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0. Preparing the working space 
As of now there are several open source environments to work with R and at least two of them are 

meant to work only with R. In any case you need to install the base system first. 

0. Go to http://cran.r-project.org/mirrors.html and choose one of the mirrors. Usually, the 
closer the mirror to you geographically, the higher the download speed.  

1. Click the mirror link you prefer. In the section “Download and Install R” you can choose the 
preferred version. Currently R is available for Mac, Windows, and Linux platforms. 

2. Choose a version according to your platform.  

 If you are installing R for the first time on Windows, then the easiest way is to click “This 
is what you want to install R for the first time.” Then click “Download R X.X.X for 
Windows”  

 In case you are using Mac, choose the topmost link “R-X.X.X.pkg”. If you are using an 
older version of MacOS the other links as well. For Linux, follow the instructions found in 
/debian/ README.html   

3. Unless you are using Linux, the file you download will include the GUI (graphical user 
interface) for R. So you can start using R immediately after the installation. 

4. Now let’s proceed with the installation of RStudio, which is a more user friendly software. 
Go to the page: https://www.rstudio.com/products/rstudio/download/ (you need to have 
the base of R to use RStudio) 

5. In the section “Installers for Supported Platforms” choose the version that suits your 
platform (Mac, Windows or Linux). Download it and install it. 

 

 

 

 

 

 

 

 

 

 

 

 

http://cran.r-project.org/mirrors.html
https://www.rstudio.com/products/rstudio/download/


 

 

 

 

0.1. Using RStudio 
 

After installing RStudio the basic view should look like: 

 

 

 

In the Section 1 you can write your code, functions and algorithms, and load saved code files. By default 

the file extension of the code files should be .R, but you can load code from the text files with different 

extensions, for instance .txt (caveat: unless the extension is .R you won’t be able to use all the available 

features, one of them is code completion). In the Box 2 you can see all the data that has been created, 

loaded and modified previously. All the data and functions (at least in the RStudio version 0.99.465) can 

be viewed by clicking them and they open in the Box 1. In the Box 2 you can also view all the commands 

typed previously by choosing the tab “History”. The values stored in the environment can be viewed by 

typing their names in the Box 3. In the Box 3 you can also type all the commands and write algorithms in 

the same way as in Box 1, even though it may be more practical to do that in the Box 1. Box 3 is also a 

log console; hence you can see all the actions being performed in the current session. 

Box 4 is one of the biggest advantages of RStudio compared to the original R GUI. You can view files in 

your working directory, view the plots you created, manage the libraries that you are using, and surf 



through the vast help documentation. It’s a multifunctional section that is connected with the Box 3. If 

you feel unsatisfied with the default setup of the working interface, you can change it by choosing from 

the upper menu: “Tools” -> “Global Options...” -> “Pane Layout”.  

 

 

 

  

  

 

RStudio, just like R GUI is using a default working directory to load, save and store all the files that you 

need to use. To change the default working directory go to “Tools” -> “Global Options…” -> “General” -> 

“Default working directory”.  You can redefine the working directory later and change it if you create a 

new project. Creating new projects is simple and practical especially when one has multiple data sets 

preloaded. By creating separate projects you can ensure that you won’t run out of memory. (Take this 

warning seriously in case you are working with bug datasets. Loading a dataset with the size of, say, 1 

Gb, RStudio will reserve an equal amount of operative memory in your machine) Go to “File” -> “New 

Project…” to create new projects. 

  



1. Data types, data classes and files 
“R is a programming language and software environment for statistical computing and graphics. The R 

language is widely used among statisticians and data miners for developing statistical software and data 

analysis. Polls, surveys of data miners, and studies of scholarly literature databases show that R's 

popularity has increased substantially in recent years.” -Wikipedia. 

 

This section is meant to introduce a reader to different types of data that can be processed in RStudio. 

Data types are introduced parsimoniously and one is encouraged to practice more independently. 

 

1.1. Logical operators, comparison and truth values 
In R there is a possibility to compare values with the following operators: “<” standing for less, “>” for 

more, “>=” for more or equal, “<=” for less or equal, and “==” for equal. Operator “=” is meant for 

inserting the values and therefore it can’t be used for the comparison. The comparison operators print 

out TRUE or FALSE and the result can be stored in the variable.  Also, logical operators such as “&” 

standing for AND, “|” for OR, and “!” for negation are in use. All logical and comparison operators can 

be used in the same sentence. All variables have different types depending on the values stored in them. 

You can always check the type of the variable with the function class().  

Example 1. ....................................................................................................................................   

 

> 0>1 
[1] FALSE 
 
> 0=1 
Error in 0 = 1 : invalid (do_set) left-hand side to assignment 
 
> 0==1 
[1] FALSE 
 
> a <- 0 != 0 
 
> a 
[1] FALSE 
 
> a == FALSE 
[1] TRUE 

 

Example 2. ....................................................................................................................................   

 



> (1==0) & (1>0) 
[1] FALSE 
 
> (1==0) | (1>0) 
[1] TRUE 
> !(1==0) 
[1] TRUE 
 
> TRUE | FALSE 
[1] TRUE 
 
> !TRUE 
[1] FALSE 
 
> TRUE<FALSE 
[1] FALSE 
 
> TRUE>FALSE 
[1] TRUE 

 

1.2. Scalars 
Scalars are the simplest data types and they can be input in R by simply typing the values. 

Any variable can be assigned any value by using the operator “<-“. Later the variable can be printed out 

by typing its name. 

Example 3. ....................................................................................................................................   

> 42 
[1] 42 
 
> 0.42 
[1] 0.42 

 

Example 4. ....................................................................................................................................  

> a <- 42 
> a 
[1] 42 
 
> b <- .42 
 
> b 
[1] 0.42 
 
> c(a,b) 
[1] 42.00  0.42 

 

 



1.3. Arithmetic 
In R it is possible to perform basic arithmetic operations such as addition, subtraction, multiplication, 

division, exponentiation, integer division and modulus calculation with real and complex numbers. 

Arithmetic operations can be performed with predefined existing variables. 

Example 5. ....................................................................................................................................  

> c<-5 
> d<-3 
 
> c-d 
[1] 2 
 
> c+d 
[1] 8 
 
> e<-c+d 
 
> e 
[1] 8 
 
> c-10 
[1] -5 
 
> c*d 
[1] 15 
 
> c/d 
[1] 1.666667 
 
> e%%d 
[1] 2 
 
> (e%%d)^d 
[1] 8 
 
> (e%%d)**d 
[1] 8 
 
> e%/%c 
[1] 1 

 

> 42%%5 #Division remainder calculator 
[1] 2 
 
> 42%/%5 #Division quotient calculator  
[1] 8 
 

 



1.4. Vectors 
Vectors are one-dimensional matrices. Both scalars and vectors can be combined into new vectors with 

a combination function c(). A new vector variable can be saved into another variable in the same way as 

scalars. In fact, scalars are also vectors in R. Some simple data is better represented in vectors, which 

can be thought as values of a single variable. A function seq() can be used to create generic arithmetic 

sequences.  

Example 6. ....................................................................................................................................   

> a<-c(0,2,4,6,8,10) 
> a 
[1]  0  2  4  6  8 10 
 
> d<-c(12,3,4,a) 
> d 
[1] 12  3  4  0  2  4  6  8 10 
 
> 0:10 
 [1]  0  1  2  3  4  5  6  7  8  9 10 
 
> seq(0,10,by=0.3) 
 [1] 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 
[13] 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.3 6.6 6.9 
[25] 7.2 7.5 7.8 8.1 8.4 8.7 9.0 9.3 9.6 9.9 
 
> 10:0 
 [1] 10  9  8  7  6  5  4  3  2  1  0 

 

Vector’s cell can be referred to by giving its index in the square brackets after the name of the vector. 
N.B.: indexing starts from 1. Referring to an index that doesn’t exist returns NA value. It is possible to 
refer to multiple indices at the same time by inputting a vector as an index. Function length() returns the 
length of a vector. 

 

Example 7. ....................................................................................................................................   

> e<-c(5,10,5) 
> e[2] 
[1] 10 
 
> e[10] 
[1] NA 
 
> length(e) 
[1] 3 
 
> e[length(e)] 



[1] 5 
 
> e[c(1,2)] 
[1]  5 10 
 
> e[c(2,3)] 
[1] 10  5 
 
> e[1:3] 
[1]  5 10  5 
 
> e[1:length(e)] 
[1]  5 10  5 
 
> e[1:4] 
[1]  5 10  5 NA 
 
> e[c(F,T,T)] 
[1] 10  5 
 
> e[c(-2)] 
[1] 5 5 

 

 

Changing all odd numbers to 42: 

 

Example 8. ....................................................................................................................................   

> a<-seq(1:10) 
> a 
 [1]  1  2  3  4  5  6  7  8  9 10 
 
> a%%2==0  
[1] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE 
 
> a[!a%%2==0]=42 
> a 
 [1] 42  2 42  4 42  6 42  8 42 10 
 
> a==42 
 [1]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE 

 



1.5. Matrices 

A matrix can be created from a vector or a set of vectors. For example a matrix [
1 2 3
4 5 6
7 8 9

] can be 

created with a command matrix() in a following manner: 

> m <- matrix(c(1,2,3,4,5,6,7,8,9), ncol=3, nrow=3, byrow=TRUE) 
> m 
     [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 
[3,]    7    8    9 

 

where the argument “byrow” takes values TRUE and FALSE depending on how we would like to organize 

the matrix, by rows or by columns. Argument “ncol” signifies the number of columns and “nrow” 

respectively the number of rows.  

Matrices can be handled in same way as vectors. It is possible to refer to their cells, rows, and columns 

by using the square brackets after their name. Adding more rows or columns to the matrix can be done 

with the commands rbind() and cbind() respectively. Removing rows and columns can be done by using 

truth values in same way as vector operations.  

 

> rbind(m, c(42,42,42)) 
     [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 
[3,]    7    8    9 
[4,]   42   42   42 

 

> cbind(rbind(m, c(42,42,42)), c(42,42,42,42)) 
     [,1] [,2] [,3] [,4] 
[1,]    1    2    3   42 
[2,]    4    5    6   42 
[3,]    7    8    9   42 
[4,]   42   42   42   42 

 

Example 9. ....................................................................................................................................   

> M <- array(1:10, dim=c(5,5)) 
> M 
     [,1] [,2] [,3] [,4] [,5] 
[1,]    1    6    1    6    1 
[2,]    2    7    2    7    2 
[3,]    3    8    3    8    3 
[4,]    4    9    4    9    4 
[5,]    5   10    5   10    5 

 



For example removing first three rows and columns can be done as follows 

 
> M<- M[-1:-3,-1:-3] 
> M 
     [,1] [,2] 
[1,]    9    4 
[2,]   10    5 

 

Or alternatively 

 

> M<-M[c(F,F,F,T,T),c(F,F,F,T,T)] 
> M 
     [,1] [,2] 
[1,]    9    4 
[2,]   10    5 

 

Hence, the result is 

 

[,1] [,2] [,3] [,4] [,5] 
[1,]    1    6    1    6    1 
[2,]    2    7    2    7    2 
[3,]    3    8    3    8    3 
[4,]    4    9    4    9    4 
[5,]    5   10    5   10    5 

 

 

Multiplying matrices can be done using the operator “%*%”, multiplication and division can be 

performed with “+” and “-“, and the command t() transposes the matrix.  

 

Multiplying: 

 

Example 10. ..................................................................................................................................  

  

> M1 <- matrix(c(1,2,3,4,5,6,7,8,9), ncol=3, nrow=3, byrow=T) 
> M1 
     [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 
[3,]    7    8    9  



 
> M2 <- matrix(c(1,2,3,4,5,6,7,8,9), ncol=3, nrow=3, byrow=T) 
> M2 
     [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 
[3,]    7    8    9 
 
> M3<-M1%*%M2 
> M3 
     [,1] [,2] [,3] 
[1,]   30   36   42 
[2,]   66   81   96 
[3,]  102  126  150 

 

Transposing: 

 

Example 11. ..................................................................................................................................   

 
> t(M3) 
     [,1] [,2] [,3] 
[1,]   30   66  102 
[2,]   36   81  126 
[3,]   42   96  150 
 

 

solve() function can be used to solve the systems of linear equations whose parameters are in the matrix 
form. The system of linear equations has to be in the form Ax=B. If B is not defined, then it is assumed to 
be the identity matrix, and the function will return the inverse of A. 

 

Example 12. ..................................................................................................................................  

 

Say we want to solve a system of equations as follows 

 

{

3𝑥 + 2𝑦 − 4𝑧 = −4
𝑥 − 6𝑦 + 3𝑧 = −4
2𝑥 − 𝑦 + 𝑧 = 5

 

which corresponds to 



 

[
3 2 −4
1 −6 3
2 −1 1

] [
𝑥
𝑦
𝑧
] = [

3 2 −4
1 −6 3
2 −1 1

] [

𝑥1
𝑥2
𝑥3
] = [

−4
−4
5
] 

 

 
> A<-matrix(c(3,1,2,2,-6,-1,-4,3,1),ncol=3,nrow=3,byrow=F) 
> B<-matrix(c(-4,-4,5),ncol=1,nrow=3,byrow=F) 
> A 
     [,1] [,2] [,3] 
[1,]    3    2   -4 
[2,]    1   -6    3 
[3,]    2   -1    1 
 
> B 
     [,1] 
[1,]   -4 
[2,]   -4 
[3,]    5 
 
> solve(A,B) 
     [,1] 
[1,]    2 
[2,]    3 
[3,]    4 

 

> solve(A) 
            [,1]        [,2]      [,3] 
[1,]  0.06976744 -0.04651163 0.4186047 
[2,] -0.11627907 -0.25581395 0.3023256 
[3,] -0.25581395 -0.16279070 0.4651163 

 

1.6. Characters 
In addition to numeric variables and Booleans it is also possible to store character values that consist of 

letters and numbers as a text. Sequences of characters can be input in single or double quotes and they 

can be stored in the same way as other values.  

 

Example 13. ..................................................................................................................................   

 
> string <- "RStudio" 
> string 
[1] "RStudio" 
 



> data_structures<-c("matrix", "table", "list") 
> data_structures 
[1] "matrix" "table"  "list"   

 
 

1.7. Factors 
Factors are the type of values that are meant to be used with classifies variables, such as the sex “M” or 

“F”. A variable can be converted to a factor variable using the function as.factor().  

 

Example 14. ..................................................................................................................................   

 
> answer<-c("Y","N","N","N","Y") 
> answer 
[1] "Y" "N" "N" "N" "Y" 
 
> answer<-as.factor(answer) 
> answer 
[1] Y N N N Y 
Levels: N Y 
 

1.8. Data frames 
Data frames are used as the fundamental data structure by most of R’s modeling software. They are 

tightly coupled collections of variables which share many of the properties of matrices and lists. For 

instance, combining the numeric and character vectors will produce a data frame as an output.  Data 

frames can be created using a function data.frame() and an argument “stringAsFactors = FALSE/TRUE” 

defines whether string value will be stored as characters or as factors. In fact, strings are characters in R 

terminology. This is another confusing part in R terminology apart from library/package thing. 

  

Example 15. ..................................................................................................................................   

 
> pizza <- c('Margherita', 'Kebab', 'Quattro stagioni','Frutti di 
mare','Hawaii') 
> isItalian <- c('Y','N','Y','Y','N') 
> price <- c(4,5,5,6,4.5) 
> pizzeria <- data.frame(pizza,isItalian,price, stringsAsFactors=TRUE) 
> pizzeria 
             pizza isItalian price 
1       Margherita         Y   4.0 
2            Kebab         N   5.0 
3 Quattro stagioni         Y   5.0 
4   Frutti di mare         Y   6.0 
5           Hawaii         N   4.5N     4.5 
 



> str(pizzeria) 
'data.frame': 5 obs. of  3 variables: 
 $ pizza    : Factor w/ 5 levels "Frutti di mare",..: 4 3 5 1 2 
 $ isItalian: Factor w/ 2 levels "N","Y": 2 1 2 2 1 
 $ price    : num  4 5 5 6 4.5 

 

 

1.9. List 
List is a data structure that provides a flexible method to store the variables of different types, classes, 

and lengths, which is not possible in a vector or a table. Trying to combine the variables from different 

classes in a vector converts them to the same class. 

“If you are using a data frame the data types must all be the same otherwise they will be subjected to 

type conversion. This may or may not be what you want, if the data frame has string/character data as 

well as numeric data, the numeric data will be converted to strings/characters and numerical operations 

will probably not give what you expected. “  Source: r-bloggers.com 

 

Example 16. ..................................................................................................................................   

 
> vector <- c('test', 1:5, 42) 
> vector 
[1] "test" "1"    "2"    "3"    "4"    "5"    "42"   
 
> class(vector) 
[1] "character"  
 

Example 17. ..................................................................................................................................   

 
> pizza <- c('Margherita','Quattro stagioni','Frutti di mare') 
> ingredients <- c('Tomato sauce', 'Cheese', 'Basilica','Olive oil') 
> price <- c(4:10) 
> owner_height <- sqrt(32400) 
> pizzeria <- list(pizza,ingredients,price,owner_height,3.14, c(T,F,T)) 
> pizzeria 
[[1]] 
[1] "Margherita"       "Quattro stagioni" "Frutti di mare"   
 
[[2]] 
[1] "Tomato sauce" "Cheese"       "Basilica"     "Olive oil"    
 
[[3]] 
[1]  4  5  6  7  8  9 10 
 



[[4]] 
[1] 180 
 
[[5]] 
[1] 3.14 
 
[[6]] 
[1]  TRUE FALSE  TRUE 
 
> pizzeria[3] 
[[1]] 
[1]  4  5  6  7  8  9 10 
 
> pizzeria[1:3] 
[[1]] 
[1] "Margherita"       "Quattro stagioni" "Frutti di mare"   
 
[[2]] 
[1] "Tomato sauce" "Cheese"       "Basilica"     "Olive oil"    
 
[[3]] 
[1]  4  5  6  7  8  9 10 

 

 

Subgroups of lists are lists as well: 

 

Example 18. ..................................................................................................................................   

 
> second <- pizzeria[2] 
> second 
[[1]] 
[1] "Tomato sauce" "Cheese"       "Basilica"     "Olive oil"    
 
> second[1] 
[[1]] 
[1] "Tomato sauce" "Cheese"       "Basilica"     "Olive oil" 
> class(second) 
[1] "list 
 
> is.list(second) 
[1] TRUE 
 
> second[2] 
[[1]] 
NULL 
 
> second <- pizzeria[[2]] 
> second 
[1] "Tomato sauce" "Cheese"       "Basilica"     "Olive oil"    



 
> second[2] 
[1] "Cheese" 
 
> class(second) 
[1] "character" 

 

Example 19. ..................................................................................................................................  

 

> cars <- list(brand=c("Ford"), model=c("Mustang", "Taurus", "Tourneo", 
"Transit"), body=as.factor(c("passenger","van")), 
intro_year=c(1964,1986,1995,1965), generation=1:6, 
serialno=sample(x=10000:10000000, size=4)) 
> cars 
$brand 
[1] "Ford" 
 
$model 
[1] "Mustang" "Taurus"  "Tourneo" "Transit" 
 
$body 
[1] passenger van       
Levels: passenger van 
 
$intro_year 
[1] 1964 1986 1995 1965 
 
$generation 
[1] 1 2 3 4 5 6 
 
$serialno 
[1] 8181771  879340 1885626 9812503 
 
> cars[[2]] 
[1] "Mustang" "Taurus"  "Tourneo" "Transit" 
 
> cars$model[2] 
[1] "Taurus" 
 
> cars$model <- c(cars$model, "Focus") 
> cars$model 
[1] "Mustang" "Taurus"  "Tourneo" "Transit" "Focus"   
 
> cars$engine <- "V12" 
> cars$engine 
[1] "V12" 
 
> class(cars$engine) 
[1] "character" 
 
> cars$engine <- as.factor(c(cars$engine, "V4", "V6", "V8", "V10")) 
> cars$engine 



[1] V12 V4  V6  V8  V10 
Levels: V10 V12 V4 V6 V8 
 
> class(cars$engine) 
[1] "factor" 

 
Removing an object from the list can be done in a following manner. 
 

Example 20. ..................................................................................................................................  

 
> remove(cars$engine) 
Error in remove(cars$engine) :  
  ... must contain names or character strings 
 
> cars$engine <- NULL 
> cars$engine 
NULL 
 
> cars <- cars[-7] 
> cars$engine 
NULL 

 

1.10. Loading the data from an external file 
 

By default R software is using a predefined directory for loading and storing the files, this directory can 

be checked with the command getwd(). A new default directory can be set using a command setwd() or 

by clicking “File” -> “Change dir” in the default R GUI and “Tools” -> “Global Options…” -> “General” in 

RStudio.  

A data file can be loaded into R in many different ways, for example using the following command: 

X <- read.table("exampledata.txt", header = TRUE, stringsAsFactors=FALSE) 

 

Where X will be the name of the data frame and the argument header defines whether to use the 

default names of the variables/columns that are already in the file being loaded. If the data being loaded 

doesn’t have column names or you set “header = FALSE”, then R will use the default column names look 

like “V1”, “V2”,… and so on.  By default, strings in the data are treated as factors. Setting the option 

“stringsAsFactors=FALSE” will make sure that the strings are being loaded as characters. A column can 

be converted to factors afterwards by typing:  

 

X$Column <- factor(X$Column)  

 

where ”Column” is any variable in the data set. 

  

The files can also be loaded from outside of the working directory in the following way: 



 
X <- read.table(file.choose(), header = TRUE) 

 

After that the software will ask you to choose a file manually from the system.  

For the CSV (comma-separated values) files use the following format instead: 

 
X <- read.csv(file.choose(), header = TRUE) 

 

In RStudio you can load the file interactively clicking: “Environment” -> “Import Dataset” -> “From Text 

File…” and by choosing a file from a directory. After choosing a file, you will be provided with several 

options to import the file. The good thing is that you can see all the changes you make before the import 

in the window “Data Frame”. 

 

 

 



 

 

 

Default data extensions in R are .csv and .txt. If you want to load .xlsx files you have to import them into 

R using special importing functions. The ‘xlsx’ package has a function read.xlsx() for reading Excel files: 

 
install.packages("xlsx") 
library (xslx) 
data <- read.xlsx ("data.xlsx", 1) #instead of “data.xlsx” you can write 

#file.choose() to choose a file from a 
#different directory. The second argument 
#defines the number of sheet being loaded 

Package ‘xlsx’ depends on a package ‘rJava’, which is being loaded automatically. If you get an error 

loading ‘rJava’, it is probably due to the outdated version of Java you are using. Head to 

http://www.java.com/en/download/ to download the latest version. If it seems like RStudio can’t find 

where Java is installed use the following code to point it (change the location if needed): 

 
Sys.setenv(JAVA_HOME='C:\\Program Files\\Java\\jre7') # for 64-bit version 
Windows 
Sys.setenv(JAVA_HOME='C:\\Program Files (x86)\\Java\\jre7') # for 32-bit 
version Windows 

 

http://www.java.com/en/download/


Package ‘gdata’ has a method to load older .xls files: 

install.packages("gdata") 
library(gdata) 
data <- read.xls("datafile.xls") #reads the first sheet by default. 

#Otherwise use argument sheet to define 
#the number of sheet needed 

 

Also in excel software it is possible to save the file in .csv or .txt format. 

Loading data from other files is possible as well. Package ‘foreign’ can handle files from SPSS and other 

sources: 

 
install.packages("foreign") 
library(foreign) 

Use following functions to load files depending on your source. 

 SPSS: read.spss() 

 Stata: read.stata() 

 MATLAB and Octave: read.octave() 

 SAS: read.xport() 

 

Example 21. ..................................................................................................................................   

 
data: Auto.csv from http://www-bcf.usc.edu/~gareth/ISL/data.html 

 

> getwd() 
[1] "C:/WINDOWS/system32" 

 

> setwd("C:/R") 
> getwd() 
[1] "C:/R" 
 
> data = read.csv(file.choose(), header = TRUE, stringsAsFactors=FALSE) 
> data[1:5,1:5] 
  mpg cylinders displacement horsepower weight 
1  18         8          307        130   3504 
2  15         8          350        165   3693 
3  18         8          318        150   3436 
4  16         8          304        150   3433 
5  17         8          302        140   3449 

 

 



1.11. Referring to cells, rows and columns, choosing 

partial data 
 

A data frame’s cells, rows and columns can be pointed in the same way as the ones of matrices. The 

columns of the data frame are vectors and they can be referred using numbers or their names (headers). 

The partial data can be chosen using different conditions. When applying a condition to a specific 

vector/column in the table the operator $ should be used for referring to this column.  

 

Example 22. ..................................................................................................................................   

 
data: Auto.csv from http://www-bcf.usc.edu/~gareth/ISL/data.html 
 
> data[5,4] 
[1] "140" 
 
> data[1:5,4] 
[1] "130" "165" "150" "150" "140" 
 
> data[5,] 
   mpg cylinders displacement horsepower  
5   17         8          302        140    
 
> data$weight[1:5] 
[1] 3504 3693 3436 3433 3449 
 
> View(data) 
> class(data$cylinders) 
[1] "integer" 
 
> class(data$acceleration) 
[1] "numeric" 
 
> class(data$name) 
[1] "character" 
 
> data$name[data$cylinders==8 & data$weight<3300] 
[1] "buick estate wagon (sw)" "chevrolet monza 2+2"     "ford mustang ii"         
"ford futura" 
 
> data$horsepower/100 
Error in data$horsepower/100 : non-numeric argument to binary operator 
 
> class(data$horsepower) 
[1] "character" 
 
> data$horsepower <- as.numeric(data$horsepower) 
> data$horsepower[1:5]/100 



[1] 1.30 1.65 1.50 1.50 1.40 

 

Example 23. ..................................................................................................................................  

 
> model <- c("Mustang", "Taurus", "Tourneo", "Transit") 
> body <- c(1,NA,2,NA) 
> body <- factor(body,labels=c("passenger","van")) 
> intro_year <- c(1964,1986,1995,1965) 
> serialno <- sample(x=10000:10000000, size=length(model)) 
> ford <- data.frame(model, body, intro_year, serialno) 
> ford 
    model      body intro_year serialno 
1 Mustang passenger       1964   901917 
2  Taurus      <NA>       1986  2676266 
3 Tourneo       van       1995   660185 
4 Transit      <NA>       1965  5949726  

 

Example 24. ..................................................................................................................................   

 
> ford[ford$body=='passenger',] 
       model      body intro_year serialno 
1    Mustang passenger       1964   901917 
NA      <NA>      <NA>         NA       NA 
NA.1    <NA>      <NA>         NA       NA 
 
> nrow(ford[ford$body == 'passenger', ]) 
[1] 3 
 
> subset(ford, body == 'passenger') 
    model      body intro_year serialno 
1 Mustang passenger       1964   901917 
  
> nrow(subset(ford, body == 'passenger')) 
[1] 1 

 

Sometimes empty or NA values in the data can produce false results, especially if we want to dismiss the 

NA values completely. In such cases which() or subset() function can fix the problem. 

 

Example 25. ..................................................................................................................................   

 
> v < 4 
[1]  TRUE  TRUE    NA FALSE  TRUE    NA 
 
> v[v<4] 
[1]  1  2 NA  3 NA 



 
> length(v[v<4]) 
[1] 5 
 
> sum(v<4, na.rm=T) 
[1] 3 

 

Example 26. ..................................................................................................................................   

 
> which(v<4) 
[1] 1 2 5 
 
> v[which(v<4)] 
[1] 1 2 3 
 
> length(v[which(v<4)]) 
[1] 3 
 
> length(which(v<4)) 
[1] 3 

 

Example 27. ..................................................................................................................................   

 
> subset(v, v<4) 
[1] 1 2 3 
 
> length(subset(v, v<4)) 
[1] 3 

 

Example 28. ..................................................................................................................................   

 
> M42 <- data.frame(matrix(1:42, nrow=7)) 
> colnames(M42) <- c("V1", "V2", "V3", 
+                  "V4", "V5", "V6") 
> M42 
  V1 V2 V3 V4 V5 V6 
1  1  8 15 22 29 36 
2  2  9 16 23 30 37 
3  3 10 17 24 31 38 
4  4 11 18 25 32 39 
5  5 12 19 26 33 40 
6  6 13 20 27 34 41 
7  7 14 21 28 35 42 
  
> M42.345 <- subset(M42, select=c("V3", "V4", "V5")) 



> M42.345 
  V3 V4 V5 
1 15 22 29 
2 16 23 30 
3 17 24 31 
4 18 25 32 
5 19 26 33 
6 20 27 34 
7 21 28 35 
  
> M42.345.over10 <- subset(M42, V2 > 10, select=c("V3", "V4", "V5")) 
> M42.345.over10 
  V3 V4 V5 
4 18 25 32 
5 19 26 33 
6 20 27 34 
7 21 28 35 

 

Function paste() can be useful if there’s a need to create several columns that have consequent generic 

names.  

Example 29. ..................................................................................................................................   

 
> paste("column", 1:3) 
[1] "column 1" "column 2" "column 3" 
 
> paste("column", 1:3, sep="") 
[1] "column1" "column2" "column3" 
 
> paste("column", 1:3, sep="_") 
[1] "column_1" "column_2" "column_3" 
 
> paste("column", 1, letters[1:5], sep="") 
[1] "column1a" "column1b" "column1c" "column1d" 
[5] "column1e" 
 
> paste("column", 1, LETTERS[1:5], sep="") 
[1] "column1A" "column1B" "column1C" "column1D" 
[5] "column1E" 

 

Example 30. ..................................................................................................................................   

 
> M42.345 <- subset(M42, select=paste("V",3:5, sep="")) 
> M42.345 
  V3 V4 V5 
1 15 22 29 
2 16 23 30 
3 17 24 31 
4 18 25 32 



5 19 26 33 
6 20 27 34 
7 21 28 35 
  
> M42.135 <- subset(M42, select=paste("V", seq(1,6, by=2), sep="")) 
> M42.135 
  V1 V3 V5 
1  1 15 29 
2  2 16 30 
3  3 17 31 
4  4 18 32 
5  5 19 33 
6  6 20 34 
7  7 21 35 
  
> M42.345.V2even <- subset(M42, V2%%2==0, select=paste("V", seq(3,5,by=1), 
sep="")) 
> M42.345.V2even 
  V3 V4 V5 
1 15 22 29 
3 17 24 31 
5 19 26 33 

7 21 28 35 

 

 

2. Statistical functions 
 

There is a vast collection of functions for data analysis in R. The functions are included in different 

libraries which tend to have different purposes. The standard libraries are always included in R package, 

the rest can be downloaded by clicking “Packages” -> “Load package” in the standard R framework or 

simply by typing library() with the name of the package in the brackets. If you don’t have a package you 

need to use, then you have to install it first. You can do it by typing install.packages() in the dialog box 

with the name of the package in the brackets. Also you can do it interactively by choosing “Packages” -> 

“Install”: 

 



 

 

You may be prompted to select a download mirror. You can either choose the one geographically closest 

to you, or, if you want to make sure you have the most up-to-date version of your package, choose the 

Austrian site, which is the primary CRAN server. Get back to the dialog box and pick the Austrian 

repository by typing:  

 
setRepositories() 

 

and by choosing a preferred action from the dialog box.  

When you tell R to install a package, it will automatically install any other packages that the first package 

depends on. The content (all the functions) available in a package can be checked using a function ls(): 

 

ls("package: the_name_of_the_package") 

 

Please be aware that in addition to methods, tests and functions many packages include data sets which 

can be very useful for practicing.  

 

Although one has to use the library() function to load a package, a package is not a library. A library is a 

directory that contains a set of packages. You might, for example, have a system-wide library as well as a 

library for each user. 

 



2.1. Descriptives 
 

There are plenty of built-in functions to get the descriptive statistics in R. Some of them are introduced 

below. 

 

Example 31. ..................................................................................................................................  

 

data: Auto.csv from http://www-bcf.usc.edu/~gareth/ISL/data.html 

 
> mean(data$weight) 
[1] 2970.262 
> median(data$weight) 
[1] 2800 
> max(data$weight) 
[1] 5140 
> min(data$weight) 
[1] 1613 
> sd(data$weight) 
[1] 847.9041 

 

You may find a package “pastecs” useful as it includes a function for a table of comprised descriptive 

statistics. 

 

Example 32. ..................................................................................................................................   

 
> library(pastecs) 
> options(digits=2) 
> options(scipen=100) 
> stat.desc(data$weight, basic=F) 
       
 median         mean      SE.mean CI.mean.0.95          var       
2800.00      2970.26        42.56        83.66    718941.40 
 
std.dev     coef.var  
 847.90         0.29 

 

2.2. Basic functions for normal distribution 
 

Example 33. ..................................................................................................................................  



 

> rnorm(mean = 0, sd=1, n=10)  #Simulating a normal distribution with zero  
#mean,the standard deviation (sd) of one, n=10 

 
 [1]  0.1611  0.0080 -0.0831  0.1452 -1.2257 -1.2628  0.0092  0.0437 -0.5330 
-0.6463 
 
> rnorm(mean = 0, sd=1, n=10) 
 [1]  1.09 -1.16  0.14  0.92  1.31 -0.55 -0.39  1.46  1.50  0.61  

 
> pnorm(q = -1, mean=0, sd = 1)  #Cumulative distribution function 
 
[1] 0.1586552539    #the point at quantile -1 

 
> qnorm(mean=0, sd = 1, p = 1/3, lower=T) #quantile functions 
[1] -0.43 #1/3 of the probability mass is found to the 

#left of this point 

 
> dnorm(x=1, mean=0, sd = 1) #Density functions 
[1] 0.24    #the solution of the equation f(x) with x=1 

 

 

2.3. Apply() function and its sister functions 
 

apply() function is especially practical in case of matrices or data frames. It allows to run operations row 
by row or column by column for the matrices. 

 
apply() function has a following syntax: 
apply(X, MARGIN, FUN, ...), where X is the data being elaborated, MARGIN indicates row if equal to 1 
and columns if equal to 2, FUN is the function being used, … may include optional arguments for the 
function FUN. 
 
lapply() performs the similar actions for the lists or vectors. The main difference between apply() and 
lapply() is what these two different functions print out. lapply() has a following syntax: 
lapply(X, FUN, ...), where arguments correspond to the same purpose as in the case of apply().  
 

Descriptives of the partial data (especially factors) from a matrix or a data frame can be most easily 

done using the function tapply() which a following syntax: tapply(X, INDEX, FUN = NULL, ..., simplify = 

TRUE), where X is an array, typically a column of the matrix, INDEX is an argument for factors, typically 

another column. If “simplify=FALSE”, the output is a list, otherwise the output is a scalar. FUN is a 

function being applied. 

 

Example 34. ..................................................................................................................................  

  
> m <- matrix(rep(1:3,3),ncol=3) 



> m 
     [,1] [,2] [,3] 
[1,]    1    1    1 
[2,]    2    2    2 
[3,]    3    3    3 
 
> apply(m,1,sum) 
[1] 3 6 9 
 
> a <- apply(m,2,sum) 
> a 
[1] 6 6 6 
 
> class(a) 
[1] "integer" 

 

Example 35. ..................................................................................................................................  

 
> l <- list(1:3,4:6,7:9) 
> l 
[[1]] 
[1] 1 2 3 
 
[[2]] 
[1] 4 5 6 
 
[[3]] 
[1] 7 8 9 
 
> lapply(l,mean) 
[[1]] 
[1] 2 
 
[[2]] 
[1] 5 
 
[[3]] 
[1] 8 

 

Example 36. ..................................................................................................................................  

 
> ford$weight <- c(3139, 2700, 2600, 3200) 
> ford$body[ford$model=="Taurus"] <- 'passenger' 
> ford$body[ford$model=="Transit"] <- 'van' 
> ford 
    model      body intro_year serialno weight 
1 Mustang passenger       1964   901917   3139 
2  Taurus passenger       1986  2676266   2700 
3 Tourneo       van       1995   660185   2600 



4 Transit       van       1965  5949726   3200 
 
> tapply(ford$weight, ford$body, mean) 
passenger       van  
     2920      2900 

 

 

2.4. Creating functions 
 

Even though R has a big set of functions, sometimes one may need to combine these functions. Writing 

own functions in R can be done most conveniently in the script environment. You can create a new 

script 

- In RStudio: File -> New File -> R Script or Ctrl+Shift+N 

- In R console: File -> New Script 

 

Example 37. ..................................................................................................................................  

theTruth <- function(N) { #A function that returns an N amount of 42’s 
  x <- rep(42,N) 
  return(x) 
} 

 
> theTruth(10) 
 [1] 42 42 42 42 42 42 42 42 42 42 

Example 38. ..................................................................................................................................   

gm_mean <- function(a){ #a function to calculate a geometric average 
prod(a)^(1/length(a)) 

}  

 

> x<-seq(1:10) 

> gm_mean(x) 

[1] 4.528729 

 

 

 

 



 

 

2.5. Algorithms 
2.5.1. For loops 

For loops can be used to create repetitive algorithms in R. It is important to keep in mind that for is a 

function in R like any other function and therefore it outputs a value at the end of its execution. 

Therefore it is important to use return() function to print out the value of the for function when it’s 

needed. A misuse of the for function can lead to errors without the return() function. Let’s use a simple 

for structure to demonstrate its action. 

Example 39. ..................................................................................................................................  

> for(i in 1:5){ 
+   print(i) 
+ } 
[1] 1 
[1] 2 
[1] 3 
[1] 4 
[1] 5 

 
In the previous example for function repeats itself 5 times according to the instructions in braces. Hence, 
as long as the index i is in the range from 1 to 5 (that is the condition for for function to continue the 
execution), the function prints it out. The instructions in braces don’t necessarily have to be related to 
the index i itself. We could instead create the following algorithm as well: 

 
> for(i in 1:5){ 
+ print(paste("This is number 42, it is being printed ", i ," times")) 
+ } 
[1] "This is number 42, it is being printed  1  times" 
[1] "This is number 42, it is being printed  2  times" 
[1] "This is number 42, it is being printed  3  times" 
[1] "This is number 42, it is being printed  4  times" 
[1] "This is number 42, it is being printed  5  times" 

Example 40. ..................................................................................................................................  

totSum <- function(data){ #A function that calculates the sum of an array of  
#numbers 

  sum=data[1] 
  N=length(data)-1 
  for (i in 1:N){ 
    sum=sum+data[i+1] 
  } 
  return(sum) 
} 

 



Calculating the total account balance of all customers (data: Credit.csv from http://www-
bcf.usc.edu/~gareth/ISL/data.html): 

> totSum(credit$Balance) 
[1] 208006 

 

For loops work well with the matrices and vectors, but sometimes it is more practical to use sapply() 
function instead, when the output is in a matrix or a vector form. The next example demonstrates the 
trick. 

Example 41. ..................................................................................................................................  

M42 <- matrix(1:42, nrow=6) 
# “values” is the empty vector for the minimum values 
values <- rep(0,7) 
min_value <- function(x) { #The algorithm to calculate the minimum values of  

#the matrix columns 
  return(min(M42[,x])) 
} 
for(i in 1:10){ 
  values[i] <- min_value(i) 
} 
 
> M42 
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] 
[1,]    1    7   13   19   25   31   37 
[2,]    2    8   14   20   26   32   38 
[3,]    3    9   15   21   27   33   39 
[4,]    4   10   16   22   28   34   40 
[5,]    5   11   17   23   29   35   41 
[6,]    6   12   18   24   30   36   42 
 
> values 
[1]  1  7 13 19 25 31 37 
 

> sapply(1:7, function(x) min_value(x)) 
[1]  1  7 13 19 25 31 37 

 

2.5.2. If else structure 
 

Conditional sentences can be programmed using if else structure. 

Example 42. ..................................................................................................................................   

numCompare <- function(x,y) 
 if(x > y) { 
 cat(x,"is bigger than",y) 
 } else { 

http://www-bcf.usc.edu/~gareth/ISL/data.html
http://www-bcf.usc.edu/~gareth/ISL/data.html


 cat(x,"is not bigger than", y) 
   } 
 
#OR 
 
numCompare <- function(x,y){ 
  if(x > y) cat(x,"is bigger than",y) else cat(x,"is not bigger than", y) 
  } 
 
> numCompare(10,12) 
10 is not bigger than 12 
 
> numCompare(12,10) 
12 is bigger than 10 

Example 43. ..................................................................................................................................  

 numCompare2 <- function(x,y) 
if(x > y) {  

cat(x,"is bigger than", y) 
 } else if(x<y){ 
    cat(x,"is smaller than", y) 
 } else { 
    cat(x,"is equal to", y) 
 } 

 
#OR 
 
numCompare2 <- function(x,y){ 
  if(x > y) cat(x,"is bigger than", y) else if(x<y) cat(x,"is smaller than", 
y) else cat(x,"is equal to", y) 
} 

  
> numCompare2(10,10) 

10 is equal to 10 
 
 

3. Methods of numerical inference 
3.1. Cross-tabulating 

 

The function table() returns the amount of occurrences that each value gets in the data. 

  

Example 44. ..................................................................................................................................   

> v <- c(3,4,5,5,5,6,8,9,7,6,4,2,78,90,6,1,3,5,7,4,23) 
> table(v) 



v 
 1  2  3  4  5  6  7  8  9 23 78 90  
 1  1  2  3  4  3  2  1  1  1  1  1 
  
> table(ford$body) 
 
passenger       van  
        2         2 

 

Using the same function table() there is a chance to cross tabulate two variables. Apply() function and its 

sisters can be used in the same way for the crosstabs and the function prop.table() is a quick way to 

printout the proportions of the values row-wise or column-wise. The second argument in prop.table() 

defines the method of proportions, where 1 stands for the rows, 2 for the columns. 

Example 45. ..................................................................................................................................   

> table(ford$body, ford$intro_year) 
            
            1964 1965 1986 1995 
  passenger    1    0    1    0 
  van          0    1    0    1 
  
> table(ford$body, ford$intro_year)[2,2] 
[1] 1 
 
> table(ford$body, ford$intro_year)[2,] 
1964 1965 1986 1995  
   0    1    0    1 
 
> cross.ford <- table(ford$body, ford$intro_year) 
> cross.ford[1,1] 
[1] 1 
 
> cross.ford[,1] 
passenger       van  
        1         0  

 

Example 46. ..................................................................................................................................   

> apply(cross.ford, 1, sum) 
passenger       van  
        2         2 
>  
> prop.table(cross.ford, 1) 
            
            1964 1965 1986 1995 
  passenger  0.5  0.0  0.5  0.0 
  van        0.0  0.5  0.0  0.5 
>  
> prop.table(cross.ford, 2) 



            
            1964 1965 1986 1995 
  passenger    1    0    1    0 
  van          0    1    0    1 

 

 

3.2. Classification of the data 
 

The classification of the data is especially useful in case of continuous variables. Cut() function is one of 

the options that can be used. It returns the input as factors. 

Example 47. ..................................................................................................................................   

> cut(M42$V2, breaks=c(0,10,14)) 
[1] (0,10]  (0,10]  (0,10]  (10,14] (10,14] 
[6] (10,14] (10,14] 
Levels: (0,10] (10,14] 
  
> table(cut(M42$V2, breaks=c(0,10,14))) 
 
 (0,10] (10,14]  
      3       4 
  
> cut(M42$V2, breaks=c(0,4,8,12)) 
[1] (4,8]  (8,12] (8,12] (8,12] (8,12] <NA>   
[7] <NA>   
Levels: (0,4] (4,8] (8,12] 
 
> table(cut(M42$V2, breaks=c(0,4,8,12))) 
 
 (0,4]  (4,8] (8,12]  
     0      1      4 

 

Tapply() function can be used to perform operations for the columns that are being classified with the 

classes from another column. 

Example 48. ..................................................................................................................................   

> class <- cut(M42$V2, breaks=c(0,10,14)) 
> tapply(M42$V3, class, mean) 
 (0,10] (10,14]  
   16.0    19.5 

 

 

3.3. T-test and confidence intervals 

Example 49. ..................................................................................................................................   



> norm <- rnorm(mean = 0, sd=1, n=1000) 
> t.test(norm, conf.level=0.99) 
 
 One Sample t-test 
 
data:  norm 
t = -0.1961, df = 999, p-value = 0.8446 
alternative hypothesis: true mean is not equal to 0 
99 percent confidence interval: 
 -0.08721620  0.07490038 
sample estimates: 
   mean of x  
-0.006157911 
  
> t.test(norm, conf.level=0.99)$conf.int 
[1] -0.08721620  0.07490038 
attr(,"conf.level") 
[1] 0.99 
 
# replicate confidence interval test 100 times 
confidence <- replicate(100, t.test(rnorm(n=100, mean=0, sd=1))$conf.int) 

 

 

3.4. F-test (incomplete) 
 

3.5. Tests for the variance (independence) 
 

Example 50. ..................................................................................................................................  

Let’s assume a hypothetical situation where a company wants to test the efficiency of it’s marketing 
method. In the first approach the company is using a conventional marketing method to reach its 
customers and in another approach it is using a new method. After trying both methods the company 
divides customers into two groups based on the marketing applied on them and picks 1000 random 
people from both groups. As a result the manager of the company gets the following data: in the group 
of a new marketing method 745 committed to buy a product and 255 didn’t, while in another group 690 
committed and 310 didn’t. Assuming all other factors being fixed and both groups of people being 
homogeneous, how can we test whether there has been a significant positive impact using a new 
method? 

Let’s create a matrix with values as follows: 

> sales <- matrix(c(745,255,690,310), ncol=2) 

 

Naming the rows and the columns: 

> dimnames(sales) <- list(Result = c("Commit", "No commit"),  
+                         Marketing_method = c("New","Old")) 



> sales 
           Marketing_method 
Result      New Old 
  Commit    745 690 
  No commit 255 310 

 

Applying Pearson’s Chi-squared test: 

> chisq.test(sales, corr=F) 
 
 Pearson's Chi-squared test 
 
data:  sales 
X-squared = 7.462, df = 1, p-value = 0.006302 

 

Here the argument “corr” means Yates' continuity correction. As we can see the p-value is very small, 

less than 1%. The null hypothesis is that there’s no difference in distributions of two groups and hence 

the small p-value speaks against the null hypothesis. Therefore the manager has a strong support for the 

new marketing method.  

 

3.6. Bayesian inference 
 

Let’s augment the previous marketing example to calculate the conditional probability of purchasing the 

product and being reached by the new marketing campaign. Let’s mark B=1 if a person has purchased 

the product and B=0 if she hasn’t. Next let’s mark M=1 if the person has been reached by a new 

marketing campaign (new and conventional combined) and M=0 if she has been reached by the old 

campaign. Based on the marketing data (customers reached by both campaigns) our manager estimated 

that a person buys the product when he has been reached by a new marketing campaign with a 

probability of 74.5%, in other words P(B=1│M=1)=0.745. And he didn’t buy the product when he wasn’t 

reached by the new campaign (but he has been reached by the conventional campaign) with a 

probability of 31%, in other words P(B=0│M=0)=0.31.  

 

 

Example 51. ..................................................................................................................................  

 

Assume that 12345 people were reached by the campaigns and out of them 34% were reached by the 

new campaign. Hence, 4197 out of customers reached by the campaigns were reached by the new 

campaign. We pick a random person from the customers who were reached by the marketing 

campaigns and notice that this person has purchased the product, what is the probability that this 

person has been reached by the new campaign? 



You want to calculate the following probability: 

 

𝑃(𝑀 = 1|𝐵 = 1) =
∑𝑃(𝑀 = 1⋂𝐵 = 1)

∑𝑃(𝐵 = 1)
 

 

n <- 12345 
 newCamp <- rbinom(n=n, size=1, prob=0.34) 
 purchased <- numeric(n) 
 for(i in 1:n) { 
  if(newCamp[i] == 1) { 
    purchased[i] <- rbinom(n=1, size=1, prob=0.745) 
  } else { 
    purchased[i] <- rbinom(n=1, size=1, prob=1-0.31) 
  } 
 } 
 > 
 > sum(newCamp * purchased) / sum(purchased) 
 [1] 0.3586286 

 

NB: in real life you wouldn’t have to simulate the distribution. You could instead take the binary vector 

of the purchasing customers and run the function:  

> sum(newCamp * purchased) / sum(purchased) 

 

Example 52. ..................................................................................................................................  

 

Based on the whole pool of potential customers (e.g. segmented by age or income) our manager has 

estimated that 11% of them have purchased the product. This group also includes people not being 

reached by the marketing campaign. The manager estimates that as much as 23% of the people from 

the whole pool of customers have been reached by a marketing campaign. We pick a random person the 

customer pool and notice that this has not purchased a product. What is the probability that this person 

has been reached by a marketing campaign? 

Let’s mark the probability that the person has been reached by a marketing campaign 𝑃(𝑀 = 1) and 

𝑃(𝑀 = 0) if she hasn’t. 𝑃(𝐵 = 1) and 𝑃(𝐵 = 0) respectively for the purchases. Now we want calculate 

the following probability: 

 

𝑃(𝑀 = 1|𝐵 = 0) =
∑𝑃(𝑀 = 1⋂𝐵 = 0)

∑𝑃(𝐵 = 0)
 

 

We know that 𝑃(𝐵 = 0) = 1 − 0.11 = 0.89 and 𝑃(𝑀 = 1) = 0.23. And the whole customer pool is 

12345/0.23 = 53673. In addition, based on the data the manager estimated that if customers are not 

reached by a marketing campaign they purchase the product with 37% probability.  



total <- 53673 
 camp <- rbinom(n=total, size=1, prob=0.23) 
 no_purchase <- numeric(total) 
 for(i in 1:total) { 
   if(camp[i] == 1) { 
     no_purchase[i] <- rbinom(n=1, size=1, prob=((12345-
sum(purchased))/12345)) 
   } else { 
     no_purchase[i] <- rbinom(n=1, size=1, prob=1-0.37) 
   } 
 } 
 >sum(camp * no_purchase) / sum(no_purchase) 
[1] 0.1230405 

 

4. Graphics 
 

4.1. Basic graphics 
 

You will never feel yourself alone with the collection of graphical tools in R.  

Example 53. ..................................................................................................................................   

Let’s draw a graph of trigonometric functions as follows. 

 
> plot(NULL, xlim=c(-1,1), ylim=c(-1,1), main="[-1,1]x[-1,1] plot", 
xlab="sin(y)", ylab="cos(y)") 
> y <- sapply(1:100, function(y) c(sin(y), cos(y))) 
> lines(y[1,],y[2,]) 
 



 

Example 54. ..................................................................................................................................   

 

Data from: http://www-bcf.usc.edu/~gareth/ISL/Credit.csv  

 
> credit=read.csv(file.choose(),header=TRUE,stringsAsFactors=F) 
> View(credit) 
> 
> layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE)) 
> 
> plot(credit$Age, credit$Income, main="Income vs. age", xlab="Age", 
ylab="Income", xlim=c(22, 80), ylim=c(20,150))  
> 
> hist(credit$Income, main="Income") 
> 
> boxplot(credit$Age, main="Age") 

 

http://www-bcf.usc.edu/~gareth/ISL/Credit.csv


 

4.2. Ggplot2 
 

Start by installing the ‘ggplot2’, you will make yourself a big favor. 

 
install.packages("ggplot2")   

 

Ggplot2 is probably one of the most useful, intuitive and varied package for drawing graphics in R. It is 

based on the package ‘lattice’ and it’s very useful for the multilayered plots.  

 



Ggplot2 has a very good documentation here: http://docs.ggplot2.org/current/ and there’s no way we 

could cover everything in this material as ggplot2 includes more than 250 functions and hundreds of 

other parameter variables. Instead, we’ll go through the most commonly used functions of ggplot2. 

 

4.3. Plotly (incomplete) 
 

5. Decision-making methods for 

business 
 

5.1. Simple linear regression 
Linear regression is one of the most applied methods in statistical modeling. It’s been in use for years, 

but still powerful enough in the modern business environment and its applications. Simple linear 

regression allows to estimate the relationship between two variables. Let’s assume that we want to 

estimate how the budget consumed on TV ads affects sales of a company, in other words how much the 

sales change when spending on TV ads increases. The important prerequisite of the relationship 

estimation is that relationship is indeed linear. In case of two variables this can be checked graphically 

by plotting both variables in a 2-dimensional plane. Graphically the linear relationship between the 

variables would represent a straight line going up and right (in case of a positive relationship) or down 

and right (in case of a negative relationship). Mathematically the relationship can be represented as  

 

𝒀 = 𝜷0 + 𝜷1𝑿 

 

Where 𝒀 is a (dependent) vector that represents data points of the variable of sales (the one that we 

want to explain with TV ads), 𝑋 represents the vector that includes the data points of the (explanatory) 

variable of the consumption on TV ads,  𝜷0 and  𝜷𝟏 are unknown, but fixed coefficients, intercept and 

slope, that we want to estimate with our model. Estimating these coefficients leads to the following 

model: 

 

�̂� = �̂�0 + �̂�1𝑥  

 

or 

 

𝒀 = �̂�0 + �̂�1𝑿+ 𝜺 

http://docs.ggplot2.org/current/


 

where �̂�0 and �̂�1 are the estimators of the unknown 𝛽0 and 𝛽1, and �̂� is the predictor of 𝑌 on the basis 

of 𝑥 using pairs of observations 

 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) 

 

and 𝜺 is a vector of error terms, which geometrically simply represents the distance between the 

observations (points) and the straight line.    

In other words 

 

𝑠𝑎𝑙𝑒𝑠 = 𝜷0 + 𝜷1 × 𝑇𝑉. 

 

This model can be represented graphically as a straight line: 

 

 
Figure 1. Source: Hastie et al.(2015) 

 

There are many methods to estimate the coefficients of the model. But probably the most used one is 

by minimizing the distance between the observations and the straight line with ordinary least squares 

(OLS), where 𝛽0 is simply the point where the straight line cuts the vertical axis. Therefore changing 𝛽0 

would mean moving the line up or down. 

Apart from the graphical inspection we could set up a statistical hypothesis framework to test whether 

there is a (linear) relationship between the variables. Our hypothesis framework takes the following 

form: 



 

𝐻0: 𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑋 𝑎𝑛𝑑 𝑌 

versus 

 

𝐻1: 𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑋 𝑎𝑛𝑑 𝑌. 

 

Mathematically this corresponds to 

 

𝐻0: 𝛽1 = 0 

versus 

 

𝐻1: 𝛽1 ≠ 0, 

 

since if 𝛽1 = 0 then our model reduces to 𝑌 = 𝛽0 + 𝜀.  

In practice �̂�1 can be assessed by computing the t-statistic given by 

 

𝑡 =
�̂�1 − 0

𝑆𝐸(�̂�1)
, 

 

which simply measures how far away (how many standard deviations) �̂�1 is from 0 (recall that the 

normal distribution is has a bell shape). From t-statistic we can deduct a p-value which is the probability 

of attaining such a coefficient estimate simply by chance. Hence, the smaller the p-value, the higher 

there is a chance that there is a relationship between the variables in case. Typically we would reject the 

null hypothesis when the p-value is lower than 0.05. Recall that correlation 

 

𝐶𝑜𝑟𝑟(𝑋, 𝑌) =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)
𝑛
𝑖=1

√∑ (𝑥𝑖 − �̅�)
2𝑛

𝑖=1 √∑ (𝑦𝑖 − �̅�)
2𝑛

𝑖=1

 

 

is also a measure of the linear relationship between the variables.  

If �̂�1 turns out to be statistically significant one can move further and assess the model we created. 

Again, graphical inspection is one of the methods that should work for the beginning. The most common 

statistical units for model estimation are residual standard error (RSE) and R squared (𝑅2) . Residual 

standard error measures the average amount that the response will deviate from the true regression 

line and it is computed using the formula 



𝑅𝑆𝐸 = √
1

𝑛 − 2
𝑅𝑆𝑆 = √

1

𝑛 − 2
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

, 

 

where 

 

𝑅𝑆𝑆 =∑(𝑦𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

. 

 

And R squared is defined as 

 

𝑅2 =
𝑇𝑆𝑆 − 𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆
, 

 

where 

 

𝑇𝑆𝑆 =∑(𝑦𝑖 − �̅�)
2 

𝑛

𝑖=1

 

 

is the total sum of squares.  

In a simple linear regression 𝑅2 = [𝐶𝑜𝑟𝑟(𝑋, 𝑌)]2. However this doesn’t necessarily apply in the 

framework of the multiple linear regression.  

N.B. The linear model is always linear as long as its coefficients remain linear. For instance, a model 

 

𝑌 = 𝛽0 + 𝛽1𝑋
2 

 

is also linear. 

 

Example 55. ..................................................................................................................................  

We start by loading the data into R: 

>adv=read.csv(file.choose(), header=TRUE) 

 

This is the data set provided by Gareth James, you can download it here (Advertising.csv): http://www-

bcf.usc.edu/~gareth/ISL/data.html  

 

http://www-bcf.usc.edu/~gareth/ISL/data.html
http://www-bcf.usc.edu/~gareth/ISL/data.html


>head(adv, n=5) 
       TV Radio Newspaper Sales 
1   230.1  37.8      69.2  22.1 
2    44.5  39.3      45.1  10.4 
3    17.2  45.9      69.3   9.3 
4   151.5  41.3      58.5  18.5 
5   180.8  10.8      58.4  12.9 

 

>plot(adv) 
 

 

 

We want to explore how the variables “TV” and “Sales” are correlated to each other. To do that we’ll 

run a linear OLS regression: 

 

 𝑠𝑎𝑙𝑒𝑠 = 𝜷0 + 𝜷1 × 𝑇𝑉. 

 

But first, let’s plot TV vs. Sales in a scatterplot. 

 

>plot(adv$TV,adv$Sales, xlab="TV", ylab="Sales", main="Scatterplot of TV vs. 
Sales") 



>abline(lm(adv$Sales ~ adv$TV))  

 

As you can see, there is some positive (why?) correlation. And now the regression statistics: 

>SalesTV=lm(Sales~TV, adv) 
>summary(SalesTV) 
Call: 
lm(formula = Sales ~ TV, data = adv) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-8.3860 -1.9545 -0.1913  2.0671  7.2124  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 7.032594   0.457843   15.36   <2e-16 *** 
TV          0.047537   0.002691   17.67   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.259 on 198 degrees of freedom 
Multiple R-squared:  0.6119, Adjusted R-squared:  0.6099  
F-statistic: 312.1 on 1 and 198 DF,  p-value: < 2.2e-16 

 

Both 𝛽0 and 𝛽1 are statistically significant at the 99,9% level. Hence, we can conclude that there is a 

correlation based on OLS regression. 

Using the maximum likelihood estimators which are 𝛽0 = 7.033 and 𝛽1 = 0.048 we can draw the 

regression line manually using lines() function: 



 

> x <- c(0,300) 
> y <- 7.033 + 0.048*x 
> lines(x,y, col="red") 

 

Or curve() function: 

> curve(7.033 + 0.048*x, from=0, to=50, add=T, col="blue") 

 

Let’s put 90% confidence intervals for the regression line: 

newx <- seq(0,300) 
pred <- predict(SalesTV, data.frame(TV=newx), interval = "confidence", level 
= 0.90, type="response") 
lines(newx, pred[,2], col="black") 
lines(newx, pred[,3], col="black") 
lines(newx, pred[,1], col="red") 

 

 

What are the confidence intervals for the coefficients? 

>confint(SalesTV) 
  2.5 %     97.5 % 
(Intercept) 6.12971927 7.93546783 
TV          0.04223072 0.05284256 

 



Hence, for example the 95% confidence interval for 𝛽0 is [6.13,7.94].  

Predicting three first values of “Sales” based on “TV”: 

>predict(SalesTV,data.frame(TV=(c(1,2,3))),interval="confidence") 
 fit      lwr      upr 
1 7.080130 6.181837 7.978423 
2 7.127667 6.233947 8.021387 
3 7.175203 6.286048 8.064359 

 

How well is sales explained with this linear model? Plot of the residuals: 

>hist(SalesTV$residuals) 

 

 

 

Shapiro-Wilk normality test: 

>shapiro.test(SalesTV$residuals) 
Shapiro-Wilk normality test 
 
data:  SalesTV$residuals 
W = 0.9905, p-value = 0.2133 

 

The null hypothesis of this test is that the data is normally distributed. Recall that we reject the null 

hypothesis at 95% level if p-value is less than 0.05. Keep in mind that the residuals represent the 

variation in “Sales” that can’t be explained with “TV”. Based on this result “Sales” can be fairly well 

explained by “TV” in a linear setup.  

How do residuals change depending on the predicted value of “Sales” based on “TV”? 

>plot(SalesTV$fitted.values, SalesTV$residuals) 



 

What can we conclude from the graph above? 

 

  

5.2. Multiple linear regression 
 

In the same way as a simple linear regression multiple regression is used to predict a variable based on 

other variables, but this time we want to measure the impact of multiple variables in the same 

regression. The multiple regression takes to the form 

 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝 + 𝜀, 

 

Where each vector 𝑋𝑗 represents a different predictor. 𝛽𝑗 is the average effect on 𝑌 of one unit increase 

in 𝑋𝑗, holding all other predictors fixed. 

The coefficients 𝛽0, 𝛽1, … , 𝛽𝑝 are chosen to minimize the sum of squared residuals 

 

𝑅𝑆𝑆 =∑(𝑦𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

=∑(𝑦𝑖 − �̂�0 − �̂�1𝑥𝑖1 − �̂�2𝑥𝑖2 −⋯− �̂�𝑝𝑥𝑖𝑝)
2
.

𝑛

𝑖=1

 

 



As in the case with the simple regression we are interested to know whether the estimated coefficients 

are statistically significantly different from zero, in other words whether our predictors explain well the 

behavior of the variable being explained. The null hypothesis takes the following form: 

 

𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0 

 

And the alternative hypothesis 

 

𝐻1: at least one 𝛽𝑗 is non-zero. 

 

This hypothesis test is performed by computing the F-statistic: 

 

𝐹 =
(𝑇𝑆𝑆 − 𝑅𝑆𝑆)/𝑝

𝑅𝑆𝑆/(𝑛 − 𝑝 − 1)
, 

 

Where TSS and RSS are defined as previously. When there is no relationship between the response and 

predictors, the F-statistic is close to 1 and if 𝐻1 holds, then 𝐸{(𝑇𝑆𝑆 − 𝑅𝑆𝑆)/𝑝} > 𝜎2. Nevertheless, the 

F-statistic doesn’t necessarily have to be much larger than 1 to provide evidence against the null 

hypothesis. The rule of thumb is that the larger 𝑛 the smaller F-statistic is enough to provide evidence 

against the null hypothesis. Luckily R like any other statistical software provides tools to calculate the p-

value associated with any given F-statistic.  

 

 

5.3. Logistic regression 
 

The purpose of the logistic regression is similar to the linear one, but it’s intended to be used with 

qualitative variables. The logistic regression belongs to the classifying models as it helps to predict the 

set the values of the model will fall to. Some examples of its applications: 

 Predicting the probability of default in the banking industry based on the income, transaction 
history and other related variables 

 Predicting the disease of a patient based on her symptoms 

 Predicting the risk of a car accident based on the driver’s personal factors 

 Finding the most suitable marketing approach based on the customer’s age, income, and sex 



The outcome variables of the prediction models based on the logistic regression are discrete and 

categorical and hence, there’s no uniform distance between them. This means that in most cases the 

linear regression can’t be used to estimate them as it produces continuous values. As in the case of 

linear regression we want to predict a response variable with explanatory variables whose number can 

go from one upwards. For the sake of example let’s say we want to predict a default risk of a customer 

based on her credit card balance. Hence, our response variable will have binary values, 0 or 1: 

 

𝑌 = {
0 𝑖𝑓 𝑛𝑜 𝑑𝑒𝑓𝑎𝑢𝑙𝑡
1 𝑖𝑓 𝑑𝑒𝑓𝑎𝑢𝑙𝑡

 

 

One way to predict the default risk is estimate the probability of the response variable so that Pr(𝑌 =

1|𝑋), where 𝑋 stands for the credit card balance. Using the linear model the probability could be 

predicted in the conventional way: 𝑝(𝑋) = Pr(𝑌 = 1|𝑋) = 𝛽0 + 𝛽1𝑋 producing the following result 

(graph X.X). As it becomes clear from the graph, using the linear regression approach can produce 

somewhat bizarre results. For instance the probability of default goes from negative to over 1, which is 

not possible. We could avoid the problem by using the logistic regression with the output values 

between 0 and 1. The logistic probability is estimated using the following setup: 

 

𝑝(𝑋) =
𝑒𝛽0+𝛽1𝑋

1 + 𝑒𝛽0+𝛽1𝑋
 

 

which can be easily modified 

 

𝑝(𝑋)

1 − 𝑝(𝑋)
= 𝑒𝛽0+𝛽1𝑋 

 

The quantity 𝑝(𝑋)/[1 − 𝑝(𝑋)] is called the odds, and can take on any value between 0 and ∞. Values of 

the odds close to 0 and ∞ indicate very low and very high probabilities of default, respectively. For 

example, on average 1 in 5 people with an odds of 1/4 will default, since p(X) = 0.2 implies an odds of 

1−0.2 = 1/4. Likewise on average nine out of every ten people with an odds of 9 will default, since p(X) = 

0.9 implies an odds of 1−0.9 = 9.  

By taking the logarithms from the previous equation we get the log-odds or logit: 

 

log (
𝑝(𝑋)

1 − 𝑝(𝑋)
) = 𝛽0 + 𝛽1𝑋. 

 

The coefficients 𝛽0and 𝛽1 are usually estimated using the maximum likelihood approach: 

 



𝑙(𝛽0, 𝛽1) = ∏ 𝑝(𝑥𝑖)

𝑖:𝑦𝑖=1

∏ (1 − 𝑝(𝑥𝑖′))

𝑖′:𝑦𝑖′=0

. 

 

Hence, �̂�0and �̂�1 are chosen so that the result in equation (x.x) yields a value close to 1 for the ones who 

defaulted and a value close to 0 for the ones who didn’t.  

 

Example 56. ..................................................................................................................................  

We use a partial data from a dataset “Default” that is included in the package “ISLR”. 

 
> head(Balance2) 
   Balance Default Income 
1 1861.624     Yes  14891 
2 1688.673     Yes 106025 
3 1395.560     Yes 104593 
4 1560.478     Yes 148924 
5 1997.980     Yes  55882 
6 1834.381     Yes  80180 
 
Balance3$Default <- ifelse(Balance3$Default=="Yes", 1, 0) 
 
> head(Balance3) 
   Balance Default Income 
1 1861.624       1  14891 
2 1688.673       1 106025 
3 1395.560       1 104593 
4 1560.478       1 148924 
5 1997.980       1  55882 
6 1834.381       1  80180 

 

p <- ggplot(Balance3, aes(x=sex, y=Default))  
#Logistic 
p + geom_point(shape=1, size=3) +  
  geom_smooth(method="glm", family="binomial", se=FALSE)+ 
  theme_grey(base_size = 18) + 
  scale_x_continuous(name="Sex") + 
  scale_y_continuous(name="Probability of Default") 
 
#Linear 
p + geom_point(shape=1, size=3) +  
  geom_smooth(method=lm, se=FALSE)+ 
  theme_grey(base_size = 18) + 
  scale_x_continuous(name="Sex") + 
  scale_y_continuous(name="Probability of Default") 
 
 
 

 

 

 



 

 

 

The right-hand side of the plot depicts the probability modeling using the logistic regression. As you can 

notice the standard linear regression assumes non-sense negative probabilities. 

 

 



 

 

 

 

Example 57. ..................................................................................................................................  

 

>reg=glm(Default~Balance, data=Balance3, family = "binomial") 
>summary(reg) 
 

The statistics of the regression: 

   Estimate Std. Error z value Pr(>|z|)     
(Intercept) -1.003e+01  1.092e+00  -9.180   <2e-16 *** 
Balance      6.937e-03  7.202e-04   9.631   <2e-16 *** 

 

Coefficients: 
(Intercept)      Balance   
 -10.028759     0.006937   
 
Degrees of Freedom: 399 Total (i.e. Null);  398 Residual 
Null Deviance:     554.5  
Residual Deviance: 263.1  AIC: 267.1 

 

Using the values of the regression we can estimate for example the probability of default for an 

individual with the credit balance of 1500: 



>eq <- exp(reg$coefficients[1] + reg$coefficients[2]*1500) 
>eq/(1+eq) 

 

�̂�(𝑋) =
𝑒𝛽0+𝛽1𝑋

1 + 𝑒𝛽0+𝛽1𝑋
=

𝑒−10.028759+0.006937 × 1500

1 + 𝑒−10.028759+0.006937 × 1500
= 0.5930868 

 

Thus, an individual with the credit balance of 1500 would default with a probability of around 60%.  

 

Example 58. ..................................................................................................................................  

 

How does sex of a client affect the default probability? In other words we would like to model: 

 

Pr(𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑌𝑒𝑠|𝑆𝑒𝑥 = 𝑀𝑎𝑙𝑒) and Pr(𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑌𝑒𝑠|𝑆𝑒𝑥 = 𝐹𝑒𝑚𝑎𝑙𝑒) 

 

>sex <- rbinom(n=400, size=1, prob=0.5) 
>Balance3<-cbind(Balance3,sex) 
>reg2=glm(Default~sex, data=Balance3, family = "binomial") 
>summary(reg2) 

 

We get the following estimates from the regression: 

Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-1.27076  -1.07438   0.00623   1.08684   1.28405   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)   
(Intercept)  -0.2472     0.1474  -1.678   0.0934 . 
sex           0.4640     0.2018   2.300   0.0215 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 554.52  on 399  degrees of freedom 
Residual deviance: 549.19  on 398  degrees of freedom 
AIC: 553.19 
 
Number of Fisher Scoring iterations: 3 

 

Inserting the values in the equation yields the following estimates (sex=1 if male, 0 otherwise): 

eq2 <- exp(reg2$coefficients[1] + reg2$coefficients[2]*1) 
eq2/(1+eq2) 
eq3 <- exp(reg2$coefficients[1] + reg2$coefficients[2]*0) 
eq3/(1+eq3) 
 
 



 

𝑃�̂�(𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑌𝑒𝑠|𝑆𝑒𝑥 = 𝑚𝑎𝑙𝑒) =
𝑒−0.2472+0.4640 × 1

1 + 𝑒−0.2472+0.4640 × 1
= 0.5539887 

𝑃�̂�(𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑌𝑒𝑠|𝑆𝑒𝑥 = 𝑓𝑒𝑚𝑎𝑙𝑒) =
𝑒−0.2472+0.4640 × 0

1 + 𝑒−0.2472+0.4640 × 0
= 0.4385128 

 

The probability of a male individual to default is around 55% while for a female individual it is around 

44% holding all other variables fixed.  

Warning: the default probabilities of male and female individuals are independent and hence, their sum 

doesn’t yield 1. This can be seen by assigning 0.5 for sex: 

  

𝑃�̂�(𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑌𝑒𝑠|𝑆𝑒𝑥 = 0.5) =
𝑒−0.2472+0.4640 × 0.5

1 + 𝑒−0.2472+0.4640 × 0.5
= 0.4962001 

 

 

 

Let’s consider a case with several explanatory variables. This approach is referred to as multiple logistic 

regression. Say, we want to explain the probability of default with credit balance, income, and sex. In 

this case our predictor set will be 𝑋 = (𝑋1, 𝑋2, 𝑋3) = (𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑖𝑛𝑐𝑜𝑚𝑒, 𝑠𝑒𝑥).  

The multinomial model takes the form as follows: 

 

log (
𝑝(𝑋)

1 − 𝑝(𝑋)
) = 𝑿′𝜷 

 

where 𝑿′𝜷 = 𝛽0 + 𝛽1𝑋1 +⋯+ 𝛽𝑝𝑋𝑝and in our case it becomes 

 

Pr(𝑌 = 1|𝑋) = 𝑝(𝑋) =
𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+𝛽3𝑋3

1 + 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+𝛽3𝑋3
=

𝑒𝑥𝑝{𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3}

1 + 𝑒𝑥𝑝{𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3}
 

 

Example 59. ..................................................................................................................................  

 

The estimation of the same data yields the following results: 

 

>reg3=glm(Default~Balance+Income+sex, data=Balance3, family = "binomial") 
>summary(reg3) 

 

Deviance Residuals:  
     Min        1Q    Median        3Q       Max   



-2.64500  -0.28106   0.05239   0.53101   1.65437   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept) -1.025e+01  1.139e+00  -8.999   <2e-16 *** 
Balance      6.911e-03  7.220e-04   9.572   <2e-16 *** 
Income       1.390e-06  4.612e-06   0.301    0.763     
sex          3.749e-01  3.117e-01   1.203    0.229     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 554.52  on 399  degrees of freedom 
Residual deviance: 261.51  on 396  degrees of freedom 
AIC: 269.51 
 
Number of Fisher Scoring iterations: 6 

 

What can we conclude from these estimates above? When we include balance, income, and sex as the 

explanatory variables only balance remains statistically significant, while income and sex are both too 

weak to explain the default probability. Hence, even though sex is a strong explanatory variable by itself, 

it is not as strong together with balance and income variables. But it doesn’t mean that it’s needless!  

Applying the coefficient values we could estimate the default probability for a male individual with 

income of 50000 and a credit balance of 1000: 

 

eq <- exp(reg3$coefficients[1] + reg3$coefficients[2]*1000 + 
reg3$coefficients[3]*50000 + reg3$coefficients[4]*1 ) 
eq/(1+eq) 

 

𝑃�̂�(𝑌 = 1|𝑋) = �̂�(𝑋) =
𝑒−10.25 + 0.0069 × 1000 + 0.000001390 × 50000 + 0.3749 × 1 

1 + 𝑒−10.25 + 0.0069 × 1000 + 0.000001390 × 50000 + 0.3749 × 1 
= 0.0519 

 

and a female individual with the same balance and income: 

 

eq <- exp(reg3$coefficients[1] + reg3$coefficients[2]*1000 + 
reg3$coefficients[3]*50000 + reg3$coefficients[4]*0 ) 
eq/(1+eq) 

 

 

𝑃�̂�(𝑌 = 1|𝑋) = �̂�(𝑋) =
𝑒−10.25 + 0.0069 × 1000 + 0.000001390 × 50000 + 0.3749 × 0 

1 + 𝑒−10.25 + 0.0069 × 1000 + 0.000001390 × 50000 + 0.3749 × 0 
= 0.0362 

 



Hence, a male individual with income of 50000 and a credit balance of 1000 will default with a 

probability of 5.19% and a female individual with the same balance and income with a probability of 

3.62%. 

 

5.4. Confounding variables (incomplete) 
 

5.5. Multinomial logistic regression 
 

Logistic regression is a nice tool to predict discrete outcomes that are binary. But what if we had a 

dependent or explanatory variable that would have more than just two possible discrete values? Say, we 

want to predict whether an individual would prefer to buy a BMW, Mercedes, Ford or Toyota based on 

her income. And how do choices change when income changes? How should we deal with this problem?  

Let’s look at an example of the heating system choice related to the number of rooms in the houses. 

The households have five options of heating systems: gas central, gas room, electric central, electric 

room, and heat pump. The number of rooms has three classes: 2-3 rooms, 4-5 rooms and 6-7 rooms. 

This data is taken from the package “mlogit”. The cross-table of options looks as follows: 

 

Rooms 
Heating choice 

Total 
gc gr ec er hp 

2-3 208 48 19 32 19 326 

4-5 182 39 25 20 15 281 

6-7 183 42 20 32 16 293 

Total 573 129 64 84 50 900 

 

Here we can see how the number of rooms is related to the heating choice of the house. Obviously our 

response variable is the heating system choice and we want to know whether it can be explained with 

the number of rooms in the house. The original data includes observations for 900 households that can 

be indexed from 1 to 900, namely 𝑖 = 1,… ,900. Next, we have 5 different heating system options, that 

can be indexed from 1 to 5 (gc=1, gr=2, ec=3, er=4, hp=5), namely 𝑗 = 1,… ,5.  The probability that a 

household 𝑖 would choose the option 𝑗 as a heating system can be denoted as 𝜋𝑖𝑗 = 𝑃𝑟{𝑌𝑖 = 𝑗}. But 

since we have grouped the observations we only need to know which group a particular observation 

falls in, and instead we could index the groups  from 1 to 3: 𝑖 = 1,2,3 (1=2-3 rooms, 2=4-5 rooms, 3=6-7 

rooms). Say, a household has a house with 4 rooms, what is the probability that it chooses electric 

central as a heating system (assuming that the number of rooms is the only factor affecting the choice of 

the heating system)? The answer is 25/281 ≈ 0.089, or about 8.9%. The probabilities of heating system 

choices for a certain household always add up to 1, hence ∑ 𝜋𝑖𝑗
𝐽
𝑗=1 = 1 and consequently we need to 

have 𝐽 − 1 parameters to have all the information needed. Next, we denote #𝑖 the number of 



observations in a particular group, here we have for example #3 = 293 and consequently 𝑦𝑖1, … , 𝑦𝑖5 

represent the numbers of households per each heating system in the group 𝑖, which, of course, sum up 

as ∑ 𝑦𝑖𝑗𝑗 = #𝑖. And in general, 𝑦𝑖𝑗  represents the number of observations in a particular group for a 

particular heating system. Since a single household can obviously choose only one heating system, in 

this case 𝑛𝑖 = 1  and 𝑌𝑖𝑗  can be further interpreted as a dummy variable. Combining the information 

that we assigned to the variables we can represent it in the multinomial distribution form (probability 

mass function), namely  

 

𝑃𝑟{𝑌𝑖1 = 𝑦𝑖1, … , 𝑌𝑖𝐽 = 𝑦𝑖𝐽} = (
𝑛𝑖

𝑦𝑖1, … , 𝑦𝑖𝐽
)𝜋𝑖1

𝑦𝑖1⋯𝜋
𝑖𝐽

𝑦𝑖𝐽 . 

 

In the multinomial logistic model we assume that the log-odds be represented in the linear model, as in 

the logistic regression model: 

 

log
𝜋𝑖𝑗

𝜋𝑖𝐽
= 𝛽0 + 𝒙𝑖

′𝜷𝑗, 

 

where 𝑗 = 1,… , 𝐽 − 1. By exponentiating the equation above, noting that log
𝜋𝑖𝐽

𝜋𝑖𝐽
= 0 for all 𝐽 and that 

∑ 𝜋𝑖𝑗𝑗 = 1 we obtain 𝜋𝑖𝐽 = 1 ∑ exp {log 𝜋𝑖𝑗 𝜋𝑖𝐽⁄ }𝑗⁄   which leads in the equation below 

 

𝜋𝑖𝑗 =
exp{𝛽0 + 𝒙𝑖

′𝜷𝑗}

∑ exp{𝛽0 + 𝒙𝑖
′𝜷𝑘}

𝐽
𝑘=1

. 

 

The log-odds of the multinomial logistic model can be also derived through the utility representation of 

the individuals’ choices. Let 𝑈𝑖𝑗  denote the utility of the 𝑗-th choice for the 𝑖-th individual. Now let’s split 

𝑈𝑖𝑗  in the systematic component 𝜂𝑖𝑗  and a random component 𝜖𝑖𝑗 (error terms) so that 

 

𝑈𝑖𝑗 = 𝜂𝑖𝑗 + 𝜖𝑖𝑗. 

 

If we further assume that individuals maximize their utility by choosing the largest of 𝑈𝑖1, … , 𝑈𝑖𝐽 , then 

the probability that an individual 𝑖 will choose alternative 𝑗 to maximize her utility is 

 

𝜋𝑖𝑗 = Pr{𝑌𝑖 = 𝑗} = Pr{max(𝑈𝑖1, … , 𝑈𝑖𝐽) = 𝑈𝑖𝑗}. 

 

Now, because error terms 𝜖𝑖𝑗 have extreme value distributions with density 

 



𝑓(𝜖) = exp{−𝜖 − exp{−𝜖}} 

 

then (Maddala, 1983, pp 60-61) 

 

𝜋𝑖𝑗 =
exp{𝜂𝑖𝑗}

∑ exp{𝜂𝑖𝑘}
𝐽
𝑘=1

. 

 

Another useful representation of the model above is the conditional form (conditional logistic model) or 

in terms of alternatives rather than attributes of the individuals. 

Let 𝒘𝑗 represent a vector of 𝑗-th alternative, then the utility of the individual can be represented as  

 

𝜂𝑖𝑗 = 𝒘𝑗
′𝜸 

 

and by combining it with a multinomial logistic model we can obtain a general or mixed multinomial 

logistic model 

 

𝜂𝑖𝑗 = 𝒙𝑖
′𝜷𝑗 +𝒘𝑖𝑗

′ 𝜸 

 

where the vector of independent variables 𝒙𝑖
′ is called alternative-invariant and 𝒘𝑖𝑗

′  is called 

alternative-variant.  

 

The theory of the multinomial logistic model can be rather tricky and it’s not always clear what the 

conditional multinomial logistic model is meant for. Nevertheless, with the help of the following 

examples you should be able to understand the basic principles of the multinomial logistic model. 

 

Example 60. ..................................................................................................................................  

 

 

The data being used here is taken from the package “mlogit”. It is called “Mode Choice for the Montreal-

Toronto Corridor“, where individuals choose the travelling mode between Montreal and Toronto in 

Canada. Most of them have four options: airplane, bus, car, and train, while some of them have fewer 

options. We will subset the data to include only the ones who have all four options available. 

 

> library(mlogit) #this is the recommended package (nnet is another one, but 
with different functions) 
> data("ModeCanada") #the data set 



> View(ModeCanada) 
> table(ModeCanada$noalt) 
 
    2     3     4  
  462  3942 11116 

 

> ModeCanada <- subset(ModeCanada, ModeCanada$noalt>3) 
> table(ModeCanada$noalt) 
 
    4  
11116 
> 
> head(ModeCanada) 
    case   alt choice dist   cost ivt ovt freq income urban noalt nchoice 
304  109 train      0  377  58.25 215  74    4     45     0     4       4 
305  109   air      1  377 142.80  56  85    9     45     0     4       4 
306  109   bus      0  377  27.52 301  63    8     45     0     4       4 
307  109   car      0  377  71.63 262   0    0     45     0     4       4 
308  110 train      0  377  58.25 215  74    4     70     0     4       4 
309  110   air      1  377 142.80  56  85    9     70     0     4       4 

 

This form of data is called ‘long’. Here the rows are organized according to the choices of the individuals. 

The actual chosen mode of transport is assigned 1 for each individual and the rest are 0. Hence, there 

are four rows of data for each individual. As you can see some of the rows repeat, such as income, 

because it doesn’t change for an individual no matter which mode s/he chooses. The data could include 

other variables of choice as well and they would require the same type of dummy column of choice as 

above. Another form of data that could be used is called ‘wide’. We will see later how one can transform 

from one to another and back, but it’s really important to keep in mind that the form of data really 

affects the outcome. First, let’s see how we can operate with the data in the form ‘long’. 

Warning: the coefficients of the pure, conditional or mixed multinomial logistic model are difficult to 

interpret. Neither the sign, nor the magnitude of the coefficients has an intuitive meaning. Nevertheless, 

careful analysis should always help. 

 

Example 61. ..................................................................................................................................  

 

Say, we are interested to know how distance (dist), income, and cost affect the choice of the transport 

mode.  

> table(ModeCanada$choice,ModeCanada$alt) 
    
    train  air  bus  car 
  0  2316 1740 2769 1512 
  1   463 1039   10 1267 

 

As we see ‘bus’ was chosen really seldom while ‘car’ and ‘air’ are the most frequent choices.  



> ModeCanada <- mlogit.data(ModeCanada, alt.var="alt", choice = "alt", shape 
= "long")[,c(2,3,4,5,9)] 
> 
> ModeCanada[1:12,] 
          alt choice dist   cost income 
1.train train      0  377  58.25     45 
1.air     air      1  377 142.80     45 
1.bus     bus      0  377  27.52     45 
1.car     car      0  377  71.63     45 
2.train train      0  377  58.25     70 
2.air     air      1  377 142.80     70 
2.bus     bus      0  377  27.52     70 
2.car     car      0  377  71.63     70 
3.train train      0  377  58.25     35 
3.air     air      1  377 142.80     35 
3.bus     bus      0  377  27.52     35 
3.car     car      0  377  71.63     35 
> 
> mlogit.model1 <- mlogit(choice ~ 1 | cost, data=ModeCanada, shape="long", 
alt.var="alt", reflevel = "car") 
> 
> summary(mlogit.model1) 
 
Call: 
mlogit(formula = choice ~ 1 | cost, data = ModeCanada, reflevel = "car",  
    shape = "long", alt.var = "alt", method = "nr", print.level = 0) 
 
Frequencies of alternatives: 
      car     train       air       bus  
0.4559194 0.1666067 0.3738755 0.0035984  
 
nr method 
8 iterations, 0h:0m:0s  
g'(-H)^-1g = 7.19E-07  
gradient close to zero  
 
Coefficients : 
                     Estimate  Std. Error  t-value  Pr(>|t|)     
train:(intercept)  -1.6019197   0.2067141  -7.7494 9.326e-15 *** 
air:(intercept)   -10.5412593   0.4736322 -22.2562 < 2.2e-16 *** 
bus:(intercept)    -4.1906113   1.1378782  -3.6828 0.0002307 *** 
train:cost          0.0115781   0.0038360   3.0183 0.0025421 **  
air:cost            0.0668507   0.0030441  21.9606 < 2.2e-16 *** 
bus:cost           -0.0273963   0.0472261  -0.5801 0.5618412     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Log-Likelihood: -2533.4 
McFadden R^2:  0.12743  
Likelihood ratio test : chisq = 739.96 (p.value = < 2.22e-16) 
> 

 



This is the pure multinomial model. Our dependent variable is ‘choice’ and we fix at 1, since it is not 

varying with alternatives. We want to see how cost affects the choice of the transport mode. Next, we 

choose “car” as our mode of transport of reference. This means that we observe how other modes of 

transport change compared to “car” when the cost is changing. For example growing the cost of driving 

a car by one unit will grow the log-odds of taking a train by approximately 1.16% compared to driving a 

car. The coefficient of train is significant at 95% level. Growing the cost of driving a car by one unit 

results in increasing the log-odds of taking the airplane by approximately 6.69% and its coefficient is 

significant at 99% level.  Nevertheless the coefficient of bus is not significant (the modulus of the 

standard error exceeds the size of the coefficient).  

 

> exp(coef(mlogit.model1)) 
train:(intercept)   air:(intercept)   bus:(intercept)  
     2.015093e-01      2.642343e-05      1.513703e-02  
       train:cost          air:cost          bus:cost  
         1.011645          1.069136         0.9729756  
attr(,"fixed") 
train:(intercept)   air:(intercept)   bus:(intercept)  
            FALSE             FALSE             FALSE  
       train:cost          air:cost          bus:cost  
            FALSE             FALSE             FALSE 

 

In the table above the same observation is obvious the value of x:cost tells the multiplier of the 

probability of taking the transport after increasing the cost of “car” by one unit. 

 

Example 62. ..................................................................................................................................  

Now, let’s use another data set to demonstrate the conditional multinomial logistic model.  

 

data("Car", package=”mlogit”) #the data set 
View(Car) 
Car <- mlogit.data(Car, alt.levels = 1:6, varying = 5:70, choice = "choice", 
shape = "wide", sep = "") 
#alt.levels: possible options, 6 for each person 
#varying: nominal parameters 

 

Remember, in the conditional model we estimate the coefficients that are alternative-invariant, so we 

don’t have to choose a reference choice for the regression. For the sake of example let’s regress the 

variable of choice on all available nominal variables in the data set.   

# Conditional model 
> mlogit.model2 <- mlogit(choice ~ 
price+range+acc+speed+pollution+size+space+cost+station, data=Car, 
shape="long", alt.var="alt") 
> summary(mlogit.model2) 
 
Call: 



mlogit(formula = choice ~ price + range + acc + speed + pollution +  
    size + space + cost + station, data = Car, shape = "long",  
    alt.var = "alt", method = "nr", print.level = 0) 
 
Frequencies of alternatives: 
       1        2        3        4        5        6  
0.190589 0.057800 0.288999 0.074989 0.322089 0.065535  
 
nr method 
5 iterations, 0h:0m:1s  
g'(-H)^-1g = 4.91E-06  
successive function values within tolerance limits  
 
Coefficients : 
                 Estimate  Std. Error  t-value  Pr(>|t|)     
2:(intercept) -1.19313360  0.06960508 -17.1415 < 2.2e-16 *** 
3:(intercept) -0.01605586  0.06236401  -0.2575 0.7968283     
4:(intercept) -1.36513323  0.07753132 -17.6075 < 2.2e-16 *** 
5:(intercept) -0.32556327  0.09205583  -3.5366 0.0004053 *** 
6:(intercept) -1.91780499  0.10528938 -18.2146 < 2.2e-16 *** 
price         -0.18712971  0.02699695  -6.9315 4.164e-12 *** 
range          0.00401531  0.00025783  15.5737 < 2.2e-16 *** 
acc           -0.07281306  0.01095333  -6.6476 2.980e-11 *** 
speed          0.00340031  0.00076759   4.4298 9.431e-06 *** 
pollution     -0.18147772  0.09521123  -1.9061 0.0566432 .   
size           0.07203239  0.02916950   2.4694 0.0135324 *   
space          0.91481193  0.17538722   5.2160 1.829e-07 *** 
cost          -0.07233509  0.00744226  -9.7195 < 2.2e-16 *** 
station        0.25023356  0.07047056   3.5509 0.0003839 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Log-Likelihood: -7080.8 
McFadden R^2:  0.035344  
Likelihood ratio test : chisq = 518.87 (p.value = < 2.22e-16) 

 

How to interpret the coefficients of the conditional model? If we added for example the “choice 3” as a 

reference level in the previous setup we’d notice that the coefficients of the independent variables are 

not changing. Why so? In fact the coefficients of the conditional model can be interpreted to explain 

whether these factors are affecting the choice of the car in the first hand. For example the coefficient of 

the price (price of a vehicle divided by the logarithm of income) is negative and significant at 99% level. 

This tells us that increasing the price should reduce the willingness to buy a car, which is quite a realistic 

result. The same logic applies to the coefficient of cost (cost per mile of travel (tens of cents)). But on 

the other hand since the coefficient of the space variable is positive and statistically significant, 

increasing the space of the car (fraction of luggage space in comparable new gas vehicle) is likely to 

increase its attractiveness. 

 

 



 

Example 63. ..................................................................................................................................  

 

Next, let’s proceed with the mixed multinomial model.  

 

# Mixed model  
> mlogit.model3 <- mlogit(choice ~ cost+speed | price, data=Car, 
shape="long", alt.var="alt", reflevel = "3") 
> summary(mlogit.model3) 
 
Call: 
mlogit(formula = choice ~ cost + speed | price, data = Car, reflevel = "3",  
    shape = "long", alt.var = "alt", method = "nr", print.level = 0) 
 
Frequencies of alternatives: 
       3        1        2        4        5        6  
0.288999 0.190589 0.057800 0.074989 0.322089 0.065535  
 
nr method 
5 iterations, 0h:0m:1s  
g'(-H)^-1g = 0.000266  
successive function values within tolerance limits  
 
Coefficients : 
                Estimate Std. Error t-value  Pr(>|t|)     
1:(intercept) -0.1865314  0.1051452 -1.7740  0.076057 .   
2:(intercept) -0.8616399  0.1633765 -5.2740 1.335e-07 *** 
4:(intercept) -0.9934246  0.1418352 -7.0041 2.486e-12 *** 
5:(intercept)  0.0370236  0.0891179  0.4154  0.677816     
6:(intercept) -1.1843830  0.1536278 -7.7094 1.266e-14 *** 
cost          -0.0713879  0.0072506 -9.8458 < 2.2e-16 *** 
speed          0.0035951  0.0007413  4.8497 1.237e-06 *** 
1:price       -0.0488609  0.0221505 -2.2059  0.027394 *   
2:price       -0.1783347  0.0382607 -4.6610 3.146e-06 *** 
4:price       -0.0870310  0.0322393 -2.6995  0.006944 **  
5:price        0.0171088  0.0189882  0.9010  0.367577     
6:price       -0.0726519  0.0348173 -2.0867  0.036919 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Log-Likelihood: -7260.9 
McFadden R^2:  0.010807  
Likelihood ratio test : chisq = 158.65 (p.value = < 2.22e-16) 

 

The coefficients of the mixed multinomial model are alternative-variant and alternative-invariant. In this 

setup the coefficients of cost and speed are alternative-invariant and the coefficients of the price vector 

are with the reference to the choice 3. If you compare this regression to the conditional one, you should 



notice that the coefficients of cost and speed are pretty much similar. The coefficients of price should be 

interpreted in the similar manner as with the ‘ModeCanada’ data set. For example increasing the price 

 

Example 64. ..................................................................................................................................  

 

In order to measure how much the change in the coefficients affects the probability of making a specific 

choice we need calculate the marginal effects. The marginal effects for the conditional model can be 

calculated as follows. As you recall we created the conditional model with the following function: 

mlogit.model2 <- mlogit(choice ~ 
price+range+acc+speed+pollution+size+space+cost+station, data=Car, 
shape="long", alt.var="alt", reflevel = "4") 

 

First, we need to calculate the means of the independent variables for each choice. This can be done: 

z <-with(Car, data.frame(price=tapply(price, index(mlogit.model2)$alt, mean),  
                 range=tapply(range, index(mlogit.model2)$alt, mean),  
                 acc=tapply(acc, index(mlogit.model2)$alt, mean),  
                 speed=tapply(speed, index(mlogit.model2)$alt, mean),  
                 pollution=tapply(pollution, index(mlogit.model2)$alt, mean),  
                 size=tapply(size, index(mlogit.model2)$alt, mean),  
                 space=tapply(space, index(mlogit.model2)$alt, mean),  
                 cost=tapply(cost, index(mlogit.model2)$alt, mean),  
                 station=tapply(station, index(mlogit.model2)$alt, mean))) 
  
 
> effects(mlogit.model2, covariate = "cost", data = z) 
             4            1             2 
4 -0.004972598  0.001006346  0.0003051940 
1  0.001006346 -0.011013015  0.0007699902 
2  0.000305194  0.000769990 -0.0038763863 
3  0.001537217  0.003878325  0.0011761776 
5  0.001764767  0.004452424  0.0013502842 
6  0.000359075  0.000905930  0.0002747409 
             3            5             6 
4  0.001537216  0.001764767  0.0003590753 
1  0.003878325  0.004452424  0.0009059301 
2  0.001176177  0.001350284  0.0002747409 
3 -0.014776727  0.006801179  0.0013838289 
5  0.006801179 -0.015957328  0.0015886736 
6  0.001383829  0.001588673 -0.0045122481 

 

The values in the table above are the covariance values of the choices. The first important observation is 

that the diagonal values are negative and the rest of the values are positive. Let’s take the cell 1,1 as an 

example. Remember, our independent variable is cost. Hence, the negative coefficient in the cell 1,1 

means that if the cost of the choice 4 increases then the choice 4 becomes less wanted. The values of 



the covariates can be interpreted simply as percentage changes, since the marginal effects are 

calculated as 

 

𝜕𝑝𝑖𝑗

𝜕𝒘𝑖
= 𝑝𝑖𝑗(𝛾𝑗 − �̅�𝑖) 

 

We can also calculate the marginal effects of the mixed model with respect to the variable that has a 

reference choice. Recall the mixed multinomial model: 

mlogit.model3 <- mlogit(choice ~ cost+speed | price, data=Car, shape="long", 
alt.var="alt", reflevel = "1")    

 

Now marginal effects w.r.t. price: 

> effects(mlogit.model3, covariate = "price", data = z) 
           1            2            3            4  
 0.008701082 -0.008388572 -0.006544084 -0.004722780  
           5            6  
 0.014035903 -0.003081549  
 

Surprisingly, increasing the price of the choice 1 is also increasing its attractiveness (irrationality or 

a Giffen good?), as well as for the choice 5. For the choices 2, 3, 4 and 6 increasing the price decreases 

their attractiveness. 

Finally, about an assumption called “Independence of irrelevant alternatives” (IIA). By the definition of 

the multinomial logistic regression it is assumed that introducing new choices should not have any effect 

on the willingness to select older choices. This is rather a restrictive assumption and therefore it is not 

believed to hold in practice. Nevertheless, it is possible to control for it to some degree by running the 

Hausman-McFadden test. The basic idea is to subset a collection of choices by dismissing a choice on 

purpose.   

 

Example 65. ..................................................................................................................................  

 

Say, we want test whether IIA is holding for the mixed logistic model. We first subset a new set of 

choices by dropping the choice 1 and choice 2 and then perform a test. 

 
m.1 <- mlogit(choice ~ cost+speed | price, data=Car, shape="long", 
alt.var="alt", reflevel = "4") 
m.2 <- mlogit(choice ~ cost+speed | price, data=Car, alt.subset = 
c("3","4","5","6"), reflevel = "4") 
# Hausman-McFadden test 
hmftest(m.1,m.2) 

 

Hausman-McFadden test 
 



data:  Car 
chisq = 13.085, df = 8, p-value = 0.109 
alternative hypothesis: IIA is rejected 

 

Recall, small p-value is an argument against the null hypothesis; hence we can’t reject the null 

hypothesis, which is “IIA holds”. Changing the composition of choices may change the result of the test 

significantly. Try it!  

 

 

5.6. Time series 
 

Time series technics are widely applied in macro and microeconomics. It represents a collection of data 

in which the observations correspond to consecutive time periods that can vary in length and frequency. 

Time series can be forecasted and related to other data using their own or other time series historical 

data. Despite several modern branches and technics, the most applied technique in time series analysis 

nowadays is still the linear regression. Time series analysis has been developing rapidly since the late 

70’s due to applications in macroeconomics and finance; later on it was adapted in other business 

industries as well. Time series analysis is famous for models trying to catch the dynamics of the error 

terms and volatility (linearly and non-linearly) of the variables. Nevertheless, it still relies on the basic 

concepts of statistics, such as hypothesis testing, regression analysis, maximum likelihood estimators, 

and correlation and variance technics. Other than business or economics fields such as meteorology and 

signal processing have also largely benefited from the development of the time series analysis. In this 

paragraph you will be introduced to the most important and profound time series technics that should 

provide you the basic grip in this field of statistics.  

As in the case of data analytics in general, inspecting the graphical representation of a time series is the 

best way to gain an intuition of what could be the starting point for the modeling. Some popular time 

series graphed: 

  



 

 

 

One of the most important observations in the time series analysis could be to check whether time 

series values are fluctuating around a certain mean, like zero. For example the daily returns of the 

S&P500 index have a clear mean around zero, while some of the time series presented have a trend or a 

seasonal variation. Most of the times it is necessary to untrend the time series or remove a cyclical part 

from it in order to model it or to analyze it in comparison to other time series.  

Perhaps the most common techniques for untrending is taking a difference or a log-difference as 

follows: 

 

∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 

OR 

∆ log 𝑦𝑡 = log(𝑦𝑡 𝑦𝑡−1⁄ ) = log 𝑦𝑡 − log𝑦𝑡−1 ≈ (𝑦𝑡 − 𝑦𝑡−1) 𝑦𝑡−1⁄  

 

where 𝑦𝑡 is a common notation for time series data at the time period 𝑡 = 1,… , 𝑇, where 𝑇 is the total 

number of observations. 𝑦𝑡−1 is usually called the first lag of the time series, 𝑦𝑡−2 is the second lag and 

so on. 𝑦𝑡+1 is the first lead, 𝑦𝑡+2 is the second lead and so on.  



In case of a linear trend it’s possible to fit a trend line using least squares regression and to consider 

modeling the resulting residual series. Then, the observed time series 𝑦𝑡 would be replaced by the time 

series 

 

(𝜀�̂� = 𝑦𝑡 − �̂�0 − �̂�1𝑡, 𝑡 = 1,… , 𝑇), 

 

where the estimates �̂�0 and �̂�1 are obtained by regressing 𝑦𝑡 on a constant and 𝑡. 

If the time series seem to have a cyclical behavior, then most of the times it’s not a bad idea to identify a 

seasonal (repetitive) pattern to produce a relevant analysis. A possible solution could be to use 

trigonometric functions of time, but unfortunately especially in the case of economic and business time 

series the seasonality is not uniform across the data and therefore trigonometric functions demand a lot 

of parametric adjustment. Hence, an often used alternative is to use seasonal indicators. For example in 

case of quarter-annual data one could use the residual series: 

 

𝜀�̂� = 𝑦𝑡 − �̂�1𝑑1𝑡 −⋯− �̂�4𝑑4𝑡,  𝑡 = 1,… , 𝑇, 

 

where 𝑖th seasonal indicator 𝑑𝑖𝑡 takes value one when the observation in question corresponds to 

quarter 𝑖 and zero otherwise (𝑖 = 1,… ,4). 

 

Very often, the aim of time series analysis is to build a statistical model that represents the observed 

time series and its fluctuations and the dependence structure of consecutive observations. This 

dependence is often quite apparent, either by inspecting a graph of the series, or because of an 

underlying theory explaining how the phenomenon generating the time series behaves. After a 

statistical model has been chosen, one can estimate the unknown parameters of the model, check 

whether the estimated model and the observations are compatible, test hypotheses concerning the 

model parameters, and finally use the model for the intended purpose.  

One purpose could be to simply provide a summarized description of the observed data set, which may 

be useful in understanding the underlying data generation process producing the data. Another central 

use of a time series model is to forecast the future values of the time series (or several time series). On 

the other hand, a series of interest may be forecasted making use of information contained in other 

explanatory time series. In case of multiple time series, often exploring potential temporal and 

contemporaneous dependencies between the time series is another issue of interest.  

 

5.6.1. General techniques 
 

Example 66. ..................................................................................................................................  



 

We’ve got a construction permits monthly data from Finland spanning 1990-2013: 

# Data: construction permits in Finland 1990M01-2013M12 
no.permits <- ts(constr$number, start = c(1990,1), frequency=12) 
# Plotting the original series 
plot(no.permits, col="green4", main="Number of construction permits in 
Finland 1990I-2013XII") 
# Plotting the differences of the original series 
plot(diff(no.permits), col="green4", main="Difference of number of 
construction permits  
     in Finland 1990I-2013XII") 
> mean(no.permits) 
[1] 2784.997 
> mean(diff(no.permits)) 
[1] -0.630662 

 

 

Example 67. ..................................................................................................................................  

 



The original series as well the differences of it seems to have a seasonal behavior. Let’s check the means 

of each month first to find if there are differences between them: 

> colMeans(permits) 
     Jan      Feb      Mar      Apr      May      Jun      Jul      Aug  
1629.750 2397.042 3042.750 3656.375 3796.458 3988.917 2048.042 3088.000  
     Sep      Oct      Nov      Dec  
2980.292 2621.208 2215.625 1955.500  

 

June seems to have the most permits on average and then there’s another spike in August. Otherwise 

the series gradually declines to wards January which has the lowest number of permits. Another bottom 

is in July. In fact we can identify to cycles here, since the series has its lowest values every half a year on 

average. We could fit the cyclical part repeating every half a year and every month by using a hands-on 

algorithm: 

plot(no.permits, col="red", main="Number of construction permits in Finland 
1990I-2013XII 
     (incl. seasonal variation)") 
 
# Quartely a=3 
permits.cycle.3 <- filter(no.permits,filter=rep(1/7,7)) 
lines(permits.cycle.3,col="forestgreen", lwd=2) 
 
# Every half a year a=6 
permits.cycle.6 <- filter(no.permits,filter=rep(1/13,13)) 
lines(permits.cycle.6,col="blue", lwd=2) 
 
# Every year a=12 
permits.cycle.12 <- filter(no.permits,filter=rep(1/25,25)) 
lines(permits.cycle.12,col="black", lwd=2) 

 

How to interpret the coefficients of filter()? 

In fact this algorithm represents a decomposition with a simple class of linear filters which are moving 

averages with equal weights: 

 



𝑇𝑡 − ∑ 𝜆𝑖𝑦𝑡+𝑖

∞

𝑖=−∞

= 𝑇𝑡 −
1

2𝑎 + 1
∑ 𝑦𝑡+𝑖

𝑎

𝑖=−𝑎

 

 

In this case, the filtered value of a time series at a given period 𝑡 is represented by the average of the 

values {𝑦𝑡−𝑎, … , 𝑦𝑡 , … , 𝑦𝑡+𝑎} and the coefficients of the filtering are {
1

2𝑎+1
, … ,

1

2𝑎+1
}.  

For instance, 

 

if 𝑎 = 3, then 𝜆7 = {
1

2𝑎+1
, … ,

1

2𝑎+1⏟        
7 𝑡𝑖𝑚𝑒𝑠

} = {
1

7
, … ,

1

7
} 

if 𝑎 = 12, then 𝜆12 = {
1

2𝑎+1
, … ,

1

2𝑎+1⏟        
25 𝑡𝑖𝑚𝑒𝑠

} =  {
1

25
, … ,

1

25
} 
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Another beautiful way to fit a trend line is to use a quadratic function of time: 

# Quadratic function of time fitted to the series 
lpermits<-log(constr$number) 
t<-seq(from=1,to=length(constr$number),by=1) 
t2<-t^2 
plot(lpermits,type="o", pch=1, lty=1, col=2, main="Log of n of construction 
permits in Finland 1990I-2013XII") 
lines(lm(lpermits~t+t2)$fit,col="black",lwd=2) 

 

 



If it seems that a quadratic equation log 𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡
2 + 𝜀𝑡 doesn’t describe the data well 

enough, then you can always try higher degree polynomials, such as a cubic one  log 𝑦𝑡 = 𝛽0 + 𝛽1𝑡 +

𝛽2𝑡
2 + 𝛽3𝑡

3 + 𝜀𝑡: 

# Cubic function of time fitted to the series 
lpermits<-log(constr$number) 
t<-seq(from=1,to=length(constr$number),by=1) 
t2<-t^2 
t3<-t^3 
plot(lpermits,type="o", pch=1, lty=1, col=2, main="Log of n of construction 
permits in Finland 1990I-2013XII") 
lines(lm(lpermits~t+t2+t3)$fit,col="black",lwd=2) 

 

 

Example 69. ..................................................................................................................................  

The decomposition of the time series into cyclical, trending and main data components can be easily 

done by using for example a function stl(): 

permits.stl <- stl(log(no.permits),s.window="periodic") 
plot(permits.stl, main="Decomposition of time series of construction 
permits") 

 



 
plot(no.permits, col="cyan4", main="Number of construction permits in Finland 
1990I-2013XII 
     + fitted Holt-Winters") 
lines(HoltWinters(no.permits)$fit[,1],col="red", lwd=2)  

 

 

Predicting the future values using Holt-Winters values can be done using a generic function predict().It 

only requires that we rescale the x-axis so that the new values can be fitted in the graph. 

# Predicting using Holt-Winters 
plot(no.permits, col="cyan4", main="Number of construction permits in Finland 
1990I-2013XII 
     + forecast of Holt-Winters", xlim=c(1990,2018)) 
lines(predict(HoltWinters(no.permits),n.ahead=48),col="black", lwd=2) 

 



 

    

5.6.2. ARIMA models 
 

ARIMA models are used for describing the evolution of a single (univariate) time series. ARIMA are 

constructed using two kinds of components: autoregressive (AR) and moving average (MA). They are 

applied for forecasting.  

 

In ARIMA modeling often one prefer to use Box-Jenkins approach consisting of three stages  (in the 

application order): 

1) Model identification 

2) Parameter estimation 

3) Diagnostic checking 

These stages can be repeated until the model suits the data considerably well. The goal is to find the 

most parsimonious model, i.e. the model with the smallest amount of parameters 𝑝 and 𝑞.   

Autocorrelation (AC) and partial autocorrelation (PAC) functions play a key role, because they help to 

identify the number of parameters (𝑝 and 𝑞 in 𝐴𝑅𝑀𝐴(𝑝, 𝑞)) or the order that may be needed.  In partial 

autocorrelation function the impact of values 𝑦𝑡−1, … , 𝑦𝑡−𝑠+1 is not included. 

A rule of thumb is that for 𝐴𝑅𝑀𝐴(𝑝, 𝑞) 

 AC function’s values decay after lag 𝑞 (but may alternate in sign) 

 PAC function’s values decay after lag 𝑝 (but may alternate in sign) 

 For 𝐴𝑅(𝑝) PAC function’s values are zeroes for 𝑠 > 𝑝 



 

Example 70. ..................................................................................................................................  

This example demonstrates how the estimated model by auto.arima() compares with the original series: 

plot(no.permits, col="cyan4", main="Number of construction permits in Finland 
1990I-2013XII 
     + fitted auto.ARIMA (in red)") 
lines(fitted(fit.auto), col="red", lwd=2) 

 

 

And fitted auto.ARIMA against 𝐴𝑅𝐼𝑀𝐴(1,0,1): 

nobs=length(no.permits) 
manual.fit <- arima(no.permits,order=c(1,0,1) , xreg=1:nobs) 
summary(manual.fit) 
plot(fitted(fit.auto), col="red", main="Fitted auto.ARIMA (in red) + 
ARIMA(1,0,1) (in green)") 
lines(fitted(manual.fit), col="green", lwd=2)  



 

How to forecast using ARIMA? The simplest way is to use the generic function predict(): 

no.permits.pred <- predict(fit.auto, n.ahead=48) 
plot(no.permits, col="cyan4", main="Number of construction permits in Finland 
1990I-2013XII 
     + forecast 48 months ahead using auto.ARIMA model 
     + 95% confidence interval of the forecast", xlim=c(1990,2017)) 
lines(no.permits.pred$pred,col="red") 
lines(no.permits.pred$pred+1.96*no.permits.pred$se,col="blue",lty=3) 
lines(no.permits.pred$pred-1.96*no.permits.pred$se,col="blue",lty=3) 

 

 

And here comes the forecast by 𝐴𝑅𝐼𝑀𝐴(1,0,1) without seasonal parameters: 

no.permits.pred2 <- predict(manual.fit, n.ahead=48, 
newxreg=(nobs+1):(nobs+48)) 
plot(no.permits, col="cyan4", main="Number of construction permits in Finland 
1990I-2013XII 



     + forecast 48 months ahead using ARIMA(1,0,1) model 
     + 95% confidence interval of the forecast", xlim=c(1990,2017)) 
lines(no.permits.pred2$pred,col="red") 
lines(no.permits.pred2$pred+1.96*no.permits.pred2$se,col="blue",lty=3) 
lines(no.permits.pred2$pred-1.96*no.permits.pred2$se,col="blue",lty=3) 

 

 

 

 

 

 

 

5.6.3. VAR models 
 

How can we test for the impact of a variable on other variables over time? 

 

 

 

 

 

 



 

 

𝑉𝐴𝑅(𝑝) is a system of 𝑘 equations with 𝑘 × 𝑝 explanatory variables (𝑝 lags of each of the 𝑘 variables 

included in 𝑦), plus 𝑘 constants (if means are not zeros). Say, we have two variables 𝑦1,𝑡 and 𝑦2,𝑡, then 

VAR(1) model is 

 

{
𝑦1,𝑡 = 𝜑11𝑦1,𝑡−1 + 𝜑12𝑦2,𝑡−1 + 𝜀1,𝑡
𝑦2,𝑡 = 𝜑21𝑦1,𝑡−1 + 𝜑22𝑦2,𝑡−1 + 𝜀2,𝑡

 

 

which can be expressed as 

 

𝒚𝑡 = 𝚽𝒚𝑡−1 + 𝜺𝑡 , 

 

where  

 

𝒚𝑡 = [
𝑦1,𝑡
𝑦2,𝑡

] , 𝜺𝑡 = [
𝜀1,𝑡
𝜀2,𝑡
] , 𝚽 = [

𝜑11 𝜑12
𝜑21 𝜑22

]. 

 

In general 𝑉𝐴𝑅(𝑝) model can be expressed as 

 

𝒚𝑡 = 𝚽1𝒚𝑡−1 +𝚽2𝒚𝑡−2 +⋯+𝚽𝑝𝒚𝑡−𝑝 + 𝜺𝑡 . 

 



The equation above is called a reduced from 𝑉𝐴𝑅. Error terms of the linear equations are allowed to be 

correlated with each other, but since the explanatory variables are the same this setup can be estimated 

using OLS.  

𝑉𝐴𝑅 model can be expressed using lag polynomials as Φ(𝐿)𝑦𝑡 = 𝜀𝑡, or equivalently 𝑦𝑡 = 𝛷(𝐿)
−1𝜀𝑡 =

∑ ψ𝑗𝜀𝑡−𝑗
∞
𝑗=0 = 𝚿𝜺𝑡 , where ψ0 = 𝐼 is an identity matrix. This is a particularly practical form, since many 

times one is interested to know how a shock in one variable is reflected in another one. 𝚿 is thus a 

matrix of impulse responses.  An impact of one unit (standard deviation) shock in one error term on 

each of the variables in the model produces impulse response functions. Sometimes the shocks 

𝜀1,𝑡, 𝜀2,𝑡… can be correlated making it difficult distinguishing shocks from each other. Hence, the model 

should be transformed (orthogonized) to make error terms uncorrelated.  

 

Example 71. ..................................................................................................................................  

 

Does advertising create more sales or other way around? Let’s investigate that. 

library(vars) 
library(tseries) 
 
lydia=ts(lydia[,],start=c(1907,1),deltat=1) 
lydia 
colnames(lydia)=c("Sales","Advertising") 
lydia1955<-window(lydia,end=1955) 
dim(lydia1955) 
var3_1955=VAR(lydia1955, p = 3, type = c("const"),season = NULL, exogen = 
NULL, lag.max = NULL) 
summary(var3_1955) 
fcast=predict(var3_1955,n.ahead=10,ci=0.95) 
fcast$fcst 
fanchart(fcast) 



 
> cause_sales=causality(var_lag3, cause = "Sales") 
> cause_adv=causality(var_lag3, cause = "Advertising") 
> cause_sales 
$Granger 
 
 Granger causality H0: Sales do not Granger-cause Advertising 
 
data:  VAR object var_lag3 
F-Test = 9.6761, df1 = 3, df2 = 88, p-value = 1.385e-05 
 
 
$Instant 
 
 H0: No instantaneous causality between: Sales and Advertising 
 
data:  VAR object var_lag3 
Chi-squared = 10.2754, df = 1, p-value = 0.001348 
 
 
> cause_adv 
$Granger 
 
 Granger causality H0: Advertising do not Granger-cause Sales 
 
data:  VAR object var_lag3 
F-Test = 1.8284, df1 = 3, df2 = 88, p-value = 0.1478 
 
 
$Instant 
 
 H0: No instantaneous causality between: Advertising and Sales 
 
data:  VAR object var_lag3 
Chi-squared = 10.2754, df = 1, p-value = 0.001348 
 

Based on our model it seems that advertising is not causing more sales! 

 



Example 72. ..................................................................................................................................  

Impulse response functions is a nice way to see how changes in one variable get reflected in another 

variable.  

impulse=irf(var_lag3, n.ahead=20, ortho=TRUE, boot=TRUE,ci=0.95,runs=100, 
cumulative=FALSE) 
plot(impulse) 

 
 
 

 

 

5.7. Bayesian inference (incomplete) 

5.8. Tree-based methods (incomplete) 
 

Tree-based methods are powerful yet simple to interpret classification tools.  

 

5.9. Support vector classifier and support vector 

machine 
 

The support vector machine (SVM) is an extension of the support vector classifier which is an extension 

of the maximal margin classifier. All definitions aside, SVM is a hands-on technique with a rather 

engineering flavor to classify the variables that are correlated in a more complex way than the one that 



would be possible to model with a logistic regression. SVM has gained its reputation because of its 

functionality and flexibility, and that is the reason why it is being introduced here. SVM can be used to 

classify the data into many classes, but in this chapter we will only go through the binary classification 

setting. 

 

The concept of a hyperplane is a foundation of the technique being employed in the classification 

methods applied in SVM. Hyperplane a 𝑝 − 1 –dimensional subspace of the 𝑝 –dimensional space. 

Hence, in the case of the ordinary 3-dimensional space its hyperplane is 2-dimensional. This means that 

the hyperplane of the 3-dimensional space is a plane. From that, the reader can easily infer that the 

hyperplane of a 2-dimensional space is a line, which is a 1-dimensional object. Mathematically a 

𝑝 -dimensional hyperplane in a 𝑝 + 1 –dimensional space is defined as 

   

𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝 = 0 

 

and a 2-dimensional hyperplane stands for a linear equation 

 

𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 = 0 

 

where 𝑋 = (𝑋1, 𝑋2)
𝑇 stands for a vector that assigning the points the hyperplane. This case can be 

showcased graphically as follows. 

v1<- rep(seq(0,1,0.1), times=10, each=1) 
v2<- rep(seq(0,1,0.1), times=1, each=10) 
m.svm<-cbind(v1,v2) 
plot(m.svm, xlim=c(0,1), ylim=c(0,1), pch=19, col="dodgerblue4") 
abline(coef = c(1,-1), lwd=3, col='orangered') 
plot(1,xlim=c(0.035,0.965), ylim=c(0.035,0.965)) 
polygon(x=c(0,0,1), y=c(0,1,0), col = 'skyblue') 
polygon(x=c(1,0,1), y=c(1,1,0), col = 'deeppink') 
abline(coef = c(1,-1), lwd=3) 



 

 

The line in the graph represents a hyperplane 

 

𝑋1 + 𝑋2 − 1 = 0, 

 

where 𝑋1 is represented by a vector 𝑣1 and 𝑋2 is represented by 𝑣2. Thus, 𝛽0 = −1, 𝛽1 = 1, and 𝛽2 = 1. 

All points which lie above or below the line in the left-hand side of the graph satisfy an equation 

 

𝑋1 + 𝑋2 − 1 > 0 

 

or  

 

𝑋1 + 𝑋2 − 1 < 0 

 

respectively, and are represented by a purple and a blue area in the right-hand side of the graph. 

For instance, in case of 3 − 2𝑋1 − 4𝑋2 = 0, the graph would look as follows. 



 

Now, say, that we’d like to classify two sets of points in a 2-dimensional setting, then the hyperplane can 

be used for that purpose (i.e. decision making): 

 

v1=c(0.12,0.32,0.38,0.24,0.17,0.25,.64,.58,.73,.67,.90) 
v2=c(0.34,0.05,0.21,0.16,0.17,0.50,.67,.96,.85,.56,.78) 
y=c(rep(-1,6) ,rep (1,5)) 
m.svm2<-cbind(v1,v2) 
plot(m.svm2, col =(3-y), pch=19) 
abline(coef = c(1,-1), lwd=3) 
abline(coef = c(-4.5,10), lwd=3) 
abline(coef = c(1.5,-2.5), lwd=3) 

 

 

Recall from the linear algebra course or high school mathematics, the formula for line equation is 

 

𝑦0 − 𝑦 =
𝑦 − 𝑦0
𝑥 − 𝑥0

(𝑥 − 𝑥0), 

 



where (𝑦 − 𝑦0)/(𝑥 − 𝑥0) is the slope coefficient / first derivative of the equation. 

Based on the example above we may be able construct many different separating planes (not always the 

case). From the result above we may as well conclude that for a line to be a separating plane for two 

classes it has to satisfy the following property: 

 

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2) > 0, 

 

where 𝑦𝑖 = {−1,1}. And from this result we may generalize further that 

 

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝) > 0, 

 

for a 𝑝 –dimensional hyperplane, for all 𝑖 = 1,… , 𝑛 observations. 

After being able to find several separating hyperplanes the natural question arises, what would be the 

best one to classify the data? One approach is to search for a separating hyperplane with the largest 

possible 𝑀, that represents the minimum distance from each point to that particular plane. Formally 

this becomes a maximization problem with the following setup 

 

maximize
𝛽0,𝛽1,…,𝛽𝑝

𝑀 

 

subject to∑𝛽𝑗
2 = 1

𝑝

𝑗=1

, 

 

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝) ≥ 𝑀 ∀𝑖 = 1,… , 𝑛. 

 

In case one is able to find such 𝑀 we call it the maximal margin hyperplane. Say, we have a two class set 

of observations, then the distance of observations from the hyperplane looks graphically as follows:   



 

The two points connected with arrows are the ones with minimal distance from the hyperplane in case. 

Sometimes it is not possible to separate the set of points linearly, i.e. 𝑀 > 0 does not exist for that case 

as shown in the graph below. Nevertheless, it is possible to apply a support vector classifier technique in 

that case. 

 

On the other hand, even when there’s a possibility to separate observations into classes, introducing 

new observations may lead to contradictions with a defined hyperplane, which is showcased in the 

graph below. 

 



 

 

In case a new observation doesn’t fit a predefined hyperplane, it can be a sign of an inappropriate 

hyperplane. Since a separating hyperplane is intended to perfectly classify the observations, there’s a 

chance for it to be sensitive to individual observations. Adjusting the hyperplane every time after new 

observations are introduced may work as well, but this operation has a tendency to reduce the margins 

of the classifier, while the margins can be seen as a measure of confidence. On top of that, a real life 

data is rarely perfectly classifiable, therefore instead of searching for a perfect classifier one could try to 

search for techniques bringing more robustness to the single observations and instead focus on finding a 

classifier that is classifying most observations at a satisfactory level that could be just enough to make 

decisions and accept a certain level of uncertainty.  

Accepting a possible non-perfectness of a classifier brings us to a concept of the support vector 

classifier. Its maximization problem is defined as follows: 

 

maximize
𝛽0,𝛽1,…,𝛽𝑝,𝜖1,…𝜖𝑛

𝑀 

 

subject to∑𝛽𝑗
2 = 1

𝑝

𝑗=1

, 

 

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝) ≥ 𝑀(1 − 𝜖𝑖) ∀𝑖 = 1,… , 𝑛, 

𝜖𝑖 ≥ 0,∑𝜖𝑖 ≤ 𝐶,

𝑛

𝑖=1

 

 



where 𝐶 is a nonnegative tuning parameter, 𝑀 is the width of the margin, and 𝜖1, … , 𝜖𝑛 are slack 

variables to allow single observations to end up on the wrong side of the margin. Slack variable 𝜖𝑖 tells 

us the location of the 𝑖th variable with respect to the classifier and it provides the following information: 

 

𝜖𝑖 = 0 if observation 𝑖 is on the correct side of the margin
0 < 𝜖𝑖 ≤ 1 if observation 𝑖 violates the margin
𝜖𝑖 > 1 if observation 𝑖 is on the wrong side of the hyperplane.

 

 

In the light of the slack variable’s definition the parameter 𝐶 can be seen as a total level of violations 

caused by the observations with respect to the hyperplane in case. On the other hand 𝐶 is positively 

correlated with the choice of 𝑀, as increasing the margins inevitably increases the violations as the 

number of observations grows, which is demonstrated in the following graph.  

 

So far we have focused on the classifiers that are linear. Unfortunately this set of classifiers has big 

limitations when the data is not clustered linearly. In these cases even accepting a non-perfectness of 

the classifier can be not sufficient enough in terms of its performance. Have a look at the following 

graph.  



 

 

In the graph above one can clearly identify three clusters of data points that belong to either class. 

Trying to fit a linear classifier in this case can be rather disappointing and this becomes obvious in the 

right-hand side of the picture.  

One solution to this problem could be to use non-linear restrictions with more features, i.e. instead of 

using only linear observations 𝑋1, 𝑋2, … , 𝑋𝑝 we could use their second power 𝑋1, 𝑋1
2, 𝑋2, 𝑋2

2, … , 𝑋𝑝, 𝑋𝑝
2 

and even higher power 𝑚 in general:  

 

𝑋1, 𝑋1
2, … , 𝑋1

𝑚, 𝑋2, 𝑋2
2, …𝑋2

𝑚, … , 𝑋𝑝, 𝑋𝑝
2, … , 𝑋𝑝

𝑚 

 

while doubling or multiplying the number of parameters even further. In that case the familiar 

maximization problem becomes 

maximize
𝛽0,𝛽11,𝛽1𝑚,…,𝛽𝑝1,𝛽𝑝𝑚,𝜖1,…𝜖𝑛

𝑀 

 

subject to∑∑𝛽𝑗𝑘
2

𝑚

𝑘=1

𝑝

𝑗=1

= 1, 

 

𝑦𝑖 (𝛽0 +∑𝛽𝑗1𝑥𝑖𝑗

𝑝

𝑗=1

+∑𝛽𝑗2𝑥𝑖𝑗
2

𝑝

𝑗=1

+⋯+∑𝛽𝑗𝑚𝑥𝑖𝑗
𝑚

𝑝

𝑗=1

) ≥ 𝑀(1 − 𝜖𝑖), 

 



𝜖𝑖 ≥ 0,∑𝜖𝑖 ≤ 𝐶,

𝑛

𝑖=1

 

 

Even though the decision boundary in this cases is linear the solutions of this maximization problem are 

in general non-linear. Unfortunately increasing the parameters brings another drawback to this 

problem: computations. Luckily, there is another efficient way to deal with nonlinearities while 

controlling for the computation capacity that the problem involves. The support vector machine (SVM) 

is one more extension to deal with this set of challenges. The idea of the support vector machine is to 

model non-linear boundaries between the classes, but instead of using linear parameters its foundation 

lies in kernels. The theory of the kernels is complex, therefore we will omit it, but some of the most 

commonly used kernels will be introduced in a general manners and then some of the examples of their 

use will be provided after that. 

Let 𝐾(𝑥𝑖 , 𝑥𝑖∗) be the kernel, where observations {𝑥𝑛} represent training vectors. The most basic kernel 

used in SVM is a linear kernel that is in fact the inner product of the vectors 𝑥𝑖 and 𝑥𝑖∗, 〈𝑥𝑖, 𝑥𝑖∗〉 =

∑ 𝑥𝑖𝑗𝑥𝑖∗𝑗
𝑝
𝑗=1 . Its extension is a polynomial kernel (1 + ∑ 𝑥𝑖𝑗𝑥𝑖∗𝑗

𝑝
𝑗=1 )

𝑑
. Another commonly used kernel is 

called radial, and it takes a form: exp (−𝛾∑ (𝑥𝑖𝑗 − 𝑥𝑖∗𝑗)
𝑝
𝑗=1

2
). Finally, the last kernel that deserves our 

attention is called hyperbolic tangent or sigmoid, and it takes a form as follows: tanh(𝜅 ∑ 𝑥𝑖𝑗𝑥𝑖∗𝑗
𝑝
𝑗=1 +

𝑐). Thus, the four most commonly applied kernels are 

 

𝐾(𝑥𝑖, 𝑥𝑖∗) =

{
 
 
 
 

 
 
 
 ∑ 𝑥𝑖𝑗𝑥𝑖∗𝑗

𝑝

𝑗=1

(1 +∑ 𝑥𝑖𝑗𝑥𝑖∗𝑗
𝑝

𝑗=1
)

𝑑

, for 𝑑 > 1

exp (−𝛾∑ (𝑥𝑖𝑗 − 𝑥𝑖∗𝑗)
𝑝

𝑗=1

2

) , for 𝛾 > 1

tanh(𝜅∑ 𝑥𝑖𝑗𝑥𝑖∗𝑗
𝑝

𝑗=1
+ 𝑐) , for 𝜅 > 0 and 𝑐 < 0.

 

 

 

You have to have a package “e1071” installed in order to run the following examples. It’s an easy use 

package to elaborate SVM’s. 

Example 73. ..................................................................................................................................  

V<-matrix(rnorm(80,0,1), ncol = 2) 
y=c(rep(-1,20), rep(1,20)) 
V[21:30,]=V[21:30,] + 3 
V[31:40,]=V[31:40,] - 3 
dat=data.frame(x=V, y=as.factor(y)) 
library(e1071) 



tune.out=tune(svm ,y~.,data=dat ,kernel ="radial", 
              ranges =list(cost=c(0.001 , 0.01, 0.1, 1,5,10,100) )) 
tune.out$best.model 
 
Call: 
best.tune(method = svm, train.x = y ~ ., data = dat, ranges = list(cost = 
c(0.001, 0.01, 0.1,  
    1, 5, 10, 100)), kernel = "radial") 
 
 
Parameters: 
   SVM-Type:  C-classification  
 SVM-Kernel:  radial  
       cost:  1  
      gamma:  0.5  
 
Number of Support Vectors:  14 
 
svmfit=svm(y~., data=dat, kernel="radial", cost=1, gamma=0.5, scale=FALSE) 
plot(svmfit, dat, fill = TRUE, svSymbol = 42, dataSymbol = 19) 
 

 

This is a radial classification, where the star signs stand for the support vectors and dots are data 

symbols. 

 

Example 74. ..................................................................................................................................  

 
V.poly<-matrix(rnorm(80,0,1), ncol = 2) 
y=c(rep(-1,20), rep(1,20)) 
V.poly[1:20,]=(V.poly[1:20,])^2 
dat=data.frame(x=V.poly, y=as.factor(y)) 
tune.out=tune(svm ,y~.,data=dat ,kernel ="polynomial", 



              ranges =list(cost=c(0.001 , 0.01, 0.1, 1,5,10,100) )) 
summary(tune.out) 
bestmod=tune.out$best.model 
bestmod 

 

Call: 
best.tune(method = svm, train.x = y ~ ., data = dat, ranges = list(cost = 
c(0.001, 0.01, 0.1,  
    1, 5, 10, 100)), kernel = "polynomial") 
 
 
Parameters: 
   SVM-Type:  C-classification  
 SVM-Kernel:  polynomial  
       cost:  1  
     degree:  3  
      gamma:  0.5  
     coef.0:  0  
 
Number of Support Vectors:  28 
 
svmfit=svm(y~., data=dat, kernel="polynomial", cost=1, degree=3, gamma=0.5, 
coef.0=0, scale=FALSE) 
plot(svmfit, dat, fill = TRUE, svSymbol = 42, dataSymbol = 19) 
 

 

This is a polynomial classification method. 

 

Example 75. ..................................................................................................................................  

 
V.tan<-matrix(rnorm(80,0,8), ncol = 2) 
y=c(rep(-1,20), rep(1,20)) 
V.tan[1:20,]=tan(V.tan[1:20,]) 
plot(V.tan, col=(3-y),pch=19) 



dat=data.frame(x=V.tan, y=as.factor(y)) 
tune.out=tune(svm ,y~.,data=dat ,kernel ="sigmoid", 
              ranges =list(cost=c(0.001 , 0.01, 0.1, 1,5,10,100) )) 
tune.out$best.model 
 
Call: 
best.tune(method = svm, train.x = y ~ ., data = dat, ranges = list(cost = 
c(0.001, 0.01, 0.1,  
    1, 5, 10, 100)), kernel = "sigmoid") 
 
 
Parameters: 
   SVM-Type:  C-classification  
 SVM-Kernel:  sigmoid  
       cost:  10  
      gamma:  0.5  
     coef.0:  0  
 
Number of Support Vectors:  27 
 
svmfit=svm(y~., data=dat, kernel="sigmoid", cost=10, gamma=0.5, coef.0=0, 
scale=FALSE) 
tmp<-dat[,1] 
dat[,1]<-dat[,2] 
dat[,2]<-tmp 
plot(svmfit, dat, fill = TRUE, svSymbol = 42, dataSymbol = 19) 
 

 

This is a hyperbolic tangent attempt to classify the (complicated) data. 

 

 

5.10. Depicting the data 
 

This section is meant to raise the issues related to displaying the data. 



 

Linear scale vs. log scale 
 
# World population 
library(gcookbook) 
library(gridExtra) 
data("worldpop") 
# Linear scale 
linS <- ggplot(worldpop, aes(x=Year, y=Population)) + geom_line() + 
geom_point() 
# Log-scale 
logS <- ggplot(worldpop, aes(x=Year, y=Population)) + geom_line() + 
geom_point() + 
  scale_y_log10() 
grid.arrange(linS, logS, nrow=1, ncol=2)  
 

 

 

Linear growth rates vs. log growth rate 
 
 
#World population growth 
diff.p<-numeric(length(worldpop$Population)-1) 
for (i in 1:length(diff.p)){ 
diff.p[i]<-((worldpop$Population[i+1]-
worldpop$Population[i])/worldpop$Population[i]) 
} 
diff.log.p<-diff(log(worldpop$Population)) 
worldpop2<-cbind(worldpop[2:length(worldpop$Population),],diff.p,diff.log.p) 
# Linear scale 
diff.linS <- ggplot(worldpop2, aes(x=Year, y=diff.p)) + geom_line() + 
geom_point() + ylab("Percentage growth") 
# Log-scale 
diff.logS <- ggplot(worldpop2, aes(x=Year, y=diff.log.p)) + geom_line() + 
geom_point() + ylab("Logarithmic growth") 
grid.arrange(diff.linS, diff.logS, nrow=1, ncol=2) 



 

 

Cutting and scaling the axes 
 

pop <- ts(china$Pop, start = c(1960), frequency = 1) 
library(ggplot2) 
library(ggfortify) 
p1 <- autoplot(pop/10^6, ts.colour = 'red2', size = 1) 
p1 <- p1 + theme_grey(base_size = 15) + 
  scale_x_continuous(name="Years") + 
  scale_y_continuous(name="Population (millions)") + 
  labs(title = "Population in China 1960-2014 
       ", size=3) 
p2 <- autoplot(diff(log(pop/10^6)), ts.colour = 'red2', size = 1) 
p2 <- p2 + theme_grey(base_size = 15) + 
  scale_x_continuous(name="Years") + 
  scale_y_continuous(name="Annual growth rate") + 
  labs(title = "Population growth rate in China  
       1960-2014", size=3)  
grid.arrange(p1,p2,nrow=1,ncol=2) 
grid.arrange(p1,p2,nrow=2,ncol=1) 

 



 

 

 

 

#Average prices of fishing using 'charter' and 'beach' 
library(mlogit) 
data(Fishing) 
prices<-cbind(c("Beach","Charter"), c(round(mean(Fishing$price.beach)), 
round(mean(Fishing$price.charter)))) 
colnames(prices)<-c("Mode", "Av.price")  
prices<- as.data.frame(prices) 
prices$Av.price<- as.numeric(levels(prices$Av.price)) 
gg <- ggplot(prices, aes(x=reorder(Mode, Av.price), y=Av.price, fill=Mode)) + 
geom_bar(stat="identity", colour="black") 
gg 



 

 

#Average prices of fishing using 'charter' and 'beach' with a rescaled 
gg + scale_y_continuous(limits=c(0, 5000)) 
 

 
 
#Average prices of fishing using 'charter' and 'beach' with a limited y axis 
gg +  coord_cartesian(ylim = c(80, 105)) 

 



 

 

Spans of time series 
 

library(scales) 
library(grid) 
library(ggplot2) 
library(gridExtra) 
library(ggfortify) 
library (plyr) 
#Global barley index 3.1.2000-10.2.2015 
gg1 <- ggplot(barley, aes(x=Date2, y=P)) +  
  geom_line(aes(colour = P)) +  
  scale_colour_gradient(high="red", low="dodgerblue3", name="") + 
  scale_x_datetime(breaks = "800 days", minor_breaks = "100 days", 
                   labels = date_format("%m/%Y")) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 12),  
        axis.text.y = element_text(size=15), 
        axis.title.x = element_text(size = 12), 
        axis.title.y = element_text(size = 12), 
        plot.title = element_text(size = 15), 
        legend.text = element_text(size=10), 
        legend.title = element_text(size=1), 
        legend.key.size = unit(0.25, "cm"), 
        legend.position = c(.3,.6)) + 
  labs(title="3.1.2000-10.2.2015", x="", y="") 
gg1 
 
#Global barley index 1.6.2007-30.9.2007 
gg2 <- ggplot(barley[1934:2019,], aes(x=Date2, y=P)) +  
  geom_line(aes(colour = P), size=1) +  
  scale_colour_gradient(high="red", low="dodgerblue3", name="Price index") + 
  scale_x_datetime(breaks = date_breaks("30 days"), 
                  labels = date_format("%d/%m/%Y")) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 12),  
        axis.text.y = element_text(size=15), 
        axis.title.x = element_text(size = 12), 



        axis.title.y = element_text(size = 12), 
        plot.title = element_text(size = 15), 
        legend.text = element_text(size=10), 
        legend.title = element_text(size=10), 
        legend.key.size = unit(0.25, "cm")) + 
  labs(title="1.6.2007-30.9.2007", x="", y="") 
gg2  
 
#Global barley index 1.1.2009-31.12.2011 
gg3 <- ggplot(barley[2348:3129,], aes(x=Date2, y=P)) +  
  geom_line(aes_string(col = "P", fill = NULL)) +  
  scale_colour_gradient(high="red", low="dodgerblue3", name="") + 
  scale_x_datetime(breaks = date_breaks("100 days"), 
                   labels = date_format("%m/%Y")) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 12),  
        axis.text.y = element_text(size=15), 
        axis.title.x = element_text(size = 12), 
        axis.title.y = element_text(size = 12), 
        plot.title = element_text(size = 15), 
        legend.text = element_text(size=10), 
        legend.title = element_text(size=1), 
        legend.key.size = unit(0.25, "cm"), 
        legend.position = c(.3,.6)) + 
  labs(title="1.1.2009-31.12.2011", x="", y="")  
gg3 
 
#Global barley index 14.9.2005-14.4.2006 
gg4 <- ggplot(barley[1487:1639,], aes(x=Date2, y=P)) +  
  geom_path(col="dodgerblue", size=1) +  
  scale_x_datetime(breaks = date_breaks("30 days"), 
                   labels = date_format("%m/%Y")) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 12),  
        axis.text.y = element_text(size=15), 
        axis.title.x = element_text(size = 12), 
        axis.title.y = element_text(size = 12), 
        plot.title = element_text(size = 15), 
        legend.text = element_text(size=15), 
        legend.title = element_text(size=12)) + 
  labs(title="14.9.2005-14.4.2006", x="", y="") + 
  ylim(c(120,140)) 
gg4 
 
#Combining the plots 
gg.l=list(gg1,gg2, gg3, gg4) 
aG <- arrangeGrob(grobs=gg.l, nrow=2,ncol=2, top="Global barley index, daily 
basis: January 2000=100") 
grid.arrange(aG) 

 

 



 

Proportions vs. counts 
 

library(ggplot2) 
library(grid) 
library(gridExtra) 
weight.int <- cut(ChickWeight$weight,5) 
ChickWeight <- data.frame(ChickWeight, weight.int) 
t <- theme(plot.title = element_text(size = 15), 
           axis.text.x = element_text(size = 12),  
           axis.text.y = element_text(size=12), 
           axis.title.x = element_text(size = 15), 
           axis.title.y = element_text(size = 15), 
           legend.text = element_text(size=13), 
           legend.title = element_text(size=13), 
           legend.key.size = unit(0.5, "cm"), 
           legend.position="right")  
gg1 <- ggplot(ChickWeight, aes(weight.int, fill=Diet)) + 
geom_bar(position="fill") + labs(title="Proportions based on diet with 5 
weight intervals of equal length", x="", y="Proportion") + t 
gg2 <- ggplot(ChickWeight, aes(weight.int, fill=Diet)) + geom_bar() + 
labs(title="Number of observations based on diet with 5 weight intervals of 
equal length", x="Weight intervals", y="Count") + t 
gg.l=list(gg1,gg2) 
aG <- arrangeGrob(grobs=gg.l, nrow=2,ncol=1) 
grid.arrange(aG) 

 



 

 

 

Palettes for everyone 
 

It is estimated that 8% of all men and 0.5% of all women are affected by this problem. It is making their 

lives difficult and handicapped. This problem is not curable (as of Aug 4, 2015), but it is possible to help 

these people. The issue is color blindness. Even though the problem is called color blindness, in fact 

most of the people affected are not completely color blind. Instead, they are not able to distinguish 

some of the hues that people with the standard vision are able to see. Dichromacy is the most common 

type of color blindness and it is possible to split it into three separate generalized deficiencies: 

protanopia, deuteranopia, and tritanopia. People suffering from the first deficiency are less sensitive to 

red light, while the ones suffering from deuteranopia have issues with green light. Nevertheless, both 

are having problems with red and green hues. People affected by tritanopia confuse blue with green and 

yellow with violet.  Let’s see how these issues compare to the normal vision. 

 

# Color blindness #### 
library(grid) 
library(gridExtra) 
library(dichromat) 
data("dalton") 
df <- data.frame(V1=rep(1:2, each=128),V2=1:128, V3=1:256) 
gg <- ggplot(df, aes(V2,V1, fill=factor(V3))) +  
  geom_raster(hjust = 0, vjust = 0) + 
  theme(legend.position ="none", 
        axis.text.x = element_blank(),  
        axis.text.y = element_blank(), 



        axis.ticks = element_blank()) + 
  xlab("")+ 
  ylab("") 
gg.1 <- gg +  
  scale_fill_manual(values = dalton.colors$normal)+ 
  ggtitle("Normal vision") 
gg.2 <- gg +  
  scale_fill_manual(values = dalton.colors$deutan)+ 
  ggtitle("Deutan vision") 
gg.3 <- gg +  
  scale_fill_manual(values = dalton.colors$protan)+ 
  ggtitle("Protan vision") 
gg.4 <- gg +  
  scale_fill_manual(values = dalton.colors$tritan)+ 
  ggtitle("Tritan vision") 
grid.arrange(arrangeGrob(grobs=list(gg.1, gg.2,gg.3,gg.4), nrow=4, ncol=1, 
top="")) 

 

 



6. References 
6.1. Function reference 

 

abline {graphics} ........................................................ adds one or more straight lines through the current plot 

acf {stats}......... computes estimates of the autocovariance or autocorrelation function of a given time series 

Acf {forecast} .................. computes estimates of the  (partial) autocorrelation function of a given time series 

aes {ggplot2} ........................................................................ creates a list of unevaluated expressions in ggplot 

apply {base} ............................. returns a vector or an array or a list of values obtained by applying a function  

arima {stats} ............................................................................. fits an ARIMA model to a univariate time series 

arima.sim {stats} ....................................................................................................... simulates an ARIMA model 

arrangeGrob {gridExtra} .......................................................................... produces plots with combined graphs 

array {base} ................................................................................................................. creates or tests for arrays 

as.data.frame {base} .................................................... coerces its argument to an object of type “data frame” 

as.factor {base} ................................................................................................. coerces its argument to a factor 

as.numeric {base} .......................................................... coerces its argument to a an object of type “numeric” 

attach {base} ............................................................................... attaches the databases to the R environment 

attr {base}......................................................................................... gets or sets specific attributes of an object 

auto.arima {forecast} .............................. returns the best ARIMA model according to a lag selection criterion 

autoplot {ggplot2} .......................................................................... draws a plot based on the class of an object 

boxplot {graphics} ............................................ produces box-and-whisker plots of the given (grouped) values 

c {base} .................................................................................................... combines values into a vector or a list 

cat {base} ................................................................ outputs the objects and concatenates the representations 

cbind {base} ....................................................................................................... combines R Objects by columns 

chisq.test {stats} ................................. performs chi-squared contingency table tests and goodness-of-fit tests 

class {base} .......................................................... prints the vector of names of classes an object inherits from 



coef {stats} ...................................... extracts model coefficients from objects returned by modeling functions 

colMeans {base} .................................................................................. forms column means for numeric arrays 

colnames {base} ...................................................... retrieves or sets the column names of a matrix-like object 

confint {stats} ............................ computes confidence intervals for one or more parameters in a fitted model 

cos {base} ............................................................................................................................ computes the cosine 

curve {graphics} ...................................................... draws a curve corresponding to a function over an interval 

cut {base} .............................................. divides and codes the values in x according to which interval they fall 

cut2 {Hmisc} .................................................................................................................extended version of cut() 

data {utils} ................................................................... loads specified data sets, or lists the available data sets 

data.frame {base} ................................................................................................................. creates data frames 

ddply {plyr} ..................................... applies a function and combines results into a data frame for each subset 

diff {base} ................................................................................ returns suitably lagged and iterated differences 

dimnames {base} ............................................................................ retrieves or sets the dimnames of an object 

dnorm {stats} ...............................................................................  gives the density for the normal distribution 

duplicated {base} ................................................ determines duplicated elements and returns a logical vector 

effects {stats} .................................... returns (orthogonal) effects from a fitted model, usually a linear model 

exp {base} .................................................................................................... computes the exponential function 

facet_grid {ggplot2} ............................................................................... factorizes the plots by a given variable 

factor {base} ................................................................................................... returns an object of class "factor" 

file.choose {base} ........................................................................................................ choose a file interactively 

filter {stats} ........................... applies linear filtering to a time series or to a multivariate time series searately 

fitted {stats} .............................................. extracts fitted values from objects returned by modeling functions 

getwd {base} ...........................................................................  returns a path of the current working directory 

geom_bar {ggplot2} .......... produces bar charts for categorical x, and histograms for continuous y of a ggplot 

geom_errorbar {ggplot2} ......................................................................................... draws error bars in ggplot2 



geom_hline {ggplot2} ....................................................................................... draws horizontal lines in ggplot2 

geom_line {ggplot2} .......................................................................................... connects observations in ggplot 

geom_point {ggplot2} ........................................................................................... creates scatterplots in ggplot 

geom_raster {ggplot2} ............................................................................................. draws rectangles in ggplot2 

geom_smooth {ggplot2} ............................................................................. adds a smooth mean to the ggplot2 

ggplot {ggplot2} ...........................................................................................................  initializes a ggplot object 

ggtitle {ggplot2} ............................................................................... changes labels of axes and titles in ggplot2 

grid.arrange {gridExtra} ................................ sets up a gtable layout to place multiple ggplot graphs on a page 

head {utils} ...................................... returns the first parts of a vector, matrix, table, data frame or a function 

hist {graphics} ............................................................................ computes a histogram of the given data values 

hmftest {mlogit} ............................................................. tests the IIA hypothesis for a multinomial logit model 

HoltWinters {stats} ......................................................... computes Holt-Winters filtering of a given time series 

is.list {base} ........................................................................................................... checks if its argument is a list 

labs {ggplot2} ..................................................... changes the axis labels and the legend title of a ggplot object 

lapply {base} .................................. applies and a function for each corresponding element of a list or a vector   

layout {graphics} ........................  divides the device up into as many rows and columns as there are in matrix 

length {base} ................................gets or sets the length of an R object for which a method has been defined 

levels {base} ....................................................................... provides access to the levels attribute of a variable 

library {base} ................................................................................................................... loads add-on packages 

lines {graphics} ..................................................................... joins the corresponding points with line segments 

list {base} ..................................................................................................................................... constructs a list 

lm {stats} .................................................................................................................................  fits linear models 

log {base} .......................................................................... computes logarithms (by default natural logarithms) 

ls {base} ................................................................ gives the names of the objects in the specified environment 

matrix {base} ......................................................................................................................... constructs a matrix 



max {base} ............................................................................................. returns the maxima of the input values 

mean {base} ............................................................................ returns the arithmetic mean of the input values 

median {stats} ...................................................................................................... computes the sample median 

min {base} .............................................................................................. returns the minima of the input values 

mlogit {mlogit} ....................................................................................... estimates the multinomial logit model 

mlogit.data {mlogit} ........................ shapes a data.frame in a suitable form for the use of the mlogit function 

nrow {base} .............................................  return the number of rows present in a vector, array or data frame 

numeric {base} ............................................................................................... creates objects of type “numeric” 

options {base} ............................................. sets a variety of global options to compute and display the results 

pacf {stats} ............................................................ computes estimates of the partial autocorrelation function 

Pacf {forecast} ......... computes an estimate of the partial autocorrelation function of a univariate time series 

par {graphics} ............................................................................................ sets or queries graphical parameters 

paste {base} ........................................................................ concatenates vectors after converting to character 

pchisq {stats} ........................................................... gives the distribution function of Chi-Squared distribution 

plot {graphics} ...............................................................................................................................plots R objects 

pnorm {stats} .......................................................... gives the distribution function for the normal distribution 

polygon {graphics}.......................................................... draw polygons manually with predefined coordinates 

position_dodge {ggplot2} ....................................... adjusts position by dodging overlaps to the side in ggplot2 

predict {stats} ......................................................... predicts from the results of various model fitting functions 

print {base} ..................................................................................................... prints its argument and returns it 

prop.table {base} .................................................................. prints out the proportions of each cell of an array 

qnorm {stats} ................................................................ gives the quantile function for the normal distribution 

qplot {ggplot2} ................................................... allows to use the syntax of plot() in the ggplot2 environment 

reorder {stats} .................................................... reorders its levels based on the values of the second variable 

rbind {base} ............................................................................................................. combines R Objects by rows 



rbinom {stats} ............................................................ generates random deviates for the binomial distribution 

read.csv {utils} ........................................................ reads a file in CSV format and creates a data frame from it 

read.octave {foreign} ................................................................. reads a MATLAB/Octave file into a data frame 

read.spss {foreign} ...................................................................................... reads an SPSS file into a data frame 

read.stata {foreign} .................................................................................... reads a STATA file into a data frame 

read.xls {gdata} .......................................................................................... reads an excel file into a data frame 

read.xlsx {xlsx} ............................................................................................ reads an excel file into a data frame 

read.table {utils} ................................................... reads a file in table format and creates a data frame from it 

remove OR rm {base} .................................................. removes a given object from working environment in R  

reorder {stats} ................................................................................................ reorder factors and other objects 

rep {base} ............................................................................................................................ replicates the values 

replicate {base} ......................................................................................................................... see sapply {base} 

return {base} ...................................................................................................................... returns a given value 

rnorm {stats} ........................................................................ gives random deviates for the normal distribution 

row.names {base} ......................................................................... changes the names of rows in a given object 

round {base} ....................... rounds the values in its first argument to the specified number of decimal places 

sample {base} ................................................................................. gives a random sample of the specified size 

sapply {base} ............................................................................. a user-friendly version and wrapper of lapply() 

scale {base} ................................................................................................ scales the columns of a given matrix 

scale_y_log10 {ggplot2} ................................................................................ logarithmizes the y-scale of ggplot 

sd {stats} ................................................................................ computes the standard deviation of a given array 

setRepositories() {utils} ........................ interacts with the user to choose the package repositories to be used 

seq {base} ............................................................................................................... generates regular sequences 

setwd() {base} ........................................................................... sets a given path as the new working directory 

shapiro.test {stats} ........................................................................ performs the Shapiro-Wilk test of normality 



sin {base} ................................................................................................................................ computes the sine 

scale_colour_gradient {ggplot2} .................................................... creates gradient transition for a given color 

scale_colour_hue {ggplot2} ...................................... creates gradient colours to different variables in ggplot2 

scale_fill_gradient {ggplot2} ................................................. creates gradient color transitions for given colors 

scale_x_continuous {ggplot2} ..................................................................... sets the continuous position x scale 

scale_x_datetime {ggplot} .................................................................................................. scales the time scale 

scale_y_continuous {ggplot2} ..................................................................... sets the continuous position y scale 

solve {base} ............................................... solves the equation 𝑎𝑥 = 𝑏 for 𝑥; calculates the inverse of a matrix 

split {base} .............................................................................................................. split the data into subgroups 

sqrt {base} .................................................................................................................. computes the square root 

stat.desc {pastecs} ................................ compute a table giving various descriptive statistics of the given data 

stat_smooth {ggplot2} ............................................... helps to distinguish the objects in case of heavy plotting 

stl {stats}..........................................decomposes a time series into seasonal, trend and irregular components 

str {utils} ....................................................................... compactly display the internal structure of an R object 

subset {base} ...................................................................... returns subsets of vectors, matrices or data frames 

sum {base} ................................................................ returns the sum of all the values present in its arguments 

summary {base} .......................... produces result summaries of the results of various model fitting functions 

svm {e1071} ........................................................................................................ trains support vector machine 

t {base} ........................................................................................................transposes a matrix or a data frame 

t.test {stats} ................................................................ performs one and two sample t-tests on vectors of data 

table {base} ............................... builds a contingency table of the counts at each combination of factor levels 

tan {base} ......................................................................................................................... calculates the tangent 

tapply {base} ............................................................................ applies a function to each cell of a ragged array 

theme {ggplot2} ...................................................................................... works with generic themes of ggplot2 

theme_grey {ggplot2} ............................ sets the general aspect of a ggplot, check ggtheme for more themes 



ts {stats} .................................................................................................................... creates time-series objects 

tune {e1071} ................................................................. tunes the parameters of a function, for exampe svm() 

unit {grid} ............................................................................................................................ creates a unit vector 

unique {base} ....................................................................................... removes duplicate elements in a vector 

unlist {base} .............................................................................................................. converts a list into a vector 

View {utils} .................................................. invokes a spreadsheet-style data viewer on a matrix-like R object 

which {base} ....................................................................................... gives the TRUE indices of a logical object 

with {base} ............................................. evaluates an R expression in an environment constructed from data 

xlim {ggplot2} ...................................... limits the range of observation to the given range on x axis of a ggplot 

ylim {ggplot2} ............................................................................ adds and controls the label of y-axis in ggplot2 

xlab {ggplot2} ............................................................................ adds and controls the label of x-axis in ggplot2 

ylab {ggplot2} ................................................................................ changes the label of y-axis in a ggplot object 

 

 

6.2. Literature reference 
 

 

Chang, W. 2012. R Graphics Cookbook. O'Reilly Media. 

 

Hastie, T., James, G., Tibshirani, R., Witten, D. 2015. An Introduction to Statistical Learning with 

Applications in R. Springer Texts in Statistics. 

 

Provost, F. and Fawcett, T. 2013. Data Science for Business: What you need to know about 

data mining and data-analytic thinking. O'Reilly Media. 


