12/9/2018 A cartoon guide to Flux — Code Cartoons

Images haven't loaded yet. Please exit printing, wait for images to load, and try to

print again.

Other languages: B ZNgE, §1=01, Pycckuit.

A cartoon guide to Flux

Flux is both one of the most popular and one of the least understood
topics in current web development. This guide is an attempt to explain

it in a way everyone can understand.

The problem

First, I should explain the basic problem that Flux solves. Flux is a
pattern for handling data in your application. Flux and React grew up
together at Facebook. Many people use them together, though you can
use them independently. They were developed to address a particular

set of problems that Facebook was seeing.

One really well known

'Y

| 1 example of this set of

problems was the notification
bug. When you logged in to
Facebook, you would see a

b notification over the messages

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 1/12

https://code-cartoons.com/@linclark?source=post_header_lockup
https://code-cartoons.com/@linclark?source=post_header_lockup
https://medium.com/@sotayamashita/%E6%BC%AB%E7%94%BB%E3%81%A7%E8%AA%AC%E6%98%8E%E3%81%99%E3%82%8B-flux-1a219e50232b#.24jpny5vi
http://bestalign.github.io/2015/10/06/cartoon-guide-to-flux/
https://medium.com/@sacret/%D1%80%D1%83%D0%BA%D0%BE%D0%B2%D0%BE%D0%B4%D1%81%D1%82%D0%B2%D0%BE-%D0%BF%D0%BE-flux-%D0%B2-%D0%BA%D0%B0%D1%80%D1%82%D0%B8%D0%BD%D0%BA%D0%B0%D1%85-df2b040224a3

12/9/2018 A cartoon guide to Flux — Code Cartoons

icon. When you clicked on the messages icon, though, there would be
no new message. The notification would go away. Then, a few minutes
later after a few interactions with the site, the notification would come
back. You'd click on the messages icon again... still no new messages. It
would just keep going back-and-forth in this cycle.

It wasn’t just a cycle for the
mseack user on the site. There was

s FIXEDV\ / N
S

also a cycle going on for the
/((a\ team at Facebook. They would
fix this bug and everything
b would be fine for a while and
then the bug would be back. It

would go back-and-forth between being resolved and being an issue

again.

So Facebook was looking for a way to get out of this cycle. They didn’t
want to just fix it once. They wanted to make the system predictable so

they could ensure that this problem wouldn’t keep resurfacing.

The underlying problem

The underlying problem that they identified was the way that the data
flowed through the application.

Note: this is what I've gleaned from simplified versions that they’ve shared
in talks. I'm sure the actual architecture looked different.

They had models which held

/ VIEW the data and would pass data
MODEL to the view layer to render the
\ data.
VIEW
MODEL Because user interaction
\ happened through the views,
VIEW the views sometimes needed
-«

to update models based on
Models pass data to the view layer. . .
user input. And sometimes

models needed to update other models.
On top of that, sometimes these actions would trigger a cascade of

other changes. I envision this as an edge-of-your-seat game of Pong—
it’s hard to know where the ball is going to land (or fall off the screen).

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 2/12

12/9/2018 A cartoon guide to Flux — Code Cartoons

Throw in the fact that these
changes could be happening

VIEW asynchronously. One change

could trigger multiple other

MODEL

changes. I imagine this as

VIEW throwing a whole bag of ping-
pong balls into your Pong
MODEL . .
game, with them flying all
l VIEW over the place and crossing
paths.

Views update models. Models update other

models. This starts to look like a really edge-of-

All in all, it makes for a hard to
your-seat game of Pong.

debug data flow.

The solution: unidirectional data flow

So Facebook decided to try a different kind of architecture, where the
data flows in one direction—only one direction—and when you need
to insert new data, the flow starts all over again at the beginning. They
called their architecture Flux.

L L
' ACTION] - ‘ DISPP\TCHERI = (STOREJ -Q(VIEW J

The diagram you'll find in Facebook’s Flux docs. It is way cooler than it looks.

This is actually really cool... but you probably can’t tell it from the
diagram above.

Once you understand Flux, this diagram is pretty clear. The problem is
that if you’re coming to the documentation completely new to Flux, I
don’t think that this diagram helps you understand it... and that’s what
a diagram should do. It should give you a big picture understanding of
a system before you dive in to really start figuring out how you do
specific things.

What helped me understand Flux better wasn’t a diagram like this, but
instead thinking of the system in terms of different characters working
together as a team to achieve a goal. So I want to introduce you to the

cast of characters that I have in my head.

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 3/12

12/9/2018 A cartoon guide to Flux — Code Cartoons

Meet the characters

I'm just going to give a quick introduction to the characters before I
explain how they all interact.

The action creator

The first character is the action creator. It’s in charge of creating
actions, which is the path that all changes and interactions should go
through. Whenever you want to change the state of the app or have the
view render differently, you shoot off an action.

I think of the action creator as
a telegraph operator. You go to
the action creator knowing
basically what message you
want to send, and then the

action creator formats that in

a way that the rest of the

system can understand.

The action creator is like a telegraph operator. It

formats your message for you. The action creator creates an
action with a type and a
payload. The type will be one of the types that you have defined as
actions in your system (usually a list of constants). An example of an
action would be something like MESSAGE_CREATE or
MESSAGE_READ.

There’s a neat side effect to having a part of your system that knows all
of the possible actions. A new developer can come on the project, open
up the action creator files and see the entire API—all of the possible
state changes—that your system provides.

Once it has created the action message, the action creator passes that
action off to the dispatcher.

The dispatcher

The dispatcher is basically a big registry of callbacks. It’s kind of like a
telephone operator at a phone switchboard. It keeps a list of all of the
stores that it needs to send actions to. When an action comes in from

the action creator, it will pass the action around to different stores.

It does this in a synchronous way, which helps with that multi-ball
Pong game effect that I was talking about earlier. And if you need to set

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 4/12

12/9/2018 A cartoon guide to Flux — Code Cartoons

up dependencies between
stores so one gets updated

before the other, you can have

NOTIFY THESE Cee e . .
STORES Lo the dispatcher manage this for

you with waitFor().

The Flux dispatcher is
different from dispatchers in
many other architectures. The

action is sent to all of the

registered stores regardless of
what the action type is. This

The dispatcher is like a switchboard operator. It

gy
knows all the callbacks for the different stores. means the store doesn tJUSt

subscribe to some actions. It
hears about all actions and filters out what it cares about and doesn’t.

The store

Next is the store. The store holds on to all state in the application, and
all of the state changing logic lives inside of the stores.

I think of the store as an over-

controlling bureaucrat. All

state changes must be made

— by it personally. And you can’t

directly request that it change

the state. There are no setters
on the store. To request a state
change, you must follow

proper procedure... you must

The store is an over-controlling bureaucrat. All submit an action via the action

changes must go through it. . . .
creator/dispatcher pipeline.

As I mentioned above, if a store is registered with the dispatcher, all
actions will be sent to it. Inside the store there’s usually a switch
statement that looks at the action type to decide whether or not this
store cares about this action. If the store does care about this action, it
will figure out what change needs to be made based on this action and
update the state.

Once the store has made its changes to the state, it will emit a change
event. This will notify the controller view that the state has changed.

The controller view and the view

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 5/12

12/9/2018 A cartoon guide to Flux — Code Cartoons

The views are in charge of taking the state and rendering it out for the

user as well as accepting user input.

The view is a presenter. It isn’t
aware of anything in the
application, it just knows the
data that’s handed to it and
how to format the data into
output that people understand
(via HTML).

The controller view is like a
middle manager between the

store and the view. The store

tells it when the state has
The controller view is like a middle manager who Changed. It collects the new
ets notifications from the store and passes the
& , , P state and then passes the
data onto the views under it. The view presents
that data to the user. updated state along to all of

the views under it.

How they all work together

So let’s take a look at how all of these characters work together.

The setup

First there’s the setup: application initialization which only happens

once.

1. Stores let the dispatcher know that they want to be notified

whenever an action comes in.

HEY DISPATCHER, HERES A

CALLBACK. CAN YOU NOTIFY 1
HE WHEN ACTIONS COME IN?

NOTIFY THESE

STORES

~STCRE CALLBACK

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207

6/12

12/9/2018 A cartoon guide to Flux — Code Cartoons

2. Then the controller views ask the stores for the latest state.

3. When the stores give the state to the controller views, they pass that
state along to their child views to render.

WHATS THE
GO AHEAD AND
LATEST STATE? RENDER THIS. ILL LET
\ YOU KNOW WHEN NEV
STATE COMES IN

/ (=
.

NOTIFY THESE
STORES
oo S
oA

4. The controller views also ask the stores to keep them notified when

state changes.

OH YEAH, AND COULD
YOU NOTIFY FE WHEN
THE STATE CHANGES?

woTFYTHESE |] Y | c ¢ - ¢ ¢

STORES ™M S~ |- ==+ .

+ STORE CALLBACK - o
N N A —

o

The data flow

17

3
e
/

Once the setup is done, the application is ready to accept user input. So
let’s trigger an action by having the user make a change.

We’ll kick off the data flow with a user interaction.

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 712

12/9/2018 A cartoon guide to Flux — Code Cartoons

—
| — — .I - |
THAT MIDDLE
NUMBER SHOULD
BE 0.
NOTIFY THESE v e
STORES ™M M~ |- ==+ .
H—H/z
1. The view tells the action creator to prepare an action.
NOTIFY THESE ‘@
STORES CAN YOU SEND OUT AN
»STORE CALLBACK. UPDATE STATISTICS
ACTION?
SET THE MDOLE
/ NUMBER TO 10,
I

2. The action creator formats the action and sends it off to the
dispatcher.

NOTIFY THESE P
SEND THIS ACTION OFF
stores || [T0 THE STORES WHEN
-SToRED M T e STAT THEYRE READY.
STORE CALLBACK — . .. el]

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 8/12

12/9/2018 A cartoon guide to Flux — Code Cartoons

3. The dispatcher sends the action off to the stores in sequence. Each
store gets notified of all actions. Then the store decides whether it cares
about this one or not, and changes the state accordingly.

OK, AN UPDATE_STAT ACTICH

LETS SEE HOW | UPDATE THE 1
o %

NOTIFY THESE
STORES

~STCRE CALLBACK

4. Once it’s done changing state, the store lets its subscribed view
controllers know.

5. Those view controllers will then ask the store to give them the
updated state.

THERE'S BEEN
ASTATE

OH COOL. SEND IT
OVER PLEASE
' N

NOTIFY THESE
STORES

~STCRE CALLBACK

6. After the store gives it the state, the view controller will tell its child
views to rerender based on the new state.

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 9/12

12/9/2018

A cartoon guide to Flux — Code Cartoons

THEY JUST HANDED
ME SOME UPDATED
_, STATE TIE TO

\ =t]

So that’s how I think of Flux. Hope it helps!

Coming up next...

A cartoon intro to Redux - Code Cartoons

A CARTOON INTRO

One thing that causes even more confusion than
Flux is the difference between Flux and Redux, a...

code-cartoons.com

GET CARTOONS
WANT A WHOLE BOOK? SENT TO YOU

A CARTOON GUIDE LET ME KNOW, AND I'LL WRITE IT W -
TOREACT.TS - — k ‘
—— -A N>

Resources

+ Flux documentation

« Fluxxor documentation

« The Case for Flux

FOLLOW
CODE CARTOONS

Thank you to the fantastic Kent C. Dodds, Matt Zabriskie, and Christopher

Chedeau for their early feedback, and to all the folks at BrooklynJS for

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207

10/12

https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6#.w36q3cvk6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6#.w36q3cvk6
https://facebook.github.io/flux/docs/overview.html
http://fluxxor.com/what-is-flux.html
https://medium.com/@dan_abramov/the-case-for-flux-379b7d1982c6
https://twitter.com/kentcdodds
https://twitter.com/mzabriskie
https://twitter.com/Vjeux
https://twitter.com/brooklyn_js
https://leanpub.com/codecartoons-react
https://tinyletter.com/codecartoons
https://twitter.com/codecartoons

12/9/2018 A cartoon guide to Flux — Code Cartoons

their comments on the live action version!

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 11/12

12/9/2018 A cartoon guide to Flux — Code Cartoons

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 12/12

