AA-AE36A-TV

Color/Graphics Option
Programmer’s Reference Guide

digital equipment corporation

First Printing, June 1984
© Digital Equipment Corporation 1984. All Rights Reserved.

The information in this docurnent is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

CP/M and CP/M-86 are registered trademarks of Digital Research Inc.
CP/M-80 is a trademark of Digital Research Inc.

uPD7220 is a registered trademark of NEC Electronics U.S.A. Inc.
8088 is a registered trademark of Intel Corporation.

The following are trademarks of Digital Equipment Corporation:

alilglitlal1

DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem—10 P/OS VMS
DECSYSTEM-20 Professional vT

DECUS Rainbow Work Processor
DECwriter RSTS

DIBOL RSX

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user’s critical evaluation to assist us in preparing future
documentation.

Printed in U.S.A.

Preface vii

The Intended Audience vii
Organization of the Manual vii
Suggestions for the Reader viii

PART | — Operating Principles

Chapter 1. Overview 1-1

Hardware Components 1-1
Resolution Modes 1-3
Operational Modes 1-3

Chapter 2. Monitor Configurations

Monochrome Monitor Only 2-2
Color Monitor Only 2-3
Dual Monitors 2-4

Chapter 3. Graphics Option Logic

General 3-1

Data Logic 3-2

Address Logic 3-2
Display Logic 3-6

GDC Command Logic 3-9

3-1

Contents

Contents

Chapter 4. Graphics Option Components 4-1

I/O Ports 4-1

Indirect Register 4-2

Write Buffer 4-2

Write Mask Registers 4-4

Pattern Generator 4-5
Foreground/Background Register 4-6
ALU/PS Register 4-8

Color Map 4-9

Mode Register 4-15

Scroll Map 4-16

PART I — Programming Guidelines

Chapter 5. Initialization and Control 5-1

Test for Option Present 5-1

Test for Motherboard Version 5-2

Initialize the Graphics Option 5-6
Controlling Graphics Output 5-24
Modifying and Loading the Color Map 5-25

Chapter 6. Bitmap Write Setup (General) 6-1

Loading the ALU/PS Register 6-1
Loading the Foreground/Background Register 6-2

Chapter 7. Area Write Operations 7-1

Display Data from Memory 7-1
Set a Rectangular Area to a Color 7-4

Chapter 8. Vector Write Operations 8-1

Setting Up the Pattern Generator 8-1
Display a Pixel 8-4

Display a Vector 8-5

Display a Circle 8-9

Chapter 9. Text Write Operations 9-1

Write a Byte-Aligned Character 9-1
Define and Position the Cursor 9-32
Write a Text String 9-38

Contents

Chapter 10. Read Operations 10-1

The Read Process 10-1
Read the Entire Bitmap 10-1
Pixel Write After a Read Operation 10-5

Chapter 11. Scroll Operations 11-1

Vertical Scroling 11-1
Horizontal Scrolling 11-4

Chapter 12. Programming Notes 12-1

Shadow Areas 12-1

Bitmap Refresh 12-1

Software Reset 12-2

Setting Up Clock Interrupts 12-2
Operational Requirements 12-3
Set-Up Mode 12-3

Timing Considerations 12-4

PART Il — Reference Material

Chapter 13. Option Registers, Buffers, and Maps 13-1

I/O Ports 13-1

Indirect Register 13-3
Write Buffer 13-4

Write Mask Registers 13-5
Pattern Register 13-6
Pattern Multiplier 13-7
Foreground/Background Register 13-8
ALU/PS Register 13-9
Color Map 13-10

Mode Register 13-11
ScrollMap 13-12

Chapter 14. GDC Registers and Buffers 14-1

Status Register 14-1
FIFO Buffer 14-2

Chapter 15. GDC Commands 15-1

Introduction 15-1

Video Control Commands 15-2
Display Control Commands 15-8
Drawing Control Commands 15-13
Data Read Commands 15-18

Contents

PART IV — Appendixes

Appendix A. Option Specification Summary A-1

Physical Specifications A-1
Environmental Specifications A-1
Power Requirements A-2
Standards and Regulations A-2
Part and Kit Numbers A-3

Appendix B. Rainbow Graphics Option — Block Diagram B-1

Appendix C. Getting Help C-1

Index I-1
Figures
Figure 1. Monochrome Monitor Only System 2-2
Figure 2. Color Monitor Only System 2-3
Figure 3. Dual Monitor System 2-4
Figure 4. Rows and Columns in Display Memory 3-3
Figure &. Relationship of Display Memory to Address Logic 3-4
Figure 6. GDC Screen Control Parameters 3-8
Figure 7. Write Buffer as Accessed by the CPU and the GDC 4-3
Figure 8. Write Mask ReGISters 4-4
Figure 9. Pattern Generator 4-5

Figure 10. Foreground/Background ReGISter 4-7

Figure 11. Bitmap/Color Map Interaction (medium resolution) 4-10
Figure 12. Bitmap/Color Map Interaction (high resolution) 4-11
Figure 13. Sample Color Map with Loading Sequence 4-12

Figure 14. Scroll Map Operation 4-16

Figure 15. Rainbow Graphics Option — Block Diagram B-3

Tables

Table 1. Colors and Monochrome Intensities — Displayed/Available 1-1
Table 2. Intensity Values vs Video Drive Voltages 4-14
Table 3. Clock Interrupt Parameters 12-2

Vi

Preface

The Intended Audience

The Rainbow Color/Graphics Option Programmer’s Reference Guide is written for the experienced
systems programmer who will be programming applications that display graphics on Rainbow video
monitors. It is further assumed that the system programmer has had both graphics and 8088 pro-
gramming experience.

The information contained in this document is not unique to any operating system; however, it is
specific to the 8088 hardware and 8088-based software.

Organization of the manual

The Rainbow Color/Graphics Option Programmer’s Reference Guide is subdivided into four parts
containing fifteen chapters and three appendixes as follows:

e PART I — OPERATING PRINCIPLES contains the following four chapters:

- Chapter 1 provides an overview of the Graphics Option including information on the hard-
ware, logical interface to the CPU, general functionality, color and monochrome ranges, and
model dependencies.

— Chapter 2 describes the monitor configurations supported by the Graphics Option.

Vii

Preface

- Chapter 3 discusses the logic of data generation, bitmap addressing, and the GDC’s handling
of the screen display.

- Chapter 4 describes the software components of the Graphics Option such as the control
registers, maps, and buffer areas accessible under program control.

e PART II — PROGRAMMING GUIDELINES contains the following eight chapters:

— Chapter 5 discusses programming the Graphics Option for initialization and control
operations.

— Chapter 6 discusses programming the Graphics Option for setting up bitmap write
operations.

- Chapter 7 discusses programming the Graphics Option for area write operations.
- Chapter 8 discusses programming the Graphics Option for vector write operations.
— Chapter 9 discusses programming the Graphics Option for text write operations.

- Chapter 10 discusses programming the Graphics Option for read operations.

— Chapter 11 discusses programming the Graphics Option for scroll operations.

— Chapter 12 contains programming notes and timing considerations.
e PART IIIl — REFERENCE MATERIAL contains the following three chapters:

- Chapter 13 provides descriptions and contents of the Graphics Option’s registers, buffers,
masks, and maps.

- Chapter 14 provides descriptions and contents of the GDC’s status register and FIFO buffer.

- Chapter 15 provides a description of each supported GDC command arranged in alphabetic
sequence within functional grouping.

e PART IV — APPENDIXES contain the following three appendixes:

- Appendix A contains the Graphics Option’s Specification Summary.
- Appendix B is a fold-out sheet containing a block diagram of the Graphics Option.
- Appendix C lists DIGITAL’s International Help Line phone numbers.

Suggestions for the Reader
For more information about the Graphics Display Controller refer to the following:

e uPD7220 GDC Design Manual—NEC Electronics U.S.A. Inc.
e uPD7220 GDC Design Specification—NEC Electronics U.S.A. Inc.

viii

Preface

For a comprehensive tutorial/reference manual on computer graphics, consider Fundamentals of
Interactive Computer Graphics by J. D. Foley and A. Van Dam published by Addison-Wesley Publish-

ing Company, 1982.

Terminology
ALU/PS
Bitmap

GDC
Motherboard

Nibble
Pixel
Resolution

RGB

RGO
RMW

VSS

Arithmetic Logical Unit and Plane Select (register)
Video display memory
Graphics Display Controller

A term used to refer to the main circuit board where the processors and main
memory are located — hardware options, such as the Graphics Option, plug
into and communicate with the motherboard

A term commonly used to refer to a half byte (4 bits)
Picture element when referring to video display output

A measure of the sharpness of a graphics image — usually given as the
number of addressable picture elements for some unit of length (pixels per
inch)

Red, green, blue — the acronym for the primary additive colors used in color
monitor displays

Rainbow Graphics Option

Read/Modify/Write, the action taken when accessing the bitmap during a write
or read cycle

Video Subsystem

PART |

Chapter 1. Overview 1-1

Hardware Components 1-1
Video Memory (Bitmap) 1-2
Additional Hardware 1-2

Resolution Modes 1-3
Medium Resolution Mode 1-3
High Resolution Mode 1-3

Operational Modes 1-3

Chapter 2. Monitor Configurations 2-1

Monochrome Monitor Only 2-2
Color Monitor Only 2-3
Dual Monitors 2-4

Chapter 3. Graphics Option Logic 3-1

General 3-1

Data Logic 3-2

Address Logic 3-2

Display Logic 3-6
Bitmap Logic 3-6
Screen Logic 3-7

GDC Command Logic 3-9

Contents

Contents

Chapter 4. Graphics Option Components

I/O Ports 4-1
Indirect Register 4-2
Write Buffer 4-2
Write Mask Registers 4-4
Pattern Generator 4-5
Foreground/Background Register 4-6
ALU/PS Register 4-8
Color Map 4-9
Loading the Color Map 4-12
Video Drive Voltages 4-13
Mode Register 4-15
Scroll Map 4-16
Loading the Scroll Map 4-17

|

Hardware Components

Overview

The Graphics Option is a user-installable module that adds graphics and coior display capabilities to
the Rainbow system. The graphics module is based on a NEC uPD7220 Graphics Display Controller

(GDC) and an 8 X 64K dynamic RAM video memory that is also referred to as the bitmap.

The Graphics Option is supported, with minor differences, on Rainbow systems with either the model
A or model B motherboard. The differences involve the number of colors and monochrome intensi-
ties that can be simultaneously displayed and the number of colors and monochrome intensities that
are available to be displayed (see Table 1). Chapter 5 includes a programming example of how you

can determine which model of the motherboard is present in your system.

Table 1. Colors and Monochrome Intensities — Displayed/Available

MED. RESOLUTION

HIGH RESOLUTION

CONFIG. MODEL COLOR MONO. COLOR MONO.
MONOCHROME 100-A N/A 4/4 N/A 4/4
MONITOR
ONLY 100-B N/A 16/16 N/A 4/16
COLOR 100-A 16/1024 N/A 4/1024 N/A
MONITOR
ONLY 100-B 16/4096 N/A 4/4096 N/A
DUAL 100-A 16/4096 4/4 4/4096 4/4
MONITORS

100-B 16/4096 16/16 4/4096 4/16

LJ-0212

1-1

Overview

The GDC, in addition to performing the housekeeping chores for the video display, can also:

e Draw lines at any angle
e Draw arcs of specified radii and length
e Fill rectangular areas

e Transfer character bit-patterns from font tables in main memory to the bitmap

Video Memory (Bitmap)

The CPUs on the motherboard have no direct access to the bitmap memory. All writes are per-
formed by the external graphics option hardware to bitmap addresses generated by the GDC.

The bitmap is composed of eight 64K dynamic RAMs. This gives the bitmap a total of 8 X 64K of
display memory. In high resolution mode, this memory is configured as two planes, each 8 X 32K.
In medium resolution mode, this memory is configured as four planes, each 8 X 16K. However, as
far as the GDC is concerned, there is only one plane. All plane interaction is transparent to the GDC.

Although the bitmap is made up of 8 X 64K bits, the GDC sees only 16K of word addresses in high
resolution mode (2 planes X 16 bits X 16K words). Similarly, the GDC sees only 8K of word
addresses in medium resolution mode (4 planes X 16 bits X 8K words). Bitmap address zero is
displayed at the upper left corner of the monitor screen.

Additional Hardware

The option module also contains additional hardware that enhances the performance and versatility of
the GDC. This additional hardware includes:

e A 16 X 8-bit Write Buffer used to store byte-aligned or word-aligned characters for high
performance text writing or for fast block data moves from main memory to the bitmap

e An 8-bit Pattern Register and a 4-bit Pattern Multiplier for improved vector writing
performance

e Address offset hardware (256 X 8-bit Scroll Map) for full and split-screen vertical scrolling

e ALU/PS register to handle bitplane selection and the write functions of Replace, Complement,
and Overlay

e A 16 X 16-bit Color Map to provide easy manipulation of pixel color and monochrome
intensities

® Readback hardware for reading a selected bitmap memory plane into main memory

1-2

Overview

Resolution Modes
The Graphics Option operates in either of two resolution modes:

® Medium Resolution Mode

e High Resolution Mode

Medium Resolution Mode

Medium resolution mode displays 384 pixels horizontally by 240 pixels vertically by four bitmap
memory planes deep. This resolution mode allows up to 16 colors to be simultaneously displayed on a
color monitor. Up to sixteen monochrome shades can be displayed simultaneously on a monochrome
monitor.

High Resolution Mode

High resolution mode displays 800 pixels horizontally by 240 pixels vertically by two bitmap memory
planes deep. This mode allows up to four colors to be simultaneously displayed on a color monitor.
Up to four monochrome shades can be simultaneously displayed on a monochrome monitor.

Operational Modes
The Graphics Option supports the following modes of operations:

e WORD MODE to write 16-bit words to selected planes of the bitmap memory for character and
image generation

e VECTOR MODE to write pixel data to bitmap addresses provided by the GDC
e SCROLL MODE for full- and split-screen vertical scrolling and full-screen horizontal scrolling

e READBACK MODE to read 16-bit words from a selected plane of bitmap memory for special
applications, hardcopy generation or diagnostic purposes

1-3

Monitor Configurations

In the Rainbow system with the Graphics Option installed, there are three possible monitor configu-
rations: Monochrome only, Color only, and Dual (color and monochrome). In all three configurations,
the selection of the option’s monochrome output or the motherboard VT102 video output is con-
trolled by bit two of the system maintenance port (port 0Ah). A 0 in bit 2 selects the motherboard
VT102 video output while a 1 in bit 2 selects the option’s monochrome output.

Monitor Configurations

Monochrome Monitor Only

As shown in Figure 1, the monochrome monitor can display either graphics option data or
motherboard data depending on the setting of bit 2 of port 0Ah. Writing an 87h to port OAh selects
the Graphics Option data. Writing an 83h to port 0Ah selects the motherboard VT102 data. The red,
green and blue data areas in the Color Map should be loaded with all F’s to reduce any unnecessary

radio frequency emissions.

BLUE INTENSITIES
RED INTENSITIES
GREEN INTENSITIES

MONOCHROME INTENSITIES ————#
MONOCHROME MONITOR
MOTHERBOARD DATA ————————————p

a4

PORT OAh (BIT 2)

LJ-0215

Figure 1. Monochrome Monitor Only System

Monitor Configurations

Color Monitor Only

When the system is configured with only a color monitor, as in Figure 2, the green gun does double
duty. It either displays the green component of the graphics output or it displays the monochrome
output of the motherboard VT102 video subsystem. Because the green gun takes monochrome
intensities, all green intensities must be programmed into the monochrome data area of the Color
Map. The green data area of the Color Map should be loaded with all F’s to reduce any unnecessary
radio frequency emissions.

BLUE INTENSITIES # BLUE GUN

RED INTENSITIES # RED GUN

GREEN INTENSITIES

MONOCHROME INTENSITIES——»

(GREEN DATA)
GREEN GUN

MOTHERBOARD DATA——mM——»

*

PORT OAh (BIT 2)

LJ-0216

Figure 2. Color Monitor Only System

When motherboard VT102 data is being sent to the green gun, the red and blue output must be
turned off at the Graphics Option itself. If not, the red and blue guns will continue to receive data
from the option and this output will overlay the motherboard VT102 data and will also be out of
synchronization. Bit 7 of the Mode Register is the graphics option output enable bit. If this bit is a 1
red and blue outputs are enabled. If this bit is a 0 red and blue outputs are disabled.

As in the monochrome only configuration, bit 2 of port OAh controls the selection of either the

graphics option data or the motherboard VT102 data. Writing an 87h to port 0Ah enables the option
data. Writing an 83h to port OAh selects the motherboard VT102 data.

2-3

Monitor Configurations

Dual Monitors

In the configuration shown in Figure 3, both a color monitor and a monochrome monitor are available
to the system. Motherboard VT102 video data can be displayed on the monochrome system while
color graphics are being displayed on the color monitor. If the need should arise to display graphics
on the monochrome monitor, the monochrome intensity output can be directed to the monochrome
monitor by writing an 87h to port OAh. Writing an 83h to port 0Ah will restore motherboard

VT102 video output to the monochrome monitor.

BLUE INTENSITIES # BLUE GUN
RED INTENSITIES # RED GUN
GREEN INTENSITIES ® GREEN GUN

MONOCHROME INTENSITIES —»

MONOCHROME MONITOR

MOTHERBOARD DATA— %
! 1

PORT OAh (BIT 2)
LJ-0217

Figure 3. Dual Monitor System

When displaying graphics on the monochrome monitor, the only difference other than the the lack of
color is the range of intensities that can be simultaneously displayed on systems with model A
motherboards.

Systems with model A motherboards can display only four monochrome intensities at any one time.
Even though sixteen entries can be selected when operating in medium resolution mode, only the
two low-order bits of the monochrome output are active. This limits the display to only four unique
intensities at most. On systems with the model B motherboard, all sixteen monochrome intensities
can be displayed.

3

Graphics Option Logic

General

The Graphics Display Controller (GDC) can operate either on one bit at a time or on an entire 16-bit
word at a time. It is, however, limited to one address space and therefore can only write into one
plane at a time. The Graphics Option is designed in such a manner that while the GDC is doing
single pixel operations on just one video plane, the external hardware can be doing 16-bit word
operations on up to four planes of video memory.

Write operations are multi-dimensioned. They have width, depth, length and time.

Width refers to the number of pixels involved in the write operation.
Depth refers to the number of planes involved in the write operation.
Length refers to the number of read/modify/write cycles the GDC is programmed to perform.

Time refers to when the write operation occurs in relation to the normal housekeeping opera-
tions the GDC has to perform in order to keep the monitor image stable and coherent.

3-1

Graphics Option Logic

Data Logic

The Graphics Option can write in two modes: word mode (16 bits at a time) and vector mode (one
pixel at a time).

In word mode, the data patterns to be written into the bitmap are based on bit patterns loaded into
the Write Buffer, Write Mask, and the Foreground/Background Register, along with the type of
write operation programmed into the ALU/PS Register.

In vector mode, the data patterns to be written to the bitmap are based on bit patterns loaded into
the Pattern Register, the Pattern Multiplier, the Foreground/Background Register, and the type of
write operation programmed into the ALU/PS Register.

In either case, the data will be stored in the bitmap at a location determined by the addressing logic.

Address Logic

The addressing logic of the Graphics Option is responsible for coming up with the plane, the line
within the plane, the word within the line, and even the pixel within the word under some conditions.

The display memory on the Graphics Option is one-dimensional. The GDC scans this linear memory
to generate the two dimensional display on the CRT. The video display is organized similarly to the
fourth quadrant of the Cartesian plane with the origin in the upper left corner. Row addresses (y
coordinates of pixels) start at zero and increase downwards while column addresses (x coordinates of
pixels) start at zero and increase to the right (see Figure 4). Pixel data is stored in display memory
by column within row.

3-2

Graphics Option Logic

COLUMN (X)
ROW (Y) 0 1 2 e o o N
/L
/4
0 (0.0) (1.0) (2,0) (N.0)
1 (0,1) (1.1) (2,1) (N,1)
2 (0.2) (1.2) (2,2) (N.2)
. = g
1 q
M (0.M) (1.M) (2.™M) (N.M)
/L
//

LJ-0218

Figure 4. Rows and Columns in Display Memory

The GDC accesses the display memory as a number of 16-bit words where each bit represents a
pixel. The number of words defined as well as the number of words displayed on each line is
dependent on the resolution. The relationship between words and display lines is shown in Figure 5.

Graphics Option Logic

3-4

LINE O

LINE 1

LINE 2

LINE N-1

| WORDS/LINE DEFINED —
|«———————woros/uine DISPLAYED—-»'
0 1 2 Q-1 P-1
P P+1 P+2 P+Q-1 2P-1
2P 2P+1 2P+Q-1 3P-1
3P 3P+Q-1 4P-1
4p 4P+Q-1 5P-1
-~ =
(M-1)P MP-1
2 ~
(N-1)P NP-1
WHERE:
P = WORDS/LINE DEFINED — 32 IN MEDIUM RESOLUTION.
— 64 IN HIGH RESOLUTION.
Q = WORDS/LINE DISPLAYED - 24 IN MEDIUM RESOLUTION
— 50 IN HIGH RESOLUTION
N = NO. OF LINES DEFINED — 256
M = NO. OF LINES DISPLAYED — 240

LJ-0219

Figure 5. Relationship of Display Memory to Address Logic

Graphics Option Logic

In order to address specific pixels, the GDC requires the word address and the pixel location within
that word. The conversion of pixel coordinates to addresses in display memory is accomplished by
the following formulas:

Given the pixel coordinates (x,y):

Word Address of pixel = (words/line defined * y) + integer(x/16)
Pixel Address within word = remainder(x/16) * 16

Because the Graphics Option is a multi-plane device, a way is provided to selectively enable and
disable the reading and writing of the individual planes. This function is performed by the ALU/PS
and Mode registers. More than one plane at a time can be enabled for a write operation; however,
only one plane can be enabled for a read operation at any one time.

The entire address generated by the GDC does not go directly to the bitmap. The low-order six bits
address a word within a line in the bitmap and do go directly to the bitmap. The high-order eight bits
address the line within the plane and these bits are used as address inputs to a Scroll Map. The
Scroll Map acts as a translator such that the bitmap location can be selectively shifted in units of 64
words. In high resolution mode, 64 words equate to one scan line; in medium resolution mode, they
equate to two scan lines. This allows the displayed vertical location of an image to be moved in 64-
word increments without actually rewriting it to the bitmap. Programs using this feature can provide
full and split screen vertical scrolling. The Scroll Map is used in all bitmap access operations: writing,
reading, and refreshing.

If an application requires addressing individual pixels within a word, the two 8-bit Write Mask
Registers can be used to provide a 16-bit mask that will write-enable selected pixels. Alternately, a
single pixel vector write operation can be used.

There is a difference between the number of words/line defined and the number of words/line
displayed. In medium resolution, each scan line is 32 words long but only 24 words are displayed (24
words * 16 bits/word = 384 pixels). The eight words not displayed are unusable. Defining the length
of the scan line as 24 words would be a more efficient use of memory but it would take longer to
refresh the memory. Because display memory is organized as a 256 by 256 array, it takes 256 bytes
of scan to refresh the entire 64K byte memory. Defining the scan line length as 32 words long
enables the entire memory to be refreshed in four line scan periods. Defining the scan line length as
24 words long would require five line scans plus 16 bytes.

Similarly, in high resolution, each scan line is 64 words long but only 50 words are displayed. With a
64 word scan line length, it takes two line scan periods to refresh the entire 64K byte memory. If
the scan line length were 50 words, it would take two lines plus 56 bytes to refresh the memory.

Another advantage to defining scan line length as 32 or 64 words is that cursor locating can be
accomplished by a series of shift instructions which are considerably faster than multiplying.

3-5

Graphics Option Logic

Display Logic

The display logic of the Graphics Option will be discussed as it applies to both the bitmap and the
screen.

Bitmap Logic

Data in the bitmap does not go directly to the monitor. Instead, the bitmap data is used as an
address into a Color Map. The output of this Color Map, which has been preloaded with color and
monochrome intensity values, is the data that is sent to the monitor.

In medium resolution mode there are four planes to the bitmap; each plane providing an address bit
to the Color Map. Four bits can address sixteen unique locations at most. This gives a maximum of
16 addressable Color Map entries. Each Color Map entry is 16 bits wide. Four of the bits are used
to drive the color monitor’s red gun, four go to the green gun, four go to the blue gun, and four
drive the output to the monochrome monitor. In systems with the Model 100-A motherboard, only
the two low-order bits of the monochrome output are used. Therefore, although there are 16 possi-
ble monochrome selections in the Color Map, the number of unique intensities that can be sent to
the monochrome monitor is four.

In high resolution mode there are two planes to the bitmap; each plane providing an address bit to
the Color Map. Two bits can address four entries in the Color Map at most. Again, each Color Map
entry is sixteen bits wide with 12 bits of information used for color and four used for monochrome
shades. In systems with the Model 100-A motherboard, only the two low-order bits of the mono-
chrome output are used. This limits the number of unique monochrome intensities to four.

Although the Color Map is 16 bits wide, the color intensity values are loaded one byte at a time.
First, the 16 pairs of values representing the red and green intensities are loaded into bits 0 through
7 of the map. Then, the 16 pairs of values representing the blue and monochrome intensities are
loaded into bits 8 through 15 of the map.

3-6

Graphics Option Logic

Screen Logic

The image displayed on the screen is generated by an electron beam performing a series of horizon-
tal line scans from left to right. At the end of each horizontal scan line, a horizontal retrace takes
place at which time the electron beam reverses its horizontal direction. During this horizontal
retrace, the electron beam is also being moved down to the beginning of the next scan line. When
the last line has completed its horizontal retrace, a vertical retrace takes place at which time the
electron beam’s vertical movement is reversed and the beam is positioned at the beginning of the
first scan line.

The GDC writes to the bitmap only during the screen’s horizontal and vertical retrace periods.
During active screen time, the GDC is taking information out of the bitmap and presenting it to the
video screen hardware. For example, if the GDC is drawing a vector to the bitmap, it will stop
writing during active screen time and resume writing the vector at the next horizontal or vertical
retrace.

In addition to the active screen time and the horizontal and vertical retrace times, there are several
other screen control parameters that precede and follow the active horizontal scans and active lines.
These are the Vertical Front and Back Porches and the Horizontal Front and Back Porches. The
relationship between the screen control parameters is shown in Figure 6. Taking all the parameters
into account, the proportion of active screen time to bitmap writing time is approximately four to
one. ‘

3-7

Graphics Option Logic

VERTICAL
FRONT
PORCH

(3 LINES)

ACTIVE
DISPLAY

(240 LINES)

VERTICAL
BACK
PORCH

(16 LINES)

GDC VIDEO CONTROL PARAMETERS

______._._.__<}—_.____._.__._.___._._._.._D__D._D.D
Gb————__—_
/ .____.____._.-q..__ - ._._..___._...______._._D._D_.D
| _,____.__..___._...._.

HIGH MEDIUM
RESOLUTION RESOLUTION
O O O HORIZONTAL FRONT PORCH (WORDS) 3 2
ooo HORIZONTAL BACK PORCH (WORDS) 4 3
—&-- HORIZONTAL RETRACE (WORDS) 5 2
e=pum= HORIZONTAL ACTIVE (WORDS) 50 24

—— HORIZONTAL INACTIVE (VERTICAL FRONT & BACK PORCHES)

—— VERTICAL RETRACE (LINES) 3 3

LJ-0220

Figure 6. GDC Screen Control Parameters

Graphics Option Logic

GDC Command Logic

Commands are passed to the GDC command processor from the Rainbow system by writing com-
mand bytes to port 57h and parameter bytes to port 56h. Data written to these two ports is stored
in the GDC’s FIFO buffer, a 16 x 9-bit area that is used to both read from and write to the GDC.
The FIFO buffer operates in half-duplex mode — passing data in both directions, one direction at a
time. The direction of data flow at any one time is controlled by GDC commands.

When commands are stored in the FIFO buffer, a flag bit is associated with each data byte depending
on whether the data byte was written to the command address (57h) or the parameter address (56h).
A flag bit of 1 denotes a command byte; a flag bit of 0 denotes a parameter byte. The command
processor tests this flag bit as it interprets the contents of the FIFO buffer.

The receipt of a command byte by the command processor signifies the end of the previous com-
mand and any associated parameters. If the command is one that requires a response from the GDC
such as RDAT, the FIFO buffer is automatically placed into read mode and the buffer direction is
reversed. The specified data from the bitmap is loaded into the FIFO buffer and can be accessed by
the system using read operations to port 57h. Any commands or parameters in the FIFO buffer that
follow the read command are lost when the FIFO buffer’s direction is reversed.

When the FIFO buffer is in read mode, any command byte written to port 57h will immediately

terminate the read operation and reverse the buffer direction to write mode. Any data that has not
been read by the Rainbow system from the FIFO buffer will be lost.

3-9

“\\

4

Graphics Option Components

I/O Ports

The CPUs on the Rainbow system’s motherboard use a number of 8-bit I/O ports to exchange
information with the various subsystems and options. The I/O ports assigned to the Graphics Option
are ports 50h through 57h. They are used to generate and display graphic images, inquire status,
and read the contents of video memory (bitmap). The function of each of the Graphics Option’s I/O
ports is as follows:

Port

50h
51h

52h
53h

54h
55h
56h

57h

Function

Graphics option software reset. Any write to this port also resynchronizes the
read/modify/write memory cycles of the Graphics Option to those of the GDC.

Data written to this port is loaded into the area selected by the previous write to port 53h.
Data written to this port is loaded into the Write Buffer.

Data written to this port provides address selection for indirect addressing (see Indirect
Register).

Data written to this port is loaded into the low-order byte of the Write Mask.

Data written to this port is loaded into the high-order byte of the Write Mask.

Data written to this port is loaded into the GDC’s FIFO Buffer and flagged as a parameter.
Data read from this port reflects the GDC status.

Data written to this port is loaded into the GDC’s FIFO Buffer and flagged as a command.

Data read from this port reflects information extracted from the bitmap.

4-1

Graphics Option Components

Indirect Register

The Graphics Option uses indirect addressing to enable it to address more registers and storage
areas on the option module than there are address lines (ports) to accommodate them. Indirect
addressing involves writing to two ports. A write to port 53h loads the Indirect Register with a bit
array in which each bit selects one of eight areas.

The Indirect Register bits and the corresponding areas are as follows:

o
[

Area Selected

Write Buffer (*)

Pattern Multiplier

Pattern Register
Foreground/Background Register
ALU/PS Register

Color Map (*)

Mode Register

Scroll Map (*)

N e R) B AT)

Also clears the associated index counter

~
*
~

After selecting an area by writing to port 53h, you access and load data into most selected areas by
writing to port 51h. For the Write Buffer however, you need both a write of anything to port 51h to
access the buffer and clear the counter and then a write to port 52h to load the data.

Write Buffer

A 16 X 8-bit Write Buffer provides the data for the bitmap when the Graphics Option is in Word
Mode. You can use the buffer to transfer blocks of data from the system’s memory to the bitmap.
The data can be full screen images of the bitmap or bit-pattern representations of font characters
that have been stored in motherboard memory. The buffer has an associated index counter that is
cleared when the Write Buffer is selected.

Although the CPU accesses the Write Buffer as sixteen 8-bit bytes, the GDC accesses the buffer as

eight 16-bit words. (See Figure 7.) A 16-bit Write Mask gives the GDC control over individual bits
of a word.

4-2

Graphics Option Components

AS THE CPU ACCESSES IT AS THE GDC ACCESSES IT

BYTE HIGH BYTE LOW BYTE WORD WORD
7 0 7 0 15 0

0.1
2,3
4,5
6,7
8,9
10,11
12,13
14,15

o

N o o P wnN =

LJ-0221

Figure 7. Write Buffer as Accessed by the CPU and the GDC

The output of the Write Buffer is the inverse of its input. If a word is written into the buffer as
FFB6h, it will be read out of the buffer as 0049h. To have the same data written out to the bitmap
as was received from the CPU requires an added inversion step. You can exclusive or (XOR) the
CPU data with FFh to pre-invert the data before going through the Write Buffer. Alternately, you
can write zeros into the Foreground Register and ones into the Background Register to re-invert the
data after it leaves the Write Buffer and before it is written to the bitmap. Use one method or the
other, not both.

In order to load data into the Write Buffer, you first write an FEh to port 53h and any value to port
51h. This not only selects the Write Buffer but also sets the Write Buffer Index Counter to zero.
The data is then loaded into the buffer by writing it to port 52h in high-byte low-byte order. If more
than 16 bytes are written to the buffer the first 16 bytes will be overwritten.

If you load the buffer with less than 16 bytes (or other than a multiple of 16 bytes for some reason
or other) the GDC will find an index value other than zero in the counter. Starting at a location other
than zero alters the data intended for the bitmap. Therefore, before the GDC is given the command
to write to the bitmap, you must again clear the Write Buffer Index Counter so that the GDC will
start accessing the data at word zero.

4-3

Graphics Option Components

Write Mask Registers

When the Graphics Option is in Word Mode, bitmap operations are carried out in units of 16-bit
words. A 16-bit Write Mask controls the writing of individual bits within a word. A zero in a bit
position of the mask allows writing to the corresponding position of the word. A one in a bit position
of the mask disables writing to the corresponding position of the word.

While the GDC accesses the mask as a 16-bit word, the CPU accesses the mask as two of the
Graphic Option’s I/O ports. The high-order Write Mask Register is loaded with a write to port 55h
and corresponds to bits 15 through 8 of the Write Mask. The low-order Write Mask Register is
loaded with a write to port 54h and corresponds to bits 7 through 0 of the Write Mask. (See Figure

8.)

AS ACCESSED BY
THE CPU

PORT 55h PORT 54h

WRITE MASK (HIGH) WRITE MASK (LOW)

15 o)

WORD AS ACCESSED BY GDC

LJ-0222

Figure 8. Write Mask Registers

4-4

~

Graphics Option Components

Pattern Generator

When the Graphics Option is in Vector Mode, the Pattern Generator provides the data to be written
to the bitmap. The Pattern Generator is composed of a Pattern Register and a Pattern Multiplier.

The Pattern Register is an 8-bit recirculating shift register that is first selected by writing FBh to
port 53h and then loaded by writing an 8-bit data pattern to port 51h.

The Pattern Multiplier is a 4-bit register that is first selected by writing FDh to port 53h and then
loaded by writing a value of 0-Fh to port 51h.

NOTE
You must load the Pattern Multiplier before loading the Pattern Register.

Figure 9 shows the logic of the Pattern Generator. Data destined for the bitmap originates from the
low-order bit of the Pattern Register. That same bit continues to be the output until the Pattern
Register is shifted. When the most significant bit of the Pattern Register has completed its output
cycle, the next bit to shift out will be the least significant bit again.

OPTION
CLOCK
3 0
PATTERN MULTIPLIER —— MULTIPLIER
(LOADED FROM CPU)
SHIFT
CLOCK
7 0
PATTERN REGISTER ———» == DATA PATTERN

(LOADED FROM CPU) | T
SHIFTED BITS RECIRCULATED

DATA BIT OUTPUT
TO WRITE CIRCUITRY

LJ-0223

Figure 9. Pattern Generator

4-5

Graphics Option Components

The shift frequency is the write frequency from the option clock divided by 16 minus the value in
the Pattern Multiplier. For example, if the value in the Pattern Multiplier is 12, the shift frequency
divisor would be 16 minus 12 or four. The shift frequency would be one fourth of the write fre-
quency and therefore each bit in the Pattern Register would be replicated in the output stream four
times. A multiplier of 15 would take 16 - 15 or one write cycle for each Pattern Register bit shifted
out. A multiplier of five would take 16 — 5 or 11 write cycles for each bit in the Pattern Register.

NOTE

Do not change the contents of the Pattern Multiplier or the Pattern Regis-
ter before the GDC has completed all pending vector mode write opera-
tions. If you do, the vector pattern that is in the process of being displayed
will take on the new characteristics of the Pattern Generator.

Foreground/Background Register

The Foreground/Background Register is an eight-bit write-only register. The high-order nibble is the
Foreground Register; the low-order nibble is the Background Register. Each of the four bitmap
planes has a Foreground/Background bit-pair associated with it (see Figure 10). The bit settings in
the Foreground/Background Register, along with the mode specified in the ALU/PS Register, deter-
mine the data that is eventually received by the bitmap. For example; if the mode is REPLACE, an
incoming data bit of 0 is replaced by the corresponding bit in the Background Register. If the
incoming data bit is a 1, the bit would be replaced by the corresponding bit in the Foreground
Register.

Each bitmap plane has its own individual Foreground/Background bit pair. Therefore, it is possible
for two enabled planes to use the same incoming data pattern and end up with different bitmap
patterns.

Graphics Option Components

FOREGROUND BACKGROUND
REGISTER REGISTER
7 4 ' 3 0]
3 2 1 0 3 2 1 0

PLANE 1
[PLANE 2
PLANE 3 I

v |PLANEO |

LJ-0224

Figure 10. Foreground/Background Register

NOTE
Do not change the contents of the Foreground/Background Register before

the GDC has completed all pending write operations. If you do, the informa-
tion that is in the process of being displayed will take on the new values of
the Foreground/Background Register.

4-7

Graphics Option Components

ALU/PS Register
The ALU/PS Register has two functions.

Bits 0 through 3 of the ALU/PS Register are used to inhibit writes to one or more of the bitmap
planes. If you could not inhibit writes to the bitmap planes, each write operation would affect all
available planes. When a plane select bit is set to 1, writes to that plane will be inhibited. When a
plane select bit is set to 0, writes to that plane will be allowed.

NOTE
During a readback mode operation, all plane select bits should be set to
ones to prevent accidental changes to the bitmap data.

Bits 4 and 5 of the ALU/PS Register define an arithmetic logic unit function. The three logic
functions supported by the option are REPLACE, COMPLEMENT, and OVERLAY. These functions
operate on the incoming data from the Write Buffer or the Pattern Generator as modified by the
Foreground/Background Register as well as the current data in the bitmap and generate the new
data to be placed into the bitmap.

When the logic unit is operating in REPLACE mode, the current data in the bitmap is replaced by
the Foreground/Background data selected as follows:

¢ An incoming data bit 0 selects the Background data.

® An incoming data bit 1 selects the Foreground data.

When the logic unit is operating in COMPLEMENT mode, the current data in the bitmap is modified
as follows:

® An incoming data bit 0 results in no change.

® An incoming data bit 1 results in the current data being exclusively or’ed (XOR) with the
appropriate Foreground bit. If the Foreground bit is 0, the current data is unchanged. If the
Foreground bit is 1, the current data is complemented by binary inversion. In effect, the
Foreground Register acts as a plane select register for the complement operation.

4-8

Graphics Option Components

When the logic unit is operating in OVERLAY mode, the current data in the bitmap is modified as
follows:

¢ An incoming data bit 0 results in no change.

® An incoming data bit 1 results in the current data being replaced by the appropriate Foreground
bit.

NOTE

Do not change the contents of the ALU/PS Register before the GDC has
completed all pending write operations. If you do, the information that is in
the process of being displayed will take on the new characteristics of the

ALU/PS Register.

Color Map

The Color Map is a 16 X 16-bit RAM area where each of the 16 entries is composed of four 4-bit
values representing color intensities. These values represent, from high order to low order, the
monochrome, blue, red, and green outputs to the video monitor. Intensity values are specified in
inverse logic. At one extreme, a value of zero represents maximum intensity (100% output) for a
particular color or monochrome shade. At the other extreme, a value of OFh represents minimum
intensity (zero output).

Bitmap data is not directly displayed on the monitor, each bitmap plane contributes one bit to an
index into the Color Map. The output of the Color Map is the data that is passed to the monitor.
Four bitmap planes (medium resolution) provide four bits to form an index allowing up to 16 intensi-
ties of color or monochrome to be simultaneously displayed on the monitor. Two bitmap planes (high
resolution) provide two bits to form an index allowing only four intensities of color or monochrome to
be simultaneously displayed on the monitor.

Graphics Option Components

In Figure 11, a medium resolution configuration, the bitmap data for the display point x,y is 0110b.
This value, when applied as an index into the Color Map, selects the seventh entry out of a possible
sixteen. Each Color Map entry is sixteen bits wide. Four of the bits are used to drive the color
monitor’s red gun, four go to the green gun, four go to the blue gun, and four drive the output to
the monochrome monitor. The twelve bits going to the color monitor support a color palette of 4096
colors; the four bits to the monochrome monitor support 16 shades. (In systems with the Model 100-
A motherboard, only the two low-order bits of the monochrome output are active. This limits the
monochrome output to four unique intensities.)

BITMAP , COLOR MAP
7 0
PLANE 0 0 BITMAP DATA .
/) .
/ °
PLANE 1 1 ,0110b_ 6 Ty
/] ([
4 ®
PLANE 2 1 .
/
/ .
/ .
PLANE 3 0 J 5
(X)Y)
4(*) BITS OF MONOCHROME LEVEL TO MONO. MONITOR €—
4 BITS OF BLUE LEVEL TO COLOR MONITOR t——— |
4 BITS OF RED LEVEL TO COLOR MONITOR

4 BITS OF GREEN LEVEL TO COLOR MONITOR =

(*) 2 LOW-ORDER BITS ON MODEL 100-A SYSTEMS

LJ-0225

Figure 11. Bitmap/Color Map Interaction (medium resolution)

4-10

Graphics Option Components

In Figure 12, a high resolution configuration, the bitmap data for point (x,y) is 10b. This value, when
applied as an index into the Color Map, selects the third entry out of a possible four. Again, each
Color Map entry is sixteen bits wide; 12 bits of information are used for color and four are used for
monochrome. (In systems with the Model 100-A motherboard, only the two low-order bits of the
monochrome output are active. This limits the monochrome output to four unique intensities.)

- BITMAP / COLOR MAP

) / BITMAP DATA 0

PLANE O /0
/ 1
/ 10b
PLANE 1 ,1 —_— 2 4 p ¢
/

/; 3

(X.Y) o

[]

e

15

4(*) BITS OF MONOCHROME LEVEL TO MONO. MONITOR @———
4 BITS OF BLUE LEVEL TO COLOR MONITOR /-

4 BITS OF RED LEVEL TO COLOR MONITOR ¢———
4 BITS OF GREEN LEVEL TO COLOR MONITOR =

(*) 2 LOW-ORDER BITS ON MODEL 100-A SYSTEMS

LJ-0226

Figure 12. Bitmap/Color Map Interaction (high resolution)

Graphics Option Components

Loading the Color Map

The Graphics Option accesses the Color Map as sixteen 16-bit words. However, the CPU accesses
the Color Map as 32 eight-bit bytes. The 32 bytes of intensity values are loaded into the Color Map
one entire column of 16 bytes at a time. The red and green values are always loaded first, then the
monochrome and blue values. (See Figure 13.)

2ND 16 BYTES 1ST 16 BYTES
LOADED BY LOADED BY
THE CPU THE CPU
7 4]3 0|7 413 0
ADDRESS MONO. BLUE RED GREEN COLOR MONOCHROME
VALUE DATA DATA DATA DATA DISPLAYED DISPLAYED

0 15 15 15 15 BLACK BLACK
[]

1 14 15 0 15 RED .
[]

2 13 15 15 0 GREEN G
R

3 12 0 15 15 BLUE A
Y

4 1 0 0 15 MAGENTA S

5 10 0 15 0 CYAN H
A

6 9 15 0 0 YELLOW D
E

° L S

° // // ° °

[) /‘/ 4(Y °

[] [] o

15 0 0 0 0 WHITE WHITE

LJ-0227

Figure 13. Sample Color Map With Loading Sequence

4-12

Graphics Option Components

Writing the value DFh to port 53h selects the Color Map and also clears the Color Map Index
Counter to zero. To load data into the Color Map requires writing to port 51h. Each write to port
51h will cause whatever is on the motherboard data bus to be loaded into the current Color Map
location. After each write, the Color Map Index Counter is incremented by one. If 33 writes are
made to the Color Map, the first Color Map location will be overwritten.

NOTE

Do not change the contents of the Color Map before the GDC has com-
pleted all pending write operations. If you do, the information that is in the
process of being displayed will take on the new Color Map characteristics.

Video Drive Voltages

The output of the Color Map, as shown in Figures 11 and 12, consists of four 4-bit values that
represent the red, green, blue, and monochrome intensities to be displayed on some applicable
monitor. These four intensity values are the input to four digital-to-analog converters. (Refer to the
block diagram in Appendix B.) The output of these converters are the video drive voltages that are
applied to pins 9 through 12 of the J3 Video Output Jack.

The output of the digital-to-analog converters for the red, green, and blue intensities is not depen-
dent on the model of the system motherboard. The digital-to-analog converter for the monochrome
intensities, however, produces different output depending on whether the motherboard is a model A
or a model B. On systems with a model A motherboard, only the two low-order bits of the intensity
value are active. This provides a limited range of only four output voltages for the monochrome
signal. On a color monitor only configuration, where the green output is derived from the mono-
chrome portion of the Color Map, the same limited range applies. On systems with a model B
motherboard, all four bits of the intensity value are active. This provides the full range of 16 output
voltages for the red, green, blue, and monochrome signals. The conversion of Color Map intensity
values to video drive voltages for each of these ranges are shown in Table 2.

The perceived intensity of a display is not linearly related to the video drive voltages. A given

difference in drive voltage at the high end of the range is not as noticeable as the same difference
occurring at the low end of the range.

4-13

Graphics Option Components

Table 2. Intensity Values vs Video Drive Voltages

INTENSITY VALUES

VIDEO DRIVE VOLTAGES (NORMALIZED)

HEX BINARY LIMITED RANGE FULL RANGE
0] 0000 1.09 1.00
1 0001 0.79 0.85
2 0010 0.71 0.79
3 0011 0.09 0.73
4 0100 1.09 0.67
5 0101 0.79 0.61
6 0110 0.71 0.565
7 0111 0.09 0.49
8 1000 1.09 0.43
9 1001 0.79 0.38
A 1010 0.71 0.31
B 1011 0.09 0.26
C 1100 1.09 0.21
D 1101 0.79 0.12
E 1110 0.71 0.07
F 1M 0.09 0.00

LIMITED RANGE:

FULL RANGE:

MODEL A — ALL MONOCHROME OUTPUT

— GREEN OUTPUT ON COLOR
MONITOR ONLY SYSTEM

MODEL A — RED/BLUE OUTPUT ON COLOR

MONITOR ONLY SYSTEM
— RED/GREEN/BLUE OUTPUT ON
DUAL MONITOR SYSTEM
MODEL B — RED/BLUE/GREEN/MONOCHROME
OUTPUT ON ALL SYSTEMS

LJ-0259

Graphics Option Components

Mode Register

The Mode Register is an 8-bit multi-purpose register that is loaded by first selecting it with a write
of BFh to port 53h and then writing a data byte to port 51h. The bits in the Mode Register have the
following functions:

e Bit 0 determines the resolution mode:

0 = medium resolution mode (384 pixels across)
1 = high resolution mode (800 pixels across)

e Bit 1 determines the write mode:

0 = word mode, 16 bits/RMW cycle, data from Write Buffer
1 = vector mode, 1 bit/RMW cycle, data from Pattern Generator

e Bits 3 and 2 select a bitmap plane for readback mode operation:

00 = plane 0
01 = plane 1
10 = plane 2
11 = plane 3

e Bit 4 determines the option’s mode of operation:

0 = read mode, bits 3 and 2 determine readback plane
1 = write mode, writes to the bitmap allowed but not mandatory

e Bit 5 controls writing to the Scroll Map:

0 = writing is enabled (after selection by the Indirect Register)
1 = writing is disabled
e Bit 6 controls the interrupts to the CPU generated by the Graphics Option every time the GDC
issues a vertical sync pulse:

0 = interrupts are disabled, any pending interrupts are cleared
1 = interrupts are enabled

e Bit 7 controls the video data output from the option:

0 = output is disabled, other option operations still take place
1 = output is enabled

NOTE

Do not change the contents of the Mode Register before the GDC has
completed all pending write operations. If you do, the functions controlled
by the Mode Register will take on the new characteristics and the results
may be indeterminate.

4-15

Graphics Option Components

Scroll Map

The Scroll Map is a 256 X 8-bit recirculating ring buffer that is used to offset scan line addresses in
the bitmap in order to provide full and split-screen vertical scrolling. The entire address as generated
by the GDC does not go directly to the bitmap. Only the low-order six bits of the GDC address go
directly to the bitmap. They represent one of the 64 word addresses that are the equivalent of one
scan line in high resolution mode or two scan lines in medium resolution mode. The eight high-order
bits of the GDC address represent a line address and are used as an index into the 256-byte Scroll
Map. The eight bits at the selected location then become the new eight high-order bits of the
address that the bitmap sees. (See Figure 14.) By manipulating the contents of the Scroll Map, you
can perform quick dynamic relocations of the bitmap data in 64-word blocks.

WORD ADDRESS

GDC ADDRESS

BITS 0-5
(WORD) 7 0
0 L]
L]
GDC ADDRESS — X)OOOXXXX :
BITS 6-13 . o
(LINE) . .
. e e 0o e\ WORD ¢ ¢ ¢ 0 0 ¢ o
255 . OFFSET
SCAN
LINE
SCROLL MAP BITMAP

LJ-0228

Figure 14. Scroll Map Operation

4-16

Graphics Option Components

Loading the Scroll Map

Start loading the offset addresses into the Scroll Map at the beginning of a vertical retrace. First set
bit 5 of the Mode Register to zero to enable the Scroll Map for writing. Write a 7Fh to port 53h to
select the Scroll Map and clear the Scroll Map Index Counter to zero. Then do a series of writes to
port 51h with the offset values to be stored in the Scroll Map. Loading always begins at location zero
of the Scroll Map. With each write, the Scroll Map Index Counter is automatically incremented until
the write operations terminate. If there are more than 256 writes, the index counter loops back to
Scroll Map location zero. This also means that if line 255 requires a change, lines 0-254 will have to
be rewritten first.

All 256 scroll map entries should be defined even if all 256 addresses are not displayed. This is to
avoid mapping undesirable data onto the screen. After the last write operation, bit 5 of the Mode
Register should be set to one to disable further writing to the Scroll Map.

The time spent to load the Scroll Map should be kept as short as possible. During loading, the GDC’s
address lines no longer have a path to the bitmap and therefore memory refresh is not taking place.
Delaying memory refresh can result in lost data.

While it is possible to read out of the Scroll Map, time constraints preclude doing both a read and a
rewrite during the same vertical retrace period. If necessary, a shadow image of the Scroll Map can
be kept in some area in memory. The shadow image can be updated at any time and then trans-
ferred into the Scroll Map during a vertical retrace.

Contents

PART Il

Chapter 5. Initialization and Control 5-1

Test for Option Present 5-1

Example of Option Test 5-1
Test for Motherboard Version 5-2

Example of Version Test for CP/M System 5-2

Example of Version Test for MS-DOS System 5-3

Example of Version Test for Concurrent CP/M System 5-5
Initialize the Graphics Option 5-6

Reset the GDC 6-6

Initialize the GDC 5-7

Initialize the Graphics Option 5-8

Example of Initializing the Graphics Option 5-9
Conftrolling Graphics Output 5-24

Example of Enabling a Single Monitor 5-24

Example of Disabling a Single Monitor 5-25
Modifying and Loading the Color Map 5-25

Example of Modifying and Loading Color Data in a Shadow Map 5-26

Chapter 6. Bitmap Write Setup (General) 6-1

Loading the ALU/PS Register 6-1
Example of Loading the ALU/PS Register 6-1
Loading the Foreground/Background Register 6-2
Example of Loading the Foreground/Background Register 6-2

Contents

Chapter 7. Area Write Operations 7-1

Display Data from Memory 7-1
Example of Displaying Data fromm Memory 7-1
Set a Rectangular Area to a Color 7-4
Example of Setting a Rectangular Area to a Color 7-4

Chapter 8. Vector Write Operations 8-1

Setting Up the Pattern Generator 8-1
Example of Loading the Pattern Register 8-1
Example of Loading the Pattern Multiplier 8-3
Display a Pixel 8-4
Example of Displaying a Single Pixel 8-4
Display a Vector 8-5
Example of Displaying a Vector 8-6
Display a Circle 8-9
Example of Drawing a Circle 8-9

Chapter 9. Text Write Operations 9-1

Write a Byte-Aligned Character 9-1

Example of Writing a Byte-Aligned Character 9-1
Define and Position the Cursor 9-32

Example of Defining and Positioning the Cursor 9-32
Write a Text String 9-38

Example of Writing a Text String 9-38

Chapter 10. Read Operations 10-1

The Read Process 10-1
Read the Entire Bitmap 10-1

Example of Reading the Entire Bitmap 10-2
Pixel Write After a Read Operation 10-5

Chapter 11. Scroll Operations 11-1

Vertical Scroling 11-1

Example of Vertical Scrolling One Scan Line 11-2
Horizontal Scrolling 11-4

Example of Horizontal Scrolling One Word 11-4

Chapter 12. Programming Notes 12-1

Shadow Areas 12-1

Bitmmap Refresh 12-1

Software Reset 12-2

Setting Up Clock Interrupts 12-2
Operational Requirements 12-3
Set-Up Mode 12-3

Timing Considerations 12-4

S

Initialization and Control

The examples in this chapter cover the initialization of the Graphics Display Controller (GDC) and
the Graphics Option, the control of the graphics output, and the management of the option’s color
palette.

Test for Option Present

Before starting any application, you should ensure that the Graphics Option has been installed on the
Rainbow system. Attempting to use the Graphics Option when it is not installed can result in a
system reset that can in turn result in the loss of application data. The following code will test for
the option’s presence.

Example of Option Test

BEAEEEEEEEE R AR R R R R E R R E R AR R RS R AR R R R R R R R R R R R R R R R R R ER R R R R R R R E R EERE R RESRX]
)

. *
7

H procedure option_present_1est *
. *
2

. . i i i j *
H purpose: test if Graphics Option is present.

3 entry: none. *
3 exit: dl = 1 option present. *
H dl =0 option not present. *
3 register usage: ax,dx *
;i‘l'l"l'*l"l'iiII*QI’{**'l'l-'l'IHI*-l'iil’l'l*'ll*'I'Iiil'Il'l'l'l{}i*{ll*iii*}ll*i***l’i***

5-1

Initialization and Conftrol

cseg segment byte public ‘codesg’
public option_present_test
assume cs:cseg,ds:nothing,es:nothing,ss:nothing

option_present_test proc near
mov dl,1 ;set dl for option present
in al,8 ;input from port 8
test al,04h ;test bit 2 to see if option present
jz opt1 ;if option is present, exit
xor dl,dl ;jelse, set dl for option not present
opt1: ret
option_present_test endp
cseg ends
end

Test for Motherboard Version

When you initially load or subsequently modify the Color Map, it is necessary to know what version
of the motherboard is installed in the Rainbow system. The code to determine this is operating
system dependent. The examples in the following sections are written for CP/M, MS-DOS, and
Concurrent CP/M.

Example of Version Test for CP/M System

;Il'i**ii*}ll*'l**il'**I}*Il}*iii&lll*ii}*ll****i{***l*i**l*#*******#***

.
2

3 procedure test_board_version *
- *
H purpose: Test motherboard version *
B restriction: This routine will work under cp/m only. *
3 entry: none. *
3 exit: flag := 0 = ‘A’ motherboard *
3 1 = ’B’ motherboard *
H register usage: ax,bx,cx,dx,di,si,es *

;*«lli**li**i'l********l*'lli{l»***I'I*#l-lilv{!*iIl*iii*l{i*i}***l******l{{

5-2

Initialization and Control

flag

buffer

dseg
db
rs
cseg

000h
14 ;jreserve 14 bytes

test_board_version:

opt1:

opt2:

opt3:
opt4:

push
mov
mov
mov
mov
xor
mov
inc
loop
mov
mov
mov
mov
int
mov
mov
cmp
jne
inc
loop
mov
jmp
mov
pop

ret

bp

ax,ds ;clear buffer, just to be sure
es,ax ;point es:di at it

di,0

cx,14 ;14 bytes to clear

al,al ;clear clearing byte
bufferldil,al ;ydo the clear

di

opt1 ;loop till done

ax,ds ;point bp:dx at buffer for

bp,ax 5 int 40 call

dx,offset buffer

di, 1ah ;set opcode for call to get hw #
40

5i,0

cx,8 ;set count for possible return ASCII
bufferlsil,0

opt3 ;got something back, have rainbow ‘B’
S1i

opt2 ;loop till done

flag,0 ;no ASCII, set rainbow ‘A’ type
opt4

flag,1 ;got ASCII, set rainbow ‘B’ type
bp

Example of Version Test for MS-DOS System

;*Qllil’ill"l&****Q*i.‘l*&’"l"I"lﬁll’*ﬁ*06’ﬂ'llll‘l“l”’llll!ii**&&il}i{iii&!

*

procedure test_board_-version *
*

purpose: test motherboard version *
restriction: this routine will work under MS-DOS only *
entry: none *
exit: flag := 0 = ‘A’ motherboard *
1 = ‘B’ motherboard *

*

register usage: ax,bx,cx,dx,di,si

;Iillill'lll'll'Illi{!Iil!lll{i’illilill!***’fllillQG**G*QQ*'G*'&*&.*Q*

5-3

Initialization and Control

k]
cseg segment byte public ‘codesg’
public test_board_version
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

test_board_version proc near
push bp ;save bp
mov di,0 sclear buffer to be sure
mov cx, 14 ;14 bytes to clear
xor al,al ;clear clearing byte
tb1: mov byte ptr bufferldil,al ;do the clear
inc di
loop tb1 sloop till done
mov ax,ds spoint bp:dx at buffer for
mov bp,ax s int 18h call
mov dx,offset buffer
mov di, 1ah ;set opcode for call to get hw #
int 18h ;int 40 remapped to 18h under MS-DOS
mov si,0
mov cx,8 ;set count for possible return ASCII
tb2: cmp byte ptr bufferlsil,0
jne tb3 ;got something back, have rainbow ‘B’
inc Si
loop tb2
mov flag,0 ;no ASCII, set rainbow ‘A’ type
jmp tb4
tb3: mov flag,1 sgot ASCII, set rainbow B type
tb4: pop bp ;jrecover bp
ret
test_board_version endp
cseg ends

dseg segment byte public ‘datasg’
public flag

flag db 0
buffer db 14 dup (?)
dseg ends

end

5-4

Initialization and Control

Example of Version Test for Concurrent CP/M System

;il{llIlI’I.I.IQ{Q’GQGQ'!Q.GQ!Q&0"“}.!0!0!*!'0!!IOCOO&QQ’IG'Cl.l’!li

.
k)

.
)

proc

purpose:

restriction:

entry:
exit:

register usage: ax,bx,cx,dx,si
;iIIil’l’l'&!*!&i*!ili!’GQ!Q!IOD!I}'l!'lil}l'!’il.QOIQOOO*GQ’*’OGOQ*

edure

test_board_version

test motherboard version

none
flag :=

test_board_version:

mov
mov
mov
mov
mov
mov
int
mov
mov
mov
mov
cmp
jne
inc
mov
cmp
je

mov
cmp
je

mov
cmp

je

control_b+2,ds
di,offset biosd
bx,3

[di+bx],ds
dx,offset biosd
cl,32h

O0eOh

flag,0

bx,6

si,offset array_-14

al,’0’
[si+bx],al
found_b

bx

al,’1’
[si+bx],al
test_board_exit
al,’2’
[si+bx],al
test_board_exit
al,’3’
[si+bx],al
test_board_exit

this routine for Concurrent CP/M only

0 = ‘A’ motherboard
1 = ‘B’ motherboard

;setup for function 50 call

;sfunction 50
;set flag for rainbow ‘A’
;offset to array_14

3’0/, could be a rainbow ‘A’
sno, must be rainbow ‘B’
snext number...

scan be either 1...

sor 2 ...

sor 3 if its a rainbow ‘A’

*
*
*

*
*
*
*
*
*

5-5

Initialization and Control

found_b:
mov flag,1 ;its a rainbow ‘B’
test_board_exit:
ret
dseg
biosd db 80h
dw offset control_b
dw 0
control_b dw 4
dw 0
dw offset array_14
array_14 rs 14
flag db 0
end

Initialize the Graphics Option
Initializing the Graphics Option can be separated into the following three major steps:

e Reset the GDC to the desired display environment.
e [Initialize the rest of the GDC’s operating parameters.

¢ [Initialize the Graphic Option’s registers, buffers, and maps.

Reset the GDC

To reset the GDC, give the RESET command with the appropriate parameters followed by com-
mands and parameters to set the initial environment. The RESET command is given by writing a
zero byte to port 57h. The reset command parameters are written to port 56h.

The GDC Reset Command parameters are the following:

Parameter Value Meaning

1 12h The GDC is in graphics mode
Video display is noninterlaced
No refresh cycles by the GDC
Drawing permitted only during retrace

2 16h For medium resolution
30h For high resolution

The number of active words per line, less two. There are 24 (18h) active
words per line in medium resolution mode and 50 (32h) words per line in
high resolution mode.

5-6

Initialization and Control

Parameter Value

3 61h
64h

4 04h
08h

5 02h
03h

03h
FOh
40h

Initialize the GDC

Meaning

For medium resolution
For high resolution

The low-order five bits are the horizontal sync width in words less one
(medium res. HS=2, high res. HS=5). The high-order three bits are the
low-order three bits of the vertical sync width in lines (VS=3).

For medium resolution
For high resolution

The low-order two bits are the high-order two bits of the vertical sync
width in lines. The high-order six bits are the horizontal front porch
width in words less one (medium res. HFP=2, high res. HFP=3).

For medium resolution
For high resolution

Horizontal back porch width in words less one (medium res. HBP=3, high
res. HBP=4).

Vertical front porch width in lines (VFP=3).
Number of active lines per video field (single field, 240 line display).

The low-order two bits are the high-order two bits of the number of
active lines per video field. The high-order six bits are the vertical back
porch width in lines (VBP=16).

Now that the GDC has been reset and the video display has been defined, you can issue the rest of
the initialization commands and associated parameters by writing to ports 57h and 56h respectively.

Start the GDC by issuing the START command (6Bh).

ZOOM must be defined; however, since there is no hardware support for the Zoom feature, program
a zoom magnification factor of one by issuing the ZOOM command (46h) with a parameter byte of

00.

Issue the WDAT command (22h) to define the type of Read/Modify/Write operations as word trans-
fers - low byte, then high byte. No parameters are needed at this time because the GDC is not being
asked to do a write operation; it is only being told how to relate to the memory.

5-7

Initialization and Conftrol

Issue the PITCH command (47h) with a parameter byte of 20h for medium resolution or 40h for
high resolution to tell the GDC that each scan line begins 32 words after the previous one for
medium resolution and 64 words after the previous one for high resolution. Note, however, that only
24 or 50 words are displayed on each screen line. The undisplayed words left unscanned are
unusable.

The GDC can simultaneously display up to four windows. The PRAM command defines the window
display starting address in words and its length in lines. The Graphics Option uses only one display
window with a starting address of 0000 and a length of 256 lines. To set this up, issue the PRAM
command (70h) with four parameter bytes of 00,00,F0,0F.

Another function of the GDC’s parameter RAM is to hold soft character fonts and line patterns to be
drawn into the bitmap. The Graphics Option, rather than using the PRAM for this purpose, uses the
external Character RAM and Pattern Generator. For the external hardware to work properly, the
PRAM command bytes 9 and 10 must be loaded with all ones. Issue the PRAM command (78h) with
two parameter bytes of FF FF.

Issue the CCHAR command (4Bh) with three parameter bytes of 00,00,00, to define the cursor
characteristics as being a non-displayed point, one line high.

Issue the VSYNC command (6Fh) to make the GDC operate in master sync mode.
Issue the SYNC command (OFh) to start the video refresh action.

The GDC is now initialized.

Initialize the Graphics Option

First you must synchronize the Graphics Option with the GDC’s write cycles. Reset the Mode
Register by writing anything to port 50h and then load the Mode Register.

Next, load the Scroll Map. Wait for the start of a vertical retrace, enable Scroll Map addressing,
select the Scroll Map, and load it with data.

Initialize the Color Map with default data kept in a shadow area. The Color Map is a write-only area
and using a shadow area makes the changing of the color palette more convenient.

Set the Pattern Generator to all ones in the Pattern Register and all ones in the Pattern Multiplier.

Set the Foreground/Background Register to all ones in the foreground and all zeros in the
background.

Set the ALU/PS Register to enable all four planes and put the option in REPLACE mode.

Finally, clear the screen by setting the entire bitmap to zeros.

5-8

Initialization and Control

Example of Initializing the Graphics Option

The following example is a routine that will initialize the Graphics Option including the GDC. This
initialization procedure leaves the bitmap cleared to zeros and enabled for writing but with graphics
output turned off. Use the procedure in the next section to turn the graphics output on. Updating of
the bitmap is independent of whether the graphics output is on or off.

;***li**i**{*i*li!’**l**i*l!i*i**i***Qll'l*Q*&li*&*l***ii*******#ll***

2

H procedure init_option *
. *
7

; purpose: initialize the graphics option *
H *
H entry: dx = 1 medium resolution *
3 dx = 2 high resolution *
3 exit: all shadow bytes initialized *
3 register usage: none, all registers are saved *
;l’{iﬂl{*****{i&***********i**i*i*l*ll*lll‘**-ll'l-lﬂ*{**&*{{*******’*#*i*
cseg segment byte public ‘codesg’

extrn alups:near,pattern_register:near,pattern_mult:near,fgbg:near

public init_option
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

init_option proc near

push ax ;save the registers

push bx

push cx

push dx

push di

push si

cld smake sure that stos incs.

Kl

;First we have to find out what the interrupt vector is for the
s;graphics option. If this is a Model 100-A, interrupt vector
;22h is the graphics interrupt. If this is a Model 100-B, the
sinterrupt vector is relocated up to A2. If EE00:0F44h and
;04¢>0, we have the relocated vectors of a Model 100-B and need
sto OR the msb of our vector.

H

mov ax,ds

mov word ptr cs:segment_save,ax

push es ;save valid es

mov bx,0eel00h ;test if vectors are relocated
mov es,bx

mov ax,88h 3100-A int. vector base addr
test es:byte ptr 0f44h,4 ;relocated vectors?

jz g0 ;jump if yes

mov ax,288h ;100-B int. vector base addr

Initialization and Conftrol

g0:

mid_res:

mov
pop
cmp
jz

1mp

mov
out
mov
call
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
mov
mov
mov
mov

jmp

word ptr g-int_vec,ax

es
dx, 1

mid_res
hi_res

al,00
57h,al
gbmod,030h
mode
al,12h
056h,al
al,16h
056h,al
al,61h
056h,al
al,04
056h,al
al,02
056h,al
al,03
056h,al
al,0f0h
056h,al
al,40h
056h,al
al,047h
057h,al
al,32
056h,al

smedium resolution?
sjump if yes
;else is high resolution

smedium resolution reset command

smode = med res, text, no readback
sturn off graphics output

;pl. refresh, draw enabled during
sretrace

;p2. 24 words/line minus 2

;384/16 pixels/word=24 words/line
;p3. 3 bits vs/5 bits hs width - 1
svs=3, hs=2

;p4. 6 bits hfp-1, 2 bits vs high
;byte, 2 words hfp, no vs high byte
5pS. hbp-1, 3 words hbp

;p6. vertical front porch, 3 lines
;p7. active lines displayed

;p8. 6 bits vbp/2 bits lines/field
;high byte, vbp=16 lines

;pitch command, med res, straight up

;med res memory width for vert. pitch

word ptr nmritl,3fffh

word ptr xmax, 383

;384 pixels across in med res

byte ptr num_planes,4 ;4 planes in med res
byte ptr shifts_per_line,5 j;rotates for 32 wds/line

byte ptr words_per_line,32 j;words in a line

common_init

Initialization and Control

hi_res: mov
out
mov

call

mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
mov
mov
mov
mov

common_init:

mov
mov
mov
mov
out
mov
out
mov
out
mov
out

al,00
57h,al
gbmod, 031h
mode
al,12h
056h,al
al,30h
056h,al
al,64h
056h,al
al,08
056h,al
al,03
056h,al
al,03
056h,al
al,0f0h
056h,al
al,40h
056h,al
al,047h
057h,al
al,64
056h,al

s;high resolution reset command

;mode = high res, text, no readback
;disable graphics output

;p1. refresh, draw enabled during
sretrace

;p2. 50 words/line - 2

;p3. hsync w-1=4Clow 5 bits), vsync
;w=3(upper three bits)

;p4. hor fp w-1=2Cupper 2 bits),
;vsync high byte = 0

;p5. hbp-1. 3 words hbp

;p6. vertical front porch, 3 lines
;p7. active lines displayed

ip8. © bits vbp/2 bits lines per field
;high byte. vbp=16 lines

;pitch command, high res, straight up

;high res pitch is 64 words/line

word ptr nmritl,7fffh

word pir xmax,799
byte ptr num_planes,2

;800 pixels across
;2 planes in high res

byte ptr shifts_per_line,6 j;shifts for 64 wds/line

byte ptr words_per_line,64 ;number of words/line

al,00
startl,al
starth,al
al,06bh
057h,al
al,046h
057h,al
al,0
056h,al
al,22h
57h,al

;jsetup start window display for memory
s;location 00

;start command
;start the video signals going
s;zoom command

;magnification assumed to be 0

;setup R/M/W memory cycles for
;figure drawing

Initialization and Control

.
2

;Initialize PRAM command.
;starth. Set the window length for 256 lines. Fill PRAM parameters
;8 and 9 with all ones so GDC can do graphics draw commands without
;jaltering the data we want drawn.

7

mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
out
mov
out
xor
mov
out
mov
out
mov
out
mov
out
out
mov
out
mov
or

out
mov

5-12

al,070h
057h,al
al,startl
056h,al
al,starth
056h,al
al,0ffh
056h,al
al,0fh
056h,al
al,078h
057h,al
al,0ffh
056h,al
056h,al
al,04bh
057h,al
al,al
cchpt,al
056h,al
cchp2,al
056h,al
cchp3,al
056h,al
al,06fh
057h,al
050h,al
al,0bfh
53h,al

Start window at the address in startl,

;issue the pram command, setup

;6GDC display

;p1. display window starting address
;low byte

;p2. display window starting address
shigh byte

;p3. make window 256 lines

;p4. high nibble display line on
sright, the rest = 0

;issue pram command pointing to p8

;fill pram with ones pattern

sissue the cchar command
s;initialize cchar parameter bytes

;graphics cursor is one line, not
;displayed, non-blinking

;vsync command

;reset the graphics board

al,byte ptr gbmod ;enable, then disable interrupts

al,q40h
S1h,al
cx,4920

;to flush the interrupt hardware
slatches
jwait for a vert sync to happen

Initialization and Control

gl: loop
mov
out
mov
out
call
call
mov
call
mov
call
mov
call
mov
call
mov
mov
mov
rep
mov
mov
mov
mov
mov
mov
mov
mov
out
mov
out
call
mov
mov
out
pop
pop
pop
pop
pop
pop
ret

init_option

g1

al,Obfh

53h,al

al,byte ptr gbmod
S51h,al
assert_colormap
inscrl

bl,1
pattern_mult
bl,0ffh
pattern_register
bl,0f0h

fgbg

bl,0

alups

di,offset p1
al,0ffh

cx, 16

stosb

al,0

gbmskl,al
gbmskh,al
al,0ffh

gdcml ,al
gdcmh,al

word ptr curl0,0
ax,word ptr gbmskl
54h,al

al,ah

55h,al

setram

word ptr ymax,239
al,0dh

57h,al

si

di

dx

cx

bx

ax

endp

;disable the interrupts

;load colormap

;initialize scroll map

;set pattern multiplier to 16-bl
;see example "pattern_mult®

;set pattern data of all bits set
;see example "pattern_register™
;enable all foreground registers
;see example "fgbg"

;enable planes 0-3, REPLACE logic
;see example "alups"

;fill the p table with ff’s.

;enable all gb mask writes.

;set GDC mask bits

;set cursor to top screen left
;fetch and issue the graphics
;option text mask

;then set ram to p1 thru p16 data

;enable the display
;recover the registers

5-13

Initialization and Control

;.I..Q..!Q.l'i..i'l..CQQQQlQ0.0!QQQOQ!QQCQQQ'OQ"QQQQQQQ'!li'i"ﬂ"lﬂ

o ¥ *
]

Had graphics subroutines *
o *

;Q'.Q.lll.'lii"’.!li"ll'!IQQ'Q.Q'OQ'QOi!!il“ii*.’i!l.*ﬂ}ﬁ*i”*li!'i

1]

gsubs proc near

public setram,assert_colormap,gdc_not_busy,imode,color_int,scrol_int
public cxy2cp,mode

BREERBRRRRRRRRERRRRRRERRRRRRRBRRRBRRRRRRRRRRRRRRRRRRBRRRRRRRRRERERERES

*

s
:
:
H s ubroutine assert_colormap *
. *
2
B colormap is located at clmpda which is defined in *
3 procedure "change_colormap" *
. *
2
3 entry: clmpda = colormap to be loaded *
H exit: none *
3 register usage: ax,bx *

;CQ§§*Iil!0Qi{’QlIlIIQ!iilQllQIilil'ililillliiiiiiﬁfiiiii!‘li*iﬁllili
H
assert_colormap:

cld

call gdc_not_busy ;jmake sure nothing’s happening
3
;The graphics interrupt vector "giv" is going to be either 22h or
;A2h depending on whether this is a Model 100-A or a Model 100-B
jwith relocated vectors. Read the old vector, save it, then
soverwrite it with the new vector.

push es

xor ax,ax

mov es,ax

mov bx,word ptr g-int_vec ;fetch address of *“giv"
cli stemp. disable interrupts
mov ax,es:[bx] sread the old offset

mov word ptr old_int_off,ax

mov ax,es:[bx+2] ;jread the old segment

mov word ptr old_int_seg,ax

mov word ptr es:[bx],offset color_int ;load new offset
mov ax,cs

mov es:[bx+2],ax ;load new int segment

sti ;jre-enable interrupts

pop es

mov byte ptr int_done,0 ;clear interrupt flag

or byte ptr gbmod,40h ;enable graphics interrupt
call mode

Initialization and Control

acit:

test
jz
push
xor
mov
mov
cli
mov
mov
mov
mov
sti
Pop
cld
ret

color_int:

cit:

push
push
push
push
push
mov
mov
mov
cld
and
call
mov
mov
out
mov
lodsb
out
loop
mov
Pop
Pop
Pop
pop
pPop

iret

byte ptr int_done,0ffh ;has interrupt routine run?

aci

es ;restore interrupt vectors
ax,ax

es,ax

bx,word ptr g_int_vec ;fetch graphics vector offset

ax,word ptr old_int_off ;restore old interrupt vector
es:[bx],ax

ax,word ptr old_int_seg

es:[bx+2],ax

es
smake lods inc si

es
ds
si
cx
ax
ax,word ptr cs:segment_save ;can’t depend on es or ds

ds,ax ;reload segment registers
es,ax
byte ptr gbmod,0Obfh ;jdisable graphics interrupts
mode
si,offset clmpda ;fetch color source
al,0dfh ;get the color map’s attention
053h,al
cx,32 ;32 color map entries
;fetch current color map data
051h,al ;load color map
cit ;loop until all color map data loaded
byte ptr int_done,0ffh ;set "interrupt done" flag
ax
cx
si
ds
es

5-15

Initialization and Control

El

B EZEZEZEEEEREEE RS R R SR EEEEE SRR EEEEEE SRR ER AR EEEE R R R R AEEE R RS R R R E S R R EEER R RN}
7

.
7

3 subroutine cxy2cp

H CXY2CP takes the xinit and yinit numbers, converts them to
H an absolute memory location and puts that location into

H curl0,1,2. yinit is multiplied by the number of words per
H line. The lower 4 bits of xinit are shifted to the left

3 four places and put into curl2. xinit is shifted right four
H places to get rid of pixel information and then added to

3 yinit times words per line. This result becomes curl0,

H curli.

H entry: xinit = x pixel location

H yinit = y pixel location

H exit: curl0,1,2

H register usage: ax,bx,cx,dx

*

*

*

*

*

BAREEEEE R R EE SRS SRR R R RR R R AR R RS R R R R R R R R AR R il R AR RS RE]
1

7

cxy2cp: mov
mov
shl
mov
mov
mov
shl
mov
mov
shr
add
mov
ret

cl,byte ptr shifts_per_line

ax,yinit
ax,cl
bx,xinit
dx,bx
cl,4
bl,cl
curl2,bl
cl,4
dx,cl
ax,dx
word ptr

;compute yinit times words/line

;ax
;ca

has yinit times words/line
lculate the pixel address

;save a copy of xinit

;shift xinit 4 places to the left
;bl has pixel within word address

;pixel within word address

3sh
sto

curl0l,ax

ift xinit 4 places to right
get xinit words

sword address

;'****'l'**********l***'l'****************i****i*****i***!l‘l**lﬂll*ll*****

H s ubroutine gdc_-not _busy

H

H gdc_not_busy will put a harmless command into the GDC and
H wait for the command to be read out of the command FIFO.
H This means that the GDC is not busy doing a write or read
H operation.

H entry: none

H exit: none

5 register usage: ax

*

*

*

*

*

;*l’****l*******ﬁ*i*******i*§**********l’*****llll‘l’**i*****{***l*****‘l*

5-16

Initialization and Conftrol

.
kl

gdc_not_busy:

gnbo0:

gnb2:

gnb3:

gnb4:

gnbS:

gnb6:

push
in
test
jz
mov
in
test
jz
loop
mov
out
in
test
jz
mov
in
test
jnz
loop
mov
out
mov
in
test
jnz
loop
pop
ret

cx
al,056h
al,?2
gnb2
cx,8000h
al,056h
al,2
gnb2
gnb0
al,0dh
057h,al
al,056h
al,2
gnb4
cx,8000h
al,056h
al,2
gnb4
gnb3
ax,40dh
057h,al
cx,8000h
al,056h
ah,al
gnb6
gnb5

cx

;use cx as a time-out loop counter
sfirst check if the FIFO is full

s jump if not

swait for FIFO not full or reasonable
;time, whichever happens first

;has a slot opened up yet?

s jump if yes

;if loop count exceeded, go on anyway
;issue a screen-on command to GDC

;did that last command fill it?
;jump if not

;read status register

stest FIFO full bit

;jump if FIFO not full

;loop until FIFO not full or give up
j;issue another screen-on,

;wait for FIFO empty

s;read the GDC status
;FIFO0 empty bit set?
;jump if not.

;*&*****-l*i****-I-***%*{***{******&********i*****i***************{*****

.
El

.
7

7

.
7

.
7

imode:

subroutine

imode *

issue Mode command with the parameters from register gbmod *

entry:
exit:

gbmod
none

register usage: ax
;**l************l***********-l-*i{***********‘l’l’***********%**!*********

call
mov
out
mov
out
ret

gdc_not_
al,0bfh
53h,al
al,gbmod
51h,al

busy

;jaddress the mode register through
;the indirect register

;load the mode register

Initialization and Control

mode: mov al,0bfh ;jaddress the mode register through
out S3h,al ;the indirect register
mov al,gbmod
out S1h,al ;load the mode register
ret

BAZEZE AR R AR 2R AR R R SRR AR RS R 2R R AR RS R R AR R A2 R R R AR R AR SRR 22 2 J

1
B *
H subroutine inscrl *
H *
3 initialize the scroll map *
3 *
3 entry: none *
H exit: none *
; register usage: ax,bx,cx,dx,di,si *
;li{lIl!il{”‘!*l’l’ilii*l’iiliilll*‘**’il'll'I*Q*i*i*i&**”*****&*i**i&
3
inscrl: cld

mov cx,256 sinitialize all 256 locations of the

xor al,al ;shadow area to desired values

mov di,offset scrltb
insc0: stosb

inc al

loop insc0
;
;The graphics interrupt vector is going to be either 22h or A2h
;depending on whether this is a Model 100-A or a Model 100-B with
srelocated vectors. Read the old vector, save it, and overwrite it
swith the new vector. Before we call the interrupt, we need to
;make sure that the GDC is not writing something out to the bitmap.
k]
ascrol: call gdc_not_busy ;jcheck if GDC id busy

push es

xor ax,ax

mov es,ax

mov bx,word ptr g_-int_vec

cli ;temporarily disable interrupts

mov ax,es:[bx] ;read the old offset

mov word ptr old_int_off,ax

mov ax,es:[bx+2] ;read the old segment

mov word ptr old_int_seg,ax

mov word ptr es:[bx],offset scrol_.int ;load new offset

mov ax,cs

mov es:[bx+2],ax ;load new interrupt segment

sti sre-enable interrupts

pop es

mov byte ptr int_done,0 ;clear interrupt flag

or byte ptr gbmod,40h ;enable graphics interrupt

call mode

Initialization and Control

as1: test
jz
push
xor
mov
mov
cli
mov
mov
mov
mov
sti
Pop
ret

.
7

byte ptr int_done,0ffh ;has interrupt routine run?
as1

es jrestore the interrupt vectors
ax,ax

es,ax

bx,word ptr g-int_vec ;fetch graphics vector offset

ax,word ptr old_int_off ;restore old interrupt vector
es:[bx],ax

ax,word ptr old_int_seg

es:[bx+2],ax

;Scrollmap loading during interrupt routine.
;Fetch the current mode byte and enable scroll map addressing.

2
scrol_int:
push
push
push
push
push
push
cld
mov
mov
mov
and
mov
mov
and
call
mov
out
mov
xor
mov
mov
test
jnz
shr

ax,word ptr cs:segment_save ;can’t depend on ds

ds,ax sreload it

es,ax

byte ptr gbmod,0bfh ;disable graphics interrupts
al,gbmod ;prepare to access scroll map
gtemp1,al ;first save current gbmod

gbmod, 0dfh ;enable writing to scroll map

mode sdo it

al,07fh ;select scroll map and reset scroll
53h,al ;ymap address counter

dl,51h joutput port destination

dh,dh

si,offset scrltb ;first line’s high byte address=0
cx, 16 3256 lines to write to

byte ptr gbmod,1 s;high resolution?

ins1 sjump if yes

cx,1 ;only 128 lines if medium resolution

5-19

Initialization and Conftrol

ins1: lodsw
out
mov
out
lodsw
out
mov
out
lodsw
out
mov
out
lodsw
out
mov
out
lodsw
out
mov
out
lodsw
out
mov
out
lodsw
out
mov
out
lodsw
out
mov
out
loop
mov
mov
call
mov
pop
pop
pop
pop
pop
pop

iret

5-20

dx,al
al,ah
dx,al

dx,al
al,ah
dx,al

dx,al
al,ah
dx,al

dx,al
al,ah
dx,al

dx,al
al,ah
dx,al

dx,al
al,ah
dx,al

dx,al
al,ah
dx,al

dx,al
al,ah
dx,al
ins1
al,gtemp1
gbmod,al
mode

byte ptr int_done,0ffh

ax
cx
dx
si
ds
es

;fetch two scrollmap locations
;assert the even byte

;assert the odd byte
;fetch two scrollmap locations
;assert the even byte

;assert the odd byte
;fetch two scrollmap locations
;assert the even byte

;assert the odd byte
;fetch two scrollmap locations
;assert the even byte

;assert the odd byte

;fetch two scrollmap locations
;assert the even byte

;assert the odd byte

;fetch two scrollmap locations
;assert the even byte

;assert the odd byte

;fetch two scrollmap locations
;assert the even byte

;assert the odd byte

;fetch two scrollmap locations
;assert the even byte

;assert the odd byte

;restore previous mode register

;set interrupt-done flag

;return from interrupt

Initialization and Control

;Q*****&Q*****ﬂ‘***!*i*{*&******i*’***l»**i*****Q**&*l{*l*******l*i***’

. *
)

H subroutine setram *
H *
H " set video ram to a value stored in the p table *
. *
H entry: 16 byte p1 table *
H exit: none *
H register usage: ax,bx,cx,dx,di,si *

;*i**!%*****'l-*l-Q&*i***l}************‘**l'**&****l**’*****}********&*{**

setram: mov byte ptr twdir,2 ;set write direction to the right
call gdc_not_busy ;make sure that the GDC isn’t busy
mov al,0feh ;select the write buffer
out 053h,al
out 051h,al sreset the write buffer counter
mov si,offset p1 sinitialize si to start of data
mov cx,10h ;load 16 chars into write buffer
setr1: lodsb ;fetch byte to go to write buffer
out 52h,al
loop setri
mov al,0feh ;select the write buffer
out 053h,al
out 051h,al ;reset the write buffer counter
mov al,049h sissue GDC cursor location command
out 57h,al
mov al,byte ptr curl0 ;fetch word location low byte
out 56h,al ;load parameter
mov al,byte ptr curltl ;fetch word location high byte
out S56h,al ;load parameter
mov al,4ah ;set the GDC mask to all F’s
out 57h,al
mov al,0ffh
out S56h,al
out 56h,al
mov al,04ch ;issue figs command
out 57h,al
mov al,byte ptr twdir j;direction to write.
out 56h,al
mov al,nmritl ;number of GDC writes, low byte
out 56h,al
mov al,nmrith ;number of GDC writes, high byte
out 56h,al
mov al,22h swdat command
out 57h,al
mov al,0ffh ;p1 and p2 are dummy parameters
out 56h,al ;the GDC requires them for internal
out 56h,al ;purposes - no effect on the outside
ret

5-21

Initialization and Control

segment_save dw 0 ;ds save area for interrupts
gsubs endp

cseg ends
dseg segment byte public ‘datasg’
extrn clmpda:byte
public xmax,ymax,alu,d,d1,d2,dc
public curl0,curl1,curl2,dir,fg,gbmskl,gbmskh,gbmod,gdcml,gdcmh
public nmredl,nmredh,nmritl,nmrith,p1,prdata,prmult,scrlib,startl
public gtemp3,gtemp4,starth,gtemp,gtemp1,gtemp2,twdir,xinit,xfinal
public yinit,yfinal,ascrol,num_planes,shifts_per_line
public words_per_line,g_-int_vec
1
;jvariables to be remembered about the graphics board states

.
k]

alu db 0 scurrent ALU state

cchp1 db 0 scursor/character

cchp2 db 0 H size definition

cchp3 db 0 H parameter bytes

curl0 db 0 scursor - low byte

curl1 db 0 ; location - middle byte

curl2 db 0 H storage - high bits & dot address
dc dw 0 ;figs command dc parameter

d dw 0 ;figs command d parameter

d2 dw 0 ;figs command d2 parameter

d1 dw 0 ;figs command d1 parameter

dir db 0 ;figs direction.

fg db 0 ;current foreground register

gbmskl db 0 ;graphics board mask register - low byte
gbmskh db 0 H - high byte
gbmod db 0 ;graphics board mode register

gdcml db 0 ;6DC mask register bits - low byte

gdcmh db 0 3 - high byte

5-22

Initialization and Control

g-int_vec

gtemp dw
gtemp1 db
gtemp2 db
gtemp3 db
gtemp4 db
int_done

nmredl db
nmredh db
nmritl db
nmrith db

num_planes
old_int_seg
old_int_off

p1 db
prdata db
prmult db
scrltb db
si_temp dw
startl db
starth db
twdir db

shifts_per_line
words_per_line

xinit dw
yinit dw
xfinal dw
yfinal dw
xmax dw
ymax dw
dseg

end

dw

16 dup (?)

0
0

0

0
0
0

sgraphics option’s interrupt vector

;temporary storage

;temporary storage

;temporary storage

;temporary storage

;temporary storage

sinterrupt-done state
;number of read operations - low byte
5 - high byte
;number of GDC writes - low byte
H - high byte
;number of planes in current resolution

;old interrupt segment

;old interrupt offset

;shadow write buffer & GDC parameters
;pattern register data

;pattern register multiplier factor

100h dup (?) ;scroll map shadow area

;register for start address of display

;jdirection for texi mode write operation
sshift factor for one line of words
swords/scan line for current resolution
;x initial position

35y initial position

;x final position

3y final position

5-23

Initialization and Conftrol

Controlling Graphics Output

There will be occasions when you will want to control the graphics output to the monitors. The
procedure varies according to the monitor configuration. The following two examples illustrate how
graphics output can be turned on and off in a single monitor system. The same procedures can be
used to turn graphics output on and off in a dual monitor system. However, in a dual monitor
configuration, you may want to display graphics output only on the color monitor and continue to
display VT102 VSS text output on the monochrome monitor. This can be accomplished by loading an
83h into OAh instead of an 87h.

Example of Enabling a Single Monitor

;**********'l'*l-l-**l**&*&*ﬁ**********&*****i***l*l’***********l%***&****

; procedure graphics_on *
H *
; purpose: enable graphics output on single *
; color monitor *
H *
H entry: gbmod contains mode register shadow byte *
H exit: none *
H register usage: ax *

;****ii****{*******'l-********l-*l*****l****'l-*******************l*i*****

.
7

dseg segment byte public ‘datasg’
extrn gbmod:byte ;defined in procedure ‘init_option’
dseg ends

cseg segment byte public ‘codesg’

extrn imode: near ;defined in procedure ‘init_option’
public graphics_on
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

k)

graphics_on proc near
mov al,87h
out O0ah,al ;enable graphics on monochrome line
or byte ptr gbmod,080h j;enable graphics output in gbmod
call imode ;assert new mode register
ret 3

graphics_on endp

cseg ends
end

5-24

Initialization and Control

Example of Disabling a Single Monitor

;l-**4{*{*{**-I**********'l-*l'****i***************}*************l*i**l***

.
k)

3 procedure graphics_off *
. *
3 purpose: disable graphics output to single *
H (color) monitor *
H *
H entry: gbmod contains mode register shadow byte *
H exit: none *
; register usage: ax *

;}****{*'l-{ii{**l-{&***i**{il******{!*l'&*****li*i*****i*******{}*******

H

dseg segment byte public ‘datasg’

extrn gbmod:byte ;defined in procedure ‘init_option’
dseg ends

cseg segment byte public “‘codesg’

extrn imode:near ;defined in procedure ‘init_option’

public graphics_off
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

H

graphics_off proc near
and byte ptr gbmod,07fh ;disable graphics output in gbmod
call imode ;assert new mode register
mov al,83h
out 0ah,al sturn off graphics on monochrome line
ret

graphics_off endp

cseg ends
end

Modifying and Loading the Color Map

For an application to modify the Color Map, it must first select the Color Map by way of the Indirect
Register (write DFh to port 53h). This will also clear the Color Map Index Counter to zero so
loading always starts at the beginning of the map.

Loading the Color Map is done during vertical retrace so there will be no interference with the
normal refreshing of the bitmap. To ensure that there is sufficient time to load the Color Map, you
must catch the beginning of a vertical retrace. First, check for vertical retrace going inactive (bit 5
of the GDC Status Register = 0). Then, look for the vertical retrace to start again (bit 5 of the GDC
Status Register = 1).

5-25

Initialization and Control

To modify only an entry or two, the use of a shadow color map is suggested. Changes can first be
made anywhere in the shadow map and then the entire shadow map can be loaded into the Color
Map. The next section is an example of modifying a shadow color map and then loading the data
from the shadow map into the Color Map.

Example of Modifying and Loading Color Data in a

Shadow Map

;*’*I‘*******'l*’*l**‘l**llil‘i‘*l*ﬂ’***l’!{’**llll*lil’l"il’Qi’*l.{**i’
H *
H procedure change._.,colormap *
i *
3 purpose: change a color in the colormap *
; entry: ax = new color (0 = highest intensity) *
3 (F = lowest intensity) *
H al = high nibble = red data *
H low nibble = green data *
H ah = high nibble = gray data *
H low nibble = blue data *
H bx = palette entry number *
H *
s exit: none *
; register usage: ax,bx,si *

;*l*ﬁ{***l**’**l’**!*l'l!*Q}*il**l***‘l*l&’{&*&{*i"i*llﬂllil*”{*#l‘*"

3
cseg segment byte public ‘codesg’
extrn assert_colormap:near ;defined in ‘init_option’
public change_colormap
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

K

change_colormap proc near
mov si,offset clmpda j;colormap shadow
mov [si+bx],al ;store the red and green data
add bx, 16 sincrement to gray and blue data
mov [si+bx],ah ;store the gray and blue data
call asseri_colormap ;jdefined in ‘init_option’
change_colormap endp
cseg ends

dseg segment byte public ‘datasg’
public clmpda

5-26

Initialization and Control

;Colormaps:

;Information in the Color Map is stored as 16 bytes of red and
;green data followed by 16 bytes of monochrome and blue data.
;For each color entry, a 0 specifies full intensity and 0fh
;specifies zero intensity.

;A sample set of color map entries for a Model 100-B system with
sa monochrome monitor in medium resolution (16 shades) would look
sas follows in the shadow area labelled CLMPDA:

; no red or green data

;clmpda db 0ffh
3 db 0ffh
5 db 0ffh
H db 0ffh
3 db 0ffh
3 db 0ffh
3 db 0ffh
3 db 0ffh
3 db 0ffh
H db 0ffh
3 db 0ffh
H db 0ffh
H db 0ffh

db 0ffh

db 0ffh

db 0ffh

monochrome data, no blue data

“e we ue us we we ue

db 0ffh sblack
H db 00fh swhite
H db 01fh 3
H db 02fh 3 .
H db 03fh ;1ight monochrome
H db 04fh 3
H db 05fh H
H db 06fh 3 .
H db 07fh symedium monochrome
H db 08fh H .
3 db 09fh 3
H db 0afh 3
H db Obfh ;dark monochrome
H db Ocfh H .
H db 0dfh H .
3 db Oefh H .

5-27

Initialization and Control

;O0n a Model 100-A system, only the lower two bits of the monochrome
;nibble are significant. This allows only four monochrome shades
;as opposed to 16 shades on the Model 100-B system in medium
;resolution mode. The following sample set of data applies to both
;the Model 100-A monochrome-only system in either medium or high
;resolution mode, as well as the Model 100-B monochrome-only system
;in high resolution mode.

2

3

H ;no red or green data
H

; clmpda db 0ffh
H db 0ffh
H db 0ffh
H db 0ffh
H db 0ffh
H db 0ffh
H db 0ffh
H db 0ffh
H db 0ffh
H db 0ffh
H db 0ffh
H db 0ffh
H db 0ffh
H db 0ffh
H db 0ffh
H db 0ffh

; smonochrome data, no blue data

H db 0ffh sblack

H db 00fh swhite

H db 05fh ;light monochrome
H db 0afh sdark monochrome
H db 0ffh sblack

H db 0ffh sblack

H db 0ffh sblack

H db 0ffh ;sblack

H db 0ffh sblack

H db 0ffh sblack

H db 0ffh sblack

H db 0ffh sblack

H db 0ffh sblack

H db 0ffh sblack

H db 0ffh sblack

H db 0ffh sblack

5-28

Initialization and Control

;In a dual monitor configuration, with a Model 100-B system in
;medium resolution mode, all four components of each color entry

;are present: red, green, blue and monochrome.

scolor data would be as follows:

;clmpda db
3 db
3 db
3 db
H db
H db
db
db
db
db
db
db
db

db
db

;red and green data

0ffh
000h
0fOh
00fh
000h
00fh
0ffh
0fOh
Oaah
0f8h
08fh
088h
08fh
0ffh
0f8h
077h

sblack
swhite
;cyan
;magenta
;yellow
sred

sblue
;green

;dk gray
;dk cyan
;dk magenta
;dk yellow
sdk red
;dk blue
;dk green
igray

smonochrome and blue data

7
.
2
.
1
.
k]
.
2
.
7
.
k]
H db
.
2
.
7
.
2
.
2]
.
7
.
2

db
H db
H db
H db
H db
H db
H db
H db
3 db
H db
H db
H db
5 db
H db
H db
H db
H

0ffh
000h
010h
020h
03fh
04fh
050h
06fh
07ah
0f8h
098h
Oafh
Obfh
0c8h
0dfh
O0e7h

sblack
swhite

light mono.

.
3
.
H
.
H
.
H .
H
.
H .
.
H

med. mono.

sdark mono.

.
) .

e

A sample set of

black
white
cyan
magenta

yellow

red

blue
green

dk
dk
dk
dk
dk
dk
dk

gray
cyan
magenta
yellow
red
blue
green

gray

5-29

Initialization and Control

;0n a Model 100-A dual monitor configuration, in medium resolution
;mode, all 16 color entries are displayable. However, only two
;bits of monochrome data are available allowing for only 4
;ymonochrome shades.

H

;0n a Model 100-A dual monitor configuration, in high resolution
;mode, there are four displayable colors and again, four monochrome
;shades.

5

;0n a Model 100-B dual monitor configuration, in high resolution
;mode, there also are four displayable colors and four monochrome
;shades.

;In a color monitor only system, the green data must be mapped

;to the monochrome output. For a Model 100-B single color monitor
;system, in medium resolution mode, a sample color map would be as
sshown below:

.
k]

H NOTE

3 The following sample color map will be
H assembled with this example. If this
H is not appropriate, substitute one of

H the other samples or generate one that
H is custom tailored to the application.

;red data, green data mapped to mono.

clmpda db 0ffh sblack
db 00fh swhite
db 0ffh ;cyan
db 00fh ;magenta
db 00fh syellow
db 00fh sred
db 0ffh sblue
db 0ffh sgreen
db O0afh ;dk gray
db 0ffh ;dk cyan
db 08fh ;dk magenta
db 08fh ;dk yellow
db 08fh ;dk red
db 0ffh ;dk blue
db 0ffh ;dk green
db 07fh sgray

5-30

Initialization and Control

;green data, blue data

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
3

;For a Model 100-A single color monitor

0ffh
000h
000h
0f0h
00fh
0ffh
0f0h
00fh
O0aah
088h
0f8h
08fh
0ffh
0f8h
08fh
077h

sblack
swhite
;cyan
;magenta
;yellow
sred

;blue
;green

;dk gray
;dk cyan
;dk magenta
;dk yellow
;dk red
;sdk blue
;dk green

igray

system, in either high or

;medium resolution mode, only the lower two bits of the monochrome

;output are significant.

Therefore, you can only display four

;intensities of green since the green data must be output through
;the monochrome line. The same applies to a Model 100-B single

;color monitor system in high resolution mode.

3

i

dseg ends
end

5-31

6

Bitmap Write Setup (General)

Loading the ALU/PS Register

The ALU/PS Register data determines which bitmap planes will be written to during a
Read/Modify/Write (RMW) cycle and also sets the operation of the logic unit to one of three write
modes.

Bits 0 through 3 enable or disable the appropriate planes and bits 4 and 5 set the writing mode to
REPLACE, COMPLEMENT, or OVERLAY. Bits 6 and 7 are not used. Bit definitions for the
ALU/PS Register are in Part III of this manual.

Write an EFh to port 53h to select the ALU/PS Register and write the data to port 51h.

Example of Loading the ALU/PS Register

AR L LSRR SRS RS E R R RS R AR RS AR R R R R E R REREEEREREEREEESERERE SRR R R R X

*
B procedure alups *
3 *
H purpose: set the ALU/PS register *

*
1
H entry: bl = value to set ALU/PS register to *
3 exit: update ALU/PS shadow byte *
3 register usage: ax, *

;&il}*{il**!**********l**********i****i**Qil*lﬁﬁii****l**&**}i***}l**

6-1

Bitmap Write Setup

dseg segment byte public ‘datasg’
extrn alu:byte

dseg ends
cseg segment byte public ‘codesg’
extrn gdc_not_busy:near

public alups
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

alups proc near
call gdc_not_busy ;jdefined in procedure ‘init_option’
mov al,0efh ;select ALU/PS register
out 53h,al
mov byte ptr alu,bl j;update shadow byte (alu)
mov al,bl smove new ALU/PS value to al
out S1h,al ;load new value into ALU/PS register
ret
alups endp
cseg ends
end

Loading the Foreground/Background Register

The data byte in the Foreground/Background Register determines whether bits are set or cleared in
each of the bitmap planes during a bitmap write (RMW) operation. Bit definitions for the Fore-
ground/Background Register are in Part III of this manual.

Write an F7h to port 53h to select the Foreground/Background Register and write the data byte to
port 51h.

Example of Loading the Foreground/Background Register

;***’*******iﬁ*iOi{**&****{l{li*'l'-l**ill***i{*l’*&***il}&&!****’*i’***

*

H procedure fghbg

*
H *
H purpose: set the foreground / background register *
. *
7
H entry: bl = value to set fgbg register to *
; exit: update fgbg shadow byte *
3 register usage: ax *
;****{{*}*i{{****!*l-lﬂl{Q{***i*l****{{ll&*l”**l*’*!*lﬂll***.&**&*****i*

Bitmap Write Setup

dseg
extrn
dseg
cseg

fgbg

fgbg
cseg

segment
fg:byte
ends
segment
extrn
public
assume

proc
call
mov
out
mov
mov
out
ret
endp
ends
end

byte public ‘datasg’

byte public ‘codesg’
gdc_not_busy:near

fgbg
cs:cseg,ds:dseg,es:dseg,ss:nothing

near
gdc_not_busy ;defined in ‘init_option’

al,0f7h ;select the foreground/background
53h,al ;7 register

byte ptr fg,bl j;update shadow byte with new value
al,bl
S51h,al ;load new value into fgbg register

/

Area Write Operations

This chapter contains examples that illustrate displaying 64K bytes of memory, and clearing a rec-
tangular area of the screen to a given color.

Display Data from Memory

In the following example, video data in a 64K byte area of memory is loaded into the bitmap in order
to display it on the monitor. The last byte of the memory area specifies the resolution to be used. A
value of zero means use medium resolution mode. A value other than zero means use high resolution
mode. In medium resolution mode, the 64K bytes are written to four planes in the bitmap; in high
resolution mode, the 64K bytes are written to two planes.

Example of Displaying Data from Memory

BEEEEZEEEEZE SRR RS SRR SRS R AR R RS RRR RERRRR Rt iR R R R R R R R s R RN SR SRS

procedure ritvid

Kl
3 *
3 *
3 *
H purpose: restore a graphics screen save in a 64k *
3 segment of main memory by the procedure *
H ritvid. *
. *
2

*

;i*{{**’***il**i*******l*****}**{*i***l*l***{*****}*l********i}***&*

Area Write Operations

dseg segment byte public ‘datasg’
extrn gbmod:byte,gtemp:word,num_planes:byte,curl0:byte,gtemp1:byte
dseg ends
vidseg segment byte public “‘vseg’
extrn viddata:byte
vidseg ends

cseg segment byte public ‘codesg’
extrn init_option:near,fgbg:near,gdc_not_busy:near,alups:near
extrn imode:near

public ritvid

assume cs:cseg,ds:dseg,es:dseg,ss:nothing
H
ritvid proc near
;The video data is in vidseg. The last byte in vidseg is the
;resolution flag. If flag is=0 the option is in medium resolution
;mode; otherwise it is in high resolution mode. 1Initialize the
;option to that resolution.

.
2

mov ax,es
mov word ptr cs:segment_save,ax ;jsave es
call gdc_not_busy ;jwait till GDC is free
mov ax,vidseg ;set es to point to video buffer
mov es,ax
mov 51,0ffffh ;fetch the resolution flag from
mov al,es:[sil ; the last byte of vidbuf
test al,0ffh ;is it high resolution?
jnz rt1 s jump if yes.
mov dx, 1
jmp rt2
rt1: mov dx,2
rt2: mov ax,word ptr cs:segmeni_save
mov es,ax srestore old es
call init_option sassert the new resolution.

3
;init-option leaves us in text mode with fg=f0 and alups=0.

and byte ptr gbmod,0fdh
or byte ptr gbmod,010h
call imode ;smake sure we’re in text mode
mov bl,0fh ;put 1’s into bg and 0’s into fg
call fgbg ;because write buffer inverts data
test byte ptr gbmod,1 shigh resolution?
jnz ri3 ;jump if yes.
mov word ptr gtemp,1024 ;8 wrd-writes/plane (med res)
jmp rt4

rt3: mov word ptr gtemp,2048 ;8 wrd-writes/plane (high res)

7-2

Area Write Operations

rtd: mov
mov
mov
mov
xor

;Enable a plane

rtS: mov
mov
sub
mov
mov
rol
and
call

di,0 ;start at beginning of vidbuf.
ax,vidseg ;set es to point to video buffer
es,ax

cl,byte ptr num_planes ;fetch number of planes
ch,ch ;7 to be written

to be written.

word ptr gtemp1,cx ;save plane writing counter
bl,byte ptr num_planes ;select plane to write enable
bl,cl ;this is plane to write enable
cl,bl

bl,0feh sput 2 0 in that plane’s select position
bl,cl

bl,0fh ;keep in REPLACE mode

alups ;assert the new ALU/PS

;Fill that plane with data, 8 words at a time, from vidseg.

H
mov
mov

ri6: push
call
mov
out
out
mov

rt7: mov
inc
out
loop
mov
out
mov
out
mov
out
mov
out
mov
out
out
xor
out
out
mov
out
mov

word ptr curl0,0 ;start write at top left
cx,word ptr gtemp snumber of 8 word writes
cx 3 to fill plane
gdc_not_busy ;wait until GDC has finished
al,0feh ; previous write

S3h,al

S1h,al

cx, 16 ;fetch 16 bytes
al,es:[dil ;fill ptable with data
di ;s to be written

52h,al

rt7

al,49h ;assert the position to
57h,al ; start the write
ax,word ptr curl0

56h,al

al,ah

S56h,al

al,04ah sinit the mask to O0ffffh
57h,al

al,0ffh

S6h,al

56h,al

al,al

54h,al

55h,al

al,4ch

57h,al snow start the write
al,2 sdirection is down

Area Write Operations

out 56h,al

mov al,?7 sdo 8 writes

out S6h,al

xor al,al

out 56h,al

mov al,22h ;start the write

out 57h,al

mov al,0ffh

out 56h,al

out 56h,al

add word ptr curl0,08 ;next location to be written
pop cx

loop ri6 ;loop to complete this plane
mov cx,word ptr gtempi ;keep looping until all

loop rts ; planes are written

mov ax,word ptr cs:segment_save

mov es,ax

ret

ritvid endp

segment_save dw 0
cseg ends
end

Set a Rectangular Area to a Color

The example that follows illustrates how to set a rectangular area of the screen to some specified
color. Input data consists of the coordinates of the upper left and lower right corners of the area (in
pixels) plus the color specification (a 4-bit index value). The special case of setting the entire screen
to a specified color is included in the example as a subroutine that calls the general routine.

Example of Setting a Rectangular Area to a Color

;*******l*i****’l*li**&{#*’****************************l***ii**i*{***

.
7

3 procedure set_all_screen *
H *
H purpose: set entire screen to a user defined color *
. *
3 entry: di is the color to clear the screen to *
H exit: fgbg and alups shadow bytes updated *
H register usage: ax,bx,cx,dx,si,di *

;***********¢******li********Q***{********{******Q*i********’********
3
cseg segment byte public ‘codesg’
extrn fgbg:near,gdc_noi_busy:near,imode:near,alups:near
public set_all_screen,set_rectangle
assume cs:cseg,ds:dseg,es:nothing,ss:nothing

7-4

Area Write Operations

5

set_all_screen
mov
mov
mov
mov
mov
mov
jmp

set_all_screen

.
7

proc near

word ptr xstart,0 ;start at the top left corner
word ptr ystart,0

ax,word ptr xmax

word ptr xstop,ax ;fetch the bottom right corner
ax,word ptr ymax

word ptr ystop,ax ;coordinates.

set_rectangle

endp

REEZEEEEEEE RS R R R RS E R R R R R R R R SRR SRR R RS R R R R R R R R R RS R R R R R R RS R
El

k)

*

H procedure set_rectangle *
. *
H purpose: set a user defined screen rectangle to a *
H user defined color *
H *
H entry: xstart has the start x in pixels *
3 ystart has the start y in scan lines *
H xstop has the stop x in pixels *
H ystop has the stop y in scan lines *
H di is the color to clear the screen to *
H exit: *
H register usage: ax,bx,cx,dx,di,si,xstart is altered *

EEAEZEZ R RS2SR R R R EEEEEE R RS R AR R R R R R R AR R R R R R R R R R R AR SRR RS R ER RS
El

H
set_rectangle

.
]

proc near

;No validity checks are being made on start and stop coordinates.

I

H xstart must be <= xstop

; ystart must be <= ystop

.
b

;Assert the new screen color to both nibbles of the the foreground/
;background register. Put the option into REPLACE mode with all
;planes enabled and in write-enabled word mode.

mov
mov
mov
shl
or
call
xor
call
and
or

call

bx,di ;di has the color; only low nibble valid
bh,bl ;combine color number into both fg and bg
cl,4 ;shift the color up to the high nibble
bh,cl

bl,bh ;combine high nibble with old low nibble
fgbg sassert new value to fgbg register

bl,bl ;set up REPLACE mode, all planes

alups ;assert new value to ALU/PS register
byte ptr gbmod,0fdh ;set up text mode

byte ptr gbmod, 10h ;set up write enable mode
imode ;assert new value to mode register

Area Write Operations

?

;Do the rectangle write.

?

;Do the write one column at a time. Since the GDC is a word device,
;we have to take into account that we might have our write window
;start on a pixel that isn’t on a word boundary. The graphics
;options write mask must be set accordingly. Do a write buffer
;write to all of the rectangle as defined by start,stop. Calculate
;the first curl0. Calculate the number of scans per column to be
swritten.

.
2

mov ax,word ptr xstart ;turn pixel address into

mov cl,4 s word address

shr ax,cl

mov dx,word ptr ystart ;turn scan start to words/linety
mov cl,byte ptr shifts_per_line ;number of shifts

shl dx,cl

add dx,ax ;combine x and y word addresses
mov word ptr curl0,dx sfirst curl0.

mov ax,word ptr ystop ;subtract start from stop.

sub ax,word ptr ystart

mov word ptr nmritl,ax

H
;Program the text mask.
H

;There are four possible write conditions-

partially write disabled to left
completely write enabled

- partially disabled to the right

- partially disabled to both left and right

a o oo
]

;The portion to be write disabled to the left will be the current
;xstart pixel information. As we write a column, we update the
scurrent xstart location. Only the first xstart will have a left
shand portion write disabled. Only the last will have a right
shand portion disabled. If the first is also the last, a portion
s;of both sides will be disabled.

cls1: mov bx,0ffffh ;calculate the current write mask
mov cx,word ptr xstart
and cx,0fh ;eliminate all but pixel information
shr bx,cl ;shift in a 0 for each left pixel

3 to be disabled

Area Write Operations

;Write buffer write is done by columns. Take the current xstart
sand use it as the column to be written to. MWhen the word address
;of xstart is greater than the word address of xstop, we are
;finished. There is a case where the current word address of
;xstop is equal to the current word address xstart. In that

;case we have to be concerned about write disabling the bits to
;the right. MWhen xstop becomes less than xstart then we are done.

.
k)

mov ax,word ptr xstart j;test if word xstop is equal
and ax,0fff0h H to word xstart

mov cx,word ptr xstop

and cx,0fffOh

cmp ax,cx sbelow?

ib cls3 s jump if yes

je cls2 ;jump if equal - do last write
jmp exit sall done - exit

;We need to set up the right hand write disable. This is also the
;last write. bx has the left hand write enable mask in it.
;Preserve and combine with the right hand mask which will be
;(f-stop pixel address) bits on the right.

.
2

cls2: mov cx,word ptr xstop ;strip pixel info out of xstop
and cx,0fh
inc cx ;make endpoint inclusive of write
mov ax,0ffffh s;shift the disable mask
shr ax,cl swherever there is a one, we
xor ax,0ffffh swant to enable writes
and bx,ax ;combine right and left masks

i

;bx currently has the mask bytes in it. Where we have a one, we

;want to make a zero so that particular bit will be write enabled.
cls3: xor bx,0ffffh ;invert to get zeros for ones
H

;Assert the new write mask. Make sure that the GDC is not busy
;before we change the mask.

3

cls4: call gdc_not_busy ;check that the GDC isn’t busy
mov al,bh ;assert the upper write mask
out S5h,al
mov al,bl sassert the lower write mask
out 54h,al

2

;Position the GDC at the top of the column to be written. This
;address was calculated earlier and the word need only be fetched
;and applied. The number of scans to be written has already been
scalculated.

7-7

Area Write Operations

mov al,49h ;assert the GDC cursor address
out 57h,al
mov ax,word ptr curl0 ;assert word address low byte
out 56h,al
mov al,dh ;assert word address high byte
out 56h,al

;Start the write operation. Textimask, alups, gbmod and fgbg are

;already set up.

7

;Update
scolumn
;pixels

exit:

set_rectangle

cseg
dseg
extrn
extrn
public
xstart
xstop
ystart
ystop
nmritl
dseg

7-8

mov
out
xor
out
mov
out
mov
out
mov
out
mov
out
out

GDC is positioned.

al,4ch ;assert figs to GDC
57h,al

al,al sdirection is down
56h,al

ax,word ptr nmritl

Seh,al s;assert number of write
al,ah ; operations to perform
56h,al

al,22h ;assert wdat

57h,al

al,0ffh

56h,al

56h,al

the starting x coordinate for the start of the next

write.

Strip off the pixel information and then add 16

to it to get the next word address.

and
add
inc
imp

ret

word ptr xstart,0fffOh ;strip off pixel info
word ptr xstart, 16 saddress the next word
word ptr curl0

cls1 s;check for another column to clear
endp

ends

segment byte public ‘datasg’

curl0:word,gbmod:byte,xmax:word,ymax:word
shifts_per_line:byte

xstart,xstop,ystart,ystop

dw

8

Vector Write Operations

The examples in this chapter illustrate some basic vector write operations. They cover setting up the
Pattern Generator and drawing a single pixel, a line, and a circle.

Setting Up the Pattern Generator

When operating in Vector Mode, all incoming data originates from the Pattern Generator. The
Pattern Generator is composed of a Pattern Register and a Pattern Multiplier. The Pattern Register
supplies the bit pattern to be written. The Pattern Multiplier determines how many times each bit is
sent to the bitmap write circuitry before being recirculated.

NOTE
The Pattern Multiplier must be loaded before loading the Pattern Register.

Example of Loading the Pattern Register
The Pattern Register is an 8-bit register that is loaded with a bit pattern. This bit pattern, modified

by a repeat factor stored in the Pattern Multiplier, is the data sent to the bitmap write circuitry
when the option is in Vector Mode.

8-1

Vector Write Operations

;***i***‘0*I-***'l"l'i"l'l*li**li**il'li*{{‘**'l~-llil-l'l*”4‘****!!’{**&!!}****{

.
2

procedure pattern_register
purpose: set the pattern register

entry: bl = pattern data

exit: update pattern register shadow byte

register usage: ax

caution:

you must set the pattern multiplier before
setting the pattern register

*

[E A E X R EREEER SRR R EEEEE SR EEE R R R R R RERRR R R R AR R R R R R R R R R R R R R R R R R RSN

;The pattern register contains a 16-bit pixel pattern that is written

;to the bitmap when the Graphics Option is in Vector Mode.

.
k)

;Sample register values and corresponding patterns are:

.
2
.
7

.
k)

register value pattern output
0ffh 1111111
Oaah 10101010
0f0h 11110000
0cdh 11001101

;The above assumes that the Pattern Multiplier has been set to

smultiply the pattern by 1.

;to multiply the pattern by 3, the above examples, when output to
;the bitmap would look as follows:

.
7

.
7

register value pattern output

0ffh IRRARRRRRREREERRRRRREREN
O0aah 111000111000111000111000
0f0h 111111111111000000000000
Ocdh 111111000000111111000111

segment byte public ‘datasg’

prdata:byte

ends

segment byte public ‘codesg’

extrn gdc_not_busy:near

public pattern_register

assume cs:cseg,ds:dseg,es:dseg,ss:nothing

If the Pattern Multiplier had been set

Vector Write Operations

pattern_register proc near
call gdc_not_busy ;jdefined in ‘init_option’
mov al,0fbh ;select the pattern register
out S53h,al
mov byte ptr prdata,bl ;update shadow byte
mov al,bl
out 51h,al ;load the pattern register
ret

pattern_register endp

cseg ends
end

Example of Loading the Pattern Multiplier

The Graphics Option expects to find a value in the Pattern Multiplier such that sixteen minus that

value is the number of times each bit in the Pattern Register is repeated. In the following example,
you supply the actual repeat factor and the coding converts it to the correct value for the Graphics

Option.

;l{{ll{«l*llii~l-liil'l-I-I-I--l-l-lll-'I-*{I**l-!il*il!*i&**}****i*i*iil**{ill**l-**

H procedure pattern_mulH@¢t *
. *
H purpose: set the pattern multiplier *
. *
3 entry: bl = value to multiply pattern by (1 - 16) *
3 exit: updated pattern multiplier shadow byte *
3 register usage: ax,bx *
H caution: you must set the pattern multiplier before *
3 setting the pattern register *

3
;'I*l‘l'l'ii'l'I"l'l'l'i*ii*‘l‘I’I{*l-l*I‘I-l-'I'il**ll*'l'i{li*l{**iiiiii*}*l’i}*l’*******
3

dseg segment byte public ‘datasg’

extrn prmult:byte

dseg ends
cseg segment byte public ‘codesg’
extrn gdc_not_busy:near ;jdefined in ‘init_option’

public pattern_mult
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

8-3

Vector Write Operations

H

pattern_mult proc near
call gdc_not_busy ;defined in ‘init_option’
mov byte ptr prmult,bl ;update multiplier shadow byte
dec bl smake bl zero relative
not bl sinvert it - remember that pattern
;register is multiplied by 16 minus
;the multiplier value
mov al,0fdh ;select the pattern multiplier
out 53h,al
mov al,bl ;load the pattern multiplier
out 51h,al
ret
pattern_mult endp
cseg ends
end

Display a Pixel

The following example displays a single pixel at a location specified by a given set of x and y
coordinates. Coordinate position 0,0 is in the upper left corner of the screen. The x and y values are
in pixels and are positive and zero-based. Valid values are:

x = 0 - 799 for high resolution
0 - 383 for medium resolution
y = 0 - 239 for high or medium resolution

Also, in the following example, it is assumed that the Mode, ALU/PS, and Foreground/Background
registers have already been set up for a vector write operation.

Example of Displaying a Single Pixel

IEEEEEEESEEE RS EEEE SRR EEE R R R R R RS AR R R AR R R R R R R R R RS R R R RSt ER]
2

k]

H procedure pixel *
H *
H purpose: draw a pixel *
. *
H entry: xinit = x location *
3 yinit = y location *
H valid x values = 0-799 high resolution *
H = 0-383 medium resolution *

; valid y values = 0-239 med. or high res. *

;*l********************I-*l'*********l**********************"****i’*****

Vector Write Operations

;Do a vector draw of one pixel at coordinates in xinit,yinit. Assume
;that the Graphics Option is already set up in terms of Mode Register,
;Foreground/Background Register, and ALU/PS Register.

.
il

dseg segment byte public ‘datasg’
extrn gbmod:byte,curl0:byte,curli:byte,curl2:byte,xinit:word
extrn yinit:word
dseg ends
cseg segment byte public ‘codesg’
extrn cxy2cp:near,gdc_not_busy:near

public pixel
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

pixel proc near
call gdc_not_busy
call cxy2cp ;convert x,y to a cursor position
mov al,49h ;send out the cursor command byte
out 57h,al
mov ax,word ptr curl0 j;assert cursor location low byte
out 56h,al
mov al,ah ;assert cursor location high byte
out 56h,al
mov al,byte ptr curl2 j;assert cursor pixel location
out 56h,al
mov al,d4ch ;assert the figs command
out 57h,al
mov al,02h ;line direction - to the right
out 56h,al
mov al,6c¢ch ;tell GDC to draw pixel when ready
out 57h,al
ret

pixel endp
cseg ends
end

Display a Vector

The example in this section will draw a line between two points specified by x and y coordinates
given in pixels. The valid ranges for these coordinates are the same as specified for the previous
example. Again it is assumed that the Mode, ALU/PS, and Foreground/Background registers have

already been set up for a vector write operation. In addition, the Pattern Generator has been set up

for the type of line to be drawn between the two points.

Vector Write Operations

Example of Displaying a Vector

;l*&*****i&*i**{’i{*{lll{i***i#***&ﬁ}*§**li**l*}%’&ll!*’&il*i*{{'**i*

.
2

H procedure vector *
H *
H purpose: draw a vector *
. *
3 entry: xinit = starting x location *
B yinit = starting y location *
H xfinal= ending x location *
H yfinal= ending y location *
H valid x values = 0 - 799 high resolution *
H 0 - 383 medium resolution *
3 valid y values = 0 - 239 high or med. res. *
3 exit: *
H register usage: ax *

;i{ll******{{i&“***}%i**i*l!!}iii!l*}&**Q*&*Q*QG&*&&G{{*}{I’}“**i***l

7

dseg segment byte public ‘datasg’

extrn curl0:byte,curlt:byte,curl2:byte,dc:word,d:word,d2:word
extrn d1:word,dir:byte,xinit:word,yinit:word,xfinal:word
extrn yfinal:word,gbmod:byte,p1:byte

dseg ends

cseg segment byte public ‘codesg’

extrn gdc_not_busy:near,cxy2cp:near

public wvector

assume cs:cseg,ds:dseg,es:dseg,ss:nothing
vector proc near
sDraw a vector.
;Assume the start and stop coordinates to be in xinit, yinit,
;xfinal, and yfinal. The Foreground/Background, ALU/PS, Mode,
;and Pattern Registers as well as the GDC PRAM bytes and all other
sincidental requirements such as '"gdc_not_busy" have been taken
;care of already. This routine positions the cursor, computes the
;draw direction, dc, d, d2, d1 and then implements the actual figs
;and figd commands.

.
7

call gdc_not_busy

call cxy2cp j;convert starting x,y to a cursor position
mov al,49h ;set cursor location from curl0,1,2

out S57h,al sissue the GDC cursor location command
mov al,curl0 ;fetch word - low address

out 56h,al

mov al,curl1 ;fetch word - middle address

out 56h,al

Vector Write Operations

vi:

quadi12:

quadi:
oct2:
oct3:

quad2:

oct4:

octS:

quad34:

quad3:

oct6:

oct7:

mov
out
mov
cmp
jnz
mov
cmp
jnz
mov
out
mov
out
mov
out
ret
mov
sub
jns
neg
mov
sub
js
cmp
jbe
mov
Imp
mov
imp
neg
cmp
jae
mov
imp
mov
imp
mov
sub
jns
neg
cmp
jbe
mov
imp
mov

jmp

al,curl?2
56h,al
ax,word ptr
ax,word ptr
vi

ax,word ptr
ax,word ptr

;dot address (top 4 bits)/high address

xinit j;start and stop points the same?
xfinal ;jump if not

yinit ;might be - check the y’s
yfinal

v ;jump if not

al,04ch ;write single pixel - current vector write
057h,al ;can’t handle a one pixel write

al,2

056h,al

al,06ch

057h,al

bx,yfinal ;compute delta y

bx,yinit jdelta y negative now?

quad34 ;s jump if not (must be quad 3 or 4)

bx ;delta y is negative, make absolute
ax,xfinal ;compute delta x

ax,xinit ;delta x negative?

quad2 ;jump if yes

ax,bx soctant 2°?

oct3 ;s jump if not

p1,02 sdirection of write

vxind j;abs(deltax)>abs(deltay), independent axis=x-axis
p1,03 sdirection of write

vyind j;abs(deltax)=<abs(deltay), independent axis=y-axis
ax ;delta x is negative, make absolute
ax,bx soctant 47

octS ;jump if not

p1,04 sdirection of write

vyind ;abs(deltax)=<abs(deltay), independent axis=y-axis

p1,05

sdirection of write

vxind ;abs(deltax)>abs(deltay), independent axis=x-axis

ax,xfinal
ax,xinit
quad4

ax

ax,bx
oct?
p1,06

;compute delta x

;jump if delta x is positive

;make delta x absolute instead of negative
;octant 67

s jump if not

jdirection of write

vxind ;abs(deltax)>abs(deltay), independent axis=x-axis

p1,07

sdirection of write

vyind ;abs{(deltax)<=abs(deltay), independent axis=y-axis

Vector Write Operations

quad4: cmp ax,bx soctant 0°?

jae oct1 ;jump if not
octO: mov p1,0 sdirection of write

jmp vyind ;abs(deltax)<abs(deltay), independent axis=y-axis
oct1: mov p1,01 sdirection of write

jmp vxind j;abs(deltax)=>(deltay), independent axis=x-axis
vyind: xchg ax,bx ;put independent axis in ax, dependent in bx
vxind: and ax,03fffh ;limit to 14 bits

mov dc,ax ;dc=abs(delta x)

push bx ;save abs(delta y)

shl bx, 1

sub bx,ax

and bx,03fffh slimit to 14 bits

mov d,bx ;d=2*abs(delta y)-abs(delta x)

pop bx ;restore (abs(delta y)

push bx ;save abs(delta y)

sub bx,ax

shl bx,1

and bx,03fffh s1limit to 14 bits

mov d2,bx ;d2=2*(abs(delta y)-abs(delta x))

pop bx

shl bx,1

dec bx

and bx,03fffh ;1imit to 14 bits

mov d1,bx ;d1=2*abs(delta y)-1
vdo: mov al,04ch ;issue the figs command

out 57h,al

mov al,08 ;construct p1 of figs command

or al,p1

out 56h,al ;issue a parameter byte

mov si,offset dc

mov cx,08 ;issue the 8 bytes of dc,d,d2,d1
vdo1: lodsb ;fetch byte

out 56h,al jissue to the GDC

loop vdo1 ;loop until all 8 done

mov al,06ch ;start the drawing process in motion

out 57h,al ;by issuing figd

ret

vector endp
cseg ends
end

8-8

Vector Write Operations

Display a Circle

The example in this section will display a circle, given the radius and the coordinates of the center in
pixels. The code is valid only if the option is in medium resolution mode. If this code is executed in

high resolution mode, the aspect ratio would cause the output to be generated as an ellipse. As in

the previous examples, the option is assumed to have been set up for a vector write operation with

the appropriate type of line programmed into the Pattern Generator.

Example of Drawing a Circle

;**{************Q****Ql{*******l-**-l'***%ﬁ{***l'*&&***i!&i{**********}**

. *
2

H procedure circle ‘ *
H *
; purpose: draw a circle in medium resolution mode *
. *
H entry: xinit = circle center x coordinate (0-799) *
H yinit = circle center y coordinate (0-239) *
; radius = radius of the circle in pixels *
. #*
H caution: This routine will only work in medium *
H resolution mode. Due to the aspect ratio *
H of high resolution mode, circles appear *
H as ellipses. *

;*****l'*&**i'******Qllﬂl-l'i********'l*******}******{*l**“l’**l***********
;Draw an circle.

;This routine positions the cursor, computes the draw direction, dc,
;d, d2, d1 and implements the actual figs and figd commands.

;The Mode Register has been set up for graphics operations, the write
;mode and planes select is set up in the ALU/PS Register, the
;Foreground/Background Register is loaded with the desired foreground
;and background colors and the Pattern Multiplier/Pattern Register is
s loaded. In graphics mode, all incoming data comes from the Pattern
;Register. We have to make sure that the GDC’s PRAM 8 and 9 are all
;ones so that it will try to write all ones to the bitmap. The
;external hardware intervene and put the pattern register’s data
;into the bitmap.

8-9

Vector Write Operations

extrn gbmod:byte,curl0:byte,curli:byte,curl2:byte,xinit:word
extrn yinit:word,dir:byte,shifts_per_line:byte
dseg segment byte public “‘datasg’

public radius,xad,yad

dc dw 0

d dw 0

d2 dw 0

d1 dw 0

dm dw 0

xad dw 0

yad dw 0

radius dw 0

dseg ends

cseg segment byte public ‘codesg’

extrn gdc_not_busy:near

public circle
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

.
2

circle proc near
call gdc_not_busy
mov al,78h
out 57h,al ;set pram bytes 8 and 9
mov al,0ffh
out 56h,al
out 56h,al
mov word ptr d1,-1 ;set figs d1 parameter
mov word ptr dm,0 ;set figs d2 parameter
mov bx,word ptr radius ;get radius
mov ax,0b505h ;get 1/1.41
inc bx
mul bx
mov word ptr dc,dx ;set figs dc parameter
dec bx
mov word ptr d,bx ;set figs d parameter
shl bx, 1
mov word ptr d2,bx ;set figs d2 parameter
mov ax,word ptr xinit ;get center x
mov word ptr xad,ax ;save it
mov ax,word ptr yinit ;get center y
sub ax,word ptr radius ssubtract radius
mov word pir yad,ax ;jsave it
call acvt ;position cursor
mov byte ptr dir,01h sarc 1
call avdo ;draw it
call acvt ;position cursor
mov byte ptr dir,06h ;arc 6
call avdo sdraw it

Vector Write Operations

mov
mov
mov
add
mov
call
mov
call
call
mov
call

mov
sub
mov
mov
mov
call
mov
call
call
mov
call

mov
add
mov
mov
mov
call
mov
call
call
mov
call
ret

?

;Convert the starting x,y coordinate

sword value.

ax,word ptr xinit
word ptr xad,ax
ax,word ptr yinit

ax,word ptr radius

word ptr yad,ax
acvt
byte ptr dir,02h
avdo
acvt
byte ptr dir,05h
avdo

ax,word ptr xinit

ax,word ptr radius

word ptr xad,ax
ax,word ptr yinit
word ptr yad,ax
acvt

byte ptr dir,03h
avdo

acvt

byte ptr dir,00h
avdo

ax,word ptr xinit

ax,word ptr radius

word ptr xad,ax
ax,word ptr yinit
word ptr yad, ax
acvt

byte ptr dir,07h
avdo

acvt

byte ptr dir,04h
avdo

;get center x
;save it

;get center y
;add in radius
;save it
;position cursor
sarc 2

;draw it
;position cursor
sarc §

;draw it

;iget center x
ssubtract radius
;save it

;get center y
;save it
;position cursor
sarc 3

sdraw it
;position cursor
sarc 0

sdraw it

;get center x
sadd in the radius
;save it

;get center y
;save it
sposition cursor
sarc 7

sdraw it
;position cursor
sarc 4

sdraw it

pair into a cursor position

Vector Write Operations

acvti:
mov
xor
mov
shl
mov
mov
mov
div
add
mov
mov
mov
shl
mov
mov
out
mov
out
mov
out
mov
out
ret
avdo: call
mov
out
mov
or
out
mov
mov
avdo1: mov
out
inc
loop
mov
out
ret
circle endp
cseqg ends
end

8-12

cl,byte ptr shifts_per_line j;set up for 32/16-bit

dx,dx

;math - clear upper 16 bit

ax,word ptr yad

ax,cl
bx,ax

ax,word ptr xad j;compute number of words on last line

cx, 16

cx

ax,bx
curl0,al
curl1,ah
cl,04
dl,cl
curl2,dl
al,49h
57h,al
al,curl0
56h,al
al,curlt
56h,al
al,curl2
56h,al

ssave lines * word/line

316 bits/word
sax has number of extra words to add in
;dx has the <16 dot address left over
;this is the new cursor memory address

;dot address is high nibble of byte
;set cursor location to curl0,1,2
sissue the GDC cursor location command
s;fetch word - low address

;fetch word - middle address

;dot address (top 4 bits)/high address

gdc_not_busy

al,4ch
57h,al
al,020h

sissue the figs command

;construct p1 of figs command

al,byte ptr dir

56h,al

;issue a parameter byte

si,offset dc

cx,10
al,[si]
56h,al
51
avdo1
al,b6ch
57h,al

;issue the 10 bytes of dc,d,d2,d1
;fetch byte

sissue to the GDC

;point to next in list

;loop until all 10 done

;start drawing process in motion
;by issuing figd

9

Text Write Operations

In this chapter the examples illustrate coding for writing byte-aligned 8 X 10 characters, determin-
ing type and position of the cursor, and writing bit-aligned vector (stroked) characters.

Write a Byte-Alighed Character

This example uses a character matrix that is eight pixels wide and ten scan lines high. The charac-
ters are written in high resolution mode and are aligned on byte boundaries. The inputs are the
column and row numbers that locate the character, the code for the character, and the color
attribute.

Example of Writing a Byte-Alighed Character

;********************i}}ii****}Q-l-*i*{l*****i*****l*{l**{***l***}}****

. *
7

H procedure gtext *
. *
7

3 purpose: write 8 pixels wide x 10 scan lines *
H graphics text in high resolution *
. *
7

H entry: ax is the column location of the character *
H bx is the row location of the character *
H dl is the character *
B dh is the fgbg *
;****ii*******'l'***lii***i*l***{i****ii*-l***i*****“********l**********

.
7

dse segment byte ublic ‘datasg’
9 9 Y P 9

Text Write Operations

extrn curlO:byte,curl2:byte,gbmod:byte,fg:byte

2

;This table has the addresses of the individual text font characters.
;Particular textab addresses are found by taking the offset of the
;textab, adding in the ASCII offset of the character to be printed
;and loading the resulting word. This word is the address of the
sstart of the character’s text font.

.
2

gbmskl db 0

gbmskh db 0

textab dw 0
dw 10
dw 20
dw 30
dw 40
dw 50
dw 60
dw 70
dw 80
dw 90
dw 100
dw 110
dw 120
dw 130
dw 140
dw 150
dw 160
dw 170
dw 180
dw 190
dw 200
dw 210
dw 220
dw 230
dw 240
dw 250
dw 260
dw 270
dw 280
dw 290
dw 300
dw 310
dw 320
dw 330
dw o 340
dw 350
dw 360
dw 370

Text Write Operations

380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850

Text Write Operations

dw
dw
dw
dw
dw
dw
dw
dw
dw
stext font
space db
db
db
db
db
db
db
db
db
db

exclam db
db
db
db
db
db
db
db
db
db

quote db
db
db
db
db
db
db
db
db
db

860
870
880
890
900
910
920
930
940

11111111b
0ffh
0ffh
0ffh
0ffh
0ffh
0ffh
0ffh
0ffh
11111111b

11111111b
11100111b
11100111b
11100111b
11100111b
11100111b
11111111b
11100111b
11111111b
11111111b

11111111b
0d7h
0d7h
0d7h
0ffh
0ffh
0ffh
0ffh
0ffh
11111111b

Text Write Operations

num

dollar

percent

amp

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
11010111b
11010111b
00000001b
11010111b
00000001b
11010111b
11010111b
11111111b
11111111b

11111111b
11101111b
10000001b
01101111b
10000011b
11101101b
00000011b
11101111b
11111111b
11111111b

11111111b
00111101b
00111011b
11110111b
11101111b
11011111b
10111001b
01111001b
11111111b
11111111b

11111111b
10000111b
01111011b
10110111b
11001111b
10110101b
01111011b
10000100b
11111111b
11111111b

Text Write Operations

apos

lefpar

ritpar

aster

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
11100111b
11101111b
11011111b
11111111b
11111111b
11111111b
11111111b
11111111b
11111111b

11111111b
11110011b
11100111b
11001111b
11001111b
11001111b
11100111b
11110011b
11111111b
11111111b

11111111b
11001111b
11100111b
11110011b
11110011b
11110011b
11100111b
11001111b
11111111b
11111111b

11111111b
11111111b
10111011b
11010111b
00000001b
11010111b
10111011b
11111111b
11111111b
11111111b

Text Write Operations

plus

comma

minus

period

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
11111111b
11101111b
11101111b
00000001b
11101111b
11101111b
11111111b
11111111b
11111111b

11111111b
11111111b
11111111b
11111111b
11111111b
11111111b
11100111b
11100111b
11001111b
11111111b

11111111b
11111111b
11111111b
11111111b
00000001b
11111111b
11111111b
11111111b
11111111b
11111111b

11111111b
11111111b
11111111b
11111111b
11111111b
11111111b
11100111b
11100111b
11111111b
11111111b

Text Write Operations

slash

zero

one

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
11111101b
11111001b
11110011b
11100111b
11001111b
10011111b
00111111b
11111111b
11111111b

11111111b
11000101b
10010001b
10010001b
10001001b
10001901b
10011001b
10100011b
11111111b
11111111b

11111111b
11100111b
11000111b
11100111b
11100111b
11100111b
11100111b
10000001b
11111111b
11111111b

11111111b
11000011b
10011001b
11111001b
11100011b
11001111b
10011111b
10000001b
11111111b
11111111b

Text Write Operations

three

four

five

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
10000001b
11110011b
11100111b
11000011b
11111001b
10011001b
11000011b
11111111b
11111111b

11111111b
11110001b
11100001b
11001001b
10011001b
10000001b
11111001b
11111001b
11111111b
11111111b

11111111b
10000001b
10011111b
10000011b
11111001b
11111001b
10011001b
11000011b
11111111b
11111111b

11111111b
11000011b
10011001b
10011111b
10000011b
10001001b
10011001b
11000011b
11111111b
11111111b

Text Write Operations

seven

eight

nine

colon

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
10000001b
11111001b
11110011b
11100111b
11001111b
10011111b
10011111b
11111111b
11111111b

11111111b
11000011b
10011001b
10011001b
11000011b
10011001b
10011001b
11000011b
11111111b
11111111b

11111111b
11000011b
10011001b
10010001b
11000001b
11111001b
10011001b
11000011b
11111111b
11111111b

11111111b
11111111b
11111111b
11100111b
11100111b
11111111b
11100111b
11100111b
11111111b
11111111b

Text Write Operations

scolon

lesst

equal

greatr

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
11111111b
11111111b
11100111b
11100111b
11111111b
11100111b
11100111b
11001111b
11111111b

11111111b
11111001b
11110011b
11001111b
10011111b
11001111b
11110011b
11111001b
11111111b
11111111b

11111111b
11111111b
11111111b
10000001b
11111111b
10000001b
11111111b
11111111b
11111111b
11111111b

11111111b
10011111b
11001111b
11110011b
11111001b
11110011b
11001111b
10011111b
11111111b
11111111b

Text Write Operations

ques

at

capa

capb

9-12

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
11000011b
10011001b
11111001b
11110011b
11100111b
11111111b
11100111b
11111111b
11111111b

11111111b
11000011b
10011001b
10011001b
10010001b
10010011b
10011111b
11000001b
11111111b
11111111b

11111111b
11100111b
11000011b
10011001b
10011001b
10000001b
10011001b
10011001b
11111111b
11111111b

11111111b
10000011b
10011001b
10011001b
10000011b
10011001b
10011001b
10000011b
11111111b
11111111b

Text Write Operations

capc

capd

cape

capf

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
11000011b
10011001b
10011111b
10011111b
10011111b
10011001b
11000011b
11111111b
11111111b

11111111b
10000011b
10011001b
10011001b
10011001b
10011001b
10011001b
10000011b
11111111b
11111111b

11111111b
10000001b
10011111b
10011111b
10000011b
10011111b
10011111b
10000001b
11111111b
11111111b

11111111b
10000001b
10011101b
10011111b
10000111b
10011111b
10011111b
10011111b
11111111b
11111111b

Text Write Operations

capg

caph

capi

capj

9-14

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
11000011b
10011001b
10011001b
10011111b
10010001b
10011001b
11000011b
11111111b
11111111b

11111111b
10011001b
10011001b
10011001b
10000001b
10011001b
10011001b
10011001b
11111111b
11111111b

11111111b
11000011b
11100111b
11100111b
11100111b
11100111b
11100111b
11000011b
11111111b
11111111b

11111111b
11100001b
11110011b
11110011b
11110011b
11110011b
10010011b
11000111b
11111111b
11111111b

Text Write Operations

capk

capl

capm

capn

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
10011001b
10010011b
10000111b
10001111b
10000111b
10010011b
10011001b
11111111b
11111111b

11111111b
10000111b
11001111b
11001111b
11001111b
11001111b
11001101b
10000001b
11111111b
11111111b

11111111b
00111001b
00010001b
00101001b
00101001b
00111001b
00111001b
00111001b
11111111b
11111111b

11111111b
10011001b
10001001b
10001001b
10000001b
10010001b
10010001b
10011001b
11111111b
11111111b

9-15

Text Write Operations

capo

capp

capq

capr

9-16

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
11000011b
10011001b
10011001b
10011001b
10011001b
10011001b
11000011b
11111111b
11111111b
11111111b
10000011b
10011001b
10011001b
10000011b
10011111b
10011111b
10011111b
11111111b
11111111b

11111111b
11000011b
10011001b
10011001b
10011001b
10010001b
10011001b
11000001b
11111100b
11111111b

11111111b
10000011b
10011001b
10011001b
10000011b
10000111b
10010011b
10011001b
11111111b
11111111b

Text Write Operations

caps

capt

capu

capv

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
11000011b
10011001b
10011111b
11000111b
11110001b
10011001b
11000011b
11111111b
11111111b

11111111b
10000001b
11100111b
11100111b
11100111b
11100111b
11100111b
11100111b
11111111b
11111111b

11111111b
10011001b
10011001b
10011001b
10011001b
10011001b
10011001b
11000011b
11111111b
11111111b

11111111b
10011001b
10011001b
10011001b
10011001b
10011001b
11000011b
11100111b
11111111b
11111111b

Text Write Operations

capw

capx

capy

capz

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
00111001b
00111001b
00111001b
00111001b
00101001b
00000001b
00111001b
11111111b
11111111b

11111111b
10011001b
10011001b
11000011b
11100111b
11000011b
10011001b
10011001b
11111111b
11111111b

11111111b
10011001b
10011001b
11000011b
11100111b
11100111b
11100111b
11000011b
11111111b
11111111b

11111111b
10000001b
11111001b
11110011b
11100111b
11001111b
10011101b
10000001b
11111111b
11111111b

Text Write Operations

lbrak

bslash

rbrak

caret

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db

11111111b
10000011b
10011111b
10011111b
10011111b
10011111b
10011111b
10000011b
11111111b
11111111b

11111111b
10111111b
10011111b
11001111b
11100111b
11110011b
11111001b
11111101b
11111111b
11111111b

11111111b
10000011b
11110011b
11110011b
11110011b
11110011b
11110011b
10000011b
11111111b
11111111b
11111111b
11101111b
11010111b
10111011b
11111111b
11111111b
11111111b
11111111b
11111111b
11111111b

Text Write Operations

underl

lsquot

lita

litb

9-20

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
11111111b
11111111b
11111111b
11111111b
11111111b
11111111b
11111111b
11111111b
00000000b

11111111b
11100111b
11100111b
11110111b
11111111b
11111111b
11111111b
11111111b
11111111b
11111111b

11111111b
11111111b
11111111b
10000011b
11111001b
11000001b
10011001b
11000001b
11111111b
11111111b

11111111b
10011111b
10011111b
10000011b
10011001b
10011001b
10011001b
10000011b
11111111b
11111111b

Text Write Operations

lite

litd

lite

litf

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
11111111b
11111111b
11000011b
10011001b
10011111b
10011001b
11000011b
11111111b
11111111b

11111111b
11111001b
11111001b
11000001b
10010001b
10011001b
10010001b
11000001b
11111111b
11111111b

11111111b
11111111b
11111111b
11000011b
10011001b
10000011b
10011111b
11000011b
11111111b
11111111b

11111111b
11100011b
11001001b
11001111b
10000011b
11001111b
11001111b
11001111b
11111111b
11111111b

9-21

Text Write Operations

litg

lith

liti

1it]

9-22

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
11111111b
11111001b
11000001b
10010011b
10010011b
11000011b
11110011b
10010011b
11000111b

11111111b
10011111b
10011111b
10000011b
10001001b
10011001b
10011001b
10011001b
11111111b
11111111b

11111111b
11111111b
11100111b
11111111b
11000111b
11100111b
11100111b
10000001b
11111111b
11111111b

11111111b
11111111b
11110011b
11111111b
11110011b
11110011b
11110011b
11110011b
10010011b
11000111b

Text Write Operations

litk

litl

litm

litn

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
10011111b
10011111b
10010011b
10000111b
10000111b
10010011b
10011001b
11111111b
11111111b

11111111b
11000111b
11100111b
11100111b
11100111b
11100111b
11100111b
11000011b
11111111b
11111111b

11111111b
11111111b
11111111b
10010011b
00101001b
00101001b
00101001b
00111001b
11111111b
11111111b

11111111b
11111111b
11111111b
10100011b
10001001b
10011001b
10011001b
10011001b
11111111b
11111111b

9-23

Text Write Operations

lito

litp

litq

litr

9-24

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
11111111b
11111111b
11000011b
10011001b
10011001b
10011001b
11000011b
11111111b
11111111b

11111111b
11111111b
11111111b
10100011b
10001001b
10011001b
10001001b
10000011b
10011111b
10011111b

11111111b
11111111b
11111111b
11000101b
10010001b
10011001b
10010001b
11000001b
11111001b
11111001b

11111111b
11111111b
11111111b
10100011b
10011001b
10011111b
10011111b
10011111b
11111111b
11111111b

Text Write Operations

lits

litt

litu

litv

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
11111111b
11111111b
11000001b
10011111b
11000011b
11111001b
10000011b
11111111b
11111111b

11111111b
11111111b
11001111b
10000011b
11001111b
11001111b
11001001b
11100011b
11111111b
11111111b

11111111b
11111111b
11111111b
10011001b
10011001b
10011001b
10011001b
11000011b
11111111b
11111111b

11111111b
11111111b
11111111b
10011001b
10011001b
10011001b
11011011b
11100111b
11111111b
11111111b

9-25

Text Write Operations

litw

litx

lity

litz

9-26

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

db
db
db
db
db
db
db
db
db
db

11111111b
11111111b
11111111b
00111001b
00111001b
00101001b
10101011b
10010011b
11111111b
11111111b

11111111b
11111111b
11111111b
10011001b
11000011b
11100111b
11000011b
10011001b
11111111b
11111111b

11111111b
11111111b
11111111b
10011001b
10011001b
10011001b
11100001b
11111001b
10011001b
11000011b

11111111b
11111111b
11111111b
10000001b
11110011b
11100111b
11001111b
10000001b
11111111b
11111111b

Text Write Operations

lsbrak db 11111111b
db 11110001b
db 11100111b
db 11001111b
db 10011111b
db 11001111b
db 11001111b
db 11100011b
db 11111111b
db 11111111b

vertl db 11111111b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db 11111111b

rsbrak db 11111111b
db 10001111b
db 11100111b
db 11110011b
db 11111001b
db 11110011b
db 11100111b
db 10001111b
db 11111111b
db 11111111b

tilde db 11111111b
db 10011111b
db 01100101b
db 11110011b
db 11111111b
db 11111111b
db 11111111b
db 11111111b
db 11111111b
db 11111111b

dseg ends

cseg segment byte public ‘codesg’

public gtext
extrn mode:near,gdc_not_busy:near

assume cs:cseg,ds:dseg,es:dseg,ss:nothing
gtext proc near

9-27

Text Write Operations

;We are going to assume that the character is byte-aligned. Anything
;else will be ignored with the char being written out to the integer
;of the byte address.

;Special conditions: if dl=0ffh - don’t print anything.

; 1)Make sure that the Graphics Option doesn’t have any pending
;operations to be completed.

32)Turn the x,y coordinates passed in ax,bx into a cursor word
;address to be saved and then asserted to the GDC.

;3)If the current foreground/background colors are not those
;desired, assert the desired colors to the Foreground/Background
;Register.

;4)Determine in which half of the word the character is to be
;written to and then enable that portion of the write.

;5)Check to see if the character we are being requested to print is
;legal. Anything under 20h is considered to be unprintable and so we
;just exit. We also consider 0ffh to be unprintable since the Rainbow
suses this code as a delete marker.

:16)Turn the character’s code into a word offset. Use this offset to
;find an address in a table. This table is a table of near addresses
;that define the starting address of the ten bytes that is the
sparticular character’s font. Fetch the first two bytes and assert to
;the screen. We have to assert write buffer counter reset because we
;are only using two of the words in the write buffer, not all 8.
;Each byte is loaded into both the left and right byte of a write
;buffer word. The GDC is programmed to perform the two-scan-line
;write and we wait for the write to finish. The next 8 scan lines
;of the character font are loaded into both the left and right bytes
;of the write buffer and these eight lines are then written to the

;screen.
push ax
call gdc_not_busy
pop ax
3Ax = the column number of the character. Bx is the row number.
;In high resolution, each bx is = 640 words
;Cursor position = (ax/2)+10*(bx*scan line width in words)
mov di,ax ;save the x so that we can check it later
shr ax, 1 ;turn column position into a word address
mowv cx,6 ;high resolution is 64 words per line
shl bx,cl ;bx*scan line length
mov si,bx ;save a copy of scan times count
mov cl,3 ;to get bx*10 first multiply bx by 8
shl bx,cl sthen
add bx,si ;add in the 2*bx*scan line length

9-28

Text Write Operations

add bx,si ;this gives 10*bx*scan line length
add bx,ax ;combine x and y into a word address
mov word ptr curl0,bx j;position to write the word at

i
;Assert the colors attributes of the character to fgbg. Dh has the
;foreground and background attributes in it.

cmp dh,byte ptr fg ;is the fgbg color the one we want?
jz cont ;jump if yes

mov al,0f7h

out S53h,al

mov byte ptr fg,dh

mov al,dh

out 51h,al

;Assert the graphics board’s text mask. The GDC does 16-bit writes
5in text mode but our characters are only 8 bits wide. We must enable
shalf of the write and disable the other half. If the x was odd then
senable the right half. If the x was even then enable the left half.

cont: test di,1 ;is this a first byte?
jnz odd ;jump if not
mov word ptr gbmskl,00ffh
jmp com
odd: mov word ptr gbmskl,0ff00h
com: call stgbm ;assert the graphics board mask

3

;0nly the characters below 127h are defined - the others are legal
;but not in the font table. After checking for a legal character
;fetch the address entry (character number - 20h) in the table.
;This is the address of the first byte of the character’s font.

2

cmp dl,1fh sunprintable character?
ja cont0 ;jump if not
jmp exit ;don’t print illegal character
cont0: cmp dl,0ffh s3is this a delete marker?
jnz cont1 5jump if not
jmp exit s;exit if yes
cont1: sub dl,20h ;table starts with a space
xor dh,dh ; at 0
mov bx,dx saccess table & index off bx
shl bx,1 ;byte to word address offset
mov si,textablbx]

:Textab has the relative offsets of each character in it. All we have
;to do is add the start of the font table to the relative offset of
;the particular character.

9-29

Text Write Operations

add si,offset space jcombine table offset with
;character offset
3
;Transfer the font from the font table into the write buffer.
sWrite the first two scans, then do the last 8.

.
k]

cld smake sure lodsb incs si.

mov al,0feh ;reset the write buffer counter
out 53h,al

out 51h,al

lodsw ;fetch both bytes.

out 52h,al ;put the byte into both 1 and 2
out 52h,al ;write buffer bytes

mov al,ah

out 52h,al ;put the byte into both t and 2
out 52h,al ;write buffer bytles

mov al,0feh ;reset the write buffer counter
out 53h,al

out 51h,al

;Check to see if already in text mode.

test byte ptr gbmod,2

jz textm sjump if in text mode else
and byte ptr gbmod,0fdh sassert text mode
call mode
textm: mov al,49h sassert the cursor command
out 57h,al
mov ax,word ptr curl0
out 56h,al
mov al,ah
out 56h,al
mov al,4ah ;assert the mask command
out 57h,al
mov al,0ffh
out S6h,al
out 56h,al
mov al,4ch ;assert the figs command
out 57h,al
xor al,al sassert the down direction to write
out 56h,al
mov al,1 ;do it 2 write cycles
out S6h,al
xor al,al
out 56h,al

?-30

Text Write Operations

mov al,22h s;assert the wdat command
out 57h,al

mov al,0ffh

out 56h,al

out Seh,al

;
sWait for the first two scans to be written.

bl

mov ax,422h ;make sure the GDC isn’t drawing
out S7h,al swrite a wdat to the GDC
here1l: in al,56h ;read the status register
test ah,al ;did the wdat get executed?
jz here1 s jump if not

3si is still pointing to the next scan line to be fetched. Get the
snext two scan lines and then tell the GDC to write them. No new
scursor, GDC mask, graphics mask or mode commands need be issued.

2

mov cx,8 ;eight scan lines
ldcr: lodsb ;fetch the byte
out 52h,al ;put the byte into both 1 and 2
out 52h,al ;write buffer bytes
loop ldcr
mov al,4ch ;assert the figs command
out 57h,al
xor al,al sassert the down direction to write
out 56h,al
mov ax, 7 ;do 8 write cycles
out 56h,al
mov al,ah
out 56h,al
mov al,22h ;assert the wdat command
out S7h,al
mov al,0ffh
out S6h,al
out 56h,al
exit: ret
stgbm: mov ax,word ptr gbmskl
out 54h,al
mov al,ah
out 55h,al
ret

gtext endp
cseg ends
end

9-31

Text Write Operations

Define and Position the Cursor

There are two routines in the following example. One sets the cursor type to no cursor, block,
underscore, or block and underscore. It then sets up the current cursor location and calls the second
routine. The second routine accepts new coordinates for the cursor and moves the cursor to the new
location.

Example of Defining and Positioning the Cursor

EEEEEEEEEEEEEEEEEEEEEEERERE R R EEE R R R R R R R EE R R R R R R R R R R R RS RS SRR SESES]
k]

. *
k]

H procedure gsettyp *
. *
H purpose: assert new cursor type *
H entry: dl bits determine cursor style *
H (if no bits set, no cursor is displayed) *
H bit 0 = block *
H bit 1 = undefined *
H bit 2 = undefined *
H bit 3 = underscore *

;******4‘************i***li*ﬁ*********li*****‘lifi**{**i*llil****l‘****!

)

dseg segment byte public ‘datasg’
extrn curlO:byte,curl2:byte,gbmod:byte
block db 0,0,0,0,0,0,0,0,0,0
cdis db 0
lastcl dw 0
dw 0
ocurs db 0
newcl dw 0
dw 0
ncurs db 0
unders db 0ffh,0ffh,0ffh,0ffh,0ffh,0ffh,0ffh,0ffh,0,0ffh
userd db 0,0,0,0,0,0,0,0,0,0
dseg ends

;Implements the new cursor type to be displayed. The current
;cursor type and location must become the old type and location.
;The new type becomes whatever is in dl. This routine will fetch
;the previous cursor type out of NCURS and put it into OCURS and
;then put the new cursor type into NCURS. The previous cursor
;coordinates are fetched and put into ax and bx. A branch to
;GSETPOS then erases the old cursor and displays the new cursor.
;Cursor type bits are not exclusive of each other. A cursor can
sbe both an underscore and a block.

9-32

Text Write Operations

; dl= 0 = turns the cursor display off
; 1 = displays the insert cursor (full block)
; 8 = displays the overwrite cursor C(underscore)
H 9 = displays a simultaneous underscore and block cursor
cseg segment byte public ‘codesg’
extrn mode: near
assume cs:cseg,ds:dseg,es:dseg,ss:nothing
public gsettyp
gsettyp proc near
mov al,byte ptr ncurs ;current cursor becomes
mov byte ptr ocurs,al ; old cursor type
mov byte ptr ncurs,dl ;pick up new cursor type
mov ax,word ptr newcl ;pick up current x and y
mov bx,word ptr newcl+2 H cursor coordinates
jmp pos sbranch to assert new cursor
gsettyp endp ; type in old location

2
;*******-l-}****************l{l****i***l-****i*l{*l***{****l*}**{*****}*

. *
?

H procedure gsetpos *
. *
k)

H purpose: assert new cursor position *
H entry: ax = x location *
H bx = y location *

. *
k]

;****‘l****%******l’*i***l*******i**ll**-l-**********l**********i********
H

public gsetpos
gsetpos proc near

;Display the cursor. Cursor type was defined by GSETTYP. The
;cursor type is stored in NCURS. Fetch the type and address of the
;previous cursor and put it into OCURS and also into lastcl and
slastcl+2. If a cursor is currently being displayed, erase it. If
;there is a new cursor to display, write it (or them) to the screen.
;A cursor may be a block or an underscore or both.

;The x and y coordinates of the cursor are converted into an address
;that the GDC can use. Either the left or the right half of the text
;mask is enabled, depending on whether the x is even or odd. The
;write operation itself takes places in complement mode so that no
;information on the screen is lost or obscured but only inverted in
svalue. In order to ensure that all planes are inverted, a 0f0Oh is
;loaded into the Foreground/Background Register and all planes are
;write enabled. The cursor is written to the screen in two separate
;writes because the write buffer is eight, not ten, words long.

9-33

Text Write Operations

;Move current cursor type and location to previous type and location.

.
7

mov cl,byte ptr ncurs ;move current cursor type
mov byte ptr ocurs,cl H into old cursor type
pos: cld
mov cx,word ptr newcl smove current cursor
mov word ptr lastcl,cx H location into old cursor
mov cx,word ptr newcl+2 H location
mov word ptr lastcl+2,cx
mov word ptr newcl,ax ;save new cursor coordinates
mov word ptr newcl+2,bx ;in new cursor location
?

;Before doing anything to the graphics option we need to make sure
;that the option isn’t already in use. Assert a harmless command
s;into the FIFO and wait for the GDC to execute it.

call not_busy
;Set up the graphics option. Put the Graphics Option in complement
;and text modes with all planes enabled. Assert fgbg and text mask.
;Calculate the write address and store in curl0,1.

.
k]

mov ax,10efh ;address the ALU/PS

out 53h,al ; register

mov al,ah ;set complement mode with
out S51h,al ; all planes enabled

sAssert text mode with read disabled.

mov al,byte ptr gbmod ;get mode shadow byte
and al,0fdh s;set text mode
or al,10h ;set write enabled mode
cmp al,byte ptr gbmod ;is mode already asserted
jz gspos0 ;i this way? If yes, jump
mov byte ptr gbmod,al ;jupdate the mode register
call mode

gspos0: mov al,0f7h ;sel Foreground/Background
out 53h,al s register to invert data
mov al,0f0h
out 51h,al

;Is a cursor currently being displayed? If cdis<>0, then yes. Any

;current cursor will have to be erased before we display a new one.

gsp01: test byte ptr cdis,1 sif no old cursor to erase,
jz gspos2 3 just display old one

9-34

Text Write Operations

;This part will erase the old cursor.

.
El

mov byte ptr cdis,0
mov dh,byte ptr lastcl
mov dl,byte ptr lastcl+2
call asmask
call dx2curl
test byte ptr ocurs,8
jz gspos
mov si,offset unders
call discurs

gsposl: test byte ptr ocurs,1
jz gspos2
call not_busy swait
mov si,offset block
call discurs

sWrite the new cursor out to the screen.

3

gspos2: cmp byte ptr ncurs,0
jz gspos5S
mov dh,byte ptr newcl
mov dl,byte ptr newcl+2
call not_busy
call asmask
call dx2curl
test byte ptr ncurs,8
jz gspos3
mov si,offset unders
call discurs
gspos3: test byte ptr ncurs,1
jz gspos4
call not_busy
mov si,offset block
call discurs
gspos4: or byte ptr cdis,1
gsposS: call not_busy
ret
;Enable one byte of the text mask.
asmask: mov ax,00ffh
test dh, 1
jz ritc4
mov ax,0ff00h
ritc4: out 55h,al
mov al,ah
out 54h,al
ret

;set no cursor on screen
;fetch x and y, put
s and call dx2curl

into dx,

sassert the mask registers
sturn dx into GDC address
sunderline?

; jump

;erase the underline

if not

sdo the write

sblock?

;jump if not

till done erasing underline
;erase the block

;do the write

swrite a new cursor?

;3 jump if not

;fetch coordinates of

3 new cursor

swait for erase to finish
;assert the mask registers

sunderscore cursor?

; jump if not

;set up for underline cursor
;do the write

sblock cursor?

;jump if not

;wait for any write to finish
;set up for block cursor

s;do the write.

;set cursor displayed flag

;set up the text mask
;write to the right byte?
;s jump if yes

;issue low byte of mask

;issue high byte of mask

9-35

Text Write Operations

.
7

;Display the cursor.

.
2

;Assume that the option is already set up in text mode, complement

;write and that the appropriate text mask is already set. The

;address of the cursor pattern is loaded into the si.

7
discurs:

mov
out
out
lodsb
out
out
lodsb
out
out
mov
out
out
mov
out
mov
out
mov
out
mov
out
mov
out
out
mov
out
xor
out
mov
out
xor
out
mov
out
mov
out
out
call
mov

?-36

al,0feh
53h,al
51h,al

52h,al
52h,al

52h,al
52h,al
al,0feh
53h,al
51h,al
al, 49h
57h,al

;select the write buffer and clear
s the write buffer counter

;feed the same byte to both halves
;7 of the word to be written

;feed the same byte to both halves
;s of the word to be written
s;select the write buffer and clear
H the write buffer counter

;assert the position to write

ax,word ptr curl0

S6h,al
al,ah
S6h,al
al,4ah
57h,al
al,0ffh
56h,al
56h,al
al,4ch
57h,al
al,al
56h,al
al,1
S6h,al
al,al
Seh,al
al,22h
57h,al
al,0ffh
S6h,al
56h,al
not_busy
cx,8

;issue the GDC mask command to
;7 set all GDC mask bits

;program a write of ten scans
;7 first do two scans, then eight

sstart the write

swait for first two lines to finish
s;then write the next 8 scans

Text Write Operations

ritc6: lodsb ;fetch the cursor shape
out 52h,al ;feed the same byte to both halves
out 52h,al 3 of the word
loop ritce
mov al,4ch ;program a write of eight scans
out S7h,al
xor al,al
out 56h,al
mov al,?
out S56h,al
xor al,al
out S56h,al
mov al,22h s;start the write
out S57h,al
mov al,0ffh
out 56h,al
out S56h,al
ret

5Turn dh and dl into a word address (dl is the line and dh

;is the column). Store the result in word ptr curl0. Start with
sturning dl (line) into a word address.

H Word address = dl * number of words/line * 10

sTurn dh (column) into a word address.

.
kl

H Word address = dh/2
;Combine the two. This gives the curl0 address to be asserted to
;the GDC.
H
dx2curl:
mov al,dh ;store the column count
mov cl,S smedium resolution = 32 words/line
test byte ptr gbmod,1 ;is it high resolution?
jz ritch s jump if not
inc cl shigh resolution = 64 words/line
ritcS5: xor dh,dh
shl dx,cl
mov bx,dx smultiply dx by ten
mov cl,3
shl bx,1
shl dx,cl
add dx,bx sthis is the row address
shr al,1 sthis is the column number

9-37

Text Write Operations

xor ah,ah

add dx,ax sthis is the combined row and
mov word ptr curl0,dx scolumn address

ret

;This is a quicker version of GDC_NOT_BUSY. We don’t waste time on
;some of the normal checks and things that GDC_NOT_BUSY does due to
;the need to move as quickly as possible on the cursor erase/write
;jroutines. This routine does the same sort of things. A harmless
;command is issued to the GDC. If the GDC is in the process of
;performing some other command, the WDAT we just issued

;will stay in the GDC’s command FIFO until such time as the GDC can
;get to it. If the FIFO empty bit is set, the GDC executed the
;WDAT command and must be finished with any previous operations
;programmed into it.

k]

not_busy:
mov ax,422h sassert a WDAT
out 57h,al
busy: in al,56h ;wait for FIFO empty bit
test ah,al
jz busy
ret

gsetpos endp
cseg ends
end

Write a Text String

The example in this section writes a string of ASCII text starting at a specified location and using a
specified scale factor. It uses the vector write routine from Chapter 8 to form each character.

Example of Writing a Text String

;**{***}***il****i*'I"l'l-ll**ll******l’**’*{*ﬁ*i*l’l’&i’II{{****‘I‘I‘I**!*{***

. *
7

H procedure vector_text *
H *
H *
H entry: cx = string length *
H text = pointer to externally defined array of *
H ASCII characters *
H scale = character scale *
H xinit = starting x location *
H yinit = starting y location *

;**Q**-}'l-l-*****l*'l'{-*'l"l-**&******l'*l'*l'i***l-l-l!{*llli**lll*lli*i***l*{*{i

?-38

Text Write Operations

cseg segment byte public ‘codesg’
extrn imode:near,pattern_mult:near,pattern_register:near
extrn vector:near

public vector_text
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

7

vector_text proc near
or byte ptr gbmod,082h
call imode ;ensure we’re in graphics mode
mov al,4ah
out S7h,al
mov al,0ffh
out 56h,al
out 56h,al ;enable GDC mask data write
xor al,al ;enable all option mask writes
out 55h,al
out S54h,al
mov bl,1
call pattern_mult ;set pattern multiplier
mov bl,0ffh
call pattern_register ;set pattern register
mov ax,word ptr xinit ;get initial x
mov word ptr xad,ax ;save it
mov ax,word pir yinit ;get initial y
mov word ptr yad,ax ;save it
mov si,offset text
do_string:
lodsb ;get character
push si
push cx
call display-character ;display it
mov ax,8
mov cl,byte ptr scale ;move over by cell value
mul cx
add word ptr xad,ax
pop cx
pop 51
loop do_string ;loop until done
ret

display_character:

cmp al,07fh ;make sure we’re in font table
jbe char_cont_1 ;continue if we are
ret

char_cont_1:

cmp al,20h ;check if we can print character
ja char_cont scontinue if we can
ret

9-39

Text Write Operations

char_cont:
xor
shl
mov
mov
get_next_stroke:
mov
mov
mov
mov
lodsb
cmp
jnz
ret
cont_1: mov
and
test
jz
or
ct: mov
xor
push
imul
sub
and
shr
shr
shr
shr
test
jz
or
ct1: mov
pop
imul
add

9-40

ah,ah

ax, 1

si,ax
si,font_tablelsil

ax,word ptr xad
word ptr xinit,ax
ax,word ptr yad
word ptr yinit,ax

al,endc
cont_1

bx,ax

ax,0fh

al,08h

ct

ax,0fffOh

cl,byte ptr scale
ch,ch

cx

cx

word ptr yinit,ax
bx,0f0h

bx, 1

bx, 1

bx, 1

bx, 1

bl,08h

ct1

bx,0fff0h

ax,bx

cx

cx

word ptr xinit,ax

;clear high byte
;make it a word pointer

spoint si to font info

;get stroke info
send of character ?
scontinue if not

;jmask to y value
;jnegative ?

;sign extend

smultiply by scale value
;subtract to y offset
smask to x value

;shift to four least

; significant bits

;jnegative ?
;sign extend
srecover scale

smultiply by scale value
;add to x offset

Text Write Operations

next_stroke:

mov ax,word ptr xad ;set up xy offsets
mov word ptr xfinal,ax
mov ax,word ptr yad
mov word ptr yfinal,ax
lodsb ;get stroke byte
cmp al ,endc ;end of character ?
jz display_char_exit ;yes then leave
cmp al,endv sdark vector ?
jz get_next_stroke ;yes, begin again
mov bx,ax
and ax,0fh ;mask to y value
test al,08h ;negative
jz ct2
or ax,0fffOh ;sign extend
cta: mov cl,byte ptr scale ;get scale information
xor ch,ch
push cx
imul cx smultiply by scale
sub word ptr yfinal,ax ;subtract to y offset
and bx,0f0h smask to x value
shr bx,1 sshift to four least
shr bx, 1 ; significant bits
shr bx, 1
shr bx, 1
test bl,08h ;negative ?
jz ct3
or bx,0fffOh ;sign extend
ct3: mov ax,bx
pop cx ;recover scale
imul cx smultiply by scale
add word ptr xfinal,ax sadd to x offset
push s5i ;save index to font info
call vector ;draw stroke
pop s5i ;recover font index
mov ax,word ptr xfinal s;end of stroke becomes
mov word ptr xinit,ax ; beginning of next stroke
mov ax,word ptr yfinal
mov word ptr yinit,ax
jmp next_stroke
display_char_exit:
ret
vector_text endp
cseg ends
dseg segment byte public ‘datasg’
extrn gbmod:byte,xinit:word,yinit:word,xfinal:word,yfinal:word
extrn xad:word,yad:word, text:byte

public scale

9-41

Text Write Operations

3
;********}{il**************i*’**********lﬂl***&&{****i****{**lﬂ{{***

i *
Hd stroke font character set *
* *

;***************i*********lll********{******ﬂ**********************
H

;The following tables contain vertex data for a stroked character
;set. The x and y coordinate information is represented by 4-bit,
;2s-complement numbers in the range of + or - 7. The x and y bit
;positions are as follows:

El

H bit 76543210

H i LI H

H \ / \ /

H x Y

;End of character is represented by the value x = -8, y = -8,
;The dark vector is represented by x = -8, y = 0.

;ASCII characters are mapped into the positive quadrant, with the
;origin at the lower left corner of an upper case character.

.
k]

endc equ 10001000b send of character

endv equ 10000000b ;last vector of polyline

i

font_table dw offset font_00
dw offset font_01
dw offset font_02
dw offset font_03
dw offset font_04
dw offset font_05
dw offset font_06
dw offset font_07
dw offset font_08
dw offset font_09
dw offset font_Oa
dw offset font_0b
dw offset font_0Oc
dw offset font_0d
dw offset font_0Oe
dw offset font_O0f
dw offset font_10
dw offset font_11
dw offset font_12
dw offset font_13
dw offset font_14
dw offset font_15

9-42

Text Write Operations

offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset

font_16
font_17
font_18
font_19
font_1a
font_1b
font_1c
font_1d
font_1e
font_1f
font_20
font_21
font_22
font_23
font_24
font_25
font_26
font_27
font_28
font_29
font_2a
font_2b
font_2c
font_2d
font_2e
font_2f
font_30
font_31
font_32
font_33
font_34
font_35
font_36
font_37
font_38
font_39
font_3a
font_3b
font_3c
font_3d
font_3e
font_3f
font_40
font_41
font_42
font_43

;space

9-43

Text Write Operations

dw offset font_44
dw offset font_45
dw offset font_46
dw offset font_47
dw offset font_48
dw offset font_49
dw offset font_4a
dw offset font_4b
dw offset font_4c
dw offset font_4d
dw offset font_4e
dw offset font_4f
dw offset font_50
dw offset font_51
dw offset font_52
dw offset font_53
dw offset font_54
dw offset font_55
dw offset font_56
dw offset font_57
dw offset font_58
dw offset font_59
dw offset font_Sa
dw offset font_Sb
dw offset font_Sc
dw offset font_5d
dw offset font_Se
dw offset font_S5f
dw offset font_60
dw offset font_61
dw offset font_62
dw offset font_63
dw offset font_64
dw offset font_65
dw offset font_66
dw offset font_67
dw offset font_68
dw offset font_69
dw offset font_6a
dw offset font_6b
dw offset font_6¢c
dw offset font_6d
dw offset font_6e
dw offset font_6f
dw offset font_70
dw offset font_71
dw offset font_72
dw offset font_73

9-44

Text Write Operations

font_00
font_01
font_02
font_03
font_04
font_05
font_06
font_07
font_08
font_09
font_0Oa
font_0b
font_0Oc
font_0d
font_Oe
font_0Of
font_10
font_11
font_12
font_13
font_14
font_15
font_16
font_17
font_18
font_19
font_1a
font_1b
font_1c
font_1d
font_1e
font_1f
font_20

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db

offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset

endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc
endc

font_74
font_75
font_76
font_77
font_78
font_79
font_7a
font_7b
font_7c
font_7d
font_7e
font_7f

;space

@-45

Text Write Operations

font_21
font_22
font_23

font_24
font_25

font_26
font_27
font_28
font_29
font_2a

font_2b
font_2c
font_2d
font_2e
font_2f
font_30
font_31
font_32
font_33

font_34
font_35
font_36

font_37
font_38

font_39
font_3a
font_3b
font_3c
font_3d
font_3e
font_3f

font_40

font_41
font_42

9-46

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db

20h,21h,endv,23h,26h,endc
24h,26h,endv,54h,56h,endc
20h,26h,endv,40h,46h,endv,04h,64h,endv,02h,62h
endc
2fh,27h,endv,01h,10h,30h,41h,42h,33h, 13h,04h,05h
16h,36h,045h, endc
11h,55h,endv, 14h, 15h,25h,24h, 14h,endv,41h,51h,52h
42h,41h,endc
50h,14h,15h,26h,36h,45h,44h,11h,10h,30h,52h, endc
34h,36h,endc

4eh,11h,14h,47h,endc

0eh,31h,34h,07h,endc

30h,36h,endv,11h,55h,endv, 15h,51h,endv, 03h,63h
endc

30h,36h,endv,03h,63h,endc

11h,20h,2fh,0dh, endc

03h,63h,endc

00h,01h,11h,10h,00h,endc

00h,01h,45h,46h,endc

01h,05h, 16h,36h,45h,41h,30h,10h,01h, endc
04h,26h,20h,endv,00h,040h,endc
05h,16h,36h,45h,44h,00h,40h,041h,endc

05h, 16h,36h,45h,44h,33h,42h,41h,30h,10h,01h,endv
13h,033h,endc

06h,03h,043h,endv,20h,026h,endc
01h,10h,30h,41h,42h,33h,03h,06h,046h,endc
02h,13h,33h,42h,41h,30h,10h,01h,05h,16h,36h,045h
endc

06h,46h,44h,00h,endc

01h,02h,13h,04h,05h, 16h,36h,45h,44h,33h,42h,41h
30h,10h,01h,endv, 13h,023h,endc
01h,10h,30h,41h,45h,36h, 16h,05h,04h, 13h,33h,044h
endc
15h,25h,24h,14h, 15h,endv, 12h,22h,21h,11h,12h
endc
15h,25h,24h,14h,15h,endv,21h,11h,12h,22h,20h, 1fh
endc

30h,03h,036h,endc

02h,042h,endv,04h,044h,endc

10h,43h, 16h,endc
06h,17h,37h,46h,45h,34h,24h,022h,endv,21h,020h
endc
50h,10h,01h,06h,17h,57h,66h,63h,52h,32h,23h,24h
35h,55h,064h,endc
00h,04h,26h,44h,040h,endv,03h,043h,endc
00h,06h,36h,45h,44h,33h,42h,41h,30h,00h,endv
03h,033h,endc

Text Write Operations

font_43
font_44
font_45
font_46
font_47
font_48
font_49
font_4a
font_4b
font_4c
font_4d
font_4e
font_4f
font_50
font_51
font_52
font_53

font_54
font_55
font_56
font_57
font_58
font_59
font_5a
font_5b
font_5¢c
font_5d
font_5Se
font_5f
font_60
font_61
font_62
font_63
font_64
font_65
font_66
font_67

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db

45h,36h, 16h,05h,01h,10h,30h,041h,endc
00h,06h,36h,45h,41h,30h,00h,endc
40h,00h,06h,046h,endv,03h,023h,endc
00h,06h,046h,endv,03h,023h,endc
45h,36h,16h,05h,01h,10h,30h,41h,43h,023h,endc
00h,06h,endv,03h,043h,endv,40h,046h,endc
10h,030h,endv,20h,026h,endv, 16h,036h, endc
01h,10h,30h,41h,046h,endc
00h,06h,endv,02h,046h,endv, 13h,040h,endc
40h,00h,06h,endc

00h,06h,24h,46h,040h,endc
00h,06h,endv,05h,041h,endv,40h,046h,endc
01h, 05h, 16h,36h,45h,41h,30h,10h,01h,endc
00h,06h,36h,45h,44h,33h,03h,endc
12h,30h,10h,01h,05h,16h,36h,45h,41h,30h,endc
00h,06h,36h,45h,44h,33h,03h,endv, 13h,040h, endc
01h,10h,30h,41h,42h,33h,13h,04h,05h,16h,36hH
045h, endc

06h,046h,endv,20h,026h,endc
06h,01h,10h,30h,41h,046h,endc
06h,02h,20h,42h,046h,endc
06h,00h,22h,40h,046h,endc
00h,01h,45h,046h,endv,40h,41h,05h,06h,endc
06h,24h,020h,endv,24h,46h, endc
06h,46h,45h,01h,00h,40h,endc
37h,17h,1fh,3fh,endc

06h,05h,41h,40h,endc

17h,37h,3fh,2fh,endc

04h,26h,044h,endc

0fh,07fh,endc

54h, 36h,endc
40h,43h,34h,14h,03h,01h,10h,30h,041h,endc
06h,01h,10h,30h,41h,43h,34h, 14h,03h,endc
41h,30h,10h,01h,03h, 14h,34h,043h, endc
46h,41h,30h,10h,01h,03h, 14h,34h,43h,endc
41h,30h,10h,01h,03h,14h,34h,43h,42h,02h, endc
20h,25h,36h,46h,55h,endv,03h,43h, endc
41h,30h,10h,01h,03h,14h,34h,43h,4fh,3eh, 1eh
0fh,endc

9-47

Text Write Operations

font_68
font_69
font_6a
font_6b
font_6c¢c
font_6d
font_6e
font_6f
font_70

font_71

font_72
font_73

font_74
font_75
font_76
font_77
font_78
font_79

font_7a
font_7b
font_7c
font_7d
font_7e
font_7f

scale
dseg

9-48

db
ends
end

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db

00h,06h,endv,03h,14h,34h,43h,40h,endc
20h,23h,endv,25h,26h,endc
46h,45h,endv,43h,4fh,3eh,1eh,0fh,endc
00h,06h,endv,01h,34h,endv, 12h,30h, endc
20h,26h,endc
00h,04h,endv,03h,14h,23h,34h,43h,40h,endc
00h,04h,endv,03h,14h,34h,43h,40h,endc
01h,03h,14h,34h,43h,41h,30h,10h,01h,endc
04h,0eh,endv,01h,10h,30h,41h,43h,34h, 14h
03h,endc

41h,30h,10h,01h,03h, 14h,34h,43h,endv, 44h
4eh,endc

00h,04h,endv,03h, 14h,34h,endc
01h,10h,30h,41h,32h,12h,03h, 14h,34h
43h,endc
04h,44h,endv,26h,21h,30h,40h,51h,endc
04h,01h,10h,30h,41h,endv,44h,40h,endc
04h,02h,20h,42h,44h,endc
04h,00h,22h,40h,44h,endc
00h,44h,endv,04h,40h,endc
04h,01h,10h,30h,41h,endv,44h,4fh,3eh, 1eh
0fh,endc

04h,44h,00h,40h, endc
40h,11h,32h,03h,34h, 15h,46h,endc
20h,23h,endv,25h,27h,endc
00h,31h,12h,43h, 14h,35h,06h,endc
06h,27h,46h,67h,endc

07,77 ,endc

10

Read Operations

The Read Process

Programming a read operation is simpler than programming a write operation. From the Graphics
Option’s point of view, only the Mode and ALU/PS registers need to be programmed. There is no
need to involve the Foreground/Background Register, Text Mask, Write Buffer, or the Pattern
Generator. GDC reads are programmed much like text writes except for the action command which
in this case is RDAT. When reading data from the bitmap, only one plane can be active at any one
time. Therefore, it can take four times as long to read back data as it did to write it in the first
place.

Read the Entire Bitmap

In the following example, the entire bitmap, one plane at a time, is read and written into a 64K byte
buffer in memory. This example compliments the example of displaying data from memory found in
Chapter 7.

10-1

Read Operations

Example of Reading the Entire Bitmap

;*i"*'**l**li*il**{*l'{*l*‘l{**{l*l**ilil’***l*i*****li****l*****i*!!***

3

H procedure redvid

;

H purpose: this routine will read out all of display
H memory, one plane at a time, then store

H that data in a 64k buffer in motherboard
H memory .

3 entry:

H exit:

H register usage: ax,cx,di

;lliii**lli&*il{*l*i!*****{l**l'l'i*i}i*i**{{i*&{*il**{***&***l***i{i*

H

dseg segment byte public ‘datasg’

extrn num_planes:byte,gbmod:byte,nmredl:word,gtemp:word,curl0O:word
dseg ends

vidseg segment byte public “‘vseg’

public wviddata
viddata db 0ffffh dup (?)
vidseg ends
cseg segment byte public ‘codesg’
extrn gdc_not_busy:near,alups:near,fgbg:near,init_option:near
extrn mode: near

assume cs:cseg,ds:dseg,es:dseg,ss:nothing

public redvid
redvid proc near
;Set up to enable reads. The Graphics Option has to disable writes
;in the ALU/PS, enable a plane to be read in the Mode Register, and
;program the GDC to perform one plane’s worth of reads.
;6DC programming consists of issuing a CURSOR command of 0, a mask
;of FFFFh, a FIGS command with a direction to the right and a read
;of an entire plane, and finally the RDAT command to start the read
;5in motion. Note that the GDC can’t read in all 8000h words of a
shigh resolution plane but it doesn’t matter because not all 8000h
;words of a high resolution plane have useful information in them.

10-2

*

*

*

*

*

*

*

*

Read Operations

rd1:

1

cld
call
mov
out
mov
out
mov
test
jnz
mov
mov

;clear the direction flag

gdc_not_busy ;make sure the GDC is not busy
al,0efh

53h,al

al,0fh sdisable all writes

S1h,al

ax,3fffh ;assume high resolution read
byte ptr gbmod,01 ;actually high resolution?
rd1 ;jump if yes

ax,2000h smedium resolution no. of reads

word ptr nmredl,ax

;Blank the screen. This will let the GDC have 100% use of the time
s;to read the screen in.

kl

3

mov
out

al,0ch sblank command
57h,al

;Set up to transfer data as it is being read from the screen into
;the VIDSEG data segment.

.
7

rd2:

mov
mov
mov
mov
xor
mov
mov
out
mov
sub
shl
shl
mov
and
or

out
mov
out
xor
out
out
mov
out
mov
out
out

ax,vidseg ;set up the es register to point
es,ax H to the video buffer

di,0 ;start at beginning of the buffer
cl,byte ptr num_planes ;init routine sets this byte
ch,ch ;num_planes = 2 or 4

word ptr gtemp,cx ;save plane count

al,0bfh ;address the mode register
53h,al

al,byte ptr num_planes ;figure which plane to enable
al,cl

al,1 s;shift to enable bits over 2
al,1

ah,byte ptr gbmod ;mode byte = no graphics,
ah,0e1h ; plane to read, write enable
al,ah ;combine with plane to read
S1h,al sassert new mode

al,49h ;position the GDC cursor to
57h,al ;3 top left

al,al

56h,al

56h,al

al,4ah ;set all bits in GDC mask
57h,al

al,0ffh

56h,al

56h,al

10-3

Read Operations

mov al,d4ch sassert the FIGS command

out 57h,al

mov al,2 ;direction is to the right

out 56h,al

mov ax,word ptr nmredl snumber of word reads to do

out S56h,al

mov al,ah

out 56h,al

mov al,0a0h ;start the read operation now

out S57h,al

mov cx,word ptr nmredl ;read in as they are ready.

shl cx, 1 ;bytes = 2 * words read
rd4: in al,S6h ;byte ready to be read?

test al,1

jz rd4 ;jump if not

in al,57h ;read the byte

stosb ;store in vidseg

loop rd4

;We’ve finished reading all of the information out of that plane.
;1f high resolution, increment di by a word because we were one
;word short of the entire 32k high resolution plane. Recover the
;plane to read count and loop if not done.

.
2

test byte ptr gbmod,1 shigh resolution?

jz rdS ;jump if not

stosw ;dummy stos to keep no. reads=words/plane
rdS: mov cx,word ptr gtemp

loop rd2 ;loop if more planes to be read

sWe’re done with the read.

;Restore video refresh and set the high/medium resolution flag byte
;at the end of vidseg so that when it is written back into the video
;we do it in the proper resolution.

2

mov al,0dh sunblank the screen

out 57h,al

test byte ptr gbmod,1 ;high res?

jnz rd6 ;jump if yes

xor al,al ;last byte = 0 for medium resolution

jmp rd7
rd6: mov al,0ffh ;last byte = ff for high resolution
rd7: mov di,0ffffh ;set the resolution flag

mov byte ptr es:[dil,al

mov ax,dseg

mov es,ax srestore es

ret

redvid endp
cseg ends
end

10-4

Read Operations

Pixel Write After a Read Operation

After a read operation has completed, the graphics option is temporarily unable to do a pixel write.
(Word writes are not affected by preceding read operations.) However, the execution of a word write
operation restores the option’s ability to do pixel writes. Therefore, whenever you intend to do a
pixel write after a read operation, you must first execute a word write. This will ensure that
subsequent vectors, arcs, and pixels will be enabled.

The following code sequence will execute a word write operation that will not write anything into the
bitmap. The code assumes that the GDC is not busy since it has just completed a read operation. It
also assumes that this code is entered after all the required bytes have been read out of the FIFO
buffer.

EEEEEE R R R E R R EEE R R AR R R R RS R R R R R R R SRR R R R R R R R R R R EEE R SRR SRR R R ERERERERR]
7

*

H procedure write._,after__read *
; *
; purpose: Execute a no-op word write after read operation is *
H completed. *

7
;**{l*l**********!*{**{*{i{****l{l****l*'lii**li{*}}**********{***!***
H
cseg segment byte public ‘codesg’
extrn imode:near,alups:near

public write_after_read

assume cs:cseg,ds:dseg,es:nothing,ss:nothing

k]

write_after_read proc near
mov al,0dh ;sometimes the GDC will not accept the
out 57h,al H first command after a read - this command

H can safely be missed and serves to ensure
: that the FIFO buffer is cleared and
; pointing in the right direction

xor bl,bl ;restore write enable replace mode to all
call alups ; planes in the ALU/PS Register

mov al,0ffh ;disable writes to all bits at the

out 55h,al : option’s Mask Registers

out 54h,al

or byte ptr gbmod,10h ;enable writes to Mode Register
call imode ;it is already in word mode

mov al,4ch sunnecessary to assert cursor or mask since
out 57h,al : it doesn’t matter where you write - the
xor al,al ; write is completely disabled anyway -
out S6h,al H just going through the word write

out 56h,al ; operation will enable subsequent pixel
out 56h,al : writes

10-5

Read Operations

mov al,22h
out 57h,al ;execute the write operation
ret
write_after_read endp
cseg ends
dseg segment byte public ‘datasg’
extrn gbmod:byte
dseg ends
end

10-6

11

Scroll Operations

Vertical Scrolling

The Scroll map controls the location of 64-word blocks of display memory on the video monitor. In
medium resolution mode, this is two scan lines. In high resolution mode, this is one scan line. By
redefining scan line locations in the Scroll Map, you effectively move 64 words of data into new
screen locations.

All Scroll Map operations by the CPU start at location zero and increment by one with each suc-
ceeding CPU access. The CPU has no direct control over which Scroll Map location it is reading or
writing. All input addresses are generated by an eight-bit index counter which is cleared to zero
when the CPU first accesses the Scroll Map through the Indirect Register. There is no random
access of a Scroll Map address.

Programming the Scroll Map involves a number of steps. First ensure that the GDC is not currently
accessing the Scroll Map and that it won’t be for some time (the beginning of a vertical retrace for
example). Clearing bit 5 of the Mode Register to zero enables the Scroll Map for writing. Clearing
bit 7 of the Indirect Register to zero selects the Scroll Map and clears the Scroll Map Counter to
zero. Data can then be entered into the Scroll Map by writing to port 51h. When the programming
operation is complete or just before the end of the vertical retrace period (whichever comes first)
control of the Scroll Map addressing is returned to the GDC by setting bit 5 of the Mode Register to
one.

Scroll Operations

If, for some reason, programming the Scroll Map requires more than one vertical retrace period,
there is a way to break the operation up into two segments. A read of the Scroll Map increments the
Scroll Map Index Counter just as though it were a write. You can therefore program the first half,
wait for the next vertical retrace, read the first half and then finish the write of the last half.

Example of Vertical Scrolling One Scan Line

;i******l-l-***i********&**ii**#********{{**i***l**********l***********

. *
7

H procedure vscroll *
. *
7

H purpose: move the current entire screen up one scan line *
. *
7

H entry: *
B exit: *
H register usage: ax,cx,di,si *

;’*******&*********l**i******i*********i*******&&***l’*****&**&il*****
dseg segment byte public ‘datasg’

extrn scrltb:byte,gtempil:byte,startl:byte,gbmod:byte ;see Example 3
dseg ends

cseg segment byte public ‘codesg’

extrn ascrol:near ;defined in Example 3.

assume cs:cseg,ds:dseg,es:dseg,ss:nothing

public wvscroll

vscroll proc near

s;The scrollmap controls which 64 word display memory segment will be
;displayed on a particular screen line. The scroll map will display
;on the top high resolution scan line the 64-word segment denoted by
s;the data loaded into location 0. If the data is a 0, the first
;64-word segment is accessed. If the data is a 10, the 11th 64-word
;segment is displayed. By simply rewriting the order of 64-word
;segments in the scroll map, the order in which they are displayed is
;correspondingly altered. If the entire screen is to be scrolled up
;one line, the entire scroll map’s contents are moved up one location.
;Data at address 1 is moved into address 0, data at address 2 is moved
;into address 1 and so on. A split screen scroll can be accomplished
;by keeping the stationary part of the screen unchanged in the scroll
;map while loading the appropriate information into the moving window.
;1f more than one scroll map location is loaded with the same data,
s;the corresponding scan will be displayed multiple times on the screen.

Scroll Operations

;Note that the information in the bitmap hasn’t been changed, only the
;location where the information is displayed on the video monitor has
;been changed. MWhen the lines that used to be off the botiom of the
;screen scroll up and become visible, they will have in them whatever
;had been written there before. If a guaranteed clear scan line is
;desirable, the off-screen lines should be cleared with a write before
;the scroll takes place.

;In medium resolution, only the first 128 scroll map entries have
;meaning because while each medium resolution scan is 32 words long,
;each scroll map entry controls the location of 64 words of data. In
smedium resolution, this is the same as two entire scans. The scroll
;map acts as if the most significant bit of the scroll map entries was
;always 0. Loading an 80h into a location is the same as loading a 0.
;Loading an 81h is the equivalent to writing a 1. The example shown
;below assumes a high resolution, 256 location, scrollmap. Had it
;been medium resolution, only the first 128 scans would have been
;moved. The other 128 scroll map locations still exist but are of no
;practical use to the programmer. What this means to the applications
;programmer is that in medium resolution, after the scroll map has
;been initialized, the first 128 entries are treated as if they were
;the only scroll map locations in the table.

;Save the contents of the first section of the scroll table to be
;overwritten, fetch the data from however many scans away we want to
;scroll by, then move the contents of the table in a circular fashion.
;The last entry to be written is the scan we first saved. After the
;shadow scroll table has been updated, it can then be asserted by a
;call to the "ascrol™ routine in the "init_option" procedure.

7

mov si,offset scrltb ;set the source of the data
mov di,si ;set the destination of the data
lodsb ;fetch the first scan
mov byte ptr gtemptl,al ; and save it
mov cx,255 smove the other 255 scroll
rep movsw H table bytes
mov al,byte ptr gtemp1! j;recover the first scan and put
stosb H it into scan 256 location
call ascrol ;assert updated scroll table
ret H to scroll map

vscroll endp

cseg ends
end

Scroll Operations

Horizontal Scrolling

Not only can the video display be scrolled up and down but it can also be scrolled from side to side
as well. The GDC can be programmed to start video action at an address other than location 0000.
Using the PRAM command to specify the starting address of the display partition as 0002 will
effectively shift the screen two words to the left. Since the screen display width is not the same as
the number of words displayed on the line there is a section of memory that is unrefreshed. The
data that scrolls off the screen leaves the refresh area and it will also be unrefreshed. To have the
data rotate or wrap around the screen and be saved requires that data be read from the side about
to go off the screen and be written to the side coming on to the screen. If the application is not
rotating but simply moving old data out to make room for new information, the old image can be
allowed to disappear into the unrefreshed area.

Although the specifications for the dynamic RAMs only guarantee a data persistence of two millisec-
onds, most of the chips will hold data much longer. Therefore, it is possible to completely rotate
video memory off one side and back onto the other. However, applications considering using this
characteristic should be aware of the time dependency and plan accordingly.

Example of Horizontal Scrolling One Word

;**************************l*{l**********************l***************

; procedure hscroll *
H *
H purpose: move the current entire screen to right *
H or left a word address. *
H *
3 entry: if al = 0< move screen to the left. *
H if al <> 0, move screen to the right. *
H exit: *
; register usage: ax *

;*********l***li**i******}*-l-l"l-***{l**********ii***********{****i****i
;The GDC is programmable (on a word boundary) as to where it starts
;displaying the screen. By incrementing or decrementing that starting
;address word we can redefine the starting address of each scan line
;and thereby give the appearance of horizontal scrolling. Assume that
;this start window display address is stored in the variables: startl
;and starth. Let’s further assume that we want to limit scrolling to
;one scan line’s worth. Therefore, in high resolution we can never
;issue a starting address higher than 63; in medium resolution, none
;higher than 31.

Scroll Operations

.
2

to left?
to right

to left

medium
scan

dseg segment byte public ‘datasg’

extrn scrltb:byte,gtempi:byte,startl:byte,gbmod:byte

dseg ends

cseg segment byte public ‘codesg’

extrn gdc_not_busy:near

assume cs:cseg,ds:dseg,es:dseg,ss:nothing
public hscroll

hscroll proc near
or al,al ;ymove screen
jz hs1 ;jump if not
dec byte ptr startl ;move screen
jmp hs2

hs1: inc byte ptr startl jmove screen

hs2: test byte ptr gbmod, 1 ;high res?
jnz hs3 s jump if yes
and byte ptr startl,31 ;limit to 1st
jmp hs4 ; resolution

hs3: and byte ptr startl,63 slimit to 1st

.
2

;Assert the new startl,

starth to the GDC.

H resolution

high
scan

Assume that starth is

;always going to be 0 although this is not a necessity. Issue the
;PRAM command and rewrite the starting address of the GDC display

swindow 0.

;

hs4: call
mov
out
mov
out
xor
out
ret

hscroll endp

cseg ends
end

gdc_not_busy

al,70

h

57h,al

al,byte ptr startl

56h,al

al,al
S6h,a

1

;make sure the GDC is not busy

s;issue the PRAM command

;s address

;fetch low byte of the starting

;assume high byte is always 0

12

Programming Notes

Shadow Areas

Most of the registers in the Graphics Option control more than one function. In addition, the regis-
ters are write-only areas. In order to change selected bits in a register while retaining the settings of
the rest, shadow images of these registers should be kept in motherboard memory. The current
contents of the registers can be determined from the shadow area, selected bits can be set or reset
by ORing or ANDing into the shadow area, and the result can be written over the existing register.

Modifying the Color Map and the Scroll Map is also made easier using a shadow area in motherboard
memory. These are relatively large areas and must be loaded during the time that the screen is
inactive. It is more efficient to modify a shadow area in motherboard memory and then use a fast
move routine to load the shadow area into the Map during some period of screen inactivity such as a
vertical retrace.

Bitmap Refresh

The Graphics Option uses the same memory accesses that fill the screen with data to also refresh
the memory. This means that if the screen display stops, the dynamic video memory will lose all the
data that was being displayed within two milliseconds. In high resolution, it takes two scan lines to
refresh the memory (approximately 125 microseconds). In medium resolution, it takes four scan lines
to refresh the memory (approximately 250 microseconds). During vertical retrace (1.6 milliseconds)
and horizontal retrace (10 microseconds) there is no refreshing of the memory. Under a worst case
condition, you can stop the display for no more than two milliseconds minus four medium resolution
scans minus vertical retrace or just about 150 microseconds. This is particularly important when
programming the Scroll Map.

12-1

Programming Notes

All write and read operations should take place during retrace time. Failure to limit reads and writes
to retrace time will result in interference with the systematic refreshing of the dynamic RAMs as
well as not displaying bitmap data during the read and write time. However, the GDC is usually
programmed to limit its bitmap accesses to retrace time as part of the initialization process.

Software Reset

Whenever you reset the GDC by issuing the RESET command (a write of zero to port 57h), the
Graphics Option must also be reset (a write of any data to port 50h). This is to synchronize the
memory operations of the Graphics Option with the read/modify/write operations generated by the
GDC. A reset of the Graphics Option by itself does not reset the GDC; they are separate reset
operations.

Setting Up Clock Interrupts

With the Graphics Option installed on a Rainbow system, there are two 60 hz clocks available to the
programmer—one from the motherboard and one from the Graphics Option. The motherboard clock
is primarily used for a number of system purposes. However, you can intercept it providing that any
routine that is inserted be kept short and compatible with the interrupt handler. Refer to the

“init___ option” procedure in Chapter 5 for a coding example of how to insert a new interrupt
vector under MS-DOS. '

Clock interrupt types and vector addresses differ depending on the model of the motherboard as well
as whether the interrupt is for the Graphics Option or for the motherboard. (Refer to Table 3.)

It is important to keep all interrupt handlers short! Failure to do so can cause a system reset when

the motherboard’s MHFU line goes active. New interrupt handlers should restore any registers that
are altered by the routine.

Table 3. Clock Interrupt Parameters

MOTHERBOARD INTERRUPT VECTOR
MODEL TYPE ADDRESS
GRAPHICS A 22h 88h
OPTION B A2h 288h
A 20h 80h
MOTHERBOARD
B AOh 280h

LJ-0229

12-2

Programming Notes

Operational Requirements

All data modifications to the bitmap are performed by hardware that is external to the GDC. In this
environment, it is a requirement that the GDC be kept in graphics mode and be programmed to
write in Replace mode. Also, the internal write data patterns of the GDC must be kept as all ones
for the external hardware to function correctly. The external hardware isolates the GDC from the
data in the bitmap such that the GDC is not aware of multiple planes or incoming data patterns.

Although it is possible to use the GDC’s internal parameter RAM for soft character fonts and
graphics characters, it is faster to use the option’s Write Buffer. However, to operate in the GDC’s
native mode, the Write Buffer and Pattern Generator should be loaded with all ones, the Mode
Register should be set to graphics mode, and the Foreground/Background Register should be loaded
with FOh.

When the Graphics Option is in Word Mode, the GDC’s mask register should be filled with all ones.
This causes the GDC to go on to the next word after each pixel operation is done. The external
hardware in the meantime, has taken care of all sixteen bits on all four planes while the GDC was
taking care of only one pixel.

When the option is in Vector Mode, the GDC is also in graphics mode. The GDC’s mask register is
now set by the third byte of the cursor positioning command (CURS). The GDC will be able to tell
the option which pixel to perform the write on but the option sets the mode, data and planes.

Set-Up Mode

When you press the SET-UP key on the keyboard, the system is placed in set-up mode. This, in
turn, suspends any non-interrupt driven software and brings up a set-up screen if the monitor is
displaying VT102 video output. If, however, the system is displaying graphics output, the fact that
the system is in set-up mode will not be apparent to a user except for the lack of any further
interaction with the graphics application that has been suspended. The set-up screen will not be
displayed.

Users of applications that involve graphics output should be warned of this condition and cautioned
not to press the SET-UP key when in graphics output mode. Note also that pressing the SET-UP

key a second time will resume the execution of the suspended graphics software.

In either case, whether the set-up screen is displayed or not, set-up mode accepts any and all
keyboard data until the SET-UP key is again pressed.

12-3

Programming Notes

Timing Considerations

It is possible for an application to modify the associated hardware that is external to the GDC
(registers, buffers, maps) before the GDC has completed all pending operations. If this should occur,
the pending operations would then be influenced by the new values with unwanted results.

Before changing the values in the registers, buffers, and color map, you must ensure that the GDC
has completed all pending operations. The ‘““gdc__not__busy”’ subroutine in the “init___option”
procedure in Chapter 5 is one method of checking that the GDC has completed all pending
operations.

12-4

Contents

PART Il

Chapter 13. Option Registers, Buffers, and Maps 13-1

/O Ports 13-1

Indirect Register 13-3
Write Buffer 13-4

Write Mask Registers 13-5
Pattern Register 13-6
Pattern Multiplier 13-7
Foreground/Background Register 13-8
ALU/PS Register 13-9
Color Map 13-10

Mode Register 13-11
Scroll Map 13-12

Chapter 14. GDC Registers and Buffers 14-1

Status Register 14-1
FIFO Buffer 14-2

Chapter 15. GDC Commands 15-1

Intfroduction 15-1
Video Control Commands 15-2
CCHAR - Specify Cursor and Character Characteristics 15-2
RESET - Reset the GDC 15-3
SYNC - Sync Format Specify 15-6
VSYNC - Vertical Sync Mode 15-8

Contents

Display Control Commands 15-8

BCTRL - Control Display Blanking 15-8

CURS - Specify Cursor Position 15-9

PITCH - Specify Horizontal Pitch 15-10

PRAM - Load the Parameter RAM 15-10

START - Start Display and End Idle Mode 15-12

ZOOM - Specify the Zoom Factor 15-12
Drawing Control Commands 15-13

FIGD - Start Figure Drawing 15-13

FIGS - Specify Figure Drawing Parameters 15-14

GCHRD - Start Graphics Character Draw and Area Fill 15-16

MASK - Load the Mask Register 15-16

WDAT - Write Data into Display Memory 16-17
DATA READ COMMANDS 15-18

RDAT - Read Data from Display Memory 15-18

13

Option Registers, Buffers, and
Maps

The Graphics Option uses a number of registers, buffers, and maps to generate graphic images and
control the display of these images on a monochrome or color monitor. Detailed discussions of these
areas may be found in Chapter 3 of this manual.

I/O Ports

The CPUs on the Rainbow system’s motherboard use the following I/O ports to communicate with
the Graphics Option:

Port Function

50h Graphics option software reset and resynchronization.
51h Data input to area selected through port 53h.

52h Data input to the Write Buffer.

13-1

Option Registers, Buffers, and Maps

53h
54h
55h
56h
57h

13-2

Area select input to Indirect Register.

Input to low-order byte of Write Mask.

Input to high-order byte of Write Mask.

Parameter input to GDC - Status output from GDC.
Command input to GDC - Data output from GDC.

Option Registers, Buffers, and Maps

Indirect Register
The Indirect Register is used to select one of eight areas to be written into.
Load Data: Write data byte to port 53h.

INDIRECT REGISTER

7 6 5 4 3 2 1 o
LJ-0230
where:

Data Active Function

Byte Bit

FEh 0 selects the Write Buffer

FDh 1 selects the Pattern Multiplier. (Pattern Multiplier must always be load-
ed before the Pattern Register)

FBh 2 selects the Pattern Register.

F7h 3 selects the Foreground/Background Register.

EFh 4 selects the ALU/PS Register.

DFh 5 selects the Color Map and resets the Color Map Address Counter to
Zero.

“BFh 6 selects the Graphics Option Mode Register.

7Fh 7 selects the Scroll Map and resets the Scroll Map Address Counter to

ZEro.
NOTE

If more than one bit is set to zero, more than one area will be selected and
the results of subsequent write operations will be unpredictable.

13-3

Option Registers, Buffers, and Maps

Write Buffer

The Write Buffer is the incoming data source when the Graphics Option is in Word Mode.

Select Area: write FEh to port 53h
Clear Counter: write any value to port 51h
Load Data: write up to 16 bytes to port 52h
AS THE CPU ACCESSES IT AS THE GDC ACCESSES IT
BYTE (16 X 8-BIT RING BUFFER) WORD (8 X 16-BIT WORDS)
7 0] 7 0 15 (0]
0,1 0
2,3 1
4,5 2
6.7 3
89 4
10,11 5
12,13 6
14,15 7

LJ-0231

13-4

Option Registers, Buffers, and Maps

Write Mask Registers
The Write Mask Registers control the writing of individual bits in a bitmap word.

Select Area: no selection required

Load Data: write low-order data byte to port 54h
write high-order data byte to port 55h

AS ACCESSED BY

THE CPU
PORT 55h PORT 54h
7 07 0
WRITE MASK (HIGH) WRITE MASK (LOW)
15
LJ-0232
AS ACCESSED BY THE GDC
where:
bit = 0 enables a write in the corresponding bit position of the word being
displayed.
bit =1 disables a write in the corresponding bit position of the word being
displayed.

13-5

Option Registers, Buffers, and Maps

Pattern Register

The Pattern Register provides the incoming data when the Graphics Option is in Vector Mode.

Select Area: write FBh to port 53h
Load Data: write data byte to port 51h
7 0
BITMAP
- P A T T E R N ——» WRITE
: T CIRCUITRY
|
| |
e d
LJ-0233
where:
Pattern is the pixel data to be displayed by the option when in Vector Mode.

13-6

Option Registers, Buffers, and Maps

Pattern Multiplier

The Pattern Multiplier controls the recirculating frequency of the bits in the Pattern Register.

Select Area: write FDh to port 53h
Load Data: write data byte to port 51h
7 4 3 0
UNUSED VALUE
LJ-0234
where:
value is a number in the range of 0 through 15 such that 16 minus this value is the

factor that determines when the Pattern Register is shifted.

13-7

Option Registers, Buffers, and Maps

Foreground/Background Register

The F oreground/Backgr‘ound Register controls the bit/plane input to the bitmap.

Select Area: write F7h to port 53h
Load Data: write data byte to port 51h
7 DATA BYTE 0
7 6 5 4 3 2 1 0
FOREGROUND l BACKGROUND
REGISTER | REGISTER
LJ0235
where:
Bits
0-3 are the bits written to bitmap planes 0-3 respectively when the option is in RE-

PLACE mode and the incoming data bit is a zero.

If the option is in OVERLAY or COMPLEMENT mode and the incoming data bit is
a zero, there is no change to the bitmap value.

4-7 are the bits written to bitmap planes 4-7 respectively when the option is in RE-
PLACE or OVERLAY mode and the incoming data bit is a one.

If the option is in COMPLEMENT mode and the incoming data bit is a one, the
Foreground bit determines the action. If it is a one, the bitmap value is inverted; if
it is a zero, the bitmap value is unchanged.

13-8

Option Registers, Buffers, and Maps

ALU/PS Register

The ALU/PS Register controls the logic used in writing to the bitmap and the inhibiting of writing to

specified planes.

Select Area:
Load Data:

where:

Bit

5,4

7,6

write EFh to port 53h
write data byte to port 51h

7 DATA BYTE 0
7 6 5 4 3 2 1 0
UNUSED | ALU PLANE SELECT
I LJ-0236
Value Function
0 enable writes to plane 0
1 inhibit writes to plane 0
0 enable writes to plane
1 inhibit writes to plane 1
0 enable writes to plane 2
1 inhibit writes to plane 2
0 enable writes to plane 3
1 inhibit writes to plane 3
00 place option in REPLACE mode
01 place option in COMPLEMENT mode
10 place option in OVERLAY mode
11 Unused
Unused

13-9

Option Registers, Buffers, and Maps

Color Map

The Color Map translates bitmap data into the monochrome and color intensities that are applied to
the video monitors.

Select Area: write DFh to port 53h (also clears the index counter)
Coordinate: wait for vertical sync interrupt
Load Data: write 32 bytes to port 51h
2ND 16 BYTES 1ST 16 BYTES
LOADED BY LOADED BY
THE CPU THE CPU
MONO. BLUE RED GREEN
DATA DATA DATA DATA
BYTE 17 BYTE 1
BYTE 18 BYTE 2
BYTE 19 BYTE 3
BYTE 20 BYTE 4
BYTE 21 BYTE 5
BYTE 22 BYTE 6
BYTE 23 BYTE 7
yd e
-~ -
4 <
BYTE 32 BYTE 16

LJ-0237

13-10

Option Registers, Buffers, and Maps

Mode Register

The Mode Register controls a number of the Graphics Option’s operating characteristics.

Select Area:
Load Data:

where:

Bit

3,2

write BFh to port 53h

write data byte to port 51h
6 5 4 3 2 1 0
LJ-0238
Value Function
0 place option in medium resolution mode
1 place option in high resolution mode
0 place option into word mode
1 place option into vector mode
00 select plane O for readback operation
01 select plane 1 for readback operation
10 select plane 2 for readback operation
11 select plane 3 for readback operation
0 enable readback operation
1 enable write operation
0 enable writing to the Scroll Map
1 disable writing to the Scroll Map
0 disable vertical sync interrupts to CPU
1 enable vertical sync interrupts to CPU
0 disable video output from Graphics Option
1 enable video output from Graphics Option
NOTE

The Mode Register must be reloaded following any write to port 50h
(software reset).

13-11

Option Registers, Buffers, and Maps

Scroll Map
The Scroll Map controls the location of each line displayed on the monitor screen.
Preliminary: enable Scroll Map writing (Mode Register bit 5 = 0)
Select Area: write 7Fh to port 53h (also clears the index counter)
Coordinate: wait for vertical sync interrupt
Load Data: write 256 bytes to port 51h
Final: disable Scroll Map writing (Mode Register bit 5 = 1)

256 X 8

RECIRCULATING

RING BUFFER

GDC 7 0
0

GDC LINE ——#] X0000OXX
ADDRESS i
(BITS 6-13 :
255 s BITMAP LINE
ADDRESS
(BITS 6-13)
-+ BIT MAP
LJ0239
where:
GDC Line is the line address as generated by the GDC and used as an index into
Address the Scroll Map.
Bitmap Line is the offset line address found by indexing into the Scroll Map. It be-
Address comes the new line address of data going into the bitmap.

13-12

14

GDC Registers and Buffers

The GDC has an 8-bit Status Register and a 16 x 9-bit first-in, first-out (FIFO) Buffer that provide
the interface to the Graphics Option. The Status Register supplies information on the current activity
of the GDC and the status of the FIFO Buffer. The FIFO Buffer contains GDC commands and
parameters when the GDC is in write mode. It contains bitmap data when the GDC is in read mode.

Status Register

The GDC’s internal status can be interrogated by doing a read from port 56h. The Status Register
contents are as follows:

where:

Bit

w N = O

7 6 5 4 3 2 1 0
LJ0240

Status Explanation
DATA READY When set, data is ready to be read from the FIFO.
FIFO FULL When set, the command/parameter FIFO is full.
FIFO EMPTY When set, the command/parameter FIFO is completely empty.
DRAWING IN When set, the GDC is performing a drawing function. Note,
PROGRESS however, that this bit can be cleared before the DRAW com-

DMA EXECUTE

VERTICAL SYNC
ACTIVE

HORIZONTAL
SYNC ACTIVE

LIGHT PEN DE-
TECTED

mand is fully completed. The GDC does not draw continuously
and this bit is reset during interrupts to the write operation.

Not used.
When set, the GDC is doing a vertical sync.

When set, the GDC is doing a horizontal sync.

Not used.

14-1

GDC Registers and Buffers

FIFO Buffer

You can both read from and write to the FIFO Buffer. The direction that the data takes through the
buffer is controlled by the Rainbow system using GDC commands. GDC commands and their associ-
ated parameters are written to ports 57h and 56h respectively. The GDC stores both in the FIFO
Buffer where they are picked up by the GDC command processor. The GDC uses the ninth bit in the
FIFO Buffer as a flag bit to allow the command processor to distinguish between commands and
parameters. Contents of the bitmap are read from the FIFO using reads from port 57h.

FLG DATA BYTE
8 7 0
0
COMMANDS AND
PARAMETERS
FROM THE CPU — 1 ——» COMMANDS AND
PARAMETERS TO
THE COMMAND
2 PROCESSOR
3 DATA FROM
BITMAP DATA <—— <«———THE BITMAP
TO THE CPU
> P
// //
14
15
LJ-0241
where:
flg is a flag bit to be interpreted as:
0 - data byte is a parameter
1 - data byte is a command
data byte is a GDC command or parameter

When you reverse the direction of flow in the FIFO Buffer, any pending data in the FIFO is lost. If a
read operation is in progress and a command is written to port 56h, the unread data still in the FIFO
is lost. If a write operation is in progress and a read command is processed, any unprocessed
commands and parameters in the FIFO Buffer are lost.

14-2

15

GDC COMMANDS

Introduction
This chapter contains detailed reference information on the GDC commands and parameters sup-
ported by the Graphics Option. The commands are listed in alphabetical order within functional

category as follows:

e Video Control Commands

CCHAR - Specifies the cursor and character row heights
RESET - Resets the GDC to its idle state

SYNC - Specifies the video display format

VSYNC - Selects Master/Slave video synchronization mode

e Display Control Commands

BCTRL - Controls the blanking/unblanking of the display
CURS - Sets the position of the cursor in display memory
PITCH - Specifies the width of display memory

PRAM -~ Defines the display area parameters

START - Ends idle mode and unblanks the display

Z00OM - Specifies zoom factor for the graphics display

15-1

GDC Commands

¢ Drawing Control Commands

FIGD - Draws the figure as specified by FIGS command
FIGS - Specifies the drawing controller parameters
GCHRD - Draws the graphics character into display memory
MASK — Sets the mask register contents

WDAT - Writes data words or bytes into display memory

e Data Read Commands

RDAT - Reads data words or bytes from display memory

15-2

GDC Commands

Video Control Commands

CCHAR - Specify Cursor and Character Characteristics

Use the CCHAR command to specify the cursor and character row heights and characteristics.

COMMAND BYTE
7 6 5 4 3 2 1 0

PARAMETER BYTES

7 6 5 4 3 2 1 0
P1 DC 0 0 LR
P2 BR(LO) SC CTOP
P3 CBOT BR(H!)
LJ-0242
where:
DC controls the display of the cursor

0 - do not display cursor
1 - display the cursor

LR is the number of lines per character row, minus 1
BR is the blink rate (5 bits)
SC controls the action of the cursor

0 - blinking cursor
1 - steady cursor

CTOP s the cursor’s top line number in the row

CBOT is the cursor’s bottom line number in the row
(CBOT must be less than LR)

15-3

GDC Commands

RESET — Reset the GDC

Use the RESET command to reset the GDC. This command blanks the display, places the GDC in
idle mode, and initializes the FIFO buffer, command processor, and the internal counters. If parame-

ter bytes are present, they are loaded into the sync generator.

P1

P2

P3

P4

P5

P6

P7

P8

15-4

COMMAND BYTE

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0
PARAMETER BYTES
7 6 5 4 3 2 1 0
0 0 c F [D G S
AW
VS(LO) HS

HFP VS(HI)
0 0 HBP
0 0 VFP

AL(LO)
VBP AL(HI)

LJ-0243

GDC Commands

where:

CG

IS

AW
HS
VS
HFP
HBP
VFP
AL
VBP

sets the display mode for the GDC

00 - mixed graphics and character mode
01 - graphics mode only

10 - character mode only

11 - invalid

controls the video framing for the GDC

00 - noninterlaced

01 - invalid

10 - interlaced repeat field for character displays
11 - interlaced

controls the RAM refresh cycles

0 - no refresh - static RAM
1 - refresh - dynamic RAM

controls the drawing time window

0 - drawing during active display time and retrace blanking
1 - drawing only during retrace blanking

active display words per line minus 2; must be an even number
horizontal sync width minus 1

vertical sync width

horizontal front porch width minus 1

horizontal back porch width minus 1

vertical front porch width

active display lines per video field

vertical back porch width

15-5

GDC Commands

SYNC - Sync Format Specify

Use the SYNC command to load parameters into the sync generator. The GDC is neither reset nor
placed in idle mode.

COMMAND BYTE

7 6 5 4 3 2 1 0
0 0 0 0 1 1 1 DE
LJ-0244
where:
DE controls the display

0 - disables (blanks) the display
1 - enables the display

PARAMETER BYTES

7 6 5 4 3 2 1 0
P1 0 0 C F | D G S
P2 AW
P3 VS(LO) HS
P4 HFP VS(HI)
P5 0 0 HBP
P6 0 0 VFP
P7 AL(LO)
P8 VBP AL(HI)

LJ-0244

15-6

GDC Commands

where:

CG

IS

AW
HS
VS
HFP
HBP
VFP
AL
VBP

sets the display mode for the GDC

00 - mixed graphics and character mode
01 - graphics mode only

10 - character mode only

11 - invalid

controls the video framing for the GDC

00 - noninterlaced

01 - invalid

10 - interlaced repeat field for character displays
11 - interlaced

controls the RAM refresh cycles

0 - no refresh - static RAM
1 - refresh - dynamic RAM

controls the drawing time window

0 - drawing during active display time and retrace blanking
1 - drawing only during retrace blanking

active display words per line minus 2; must be an even number
horizontal sync width minus 1

vertical sync width

horizontal front porch width minus 1

horizontal back porch width minus 1

vertical front porch width

active display lines per video field

vertical back porch width

18-7

GDC Commands

VSYNC - Vertical Sync Mode

Use the VSYNC command to control the slave/master relationship whenever multiple GDC’s are
used to contribute to a single image.

COMMAND BYTE

7 6 5 4 3 2 1 0
0 1 1 0 1 1 1 M
LJ-0245
where:
M sets the synchronization status of the GDC

0 - slave mode (accept external vertical sync pulses)
1 - master mode (generate and output vertical sync pulses)

15-8

GDC Commands

Display Control Commands

BCTRL - Control Display Blanking

Use the BCTRL command to specify whether the display is blanked or enabled.

COMMAND BYTE

7 6 5 4 3 2 1 0
0 0] 0 0 1 1 0 DE
LJ-0246
where:
DE controls the display

0 - disables (blanks) the display
1 - enables the display

15-9

GDC Commands

CURS - Specify Cursor Position

Use the CURS command to set the position of the cursor in display memory. In character mode the
cursor is displayed for the length of the word. In graphics mode the word address specifies the word
that contains the starting pixel of the drawing; the dot address specifies the pixel within that word.

COMMAND BYTE

7 6 5 4 3 1 0
0 1 0 0 1 0 1
PARAMETER BYTES
7 6 5 4 3 1 0
P1 EAD(LO)
P2 EAD(MID)
P3 dAD 0 EAD(HI) |&—GRAPHICS MODE ONLY

where:

EAD
dAD

15-10

is the execute word address (18 bits)

is the dot address within the word

LJ-0213

GDC Commands

PITCH - Specify Horizontal Pitch

Use the PITCH command to set the width of the display memory. The drawing processor uses this
value to locate the word directly above or below the current word. It is also used during display to
find the start of the next line.

COMMAND BYTE
7 6 5 4 3 2 1 0

0] 1 0 0o 0 1 1 1

PARAMETER BYTES
7 6 5 4 3 2 1 0

P1 P

LJ-0214

where:

P is the number of word addresses in display memory in the horizontal direction

15-11

GDC Commands

PRAM - Load the Parameter RAM

Use the PRAM command to load up to 16 bytes of information into the parameter RAM at specified
adjacent locations. There is no count of the number of parameter bytes to be loaded; the sensing of
the next command byte stops the load operation. Because the Graphics Option requires that the GDC
be kept in graphics mode, only parameter bytes one through four, nine, and ten are used.

COMMAND BYTE

7 6 5 4 3 2 1 0
0] 1 1 1 SA
LJ-0247
where:
SA is the start address for the load operation (Pn — 1)

15-12

GDC Commands

PARAMETER BYTES

7 6 5 4 3 2 1 0
P1 SAD(LO)
P2 SAD(MID)
P3 LEN(LO) 0 0 SAD(HI)
P4 | wp | IM LEN(HI)
P5 UNUSED
P8 UNUSED
P9 1 1 1 1 1 1 1 1
P1o| 1 1 1 1 1 1 1 1
P11 UNUSED
L]
P16 UNUSED

LJ-0247

where:

SAD is the start address of the display area (18 bits)
LEN is the number of lines in the display area (10 bits)

15-13

GDC Commands

WD sets the display width

0 - one word per memory cycle (16 bits)
1 - two words per memory cycle (8 bits)

IM sets the current type of display when the GDC is in mixed graphics and character
mode

0 - character area
1 - image or graphics area

NOTE
When the GDC is in graphics mode, the IM bit must be a zero.

15-14

GDC Commands

START - Start Display and End Idle Mode

Use the START command to end idle mode and enable the video display.

COMMAND BYTE
7 6 5 4 3 2 1 0

0 1 1 0 1 0 1 1

LJ-0248

15-15

GDC Commands

ZOOM - Specify the Zoom Factor

Use the ZOOM command to set up a magnification factor of 1 through 16 (using codes 0 through
15) for the display and for graphics character writing.

COMMAND BYTE

7 6 5 4 3 2 1 0

0 1 0 0 0 1 1

PARAMETER BYTES

7 6 5 4 3 2 1 0

P1 DISP

GCHR

LJ-0249
where:

DISP
GCHR

is the zoom factor (minus one) for the display

is the zoom factor (minus one) for graphics character writing and area fills

15-16

GDC Commands

Drawing Control Commands

FIGD - Start Figure Drawing

Use the FIGD command to start drawing the figure specified with the FIGS command. This com-
mand causes the GDC to:

® Joad the parameters from the parameter RAM into the drawing controller, and

e start the drawing process at the pixel pointed to by the cursor: Execute Word Address (EAD)
and Dot Address within the word (dAD)

COMMAND BYTE
7 6 5 4 3 2 1 0

0 1 1 0 1 1 o 0

LJ-0250

15-17

GDC Commands

FIGS - Specify Figure Drawing Parameters

Use the FIGS command to supply the drawing controller with the necessary figure type, direction,
and drawing parameters needed to draw figures into display memory.

COMMAND BYTE

7 6 5 4 3 2 1 0

o 1 0 0 1 1 0 0

PARAMETER BYTES

7 6 5 4 3 2 1 0
P1 SL R A GC L DIR
P2 DC(LO)
P3 0 GD DC(HI)
P4 D(LO)
P5 0 0 D(HI)
P6 D2(LO)
P7 0 0 D2(HI)
P8 D1(LO)
P9 0 0 D1(HI)
P10 DM(LO)

P11l o | O DM(HI)

LJ-0251

15-18

GDC Commands

where:

SL

GC

DIR
DC
GD

D2
D1
DM

Slanted Graphics Character

Rectangle
Arc/Circle

Graphics Character

Figure Type Select Bits

(see valid
combinations
below)

Line (Vector)

is the drawing direction base (see definitions below)

is the DC drawing parameter (14 bits)

is the graphic drawing flag used in mixed graphics and character mode

is the D drawing parameter (14 bits)

is the D2 drawing parameter (14 bits)

is the D1 drawing parameter (14 bits)

is the DM drawing parameter (14 bits)

FIGURE TYPE SELECT BITS (VALID COMBINATIONS)

SLRAGCL | OPERATION

00000 CHARACTER DISPLAY MODE DRAWING, INDIVIDUAL DOT
DRAWING, WDAT, AND RDAT

00001 STRAIGHT LINE DRAWING

00010 GRAPHICS CHARACTER DRAWING AND AREA FILL WITH
GRAPHICS CHARACTER PATTERN

00100 ARC AND CIRCLE DRAWING

01000 RECTANGLE DRAWING

10010 SLANTED GRAPHICS CHARACTER DRAWING ARD SLANTED

AREA FILL

15-19

GDC Commands

DRAWING DIRECTION BASE (DIR)
[101] [100] [011]

[110] <— [START] —» [010]

N

[111] [000] [001]

15-20

LJ-0252

GDC Commands

GCHRD - Start Graphics Character Draw and Area Fill

Use the GCHRD command to initiate the drawing of the graphics character or area fill pattern that
is stored in the Parameter RAM. The drawing is further controlled by the parameters loaded by the
FIGS command. Drawing begins at the address in display memory pointed to by the Execute Address
(EAD) and Dot Address (dAD) values.

COMMAND BYTE
7 6 5 4 3 2 1 0

0 1 1 0 1 0] 0 0

LJ-0253

15-21

GDC Commands

MASK - Load the Mask Register

Use the MASK command to set the value of the 16-bit Mask Register that controls which bits of a
word can be modified during a Read/Modify/Write (RMW) cycle.

COMMAND BYTE
7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0

PARAMETER BYTES

7 6 5 4 3 2 1 0
P1 M(LO)
P2 M(HI)
LJ-0254
where:
M is the bit configuration to be loaded into the Mask Register (16 bits). Each bit in

the Mask Registercontrols the writing of the corresponding bit in the word being
processed as follows:

0 - disable writing
1 - enable writing

156-22

GDC Commands

WDAT - Write Data Into Display Memory

Use the WDAT command to perform RMW cycles into display memory starting at the location
pointed to by the cursor Execute Word Address (EAD). Precede this command with a FIGS com-
mand to supply the writing direction (DIR) and the number of transfers (DC).

COMMAND BYTE

7 6 5 4 3 2 1 0

0 0 1 TYPE 0 MOD

LJ-0255

where:

TYPE s the type of transfer

00 — word transfer (first low then high byte)
01 - invalid

10 - byte transfer (low byte of the word only)
11 - byte transfer (high byte of the word only)

MOD is the RMW memory logical operation

00 - REPLACE with Pattern
01 - COMPLEMENT

10 - RESET to Zero

11 - SET to One

PARAMETER BYTES

7 6 5 4 3 2 1 0
P1 WORD(LO) OR BYTE
P2 WORD(HI)
[]
*

LJ-0255

where:

WORD is a 16-bit data value
BYTE is an 8-bit data value

16-23

GDC Commands

Data Read Commands

RDAT - Read Data From Display Memory

Use the RDAT command to read data from display memory and pass it through the FIFO buffer and
microprocessor interface to the host system. Use the CURS command to set the starting address
and the FIGS command to supply the direction (DIR) and the number of transfers(DC). The type of
transfer is coded in the command itself.

COMMAND BYTE

7 6 5 4 3 2 1 0

1 0] 1 TYPE 0 MOD

LJ-0256
where:

TYPE s the type of transfer

00 - word transfer (first low then high byte)
01 - invalid

10 - byte transfer (low byte of the word only)
11 - byte transfer (high byte of the word only)

MOD is the RMW memory logical operation

00 - REPLACE with Pattern
01 - COMPLEMENT

10 - RESET to Zero

11 - SET to One

NOTE

The MOD field should be set to 00 if no modification to the video buffer is
desired.

16-24

Contents

PART IV

Appendix A. Option Specification Summary A-1

Physical Specifications A-1
Environmental Specifications A-1
Temperature A-1

Humidity A-1

Altitude A-2

Power Requirements A-2
Standards and Regulations A-2
Part and Kit Numbers A-3

Appendix B. Rainbow Graphics Option — Block Diagram B-1

Appendix C. Getting Help C-1

A

Option Specification Summary

Physical Specifications
The Graphics Option Video Subsystem is a 5.7” X 10.0”, high density, four-layer PCB with one 40-

pin female connector located on side 1. This connector plugs into a shrouded male connector located
on the system module. The option module is also supported by two standoffs.

Environmental Specifications

Temperature

e QOperating ambient temperature range is 10 to 40 degrees C.
e Storage temperature is —40 to 70 degrees C.

Humidity

® 10% to 90% non-condensing
e Maximum wet bulb, 28 degrees C.

e Minimum dew point, 2 degrees C.

A-1

Option Specification Summary

Altitude

e Derate maximum operating temperature 1 degree per 1,000 feet elevation
e Operating limit: 22.2 in. Hg. (8,000 ft.)
e Storage limit: 8.9 in Hg. (30,000 ft.)

Power Requirements

Calculated Typical Calculated Maximum
+5V DC (+/-5%) 3.05 amps 3.36 amps
+12V DC (+/-10%) 180 mA 220 mA

Standards and Regulations
The Graphics Option module complies with the following standards and recommendations:

e DEC Standard 119 - Digital Product Safety (covers UL 478, UL 114, CSA 22.2 No. 154, VDE
0806, and IEC 380)

e [EC 485 - Safety of Data Processing Equipment
e EIA RS170 - Electrical Performance Standards — Monochrome Television Studio Facilities

e CCITT Recommendation V.24 — List of Definitions for Interchange Circuit Between Data Ter-
minal Equipment and Data Circuit Terminating Equipment

e CCITT Recommendation V.28 - Electrical Characteristics for Unbalanced Double-Current
Interchange Circuits

A-2

Option Specification Summary

Part and Kit Numbers

Graphics Option
Hardware:
Printed Circuit Board
Color RGB Cable
Software and Documentation:
Rainbow Color/Graphics Option Installation Guide
Rainbow Color/Graphics Option Programmer’s Reference Guide
Rainbow GSX-86 Programmer’s Reference Manual
Rainbow GSX-86 Getting Started
Rainbow Diagnostic/GSX-86 Diskette
Rainbow 100 CP/M-86/80 V1.0 Technical Documentation
Rainbow 100 MS-DOS V2.01 Technical Documentation

PC1XX-BA

54-15688
BCC17-06

EK-PCCOL-IN-001
AA-AE36A-TV
AA-V526A-TV
AA-W964A-TV
BL-W965A-RV
QV043-GZ
QV025-GZ

A-3

Rainbow Graphics Option -
Block Diagram

B-1

©)

LOAD

INDIRECT REGISTER MODE REGISTER
BIT SELECTED AREA BIT CONTROLLED FUNCTION
PARAMETER 0 | WRITE BUFFER (INDEX COUNTER CLEAR) 0 | MEDIUM/HIGH RESOLUTION MODE
STATUS FIFO GDC DATA y 1 | PATTERN MULTIPLIER 1 | WORD/VECTOR MODE
commanp | (16%9) 716 2 | PATTERN REGISTER 2 | READBACK MODE PLANE SELECT (LSB)
@ N DBACK DATA GDC ADDRESS BITS 0—5 3 | FOREGROUND/BACKGROUND REGISTER 3 | READBACK MODE PLANE SELECT (MSB)
4 | ALU FUNCTION/PLANE SELECT REGISTER 4 WRITE/READ MODE
GDC WRITE SEL 5 | COLOR/MONO MAP (INDEX COUNTER CLEAR) 5 | SCROLL MAP UPDATE
MASK GDC ADDRESS ‘ READBACK | READ 6 | MODE REGISTER 6 | INTERRUPT REQUEST
BITS6—13 | LATCH nm % 7 | SCROLL MAP (INDEX COUNTER CLEAR) 7 | VIDEO OUTPUT DATA BLANKING
SCROLL (2X8)
MAP ‘
SCROLL MAP (256 X 8) l_ — — — —
RESET INDEX PLANE J3-VIDEO
™1 COUNTER WRITE ENABLE
(0—255) | L SELECT l ' ?l:iLIJEELD I
. I 0}
BLUE D/A BLUE =O REEN I
> PIXEL (16 X 4) 4 | gH|ELD
PIXEL IN WORD PLANE (2)
- WRITE ENABLE BIT MAP DATA \é‘D(E:O ?;JJPUT GREEN | GREEN I
2/4 PLANES) 2 | CIRcul /) 16 X 4) +(10)
(VZVF)‘('Tsf MASK > > (out (SHIFT REGISTER) [7% ADDRESS | | P RED
I WRITE COLOR l (} SHIELD
T T ENABLE AP '
PLANE ED
PLANE DATA IN COLOR/MONO MAP - D/A RED L (1)
@ seLect | WRITE INDEX COUNTER OLOR (125)?4) 4 | MONO
(1 x4) | ENABLE 4 (0—31) coLs O SHIELD
SELECT l
LOGIC UNIT MONO s GRAPHICS | MONO
ALY RESET I 4 COMPOSITE.. —(2
FUNCTION OVERLAY | (1 6 X 4) | —E—O———D
(1x2) L o}J Repiace vip (}
COMPLEMENT I GRAPHICS/
VIDEO . @
! I ‘@ .
SHIFT KBD/RCV "— GND
N PATTERN cLock | PATTERN
AND MULTIPLIER REGISTER O
cLOCK 015
| (0—15) (1x8) l KBD/TXD @
WRITE BUFFER WRITE @
INDEX COUNTER BUFFER \
(0—15) (16X 8) L DB-15 |
¥ 4 / RAINBOW 100 GRAPHICS OPTION MOTHERBOARD 12V
RE‘SET T e — e —— . —

©)

1

—
FOREGROUND/BACKGROUND
REGISTER (2 X 4)

T

MR-12478

Figure 15. Rainbow Graphics Option — Block Diagram

B-3

Help Line Phone Numbers

Getting Help

Country Phone Number

USA. (800) DEC-8000

Canada (800) 267-5251

United Kingdom (0256) 59 200

Belgium (02)-24 26 790

West Germany (089) 95 91 66 44

Italy (02)-617 53 81 or 617 53 82
Japan (0424) 64-3302

Denmark (04)-30 10 05

Spain (1)-73 34 307

Finland (90)-42 33 32

Holland (1820)-31 100

Switzerland (01)-810 51 21

Sweden (08)-98 88 35

Norway (02)-25 64 22

France (1)-687 31 52

Austria (222)-67 76 41 extension 444
Australia

Sydney
All other areas

(02) 412-5555
(008) 226377

C-1

A

Address conversion
from pixel coordinates 3-5
Address logic 3-2
Altitude specifications 1-2
ALU functions
COMPLEMENT 4-8, 4-18
OVERLAY 4-9, 4-19
REPLACE 4-8, 4-18
ALU/PS Register 4-8, 6-1
bit definitions 13-9
load data 13-9
select 13-9
Arithmetic Logic Unit 4-8

B

Background Register 4-6

BCTRL command 15-9

Bit definitions
ALU/PS Register 13-9
BCTRL command 15-9
CCHAR command 15-3
CURS command 15-10
FIFO Buffer 14-2
FIGS command 15-18

Index

Foreground/Background Register
13-8
GDC Status Register 14-1
Indirect addressing 4-2
Indirect Register 13-3
MASK command 15-22
Mode Register 13-11
PITCH command 15-11
PRAM command 15-12
RDAT command 15-24
RESET command 15-4
Status Register 14-1
SYNC command 15-6
VSYNC command 15-8
WDAT command 15-23
Write Mask Registers 13-5
ZOOM command 15-16
Bitmap 1-2
data 3-6
line address 13-12
modifications 12-3
organization 3-5
reading from 10-1
refreshing 12-1
Bitmap planes
high resolution 3-6
medium resolution 3-6

Index

C

CCHAR command 15-3

initial value 5-8
Character

characteristics 15-3
Characteristics of

character 15-3

cursor 15-3
Circle

display a 8-9
Clear index counter

Color Map 13-10

Scroll Map 13-12

Write Buffer 13-4
Clock interrupt

parameters 12-2

types 12-2

vector addresses 12-2
Clock interrupts 12-2
Clocks

Graphics Option 12-2

motherboard 12-2
Color intensities 4-9

available 1-1

conversion to drive voltages 4-13

displayed 1-1
Color Map 3-6, 4-9

high resolution 4-11

load data 13-10

loading 4-12

medium resolution 4-10

select 13-10
Color monitor 2-3
Components

hardware 1-1
Configuration

Color Map 4-9
Configurations

color monitor 2-3

dual monitors 2-4

monochrome monitor 2-2
Control display blanking 15-9
Control graphics output 5-24
Control multiple GDCs 15-8
Conversion

color intensities to drive voltages

4-13

Conversion table
color intensities to drive voltages
4-13
CURS command 15-10
Cursor
characteristics 15-3
positioning 15-10

D

Data flow in FIFO Buffer 14-2
Data logic 3-2
Data path
color monitor 2-3
dual monitors 2-4
monochrome monitor 2-2
Data patterns 3-2
Data read commands 15-2
Digital-to-analog converters 4-13
Disable
individual bits 4-4
plane writes 4-8
Display
a circle 8-9
a pixel 8-4
a vector 8-5
Display blanking 15-9
Display control commands 15-1
Display logic 3-6
Display memory 1-2, 3-2
GDC access to 3-3
organization 3-5
Display planes 1-2
Displaying data from memory 7-1
Drawing control commands 15-2
Dual monitors 2-4

E

Enable
individual bits 4-4
plane writes 4-8
End idle mode 15-15
Environmental specifications 1-1
Examples
CCP/M version test 5-5
CP/M version test 5-2
disable monitor output 5-25

Index

display a circle 8-9

display a pixel 8-4

display a vector 8-6

display data from memory 7-1

enable monitor output 5-24

horizontal scrolling 11-4

initialize Graphics Option 5-9

load Color Map 5-26

loading ALU/PS Register 6-1

loading Foreground/Background Reg-
ister 6-2

loading Pattern Multiplier 8-3

loading Pattern Register 8-1
modify color data 5-26
MS-DOS version test 5-3
no-op word write 10-5

option present test 5-1

read entire bitmap 10-2

set area to a color 7-4
vertical scrolling 11-2

write a text string 9-38
writing byte-aligned character 9-1

F

FIFO Buffer 3-9, 14-2
bit definitions 14-2
data flow 14-2
flag bit 3-9
read mode 3-9
write mode 3-9
FIGD command 15-17
FIGS command 15-18
Figure drawing parameters 15-18
Foreground Register 4-6
Foreground/Background Register 4-6,
6-2
bit definitions 13-8
load data 13-8
select 13-8
Full-screen scrolling 4-16

G

GCHRD command 15-21
GDC 1-1

command processor 14-2

in native mode 12-3

initialize 5-7
GDC access to bitmap 3-7
GDC addresses 3-5
GDC buffers

reference data 14-1
GDC command bytes 3-9
GDC command logic 3-9
GDC commands 15-1

BCTRL 15-9

CCHAR 15-3

CURS 15-10

FIGD 15-17

FIGS 15-18

GCHRD 15-21

in FIFO Buffer 14-2

MASK 15-22

PITCH 15-11

PRAM 15-12

RDAT 15-24

RESET 12-2, 15-4

START 15-15

SYNC 15-6

VSYNC 15-8

WDAT 15-23

ZOOM 15-16
GDC functions 1-2
GDC line address 13-12
GDC Mask Register 15-22
GDC parameter bytes 3-9
GDC parameters

in FIFO Buffer 14-2
GDC registers

reference data 14-1
GDC reset 5-6, 12-2

parameters 5-6
GDC Status Register

bit definitions 14-1
Graphics Display Controller 1-1

Index

Graphics Option 1-1 L
I/O ports 13-1
in vector mode 12-3
in word mode 12-3
initialize 5-8
regulations 1-2
reset 12-2
standards 1-2

Graphics option
reference data 13-1

Graphics output
control of 5-24

Line address
bitmap 13-12
GDC 13-12
Load
ALU/PS Register 6-1
Foreground/Background Register 6-2
Pattern Multiplier 8-3
Pattern Register 8-1
Load data
ALU/PS Register 13-9
Color Map 13-10
Foreground/Background Register
H 13-8
Indirect Register 13-3
Mode Register 13-11
Pattern Multiplier 13-7
Pattern Register 13-6
Scroll Map 13-12
Write Buffer 13-4
Write Mask Registers 13-5
Load GDC Mask Register 15-22
Load parameter RAM 15-12
Loading
Color Map 4-12, 5-25
| Scroll Map 4-17

Write Buffer 4-3
/0 ports 4-1, 13-1 Write Mask Registers 4-4
Index counter

Write Buffer 4-2
Indirect addressing 4-2 M
bit definitions 4-2
Indirect Register 4-2
bit definitions 13-3
load data 13-3
Initial values

Hardware components 1-1
High resolution 1-3
refresh 12-1
Horizontal Back Porch 3-7
Horizontal Front Porch 3-7
Horizontal pitch 15-11
Horizontal retrace 3-7
Horizontal scrolling 11-4
Humidity specifications 1-1

Magnification factor 15-16

MASK command 15-22

Medium resolution 1-3
refresh 12-1

CCHAR command 5-8 Modedb k 1-3
PITCH command 5-8 o llalc_g
PRAM command 5-8 -
vector 1-3, 3-2
ZOOM command 5-7
Tnitialize Mv;ou}i{l—;; 3_j-15 4-19
e 57 ode Register)

bit definitions 13-11

load data 13-11

select 13-11
Model A motherboard 1-1
Model B motherboard 1-1
Modify color data 5-26
Monitor configurations 2-1
Monochrome monitor 2-2

Graphics Option 5-8
Intensity values

conversion to drive voltages 4-13
Interrupt control 4-15, 4-19

Index

Motherboard
Model A 1-1
Model B 1-1
Multiple GDCs 15-8

0]
Operating mode 4-15, 4-19

Operational requirements 12-3

Option
components 4-1
kit numbers 1-3
part numbers 1-3
Option specifications
altitude 1-2
environmental 1-1
humidity 1-1
physical 1-1
power requirements 1-2
temperature 1-1
Organization
bitmap 3-5
Overview 1-1

P

Parameter RAM 15-12
Parameters
clock interrupt 12-2
Pattern Generator 4-5, 8-1
schematic 4-5
shift frequency 4-6
Pattern Multiplier 4-5
load data 13-7
loading 8-3
select 13-7
Pattern Register 4-5, 8-1
load data 13-6
~ loading 8-1
select 13-6
Persistence
of screen data 11-4
Physical specifications 1-1
PITCH command 15-11
initial value 5-8

Pixel
address 3-5
display a 8-4
Plane select function 4-8
Power requirement specifications 1-2
PRAM command 15-12
initial value 5-8
Programming the Scroll Map 11-1

R

RDAT command 15-24
Read from display memory 15-24
Read operation 10-1
Readback mode 1-3, 4-15, 4-19
Reading

entire bitmap 10-1

precaution 10-5
Reference data

GDC buffers 14-1

GDC registers 14-1

graphics option buffers 13-1

graphics option maps 13-1

graphics option registers 13-1
Refreshing

bitmap 12-1

in high resolution 12-1

in medium resolution 12-1
Registers

ALU/PS 4-8

Foreground/Background 4-6

Indirect 4-2

Mode 4-15, 4-19

Pattern 4-5

Write Mask 4-4
Requirements

operational 12-3
Reset

GDC 12-2

Graphics Option 12-2
RESET command 12-2, 15-4
Reset GDC 5-6
Reset the GDC 15-4
Resolution

high 1-3

medium 1-3
Resolution mode 4-15, 4-19

Index

S

Scan line
definition 3-5
Screen control parameters 3-7
Screen data persistence 11-4
Screen logic 3-7
Scroll Map 3-5, 4-16
load data 13-12
loading 4-17
operations 11-1
programming 11-1
select 13-12
shadow image 4-17
Scroll Map control 4-15, 4-19
Scroll mode 1-3
Scrolling
horizontal 11-4
vertical 11-1
Select
ALU/PS Register 13-9
Color Map 13-10
Foreground/Background Register
13-8
Mode Register 13-11
Pattern Multiplier 13-7
Pattern Register 13-6
Scroll Map 13-12
Write Buffer 13-4
Write Mask Registers 13-5
Set area to a color 7-4
SET-UP key 12-3
Set-up mode 12-3
Shadow areas 12-1
Shadow color map 5-26
Shadow image
Scroll Map 4-17
Shadowing
Color Map 12-1
Scroll Map 12-1
Software logic 3-1
Split-screen scrolling 4-16
START command 15-15
Start display 15-15
Start figure drawing 15-17
Start graphics area fill 15-21
Start graphics character draw 15-21
Status Register
bit definitions 14-1

-6

SYNC command 5-8, 15-6
Sync format 15-6

System in set-up mode 12-3
System maintenance port 2-1

T

Temperature specifications 1-1
Test for motherboard version 5-2
Test for option present 5-1
Timing considerations 12-5

\%

Vector

display a 8-5
Vector mode 1-3, 3-2
Vertical

retrace 3-7

scrolling 4-16, 11-1
Vertical Back Porch 3-7
Vertical Front Porch 3-7
Video control commands 15-1
Video display

organization 3-2
Video drive voltages 4-13
Video output control 4-15, 4-20
VSYNC command 5-8, 15-8

w

WDAT command 5-7, 15-23
Word address 3-5
Word mode 1-3, 3-2
Write Buffer 4-2
clear index counter 13-4
index counter 4-2
load data 13-4
loading 4-3
output 4-3
select 13-4
Write byte-aligned character 9-1
Write Mask Registers 3-5, 4-4
bit definitions 13-5
load data 13-5
loading 4-4
select 13-5

Index

Write mode 4-15, 4-19

Write operations 3-1

Write text string 9-38

Write to display memory 15-23
Writing depth 3-1

Writing length 3-1

Writing time 3-1

Writing width 3-1

z

ZOOM command 15-16
initial value 5-7
Zoom factor 15-16

HOW TO ORDER

ADDITIONAL DOCUMENTATION

If you want to order additional documentation by phone:

And you live in:

New Hampshire, Alaska or
Hawaii

Call: Between the hours of:

603-884-6660 8:30 AM and 6:00 PM
Eastern Time

Continental USA or Puerto Rico 1-800-258-1710 8:30 AM and 6:00PM

Canada (Ottawa-Hull)

Canada (British Columbia)

Canada (all other)

Eastern Time

613-234-7726 8:00 AM and 5:00 PM
Eastern Time

1-800-267-6146 8:00 AM and 5:00 PM
Eastern Time

112-800-267-6146 8:00 AM and 5:00 PM
Eastern Time

If you want to order additional documentation by direct mail:

And you live in:

USA or Puerto Rico

Canada

Other than USA,
Puerto Rico or Canada

Write to:

DIGITAL EQUIPMENT CORPORATION
ATTN: Peripherals and Supplies Group
P.O. Box CS2008

Nashua, NH 03061

NOTE: Prepaid orders from Puerto Rico must be
placed with the local DIGITAL subsidiary
(Phone 809-754-7575)
DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road
Ottawa, Ontario K1G 4C2
Attn: P&SG Business Manager

DIGITAL EQUIPMENT CORPORATION
Peripherals and Supplies Group

P&SG Business Manager

c/o Digital’s local subsidiary or approved distributor

TO ORDER MANUALS WITH EK PART NUMBERS

P&CS PUBLICATIONS
Circulation Services

10 Forbes Road
NRO03/W3

WRITE OR CALL

Northboro, Massachusetts 01532

(617)351-4325

Rainbow™

Color/Graphics Option
Programmer’s Reference Guide
AA-AE36A-TV

READER’S COMMENTS

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

[First-time computer user

[0 Experienced computer user
[J Application package user
J Programmer

[Other (please specify)

Name.
Date

Organization
Street
City.
State

Zip Code
or Country

il I

No Postage
Necessary
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MRO1-2/L12
MARLBOROUGH, MA 01752

Cut Along Dotted Line

