
12/9/2018 A cartoon guide to Flux – Code Cartoons

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 1/12

Lin Clark Follow

Stu�ng my head with code, then turning it into @codecartoons
Sep 29, 2015 · 9 min read

A cartoon guide to Flux
Flux is both one of the most popular and one of the least understood

topics in current web development. This guide is an attempt to explain

it in a way everyone can understand.

The problem
First, I should explain the basic problem that Flux solves. Flux is a

pattern for handling data in your application. Flux and React grew up

together at Facebook. Many people use them together, though you can

use them independently. They were developed to address a particular

set of problems that Facebook was seeing.

One really well known

example of this set of

problems was the noti�cation

bug. When you logged in to

Facebook, you would see a

noti�cation over the messages

Other languages: 日本語, 한국어, Русский.

Images haven’t loaded yet. Please exit printing, wait for images to load, and try to

print again.

https://code-cartoons.com/@linclark?source=post_header_lockup
https://code-cartoons.com/@linclark?source=post_header_lockup
https://medium.com/@sotayamashita/%E6%BC%AB%E7%94%BB%E3%81%A7%E8%AA%AC%E6%98%8E%E3%81%99%E3%82%8B-flux-1a219e50232b#.24jpny5vi
http://bestalign.github.io/2015/10/06/cartoon-guide-to-flux/
https://medium.com/@sacret/%D1%80%D1%83%D0%BA%D0%BE%D0%B2%D0%BE%D0%B4%D1%81%D1%82%D0%B2%D0%BE-%D0%BF%D0%BE-flux-%D0%B2-%D0%BA%D0%B0%D1%80%D1%82%D0%B8%D0%BD%D0%BA%D0%B0%D1%85-df2b040224a3


12/9/2018 A cartoon guide to Flux – Code Cartoons

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 2/12

icon. When you clicked on the messages icon, though, there would be

no new message. The noti�cation would go away. Then, a few minutes

later after a few interactions with the site, the noti�cation would come

back. You'd click on the messages icon again… still no new messages. It

would just keep going back-and-forth in this cycle.

It wasn’t just a cycle for the

user on the site. There was

also a cycle going on for the

team at Facebook. They would

�x this bug and everything

would be �ne for a while and

then the bug would be back. It

would go back-and-forth between being resolved and being an issue

again.

So Facebook was looking for a way to get out of this cycle. They didn’t

want to just �x it once. They wanted to make the system predictable so

they could ensure that this problem wouldn’t keep resurfacing.

The underlying problem
The underlying problem that they identi�ed was the way that the data

�owed through the application.

Note: this is what I’ve gleaned from simpli�ed versions that they’ve shared

in talks. I’m sure the actual architecture looked di�erent.

They had models which held

the data and would pass data

to the view layer to render the

data.

Because user interaction

happened through the views,

the views sometimes needed

to update models based on

user input. And sometimes

models needed to update other models.

On top of that, sometimes these actions would trigger a cascade of

other changes. I envision this as an edge-of-your-seat game of Pong — 

it’s hard to know where the ball is going to land (or fall o� the screen).

Models pass data to the view layer.



12/9/2018 A cartoon guide to Flux – Code Cartoons

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 3/12

Throw in the fact that these

changes could be happening

asynchronously. One change

could trigger multiple other

changes. I imagine this as

throwing a whole bag of ping-

pong balls into your Pong

game, with them �ying all

over the place and crossing

paths.

All in all, it makes for a hard to

debug data �ow.

The solution: unidirectional data �ow
So Facebook decided to try a di�erent kind of architecture, where the

data �ows in one direction — only one direction — and when you need

to insert new data, the �ow starts all over again at the beginning. They

called their architecture Flux.

This is actually really cool… but you probably can’t tell it from the

diagram above.

Once you understand Flux, this diagram is pretty clear. The problem is

that if you’re coming to the documentation completely new to Flux, I

don’t think that this diagram helps you understand it… and that’s what

a diagram should do. It should give you a big picture understanding of

a system before you dive in to really start �guring out how you do

speci�c things.

What helped me understand Flux better wasn’t a diagram like this, but

instead thinking of the system in terms of di�erent characters working

together as a team to achieve a goal. So I want to introduce you to the

cast of characters that I have in my head.

Views update models. Models update other

models. This starts to look like a really edge-of-

your-seat game of Pong.

The diagram you’ll �nd in Facebook’s Flux docs. It is way cooler than it looks.



12/9/2018 A cartoon guide to Flux – Code Cartoons

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 4/12

Meet the characters
I’m just going to give a quick introduction to the characters before I

explain how they all interact.

The action creator

The �rst character is the action creator. It’s in charge of creating

actions, which is the path that all changes and interactions should go

through. Whenever you want to change the state of the app or have the

view render di�erently, you shoot o� an action.

I think of the action creator as

a telegraph operator. You go to

the action creator knowing

basically what message you

want to send, and then the

action creator formats that in

a way that the rest of the

system can understand.

The action creator creates an

action with a type and a

payload. The type will be one of the types that you have de�ned as

actions in your system (usually a list of constants). An example of an

action would be something like MESSAGE_CREATE or

MESSAGE_READ.

There’s a neat side e�ect to having a part of your system that knows all

of the possible actions. A new developer can come on the project, open

up the action creator �les and see the entire API — all of the possible

state changes — that your system provides.

Once it has created the action message, the action creator passes that

action o� to the dispatcher.

The dispatcher

The dispatcher is basically a big registry of callbacks. It’s kind of like a

telephone operator at a phone switchboard. It keeps a list of all of the

stores that it needs to send actions to. When an action comes in from

the action creator, it will pass the action around to di�erent stores.

It does this in a synchronous way, which helps with that multi-ball

Pong game e�ect that I was talking about earlier. And if you need to set

The action creator is like a telegraph operator. It

formats your message for you.



12/9/2018 A cartoon guide to Flux – Code Cartoons

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 5/12

up dependencies between

stores so one gets updated

before the other, you can have

the dispatcher manage this for

you with waitFor().

The Flux dispatcher is

di�erent from dispatchers in

many other architectures. The

action is sent to all of the

registered stores regardless of

what the action type is. This

means the store doesn’t just

subscribe to some actions. It

hears about all actions and �lters out what it cares about and doesn’t.

The store

Next is the store. The store holds on to all state in the application, and

all of the state changing logic lives inside of the stores.

I think of the store as an over-

controlling bureaucrat. All

state changes must be made

by it personally. And you can’t

directly request that it change

the state. There are no setters

on the store. To request a state

change, you must follow

proper procedure… you must

submit an action via the action

creator/dispatcher pipeline.

As I mentioned above, if a store is registered with the dispatcher, all

actions will be sent to it. Inside the store there’s usually a switch

statement that looks at the action type to decide whether or not this

store cares about this action. If the store does care about this action, it

will �gure out what change needs to be made based on this action and

update the state.

Once the store has made its changes to the state, it will emit a change

event. This will notify the controller view that the state has changed.

The controller view and the view

The dispatcher is like a switchboard operator. It

knows all the callbacks for the di�erent stores.

The store is an over-controlling bureaucrat. All

changes must go through it.



12/9/2018 A cartoon guide to Flux – Code Cartoons

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 6/12

The views are in charge of taking the state and rendering it out for the

user as well as accepting user input.

The view is a presenter. It isn’t

aware of anything in the

application, it just knows the

data that’s handed to it and

how to format the data into

output that people understand

(via HTML).

The controller view is like a

middle manager between the

store and the view. The store

tells it when the state has

changed. It collects the new

state and then passes the

updated state along to all of

the views under it.

How they all work together
So let’s take a look at how all of these characters work together.

The setup

First there’s the setup: application initialization which only happens

once.

1. Stores let the dispatcher know that they want to be noti�ed

whenever an action comes in.

The controller view is like a middle manager who

gets noti�cations from the store and passes the

data onto the views under it. The view presents

that data to the user.



12/9/2018 A cartoon guide to Flux – Code Cartoons

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 7/12

2. Then the controller views ask the stores for the latest state.

3. When the stores give the state to the controller views, they pass that

state along to their child views to render.

4. The controller views also ask the stores to keep them noti�ed when

state changes.

The data �ow

Once the setup is done, the application is ready to accept user input. So

let’s trigger an action by having the user make a change.

We’ll kick o� the data �ow with a user interaction.



12/9/2018 A cartoon guide to Flux – Code Cartoons

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 8/12

1. The view tells the action creator to prepare an action.

2. The action creator formats the action and sends it o� to the

dispatcher.



12/9/2018 A cartoon guide to Flux – Code Cartoons

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 9/12

3. The dispatcher sends the action o� to the stores in sequence. Each

store gets noti�ed of all actions. Then the store decides whether it cares

about this one or not, and changes the state accordingly.

4. Once it’s done changing state, the store lets its subscribed view

controllers know.

5. Those view controllers will then ask the store to give them the

updated state.

6. After the store gives it the state, the view controller will tell its child

views to rerender based on the new state.



12/9/2018 A cartoon guide to Flux – Code Cartoons

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 10/12

So that’s how I think of Flux. Hope it helps!

. . .

Coming up next…

A cartoon intro to Redux - Code Cartoons
 
One thing that causes even more confusion than

Flux is the di�erence between Flux and Redux, a…

code-cartoons.com

Resources
Flux documentation

Fluxxor documentation

The Case for Flux

Thank you to the fantastic Kent C. Dodds, Matt Zabriskie, and Christopher

Chedeau for their early feedback, and to all the folks at BrooklynJS for

•

•

•

https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6#.w36q3cvk6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6#.w36q3cvk6
https://facebook.github.io/flux/docs/overview.html
http://fluxxor.com/what-is-flux.html
https://medium.com/@dan_abramov/the-case-for-flux-379b7d1982c6
https://twitter.com/kentcdodds
https://twitter.com/mzabriskie
https://twitter.com/Vjeux
https://twitter.com/brooklyn_js
https://leanpub.com/codecartoons-react
https://tinyletter.com/codecartoons
https://twitter.com/codecartoons


12/9/2018 A cartoon guide to Flux – Code Cartoons

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 11/12

their comments on the live action version!



12/9/2018 A cartoon guide to Flux – Code Cartoons

https://code-cartoons.com/a-cartoon-guide-to-flux-6157355ab207 12/12


