. Let G′ = G−{v}.

We know that G′ can be 5-coloured using, say, colours labelled 1 to 5. Each of

these colours must also be used to colour at least one neighbour of v; otherwise

G would also be 5-colourable. We can now assume that v has five neighbours, say

u1,u2, . . . ,u5, arranged in a clockwise fashion around v, with colours c(ui) = i.
Now denote by G′(i, j) the subgraph of G′ spanned by vertices with colours i and

j. Suppose that u1 and u3 belong to separate components of G′(1,3). Interchanging

the colours 1 and 3 in the component of G′(1,3) containing u1 will give us another

feasible 5-colouring of G′. However, in this 5-colouring, both u1 and u3 will have

the same colour, meaning that a spare colour now exists for v. This implies that G is

in fact 5-colourable.

Since u1 and u3 must belong to the same component G′(1,3), we now deduce

the existence of a path P1,3 in G′ whose vertices are coloured using colours 1 and

3 only. Similarly, G′ must also contain a path P2,4 using colours 2 and 4. However,

this is impossible in a planar graph since the cycle u1,P1,3,u3 separates u2 from u4,

meaning that P2,4 cannot be drawn without edges crossing (see Figure 5.5). Hence

G cannot be planar. ��
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Fig. 5.5 Depicting paths P1,3 and P2,4 used in the proof of Theorem 5.7. Colour labels are written
inside the vertices
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5.1.2 Four Colours Suffice

In the proof of Theorem 5.7 we make use of the notation G(i, j), which denotes

the subgraph induced by taking only those vertices coloured with colours i and j
in G. Note that individual components of G(i, j) are actually Kempe chains (see

Definition (3.1)). These are named after the mathematician Alfred Kempe (1849–

1922), who used them in his infamous false proof for the Four Colour Theorem in

1879.

As we saw in Chapter 1, the conjecture that all maps can be coloured using at

most four colours was first pointed out in 1852 by Francis Guthrie (1831–1899),

who, at the time, was a student at University College London. Guthrie passed these

observations on to his brother Frederick who, in turn, passed them on to his mathe-

matics tutor Augustus De Morgan (1807–1871). De Morgan was not able to provide

a conclusive proof for this conjecture, but the problem, being both easy to state

and tantalisingly difficult to solve, captured the interest of many of the most no-

table mathematicians of the era, including William Hamilton (1805–1865), Arthur

Cayley (1821–1895) and Charles Pierce (1839–1914). Indeed, over time the Four

Colour Conjecture was to become one of the most famous unsolved problems in all

of mathematics.

In 1879 a student of Arthur Cayley, Alfred Kempe, announced in Nature maga-

zine that he had proved the Four Colour Theorem, publishing his result in the Amer-
ican Journal of Mathematics (Kempe, 1879). In his arguments, Kempe made use

of his eponymous Kempe chains in the following way. Suppose we have a map in

which all faces except one are coloured using colours 1, 2, 3, or 4. If the uncoloured

face, which we shall call F , is not surrounded by faces featuring all four colours,

then obviously we can colour F using the missing colour. Therefore, suppose now

that F is surrounded by faces F1, F2, F3, and F4 (in that order), which are coloured

using colours 1, 2, 3, and 4 respectively. There are now two cases to consider:

Case 1: There exists no chain of adjacent faces from F1 to F3 that are alternately

coloured with colours 1 and 3.

Case 2: There is a chain of adjacent faces from F1 to F3 that are alternately

coloured with colours 1 and 3.

If Case 1 holds then F1 can be switched to colour 3, and any remaining faces in the

chain can also have their colours interchanged. This operation retains the feasibility

of the solution (no adjacent faces will have the same colour) and also means that

no face adjacent to F will have colour 1. Consequently F can be assigned to this

colour.

If Case 2 holds then there cannot exist a chain of faces from F2 to F4 using only

colours 2 and 4. This is because, for such a chain to exist, it would need to cross the

chain from F1 to F3, which is impossible on a map. Thus, Case 1 holds for F2 and

F4, allowing us to switch colours as with Case 1.

The arguments of Kempe were widely accepted among mathematicians of the

day; he was promptly elected a Fellow of the Royal Society and also went on to be

knighted in 1912. The Four Colour Conjecture was now the Four Colour Theorem.



5.1 Face Colouring 119

This all changed 11 years later when, in 1890, English mathematician Percy Hea-

wood (1861–1955) shocked the mathematics fraternity by publishing an example

map which exposed a flaw in Kempe’s arguments (Heawood, 1890). Though he

failed to supply his own proof, Heawood had shown that the Four Colour Theorem

was indeed still a conjecture. In the same publication Heawood did show, however,

that arguments analogous to Kempe’s could be used to prove that all maps are 5-

colourable, as we saw in Theorem (5.7). In later work, Heawood also proved that if

the number of edges around each region of a map is divisible by 3 then the map can

be 4-coloured.

As the decades passed, the problem that had first been pointed out by Guthrie

in 1852 still remained unproven. Some piecemeal progress towards a solution was

made with one proof showing that four colours were sufficient for colouring maps

of up to 27 faces. This was followed by proofs for up to 31 faces, and then 35 faces.

However, it would turn out that methods used by Kempe and his contemporaries in

early papers would ultimately pave the way forward.

To start, the focus of research turned towards writing proofs concerning the ver-

tices of loop-free planar graphs (i.e., the dual graphs of maps). In the first half of

the twentieth century, researchers also concentrated their efforts on reducing these

graphs to special cases that could be identified and classified. The idea was to pro-

duce a minimal set of configurations that could each be tested. Initially, this set was

thought to contain nearly 9,000 members, which was considered far too large for

mathematicians to study individually. This compelled some to turn towards using

computers in order to design specialised algorithms for testing them.

Ultimately, the first conclusive proof of the Four Colour Theorem was produced

in 1976 by mathematicians Kenneth Appel (1932-2013) and Wolfgang Haken (b.

1928), who showed that no configuration can exist that will appear in a minimal

counterexample to the Four Colour Theorem (Appel and Haken, 1977a,b,c). In re-

search carried out at the University of Illinois, together they reduced the set of con-

figurations to just 1,936 members, which were then individually checked by com-

puter. As was later stated in Appel’s obituary in The Economist on May 4th, 2013:

Both he and Dr Haken hugely exceeded their time allocation on the computer, which be-

longed to the university administration department. . . . Their proof depended on both hand-
checking by family members and then brute-force computer power; the result was published

in over 140 pages in the Illinois Journal of Mathematics and 400 pages of further diagrams

on microfiche. They also, in the old fashioned way, chalked the message on a blackboard in
the mathematics department: FOUR COLOURS SUFFICE.

At the time, this proof was controversial, with some mathematicians publicly

questioning the legitimacy of a proof in which much of the work had been carried

out by computer. (How might we guarantee the reliability of the algorithms and

hardware?) However, despite these worries independent verification soon convinced

the majority that the Four Colour Theorem had indeed finally been proved. Hence

we are now able to state:

Theorem 5.8 (The Four Colour Theorem) The vertices of any loop-free planar
graph are 4-colourable. Equivalently, the faces of any map are 4-colourable.



120 5 Applications and Extensions

In recent years, refinements to Haken and Appel’s proof have been made, with

Robertson et al. (1997) showing that, through various acts of trickery, only 633

configurations need to be considered. (A short summary of this proof, together with

a description of a polynomial-time algorithm for 4-colouring planar graphs, can

be found at http://people.math.gatech.edu/∼thomas/FC/fourcolor.html.) However, a

proof along more “traditional” lines still remains elusive and, to this day, the Four

Colour Theorem remains an excellent example, along with Fermat’s Last Theorem,

of a problem that is very easy to state, but exceptionally difficult to prove.

Readers interested in finding out more about the fascinating history of the Four

Colour Theorem are invited to consult the very accessible book Four Colors Suffice:
How the Map Problem Was Solved by Wilson (2003).

5.2 Edge Colouring

Another way in which graphs might be coloured is by assigning colours to their

edges, as opposed to their vertices or faces. This gives rise to the edge colouring
problem where we seek to colour all edges of a graph so that no pair of edges

sharing a common vertex (incident edges) have the same colour, and so that the

number of colours used is minimal. The edge colouring problem has applications in

scheduling round robin tournaments and also transferring files in computer networks

(de Werra, 1988; Coffman et al., 1985). The minimum number of colours needed to

edge colour a graph G is called the chromatic index, denoted by χ ′(G). This should

not be confused with the chromatic number χ(G), which is the minimum number

of colours needed to vertex colour a graph G.

As mentioned earlier, the edge colouring and vertex colouring problems are very

closely related because we are able to edge colour any graph by simply vertex

colouring its corresponding line graph.

Definition 5.3 Given a graph G, the line graph of G, denoted by L(G), is con-
structed by using each edge in G as a vertex in L(G), and then connecting pairs
of vertices in L(G) if and only if the corresponding edges in G share a common
vertex as an endpoint.

An example conversion between a graph G and its line graph L(G) is shown in

Figure 5.6(a). From this process, it is natural that the number of vertices and edges

in L(G) is related to the number of vertices and edges in G.

Theorem 5.9 Let G = (V,E) be a graph with n vertices and m edges. Then its line
graph L(G) has m vertices and

1

2
∑
v∈V

deg(v)2 −m

edges.
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Fig. 5.6 Illustration of (a) how to convert a graph G into its line graph L(G), and (b) how a vertex

k-colouring of L(G) corresponds to an edge k-colouring of G

Proof. Since each edge in G corresponds to a vertex in L(G) it is obvious that L(G)
has m vertices. Now let {u,v} be an edge in G. This means that {u,v} is a vertex in

L(G) with degree deg(u)+deg(v)−2. Hence the total number of edges in L(G) is:

1

2
∑

{u,v}∈E
(deg(u)+deg(v)−2) =

1

2
∑

{u,v}∈E
(deg(u)+deg(v))−m

Note that the degree of each vertex v appears exactly deg(v) times in this sum.

Hence, we can simplify the expression to that stated in Theorem 5.9 as required.

��

Figure 5.6(b) also demonstrates the way in which a vertex k-colouring of the line

graph L(G) corresponds to an edge colouring of G. Consequently, rather like the

way in which a face colouring problem can be solved by vertex colouring a graph’s

dual, any edge colouring problem stated on a graph G can be tackled by applying a

vertex colouring algorithm to its line graph L(G).
We now discuss some important results concerning the chromatic index of a

graph.

Theorem 5.10 Let Kn be the complete graph with n > 1 vertices. Then χ ′(Kn) =
n−1 if n is even; else χ ′(Kn) = n.

Proof. When n is odd, the edges of Kn can be coloured using n colours by the fol-

lowing process. First, draw the vertices of Kn in the form of a regular n-sided poly-

gon. Next, select an arbitrary edge on the boundary of this polygon and colour it,

together with all edges parallel to it, using colour 1. Now moving in a clockwise di-

rection, select the next edge on the boundary and colour it, together with its parallel

edges, with colour 2. Continue this process until all edges have been coloured.

It is easy to demonstrate that the edges of Kn are not (n−1)-colourable by the fact

that the largest number of edges that can be assigned the same colour is (n−1)/2;
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it then follows, because the number of edges in Kn is
n(n−1)

2 , that n colours are

required.

When n is even, a similar process can be followed, where a regular (n−1)-sided

polygon is constructed, with the remaining vertex being placed in the centre. The

same method for the (n−1) case is then followed, with edges perpendicular to the

edges currently being coloured also being assigned to the same colour. As in the

previous case it is easily shown that no feasible edge colouring of Kn exists using

fewer than n colours. ��
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Fig. 5.7 Illustrating how optimal edge colourings can be constructed for complete graphs with (a)

K5 and (b) K6 using the circle method

The method used in the proof of Theorem 5.10 is often referred to as the circle

(or polygon) method and was originally proposed by mathematician and Church

of England minister Thomas Kirkman (1806-1895) (Kirkman, 1847). An important

practical use of this method is for constructing round-robin sports leagues, where

we have a set of n teams that are required to play each other once across a sequence

of rounds. Figure 5.7 provides examples of this method for n = 5 and n = 6. Here,

the vertices can be thought of as “teams”, with edges representing “matches” be-

tween these teams. Each colour then represents a round in the schedule. Considering

Figure 5.7(a), where n = 5, the first round involves matches between team-v2 and

team-v5 and between team-v3 and team-v4, with team-v1 receiving a bye. The next

round then involves matches between team-v1 and team-v3 and between team-v4

and team-v5, with team-v2 receiving a bye, and so on. The pattern is similar when n
is even, as shown in Figure 5.7(b), except that no team receives a bye. Applications

of graph colouring to sports scheduling problems are considered in more detail in

Chapter 7.

A further result, due to König (1916), concerns the chromatic index of bipartite

graphs.

Theorem 5.11 (Konig’s Line Colouring Theorem) Let G = (V1,V2,E) be a bi-
partite graph with maximal degree Δ(G). Then χ ′(G) = Δ(G).
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Proof. The proof is via induction on the number of edges m in G. It is sufficient to

prove that if m− 1 edges have been coloured using at most Δ (G) colours, then the

remaining edge can be coloured using one of the Δ (G) available colours.

Suppose all edges except {u,v} have been coloured. Then there exists at least

one colour not incident to u, and one colour not incident to v. If the same colour is

not incident to both u and v, then edge {u,v} can be assigned to this colour. If this

is not the case, without loss of generality we can say that: (a) u ∈V1 is incident to a

grey edge, but not a black edge; and (b) v ∈V2 is incident to a black edge but not a

grey edge.

Now consider a grey-black Kempe chain starting from u (that is, a component of

G containing u that comprises only those vertices incident to a grey or black edge).

Travelling along this chain from u involves alternating between vertex sets V1 and

V2. However, we will never reach v because each time we arrive at a vertex in V2 we

do so via a grey edge, which v is not incident to.

Since v is not in the Kempe chain, we can now interchange the colours of the

edges in this chain without affecting v (or indeed any other vertices outside of the

chain). Hence the edge {u,v} can be coloured grey, completing the edge colouring.

��

The previous two theorems demonstrate that the edge colouring problem is solv-

able in polynomial time for both complete and bipartite graphs. We have also seen

that, for both topologies, their chromatic indices χ ′(G) are either Δ(G) or Δ (G)+1.

Somewhat surprisingly, it also turns that this feature applies to any graph G, as

proved by Vizing (1964).

Theorem 5.12 (Vizing’s Theorem) Let G be a simple graph with maximal degree
Δ(G); then Δ(G)≤ χ ′(G)≤ Δ(G)+1.

Proof. When Δ (G) edges are incident to a vertex, these edges all require a different

colour. Hence the lower bound is proved: Δ (G)≤ χ ′(G).
The upper bound can be proved via induction on the number of edges. Sup-

pose that, using Δ (G) + 1 colours, we have coloured all edges in G except for

the single edge {u,v0}. Since Δ(G) gives the maximal degree, at least one colour

will be unused at each of these two vertices. Now construct a series of edges,

{u,v0},{u,v1}, . . ., and a sequence of colours, c0,c1, . . ., as follows: Select a colour

ci that is an unused colour at vi. Now, let {u,vi+1} be an edge with colour ci. We

stop (with i = k) when either ck is an unused colour at u, or ck is already used on an

edge {u,v j<k}.

Case 1: If ck is an unused colour at u, then we can recolour {u,vi} with ci for

0 ≤ i ≤ k. We now need to simply recolour edges incident to u to complete the

proof.

Case 2: Otherwise, we recolour {u,vi} with ci for 0≤ i< j and remove the colour

from {u,v j}. Observe that ck (say, “grey”) is missing at both v j and vk. Now let

“black” be an used colour at u. If grey is unused at u then we can colour {u,v j}
grey. If black is unused at v j then we can colour {u,v j} black. However, if black

is unused at vk then we colour {u,vi} with ci for j ≤ i < k and colour {u,vk}
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black, because none of the edges {u,vi} for j ≤ i < k will be coloured grey or

black.

If neither case above holds, then we consider the subgraph of grey and black edges.

The components of this subgraph will be paths and/or cycles. The vertices u, vi,

and vk are the terminal vertices of paths; hence they cannot all belong to the same

component. In this case, select a component containing just one of these vertices

and interchange the colours of its edges. This means that one of the cases above

now applies. ��

In essence, Vizing’s theorem tells us that the set of all graphs can be partitioned

into two classes: “class one” graphs, for which χ ′(G) = Δ(G), and “class two”

graphs, where χ ′(G) = Δ(G) + 1. Holyer (1981) has shown that the problem of

testing whether a graph belongs to class one is NP-complete. However, a number of

polynomially bounded algorithms are available for colouring the edges of any graph

using exactly Δ(G)+ 1 colours, such as the O(nm) algorithm of Misra and Gries

(1992). The existence of such algorithms tells us that we can colour the edges of

any graph using a maximum of one extra colour beyond its chromatic index.

We might now ask whether the existence of such tight bounds for the edge colour-

ing problem helps us to garner further information about the vertex colouring prob-

lem. It is clear that if we were given the task of vertex colouring a line graph L(G),
one approach would be to convert L(G) into its “original” graph G, and then solve

the corresponding edge colouring problem on G. Since χ(L(G)) = χ ′(G), then ac-

cording to Vizing’s theorem this would immediately tell us that we need to use either

Δ(G) or Δ(G)+1 colours to feasibly colour the vertices of L(G). Indeed, if G were a

type two graph, then algorithms such as Mistra and Gries’s could be used to quickly

find the optimal edge colouring for G and therefore the optimal vertex colouring for

L(G). However, it should be remembered that this very attractive sounding proposal

is only applicable when we wish to colour the vertices of a line graph that therefore

has an “original” graph into which it can be converted. Unfortunately we cannot

convert all graphs into an “original” graph in this way.

5.3 Precolouring

In the precolouring problem we are given a graph G for which some subset of the

vertices V ′ ⊆ V has already been assigned to colours. Our task is to then colour the

remaining vertices in the set V −V ′ so that the resultant solution is feasible and uses

a minimal number of colours.

Applications of precolouring arise in register allocation problems (see Sec-

tion 1.1.4) where certain variables must be assigned to specific registers, perhaps

due to calling conventions or communication between modules. They also occur in

areas such as timetabling and sports scheduling where we might be given a problem

instance in which some of the events have been preassigned to particular timeslots.
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Precolouring problems can be easily converted into a standard graph colouring

problem using graph contraction operations.

Definition 5.4 The contraction of a pair of vertices vi,v j ∈V in a graph G produces
a new graph in which vi and v j are removed and replaced by a single vertex v
such that v is adjacent to the union of the neighbourhoods of vi and v j; that is,
Γ (v) = Γ (vi)∪Γ (v j).

The following steps can now be taken. Given a precolouring problem instance

defined on a graph G, let V ′(i) define the set of vertices precoloured with colour i.
Assuming there are k different colours used in the precolouring,

⋃k
i=1 V ′(i) =V ′ and

V ′(i)∩V ′( j) = /0, for 1 ≤ i �= j ≤ k. First, for each set V ′(i), merge all vertices into a

single vertex using a series of contraction operations. This has the effect of reducing

the number of precoloured vertices to k. Next, add edges between each pair of the k
contracted vertices to form a clique. Finally remove all colours from the vertices of

this graph, and apply any arbitrary graph colouring algorithm to produce a feasible

solution. A colouring of the original can then be obtained by simply reversing the

above process. An example is provided in Figure 5.8.

(a) (b) (c) (d) 

Fig. 5.8 How a precolouring problem (a), can be converted into a new graph via contraction oper-

ations on the precoloured vertices (b), then coloured (c), and then converted back into a solution to
the original problem (d)

5.4 Latin Squares and Sudoku Puzzles

Another prominent area of mathematics for which graph colouring techniques are

naturally suited is the field of Latin squares. Latin squares are l × l grids that are

filled with l different symbols, each occurring exactly once per row and once per

column. They were originally considered in detail by Leonhard Euler, who filled his

grids with symbols from the Latin alphabet, though nowadays it is common to use

the integers 1 through to l to fill the grids. Example Latin squares of different sizes

are shown in Figure 5.9.

Latin squares have practical applications in various different areas, including

scheduling and experimental design. For an application in scheduling, imagine that

we have two groups of l people and we want to schedule meetings between all pairs

of people belonging to different groups. Clearly in this case, l2 meetings will take

place in total and, since only l meetings can take place simultaneously, at least l
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Fig. 5.9 Example Latin squares for (a) l = 3, (b) l = 4, and (c) l = 5

timeslots will be needed. Latin squares give solutions to such problems that make

use of exactly l timeslots. To see this, let us name the members of team one as

r1,r2, . . . ,rl , which are represented by the rows in the grid, and the members of

team two c1,c2, . . . ,cl , represented by the columns. The characters within an l × l
Latin square then represent the various timeslots to which the meetings are assigned.

For example, the Latin square shown in Figure 5.9(a) schedules meetings between

r1 and c1, r2 and c2, and r3 and c3 into timeslot 1; meetings between r1 and c3, r2

and c1, and r3 and c2 into timeslot 2; and meetings between r1 and c2, r2 and c3, and

r3 and c1 into timeslot 3. Obviously, any l × l Latin square will provide a suitable

meeting schedule fitting these criteria.

For an example application of Latin squares in experimental design, imagine that

a medical trials centre wants to test the effects of l different drugs on a particular

illness. Suppose further that the trials are to take place over l weeks using l different

patients, with each patient receiving a single drug in each week. An l× l Latin square

can be used to allocate treatments in this case, with rows representing patients, and

columns representing weeks. This means that over the course of the l weeks each

patient receives each of the l drugs once, and in each week all of the l drugs are

tested. Looking at the 3× 3 Latin square from Figure 5.9(a), for example, we see

that Patients 1, 2, and 3 are administered Drugs 1, 2, and 3 (respectively) in Week

1; Drugs 3, 1, and 2 in Week 2; and Drugs 2, 3, and 1 in Week 3, as required.

Note that we are able to permute the rows and columns of a Latin square and

still retain the property of each character occurring exactly one per column and

once per row. It is therefore common to write Latin squares in their standardised
form, whereby the rows and columns are arranged so that the top row and leftmost

column of the grid have the characters in their natural order 1,2, . . . , l. The other

l!(l −1)!−1 Latin squares that can be formed by permuting the rows and columns

are then considered to be equivalent to this. The Latin square in Figure 5.9(b) is in

standardised form, while the one in Figure 5.9(a) is not. It is also known that as l is

increased, then so does the number of different l × l Latin squares. For l = 11 this

figure is approximately 5.36×1033, though for larger values of l these figures have

so far proved too large to compute.

Figure 5.10 shows how the production of a Latin square can be expressed as

a graph colouring problem. Here, as illustrated, the symbols used within the grid

represent the colours. Each cell of the grid is then associated with a vertex, and edges

are added between all pairs of vertices in the same row, and all pairs of vertices

in the same column. This results in a graph G = (V,E) with n = l2 vertices and
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v1 v2 v3 

v4 v5 v6 

v7 v8 v9 

1 3 2 

2 1 3 

3 2 1 

Colour 

2 
3 

1 

(a) (b) (c) 

Fig. 5.10 Showing the relationship between graph colouring and Latin squares. Part (a) associates

each grid cell with a vertex; (b) shows the corresponding graph together with a feasible colouring;
and (c) gives a valid Latin square corresponding to this colouring

m = l2(l−1) edges, for which deg(v) = 2(l−1) ∀v ∈V . We also see that the set of

vertices in each row forms a clique of size l, as do vertices in each column, implying

that solutions using fewer than l colours are not possible.

Note that it is simple to produce a Latin square in standardised form for any

value of l by simply using values (1,2, . . . , l) for the first row, (2,3, . . . , l,1) for the

second row, (3,4, . . . , l,1,2) for the third row, and so on (see for example the left

Latin square in Figure 5.9(c)). Hence graphs representing Latin squares are actu-

ally a particular topology for which the associated graph colouring problem can be

easily solved in polynomial time for any value of l, without a need for resorting to

heuristics or approximation algorithms. Graph colouring algorithms can, however,

be used for producing different Latin squares to this.

3 1 

3 

2 

(a) (b) (c) (d) 
3 1 2 

2 3 1 

1 2 3 

Colour 

2 
3 

1 

Fig. 5.11 A partial 3×3 Latin square with four filled-in cells (a); the corresponding precolouring

problem (b); the same graph with a contraction of two vertices, together with a feasible colouring

(c); and the corresponding Latin square solution (d)

Graph colouring algorithms arguably become more useful in this area when we

consider the partial Latin square problem. This is the problem of taking a partially

filled l × l grid and deciding whether or not it can be completed to form a Latin

square. This problem has been shown to be NP-complete by Colbourn (1984).

Figure 5.11 gives an example of how the partial Latin square problem can be

tackled using graph colouring principles. In essence it follows the same method as

the previous example given in Figure 5.10, except that extra edges can now also

be added between any pair of vertices predefined as having the same colour. Once

this has been done, the same steps as with the precolouring problem (Section 5.3)

can be followed, with contractions being used to make the graph smaller if desired.

An l-colouring of this graph then corresponds to a completed l × l Latin square. Of

course, depending on the values of the filled-in cells in the original problem, there

could be zero, one, or multiple feasible l-colourings available.
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5.4.1 Solving Sudoku Puzzles

The partial Latin square problem has become very popular in recent decades in the

form of Sudoku puzzles. In Sudoku we are given a partially filled Latin square and

the objective is to complete the remaining cells so that each column and row contains

the characters 1, . . . , l exactly once. In addition, Sudoku grids are also divided into

l “boxes” (usually marked by bold lines) which are also required to contain the

characters 1, . . . , l exactly once; thus Sudoku can be considered a special case of the

partial Latin square problem in which the constraint of appropriately filling out the

“boxes” must also be satisfied. An example 9×9 Sudoku puzzle and corresponding

solution is shown in Figure 5.12.

2 4 7 
6 

3 6 8 4 1 5 
4 3 1 5 
5 3 2 
7 9 6 
2 9 7 1 8 

4 9 3 
3 1 4 7 5 

1 2 4 9 5 7 3 8 6 
6 8 5 3 4 1 2 9 7 
7 9 3 6 8 2 4 1 5 
4 3 1 2 6 5 9 7 8 
5 6 8 4 7 9 1 3 2 
7 9 2 1 3 8 5 6 4 
2 5 9 7 1 6 8 4 3 
8 4 7 5 9 3 6 2 1 
3 1 6 8 2 4 7 5 9 

Fig. 5.12 A 9×9 Sudoku puzzle and corresponding solution

Because Sudoku is intended to be an enjoyable puzzle, problems posed in books

and newspapers will nearly always be logic solvable.

Definition 5.5 A Sudoku puzzle is logic solvable if and only if it features exactly
one solution, which is achievable via forward chaining logic only.

Puzzles that are not logic solvable require random choices to be made. In general

these should be avoided because players will have to go through the tedious process

of backtracking and reguessing if their original guesses turn out to be wrong.

As an example of how a player might deduce the contents of cells, consider the

puzzle given in Figure 5.12. Here, we see that the cell in the seventh row and sixth

column (shaded) must contain a 6, because all numbers 1 to 5 and 7 to 9 appear

either in the same column, the same row, or the same box as this cell. If the problem

instance is logic solvable (as indeed this one is), the filling in of this cell will present

further clues, allowing the user to eventually complete the puzzle.

A number of algorithms for solving Sudoku puzzles are available online, such

as those at www.sudokuwiki.org and www.sudoku-solutions.com. Such algorithms

typically mimic the logical processes that a human might follow, with popular de-

ductive techniques, such as the so-called X-wing and Swordfish rules, also being

commonplace. In other areas of Sudoku research, Russell and Jarvis (2005) have

shown that the number of essentially different Sudoku solutions (when symmetries

such as rotation, reflection, permutation and relabelling are taken into account) is

5,472,730,538 for the popular 9× 9 grids. McGuire et al. (2012) have also shown
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that 9× 9 Sudoku puzzles must contain at least 17 filled-in cells to be logic solv-

able (thus 9×9 puzzles with 16 or fewer filled-in cells will always admit more than

one solution). Similar results for larger grids are unknown, however. Herzberg and

Murty (2007) have also shown that at least l −1 of the l characters must be present

in the filled cells of a Sudoku puzzle for it to be logic solvable.

Despite the fact that Sudoku is a special case of the partial Latin squares prob-

lem, Yato and Seta (2003) have demonstrated that the problem of deciding whether

or not a Sudoku puzzle features a valid solution is still NP-complete. Graph colour-

ing algorithms can therefore be useful for solving instances of Sudoku, particularly

those that are not necessarily logic solvable.

Sudoku puzzles can be transformed into a corresponding graph colouring prob-

lem in the same fashion as partial Latin square problems (see Figure 5.11), with

additional edges also being imposed to enforce the extra constraint concerning the

“boxes” of the grid. We now present two sets of experiments that illustrate the capa-

bilities of the HEA and backtracking algorithms from Chapter 4 for solving Sudoku

puzzles. In the first set of experiments we focus on Sudoku problems that are not

necessarily logic solvable (random puzzles), while in the second set we focus on

9×9 grids that are logic solvable.

5.4.1.1 Solving Random Sudoku Puzzles

To generate problem instances that are not necessarily logic solvable, we can start by

taking a completed Sudoku solution of a given size. Such solutions can be obtained

from a variety of places such as the solution pages of a Sudoku book or newspaper,

or by simply executing a suitable graph colouring algorithm on a graph representing

a blank puzzle. In the next step of the procedure, this completed grid can then be

randomly shuffled using the following five operators:

• Transpose the grid;

• Permute columns of boxes within the grid;

• Permute rows of boxes within the grid;

• Permute columns of cells within columns of boxes; and

• Permute rows of cells within rows of boxes.

Note that all of these shuffle operators preserve the validity of a Sudoku solution.

Finally, a number of cells in the grid are made blank by going through each cell in

turn and deleting its contents with probability 1− p, where p is a parameter to be

defined by the user. This means that instances generated with a low value for p have

a lower proportion of filled-in cells.

Figure 5.13 illustrates the performance of the HEA and backtracking algorithms

on 9×9, 16×16 and 25×25 Sudoku grids respectively. In each case 100 instances

for each value of p have been generated and, as in Chapter 4, a computation limit

of 5× 1011 constraint checks is imposed. For each algorithm two statistics are dis-

played. The success rate (SR) indicates the percentage of runs for which the al-

gorithms have found a valid Sudoku solution (a feasible l-colouring) within the
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computation limit. The solution time then indicates the mean number of constraint

checks that it took to achieve these solutions. Note that only successful runs are

considered in the latter statistic.
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Fig. 5.13 Comparison of the HEA and backtracking algorithm’s performance with random Sudoku
instances of size 9×9, 16×16, and 25× 25 respectively. Note the different scales on the vertical

axes in each case
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Looking at the results for 9×9 Sudoku puzzles first, we see that both algorithms

feature a 100% success rate across all instances with only a very small proportion of

the computation limit being required.2 For 16× 16 puzzles, similar patterns occur

for the HEA, with all problem instances being solved, and no runs requiring more

than one second of computation time. On the other hand, the backtracking algorithm

features a dip in its success rate for values of p between 0.1 to 0.55, with a corre-

sponding increase in solution times. Finally, with the larger 25× 25 puzzles, this

pattern becomes even more apparent, with both algorithms featuring dips in their

success rates and subsequent increases in their solution times. However, these dips

are less pronounced with the HEA, indicating its superior performance overall.

The dips in the success rates of these algorithms are analogous to the phase tran-

sition regions we saw with the flat graphs in Section 4.2. When p is low, although

solution spaces will be larger, there will also tend to be many valid solutions within

these spaces. Consequently, an effective algorithm should be able to find one of

these within a reasonable amount of computation time, as is the case with the HEA.

For high vales for p meanwhile, although there will only be a very small number

of valid solutions (and perhaps only one), the solution space will be much smaller.

Additionally, solutions to these highly constrained instances will also tend to reside

at prominent optima (with a strong basin of attraction), thus also allowing easy dis-

covery by an effective algorithm. However, instances at the boundary of these two

extremes will cause greater difficulties. First, the solution spaces for these instances

will still be relatively large, but they will also tend to admit only a small number

of valid solutions. Second, because of their moderate number of constraints, the

cost landscapes will also tend to feature more plateaus and local optima, making

navigation towards a global optimum more difficult for the algorithm.

5.4.1.2 Logic Solvable Sudoku Puzzles

We now examine the performance of the HEA and backtracking algorithms on logic

solvable instances, allowing us to examine the effect that the size of the solution

space has on the difficulty of a puzzle when its solution is known to be unique. As

we have seen, it is known that a 9×9 Sudoku puzzle must contain at least 17 filled-

in cells to be logic solvable (McGuire et al., 2012). There is also an online resource

containing over 49,000 different instances of these 17-clue puzzles maintained by

Gordon Royle, available at:

staffhome.ecm.uwa.edu.au/∼00013890/sudokumin.php
For our tests we took a random sample of 100 of these 17-clue instances together

with their corresponding (unique) solutions. Logic solvable puzzles with more than

17 filled-in cells were then also generated for each of these by randomly selecting

an appropriate number of blank cells in the puzzles, and adding the corresponding

2 On our equipment (3.0 GHz Windows 7 PC with 3.87 GB RAM) the longest run in the entire set
took just 0.02 seconds.
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entries from their solutions. This operation maintains the uniqueness of each puz-

zle’s solution while reducing the size of its solution space. All other experimental

details remain the same as in the previous subsection.

Figure 5.14 shows the relative performance of the two graph colouring algo-

rithms. In all cases, valid solutions were found within the computation limit. When

the solution space size is relatively large (17-20 filled-in cells) we see that the HEA

requires up to 2.4×1010 constraint checks to find a solution.3 However, beyond this

point the puzzles are solved using very little computational effort—indeed, for more

than 35 filled-in cells, solutions are achieved by the initial solutions produced by the

DSATUR algorithm.
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Fig. 5.14 Comparison of the HEA and backtracking algorithm’s performance on 9× 9 Sudoku

grids with unique solutions

In contrast to our earlier results on random Sudoku puzzles, Figure 5.14 also

shows that the backtracking algorithm outperforms the HEA with these problem in-

stances. With 17-clue puzzles for example, the algorithm has identified the unique

solutions using just 0.03% of the computational effort required by the HEA. Thus,

unlike in the larger puzzles seen in the previous section, here the solution spaces

seem suitably sized and structured for the backtracking algorithm to be able to iden-

tify the unique Sudoku solutions in very short spaces of time.

5.5 Short Circuit Testing

Another interesting practical application of graph colouring is due to Garey et al.

(1976), who suggest its use in the process of testing for (undesired) short circuits

in printed circuit boards. In their model, a circuit board is represented by a finite

lattice of evenly spaced points on to which a set of n cycle-free components has

3 This equated to approximately three minutes on our computer.
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been printed. This set P is referred to as a net pattern, with individual components

P ∈ P being called nets. Each net connects a number of points that are intended

to be electrically common. An example net pattern comprising four components is

shown in Figure 5.15(a). Note that connections between points are only permitted

in vertical or horizontal directions.

(a) (b) 

Fig. 5.15 An example net pattern (a), and a net pattern containing a short between two nets (b)

Given a net pattern P , the problem of interest is to determine whether there exists

some fault on the circuit board (due to the manufacturing process) whereby an extra

conductor path has been introduced between two nets that are not intended to be

electrically common. This is the case in Figure 5.15(b). These extra conductor paths

are known as “shorts”.

An obvious strategy to determine whether a short has occurred is to test each

pair of nets Pi,Pj ∈ P in turn by applying an electrical current to Pi and seeing if

this current spreads to Pj. However, Garey et al. (1976) suggest that the number

of pairwise tests can be reduced significantly by making use of the following two

observations.

(a) (b) 

P1 

P2 

P3 
P1 

P2 

P3 

Fig. 5.16 Two further net patterns

First, it is noted that many pairs do not need to be tested. Consider, for example,

the net pattern in Figure 5.16(a). Here it is unnecessary to test the pair P1,P3 because

if there is a short between them, then shorts must also exist between pairs P1,P2 and

P2,P3. Since the objective of the problem is to determine if any shorts exist, testing

either P1,P2 or P2,P3 is therefore sufficient. Furthermore, if we go on to consider

the net pattern in Figure 5.16(b), it might also be reasonable to assume that shorts

cannot occur between P1 and P3 without also causing a short involving P2. Thus,

depending on the criteria used for deciding where and how shorts can occur, we

have the opportunity to exclude many pairs of nets from the testing procedure. If it

is deemed necessary to test a pair of nets, these are called critical pairs; otherwise

they are deemed noncritical.
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The second observation is as follows. Let G = (V,E) be a graph with a set of

vertices V = {v1,v2, . . . ,vn}, where each vertex vi ∈ V corresponds to a particular

net Pi ∈ P (for 1 ≤ i ≤ n). Also, let each edge {vi,v j} ∈ E correspond to a pair of

nets Pi,Pj judged to be critical. Now let S = {S1, . . . ,Sk} be a partition of V such

that no pair of vertices vi,v j in any subset Sl forms a critical pair. From a graph

colouring perspective, S therefore defines a feasible k-colouring of the vertices of

G. Now suppose that for the printed circuit board in question, external conductor

paths are provided so that all nets in any subset Sl can be made electrically common

during testing. There are thus k “supernets” that need to be tested. It can be seen

that the printed circuit board contains no short if and only if no pair of “supernets”

is seen to be electrically common. Therefore, we only have to perform a maximum

of
(k

2

)
tests as opposed to our original figure of

(n
2

)
tests. Naturally, it is desirable to

reduce k as far as possible in order to minimise the number of tests needed.

In their paper, Garey et al. (1976) propose a number of criteria for deciding

whether a pair of nets should be deemed critical, with associated theorems then

being presented. We now review some of these.

Theorem 5.13 (Garey et al. (1976)) Consider a pair of nets Pi,Pj ∈P to be critical
if and only if a straight vertical line of sight can be drawn that connects Pi and Pj.
Then the corresponding graph G = (V,E) is planar and has a chromatic number
χ(G)≤ 4.

Proof. Given a net pattern P , for each pair of nets for which a vertical line of sight

exists, draw such a line. Since each line is vertical, none can intersect. It is now

possible to contract each net into a single point, deforming the lines of sight (which

may no longer be straight lines) in such a way that they remain nonintersecting. This

structure now corresponds to the graph G = (V,E), with each vertex corresponding

to a contracted net, and each edge corresponding to the lines of sight. Since G is

planar, χ(G)≤ 4 according to the Four Colour Theorem (Theorem 5.8). ��

Theorem 5.14 (Garey et al. (1976)) Consider a pair of nets Pi,Pj ∈P to be critical
if and only if a straight vertical line of sight or a straight horizontal line of sight can
be drawn that connects Pi and Pj. Then the corresponding graph G = (V,E) has a
chromatic number χ(G)≤ 12.

Proof. It is first necessary to show that any graph G formed in this way has a vertex

v with deg(v)≤ 11. Let G1 = (V,E1) and G2 = (V,E2) be subgraphs of G such that

E1 is the set of edges formed from vertical lines and E2 is the set of edges formed

from horizontal lines. Hence E = E1 ∪E2. By Theorem (5.13), both G1 and G2 are

planar. We can also assume without loss of generality that the number of vertices

n > 12. According to Theorem (5.2), the number of edges in a planar graph with n
vertices is less than or equal to 3n−6. Thus:

m ≤ |E1|+ |E2| ≤ (3n−6)+(3n−6) = 6n−12.

Since each edge contributes to the degree of two distinct vertices, this gives:
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∑
v∈V

deg(v) = 2m ≤ 12n−24.

Hence it follows that some vertex in G must have a degree of 11 or less.

Now consider any subset V ′ ⊆ V with |V ′| > 12. The induced subgraph of V ′

must contain a vertex with a degree at most 11. Consequently, according to Theo-

rem (2.6), χ(G)≤ 11+1. ��

In their paper, Garey et al. (1976) conjecture that the result of Theorem (5.14)

might actually be improved to χ(G) ≤ 8 because, in their experiments, they were

not able to produce graphs featuring chromatic numbers higher than this. They also

go on to consider the maximum length of lines of sight and show that:

• If lines of sight can be both horizontal and vertical but are limited to a maximum

length of 1 (where one unit of length corresponds to the distance between a pair

of vertically adjacent points or a pair of horizontally adjacent points on the circuit

board), then G will be planar, giving χ(G)≤ 4.

• If lines of sight can be both horizontal and vertical but are limited to a maximum

length of 2, then G will have a chromatic number χ(G)≤ 8.

Finally, they also note that if arbitrarily long lines of sight travelling in any direction

are permitted (as opposed to merely horizontal or vertical) then it is possible to

form all sorts of different graphs, including complete graphs. Hence arbitrarily high

chromatic numbers can occur.

5.6 Graph Colouring with Incomplete Information

In this section we now consider graph colouring problems for which information

about a graph is incomplete at the beginning of execution. In the following sub-

sections we discuss three different interpretations, specifically decentralised graph

colouring, online graph colouring, and dynamic graph colouring, and give practical

examples of each.

5.6.1 Decentralised Graph Colouring

In decentralised graph colouring it is generally assumed that each vertex of a graph

is an independent entity responsible for choosing its own colour. Moreover, the only

information available to each vertex is who its neighbours are, and what their colours

are. In other words, vertices are unaware of the structure of the graph beyond their

own neighbouring vertices.

A practical example of this problem might occur in the setting-up of a wireless

ad hoc network. Imagine a situation where a network is to be created by randomly

dropping a set of wireless devices (equipped with radio transmitters and receivers)



136 5 Applications and Extensions

into a particular environment. Imagine further that each device in this network will

broadcast information at a particular frequency on the radio spectrum. Finally, also

consider the fact that if two devices are close together but using the same frequency

(or frequencies that are suitably similar) their transmissions will interfere with one

another, inhibiting the ability of other devices to decipher their individual signals.

The above situation is illustrated in Figure 5.17, where each wireless device ap-

pears at the centre of a grey circle denoting its transmission range. Figure 5.17(a)

shows two devices, u and v, that are situated in each other’s transmission ranges.

This is sometimes known as a primary collision and implies that u and v should

not broadcast using the same frequency. Figure 5.17(b), meanwhile, denotes a sec-
ondary collision . Here, although there is no primary collision between devices v1

and v2, it is still necessary that they broadcast at different frequencies in order to

allow u to be able to distinguish between them.

v u v1 v2 u 

(a) (b) 

 v 

 u  v1 

 u 

 v2 

Fig. 5.17 Illustration of a primary collision (a), and (b) a secondary collision (dotted line) in a

wireless network

The problem of choosing suitable frequencies for each device in a wireless net-

work can be modelled as a graph colouring problem by relating each device to a

vertex, with edges then occurring between any pair of vertices subject to a primary

and/or secondary collision. Each frequency then corresponds to a colour and, due

to the finite number of frequencies that exist in the radio spectrum, we now wish to

colour this graph using the minimal number of colours.

More precisely, let G = (V,E) be a graph with vertex set V and an edge E. The

set of edges due to primary collisions, E1, contains all pairs of devices that are

close enough to be able receive each other’s transmissions (as with Figure 5.17(a)).

The set E2 then contains pairs of devices subject to secondary collisions: that is,

{vi,v j} ∈ E2 if and only if the distance between vi and v j in the graph G1 = (V,E1)
is exactly 2 (as is the case in Figure 5.17(b)). If only primary collisions need to

be considered when assigning frequencies, we only need to colour the graph G1;

otherwise we will need to colour the graph G = (V,E = E1 ∪E2). In either case,

this task is a type of decentralised graph colouring problem because each vertex

(wireless device) is responsible for choosing its own colour (frequency), while being

aware only of its neighbours and their current colours.

One simple but effective algorithm for the decentralised graph colouring prob-

lem is due to Finocchi et al. (2005). Let G = (V,E) be a graph with maximal degree

Δ(G). To begin, all vertices in G are set as uncoloured. Each vertex is also allocated
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a set of candidate colours, defined Lv = {1,2, . . . ,deg(v)+1} ∀v ∈V . A single iter-

ation of the algorithm then involves the following four steps.

1. In parallel, each uncoloured vertex v selects a tentative colour tv ∈ Lv at random.

2. In parallel, consider each tentatively coloured vertex v. If no neighbour of v is

coloured with tv, then set tv as the final colour of v.

3. In parallel, consider each remaining tentatively coloured vertex v and

a. Remove its tentative colour.

b. Update Lv by deleting all colours from Lv that are assigned as final colours to

neighbours of v.

c. If Lv = /0 then let l be the largest colour label assigned as a final colour in v’s

neighbourhood and set Lv = {1,2, . . . ,min{l +1,Δ(G)+1}}.

4. If any uncoloured vertices remain, return to Step 1.

An example run of this algorithm is shown in Figure 5.18. In the first iteration,

we see that three of the five vertices are allocated final colours; the remaining two

vertices are then allocated final colours in the second iteration.

{1,2,3} 
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Initial state Step 1. Step 2. 

Steps 3(a) and (b). Step 1. Step 2. 

Fig. 5.18 Example run of Finocchi et al.’s algorithm. Here tentatively coloured vertices appear in
white, with labels within the vertices indicating tentative colours

Note that in the above algorithm, each vertex v is initially assigned a set of

candidate colours Lv = {1,2, . . . ,deg(v)+ 1}. This means that Lv always contains

sufficient options to allow each vertex v to be coloured differently from all of its

neighbours; hence Step 3(c) will never actually be used. If, however, we desire a

solution using fewer colours, we might choose to introduce a shrinking factor s > 1,

which can be used to limit the initial set of candidate colours for each vertex v to
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Lv = {1,2, . . . ,� deg(v)+1
s }. In this case Step 3(c) might now be needed if the origi-

nal contents of Lv prove insufficient. The algorithm may also need to execute for an

increased number of iterations in order to achieve a feasible solution.

Finocchi et al. (2005) also suggest an improvement to this algorithm by replacing

Step 2 with a more powerful operator. Observe in Step 2 of the first iteration of Fig-

ure 5.18 that there are two vertices tentatively coloured with colour 3. Accordingly,

neither of these vertices receives a final colour at this iteration, though it is obvious

that one of them could indeed receive colour 3 as a final colour at this point. An

improvement to Step 2 therefore operates as follows. Let G(i) = (V (i),E(i)) be the

subgraph induced by all vertices tentatively coloured with colour i. We now iden-

tify a maximal independent set for G(i) and assign all vertices in this set to a final

colour i. All other vertices in G(i) remain uncoloured. To form this independent

set, in parallel each vertex v ∈V (i) first generates a random number rv ∈ [0,1]. The

tentative colour of a vertex v is then selected as its final colour if and only if rv is

less than the random numbers chosen by its neighbours in G(i). This is equivalent to

the greedy process of randomly permuting the vertices in V (i) and then adding each

vertex v ∈V (i) to the independent set if and only if it appears before its neighbours

in the permutation.

Decentralised graph colouring problems arise in a number of practical situa-

tions, including TDMA slot assignment, wake-up scheduling and data collection

(Hernández and Blum, 2014). One noteworthy piece of research is due to Kearns

et al. (2006), who have examined the decentralised colouring of graphs representing

social networks. In their case each vertex in the graph is a human participant, and

two vertices are adjacent only if these people are judged to know one another. The

objective of the problem is for each person to choose a colour for himself or herself

only by using information regarding the colours of his or her neighbours. Partici-

pants are also able to change their colour as often as necessary until, ultimately, a

feasible colouring of the entire graph is formed. This problem has real-world im-

plications in situations where it is desirable to distinguish oneself from one’s neigh-

bours: for example, selecting a mobile phone ringtone that differs from one’s friends,

or choosing to develop professional expertise that differs from one’s colleagues. In

their research, Kearns et al. (2006) carried out a number of experiments on various

graph topologies using segregated participants. Under a time limit of five minutes,

topologies such as cycle graphs were optimally coloured quite quickly through the

collective efforts of the participants. Other, more complex graphs modelling more

realistic social network topologies were seen to present more difficulties, however.

5.6.2 Online Graph Colouring

In the online graph colouring problem, a graph is gradually revealed to an algorithm

by presenting the vertices one at a time. The algorithm must then assign each vertex

to a colour before receiving the next vertex in the sequence. In other words, an online

graph colouring algorithm receives vertices in a given ordering v1,v2, . . . ,vn and the
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colour for a vertex vi is determined by only considering the colours of the vertices in

the subgraph induced by the set {v1, . . . ,vi}. Once vi has been coloured, it generally

cannot be changed by the algorithm.

Much of the research relating to online graph colouring looks at the worst case

behaviour of algorithms on particular topologies. Let A be an online graph colouring

algorithm and consider the colourings of a graph G produced by A over all orderings

of G’s vertices. The maximum number of colours used among these colourings is

denoted by χA(G). That is, χA(G) denotes the worst possible performance of A on

G.

It has been shown by Lovász et al. (1989) that if G is a bipartite graph with n
vertices, then there exists an online algorithm A such that

χA(G)≤ 2log2 n. (5.2)

Kierstead and Trotter (1981) have also shown that if G is an interval graph then there

exists an online algorithm A such that

χA(G)≤ 3χ(G)−2. (5.3)

Studies of online colouring have also focussed on the behaviour of the GREEDY

algorithm, which, we recall, operates by assigning each vertex to the lowest indexed

colour seen to be feasible (see Section 2.1). Bounds noted by Gyárfás and Lehel

(1988) include

χGREEDY(G)≤ χ(G)+1 (5.4)

if G is a split graph (i.e., a graph that can be partitioned into one clique and one

independent set),

χGREEDY(G)≤ 3

2
χ(G)+1 (5.5)

if G is the complement of a bipartite graph, and

χGREEDY(G)≤ 2χ(G)−1 (5.6)

if G is the complement of a chordal graph.

Empirical work by Ouerfelli and Bouziri (2011) has also suggested that instead

of following the GREEDY algorithm’s strategy of assigning vertices to the lowest

indexed feasible colour, it is often beneficial to assign vertices to the feasible colour

containing the most vertices. This is because such a heuristic will often aid the for-

mation of larger independent sets in a solution, ultimately helping to reduce the

number of colours used in the final solution.

A real-world application of online graph colouring is presented by Dupont et al.

(2009). Here, a military-based frequency assignment problem is considered in which

wireless communication devices are introduced one by one into a battlefield envi-

ronment. From a graph colouring perspective, given a graph G = (V,E), the prob-

lem starts with an initial colouring of the subgraph induced by the subset of vertices

{v1, . . . ,vi}. The remaining vertices vi+1, . . . ,vn are then introduced one at a time,
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with the colour (frequency) of each vertex having to be determined before the next

vertex in the sequence is considered. In this application the number of available

colours is fixed from the outset, so it is possible that a vertex v j (i < j ≤ n) might

be introduced for which no feasible colour is available. In this case a repair operator

is invoked that attempts to rearrange the existing colouring so that a feasible colour

is created for v j. Because such rearrangements are considered expensive, the repair

operator also attempts to minimise the number of vertices that have their colours

changed during this process.

5.6.3 Dynamic Graph Colouring

Dynamic graph colouring differs from decentralised and online graph colouring in

that we again possess a global knowledge of the graph we are trying to colour.

However, in this case a graph is also able to randomly change over time via the

deletion and introduction of vertices, and/or the deletion and introduction of edges.

We must therefore re-solve the problem at each stage.

A practical application of dynamic graph colouring might occur in the timetabling

of lectures at a university (see Section 1.1.2 and Chapter 8). To begin, a general

set of requirements and constraints will be specified by the university and an ini-

tial timetable will be produced. However, on viewing this draft timetable, circum-

stances might dictate that some constraints need to be altered, additional lectures

need to be introduced, or other lectures need to be cancelled. This will result in a

new timetabling problem that needs to be solved, with the process continuing in this

fashion until a finalised solution is agreed upon.

More generally, a dynamic graph colouring problem can be defined by a sequence

of graphs G = (G1,G2, . . . ,G|G|), where a solution to each graph Gi ∈ G will need to

be produced within a limited time frame before the next graph Gi+1 is considered.

One of the main issues to consider here is the level of similarity between two succes-

sive graphs Gi and Gi+1 in this sequence. If Gi and Gi+1 are seen to be quite alike,

then it may be beneficial to use the solution generated for Gi as a starting solution

for Gi+1. However, if the differences are larger, then it may be more appropriate to

simply colour Gi+1 from scratch.

5.7 List Colouring

The list colouring problem, like the (vertex) graph colouring problem, involves as-

signing colours to each vertex of a graph such that no pair of adjacent vertices are

assigned to the same colour. However, in addition to this, when a problem is spec-

ified, individual vertices are also allocated their own list of permissible colours to

which they can be assigned.
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Defined more precisely, the list colouring problem gives us a graph G = (V,E)
and also a set Lv of permissible colours for each vertex v ∈V . The sets Lv are usually

referred to as a “lists”, giving the problem its name. The task is to now produce

a feasible colouring of G (that is, a colouring that is both proper and complete),

with the added restriction that all vertices only be coloured using colours appearing

in their corresponding lists: that is, ∀v ∈ V, c(v) ∈ Lv. If a k-colouring exists for

a particular problem instance of the list colouring problem, we say that the graph

G is “k-chooseable”. The “choice number” χL(G) then refers to the minimum k for

which G is k-chooseable. Note that the chromatic number of a graph χ(G)≤ χL(G).
List colouring problems have obvious applications in areas such as timetabling

where, in addition to scheduling events into a minimal number of timeslots (as we

saw in Section 1.1.2), we might also face constraints of the form “event v can only

be assigned to timeslots x and y”, or “event u cannot be assigned to timeslot z”. List

colouring, stated as a decision problem, is also NP-complete because it generalises

the graph colouring problem itself. That is, all k-colouring problems can be easily

converted into an equivalent list colouring decision problem of deciding whether G
is k-chooseable by simply setting Lv = {1,2, . . . ,k}, ∀v ∈V .

In practice, algorithms for the graph colouring problem can often be used for de-

ciding whether a graph is k-chooseable, beyond those for which Lv = {1,2, . . . ,k}, ∀v∈
V . More specifically, graph colouring algorithms can be used to tackle any list

colouring problem for which our chosen k ≥ |L|, where L is defined as the union

of all lists: L =
⋃

v∈V Lv. Imagine we have a list colouring problem defined on a

graph G for which k ≥ |L| is satisfied. First, we create a new graph G′ by copying

the vertices and edges of G and then adding k additional vertices, which we label

u1,u2, . . . ,uk. Next we add edges between all
(k

2

)
pairs of these additional vertices

so that they form a complete graph Kk. This implies that any feasible colouring of

G′ must use at least k different colours. Without loss of generality, we can assume

that c(ui) = i for 1 ≤ i ≤ k. Finally we then go through each vertex v in G′ that came

from the original graph G and consider its colour list, adding an edge between v and

ui if colour i /∈ Lv. This has the effect of disallowing v from being assigned to colour

i as required.
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Fig. 5.19 Illustration of how a list colouring problem (a) can be converted into an equivalent

graph colouring problem (b), whose colouring then represents a feasible solution to the original
list colouring problem (c)
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Figure 5.19 demonstrates this process. In this example k = |L|= 4, meaning that

four additional vertices u1, . . .u4 are added (larger values for k are also permitted).

The colouring produced for the extended graph G′ also uses four colours, which

is the chromatic number in this case. However, we also observe that none of the

vertices originating from G are actually coloured with colour 1 in this example;

hence we deduce that G is actually 3-chooseable, as shown in Figure 5.19(c).

5.8 Equitable Graph Colouring

Another extension to the graph colouring problem is the equitable colouring prob-

lem, where we seek to establish a feasible colouring of a graph G such that the sizes

of the colour classes differ by at most 1. In other words, we seek to establish a fea-

sible k-colouring so that exactly n mod k colour classes contain �n/k� vertices, and

the remainder contain exactly �n/k vertices.

Examples of equitable graph colouring problems occur quite naturally as exten-

sions to the general graph colouring problem. In university timetabling for example,

it might be desirable to minimise the number of rooms required by balancing the

number of events per timeslot (see Section 1.1.2). Another application can be found

in the creation of table plans for large parties. Imagine, for example, that we have n
guests who are to be seated at k equal-sized tables, but that some guests are known

to dislike each other and therefore need to be assigned to different tables. In this case

we can model the problem as a graph by using vertices for guests, with edges occur-

ring between pairs of guests who dislike each other. An extension to this application

is the subject of Chapter 6.

Let G = (V,E) be a graph with n vertices, a maximal degree Δ (G), and an inde-

pendence number α(G).

Definition 5.6 If V can be partitioned into k colour classes S = {S1, . . . ,Sk} such
that Si is an independent set and ||Si| − |S j|| ≤ 1 ∀i �= j, then S is said to be an
equitable k-colouring of G.

Definition 5.7 The smallest k for which an equitable k-colouring of G exists is the
equitable chromatic number, denoted by χe(G).

Like the graph colouring problem, the equitable graph colouring problem is

known to be NP-complete. This follows from the fact that the problem of deciding

whether a graph G is k-colourable can be converted into an equitable k-colouring

problem by simply adding an appropriate number of isolated vertices to G. Hence

the equitable graph colouring problem generalises the standard graph colouring

problem. An alternative proof is also due to Furmańczyk (2004), who shows that

the problem of deciding whether χe(G) ≤ 3 is NP-complete, even when G is the

line graph of a cubic graph.

Because a feasible equitable k-colouring of a graph G is also a feasible k-

colouring of G, it is obvious that χ(G)≤ χe(G). In some cases however, this bound
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can be very poor. Consider star graphs, for example, which comprise a vertex set

V = {v1, . . . ,vn} and an edge set E = {{v1,vi} : i ∈ {2, . . . ,n}}. These are a type

of bipartite graph and therefore feature a chromatic number of 2. However, it is ob-

vious that v1 must be assigned a different colour to all other vertices; hence, in an

equitable colouring all other colour classes must contain a maximum of two ver-

tices. The equitable chromatic numbers of star graphs are therefore calculated as

�(n−1)/2�+1, as illustrated in Figure 5.20.

Fig. 5.20 The equitable chromatic numbers for star graphs with n = 5,6,7, and 8 are 3, 4, 4, and
5 respectively

A better lower bound for equitable chromatic numbers on general graphs is out-

lined by Furmańczyk (2004). Suppose that G is equitably coloured, with vertex v
assigned to colour 1. The number of vertices coloured with colour 1 is therefore at

most α(G−Γ (v)−{v})+ 1. Since this colouring is equitable, the number of ver-

tices coloured with any other colour is then at most α(G−Γ (v)−{v})+2. Hence:⌈
n+1

α(G−Γ (v)−{v})+2

⌉
≤ χe(G) (5.7)

For example, using a star graph with n = 8 whose internal vertex v1 is coloured with

colour 1, this gives
⌈

8+1
0+2

⌉
= 5. Note, however, that this bound requires a graph’s

independence number to be calculated, which is itself an NP-hard problem.

With regard to upper bounds on χe(G), it is known that any graph can be equi-

tably k-coloured when k ≥ Δ(G)+1. Hence:

Theorem 5.15 (Hajnal and Szemerédi (1970)) Let G be a graph with maximal
degree Δ(G). Then χe(G)≤ Δ (G)+1.

This fact was initially conjectured by Erdős (1964), with a formal proof being pub-

lished six years later by Hajnal and Szemerédi (1970). Shorter proofs of this theo-

rem have also been shown by Kierstead and Kostochka (2008) and Kierstead et al.

(2010). The latter publication also presents a polynomial-time algorithm for con-

structing an equitable (Δ(G)+ 1)-colouring. This method involves first removing

all edges from G and dividing the n vertices arbitrarily into Δ(G) equal-sized colour

classes. In cases where n is not a multiple of Δ(G), sufficient isolated vertices are

added. The vertices are then considered in turn and, in each iteration i, the edges

incident to vertex vi are added to G. If vi is seen to be adjacent to another vertex in

its colour class, it is moved to a different feasible colour class, leading to a feasi-

ble colouring with up to Δ(G)+1 colours. If this colouring is not equitable, then a
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polynomial-length sequence of adjustments are made to reestablish the balance of

the colour classes.

It is notable that Theorem 5.15 above is similar to Theorem 2.5 from Chapter 2

which states that for any graph G, χ(G) ≤ Δ(G)+ 1. Meyer (1973) has gone one

step further to even conjecture a form of Brooks’ Theorem (2.7) for equitable graph

colouring: every graph G has an equitable colouring using Δ (G) or fewer colours

with the exception of complete graphs and odd cycles. Recall, however, that the

problem of determining an equitable k-colouring for an arbitrary k and graph G is

still NP-complete, implying the need for approximation algorithms and heuristics

in general. One simple approach for achieving approximate equitable k-colourings

(for k ≤ Δ(G)) can be achieved via a simple modification of the DSATUR algorithm:

starting with k empty colour classes, take each vertex in turn according to DSATUR’s

heuristics and assign it to the feasible colour class containing the fewest vertices,

breaking ties randomly.

Figure 5.21 summarises results achieved by this algorithm for random graphs

G500,p, using p = 0.1, 0.5 and 0.9, for a range of suitable k-values. For comparison’s

sake, the results of a second algorithm are also included here. This operates in the

same manner except that vertices are assigned to a randomly chosen feasible colour.

The cost here is simply the difference in size between the largest and smaller colour

classes in a solution. Hence a cost of 0 or 1 indicates an equitable k-colouring.

Figure 5.21 clearly demonstrates that, for these graphs, the policy of assigning

vertices to feasible colour classes with the fewest vertices brings about more equi-

tably coloured solutions. We also see that the algorithm consistently achieves equi-

table colourings for the majority of k-values with the exception of those close to the

chromatic number, and those where k is a divisor of n. For the former case, the low

number of available colours restricts the choice of feasible colours for each vertex,

often leading to inequitable colourings. On the other hand, when k is a divisor of

n the algorithm is seeking a solution with a cost of 0, meaning that the last vertex

considered by the algorithm must be assigned to the unique colour class contain-

ing one fewer vertex than the remaining colour classes. If this colour turns out to

be infeasible (which often seems to be the case), this vertex will then need to be

assigned to another colour class, resulting in a solution with a cost of 2. Note, how-

ever, that it might be possible to further improve these solutions by, for example,

applying a local search algorithm with appropriate neighbourhood operators such

as Kempe chain interchanges and pair swaps. An approach along these lines for a

related problem is the subject of the case study presented in Chapter 6.

5.9 Weighted Graph Colouring

Further useful extensions of the graph colouring problem can be achieved through

the addition of numeric weights to a graph. Typically, the term “weighted graph

colouring” is used in situations where the vertices of a graph are allocated weights.

However, the term is also sometimes used for problems where edges are weighted,
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Fig. 5.21 Quality of equitable solutions produced by the modified DSATUR algorithms on random

graphs with n = 500 for, respectively, p = 0.1, 0.5 and 0.9. All figures, are the average of 50

instances per k-value. Error bars show one standard error either side of these means
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and for the multicolouring problem. These are considered in turn in the following

subsections.

5.9.1 Weighted Vertices

A natural formulation of the weighted graph colouring problem is as follows. Let

G(V,E,w) be a graph for which each vertex v ∈ V is given a nonnegative integer

weight wv. Given a fixed number of colours k, our task is to identify a proper (but

perhaps partial) solution S = {S1, . . . ,Sk} that maximises the objective function:

f (S) =
k

∑
i=1

g(Si) (5.8)

where g(Si) = ∑v∈Si wv. For this problem, if χ(G)≤ k then an optimal solution will

obviously feature a cost of ∑v∈V wv, corresponding to a feasible graph colouring so-

lution. On the other hand, if k < χ(G), then the problem involves finding an optimal

subset of vertices V ′ ⊂V , where V ′ =
⋃k

i=1 Si.

It is straightforward to show that this formulation is NP-hard by noting that any

instance of the graph colouring problem can be transformed into this weighted vari-

ant by setting wv = 1 ∀v ∈ V . If, in addition to this, k = 1, then the problem is also

equivalent to the NP-hard maximum independent set problem.

This formulation of the weighted graph colouring problem arises in practical sit-

uations where a limited number of colour classes are available and where the colour-

ing of certain vertices is considered more important than others. For example, in an

exam timetabling problem we may be given a fixed number of timeslots (colours),

and we might want to prioritise the assignment of larger exams (higher weighted

vertices) to the timetable while also making sure that clashing exams (adjacent ver-

tices) are not assigned to the same timeslots. One simple heuristic for this problem

is to employ the GREEDY algorithm using a fixed number of colours k and an or-

dering of the vertices v1,v2, . . . ,vn such that wv1
≥ wv2

≥ . . .≥ wvn . Algorithms that

explore the space of partial proper solutions are also naturally suited. For example,

we might make use of the PARTIALCOL algorithm while seeking to minimise the

objective function ∑v∈U wv, where U =V −⋃k
i=1 Si is the set of uncoloured vertices

(see Section 4.1.2).

Another well-known formulation of the weighted graph colouring problem in-

volves taking a graph G(V,E,w) as above, and then determining a feasible colour-

ing S = {S1, . . . ,Sk} that minimises Equation (5.8) using g(Si) = max{wv : v ∈ Si}.

A practical example of this occurs in the scheduling of fixed-time jobs to timeslots.

Imagine, for example, that we are given a set of jobs V , each with a processing time

wv ∀v ∈ V . Imagine further that these jobs are to be scheduled into k timeslots, and

that the jobs assigned to a particular timeslot will be carried out simultaneously;

hence, the duration of a timeslot Si is set at max{wv : v ∈ Si}. Finally, also suppose
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that some pairs of jobs u,v are incompatible and cannot be assigned to the same

timeslot. Such pairs correspond to edges {u,v} ∈ E.

In this formulation it is obviously in our interest to try and assign vertices with

large weights to the same colour classes. Similarly, it also makes sense in many cases

to reduce the number of colours being used by increasing the number of colour

classes Si for which Si = /0. Demange et al. (2007), however, have noted that the

optimal number of nonempty colour classes for a particular graph G may well be

larger than χ(G), though it will also always be less than or equal to Δ(G)+1.

As with the previous example, this problem formulation is seen to be NP-hard

by observing that any instance for which wv = 1 (∀v ∈V ) is equivalent to the stan-

dard graph colouring problem. Furthermore, the problem remains NP-hard even for

interval graphs (Escoffier et al., 2006) and bipartite graphs (Demange et al., 2007).

For the bipartite case, Demange et al. (2007) have provided an algorithm with ap-

proximation ratio of 4rw/(3rw + 2) (where rw = max{wv:v∈V}
min{wv:v∈V} ). They also prove that

optimal solutions for bipartite graphs can be found in polynomial time whenever

|{wv : v ∈V}| ≤ 2. For general graphs, an approximation algorithm is also suggested

that operates as follows. As before, let G = (V,E,w) be a graph with weighted ver-

tices and g(Si) = max{wv : v ∈ Si}.

1. Construct a graph with weighted edges Ḡ = (V,E ′,w′) where Ḡ is the comple-

ment of G, and for any edge {u,v} ∈ E ′, w′
uv = wu +wv −g({wu,wv}).

2. Compute a maximum weighted matching M∗ of Ḡ .

3. For each edge in M∗, colour the end points with a new colour.

4. Colour any remaining vertices with their own new colour.

G = (V, E, w) M* Solution 

3 1 

2 2 

4 
3 

2 1 
1 

3 1 

2 2 

4 

G = (V, E’, w’) 

Fig. 5.22 Illustration of the algorithm of Demange et al. (2007)

An example of this process is shown in Figure 5.22. The matching M∗ can be de-

termined in polynomial time using methods such as the blossom algorithm (Kol-

mogorov, 2009). Note that each colour class in the solution is an independent set,

but that these are limited to contain a maximum of two vertices. Indeed, in graphs

where no independent set contains more than two vertices (such as the complement

of a bipartite graph), this algorithm guarantees the optimal. In further work, Hassin

and Monnot (2005) have shown that, for any graph, this process produces a solu-

tion whose objective function value never exceeds twice the optimum. They also

show that the same approximation ratio applies when g(Si) takes other forms such

as g(Si) = min{wv : v ∈ Si} and g(Si) =
1
|Si| ∑v∈Si wv. Malaguti et al. (2009) have

also proposed a number of IP-based methods for this problem similar in spirit to
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those discussed in Section 3.1.2. In particular, they propose the use of heuristics for

building up a large sample of independent sets, and then use an IP model similar to

that of Section 3.1.2.1 to select a subset of these. Local search-based methods based

on Kempe chain interchanges and pair swaps also seem to be naturally suited to this

problem.

5.9.2 Weighted Edges

In many cases it is more convenient to apply weights to the edges of a graph as

opposed to the vertices, allowing us to express levels of preference for assigning

vertices to different (or the same) colours. One interpretation involves taking a graph

G(V,E,w) for which each edge {u,v} ∈ E is allocated an integer weight wuv. Given

a fixed number of colours k, our task is to then identify a complete (but perhaps

improper) solution S = {S1, . . . ,Sk} that minimises the objective function:

f (S) =
k

∑
i=1

∑
u,v∈Si:{u,v}∈E

wuv (5.9)

Here, if ∀{u,v} ∈ E, wuv > 0, then any solution for which f (S) = 0 corresponds to

a feasible k-coloured solution.

This sort of formulation is applicable in areas such as university timetabling and

social networking. For the former, imagine, as before, that we wish to assign events

(vertices) to timeslots (colours), but that there are insufficient timeslots to feasibly

accommodate all events. In order to form a complete timetable, this means that

some clashes will be necessary; however, some types of clashes may be deemed less

critical than others. For example, if two clashing events only have a small number of

common students, then we may allow them to both be assigned to the same timeslots

(with alternative arrangements then being made for the people affected). On the

other hand, if two events contain a large number of common participants, or if the

same instructor is required to teach them both, then such a clash would be far less

desirable. Appropriate weights added to the corresponding edges can be used to

express such preferences.

Note that due to the nature of this problem’s requirements, algorithms that search

the space of complete improper solutions will often be naturally suitable here. In

Chapter 6 an application along these lines will be made to the problem of partition-

ing members of social networks, where edge weights are used to express a level of

“liking” or “disliking” between pairs of individuals.
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5.9.3 Multicolouring

Another problem that is sometimes referred to as “weighted graph colouring” is the

NP-hard graph multicolouring problem. In this case we are given a graph G(V,E,w)
for which each vertex v ∈V is allocated a weight wv ∈ {1,2, . . .}. The task is to then

assign wv different colours to each vertex v such that (a) adjacent vertices have no

colours in common, and (b) the number of colours used is minimal.

Multicolouring has practical applications in areas such as frequency assignment

problems where, in some cases, it is desirable for devices to be able to transmit

and receive messages on multiple frequencies as opposed to just one (Aardel et al.,

2002). McDiarmid and Reed (2000) have shown that this problem is polynomially

solvable for bipartite and perfect graphs, but that it remains NP-hard for triangu-

lar lattice graphs and their induced subgraphs, which have practical applications in

cellular telephone networks. They also suggest a suitable polynomial-time approxi-

mation algorithm for the latter topology.

Note that the graph colouring problem is a special case of the multicolouring

problem for which wv = 1 ∀v ∈ V . On the other hand, any instance of the multi-

colouring problem can also be converted into an equivalent graph colouring prob-

lem by replacing each vertex v ∈ V with a clique of size wv, and then connecting

every member of the clique to all neighbours of v in G. This method of conversion

allows us to use any graph colouring algorithm (such as those from Chapter 4) with

the graph multicolouring problem, though it also increases the number of vertices to

colour by a factor of ∑v∈V wv/n. Consequently, graph multicolouring is often stud-

ied as a separate computational problem, for which the backtracking algorithm of

Caramia and Dell’Olmo (2001) and the IP branch-and-price method of Mehrotra

and Trick (2007) are prominent examples.



Chapter 6
Designing Seating Plans

6.1 Problem Background

Consider a social event such as a wedding where, as part of the formalities of the

day, N guests need to be divided among k dining tables. To ensure that guests have a

good time it will often be necessary to design a seating plan, thereby allowing guests

to be seated at tables with appropriate company. The following sorts of factors might

be taken into account:

• Guests belonging to groups, such as couples and families with small children,

should be seated at the same tables, preferably next to each other.

• If there is any perceived animosity between different guests, they should be

seated at different tables. Similarly, if guests are known to enjoy one anothers’

company, it may be desirable for them to be seated at the same table.

• Some guests might be required to sit at a particular table (e.g. close to the kitchen

or washrooms). Similarly, some guests might be prohibited from sitting at certain

tables.

• Since tables could vary in size and shape, each table should be allocated a suitable

number of guests, and these guests should be arranged around the table in an

appropriate manner.

A naı̈ve method for producing a seating plan best fitting these sorts of criteria might

be to consider all possible plans and then choose the one perceived to be the most

� Springer International Publishing Switzerland 2016
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Chapters 6, 7 and 8 each contain a detailed case study showing how graph colouring
methods can be used to successfully tackle important real-world problems. The first of
these case studies concerns the task of designing table plans for large parties, which,
as we will see, combines elements of the NP-hard (edge) weighted graph colouring
problem, the equitable graph colouring problem and the k-partition problem. A user-
friendly implementation of the algorithm proposed in this section can also be found
online at www.weddingseatplanner.com.



152 6 Designing Seating Plans

suitable. However, for nontrivial values of N or k, the number of possible solutions

is too large for this to be possible. To illustrate, consider a simple example where

we have N = 48 guests using k = 6 equal sized tables (i.e., exactly eight guests per

table). For the first table we need to choose eight people from the 48, for which

there are
(

48
8

)
= 377,348,994 possible choices. For the next table, we then need to

choose eight further guests from the remaining 40, giving
(

40
8

)
= 76,904,685 further

choices, and so on. Assuming that k is a divisor of N, using equal sized tables, the

number of possible plans is thus:

k−2

∏
i=0

(
N − i(N/k)

N/k

)
. (6.1)

This function clearly has a growth rate that is subject to a combinatorial explosion—

even for the modestly sized example above, the number of distinct solutions to check

is (
48

8

)
.

(
40

8

)
.

(
32

8

)
.

(
24

8

)
.

(
16

8

)
≈ 3.8×1033

which is far beyond the capabilities of any state-of-the-art computing equipment.

Furthermore, if we were to relax the problem by allowing k tables of any size ≥ 1,

the task would now be to partition the N guests into k nonempty subsets, mean-

ing that the number of solutions would be equal to a Stirling number of the second

kind (Equation (1.6)). These numbers feature even higher growth rates than Equa-

tion (6.1), giving even larger solution spaces.

Such features demonstrate that this sort of naı̈ve method for producing a desirable

seating plan is clearly infeasible in most cases. However, the problem of construct-

ing seating plans is certainly important since (a) it is regularly encountered by party

organisers and (b) the quality of the proposed solution could have a significant effect

on the success (or failure) of the gathering.

Currently there is a small amount of commercial software available for construct-

ing seating plans, such as Perfect Table Plan, Top Table Planner, and Seating Ar-

rangement.1 The first of these examples allows users to input a list of guest names

into the system and then specify preferences between these guests (such as whether

they need to be seated apart or together). It then allows users to define table shapes,

sizes and locations, before assisting the user in placing the guests at these tables

via drag and drop functionality and also an auto assign tool. The exact details of

the underlying algorithm used with the auto assign tool are not made public by

the software vendor, though its online documentation states that an evolutionary

algorithm is used, with different penalty costs being applied for different types of

constraint violation. The fitness function of the algorithm is simply an aggregate of

these penalties.

1 Refer to the websites www.perfecttableplanner.com, www.toptableplanner.com, and
www.seatingarrangement.com respectively.
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6.1.1 Relation to Graph Problems

Given N guests, in its simplest form the problem of constructing a seating plan can

be described using a binary matrix WN×N , where element Wi j = 1 if guests i and

j are required to be seated apart and Wi j = 0 otherwise. We can also assume that

Wi j =Wji. Given this input matrix, our task might then be to partition the N guests

into k subsets S = {S1, . . . ,Sk}, such that the objective function

f (S) =
k

∑
t=1

∑
∀i, j∈St :i< j

Wi j (6.2)

is minimised.

In fact, the problem of confirming the existence of a zero-cost solution to this

problem is equivalent to the decision variant of the graph colouring problem. Here,

the graph G= (V,E) is defined using the vertex set V = {v1, . . . ,vN} and the edge set

E = {{vi,v j} : Wi j = 1∧vi,v j ∈V}. That is, each guest corresponds to a vertex, and

two vertices vi and v j are considered to be adjacent if and only if Wi j = 1. Colours

correspond to tables, and we are now interested in colouring G using k colours.

From an alternative perspective, consider the situation where we are again given

the binary matrix W, and where we now have a subset of guests S ∈ S that have

been assigned to a particular circular-shaped table. Here, we might be interested in

arranging the guests onto the table such that, for all pairs of guests i, j ∈ S, if Wi j = 1

then i and j are not seated in adjacent seats. This problem can also be described

by a graph G = (V,E) for which the vertex set V = {vi : i ∈ S} and the edge set

E = {{vi,v j} : Wi j = 1 ∧ vi,v j ∈V}. A Hamiltonian cycle of the complement graph

Ḡ defines a seating arrangement satisfying this criterion, as illustrated in the example

in Figure 6.1.

Definition 6.1 Given a graph G = (V,E), a Hamiltonian cycle is a cycle that visits
each vertex exactly once.

However, determining the existence of a Hamiltonian cycle in an arbitrary graph is

also known to be an NP-complete problem (Garey and Johnson, 1979).

(a) (b) (c) v1 

v2 

v3 

v4 

v5 

v6 

v1 

v2 

v3 

v4 

v5 

v6 

1 

4 

)
5 

6 

3 

2 

Fig. 6.1 (a) A graph G in which edges specify pairs of guests who should not be seated in adjacent

seats; (b) the complement graph Ḡ, together with a Hamiltonian cycle (shown in bold); and (c) the

corresponding seating arrangement around a circular table
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In practical situations it might be preferable for W to be an integer or real-valued

matrix instead of binary, allowing users to place greater importance on some of

their seating preferences compared to others. Assuming that smaller values for Wi j
indicate an increased preference for guests i and j to be seated together, the prob-

lem of partitioning the groups on to k tables now becomes equivalent to the (edge)

weighted graph colouring problem (Section 5.9), while the task of arranging people

on to circular tables in the manner described above becomes equivalent to the trav-

elling salesman problem. Of course, both of these problems are also NP-complete

since they generalise the graph colouring problem and the Hamiltonian cycle prob-

lem respectively. In addition, the problem of arranging guests around tables could

become even more complicated when tables of different shapes are used. For exam-

ple, when rectangular tables are used we might also need to take account of who is

seated opposite a guest in addition to his or her neighbours on either side.

6.1.2 Chapter Outline

In this chapter we describe a formulation of the above problem that is closely related

to graph colouring, but which also involves the additional constraint of grouping to-

gether guests who like one another while also maintaining appropriate numbers of

guests per table. This problem interpretation is used in conjunction with the com-

mercial website www.weddingseatplanner.com, which contains a free tool for in-

putting and solving instances of the problem. The reader is invited to try out this

tool while reading this chapter.

It is stated by Nielsen (2004) that users tend to leave a website in less than two

minutes if it is not understood or perceived to fulfil their needs. Consequently, the

particular problem formulation considered here is intended to strike the right bal-

ance between being quickly accessible to users while still being useful and flexible

in practice. Since users of the website will typically have little knowledge of opti-

misation algorithms and the implications of problem intractability, the algorithm is

also designed to supply the user with high-quality (though not necessarily optimal)

solutions in very short amounts of run time (typically less than three seconds).

6.2 Problem Definition

In this problem formulation the N guests are first partitioned into n ≤ N guest
groups. Each guest group refers to a subset of guests who are required to sit to-

gether (couples, families, etc.) and will usually be known beforehand by the user. In

addition to making the underlying problem smaller in most cases, specifying guest

groups in this way also means that users do not have to subsequently input various

preferences between pairs of people in the same families.
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The Wedding Seating Problem (WSP) can now be formally stated as type of

graph partitioning problem. Specifically, we are given a graph G = (V,E) in which

each vertex vi ∈ V (i = 1, . . . ,n) represents a guest group. The size of each guest

group v ∈V is denoted by sv, and the total number of guests in the problem is thus

N = ∑v∈V sv.

In G, each edge {u,v} ∈ E defines the relationship between vertices u and v
according to a weighting wuv (where wuv = wvu). If wuv > 0, this is interpreted to

mean that we would prefer the guests associated with vertices u and v to be seated

at different tables. Larger values for wuv reflect a strengthening of this requirement.

Similarly, negative values for wuv mean that we would rather u and v were assigned

to the same table.

A solution to the WSP is consequently defined as a partition of the vertices into

k subsets S = {S1, . . . ,Sk}. The requested number of tables k is defined by the user,

with each subset Si defining the guests assigned to a particular table.

6.2.1 Objective Functions

Under this basic definition of the WSP, the quality of candidate solutions might be

calculated according to various different metrics. In our case we use two objective

functions, both that are to be minimised. The first of these is analogous to Equa-

tion (6.2),

f1 =
k

∑
i=1

∑
∀u,v∈Si:{u,v}∈E

(sv + su)wuv, (6.3)

and reflects the extent to which the rules governing who sits with whom are obeyed.

In this case the weighting wuv is also multiplied by the total size of the two guest

groups involved, sv + su. This is done so that violations involving larger numbers of

people contribute more to the cost (i.e., it is assumed that sv people have expressed

a seating preference in relation to guest group u, and su people have expressed a

preference in relation to guest group v).

The second objective function used in our model is intended to encourage equal

numbers of guests being assigned to each table. As we noted earlier, some weddings

may have varying size tables, and nearly all weddings will also have a special “head

table” where the bride, groom, and their family and friends should sit. In practice,

the head table and its guests can be ignored in this particular formulation because

they can easily be added to the table plan once the other guests have been assigned.

We also choose to assume that the remaining tables are equal-sized, which seems to

be very common, particularly in larger venues. Consequently, the second objective

function measures the degree to which the number of guests per table deviates from

the required number of either �N/k or �N/k� guests:

f2 =
k

∑
i=1

(min(|τi −�N/k| , |τi −�N/k�|)) . (6.4)
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Here, τi = ∑∀v∈Si sv denotes the number of guests assigned to each table i. Obvi-

ously, if the number of guests N is a multiple of k then �N/k= �N/k�= N/k, and

Equation (6.4) simplifies to f2 = ∑k
i=1 (|τi −N/k|).

6.2.2 Problem Intractability

We now show this problem to be NP-hard. We do this by showing that it generalises

two classical NP-hard problems: the k-partition problem, and the equitable graph

k-colouring problem. Let us first define the k-partition problem.

Definition 6.2 Let Y be a multiset of n weights, represented as integers, and let k be
a positive integer. NP-hard k-partition problem involves partitioning Y into k subsets
such that the total weight of each subset is equal. (Note that the k-partition problem
is also variously known as the load balancing problem, the equal piles problem, or
the multiprocessor scheduling problem.)

Theorem 6.1 The WSP is NP-hard.

Proof. Let G= (V,E). If E = /0 then f1 (Equation (6.3)) equals zero for all solutions.

Hence, the only goal is to ensure that the number of guests per table is equal (or as

close to equal as possible). Consequently the problem is equivalent to the NP-hard

k-partition problem.

From another perspective, let sv = 1 ∀v ∈ V and let wuv = 1 ∀{u,v} ∈ E. The

number of guests assigned to each table i therefore equals |Si|. This special case is

equivalent to the NP-hard optimisation version of the equitable k-colouring problem

(see Section 5.8). ��

6.3 Problem Interpretation and Tabu Search Algorithm

In the online tool, the user is first asked to input (or import) the names of all guests

into an embedded interactive table. Guest groups that are to be seated together (fam-

ilies, etc.) are placed in the same rows of the table, thus defining the guest groups

and values for sv. Guests to be seated at the top table are also specified. At the next

step the user is asked to define seating preferences between different guest groups.

Since guests to be seated at the top table have already been input, constraints only

need to be considered between the remaining guest groups.

Figure 6.2 shows a small example of this process. Here, nine guest groups rang-

ing in size from 1 to 4 have been input, though one group of four has been allocated

to the top table. Consequently, only the remaining eight groups (N = 20 guests) are

considered. Figure 6.2(b) shows the way in which seating preferences (values for

wuv) are defined between these. On the website this is done interactively by clicking

on the relevant cells in the grid. In this case, users are limited to three options: (1)
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1 Cath Michael Kurt Rosie 
2 John Sarah Jack Jill 
3 Bill June 
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Fig. 6.2 Specification of guest groups (left) and seating preferences (right)

“Definitely Apart” (e.g. Pat and John); (2) “Rather Apart” (Pat and Ruth); and (3)

“Rather Together” (John and Ken). These are allocated weights of ∞, 1, and −1 re-

spectively for reasons that will be made clear below. Theoretically, it is possible to

allow any arbitrary weights in the grid; however, while being more flexible, it was

felt by the website’s interface designers that this ran the risk of bamboozling the

user while not improving the effectiveness of the tool (Carroll and Lewis, 2013).

Once the input has been defined by the user, the overall strategy of our algorithm

is to classify the requirements of the problem as either hard (mandatory) constraints

or soft (optional) constraints. In our case we consider just one hard constraint, which

we attempt to satisfy in Stage 1—specifically the constraint that all pairs of guest

groups required to be “Definitely Apart” be assigned to different tables. This prob-

lem is equivalent to the graph k-colouring problem. In Stage 2, the algorithm then

attempts to reduce the number of violations of the remaining constraints via spe-

cialised neighbourhood operators that do not allow any of the hard constraints satis-

fied in Stage 1 to be reviolated. The two stages of the algorithm are now described.

6.3.1 Stage 1

In Stage 1 the algorithm operates on the subgraph G′ = (V,E ′), where each vertex

v ∈ V represents a guest group, and the edge set E ′ = {{u,v} ∈ E : wuv = ∞}. In

other words, the graph G′ contains only those edges from the original graph G that

define the “Definitely Apart” requirement. Using this subgraph, the problem of as-

signing all guests to k tables (while not violating the “Definitely Apart” constraint)

is equivalent to finding a feasible k-colouring of G′.
In our case, an initial solution is produced using the variant of the DSATUR

heuristic used with the equitable graph colouring problem in Section 5.8. Starting

with k empty colour classes (tables), each vertex (guest group) is taken in turn ac-

cording to the DSATUR heuristic and assigned to the feasible colour class containing

the fewest vertices, breaking ties randomly. If no feasible colour exists for a vertex

then it is kept to one side and is assigned to a random colour at the end of this

process, thereby introducing violations of the hard constraint.
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If the solution produced by the above constructive process contains hard con-

straint violations, an attempt is then made to eliminate them using TABUCOL (see

Section 4.1.1). As we saw in Chapter 4, this algorithm can often be outperformed by

other approaches in terms of the quality of solution it produces, but it does have the

advantage of being very fast, which is an important requirement in this application.

Consequently, TABUCOL is only run for a fixed number of iterations, specifically

20n.

If at the end of this process a feasible k-colouring for G′ has not been achieved,

k is incremented by 1, and Stage 1 of the algorithm is repeated. Of course, this

might occur because the user has specified a k-value for which no k-colouring exists

(that is, k < χ(G′)) or it might simply be that a solution does exist, but that the

algorithm has been unable to find it in the given computation limit. The process of

incrementing k and reapplying DSATUR and TABUCOL continues until all of the

hard constraints have been satisfied, resulting in a feasible colouring of G′.

6.3.2 Stage 2

Having achieved a feasible k-colouring of G′ = (V,E ′) in Stage 1, Stage 2 is now

concerned with eliminating violations of the soft constraints by exploring the space

of feasible solutions. That is, the algorithm will make alterations to the seating plan

in such a way that no violations of the “Definitely Apart” constraint are reintro-

duced.

Note that movements in this solution space might be restricted—indeed the space

might even be disconnected—and so it is necessary to use neighbourhood operators

that provide as much solution space connectivity as possible. Ideal candidates in this

case are the Kempe chain interchange and the pair swap operators seen in Chapter 3

(Definitions 3.1 and 3.2). With regard to seating plans, applications of these opera-

tors have the effect of either moving one guest group from one table to another, or

interchanging two subsets of guest groups between a pair of tables.

In this case, in each iteration of Stage 2, all neighbouring solutions are evaluated,

and the same acceptance criteria as TABUCOL are applied. Once a move is per-

formed, all relevant parts of the tabu list T are then updated to reflect the changes

made to the solution. That is, all of the vertices and colours involved in the move

are marked as tabu in T. For speed’s sake, in our application a fixed-size tabu tenure

of 10 is used along with an iteration limit of 10n.

6.3.2.1 Evaluating All Neighbours

When evaluating the cost of all neighbouring solutions in each iteration of Stage 2,

considerable speedups can be achieved by avoiding situations where a partic-

ular move is evaluated more than once. Note that a Kempe chain comprising

l vertices can actually be generated via l different vertex/colour combinations.
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For example, the Kempe chain {v4,v7,v8,v9} depicted in Figure 6.3 corresponds

to KEMPE(v4,1,2), KEMPE(v7,2,1), KEMPE(v8,2,1), and KEMPE(v9,1,2). Of

course, only one of these combinations needs to be considered at each iteration.

Colour 
1 

 

2 
 

3 
4 

 

5 

Fig. 6.3 Example Kempe chain, KEMPE(v4,1,2) = {v4,v7,v8,v9}

To achieve these speedups an additional matrix Kn×k is used where, given a ver-

tex v ∈ Si, each element Kv j is used to indicate the size of the Kempe chain formed

via KEMPE(v, i, j). This matrix is populated in each iteration of tabu search accord-

ing to the steps shown in Figure 6.4. As can be seen here, initially all elements

of K are set to zero. The algorithm then considers each vertex v ∈ Si in turn (for

1 ≤ i ≤ k) and, according to line (5), only evaluates an interchange involving the

chain KEMPE(v, i, j) if the same set of vertices has not previously been considered.

If a new Kempe chain is identified, the cost of performing this interchange is then

evaluated (line (6)), and the matrix K is updated to make sure that this interchange

is not evaluated again in this iteration (lines (7-9)).

EVALUATE-ALL-KEMPE-CHAIN-INTERCHANGES (S = {S1, . . . ,Sk})
(1) Kvi ← 0 ∀v ∈V, ∀i ∈ {1, . . . ,k}
(2) forall Si ∈ S
(3) forall v ∈ Si
(4) forall Sj ∈ (S−{Si})
(5) if Kv j = 0 then
(6) Evaluate the cost of S if a KEMPE(v, i, j) interchange were to be applied.

(7) forall u ∈ KEMPE(v, i, j)
(8) if u ∈ Si then Ku j ← |KEMPE(v, i, j)|
(9) else Kui ← |KEMPE(v, i, j)|

Fig. 6.4 Procedure for efficiently evaluating all possible Kempe chain interchanges in a solution S

Finally, after the evaluation of all possible Kempe chain interchange moves, the

information in K can also be used to quickly identify all possible moves achievable

via the pair swap operator. Specifically, for each v ∈ Si (for 1 ≤ i ≤ k−1) and each

u ∈ S j (for i+1 ≤ j ≤ k) pair swaps will only occur where both Kv j = 1 and Kui = 1.
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6.3.2.2 Cost Function

The objective function used in Stage 2 of this algorithm is simply ( f1 + f2) (see

Equations (6.3) and (6.4)). Note that this will always evaluate to a value less than

∞ since violations of the hard constraints cannot occur. Although such an aggregate

function is not wholly ideal (because it involves adding together two different forms

of measurement) it is acceptable in our case because in some sense both metrics

relate to the number of people effected by the violations—that is, a table that is

considered to have x too many (or too few) people will garner the same penalty cost

as x violations of the “Rather Apart” constraint.

Finally, the speed of this algorithm can also be further increased by observing

that (a) the cost functions f1 and f2 only involve the addition of terms relating to

the quality of each separate colour class (table), and (b) neighbourhood moves with

this algorithm only affect two colours. These features imply that if a move involving

colours i and j is made in iteration l of the algorithm, then in iteration l+1, the cost

changes involved with moves using any pair of colours from the set ({1, . . . ,k}−
{i, j}) will not have changed and do therefore not have to be recalculated by the

algorithm.

6.4 Algorithm Performance

In this section we analyse the performance of our two-stage tabu search algorithm

in terms of both computational effort and the costs of its resultant solutions.

The algorithm and interface described above were implemented in ActionScript

3.0, which allows the program to be executed via a web browser, with all compu-

tations being performed at the client side (note that an installation of Adobe Flash

Player is required). To ensure run times are kept relatively short, and to also allow

the interface to be displayed clearly on the screen, problem size is limited to n = 50

guest groups of up to eight people, allowing a maximum of N = 400 guests.

To gain an understanding of the performance characteristics of this algorithm,

a set of maximum-sized problem instances of n = 50 guest groups (vertices) were

constructed, with the size of each group chosen uniform randomly in the range 1 to

8 giving N ≈ 50× 4.5 = 225. These instances were then modified such that a each

pair of vertices was joined by an ∞-weighted edge with probability p, meaning that

a proportion of approximately p guest group pairs would be required to be “Def-

initely Apart”. Tests were then carried out using values of p = {0.0,0.3,0.6,0.9}
with numbers of tables k = {3,4, . . . ,40}.

Figure 6.5 shows the results of these tests with regard to the costs that were

achieved by the algorithm at termination. Note that for p ≥ 0.3, values are not re-

ported for the lowest k values because feasible k-colourings were not achieved (pos-

sibly because they do not exist). The figure indicates that, with no hard constraints

(p = 0.0), balanced table sizes have been achieved for all k-values up to 30. From

this point onwards, however, it seems there are simply too many tables (and too few
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Fig. 6.5 Solution costs for four values of p using various k-values

guests per table) to spread the guest groups equally. Higher costs are also often in-

curred for larger values of p because, in these cases, many guest group combinations

(including many of those required for achieving low-cost solutions) will now con-

tain at least one hard constraint violation, meaning that they cannot be assigned to

the same table. That said, similar solutions are achieved for p = 0.0, 0.3, and 0.6 for

various values of k, suggesting that the cost of the best solutions found is not unduly

affected by the presence of moderate levels of hard constraints. The exception to

this pattern, as shown in the figure, is for the smallest achievable values for k. Here,

the larger number of guest groups per table makes it more likely that combinations

of guest groups will be deemed infeasible, reducing the number of possible feasible

solutions, and making the presence of a zero-cost solution less likely.

Figure 6.6 now shows the effect that variations in p and k have on the neigh-

bourhood sizes encountered in Stage 2, together with the overall run times of the

algorithm. For unconstrained problem instances (p = 0.0) all Kempe chains are of

size 1, and all pairs of vertices in different colours qualify for a pair swap. Hence

the number of distinct moves available for each operator are n(k−1) and approxi-

mately (n(n−n/k))/2 respectively. However, for more constrained problems (lower

k’s and/or larger p’s), the number of neighbouring solutions becomes far fewer. This

means that a smaller number of evaluations need to take place at each iteration of

tabu search, resulting in shorter run times. The exception to this pattern is for low

values of k using p = 0.0, where the larger numbers of guests per table requires

more overheads in the calculation of Kempe chains and the cost function, resulting

in increased run times.

Finally it is also instructive to consider the proportion of Kempe chains that are

seen to be total during runs of the tabu search algorithm. Recall from Section 4.1.5

that a Kempe chain KEMPE(v, i, j) is described as total when KEMPE(v, i, j) =
(Si∪S j): that is, the graph induced by the set of vertices Si∪S j forms a connected bi-

partite graph. (Consider, for example, the chain KEMPE(v3,4,2) from Figure 6.3.) It

is obvious that interchanging the colours of vertices in a total Kempe chain serves no

purpose since this only results in the labels of the two colour classes being swapped,
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Fig. 6.6 Average number of neighbouring solutions per iteration of the tabu search algorithm (left);

and average run times of the algorithm (right) for the four problem instances using various k-values

(using a 3.0 GHz Windows 7 PC with 3.87 GB RAM)

thereby having no effect on the objective function. Figure 6.7 shows these propor-

tions for the four considered problem instances. We see that total Kempe chains

are more likely to occur with higher values of p (due to the greater connectivity of

the graphs), and for lower values of k (because the vertices of the graph are more

likely to belong to one of the two colours being considered). Indeed, for p = 0.9 and

k = 22 we see that all Kempe chains considered by the algorithm are total, meaning

that the neighbourhood operator is ineffective in this case.

6.5 Comparison to an IP Model

In this section we now compare the results achieved by our two-stage tabu search

algorithm to those of a commercial integer programming (IP) solver. As we saw in

Section 3.1.2, one of the advantages of using an IP approach is that, given excess

time, we can determine with certainty the optimal solution to a problem instance (or,

indeed, whether a feasible solution actually exists). In contrast to our tabu search-
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Fig. 6.7 Proportion of Kempe chains seen to be total for the four problem instances using various
k-values

based method, the IP solver is therefore able to provide the user with a certificate of

optimality and/or infeasibility, at which point it can be halted. Of course, due to the

underlying intractability of the WSP these certificates will not always be produced

in reasonable time, but given the relatively small problem sizes being considered in

this chapter, it is still pertinent to ask how often this is the case, and to also compare

the quality of the IP solver’s solutions to our tabu search approach under similar

time limits.

6.5.1 IP Formulation

The WSP can formulated as an IP problem using an extension to the model de-

scribed the Section 3.1.2 (specifically, Constraints (3.4)–(3.5), and (3.8)–(3.9)). We

now outline this model in full. Recall that there are n guest groups that we seek

to partition on to k tables. Accordingly, the seating preferences of guests can be

expressed using a symmetric matrix Wn×n, where

Wi j =

⎧⎪⎪⎨
⎪⎪⎩

∞ if we require guest groups i and j to be “definitely apart”;

1 if we would prefer i and j to be on different tables (“rather apart”);

−1 if we would prefer i and j to be on the same table (“rather together”);

0 otherwise.
(6.5)

As before, we also let si define the size of each guest group i ∈ {1, . . . ,n}. A solution

to the problem can then be represented by the binary matrix Xn×n, where

Xit =

{
1 if guest group i is assigned to table t,
0 otherwise,

(6.6)

and the binary vector Yn where
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Yt =

{
1 if at least one guest group is assigned to table t,
0 otherwise.

(6.7)

The following constraints must now be satisfied:

n

∑
t=1

Xit = 1 ∀i ∈ {1, . . . ,n} (6.8)

Xit +Xjt ≤ Yt ∀i, j : Wi j = ∞, ∀t ∈ {1, . . . ,n} (6.9)

Xit = 0 ∀i ∈ {1, . . . ,n}, ∀t ∈ {i+1, . . . ,n} (6.10)

Xit =
i−1

∑
j=t−1

Xj,t−1 ∀i ∈ {2, . . . ,n}, ∀t ∈ {2, . . . , i−1} (6.11)

n

∑
t=1

Yt ≤ k (6.12)

Here, Constraint (6.8) ensures that all guest groups are assigned to exactly one

table, while Constraint (6.9) stipulates that all “Definitely Apart” constraints are

obeyed and that Yt = 1 if and only if there exists a guest group that has been assigned

to table t. Constraints (6.10) and (6.11) then impose the anti-symmetry constraints

(as reviewed in Section 3.1.2), while Constraint (6.12) states that no more than k
tables should be used.

As with the tabu search algorithm, the quality of a feasible candidate solution

in the IP model is quantified using the sum of the two previously defined objective

functions ( f1 + f2). For the IP model, f1 is rewritten

f1 =
k

∑
t=1

n−1

∑
i=1

n

∑
j=i+1

Xit Xjt(si + s j)Wi j (6.13)

in order to cope with the binary matrix method of solution representation; how-

ever, it is equivalent in form to Equation (6.3). Similarly, f2 in the IP model is

defined in the same manner as Equation (6.4), except that τi is now calculated as

τi = ∑n
j=1 Xjts j . Again, this is equivalent to Equation (6.4).

6.5.2 Results

The above IP formulation was implemented and solved using the commercial soft-

ware FICO Xpress (version 7.5). The experiments of Section 6.4 were repeated us-

ing two time limits, five seconds, which is approximately the longest time required

by our two-stage tabu search algorithm (see Figure 6.6), and 600 seconds, to gain a

broader view of the IP solver’s capabilities with this problem.

The results of these trials are summarised in Figure 6.8. The circled lines in

the left of the graphs indicate values of k where certificates of infeasibility were

produced by the IP solver under the two time limits. As might be expected, these
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certificates are produced for a larger range of k-values when the longer time limit

is used; however, for p = 0.3 and 0.6 there remain values of k for which feasible

solutions have not been produced (by any algorithm) and where certificates of in-

feasibility have not been supplied. Thus we are none the wiser as to whether feasible

solutions exist in these particular cases. Also note that certificates of optimality were

not provided by the IP solver in any of the trials conducted.
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Fig. 6.8 Comparison of solution costs achieved using the IP solver (using two different time limits)

and our tabu search-based approach for p = 0.0, p = 0.3, p = 0.6, and p = 0.9 respectively

Figure 6.8 also reveals that, under the five second limit, the IP approach has

never produced a solution of equal of superior quality to that of our two-stage tabu

search method. In addition, the IP method under this time limit has achieved feasible

solutions in only a subset of cases compared to tabu search (83% of cases). When

the extended run time limit of 600 seconds is applied to the IP solver, this gap in

performance diminishes as we might expect, but similar patterns still emerge. We

see that the tabu search algorithm has produced feasible solutions whenever the

IP approach has, plus for three further cases. In addition, in the 118 cases where

both algorithms have achieved feasibility, tabu search has produced solutions of

superior quality in 91 cases, compared to the IP method’s six. Note that these six

instances seem to correspond quite strongly to the runs of tabu search where high

proportions of the Kempe chains are seen to be total, indicating that difficulties are

being experienced when trying to navigate through the space of feasible solutions

with these highly constrained problem instances. However, we must bear in mind
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that the IP solver has required more than 400 times the CPU time of the tabu search

method to achieve these particular solutions, making it far less suitable for such an

online tool.

6.6 Chapter Summary and Discussion

In this chapter we have examined the interesting combinatorial problem of con-

structing seating plans for large parties. As we have seen, the underlying graph

colouring properties of this problem allow the design of an effective two-stage

heuristic algorithm with much better performance than an equivalent IP formula-

tion, even for fairly small problems. This algorithm might also be used for other

situations where we are seeking to divide people into groups, such as birthday par-

ties, gala dinners, team building exercises, and group projects.

The problem formulation considered here (and used with the online tool) is cho-

sen to strike the right balance between being useful to users and being easy to under-

stand. As part of this, we have chosen to allow only three different weights on edges:

−1, 1, and ∞, corresponding to the constraints “Rather Together”, “Rather Apart”,

and “Definitely Apart” respectively. In practice however, this algorithm could be

applied to any set of weights. For example, we might choose to define a threshold

value c, and then consider any edge {u,v} with weight wuv ≥ c as a hard constraint,

with the remaining edges then being treated as soft constraints.2 On the other hand,

if it is preferable to treat all constraints as soft constraints, we might simply abandon

Stage 1 and use the optimisation process of Stage 2 to search through the solution

space comprising all k-partitions of the guest groups.

Finally, an additional advantage of using a graph colouring-based model is that it

can be easily extended to incorporate “table specific” constraints that specify which

table each guest group can and cannot be assigned to. To impose such constraints

we first need to add k additional vertices to the model, one for each available table.

Next, edges of weight ∞ then need to be added between each pair of these “table-

vertices”, thereby forming a clique of size k and ensuring that each table-vertex is

assigned to a different colour in any feasible solution. Having introduced these extra

vertices we can then add other types of constraints into the model:

• If guest group v is not permitted to sit at table i, then an edge of weight ∞ can be

imposed between vertex v and the ith table vertex.

• If a guest group v must be assigned to table i, then edges of weight ∞ can be

imposed between vertex v and all table vertices except the ith table vertex.

Note that if our model is to be extended in this way, we will now be associating

each subset of guest groups Si in a solution S = {S1, . . . ,Sk} with a particular table

number i. Hence we might also permit tables of different sizes and shapes into the

model, perhaps incorporating constraints concerning these factors into the objective

2 That is, the graph G′ used in Stages 1 and 2 would comprise edge set E ′ = {{u,v} ∈ E : wuv ≥ c}.
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function. Extensions of this type will be considered in relation to a different problem

in the next chapter.



Chapter 7
Designing Sports Leagues

In this chapter, our next case study considers the applicability of graph colouring

methods for producing round-robin tournaments, which are particularly common in

sporting competitions. As we will see, the task of producing valid round-robin tour-

naments for a given number of teams is relatively straightforward, though things

can become more complicated when additional constraints are added to the prob-

lem. The initial sections of this chapter focus on the problem of producing round-

robins in general terms and examine the close relationship between this problem and

graph colouring. A detailed real-world case study that makes use of various graph

colouring techniques is then presented in Section 7.6.

7.1 Problem Background

Round-robin schedules are used in many sports tournaments and leagues across

the globe, including the Six Nations Rugby Championships, various European

and South American domestic soccer leagues, and the England and Wales County

Cricket Championships. Round-robins are schedules involving t teams, where each

team is required to play all other teams exactly l times within a fixed number of

rounds. The most common types are single round-robins, where l = 1, and double
round-robins, where l = 2. In the latter, teams are typically scheduled to meet once

in each other’s home venue.

Usually, the number of teams in a round-robin schedule will be even. In cases

where t is odd, an extra “dummy team” can be introduced, and teams assigned to

play this dummy team will receive a bye in the appropriate part of the schedule.

Definition 7.1 Round-robin schedules involving t teams are considered valid if each
team competes at most once per round. They are also described as compact if the
number of rounds used is minimal at l(t −1), thus implying t/2 matches per round.

We saw in Chapter 5 that compact round-robin schedules can be constructed

for any number of teams t by simply making use of Kirkman’s circle method (see

� Springer International Publishing Switzerland 2016
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Theorem 5.10). In addition to this, it is also known that the number of distinct round-

robin schedules grows exponentially with the number of teams t, since this figure

is monotonically related to the number of nonisomorphic one-factorisations of the

complete graph Kt .

Definition 7.2 Let Kt be the complete graph with t vertices, where t is even. A one-

factor of Kt is a perfect matching. A one-factorisation of Kt is a partition of the edges
into t −1 disjoint one-factors.

An example one-factorisation of K6, comprising five one-factors, is illustrated in

Figure 5.7. For t ∈ {2,4,6} there is just one nonisomorphic one-factorisation avail-

able. These numbers then rise to 6, 396, 526,915,620, and 1,132,835,421,602,062,347

for t = 8 to 14 respectively (Dinitz et al., 1994). Such a growth rate—combined

with the fact that many different round-robins can be generated from a particular

one-factorisation by relabelling the teams and reordering the rounds—implies that

the enumeration of all round-robin schedules will not be possible in reasonable time

for nontrivial values of t.
In addition to Kirkman’s circle method, other algorithms of linear complexity

are also available for quickly producing valid compact round-robin schedules. The

“greedy round-robin” algorithm, for example, operates by arranging matches into

lexicographic order: {1,2},{1,3},{1,4}, . . . ,{t − 1, t}. The first match is then as-

signed to the first round, and each remaining match is then considered in turn and

assigned to the next round where no clash occurs. When the final round is reached,

the algorithm loops back to the first round. The solution produced by this method

for t = 8 teams is given in Figure 7.1. Note that if a double round-robin is required,

the second half of the schedule can be produced by simply copying the first half.

Round Matches
r1 : {{1,2}, {3,7}, {4,6}, {5,8}}
r2 : {{1,3}, {2,8}, {4,7}, {5,6}}
r3 : {{1,4}, {2,3}, {5,7}, {6,8}}
r4 : {{1,5}, {2,4}, {3,8}, {6,7}}
r5 : {{1,6}, {2,5}, {3,4}, {7,8}}
r6 : {{1,7}, {2,6}, {3,5}, {4,8}}
r7 : {{1,8}, {2,7}, {3,6}, {4,5}}

Fig. 7.1 Single round-robin schedule produced by the greedy round-robin algorithm for t = 8

teams

Another linear-complexity method for producing compact round-robin sched-

ules is the “canonical” round-robin algorithm of de Werra (1988). Unlike the cir-

cle and greedy methods, this approach focusses on the issue of deciding whether

teams should play at home or away. In this case, a “break” is defined as a situation

where a team is required to play two home-matches (or away-matches) in consecu-

tive rounds, and it is proven that this method always achieves the minimum number

of t − 2 breaks. Pseudocode for this method is shown in Figure 7.2. Note that in

this case, matches are denoted by an ordered pair with the first and second elements
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denoting the home- and away-teams respectively. The canonical schedule for t = 8

is also given in Figure 7.3.

The task of minimising breaks has also been explored in other research. Trick

(2001), Elf et al. (2003), and Miyashiro and Matsui (2006b), for example, have

examined the problem of taking an existing single round-robin and then assigning

home/away values to each of the matches in order to minimise the number of breaks.

Miyashiro and Matsui (2005) have also shown that the problem of deciding whether

a home/away assignment exists for a particular schedule such that the theoretical

minimum of t−2 breaks is achieved is computable in polynomial time. Meanwhile,

the inverse of this problem—taking a fixed home/away pattern and then assigning

matches consistent with this pattern—has also been studied by various other au-

thors (Russell and Leung, 1994; de Werra, 1988; Nemhauser and Trick, 1998).

One interesting feature of the greedy, circle and canonical methods is that the

solutions they produce are isomorphic. For example, a canonical single round-robin

schedule for t teams can be transformed into the schedule produced by the greedy

round-robin algorithm by simply converting the ordered pairs into unordered pairs

and then reordering the rounds. Similarly, a circle schedule can be transformed into a

greedy schedule by relabelling the teams using the mapping t1 ← tt and ti ← ti−1 ∀i∈
{2, . . . , t}, with the rounds then being reordered (see also (Anderson, 1991)).

MAKE-CANONICAL-SCHEDULE (t)
(1) for i ← 1 to n−1 do
(2) if i is odd then assign (i,n) to round ri
(3) else assign (n, i) to round ri
(4) for j ← 1 to n/2−1 do
(5) x ← (i+ j) mod (n−1)
(6) y ← (i− j) mod (n−1)
(7) if x = 0 then x ← n−1

(8) if y = 0 then y ← n−1
(9) if i is odd then assign (x,y) to round ri

(10) else assign (y,x) to round ri

Fig. 7.2 Procedure for producing a canonical single round-robin schedule for t teams, where t is
even

7.1.1 Further Round-Robin Constraints

Although it is straightforward to construct valid, compact round-robin schedules

using constructive methods such as the greedy, circle, and canonical algorithms,

in practical circumstances it is often the case that the production of “high-quality”

schedules will depend on additional user requirements and constraints. As we have

seen, the minimisation of “breaks” is one example of this. Other constraints, how-
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Round Matches
r1 : {(1,8), (2,7), (4,5), (6,3)}
r2 : {(3,1), (5,6), (7,4), (8,2)}
r3 : {(1,5), (3,8), (4,2), (6,7)}
r4 : {(2,6), (5,3), (7,1), (8,4)}
r5 : {(1,2), (3,7), (5,8), (6,4)}
r6 : {(2,3), (4,1), (7,5), (8,6)}
r7 : {(1,6), (3,4), (5,2), (7,8)}

Fig. 7.3 Canonical round-robin schedule for t = 8 teams

ever, can include those associated with demands from broadcasters, various econom-

ical and logistical factors, inter-team politics, policing, and the perceived fairness of

the league. In addition, factors such as the type of sport, the level of competition,

and the country (or countries) involved will also play a part in determining what is

considered “high-quality”. An impression of the wide range of such constraints and

requirements can be gained by considering the variety of round-robin scheduling

problems that have previously been tackled in the literature, including German, Aus-

trian, and Italian soccer leagues (Bartsch et al., 2006; della Croce and Oliveri, 2006),

New Zealand basketball leagues (Wright, 2006), amateur tennis tournaments (della

Croce et al., 1999), English county cricket fixtures (Wright, 1994), and American

professional ice hockey (Fleurent and Ferland, 1993). A good survey on the wide

range of problems and solution methods for sports scheduling is also provided by

Kendall et al. (2010).

An oft-quoted example of such requirements is the issue of carryover in round-

robin schedules. Here, we consider the possibility of a team’s performance being

influenced by its opponents in previous rounds. For example, if ti is known to be a

very strong team whose opponents are often left injured or demoralised, then a team

that plays ti’s opponents in the next round may well be seen to gain an advantage.1

In such cases the aim is to therefore produce a round-robin schedule in which the

overall effects of carryover are minimised. This requirement was first considered

by Russell (1980), who proposed a constructive algorithm able to produce provably

optimal schedules in cases where the number of teams t is a power of 2. More

recently, methods for small-sized problems have also been proposed by Trick (2001)

and Henz et al. (2004), who both make use of constraint programming techniques.

Another set of schedule requirements, which has become somewhat of a bench-

mark over the past decade, is encapsulated in the travelling tournament problem

(TTP). Originally proposed by Easton et al. (2001), in this problem a compact dou-

ble round-robin schedule is required where teams play each other twice, once in each

other’s home venue. The overriding aim is to then minimise the distances travelled
by each team. Geographical constraints such as this are particularly relevant in large

countries such as Brazil and the USA where match venues are typically far apart.

1 As an illustration, in Figure 7.1 we see that team 2, for instance, is scheduled to play the opponents

of team 1 from the previous round on five different occasions. This feature also exists for other
teams; thus this schedule actually contains rather a large amount of carryover.
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Consequently, when a team is scheduled to attend a succession of away-matches,

instead of returning to their home city after each match, the team travels directly to

their next away venue. Note that in addition to the basic round-robin scheduling con-

straints, this problem also contains elements of the travelling salesman problem, as

we are interested in scheduling runs of successive away-matches for each team such

that they occur in venues that are close to one another. An early solution method

proposed for this formulation was proposed by Easton et al. (2003), who used

integer- and constraint-programming techniques. Subsequent proposals, however,

focused on metaheuristic techniques, and in particular, neighbourhood search-based

algorithms. Good examples of these include the simulated annealing approaches

of Anagnostopoulos et al. (2006) and Lim et al. (2006), and the local-search ap-

proaches of Di Gaspero and Schaerf (2007) and Ribeiro and Urrutia (2007). In the

latter example the authors also consider the added restriction that the double round-

robin schedule should be “mirrored”: that is, if teams ti and t j play in ti’s home

stadium in round r ∈ {1, . . . , t −1}, then ti and t j should necessarily play each other

in t j’s home stadium in round r+(t −1).

7.1.2 Chapter Outline

The above paragraphs illustrate that the requirements of sports scheduling problems

can be complex and idiosyncratic. In the remainder of this chapter we will examine

the ways in which graph colouring concepts can be used to help find solutions to

such problems. In the next section we will describe how basic round-robin schedul-

ing problems can be represented as graph colouring problems. In Section 7.3 we

then assess the “difficulty” of solving such graphs using our suite of graph colour-

ing algorithms from Chapter 4. Following this, in Section 7.4 we will then discuss

ways in which this model can be extended in order to incorporate other types of

“hard” (i.e., mandatory) constraint, and in Section 7.5 we discuss various different

neighbourhood operators that can be used with this extended model for exploring

the space of feasible solutions (that is, round-robin solutions that are compact, valid,

and also obey any imposed hard constraints). Finally, in Section 7.6 we consider a

real-world round-robin scheduling problem from the Welsh Rugby Union and pro-

pose two separate algorithms that make use of our proposed algorithmic operators.

The performance of these algorithms is then analysed over a number of different

problem instances.

7.2 Representing Round-Robins as Graph Colouring Problems

Round-robin scheduling problems can be represented as graph colouring problems

by considering each individual match as a vertex, with edges then being added be-

tween any pair of matches that cannot be scheduled in the same round (i.e., matches
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featuring a common team). Colours then represent the individual rounds of the

schedule, and the task is to colour the graph using k colours, where k represents

the number of available rounds. Note that for the remainder of this chapter we only

consider the task of producing compact schedules: thus, k = χ(G) unless otherwise

specified.

For the single round-robin, each vertex is associated with an unordered pair

{ti, t j}, denoting a match between teams ti and t j . The number of vertices n in such

graphs is thus 1
2 t(t −1), with deg(v) = 2(t −2) ∀v ∈V . For a compact schedule, the

number of available colours k = t −1. For double round-robins the number of ver-

tices n = t(t −1), deg(v) = 4(t − 2)+1 ∀v ∈ V , and k = 2(t −1), since teams will

play each other twice. In this case, each vertex is associated with an ordered pair

(ti, t j �=i), with ti denoting the home-team and t j the away-team. An example graph

for a double round-robin with t = 4 teams is provided in Figure 7.4.
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Fig. 7.4 Graph for a double round-robin problem with t = 4 teams (a), an optimal colouring of this
graph (b), and the corresponding schedule (c)

Recall from Section 5.2 that the complete graph Kt can also be used to repre-

sent a round-robin scheduling problem by associating each vertex with a team and

each edge with a match. In such cases, the task is to find a proper edge colour-

ing of Kt , with all edges of a particular colour indicating the matches that occur in a

particular round. The graphs generated using our methods above are the correspond-

ing line graphs of these complete graphs. Of course, in practice it is easy to switch

between these two representations. However, the main advantage of using our repre-

sentation is that it allows the exploitation of previously developed vertex-colouring

techniques, as the following sections will demonstrate.

7.3 Generating Valid Round-Robin Schedules

Having defined the basic structures of the “round-robin graphs” that we wish

to colour, in this section we investigate whether such graphs actually constitute

difficult-to-colour problem instances. Note that by k-colouring such graphs we are

doing nothing more than producing valid, compact round-robin schedules which, as

we have mentioned, can be easily constructed using the circle, greedy, and canoni-
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cal algorithms. However, there are a number of reasons why solving these problems

from the perspective of vertex colouring is worthwhile.

• Because of the structured, deterministic way in which the circle, greedy and

canonical methods operate, their range of output will only represent a very small

part of the space of all valid round-robin schedules.

• The schedules that are produced by the circle, greedy and canonical methods also

occupy very particular parts of the solution space. For example, Miyashiro and

Matsui (2006a) have conjectured that the circle method produces schedules in

which the amount of carryover is actually maximised.

• As noted earlier, the solutions produced via the greedy and circle and canoni-

cal methods are in fact isomorphic. Moreover, the specific structures present in

these isomorphic schedules are often seen to have adverse effects when applying

neighbourhood search operators, as we will see in Section 7.5.

• Finally, we are also able to modify the graph colouring model to incorporate

additional real-world constraints, as shown in Section 7.4.

By using graph colouring methods, particularly those that are stochastic in nature,

the hope is that we therefore have a more robust and less biased mechanism for pro-

ducing round-robin schedules, allowing a larger range of structurally distinct sched-

ules to be sampled. This is especially useful in the application of metaheuristics,

where the production of random initial solutions is often desirable.

Figure 7.5 summarises the results of experiments using single and double round-

robins of up to t = 60 teams. 50 runs of the backtracking and hybrid evolutionary

algorithms were executed in each case using a computation limit of 5× 1011 con-

straint checks as before. The success rates in these figures gives the percentage of

these runs where optimal colourings (compact valid round-robins) were produced.

It is obvious from these figures that the HEA is very successful here, featuring 100%

success rates across all instances. Indeed, no more than of 0.006% of the computa-

tion limit on average was required for any of the values of t tested. On the other hand,

the backtracking approach experiences more difficulty, with success rates dropping

considerably for larger values of t. That said, when the algorithm does produce op-

timal solutions it does so quickly, indicating that solutions are either found early in

the search tree, or not at all.2 The success of the HEA with these instances is also

reinforced by the fact that its solutions are very diverse, as illustrated in the figure.

7.4 Extending the Graph Colouring Model

Another advantage of transforming the task of round-robin construction into a type

of graph colouring problem is that we can easily extend the model to incorporate

2 On this point, Lewis and Thompson (2010) have also found that much better results for the

backtracking algorithm on these particular graphs can be achieved by restricting the algorithm to

only inspect one additional branch from each node of the search tree. The source code available
for this algorithm can easily be modified to allow this.
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Fig. 7.5 Success rates of the Backtracking and HEA algorithms for finding optimal colourings

with, respectively, single round-robin graphs for t = 2, . . . ,60 (n= 1, . . . ,1,770), and double round-
robin graphs (n= 2, . . . ,3,540). All figures are averaged across 50 runs. The bars show the diversity

of solutions produced by the HEA across the 50 runs, calculated using Equation (4.9)

other types of sports scheduling constraints. In this section, we specifically con-

sider the imposition of round-specific constraints, which specify the rounds that

matches can and cannot be assigned to. In many practical cases, round-specific con-

straints will be a type of hard constraint—that is, they will be mandatory in their

satisfaction—and candidate solutions that violate such constraints will be consid-

ered infeasible. Encoding such constraints directly into the graph colouring model

thus allows us to attach an importance to these constraints that is equal to the basic

round-robin constraints themselves.

To impose round-specific constraints we follow the method seen in Section 5.7

for the list colouring problem. First, k extra vertices are added to the model, one for

each available round. Next, edges are then added between all pairs of these “round-

vertices” to form a clique of size k, ensuring that each round-vertex will be assigned

to a different colour in any feasible solution. Having introduced these extra vertices,

a variety of different round-specific constraints can then be introduced:
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Match Unavailability Constraints: Often it will be impossible to assign a match

to a particular round, perhaps because the venue of the match is being used for

another event, or because league rules state that the associated teams should not

play each other in specific rounds in the league. Such constraints are introduced

by adding an edge between the relevant match-vertex and round-vertex.

Preassignment Constraints: In some cases, a match will need to be assigned to

a specific round ri, e.g., to increase viewing figures and/or revenue. For such

constraints, edges are added between the appropriate match-vertex and all round-

vertices except for the round-vertex corresponding to ri.

Concurrent Match Constraints: In some cases it might also be undesirable for two

matches (ti, t j) and (tl , tm) to occur in the same round. For example, the two home

teams ti and tl may share a stadium, or perhaps it is forbidden for rival fans of

certain teams to visit the same city on the same day. Such constraints can be

introduced by assigning an edge between the appropriate pairs of match-vertices.

(1,2) 
(1,3) 

(2,1) 

(1,4) 

(2,3) 

(2,4) 

(4,3) 

(4,2) 

(4,1) 

(3,4) 

(3,2) 

(3,1) 

r1 

r2 

r3 r5 

r6 

r4 

Team 2 cannot play 
at home in round 4 

Match (1,3) cannot 
occur in round 1 

Fig. 7.6 Method of extending the graph colouring model to incorporate round-specific constraints.
“Match-vertices” appear on the left; “round-vertices” on the right

Figure 7.6 gives two examples of how we can impose such constraints. It is ob-

vious that any feasible k-coloured solution for such graphs will constitute a valid

compact round-robin schedule that obeys the imposed round-specific constraints.

As we will see in Section 7.5, incorporating constraints in this fashion also allows

us to apply neighbourhood operators stemming from the underlying graph colour-

ing model that ensure that these extra constraints are never reviolated. Note that an

alternative strategy for coping with hard constraints such as these is to allow their

violation within a schedule, but to then penalise their occurrence via a cost function.

Anagnostopoulos et al. (2006), for example, use a strategy whereby the space of all

valid compact round-robins is explored, with a cost function then being used that

reflects the number of hard and soft constraint violations. Weights are then used to

place a higher penalty on violations of the hard constraints, and it is hoped that by

using such weights the search will eventually move into areas of the solution space

where no hard constraint violations occur. The choice of which strategy to employ

will depend largely on practical requirements.

To investigate the effects that the imposition of round-specific constraints has

on the difficulty of the underlying graph colouring problem, double round-robin
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graphs were generated with varying numbers of match unavailability constraints.

Specifically, these constraints were added by considering each match-vertex/round-

vertex pair in turn, and adding edges between them with probability p. This means,

for example, that if p = 0.5, each match can only be assigned to approximately half

of the available rounds. Graphs were also generated in two ways: one where k =
χ(G) was ensured (by making reference to a pregenerated valid round-robin), and

one where this matter was ignored, possibly resulting in graphs for which χ(G)> k.

Note that by adding edges in this binomially distributed manner, the expected

degrees of each vertex can be calculated in the following way. Let V1 define the set

of match-vertices and V2 the set of round-vertices, and let v ∈V1 and u ∈V2. Then:

E(deg(v)) = 4(t −2)+1+ p×|V2| ∀v ∈V1, and

E(deg(u)) = 2(t −1)−1+ p×|V1| ∀u ∈V2.
(7.1)

The expected variance in degree across all vertices V = V1 ∪V2, where n = |V |, is

thus approximated as

|V1|×E(deg(v))2 + |V2|×E(deg(u))2

n
−
( |V1|×E(deg(v))+ |V2|×E(deg(u))

n

)2

.

(7.2)

The effect that p has on the overall degree coefficient of variation (CV) of these

graphs is demonstrated in Figure 7.7. As p is increased from zero, E(deg(v)) and

E(deg(u)) initially become more alike, resulting in a slight drop in the CV. However,

as p is increased further, E(deg(u)) rises more quickly than E(deg(v)), resulting in

large increases to the CV.
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Fig. 7.7 Effect of varying p on the degree coefficient of variation with double round-robin graphs

of size t = 16 and 30

The consequences of these specific characteristics help to explain the perfor-

mance of our six graph colouring algorithms across a large number of instances,

as shown in Figure 7.8. As with the results from Chapter 4, the quality of solution
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Fig. 7.8 Mean quality of solutions achieved with double round-robin graphs using (respectively):

t = 16, (n = 270, k = 30) with χ(G) = 30; t = 16 with χ(G)≥ 30; t = 30, (n = 928, k = 58) with
χ(G) = 58; and t = 30 with χ(G)≥ 58. All points are the average of 25 runs on 25 graphs

achieved by TABUCOL and PARTIALCOL is observed to be substantially worse than

that of the other approaches when p, and therefore the degree CV, is high. In partic-

ular, TABUCOL shows very disappointing performance, providing the worst-quality

results for both sizes of graph in all cases where the CV is � 40%.

In contrast, some of the best performance across the instances is once again due

to the HEA. Surprisingly, ANTCOL also performs well here, with no significant

difference being observed in the mean results of the HEA and ANTCOL algorithms

across the set. The reasons for the improved performance of ANTCOL, particularly

with denser graphs, seems due to two factors: (a) the higher degrees of the vertices

in the graphs, and (b) the high variance in degrees. In ANTCOL’s BUILDSOLUTION

procedure (Section 4.1.4) the first factor naturally increases the influence of the

heuristic value η in Equation (4.4), while the second allows a greater discrimination

between vertices. In these cases it seems that a favourable balance between heuristic

and pheromone information is being struck, allowing ANTCOL’s global operator to

effectively contribute to the search.

Note, however, that if we examine individual values of p, the picture becomes

more complicated. Figure 7.9, for example, shows run profiles of ANTCOL and

HEA on four sets of large, highly constrained round-robin graphs. For compari-

son, the variant HEA* is also included here, which features a local-search iteration

limit equal to ANTCOL’s (i.e., I reduced from 16n to 2n). For p = 0.8, we see
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Fig. 7.9 Run profiles for double round-robins with t = 30 (n = 928) using respectively: p = 0.8,

χ(G) = 58; p = 0.8, χ(G)≥ 58; p = 0.9, χ(G) = 58; and p = 0.9, χ(G)≥ 58. HEA* denotes the
HEA algorithm with a reduced local search limit of I = 2n

that ANTCOL quickly produces the best observed results, with HEA consistently

requiring an additional colour. However, reducing the local search element of the

HEA—thus placing more emphasis on global search—seems to improve perfor-

mance, though the results of HEA* are still inferior to those of ANTCOL. On the

other hand, for p = 0.9 the picture is reversed, with HEA (using I = 16n) clearly

producing the best results, suggesting that increased amounts of local search are

beneficial in this case.

Despite these complications however, the results of Figure 7.9 allow us to con-

clude that methods such as ANTCOL and the HEA provide useful mechanisms for

producing feasible compact round-robin schedules, even in the presence of high

levels of additional constraints.

7.5 Exploring the Space of Round-Robins

Upon production of a valid round-robin schedule, we may now choose to apply one

or more neighbourhood operators to try and eliminate occurrences of any remain-

ing soft constraint violations. Table 7.1 lists a number of neighbourhood operators

that have been proposed for round-robin schedules, mostly for use with the travel-
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ling tournament problem (Anagnostopoulos et al., 2006; Di Gaspero and Schaerf,

2006; Ribeiro and Urrutia, 2007). Note that the information given in this table ap-

plies to double round-robins, so the number of rounds k = 2(t−1); however, simple

adjustments can be made for other cases.

A point to note about these operators is that while they all preserve the validity

of a round-robin schedule, they will not be useful in all circumstances. For example,

applications of N1, N2, and N3 will not affect the amount of carryover in a sched-

ule. Also, while applications of N2 can change the home/away patterns of individual

teams, they cannot alter the total number of breaks in a schedule. Finally, perhaps

the most salient point from our perspective is that if extra hard constraints are be-

ing considered, such as the round-specific constraints listed in Section 7.4, then the

application of such operators may lead to schedules that, while valid, are not neces-

sarily feasible.

Table 7.1 Description of various neighbourhood operators that preserve the validity and compact-
ness of double round-robin schedules. “Move Size” refers to the number of matches (vertices in

the graph colouring model) that are affected by the application of these operators

Description Move Size

N1 Select two teams, ti �= t j , and swap the rounds of vertices (ti, t j) 2

and (t j, ti).
N2 Select two teams, ti �= t j , and swap their opponents in all rounds. 2(k−2)
N3 Select two teams, ti �= t j , and swap all occurrences of ti to t j 2k−2

and all occurrences of t j to ti.
N4 Select two rounds, ri �= r j and swap their contents. t
N5 Select a match and move it to a new round. Repair the schedule Variable

using an ejection chain repair procedure.

Pursuing the relationship with graph colouring, a promising strategy for explor-

ing the space of round-robin schedules is again presented by the Kempe chain in-

terchange operator (see Definition 3.1). Of course, because this operator is known

to preserve the feasibility of a graph colouring solution, it is applicable to both the

basic and extended versions of our graph colouring model. On the other hand, the

pair-swap operator (Definition 3.2) is not suitable here because swapping the colours

of two nonadjacent vertices (i.e., swapping the rounds of a pair of matches with no

common team) will not retain the feasibility of a solution.

Recall that the number of vertices affected by a Kempe chain interchange can

vary. For basic (non-extended) round-robin colouring problems involving t teams,

the largest possible move involves t vertices (i.e., two colours, with t/2 vertices in

each). In Figure 7.10 we illustrate what we have found to be typical-shaped distri-

butions of the differently sized Kempe chains with single and double round-robins.

These examples were gained by generating initial solutions with our graph colour-

ing algorithms and then performing random walks of 106 neighbourhood moves. We

see that in the case of double round-robins, the smallest moves involve exactly two

vertices, which only occurs when a chain is formed containing the complementary
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Fig. 7.10 Distribution of differently sized Kempe chains for t = 10, 20, and 40 for SRRs and DRRs

match-vertices (ti, t j) and (t j, ti). In this case the Kempe move is equivalent to the

operator N1 (Table 7.1) and it occurs with a probability 1
k−1 (obviously moves of

size 2 do not occur with single round-robins because a match does not have a corre-

sponding reverse fixture with which to be swapped). Meanwhile, the most probable

move in both cases is a total Kempe chain interchange (i.e., involving all vertices

in the two associated colours). Moves of this size are equivalent to a correspond-

ing move in N4 and occur when all vertices in the two colours form a connected

component. Such moves appear to be quite probable due to the relatively high edge

densities of the graphs. Importantly however, we see that for larger values of t the

majority of moves are of sizes between these two extremes, resulting in moves that

are beyond those achievable with neighbourhood operators N1 and N4.

We also performed this same set of experiments by performing random walks

from schedules generated by the circle, greedy and canonical algorithms. However,

due to the structured way in which these methods go about constructing a schedule,

for many different values of t single round-robins are produced in which all appli-

cations of the Kempe chain interchange operator are of size t.3 For DRRs similar

3 Such solutions are usually termed perfect one-factorisations. Specifically, this occurs with 33.6%
of t values between 2 and 1,000, with the rate of occurrence remaining fairly consistent between
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observations were also made, though in this case moves of size 2 were also possi-

ble with the remaining proportion of 1− 1
k−1

moves being of size t. Clearly, such

features are undesirable as they do not allow the Kempe chain interchange operator

to produce moves beyond what can already be achieved using N1 and N4, limiting

the number of solutions accessible via the operator. We should note, however, that

we found that this problem could be circumnavigated in some cases by applying

neighbourhood operator N5 from Table 7.1 to the solution. It seems that, unlike the

other operators detailed in this table, N5 has the potential of breaking up the struc-

tural properties of these solutions, allowing the Kempe chain distributions to assume

their more “natural” shapes as seen in Figure 7.10. However, we still found cases

where this situation was not remedied.4

One of the main reasons why an analysis of move sizes is relevant here is be-

cause of the effects that the size of a move can have on the cost of a solution at

different stages of the optimisation process. On the one hand, “large” moves can

facilitate the exploration of wide expanses of the solution space and can provide

useful mechanisms for escaping local optima. On the other hand, when relatively

good candidate solutions are being considered, large moves will also be disruptive,

usually worsening the quality of a solution as opposed to improving it. These ef-

fects are demonstrated in Figure 7.11 where we illustrate the relationship between

the size of a move and the resultant change in an arbitrary cost function. In the left

graph, the Kempe chain interchange operator has been repeatedly applied to a so-

lution that was randomly produced by one of our graph colouring algorithms. Note

that larger moves here tend to give rise to greater variance in cost, but that many

moves lead to improvements. In contrast, on the right-hand side the effects of the

Kempe chain interchange operator on a relatively “good” solution (which has a cost

approximately quarter of the previous one) are demonstrated. Here, larger moves

again feature a larger variance in cost, but we also witness a statistically significant

medium positive correlation (r = 0.46), demonstrating that larger moves tend to be

associated with larger decreases in solution quality. Di Gaspero and Schaerf (2007)

have also noted the latter phenomenon (albeit with different neighbourhoods and a

different cost function) and have suggested a modification to their neighbourhood

search algorithm whereby any move above a specific size is automatically rejected

with no cost evaluation taking place. Because such moves lead to a degradation in

quality and will therefore be rejected in the majority of cases, they find that their al-

gorithm’s performance over time is increased by skipping these mostly unnecessary

evaluations. On the flip side, of course, such a strategy also eliminates the possi-

bly of “larger” moves occurring which could diversify the search in a useful way,

though this is not seen to be an issue in their work.

these bounds. For values of t < 50 this occurs with SRRs for t = 8, 12, 14, 18, 20, 24, 30, 32, 38,

42, 44, and 48.
4 Specifically for SRRs with t = 12, 14, 20, 30, and 38.
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Fig. 7.11 Demonstrating how Kempe chain interchanges of different sizes influence the change in

cost of a randomly generated solution (left) and a “good” solution (right). In both cases a double

round-robin with t = 16 teams was considered using cost function c2 defined in Section 7.6.1
(negative changes thus reflect an improvement)

7.6 Case Study: Welsh Premiership Rugby

In this section we now present a real-world application of the graph colouring-based

techniques introduced in this chapter. This problem was provided to us by the Welsh

Rugby Union (WRU), based at the Millennium Stadium in Cardiff, which is the

governing body for all rugby competitions, national and international, in Wales.

The particular problem that we are concerned with is the Principality Premiership
league, which is the highest-level domestic league in the country.

The Principality Premiership problem involves t teams playing in a compact dou-

ble round-robin tournament. A number of round-specific (hard) constraints are also

stipulated, all of which are mandatory in their satisfaction.

Hard Constraint A: Some pairs of teams in the league share a home stadium.

Therefore when one of these teams plays at home, the other team must play

away.
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Hard Constraint B: Some teams in the league also share their stadia with teams

from other leagues and sports. These stadia are therefore unavailable in certain

rounds. (In practice, the other sports teams using these venues have their matches

scheduled before the Principality Premiership teams, and so unavailable rounds

are known in advance.)

Hard Constraint C: Matches involving regional rivals (so-called “derby matches”)

need to be preassigned to two specific rounds in the league, corresponding to

those falling on the Christmas and Easter weekends.

The league administrators also specify two soft constraints. First, they express

a preference for keeping reverse fixtures (i.e., matches (ti, t j) and (t j, ti)) at least

five rounds apart and, if possible, for reverse fixtures to appear in opposite “halves”

of the schedule (they do not consider the stricter requirement of “mirroring” to be

important, however). Second, they also express a need for all teams to have good

home/away patterns, which means avoiding breaks wherever possible.

7.6.1 Solution Methods

In this section we describe two algorithms for this scheduling problem. Both of

these use the strategy of first producing a feasible solution, followed by a period of

optimisation via neighbourhood search in which feasibility (i.e., validity, compact-

ness, and adherence to all hard constraints) is maintained. Specific details of these

methods together with a comparison are given in the next three subsections.

In both cases initial feasible solutions are produced by encoding all of the hard

constraints using the extended graph colouring model from Section 7.4, with one

of our graph colouring algorithms then being applied. For Hard Constraint A, if a

pair of teams ti and t j is specified as sharing a stadium then edges are simply added

between all match-vertices corresponding to home matches of these teams. For Hard

Constraint B, if a venue is specified as unavailable in a particular round, then edges

are added between all match-vertices denoting home matches of the venue’s team(s)

and the associated round-vertex. Finally for Hard Constraint C, edges are also added

between the vertices corresponding to derby matches and all round-vertices except

those representing derby weekends.

Details of the specific problem instance faced at the WRU are given in bold in

Table 7.2. To aid our analysis we also generated (artificially) a further nine instances

of comparable size and difficulty, details of which are also given in the table.5 As

it turned out, we found that it was quite straightforward to find a feasible solution

to the WRU problem using the graph colouring algorithms from Chapter 4. For

the purposes of our experiments we therefore ensured that all artificially generated

problems also feature at least one feasible solution. However, the minimum number

of soft-constraint violations achievable in these problems is not known.

5 These instances can be downloaded from www.rhydlewis.eu/resources/PrincipalityPremProbs.zip.
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Table 7.2 Summary of the sports scheduling problem instances used. The entry in
bold refers to the real-world WRU problem. These problems can be downloaded from

www.rhydlewis.eu/resources/PrincipalityPremProbs.zip

# Teams t Vertices n Graph Density Aa Bb Cc

1 12 154 0.268 0 2 {5, 5} 3

2 12 154 0.292 1 3 {6, 8, 10} 6
3 12 154 0.308 2 4 {3, 6, 8, 10} 6

4 14 208 0.236 0 2 {4, 5} 4

5 14 208 0.260 1 3 {8, 10, 10} 7
6 14 208 0.271 2 5 {3, 6, 8, 10, 10} 7

7 16 270 0.219 1 3 {4, 5, 6} 5

8 16 270 0.237 2 5 {3, 6, 8, 10, 10} 8

9 18 340 0.194 1 3 {4, 5, 6} 6
10 18 340 0.212 2 6 {4, 5, 6, 7, 10, 10} 9

a Number of pairs of teams sharing a stadium
b Number of teams sharing a stadium with teams from another league/sport. The number of match-
unavailability constraints for each of these teams is given in { }’s.
c Number of local derby pairings

The soft constraints of this problem are captured in two cost functions, both of

which need to be minimised:

Spread Cost (c1): Here, a penalty of 1 is added each time a match (ti, t j) and its

return fixture (t j, ti) are scheduled in rounds rp and rq, such that |rp − rq| ≤ 5. In

addition, a penalty of 1
1/2×t(t−1) is also added each time matches (ti, t j) and (t j, ti)

are scheduled to occur in the same half of the schedule.

Break Cost (c2): Here, the home/away pattern of each team is analysed in turn

and penalties of bl are incurred for each occurrence of l consecutive breaks. In

other words, if a team is required to play two home-matches (or away-matches)

in succession, this is considered as one break and incurs a penalty of b1. If a

team has three consecutive home-matches (or away-matches), this is considered

as two consecutive breaks and results in a penalty of b2 being added, and so on.

The term 1
1/2×t(t−1) is used as part of c1 to ensure that the total penalty due to

match pairs occurring in the same half is never greater than 1, thus placing a greater

emphasis on keeping matches and their return fixtures at least five rounds apart. The

penalty unit of bl in cost function c2 is also used to help discourage long breaks from

occurring in the schedule. In our case, we use b = 2: thus a penalty of 2 is incurred

for single breaks, 4 for double breaks, 8 for triple breaks, and so on.

It is notable that since the cost functions c1 and c2 measure different charac-

teristics, use different penalty units, and feature different growth rates, they are in

some sense incommensurable. For this reason it is appropriate to use the concept of

dominance in order to distinguish between solutions. This is defined as follows:

Definition 7.3 Let S1 and S2 be two feasible solutions. S1 is said to dominate S2 if
and only if:

• c1(S1)≤ c1(S2) and c2(S1)< c2(S2); or
• c1(S1)< c1(S2) and c2(S1)≤ c2(S2).
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In this definition it is assumed that both cost functions are being minimised. Note

that this definition can also be extended to more than two cost functions if required.

If S1 does not dominate S2, and S2 does not dominate S1, then S1 and S2 are

said to be incomparable. The output to both algorithms is then a list L of mutually

incomparable solutions that are not dominated by any other solutions encountered

during the search.

Note that the concept of dominance is commonly used in the field of multiobjec-

tive optimisation where, in addition to being incommensurable, cost functions are

often in conflict with one another (that is, an improvement in one cost will tend to

invoke the worsening of another). It is unclear whether the two cost functions used

here are necessarily in conflict, however.

7.6.1.1 The Multi-stage Approach

Our first method for the WRU problem operates in a series of stages, with each

stage being concerned with minimising just one of the cost functions. A description

of this method is given in Figure 7.12.

Multi-stage Algorithm (S)
(1) while (not stopping condition) do
(2) Apply perturbation to S
(3) Reduce cost c1 in S via random descent

(4) Reduce cost c2 in S via simulated annealing

(5) Update list L of non-dominated solutions

Fig. 7.12 The Multi-stage Algorithm. The procedure takes as input a feasible solution S provided

by a graph colouring algorithm

As shown, the algorithm starts by taking an arbitrary feasible solution S produced

by a graph colouring method. This solution is then “perturbed” by performing a

series of randomly selected Kempe chain interchanges, paying no heed to either

cost function. Next, a random descent procedure is applied that attempts to make

reductions to the spread cost c1. This is done by repeatedly selecting a random

Kempe chain at each iteration and performing the interchange only if the resultant

spread cost is less than or equal to the current spread cost. On completion of the

random descent procedure, attempts are then made to reduce the break cost c2 of the

current schedule without increasing the current spread cost. This is achieved using

a phase of simulated annealing with a restricted neighbourhood operator where only

matches and their reverse fixtures (i.e., (ti, t j) and (t j, ti)) can be swapped. Note that

the latter moves can, on occasion, violate some of the additional hard constraints

of this problem, and so in these cases such moves are rejected automatically. Also

note that moves in this restricted neighbourhood do not alter the spread cost of the

schedule and therefore do not undo any of the work carried out in the previous

random descent stage. On completion, the best solution S∗ found during this round



188 7 Designing Sports Leagues

of simulated annealing is used to update L. Specifically, if S∗ is seen to dominate

any solutions in L, then these solutions are removed from L and S∗ is added to L.

The entire process is then repeated.

Our choice of random descent for reducing c1 arises simply because in initial

experiments we observed that, in isolation, the associated soft constraints seemed

quite easy to satisfy. Thus a simple descent procedure seems effective for making

quick and significant gains in quality (for all instances spread costs of less than

1, and often 0, were nearly always achieved within our imposed cut-off point of

10,000 evaluations). In addition to this we also noticed that only short execution

times were needed for the simulated annealing stage due to the relatively small so-

lution space resulting from the restricted neighbourhood operator, which meant that

the search would tend to converge quite quickly at a local optimum. In preliminary

experiments we also found that if we lengthened the simulated annealing process

by allowing the temperature variable to be reset (thus allowing the search to escape

these optima), then the very same optimum would be achieved after another period

of search, perhaps suggesting that the convergence points in these searches are the

true optima in these particular spaces.6

Finally, our use of a perturbation operator in the multi-stage algorithm is intended

to encourage a diversification in the search. In this case a balance needs to be struck

by applying enough changes to the current solution to cause the search to enter a

different part of the solution space, but not applying too many changes so that the

operator becomes nothing more than a random restart mechanism. In our case, we

chose to simply apply the Kempe chain operator five times in succession, which

proved sufficient for our purposes.

7.6.1.2 A Multiobjective Optimisation Approach

In contrast to the multi-stage approach, our second method attempts to eliminate

violations of both types of soft constraint simultaneously. This is done by combining

both cost functions into a single weighted objective function f (S) = w1 × c1(S)+
w2 × c2(S), used in conjunction with the Kempe chain neighbourhood operator.

An obvious issue with the objective function f is that suitable values need to

be assigned to the weights. Such assignments can, of course, have large effects on

the performance of an algorithm, but they are not always easy to determine as they

depend on many factors such as the size and type of problem instance, the nature

of the individual cost functions, the user requirements, and the amount of available

run time. To deal with this issue, we adopt a multiobjective optimisation technique

of Petrovic and Bykov (2003). The strategy of this approach is to alter weights dy-

namically during the search based on the quality of solutions found so far, thus

directing the search into specific regions of the solution space. This is achieved by

6 In all cases we used an initial temperature t = 20, a cooling rate of α = 0.99, and z = n
2

(refer

to the simulated annealing algorithm in Figure 3.5). The annealing process ended when no move

was accepted for 20 successive temperatures. Such parameters were decided upon in preliminary
testing and were not seen to be critical in dictating algorithm performance.
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providing two reference costs to the algorithm, x1 and x2. Using these values, we can

then imagine a reference point (x1,x2) being plotted in a two-dimensional Cartesian

space, with a straight reference line then being drawn from the origin (0,0) and

through the reference point (see Figure 7.14). During the search, all solutions en-

countered are then also represented as points in this Cartesian space and, at each

iteration, the weights are adjusted automatically to encourage the search to move

towards the origin while remaining close to the reference line. It is hoped that even-

tually solutions will be produced that feature costs less than the original reference

costs.

Multiobjective Algorithm (S,Δw)
(1) Set reference costs x1 and x2

(2) Set initial weights using wi =
ci(S)

xi
for i ∈ {1,2}

(3) Calculate weighted cost of solution, f (S) = w1 × c1(S)+w2 × c2(S)
(4) B ← f (S)
(5) while (not stopping condition) do
(6) Form new solution S ′ by applying a Kempe chain interchange to S
(7) if ( f (S ′)≤ f (S) or ( f (S ′)≤ B) then
(8) S ← S ′

(9) Update list L of non-dominated solutions using S
(10) Find i corresponding to maxi∈{1,2}

{
c1(S)

x1
, c2(S)

x2

}
(11) Increase weight wi ← wi(1+Δw)

Fig. 7.13 Multiobjective algorithm with variable weights (Petrovic and Bykov, 2003). In all re-
ported experiments, a setting of Δw = 10−6 was used. The input S is a feasible solution provided

by a suitable graph colouring algorithm

A pseudocode description of this approach is given in Figure 7.13. Note that the

weight update mechanism used here (line (11)) means that weights are gradually

increased during the run. Since, according to line (7), changes to solutions are only

permitted if (a) they improve the cost, or (b) if the weighted cost is kept below a

constant B, this implies that worsening moves become increasingly less likely during

execution. Thus the search process is similar in nature to simulated annealing.

7.6.1.3 Experimental Analysis

To compare the performance of the two approaches, we performed 100 runs of each

algorithm on each of the ten problem instances shown in Table 7.2. In all cases a

cut-off point of 20,000,000 evaluations (of either cost function) was used, resulting

in run times of approximately five to ten minutes.7

Note that unlike with the multi-stage approach, reference costs x1 and x2 need to

be supplied to the multiobjective approach. In our case we chose suitable reference

costs by performing one run using the multi-stage approach. We then used the costs

7 Using a 3.0 GHz Windows 7 PC with 3.87 GB RAM.
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of the resultant solution as the reference costs for the multiobjective algorithm. In

runs where more than one non-dominated solution was produced, solutions in L
were sorted according to their costs, and the costs of the median solution were used.

Note that because problem instance #5 is based on real-world data, in this case we

were also able to use the costs of the (manually produced) league schedule used in

the competition. However, runs using the reference costs from both sources turned

out to be similar in practice, and so we only report results achieved using the former

method here.

We now examine the general behaviour of each method. Figure 7.14 displays the

costs of a sample of solutions encountered in an example run with each algorithm.

From the initial solution at point (22.4,686) we see that the multi-stage approach

quickly finds solutions with very low values of cost c1. It then spends the remainder

of the run attempting to make reductions to c2, which is the cause of the bunching

of the points in the left of the graph. Due to the position of the reference line (the

dotted line in the figure), the multiobjective approach follows a similar pattern to

this, though initial progress is considerably slower. However, as the search nears

the reference line, the algorithm then considers c1 to have dropped to an appropri-

ate level and so weight w2 (used in evaluation function f (Figure 7.13)) begins to

increase such that reductions to cost c2 are also sought. In this latter stage, unlike

in the multi-stage approach, improvements to both cost functions are being made

simultaneously. As both algorithms’ searches converge, we see from the projection

(inset) that the multiobjective approach produces the best solutions in this case.

A summary of the results over all ten test problems is provided in Table 7.3. The

“best” column here shows the costs of the best solution found across all runs of both

algorithms, which we use for comparative purposes. Note that in all problem in-

stances except #2, only one best result has been produced—that is, we do not see any

obvious conflict in the two cost functions. The values in the column labelled “max-

imum” are used for normalisation purposes, and represent the highest cost values

seen in any solution returned by the two algorithms. For both algorithms, the table

then displays two statistics: the mean size of the solution lists L, and the distances

between each of the solutions in L and the “best” solutions. This latter performance

measure is based on the metric suggested by Deb et al. (2000), which assesses the

performance of a multiobjective algorithm by considering the distance between the

costs of each solution in L and the costs of some optimal (or near-optimal) solution

to the problem. Because the costs of the global optima are not known for these in-

stances, we choose to use the values given in the “best” column as approximations

to this. In our case distances are calculated as follows. First, the costs of all solutions

returned by the algorithms, in addition to the costs of the “best” solutions, are nor-

malised to values in [0,1] by dividing by the maximum cost values specified in the

table. Next, for each solution, the (Euclidean) distance between the normalised best

costs and all normalised solution costs is calculated. The mean, standard deviation

and median of all distances returned for each algorithm are recorded in the table.

The results in Table 7.3 can be split into two cases. The first involves the larger

problem instances #3 to #10. Here, we see that the multiobjective approach consis-

tently produces better results than the multi-stage approach, which is reflected in
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Fig. 7.14 Costs of solutions encountered by the multi-stage and multiobjective approaches in one
run with problem instance #5. Solution costs were recorded every 10,000 evaluations. The dotted

line (in both the main graph and the projection) represents the reference line used by the multiob-
jective approach and is drawn from the origin and through the reference point

Table 7.3 Summary of results achieved in 100 runs of the multi-stage and multiobjective algo-
rithms. An asterisk (*) in the “best” column indicates that the solution with the associated costs

was found using the multi-stage approach (otherwise it was found by the multiobjective approach)

Multi-stage Multiobjective
Best Maximum Distance from Best Distance from Best

# (c1,c2) c1 c2 |L| Mean±SD Med. |L| Mean±SD Med.

1 (0, 104)* 4.21 352 1.81 0.15±0.22 0.04 2.57 0.27±0.10 0.27

2 (0, 134)* 11.3 394 2.81 0.06±0.05 0.05 3.82 0.20±0.11 0.17
(2.15, 132)*

3 (0, 102) 8.24 560 4.32 0.24±0.17 0.17 3.32 0.13±0.10 0.12

4 (0, 112) 2.17 186 2.72 0.28±0.09 0.26 1.00 0.14±0.06 0.13

5 (0, 134) 3.29 294 3.61 0.34±0.11 0.31 1.00 0.11±0.04 0.11
6 (0, 148) 4.26 444 4.44 0.32±0.11 0.30 1.04 0.08±0.05 0.08

7 (0, 156) 2.18 816 4.51 0.19±0.11 0.16 1.04 0.05±0.04 0.04

8 (0, 186) 3.27 786 4.71 0.26±0.12 0.22 1.53 0.08±0.06 0.06
9 (0, 204) 1.26 940 4.32 0.21±0.10 0.19 1.08 0.05±0.06 0.04

10 (0, 234) 2.29 1398 4.63 0.20±0.10 0.16 1.30 0.09±0.05 0.07

the lower means, medians, and deviations in the Distance from Best column. Note

that the best results for these instances have also come from the multiobjective ap-

proach. We also see that the multi-stage approach has produced larger solution lists

for these problem instances, which could be useful if a user wanted to be presented

with a choice of solutions, though the solutions in these lists are of lower quality

in general. Also note that the differences between the mean and median values here

 0

 500

 1000

 1500

 2000

 0  5  10  15  20  25

c 2

c1

Multi-stage
Multi-objective

Reference

 150

 200

 250

 300

 350

 400

 0  0.1  0.2  0.3  0.4  0.5

c 2

c1

Multi-stage
Multi-objective

Reference



192 7 Designing Sports Leagues

reveal that the distributions of distances with the multi-stage approach feature larger

amounts of positive skew, reflecting the fact that this method produces solutions of

very low quality on occasion. For the smaller problem instances #1 and #2 we see

that these patterns are more or less reversed from those of the multi-stage approach,

producing solutions with costs that are consistently closer (or equal to) to the best

known costs. One feature to note in this case is the relatively large difference be-

tween the mean and median with the multi-stage approach for instance #1, where

the we saw about 60% of produced solutions being very close to the best, and the

remainder having much larger distances. Finally, note that for all problem instances,

the nonparametric Mann-Whitney test indicates that the distances of each algorithm

are significantly different with significance level ≤ 0.01%.

In summary, the results in Table 7.3 suggest that the strategy used by the multi-

stage algorithm of employing many rounds of short intensive searches seems more

fitting for smaller, less constrained instances, but for larger instances, including the

real-world problem instance, better solutions are achieved by using the multiobjec-

tive approach where longer, less intensive searches are performed.

7.7 Chapter Summary and Discussion

In this chapter we have shown that round-robin schedules can be successfully con-

structed using graph colouring principles, often in the presence of many additional

hard constraints. In Section 7.6 we exploited this link with graph colouring by

proposing two algorithms for a real-world sports scheduling problem. In the case

of the real-world problem instance (#5), we found that more than 98% of all so-

lutions generated by our multiobjective approach dominated the solution that was

manually produced by the WRU’s league administrators. On the other hand, for the

multi-stage approach this figure was just 0.02%. We should, however, interpret these

statistics with care, firstly because the manually produced solution was actually for

a slightly different problem (the exact specifications of which we were unable to

obtain from the league organisers), and secondly because our specific cost functions

were not previously used by the league organisers for evaluating their solutions.

One further neighbourhood operator that might be used with these problems (and

indeed any graph colouring problem) is an extension to the Kempe chain inter-

change operator known as the s-chain interchange operator. Let S = {S1, . . . ,Sk}
be a feasible solution and let v be an arbitrary vertex in S coloured with colour

j1. Furthermore, let j2, . . . , js be a sequence of distinct colours taken from the set

{1, . . . ,k}−{ j1}. An s-chain is constructed by first identifying all vertices adjacent

to v that are coloured with colour j2. From these, adjacent vertices coloured with j3
are then identified, and from these adjacent vertices with colour j4, and so on. When

considering vertices with colour js, adjacent vertices with colour j1 are sought.

As an example, using the graph from Figure 6.3, an s-chain using s = 3,

v = v2 and colours j1 = 2, j2 = 4, and j3 = 1 can be seen to contain the vertices

{v2,v3,v4,v5,v7,v8}. Through similar reasoning to that of Kempe chains (Theo-
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rem 3.1), it is simple to show that we can take the vertices of an s-chain and in-

terchange their colours using the mapping j1 ← j2, j2 ← j3, . . . , js−1 ← js, js ← j1
such that feasibility of the solution is maintained. Note also that s-chains are equiv-

alent to Kempe chains when s = 2. In our experiments with round-robin schedules,

we also tested the effects of the s-chain interchange operator for s ≥ 3; however,

because of the relatively high levels of connectivity between different colours in

these graphs, we observed that over 99% of moves contained the maximum s(t/2)
vertices. In other words, almost all moves simply resulted in moves that are also

achievable through combinations of N4. s-chains may show more promise in other

applications however, particularly those involving sparser graphs.



Chapter 8
Designing University Timetables

In this chapter, our final case study looks at how graph colouring concepts can be

used in the construction of high-quality timetables for universities and other types

of educational establishments. As we will see, this sort of problem can contain a

whole host of different, and often idiosyncratic, constraints which will often make

the problem very difficult to tackle. That said, most timetabling problems contain

an underlying graph colouring problem, allowing us to use many of the concepts

developed in previous chapters.

The first section of this chapter will look at university timetabling from a broad

perspective, discussing amongst other things the various constraints that might be

imposed on the problem. Section 8.2 onwards will then conduct a detailed analysis

of a well-known timetabling formulation that has been the subject of various articles

in the literature. As we will see, powerful algorithms derived from graph colouring

principles can be developed for this problem, though careful modifications also need

to be made in order to allow the methods to cope with the various other constraints

that this problem involves.

8.1 Problem Background

In the context of higher education institutions, a timetable can be thought of as an

assignment of events (such as lectures, tutorials, or exams) to a finite number of

rooms and timeslots in accordance with a set of constraints, some of which will be

mandatory, and others that may be optional. It is suggested by Corne et al. (1995)

that timetabling constraints can be categorised into five main classes:

Unary Constraints that involve just one event, such as the constraint “event a must

not take place on a Tuesday”, or the constraint “event a must occur in timeslot

b”.

� Springer International Publishing Switzerland 2016
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Binary Constraints that concern pairs of events, such as the constraint “event a
must take place before event b”, or the event clash constraint, which specifies

pairs of events that cannot be held at the same time in the timetable.

Capacity Constraints that are governed by room capacities, etc. For example “All

events should be assigned to a room that has a sufficient capacity”.

Event Spread Constraints that concern requirements involving the “spreading-

out” or “grouping-together” of events within the timetable in order to ease stu-

dent/teacher workload, and/or to agree with a university’s timetabling policy.

Agent Constraints that are imposed in order to promote the requirements and/or

preferences of the people who will use the timetables, such as the constraint

“lecturer a likes to teach event b on Mondays”, or “lecturer c must have d free

mornings per week”.

Like many problems in operational research, a convention in automated time-

tabling is to group constraints into two classes: hard constraints and soft constraints.

Hard constraints have a higher priority than soft, and their satisfaction is usually

mandatory. Indeed, timetables will normally only be considered “feasible” if all of

the imposed hard constraints have been satisfied. Soft constraints, meanwhile, are

those that we want to obey if possible, and more often than not they will describe

the criteria for a timetable to be “good” with regard to the timetabling policies of

the university concerned, as well as the experiences of the people who will have to

use it.

According to McCollum et al. (2010), the problem of constructing university

timetables can be divided into two categories: exam timetabling problems and

course timetabling problems. It is also suggested that course timetabling prob-

lems can be further divided into two subcategories: “post enrolment-based course

timetabling”, where the constraints of the problem are specified by student enrol-

ment data, and “curriculum-based course timetabling”, where constraints are based

on curricula specified by the university. Müller and Rudova (2012) have also shown

that these subcategories are closely related, demonstrating how instances of the lat-

ter can be transformed into those of the former in many cases.

We have seen in Sections 1.1.2 and 4.2.2 that a fundamental constraint in univer-

sity timetabling is the “event-clash” binary constraint. This specifies that if a person

(or some other resource of which there is only one) is required to be present in a

pair of events, then these must not be assigned to the same timeslot, as such an as-

signment will result in this person/resource having to be in two places at once. This

constraint can be found in almost all university timetabling problems and allows

us to draw parallels with the graph colouring problem by considering the events as

vertices, clashing events as adjacent vertices, and the timeslots as colours. Beyond

this near-universal constraint however, timetabling problem formulations will usu-

ally vary widely from place to place due to the fact that different universities will

usually have their own individual needs and timetabling policies (and therefore set

of constraints) that they need to satisfy (see Figure 8.1). That said, it is still the case

that nearly all timetabling problems do feature the underlying graph colouring prob-

lem in some form or another in their definitions, and many timetabling algorithms
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do use various pieces of heuristic information extracted from the graph colouring

problem as a driving force in their searches for solutions.

Fig. 8.1 When constructing a timetable, meeting the needs of all concerned may not always be

possible

Despite this wide range of constraints, it is known that university timetabling

problems are NP-complete in almost all variants. Cooper and Kingston (1996), for

example, have proved that NP-completeness exists for a number of different prob-

lem interpretations that can arise in practice. This they achieve by providing poly-

nomial transformations from various NP-complete problems, including bin packing,

three-dimensional matching as well as graph colouring itself.

8.1.1 Designing and Comparing Algorithms

The field of university timetabling has seen many solution approaches proposed

over the years, including methods based on constructive heuristics, mathematical

programming, branch and bound, and metaheuristics. (See, for example, the surveys

of Carter et al. (1996), Burke et al. (1996), Schaerf (1999), and Lewis (2008).) The

latter survey has suggested that metaheuristic approaches for university timetabling

can be loosely classified into three categories as follows:

One-stage Optimisation Algorithms. Here, the satisfaction of the hard constraints

and soft constraints is attempted simultaneously, usually using a single objective

function in which violations of hard constraints are penalised more heavily than

violations of soft constraints. If desired, these weights could be altered during a

run.
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Two-stage Optimisation Algorithms. In this case, the hard constraints are first sat-

isfied to form a feasible solution. Attempts are then made to eliminate violations

of the soft constraints by navigating the space of feasible solutions. (Note that

similar schemes have been used in the case studies from Chapters 6 and 7.)

Algorithms That Allow Relaxations. Here, violations of the hard constraints are

disallowed from the outset by relaxing some features of the problem. Attempts

are then made to try and satisfy the soft constraints, whilst also giving considera-

tion to the task of eliminating these relaxations. These relaxations could include

allowing certain events to be left out of the timetable, or using additional times-

lots or rooms.

The wide variety of constraints, coupled with the fact that each higher educa-

tion institution will usually have their own specific timetabling needs and proto-

cols, means that timetabling problem formulations have always tended to vary quite

widely in the literature. While making the problem area very rich, one drawback

has been the lack of opportunity for accurate comparison of algorithms over the

years. Since the early 2000s, this situation has been mitigated to a certain extent

with the organisation of a series of timetabling competitions and the release of pub-

licly available problem instances.1 In 2007, for example, the Second International

Timetabling Competition (ITC2007) was organised by a group of timetabling re-

searchers from different European Universities, which considered the three types

of timetabling problems mentioned above: exam timetabling, post enrolment-based

course timetabling, and curriculum-based timetabling. The competition operated by

releasing problem instances into the public domain, with entrants then designing

algorithms to try and solve these. Entrants’ algorithms were then compared under

strict time limits according to specific evaluation criteria.

8.1.2 Chapter Outline

In this chapter we will examine the post enrolment-based course timetabling prob-

lem used for ITC2007. This formulation models the real-world situation where stu-

dents are given a choice of lectures that they wish to attend, with the timetable

then being constructed according to these choices. The next section contains a for-

mal definition of this problem, with Section 8.3 then containing a short review of the

most noteworthy algorithms. We then go on to describe our method and its operators

in Sections 8.4 and 8.5. The final results of our algorithm are given in Section 8.6,

with a discussion and conclusions then being presented in Section 8.7.

1 The official websites of these competitions can be found at www.cs.qub.ac.uk/itc2007/ and
www.utwente.nl/ctit/hstt/itc2011.
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8.2 Problem Definition and Preprocessing

As mentioned, the post enrolment-based course timetabling problem was introduced

for use in the Second International Timetabling Competition, run in 2007. The prob-

lem involves seven types of hard constraint whose satisfaction is mandatory, and

three soft constraints, whose satisfaction is desirable, but not essential. The problem

involves assigning a set of events to 45 timeslots (five days, with nine timeslots per

day) according to these constraints.

The hard constraints for the problem are as follows. First, for each event there is

a set of students who are enrolled to attend. Events should be assigned to timeslots

such that no student is required to attend more than one event in any one timeslot.

Next, each event also requires a set of room features (e.g., a certain number of seats,

specialist teaching equipment, etc.), which will only be provided by certain rooms.

Consequently, each event needs to be assigned to a suitable room that exhibits the

room features that it requires. The double booking of rooms is also disallowed.

Hard constraints are also imposed stating that some events cannot be taught in cer-

tain timeslots. Finally, precedence constraints—stating that some events need to be

scheduled before or after others—are also stipulated.

More formally, a problem instance comprises a set of events e = {e1, . . . ,en}, a

set of timeslots t = {t1, . . . , tk} (where k = 45), a set of students s = {s1, . . . ,s|s|},

a set of rooms r = {r1, . . . ,r|r|}, and a set of room features f = { f1, . . . , f| f |}. Each

room ri ∈ r is also allocated a capacity c(ri) reflecting the number of seats it con-

tains.

The relationships between the above sets are defined by five problem matrices:

an attends matrix P(1)
|s|×n where

P(1)
i j =

{
1 if student si is due to attend event e j

0 otherwise,

a room features matrix P(2)
|r|×| f | where

P(2)
i j =

{
1 if room ri has feature f j

0 otherwise,

an event features matrix P(3)
n×| f | where

P(3)
i j =

{
1 if event ei requires feature f j

0 otherwise,

an event availability matrix P(4)
n×k in which
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P(4)
i j =

{
1 if event ei can be assigned to timeslot t j

0 otherwise,

and finally a precedence matrix P(5)
n×n where

P(5)
i j =

⎧⎪⎨
⎪⎩

1 if event ei should be assigned to an earlier timeslot than event e j

−1 if event ei should be assigned to a later timeslot than event e j

0 otherwise.

For the precedence matrix above, note that two conditions are necessary for the

relationships to be consistent: (a) P(5)
i j = 1 if and only if P(5)

ji =−1, and (b) P(5)
i j = 0

if and only if P(5)
ji = 0. We can also observe the transitivity of this relationship:

(
∃ei,e j,el ∈ e :

(
P(5)

i j = 1∧P(5)
jl = 1

))
⇒ P(5)

il = 1 (8.1)

In some of the competition problem instances this transitivity is not fully expressed;

however, observing it enables further 1’s and −1’s to be added to P(5) during pre-

processing, allowing the relationships to be more explicitly stated.

Given the above five matrices, we are also able to calculate two further matrices

that allow fast detection of hard constraint violations. The first of these is a room
suitability matrix Rn×|r| defined as:

Ri j =

{
1 if

(
∑|s|

l=1 P(1)
li ≤ c(r j)

)
∧
(
� fl ∈ f :

(
P(3)

il = 1∧P(2)
jl = 0

))
0 otherwise.

(8.2)

The second is then a conflicts matrix Cn×n, defined:

Ci j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if
(
∃sl ∈ s :

(
P(1)

li = 1∧P(1)
l j = 1

))
∨
((

∃rl ∈ r :
(
Ril = 1∧R jl = 1

))
∧
(

∑|r|
l=1 Ril = 1

)
∧
(

∑|r|
l=1 R jl = 1

))
∨
(

P(5)
i j �= 0

)
∨
(
�tl ∈ t :

(
P(4)

il = 1∧P(4)
jl = 1

))
0 otherwise.

(8.3)

The matrix R therefore specifies the rooms that are suitable for each event (that is,

rooms that are large enough for all attending students and that have all the required

features). The C matrix, meanwhile, is a symmetrical matrix (Ci j = Cji) that spec-

ifies pairs of events that cannot be assigned to the same timeslot (i.e., those that

conflict). According to Equation (8.3) this will be the case if two events ei and e j
share a common student, require the same individual room, are subject to a prece-

dence relation, or have mutually exclusive subsets of timeslots for which they are

available.
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Note that the matrix C is analogous to the adjacency matrix of a graph G= (V,E)
with n vertices, highlighting the similarities between this timetabling problem and

the graph colouring problem. However, unlike the graph colouring problem, in this

case the ordering of the timeslots (colour classes) is also an important property of

a solution. Consequently, a solution is represented by an ordered set of sets S =
(S1, . . . ,Sk=45) and is subject to the satisfaction of the following hard constraints.

k⋃
i=1

Si ⊆ e (8.4)

Si ∩S j = /0 (1 ≤ i �= j ≤ k) (8.5)

∀e j,el ∈ Si,Cjl = 0 (1 ≤ i ≤ k) (8.6)

∀e j ∈ Si, P(4)
ji = 1 (1 ≤ i ≤ k) (8.7)

∀e j ∈ Si, el ∈ Sq<i, P(5)
jl �= 1 (1 ≤ i ≤ k) (8.8)

∀e j ∈ Si, el ∈ Sq>i, P(5)
jl �= −1 (1 ≤ i ≤ k) (8.9)

Si ∈ M (1 ≤ i ≤ k) (8.10)

Constraints (8.4) and (8.5) state that S should partition the event set e (or a subset

of e) into an ordered set of sets, labelled S1, . . . ,Sk. Each set Si ∈ S contains the

events that are assigned to timeslot ti in the timetable. Constraint (8.6) stipulates

that no pair of conflicting events should be assigned to the same set Si ∈ S, while

Constraint (8.7) states that each event should be assigned to a set Si ∈ S whose

corresponding timeslot ti is deemed available according to matrix P(4). Constraints

(8.8) and (8.9) then impose the precedence requirements of the problem.

Finally, Constraint (8.10) is concerned with ensuring that the events assigned to

a set Si ∈ S can each be assigned to a suitable room from the room set r. To achieve

this it is necessary to solve a maximum bipartite matching problem. Specifically,

let G = (Si,r,E) be a bipartite graph with vertex sets Si and r, and an edge set:

E = {{e j ∈ Si,rl ∈ r} : R jl = 1}. Given G, the set Si is a member of M if and only

if there exists a maximum bipartite matching of G of size 2|Si|, in which case the

room constraints for this timeslot will have been satisfied.

r Si 
e1 

e2 

e3 

e4 

r1 

r2 

r3 

r4 

r5 

e1 

e2 

e3 

e4 

r1 

r2 

r3 

r4 

r5 

r Si 
(a) (b) 

Fig. 8.2 Example bipartite graphs with and without a maximum bipartite matching of size 2|Si|.
In Part (a), events e1, e2, e3, and e4 can be assigned to rooms r1, r2, r3, and r5 respectively
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Figure 8.2 shows two examples of these ideas using |Si| = 4 events and |r| = 5

rooms. In Figure 8.2(a) a matching exists—for example, event e1 can be assigned to

room r1, e2 to r2, e3 to r3, and e4 to r5. On the other hand, a matching does not exist

in Figure 8.2(b), meaning Si /∈M in this case. In practice, such matching problems

can be solved via various polynomially bounded algorithms such as the augmenting

path, Hungarian, or auction algorithms (Bertsekas, 1992).

In the competition’s interpretation of this problem, a solution S is considered

valid if and only if all constraints (8.4)–(8.10) are satisfied. The quality of a valid

solution is then gauged by a distance to feasibility (DTF) measure, calculated as the

sum of the sizes of all events not contained in the solution:

DTF = ∑
ei∈S′

|s|
∑
j=1

P(1)
i j (8.11)

where S′ = e− (
⋃k

i=1 Si). If the solution S is valid and has a DTF of zero (implying⋃k
i=1 Si = e and S′ = /0) then it is considered feasible since all of the events have

been feasibly timetabled. The set of feasible solutions is thus a subset of the set of

valid solutions.

8.2.1 Soft Constraints

As mentioned, in addition to finding a solution that obeys all of the hard constraints,

three soft constraints are also considered in this problem.

SC1 Students should not be required to attend an event in the last timeslot of each

day (i.e., timeslots 9, 18, 27, 36, or 45);

SC2 Students should not have to attend events in three or more successive times-

lots occurring in the same day; and,

SC3 Students should not be required to attend just one event in a day.

The extent to which these constraints are violated is measured by a Soft Constraints

Cost (SCC), which is worked out in the following way. For SC1, if a student attends

an event assigned to an end-of-day timeslot, this is counted as one penalty point.

Naturally, if x students attend this class, this counts as x penalty points. For SC2

meanwhile, if a student attends three events in a row we count this as one penalty

point. If a student has four events in a row we count this as two, and so on. Note

that students assigned to events occurring in consecutive timeslots over two separate

days are not counted as violations. Finally, each time we encounter a student with

a single event on a day, we count this as one penalty point (two for two days with

single events, etc.). The SCC is simply the total of these three values.

More formally, the SCC can be calculated using two matrices: X|s|×k, which tells

us the timeslots for which each student is attending an event, and Y|s|×5, which

specifies whether or not a student is required to attend just one event in each of the

five days.
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Xi j =

{
1 if ∃el ∈ S j : P(1)

il = 1

0 otherwise,
(8.12)

Yi j =

{
1 if ∑9

l=1 Xi,9( j−1)+l = 1

0 otherwise.
(8.13)

Using these matrices, the SCC is calculated as follows:

SCC =
|s|
∑
i=1

5

∑
j=1

((
Xi,9 j

)
+

(
7

∑
l=1

2

∏
q=0

Xi,9( j−1)+l+q

)
+(Yi, j)

)
. (8.14)

Here the three terms summed in the outer parentheses of Equation 8.14 define the

number of violations of SC1, SC2, and SC3 (respectively) for each student on each

day of the timetable.

8.2.2 Problem Complexity

Having defined the post enrolment-based course timetabling problem, we are now

in a position to state its complexity.

Theorem 8.1 The post enrolment-based course timetabling problem is NP-hard.

Proof. Let Cn×n be our symmetric conflicts matrix as defined above, filled arbitrar-

ily. In addition, let the following conditions hold:

|r| ≥ n (8.15)

Ri j = 1 ∀ei ∈ e, r j ∈ r (8.16)

P(4)
i j = 1 ∀ei ∈ e, t j ∈ t (8.17)

P(5)
i j = 0 ∀ei,e j ∈ e (8.18)

Here, there is an excess number of rooms which are suitable for all events (8.15-

8.16), there are no event availability constraints (8.17), and no precedence con-

straints (8.18). In this special case we are therefore only concerned with satisfying

Constraints (8.4)–(8.6) while minimising the DTF. Determining the existence of a

feasible solution using k timeslots is therefore equivalent to the NP-complete graph

k-colouring problem. ��

From a different perspective, Cambazard et al. (2012) have also shown that, in the

absence of all hard constraints (8.6)–(8.10) and soft constraints SC1 and SC2, the

problem of satisfying SC3 (i.e., minimising the number of occurrences of students

sitting a single event in a day) is equivalent to the NP-hard set covering problem.
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8.2.3 Evaluation and Benchmarking

From the above descriptions, we see that a timetable’s quality is described by two

values: the distance to feasibility (DTF) and the soft constraint cost (SCC). Accord-

ing to the competition criteria, when comparing solutions the one with the lowest

DTF is deemed the best timetable, reflecting the increased importance of the hard

constraints over the soft constraints. However, when two or more solutions’ DTFs

are equal, the winner is deemed the solution among these that has the lowest SCC.

Currently there are 24 problem instances available for this problem, all of which

are known to feature at least one perfect solution (that is, a solution with DTF = 0

and SCC = 0). For comparative purposes, a benchmark timing program is also avail-

able on the competition website that allocates a strict time limit for each machine

that it is executed on (based on its hardware and operating system). This allows

researchers to use approximately the same amount of computational effort when

testing their implementations, allowing more accurate comparisons.

8.3 Previous Approaches to This Problem

One of the first studies into the post enrolment-based timetabling problem (in this

form) was carried out by Rossi-Doria et al. (2002), who used it as a test problem

for comparing five different metaheuristics, namely evolutionary algorithms, simu-

lated annealing, iterated local search, ant colony optimisation, and tabu search. Two

interesting observations were offered in their work:

• “The performance of a metaheuristic with respect to satisfying hard constraints

and soft constraints may be different.”

• “Our results suggest that a hybrid algorithm consisting of at least two phases, one

for taking care of feasibility, the other taking care of minimising the number of

soft constraint violations [without reviolating any of the hard constraints in the

process], is a promising direction.” (Rossi-Doria et al., 2002)

These conclusions have proven to be quite salient in the past decade, with a number

of successful algorithms following this suggested two-stage methodology. This in-

cludes the winning entry of ITC2007 itself, due to Cambazard et al. (2008), which

uses tabu search together with an intensification procedure to achieve feasibility,

with simulated annealing then being used to satisfy the soft constraints.

Since the running of these competitions, a number of papers have been pub-

lished that have equalled or improved upon the results of the 2007 competition.

Cambazard et al. themselves have shown how the results of their two-stage compe-

tition entry can be improved by relaxing Constraint (8.10) such that a timeslot ti is

considered feasible whenever |Si| < |r| (Cambazard et al., 2012). The rationale for

this relaxation is that it will “increase the solution density of the underlying search

space”, though a repair operator is also needed to make sure that the timeslots satisfy

Constraint (8.10) at the end of execution. Cambazard et al. (2012) have also exam-
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ined constraint programming-based approaches and a large neighbourhood search

(LNS) scheme, and find that their best results can be found when using simulated

annealing together with the LNS operator for reinvigorating the search from time to

time.

Other successful algorithms for this problem have followed the one-stage op-

timisation scheme by attempting to reduce violations of hard and soft constraints

simultaneously. Ceschia et al. (2012), for example, treat this problem as a single

objective optimisation problem in which the space of valid and invalid solutions

is explored. Specifically, they allow violations of Constraints (8.6), (8.8), and (8.9)

within a solution, and use the number of students affected by such violations, to-

gether with the DTF, to form an infeasibility measure. This is then multiplied by a

weighting coefficient w and added to the SCC to form the objective function. Sim-

ulated annealing is then used to optimise this objective function and, surprisingly,

after extensive parameter tuning w= 1 is found to provide their best results. Notheg-

ger et al. (2012) have also attempted to optimise the DTF and SCC simultaneously,

making use of ant colony optimisation to explore the space of valid solutions. Here

the DTF and SCC measures are used to update the algorithm’s pheromone matri-

ces so that favourable assignments of events to rooms and timeslots will occur with

higher probability in later iterations of the algorithm. Nothegger et al. also show that

the results of their algorithm can be improved by adding a local search-based im-

provement method and by parallelising the algorithm. Jat and Yang (2011) have also

used a weighted sum objective function in their hybrid evolutionary algorithm/tabu

search approach, though their results do not appear as strong as those of the pre-

vious two papers. Similarly, van den Broek and Hurkens (2012) have also used a

weighted sum objective function in their deterministic algorithm based on column

generation techniques.

From the above studies, it is clear that the density and connectivity of the under-

lying solution space is an important issue in the performance of a neighbourhood

search algorithm with this problem. In particular, if connectivity is low then move-

ments in the solution space will be more restricted, perhaps making improvements in

the objective function more difficult to achieve. From the research discussed above

it is noticeable that some of the best approaches for this problem have attempted to

alleviate this problem by relaxing some of the hard constraints and/or by allowing

events to be kept out of the timetable. However, such methods also require mecha-

nisms for coping with these relaxations, such as repair operators (which may ulti-

mately require large alterations to be made to a solution), or by introducing terms

into the objective function (which will require appropriate weighting coefficients to

be determined, perhaps via tuning). On the other hand, a two-stage approach of the

type discussed by Rossi-Doria et al. (2002) will have no need for these features,

though because feasibility must be maintained when the SCC is being optimised,

the underlying solution space may be more sparsely connected, perhaps making

good levels of optimisation more difficult to achieve. We will focus on the issue of

connectivity in Section 8.5 onwards.
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8.4 Algorithm Description: Stage One

Before looking at the task of eliminating soft constraint violations it is first neces-

sary to produce a valid solution that minimises the DTF measure (Equation (8.11)).

Previous strategies for this task have typically involved inserting all events into the

timetable, and then rearranging them in order to remove violations of the hard con-

straints (Cambazard et al., 2008, 2012; Ceschia et al., 2012; Chiarandini et al.,

2006). In contrast, we suggest using a method by which events are permitted to

remain outside of the timetable, meaning that spaces within the timetable are not

“blocked” by events causing hard constraint violations. To do this, we exploit the

similarity between this problem and the graph colouring problem by using an adap-

tation of the PARTIALCOL algorithm from Section 4.1.2.

To begin, an initial solution is constructed by taking events one by one and as-

signing them to timeslots such that none of the hard constraints are violated. Events

that cannot be assigned without breaking a hard constraint are kept to one side and

are dealt with at the end of this process. To try and maximise the number of events

inserted into the timetable, a set of high performance heuristics originally proposed

by Lewis (2012) and based on the DSATUR algorithm (Section 2.3) is used. At each

step heuristic rule h1 (Table 8.1) is used to select an event, with ties being broken

using h2, and then h3 (if necessary). The selected event is then inserted into the

timetable according to rule h4, breaking ties with h5 and further ties with h6.

Table 8.1 Heuristics used for producing an initial solution in Stage 1. Here, a “valid place” is

defined as a room/timeslot pair that an event can be assigned to without violating Constraints
(1.1)–(8.10)

Rule Description

h1 Choose the unplaced event with the smallest number of valid
places in the timetable to which it can be assigned.

h2 Choose the unplaced event ei that conflicts with the most

other events (i.e that maximises ∑n
j=1 Ci, j).

h3 Choose an event randomly.

h4 Choose the place that is valid for the least number of

other unplaced events in U .
h5 Choose the valid place in the timeslot containing the fewest events.

h6 Choose a place randomly.

Completion of this constructive phase results in a valid solution S obeying Con-

straints (8.4)–(8.10). However, if S′ �= /0 (where S′ = e− (
⋃k

i=1 Si) is the set of un-

placed events), the PARTIALCOL algorithm will need to be invoked.

As with the original algorithm, this method operates using tabu search with the

simple cost function |S′|. During a run the neighbourhood operator moves events

between S′ and timeslots in S while maintaining the validity of the solution. Given

an event ei ∈ S′ and timeslot S j ∈S , checks are first made to see if ei can be assigned

to S j without violating Constraints (8.7)–(8.9). If the assignment of ei violates one

of these constraints, the move is rejected; else, all events ek in S j that conflict with ei
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(according to the conflicts matrix C) are transferred from Sj into S′ and an attempt

is made to insert event ei into S j , perhaps using a maximum matching algorithm. If

this is not possible (i.e., Constraint (8.10) cannot be satisfied) then all changes are

again reset; otherwise the move is considered valid. Upon performing this change,

all moves involving the reassignment of event(s) ek to timeslot S j are considered

tabu for a number of iterations. Here we use the same tabu tenure as that of the

TABUCOL algorithm seen in Chapter 4. Hence the tenure is defined as a random

variable proportional to the current cost, �0.6×|S′|+ x, where x is an integer uni-

formly selected from the set {0,1, . . . ,9}.

Similarly to the original PARTIALCOL algorithm, at each iteration the entire

neighbourhood of (|S′|× k) moves is examined, and the move that is chosen is the

one that invokes the largest decrease (or failing that, the smallest increase) in the

cost of any valid, non-tabu move. Ties are broken randomly, and tabu moves are

also permitted if they are seen to improve on the best solution found so far. From

time to time, there may also be no valid non-tabu moves available from a particu-

lar solution, in which case a randomly selected event is transferred from S into S′,
before the process is continued as above.

8.4.1 Results

Table 8.2 contains the results of our PARTIALCOL algorithm and compares them

to those reported by Cambazard et al. (2012).2 We report the percentage of runs in

which each instance has been solved (i.e., where a DTF of zero has been achieved),

and the average time that this took (calculated only from the solved runs).3 We see

that the success rates for the two approaches are similar, with all except one instance

being solved in 100% of cases (instance #10 in Cambazard et al.’s case, instance

#11 in ours). However, with the exception of instance #11, the time required by

PARTIALCOL is considerably less, with an average reduction of 97.4% in CPU time

achieved across the 15 remaining instances.

Curiously, when using our PARTIALCOL algorithm with instance #11, most of

the runs were solved very quickly. However, in a small number of runs the algorithm

seemed to quickly navigate to a point at which a small number of events remained

unplaced and where no further improvements could be made, suggesting the search

2 Our algorithm was implemented in C++, and all experiments were conducted on 3.0 GHz Win-

dows 7 PCs with 3.87 GB RAM. The competition benchmarking program allocated 247 s on this
equipment. The source code is available at www.rhydlewis.eu/resources/ttCodeResults.zip
3 For comparative purposes, the computation times stated by Cambazard et al. (2012) have been

altered in Table 8.2 to reflect the increased speed of our equipment. Specifically, according to Cam-
bazard et al. the competition benchmark program allocated them 324 s per run. Consequently, their

original run times have been reduced by 23.8%. We should note, however, that when comparing
algorithms in this way, discrepancies in results and times can also occur due to differences in the

hardware, operating system, programming language, and compiler options that are used. Our use

of the competition benchmark program attempts to reduce discrepancies caused by the first two
factors, but cannot correct for differences arising due to the latter two.
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Table 8.2 Comparison of results from the LS-colouring method of Cambazard et al. (2012), and
our PARTIALCOL and Improved PARTIALCOL algorithms (all figures taken from 100 runs per

instance)

Instance # 1 2 3 4 5 6 7 8 9 10 11 12

Cambazard et al. (2012) % Solved 100 100 100 100 100 100 100 100 100 98 100 100

Avg. time (s) 11.60 37.10 0.37 0.43 3.58 4.32 1.84 1.11 51.73 170.24 0.40 0.64

PARTIALCOL % Solved 100 100 100 100 100 100 100 100 100 100 98 100
Avg. time (s) 0.25 0.79 0.02 0.04 0.05 0.07 0.02 0.01 0.71 1.80 1.88 0.04

Improved PARTIALCOL % Solved 100 100 100 100 100 100 100 100 100 100 100 100

Avg. time (s) 0.25 0.79 0.02 0.02 0.06 0.08 0.03 0.01 0.68 2.03 0.03 0.04

Instance # 13 14 15 16 17 18 19 20 21 22 23 24

Cambazard et al. (2012) % Solved 100 100 100 100 - - - - - - - -

Avg. time (s) 8.86 7.97 0.80 0.55 - - - - - - - -

PARTIALCOL % Solved 100 100 100 100 100 100 100 100 100 100 100 100
Avg. time (s) 0.08 0.11 0.01 0.01 0.00 0.02 0.74 0.01 0.07 3.77 1.33 0.17

Improved PARTIALCOL % Solved 100 100 100 100 100 100 100 100 100 100 100 100

Avg. time (s) 0.08 0.11 0.01 0.01 0.00 0.02 0.71 0.01 0.08 3.80 1.10 0.18

was caught in a conspicuous valley in the cost landscape. To remedy this situation

we therefore added a diversification mechanism to the method which attempts to

break out of such regions. We call this our improved PARTIALCOL algorithm and

its results are also given in Table 8.2.

In the improved PARTIALCOL method, our diversification mechanism is used for

making relatively large changes to the incumbent solution, allowing new regions of

the solution space to be explored. It is called when the best solution found so far

has not been improved for a set number of iterations. The mechanism operates by

first randomly selecting a percentage of events in S and transferring them to the

set of unplaced events S′. Next, alterations are made to S by performing a random

walk using neighbourhood operator N5 (to be described in Section 8.5). Finally, the

tabu list is reset so that all potential moves are deemed non-tabu, before PARTIAL-

COL continues to execute as before. For the results in Table 8.2, the diversification

mechanism was called after 5,000 nonimproving iterations, and extracted 10% of

all events in S. A random walk of 100 neighbourhood moves was then performed,

giving a > 95% chance of all timeslots being altered by the neighbourhood oper-

ator (a number of other parameters were also tried here, though few differences in

performance were observed). We see that the improved PARTIALCOL method has

achieved feasibility in all runs in the sample, with the average time reduction re-

maining at 97.4% compared to the method of Cambazard et al. (2012).
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8.5 Algorithm Description: Stage Two

8.5.1 SA Cooling Scheme

In the second stage of this algorithm we use simulated annealing (SA) to explore

the space of valid/feasible solutions, and attempt to minimise the number of soft

constraint violations measured by the SCC (Equation (8.14)). This metaheuristic is

applied in a similar manner to that described in Chapter 3: starting at an initial tem-

perature T0, during execution the temperature variable is slowly reduced according

to an update rule Ti+1 = αTi, where the cooling rate α ∈ [0,1). At each temperature

Ti, a Markov chain is generated by performing n2 applications of the neighbourhood

operator. Moves that are seen to violate a hard constraint are immediately rejected.

Moves that preserve feasibility but that increase the cost of the solution are accepted

with probability exp(−|δ |/Ti) (where δ is the change in cost), while moves that

reduce or maintain the cost are always accepted. The initial temperature T0 is cal-

culated automatically by performing a small sample of neighbourhood moves and

using the standard deviation of the cost over these moves (van Laarhoven and Aarts,

1987).

Because this algorithm is intended to operate according to a time limit, a value

for α is determined automatically so that the temperature is reduced as slowly as

possible between T0 and some end temperature Tend. This is achieved by allowing

α to be modified during a run according to the length of time that each Markov

chain takes to generate. Specifically, let μ∗ denote the estimated number of Markov

chains that will be completed in the remainder of the run, calculated by dividing the

amount of remaining run time by the length of time the most recent Markov chain

(operating at temperature Ti) took to generate. On completion of the ith Markov

chain, a modified cooling rate can thus be calculated as:

αi+1 = (Tend/Ti)
1/μ∗

(8.19)

The upshot is that the cooling rate will be altered slightly during a run, allowing the

user-specified end temperature Tend to be reached at the time limit. Suitable values

for Tend, the only parameter required for this phase, are examined in Section 8.6.

8.5.2 Neighbourhood Operators

We now define a number of different neighbourhood operators that can be used in

conjunction with the SA algorithm for this problem. Let N(S) be the set of candidate

solutions in the neighbourhood of the incumbent solution S . Also, let S be the set of

all valid solutions (i.e., S ∈ S if and only if Constraints (8.4)–(8.10) are satisfied).

The relationship between the solution space and neighbourhood operator can now be

defined by a graph G = (S,E) with vertex set S and edge set E = {{S ∈ S,S′ ∈ S} :
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S′ ∈ N(S)}. Note that all of the following neighbourhood operators are reversible,

meaning that S′ ∈ N(S) if and only if S ∈ N(S′). Hence edges are expressed as

unordered pairs. The various neighbourhood operators are now defined.

N1: The first neighbourhood operator is based on those used by Lewis (2012) and

Nothegger et al. (2012). Consider a valid solution S represented as a matrix Z|r|×k
in which rows represent rooms and columns represent timeslots. Each element

of Z can be blank or can be occupied by exactly one event. If Zi j is blank, then

room ri is vacant in timeslot t j. If Zi j = el , then event el is assigned to room ri and

timeslot t j. N1 operates by first randomly selecting an element Zi1 j1 containing an

arbitrary event el . A second element Zi2 j2 is then randomly selected in a different

timeslot ( j1 �= j2). If Zi2, j2 is blank, the operator attempts to transfer el from

timeslot j1 into any vacant room in timeslot j2. If Zi2 j2 = eq, then a swap is

attempted in which el is moved into any vacant room in timeslot j2, and eq is

moved into any vacant room in timeslot j1. If such changes are seen to violate

any of the hard constraints, they are rejected immediately; else they are kept and

the new solution is evaluated according to Equation (8.14).

N2: This operates in the same manner as N1. However, when seeking to insert

an event into a timeslot, if no vacant, suitable room is available, a maximum

matching algorithm is also executed to determine if a valid room allocation of

the events can be found. A similar operator was used by Cambazard et al. (2008)

in their winning competition entry.

N3: This is an extension of N2. Specifically, if the proposed move in N2 will result

in a violation of Constraint (8.6), then a Kempe chain interchange is attempted

(see Definition 3.1). An example of this process is shown in Figure 8.3(a). Imag-

ine in this case that we have chosen to swap the events e5 ∈ Si and e10 ∈ S j.

However, doing so would violate Constraint (8.6) because events e5 and e11

conflict but would now both be assigned to timeslot S j. In this case we there-

fore construct the Kempe chain KEMPE(e5, i, j) = {e5,e10,e11} which, when

interchanged, guarantees the preservation of Constraint (8.6), as shown in Fig-

ure 8.3(b). Observe that this neighbourhood operator also includes pair swaps

(see Definition 3.2)—for example, if we were to select events e4 ∈ Si and e8 ∈ S j
from Figure 8.3(a).

Note, however, that as with the previous neighbourhood operators, applications

of N3 may not preserve the satisfaction of the remaining hard constraints. Such

moves will again need to be rejected if this is the case.

N4: This operator extends N3 by using the idea of double Kempe chains, originally

proposed by Lü and Hao (2010b). In many cases, a proposed Kempe chain inter-

change will be rejected because it will violate Constraint (8.10): that is, suitable

rooms will not be available for all of the events proposed for assignment to a par-

ticular timeslot. For example, in Figure 8.3(a) the proposed Kempe interchange

involving events {e1,e2,e3,e6,e7} is guaranteed to violate Constraint (8.10) be-

cause it will result in too many events in timeslot S j for a feasible matching to be

possible. However, applying a second Kempe chain interchange at the same time

may result in feasibility being maintained, as illustrated in Figure 8.3(c).
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Fig. 8.3 Example moves using N3 and N4. Here, edges exist between pairs of vertices (events) el ,eq
if and only if Clq = 1. Part (a) shows two timeslots containing two Kempe chains, {e1,e2,e3,e6,e7}
and {e5,e10,e11}; part (b) shows a result of interchanging the latter chain; part (c) shows the result
of interchanging both chains. Note that room allocations are determined via a matching algorithm

and may therefore alter during an interchange

In this operator, if a proposed single Kempe chain interchange is seen to vio-

late Constraint (8.10) only, then a random vertex from one of the two timeslots,

but from outside this chain, is randomly selected, and a second Kempe chain is

formed from it. If the proposed interchange of both Kempe chains does not vi-

olate any of the hard constraints, then the move can be performed and the new

solution can be evaluated according to Equation (8.14) as before.

N5: Finally, N5 defines a multi-Kempe chain operator. This generalises N4 in that

if a proposed double Kempe chain interchange is seen to violate Constraint (8.10)

only, then triple Kempe chains, quadruple Kempe chains, and so on, can also

be investigated in the same manner. Note that when constructing these multiple

Kempe chains, a violation of any of the constraints (8.7)–(8.9) allows us to reject

the move immediately. However, if only Constraint (8.10) continues to be vio-

lated, then eventually the considered Kempe chains will contain all events in both

timeslots, in which case the move becomes equivalent to swapping the contents

of the two timeslots. Trivially, in such a move Constraint (8.10) is guaranteed to

be satisfied.

From the above descriptions it is clear that each successive neighbourhood oper-

ator requires more computation than its predecessor. Each operator also generalises

its predecessor—that is, N1(S)⊆ N2(S)⊆ . . .⊆ N5(S), ∀S ∈ S. From the perspec-

tive of the graph G = (S,E) defined above, this implies a greater connectivity of

the solution space since E1 ⊆ E2 ⊆ . . . ⊆ E5 (where Ei = {{S,S′} : S′ ∈ Ni(S)}
for i = 1, . . . ,5). Note though that the set of vertices (solutions) S remains the same

under the different operators.

Finally, it is also worth mentioning that each of the above operators only ever

alters the contents of two timeslots in any particular move. In practice, this means

that we only need to consider the particular days and students affected by the move

when reevaluating the solution according to Equation (8.14). This allows consider-

able speed-up of the algorithm.
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8.5.3 Dummy Rooms

An additional opportunity for altering the connectivity of the underlying solution

space with this problem is through the use of dummy rooms. A dummy room is an

extra room made available in all timeslots and defined as suitable for all events (i.e.,

it has an infinite seating capacity and possesses all available room features). Dummy

rooms can be used with any of the previous neighbourhood operators, and multiple

dummy rooms can also be applied if necessary. We therefore use the notation N( j)
i

to denote the use of neighbourhood Ni using j dummy rooms (giving |r|+ j rooms

in total). Similarly, we can use the notation S( j) to denote the space of all solutions

that obey all hard constraints, and where j dummy rooms are available. (For brevity,

where a superscript is not used, we assume no dummy room is being used.) Dummy

rooms can be viewed as a type of “placeholder” that are used to contain events

not currently assigned to the “real” timetable. Transferring events in and out of

dummy rooms might therefore be seen as similar to moving events in and out of the

timetable.

(a) (b) 

Feasible solution 

Solution using  
dummy room 

Fig. 8.4 Graphs depicting the connectivity of a solution space with (a) no dummy rooms, and (b)
one or more dummy rooms

Note that the use of dummy rooms increases the size of the set M, making Con-

straint (8.10) easier to satisfy. This leads to the situation depicted in Figure 8.4.

Here, we observe that the presence of dummy rooms increases the number of ver-

tices/solutions (i.e., S( j) ⊆ S( j+1), ∀ j ≥ 0), with extra edges (dotted in the figure)

being created between some of the original vertices and new vertices. As depicted,

this could also allow previously disjoint components to become connected.

Because they do not form part of the original problem, at the end of the optimi-

sation process all dummy rooms will need to be removed, meaning that any events

assigned to these will contribute to the DTF measure. Because this is undesirable,

in our case we attempt to discourage the assignment of events to the dummy rooms

during evaluation by considering all events assigned to a dummy room as unplaced.

We then use the cost function w×DTF+SCP, where w is a weighting coefficient

that will need to be set by the user. Additionally, when employing the maximum

matching algorithm it also makes sense to ensure that the dummy room is only

used when necessary—that is, if a feasible matching can be achieved without using

dummy rooms, then this is the one that will be used.
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8.5.4 Estimating Solution Space Connectivity

We have now seen various neighbourhood operators for this problem and made some

observations on the connectivity of their underlying solution spaces, defined by G.

Unfortunately however, it is very difficult to gain a complete understanding of G’s

connectivity because it is simply too large to compute. In particular, we are unlikely

to be able to confirm whether G is connected or not, which would be useful infor-

mation if we wanted to know whether an optimal solution could be reached from

any other solution within the solution space.

One way to gain an indication of G’s connectivity is to make use of what we call

the feasibility ratio. This is defined as the proportion of proposed neighbourhood

moves that are seen to not violate any of the hard constraints (i.e., that maintain

validity/feasibility). A lower feasibility ratio suggests a lower connectivity in G be-

cause, on average, more potential moves will be seen to violate a hard constraint

from a particular solution, making movements within the solution space more re-

stricted. A higher feasibility ratio will suggest a greater level of connectivity.
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Fig. 8.5 Feasibility ratio for neighbourhood operators N1 . . .N5 and also N(1)
5 for all 24 problem

instances

Figure 8.5 displays the feasibility ratios for neighbourhood operators N1 . . .N5

and also N(1)
5 for all 24 problem instances. These mean figures were found by per-

forming random walks of 50,000 feasible-preserving moves from a sample of 20

feasible solutions per instance (produced via Stage 1). As expected, we see that

the feasibility ratios increase for each successive neighbourhood operator, though

the differences between N3, N4, and N5 appear to be only marginal. We also ob-

serve quite a large range across the instances, with instance #10 appearing to exhibit

the least connected solution space (with feasibility ratios ranging from just 0.0005

(N1) to 0.004 (N(1)
5 )), and instance #17 having the highest levels of connectivity

(0.04 (N1) to 0.10 (N(1)
5 )). Standard deviations from these samples range between



214 8 Designing University Timetables

0.000018 (N2, #20) and 0.000806 (N1, #23). These observations will help to explain

the results in the following sections.

8.6 Experimental Results

8.6.1 Effect of Neighbourhood Operators

We now examine the ability of each neighbourhood operator to reduce the soft con-

straint cost within the time limit specified by the competition benchmarking pro-

gram (minus the time used for Stage 1). We also consider the effects of altering the

end temperature of simulated annealing Tend, which is the only run-time parameter

required in this stage. To measure performance, we compare our results to those

achieved by the five finalists of the 2007 competition using the competition’s rank-

ing system. This involves calculating a “ranking score” for each algorithm, which is

derived as follows.

Given x algorithms and a single problem instance, each algorithm is executed

y times, giving xy results. These results are then ranked from 1 to xy, with ties

receiving a rank equal to the average of the ranks they span. The mean of the ranks

assigned to each algorithm is then calculated, giving the respective rank scores for

the x algorithms on this instance. This process is then repeated on all instances, and

the mean of all ranking scores for each algorithm is taken as its overall ranking

score. A worked example of this process is shown in Table 8.3. We see that the best

ranking score achievable for an algorithm on a particular instance is (y+ 1)/2, in

which case its y results are better than all of the other algorithms’ (as is the case

with Algorithm A on instance #3 in the table). The worst possible ranking score,

(x−1)y+(y+ 1)/2, has occurred with Algorithm C with instances #1, #2, and #3

in the table.

Table 8.3 Worked example of how rank scores are calculated using y = 2 runs of x = 3 algorithms

on three problem instances. Results of each run are given by the DTF (in parentheses) and the SCC.
Here, Algorithm A is deemed the winner and C the loser

Results Ranks Rank Scores Mean

Instance #1 #2 #3 #1 #2 #3 #1 #2 #3

Run 1 2 1 2 1 2

Alg. A (0) 0 (0) 10 (0) 1 (0) 5 (0) 0 (0) 2 1, 3 1.5, 3 1, 2 2 2.25 1.5 1.92

Alg. B (0) 5 (0) 17 (0) 1 (0) 8 (0) 8 (0) 11 2, 4 1.5, 4 3, 4 3 2.75 3.5 3.08

Alg. C (9) 3 (0) 19 (0) 18 (0) 16 (0) 12 (4) 0 6, 5 6, 5 5, 6 5.5 5.5 5.5 5.50

A full breakdown of the results and ranking scores of the five competition finalists

can be found on the official website of ITC2007, where x = 5 and y = 10.4 In our

case, we added results from ten runs of our algorithm to these published results,

4 www.cs.qub.ac.uk/itc2007/
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giving x = 6 and y = 10. A summary of the resultant ranking scores achieved by

our algorithm with each neighbourhood operator over a range of different settings

for Tend is given in Figure 8.6. The shaded area of the figure indicates those settings

where our algorithm would have won the competition (i.e., that have achieved a

lower ranking score than the other five entries).
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Fig. 8.6 Ranking scores achieved by the different neighbourhood operators using different end

temperatures. The shaded area indicates the results that would have won the competition

Figure 8.6 shows a clear difference in the performance of neighbourhood opera-

tors N1 and N2, illustrating the importance of the extra solution space connectivity

provided by the maximum matching algorithm. Similarly, the results of N3, N4 and

N5 are better still, outperforming N1 and N2 across all the values of Tend tested.

However, there is very little difference between the performance of N3, N4 and N5

themselves presumably due to the fact that, for these particular problem instances,

the behaviour and therefore feasibility ratios of these operators are very similar (as

seen in Figure 8.5). Moreover, we find that the extra expense of N5 over N3 and N4

appears to have minimal effect, with N5 producing less than 0.5% fewer Markov

chains than N3 over the course of the run on average. Of course, such similarities

will not always be the case—they merely seem to be occurring with these particular

problem instances because, in most cases, hard constraints are being broken (and

the move rejected) before the inspection of more than one Kempe chain is deemed

necessary.

Figure 8.6 also indicates that using dummy rooms does not seem to improve

results across the instances. In initial experiments we tested the use of one and two

dummy rooms along with a range of different values for the weighting coefficient

w ∈ {1,2,5,10,20,200,∞} (some of these values were chosen due to their use in

existing algorithms that employ weighted sum functions with this problem (Ceschia

et al., 2012; Nothegger et al., 2012; van den Broek and Hurkens, 2012)). Figure 8.6

reports the best of these: one dummy room with w = 2. For higher values of w,

results were found to be inferior because the additional solutions in the solution

space (shaded vertices in Figure 8.4) would still be evaluated by the algorithm, but
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nearly always rejected due to their high cost. On the other hand, using the setting

w= 1 means that the penalty of assigning an event to a dummy room will be equal to

the penalty of assigning the event to the last timeslot of a day (soft constraint SC1),

meaning there is little distinction between the cost of infeasibility and the cost of

soft constraint violations.

Note that we might consider the use of no dummy rooms as similar to using

w ≈ ∞, in that the algorithm will be unable to accept moves that involve moving an

event into a dummy room (i.e., introducing infeasibility to the timetable). However,

the difference is that when using dummy rooms, such moves will still be evaluated

by the algorithm before being rejected while, when not dummy rooms, these unnec-

essary evaluations will not take place, saving significant amounts of time during the

course of a run.

As mentioned, a setting of w = 2, which seems the best compromise between

these extremes, still produces inferior results on average compared to when using

no dummy rooms. However, for problem instance #10 we found the opposite to be

true, with significantly better results being produced when dummy rooms are used.

From Figure 8.5, we observe that #10 has the lowest feasibility ratio of all instances,

and so the extra connectivity provided by the dummy rooms seems to be aiding the

search in this case. On the other hand, the existence of a perfect solution here could

mean that, while optimising the SCC, the search might also be being simultaneously

guided towards regions of the solution space that are feasible. This matter will be

discussed further in Section 8.7.
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Fig. 8.7 Scatter plot showing the relationship between feasibility ratio and reduction in cost for

the 24 competition instances, using neighbourhood operators N1 and N5

Finally, Figure 8.7 illustrates for the 24 problem instances the relationship be-

tween the feasibility ratio and the proportion by which the SCC is reduced by the

SA algorithm for two contrasting neighbourhood operators N1 and N5. We see that

the points for N5 are shifted upwards and rightwards compared to N1, illustrating the

larger feasibility ratios and higher performance of the operator. The general pattern

in the figure suggests that higher feasibility ratios allow large decreases in cost dur-
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ing a run, while lower feasibility ratios can result in both large or small decreases,

depending on the instance. Thus, while there is some relationship between the two

variables, it seems that other factors also have an impact here, including the size

and shape of the cost landscape and the amount of computation needed for each

application of the evaluation function.

8.6.2 Comparison to Published Results

In our next set of experiments, we compare the performance of our algorithm to the

best results that were reported in the literature in the five years following the 2007

competition. Table 8.4 gives a breakdown of the results achieved by our method us-

ing Tend = 0.5 compared to the approaches of van den Broek and Hurkens (2012),

Cambazard et al. (2012), and Nothegger et al. (2012). Note that the latter two pa-

pers only list results for the first 16 instances. In this table, all statistics are calculated

from 100 runs on each instance, with the exception of van den Broek and Hurkens,

whose algorithm is deterministic. All results were achieved strictly within the time

limits specified by the competition benchmark program. Our experiments were per-

formed using N3, N4, and N5, though no significant difference was observed between

the three operators’ best, mean, or worst results. Consequently we only present the

results for one of these.5

Table 8.4 shows that, using N4, perfect solutions have been achieved by our

method in 17 of the 24 problem instances. A comparison to the 16 results reported

by Cambazard et al. (2012) indicates that our method’s best, mean, and worst re-

sults are also significantly better than their corresponding results. Similarly, our best,

mean, and worst results are all seen to outperform the results of van den Broek and

Hurkens (2012). Finally, no significant difference is observed between the best and

mean results of our method compared to Nothegger et al. (2012); however, unlike

our algorithm they have failed to achieve feasibility in a number of cases.

8.6.3 Differing Time Limits

In our final set of experiments we look at the effects of using differing time limits

with our algorithm. Until this point, experiments have been performed according

to the time limit specified by the competition benchmark program; however, it is

pertinent to ask whether the less expensive neighbourhood operators are actually

more suitable when shorter time limits are used, and whether further improvements

can be achieved when the time limit is extended. In Figure 8.8 we show the relative

performance of operators N1, N2, N3, and N5 using time limits of between 1 and

600 seconds, signifying very fast and very slow coolings respectively. (N4 is omit-

5 For pairwise comparisons, Related Samples Wilcoxon Signed Rank Tests were used; for other
comparisons Friedman Tests were used (significance level 0.05).
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Table 8.4 Results from the literature, taken from samples of 100 runs per instance. Figures indicate
the SCC achieved at the cut-off point defined by the competition benchmarking program. Numbers

in parentheses indicate the % of runs where feasibility was found. No parentheses indicates that

feasibility was achieved in all runs

Our method using N4 Cambazarda van den Broekb Notheggerc

# Best Mean Worst Best Mean Worst Result Best Mean

1 0 377.0 833 15 547 1072 1636 0 (54) 613

2 0 382.2 1934 9 403 1254 1634 0 (59) 556
3 122 181.8 240 174 254 465 355 110 680

4 18 319.4 444 249 361 666 644 53 580

5 0 7.5 60 0 26 154 525 13 92

6 0 22.8 229 0 16 133 640 0 (95) 212
7 0 5.5 11 1 8 32 0 0 4

8 0 0.6 59 0 0 0 241 0 61

9 0 514.4 1751 29 1167 1902 1889 0 (85) 202
10 0 1202.4 2215 2 (89) 1297 2637 1677 0 4

11 48 202.6 358 178 361 496 615 143 (99) 774

12 0 340.2 583 14 380 676 528 0 (86) 538
13 0 79.0 269 0 135 425 485 5 (94) 360

14 0 0.5 7 0 15 139 739 0 41

15 0 139.9 325 0 47 294 330 0 29

16 0 105.2 223 1 58 245 260 0 101
17 0 0.1 3 - - - 35 - -

18 0 2.2 57 - - - 503 - -

19 0 346.1 1222 - - - 963 - -
20 557 724.5 881 - - - 1229 - -

21 1 32.1 159 - - - 670 - -

22 4 1790.1 2280 - - - 1956 - -
23 0 514.1 1178 - - - 2368 - -

24 18 328.2 818 - - - 945 - -

a SA-colouring method (Cambazard et al. (2012), p. 122).
b Deterministic IP-based heuristic (one result per instance) (van den Broek and Hurkens (2012), p.
451).
c Serial ACO algorithm (Nothegger et al. (2012), p. 334).

ted here due to its close similarity with N3 and N5’s results.) We see that even for

very short time limits of less than five seconds, the more expensive neighbourhoods

consistently produce superior solutions across the instances. We also see that when

the time limit is extended beyond the benchmark and up to 600 seconds, the mean

reduction in the soft cost rises from 89.1% to 94.6% (under N5), indicating that su-

perior results can also be gained with additional computing resources. This latter

observation is consistent with that of Nothegger et al. (2012), who were also able to

improve the results of their algorithm, in their case via parallelisation.

8.7 Chapter Summary and Discussion

This chapter has considered the problem of constructing university timetables—a

problem that can often involve a multitude of different constraints and requirements.

Despite these variations, like the case studies seen in the previous two chapters,
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Fig. 8.8 Proportion decrease in SCC using differing time limits and differing neighbourhood op-

erators. All points are taken from an average of ten runs on each problem instance (i.e., 240 runs).

Error bars represent one standard error each side of the mean

this problem usually contains an underlying graph colouring problem from which

powerful algorithmic operators can then be derived.

Using this link with graph colouring, we have proposed a robust two-stage al-

gorithm for a well-known NP-hard timetabling formulation known as the post

enrolment-based timetabling problem. Stage 1 of this algorithm has proven to be

very successful for finding feasibility with the considered problem instances with

regard to both success rate and computation time. For Stage 2 we have then fo-

cussed on issues surrounding the connectivity of the solution space, and have seen

that results generally improve when this connectivity is increased.

It is noticeable that many successful algorithms for the post enrolment-based

timetabling problem have used simulated annealing as their main mechanism for

reducing the number of soft constraint violations (Kostuch, 2005; Chiarandini et al.,

2006; Cambazard et al., 2012). An alternative to this metaheuristic is, of course,

tabu search; however, it does not seem to have fared as favourably with this problem

formulation in practice. A contributing factor behind this lack of performance could

be due to the observations made in this chapter—that a decreased connectivity of

the solution space tends to lead to fewer gains being made during the optimisation
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process. To illustrate this, consider the situation shown in Figure 8.9 where a so-

lution space and neighbourhood operator is again defined as a graph G = (S,E).
In the top example, we show the effect of performing a neighbourhood move (i.e.,

changing the incumbent solution) with simulated annealing. In particular, we see

that the connectivity of G does not change (though the probabilities of traversing

the edges may change if the temperature parameter is subsequently updated). On

the other hand, when the same move is performed using tabu search, a number of

edges in G, including {S,S′}, will be made tabu for a number of iterations, effec-

tively removing them from the graph for a period of time dictated by the tabu tenure.

The exact edges that will be made tabu depends on the structure of the tabu list, and

in typical applications, when an event ei has been moved from timeslot S j to a new

timeslot, all moves that involve moving ei back into S j will be made tabu. While the

use of tabu moves helps to prevent cycling (which may regularly occur with SA),

it therefore also has the effect of further reducing the connectivity of G. Over the

course of a run, the cumulative effects of this phenomenon may put tabu search at a

disadvantage for these particular problems.

(a) (b) 

Solution Incumbent Solution 

S 

S’ 

S 

S’ 

Tabu edge 

Fig. 8.9 Illustration of the effects of performing a neighbourhood move using (a) simulated an-

nealing, and (b) and tabu search

In this chapter we have also noted that an alternative approach to a two-stage

algorithm is to use a one-stage optimisation algorithm in which the satisfaction of

both hard and soft constraints is attempted simultaneously, as with the methods of

Ceschia et al. (2012) and Nothegger et al. (2012). As we have seen, despite the

favourable performance of our two-stage algorithm overall, it does seem to struggle

in comparison to these approaches for a small number of problem instances, par-

ticularly #10 and #22. According to Figure 8.5, these instances exhibit the lowest

feasibility ratios with our operators, seemingly suggesting that freedom of move-

ment in the solution spaces is too restricted to allow adequate optimisation of the

objective function.

On the other hand, it is also possible that the algorithms of Ceschia et al. (2012)

and Nothegger et al. (2012) are being aided by the fact that perfect solutions to the 24

competition instances are known to exist—a feature that is unlikely to occur in real-

world problem instances. For example, as mentioned in Section 8.3, Ceschia et al.’s

algorithm is reported to produce its best results when optimisation is performed us-

ing an objective function in which hard and soft constraint violations are given equal

weights. However, it could be that, by moving towards solutions with low SCCs, the
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search could also inadvertently be moving towards feasible regions of the solution

space, simultaneously helping to satisfy the hard constraints along the way. This hy-

pothesis was tested by Lewis and Thompson (2015), who compared the algorithm

of this chapter to Ceschia et al.’s using a different suite of timetabling problems

for which the existence of perfect solutions is not always known.6 The results of

their tests strongly support this hypothesis: for the 23 instances of this suite with

no known perfect solution, the two-stage algorithm outperformed Ceschia et al.’s

in 21 cases (91.3%), with stark differences in results. On the other hand, with the

remaining 17 instances, Ceschia et al.’s approach produced better results in 12.5

cases (73.5%), suggesting that the existence of perfect solutions indeed benefits the

algorithm.

As mentioned earlier, all of the problem instances used in this chapter are avail-

able online at www.cs.qub.ac.uk/itc2007/. In addition, a full listing of this chapter’s

results, together with C++ source code of the two-stage algorithm is available at

www.rhydlewis.eu/resources/ttCodeResults.zip.

6 These can be downloaded from www.rhydlewis.eu/hardTT.
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A.1 Algorithm User Guide

This section contains instructions on how to compile and use the implementations of

the algorithms described in Chapters 2 and 4 of this book. These can be downloaded

directly from:

http://rhydlewis.eu/resources/gCol.zip

Once downloaded and unzipped, we see that the directory contains a number of sub-

directories. Each algorithm is contained within its own subdirectory. Specifically,

these are:

• AntCol The Ant Colony Optimisation-based algorithm for graph colouring (see

Section 4.1.4).

• BacktrackingDSatur The Backtracking algorithm based on the DSatur

heuristic (see Section 4.1.6).

• DSatur The DSATUR algorithm (see Section 2.3).

• HillClimber The hill-climbing algorithm (see Section 4.1.5).

• HybridEA The hybrid evolutionary algorithm (see Section 4.1.3).

• PartialColAndTabuCol The PARTIALCOL and TABUCOL algorithms (see

Sections 4.1.1 and 4.1.2 respectively).

• RLF The recursive largest first (RLF) algorithm (see Section 2.4).

• SimpleGreedy The GREEDY algorithm, using a random permutation of the

vertices (see Section 2.1).

All of these algorithms are programmed in C++. They have been successfully

compiled in Windows using Microsoft Visual Studio 2010 and in Linux using the

GNU compiler g++. Instructions on how to do this now follow.

� Springer International Publishing Switzerland 2016
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A.1.1 Compilation in Microsoft Visual Studio

To compile and execute using Microsoft Visual Studio the following steps can be

taken:

1. Open Visual Studio and click File, then New, and then Project from Existing
Code.

2. In the dialogue box, select Visual C++ and click Next.
3. Select one of the subdirectories above, give the project a name, and click Next.
4. Finally, select Console Application Project for the project type, and then click

Finish.

The source code for the chosen algorithm can then be viewed and executed from

the Visual Studio application. Release mode should be used during compilation to

make the programs execute at maximum speed.

A.1.2 Compilation with g++

To compile the source code using g++, at the command line navigate to each sub-

directory in turn and use the following command:

g++ *.cpp -O3 -o myProgram

By default this will create a new executable program called myProgram that can

then be run from the command line (you should choose your own name here). The

optimisation option -O3 ensures that the algorithms execute at maximum speed.

Makefiles are also provided for compiling all algorithms in one go, if preferred.

A.1.3 Usage

Once generated, the executable files (one per subdirectory) can be run from the

command line. If the programs are called with no arguments, useful usage informa-

tion is printed to the screen. For example, suppose we are using the executable file

hillClimber. Running this program with no arguments from the command line

gives the following output:

Hill Climbing Algorithm for Graph Colouring

USAGE:
<InputFile> (Required. File must be in DIMACS format)
-s <int> (Stopping criteria expressed as number of constraint

checks. Can be anything up to 9x10ˆ18.
DEFAULT = 100,000,000.)

-I <int> (Number of iterations of local search per cycle.
DEFAULT = 1000)
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-r <int> (Random seed. DEFAULT = 1)
-T <int> (Target number of colours. Algorithm halts if this

is reached. DEFAULT = 1.)
-v (Verbosity. If present, output is sent to screen.

If -v is repeated, more output is given.)

****

The input file should contain the graph colouring problem to be solved. This is

the only mandatory argument. This must be in the DIMACS format, as described

here:

mat.gsia.cmu.edu/COLOR/general/ccformat.ps

For reference, an example input file called graph.txt is provided in each subdi-

rectory.

The remaining arguments for each of the programs are optional and are allo-

cated default values if left unspecified. Here are some example commands using the

hillClimber executable:

hillClimber graph.txt

This will execute the algorithm on the problem given in the file graph.txt, using

the default of 1,000 iterations of local search per cycle and a random seed of 1. The

algorithm will halt when 100,000,000 constraint checks have been performed. No

output will be written to the screen.

Another example command is:

hillClimber graph.txt -r 6 -T 50 -v -s 500000000000

This run will be similar to the previous one, but will use the random seed 6 and will

halt either when 500,000,000,000 constraint checks have been performed, or when

a feasible solution using 50 or fewer colours has been found. The presence of -v
means that output will be written to the screen. Including -v more than once will

increase the amount of output.

The arguments -r and -v are used with all of the algorithms supplied here.

Similarly, -T and -s are used with all algorithms except for the single-parse con-

structive algorithms DSATUR, RLF and GREEDY. Descriptions of arguments par-

ticular to just one algorithm are found by typing the name of the program with no

arguments, as described above. Interpretations of the run-time parameters for the

various algorithms can be found by consulting the algorithm descriptions in this

book.

A.1.4 Output

When a run of any of the programs is completed, three files are created:

• cEffort.txt (computational effort),
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• tEffort.txt (time effort), and

• solution.txt.

The first two specify how long (in terms of constraint checks and milliseconds re-

spectively) solutions with certain numbers of colours took to produce during the last

run. For example, we might get the following computational effort file:

40 126186
39 427143
38 835996
37 1187086
36 1714932
35 2685661
34 6849302
33 X

This file is interpreted as follows: The first feasible solution observed used 40

colours, and this took 126,186 constraint checks to achieve. A solution with 39

colours was then found after 427,143 constraint checks, and so on. To find a solution

using 34 colours, a total of 6,849,302 constraint checks was required. Once a row

with an X is encountered, this indicates that no further improvements were made:

that is, no solution using fewer colours than that indicated in the previous row was

achieved. Therefore, in this example, the best solution found used 34 colours. For

consistency, the X is always present in a file, even if a specified target has been met.

The file tEffort.txt is interpreted in the same way as cEffort.txt, with

the right hand column giving the time (in milliseconds) as opposed to the number

of constraint checks. Both of these files are useful for analysing algorithm speed

and performance. For example, the computational effort file above can be used to

generate the following plot:

 34

 35

 36

 37

 38

 39

 40

 0  1e+006  2e+006  3e+006  4e+006  5e+006  6e+006  7e+006

C
ol

ou
rs

Checks

Finally, the file solution.txt contains the best feasible solution (i.e., the

solution with fewest colours) that was achieved during the run. The first line of this

file gives the number of vertices n, and the remaining n lines then state the colour of

each vertex, using labels 0,1,2, . . ..
For example, the following solution file
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5
0
2
1
0
1

is interpreted as follows: There are five vertices; the first and forth vertices are as-

signed to colour 0, the third and fifth vertices are assigned to colour 1, and the

second vertex is assigned to colour 2.



228 A Computing Resources

A.2 Graph Colouring in Sage

Sage is specialised software that allows the exploration of many aspects of mathe-

matics, including combinatorics, graph theory, algebra, calculus and number theory.

It is both free to use and open source. To use Sage, commands can be typed into a

notebook. Blocks of commands are then executed by typing Shift + Enter next to

these commands, with output (if applicable) then being written back to the note-

book.

Sage contains a whole host of elementary and specialised mathematical functions

that are documented online at www.sagemath.org/doc/reference/. Of particular in-

terest to us here is the functionality surrounding graph colouring and graph visu-

alisations. A full description of the graph colouring library for Sage can be found

at:

www.sagemath.org/doc/reference/graphs/sage/graphs/
graph coloring.html

The following text now shows some example commands from this library, together

with the output that Sage produces. In our case, these commands have been typed

into notebooks provided by the online tool at SageMathCloud. This tool allows the

editing and execution of Sage notebooks through a web browser and can be freely

accessed online at:

https://cloud.sagemath.com

The following pieces of code each represent an individual block of executable Sage

commands. Any output produced by these commands are preceded by the “>>”

symbol in the following text.

To begin, it is first necessary to specify the names of the libraries we intend to

use in our Sage program. We therefore type:

from sage.graphs.graph coloring import chromatic number
from sage.graphs.graph coloring import vertex coloring
from sage.graphs.graph coloring import number of n colorings
from sage.graphs.graph coloring import edge coloring

which will allow us to access the various graph colouring functions used below.

We will now generate in Sage a small graph called G. In our case this graph has

n = 4 vertices and m = 5 edges and is defined by the adjacency matrix

A =

⎛
⎜⎜⎝

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

⎞
⎟⎟⎠

The first Sage command below defines this matrix. The next command then transfers

this information into a graph called G. Finally G.show() draws this graph to the

screen.
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A = matrix([[0,1,1,0],[1,0,1,1],[1,1,0,1],[0,1,1,0]])
G = Graph(A)
G.show()
>>

Note that, by default, Sage labels the vertices from 0, . . . ,n− 1 in this diagram as

opposed to using indices 1, . . . ,n.

We will now produce an optimal colouring of this graph. The algorithms that

Sage uses to obtain these solutions are based on integer programming techniques

(see Section 3.1.2). These are able to produce provably optimal solutions for small

graphs such as this example; however, for larger graphs they are unlikely to return

solutions in reasonable time. A colouring is produced via the following command

(note the spelling of “coloring” as opposed to “colouring”):

vertex coloring(G)
>> [[2], [1], [3, 0]]

The output produced by Sage tells us that G can be optimally coloured using three

colours, with vertices 0 and 3 receiving the same colour. The solution returned by

Sage is expressed as a partition of the vertices, which can be used to produce a

visualisation of the colouring as follows:

S = vertex coloring(G)
G.show(partition=S)
>>
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Here, the partition produced by vertex coloring(G) is assigned to the vari-

able S, which is then used as an additional argument in the G.show command to

produce the above visualisation.

We can also use the vertex coloring function to test if a graph is k-

colourable. For example, to test whether G is 2-colourable, we get

vertex coloring(G,2)
>> False

which tells us that a 2-colouring is not possible for this graph. On the other hand, if

we seek to confirm whether G is 4-colourable, we get

vertex coloring(G,4)
>> [[3, 0], [2], [1], []]

which tells us that one way of 4-colouring the graph G is to not use the fourth colour!

In addition to the above, commands are also available in Sage for determining

the chromatic number

chromatic number(G)
>> 3

and for calculating the number of different k-colourings. For example, with k = 2

we get

number of n colorings(G,2)
>> 0

which is what we would expect since no 2-colouring of G exists. On the other hand,

for k = 3 we get

number of n colorings(G,3)
>> 6

telling us that there are six different ways of feasibly assigning three colours to G
(readers are invited to confirm the correctness of this result themselves, by hand or

otherwise).

In addition to vertex colouring, Sage also provides commands for calculating

edge colourings of a graph (see Section 5.2). For example, continuing our use of the

graph G from above, we can use the edge coloring() command to get

edge coloring(G)
>> [[(0, 1), (2, 3)], [(0, 2), (1, 3)], [(1, 2)]]

This tells us that the chromatic index of G is 4, with edges {0,1} and {2,3} being

assigned to one colour, {0,2} and {1,3} being assigned to a second, and {1,2} being

assigned to a third.

Sage also contains a collection of predefined graphs. This allows us to make use

of common graph topologies without having to type adjacency matrices. A full list

of these graphs is provided at:

www.sagemath.org/doc/reference/graphs/sage/graphs/
graph generators.html
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For example, here are the commands for producing an optimal colouring of a do-

decahedral graph. In this case we have switched off vertex labelling to make the

illustration clearer:

G = graphs.DodecahedralGraph()
S = vertex coloring(G)
G.show(partition=S, vertex labels=False)
>>

Here is an optimal colouring of the complete graph with ten vertices, K10:

G = graphs.CompleteGraph(10)
S = vertex coloring(G)
G.show(partition=S, vertex labels=False)
>>

So-called lollypop graphs are defined by a path of n1 vertices representing the

“stick” and a complete graph Kn2
to represent the “head”. Here is an example colour-

ing using a graph with n1 = 4 and n2 = 8:

G = graphs.LollipopGraph(8,4)
S = vertex coloring(G)
G.show(partition=S, vertex labels=False)
>>
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Our next graph, the “flower snark” is optimally coloured as follows:

G = graphs.FlowerSnark()
S = vertex coloring(G)
G.show(partition=S, vertex labels=False)
>>

As we can see, this graph is 3-colourable. However, we can confirm that it is not

planar using the following command:

G.is planar()
>> False

Finally, Sage also allows us to define random graphs Gn,p that have n vertices

and edge probabilities p (see Definition 2.15). Here is an example with n = 50 and

p = 0.05:

G = graphs.RandomGNP(50,0.05)
S = vertex coloring(G)
G.show(partition=S, vertex labels=False)
>>
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It can be seen that this particular graph is 3-colourable, although the default layout of

this graph is not very helpful, with the connected component on the left being very

tightly clustered. If desired we can change this layout so that vertices are presented

in a circle:

G.show(vertex labels=False, layout=’circular’, partition=S)
>>

This, arguably, gives a clearer illustration of the graph.
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A.3 Graph Colouring with Commercial IP Software

The following code demonstrates how the graph colouring problem might be spec-

ified using integer programming methods and then solved using off-the-shelf opti-

misation software. This particular example, relating to the first IP model discussed

in Section 3.1.2, is coded in the Xpress-Mosel language, which comes as part of the

FICO Xpress Optimisation Suite. Comments in the code are preceded by exclama-

tion marks.

model GCOL
!Gain access to the Xpress-Optimizer solver
uses "mmxprs";

!Define input file
fopen("myGraph.txt",F_INPUT)

!Define the integers used in the program
declarations

n,m,v1,v2: integer
end-declarations

!Read the num of vertices and edges from the input file
read(n,m)
writeln("n = ",n,", m = ",m)

!Declare the decision variable arrays
declarations

X: array(1..n,1..n) of mpvar
Y: array(1..n) of mpvar

end-declarations
!And make all the variables binary
forall (i in 1..n) do

forall (j in 1..n) do
X(i,j) is_binary

end-do
Y(i) is_binary

end-do

!Specify that each vertex should be assigned to exactly
!one colour
forall (i in 1..n) do

sum(j in 1..n) X(i,j) = 1
end-do

!Now read in all of the edges and define the constraints
write("E = {")
forall (j in 1..m) do

read(v1,v2)
forall (i in 1..n) do

X(v1,i) + X(v2,i) <= Y(i)
end-do
write("{",v1,",",v2,"}")

end-do
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writeln("}")

!Now specify the objective function
objfn := sum(i in 1..n) Y(i)

!Now run the model
writeln
writeln("Running model...")
minimize(objfn)
writeln("...Run ended")

!Finally write the output to the screen
writeln
writeln("Cost (number of colours) = ",getobjval)
writeln
writeln("X = ")
forall (i in 1..n) do

forall (j in 1..n) do
write(getsol(X(i,j))," ")

end-do
writeln

end-do
writeln
writeln("Y = ")
forall (j in 1..n) do

write(getsol(Y(j))," ")
end-do
writeln
writeln
forall (i in 1..n) do

write("c(v_",i,") = ")
forall (j in 1..n) do

if(getsol(X(i,j))=1) then
writeln(j)

end-if
end-do

end-do

end-model

The above program starts by reading in a graph colouring problem from a text

file (called myGraph.txt in this case). The objective function and constraints

of the problem are then specified, before the optimisation process itself is invoked

using the minimize(objfn) command. In this case the optimisation process is

terminated only once a provably optimal solution has been found. However, other

stopping conditions can also be specified if needed. Finally, the solution is written

to the screen in a readable way.
Here is some example input that can be read in by the above program. The first

two lines give the number of vertices and edges, n and m, respectively. The m edges
then follow, one per line. This particular example corresponds to the graph shown
in Figure 3.2.
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8
12
1 2
1 3
1 4
2 5
2 6
2 8
3 4
3 7
4 7
5 8
6 8
7 8

On completion of the program, the following output is produced:

n = 8, m = 12
E = {{1,2}{1,3}{1,4}{2,5}{2,6}{2,8}{3,4}{3,7}{4,7}{5,8}{6,8}

{7,8}}

Running model...
...Run ended

Cost (number of colours) = 3

X =
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0

Y =
1 1 0 0 0 0 1 0

c(v_1) = 1
c(v_2) = 2
c(v_3) = 7
c(v_4) = 2
c(v_5) = 1
c(v_6) = 1
c(v_7) = 1
c(v_8) = 7

It can be seen that the cost of the solution (the number of colours being used) equals

the chromatic number for this graph as expected. Note that, in this case, the colours

with labels 1, 2 and 7 are being used to colour the vertices as opposed to 1, 2, and

3, which is permitted by this particular formulation.
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A.4 Useful Web Links

Here are some further web resources related to graph colouring. A page of resources

maintained by Joseph Culberson featuring, most notably, a collection of problem

generators and C code for the algorithms presented by Culberson and Luo (1996)

can be found at:

webdocs.cs.ualberta.ca/∼joe/Coloring/
An excellent bibliography on the graph coloring problem, maintained by Marco

Chiarandini and Stefano Gualandi can also be found at:

www.imada.sdu.dk/∼marco/gcp/
A large set of graph colouring problem instances has been collected by the Center

for Discrete Mathematics and Theoretical Computer Science (DIMACS) as part of

their DIMACS Implementation Challenge series. These can be downloaded at:

mat.gsia.cmu.edu/COLOR/instances.html

These problem instances have been used in a large number of graph colouring-based

papers and are written in the DIMACS graph format, a specification of which can

be found in the following (postscript) document:

mat.gsia.cmu.edu/COLOR/general/ccformat.ps

Note that these instances can also be viewed via a text editor. A summary of these

instances, including their best known bounds, is maintained by Daniel Porumbel

and is available at:

www.info.univ-angers.fr/pub/porumbel/graphs/

The fun graph colouring game CoLoRaTiOn, which is suitable for both adults

and children, can be downloaded from:

http://vispo.com/software/

The goal in this game is to achieve a feasible colouring within in a certain number

of moves. The difficulty of each puzzle depends on a number of factors, including

its topology, whether you can see all of the edges, the number of vertices, and the

number of available colours.

Finally, C++ code for the random Sudoku problem instance generator used in

Section 5.4.1 of this book can be downloaded from:

rhydlewis.eu/resources/sudokuGeneratorMetaheuristics
.zip

A Sudoku to graph colouring problem converter can also be found at:

rhydlewis.eu/resources/sudokuToGCol.zip

When compiled, this program reads in a single Sudoku problem (from a text file)

and converts it into the equivalent graph colouring problem in the DIMACS format

mentioned above.
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Clash, 10, 196

Clique, 11

Clique number ω(G), 33

Coefficient of variation (CV), 91, 178

Collision

Primary, 136

Secondary, 136

Colour class, 11

Complete colouring, 10

Complete graph, 18, 231

Component, 37

Connected graph, 28

Constraint checks, 23–24

Contraction, 125

Cut vertex, 37

Cycle, 28

Cycle graph, 19, 41, 45

Decentralised graph colouring, 135–138

Decision problem, 15

Degree, 27

Density, 28

De Morgan, Augustus, 118

Disconnected graph, 28

Diversity, 104–106

Dodecahedral graph, 231

Dominance, 186

DSATUR algorithm, 39–42, 144

Dual graph, 114

Dummy room, 212

Dynamic graph colouring, 140

Edge colouring, 120–124

Empty graph, 18

Equitable chromatic number χe(G), 142

Equitable graph colouring, 142–144, 156

Euler, Leonhard, 112, 125

Eulerian graph, 115

Euler’s characteristic, 112

Event clash, see Clash

Evolutionary algorithm (EA), 65–68, 83–84

Exact algorithm, 55

Exam timetabling, see Timetabling

Face colouring, 7–9, 111–120

Feasibility ratio, 213

Feasible colouring, 10

Flat graph, 90
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Flower snark graph, 232

Four Colour Theorem, 7–9, 20, 116–120, 134
Frequency assignment, 135–136, 139

Girth, 113

GREEDY algorithm, 4, 29–32, 64, 139, 146

Greedy partition crossover (GPX), 83–84

Greedy round-robin algorithm, 170
Grid graph, 20

Grötzch graph, 34

Guthrie, Francis, 7, 115, 118

Haken, Wolfgang, 116, 119

Hamilton, William, 118
Hamiltonian cycle, 153

HEA algorithm, see Hybrid evolutionary

algorithm

Heawood, Percy, 119

Hill-Climbing (HC) algorithm, 87–88
Hybrid evolutionary algorithm, 83–84,

129–132, 175

Improper colouring, 10
Incident, 27

Independence number α(G), 33

Independent set, 11

Extraction, 76–77

Induced subgraph, 28

Integer programming (IP), 58–63, 147,
162–164

Interval graph, 6, 34–35, 53

Intractability, 11–17

Isomorphism, 47, 171

Iterated greedy algorithm, 64–65

k-partition problem, 156

Kempe chain, 68–69, 118, 123, 161

Kempe chain interchange, 68–69, 87, 158–159,

181–183, 210

Double, 210

Multiple, 211
Kempe, Arthur, 118

Kirkman, Thomas, 122

Konig’s Line Colouring Theorem, 122

Latin square, 125–127
League schedules, see Round-robin schedules

Line graph L(G), 120, 174

List colouring, 140–142

Lollypop graph, 231

Loops, 10

Map colouring, see Face colouring

Markov chain, 209

Maximum matching problem, 147, 201

Metaheuristics, 63–64, 204–205

Multicolouring, 149
Mycielskian graph, 34

Neighbourhood Γ (v), 27

Net, 133

Net pattern, 133

Nonadjacency, 27

NP-complete, see Intractability

NP-hard, see Intractability

One-factorisation, 170

Online graph colouring, 138–140

Optimal colouring, 10

Pair swap, 68–69, 87, 158–159
Partial colouring, 10

Partial Latin square, 127

PARTIALCOL algorithm, 73, 74, 81–82, 146,

206–208

Path, 28

Length, 28
Perfect elimination ordering, 35

Perfect graph, 53

Phase transition, 90, 131

Pierce, Charles, 118

Planar graph, 8, 19, 111, 112, 134

Polynomial transformation, 15

Precolouring, 124–125

Proper colouring, 10

Random descent, 70, 188

Random graph, 47, 232
Reed’s Conjecture, 52

Register allocation, 6

RLF algorithm, 42–45

Round-robin schedules, 122, 169–175

Breaks, 170

Carryover, 172

Round-specific constraints, 176

s-chain interchange, 192

Sage, 228–233

Satisfiability problem, 15
Saturation degree, 39

Separating set, 37

Set covering problem, 203

Short circuit testing, 132–135

Simulated annealing (SA), 69–72, 187, 209,

219

Social network, 2, 99–102
Sports schedules, see Round-robin schedules

Star graph, 143
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Steepest descent, 71–72
Stirling numbers of the second kind, 13

Subgraph, 2, 28

Sudoku, 128–132
Logic solvable, 128

Shuffle operators, 129

Tabu list, 79

Tabu search, 69–72, 158–159, 219
TABUCOL algorithm, 74, 79–81, 157

Tiling patterns, 116

Timetabling, 4, 96–99, 140, 195–221

Constraints, 195–196
Post enrolment-based, 199–204

Travelling tournament problem, 172

University timetabling, see Timetabling

Vizing’s Theorem, 123

Wedding seating problem, 154
Weighted graph colouring, 144–149

Welsh Rugby Union (WRU), 184

Wheel graph, 19, 41, 45
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