
VAXELN Runtime Facilities Guide
Order Number: AA-JM81 E-TE

This manual is a guide to using the VAXELN runtime facilities.

Revision/Update Information: This manual supersedes the VAXELN Runtime
Facilities Guide, AA-JM81 D-TE.

Operating System and Version: VMS, Version 4.7 or higher

Software Version:

digital equipment corporation
maynard, massachusetts

VAXELN, Version 4.1

DATATRIEVE
DDCMP
DEC
DECnet
DECnet-VAX.
DECwindows
DELUA
DEQNA
DEUNA
DHB32
DRB32
DRQ
DSSI
Industrial VAX
IVAX

Revised, March 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

Any software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license. No respon
sibility is assumed for the use or reliability of software or equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1986, 1987, 1988, 1989, 1990
All rights reserved. Printed in U.S.A.

The Reader's Comments form at the end of this document requests your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

rtVAX VAXDECIMMS KA
KDA50
KDB50
Local Area VAXcl uster
MASSBUS

RX
ThinWire
TK

VAX DECtrest Manager
VAX DOCUMENT
VAXELN

MicroVAX
MS

TU
UDA

VAX FORTRAN
VAX RdblELN
VAX RdblVMS

P/OS
Q-bus

ULTRIX
ULTRIX-32m
UNIBUS

VAX Realtime Accelerator
VAXRMS

Q22-bus
RA
RD
RRD40
RSTS
RSX
RT

VAX
VAXBI
VAXC
VAXcluster
VAXconsole
VAXDEC/CMS

VAXstation
VMS
VT
XMI
XUI

UNIX® is a registered trademark of American Telephone & Telegraph
Company.

X Window System, Version 11 and its derivations (X, X11,
X Version 11, X Window System) are trademarks of the Massachusetts
Institute of Technology.
This document was prepared with VAX DOCUMENT, Version 1.2.

S1339

Contents

PREFACE

CHAPTER 1 RUNTIME FACILITIES OVERVIEW

1.1

1.2

1.3

CHAPTER 2

2.1

VAXELN RUNTIME ENVIRONMENT

VAXELN PROGRAMMING CONCEPTS
1.2.1 Processes: Execution Agents for Programs and

1.2.2
1.2.3

Program Parts
Jobs: Families of Processes
Concurrency: Processes Sharing Processor
Resources
1.2.3.1 Multitasking • 1-10
1.2.3.2 Multiprogramming • 1-10
1.2.3.3 Multiprocessing • 1-10

VAXELN RUNTIME FACILITIES
1.3.1 Kernel
1.3.2 Network Services
1.3.3 LAT Host Services
1.3.4 Authorization Service
1.3.5 File Service
1.3.6 Device Drivers
1.3.7 DECwindows Support

THE VAXELN KERNEL

KERNEL OBJECTS
2.1.1 AREA Objects
2.1.2 DEVICE Objects
2.1.3 EVENT Objects

xxv

1-1

1-2

1-7

1-8
1-8

1-9

1-14
1-14
1-15
1-15
1-16
1-16
1-17
1-17

2-1

2-2
2-4
2-6
2-7

iii

2.1.4 MESSAGE Objects 2-8
2.1.5 NAME Objects 2-9
2.1.6 PORT Objects 2-10
2.1.7 PROCESS Objects 2-12
2.1.8 SEMAPHORE Objects 2-13
2.1.9 Kernel Object Implementation 2-14

2.2 OPTIMIZED DATA STRUCTURES 2-15
2.2.1 AREA_LOCK_ VARIABLE Data Structure 2-16
2.2.2 MUTEX Data Structure 2-17

CHAPTER 3 JOB, PROCESS, AND MEMORY MANAGEMENT 3-1

3.1 JOB ACTIVATION AND TERMINATION 3-3

3.2 SUBPROCESS ACTIVATION AND TERMINATION 3-4

3.3 SCHEDULING 3-6
3.3.1 Processes and Process States 3-6
3.3.2 Job and Process Scheduling 3-9
3.3.3 Initialization Programs and System Start-Up 3-12
3.3.4 Loading Programs 3-13
3.3.5 Scheduling in Multiprocessing Configurations 3-14

3.4 KERNEL SERVICES FOR PROCESSES AND JOBS 3-14
3.4.1 CREATE_JOB Procedure 3-15
3.4.2 CREATE_PROCESS Procedure 3-15
3.4.3 CURRENT _PROCESS Procedure 3-16
3.4.4 DELETE Procedure 3-16
3.4.5 DISABLE_SWITCH Procedure 3-16
3.4.6 ENABLE_SWITCH Procedure 3-17
3.4.7 EXIT Procedure 3-17
3.4.8 KER$GET _JCB Pr()cedure 3-17
3.4.9 KER$GET _USER Procedure 3-18
3.4.10 INITIALIZATION_DONE Procedure 3-18
3.4.11 KER$NAME_ OBJECT Procedure 3-18
3.4.12 KER$RAISE_PROCESS _EXCEPTION Procedure 3-19

Iv

3.4.13 RESUME Procedure 3-19
3.4.14 Setting a Job's Processor Eligibility 3-19
3.4.15 SET _JOB _PRIORITY Procedure 3-20
3.4.16 SET _PROCESS _PRIORITY Procedure 3-21
3.4.17 KER$SET _USER Procedure 3-22
3.4.18 SIGNAL Procedure 3-22
3.4.19 SUSPEND Procedure 3-22
3.4.20 WAIT_ANY and WAIT_ALL Procedures 3-23

3.5 MEMORY MANAGEMENT 3-23
3.5.1 Managing Stack Usage 3-27
3.5.2 Allocating Memory 3-29

3.5.2.1 ALLOCATE_MEMORY Procedure • 3-29
3.5.2.2 KER$ALLOCATE_SYSTEM_REGION

Procedure • 3-30
3.5.2.3 FREE_MEMORY Procedure • 3-31
3.5.2.4 KER$FREE_SYSTEM_REGION

Procedure • 3-31
3.5.2.5 KER$MEMORY _SIZE Procedure • 3-31

3.5.3 Loading VAXELN System Images onto KA800
Processors 3-32

CHAPTER 4 SYNCHRONIZATION 4-1

4.1 SYNCHRONIZING PROCESS EXECUTION 4-2

4.2 USING TIME VALUES TO SYNCHRONIZE PROCESS EXECUTION 4-6
4.2.1 Waiting on Time 4-6
4.2.2 Retrieving and Setting the System Time 4-8

4.3 SYNCHRONIZING PROCESS EXECUTION BASED ON PROCESS
COMPLETION 4-9

4.4 USING SEMAPHORES TO SYNCHRONIZE PROCESS EXECUTION 4-10
4.4.1 Creating Semaphores 4-11
4.4.2 Waiting On and Signaling Semaphores 4-12
4.4.3 Deleting Semaphores 4-14

v

4.5

4.4.4 Using Mutexes to Optimize Waiting and Signaling
Operations

USING EVENTS TO SYNCHRONIZE PROCESS EXECUTION
4.5.1
4.5.2
4.5.3

Creating Events
Waiting On, Signaling, and Clearing Events
Deleting Events

CHAPTER 5 COMMUNICATION

5.1

5.2

5.3

vi

SHARING MODULE-LEVEL DATA

SHARING PACKETS OF DATA USING QUEUES

PASSING MESSAGES
5.3.1
5.3.2
5.3.3
5.3.4

5.3.5
5.3.6
5.3.7

5.3.8

5.3.9

Messages
Message Ports
Named Message Ports
Message Transmission
5.3.4.1 Expedited Messages • 5-15
Datagrams and Circuits
Programming with Circuits
Port Limits and Flow Control
5.3.7.1 Flow Control with Unconnected Ports • 5-21
5.3.7.2 Flow Control with Circuits • 5-22
Programming Considerations for Message
Communication
Kernel Services for Message Transmission
5.3.9.1
5.3.9.2
5.3.9.3
5.3.9.4
5.3.9.5
5.3.9.6
5.3.9.7
5.3.9.8
5.3.9.9
5.3.9.10
5.3.9.11

ACCEPT_CIRCUIT Procedure • 5-23
CONNECT_CIRCUIT Procedure • 5-24
CREATE_MESSAGE Procedure • 5-25
CREATE_NAME Procedure • 5-25
CREATE_PORT Procedure • 5-25
DELETE Procedure • 5-26
DISCONNECT_CIRCUIT Procedure • 5-26
JOB_PORT Procedure • 5-26
RECEIVE Procedure • 5-26
SEND Procedure • 5-27
TRANSLATE_NAME Procedure • 5-27

4-14

4-15
4-16
4-16
4-18

5-1

5-1

5-4

5-10
5-11
5-12
5-13
5-14

5-16
5-17
5-21

5-22
5-23

5.4

5.3.9.12 WAIT_ANY and WAIT y.LL Procedures • 5-27

SHARING MEMORY AREAS
5.4.1
5.4.2
5.4.3
5.4.4

5.4.5
5.4.6

Creating Areas
Synchronizing Access to Areas with Events
Synchronizing Access to Areas with Semaphores
Using Area Lock Variables to Optimize Waiting and
Signaling Operations
Using Areas to Synchronize Job Execution
Deleting Areas

CHAPTER 6 DEVICE HANDLING

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

CREATING AND DELETING DEVICE OBJECTS

HANDLING DEVICE INTERRUPTS
6.2.1 Waiting for an ISR to Service a Device Interrupt
6.2.2 Signaling the DEVICE Object After Service Completion

SYNCHRONIZING ACCESS TO THE DEVICE COMMUNICATION
REGION

SETTING A DRIVER JOB'S PROCESSOR ELIGIBILITY

READING AND WRITING REGISTER DATA

CONTROLLING DMA DEVICES
6.6.1
6.6.2
6.6.3
6.6.4

Allocating, Loading, and Freeing Map Registers
Allocating and Freeing Buffered Data Paths
Mapping and Unmapplng Memory Buffers
Returning a Variable's Physical Address

CODING VAXBI BUS DEVICE DRIVERS

EXECUTING ROUTINES IN KERNEL MODE

5-28
5-30
5-33
5-39

5-40
5-41
5-46

6-1

6-3

6-5
6-5
6-5

6-6

6-8

6-9

6-10
6-10
6-11
6-12
6-13

6-13

6-14

vii

6.9 HANDLING POWER-FAILURE RECOVERY

CHAPTER 7 EXCEPTION HANDLING

7.1

7.2

7.3

7.4

7.5

7.6

vIII

VAX STACK ARCHITECTURE

EXCEPTIONS IN VAXELN SYSTEMS
7.2.1
7.2.2
7.2.3
7.2.4

Exception-Handier Arguments
Continue and Reslgnal Operations
Unwind Operation
Multiple Concurrent Exceptions

RAISING EXCEPTIONS
7.3.1 Kernel Procedure Failure Exceptions
7.3.2 Asynchronous Exceptions

EXCEPTION-HANDLING PROCEDURES
7.4.1 DISABLE_ASYNCH_EXCEPTION Procedure
7.4.2
7.4.3
7.4.4
7.4.5

ENABLE_ASYNCH_EXCEPTION Procedure
RAISE_EXCEPTION Procedure
KER$RAISE_PROCESS _EXCEPTION Procedure
KER$UNWIND Procedure

STATUS CODES

USING RUNTIME MESSAGES IN APPLICATION PROGRAMS
7.6.1 VAXELN Message Flies
7.6.2 Constructing Messages
7.6.3 Using Message Files with Application Programs
7.6.4 Retrieving Message Text
7.6.5 Displaying VAXELN Message Text on VMS Systems

6-17

7-1

7-1

7-4
7-5
7-7
7-8

7-11

7-11
7-11
7-11

7-12
7-12
7-12
7-13
7-13
7-13

7-13

7-14
7-15
7-18
7-19
7-21
7-23

CHAPTER 8 ETHERNET/IEEE 802 DATALINK DRIVERS 8-1

8.1 ETHERNET/IEEE 802 DATAGRAM SERVICE 8-4

8.2 RETRIEVING A CSMAlCD LAN CONFIGURATION 8-7
8.2.1 Ethernet Controller Device Types 8-8
8.2.2 Ethernet Controller Device Names 8-9
8.2.3 Ethernet Controller Control Ports 8-9
8.2.4 Ethernet Controller Data Ports 8-9

8.3 RETRIEVING ETHERNET CONTROLLER ATTRIBUTES 8-10
8.3.1 Ethernet Controller Physical Addresses 8-11
8.3.2 Ethernet Controller Hardware Addresses 8-12

8.4 CONNECTING AND DISCONNECTING AN ETHERNET/IEEE 802
PROTOCOL 8-12
8.4.1 Portals 8-14
8.4.2 Dispatch Ports 8-15
8.4.3 Message Format and Multiplexing 8-15
8.4.4 User Data 8-17
8.4.5 Promiscuous Mode 8-17
8.4.6 Multicast Addresses 8-18
8.4.7 Group SAPs 8-18
8.4.8 LLC Classes 8-18
8.4.9 Padded Ethernet Protocols 8-19

8.5 TRANSMITTING AND RECEIVING MESSAGES 8-19
8.5.1 Allocating a Message Buffer 8-20
8.5.2 Transmitting Messages 8-21
8.5.3 Retrieving Transmitted Messages 8-23
8.5.4 Receiving Messages 8-25

8.6 SETTING UP AN ETHERNET/IEEE 802 DATAGRAM SERVICE
ENVIRONMENT 8-27

Ix

CHAPTER 9 DECNET NETWORK SERVICES 9-1

9.1 NETWORK SERVICE PROTOCOLS 9-2

9.2 MESSAGE TRANSMISSION SERVICES 9-3

9.3 NAME SERVICE 9-5
9.3.1 Name Server 9-6
9.3.2 Kernel and Name Service Interaction 9-6
9.3.3 Name Server Election 9-7

9.4 NETWORK MANAGEMENT SERVICES 9-8
9.4.1 Managing VAXELN DECnet Systems from a VMS Host

System 9-9
9.4.2 Testing the Network Service 9-10
9.4.3 Using the Network Management Service 9-11

9.4.3.1 Initializing DECnet Node Addresses at
Runtime • 9-13

9.4.3.2 Stopping and Starting DECnet Software to
Reduce Network Overhead • 9-14

9.4.3.3 Switching DECnet Software Between Ethernet
Controllers • 9-16

9.4.4 Using the Down-Line Load Service 9-18
9.4.4.1 Establishing Circuits for Down-Line Load

Service Communication • 9-20
9.4.4.2 Managing and Monitoring Data Base Node

Entries • 9-21
9.4.4.3 Managing and Monitoring Data Base Line

Entries • 9-28
9.4.4.4 Managing Target-Initiated Down-Line Load

Requests • 9-35
9.4.4.5 Trigger Booting a VAXELN Target Node • 9-36
9.4.4.6 Down-Line Loading VAXELN Systems • 9-40

9.5 SERVICES FOR COMMUNICATING WITH VMS NODES 9-44
9.5.1 Specifying Nodes 9-45

9.5.1.1 Using Node Names and Node Numbers in
VMS • 9-46

9.5.1.2 Using Node Numbers in VAXELN • 9-47
9.5.2 Requesting Connections from VAXELN Systems 9-47

x

9.6

9.5.3
9.5.4
9.5.5
9.5.6

Accepting Connections on VMS Systems
Requesting Connections from VMS Systems
Accepting Connections on VAXELN Systems
Using DECnet Object Numbers in Connection
Requests

REMOTE TERMINAL UTILITY

CHAPTER 10 INTERNET SERVICES

10.1

10.2

10.3

INTERNET SERVICE CONCEPTS
10.1.1
10.1.2

10.1.3

10.1.4
10.1.5

10.1.6
10.1.7

Client-Server Model
Internet Architecture
10.1.2.1 Internet Protocol • 10-5
10.1.2.2 User Datagram Protocol • 10--6
10.1.2.3 Transmission Control Protocol • 10-7
Internet Addresses
10.1 .3.1 Network Classes • 1 0-9
10.1.3.2 Network Mask • 10-12
10.1 .3.3 Broadcast Mask • 10-13
Ports as Internet Communication Endpoints
Sockets
10.1.5.1 Connection Socket Communication • 10-16
10.1.5.2 Connectionless Socket

Communication • 10-17
Routing
Fragmentation

CONFIGURING INTERNET SERVICES

CONTROLLING INTERNET SERVICES
10.3.1 Managing the ARP Cache

10.3.1.1 Adding and Deleting ARP Cache
Entries • 10-26

10.3.1.2 Retrieving Ethernet Addresses from the ARP
Cache • 10-27

10.3.1 .3 Retrieving ARP Cache Entries • 1 0-28

9-48
9-48
9-48

9-49

9-49

10-1

10-2
10-3
10-3

10-9

10-14
10-15

10-18
10-23

10-23

10-25
10-25

xi

10.3.2 Managing the Internet Routing Table 10-31
10.3.2.1 Adding and Deleting Routing Table

Entries • 1 0-31
10.3.2.2 Checking the Status of Routing Table

Entries • 1 0-34
10.3.2.3 Retrieving Routing Table Entries • 10-37

10.3.3 Managing Internet Network Interfaces 10-40
10.3.3.1 Setting Internet Network Interfaces • 10-40
10.3.3.2 Retrieving Internet Network Interface

Characteristics • 1 0-42
10.3.4 Retrieving Internet Performance and Error Data 10-44
10.3.5 Retrieving TCP Connection Data 10-48

10.4 CONVERTING THE BYTE ORDER OF NETWORK AND HOST
BINARY DATA 10-53

10.5 MANIPULATING INTERNET ADDRESSES 10-54

10.6 PROGRAMMING INTERNET COMMUNICATION 10-55
10.6.1 Creating Sockets 10-57
10.6.2 Binding Names to Sockets 10-58
10.6.3 Controlling Socket Characteristics 10-60
10.6.4 Establishing Connections for Socket Communication 10-62

10.6.4.1 Initiating Socket Connections • 10-62
10.6.4.2 Creating a Queue for Pending Connection

Requests • 1 0-64
10.6.4.3 Accepting Socket Connections • 10-65

10.6.5 Transferring Data 10-66
10.6.5.1 Sending Data to Sockets • 10-66
10.6.5.2 Receiving Data from Sockets • 1 0-70
10.6.5.3 Polling Sockets for I/O Activity • 10-73

10.6.6 Shutting Down Sockets 10-75
10.6.7 Closing Sockets 10-76
10.6.8 Programming Socket Communication for a UDP

Application 10-77
10.6.9 Programming Socket Communication for a TCPIIP

Application 10-84

10.7 RETRIEVING AND SETTING SOCKET CHARACTERISTICS 10-91
10.7.1 Retrieving Socket Names 10-91

xII

CHAPTER 11

11.1

11.2

11.3

11.4

11.5

11.6

10.7.2
10.7.3

Setting Socket Characteristics
Retrieving Socket Options

LAT HOST SERVICES

LAT HOST SERVICES OVERVIEW

ESTABLISHING CIRCUITS FOR LAT COMMUNICATION
11.2.1 Connecting to a LAT Control Port
11.2.2 Creating a VAXELN LAT Port
11.2.3 Connecting to a DDA Port

MANAGING VAXELN SERVICE NODES
11.3.1 Retrieving and Setting Service Node Characteristics

11.3.1.1 Node Names • 11-14
11.3.1.2 Node Identification Strings • ·11-15
11.3.1.3 LAT Network Groups • 11-15
11.3.1.4 Multicast Timer • 11-16
11.3.1.5 Service Node States • 11-16

11.3.2 Managing Service Node Services
11.3.2.1 Creating and Deleting Services • 11-17
11.3.2.2 Changing Service Characteristics • 11-20
11.3.2.3 Advertising Services • 11-21

11.3.3 Retrieving LAT Port Characteristics
11.3.3.1 LAT Port Names • 11-24
11.3.3.2 Queue Statuses • 11-25
11.3.3.3 Remote Server Names • 11-25
11.3.3.4 Remote Port Names • 11-25

11.3.4 Retrieving Terminal Server Characteristics
11.3.5 Monitoring LAT Network Performance and Error

Statistics

SETTING UP A DEDICATED SERVICE ENVIRONMENT

SETTING UP AN APPLICATION DEVICE ENVIRONMENT

RETRIEVING AND SETTING TERMINAL CHARACTERISTICS

10-92
10-93

11-1

11-1

11-4
11-5
11-7
11-9

11-12
11-12

11-17

11-23

11-25

11-27

11-29

11-36

11-43

xiii

CHAPTER 12 SYSTEM SECURITY 12-1

12.1 SECURITY FEATURES OVERVIEW 12-1

12.2 USER NAMES AND IDENTIFICATION CODES 12-2

12.3 AUTHORIZATION SERVICE 12-3
12.3.1 Including the Authorization Service 12-6
12.3.2 Authorization Service Utility Procedures 12-7
12.3.3 Establishing Circuits for Authorization Service

Communication 12-8
12.3.4 Adding Users to the Authorization Data Base 12-9
12.3.5 Modifying Records In the Authorization Data Base 12-11
12.3.6 Removing User Records from the Authorization Data

Base 12-13
12.3.7 Retrieving Authorization Data Base Information 12-14

12.4 USER IDENTITIES 12-16

12.5 FILE SERVICE SECURITY 12-19

CHAPTER 13 FILE SERVICE 13-1

13.1 DEVICE SPECIFICATIONS 13-2

13.2 VOLUME NAMES 13-3

13.3 FILE SPECIFICATIONS 13-5

13.4 PROCEDURE FOR MOUNTING MULTIPLE VOLUMES WITH
IDENTICAL VOLUME LABELS 13-6

13.5 DISK$DEFAULT_VOLUME DEVICE NAME 13-8

xiv

13.6 FILE ACCESS LISTENER 13-9

13.7 FILE SERVICE VOLUMES FROM VMS 13-10

13.8 FILE SERVICE OPERATIONS 13-10

13.9 FILE UTILITY PROCEDURES 13-11
13.9.1 ELN$COPY _FILE Procedure 13-11
13.9.2 ELN$CREATE_DIRECTORY Procedure 13-12
13.9.3 ELN$DELETE_FILE Procedure 13-12
13.9.4 ELN$DIRECTORY _CLOSE Procedure 13-13
13.9.5 ELN$DIRECTORY _LIST Procedure 13-13
13.9.6 ELN$DIRECTORY _OPEN Procedure 13-13
13.9.7 ELN$PROTECT _FILE Procedure 13-14
13.9.8 ELN$RENAME_FILE Procedure 13-15
13.9.9 ELN$SET _DEFAULT _FILESPEC Procedure 13-15

13.10 DISK UTILITY PROCEDURES 13-15
13.10.1 ELN$DISMOUNT _VOLUME Procedure 13-16
13.10.2 ELN$INIT _VOLUME Procedure 13-16
13.10.3 ELN$MOUNT_ VOLUME Procedure 13-17

13 .. 11 TAPE UTILITY PROCEDURES 13-17
13.11.1 ELN$DISMOUNT_ TAPE_VOLUME Procedure 13-18
13.11.2 ELN$INIT _ TAPE_VOLUME Procedure 13-18
13.11.3 ELN$MOUNT _ TAPE_VOLUME Procedure 13-18

13.12 FILE SERVICE INTERFACE FOR DISK AND TAPE DRIVERS 13-19

13.13 DATA ACCESS PROTOCOL 13-21
13.13.1 DAP General Principles 13-24
13.13.2 Action Routines and DAP$SERVER 13-25
13.13.3 DAP Data Types 13-26
13.13.4 DAP Constants 13-26
13.13.5 DAP Wildcard Functions 13-27

xv

CHAPTER 14 VAXELN DEVICE DRIVERS 14-1

14~1 DISK DRIVERS 14-1
14.1.1 Logical 1/0 14-3
14.1.2 Disk Specifications 14-3
14.1.3 Disk Driver Interface to the File Service 14-6
14.1.4 Recovery from Power Failure 14-7
14.1.5 Direct Device Access for Disk Devices 14-7

14.1.5.1 Establishing Circuits for the DDA Disk
Interface • 14-8

14.1.5.2 Reading Data from and Writing Data to a
Local Disk • 14-9

14.1.5.3 Reading Logical Blocks from an Unmounted
Disk • 14-12

14.1.5.4 Reading Logical Blocks from a Mounted
Disk • 14-15

14.1.5.5 Transferring Data to a System Region • 14-20
14.1.6 Virtual-Memory Disk Driver 14-24

14.2 TAPE DRIVER 14-27
14.2.1 Logical 1/0 14-27
14.2.2 Tape SpeCifications 14-28
14.2.3 Tape Driver Interface to the File Service 14-28
14.2.4 Recovery from Power Fall ure 14-29
14.2.5 Recovery from Errors 14-29

14.3 PRINTER DRIVERS 14-29
14.3.1 Accessing Printer Devices 14-30
14.3.2 Printer Driver Characteristics 14-31

14.4 TERMINAL DRIVERS 14-32
14.4.1 Terminal 1/0 14-35
14.4.2 Type-Ahead and Synchronization 14-35
14.4.3 Terminating Lines of Input 14-36
14.4.4 Setting Up Polnt-to-Point DDCMP Communication 14-36

xvi

14.4.5 Direct Device Access for Serial-Line Devices 14-39
14.4.5.1 Establishing Circuits for Serial-Line

Communication • 14-41
14.4.5.2 Retrieving and Setting Terminal

Characteristics • 14-41
14.4.5.3 Reading Data from and Writing Data to a

Serial Line • 14-48
14.4.5.4 Setting a Serial Line to the Spacing

State • 14-57
14.4.5.5 Monitoring the Use of Out-of-Band

Characters • 14--59
14.4.6 Using Control Characters 14-62
14.4.7 USing Escape and Control Sequences 14-64

14.4.7.1 Using VT52-Type Escape Sequences • 14-66
14.4.8 Using Modem Control 14-66

14.4.8.1 Retrieving and Setting Modem
Characteristics • 14--68

14.4.8.2 Monitoring Modem Events • 14--69
14.4.9 Performing Parallel 1/0 14-73

14.5 SMALL COMPUTER SYSTEM INTERFACE DRIVER 14-73
14.5.1 Using the VAXELN SCSI Disk Class Driver 14-76
14.5.2 Using the VAXELN SCSI Generic Class Driver 14-n

14.5.2.1 Connecting to the Generic Class
Driver • 14-78

14.5.2.2 Requesting SCSI Bus Configuration
Data • 14-80

14.5.2.3 Connecting to SCSI Devices • 14-83
14.5.2.4 Issuing SCSI Commands • 14-85
14.5.2.5 Programming a Generic Class Driver Message

Interface Application • 14-91
14.5.3 Developing User-Defined SCSI Class Drivers 14-110

14.5.3.1 Modifying the SCSI Driver Start-Up
Module • 14-114

14.5.3.2 Programming SCSI Class Drivers • 14-116
14.5.3.2.1 Defining Device Locks • 14-119
14.5.3.2.2 Setting Up an Entry Point • 14-120
14.5.3.2.3 Checking for Devices to Service • 14-121
14.5.3.2.4 Setting the Current Connection

Flag • 14-121
14.5.3.2.5 Allocating 110 Request Packets for

Devices • 14-122

xvii

14.6

14.5.3.2.6 Mapping Data Buffers for I/O
Requests • 14-123

14.5.3.2.7 Issuing SCSI Commands • 14-125
14.5.3.2.8 Initializing a SCSI Device

Controller • 14-127
14.5.3.3 Compiling and Linking the SCSI Driver

Modules • 14-128

REALTIME DEVICE DRIVERS
14.6.1 ADQ32 DMA Analog-to-Digital Converter
14.6.2 ADV11-C/ AXV11-C Analog-to-Digital Converter
14.6.3 ADV11-D DMA Analog-to-Digital Converter
14.6.4 DLVJ1 Asynchronous Serial-line Controller
14.6.5 DRB32 DMA Parallel-Line Interface
14.6.6 DRQ3B DMA Parallel-Line Interface
14.6.7 DRV11-J Parallel-Line Interface
14.6.8 DRV11-W DMA Parallel-Line Interface
14.6.9 IEQ11-A and IEU11-A Dual IEC/IEEE Instrument Bus

Interfaces
14.6.10 KWV11-C Realtime Clock

APPENDIX A STATUS VALUES/EXCEPTION NAMES

APPENDIX B MACHINE·CHECK STACK FRAMES

B.1 OBTAINING A MACHINE-CHECK STACK FRAME

B.2 MACHINE-CHECK STACK FRAME FOR MICROVAX I PROCESSORS

B.3 MACHINE-CHECK STACK FRAME FOR MICROVAX II AND 2000,
VAXSTATION II AND 2000, AND KA800 PROCESSORS

B.4 MACHINE-CHECK STACK FRAME FOR RTVAX 300, MICROVAX
3NNN SERIES, VAXSTATION 3100, 3200, AND 3500, AND VAX
6000-2NN AND 6000-3NN SERIES PROCESSORS

xviii

14-128
14-130
14-131
14-133
14-134
14-136
14-140
14-142
14-144

14-146
14-150

A-1

B-1

B-2

B-4

B-6

B-7

B.5 MACHINE-CHECK STACK FRAME FOR VAX 6000-4NN SERIES
PROCESSORS B-10

B.6 MACHINE-CHECK STACK FRAME FOR VAX 8200· AND 8250
PROCESSORS B-12

B.7 MACHINE-CHECK STACK FRAME FOR VAX 8500, 8550, 8700, 8800,
AND 8810 PROCESSORS B-13

B.8 MACHINE-CHECK STACK FRAME FOR VAX-11rl30 PROCESSORS B-15

B.9 MACHINE-CHECK STACK FRAME FOR VAX-11rl50 PROCESSORS B-17

APPENDIX C VMS EMULATION ROUTINES C-1

C.1 VMS EMULATION ROUTINE SUMMARY C-1

C.2 CALLING VMS EMULATION ROUTINES C-4

C.3 VMS SYSTEM SERVICE EMULATION ROUTINE DESCRIPTIONS C-7

C.4 L1B$ EMULATION ROUTINE DESCRIPTIONS C-9

C.5 STR$ EMULATION ROUTINE DESCRIPTION C-25

APPENDIX D SCSI PORT DRIVER INTERFACE ROUTINES D-1
PORT$ALLOCATE_DEVICE D-3
PORT$EXIT _HANDLER D-7
PORT$FREE_DEVICE D-10
PORT$INITIALlZE_ CONTROLLER D-13
PORT$ISSUE_ COMMAND D-16
PORT$MAP _BUFFER D-20
PORT$UNMAP _BUFFER D-24

xix

INDEX Index-1

EXAMPLES
5-1 Using Queues for Process Communication 5-6

5-2 Disconnecting the Partner Port After a Disconnect Operation 5-20

5-3 Synchronizing Access to Areas with Events 5-34

5-4 Synchronizing Job Execution with Semaphores 5-42

6-1 Using the KER$ENTER_KERNEL_CONTEXT Procedure 6-16

7-1 Using Message Flies 7-20

8-1 Sample Network Interface Application 8-29

9-1 Managing and Monitoring Down-Line Load Data Base Node
Entries 9-24

9-2 Managing and Monitoring Down-Line Load Data Base Line Entries 9-31

9-3 Trigger Booting a VAXELN Target Node 9-39

9-4 Down-Line Loading a VAXELN System Image 9-43

10-1 Sample UDP Server 10-78

10-2 Sample UDP Client 10-82

10-3 Sample TCP/IP Server 10-85

10-4 Sample TCP/IP Client 10-88

11-1 LAT Dedicated Service 11-31

11-2 LAT Application Service 11-38

14-1 Reading Logical Blocks from an Unmounted Disk 14-12

14-2 Reading Logical Blocks from a Mounted Disk 14-15

14-3 Transferring Data to a System Region 14-21

14-4 Using the Virtual-Memory Driver 14-25

14-5 Reading and Writing Serial-Line Data 14-52

14-6 Reading and Writing Serial-Line Data Using a User-Defined
Message 14-54

14-7 Monitoring the Use of Out-of-Band Characters 14-61

14-8 Monitoring Modem Events 14-71

14-9 Programming a SCSI Generic Class Driver Message Interface
Application 14-92

14-10 Modifying the SCSI Driver Start-Up Module 14-115

xx

FIGURES

1-1 A VAXELN Application 1-2
1-2 VAXELN System Software 1-4
1-3 Runtime Environment 1-5
1-4 Process Family 1-9
1-5 Loosely Coupled Multiprocessing Configuration 1-11
1-6 Tightly Coupled Symmetric Multiprocessing Configuration 1-12
1-7 Closely Coupled Symmetric Multiprocessing Configuration with

VAXELN Primary System 1-13
1-8 Closely Coupled Symmetric Multiprocessing Configuration with

VMS Primary System 1-13
2-1 PORT Value Representation 2-11
3-1 Valid Process State Transitions 3-8

3-2 Job and Process Priorities 3-10
3-3 Combined Priority Representation 3-11
3-4 Memory Allocation 3-24
3-5 System Region 3-25
3-6 Program Region 3-25
3-7 Control Region 3-27
7-1 A Procedure's Stack Frame 7-3
7-2 A Frame Structure After a Procedure Call 7-3
7-3 Call Frame Block 7-4
7-4 Signal Arguments 7-6
7-5 Mechanism Arguments 7-7
8-1 A Two-Node VAXELN Network Using the Datagram Service 8-5

9-1 A Two-Node VAXELN Network Using the Network Service 9-4

9-2 Target-Initiated Down-Line Load Request 9-35
9-3 Trigger Boot Request 9-37
9-4 Down-Line Load Request 9-40
10-1 Client-Server Model 10-3
10-2 Internet Layers 10-4
10-3 Routing Table 10-19
10-4 Routing Algorithm 10-20
11-1 Sample VAXELN LAT Configuration 11-3
11-2 VAXELN LAT Port 11-9

xxi

11-3 Dedicated Service Environment 11-30

11-4 Application Device Environment 11-37

12-1 Authorization Service Example 12-4

12-2 Protection Mask 12-20

13-1 DAP Message Transmission (Read Request) 13-22

14-1 A VAXELN Serial DDCMP Link 14-37

14-2 SCSI Class/Port Driver Architecture 14-75

14-3 SCSI Device Markers 14-114

B-1 Machine-Check Stack Frame for MlcroVAX I Processors B-4

B-2 Machine-Check Stack Frame for MicroVAX II and 2000, VAXstation II
and 2000, and KA800 Processors B-6

B-3 Machine-Check Stack Frame for rtVAX 300, MicroVAX 3nnn Series,
VAXstatlon 3100,3200, and 3500, and VAX 6000-2nn and 6000-3nn
Series Processors B-8

B-4 Machine-Check Stack Frame for VAX 6000-4nn Series Processors B-10

B-5 Machine-Check Stack Frame for VAX 8200 and 8250 Processors - B-12

B-6 Machine-Check Stack Frame for VAX 8500, 8550, 8700, 8800, and
8810 Processors B-13

B-7 Machine-Check Stack Frame for VAX-111730 Processors B-15

B-8 Machine-Check Stack Frame for VAX-111750 Processors B-17

TABLES
1-1 Runtime System Components 1-6

2-1 Kernel Objects 2-4

2-2 Optimized Data Structures 2-16

3-1 Process States 3-7

6-1 Interrupt Priority Levels 6-6

7-1 VAXELN Message Files 7-16

8-1 Ethernet/IEEE 802 Datalink Drivers 8-2

8-2 Ethernet Controller Device Types 8-8

8-3 Portal Message Formats 8-15

8-4 Portal Multiplexing Fields 8-17

9-1 Down-Line Load Data Base Node Characteristics 9-21

9-2 Down-Line Load Data Base' Line Characteristics 9-29

10-1 UDP Characteristics 10-6

10-2 TCP Characteristics 10-8

xxii

10-3 Network Class Number Ranges 10-11

10-4 Broadcast Addresses 10-14

10-5 Socket Protocol Types 10-16

10-6 Calling Sequence for Socket Communication 10-56

10-7 Socket-Level Socket Options 10-92

13-1 Storage Device Types 13-3

14-1 Disk Drivers 14-1

14-2 Disk Devices 14-3

14-3 Tape Specifications 14-28

14-4 Printer Drivers 14-29

14-5 Printer Driver Characteristics 14-31

14-6 Terminal Drivers 14-32

14-7 Terminal Driver Characteristics 14-41

14-8 Control Characters 14-63

14-9 Modem Control Signals 14-67

14-10 Modem Characteristics 14-68

14-11 SCSI Device Characteristics 14-80

14-12 VAXELN SCSI Driver Components 14-111

14-13 SCSI Bus Configuration Data 14-112

14-14 Realtime Devices 14-128

A-1 Status Values/Exception Names A-1

B-1 Machine-Check Type Codes for MicroVAX I Processors B-5

B-2 Machine-Check Type Codes for MicroVAX II and 2000, VAXstation II
and 2000, and KA800 Processors B-7

B-3 Machine-Check Type Codes for rtVAX 300, MicroVAX 3nnn Series,
VAXstation 3100,3200, and 3500, and VAX 6000-2nn and 6000-3nn
Series Processors B-9

B-4 Machine-Check Type Codes for VAX 6000-4nn Series Processors - 8-11

B-5 Machine-Check Stack Frame Contents for VAX 8500, 8550, 8700,
8800, and 8810 Processors B-14

B-6 Machine-Check Error Type Codes for VAX-111730 Processors 8-15

B-7 Machine-Check Error Codes for VAX-11n50 Processors 8-18

C-1 VMS System Service Emulation Routines 0-2

C-2 VMS Runtime Library Emulation Routines 0-2

xxiii

Preface

The VAXELN Runtime Facilities Guide describes the VAXELN runtime
software and explains how to use it to produce dedicated, realtime
VAXELN systems.

The manual provides a language-independent discussion of the
VAXELN Toolkit's runtime facilities. It explains VAXELN program
ming concepts and describes runtime features that you program and
build into VAXELN systems. For information about developing and
monitoring VAXELN systems, see the VAXELN Development Utilities
Guide.

Intended Audience

This manual is for programmers and students who have a working
knowledge ofPascal,C, or FORTRAN. Knowledge of the VMS operating
system and a cursory understanding of the Digital command language
(DCL) is recommended. Some information in this manual requires
a more extensive understanding of the VMS operating system. In
such cases, this manual directs you to appropriate documentation for
additional information.

xxv

Document Structure

xxvi

This manual consists of 14 chapters and 4 appendixes, organized as
follows: .

• Chapter 1, Runtime Facilities Overview, provides general infor
mation about the runtime facilities and their role in an executing
application.

• Chapter 2, The VAXELN Kernel, introduces the VAXELN Kernel
and describes the kernel data structures.

• Qhapter 3, Job, Process, and Memory Management, explains how
VAXELN application programs can manage processes, jobs, and
memory. The kernel's roles in scheduling and memory allocation
are discussed in this chapter.

• Chapter 4, Synchronization, explains how to use kernel objects,
optimized structures, and related procedures to synchronize pro
cesses.

• Chapter 5, Communication, explains how to use kernel objects and
related procedures to program interprocess and inteIjob communi
cation.

• Chapter 6, Device Handling, explains how to use the kernel
DEVICE object, related kernel procedures, and interrupt service
routines in programs that handle device interrupts. This chap
ter also discusses recovery from power failure and direct memory
access UNIBUS and Q-bus device handling.

• Chapter 7, Exception Handling, explains how to handle exceptions
from your VAXELN programs. This chapter also discusses status
codes and message-processing features that handle the conversion
of status codes into message text.

• Chapter 8, EthernetlIEEE 802 Datalink Drivers, describes the
EthernetlIEEE 802 datalink drivers and Datagram Service and
explains how to use the Datagram Service.

• Chapter 9, DECnet Network Services, describes the VAXELN
Network Service.

• Chapter 10, Internet Services, explains how to use the VAXELN
Internet Services.

• Chapter 11, LAT Host Services, explains how to establish virtual
circuits for local area transport communication, manage VAXELN
service nodes, and set up dedicated service and application device
environments.

• Chapter 12, System Security, explains how to include security
features in your VAXELN systems for protecting resources and
data.

• Chapter 13, File Service, describes the VAXELN File Service and
explains how to use file, disk, and tape utility procedures in your
application programs.

• Chapter 14, VAXELN Device Drivers, describes the disk, virtual
memory, tape, printer, terminal, and realtime device drivers that
VAXELN supplies.

• Appendix A, Status ValueslException Names, lists the status
values/exception names that VAXELN defines.

• Appendix B, Machine-Check Stack Frames, explains how to man
ually obtain and interpret a machine-check stack frame, in case
a machine check occurs on a VAXELN target processor in an
application that does not include the error-logging service.

• Appendix C, VMS Emulation Routines, identifies the VMS runtime
library and system service emulation routines that the VAXELN
Toolkit supports.

• Appendix D, SCSI Port Driver Interface Routines, describes the
VAXELN SCSI port driver interface routines that you can use
to program user-written SCSI class drivers for third-party SCSI
devices.

Conventions

The following conventions are used in this manual:

Convention Meaning

UPPERCASE VMS, VAXELN, and language-specific reserved words and
characters identifiers are printed in uppercase characters.

xxvii

xxviii

Convention

italic
characters

bold
characters

red
characters

[]

Meaning

The following items are printed in italic characters:

• Elements for which you supply a value. For example:

nodename::"TAS~portname"

• User-defined elements in code examples when these
elements are used in text. For example:

The geCattributes argument ...

• System Builder menu entry values when they appear in
text. For example:

Select Yes for the Console entry on the System
Characteristics Menu.

• First occurrence of a new term.

The following items are printed in bold characters:

• System Builder menu entries when they appear in text.
For example:

Select Yes for the Console entry on the System
Characteristics Menu.

• Case-sensitive C language elements, such as keywords,
macros, modules, and procedures, when they appear in
text. For example:

The definition module $vaxelnc ...

In interactive examples, elements for which you must supply
input. For example:

$ SHOW NETWORK

Square brackets enclose optional items. For example:

SHOW NODE node-id [SUMMARY] [COUNTERS]

Square brackets are also used in the syntax of a directory
name in a VMS file specification and in user identification
code (UIC) specifications.

When an item is followed by horizontal ellipsis points, you
can repeat the item one or more times.

Vertical ellipsis points in a figure or example indicate that
not all the information the system displays is shown or that
not all the information a user is to supply is shown.

Convention Meaning

/ Ctrllx / indicates a control key sequence. Press the key la
beled Ctrl while you simultaneously press another key. For
example: /CtrI/C/

n and x When used in items such as names, the variables n and x
represent numeric and nonnumeric characters, respectively.
For example:

VAX 6000-2nn series systems

Associated Documents

The following documents are relevant to programming VAXELN appli
cations using the VAXELN runtime facilities:

VAXELN Documents:

• VAXELN Release Notes
• VAXELN Installation Guide

• Introduction to VAXELN
• VAXELN Development Utilities Guide
• VAXELN Runtime Facilities Guide

• VAXELN Application Design Guide
• VAXELN Pascal Language Reference Manual
• VAXELN Pascal Runtime Library Reference Manual

• VAXELN C Reference Manual

• VAXELN C Runtime Library Reference Manual
• VAXELN FORTRAN Runtime Library Reference Manual

• VAXELN Pocket Reference

• VAXELN Messages Manual

• VAXELN Guide to DECwindows
• VAXELN Master Index and Glossary

xxix

xxx

VAX Documents:

• VAX Architecture Reference Manual
• VAX Hardware Handbook
• Guide to VAX Language-Sensitive Editor and VAX Source Code

Analyzer

VMS Documents:

• Guide to Creating VMS Modular Procedures
• Guide to Maintaining a VMS System
• Introduction to VMS
• Introduction to the VMS Run-Time Library
• Introduction to VMS System Management
• Introduction to VMS System Services
• VMS Authorize Utility Manual

• VMS DCL Dictionary
• VMS Error Log Utility Manual
• VMS I/O User's Reference Volume
• VMS Librarian Utility Manual
• VMS License Management Utility Reference Manual
• VMS Linker Utility Manual
• VMS Message Utility Manual
• VMS Network Control Program Reference Manual

• VMS Networking Manual
• VMS RTL Library (LIB$) Manual
• VMS RTL String Manipulation (STR$) Manual
• VMS Run-Time Library Routines Volume
• VMS System Services Reference Manual

DECnet Documents:

• DECnet DIGITAL Network Architecture General Description
• DECnet-VAX System Manager's Guide
• DECnet-VAX User's Guide
• Guide to DECnet-VAX Networking

Hardware Documents:

• ADQ32 A/D Converter Module User's Guide
• DLVll-J User's Guide
• DRB32 Hardware Manual
• DRB32 Technical Manual
• DRQ3B Parallel DMA I/O Module User's Guide
• DRll-W Direct Memory Access Interface User's Guide

• IEUll-A/IEQll-A User's Guide
• IEXll-A IEC/IEEE Bus Interface

• KFQSA Installation Guide
• Micro VAX I O·wner's Manual

• Micro VAX II Owner's Manual
• LSI-ll Analog System User's Guide
• Q-bus DMA Analog System User's Guide
• American National Standard for Information Systems-Small

Computer System Interface-2 (SCSI-2)

• Small Computer System Interface: An Overview
• Small Computer System Interface: A Developer's Guide

• VAX 8800 Console Manual

• VAX 8nnn Console Manual

VAX RTA Documents:

• VAX Real-Time Accelerator Hardware/Software Installation Guide
• VAX Real-Time Accelerator Software User's Guide

The VAXELN Internals and Data Structures manual is also available
as a separate document. This manual describes the internal data
structures and operations of the VAXELN Kernel and its associated
subsystems.

xxxi

Chapter 1

Runtime Facilities Overview

The VAXELN Toolkit is a VMS layered product that provides software
for developing dedicated, realtime software applications that run on
VAX processors. A dedicated application uses a computer to solve a
specific problem or set of related problems. A typical dedicated .appli
cation takes advantage of VAXELN realtime capabilities, which give
prompt, predictable responses to time-critical events. The VAXELN
Toolkit's low-overhead design caters to these application needs by ap
plying the VAX processor's speed and responsiveness. Typical examples
of dedicated, realtime applications include the following:

• Computer integrated manufacturing

• Process control
• Simulations
• Data acquisition and analysis

• File and print servers
• Communication switching systems
• Multifaceted professional workstations

VAXELN systems.are only as complex as they need to be; they are
statically defined and include only those services necessary to support
the functions required by your application.

You develop a VAXELN application on a VAX host processor using
VMS software and VAXELN development tools. The resulting VAXELN
system includes user and Digital program images that reside in the
memory of and run independently on a supported VAX target processor.
Figure 1-1 shows a typical VAXELN application.

Runtime Facilities Overview 1-1

Figure 1-1: A VAXELN Application

VAX Target Processor

User Devices

Ethemet

MLO-004265

This chapter provides information about the following:

• The VAXELN runtime environment, Section 1.1
• Basic VAXELN programming concepts, Section 1.2

• Facilities provided by VAXELN runtime software, Section 1.3

For information about the VAXELN development and utility features,
see the VAXELN Development Utilities Guide.

1.1 VAXELN Runtime Environment

A VAXELN runtime environment consists of one or more VAX target
processors running a VAXELN system image. The system image
executes on the target processor as a dedicated application under the
control of the kernel (see Section 1.3.1) and supplied services.

The runtime hardware requirements include the following:

• At least one of the target processors that the VAXELN Toolkit
supports. For a list of supported target processors, see the help
text for the System Builder's Target Processor Menu, or the latest
VAXELN Toolkit System Support Addendum (SSA) or Software
Product Description (SPD).

1-2 Runtime Facilities Overview

• Ethernet hardware if an application requires down-line loading,
remote debugging, remote error logging, VAXELN Performance
Utility, or remote VAXELN Command Language Utility support.

• Application-specific peripheral devices, such as disks, terminals,
communications hardware, and special interfaces that Digital, a
third party, or the programmer supplies.

The target processor can exist as a standalone system or can be dis
tributed on a local area network.

A VAXELN system image includes user application program images
and program images that Digital supplies. Typical user application
programs, which you write in high-level languages, include data ac
quisition and reduction programs, process control supervisors, and
user-written device drivers. The program images that Digital supplies
include the VAXELN Toolkit's highly optimized kernel executives and
images of the following:

• Runtime libraries

• Device drivers

• Services

• A server
• Runtime utilities
• A local debugger component

Using the toolkit's System Builder, you combine the application pro
gram images and the program images that Digital supplies into a
VAXELN system. When building the system, you can specify the pro
grams that are to start executing as soon as you load and boot the
system.

Figure 1-2 presents the system image components in a hierarchical
diagram.

The diagram shows that the kernel executive is the heart of a VAXELN
system; it schedules and controls an application's execution and access
to system resources. The second tier of the diagram represents optional
user and Digital software that provides kernel extensions. You tailor
your VAXELN system by including only those services and utilities that

Runtime Facilities Overview 1-3

Figure 1-2: VAXELN Sysiem Software

your application requires. The outermost tier represents a VAXELN
system's highest level of code: your application program images.

After building your VAXELN system image, you can load and boot it
onto the target processor from disk, tape, or read-only memory (ROM).
If you have an optional DECnet-VAXlicense and the appropriate
Ethernet hardware, you can down-line load the system image from the
host processor to the target processor. The system image executes on
the target processor independently under the control of the VAXELN
Kernel and runtime services.

Figure 1-3 shows a typical VAXELN runtime environment, and
Table 1-1 briefly describes the system components that Digital sup
plies.

1-4 Runtime Facilities Overview

Figure 1-3: Runtime Environment

Target
VAX

Processor

Kernel* User-Supplied Drivers

Runtime Libraries User Module 1

Drivers Supplied by Digital User Module 2

Network Service

File Service

Display Utility

Local Debugger Component**

VAXELN Toolkit Components User-Written Components

* Required component

System
Image

**Usua/ly not included in final system MLO-004267

Runtime Facilities Overview 1-5

Table 1-1: Runtime System Components
Component Description

Kernell

Runtime Libraries

Drivers

Network Service

EthernetlIEEE 802 Datagram
Service

Internet Services

File Service

Error Logging Service

LAT Host Services

DECwindows Server

1 A required component

1-6 Runtime Facilities Overview

Controls the sharing of the target processor's
resources. The System Builder includes the
appropriate kernel for your target processor.

Contain object modules and shareable im
ages that support realtime, 110, math,
DECwindows, and other routines called
from VAXELN Pascal, VAX C, and VAX
FORTRAN programs.

Control communication between application
programs and external devices.

Controls data transmission between network
nodes, manages a network name table, and
provides a runtime interface for managing a
DECnet network.

Provides network interface routines that
VAXELN application programs can use to
communicate over a Carrier Sense Multiple
Access/Collision Detect (CSMAlCD) LAN.

Provide an Ethernet network interface that
VAXELN applications can use to communi
cate with other applications in an Internet
network.

Provides support for file-oriented disk and
tape 110 operations and remote file access.

Writes data that identifies hardware errors,
volume changes, and system events to an
error log file that exists on the local target
system or on a remote system over the
Ethernet.

Provide an interface that application pro
grams can use to communicate with devices
attached to terminal servers.

Provides a common means for DECwindows
applications to interact with graphics work
stations.

Table 1-1 (Cont.): Runtime System Components
Component

DECwindows User-Environment
Components

Command Language Utility
(ECL)

Display Utility (EDISPLAY)

Performance Utility Collector

Remote Terminal Utility

LAT Control Program Utility
(LATCP)

Local Debugger Component2

2Usually not included in final system

Description

Provide Window Manager and terminal
emulator support.

Provides an interactive interface you can
use to maintain files, execute programs, and
control the runtime system environment.

Displays system-level and job-specific re
source information on a target system video
terminal.

Collects application program performance
data.

Lets you connect to a remote computer
system from a terminal on another computer
system by using a SET HOST command

Provides an interactive interface you can
use to manage and monitor local area trans
port (LAT) service node characteristics and
activities

Lets you debug a VAXELN application from
the target processor's console terminal.

1.2 VAXELN Programming Concepts

A VAXELN application's design and development are based on the
concept of concurrency, the simultaneous execution of multiple pro
grams and parts of programs. Concurrency is a proven approach for
applications that require cooperation among programs to solve specific
problems quickly and efficiently.

VAXELN programs execute as jobs. A typical VAXELN application
consists of multiple jobs that each have functionally independent
components called processes.

Runtime Facilities Overview 1-7

1.2.1 Processes: Execution Agents for Programs and Program Parts

A process is a functionally independent entity that provides the exe
cution context for a program image or part of a program image. Each
process in a VAXELN system represents a specialized task. The main
section of program code (the program block for VAXELN Pascal pro
grams, the main routine for C programs, and the main program for
FORTRAN programs) executes as the master process. The kernel
creates this process implicitly when the program starts executing.

1.2.2 Jobs: families of Processes

Collectively, the processes associated with a running program constitute
a job. A job consists of a master process and zero or more subprocesses
that can execute concurrently.

A job can be thought of as a family of processes. A job's master pro
cess and subprocesses create other subprocesses dynamically. Once
created, a process stays active until it exits, another process deletes
it, its master process terminates, it encounters an error from which it
cannot recover, or it finishes executing the associated code segment.
A programmed exit (see Section 3.2) is the most controlled means of
forcing process termination.

Figure 1-4 illustrates the creation and dependency paths for a process
family consisting of a master process and five subprocesses.

When a master process terminates under any circumstances, the kernel
removes the corresponding job, its master process and associated
subprocesses, and shared data from the system and replenishes the
system's memory resources.

1-8 Runtime Facilities Overview

Figure 1-4: Process Family

Job

Master
Process

1

----... Creation Path

------.. Dependency Path

Subprocess
2

Subprocess
4

Subprocess
3

Subprocess
5

Subprocess
6

MLO-004268

1.2.3 Concurrency: Processes Sharing Processor Resources

To take advantage of the VAXELN Toolkit's realtime efficiency, you de
sign applications with the concept of concurrency in mind. Concurrency
is built into the VAXELN software so that cooperating processes can
share processor resources. While some processes wait for an event to
occur or a resource to become available, other processes can execute.
The kernel manages system resources so that all jobs and processes
appear to execute simultaneously, although only one process actually
executes on a processor at a time.

You determine whether jobs and processes should execute concur
rently when designing your application. Concurrent programming has
numerous system design advantages, including improved performance.

The VAXELN Kernel supports three levels of concurrency - multitask
ing, multiprogramming, and multiprocessing - which are described in
Sections 1.2.3.1, 1.2.3.2, and 1.2.3.3, respectively.

Runtime Facilities Overview 1-9

1.2.3.1 Multitasking

Multitasking lets you divide an application program's functionality into
a set of smaller, focused tasks that can execute concurrently. Each
task executes as a separate dedicated process. For example, a program
controlling a wing in an aircraft flight simulation application might
consist of processes that specialize in tasks such as surface control and
engine fire-up.

1.2.3.2 Multiprogramming

Multiprogramming is the concurrent execution of entire programs,
including multitasking programs. The programs execute as jobs that
mayor may not run cooperatively; that is, Job A mayor may not
depend on Job B. However, the jobs of most VAXELN systems work
together to accomplish mutual goals. For example, in an aircraft
flight simulation application, a collection of cooperating jobs might
emulate major components of an airplane, such as cockpit controls and
instrumentation, navigation equipment, and left and right wings.

1.2.3.3 Multiprocessing

A VAXELN application's jobs can reside on one processor or they can be
distributed among multiple processors. The concurrent execution of a
VAXELN application's parts on multiple processors is called multipro
cessing. The VAXELN Kernel supports the following multiprocessing
configurations:

• Loosely coupled symmetric multip~ocessing
• Tightly coupled symmetric multiprocessing

• Closely coupled symmetric multiprocessing

In a loosely coupled symmetric configuration, an Ethernet device links
the processors, as shown in Figure 1-5. Each processor runs its own
system image with its own jobs.

1-10 Runtime Facilities Overview

Figure 1-5: Loosely Coupled Multiprocessing Configuration

Processor 1 Processor 2 Processor 3

Job A Job E
Job B Job 0

JobC Job F

VAXELN VAXELN VAXELN

MLO-004269

In a tightly coupled symmetric configuration, the hardware supports
multiple processors on the same CPU bus, as shown in Figure 1-6.
VAXELN supports tightly coupled symmetric multiprocessing on VAX
6000 series and VAX 8800 multiprocessor configurations. All processors
share a copy of the VAXELN runtime components and application
images. A job can execute on any processor (the default) or you can
limit it to a specific subset of processors.

A closely coupled symmetric configuration consists of a VAX 6000
series, 8500, 8530, 8550, 8700, or 8800 primary system and one or
more KA800 single-board computers (SBCs). The primary system can
be a single processor or a tightly coulpled symmetric multiprocessing
configuration. Each KA800 system is connected to the primary system's
VAXBI bus and has its own copy of the VAXELN runtime components
and application images.

Closely coupled configurations provide limited data sharing capabilities.
Data in the primary system's memory is shareable and can be accessed
by the attached KA800 systems. However, the primary system cannot
gain access to data that is in the memory of the KABOO systems.

Runtime Facilities Overview 1-11

Figure 1-6: Tightly Coupled Symmetric Multiprocessing Configuration

Processor 1

Job A

Shared Memory

Application
Images

VAXELN

Processor 2

JobS

MLO-004270

As shown in Figures 1-7 and 1-8, the primary processor in a closely
coupled environment can run a VAXELN or VMS system. When the
primary processor is running a VAXELN system, you down-line load
VAXELN systems into the KA800 processors by using a configuration
file, a runtime procedure call, or an EeL command.

When the primary processor is running a VMS system, you use VAX
Real-time Accelerator (RTA) software to load, control, and communicate
with VAX RTA KA800 processors. For information about VAX RTA, see
the VAX Real-Time Accelerator Hardware/Software Installation Guide
and VAX Real-Time Accelerator Software User's Guide.

A common application for closely coupled multiprocessing is to dis
tribute realtime 1/0 functions. You can achieve superior performance
by offloading interrupt-intensive tasks to KA800 processors, freeing
the primary processor for other functions. The KA800 processors can
directly control the DRB32 direct memory access (DMA) parallel port
device to distribute 1/0 control for high-speed data transfers and fast,
predictable interrupt response time.

1-12 Runtime Facilities Overview

Figure 1-7: Closely Coupled Symmetric Multiprocessing Configuration with
VAXELN Primary System

User Device
VAX 8800 KA800

Global
KA800 KA800

Application Job A Memory JobB JobG
Images

Job D Shared JobF High-
KA800 Data Job E Speed
Loader JobC JobH

DMA Parallel
VAXELN VAXELN Buffers VAXELN Interface VAXELN

MLO-004271

Figure 1-8: Closely Coupled Symmetric Multiprocessing Configuration with VMS
Primary System

User Device
VAX 8800 KA800

Global
KA800 KA800

Application Job A Memory Job B JobG
Images

Job D Shared JobF High-
VAXATA Data Job E Speed JobC JobH

DMA Parallel
VMS VAXELN Buffers VAXELN Interface VAXELN

MLO-004272

Runtime Facilities Overview 1-13

1.3 VAXELN Runtime Facilities

The VAXELN runtime components provide a rich software environment
for programming dedicated realtime applications. These components
consist of a kernel executive and a variety of runtime services that
provide support for:

• Networking, Section 1.3.2
• Local area transport (LAT) communication, Section 1.3.3

• System security, Section 1.3.4

• File oriented disk and tape I/O, Section 1.3.5

• Device drivers, Section 1.3.6
• DECwindows, Section 1.3.7

1.3.1 Kernel

The VAXELN Kernel defines a set of objects that it uses to control the
sharing of resources and to synchronize communication between the
jobs in a system. The kernel manipulates these objects in response to
procedure calls that are issued from application programs. In addition,
the kernel provides the following types of facilities to both user and
system programs:

• Process, job, and memory management

• Process synchronization

• Communication
• Device and interrupt handling
• Exception handling

Chapter 2 describes the kernel data structures and the operations in
which they can be used. Chapter 3 explains how the kernel manages
processes, jobs, and memory. Chapters 4 to 7 discuss synchronization,
communication, device handling, and exception handling, respectively.

1-14 Runtime Facilities Overview

1.3.2 Network Services

The VAXELN Toolkit includes EthernetlIEEE 802 datalink drivers for
supported network devices. Each of the datalink drivers supports the
VAXELN EthernetlIEEE 802 Datagram Service, VAXELN Network
Service, and VAXELN Internet Services. The Datagram Service pro
vides network interface routines that VAXELN systems can use to
communicate with other types of systems using system-independent
communications protocols.

The Network Service is a supplied program image that controls mes
sage transmission between network nodes, manages a network name
table, and provides a runtime interface for managing a DECnet net
work. You configure a Network Service for each target node used in
a multinode application. The Network Service preserves the methods
for sending and receiving messages, whether jobs communicate on the
same node or between nodes; data transmission across network nodes
is transparent to your programs.

The VAXELN Internet Services support Internet networking protocols
over an Ethernet medium. The services consist of runtime routines
that applications can use to control the Internet Services,convert byte
order of Internet and host physical addresses, manipulate Internet
addresses, communicate over the Internet using sockets, and retrieve
and set socket characteristics.

Chapter 8 describes the datalink drivers and explains how to use the
Datagram Service. Chapters 9 and 10 describe VAXELN DECnet and
Internet Services, respectively.

1.3.3 LAT Host Services

The local area transport (LAT) host services enable VAXELN system
nodes running LAT host services to communicate with devices attached
to dedicated terminal server nodes running LAT server. services. Using
these services, VAXELN applications can perform terminal I/O op
erations and can use control interfaces to manage and monitor LAT
environments. In addition, the LAT host services support a utility
that you can use to manage and monitor a VAXELN LAT environment
interactively.

See Chapter 11 for more information.

Runtime Facilities Overview 1-15

1.3.4 Authorization Service

The VAXELN Toolkit includes an optional Authorization Service that
provides system security for network applications. The Authorization
Service protects system resources and data by maintaining a data base
of a system's authorized users and identifying users who issue network
requests.

The Network Service and File Service use the Authorization Service to
protect the resources and data that they control. The Network Service
running on a particular node accepts circuit connections only from
users who are listed in the Authorization Service's data base. The File
Service provides read, write, and delete protection for files on disks that
it controls. Likewise, your application programs can use the service to
protect their resources and data.

See Chapter 12 for more information.

1.3.5 File Service

The File Service is a set of system disk and tape driver services that
enable VAXELN application programs to perform file-oriented disk and
tape I/O operations. The File Service consists of a disk File Service and
a tape File Service and provides for remote file access.

The disk File Service uses FILES-II On-Disk Structure Level 2 ser
vices and is compatible with the VMS, Version 4.4, file system and
the VMS record management services (RMS). Files are sequentially
organized. Programs can use sequential or random access for creating,
reading, and writing sequential disk files.

The tape File Service is based on Version 3 of the ANSI-standard
magnetic tapes and is compatible with the VMS, Version 4.4, tape file
system. You can use this service to transport files to and from VMS
systems.

See Chapter 13 for more information.

1-16 Runtime Facilities Overview

1 .3.6 Device Drivers

The VAXELN Toolkit simplifies VAX device support by providing
pregenerated device drivers that you can include in your VAXELN
systems. These drivers provide support for a variety of disk, tape,
printer, terminal, Ethernet, and realtime devices.

See Chapter 14 for more information.

1.3.7 DECwindows Support

The VAXELN Toolkit provides DECwindows support for creating
network transparent distributed applications that perform two
dimensional, integer coordinate drawing and windowing operations.
The toolkit includes the following DECwindows software:

• A DECwindows server image that you can build into VAXELN
systems that run on the following workstations:

VAXstation IIIGPX
VAXstation 2000
VAXstation 3100 series (color video option)
VAXstation 3200 (color video option)
VAXstation 3500

• The DECwindows runtime libraries and tools you need to develop
VAXELN DECwindows client applications

• A Window Manager and terminal emulators that enhance the user
environment for VAXELN DECwindows client applications

See VAXELN Guide to DECwindows for more information.

Runtime Facilities Overview 1-17

Chapter 2

The VAXELN Kernel

The VAXELN Kernel is a small, realtime executive that controls target
hardware resources and the execution of VAXELN system software.
VAXELN applications typically require fast, predictable responses to
intelTupts. To meet this crucial need, the highly optimized kernel takes
advantage of the VAX architecture and imposes minimal overhead
between the application code and the hardware.

The kernel recognizes and operates on a set of realtime programming
data structures, which it uses to control the sharing of resources and
to synchronize communication between the jobs in a system. These
structures include a set of kernel objects and two specialized structures
called mutexes and area lock variables. The objects represent ongoing
activities, such as process execution, and hardware and software
resources, such as devices, memory regions, events, and messages.
Mutexes and area lock variables are optimizations of kernel objects.
Table 2-1 describes the kernel objects, and Table 2-2 describes the
optimized structures.

Each VAXELN Kernel data structure is associated with a corresponding
set of operations that are implemented as procedure calls. The kernel
manipulates the structures and the resources associated with them
in response to procedure calls that you issue from your application
programs. Your high-level language programs call the kernel proce
dures directly to synchronize processes, to communicate between jobs
Qr processes, and to handle device interrupts.

The kernel also handles system scheduling and memory allocation
and maintains information about the entire VAXELN system and each
system component - that is, the context for the system image and each
program image.

The VAXELN Kernel 2-1

This chapter describes and summarizes the kernel operations for the
following:

• Kernel objects, Section 2.1

• Optimized data structures, Section 2.2

Chapters 3 to 6 describe the operations that the kernel performs in
more detail.

2.1 Kernel Objects

The VAXELN Kernel objects represent ongoing activities, such as
process execution, and hardware and· software resources, such as
devices, memory regions, events, and messages.

To guarantee the integrity of a kernel object, its fields are not directly
accessible to a program. Instead, when the program calls the kernel to
create a new object, the· kernel dynamically allocates a block of memory
for the object and returns an identifying value for it. You then refer
to the object by specifying the identifying value in subsequent calls to
kernel procedures. When you no longer need the object, you specify the
identifying value in a call to the DELETE procedure.

In the VAXELN Pascal language, predeclared data types represent
the kernel objects' identifying values. These predeclared types are
AREA, DEVICE, EVENT, MESSAGE, NAME, PORT, PROCESS, and
SEMAPHORE. To create and use an object, a program declares a
variable of the object's type, calls the appropriate CREATE_object_type
kernel procedure, and saves the returned, object value in the variable.
The variable then assumes the object's identifying value, which you
can use throughout the program to name the object. For example, the
following lines of code declare a variable of type SEMAPHORE, create
a SEMAPHORE object, and save the returned identifying value in the
variable main_lock:

2-2 The VAXELN Kernel

VAR
main lock SEMAPHORE;

BEGJ:N

END.

You can then wait on or signal the semaphore anywhere in the program
by using the variable to reference the object as follows:

SJ:GNAL(main_lock);

When the program no longer needs the object, you can delete it with a
call to the DELETE procedure as follows:

DELETE(maifi_lock);

The VAXELN Toolkit also provides kernel interfaces for VAX C and
VAX FORTRAN programming. The data type definitions for the two
languages are provided in the following definition modules:

Language

C

FORTRAN

Module

$vaxelnc in VAXELNC.TLB

'ELN$:FORTRAN_DEFS.FOR'

NOTE

Except for PORT values and AREA values for jobs on the
same node, an object's identifying value is valid only within a
job, even when the object is known in more than one job.

Table 2-1 summarizes the kernel objects. Sections 2.1.1 to 2.1.8 de
scribe the objects in detail.

TheVAXELN Kernel 2-3

Table 2-1: Kernel Objects
Object Description

AREA Represents a region of physical memory accessible to all jobs
executing on the same node in a local area network.

DEVICE Represents a channel to an 110 device and associates an inter
rupt service routine (ISR) with the device's interrupt. DEVICE
objects synchronize ISR and device driver process execution.

EVENT Represents a flag that identifies the occurrence of a realtime
event. Events synchronize process execution and access to
shared data.

MESSAGE Represents data that is transmitted between processes.
Messages can be sent between two processes, two jobs, or
two nodes in a local area network.

NAME Represents an entry in a name table that associates a character
string name with a message port or process. Port names can
be local (known only on its own node) or universal (known on
any node in the local area network).

PORT Represents a system-maintained store for messages being sent
or waiting to be received. Only the processes in the job that
creates the port can receive messages from that port. However,
any process in any job can send a message to the port. A
program can connect two ports in the same or different jobs to
form a circuit, which simplifies and increases the reliability of
communication between jobs.

PROCESS Represents a functionally independent entity that provides the
execution context for a program image or part of a program
image. The main program executes as a master process, which
can control zero or more subprocesses. Collectively, a master
process and its subprocesses constitute a job.

SEMAPHORE Represents a synchronization gate that controls access to a
shared resource. Binary semaphores enforce exclusive access
to a resource. Counting semaphores permit metered access,
allowing a specified number of processes simultaneous access
to units of a resource.

2.1.1 AREA' Objects

An AREA object represents a region of memory or another type of
shared resource that can' be shared among jobs on a single node in a
VAXELN network. An AREA object contains an event or semaphore
that can be used by the sharing jobs to synchronize access to the area's

2-4 The VAXELN Kernel

data. Areas with a size of 0 are valid and represent only the event or
semaphore.

An AREA object has the following properties:

• A character string name of up to 31 characters that supplies a
name for the area

• A signaled or cleared state if the area is associated with an event

• A count of the number of processes that can gain access to the area
(or resource) without waiting for some other process to signal the
area if the area is associated with a semaphore

• The maximum allowed value for the count, which is the maximum
number of processes that can gain access to the area (or resource)
simultaneously, if the area is associated with a semaphore

• A list of processes waiting for access to the area

• The associated region of memory

Chapter 5 discusses these properties and the kernel procedures that
affect AREA objects.

AREA values are represented internally as 32-bit longwords. The
kernel uses the longwords to locate AREA objects and their properties.

An AREA object occupies one block (128 bytes) of kernel pool.

The kernel allocate~ the region of memory associated with an area from
physically contiguous 512-byte pages of physical memory and maps
the region into the creating job's PO virtual address space. The region
occupies an integral number of memory pages and is aligned on a page
boundary.

The following table lists the operations for which you can use AREA
values and the procedures an application calls to perform the opera
tions:

Operation

Create an area or map an existing area,
return an identifying AREA value and pointer
to the area, and associate the area with an
event or semaphore.

Gain exclusive access to an area by waiting
for that area to be signaled.

Procedure

CREATE_AREA
CREATE_AREA_EVENT
CREATE_AREA_SE~HORE

The VAXELN Kernel 2-5

Operation Procedure

Signal the event or semaphore that is associ- SIGNAL
ated with an area.

Clear an event associated with an area. CLEAR_EVENT

Delete an area. DELETE

2.1.2 DEVICE Objects

A DEVICE object represents a channel to an I/O device and associates
an interrupt service routine (ISR) with the device's interrupt. When the
device issues an interrupt, the kernel calls the device's ISR to service
the device.

A DEVICE object has the following properties:

• A set of device characteristics established with the System Builder

• A communication region that lets a device driver and its ISR share
data

• An ISR, which the kernel invokes when an appropriate interrupt
occurs and to which the kernel passes the DEVICE value and
communication region

Chapter 6 discusses these properties and the kernel procedures that
affect DEVICE objects.

DEVICE values are represented internally as 32-bit longwords. The
kernel uses the longwords to locate the·DEVICE objects and their
properties, such as the address of its communication region. DEVICE
values are valid only within their own job.

A DEVICE object occupies one block (128 bytes) of kernel pool. If
an ISR is connected, it also requires one block of pool or a page of
communication region for its dispatcher.

The following table lists the operations for which you can use DEVICE
values and the procedures an application calls to perform the opera
tions:

2-6 The VAXELN Kernel

Operation

Create a DEVICE object and return an identi
fying DEVICE value.

Wait for an ISR to signal a DEVICE object.

Signal a DEVICE object from an ISR.

Delete a DEVICE object.

2.1.3 EVENT Objects

Procedure

WAIT_ALL
WAIT.ANY

SIGNAL_DEVICE

DELETE

An EVENT object represents a flag that identifies the occurrence of
a realtime event. Events synchronize process execution and access to
shared data. An EVENT object records events in real time and stores
that information until explicitly cleared by a program.

An EVENT object has the following properties:

• Either a signaled or a cleared state
• A list of processes waiting for the event to be signaled

Chapter 4 discusses these properties and the kernel services that affect
EVENT objects.

EVENT values are represented internally as 32-bit longwords. The
kernel uses the longwords to locate EVENT objects and their proper
ties, such as the object state. An EVENT value is valid only within its
own job unless the value is associated with an area (see Section 2.1.1).

An EVENT object occupies one block (128 bytes) of system pool.

The following table lists the operations for which you can use EVENT
values and the procedures an application calls to perform the opera
tions:

Operation

Create an event and return an identifying
EVENT value.

Wait for the signaling of an event.

Procedure

The VAXELN Kernel 2-7

Operation

Signal an event.

Clear an event.

Delete an event.

2.1.4 MESSAGE Objects

Procedure

SIGNAL

CLEAR_EVENT

DELETE

A MESSAGE object represents data that is transmitted between
processes. Messages can be sent between two processes, two jobs, or
two nodes in a local area network.

A MESSAGE object has the following properties:

• Message data
• Message length

Chapter 5 discusses these properties and the kernel procedures that
affect MESSAGE objects.

MESSAGE values are represented internally as 32-bit longwords.
The kernel uses the longwords to locate MESSAGE objects and their
properties. MESSAGE objects are valid only within their own job.

The associated message data is allocated in contiguous 512-byte pages
of physical memory and is mapped by the creating or receiving job's PO
virtual address space. Therefore, the data always occupies an integral
number of memory pages and is aligned on a page boundary. (These
characteristics suit the message data well for a VAX DMA-device liD
buffer.) Since PO address space is used, all processes in a job can share
the message data.

The following table lists the operations for which you can use
MESSAGE values and the procedures an application calls to perform
the operations:

Operation Procedure

Create a message, map its data into the job's CREATE_MESSAGE
PO address space, and return an identifying
MESSAGE value and a pointer to the data.

2-8 The VAXELN Kernel

Operation Procedure

Send a message to a message port and remove SEND
the message data from the sending job's
address space.

Remove a message from a message port, map RECEIVE
the message data into the receiving job's
PO address space, and return an identifying
MESSAGE value and a pointer to the message
data.

Delete a message. DELETE

2.1.5 NAME Objects

A NAME object represents an entry in a name table that associates a
character string name with a message port or process.

Name objects have the following properties:

• A character string of up to 31 characters that names an existing
message port or process

• The value of the message port or process being named
• For port name objects, the property local or universal

Port name objects and their associated character strings are stored in
either a local or a universal name table. The kernel maintains the local
name table for name objects used within a node. The Network Service
helps to maintain the universal name table; it contains valid name
objects for nodes in the local area network.

NOTE

The processors in a closely coupled symmetric multiprocess
ing configuration constitute one Ethernet node and share the
same local name table. Therefore, the images running on the
processors must create unique local names.

A NAME object for a process is not kept in a name table; it is associated
with a PROCESS object.

Chapter 5 discusses these properties and the kernel procedures that
affect NAME objects for processes and message ports, respectively.

The VAXELN Kernel 2-9

Identifying NAME values are 32-bit longwords that are valid only
within their own job. A NAME object occupies one block (128 bytes)
of kernel pool. A universal name also requires 64 bytes of dynamic
memory in the local Network Service and 64 bytes in the system
acting as the network's current name server. (See Chapter 9 for more
information.)

The following table lists the operations for which you can use NAME
values and the procedures an application calls to perform the opera
tions:

Operation

Create a name and an identifying NAME
value.

Return the PORT value associated with a
name (not valid for process names).

Name a process by creating a unique NAME
object that associates a character string with
a process.

Delete a name.

2.1.6 PORT Objects

Procedure

KER$NAME_OBJECT
(Pascal only)

DELETE

A PORT object represents a system-maintained store for messages
being sent and waiting to be received. Only processes in the job that
creates a port can receive messages from that port. However, any
process in any job can send messages to a port.

Each executing job in a system has a unique message port, or job
port, created when the first process in the job is started. A job can
use its job port to receive messages from other jobs. Programs can
create additional message ports dynamically with the CREATE_PORT
procedure.

A PORT object has the following properties:

• The maximum number of queued messages

• A list of queued messages, to be removed from the port by the
RECEIVE procedure

• The state of the port's circuit: unconnected, connected, or in a
special state during the establishment of a connection

2-10 The VAXELN Kernel

• If connected, the PORT value identifying the port to which the port
object is connected

Chapter 5 discusses these properties and the kernel procedures that
affect the state of PORT objects.

PORT values are 128-bit values that identify a message port as shown
in Figure 2-1.

Figure 2-1: PORT Value Representation

31 o
Port Table Index

Network: Number

Ethernet Node

Reserved I Address

127

MLO-004273

Each PORT object occupies one block (128 bytes) ofkemel pool and
requires one entry in the kernel's port address table.

The following table lists the operations for which you can use PORT
values and the procedures an application calls to perform the opera
tions:

Operation Procedure

Create a port and return an identifying PORT CREATE_PORT
value.

Return a unique PORT value for the calling JOB_PORT
job for communicating between jobs.

The VAXELN Kernel 2-11

Operation

Wait to receive a message.

Connect and disconnect circuit ports.

Let the calling process wait for a circuit
connect request on a port.

Delete a port.

Procedure

WAIT_ALL
WAIT_ANY

CONNECT_CIRCUIT
DISCONNECT_CIRCUIT

ACCEPT_CIRCUIT

DELETE

When a message arrives at a port, any process waiting on that port can
continue if its wait conditions are satisfied. The receiver process calls
the RECEIVE procedure to get the message. Only processes in the job
that creates a port can receive messages from that port with RECEIVE.

2.1.7 PROCESS Objects

A PROCESS object represents a functionally independent entity that
provides the execution context for a program image or a part of a
program image. The main program executes as a master process,
which can control zero or more subprocesses. Collectively, a master
process and its subprocesses constitute a job. A job can contain any
number of processes within a limit of 4096 objects for each job.

A PROCESS object has the following properties:

• One of 16 levels of process priority
• One of the process states running, ready, waiting, or suspended
• A user name and a user identification code (UIC)

Chapter 4 discusses these properties and the kernel services that affect
PROCESS objects.

PROCESS values are represented internally as 32-bit longwords. They
are valid only within their own job.

The following table lists the operations for which you can use
PROCESS values and the procedures an application calls to perform
the operations:

2-12 The VAXELN Kernel

Operation

Create a process and return an identifying
PROCESS value.

Get the PROCESS value of the calling process.

Set a process's priority.

Suspend a process's execution.

Resume execution of a process.

Wait for another process to terminate.

Force another process into an exception
condition.

Exit from a process.

Delete a process.

2.1.8 SEMAPHORE Objects

Procedure

CURRENT_PROCESS

SET_PROCESS_PRIORITY

SUSPEND

RESUME

WAIT_ALL
WAIT_ANY

SIGNAL

EXIT

DELETE

A SEMAPHORE object represents a synchronization gate that controls
access to a shared resource. Binary semaphores enforce exclusive
access to a resource. Counting semaphores permit metered access,
allowing a specified number of processes simultaneous access to units
of a resource.

A SEMAPHORE object has the following properties:

• A count of the number of processes that can gain access to the
resource without waiting for some other process to signal the
semaphore

• The maximum allowed value for the count, which is the maxi
mum number of processes that can gain access to the resource
simultaneously

• A list of processes waiting for the semaphore to be signaled

Chapter 4 discusses these properties and the kernel procedures that
affect SEMAPHORE objects.

A SEMAPHORE object occupies one block (128 bytes) of system pool.

The VAXELN Kernel 2-13

SEMAPHORE values are represented internally as 32-bit longwords.
The kernel uses the longwords to locate SEMAPHORE objects and their
properties, such as its CUITent count. A SEMAPHORE value is valid
only within its own job unless the value is associated with an area (see
Section 2.1.1).

The following table lists the operations for which you can use
SEMAPHORE values and the procedures an application calls to
perform the operations:

Operation Procedure

Create a semaphore and return an identifying CREATE_SEMAPHORE
SEMAPHORE value.

Wait for the signaling of a semaphore. WAIT_ALL
WAIT_ANY

Signal a semaphore. SIGNAL

Delete a semaphore. DELETE

2.1.9 Kernel Object Implementation

Although it is usually not necessary for a VAXELN programmer to
know the details of the kernel's implementation of objects, the following
points are useful in answering system configuration questions:

• The kernel allocates all objects, except PROCESS objects, from a
pool of fixed-length blocks of memory .. The number of blocks in the
pool is set with the System Builder. When the system is booted,
the kernel initializes the pool, maps the blocks into system space,
and links the blocks into a list of free blocks. The fixed size of the
blocks makes allocating and deallocating objects efficient.

• The identifying value returned by the kernel for a newly created
object is not the virtual address of the object. Instead, it is a 32-bit
value consisting of two indexes. The indexes are used to look up
the address of the object ina two-level table maintained by the
kernel for each job. These values are thus unique for each job in
the system.

2-14 The VAXELN Kernel

• The object table grows dynamically as the job creates more objects.
The kernel allocates the table from system memory and pool blocks.
The top-level table is allocated in a 512-byte page of memory that
can hold pointers to 128 second-level tables. Each second-level
table occupies one 128-byte pool block that can hold up to 32 object
addresses. Thus, you can create up to 4096 objects for a job.

The preceding description applies to all objects except ports. Because
a PORT value is valid anywhere in the network, it also includes the
DECnet or Ethernet node address and additional fields reserved for
future use. Thus, a PORT value is 128 bits long. Also, the indexes in
a PORT value are used for a table that describes all the ports in the
system, rather than just the ports in a job. The size of the port table
is also set with the System Builder, and the table is allocated by the
kernel when the system is booted.

Although the kernel's method for representing identifying values might
seem complicated, it allows you to validate identifying values in a few
VAX instructions. Furthermore, the method of representation is not
important for VAXELN programming.

2.2 Optimized Data Structures

The kernel also recognizes and operates on two specialized data struc
tures: mutexes and area lock variables. These structures are optimiza
tions of kernel objects; locking a mutex can be faster than waiting on
a mutual exclusion semaphore, and locking an area synchronization
variable can be faster than waiting on a shareable memory area.

The locations of the MUTEX and AREA_LOCK_ VARIABLE data type
definitions are as follows:

Language

VAXELN Pascal

C

FORTRAN

Module

$MUTEX in the RTLOBJECT.OLB

$mutex in the VAXELNC. TLB

'ELN$:FORTRAN_DEFS.FOR'

Table 2--2 summarizes the optimized structures. Sections 2.2.1 and
2.2.2 describe the structures in detail.

The VAXELN Kernel 2-15

Table 2-2: Optimized Data Structures
Structure Description

AREA_LOCK_ VARIABLE Represents a variable that resides in an area ob
ject for synchronizing job access to the associated
area. Using this variable, a process can lock an
area to gain exclusive access. When the process
locks the area, the process does not have to issue
a wait before accessing the associated area unless
the area is already locked.

MUTEX Represents an optimized binary semaphore. A
process can lock a mutex to gain exclusive access
to a shared resource. When the process locks the
mutex, the process does not have to issue a wait
before accessing the resource unless the mutex is
already locked.

2.2.1 AREA_LOCK_VARIABLE Data Structure

The AREA_LOCK_ VARIABLE data structure provides an alternative
means for synchronizing access to areas between jobs. Area lock
operations can be used to improve the performance of AREA wait and
signal operations.

Area-locking operations enable jobs to synchronize access to an area by
using a synchronization variable of type AREA_LOCK_ VARiABLE in
the area's data portion. You can use an area lock variable only if the
area is created with an associated binary semaphore that is properly
initialized. You can do this with CREATE_AREA, and its implied
binary semaphore, or with CREATE_AREA_SEMAPHORE with initial
and maximum counts of 1. No error status is returned if you use an
AREA_LOCK_ VARIABLE with an area that is not associated with a
binary semaphore.

Area-locking operations can be more efficient than calling the WAIT_
ANY and SIGNAL procedures with areas. When a process locks an
area to gain exclusive access, the process does not have to call a WAIT_
ANY procedure unless some other process has already locked the area.

The following table lists the operations for which you can use area
lock variables and the procedures an application calls to perform the
operations:

2-16 The VAXELN Kernel

Operation Procedure

Initialize (unlock) a synchronization vari- ELN$INITIALIZE_AREA_LOCK
able (of type AREA_LOCK_ VARIABLE)
in the data portion of an area.

Lock (wait on) an area. ELN$LOCK_AREA

Unlock (signal) an area. ELN$UNLOCK_AREA

An area lock variable is represented internally as a I6-bit counter. The
variable must be within an area's data portion. A single process in
the application calls ELN$INITIALIZE_AREA_LOCK to initialize the
counter to -l.

Once an area lock variable is initialized, subsequent calls to the
ELN$LOCK_AREA and ELN$UNLOCK_AREA procedures increment
and decrement the counter, respectively.

• When ELN$LOCK_AREA increments the counter and the result
is greater than 0, the area has already been locked by another
process. Thus, the procedure calls the WAIT_ANY procedure to
wait for the area to be unlocked.

• When ELN$UNLOCK_AREA decrements the counter and if the
result is greater than or equal to 0, another process is waiting for
the area. To satisfy that wait, ELN$UNLOCK_AREA calls the
SIGNAL procedure to unlock the area.

2.2.2 MUTEX Data Structure

The MUTEX data structure is an optimization of a binary semaphore.
The meanings of mutex operations are similar to the comparable
operations on binary semaphores. The difference is that when a process
locks a mutex to gain access to a shared resource, the process does not
have to call the WAIT_ANY procedure unless some other process has
already locked the mutex. The result is significantly more efficient
than that obtained using WAIT_ANY and SIGNAL procedures on
binary semaphores.

The following table lists the operations for which you can usemutexes
and the procedures an application calls to perform the operations:

The VAXELN Kernel 2-17

Operation

Initialize (unlock) a mutex and create an
associated semaphore.

Lock (wait on) a mutex.

Unlock (signal) a mutex.

Delete the semaphore created for a mutex.

Procedure

ELN$CREATE_NnlTEX

ELN$LOCK_NnlTEX
ELN$UNLOCK_MUTEX
ELN$DELETE_N.nlTEX

A mutex is represented internally as a 6-byte record containing a 16-bit
counter and a SEMAPHORE value. A call to ELN$CREATE_MUTEX
initializes the counter to -1 and the SEMAPHORE value to a binary
semaphore with an initial count of 0.

Once a mutex is initialized, subsequent calls to the ELN$LOCK_
MUTEX and ELN$UNLOCK_MUTEX procedures increment and
decrement the counter, respectively.

• When ELN$LOCK_MUTEX increments the counter and the result
is greater than 0, the mutex has already been locked by another
process. Thus, the procedure.calls the WAIT_ANY procedure to
wait for the mutex to be unlocked.

• When ELN$UNLOCK_MUTEX decrements the counter and the
result is greater than or equal to 0, another process is waiting for
the mutex. To satisfy the wait, ELN$UNLOCK_MUTEX calls the
SIGNAL procedure to unlock the mutex.

Deleting a mutex with the ELN$DELETE_MUTEX procedure sets the
counter to 0, indicating that the mutex is locked. If you try to lock or
unlock a mutex after it has been deleted, the internal call to WAIT_
ANY fails and returns the status value KER$_BAD_ VALUE.

2-18 The VAXELN Kernel

Chapter 3

Job, Process, and Memory
Management

The VAXELN Kernel manages jobs, processes, and system memory.
The programs that comprise a VAXELN application execute as jobs.
When you build a VAXELN system, the kernel creates a job for each
program image that you specify; the images execute automatically
when the system starts on the target hardware. The kernel also
creates jobs in response to calls to the CREATE_JOB procedure and
when you issue appropriate VAXELN debugger or ECL commands.

An application can use the CREATE_JOB procedure to create a job
dynamically or to create a job after dynamically loading a program
image with the dynamic program loader (see Section 3.3.4). A program
image is a copy of all the code and initial data necessary to run the
program.

A job consists of one master process that executes the program's main
routine (program block, main function, or main program, depending on
the language) and zero or more subprocesses that execute concurrently
with the master process and with each other. The master process and
subprocesses synchronize their activities by using the kernel objects,
mutexes, and area lock variables and the associated procedures that
manipulate them. The procedures create, delete, or otherwise affect the
state of the structures represented by the data types AREA, AREA_
LOCK_VARIABLE, DEVICE, EVENT, MESSAGE, MUTEX, NAME,
PORT, PROCESS, and SEMAPHORE.

Job, Process, and Memory Management 3-1

A program creates subprocesses by calling the CREATE_PROCESS pro
cedure. Each subprocess executes a routine that defines the executable
code and data available to one or more dynamically created processes.
In VAXELN Pascal, C, and FORTRAN, these routines are called process
blocks, functions, and integer functions, respectively.

Ajob can be thought of as a process family. The way processes are cre
ated implies a hierarchy: the CREATE_JOB procedure or the System
Builder creates a job and a corresponding master process that runs a
program; that program then can call the CREATE_PROCESS proce
dure to create subprocesses to execute the program's process blocks and
functions. The subprocesses can also call CREATE_PROCESS to create
subprocesses. Execution of the master process holds the object values
of all subprocesses; thus, if the master process exits, all subprocesses
and the memory and objects created by the job are deleted.

The processes in a job can share data that is declared externally (outer
level data). Jobs on a single node in a VAXELN network can share data
by using AREA objects.

You can combine any number of jobs with the VAXELN runtime soft
ware to form a VAXELN system image. The VAXELN Kernel keeps
track of the current jobs in a system. Therefore, if a program calls
CREATE_JOB and then exits, the created job continues executing.
With this procedure, a VAXELN program can create a new process fam
ily, in which the main program can be any program that was originally
configured into the system or loaded with the dynamic program loader.
The new job is independent of other jobs and has its own data and
code. Similarly, multiple proceses within a job can execute the same
code segment.

When you build a system, you can specify any number of programs to
execute when you load the system onto the target processor. A running
VAXELN application can contain any combination of multitasking,
multiprogramming, and multiprocessing job configurations.

A job remains active until the master process finishes executing its
main routine code. A process remains active until it exits, another
process deletes it, its master process terminates, it encounters an error
from which it cannot recover, or it finishes executing the associated
code segment. The exit operation provides the most controlled means of
forcing process termination.

A process can delete itself or any other process within the same
job. You cannot restart a deleted process; in general, you should use
SIGNAL or EXIT to force a process to terminate.

3-2 Job, Process, and Memory Management

When a job or master process terminates, the kernel deletes all the
job's subprocesses and shared data from the system.

This chapter provides information about programming job, process, and
memory management. The topics discussed include the following:

• Job activation and termination, Section 3.1

• Subprocess activation and termination, Section 3.2

• Scheduling, Section 3.3
• Kernel procedures for processes and jobs, Section 3.4

• Memory management, Section 3.5

3.1 Job Activation and Termination

The VAXELN Kernel creates a job implicitly when you select the Run
option for a program image that you specify in the System Builder's
Program Description Menu. The image executes automatically when
the system starts on the target hardware. If you do not select the Run
option, you can load a program and create jobs dynamically. You can
load a program image by using one of the following:

• System Builder
• ELN$LOAD_PROGRAM procedure

• LOAD PROGRAM debugger command
• LOADIPROGRAM or RUN ECL command (RUN also creates the

job)

Mter the program image is loaded, you can:

• Use the CREATE_JOB procedure to create a job dynamically, using
a program that was loaded with the System Builder

• Use the CREATE_JOB procedure after dynamically loading a
program image with the ELN$LOAD_PROGRAM procedure

• Use the CREATE JOB debugger command to create ajob

• Use the EXECUTEIWAIT ECL command to create a job

The LOAD PROGRAM and CREATE JOB debugger commands and
the LOADIPROGRAM, EXECUTEIWAIT, and RUN ECL commands are
described in the VAXELN Development Utilities Guide.

Job, Process, and Memory Management 3-3

When a job is created, the kernel establishes the job's PO address
space and the PI address space (stack) for the job's master process (the
program block). The processes in a job, including the master process
and subprocesses, share the PO space. Program arguments are stored
in PO space so that the PROGRAM_ARGUMENT function and the 1/0
runtime routines (for opening files) can access them.

The System Builder and Program Loader detect oversized jobs and
issue appropriate warning messages. If you receive such a message,
make sure you have allocated enough PO virtual address space for each
job in your system. The kernel will delete a job if not enough PO space
is available to create the job.

No files are open initially. However, you can implicitly open an input
file, an output file, or a file named in the program block's header with
the first 1/0 operation on that file.

The kernel activates the program block's routine body. It initializes
data, using the program block's declaration section; then it executes the
block's compound statement (BEGIN ... END).

A job terminates when the main routine's code completes execution,
when the job's master process is terminated by the DELETE or EXIT
procedure, or when an unhandled exception occurs (such as an unhan
dIed QUIT exception caused when another process signals this process).
When a job terminates, its existing subprocesses terminate, open files
are closed, and the job's resources are returned to the kernel. If files
are closed due to job termination, data in buffers can be lost. If you
want the kernel to send a termination message to a specified port, use
the NOTIFY parameter with the CREATE_JOB procedure.

You can use VAXELN utility procedures to establish an exit handler to
perform cleanup operations following the termination of a job with the
EXIT procedure (see Chapter 7).

3.2 Subprocess Activation and Termination

When a process in a job calls CREATE_PROCESS, the kernel creates a
subprocess, establishes a new stack (PI virtual address space) for the
process, and prepares it for execution, beginning at the first statement
in a process's routine code. The new process is in the ready state; it
begins actual execution immediately or later, depending on its priority
and the scheduling algorithms. (For information about process states
and scheduling, see Section 3.3.)

3-4 Job, Process, and Memory Management

A subprocess terminates when one of the following occurs:

• Execution of the main routine code terminates.

• The process calls the EXIT procedure.
• The process is deleted by a call to the DELETE procedure.

• An unhandled exception occurs in the process. (For example, an
unhandled QUIT exception can occur when another process signals
this process.)

• The job's master process terminates.

When a subprocess terminates, the kernel frees its Pl virtual address
space (stack space) and the kernel pool space associated with the
subprocess's activation. Objects it created and did not delete remain
active, since the kernel cannot detect whether the object is in use by
more than one process in the job. These objects are acquired by the
job's processes that are deleted only when the job's master process is
deleted.

NOTE

Be careful when using the DELETE procedure to delete a
process. Processes terminated by DELETE are not termi
nated in an orderly way and cannot be restarted. Deletion
of a process is intended as an emergency method to stop
a process; ordinarily, you should use SIGNAL or EXIT to
terminate a process in an orderly way.

When terminating a process, the kernel also takes action so that:

• If another process of the job is currently waiting for the process to
terminate, the wait is satisfied.

• If the call to CREATE_PROCESS that activated the process spec
ified an exiCstatus argument, the exit status of the terminated
process is stored in the designated data item.

These actions are not taken if the subprocess terminates because the
master process terminated.

Processes are terminated in an orderly way with the SIGNAL or EXIT
procedure or when they return from the outermost procedure block.
(See Chapter 7 for a discussion of VAX. stack architecture and call
frames.)

Job, Process, and Memory Management 3-5

The orderly termination of a process has two special consequences:

• The debugger notifies the user that the process is going away, if the
debugger is active in the process.

• If the process is a master process (that is, if the job is terminating),
the kernel activates an exit handler feature so that resources can
be cleaned up by the code that allocated them.

When a process signals another process to quit, the quitting process can
handle the raised exception KER$_QUIT_SIGNAL (see Section 3.4.18).
The exception handler can perform special operations for the process,
such as cleaning up resources, before the process exits.

A program can set up an exit handler by using the toolkit's exit utility
procedures, ELN$DECLARE_EXIT_HANDLER and ELN$_CANCEL_
EXIT_HANDLER. The ELN$DECLARE_EXIT_HANDLER procedure
causes a program-defined exit handler routine to be called when the
job terminates. When the exit handler routine is no longer needed, the
program can delete it with a call to ELN$_CANCEL_EXIT_HANDLER.

3.3 Scheduling

The VAXELN Kernel schedules an application's execution based on a
preemptive priority scheduling scheme that is driven by states and
priorities of a system's jobs and processes. This scheduling scheme is
described in Sections 3.3.1 to 3.3.5.

3.3.1 Processes and Process States

A process is a code segment that the kernel can schedule and execute
independently as part of a VAXELN job. A process is created statically
when you build your system or dynamically at runtime and remains
active until it terminates. While active, a process is always in one of
four process states: run, ready, wait, or suspend. Table 3-1 describes
these states, and Figure 3-1 illustrates valid state transitions.

3-6 Job, Process, and Memory Management

Table 3-1 : Process States
State

Run

Ready

Wait

Description

The process has control of the processor and is currently executing.

The process is not executing but is ready to execute as soon as the
scheduler allows. When an application creates a process, the process
enters the ready state.

The process is waiting for a specified set of conditions to be satisfied,
such as an amount of time to elapse, an event or series of events to
occur, or the receipt of a message. A process enters the wait state
by calling one of the following procedures:

• WAIT_ANY - Wait for any of the listed conditions to be satis
fied.

• WAIT_ALL - Wait for all the listed conditions to be satisfied.
• RESUME - Reenter the wait state if the process was wait

ing prior to being suspended with a call to the SUSPEND
procedure. Another process must issue the call to RESUME.

Suspend The process cannot reenter the ready state until another process in
the same job reactivates the suspended process with a call to the
RESUME procedure. A process can put itself or any other process
in the same job into the suspend state with a call to the SUSPEND
procedure.

The rules for process state transitions are as follows:

• Ready is the initial state for a process.
• When a process's wait conditions are satisfied, it enters the ready

state. If the scheduling state of the system is such that the process
should run immediately, the process enters the run state.

• The scheduler selects a ready process to enter the run state based
on the system's jobs and process priorities.

• A process in the run state enters the ready state when the process
is preempted by a higher priority process.

• A process in the run state enters the wait state when the process
issues a call to WAIT_ANY or WAIT_ALL that blocks due to the
wait conditions not being satisfied.

Job, Process, and Memory Management ~7

Figure 3-1: Valid Process State Transitions

MLO-004274

• If a process is in the run or ready state when it is suspended, it
enters the ready state when it is resumed. If the scheduling state
of the system is such that the process should run immediately, the
process enters the run state when it is resumed.

• If a process is in the wait state when it is suspended and not all
the wait conditions are satisfied when the process is resumed, it
reenters the wait state. If the scheduling state of the system is
such that the process should run immediately, the process enters
the run state when it is resumed.

• If a process was in the wait state when it was suspended and all
the wait conditions are satisfied when the process is resumed, it
enters the ready state.

3-8 Job, Process, and Memory Management

3.3.2 Job and Process Scheduling

The order in which processes enter the run state depends on job and
process scheduling. The VAXELN Kernel selects a process to run
based on a preemptive, priority scheduling scheme; round-robin and
time-sliced scheduling are not available.

To accommodate preemptive priority scheduling, you must assign a
priority to each job and process in a VAXELN system. You can assign
the priorities when you build the system, or you can change them
dynamically with the procedures SET_JaB_PRIORITY and SET_
PROCESS_PRIORITY. Job priorities can range from 0 to 31 (0 is the
highest and 16 is the default). Process priorities can range from 0
to 15 (0 is the highest and 8 is the default). Therefore, within a job,
processes can have 16 levels of priority independent of the job's priority.

Figure 3-2 illustrates the structure of job and process scheduling
priorities.

The VAXELN driver jobs run at higher priorities. For example, the
datalink driver normally runs at job priority 1, the console driver runs
at job priority 2, and the disk and tape drivers run at job priority 5.
If an application includes one or more jobs that need to run at a job
priority higher than that of the datalink driver and the jobs can run at
the same job priority, you can set their job priorities to 0 and vary the
process priorities.

The kernel scheduler considers a job ready to execute if one or more
processes in that job are in the ready state. The kernel scheduler
gives preference to the ready jobs and processes that have the highest
priorities. The scheduler identifies the job with the highest priority and
then selects that job's highest priority process for execution. The jobs
in a system, whether they are executing or idle, are rescheduled when
one or more of a job's processes enters the ready state.

Job rescheduling is illustrated by the following example, in which JOB1
has a higher priority than JOB2:

1. JOB1 has only one process, the master process; at a certain point,
it executes WAIT_ANY to wait for a message to arrive at its job
port.

Job, Process, and Memory Management 3-9

Figure 3-2: Job and Process Priorities

Job 1
(Priority 0-31)

Job2
(Priority 0-31)

Process 1
(Priority 0-15)

Process 2
(Priority 0-15)

Process 3
(Priority 0-15)

Process 1
(Priority 0-15)

Process 2
(Priority 0-15)

Process 3
(Priority 0-15)

MLO-004275

2. JOBl now has no processes in the ready state, so JOB2 is given
control (assuming that at least one of its processes is ready).

3. When a message arrives at JOBl's port, the wait condition is
satisfied, and JOB1's master process becomes ready again. Since
JOB1's priority is higher, it is given control of the CPU again,
preempting JOB2.

When two or more jobs have equal priority, the scheduler gives control
to the ready process that has the highest priority among those jobs,
preempting lower-priority processes.

When a job is preempted and one or more jobs in the ready queue
have the. same job priority and the same highest priority ready process
as· that of the preempted job, the scheduler's action depends on the
job preemption algorithm in effect. The default algorithm rotates the
preempted job by placing it in the ready queue behind the jobs of equal
job and process priority. However, if you selected No for the Rotating
job preempt entry on the System Builder's System Characteristics

3-10 Job, Process, and Memory Management

Menu when you built your system, the scheduler places the preempted
job in the ready queue ahead of the jobs of equal job and process
priority.

The scheduler's use of 32 job priorities and 16 process priorities might
imply that the job and process priorities are unified to form one of
512 possible combined priority values and that the processes are
scheduled against each other using this combined value. Rather, jobs
are scheduled first followed by processes; the overall priority of a
process, therefore, is limited by the priority of its job.

Figure 3-3 illustrates the internal representation of the combined job
and process priority values.

Figure 3-3: Combined Priority Representation

15 8 7 o

Job Priority I Process Priori1y

MLO-004276

Process rescheduling, or switching, within a job can be enabled and
disabled with the procedures ENABLE_SWITCH and DISABLE_
SWITCH. When switching is disabled, no other process in the current
job can run. This feature provides a mechanism by which, for example,
a process can control the access to a data set. (A finer mechanism is
the use of semaphores, discussed in Chapter 4.)

Since process rescheduling is automatic and predictable, you can
design systems that execute without noticeable delays - even though
programs sit idle while others execute. In principle, the execution
speed of an application is the speed of the slowest thread of execution.

The definition of important delay is essentially the definition of real
time performance for your application. It is impossible to exactly syn
chronize a computer or computer program with external phenomena.
Instead, to satisfy the practical definition of realtime, the system must
contain processes, which - given control of the CPU - can respond

Job, Process, and Memory Management 3-11

to external events in an acceptable amount of time. Furthermore, the
processes should have high enough priority to ensure that they are not
preempted while they are reacting to important external events.

Generally, realtime systems work best if the processes .in charge of
specific events are properly designed for, and synchronized with, those
events. Only then should process priorities enter in, as a fine-tuning
mechanism; priorities are not a means of synchronization. Chapter 4
summarizes issues related to synchronizing processes with each other
or with external events.

For information about scheduling in multiprocessing configurations, see
Section 3.3.5.

3.3.3 Initialization Programs and System Start-Up

When you use the System Builder to configure your program images,
you can specify Yes for the Init required entry (see the VAXELN
Development Utilities Guide). This characteristic means that the
program is an initializing program that will be created and made
eligible to run - along with other initializing programs, in order of
job priority - when the system is started. Start-up of initializing
programs precedes that of noninitializing programs.

While an initializing program runs, no jobs of lower priority are started
until the program either calls the INITIALIZATION_DONE procedure
or terminates. The INITIALIZATION_DONE procedure informs the
kernel that the calling program has completed an initialization se
quence, and other programs can be created and made eligible to run.
(The calling program continues to run until some other occurrence .
causes it to block.)

The INITIALIZATION_DONE procedure makes it possible to synchro
nize the start of several programs in a system. For example, suppose a
system has descriptions of the following programs:

programl

program2

program3

program4

Run, Init required, Priority 5

Run

Run, Init required, Priority 6

Norun

3-12 Job, Process, and Memory Management

When the resulting system is started, the initializing programs are
created and made eligible to run, one at a time, in the order of their job
priorities, followed by the noninitializing programs. Here, programl is
started first. (Remember that with job priorities, low numbers mean
high priorities.) When programl calls INITIALIZATION_DONE, other
initializing programs, beginning with program3, can be created and
made eligible to run; meanwhile, programl continues running until
some other occurrence causes it to block. If programl does not call
INITIALIZATION_DONE, it must run to completion before program3
or any other program is started.

Program2 is not started until both initializing programs have run or
called INITIALIZATION_DONE. Program4 is not started automati
cally; it must be activated by a CREATE_JOB call from one of the other
programs, a debugger CREATE JOB command, or an ECL EXECUTE
or RUN command.

3.3.4 Loading Programs

Normally, the programs that are available to run using the CREATE_
JOB procedure are specified with the System Builder. To allow the
system to react to new situations without being rebooted, however,
VAXELN provides utility procedures that can be used to dynamically
load and unload program images after the initial system is built. Mter
a program image is dynamically loaded, CREATE_JOB is used to
execute the program image.

The $LOADER_UTILITY module provides the following procedures:

• ELN$LOAD _PROGRAM, which loads a specified image file into a
running system. The file is opened in the context of the caller, so
the file name must be specified in enough detail to correctly identify
the file. The file can reside on the system or on a remote node; you
do not need to have a file system on the node to which the program
is being loaded. Arguments specify the initial stack size, job and
process priority, and whether or not the debugger should be given
control when the program starts.

• ELN$UNLOAD_PROGRAM, which unloads the specified program
from the system.

Job, Process, and Memory Management 3-13

One restriction is that shareable images that the dynamically loaded
program references must be included in the system at system
build time. The Guaranteed image list entry on the Edit System
Characteristics Menu allows you to specify the images that are needed
by the dynamically loaded programs. These specified images are
merged with those needed by other programs, and the System Builder
resolves any interdependencies.

Another entry on the same menu, Dynamic program space, specifies
the number of memory pages that can be used by dynamically loaded
programs. The number is a quota and does not cause the pages to be
allocated until the program is actually loaded. (For more information,
see the VAXELN Development Utilities Guide.)

3.3.5 Scheduling in Multiprocessing Configurations

Each processor involved in a loosely or closely coupled multiprocessing
configuration (see Figures 1-5, 1-7, and 1-8) executes its own copy of
a VAXELN system image. Thus, the kernel uses the single-processor
scheduling rules to schedule the jobs and processes on each processor
participating in these configurations.

However, in a tightly coupled symmetric multiprocessing configuration
(see Figure 1-6), application components running on different proces
sors share a single copy of the VAXELN system image, including the
kernel. In this case, the kernel can select a ready job to run on any
available processor. Once a job begins to run on a processor, all its
subprocesses run on that processor also. If the job is not eligible to run
on the selected processor, the kernel reschedules the job for execution
on a valid processor. The scheduling of a job for a particular processor
may preempt the processor's execution of a lower-priority job.

3.4 Kernel Services for Processes and Jobs

The kernel services affecting the state of PROCESS objects are summa
rized in Sections 3.4.1 to 3.4.20.

3-14 Job, Process, and Memory Management

3.4.1 CREATE_JOB Procedure

The CREATE_JOB procedure creates a new job that executes a speci
fied program image. The procedure returns the new job port value. The
caller can use this value to send messages to the new job. The same
value can be obtained within the new job by the JOB_PORT procedure.
For program images that require arguments, you can specify the argu
ments as strings in an optional argument list. The argument list must
specify all required argument values for the specified program image.

An optional argument identifies a port to be notified of the created job's
termination. If this argument is present, a termination message is sent
to the port when the new job terminates. The termination message is
the integer completion status of the created job's master process. If the
argument is omitted, no message is sent.

The job's master process can return an explicit status with the EXIT
procedure; if it specifies no status and completes successfully, the
default status returned in the termination message is 1 (success). An
unhandled exception condition causes the value of the exception to be
returned.

CREATE_JOB runs a program image already built into the system
(with the System Builder), or it executes program images that are
loaded dynamically with the ELN$LOAD_PROGRAM procedure after
the initial system is built.

3.4.2 CREATE_PROCESS Procedure

The CREATE_PROCESS procedure creates a new subprocess running
the specified process block or function, returning the new PROCESS
value that identifies the process. An optional list of up to 31 arguments
can be passed to the created process.

An optional integer variable receives the final (exit) status of the
created process. The variable must be in shared space. Such a value
can be returned by the created process with the EXIT procedure. If
the argument is omitted, no such status is returned. An unhandled
exception condition causes the value of the exception to be returned.

Job, Process, and Memory Management 3-15

3.4.3 CURRENT_PROCESS Procedure

The CURRENT_PROCESS procedure returns a PROCESS value that
identifies the calling process.

3.4.4 DELETE Procedure

The DELETE procedure removes the PROCESS object from the sys
tem. When a process is deleted, if another process is waiting for its
termination, that aspect of its wait condition is satisfied permanently.

When a master process is deleted, all subprocesses in the same job are
deleted, along with the data and kernel objects created by processes in
the job. The exit status of a deleted process is KER$_NO_STATUS.

3.4.5 DISABLE_SWITCH Procedure

The DISABLE_SWITCH procedure disables process switching for the
job from which it is called. The calling process continues executing,
regardless of the priorities of other processes in the job, until switching
is reenabled with ENABLE_SWITCH.

If the process that calls DISABLE_SWITCH blocks and requires action
from another process in the same job before it can resume, deadlock
resul ts - that is, the blocked process cannot unblock.

NOTE

Process switching is reenabled automatically if the process
calls EXIT or deletes itself.

DISABLE_SWITCH is necessary only when a process must perform
an operation with assurance that it will not be preempted by other
processes in the job.

3-16 Job, Process, and Memory Management

3.4.6 ENABLE_SWITCH Procedure

The ENABLE_SWITCH procedure restores preemptive process schedul
ing, or switching, for the calling job. When process switching is en
abled, the control of the CPU is given to the highest-priority process
in the job that is ready to run. The procedures ENABLE_SWITCH
and DISABLE_SWITCH count the number of times they are called;
switching is enabled only if the number of calls to ENABLE_SWITCH
is equal to the number of calls to DISABLE_SWITCH for a particular
process.

3.4.7 EXIT Procedure

The EXIT procedure causes an immediate exit from the calling process.
The procedure is similar to deleting the current process, except that
it can optionally return an exit status to the process that created it.
Process switching, if disabled by the process, is reenabled automatically,
so control goes to the highest-priority process in the job that is ready to
run. If the calling process is the master process, all the objects it owns,
including subprocesses, are deleted; all open files are closed.

3.4.8 KER$GET_JCB Procedure

The KER$GET_JCB procedure returns a job control block (JCB) ad
dress. In a tightly coupled symmetric multiprocessing configuration -
for example, the VAX 8800 multiprocessor - the procedure saves the
current interrupt priority level (IPL), raises the IPL to 4 so that the
job will not be switched to run on another processor, gets the JCB ad
dress, and restores the initial IPL. (In a single-processor configuration,
the procedure accesses the JCB address without raising the IPL.) The
returned address can then be used to read fields in the JCB.

User-mode programs in a tightly coupled multiprocessing configuration
must use this procedure to access fields of the JCB. Kernel-mode
programs in the same configuration can either use this procedure or
perform the equivalent set of operations, including raising the IPL to
4. The ability to use this procedure in single-processor configurations,
where it is not necessary to protect against a job being switched to a
different processor, is provided so that the same source code can be
used in all configurations without modification.

Job, Process, and Memory Management 3-17

3.4.9 KER$GET_USER Procedure

The KER$GET_USER procedure returns the user identity of either
the calling process or the partner process connected by a circuit to
the caller's port. An optional argument specifies a port connected in
a circuit; if this argument is supplied, the port must be connected in
a circuit that the caller has accepted with the ACCEPT_CIRCUIT
procedure. Valid information is not returned if the caller initiated
the connection with CONNECT_CIRCUIT; that is, KER$GET_USER
can provide information only about the object of a connection, not the
subject.

Other optional arguments return the user name string and the UIC
of either the calling process or the partner process. If the circuit is
from a remote user, but there is no Authorization Service available
in the system - that is, the Authorization required entry on the
System Builder's Edit Network Node Characteristics Menu is No
KER$GET_USER returns 0 for the UIC parameter.

3.4.10 INITIALIZATION_DONE Procedure

The INITIALIZATION_DONE procedure informs the kernel that the
calling program has completed an initialization sequence and that other
programs can be created and made eligible to run. This procedure does
not cause the calling job to block. The calling job continues to run until
some other occurrence causes it to block.

The INITIALIZATION_DONE procedure is exclusively for programs
that have the System Builder Init required program attribute.

NOTE

Context switching is disabled during initialization.

3.4.11 KER$NAME_OBJECT Procedure

The KER$NAME_OBJECT procedure names a specified process by
creating a unique NAME object that associates a character string with
the process. The procedure helps you identify the process when you use
the remote debugger and 'other VAXELN development utilities.

3-18 Job, Process, and Memory Management

This procedure is similar to the CREATE_NAME procedure that
creates names for message ports (see Chapter 5), except that process
names do not have the local or universal attribute that is associated
with port names.

NOTE

KER$NAME_ OBJECT is used only in Pascal programs; to
get the equivalent process-naming feature in C, you call
KER$CREATE_NAME with a special set of arguments.
See the VAXELN C Runtime Library Reference Manual for
details.

3.4.12 KER$RAISE_PROCESS_EXCEPTION Procedure

The KER$RAISE_PROCESS_EXCEPTION procedure raises the asyn
chronous exception KER$_PROCESS_ATTENTION in the specified
process.

3.4.13 RESUME Procedure

The RESUME procedure resumes the execution of a suspended process.
A resumed process is ready to run but is not necessarily running. If
the process was waiting when it was suspended, the wait is repeated
when it is resumed. Asynchronous exceptions that occurred during the
suspension are raised when the process runs, including the exception
KER$_QUIT_SIGNAL that results from signaling the process itself.

3.4.14 Setting a Job's Processor Eligibility

A job's processor eligibility is determined when the job is ready to run
based on information in the job's job control block (JCB). An applica
tion program can alter this eligibility information while executing by
calling the KER$SET_JOB_ELIGIBILITY procedure. An argument
supplies Boolean values that indicate job eligibility for each processor
in your target configuration. TRUE means a job is eligible to run on
a processor; FALSE means a job is not eligible to run on a processor.
Whether the master process or a subprocess calls the procedure, the
call changes the processor eligibility for the entire job. If a job's new
eligibility makes the job ineligible to run on its current processor, the

Job, Process, and Memory Management 3-19

kernel reschedules the job for execution on a valid processor; otherwise,
no rescheduling takes place.

The KER$SET_JOB_ELIGIBILITY procedure is most useful for pro
grams that run in multiprocessor configurations. However, code that
includes the procedure can run on both single-processor and multi
processor configurations. On a single-processor system, the procedure
changes the job's eligibility mask but has no other effect, even if the
user argument specifies ineligibility for the single processor.

In multiprocessor configurations, jobs are initially eligible to run on
any available processor. If the configuration includes a VAX 8800
multiprocessor and a device driver job calls the CREATE_DEVICE
procedure, the kernel ties the job to the processor that handles the
device's interrupts. This lets the driver raise the processor's IPL with
a call to DISABLE_INTERRUPT to synchronize access to the device
communication region. Synchronization using an elevated IPL is not
possible if interrupts are being handled by the other processor.

For multiprocessor configurations that let devices interrupt any proces
sor (such as the VAX 62nn multiprocessor), you can use the KER$SET_
JOB_ELIGIBILITY procedure to make a user-created job eligible on
a specified set of processors. (This is also true for a driver running
on a VAX 8800 multiprocessor, as long as the driver does not use an
elevated IPL to synchronize access to the device communication region.)
However, the procedure affects only the job for which the call is made;
it does not keep other jobs, including system jobs such as the debug
ger and drivers that Digital supplies, from running on the specified
processors.

In a tightly coupled multiprocessor configuration, at least one available
processor must be eligible to run the job. If the job cannot run on any
of the processors that are up and running as part of the configuration,
the kernel returns the status value KER$BAD_ VALUE.

3.4.15 SET_JOB_PRIORITY Procedure

The SET_JOB_PRIORITY procedure resets the scheduling priority of
the current job to an integer in the range 0 to 31. Priority 0 is the
highest. The initial priority for a job can be set by the System Builder
as part of a program description or by the ELN$LOAD_PROGRAM
procedure; the default is 16. Raising job priority causes the calling job
to continue execution at the higher job priority. Lowering job priority
allows a ready job with higher (or equal) combined job and process

3-20 Job, Process, and Memory Management

priority, if there is one, to gain control of the processor; otherwise, the
calling job continues execution at the lower job priority.

Jobs and processes in a VAXELN system are scheduled on a preemp
tive priority basis. When scheduling an idle processor or arbitrating
possible job preemption, the scheduler allocates the processor to the
ready job with the highest combined job and process priority. That is,
the scheduler selects the job with the highest job priority or, among
jobs of equally high job priority, the job with the highest-priority ready
process. Preemption occurs when a process entering the ready state
becomes the highest-priority ready process in its job, such that the
ready job then has a higher combined job and process priority than the
running job.

The scheduling scheme can be extended to allow a running job to give
up control to a ready job of equal combined job and process priority,
without lowering its own priority. If running job a issues a call to SET_
JOB_PRIORITY that specifies its current priority, one of the following
occurs:

• If another job, b, of the same combined priority is ready, job b is
placed in the running state. The voluntarily preempted job a is
placed in the ready queue behind remaining jobs of equal combined
priority.

• If no other job of the same combined priority is ready, the running
job continues in the running state.

The SET_PROCESS_PRIORITY procedure resets the scheduling pri
ority of a process to an integer in the range 0 to 15. Priority 0 is the
highest. The initial priority for the processes in a job can be set by the
System Builder as part of a program description or by the ELN$LOAD_
PROGRAM procedure; the default is 8.

When arbitrating possible process preemption within a job, the sched
uler selects the process with the highest process priority. Preemption
occurs within a job when a process becomes ready with higher priority
than the job's current process.

The scheduling scheme can be extended to allow a running process to
give up control to a ready process of equal priority within the same job,
without lowering its own priority.

Job, Process, and Memory Management 3-21

If process switching is enabled and process a issues a a call to SET_
PROCESS_PRIORITY that specifies its own process value and its
current priority, one of the following occurs:

• If another process, b, of the same priority within the same job is
ready, process b is placed in the running state. The voluntarily
preempted process a is placed in the ready queue behind remaining
processes of equal priority within the same job.

• If no other process of the same priority within the same job is
ready, the running process continues in the running state.

3.4.17 KER$SET_USER Procedure

The KER$SET_ USER procedure sets the user identity of the current
process. A string of up to 20 characters specifies the user name to be
associated with the process. An integer supplies the user identification
code (UIC) to be associated with the process.

3.4.18 SIGNAL Procedure

Signaling a process with a call to SIGNAL raises the exception KER$_
QUIT_SIGNAL for that process. If the process needs to perform
special operations, such as deallocating resources, before exiting, it
must have established an exception handler to handle the KER$_
QillT_SIGNAL exception. If the process does not have an established
exception handler or if the exception handler resignals the exception,
the kernel forces the process to exit. The exception handler should
resignal the exception if the job is to exit after the special operations
are completed.

3.4.19 SUSPEND Procedure

The SUSPEND procedure suspends the execution of a process. If the
process is waiting, as a result of a WAIT_ANY or WAIT_ALL call, it is
removed immediately from the waiting state and then suspended. If
the process is resumed later, the wait is repeated.

3-22 Job, Process, and Memory Management

3.4.20 WAIT_ANY and WAIT_ALL Procedures

The WAIT procedures make a process wait for 0 to 250 wait conditions
(conditions pertaining to the state of objects) to be satisfied. WAIT_
ANY allows the invoking process to continue if a wait condition is
satisfied; WAIT_ALL requires that all the conditions be satisfied
simultaneously. A wait for a PROCESS object is satisfied when the
process terminates.

Waiting causes no modification to a PROCESS object, and all waiting
processes continue if their wait conditions are otherwise satisfied. Both
procedures can specify a timeout argument, which defines either a
time interval or absolute time after which the waiting process proceeds
regardless of the states of the objects.

3.5 Memory Management

VAXELN uses the VAX memory management hardware to map jobs in
a virtual address space. Although knowledge of VAX memory manage
ment is not essential for understanding this section, you may find it
more useful if you are already familiar with VAX memory management
terminology. Figure 3-4 illustrates a typical mapping.

Each job created by VAXELN executes a program image. You build
program images into the system image with the System Builder or load
them dynamically with the program loader. The shareable runtime
library modules and kernel are not included as part of a program image
but are images themselves.

When a VAXELN system is booted, the kernel maps the system image
(kernel, program, and shareable runtime images) into the SO virtual
address space (the system region). The system region maps the system
image and kernel data, as shown in Figure 3-5.

Job, Process, and Memory Management 3-23

Figure 3-4: Memory Allocation

SYSTEM
REGION

SO

-------,
Kernel Image

Program 1 Image

Program 2 Image

Program n Image

Shareable
Runtime Image

Dynamic Memory

P~~M{
PO

P1

CONTROL
REGION

Global Data

Program Image

Dynamic Memory

Master Process
Local Data

I Subprocess n

f"_

Master Process Code

Subprocess 1 Code

~< Subprocess 2 Code

Subprocess n Code

Job Context Page

-< Job Heap Data

Job Message Buffer

User Stack

No Access Page

Kernel Stack

Process Context Page

MLO-004277

When the kernel creates a job, it generates a PO page table and maps
the job's program image, data, and message buffers into PO virtual
address space (the program region) as shown in Figure 3-6. If multiple
jobs in a system use the same program image, the kernel makes a copy
of the image's read/write data for each job and lets all jobs share the
same read-only code and data.

3-24 Job, Process, and Memory Management

Figure 3-5: System Region

Kernel Image :80000000

Program 1 Image

Program 2 Image

Program n Image

Shareable Runtime Images

Kernel Pool and Data

Unmapped :BFFFFFFC

MLO-004278

Figure 3-6: Program Region

Program Image :00000000

Job Context Page

Job Dynamic Memory
Job Heap Data

Job Message Buffers

Unmapped :3FFFFFFC

MLO-004279

Job, Process, and Memory Management 3-25

The kernel uses PO virtual address space for static variables and
message text. The kernel makes a copy of the read/write data, although
no copy is made of read-only code and data. If multiple jobs in a system
run the same program, only one copy of the read-only code and data
exists, with as many copies of the read/write data, message data, and
heap data as jobs running the program. Since the runtime library
uses heap data for many of its data structures, the kernel also maps
the context of open file variables into PO address space so the runtime
libraries can use the variables for their data structures.

A job's processes share its PO page table and PO address space. Thus,
the processes can access the same job-level data. The processes can co
ordinate their access to this data by using synchronization techniques.
A pointer to a data item in the PO address space can be passed to any
process in the job. A pointer cannot be passed to a process in another
job, since the pointer refers to a different data item in that job's PO
region.

In addition to setting up static memory mapping, the kernel manages
the data associated with dynamically created processes. When the
kernel creates a process, it generates a PI page table and maps a
kernel and user stack into Pl virtual address space (the control region).
Each process in a job, including the master process, has its own pair
of stacks, which store process-specific data, such as local variables and
procedure call frames.

The kernel uses PI virtual address space exclusively for dynamic
memory; it does not map any of the program image. Kernel procedures
and kernel mode programs use the fixed-sized kernel stack. The kernel
expands the user stack as necessary, enabling programs to start out
with minimal stack space. This feature saves space that can be wasted
when memory is preallocated.

The kernel stack for a user-mode process occupies two pages. The stack
is used by the VAXELN Kernel when executing kernel procedures and
dispatching exceptions.

Kernel-mode processes have only a fixed-size kernel stack that is used
by both the process and the VAXELN Kernel procedures. If the kernel
mode stack overflows, the fatal exception KER$_KERNEL_STACK is
returned. When this exception is delivered, the kernel stack pointer
is reset to the base of the original stack, and the previous contents of
the stack are lost. The size of the kernel-mode stack is specified as a
program attribute.

3-26 Job, Process, and Memory Management

In addition to the stacks, the PI address space contains process context
data. This data represents context information that is used by the
VAXELN Kernel, debugger, and runtime library routines. Figure 3-7
shows the PI region of the VAX virtual address space.

Figure 3-7: Control Region

Unmapped :40000000

User Stack

No Access Page

Kernel Stack

Process Context Data :7FFFFFFC

MLO-004280

3.5.1 Managing Stack Usage

When the kernel creates a process, it generates a PI page table and
maps a kernel and user stack into PI virtual address space (the control
region). Each process in a job (including the master process) has
its own pair stacks, which store process-specific data, such as local
variables and procedure call frames.

For most programs, VAXELN manages stack usage sufficiently. Kernel
procedures and kernel-mode programs use the fixed-size kernel stack.
The kernel expands the user stack as necessary, enabling programs to
start out with minimal stack space. This feature saves space that can
be wasted when memory is preallocated.

Job, Process, and Memory Management 3-27

You may need to control stack usage in the following cases:

• When stack usage varies widely during process execution. The
kernel extends user stacks as. necessary. However, since the kernel
knows nothing about a program's behavior, it does not trim stacks.
Thus, if the stack space allocated for a process significantly exceeds
the amount of space that the process requires at a certain point
during execution, space is wasted.

• When the stack size that you specify for a kernel-mode program
causes stack space to be wasted. The kernel allocates the size that
you specify to each process in the program's job. Again, if the stack
usage for each process varies significantly, stack space may be
wasted.

• When kernel stack overflows occur. Kernel stack overflows may
occur because kernel stacks are not dynamically extended as are
user stacks.

Your programs can control these conditions by calling the
ELN$DEALLOCATE_STACK and ELN$ALLOCATE_STACK pro
cedures. These procedures extend and contract the stacks during
program execution. Use the ELN$DEALLOCATE_STACK procedure to
trim a stack by a specified number of bytes, without trimming beyond
the page containing the current stack pointer (SP). If the stack does
not contain the specified space, the kernel trims the stack to the page
in which the procedure is running. Thus, you can trim the stack to the
currently needed size by specifying an overly large number.

Use the ELN$ALLOCATE_STACK procedure to verify the availability
of an amount of stack space. If the stack space is not available, the
procedure allocates the additional space needed to satisfy the request.
This procedure is most useful for allocating stack space for kernel-mode
programs that demand more stack space than was allocated when
the system was built. This procedure is not as useful for user-mode
programs because the kernel automatically extends the stack as needed
by the process.

If a program produces an exception that i;ndicates an invalid kernel
stack; you should suspect inadequate stack size (kernel stack overflow)
as a possible cause. For an example of how a kernel stack overflow
can occur, consider the following situation. When a program running
in kernel mode issues a call to WRITELN, the procedure's arguments
(and other information) are pushed onto the kernel stack allocated for
that program. The WRITELN procedure in tum calls a routine in the
runtime library, which pushes yet more information onto the stack.
Since kernel stacks are not automatically extended at runtime, this

3-28 Job, Process, and Memory Management

single call to WRITELN can cause the stack to overrun its allotted size
and result in system failure.

Any kernel-mode program that calls nested subroutines can encounter
kernel stack overflows. To prevent such overflows, you must allocate
adequate kernel stack space for kernel-mode programs. If you suspect
that kernel stack overflows are occurring, specify a larger kernel stack
size in the program's description; then rebuild the system. To avoid
or correct the problem at runtime, call the ELN$ALLOCATE_STACK
procedure from the offending program.

3.5.2 Allocating Memory

The procedures summarized in Sections 3.5.2.1 to 3.5.2.5 allocate and
free memory.

3.5.2.1 ALLOCATE_MEMORY Procedure

The ALLOCATE_MEMORY procedure allocates physical memory pages
(not necessarily contiguous) into contiguous virtual address space of
the job that calls it. The allocated memory can be placed at a specified
virtual address or at a virtual address selected by the kernel. The
procedure returns the address at which the memory is allocated.

The caller specifies the size of the needed memory in bytes, but allo
cation is done in units of memory pages (512-byte pages). The size is
rounded up to page-sized units before the allocation. Allocation always
begins on a page boundary.

If the allocation virtual address was selected by the kernel, the address
will be in the PO or shared region of the job's virtual memory. The
caller can specify any virtual address, so it is possible to allocate
memory in the P1 or stack region, as well as at a particular memory
location in PO.

Most high-level languages provide a higher level and more controlled
means of allocating and freeing dynamic memory - for instance, the
Pascal NEW procedure and the C calloc or malloc functions. Use
these procedures if you do not need to allocate memory at a specific
location, or if you need to allocate memory in different units than a
page (512 bytes). The smallest unit you can allocate with NEW is 8
bytes.

Job, Process, and Memory Management 3-29

Use the ALLOCATE_MEMORY procedure for large temporary memory
allocations or to allocate memory at a specific virtual or physical
address. ALLOCATE_MEMORY is a low-level operation that is used by
programs that need direct control of memory allocation or is used as a
building block to provide a higher-level service.

The ALLOCATE_MEMORY procedure also allows a kernel-mode caller
to specify the exact physical address at which to start the allocation. If
you specify a physical starting address, the memory allocated is phys
ically contiguous. This feature is intended for specialized applications,
for example, multiported memory or video bitmap memory. The kernel
does not restrict the use of this parameter and does not check that
the value is consistent with the state of the system. Therefore, it is
possible to accidentally double map pages of memory that are already
in use.

3.5.2.2 KER$ALLOCATE_SVSTEM_REGION Procedure

The KER$ALLOCATE_SYSTEM_REGION procedure allocates memory
in system (SO) address space. The memory allocated is virtually and
physically contiguous, and the virtual addresses come from the system
region you specify on the System Builder's System Characteristics
Menu.

This procedure can be called only by programs running in kernel mode.

You might use KER$ALLOCATE_SYSTEM_REGION to map a device's
1/0 space control status registers (CSRs) into SO virtual address space.
Typically, the kernel maps the 1/0 space for a system's device CSRs into
SO address space at initialization time, and calls to CREATE_DEVICE
return a pointer to the first CSR for a device. The kernel does not do
this mapping for all devices. For example, the mapping is not done for
devices on systems that use an integral bus. Device drivers for such
devices can map the registers into SO address space by specifying the
appropriate physical address and size in a call to KER$ALLOCATE_
SYSTEM_REGION.

When you finish using an area of SO space, use KER$FREE_SYSTEM_
REGION to free it; deleting a process or job does not free SO space.

3-30 Job, Process, and Memory Management

3.5.2.3 FREE_MEMORY Procedure

The FREE_MEMORY procedure frees the physical memory pages that
are mapped to particular virtual addresses in the caller's address
space. The caller specifies a base virtual address and a size in bytes.
The procedure frees memory pages in the inclusive range from the base
to the top.

NOTE

Be careful when you free memory that was not explicitly
allocated by the caller, since it is difficult to determine the
use of the virtual address range. For instance, deleting the
process's stack can have unpredictable results.

Dynamically allocated memory is normally freed with the language
specific runtime library procedures provided by Pascal and C, that is,
the Pascal DISPOSE procedure and the C free or cfree functions.
Pointers to the freed memory become invalid.

3.5.2.4 KER$FREE_SYSTEM_REGION Procedure

The KER$FREE_SYSTEM_REGION procedure frees memory in SO ad
dress space that was previously allocated with the KER$ALLOCATE_
SYSTEM_REGION procedure. The memory is freed from the system
region you specify on the System Builder's System Characteristics
Menu.

This procedure can be called only by programs running in kernel mode.

When you are finished using an area of SO space, use KER$FREE_
SYSTEM_REGION to free it; deleting a process or job does not free SO
space.

3.5.2.5 KER$MEMORY _SIZE Procedure

The KER$MEMORY_SIZE procedure scans the kernel memory data
base and returns the initial main memory, the current free memory,
and the current largest free memory block size (in 512-byte pages). The
largest free block size is the size of the largest physically contiguous
block of free memory. This value is useful if you need to create large
MESSAGE or AREA objects, because these objects require contiguous
memory for their data buffers.

Job, Process, and Memory Management 3-31

While the KER$MEMORY_SIZE procedure performs the memory scan,
other kernel operations are stopped; therefore, call this procedure only
when necessary.

3.5.3 Loading VAXELN System Images onto KA800 Processors

One way of setting up a closely coupled symmetric multiprocessing
environment is to use the ELN$LOAD_KABOO_PROCESSOR proce
dure. By calling this procedure, a VAXELN application program can
dynamically load VAXELN system images from a VAX Bnnn primary
processor into the memory of KABOO processors attached to the primary
processor's VAXBI bus. The ELN$LOAD_KABOO_PROCESSOR proce
dure provides a runtime interface to the KABOO loader, ELN:KABOO_
LOADER.EXE. At runtime, the loader waits on a port for load requests.

To use the ELN$LOAD_KABOO_PROCESSOR procedure, you must
build the KA800 loader's program image into the system that is to
run on the primary processor. You must also include modules from the
runtime libraries, as appropriate for the programming language you
are using.

A call to the ELN$LOAD_KABOO_PROCESSOR procedure must specify
the VAXBI number and adapter number of the processor into which
the system is to be loaded, the file specification of the system image
to be loaded, and a variable that receives the load status. An optional
argument lets you specify whether the kernel debugger is to be invoked
when the system image is loaded. If you specify TRUE for the debugger
argument, you must build the local debugger into the system image
from which the ELN$LOAD_KA800_PROCESSOR call is made.

The system image that is being loaded into a KA800 processor can
reside on the primary processor or on a remote node. If you specify a
system image file that resides on a remote node, you must identify the
node in the specification as follows:

area.node_number

The following program calls ELN$LOAD_KABOO_PROCESSOR to load
the remote system image 1.10::RTDISK:[CCSMP_APP]CCSMP.SYS
into the memory of a KA800 processor with local debugging enabled.

3-32 Job, Process, and Memory Management

MODULE load_ka800i

INCLUDE $KASOO_LOAD_UTILITY;

PROGRAM load_sys(INPUT,OUTPUT)i

VAR
load_stat : KA800_CODEi

BEGIN
ELN$LOAD KA800 PROCESSOR(BI NUMBER := 0,

END;
END.

- - ADAPTER NUMBER := 7,
FILE SPEC := '1.10: :RTDISK: [CCSMP APP]CCSMP.SYS'
LOAD-STATUS := load stat, -
KDEBUG := TRUE); -

You can use the ELN$LOAD_KA800_PROCESSOR procedure to reboot
a previously booted KA800 processor.

You can also load a system image into the memory of a KA800 processor
by entering a configuration file for the Argument(s) entry on the
KA800 loader's Program Description Menu. VAXELN Development
Utilities Guide explains the configuration file and how to load and
boot a KA800 processor in a closely coupled symmetric multiprocessing
configuration.

Job, Process, and Memory Management 3-33

Chapter 4

Synchronization

In addition to performing scheduling and memory management tasks,
the kernel coordinates the operations on kernel data structures. One
category of such operations is process synchronization. Process synchro
nization is a mechanism for coordinating the concurrent execution of
two or more processes. Using kernel procedures you can synchronize
processes in the same job or processes in different jobs.

You must synchronize processes when they share a resource, depend on
the completion of another process's execution, or wait for an external
event to occur. The ability of a process to gain exclusive access to a
shared resource is called mutual exclusion. The ability of a process to
coordinate its activities with other processes is called event response.

To attain controlled access to limited resource units or coordinate event
response, processes wait for one or more conditions to exist by calling
the WAIT_ALL or WAIT_ANY kernel procedure. These procedures
provide a method by which processes wait and define the condition
under which processes can proceed again.

Section 4.1 provides a general overview of how to synchronize process
execution. The rest of this chapter explains how to use VAXELN Kernel
procedures to synchronize processes based on the following:

• A specified time, Section 4.2
• Process completion, Section 4.3

• Signaling of a semaphore or mutex, Section 4.4

• The occurrence of an event, Section 4.5

Synchronization 4-1

4.1 Synchronizing Process Execution

You synchronize execution of an application's processes by doing the
following:

• Creating AREA, DEVICE, EVENT, PORT, PROCESS, and
SEMAPHORE kernel objects for which the processes can wait

• Using the WAIT_ANY or WAIT_ALL kernel procedure to make
processes wait for the kernel objects

• Defining the way processes are to resume after waiting

The WAIT_ANY and WAIT_ALL procedures accept a list of up to 250
AREA, DEVICE, EVENT, PORT, PROCESS, or SEMAPHORE values
(including various combinations of object types). When using the
WAIT_ANY procedure, the calling process waits until anyone of the
specified objects is signaled. When using the WAIT_ALL procedure,
the calling process waits until all the specified conditions are satisfied
simultaneously. When an object is signaled and all other specified
conditions are satisfied, the wait is otherwise satisfied. Once a wait is
satisfied (or otherwise satisfied), the process returns to the ready state
and can continue executing. An optional result argument receives the
number of the argument that satisfied the wait for a call to WAIT_ANY.
You can also supply a timeout argument, which defines either a time
interval or absolute time after which the waiting process can proceed,
regardless of the states of specified objects.

4-2 Synchronization

NOTE

When you specify more than four objects in calls to WAIT_
ALL and WAIT_ANY, you should account for the following
additional overhead that is incurred:

• Additional pool blocks are required to wait for the speci
fied objects. When creating a process, the kernel allocates
one pool block for the control structures that allow the
process to wait for four objects. For example, if you spec
ify five to eight objects, the kernel allocates an additional
pool block to support the wait. If you specify nine ob
jects, the kernel permanently allocates two additional
pool blocks to the process. The second pool block could
support waits for nine to twelve objects.

• Additional time needed to process waits. As the number
of objects increases, the time required to process, test,
and satisfy a wait increases.

Specifying a large number of objects may also affect the
process latency of driver processes that run at high job
priorities. Such processes require quick response time to
device interrupts. For more information, see Chapter 6.

Each call to WAIT_ANY or WAIT_ALL causes the calling process to
wait for a resource or event as follows:

• Waiting on an AREA, EVENT, or SEMAPHORE object means
waiting for the object to be signaled.

• Waiting on a DEVICE object means waiting for the connected
interrupt to be signaled by an interrupt service routine (ISR).

• Waiting on a PORT object means waiting for a message to arrive at
that port.

• Waiting on a PROCESS object means waiting for the identified
process to terminate.

Wait operations affect the kernel objects and the processes waiting on
those objects in the following ways:

• Satisfying a wait on a SEMAPHORE object causes the kernel to
decrement the semaphore count. At most, one process continues
when a semaphore is signaled.

• Satisfying a wait on an EVENT, PORT, or PROCESS object causes
no modification to the object, and all waiting processes continue if
their wait conditions are satisfied.

• Satisfying a wait on an AREA object depends on whether the area
is associated with an event or semaphore. If the area is associated
with an event, the object is not modified and all waiting processes
continue if their wait conditions are satisfied. If the area is associ
ated with a semaphore, the kernel decrements the semaphore count
and at most, one process continues. Areas associated with events
provide a mechanism for inteIjob event synchronization.

• Satisfying a wait on a DEVICE object causes the object to be
cleared if the wait is satisfied by an ISR signaling the object. Only
one process continues as a result of the action of an ISR.

Synchronization 4-3

The WAIT procedures return immediately with an error if one of the
argument objects does not exist or is deleted. Both procedures also
return immediately if the necessary conditions were satisfied before the
call was made.

Since the WAIT_ALL procedure waits for a number of conditions to be
simultaneously satisfied, deadlock cannot occur. Deadlock occurs when
two or more processes wait for the same set of resources, each holding
onto some resources while waiting for others to become available, such
that no process can get all the resources it needs to continue. Since
WAIT_ALL does not lock up some resources while waiting for others
to become available, deadlock is not a problem, provided that all the
conditions (events, semaphores, and so forth) are known and are listed
in a single call. WAIT_ALL is also a more efficient way to wait for two
or more objects, which need to be satisfied simultaneously, than using
multiple calls to WAIT_ANY.

To program process synchronization, you can use the WAIT_ALL and
WAIT_ANY procedures along with the following routines:

Routine

CREATE_EVENT

CREATE_MUTEX

CREATE_PROCESS

CREATE_SEMAPHORE

4-4 Synchronization

Description

Sets the state of an event or an area's
event to EVENT$CLEARED.

Creates a new area or maps an exist
ing area of memory into the calling
job's PO virtual address space and
associates the area with a binary
semaphore.

Creates a new area or maps an exist
ing area of memory into the calling
job's PO virtual address space and
associates the area with an event.

Creates a new area or maps an exist
ing area of memory into the calling
job's PO virtual address space and
associates the area with a semaphore.

Creates an event.

Creates a mutex.

Creates a process.

Creates a semaphore.

Routine

DELETE

DELETE_MUTEX

GET_TIME

KER$GET_ UPTIME

LOCK_MUTEX

SET_TIME

SIGNAL

Description

Gets the identifier for the current
process.

Deletes an area, event, semaphore, or
process.

Deletes a mutex.

Returns a processor's system time.

Returns a time interval indicating the
time that has elapsed since system
initialization.

Locks a mutex.

Sets a processor's system time.

Signals an event, a semaphore, or an
area's associated event or semaphore.

Unlocks a mutex.

The rest of this chapter explains how to use the preceding routines and
WAIT_ALL and WAIT_ANY to synchronize process execution using the
following:

• Time values, Section 4.2
• Process completion, Section 4.3

• Semaphores, Section 4.4
• Events, Section 4.5

For descriptions of the routines, see the VAXELN Pascal Runtime
Library Reference Manual, VAXELN C Runtime Library Reference
Manual, or VAXELN FORTRAN Runtime Library Reference Manual.

AREA, MESSAGE, and PORT objects are used for programming
process and job communication, and DEVICE objects are used for
programming application device handling. For information about
using areas, ports, and the wait procedures to program process and job
communication, see Chapter 5. Chapter 6 explains how to use device
objects and the wait procedures to program VAXELN device handlers.

Synchronization 4-5

4.2 Using Time Values to Synchronize Process Execution

You can synchronize process execution by waiting for a specified date
and time to occur or for a time interval to elapse. An application can
wait on a time value in addition to or instead of kernel objects. If you
synchronize processes using time values, you may need to get and set
the system time. Section 4.2.1 explains how to synchronize processes
by waiting on time and Section 4.2.2 explains how to retrieve and set
the system time.

4.2.1 Waiting on Time

To wait on time, a process must issue a call to WAIT-ALL or WAIT_
ANY that specifies a signed, 64-bit time value. A time value can be an
absolute time (a specific date and time) that indicates when the process
can continue or a time interval relative to the current system time that
indicates how long the process must wait before continuing.

You specify an absolute time in the following format:

'dd-mmm-yyyy hh :mm:ss .cc'

The following table defines the absolute time value components:

Component Meaning

dd Day of the month

mmm Month

yyyy Year

hh Hours

mm Minutes

ss Seconds

cc Hundredths of a second

You specify a time interval as follows:

'dddd hh:mm:ss.cc'

4-6 Synchronization

Value Range

1 to 31

JAN to DEC

1858 to 9999

o to 23

Oto 59

o to 59

o to 99

The following table defines the time interval value components:

Component Meaning Value Range

dddd Days o to 9999

hh Hours o to 23

mm Minutes Oto 59

ss Seconds o to 59

cc Hundredths of a second o to 99

By convention, positive time values represent absolute time; negative
time values represent time intervals.

If you do not specify a time value, the calling process unblocks only
when the specified wait object conditions are otherwise satisned.

You can issue a conditional wait that will not block, by specifying a
timeout value of O. Specifying 0 ensures that the WAIT procedures
check for satisfied conditions and then return immediately. If the
returned wait result is 0, the wait condition specified by the objects was
not satisfied.

The kernel expects and returns time values in 64-bit time value format.
Thus, applications must convert absolute time and time interval format
strings to and from 64-bit time value format, as appropriate. Runtime
routines for converting time value formats are available in Pascal, C,
and FORTRAN. See the VAXELN Pascal Runtime Library Reference
Manual, VAXELN C Runtime Library Reference Manual, or VAXELN
FORTRAN Runtime Library Reference Manual for more information.

The VAXELN Pascal, C, and FORTRAN language runtime libraries
provide routines for dealing with time values conveniently. For exam
ple, you can use the routines to convert a time value to an ASCII string
for printing, or an ASCII string in an absolute or interval time format
to a time value for time value operations.

Synchronization 4-7

4.2.2 Retrieving and Setting the System Time

Before specifying an absolute time value in a call to WAIT_ANY or
WAIT_ALL, you should set the system time. The system time is abso
lute and is maintained by the VAXELN Kernel as a 64-bit binary num
ber. The system time is interpreted as the number of 100-nanosecond
intervals since the base time, 00:00:00.00, November 17, 1858. The
kernel uses the system's interval timer to maintain the system time.
Thus, the system time is in effect for all jobs running on that system.

You can set and get a system's time by using the SET_TIME, GET_
TIME, and KER$GET_ UPTIME procedures.

A processor's system time is not necessarily preserved across power
failures and is not set to a default value by the kernel or other system
software. Thus, you should use SET_TIME to initialize the system
time in an initialization job (see the VAXELN Development Utilities
Guide) and in a handler for the KER$_POWER_SIGNAL exception.
For example:

SET_TIME(TIME_VALUE('10-MAR-1990 00:00:60'));

You can also set the system time with the debugger and EeL command
SET TIME. You can display the system time using the debugger and
EeL command SHOW TIME. For information about the SET TIME
and SHOW TIME commands, see the VAXELN Development Utilities
Guide.

If you set the system time while a wait that specifies an absolute
timeout value is pending, one of the following effects occurs:

• If you set the system time back, the timeout period is increased by
the amount you set the time back.

• If you set the system time forward to a time that does not exceed
the absolute timeout value, the waiting time is reduced to the
difference between the new system time and the original timeout
value.

• If you set the system time forward to a time that exceeds the
absolute timeout value, the timeout occurs immediately.

If a wait with an interval timeout value is pending, resetting the
system time does not change the remaining timeout period.

4-8 Synchronization

To retrieve the system time, use the GET_TIME or KER$GET_
UPTIME procedure. GET_TIME returns the current system time.
KER$GET_ UPTIME returns a time interval indicating the time that
has elapsed since system initialization. The negative value represent
ing the time interval decreases continuously regardless of system time
resets.

The following example illustrates the use of SET_TIME, GET_TIME,
and KER$GET_UPTIME:

MODULE time;

INCLUDE $KERNEL;

PROGRAM time;

VAR
set time value,
get-time-value,
uptime_v~lue : LARGE_INTEGER;
time_str VARYING_STRING(23);

BEGIN

WRITE('Enter date and time (dd-mmm-yyyy hh:mm:ss.cc): ');
READLN(time str);
set time value := TIME VALUE (time str);
SET=TIME(Set_time_value); - { set the system time.

GET TIME (get time value); { Get the current system time.
time str := TIME STRING (get time value);
WRITELN('The time is now ',-time=str);

KER$GET UPTIME(,uptime value); { Get the elapsed system time. }
time str := TIME STRING(uptime value);
WRITELN('The system uptime is' time_str);

END;
END.

4.3 Synchronizing Process Execution Based on Process
Completion

Waiting for a process means waiting until the process has terminated.
When one process waits for another, the second process is usually
created by the waiting process, which needs it to complete some task
before the waiting process can continue.

Synchronization 4-9

The actions of the two processes are synchronized in the following way:

1. The first process (Process A) creates the process it must wait for
(Process B).

2. Process A then calls WAIT_ALL or WAIT_ANY to wait for Process
B.

3. Process B executes its process block until it terminates.
4. The termination of Process B satisfies the wait condition for Process

A.

5. Process A continues its execution with the line of code following its
call to WAIT_ALL or WAIT_ANY.

To wait for a process, the process that wishes to wait (Process A) must
specify the PROCESS variable associated with the process to be waited
for (Process B) in a call to the WAIT_ALL or WAIT_ANY procedure.
When Process A creates Process B and then waits for it, the same
PROCESS variable is used in both the CREATE_PROCESS and the
WAIT calls. When Process A does not create Process B, Process B's
PROCESS variable must be globally accessible or must have been
passed to Process A as an argument when Process A was created or in
a message.

The CREATE_PROCESS procedure has an optional EXIT parameter
that allows the creating process to receive an exit status from the
created process when the latter exits, if it terminates its execution with
the EXIT procedure. The created process can supply the EXIT_STATUS
value to indicate whether it has accomplished its task successfully.
This EXIT_STATUS value is returned to the creating process in the
variable passed as the EXIT argument to CREATE_PROCESS. When
its wait has been satisfied by the termination of the created process, the
creating process can check the EXIT status and take the appropriate
action, based on the success or failure of the process it created.

4.4 Using Semaphores to Synchronize Process Execution

Semaphores act as gates that control access to resources such as global
variables, hardware resources, or the CPU. A semaphore maintains a
count of the available units of a resource, such as the number of disk
drives available, the number of gates available at an airport, or, for a
railroad semaphore, the number of tracks (0 or 1) available to a train
going in a particular direction.

4-10 Synchronization

A semaphore's count value changes as processes wait on and signal
the semaphore or area. As the value changes, it controls the execu
tion of waiting processes, letting at most one process enter the ready
state when a semaphore or area associated with a semaphore is sig
naled. When a process signals a semaphore or area associated with
a semaphore, the semaphore count is incremented. When a process
waits on a semaphore or an area associated with a semaphore, the
process waits until the semaphore count is greater than O. When the
count exceeds 0 (and, for WAIT_ALL, if all other wait conditions are
satisfied) the process unblocks. When the kernel selects the process to
execute, the procedure call returns and the process proceeds. If a wait
is satisfied when the semaphore is signaled, the kernel decrements the
semaphore count.

The following sections explain how to do' the following:

• Create semaphores, Section 4.4.1
• Wait on and signal semaphores, Section 4.4.2

• Delete semaphores, Section 4.4.3

• Use mutexes, Section 4.4.4

4.4.1 Creating Semaphores

An application creates and initializes a semaphore with a call to
CREATE_SEMAPHORE. A call to'CREATE_SEMAPHORE must
specify initial and maximum count integer values.

The kernel also creates a semaphore when an application calls
CREATE_AREA or CREATE_AREA_SEMAPHORE. When an appli
cation calls one of these procedures, the kernel creates an area and
an associated semaphore. Like calls to CREATE_SEMAPHORE, calls
to CREATE_AREA_SEMAPHORE must specify initial and maxi-
mum count integer values. In the case of CREATE_AREA, the kernel
automatically initializes the initial and maximum count values to 1.

Depending on the maximum count value that you specify, semaphores
are either binary or counting. A binary semaphore has a maximum
count of 1. You use a binary semaphore to guard a single item - often,
a shared variable - from access by more than one process. The binary
semaphore acts as a gate, letting only one process at a time get through
to the resource behind it. When you signal a binary semaphore, the
gate opens for one process and then closes.

Synchronization 4-11

A semaphore that has a maximum count greater than 1 is a counting
semaphore. A counting semaphore is like a gate that lets multiple
processes through or a meter that keeps count of a finite resource's
available units.

In both cases, the initial semaphore count determines the initial·
disposition of processes that issue a wait for the semaphore or area,
independent of any signaling processes.

A SEMAPHORE value created by a call to CREATE_SEMAPHORE
can be used only within the job that creates it. The value identifies
the same semaphore throughout the job. Multiple processes in the
job can use the semaphore by sharing a variable or by passing the
SEMAPHORE value as a process argument.

SEMAPHORE values that the kernel associates with areas are valid in
different jobs running on the same node. Thus, an application can use
such an area to synchronize job execution. For information about using
areas associated with semaphores, see Section 5.4.

4.4.2 Waiting On and Signaling Semaphores

A process that wants to use a controlled resource waits on the
semaphore or area by calling WAIT_ALL or WAIT_ANY. If the
semaphore count is greater than 0, the count is decremented, ~d
the process enters the ready state. If the count is 0, the process waits
until another process signals the semaphore or area. If several pro
cesses wait for the same semaphore, the kernel places them in a queue
in the order in which they call WAIT_ANY or WAIT_ALL.

A process signals a semaphore or area when it no longer requires a
resource. The SIGNAL procedure increments the semaphore count
and, at most, one process unblocks if the wait is otherwise satisfied.
If a process unblocks, the count is decremented. Thus, a semaphore's
maximum count represents the available units of the resource being
controlled.

An application that needs to meter access to a 10-unit disk driver is
an example of an application that might use a counting semaphore.
The following Pascal example creates such a semaphore, initializes the
semaphore such that all units are available initially, and places the
SEMAPHORE value in the variable uniCavailable:

4-12 Synchronization

VAR
UNIT AVAILABLE: SEMAPHORE;

BEGIN
CREATE_SEMAPHORE(UNIT_AVAILABLE,lO,lO);

Mter a process creates the semaphore, other processes needing disk
drives wait on the semaphore by specifying unit_available in a call to
WAIT_ANY or WAIT_ALL. Because the initial count is 10, the first
10 processes that wait on the semaphore continue immediately, and
each time a process continues, the kernel decrements the count. When
the count reaches 0 (assuming no process has released its drive in the
meantime), the kernel places all processes that wait on the semaphore
in the waiting state. These processes remain in the waiting state until
a process releases its drive.

The semaphore uses its count to meter disk drive availability. When a
process is through using its drive, it can return the drive to the pool of
available drives by signaling unit_available. The process at the head
of the semaphore's queue can then access a drive and continue If the
queue is empty, the next process to wait on the semaphore accesses the
free drive.

The following scenario illustrates the use of a binary semaphore to
guard a shared data base:

• A central data base is shared by a family of transaction-processing
processes. When the master process begins execution, it creates a
semaphore with maximum and initial counts equal to 1.

• The master process then creates worker subprocesses, as the need
arises, to handle incoming data base inquiries.

• Each subprocess waits on the semaphore before accessing the
shared data base and signals the semaphore when it is finished.

Since the maximum value of the binary semaphore is 1, only one
process can access the data base at a given time. Other processes
must wait until the current worker signals the semaphore. When the
semaphore is signaled, the next process can access the data base.

Synchronization 4-13

4.4.3 Deleting Semaphores

A process can delete a semaphore by specifying its value in a call to
the DELETE procedure. When a process deletes a semaphore, the
kernel unblocks all processes that are waiting on that semaphore and
returns the completion status KER$_BAD_VALUE. When a process
deletes an area that has an associated semaphore, the kernel removes
all processes waiting on the area in the same job from the waiting state
and returns KER$_BAD_VALUE.

4.4.4 Using Mutexes to Optimize Waiting and Signaling Operations

You can improve the performance of binary semaphore waiting and
signaling operations by using a mutex. (Mutex is an abbreviation for
mutual exclusion semaphore.) Mutexes allow you to achieve the same
effect as a binary semaphore without calling a kernel service unless
contention exists.

You can create, delete, lock, and unlock mutexes by using mutex
procedures. To use these procedures, you must include one of the
following modules:

Language Module

VAXELN Pascal $MUTEX from RTLOBJECT.OLB

C $mutex from VAXELNC.TLB

FORTRAN "ELN$:FORTRAN_DEFS.FOR"

You create and initialize a mutex by specifying a variable of type
MUTEX in a call to the ELN$CREATE_MUTEX procedure. The
procedure initializes the mutex counter to -1, creates a SEMAPHORE
object with an initial count of 0 and maximum count of 1, and stores
the semaphore's identifying value in one of the mutex variable's fields.
In addition to specifying a variable for the mutex, you can specify a
variable that receives the completion status.

Once you create a mutex, you can use the ELN$LOCICMUTEX and
ELN$UNLOCK_MUTEX procedures to lock and unlock the mutex.
ELN$LOCK_MUTEX provides the calling process with exclusive access
to a shared resource. Generally, when a process locks a mutex, the
process does not need to issue a wait before accessing the resource. The
kernel issues a wait only if the mutex is aiready iocked.

4-14 Synchronization

A process can relinquish exclusive access to a shared resource by
calling ELN$UNLOCK_MUTEX. This procedure signals the semaphore
if a process is waiting for access.

If a binary semaphore is open (count = 1) and the semaphore is sig
naled, a count overflow error occurs. In contrast, the locking and
unlocking of mutexes is not protected by this exception-raising mech
anism. Under certain circumstances, in which two or more processes
contend for a mutex, unlocking an already unlocked mutex can cause
the calling process to block indefinitely. Therefore, when using mu
texes, you should adhere to the following guidelines:

• You must make sure the first operation on an initialized mutex is a
lock operation.

• You must pair lock and unlock operations within the code of the
processes using the mutex.

When a process is finished using a mutex, it can delete it by calling
ELN$DELETE_MUTEX. This procedure deletes the mutex and the
semaphore associated with it. A call to ELN$DELETE_MUTEX must
specify the mutex you are deleting. You can also specify a variable to
receive the completion status.

4.5 Using Events to Synchronize Process Execution

An EVENT object represents the occurrence of an application-defined,
realtime event. An event can be in one of two states: signaled or
cleared. You can specify an event's initial state when you create the
event.

The following sections explain how to do the following:

• Create events, Section 4.5.1
• Wait on, signal, and clear events, Section 4.5.2

• Delete events, Section 4.5.3

Synchronization 4-15

4.5.1 Creating Events

An application creates and initializes an event with a call to CREATE_
EVENT. A call to CREATE_EVENT must specify the event's initial
state: EVENT$CLEARED or EVENT$SIGNALED.

The kernel also creates an event when an application calls CREATE_
AREA_EVENT. When an application calls this procedure, the kernel
creates an area and an associated event. Like calls to CREATE_
EVENT, calls to CREATE_AREA_EVENT must specify the event's
initial state - EVENT$CLEARED or EVENT$SIGNALED.

4.5.2 Waiting On, Signaling, and Clearing Events

An event's state changes as processes clear and signal the event or
area. Processes wait on an event by specifying the event's value in
calls to WAIT_ANY or WAIT_ALL. If the event is in a signaled state,
the processes continue immediately. Otherwise, the processes wait for
another process to signal the event or area. Once the event is signaled,
all waiting processes unblock if their wait conditions are otherwise
satisfied.

An EVENT value created by a call to CREATE_EVENT is valid only
within the job that creates it. The value identifies the same event
throughout the job. Multiple processes in the job can use the event
by sharing a variable or by passing the EVENT value as a process
argument.

EVENT values that the kernel associates with areas are valid in
different jobs running on the same node. Thus, an application can use
such an area to synchronize job execution. For information about using
areas that are associated with events, see Section 5.4.

The particular realtime event represented by an EVENT object is
application-specific. The conditions under which the EVENT object
is signaled define its relationship to a realtime, real-world event.
To the VAXELN Kernel, however, the EVENT object has only the
properties signaled and cleared; nothing intrinsic in the EVENT object
determines which process can signal it or what the signal means to
waiting processes. The application designer must ensure that event
signal and wait operations occur in a manner appropriate to the event's
real-world meaning. For 'example, the following Pascal code fragment
creates the EVENT object lights_on, and after determining that the

4-16 Synchronization

lights are on, signals the event for processes that may be waiting for it.

VAR
lights_on: EVENT;

BEGIN
CREATE_EVENT (lights_on, EVENT$CLEARED);

/* Check whether lights are on. */

SIGNAL(lights_on);

The satisfied wait condition has no effect on the event's state. Once an
event is signaled, it remains signaled until a process clears it with a
call to the CLEAR_EVENT procedure. Processes waiting on the event
have that part of their wait condition satisfied immediately.

The CLEAR_EVENT procedure sets the state of an event or an area's
event to EVENT$CLEARED.

The following scenario illustrates the use of events:

• A family of processes executes a series of steps that controls the
operation of a chemical plant. One master process controls the
sequencing of several other worker subprocesses. Each subprocess
executes independently until it completes a step, at which time it
must synchronize its execution with the master process.

• The master process is the first to execute, and it creates two events
with initial states of cleared, that is, not signaled. The master
process then creates each subprocess and gives it a control step to
perform.

• The subprocesses race each other to complete their assigned work,
and as each one finishes, it executes a WAIT procedure, specifying
the first of the two events.

• When the master process determines it is time to perform the
next control step, the master process signals the first event, which
causes all the waiting subprocesses to continue.

• As the subprocesses finish the second control step, they again
execute a WAIT procedure, but this time they specify the second
event.

Synchronization 4-17

• Mter the appropriate amount of time, the master process clears
the first event and then signals the second event. The worker
subprocesses again continue, and so it goes until the work is
finished.

4.5.3 Deleting Events

A process can delete an event by specifying its value in a call to the
DELETE procedure. When a process deletes an event, the kernel
unblocks all processes that are waiting on that event and returns the
completion status KER$_BAD_ VALUE. When a process deletes an area
that has an associated event, the kernel unblocks all processes waiting
on the area in the same job and returns KER$_BAD_ VALUE.

4-18 Synchronization

Chapter 5

Communication

Processes and jobs exchange information by applying interprocess and
inteIjob communication techniques. Processes in the same job commu
nicate by using module-level variables and queues. Jobs communicate
by passing messages and sharing areas of memory. Message-passing
allows jobs to communicate whether or not they execute on the same
node; sharing memory areas restricts communication to jobs executing
on the same node.

This chapter explains how to do the following:

• Share module-level data, Section 5.1
• Share packets of data using queues, Section 5.2

• Pass messages, Section 5.3

• Share memory areas, Section 5.4

5.1 Sharing Module-Level Data

A job's processes can communicate by sharing data. Most data is
potentially shareable. However, a routine's local variables and value
parameters are not shareable; the kernel stores this data in process
specific P1 virtual address space. Thus, the addresses of such data are
meaningful only within the process allocating the data.

The processes in a job can share module-level data that you declare
outside routines: constants, variables, procedures, functions, and
process blocks. The kernel makes this data available to all processes
in a job by storing the data in the job's PO virtual address space. Since
concurrently executing processes compete for the global data, you
control access by using semaphores and mutexes.

Communication 5-1

Processes can share the following entities by name (more than one
process can refer to the variable by its name):

• Pascal outer-level variables
• C variables declared with the attribute extern, globaldef, global

ref, or static
• FORTRAN global commons

Sharing can also be accomplished with pointers and, in Pascal, with
process block variable parameters.

Sharing constant data, including variables declared with the Pascal
attributes READONLY or VALUE or the C attribute readonly, pre
sents no programming problems. However, the sharing of data that
is modified by one or more processes must be carefully managed to
prevent unpredictable program behavior.

In Pascal, you can use the following constructs to process data shared
by processes within a job:

• The READ~EGISTER and WRITE_REGISTER routines. (They
are not restricted to operations on actual device registers.)

• The procedures INSERT_ENTRY and REMOVE_ENTRY, when
used on the head and tail entries of a queue.

• The ADD_INTERLOCKED function.

In C, the add_interlocked function is the only atomic (indivisible)
function you can use safely to process data shared by a job's processes.
(For information about sharing packets of data in C, see Section 5.2.)

If you perform more complicated operations on shared data, you must
synchronize access to the data. While one process is executing code that
can modify the data, no other process can execute code that has access
to the data. The synchronization must be done with kernel procedures
or with the mutex routines (which call the kernel procedures when
necessary).

5-2 Communication

NOTE

Failure to synchronize access to shared data results in
unpredictable program behavior. A program that works on
one processor model can fail on another; a change to the
VAXELN system might cause program failure.

Additional guidelines regarding shared data follow:

• Dynamic variables. Data allocated by the Pascal NEW procedure
or the C calloc, ma1loc, or realloc function can be shared. The
Pascal NEW and DISPOSE procedures and the C calloc, malloc,
realloc, free, and cfree functions operate on single data items.

• File variables and file pointer variables. Pascal file variables
and C file pointer variables (and the associated internal-file data
structures) are subject to the same rules as other data. Most
operations that use these variables are modify operations. Failure
to synchronize access to a file can result in scrambled input or
output data or in a runtime error (in Pascal if the runtime routines
detect simultaneous access).

• Initialization of shared data. You should initialize shared Pascal
outer-level variables, C external variables, and FORTRAN global
commons in the master process before creating subprocesses.
Otherwise, you might forget that the initialization operation must
be synchronized. For example, you must initialize a mutex variable
with a call to ELN$CREATE_MUTEX before you lock or unlock the
mutex.

• Record locking. Programs that use shared data often must protect
data that is more complicated than single variables.· For example,
if multiple processes are updating records in a File Service file,
they must synchronize access to the shared data and protect (or
lock) records in the file. Otherwise, two read/write sequences on
the same record can become interleaved.

• Shared messages. A message and its associated pointer can be
manipulated by more than one process in a job, but the operations
must be properly synchronized. For example, if process A deletes a
message while process B is preparing to send it, ·the program may
produce unpredictable results, such as the following:

• Process B might receive the status KER$_BAD_VALUE from
the SEND procedure because the message value is no longer
valid.

• Process B might incur an exception when it tries to access the
message's buffer.

• Process B might access new, unrelated data by using the
address of the original message buffer.

• Communication regions. The communication region of an interrupt
service routine (ISR) is shared between the ISR and the device
driver processes. The program logic of the device driver must
ensure that nonatomic operations are synchronized.

Communication &-3

• Device registers. Device registers are not shared data in the sense
used in the preceding guidelines. However; an ISR and device
driver processes may need to synchronize access to the registers.
In some cases, the registers symbolize the responses of a device to
events that occur on a bus, such as read and write requests. The
only routines you can use to ensure predictable operations on device
registers are the Pascal READ_REGISTER and WRITE_REGISTER
routines, the C read_register and write_register routines, or the
FORTRAN ELN$READ_REGISTER and ELN$WRITE_REGISTER
routines.

5.2 Sharing Packets of Data Using Queues

In addition to sharing global data, a job's processes can communicate
by using queues. Queues provide an efficient, highly structured means
for a job's processes to exchange large packets of information. This
section discusses the use of absolute queues - queues that use links
that contain the absolute address of an entry to which it points. If you
are programming in C, you have the option of using self-relative queues
- queues that use links that contain a displacement from the present
queue entry. Self-relative queues let two separate processes address
the same queue, with each process able to treat the queue as residing
at a different location in its virtual address space. For information
about using self-relative queues, see the VAXELN C Runtime Library
Reference Manual.

VAXELN provides the predeclared data types and procedures you need
to create and maintain queue structures. The procedures for inserting
and removing queue entries use VAX machine instructions specifically
designed to synchronize queue operations automatically. Thus, two
processes can access a queue simultaneously: one can insert an entry
while the other removes an entry.

Use the queue data types (QUEUE_ENTRY and QUEUE_POSITION)
and procedures (START_QUEUE, INSERT_ENTRY, and REMOVE_
ENTRY) to pass data messages between two or more processes within
a job. Using queues this way is more efficient within ajob than using
the SEND and RECEIVE procedures. Although you can use SEND
and RECEIVE to send messages between processes in the same job,
they are better suited to passing messages between jobs on the same or
different systems in a network (see Section 5.3).

5-4 Communication

Typically, you use a semaphore with each queue to signal the transition
of the queue from an empty state to a nonempty state. The INSERT_
ENTRY procedure and the INSQUE instruction give information that
allows you to synchronize queue operations. Therefore, the queue and
the semaphore can work together to maintain lists and synchronize and
schedule processes.

Example 5-1 shows how you can use queues as a structured and
efficient means of communicating between processes. The module
consists of an initialization procedure and two process blocks. The
procedure initializes the queues free_list and done_list; creates the
semaphores free_lisChas_entry and done_list_has_entry for metering
the content of each queue; and fills the free_list queue with entries.

The process blocks, producer and consumer, communicate by inserting
entries onto and removing entries from the two queues. The processes
producer -process_l and producer -process_2 share the producer process
block, which removes available entries from the free_list queue, fills
the entries with data, and inserts the filled entries onto the done_list
queue. Mter a producer process inserts the first entry onto the done_
list queue, the process signals the done_list_has_entry semaphore to let
the consumer process know that a done_list queue entry is available.

The consumer process block removes available entries from the done_
list queue, writes the entry's buffer data, and inserts the empty entries
onto the free_list queue. Mter the consumer process inserts the first
entry onto the free_list queue, the process signals the free_list_has_
entry semaphore to let the producer processes know that a free_list
queue entry is available.

Communication 5-5

Example 5-1: Using Queues for Process Communication

MODULE producer_consumer;

This module uses queues with semaphores to communicate between
processes. }

TYPE A record type that represents }
a queue entry. } entry = RECORD

links
ident
buffer
END;

QUEUE_ENTRY;
INTEGER;
LARGE_INTEGER;

The entry's flink and blink.
Producer identifier. }
A user data buffer. }

CONST
producer_max 25;
consumer max 50;

VAR
free list, done list
free-list has e~try
done=list=has=entry

PROCEDURE initialize;

QUEUE_ENTRY;
SEMAPHORE;
SEMAPHORE;

{ Decl.are queue headers.
{ Declare semaphor~s. }

This procedure initializes the free list and done list queues,
creates the semaphores free list has entry and done list has entry,
and fills the free_list queue with entries. } - - -

CONST
initial free count = 10;

VAR
entry-ptr Aentry;
first entry BOOLEAN;
entry=counter : INTEGER;

Declare a maximum of 10 free entries. }

Declare a pointer to an entry. }
Declare the first entry flag. }
Declare an entry counter. }

Example 5-1 Cont'd on next page

5-6 Communication

Example 5-1 (Cont.): Using Queues for Process Communication

BEGIN
WRITELN('Initializing queues ... ');
START QUEUE(free list); { Initialize queues. }
START-QUEUE(done-list);
WRITELN('Creating semaphores ... ');
CREATE SEMAPHORE(free list has entry, 0, 1);
CREATE-SEMAPHORE (done-list-has-entry, 0, 1);
WRITELN('Filling the free list-queue with entries ... ');
FOR entry_counter := 1 TO initial_free_count DO

BEGIN
NEW (entryytr) ;
INSERT ENTRY(free list,

- entrYytrA.links,
first entry,
QUEUE$TAIL) ;

IF first entry THEN
SIGNAL"(free_list _has_entry) ;

END;
WRITELN('Initialization done ... ');
WRITELN;
END; { initialize }

{ If this is the first entry, }
{ let the producer process }
{ know that an entry is }
{ available. }

PROCESS_BLOCK producer (producer_number : INTEGER);

This process block removes entries from the free list queue, fills
the entries with data, and inserts them on the done_list queue for
the consumer process block. }

VAR
entryytr : Aentry;
first_entry, empty : BOOLEAN;

Declare a pointer to an entry.
Declare first entry and empty

flags. }
producer_loop_counter : INTEGER

BEGIN

:= 0; { Declare a loop counter. }

empty : = TRUE;
REPEAT

IF empty THEN
WAIT_ANY(free_list_has_entry);

Example 5-1 Cont'd on next page

{ Is the free list queue empty?
{ If it's empty, wait for an
{ entry and let the consumer
{ continue.

Communication 5-7

Example 5-1 (Cont.): Using Queues for Process Communication

REMOVE ENTRY(free list,
entry~tr: :~QUEUE_ENTRY,
empty,
QUEUE$HEAD) ;

GET_TIME(entry-ptr~.buffer);

entry-ptrA.ident := producer_number;
INSERT ENTRY(done list,

- entry~tr~.links,
first entry,
QUEUE$TAIL) ;

IF first entry THEN
SIGNAL(done_1ist_has_entry);

{ If this is the first entry, }
{ let the consumer process }
{ know that an entry is }
{ available. }

producer loop counter := producer loop counter + 1;
UNTIL producer loop counter = producer max;

END; {producer-} - -

PROCESS_BLOCK consumer;

VAR

This process block removes entries from the. done list queue,
operates on the data, and inserts the entries on-the free list
queue for the producer process block. } -

entry-ptr : Aentry;
first_entry, empty : BOOLEAN;

Declare a pointer to an entry.
Declare first entry and empty

flags. }
consumer_loop_counter : INTEGER := 0; {.Dec1are a loop counter.

Example 5-1 Co.nt'd on next page

5-8 Communication

Example 5-1 (Cont.): Using Queues for Process Communication

BEGIN
empty := TRUE;
REPEAT

IF empty THEN
WAIT_ANY(done_list_has_entry);

{ Is the done list queue empty? }
{ If it's empty, wait for an }
{ entry and let the producer }
{ process continue. }

REMOVE ENTRY (done list,
- entry-ptr::AQUEUE_ENTRY,

empty,
QUEUE$HEAD);

WRITELN('Data received from Producer' entry-ptrA.ident:1,
, --- buffer value = " entry-ptrA.buffer: :INTEGER);

INSERT ENTRY(free list,
- entrY-ptrA.links,

first entry,
QUEUE$TAIL) ;

IF first entry THEN
SIGNAL(free_list_has_entry);

{ If this is the first entry, }
{ let the producer process }
{ know that an entry is }
{ available. }

consumer loop counter := consumer loop counter + 1;
UNTIL consumer loop counter = consumer max;

END; {consumer-} - -

PROGRAM queue_communication(OUTPUT)i

VAR
main : PROCESS;
producer-process_1, producer-process_2
consumer-process : PROCESS;

BEGIN {main}
initialize;

PROCESS;

CREATE_PROCESS (producer-process_1, producer, 1);
CREATE_PROCESS (producer-process_2, producer, 2);
CREATE_PROCESS (consumer-process, consumer);
WAIT_ALL (producer-process_1,

producer-process_2,
consumer-process);

WRITELN (' Finished producing and consuming ... ') ;
WRITELN('Program exiting ... ');
EXIT;

END; { main }

END; { producer_consumer

Communication 5-9

5.3 Passing Messages

A message is a block of contiguous bytes of memory that is transmitted
between processes in the same or different jobs. The kernel maps
message data into a job's unique, protected PO virtual address space,
making the data available to all processes in that job. Within a single
processor, the kernel uses VAX. memory management hardware to
distinguish the virtual address space for each job. Within a local area
network, the virtual address space for each job resides in the memory
of a different target processor. By passing messages, the jobs in a
VAXELN system can use the same mechanism to share data efficiently
and transparently in both single-processor and network configurations.

Processes send messages to and receive messages from system
maintained queues called ports. The ports in·8, system store messages
that are waiting to be sent or received. Calls to the CREATE_PORT
procedure create ports dynamically and associate them with unique
PORT values that can be used throughout the application: within the
creating job, within other jobs on the same node, or within jobs on other
network nodes.

One of the principal reasons for dividing an application into separate
jobs is to distribute an application's jobs across a local area network
(LAN). To allow inteIjob communication and to make the distribution
of applications across LANs transparent, you can use the CREATE_
NAME procedure to associate port values with port names. When ports
are associated with names, a process can call the TRANSLATE_NAME
procedure to look up a name in a table and use the returned port value
to communicate with other processes and jobs. Port names can be
up to 31 characters long and can be either local or universal. Local
names are known only to processes and jobs on the node on which they
are created. Universal names are known to processes and jobs on all
VAXELN nodes in the local area network.

VAXELN systems can pass messages by using datagrams or virtual cir
cuits. The datagram method, which uses the DECnet-VAX. datagram,
requires no explicit connection sequence and provides fast communi
cation with low overhead. However, this method cannot guarantee
message delivery or sequence (although the probability of received
messages being correct is extremely high). Using datagrams, a process
can obtain the value of any named port in the system, whether the port
is on the same node or on a different node on the Ethernet.

5-10 Communication

The virtual circuit method, which uses the network services protocol
within the VAXELN Network Service, is the preferred method for
VAXELN systems to pass messages. Virtual circuits require two
ports, usually in different jobs, to be connected as a pair. Despite
the overhead of setting up and handling a virtual circuit connection,
circui ts offer the following advantages:

• Guaranteed delivery and sequence

• Flow control
• Message size is not limited by the underlying physical media

characteristics due to automatic message segmentation and recon
struction

When a job sends a message to another job on the same node, the
kernel unmaps the message buffer's address from the sending job's
virtual address space and maps the address to the receiving job's
address space. If the jobs are on different Ethernet nodes, the VAXELN
Network Service transports the data across the network and places it in
the receiving job's virtual address space. (Network configurations limit
message size to the maximum imposed by relevant network devices.)

In addition to moving data, applications can use message-passing to
synchronize and coordinate multiple processes and jobs. Most of the
VAXELN services use message-passing to organize their work.

5.3.1 Messages

A message, as recognized by most network devices, is a block of contigu
ous bytes of memory. Usually, network devices, particularly Ethernet
devices, impose a maximum size on a message. A network message also
typically requires a number of bytes at the beginning of the message (a
protocol header) to identify the rest of the message.

The kernel provides a MESSAGE object to describe a block of memory
that can be moved from one job's virtual address space to another's.
The block of memory is called the message data and is allocated
dynamically by the kernel. A MESSAGE object and its data are created
by calling the CREATE_MESSAGE procedure.

Message data is allocated by the kernel from physically contiguous,
page-aligned blocks of memory, which allows the kernel to store the
complete description of a message· of reasonable length in a single
MESSAGE object. Message data is mapped into a job's PO virtual

Communication 5-11

address region, so it is potentially accessible to all the processes in the
job.

5.3.2 Message Ports

A PORT object represents a system-maintained message queue. A port
is unique in that its identifying value is valid within all application
jobs, not just within a particular job or jobs on a particular node.
In other words, PORT values can be passed as arguments, sent in
messages, or obtained from the RECEIVE procedure with certainty
that they identify a unique destination for messages, somewhere in the
application network. PORT values can be used with WAIT_ANY and
WAIT_ALL to synchronize programs with the receipt of messages.

A message port can hold a maximum number of messages, specified
when the port is created (the default is four). Messages are removed
from a port by the RECEIVE procedure in first-inlfirst-out (FIFO) order.
If more messages than the maximum are sent, they may be lost. (For
exceptions, see Section 5.3.7.) A large message limit requires no more
overhead than a small limit. Only the messages themselves determine
the amount of memory consumed.

PORT values are assigned dynamically by the kernel to identify a
particular message port. New values are returned by the CREATE_
PORT procedure and are valid until used with the DELETE procedure
to explicitly delete the port. For example, the following Pascal code
fragment creates a new message port, limited to 10 messages, and puts
the PORT value in the variable newport. The identifier newport is then
used in later SEND, RECEIVE, and other message operations that
require a PORT value.

VAR
newport: PORT;

BEGIN
CREATE_PORT (newport, LIMIT := 10);

5-12 Communication

5.3.3 Named Message Ports

To facilitate communication between jobs, the kernel provides a NAME
object, a name table entry that associates character string names with
message ports. Names are represented as separate objects to allow a
port to have multiple names, if desired.

A process in the application that expects to communicate with processes
outside its job can broadcast the necessary information about one or
more of its message ports by creating names for them. If the process
needs to communicate with a process on a different network node,
it creates a universal name; if all communication occurs within a
single node, a local name suffices. A local name is guaranteed to be
unique within the local node. Universal names are guaranteed to be
unique throughout the local area network. The translation and other
maintenance of universal names is a function of the Network Service,
as described in Chapter 9.

NOTE

The processors in a closely coupled symmetric multiprocess
ing configuration constitute one Ethernet node and share the
same local name table. Therefore, the images running on the
processors must create unique local names.

These names are created with the CREATE_NAME procedure and can
be deleted with DELETE. A NAME value specifies a name string of 1 to
31 characters for an associated port. The name string is used to obtain
the PORT value of the associated port with the TRANSLATE_NAME
procedure. That is, a program can look up a name in the name table
and use the resulting PORT value to communicate with other jobs or
processes.

Applicationwide services, such as disk drivers, commonly use such
names. The disk driver makes names available for its message ports
(for example, DUAO) so that another job or process can quickly trans
late the name into a PORT value for use in sending messages. In the
case of a disk, program 110 is typically done with language-specific
liD procedures, whose runtime software performs the necessary name
translation and message transmission for you.

When designing a system and writing the programs for it, you decide
which processes are the communicators and create names appropri
ately. You then develop the programs and test the communication to
your satisfaction. If you later decide to reconfigure the application
- for example, by moving all the programs onto a single network

Comm unication 5-13

node or, conversely, distributing programs among several newly added
nodes - only the final program development step, system building,
must be repeated, to describe the· new hardware/software configura
tion. No changes to the programs themselves are necessary, because
calls to TRANSLATE_NAME in the new application will obtain port
information based on the new configuration.

Name strings can also be used directly (for example, as a parameter to
the CONNECT_CIRCUIT procedure), in which case the translation is
done by the procedure.

5.3.4 Message Transmission

To send a message, you must declare a pointer to the type of data you
want to send, specify the size of the message buffer (C and FORTRAN),
supply the pointer to CREATE_MESSAGE, use the pointer to fill in the
message data, and supply the MESSAGE value to the SEND procedure.
The following Pascal code example sends a message:

VAR mtext: AVARYING STRING(80);
command: MESSAGE;
destination: PORT;

BEGIN
CREATE MESSAGE(command,mtext);
mtextA-:= 'START';

SEND(command,destination);
END.

An application can send a message as it was created or can send part
of a message. To send part of a message, the call to SEND must specify
a message size, indicating the length in bytes of the message data to be
sent.

The SEND procedure removes the message data from your job's address
space and places the MESSAGE object in the destination port. The
SEND procedure also provides the following information to the receiver:

• The value of the sending process's job port or optionally, a different
reply port specified by the sender

• The value of the destination port

5-14 Communication

• The size of the message sent

The receiver process waits for a message to arrive on its port and then
uses the RECEIVE procedure to obtain it. The RECEIVE procedure
automatically maps the message data into the receiver's address space,
returns a MESSAGE value for the receiver's use, and optionally returns
the identification of the reply port and destination port.

To reply to the message's originating job, the receiver uses the value of
the reply port from RECEIVE, formulates an answer, and sends a reply
to the reply port. (The receiver can use the same message data to form
the reply; it need not create a new message.)

The receiver process must know beforehand the formats of the mes
sages it can receive. That is, the sender and receiver must have
established a message protocol. Defining a protocol is the basic design
task in intetjob communication.

For example, if the receiver is a server, it must know a set of predefined
commands to which it will respond; it can return an error message to
the sender (in most cases, an operator's terminal) if it receives a
message that does not contain a valid command.

5.3.4.1 Expedited Messages

A distinct form of message, called an expedited message, is recognized
by the kernel and the Network Service. An expedited message can
bypass the normal, sequential flow control provided by the system.

For example, a transmitting process may have sent many messages
to a receiving process, but before all the messages are received by
the receiver, the transmitter may decide that the previous messages
should be ignored, if possible. In this case, the transmitter can send an
expedited message telling the receiver to halt.

Most applications do not need to use expedited data messages, because
expedited data messages are restrictive, and there is no guarantee that
an expedited message will be received before normal data messages.
However, remote expedited data messages provide an interface to the
DECnet Network Services Protocol interrupt message service, which is
used by established protocols, such as the Data Access Protocol.

The following facilities and restrictions apply to expedited data mes
sages:

• An expedited data message is sent by specifying a Boolean value to
the EXPEDITE parameter of the SEND procedure.

Communication 5-15

• An expedited data message can contain a maximum of 16 bytes of
data.

• Only one unreceived expedited message is allowed in a port. If
a second expedited message is sent before the first is received, it
has the same effect as a normal data message when the port is
at its message limit; that is, either an error status is returned
or an exception is raised, or the sending process waits until the
first message has been received, depending upon the setting of
the FULL_ERROR parameter when the circuit is connected or
accepted.

• An expedited data message is received using the normal RECEIVE
procedure but returns the alternate success status value, KER$_
EXPEDITED. Therefore, if a receiver process needs to know if a
message is an expedited or a normal message, and the protocol
being used does not indicate which it is, the receiving process can
compare the status to KER$_EXPEDITED.

• Expedited data messages queued to a port are received by the
RECEIVE procedure before any normal data messages are received.

5.3.5 Datagrams and Circuits

Ports and messages can be used in two ways to transmit data:

• In the datagram method, one process can obtain the value of a
port anywhere in the local area network, and can send the port a
message with the SEND procedure.

• In the circuit method, any two ports can be bound into pairs called
circuits. Mter establishing the circuit, the sending process has
one port of its own bound to another port, which usually is in a
different job or on a different network node. The sender sends the
message to its own port, and the message is routed automatically to
the other port in the circuit. Processes can both send to and receive
from a circuit port.

In either method, a process can use the WAIT_ALL or WAIT_ANY
procedure to wait for the receipt of a message on a port.

The datagram method requires no connection sequence, but correct
delivery of datagrams to the destination is not guaranteed. (However,
the datagram method guarantees with high probability that received
messages are correct.) Also, datagram transmissions cannot be sent

5-16 Communication

and received in a guaranteed order; that is, two messages sent to the
same destination port can arrive in a different order.

Although circuits incur setup and handling costs, they offer the follow
ing advantages over the basic datagram method:

• Guaranteed delivery and sequence. Messages sent through circuits
are guaranteed with high probability to be delivered - if the
physical connection is intact - and to be delivered in the same
sequence in which they are sent. The circuit method guarantees
that the message arrives at the destination port regardless of its
location or, if the message fails to arrive, that the sender is notified
that the message could not be delivered.

• Flow control. Options of the procedures ACCEPI'_CIRCUIT and
CONNECT_ CIRCUIT allow you to control the flow of messages
through a circuit. That is, you can prevent a sending process from
sending too many messages to a slower receiving process.

• Segmentation. Messages can have any length, and, if the trans
mission is across the network, the network services will divide the
message into segments, transmit the segments in sequence, and
reassemble them at the destination node.

• A user interface through Pascal I/O routines. The OPEN procedure
permits you to open a circuit as if it were a file and to use the I/O
routines, such as READ and WRITE, to transmit messages.

No performance penalty is incurred with the circuit method for mes
sages transmitted on the same network node and only a small penalty
is incurred over the network. For full generality, programs should
assume that the sending and receiving jobs may be distributed on dif
ferent nodes in a network. The circuit method is preferred for sending
messages in almost every instance.

5.3.6 Programming with Circuits

You establish circuits between two ports by using the CONNECT_
CIRCUIT and ACCEPI'_ CIRCUIT procedures. Options let you control
the flow of messages through a circuit. For example, you can prevent a
sending process from sending too many messages to a slower receiving
process.

Communication 5-17

A process aimed to establish a circuit calls CONNECT_CIRCUIT and
designates a destination port in another process. A connection-request
message is sent to the designated port. Consider the following Pascal
example:

CONNECT_CIRCUIT (myport, DESTINATION_NAME := 'request_server');

The variable myport is an existing port in the calling process that
forms its half of the circuit. The string 'requesCserver' specifies the
destination name. CONNECT_CIRCUIT translates this name to
designate the destination port.

The call to CONNECT_CIRCUIT causes a process to wait for the
connection request to be accepted. The interval between the time
the connection request is initiated for a port and the time the circuit
is accepted should be no greater than the interval specified for the
Connect time entry on the System Builder's System Characteristics
Menu. For example, if the connect time is 45 seconds, the circuit should
be accepted no later than 45 seconds after the call to CONNECT_
CIRCUIT initiates the connection request. A longer delay may cause
the circuit to go into a bad state.

Elsewhere, the accepting process calls the ACCEPT_CIRCUIT proce
dure to wait for a connection-request message on the designated port.
For example:

VAR
server : NAME;
receiver-port PORT;

CREATE~ORT(receiver-port, LIMIT := 10);
CREATE_NAME (server, 'request_server' ,receiver-port);

{
{ Wait for a connection request. When the wait is satisfied, a
{ circuit is established between the requestor and receiver-port.
{}

ACCEPT_CIRCUIT(receiver-port);

You can request multiple connections on the same port, but you must
distribute connections to other ports as they are received.

5-18 Communication

Consider the following Pascal example:

VAR.
server : NAME;
receiver-port, connect-port : PORT;

BEGIN
CREATE_PORT (receiver-port, LIMIT := 10);
CREATE_PORT(connect-port);
CREATE_NAME (server, 'request_server', receiver-port);
ACCEPT_CIRCUIT (receiver-port, CONNECT := connect-port);

{ wait for a connection request. When the wait is satisfied, a
circuit is established between the requestor and connect-port.

At this point, the acceptor can take a variety of actions to communicate
with the requestor. For example, the acceptor can create a subprocess
to continue the dialog and pass the subprocess the port value (connect_
port) identifying its half of the circuit. The ACCEPT_CIRCUIT proce
dure can notify you of error conditions, such as an unreceived message
in receiver -port or another connection request for which acceptance is
pending.

When a process issues a call to ACCEPT_CIRCUIT, the kernel issues
a call to the WAIT_ANY procedure for that process. When a message
arrives at the port, the port is signaled and the kernel issues a call
to RECEIVE, assuming that a connection request message is in the
port. If the message is not a connection request, the kernel reissues
the wait. For this reason, you cannot use the SIGNAL or KER$RAISE_
PROCESS_EXCEPTION procedure to signal a process waiting for a
circui t to be accepted; nor can you use the debugger to halt the process.
To avoid this behavior, wait on the port and accept the circuit after the
wait is satisfied.

Circuits are broken when either partner calls the DISCONNECT_
CIRCmT procedure. The SEND and RECEIVE procedures notify
their callers if the designated port was disconnected by returning the
status value KER$_DISCONNECT. As part of the corrective action for
this condition, an application program must call the DISCONNECT_
CIRCmT procedure to disconnect the partner port. If appropriate, the
program can then try to reestablish the circuit connection. Consider
Example 5-2.

Communication 5-19

Example 5-2: Disconnecting the Partner Port After a Disconnect
Operation

MODULE msg_symbol_ex;

INCLUDE $KERNELMSG;

PROGRAM use_msg_symbol(INPUT, OUTPUT);

VAR
one second : LARGE INTEGER;
data-port : PORT; -
dest-port_name : VARYING_STRING(8);
msg : MESSAGE;
stat : INTEGER;

BEGIN

CREATE_PORT(data-port);
REPEAT

WAIT ANY(TIME := one second);
CONNECT_CIRCUIT(data~ort,

DESTINATION NAME := dest-port_name,
STATUS : = stat);

UNTIL stat := KER$_SUCCESS;

SEND (msg, data-port, STATUS := stat),

If the send operation fails because the circuit was disconnected
by the partner process, the sender process must clean up by
disconnecting the port on its end of the circuit. Once both ports
are disconnected, reestablish the circuit connection and try

{ to send the message again.
{}

IF stat = KER$_DISCONNECT THEN
BEGIN

{ Disconnect the port before trying to reestablish the
{ connection.
{}

DISCONNECT_CIRCUIT(data-port);

Example 5-2 Cont'd on next page

5-20 Comm unication

Example 5-2 (Cont.): Disconnecting the Partner Port After a
Disconnect Operation

CONNECT_CIRCUIT (data-port,
DESTINATION NAME := dest-port_name,
STATOS : = stat);

END.
END;

SEND (msg, data-port, STATUS := stat),
END;

If the disconnect condition exists, the call to DISCONNECT_CIRCUIT
cleans up and prepares data.J)ort for another connection.

5.3.7 Port Limits and Flow Control

An advantage of using a circuit for a message exchange is that the
kernel and Network Service provide a function called flow control.
Under flow control, the flow of messages from a transmitting process to
a receiving process is controlled to ensure that unreceived messages do
not consume excessive memory in the system.

When a process sends a message with· SEND, the message is queued
in a specified destination port. If the transmitting process can produce
messages faster than the receiving process can consume them and if
no limit is placed on the number of messages that can be queued, the
messages might use all the available memory. To avoid that situation,
ports have a limit on the number of unreceived messages that can be
queued at a time; the limit is specified when the port is created.

5.3.7.1 Flow Control with Unconnected Ports

If a port that is not connected in a circuit is full and an application
sends a message to the port, the call to SEND returns a failure status
or exception. If the port is not on the same node, the message can be
lost.

Communication 5-21

5.3.7.2 Flow Control with Circuits

If a circuit-connected port is full, the sender is, by default, put into
the waiting state until the port is no longer full. The transmission is
then successfully completed. The implicit waiting performed by the
SEND procedure evens the flow of messages between the transmitting
process and receiving process without having to explicitly program for
the condition.

Since some applications may not need implicit waiting, an argument to
the ACCEPT_CIRCUIT and CONNECT_CIRCUIT procedures allows
the calling process to specify that it wants a SEND call to return an
error status or exception rather than to wait.

5.3.8 Programming Considerations for Message Communication

When programming message communication, consider the following:

• When programs use circuits to communicate, you must ensure that
the programs cooperate. One program is to call the CONNECT_
CIRCUIT procedure, and the other program is to call the ACCEPT_
CIRCUIT procedure. If the programs do not cooperate, various
results are possible, including loss of pool blocks used for the
connect request, return of the KER$_CONNECT_TIMEOUT status
value, unexpected satisfied waits, or the circuit entering a bad
state.

• When a program issues a call to CONNECT_CIRCUIT for a port,
an ACCEPT_CIRCUIT for that port must be pending, or the
interval between the time the connection request is initiated
and the time the circuit is accepted should be no greater than
the interval specified for the Connect time entry on the System
Builder's System Characteristics Menu. A longer delay may cause
the circuit to go into a bad state.

• A program cannot operate on a port while the port is being used
in an ACCEPT_CIRCUIT or CONNECT_CIRCUIT operation.
When a program calls the ACCEPl'_CIRCUIT and CONNECT_
CIRCUIT procedures to establish a circuit connection, the kernel
and Network Services perform a sequence of operations. This
sequence may satisfy a wait request issued by another process in
the job unexpectedly.

5-22 Communication

• Once a program establishes a circuit connection, multiple processes
can perform simultaneous SEND and WAITIRECEIVE operations.
In this situation, the WAIT can be satisfied even if the call to
RECEIVE returns the status value KER$_NO_MESSAGE. The
combination of the wait being satisfied and the status value being
returned results when a program uses multiple receivers or when
the SEND procedure resumes after a flow control suspension. In
the multiple receiver case, another receiver process may have
received the message. In the flow control case, internal flow control
mechanisms may have unblocked all processes waiting on the port.
If a process receives a KER$_NO_MESSAGE status from a call to
RECEIVE after a WAIT is satisfied, it should WAIT on the port
again.

5.3.9 Kernel Services for Message Transmission

The kernel services affecting the state of MESSAGE, PORT, and NAME
objects are summarized in Sections 5.3.9.1 to 5.3.9.12.

5.3.9.1 ACCEPT_CIRCUIT Procedure

The ACCEPT_CIRCillT procedure causes the invoking process to
wait for a circuit connection. On successful completion, the circuit is
established between two ports.

The invoker's half of the circuit can be the port used to wait for the
connection request or, optionally, a different port. This optional param
eter allows a program, such as a resource service, to create a name for
its connection-request port but to use a different·port for the connection
itself; in this way, the server could create a name for the first port to
establish simultaneous circuits with several different processes or jobs.
The only valid message that can be received at the connection-request
port is the kernel's internal connection request; other messages are
discarded by the system.

By default, when a process sends a message on a circuit with SEND,
the operation waits if the partner port is full, a method called flow
control. When you accept a circuit connection, you have the option of
specifying that you want an error status or the corresponding exception
instead of the implicit wait.

Communication 5-23

An optional argument supplies a data value that is received by the
process requesting the circuit connection in its CONNECT_CIRCUIT
call. Another optional argument receives data passed by the requesting
process in its CONNECT_CIRCUIT call. These data values are called
connect data and accept data, respectively, and are strings of up to 16
bytes.

5.3.9.2 CONNECT_CIRCUIT Procedure

The CONNECT_CIRCUIT procedure connects a port to a specified des
tination port and causes the invoking process to wait for the connection
request to be accepted.

If a process calls ACCEPT_CIRCUIT with the destination port, the
two ports are bound in a circuit. The destination port can be specified
by using a name string established by the CREATE_NAME procedure
or by using a PORT value giving the destination for the connection
request.

By default, when a process sends a message on a circuit, the SEND
procedure performs an implicit wait if the partner port is full - that
is, contains its limit of unreceived messages; this type of flow control
is usually used with circuits. With CONNECT_CIRCUIT, you have the
option of disabling the implicit wait, causing SEND to receive an error
status or raise an exception if the partner port is full.

An optional argument supplies data to the process receiving the con
nection request. Another optional argument receives data supplied by
the accepting process in its ACCEPT_CIRCUIT call.

>-24 Communication

NOTE

The interval between the time a connection request is initi
ated for a port and the time the circuit is accepted should be
no greater than the interval specified for the Connect time
entry on the System Builder's System Characteristics Menu.
For example, if the connect time is 45 seconds, the circuit
should be accepted no later than 45 seconds after the call
to CONNECT_CIRCUIT initiates the connection request. A
longer delay may cause the circuit to go into a bad state.

5.3.9.3 CREATE_MESSAGE Procedure

The CREATE_MESSAGE procedure creates a MESSAGE object and
allocates and maps its message data into the job's PO address space for
use by the SEND and RECEIVE procedures, returning the MESSAGE
value that identifies the message and a pointer to the allocated message
data. A program can use the pointer to the message data to store data
that is to be moved to another job's address space.

5.3.9.4 CREATE_NAME Procedure

The CREATE_NAME procedure creates a name string of 1 to 31
characters for a specified port as an entry in a name table and returns
the NAME value that identifies that name. An optional argument
specifies that the new name is local (known only on its own node),
universal (known on any node in the local area network), or both; local
is the default. If the Name Service is not present in the system, all
names are placed in the local name table, even if you specify universal
or both. (For information about the Name Service, see Chapter 9.)

Names created by this procedure are guaranteed to be unique within
the specified name space: local or universal. If you try to create a name
that is not unique, the procedure does not create a NAME object and
returns an error status.

When you create a universal name in a local area network configu
ration, the Name Service on each node in the local area network can
translate universal names created by other nodes in the local area
network.

5.3.9.5 CREATE_PORT Procedure

The CREATE_PORT procedure creates a message port, returning the
PORT value that identifies the port. An optional integer expression
supplies the maximum number of messages that can be queued to the
port at one time. If the maximum is exceeded, the sender is notified;
the default value is 4.

Communication 5-25

5.3.9.6 DELETE Procedure

The DELETE procedure removes the MESSAGE, PORT, or NAME
object from the system.

When a message is deleted, it is unavailable for sending or receiving,
and pointers to the message data become invalid.

When a port in a circuit is deleted, the connected port is disconnected,
messages at the port are deleted, and the wait conditions of any waiting
processes are satisfied with the completion status KER$_BAD_VALUE.

When a universal name is deleted, the Network Service on each node
ensW'es that the deletion is reflected in the list of universal names. The
deletion of local names is performed by the kernel on the local node and
does not involve the Network Service.

5.3.9. 7 DISCONNECT_CIRCUIT Procedure

The DISCONNECT_CIRCUIT procedW'e breaks the circuit connection
between two ports. If a process is waiting for either port in the circuit,
its wait condition is satisfied. A request for connection can be rejected
by first calling ACCEPT_CIRCUIT and then calling DISCONNECT_
CIRCUIT.

5.3.9.8 JOB_PORT Procedure

The JOB_PORT procedure returns a PORT object value identifying the
caller's job port. A unique job port is created whenever a job is started.

5.3.9.9 RECEIVE Procedure

The RECEIVE procedW'e removes a message from a message port.
The procedure maps the message data into the receiver job's virtual
address space, retW'ns a MESSAGE value identifying the message,
and optionally returns PORT values identifying the reply port and
destination port. The value is normally the same value supplied by the
sender for the receiver's port.

An integer argument, optional for Pascal, receives the size in bytes of
the message data.

5-26 Communication

5.3.9.10 SEND Procedure

The SEND procedure removes a message buffer from the sender's
address space and then places the MESSAGE object describing the
buffer in the destination message port. If the message is being sent
through a circuit, the destination message port you specify is the
sender's port, and the message arrives at the receiver's port.

By default, when a process sends a message on a circuit, the SEND
procedure performs an implicit wait if the partner port is full, a method
called flow control. When you accept a circuit connection, you have the
option of specifying that you want an error status or the corresponding
exception instead of the implicit wait.

Other SEND arguments, optional for Pascal, specify the length in bytes
of the message data to be sent, specify a reply PORT value, and specify
whether to expedite the message. The size of an expedited message
must not exceed 16 bytes.

5.3.9.11 TRANSLATE_NAME Procedure

The TRANSLATE_NAME procedure returns a value identifying a
named port. The specified name string is used to search for a NAME
object with a matching string. If the NAME object is found, a value for
the named port is returned.

You can specify that a name is to be looked up in the local name table,
the universal name table, or both; the local name table is searched first
if both are specified.

The Name Service provides the universal name table. Therefore, to
translate universal names, the Name Service must be present in the
system. An attempt to translate a universal name without the Name
Service present causes the service to try to translate the name using
the local name table. For more information about the Name Service,
see Chapter 9.

5.3.9.12 WAIT_ANY and WAIT_ALL Procedures

A wait for a port, including a port in a circuit, is satisfied when it
has a message in it. Waiting for a port causes no modification to the
port, and all waiting processes continue if their wait conditions are
otherwise satisfied. Both procedures can specify a timeout argument,
which defines a time interval or absolute time after which the waiting
process proceeds regardless of the states of the objects.

Communication 5-27

Normally, a process must call a WAIT procedure, then call RECEIVE.
Calling RECEIVE without first calling a WAIT procedure may return a
no-message status.

If a process needs to accept a circuit connection and wait for one or
more other objects at the same time, it can call a WAIT procedure
specifying the port and the other objects. When the wait is satisfied
because a message is received (the PORT object is returned as the wait
result), the process can call ACCEPT_CIRCUIT.

5.4 Sharing Memory Areas

Jobs executing on the same node can communicate by sharing an
area, a common region of physically contiguous memory. Each job that
shares an area must create it. When a job creates an area, the kernel
maps the physical memory associated with the area to the job's PO
virtual address space. The first time an application creates an area,
the kernel also associates the area with an event or semaphore. Jobs
can use the event or semaphore to synchronize access to the area.

Once an application creates an area, the area remains available until
all jobs sharing the area terminate or delete their references to the
area.

VAXELN applications can use the following procedures to create and
use areas:

Procedure

5-28 Communication

Description

Sets the state of an area's event to
EVENT$CLEARED.

Creates a new area or maps an exist
ing area of memory into the creating
job's PO virtual address space and
associates the area with a binary
semaphore.

Creates a new area or maps an exist
ing area of memory into the creating
job's PO virtual address space and
associates the area with an event.

Procedure

DELETE

ELN$INITIALIZE_AREA_LOCK

ELN$LOCK_AREA

SIGNAL

ELN$UNLOCK_AREA

WAIT_ALL and WAIT..ANY

Description

Creates a new area or maps an exist
ing area of memory into the creating
job's PO virtual address space and
associates the area with a semaphore.

Deletes an area.

Initializes an area lock variable.

Locks an area for exclusive access.

Signals an area. If the area is asso
ciated with an event, the kernel sets
the event to a signaled state. If the
area is associated with a semaphore,
the kernel increments the semaphore's
count.

Unlocks an area.

Waits on an area. If the area is
associated with an event, the kernel
lets the calling job access the area
or causes the job to wait, depending
on whether the event is signaled or
cleared. If the area is associated with
a semaphore, the kernel checks the
semaphore's count, and based on the
count value lets the calling job access
the area or causes the job to wait. If
the count is greater than zero, the
kernel decrements the count and
lets the calling job access the area.
Otherwise, the job waits.

The following sections explain how applications can use these proce
dures to do the following:

• Create areas, Section 5.4.1
• Synchronize access to areas using events, Section 5.4.2
• Synchronize access to areas using semaphores, Section 5.4.3

• Use area lock variables to optimize waiting and signaling opera
tions, Section 5.4.4

• Use areas to synchronize job execution, Section 5.4.5

Communication ~29

• Delete areas, Section 5.4.6

NOTE

The systems in a closely coupled symmetric multiprocess
ing configuration cannot use areas as a means of sharing
memory. To share memory, such systems must use the
ALLOCATE_MEMORY routine to allocate memory at a phys
ical address on the primary system; which is accessible to all
processors.

5.4.1 Creati ng Areas

An application can create a new area or map an existing area of
memory into a job's PO virtual address space by calling the CREATE_
AREA, CREATE_AREA_EVENT, or CREATE_AREA_SEMAPHORE
procedure. A procedure call that creates a new area associates the area
with an event or semaphore as follows:

Procedure

CREATE_AREA
CREATE_AREA_EVENT
CREATE_AREA_SE~HORE

Object Type

Binary semaphore

Event

Binary or counting semaphore

The event or semaphore controls access to the area. An application that
uses one job to write to an area and lets several jobs read from that
area might use an event to control area access. A counting semaphore
lets an application specify a maximum number of jobs (maximum count
value) that can access an area at a given time. A binary semaphore
provides exclusive access to an area.

An application uses an area's event or semaphore to control access
by changing the event or semaphore's state. The state of an event
changes when the application signals or clears an area. The state of a
semaphore changes when an application signals or waits on an area.
Sections 5.4.2 and 5.4.3 explain how to synchronize area access.

Calls to the CREATE_AREA, CREATE_AREA_EVENT, and CREATE_
AREA_SEMAPHORE procedures must specify an area variable, a data
pointer, the size of the area (C and FORTRAN), and an area name.
The area variable receives a value that identifies the area. You use

5-30 Communication

this variable to identify the area in calls to other routines, such as
CLEAR_EVENT, SIGNAL, WAIT_ALL, and WAIT_ANY.

The data pointer receives the area's base virtual address. A VAXELN
Pascal data pointer also implicitly defines the area's size. The data
pointer can be of any type except AANYTYPE and the procedure uses
the size of that argument's type to determine the area's size. For C and
FORTRAN applications, you must specify the area size in bytes. The
value you specify is increased to the next multiple of 512. Specify a size
of 0 to use an area only as a mechanism for synchronizing job execution
(see Section 5.4.5).

A string of 1 to 31 characters specifies an area's name. The name must
be unique within the application.

Calls to the CREATE_AREA_EVENT and CREATE_AREA_
SEMAPHORE procedures also must specify arguments that ini
tialize the event or semaphore that the procedure creates. You
can initialize the state of an area's event to EVENT$CLEARED or
EVENT$SIGNALED. You must specify initial count and maximum
count values for a semaphore that CREATE_AREA_SEMAPHORE
creates. (The CREATE_AREA procedure automatically initializes the
initial and maximum count values to 1.)

Procedure calls that create an existing area only map the area to
the calling job's PO virtual address space. The use of a shared area,
whether it is associated with an event or semaphore, must remain
consistent throughout an application. When you create an area that
is associated with an event, subsequent create area procedure calls
specifying that area must be CREATE_AREA_EVENT calls and they
must specify the same initial event state. Likewise, if you create an
area that is associated with a semaphore, subsequent create area pro
cedure calls specifying that area must be CREATE_AREA or CREATE_
AREA_SEMAPHORE calls and they must specify the same initial and
maximum count values. For example, if a call to CREATE_AREA_
SEMAPHORE creates a new area named common_area and specifies 0
and 3 as the semaphore's initial and maximum counts, all subsequent
calls to CREATE_AREA_SEMAPHORE that specify common_area must
also specify 0 and 3 as the semaphore count values.

An optional virtual address argument lets you specify the starting job
PO virtual address at which the specified area is to be mapped. You
can specify this argument in calls to CREATE_AREA, GREATE_AREA_
EVENT, or CREATE_AREA_SEMAPHORE. If you do not specify an
address, the kernel allocates a free range of PO virtual addresses.

Communication 5-31

The following C example creates a 5000-byte area that has an asso
ciated semaphore with an initial value of 1 and a maximum count of
2:

#module cr area semaphore
#include $;axelnc

main ()
{

int completion status, size, init_count, max_count;
AREA area1-
char * area1-ptr
static $DESCRIPTOR(name_string1, "AREA_1");

init_count = 1;
max count = 2;
size = 5000;

ker$creat area semaphore(&completion status,
- - &area1,-

&area1-prt,
size,
&name string1,
init_count,
max count,
NULL) ;

Once you have created an area, subsequent calls to CREATE_AREA,
CREATE_AREA_EVENT, or CREATE_AREA_SEMAPHORE that
specify the area you created map that area to the PO virtual address
space of each calling job. If you specified a virtual address in the
procedure call that initially created an area, subsequent calls that
specify that area must specify the same virtual address.

• When a shared area is mapped to the same virtual address for each
sharing job, the area is position-dependent and pointer values are
equivalent in each job's address space. Thus, the sharing jobs can
place absolute and relative pointers in the area.

• When a shared area is mapped to different virtual addresses by
different jobs because no virtual address was specified, the area is
position-independent and the sharing jobs can place only relative
pointers in the area.

5-32 Communication

In all cases absolute and relative pointers within an area must point to
other addresses within the area if they are to be used by different jobs.

Jobs that share an area can map none, some, or all of the area's
memory, depending on the area size that you specify. If a job shares
part of an area, the shared part begins at the start of the area.

5.4.2 Synchronizing Access to Areas with Events

Jobs can synchronize access to a shared area that is associated with an
event by waiting on, signaling, and clearing the area. Jobs can access
the area so long as the event is in a signaled state.

To wait on an area, you must specify its AREA variable in the object
value list of a call to the WAIT_ALL or WAIT_ANY procedure. A wait
operation for an area that is associated with an event causes the calling
job to wait for the area to be signaled. If the area's event is already in
the signaled state, jobs calling the WAIT_ALL or WAIT_ANY procedure
can access the area immediately. If an area's event is in the cleared
state, calling jobs block and wait for another job to signal the area with
a call to the SIGNAL procedure. The call to SIGNAL changes the state
of the area's event to EVENT$SIGNALED and unblocks all waiting
jobs.

An area's event remains in the signaled state until a job clears the
event with a call to CLEAR_EVENT. The call to CLEAR_EVENT must
specify the AREA object with which the event is associated.

Example 5-3 shows two modules that use an area associated with an
event. The first module, area_writer, contains a job that writes data
to the area. The area_writer module also creates two jobs, using the
second module, areaJeader. The reader jobs read data from the area,
using the area's associated event as a synchronization mechanism.
Messages synchronize the writer's ability to gain access to the area.

Communication 5-33

Example 5-3: Synchronizing Access to Areas with Events

/**/
/* Writer Module * /
/**/
tmodule writer-prog
tinclude $vaxelnc
tinclude descrip

/*
* Declare external variables.
*/

static int

main ()
{

/*
* Declare master process local variables.
*/

int
char
char *
AREA
static
PORT

NAME
static
static
static

completion_status, area_size, i;
*n, a_ch, ch[10];
area-ptr;
area with event;

$DESCRIPTOR(area name string, "Shared Area ll);
job-port1, job-port2, job-port3, another-port2,
another-port3;
port name2, port name3;

$DESCRIPTOR(port name string2, "Port_FOr_Job2");
$DESCRIPTOR(port-name-string3, "Port For Job3");
$DESCRIPTOR(reader-program_name, "readeryrogll);

printf(IIThis is from Job 1.");
area size = 50;

/*
* Create an area of size 50 bytes and associate that area with
* a cleared event.
*/

ker$create_area event (NULL,
-&area_with_event,

&area-ptr,
area size,
&area name string,
EVENT$CLEARED,
NULL) ;

/* Longword containing area ID */
/* Data pointer */
/* Area size * /
/* String - name of area */
/* Initial state - clear */
/* Virtual address */

printf(II\n Area created of size %d bytes", area_size);

Example 5-3 Cont'd on next page

5-34 Communication

Example S-3 (Cont.): Synchronizing Access to Areas with Events

ker$create-port(NULL,
&another-port2,
NULL) ;

ker$create_name(NULL,
&port name2,
&port-name string2,
&another-port2,
NAME$LOCAL) ;

ker$create-port(NULL,
&another -port3,
NULL);

ker$create_name(NULL,
&port_name3,

&port name string3,
&another -port 3,

NAME$LOCAL) ;

printf(II\n\n Now create Job 2. \n\n");

ker$create job (NULL,
- &job-port2 ,

&reader-program_name,
NULL,
, 2') ;

printf(II\n\n Now create Job 3.\n\n");

ker$create job (NULL,
- &job-port3 ,

/*

&reader-program_name,
NULL,
, 3') ;

* Initialize the area to all 'A's.
*/

for (n
{

*n++

/*

area-ptr; n < &area-ptr[area_size);)

'\A' ;

* Print out the area contents.
*/

Example S-3 Cont'd on next page

Communication 5-35

Example 5-3 (Cont.): Synchronizing Access to Areas with Events

for (n
{

area-ptr; n < &area-ptr[area_size1];)

a ch *n++;
printf("\n ch

/*
* Signal area with event to let the reader jobs use the data.
* Once the area is-signaled, all reader jobs can gain access to
* the area.
*/

ker$signal(NULL, area_with_event);

for (i = 1; i <= 4; i++)
{

/*
*
*
*

Use a mechanism to synchronize the two reader jobs finishing
with the area.

* Wait for messages from the two reader jobs. The messages
* indicate that the reader jobs are finished using the area.
*/

/*
* Lock the area for exclusive access by clearing the area's
* event. The writer job can then modify the data.
*/

ker$clear_event(NULL, area with event);

/*
* Send messages to the two reader jobs. The messages indicate
* that the reader jobs are finished using the area and that the
* area is locked by this job.
*/

/*
* Modify the area's contents.
*/

Example 5-3 Cont'd on next page

5-36 Communication

Example 5-3 (Cont.): Synchronizing Access to Areas with Events

for (n = area-ptr; n < &area-ptrl[area_size1);)
{

*n++= *n + 1;

/*
* Print the new contents
*/

/*

for (n = area-ptr; n < &area-ptr[area_size1);)
{

/*

a ch = *n++;
printf("\n\n ch %c \n\n", a_ch);

* Signal the area so the reader jobs can read the new data.
*/

ker$signal (NULL, area "with_event) ;

* Mark the area and its associated event for deletion when it
* is no longer needed.
*/

ker$delete(NULL,my_areal);

/**/
/* Reader Module * /
/**/

tmodule reader-prog
tinclude $vaxelnc
tinclude descrip

main()
{

int
char

completion status, area_size, i;
*n, ch(50);

char * area-ptr;
AREA area with event;
void subprocess code();
static $DESCRIPTOR(area_name_string, "Sharedyrea");

area size = 50;

Example 5-3 Cont'd on next page

Communication 5-37

Example 5-3 (Cont.): Synchronizing Access to Areas with Events

/*
*
*
*
*/

Map area with event to the PO virtual address space for the
reader jobs. -The call must specify the same argument data as
was specified in the call that initially created the area.

ker$create_area event (NULL,
-&area_with_event,
&areaytr,

for (i
{

/*

area size,
&area name string,
EVENT$CLEARED,
NULL) ;

1; i <= 5 ; i++)

/*Longword containing area ID */
/* Data pointer */
/* Area size */
/* String - name of area */
/* Initial state - clear */
/* virtual address */

* Wait for the writer job to signal the area.
*/

ker$wait_any(NULL,
NULL,
NULL,
area_with_event);

/*

/*

* Use the data in the area, send a message to the writer job
* indicating that we are finished using the area, and wait for
* a message from the writer job, indicating that all reader
* jobs are finished.
*/

* Mark the area and its associated event for deletion when it
* is no longer needed.
*/

ker$delete(NULL, area_with_event);

5-38 Communication

5.4.3 Synchronizing Access to Areas with Semaphores

Jobs can synchronize access to a shared area that is associated with
a semaphore by waiting on and signaling the area. A job gains access
to the area by waiting on it. When the job no longer needs access, it
should signal the area, allowing other sharing jobs to gain accesS.

To wait on an area,·you must specify the area's value in the object
value list of a call to the WAIT_ALL or WAIT_ANY procedure. A wait
operation for an area that is associated with a binary semaphore gives
the calling job exclusive access to the area. If an area is associated
with a counting semaphore, the semaphore's maximum count indicates
the number of jobs that can wait on, and thus access, an area for read
operations simultaneously. For example, if the maximum count value
is 3, up to three jobs can access the area simultaneously. The kernel
decrements the semaphore's count value by one for each satisfied wait
on the area. When the semaphore's count value equals 0, subsequent
calls to WAIT_ALL or WAIT_ANY that specify the area cause the
calling jobs to block and wait for the area to be signaled. The kernel
places the waiting jobs in a queue in the order in which they issued the
calls to WAIT_ALL or WAIT_ANY.

NOTE

If multiple jobs can gain simultaneous access to an area, the
application should ensure the integrity of the shared data by
allowing the jobs to only read the data. A job that writes to a
shared area must have exclusive access.

Primarily, areas associated with counting semaphores are for synchro
nizing access to available units of a shared resource. In such a case,
the area has a size of O. For more information about using areas in this
way, see Section 5.4.5.

When a job no longer needs to access an area that is associated with
a semaphore, it can inform the kernel by specifying the area in a
call to the SIGNAL procedure. The call to SIGNAL increments the
semaphore's count value by one. If one or more jobs are waiting to
access the area, the kernel lets the first waiting job in the semaphore's
queue access the area and then decrements the semaphore's count by
one. The next job in the queue waits for the next signal operation.

Communication 5-39

5.4.4 Using Area Lock Variables to Optimize Waiting and Signaling
Operations

You can improve the performance of area access synchronization by
using an area lock variable. An application can use an area lock
variable only if the area is created with an associated binary semaphore
that is properly initialized. Area lock variables allow you to achieve
the same effect as an area with an associated binary semaphore (with
initial and maximum counts of 1) without calling a kernel service
unless contention exists. Generally, when a process locks an area to
gain access to a shared resource, the process does not have to call the
WAIT_ALL or WAIT_ANY procedure. The kernel issues a wait only if
area is already locked.

To use an area lock variable, you must declare a variable of type
AREA_LOCK_ VARIABLE and place that variable in the data por-
tion of the area. You then initialize the variable using a call to the
ELN$INITIALIZE_AREA_LOCK procedure and then synchronize ac
cess to the area with calls to ELN$LOCK_AREA (instead of WAIT_ANY
or WAIT_ALL) and ELN$VNLOCK_AREA (instead of SIGNAL).

To use the area-locking procedures in Pascal applications, you must
include the module $MUTEX from the RTLOBJECT library. To use
them in C programs, you must include the module $mutex from
VAXELNC.TLB.

The ELN$INITIALIZE_AREA_LOCK procedure waits on the AREA ob
ject. When the wait is satisfied, the kernel places the area's semaphore
in a closed state for subsequent lock and unlock operations, and then
the procedure sets the area lock variable's initial state to unlocked.
(The area semaphore's state changes only when lock contention exists.)

An area lock variable should be initialized only once by one process; no
error status is returned if the variable is initialized more than once.

A job locks an area for exclusive access by calling the ELN$LOCK_
AREA procedure. A call to this procedure must specify the area to be
locked and the lock variable that con troIs access to the area. If the area
is already locked, the calling job waits on the area. Generally, when a
job locks an area, the job does not need to issue a wait before accessing
the area. The kernel issues a wait only if the area is already locked.

A job can unlock an area by calling the ELN$VNLOCK_AREA proce
dure. This procedure releases an area and signals processes that are
waiting to access it. A call to this procedure must specify the area to be
unlocked and the lock variable that controls access to the area.

5-40 Communication

If a binary semaphore is open (count = 1) and the semaphore is sig
naled, a count overflow error occurs. In contrast, the locking and
unlocking of areas is not protected by this exception-raising mecha
nism. Under certain circumstances (in which two or more jobs contend
for an area) unlocking an already unlocked area can cause the calling
job to block indefinitely. Therefore, when using area lock variables, you
should adhere to the following guidelines:

• The first operation on an initialized area lock variable must be a
lock operation.

• You must pair lock and unlock operations within the code of the
jobs using the area.

5.4.5 Using Areas to Synchronize Job Execution

You can use an area of size 0 to synchronize job execution. In such
cases, the AREA object represents an inteIjob event or semaphore or
a user-defined resource. As an inteIjob synchronizing mechanism, an
area functions the same as events and semaphores used to synchronize
processes in the same job. Instead of synchronizing processes that
execute as parts of the same job, you synchronize processes that
execute as parts of different jobs. For more information about using
semaphores and events to synchronize processes, see Sections 4.4 and
4.5.

An area can also represent the available units of a shared user-defined
resource that is application-specific. The printers available on a system
are an example of such a resource. The event or semaphore associated
with the area serves as a resource access control mechanism.

Example 5-4 shows two modules that use an area associated with a
counting semaphore to control the ability of three jobs to gain access to
two shared resources. The first module does the following:

• Creates the area with an initial count of 1 and a maximum count of
2

• Waits on the area to gain access to a resource

• lni tializes the two resources
• Signals the area twice to let two jobs gain access to the resource

• Creates two other jobs

Communication 5-41

• Allows the three jobs to use the two resources five times each, with
only two of the jobs using the resources at a time.

The second module, which is executed by the two created jobs, maps
the area to its PO space, waits until the resource is available, uses the
resource, and signals the area when the resource is no longer needed.

All three jobs use the area's semaphore to synchronize access to the
shared resources.

Example 5-4: Synchronizing Job Execution with Semaphores

{***}
{* Module 1 *}
{***}

MODULE cr_area_sema_l;

PROGRAM cr_area_sema-progl(INPUT,OUTPUT);

CONST
area size 0;

TYPE
area_type = string(area_size);

VAR

i : INTEGER;
completion_status : INTEGER;
resource : AREA;
resource-ptr : Aarea_type;
job2-port, job3-port : PORT;

BEGIN
writeln(fCreate resource area .. . f);

{
{ Create an area of size 0 and associate that area with a counting
{ semaphore that has initial and maximum count values of 1 and 2.
{ As many as two jobs can gain access to the resource without
{ waiting.
{}

Example 5-4 Cont'd on next page

5-42 Communication

Example 5-4 (Cont.): Synchronizing Job Execution with Semaphores

CREATE_AREA_SEMAPHORE(
resource,
resource-.ptr,

Longword containing area ID }
Data pointer }

, Shared_Area' , String - name of area }
1, Initial count }

{

2,
completion_status);

Maximum count
Status

}
}

{ Wait on the area. Since the initial count was 1, this job gains
{ access immediately.
{}

WAIT_ANY(resource);

Set up the shared resource. }

{
{ Signal the area's semaphore. When the area is signaled, the
{ kernel increments the semaphore count so that another job can
{ use the area. We signal the area twice to make the resource
{ available to two jobs.
{}

SIGNAL(resource);
SIGNAL(resource);

{ Create the other two jobs. }

{ Create the second job and pass it the program argument '2'. }
CREATE_JOB (job2-'port, 'cr_area_sema-'prog2', ", ", '2');

{ Create the third job and pass it the program argument '3'. }
create_job (job3-'port, 'cr_area_sema-'prog2', ", ", '3');

FOR i := 1 TO 5 DO
BEGIN

{
{ Wait on the area until the resource is available. If the
{ semaphore count is greater than 0, the job gains access to
{ the area. If the count is 0, the job waits.
{}

Example 5-4 Cont'd on next page

Communication 5-43

Example 5-4 (Cont.): Synchronizing Job Execution with Semaphores

WAIT_ANY(resource);

Determine which resource is available and use it. }

{
{ Signal the area's semaphore to indicate that the resource is
{ no longer in use. When the area is signaled, the kernel
{ increments the semaphore count so that another job can use
{ the area.
{}

SIGNAL(resource);
END;

WRITELN('Job 1 has used a resource 5 times.');

{
{ Mark the area and its associated semaphore for deletion when
{ they are no longer needed.
{}

DELETE(resource);
END.
END;

{***}
{* Module 2 *}

{***}

MODULE cr_area_sema_2;

PROGRAM cr_area_sema-prog2(INPUT,OUTPUT);

CONST
area size 0;

TYPE
area_type = STRING(area_size)i

VAR
i, j : INTEGER;
completion status : INTEGER;
job_number-: STRING(l);
resource : AREA;
resource-ptr : Aarea_type;

Example 5-4 Cont'd on next page

5-44 Communication

Example 5-4 (Cont.): Synchronizing Job Execution with Semaphores

BEGIN
job_number := PROGRAM_ARGUMENT(3); {Get the job number.

{
{ Map the area of size ° for the cr_area_sema-prog2 job.
n
CREATE_AREA_SEMAPHORE(

resource,
resourceytr,
'Shared_Resource' ,

Longword containing area ID }

1,
2,
completion_status);

Data pointer }
String - name of area }
Initial count }
Maximum count
Status

}
}

FOR j := 1 TO 5 DO
BEGIN

{
{ Wait on the area until the area is signaled. If the
{ semaphore count is greater than 0, the job gains access to
{ the resource. If the count is 0, the job waits.
{}

WAIT_ANY(resource);

Determine which resource is available and use it. }

{
{ Signal the area's semaphore to indicate that the resource is
{ no longer in use. When the area is signaled, the kernel
{ increments the semaphore count so that another job can use
{ the area.
{}

SIGNAL(resource);
END;

WRITELN('Job " job_number, ' has used a resource 5 times');

{
{ Mark the area and its associated semaphore for deletion when it
{ is no longer needed.
{}

Example 5-4 Cont'd on next page

Communication 5-45

Example!>-4 (Cont.): Synchronizing Job Execution with Semaphores

DELETE(resource);
END.
END;

5.4.6 Deleting Areas

You can delete an area by specifying the area's identifier in a call to
the DELETE procedure. When you specify an area identifier with
this procedure, it removes the calling job's reference to the area and
unmaps the data from its PO virtual address space. Any process in the
job that created or mapped the area can delete it. The AREA object
is not actually deleted until the last job that uses the area deletes its
reference to the area.

5-46 Communication

Chapter 6

Device Handling

Device drivers are programs that control communication between
application programs and external devices. In the case of realtime
applications, most external devices are interrupt-driven - they com
municate with the application only when they need service. A device
requests service by sending an interrupt signal to the processor. The
processor recognizes the signal, stops what it is doing, and services the
request by executing a block of driver code called an interrupt service
routine (ISR).

Once you decide on your application's device requirements, you build
the relevant devices and drivers into your VAXELN system by specify
ing device characteristics on the System Builder's Device Description
Menu (see the VAXELN Development Utilities Guide).

The VAXELN Toolkit provides a highly productive environment for de
veloping application-specific device drivers. Using high-level languages,
you can implement drivers for devices that have one or more units per
controller. In addition, the toolkit supplies prototype driver code that
you can study, and perhaps use, while programming device drivers.

You can design a device driver so that it executes as a job or as a
callable routine. As a job, a device driver is a shareable resource
available to all program images in a system. If a driver does not need
to be shareable, you can code it as a callable routine. As a routine, a
driver reduces overhead by eliminating job context switching.

Typically, a device driver job executes in kernel mode at a higher
priority than jobs running other application programs and executes
concurrently with the other jobs that use the related device.

Device Handling 6-1

A driver's activity depends on the characteristics and actions of the
device it controls. However, you program a driver's general interface by
declaring a variable of type DEVICE (which represents the hardware
device) and an ISR. You then call VAXELN procedures that perform the
following types of operations:

• Set up communication for 1/0 requests
• Associate a device with an ISR and a driver program

• Handle device interrupts
• Synchronize access to a device communication region

• Read data from and write data to a device's control status register
(CSR) or data buffer

A driver's ISR provides an interface for handling device interrupts and
power-failure recovery. When an interrupt occurs, the kernel executes
the necessary machine instructions, and then calls the ISR to service
the device. While servicing the device, the ISR communicates with the
driver code by sharing an area of memory called the communication
region. For example, an ISR might use this region to return device
register data to the driver program.

A driver establishes a communication region when it creates a DEVICE
object with a call to CREATE_DEVICE. All communication regions
are potentially accessible to all ISRs. For example, for handling mul
tivector devices, you can create two communication regions (with two
CREATE_DEVICE calls) and then store a pointer to one region in
the other's region. (For an example, see the VAXELN source module
YCDRlVER.PAS.)

You synchronize a driver job's processes with an ISR by identifying a
DEVICE object in calls to the WAIT and SIGNAL_DEVICE procedures.
Driver processes wait on the DEVICE object while the ISR services
a device interrupt. If multiple processes wait on the same object, the
kernel queues them in the order in which the WAIT_ALL or WAIT_
ANY procedure calls executed. Once the interrupt is serviced, the ISR
satisfies the wait of the first process in the queue by signaling the
DEVICE object with SIGNAL_DEVICE. This priority-based process
scheduling eliminates the need for fork processing.

This chapter provides information about writing 110 device driver pro
grams for handling device interrupts and power recovery. Specifically,
the chapter explains how to do the following:

• Create and delete DEVICE objects, Section 6.1

• Handle device interrupts, Section 6.2

6-2 Device Handling

• Synchronize access to the device communication region, Section 6.3
• Set a driver job's processor eligibility, Section 6.4

• Read and write register data, Section 6.5
• Control DMA devices, Section 6.6

• Code VAXBI bus device drivers, Section 6.7
• Execute routines in kernel mode, Section 6.8

• Handle power-failure recovery, Section 6.9

6.1 Creating and Deleting DEVICE Objects

A device driver program, running in kernel mode, can create DEVICE
objects by calling the CREATE_DEVICE procedure. The procedure as
sociates a physical device with a driver program and an ISR. Once you
create a DEVICE object, you can use its value as a binary semaphore
to synchronize execution of the driver's ISR with the execution of other
driver processes.

A call to CREATE_DEVICE must specify the device's name and a
variable of type DEVICE that is to receive the DEVICE object's iden
tifier. The device name must be one of the 1- to· 30-character names
established with the System Builder. The procedure uses the name to
retrieve the device's characteristics.

The DEVICE variable can be a single variable or an array of 1 to 64
DEVICE elements. If you specify an array, the procedure creates an
array of DEVICE objects and places the corresponding identifiers in the
appropriate array elements.

Use an array if an ISR needs to communicate with multiple-unit
devices, such as a 32-bit parallel port or dual-drive disk controller.
In the case of a 32-bit parallel port, an ISR might use an array of 32
DEVICE elements to process the data that it receives on each port.
Based on condition or bit information that the ISR receives, it can
signal appropriate objects and make the associated driver processes
eligible for execution.

A call to CREATE_DEVICE also can specify the name of the ISR that
is to be associated with the DEVICE object or array of DEVICE objects.
If you omit the argument, you drive the device by polling rather than
with interrupts.

Device Handling 6-3

An optional relative vector argument specifies which vector of a
multiple-interrupt-vector device should be connected to the ISR.
(The base vector address appears on the System Builder's Device
Characteristics Menu.) If you omit this argument, it defaults to 1 (the
first vector). If you specify this argument in multiple calls to CREATE_
DEVICE within a program, the vector value for each call must be
unique; specifying the same value a second time causes the subsequent
call to CREATE_DEVICE to return the status value KER$_DEVICE_
CONNECTED. For example:

CREATE_DEVICE ('DUAO' , first_device, VECTOR NUMBER := 1);

CREATE_DEVICE ('DUAl' , second_device, VECTOR NUMBER := 2);

CREATE_DEVICE ('DUA2' , third_device, VECTOR NUMBER := 3);

Other arguments that you can specify receive pointers to the device
communication region, the first device control status register (CSR),
the first adapter control register, and the interrupt vector in the system
control block. In C and FORTRAN, you can also specify the size of the
communication region.

You can also specify arguments that receive the device's interrupt
priority level (IPL) and the name of a power-failure recovery routine.
The recovery routine is called before any process or ISR is restarted if
the processor enters a power-fail recovery sequence.

If your target configuration includes a VAX 8800 multiprocessor, a
call to CREATE_DEVICE forces a driver job to run on the processor
that handles the device's interrupts. It forces driver jobs for devices
on VAXBI buses 2 and 3 to run on the primary processor and forces
driver jobs for devices on VAXBI buses 0 and 1 to run on the secondary
processor. If necessary, you can declare the job eligible to run on either
processor with a call to KER$SET_JOB_ELIGIBILITY (see Section 6.4).

6-4 Device Handling

When a program is finished using a DEVICE object, it can delete
the object with a call to the DELETE procedure. The kernel frees
the memory used for the DEVICE object's communication region
(invalidates pointers to that memory) and disconnects the ISR from the
interrupt vector. Waiting processes are removed from their wait states
immediately and receive the status value KER$_BAD_ VALUE.

6.2 Handling Device Interrupts

Mter the CREATE_DEVICE procedure associates a device with an ISR,
the kernel calls the ISR each time the device interrupts the processor.
The ISR services the interrupt, using the device register pointer to gain
access to the device registers. Typically, with devices that interrupt for
several reasons, the ISR can examine the device's CSR to determine
the reason for the interrupt.

An ISR uses the device communication region to supply a program with
values that it receives from device registers. Only the data placed in
the communication region is available to an ISR.

An ISR and the driver program synchronize their execution by waiting
on and signaling a DEVICE object.

6.2.1 Waiting for an ISR to Service a Device Interrupt

Driver processes wait to be signaled while an ISR services a device
interrupt. To initiate the wait, a process specifies the appropriate
DEVICE identifier in a call to WAIT_ALL or WAIT_ANY. The ISR
satisifies the wait when it finishes servicing the interrupt. If multiple
processes are waiting on the same DEVICE object, the kernel queues
them in the order in which the WAIT procedure calls execute. Once the
interrupt is serviced, the ISR satisfies the wait of the first process in
the queue.

6.2.2 Signaling the DEVICE Object After Service Completion

When an ISR finishes servicing a device interrupt, it signals the appro
priate driver processes by specifying the appropriate DEVICE identifier
in calls to SIGNAL_DEVICE. These calls unblock the processes that
are waiting on the specified DEVICE object. An optional argument lets
you identify an element in a DEVICE array.

Device Handling 6-5

6.3 Synchronizing Access to the Device Communication
Region

While servicing a device, a driver program and an ISR communicate
by sharing the device communication region. Since the communication
region is a shared resource, access to the region must be synchronized.
The driver program can synchronize access to the region by setting the
processor's interrupt priority level (IPL).

VAX processors define 32 IPLs. IPL 0 is the lowest priority; IPL 31 is
the highest. Table 6-1 lists the IPLs at which various system events
occur.

Table 6-1 : Interrupt Priority Levels
IPL (decimal)

Hardware:

31

30

25-29

24

16-23

Software:

9-15

8

7

6

5

4

3

2

1

o

6-6 Device Handling

Events

Machine check; kernel stack not valid

Power failure

Processor, memory, or bus error

Clock (except MicroVAX, which is IPL 22)

Device IPLs, with 20-23 corresponding to UNIBUS or
Q22-bus request levels 4-7, respectively

Unused

DEVICE signal

Timer process

Closely coupled symmetric multiprocessing interrupt

Kernel debugger

Job scheduler

Process scheduler

Deliver asynchronous exception

Unused

User process level

You should consider a device's interrupt priority and job priority when
synchronizing device driver programs. The default interrupt priority
for the supplied device drivers is 5. You can change the interrupt
priority for the supplied drivers and set the priority for user-written
drivers by editing the value for the Interrupt priority entry on
the System Builder's Device Description Menu. The priority values
range from 4 to 7, with 4 being the highest priority. These values
correspond to the VAX interrupt priority levels 14 (hexadecimal) to 17
(hexadecimal).

You can get the resulting interrupt priority by specifying a priority
argument in the call to CREATE_DEVICE.

When synchronizing a device driver program, you should also consider
the program's job priority. The default job priority for most supplied
device drivers is 4. The default for supplied terminal drivers is 2. You
can adjust the job priority for supplied drivers and set the priority for
user-written drivers by calling the SET_JOB_PRIORITY procedure.
However, you can use this mechanism only if you select No for the
Autoload driver entry when you edit the System Builder's Device
Description Menu. For more information about setting job priorities,
see Section 3.3.2.

Setting the processor IPL provides synchronization because when the
processor IPL is set to a certain level, interrupts assigned to that level
and below (and their corresponding service routines) are disabled. This
form of synchronization, though somewhat difficult to use, is efficient.

Depending on your target configuration, a driver program can use
either the DISABLE_INTERRUPr and ENABLE_INTERRUPT proce
dures or the KER$LOCK_DEVICE and KER$UNLOCK_DEVICE pro
cedures to raise and lower the processor's IPL. To use these procedures,
the program must be running in kernel mode.

Use DISABLE_INTERRUPT and ENABLE_INTERRUPT if your
target is a single processor or a VAX 8800 multiprocessor. DISABLE_
INTERRUPT prevents entry to an ISR when a device interrupt occurs
by raising the processor's IPL to the IPL of the device. While interrupts
are disabled, no kernel procedures can be called; doing so causes
unpredictable results.

For a driver job to use DISABLE_INTERRUPT on a VAX 8800 multi
processor, the job must be running on the processor that handles the
device's interrupts. If necessary, you can request specific processor
eligibility while the driver job is executing by issuing a call to the
KER$SET_JOB_ELIGIBILITY procedure (see Section 6.4).

Device Handling 6-7

To reenable device interrupts, lower the processor's IPL by calling
ENABLE_INTERRUPT.

Use KER$LOCK_DEVICE and KER$UNLOCK_DEVICE if your target
configuration includes a multiprocessor that lets devices interrupt any
processor (such as a VAX 6000-3nn multiprocessor). KER$LOCK_
DEVICE prevents entry to an ISR when a device interrupt occurs
by raising the processor's IPL to the IPL of the device and setting a
spin lock. The procedure locks out the ISR. If an interrupt for the
device comes in on another processor while the spin lock is set, that
processor spins on the lock until the driver clears it with a call to
KER$UNLOCK_DEVICE.

NOTE

If your target configuration may include a VAX multiproces
sor that lets devices interrupt any processor, you should use
the KER$LOCK_DEVICE and KER$UNLOCK_DEVICE pro
cedures instead of DISABLE_INTERRUPT and ENABLE_
INTERRUPT to synchronize the device communication
region.

A VAX processor's current IPL is part of its processorwide state.
Disabling interrupts of a certain priority also disables other system
activities that occur at or below that priority level. If a process raises
the processor's IPL to block device interrupts, that process is the only
activity (other than ISRs) that can execute on that processor until
the process lowers the priority by calling ENABLE_INTERRUPT or
KER$UNLOCK_DEVICE.

If the power fails while interrupts are disabled, the kernel sets the
IPL to 0 before it raises the exception KER$_POWER_SIGNAL. This
exception is handled like other asynchronous exceptions; however,
continuing from the exception with interrupts enabled may produce
unpredictable results.

6.4 Setting a Driver Job's Processor Eligibility

When a device driver job executes on a VAX 8800 tightly coupled mul
tiprocessing system, calls to the CREATE_DEVICE procedure force the
driver job to run on the processor that handles the device's interrupts.
This binding lets the driver job raise the processor's IPL with a call
to DISABLE_INTERRUPr to synchronize access to the device com
munication region. If necessary, the driver job can undo this binding
by calling the KER$SET_JOB_ELIGIBILITY procedure. Using a call

6-8 Device Handling

to this procedure, a driver job can dynamically change its processor
eligibility and make itself eligible to run on either processor. However,
keep in mind that you cannot use an elevated IPL to synchronize access
to the device communication region if the driver job is not executing on
the processor that handles the device's interrupts.

When calling the KER$SET_JOB_ELIGIBILITY procedure, specify
the job's new eligibility mask. The procedure replaces the eligibility
mask in the job's job control block (JCB) with the mask you specify.
The mask supplies Boolean values that indicate job eligibility for each
processor in your target configuration. TRUE means the job is eligible
to run on a processor, and FALSE means the job is not eligible to run
on a processor. Whether the master process or a subprocess calls the
procedure, the call changes the processor eligibility for the entire job.

At least one available processor must be eligible to run the driver job.
If the job cannot run on any available processor, the kernel returns the
status value KER$BAD_ VALUE.

For information about synchronizing access to the device communica
tion region, see Section 6.3.

6.5 Reading and Writing Register Data

Driver programs and ISRs can read data from and write data to device
and processor registers by calling the READ_REGISTER, WRITE_
REGISTER, MFPR, and MTPR routines.

The READ_REGISTER and WRITE_REGISTER routines operate on
device registers. The READ_REGISTER function returns the value of a
variable reference, and the WRITE_REGISTER procedure loads a value
or group of values into a specified target variable reference. These read
and write operations are performed by single machine instructions and
are not affected by compiler optimizations. The READ_REGISTER and
WRITE_REGISTER routines are the only safe methods for reading
data from and writing data to a device register. These routines also can
be used safely to read and write a shared variable.

READ_REGISTER and WRITE_REGISTER should always be used,
instead of direct assignments, to read and write the fields in a device
register. This is required because the VAX architecture does not allow
the use of variable-length bit-field instructions to read or write device
registers. Using READ_REGISTER and WRITE_REGISTER ensures
that the compiler generates only valid instructions.

Device Handling 6-9

The MFPR and MTPR routines operate on processor registers. The
MFPR function returns the contents of a VAX processor register. The
MTPR procedure moves a specified value into a specified VAX internal
processor register. To call these routines, a program must be running
in kernel mode.

NOTE

Processor registers are a privileged system resource.
Changing the contents of processor registers while a system
is running may cause an unhandled exception.

6.6 Controlling DMA Devices

The VAXELN Toolkit provides utility procedures that device ·driver
programs can use to perform the following direct memory access (DMA)
device operations:

• Allocate, load, and free map registers, Section 6.6.1

• Allocate and free UNIBUS buffered data paths, Section 6.6.2

• Map and unmap memory buffers, Section 6.6.3

• Return a variable's physical address, Section 6.6.4

6.6.1 Allocating, Loading, and Freeing Map Registers

Device driver programs can allocate, load, and free UNIBUS or Q22-
bus map registers. The KER$ALLOCATE_MAP procedure allocates
a contiguous block of UNIBUS or Q22-bus map registers for use by
a program to map VAX memory to UNIBUS or Q22-bus memory
addresses, respectively.

The procedure returns a pointer to the first register allocated and
returns the starting map register number (0 to 495 for a UNIBUS, 0
to 8175 for a Q22-bus). Optionally, the procedure returns a pointer to
the base address of the system page table (SPT). Arguments supply the
number of registers to allocate and the DEVICE value that identifies
the device for which the registers are to be used. .

Once a driver has allocated the appropriate map registers, it can call
the ELN$LOAD_UNIBUS_MAP procedure to load the registers for use
by a DMA UNIBUS or Q22-bus device.

6-10 Device Handling

The ELN$LOAD_VNIBUS_MAP procedure is an alternative to the
more commonly used ELN$UNIBUS_MAP procedure.

The procedure assumes that the calling program has called the
KER$ALLOCATE_MAP procedure to allocate sufficient map regis
ters. ELN$UNIBUS_MAP allocates them for the caller. ELN$LOAD_
UNIBUS_MAP also assumes that an additional map register, beyond
the number actually necessary to map the buffer, has been allocated for
use as an invalid wild-transfer-stopper.

Arguments supply a pointer to the first UNIBUS or Q22-bus map
register allocated by KER$ALLOCATE_MAP, the I/O buffer, and the
buffer size. An optional argument is a pointer to the SPT; if this
argument is not specified, a device communication region (or any
system space buffer) cannot be mapped.

Another optional argument supplies a UNIBUS data path for the
transfer. If that argument is not supplied, data path 0, the direct data
path, is used.

When the map registers are no longer needed, the driver program
can free them by calling the ELN$FREE_MAP procedure. Pointers to
the freed registers become invalid. Arguments supply the number of
contiguous .map registers to be freed, the number of the first register,
such as the one returned by KER$ALLOCATE_MAP, and the DEVICE
value that identifies the device for which the registers are freed.

The KER$ALLOCATE_MAP and KER$FREE_MAP procedures can be
called only from programs running in kernel mode.

6.6.2 Allocating and Freeing Buffered Data Paths

A driver program can allocate and free UNIBUS adapter buffered
data paths by calling the KER$ALLOCATE_PATH and KER$FREE_
PATH procedures. The KER$ALLOCATE_PATH procedure allocates a
UNIBUS adapter buffered data path for use by a DMA UNIBUS device.

The procedure returns a pointer to the allocated data path register
and the allocated data path register number. An argument supplies
the DEVICE value that identifies the device for which the data path is
allocated.

Device Handling 6-11

A buffered data path can optimize the use of memory by a DMA device
that performs strictly sequential address transfers. (For additional
information on buffered data paths, see the VAX Hardware Handbook.)
The VAX-II/750, and VAX 8800, 8700, 8550, 8530, and 8500 processors
that are configured with UNIBUS adapters, support UNIBUS buffered
data paths. For the VAX-II/750, each UNIBUS adapter has three
buffered data paths. For the VAX 8nnn processors, each UNIBUS
adapter has five buffered data paths.

To use a buffered data path for a DMA transfer, the allocated data path
number must be loaded into the UNIBUS map registers being used
for the transfer. The ELN$UNIBUS_MAP and ELN$LOAD_UNIBUS_
MAP procedures accept an optional data path number for loading into
the UNIBUS map registers.

When a UNIBUS buffered data path is used for a DMA transfer, the
data path must be purged when the transfer has completed. You purge
by writing a value of I to the data path register, identified by the
returned register pointer.

The driver program can free allocated data paths by calling the
KER$FREE_PATH procedure. Arguments supply the data path regis
ter number, such as the one returned by KER$ALLOCATE_PATH, and
the DEVICE value that identifies the device for which the data path is
freed.

The KER$ALLOCATE_PATH and KER$FREE_PATH procedures can
be called only from programs running in kernel mode.

6.6.3 Mapping and Unmapping Memory Buffers

Device driver programs can map and free memory buffers for
DMA operations on UNIBUS and Q22-bus devices by calling the
ELN$UNIBUS_MAP and ELN$UNIBUS_VNMAP procedures, respec
tively. The ELN$UNIBUS_MAP procedure maps a specified buffer into
UNIBUS or Q22-bus address space and returns the 18-bit UNIBUS
address or the 22-bit Q22-bus address of the mapped buffer.

Arguments supply the DEVICE value identifying the device that
will use the mapped memory, the I/O buffer, and the buffer size. An
optional argument specifies the UNIBUS data path to use; the default
is 0, specifying the direct data path.

~ 12 Device Handling

NOTE

The procedure allocates the correct number of map registers
by calling KER$ALLOCATE_MAP. The procedure then
converts the virtual address of each page of the buffer to a
physical address and stores and validates the physical page
numbers in the allocated map registers. If a data path other
than 0 is specified, it is stored in the map registers as well.
Although the map registers are allocated by ELN$UNIBUS_
MAP before use, a nonzero data path number is assumed not
to be in use by any other device.

When the driver program no longer needs the memory buffers, it can
free them by calling ELN$UNIBUS_UNMAP. This procedure unmaps
previously mapped memory buffers. The procedure deallocates the
correct number of map registers by calling KER$FREE_MAP.

Arguments supply the DEVICE value identifying the device that was
using the mapped memory, the I/O buffer and the buffer size, and the
l8-bit UNIBUS address or the 22-bit Q22-bus address of the mapped
buffer.

6.6.4 Returning a Variable's Physical Address

A device driver program can use the ELN$PHYSICAL_ADDRESS func
tion for DMA devices on MicroVAX processors to return the physical
address of an identified variable. Programs using this function must
include the module $PHYSICAL_ADDRESS.

6.7 Coding VAXBI Bus Device Drivers

The VAXELN Toolkit provides the utility procedures ELN$BI_NODE_
MASK and ELN$BI_STOP for coding device drivers that interface with
a VAXBI bus. A VAXBI device driver must call the ELN$BI_NODE_
MASK procedure to get the mask identifying the VAXBI node number
to which the device should direct its inputs. The driver must load the
returned identification into the device's INTR Destination Register.
(The alternative, hard-coding the mask, limits the driver's portability.)

For example, in a VAX 8800 or VAX 6000-2nn system, the returned
mask has a bit set for the VAXBI node number of the NBIBIXBIB bus
adapter. In a KA800 system, the mask has a bit set for the processor's
VAXBI node number.

Device Handling 6-13

The ELN$BI_STOP procedure issues a VAXBI STOP bus transaction
to place a device in a stopped node state. The procedure's meaning and
usefulness for a device depends on the device.

Pascal and C programs that use these procedures must include the
modules $VAXBI and $vaxelnc, respectively.

6.8 Executing Routines in Kernel Mode

A number of VAXELN routines must execute in kernel mode. If a pro
gram includes a call to one of these routines or a user-declared routine
that requires kernel mode, you have two options. You can execute
the entire program in kernel mode, or you can use the KER$ENTER_
KERNEL_CONTEXT procedure to execute only that routine in kernel
mode.

To execute an entire program in kernel mode, select kernel mode when
you build the program into your VAXELN system or when you load the
program image. Device driver programs are typical examples of entire
programs that run in kernel mode.

If it is not desirable to execute an entire program in kernel mode, use
calls to KER$ENTER_KERNEL_ CONTEXT to execute specific routines
in kernel mode; the rest of the program runs in user mode. You specify
the KER$ENTER_KERNEL_CONTEXT procedure with the address of
the routine that is to be called in kernel mode. You can also specify a
status argument and the address of a VAX argument list to be passed
to the called routine. The argument list is a block of longwords in
standard VAX format: the first byte of the first longword supplies the
argument count, and the block contains an additionallongword for each
of the arguments.

VAXELN routines that require kernel mode include most of the
VAXELN driver utility procedures and the following:

ALLOCATE_MEMORY (with the physical_address argument)
CREATE_DEVICE
DISABLE INTERRUPT
ELN$LOAn_UNIBUS_MAP
ENABLE_INTERRUPl'
KER$ALLOCATE_MAP
KER$ALLOCATE_SYSTEM_REGION
KER$FREE_MAP
KER$FREE_SYSTEM_REGION
KER$LOCK_DEVICE

6-14 Device Handling

KER$UNLOCK_DEVICE
MFPR
MTPR

Example 6-1 uses KER$ENTER_KERNEL_CONTEXT to exe
cute a fWlCtion that calls DISABLE_INTERRUPT and ENABLE_
INTERRUPT.

The call to KER$ENTER_KERNEL_CONTEXT in Example 6-1 es
tablishes the kernel context needed to execute calls to DISABLE_
INTERRUPT and ENABLE_INTERRUPT. It replaces a function call
that might otherwise appear as follows:

return_status := raise_ipl(4);

Each argument in the call to KER$ENTER_KERNEL_CONTEXT cor
responds to the components of the preceding function call. The first
argument in the call to KER$ENTER_KERNEL_CONTEXT, return_
status, receives the function's completion status, assuming the function
is returning an integer status value. (If the KER$ENTER_KERNEL_
CONTEXT procedure cannot access a specified argument, the proce
dure returns the status KER$_NO_ACCESS to return_status.) The
second and third arguments identify the function and its arguments,
respectively.

NOTE

When you call KER$ENTER_KERNEL_CONTEXT, the
kernel checks for a completion status. Therefore, you must
specify the KER$ENTER_KERNEL_CONTEXT procedure's
status argument. If the specified routine is a function,
alternatively, that function can explicitly return a status
value. If you do not specify the status argument in the call
to KER$ENTER_KERNEL_CONTEXT or a function that
returns a status value, the call to KER$ENTER_KERNEL_
CONTEXT may produce unpredictable results.

Device Handling 6-15

Example 6-1: Using the KER$ENTER_KERNEL_CONTEXT Procedure

MODULEkernel_context_example;

INCLUDE $KERNEL;

TYPE

VAR

argument_block_type = RECORD
argument_count : INTEGER;
priority : INTEGER;
END;

argument block : argument_block_type;
return status INTEGER;

PROGRAM change_context (INPUT, OUTPUT);

BEGIN

argument_block. argument_count := 1;

argument block.priority := 4;
WRITELN('Entering kernel context ... ');

priority }

KER$ENTER KERNEL CONTEXT (return status, Routine return status
- - ADDRESS(raise ipl), {Routine to execute}

ADDRESS(argument block»; {Routine args }
WRITELN('Exiting kernel context ... '); -

END.

FUNCTION raise_ipl(priority : INTEGER) : INTEGER;

{ While in kernel mode, raise the processor's IPL to value of priority. }

BEGIN
WRITELN('In kernel context ... ');
DISABLE_INTERRUPT(priority);
ENABLE_INTERRUPT;
raise_ipl := 1;

END;

END; {MODULE kernel_context_example}

6-16 Device Handling

Raise the IPL }
Lower IPL to 0 }
Returned in return_status}

6.9 Handling Power-Failure Recovery

Devices normally need special attention following a power failure.
When the necessary speed and synchronization requirements cannot
be met by the general power-recovery exception (KER$_POWER_
SIGNAL), you can specify; in a CREATE_DEVICE call, the name of
an ISR that is to be called when the processor enters its power-failure
recovery sequence. Such a routine is called before any other process or
ordinary ISR is restarted. Typically; for a processor to recover from a
power failure, an application must perform the following sequence of
operations:

1. Reinitialize the device controller to a known state.

2. Ensure that no partially completed I/O operations are started, since
the device has been reinitialized.

3. Signal processes that are waiting for device interrupts, since no
interrupts will occur now that the device has been reinitialized.

These operations can be performed by a power-failure recovery routine.
Since power-failure recovery occurs at unpredictable times, the ISR
and main program must synchronize themselves with the action of the
power-failure recovery routine to retry operations that were in progress.

The VAX architecture defines a power-failure interrupt at IPL 30 (see
Table 6-1). Therefore, a process can set the processor's IPL to 30 and
block the interrupt, allowing the process to synchronize itself with the
power-failure recovery routine. Once a power-failure interrupt has been
posted, the processor has approximately 4 milliseconds before power is
shut down. So the interrupt should not be disabled for more than a few
instructions.

Device Handling 6-17

Chapter 7

Exception Handling

This chapter discusses VAXELN exceptions. and exception-handling
procedures. The chapter discusses the following topics:

• VAX. stack architecture, Section 7.1
• Exceptions in VAXELN systems, Section 7.2
• Raising exceptions, Section 7.3

• Exception-handling procedures, Section 7.4

• Status codes, Section 7.5

• Using runtime messages in application programs, Section 7.6

For language-specific information concerning exception handling, see
the VAXELN Pascal Runtime Library Reference Manual, VAXELN C
Runtime Library Reference Manual, or VAXELN FORTRAN Runtime
Library Reference Manual.

7.1 VAX Stack Architecture

This section contains a brief review of the VAX. stack architecture.

Whenever a program is executing on a VAX. processor, the stack pointer
(SP) and frame pointer (FP) hardware registers describe an active
stack environment. The syste~ software always sets up the initial
stack environment for a process. Usually the memory for the stack is
in the high virtual addresses of the process's memory, the. PI region.
(See Chapter 3 for a discussion of VAX. memory management and the
definition of the PI region.) ..

Exception Handling 7-1

Stacks are good structures to record items in a defined order and
then play the items back in the reverse order. Stacks are helpful
in performing recursive operations, but in many cases they are best
used as a record of the implicit state of a program. The call history
of the procedures activated up to a point in the program is a typical
application of this stack feature.

The VAX. architecture uses the stack environment in the processing
of many VAX. instructions. The simple cases are instructions such as
PUSHAL, which pushes an address on the stack. The action of pushing
is a 2-step process: subtract a constant from the SP register, then use
the new SP value as the address at which to place the data. Popping
the stack is the reverse: use the value of SP to address the data, then
add a constant to the stack.

The constant is dependent upon the operation. For PUSHAL, a long
word is placed on the stack. In other contexts, different-sized objects
are pushed or popped from the stack. VAX. stacks grow downward in
address as they expand. Nothing can be assumed regarding the align
ment of SP on a particular memory-length boundary, although some
instructions, such as CALL, implicitly align the stack. Most high-level
languages manage the stack environment for the programmer; it is not
necessary to manipulate the SP value explicitly.

At any given time, the value in the FP register contains the address
of the active stack call frame, a small data structure, defined by the
VAX. hardware, that contains information about the current procedure
invocation and the state of the procedure that called it. At the same
time, the value of the SP register is equal to or less than (that is, below)
the FP value. The memory between the SP and FP values is referred to
as the local storage of the procedure activation; together, the SP and FP
values are referred to as the procedure's stack frame, as illustrated in
Figure 7-1. Pascal and C use this space to store procedure temporaries
or variables.

The VAX. CALLS, CALLG, and RET instructions affect the values of
SP and FP to dynamically create and destroy the frame structure.
For instance, with the stack in the state pictured in Figure 7-1, if a
procedure call is performed, the stack would look like Figure 7-2.

7-2 Exception Handling

Figure 7-1: A Procedure's Stack Frame

Procedure Local Storage :(SP)

Active Call Frame :(FP)

MLO-004281

Figure 7-2: A Frame Structure After a Procedure Call

Stack Procedure Local Storage :(SP)

Frame Active Call Frame :(FP)

Stack Procedure Local Storage

Frame Previous Call Frame

MLO-OO4282

Internally, the call frame block looks like Figure 7-3.

In Figure 7-3, Return PC contains the address of the first instruction
after the CALL instruction that called this currently active procedure.
Previous FP contains the address of the previously active frame: The
Handler Address location is either Oor the address of an established
condition handler procedure. (For a more detailed description of the
frame contents, see the VAX Architecture Reference Manual.)

By examining the current frame at the FP address, the history of the
call sequence can be extracted by following the Previous FP values
until the top of the stack is reached. This trail of frames is the key to
understanding what happens when an exception occurs.

Exception Handling 7-3

Figure 7-3: Call Frame Block

Handler Address

Register Mask I Previous PSW

PreviousAP

Previous FP

Retum PC

Saved Registers

:(FP)

:(FP) + 4

:(FP) + 8

:(FP) + 12

:(FP) + 16

:(FP) + 20

MLO-004283

7.2 Exceptions in VAXELN Systems

The term exception describes programming events that occur during
the execution of a program. Exceptions can be either synchronous or
asynchronous:

• Synchronous exceptions occur at the same place in the program
given a set of circumstances, for example, dividing by o.

• Asynchronous exceptions are triggered by an event outside the
control of the program, for example, power failure.

Some exceptions are generated by hardware events, and some are
solely the result of a software event. VAXELN programs can experience
these types of exceptions:

• Hardware-detected arithmetic problems, for instance, division by 0
or integer overflow

• Hardware-detected access problems, for instance, nonexistent
memory

• Hardware-detected events, for instance, power failure
• Software-detected events, for instance, a signal of a process
• Software-detected conditions, for instance, a Pascal range violation

7-4 Exception Handling

• Software-detected conditions in the runtime library, for instance, a
problem with opening a file

• Software-detected conditions in the VAXELN Kernel when a pro
gram has requested a kernel service that must return an error
status but the program did not specify a status parameter

When an exception occurs, you have two options: ignore it or handle
it. An exception might or might not be important for a program and
it might or might not be expected. You must decide if a particular
problem or exception condition is important or fatal to the program
execution.

The VAXELN Kernel exception-processing software notifies a running
program of an exception by temporarily stopping the normal execution
of the program and calling a specially defined exception handler routine
defined by the program. Exception handlers are procedures that are
established during the execution of a program to handle one or more
of the potential exception conditions that can occur. For example, a
programmer might know that an integer overflow could occur during
a particular section of code and establish a special handler for that
region.

All of the VAX programming languages allow the programmer to
dynamically establish exception or condition handlers. For transporta
bility, the VAXELN exception mechanism is almost identical to the
VMS exception mechanism.

7.2.1 Exception-Handler Arguments

When an exception occurs, the VAXELN Kernel exception logic builds
an argument list that describes the exception. The kernel then
searches the current list of stack frames to find a frame that con
tains a nonzero condition handler address. When one is found, the
handler procedure is called.

If no handler is found, the kernel takes a default action. If the debug
ger is present in the system, a special debugger handler is called. The
debugger handler acts as the condition handler, giving the programmer
a chance to look at the state of the program. If no handler is found and
the debugger is not present, the kernel deletes the process.

Exception Handling 7-5

The argument list for an exception handler routine contains two values.
The first argument value is the address of another data block that
contains information about the exception that occurred. This block is
the signal argument block. The signal arguments are illustrated in
Figure 7-4.

Figure 7-4: Signal Arguments

Number of Longwords Following

Name of the Exception

Additional Exception-Dependent
Information

PC of the Exception

PSL at the Exception Point

:Signal Arguments

:Signal Arguments + 4

MLO-004284

Each exception has a distinct argument list that provides information
about the exception. Sometimes, as in the case of division by 0, no
additional information is needed or present. Such exceptions have
the same names as the corresponding status values, as described in
Appendix A, Status ValueslException Names.

The second argument value is the address of a data block that con
tains information needed to recover from the exception. This block is
called the mechanism argument block. The mechanism arguments are
illustrated in Figure 7-5.

The frame depth value is the number of frames searched while the
system is looking for the exception handler address.

7-6 Exception Handling

Figure 7-5: Mechanism Arguments

4 :Mechanism Arguments

FP of Established Handler :Mechanism Arguments + 4

Frame Depth :Mechanism Arguments + 8

RO at Exception :Mechanism Arguments + 12

R1 at Exception :Mechanism Arguments + 16

MLO-004285

7.2.2 Continue and Resignal Operations

When the exception handler routine is called, it has the responsibility
of looking at the exception name value and deciding what to do. The
routine then returns a Boolean value to the kernel exception handler
logic. If the Boolean value is TRUE (low bit of RO = 1) the kernel
resumes execution of the program at the point of the exception; the
condition is handled. If the Boolean value is FALSE (low bit of RO = 0)
the kernel continues to search the stack frame list for another handler
to call; the condition is not handled. These two actions are referred to
as continuing and resignaling.

Many high-level languages provide an explicit method for exiting a
routine, such as an up-level GOTO in Pascal and the longjmp function
in C, which you should use to exit an exception handler. When you use
a Pascal up-level GOTO or a C longjmp, the language runtime library
does an implicit continue on behalf of the program.

As explained previously, if no handler is found that handles the excep
tion, the kernel deletes the process and returns the exception name as
the status. Each potential exception has an individual status code de
fined for it (see Section 7.5). The exception name value can be used to
associate a descriptive text message with the status code, as explained
in Section 7.6.

Exception Handling 7-7

An exception handler may handle one or more individual exception
conditions. Some programs have handlers that handle all exceptions
and display a message if something unexpected occurs. Since the stack
frame is searched backward in the call history, a handler established in
the program's main routine would be the last to be called in the event
of an exception and could act as the catch-all handler.

In addition to the typical continue or resignal options, the program
can also modify the exception state information and continue under
different conditions. For instance, if an integer overflow occurs on a
statement, the handler can modify the variables involved and continue.
As another example, changing the value of the saved PC in the signal
argument list has the effect of continuing the program at a different
place. Remember, though, that the program continues with the stack
state as it was at the exception. This means that the new PC must be
in the routine that experienced the exception.

7.2.3 Unwind Operation

As mentioned previously, some languages provide an explicit method
for exiting the condition handler. Using such a method has the effect
of continuing at a different location and possibly in a different stack
environment. The act of exiting cleanly from one stack environment
and reestablishing another stack environment is called unwinding.
Because the stack discipline and modification are complex, a VAXELN
Kernel procedure performs the unwinding operation. Normally, the
unwind occurs automatically when an application exits an exception
handler.

If you use the KER$UNWIND procedure directly, it provides several
options. You can specify KER$UNWIND with two parameters: a new
frame pointer (FP) and an optional new program counter (PC) . The
new FP argument specifies the target FP to which the stack will be
unwound, or a value in the range 0 to 32767 that specifies the number
of stack frames to be unwound (the frame depth). You can use a frame
depth value only if you call KER$UNWIND from an exception handler
or a routine called by an exception handler. Otherwise, the status
value/exception SS$_NOSIGNAL is returned.

When specified as frame depths, the values 0 and -1 have special
meanings. The value 0 causes KER$DNWIND to unwind to the frame
of the caller of the routine that established the handler. If you specify
-1 for the frame depth, KER$UNWIND does not unwind any call
frames.

7-8 Exception Handling

The PC argument specifies the new PC at which execution should
resume within the call frame specified by the new FP argument. If you
do not specify a new PC, the kernel uses the return PC that is already
established for the target call frame.

The KER$UNWIND procedure has the effect of returning back through
some number of subroutines without executing any code in the subrou
tines that are skipped.

Unwinding allows a program to handle the exception by skipping back
to a particular call point in the stack history, for instance, the caller of
the routine that got the exception.

As an unwind operation takes place, if a frame has a handler estab
lished, the handler is called with a special unwind exception condition.
This exception is to notify the handler that the active frame is being
skipped and that any necessary cleanup should be performed. The
unwind handler is assumed to complete, returning the Boolean TRUE
value that specifies continue.

One final feature can be used when an unwind is performed. Most
procedures that return a simple value return that value in RO and
Rl. Most VAX languages adhere to this standard. You can, therefore,
change the value of the saved RO and Rl in the mechanism argument
block and then unwind. The effect is to set the value of a function and
return.

The following program calls procedures to a frame depth of three. The
procedure at level three establishes an exception handler that unwinds
the call stack two frames to the main procedure level.

MODULE handler_test;

INCLUDE $KERNEL, $SSMSG;

PROGRAM handler_test;

FUNCTION cond handler OF TYPE EXCEPTION_HANDLER;

VAR
status : INTEGER;
unwind_depth : AANYTYPE;

Exception Handling 7-9

BEGIN
IF SIGNAL ARGS.NAME <> SS$_UNWIND THEN

BEGIN
WRITELN ('Inside condition handler.');
WRITELN ('Unwinding " mech args.depth:1, , fr~es');

WRITELN ('to return to the ;ain procedure.');
unwind depth::INTEGER := mech args.depth;
KER$UNWIND(status, -

NEW FP := unwind_depth);
cond handler := TRUE

END
ELSE

cond handler := FALSE
END;

PROCEDURE level_3;

VAR
i, j, k : INTEGER;

BEGIN
WRITELN ('Process is in level-3.');
WRITELN ('Now raising an exception to test KER$UNWIND.');
RAISE EXCEPTION (1);
WRITELN ('Should not execute this statement.');

END;

PROCEDURE level_2;

BEGIN
WRITELN ('Process is in level-2.');
WRITELN ('Now calling level-3.');
level_3;
WRITELN ('Should not execute this statement.');

END;

BEGIN
WRITELN ('This is the main program -- level 1.');
WRITELN ('Establishing a condition handler.');
ESTABLISH (cond_handler);
WRITELN ('Now calling level-2.');
level 2;
WRITELN ('Control is back in level 1 after the unwind.');
WRITELN ('Main routine is done.');

END.
END;

In the preceding example, active handlers are called during the un
wind operation. Thus, the handler in the example checks whether
an unwind operation is already in progress. If not, the handler calls
KER$UNWIND. If an unwind operation is in progress, the handler
resignals. When the unwind operation is complete, control returns to
the main routine.

7-10 Exception Handling

7.2.4 Multiple Concurrent Exceptions

When an exception signal is in progress, other exceptions can still
occur. These exceptions also cause the stack to be searched for an
active handler, but a special action takes place. Any frames that were
previously tested for having an exception handler are not tested again.

That is, when the exception occurs, the frames from the exception
frame through the original condition handler are tested, then the
frames between the handler's frame and the frame that activated the
handler are skipped. The search resumes with the frame preceding the
one that established the handler. This prevents handlers from being
recursively entered; once active, a handler cannot be reactivated.

7.3 Raising Exceptions

VAXELN provides the RAISE_EXCEPTION kernel procedure, which
can be used to generate exceptions. The result is much like an ex
ception caused by a hardware condition. Sections 7.3.1 and 7.3.2
provide information about kernel procedure failure exceptions and
asynchronous exceptions, respectively.

7.3.1 Kernel Procedure Failure Exceptions

Each VAXELN Kernel procedure accepts an optional status variable.
The final status of the operation is placed in the variable as one of
the last things done by the kernel procedure. If the program does
not specify a status variable and the status is some sort of failure,
an exception is generated, with the status as the exception name.
This feature provides a means of handling unexpected failures for the
programmer who expects kernel procedures to succeed.

7.3.2 Asynchronous Exceptions

Asynchronous exceptions do not occur as a result of a program action
but as a result of an external event that cannot be predicted. The
resul t of an asynchronous exception is identical to that of any other
exception, with one notable difference. While one of these exceptions is
signaled, other asynchronous exceptions are prevented from occurring

Exception Handling 7-11

until a handler returns the BOOLEAN TRUE value that specifies
continue. However, other synchronous exceptions can still occur.

In addition, VAXELN provides two kernel procedures for controlling the
occurrence of these exceptions. Normally the exceptions are enabled,
but calling DISABLE_ASYNCH_EXCEPTION prevents the delivery
of the exceptions to the calling process until ENABLE_ASYNCH_
EXCEPTION is called. These procedures mimic the action of having an
asynchronous exception signal in progress.

Several types of asynchronous exceptions are generated by VAXELN:

• KER$_POWER_SIGNAL. If a job is specified during system build
as desiring power-recovery signals, the kernel generates an excep
tion when the power recovery takes place.

• KER$_QUIT_SIGNAL. Signaling a process object causes the target
process to receive this exception.

• KE R$_PROCESS_ATTENTI ON. This exception occurs when
a process calls the kernel procedure KER$RAISE_PROCESS_
EXCEPTION.

7.4 Exception-Handling Procedures

The kernel procedures relating to exception handling are summarized
in Sections 7.4.1 to 7.4.5.

7.4.1 DISABLE_ASYNCH_EXCEPTION Procedure

DISABLE_ASYNCH_EXCEPTION prevents the delivery of asyn
chronous exceptions to the calling process.

7.4.2 ENABLE_ASYNCH_EXCEPTION Procedure

ENABLE_ASYNCH_EXCEPTION allows the delivery of asynchronous
exceptions to the calling process. Asynchronous exceptions are enabled
by default and must be reenabled only after being explicitly disabled.
They also are disabled while an asynchronous exception is being
handled.

7-12 Exception Handling

7.4.3 RAISE_EXCEPTION Procedure

RAISE_EXCEPTION causes a particular software exception in the
calling process. You can specify a list of 0 or more additional exception
arguments, which will be made available to the exception handler in
the array of additional arguments.

NOTE

Some exception names, such as SS$_ACCVIO, are used to
identify specific system or hardware events (in this case, a
virtual memory access violation); do not raise one of these
exceptions.

7.4.4 KER$RAISE_PROCESS_EXCEPTION Procedure

KER$RAISE_PROCESS_EXCEPTION raises the asynchronous excep
tion KER$_PROCESS_ATTENTION in the specified process.

7.4.5 KER$UNWIND Procedure

The KER$UNWIND procedure unwinds the call stack to a new location.
Arguments supply the target frame pointer (FP) and the new program
counter (PC) at the new FP.

7.5 Status Codes

Status codes returned by VAXELN routines follow the VAX convention
in which odd-numbered integers signify success and even values failure,
though not necessarily fatal. The details of the convention are as
follows:

• Bits 0 to 2 define the severity: 0 means warning, 1 means success,
2 means error, 3 means informational, and 4 means severe or fatal
error.

• Bits 3 to 31 of the integer form a status ID.

Exception Handling 7-13

Typically, an informational status is similar to success but is qualified
in some way. For example, a command interpreter might use it to
inform a user that although a delete command was understood and
processed successfully, no objects were deleted. Similarly, warning
and, sometimes, error severity imply that operation of a system is still
possible, whereas fatal severity implies that it is not.

NOTE

For the exit status of a process, you can return any integer,
although Digital recommends that you follow the convention
just explained.

The creator of a job has the option of receiving a special termination
message when the created job completes. This message contains an
integer making up the completion, or exit, status of the created job's
master process. If the master process specifies no status of its own and
completes successfully, the default status code is 1.

NOTE

The successful completion of a process can be represented by
more than one exit status, for example, status code 1 or 3.
Therefore, to check for success in your programs, you should
check for an odd value (bits 0 to 2 equal 1 for success, or 3
for success with an informational message).

7.6 Using Runtime Messages in Application Programs

The VMS system contains message-processing features that application
programs can use to perform error checking and to handle the conver
sion of status codes into meaningful message text. These features are
supported by the VMS Message Utility and the VMS system service
$GETMSG. Using the Message Utility, you can construct messages for
use with your application programs. The$GETMSG system service ex
tracts message text from system and user-created message data bases
generated by the Message Utility.

The VAXELN Toolkit includes message files generated from the VMS
Message Utility. You can use the contents of these files in your appli
cation programs to check and handle errors. Additionally, the toolkit
provides two runtime routines that return message text associated
with a status code: the system service SYS$GETMSG, which is similar

7-14 Exception Handling

to the VMS $GETMSG routine, and a high-level language equivalent
named ELN$GET_STATUS_TEXT.

Sections 7.6.1 to 7.6.4 identify the VAXELN message files and explain
how to create application-specific messages, use message files in ap
plication programs, and retrieve message text associated with status
codes.

7.6.1 VAXELN Message Files

The VAXELN Toolkit provides message source files and object modules
used by the VAXELN software components for error checking and
handling. The message source files reside in the general VAXELN
runtime library. They consist of message definition statements and
directives that define message text, status codes, and message symbols.
You may want to examine them before or use them as templates while
you create your own message files.

Message object modules reside in the RTLOBJECT.OLB and RTL.OLB
object module libraries. These modules are compiled message files.
The RTLOBJECT message modules contain message symbols. Message
symbols are global symbols that provide a convenient way for programs
to refer to status codes (see Section 7.6.4). A message symbol consists
of a prefix that identifies the facility and a symbol name that is defined
in the message definition. An example of a message symbol defined for
the VAXELN Kernel is KER$_NO_SUCH_PORT. The prefix is KER$_,
and the message symbol is NO_SUCH_PORT.

The RTL.OLB library contains two sets of message modules that are
named facility$MSGDEF_TEXT and facility$MSGDEF. The facil
ity$MSGDEF _TEXT modules contain message text. You link these
modules with application programs that call the ELN$GET_STATUS_
TEXT procedure to access message text at runtime.

The facility$MSGDEF modules in the RTL.OLB library define message
symbols as linker global values for use with programs written in
languages other than VAXELN Pascal.

Table 7-1 summarizes the VAXELN message files.

Exception Handling 7-15

Table 7-1: VAXELN Message Flies
RTLOBJECT

Source File Module RTL Modules

CMSG.MSG $CMSG C$MSGDEF_TEXT
C$MSGDEF

ELNDECW_DWTMSG.MSG ELNDECW _DWT$MSGDEF_
TEXT
ELNDECW_DWT$MSGDEF

ELNDECW _XLIBMSG.MSG ELNDECW _XLIB$MSGDEF _
TEXT

ELNMSG.MSG

FORMSG.MSG

KERNELMSG.MSG

LIBMSG.MSG

7-16 Exception Handling

$ELNMSG

$FORMSG

ELNDECW _XLIB$MSGDEF

ELN$MSGDEF _TEXT
ELN$MSGDEF

FOR$MSGDEF _TEXT
FOR$MSGDEF

$KERNELMSG KER$MSGDEF _TEXT
KER$MSGDEF

$LIBMSG LIB$MSGDEF _TEXT
LIB$MSGDEF

Description

Messages gen
erated by the
VAXELN C run
time library

Messages gen
erated by
the VAXELN
DECwindows XUI
Toolkit routines

Messages gen
erated by
the VAXELN
DECwindows Xlib
routines

Messages gen
erated by the
VAXELN Pascal
compiler and
other runtime
components

FORTRAN
specific messages
generated by
the VAXELN
FORTRAN run
time library

Messages gen
erated by the
VAXELN Kernel

General runtime
library messages
generated by
the VAXELN
FORTRAN run
time library

Table 7-1 (Cont.): VAXELN Message Files
RTLOBJECT

Source File Module RTL Modules Description

MTHMSG.MSG $MTHMSG

OTSMSG.MSG $OTSMSG

MTH$MSGDEF _TEXT
MTH$MSGDEF

OTS$MSGDEF _TEXT
OTS$MSGDEF

Math runtime
library messages
generated by
the VAXELN
and VAXELN
FORTRAN run
time libraries

Language
independent run
time library mes
sages generated
by the VAXELN
and VAXELN
FORTRAN run
time libraries

PASCALMSG.MSG $PASCALMSG PAS$MSGDEF _TEXT
PAS$MSGDEF

Messages gen
erated by the
VAXELN Pascal
runtime library

SSMSG.MSG

STRMSG.MSG

$SSMSG

$STRMSG

SS$MSGDEF _TEXT
SYS$SSDEF

STR$MSGDEF _TEXT
STR$MSGDEF

System Service
runtime messages
generated by the
VMS emulation
routines and other
VAXELN routines

String runtime
library messages
generated by
the VAXELN
FORTRAN run
time library

In addition to the modules listed in the preceding table, the VAXELN
Toolkit includes the message image files ELNDECW _DWTMSG.EXE,
ELNDECW_XLIBMSG.EXE, ELNCMSG.EXE, and ELNMSG.EXE
and VAXELN Pascal compiler messages. The VAXELN installation
procedure places the images ELNDECW_DWTMSG.EXE, ELNDECW_
XLIBMSG.EXE, and ELNCMSG.EXE in the VAXELN directory ELN$.

Exception Handling 7-17

The ELNDECW _DWTMSG.EXE and ELNDECW _XLIBMSG.EXE
images provide message text for the VAXELN DECwindows XUI
Toolkit and Xlib runtime routines. The ELNCMSG.EXE image file
provides message text for the VAXELN C runtime routines.

The image file ELNMSG.EXE and the VAXELN Pascal compiler mes
sages are used by software that runs on a VMS system. The VAXELN
installation procedure places the image ELNMSG.EXE in the VMS
directory SYS$MESSAGE.

7.6.2 Constructing Messages

To construct application-specific messages, do the following:

1. Create a message source.

2. Compile the source file using the VMS Message Utility.
3. Include the resulting message object module when you link your

application program.

A sample message source file follows:

. FACILITY

. SEVERITY
SYNTAX
ERRORS
. END

RTAPPLICATION,l /PREFIX=RTAPP$_
ERROR
<Syntax error in string' !AS'>/FAO=l
<Errors occurred during processing>

Consult the message source files that reside in the general runtime
library for more elaborate examples.

After you create the source file, use the MESSAGE command to compile
it. Specify the command in the following format:

$ MESSAGE file-spec[, ...]

The default file type for message source files is MSG. The following ex
ample compiles the message source file RTAPPMSG.MSG and produces
the message object module RTAPPMSG.OBJ:

$ MESSAGE RTAPPMSG

You can then link the message object file with your application pro
gram. For example:

$ LINK/NOSYSSHR RTAPPLICATION+RTAPPMSG+ELN$:RTLSHARE/LIB+RTL/LIB

7-18 Exception Handling

For more information about the VMS Message Utility, see the VMS
Message Utility Manual.

7.6.3 Using Message Files with Application Programs

You can use VAXELN and application-specific message symbols in
your application programs to check for and handle various conditions at
runtime. A program can compare a message symbol with a status value
returned by a routine call to check whether an operation completed
successfully or whether a particular error occurred.

To use message symbols, a program must import them with a language
dependent include statement. Alternatively, you can include message
symbols by specifying a message module, such as KER$MSGDEF_
TEXT, from RTL.OLB when you link the application. You can include
the same set of object modules for each application program or you
can set up the application such that all jobs share the message text
shareable image ELN$:SHARED_STATUS_TEXT.EXE. This shareable
image contains the status text for the following toolkit components:

• Kernel
• VAXELN runtime library

• C runtime library
• VAXELN Pascal runtime library

• FORTRAN runtime library
• General runtime library (LIB)

• Language-independent runtime library (OTS)

• String runtime library (STR)

For information about building the message text shareable image into
a VAXELN system or tailoring the shareable image, see the VAXELN
Development Utilities Guide.

Example 7-1 imports the message. symbols from the message module
$KERNELMSG. The program then uses the symbols KER$_SUCCESS
and KER$_DISCONNECT to check for success and error conditions.

Exception Handling 7-19

Example 7-1: Using Message Flies

MODULE msg_symbol_ex;

INCLUDE $I<ERNELMSG; { Import the kernel message symbols. }

PROGRAM use_msg_symbol(INPUT, OUTPUT);

VAR
one second : LARGE INTEGER;
data-port : PORT; -
dest-port_name : VARYING_STRING(8);
msg : MESSAGE;
stat : INTEGER;

BEGIN

Create a port and then use that port to establish a connection to
{ another port. Repeat the connection request until a connection
{ is made. Use the I<ER$ SUCCESS message symbol to check for success.
{} -

CREATE_PORT(data-Fort);
REPEAT

WAIT_ANY(TIME := one_second);
CONNECT_CIRCUIT (data-port,

DESTINATION NAME := dest-F0rt_name,
STATUS := stat);

UNTIL stat := KER$_SUCCESS;

{ Now, send a message over the circuit.

SEND (msg, data-Fort, STATUS := stat),

{ If the send operation failed because the circuit was disconnected
{ by the partner process, reestablish a circuit connection and try
{ to send the message again. Use the KER$_DISCONNECT message symbol
{ to check for this condition.
{}

IF stat = I<ER$_DISCONNECT THEN
BEGIN

DISCONNECT_CICUIT(data-port);
CONNECT_CIRCUIT (data-port,

DESTINATION NAME := dest-port_name,
STATUS : = stat);

SEND (msg, data-Fort, STATUS := stat),
END;

Example 7-1 Cont'd on next page

7-20 Exception Handling

Example 7-1 (Cont.): Using Message Files

{ If the operation failed again, terminate this job. Use the
{ ODD function to check for an odd status code (success or
{ informational).
{}

IF NOT(ODD(stat)) THEN
BEGIN

END.
END;

WRITELN('Exiting, status is:
EXIT(EXIT_STATUS := stat);

END;

stat :1);

If the INCLUDE statement was omitted from this program, you could
incl ude the $KERNELMSG module with the following EPASCAL
command line:

$ EPASCAL!DEBUG MSG_SYMBOL_EX,ELN$:RTLOBJECT!LIB!INCLUDE=$KERNELMSG

7.6.4 Retrieving Message Text

The VAXELN runtime libraries provide two message-processing rou
tines: SYS$GETMSG and ELN$GET_STATUS_TEXT. These routines
retrieve the message text associated with a specified status code. An
application can use these routines to retrieve message text from system
message files or user-created message files.

SYS$GETMSG is a system service that is similar to the VMS system
service $GETMSG. It locates and returns message text associated
with a specified status code into the caller's buffer. You must specify
the status code, a longword to receive the message length, and buffer
address arguments. Optional arguments let you specify the message
components to be returned and the address of a four-byte array that
receives other message-specific data. For more information, see the
VMS System Services Reference Manual.

Exception Handling 7-21

The VAXELN Toolkit provides the ELN$GET_STATUS_TEXT proce
dure for easier use with high-level languages. This procedure searches
for a specified status code in the message text modules that you include
with the program image. If the procedure does not find the status
code in the image, the procedure searches for the code in the system's
message text shareable image. When the procedure finds the specified
status code, it returns the code's message text. If you specify the op
tional format control string, the procedure returns only the message
components identified in the string.

To use the ELN$GET_STATUS_TEXT procedure, you must include the
following modules:

Language Module

VAXELN Pascal $GET_MESSAGE_TEXT from the RTLOBJECT.OLB

C $GET_MESSAGE_TEXT from ELN$:VAXELNC.TLB

FORTRAN ELN$:MESSAGES.FOR

The call to ELN$GET_STATUS_TEXT in the following example returns
the message text associated with the message symbol KER$_BAD_
COUNT to the variable output_string:

VAR
output_string

BEGIN

{ Get the message text.

ELN$GET STATUS TEXT(KER$ BAD COUNT,
- - [STATUS$FACILITY,STATUS$SEVERITY,STATUS$IDENT,

STATUS$TEXT]
output_string) ;

{ Now write it. }

WRITELN(output_string);

7-22 Exception Handling

{ %KERNEL-F-BAD_COUNT, Bad parameter count
{
{ would be written to SYS$OUTPUT
{}

END.

Since the ELN$GET_STATUS_TEXT procedure retrieves message text
at runtime, the appropriate facility$MSGDEF _TEXT message modules
must be linked with your application programs or included as part
of the system's message text shareable image. You can include these
message modules when you specify the RTL.OLB library module in the
LINK command line, or when you select Yes for the Shared status
text entry on the System Builder's System Characteristics Menu.

When using the remote debugger, you can also retrieve runtime mes
sage text by using the SHOW MESSAGE debugger command. For
information on the SHOW MESSAGE debugger command, see the
VAXELN Development Utilities Guide.

7.6.5 Displaying VAXELN Message Text on VMS Systems

While developing VAXELN applications on a VMS system, you may
want the system to display the message text associated with the
hexadecimal values reason masks or reason values, reported in the
context of exceptions. Such values are returned by the local debugger
component. To retrieve the message text, specify the appropriate
message image files with the DCL command SET MESSAGE. The
image files that the toolkit supplies include the following:

ELNDECW _DWTMSG.EXE

ELNDECW _XLIBMSG.EXE

ELNCMSG.EXE

ELNMSG.EXE

Provides message text for the VAXELN
DECwindows XUI Toolkit runtime routines

Provides message text for the VAXELN
DECwindows Xlib runtime routines

Provides message text for the VAXELN C
runtime routines

Provides message text for the VAXELN run
time routines

Exception Handling 7-23

The following command lines show how to enable message text for the
VAXELN and VAXELN C runtime routines, where hhhhhhhh is the
hexadecimal value of interest:

$ SET MESSAGE SYS$MESSAGE:ELNMSG
$ EXIT %xhhhhhhhh

$ SET MESSAGE ELN$:ELNCMSG
$ EXIT %xhhhhhhhh

You must enable message text while debugging DECwindows applica
tions. The following command lines enable DECwindows message text,
where hhhhhhhh is the hexadecimal value of interest:

$ SET MESSAGE ELN$:ELNDECW DWTMSG
$ EXIT %xhhhhhhhh -

$ SET MESSAGE ELN$:ELNDECW XLIBMSG
$ EXIT %xhhhhhhhh -

7-24 Exception Handling

Chapter 8

Ethernet/IEEE 802 Datalink Drivers

The VAXELN Toolkit includes EthernetlIEEE 802 datalink drivers for
supported network devices. Each of the datalink drivers supports the
the VAXELN EthernetlIEEE 802 Datagram Service, VAXELN Network
Service, and VAXELN Internet Services.

• The Datagram Service provides an interface that VAXELN systems
can use to communicate with other types of systems using system
independent communications protocols.

• The Network Service routes messages sent between two network
nodes, manages the list of universal names for the network, and
provides a runtime interface for managing a DECnet network.

• The Internet Services provide an Ethernet network interface that
VAXELN systems can use to communicate with other applications
in an Internet network.

The VAXELN datalink drivers support multiple Ethernet controllers.
VAXELN systems can include up to eight Ethernet controllers of the
same type, and can participate in homogeneous or heterogeneous net
working environments. Although DECnet software can run on only one
controller at a time, you can implement other private Ethernet proto
cols that can run on other available controllers. That is, if your system
is configured with two Ethernet controllers, one can run DECnet while
the other controller runs your private Ethernet protocol.

Using network management routines, applications can start and stop
the DECnet software on a controller and can switch the DECnet
software from one controller to another (see Section 9.4.3).

Ethernet/IEEE 802 Datalink Drivers 8-1

The VAXELN EthernetlIEEE 802 datalink drivers are self-contained
program images that perform networking services. Table 8-1 lists the
datalink drivers with the devices they support.

Table 8-1: Ethernet/IEEE 802 Datalink Drivers

Driver

ESDRIVER

ETDRIVER

EZDRIVER

XBDRIVER

XEDRIVER

XQDRIVER

Supported Network Devices

Integrated Ethernet controllers for the Micro VAX 2000, 3300,
and 3400 and the VAXstation 2000 and 3100 series processors
(ESA)

DEC LAN controller 200 (BNI)

Integrated Ethernet controller for rtVAX 300 processor (EZA)

DEBNA VAXBI Ethernet adapter (BNT)

DELUA or DEUNA UNIBUS adapter (UNA)

DELQA or DEQNA Q-bus adapter (QNA)

You build a datalink driver into a VAXELN system image by select
ing appropriate System Builder menu entries on the Network Node
Characteristics Menu and the Device Description Menu. To build
a datalink driver into a system for using the Network Service or
Datagram Service, you must select the following values on the Network
Node Characteristics Menu:

• Enabled or Disabled for the Network service entry
• The Network device entry value that indicates the type of net

work device on your system

If you select Enabled, the System Builder includes the Network Service
in your system such that it runs at system start-up. If you select
Disabled, the System Builder includes the Network Service in your
system, but the service remains idle until the system enables it dynam
ically at runtime (see Section 9.4.3.1).

When you finish editing the Network Node Characteristics Menu, the
System Builder prompts you for a device configuration by displaying
the Device Description Characteristics Menu.

Applications that do not require VAXELN DECnet services but require
other network services, such as the Datagram Service or Internet
Services, must include the appropriate VAXELN datalink driver and
device description to support these alternative network protocols. To
add Ethernet device support for such an application, you must edit

8-2 Ethernet/IEEE 802 Datalink Drivers

the Network Node Characteristics and Device Description menus as
follows:

• Select No for the Network service, Name service, and File
access listener entries on the Network Node Characteristics
Menu.

• Add a device description for the system's Ethernet controller on the
Device Description Menu, .as follows:

Name the device according to the device tables in the VAXELN
Development Utilities Guide, using the form XnB. In other
words, do not use the letter A as the third letter in the device
name. Instead, use the letter B (or any other letter). For
example, instead of specifying the device name XQA, specify
the name as XQB; instead of specifying the name XBA, specify
XBB.

Not using a device name in the form XnA prevents the System
Builder from inappropriately deleting the device description
if you reedit the Network Node Characteristics Menu. The
System Builder treats device names in the form XnA specially.

If your system contains multiple Ethernet controllers, name
subsequent controllers beginning with the letter C, and specify
No for the Autoload entry.

Use the appropriate values as specified in the device tables
for the Register address, Vector address, and Interrupt
priority entries.
Select Yes for the Autoload entry. This selection allows the
System Builder to load the correct Ethernet datalink driver into
the system image.

Mter building the system image, you can examine the map file for the
system to confirm that the correct device driver was included in the
system image.

NOTE

If you build the ESDRIVER into a VAXELN system that is to
run on a MicroVAX 3300 or 3400 processor, you must specify
an additional 128 pages for the system's system region size.

The System Builder includes the Network Service in an enabled state
implicitly when you select the remote debugging option for a system
under development.

Ethernet/IEEE 802 Datalink Drivers 8-3

This chapter provides an overview of the EthernetlIEEE Datagram
Service (see Section 8.1) and explains how an application can use the
Datagram Service to do the following:

• Retrieve a CSMA/CD LAN configuration, Section 8.2
• Retrieve Ethernet controller attributes, Section 8.3

• Connect and disconnect an EthernetlIEEE 802 protocol, Section 8.4
• Transmit and receive messages, Section 8.5

• Set up an EthernetlIEEE 802 Datagram Service environment,
Section 8.6

For more information about building the datalink drivers into VAXELN
systems, see the VAXELN Development Utilities Guide. For more
information about the VAXELN Network Service, see Chapter 9. For
more information about the VAXELN Internet Services, see Chapter 10.

8.1 Ethernet/IEEE 802 Datagram Service

VAXELN systems cannot exchange user-level datagrams transpar
ently with other operating systems. However, two such systems can
communicate in a nontransparent manner by using the VAXELN
EthemetlIEEE 802 Datagram Service. This service provides network
interface routines that VAXELN application programs can use to
communicate over a Carrier Sense Multiple Access/Collision Detect
(CSMAlCD) LAN. Using this service, VAXELN systems can communi
cate with other types of systems using system-independent communi
cations protocols. The systems send messages to and receive messages
from the datalink driver without Network Service intervention.

The VAXELN and VMS datalink drivers provide multiplexing through
the Ethernet protocol type, IEEE 802 service access points (SAPs), and
the IEEE SNAP SAP with a protocol identification (extended version of
SAP), that provides access to multiple users.

Figure 8-1 shows a 2-node VAXELN network that is using the
EthemetlIEEE 802 Datagram Service.

8-4 Ethernet/IEEE 802 Datalink Drivers

Figure 8-1: A Two-Node VAXELN Network Using the Datagram
Service

Target VAX 1 Target VAX 2

I Job A H Kernel I I Job B H Kernel I
f

Ethemet f' r--t\ \...---------7J----y'
MLO-004286

Job A transmits a message to Job B by using the datalink driver's
network interface routines. The routines retrieve the CSMA/CD LAN
configuration, connect to an Ethernet protocol, allocate a buffer for
transmitting the message, and then transmit the message. Job B, on
Target VAX. 2, waits on a dispatch port. When a message arrives, the
job calls a routine that receives the message.

EthernetllEEE 802 Datagram Service provides the following network
interface routines:

Ethernet/IEEE 802 Datalink Drivers 8-5

Routine

ELN$NCALLOCATE_BUFFER

ELN$NCCONNECT

ELN$NI_DISCONNECT

ELN$NCGET_CONFIGURATION

ELN$NI_TRANSMIT

ELN$NI_TRANSMIT..,:.STATUS

Description

Allocates a buffer for transmitting a
message over a CSMAlCD LAN.

Connects a process to an
EthemetJIEEE 802 protocol.

Disconnects a process from an
EthemetJIEEE 802 protocol.

Gets information about the CSMAlCD
LAN controller.

Gets information about the CSMAlCD
LAN configuration.

Receives a message from a CSMAlCD
LAN dispatch port.

Transmits a message over a CSMAlCD
LAN.

Retrieves a message that was trans
mitted by a previous call to ELN$NI_
TRANSMIT.

The following sections explain how to use the network interface rou
tines to do the following:

• Retrieve the CSMA/CD LAN configuration, Section 8.2
• Retrieve Ethernet controller attributes, Section 8.3

• Connect and disconnect an EthemetlIEEE 802 protocol, Section 8.4

• Transmit and receive messages over the CSMAlCD LAN,
Section 8.5

To use the network interface routines, you must include the appropriate
modules from the VAXELN runtime libraries.

Language Module

VAXELN Pascal $NCUTILITY

C $vaxelnc and $nCutility

FORTRAN ELN$:NI_UTILITY.FOR

8-6 Ethernet/IEEE 802 Datalink Drivers

NOTE

The network interface routines are in the shareable image
NISHR.EXE. If you dynamically load programs that use
the network interface routines into a VAXELN system, you
should specify ELN$:NISHR.EXE in the Guaranteed image
list entry on the System Builder's System Characteristics
Menu when you build that system.

For descriptions of these routines, see the VAXELN Pascal Runtime
Library Reference Manual, VAXELN C Runtime Library Reference
Manual, or VAXELN FORTRAN Runtime Library Reference Manual.

Section 8.6 shows how to set up your application environment for
EthernetlIEEE 802 Datagram Service communication.

8.2 Retrieving a CSMAlCD LAN Configuration

To use the EthernetlIEEE 802 Datagram Service for message com
munication, you must first retrieve information about the system's
Ethernet controller configuration by calling the network interface rou
tine ELN$NI_GET_CONFIGURATION. This routine stores the version
number of the network interface routines and the following information
for each EthernetlIEEE 802 controller:

• Device type

• Device name
• Control port value

• Data port value

Once the configuration record is filled in, the application program can
access it and retrieve data concerning the active controllers on the
system.

A call to ELN$NI_GET_CONFIGURATION must specify a count
argument that receives the current number of active controllers and an
argument that specifies the configuration record. For example:

Ethernet/IEEE 802 Datalink Drivers 8-7

VAR
status : INTEGER;
config count : INTEGER;
config:data ELN$NI_CONFIGURATION;

BEGIN

ELN$NI_GET_CONFIGURATION(STATUS := status,
COUNT := config count,
CONFIG := config_data);

control-port := config_data.clist[l] .control-port;
data-port := config_data.clist[l] .data-port;

END.

This section of code fills in the controller configuration record and then
accesses the fields containing the controller's control port and data port
values. The controller count field can receive a value ranging from 1 to
8.

Sections 8.2.1 to 8.2.4 provide more information about Ethernet con
troller device types, names, control ports, and data ports.

8.2.1 Ethernet Controller Device Types

The VAXELN datalink drivers categorize the supported Ethernet
controller devices by type. Table 8-2 lists these types with the corre
sponding devices.

Table 8-2: Ethernet Controller Device Types
Device Type

ELN$K_NI_DEBNA

ELN$K_NI_DEBNI

ELN$K_NI_DELQA

ELN$K_NI_DEQNA

ELN$K_NI_DEUNA

8-8 Ethernet/IEEE 802 Datalink Drivers

Supported Devices

DEBNA or DEBNT VAXBI Ethernet adapter

DEC LANcontroller 200

DELQA Q-buf:l adapter

DEQNA Q-bus adapter

DELUA or DEUNA UNIBUS adapter

Table 8-2 (Cont.): Ethernet Controller Device Types
Device Type Supported Devices

Integrated Ethernet controllers for MicroVAX
2000,8800, and 8400 and the VAXstation 2000
and 8100 series systems

Second generation Ethernet controller for
rtVAX 800 systems

8.2.2 Ethernet Controller Device Names

Each Ethernet controller device in a CSMA/CD LAN configuration has
a device name that consists of 1 to 32 ASCII characters. The names in
a LAN must be unique within the same logical Ethernet. Examples of
such names follow:

Device Type Device Name

ELN$K_NI_DEBNA

ELN$K_NI_DELQA

ELN$K_NI_DEUNA

XBAO

XQAO

XEAO

8.2.3 Ethernet Controller Control Ports

The datalink drivers create a VAXELN control port for each CSMA/CD
LAN controller. The control port provides an interface for accessing an
EthernetJIEEE 802 driver process. A program must specify a control
port's value in subsequent calls to the ELN$NI_CONNECT, ELN$NI_
DISCONNECT, and ELN$NI_GET_ATTRIBUTES routines.

8.2.4 Ethernet Controller Data Ports

The datalink drivers create a VAXELN data port for each CSMA/CD
LAN controller. The data port receives messages that are transmit
ted over the LAN. A program must specify a data port's value in
subsequent calls to the ELN$NI_TRANSMIT routine.

EtherneVIEEE 802 Datalink· Drivers 8-9

8.3 Retrieving Ethernet Controller Attributes

You can also retrieve information about each CSMA/CD LAN controller
by calling the network interface routine ELN$NI_GET_ATTRIBUTES.
This routine allocates a controller attributes record that stores the
version number of the network interface routines and the following
controller information:

• Device type

• Name
• Physical address

• Hardware address

Once the attributes record is allocated, the application program can
access it and retrieve controller attributes.

A call to ELN$NI_GET_ATTRIBUTES must specify a control port
returned in the controller configuration record and a pointer that is to
point to the controller attributes record. For example:

VAR
status : ~NTEGER;

config count : ~NTEGER;
config-data : ELN$N~ CONF~GURAT~ON;
attributes_record AELN$N~_ATTR~BUTES;

BEG~N

ELN$N~_GET_CONF~GURATION(STATUS := status,
COUNT := config count,
CONFIG := config_data);

control-port := config_data.clist[l] .control-port;
data-port := config_data.clist[l] .data-port;

ELN$NI_GET_ATTR~BUTES(CONTROL_PORT := control-port,
ATTRIBUTES PTR := attributes_record);

8-10 Ethernet/IEEE 802 Datalink Drivers

WITH attributes recordA DO
BEGIN

WRITELN('Device type = " DEV_TYFE);
WRITELN('Device name = " DEVICE NAME);
WRITELN('Physical address = '); -
FOR i := 1 TO 6 DO

WRITE (HEX (PHYSICAL_ADDRESS: :ELN$NI_DATALINK_ADDRESS_BYTE[I],2»;
WRITELN('Hardware address = ');
FOR i := 1 TO 6 DO

WRITE(HEX(HARDWARE_ADDRESS::ELN$NI_DATALINK_ADDRESS_BYTE[I],2»;
END;

DISPOSE (attributes_record) ;

This section of code allocates the controller attributes record of the first
Ethernet/IEEE 802 controller and then accesses the fields containing
the controller's device type, name, physical address, and hardware
address.

Deallocate the attributes record when the record is no longer needed.

Sections 8.2.1 and 8.2.2 provide more information about Ethernet
controller device types and names. Sections 8.3.1 and 8.3.2 provide
more information about Ethernet controller physical and hardware
addresses.

8.3.1 Ethernet Controller Physical Addresses

An Ethernet controller's physical address is an Ethernet address that
consists of 48 bits (4 bits per hex digit) and has the following format:

nn-nn-nn-nn-nn-nn

This is the format that the ELN$NI_GET_ATTRIBUTES routine uses
to store a physical address in a controller's attributes record.

The controller's physical address defaults to the hardware address until
DECnet starts. When DECnet software is enabled, the address is the
value AA-OO-04-00 followed by the DECnet node and area addresses
enabled on the controller board. The AA-00-04-00 address resides in
the low order 32 bits and the DECnet node and area addresses reside
in the high order 16 bits.

Ethernet/IEEE 802 DatalinkDrivers 8-11

An application that starts to run with the DECnet software disabled
can set the DECnet node address and start the DECnet software
dynamically by calling the ELN$NETMAN_START_NETWORK routine
(see Section 9.4.3).

For more information about Ethernet controller physical addresses, see
the VAXELN Development Utilities Guide.

8.3.2 Ethernet Controller Hardware Addresses

An Ethernet controller's hardware address is the default 4B-bit address
of the controller hardware. This address resides in the medium access
control (MAC) address ROM on the controller. You cannot change this
address.

8.4 Connecting and Disconnecting an Ethernet/IEEE 802
Protocol

Before an application program can transmit or receive datagrams over
a CSMAlCD LAN, it must connect a process to an EthemetlIEEE
B02 protocol. To make this connection, the application must create a
VAXELN message port and pass that port as an argument in a call to
the ELN$NI_CONNECT routine. The VAXELN message port serves as
a dispatch port, receiving data from the datalink driver. You create the
dispatch port by calling the CREATE_PORT kernel procedure.

You must also specify the CSMA/CD LAN controller's control port in
the call to ELN$NI_CONNECT. The EthernetJIEEE B02 Datagram
Service returns the values of the control ports for all active controllers
on the system when you use the ELN$NI_GET_CONFIGURATION
procedure to get the CSMA/CD LAN configuration (see Section B.2).
The ELN$NI_ CONNECT routine uses the control port to pass the
connection request to the datalink driver.

The call to ELN$NI_CONNECT creates a portal, which represents the
EthernetJIEEE B02 connection. Once the portal is established, you can
transmit and receive datagrams over a CSMAlCD LAN using other
network interface routines.

8-12 Ethernet/IEEE 802 Datalink Drivers

In addition to specifying a control port and dispatch port, a call to
ELN$NI_CONNECT must specify an argument that receives an integer
identifying the portal and a form argument that specifies the message
format and the multiplexing data to be accepted on behalf of the portal.
You can further customize a network interface connection by specifying
the following:

• User data value
• Whether promiscuous mode (deliver all messages) is enabled

• Multicast count
• IEEE 802 group service access point (SAP) count

• IEEE 802 logical link control (LLC) sublayer class

• Multicast addresses
• IEEE 802 group LLC SAPs
• Whether the portal is to operate a padded Ethernet protocol

When an application program has finished using an EthernetlIEEE 802
protocol, the program can disconnect it using a call to the ELN$NI_
DISCONNECT routine. A call to ELN$NI_DISCONNECT must specify
the connection's portal identification number and the control port. The
portal identification must be the value that was returned by a call to
ELN$NI_CONNECT. The control port must be the same control port
that was used in the call to the ELN$NI_ CONNECT for this portal.

The following section of code creates a dispatch port, establishes a
portal in promiscuous mode, and disconnects the portal:

VAR
status : INTEGER;
config count : INTEGER;
config-data : ELN$NI CONFIGURATION;
dispatch-p?rt : PORT;
portal id : INTEGER;
format-and mux : ELN$NI FORMAT AND MUX;
user_data 7 INTEGER; - --
prom : BOOLEAN;

BEGIN

ELN$NI_GET_CONFIGURATION(STATUS := status,
COUNT := config count,
CONFIG := config_data)i

Ethernet/IEEE 802 Datalink Drivers 8-13

control-port := config_data.clist[l] .control-port;
data-port := config_data.clist[l] .data-port;

CREATE_PORT(dispatch-port);

prom : = TRUE;
user_data := 12345;

ELN$NI CONNECT(STATUS := status,
- PORTAL ID := portal id,

CONTROL_PORT := control-port,
DISPATCH_PORT := dispatch-port,
FORM := format_and_mux,
USER DATA := user data,
PROMISCUOUS := prom);

ELN$NI_DISCONNECT(STATUS := status,
PORTAL ID := portal id,
CONTROL_PORT := control-port);

END.

The following sections provide more information about the following
topics:

• Portals, Section 8.4.1

• Dispatch ports, Section 8.4.2
• Message format and multiplexing, Section 8.4.3

• User data, Section 8.4.4

• Promiscuous mode, Section 8.4.5
• Multicast addresses, Section 8.4.6

• Group SAPs, Section 8.4.7
• LLC classes, Section 8.4.8

• Padded Ethernet Protocols, Section 8.4.9

8.4.1 Portals

The ELN$NI_CONNECT routine creates a portal and returns the
portal's identification number if your process connects to the specified
protocol successfully. The portal represents the EthernetlIEEE 802
connection, and the unique identification number identifies that con
nection. You use this value to identify the connection in subsequent
transmit and disconnect operations.

8-14 Ethernet/IEEE 802 Datalink Drivers

8.4.2 Dispatch Ports

A dispatch port is a VAXELN message port that receives messages
from a VAXELN datalink driver. You create the dispatch port with a
call to the CREATE_PORT kernel procedure prior to calling ELN$NI_
CONNECT. If the connection is successful, the datalink driver sends
messages that match the multiplexing criteria specified in the connec
tion request to the dispatch port.

The datalink driver sends messages to the dispatch port. To receive
the messages, your program must wait on the port and then call the
ELN$NI_RECEIVE routine (see Section 8.5.4).

If a dispatch port reaches its message limit, the datalink driver dis
cards new messages until the application removes messages from the
port.

8.4.3 Message Format and Multiplexing

The fomi argument that you specify in a call to the ELN$NI_
CONNECT routine is a 2-field structure that identifies the message
format and multiplexing data the datalink driver is to use for a por
tal. You can specify the message format using one of four values:
ELNK_NI_PTT, ELNK_NI_SAP, ELN$K_NI_SNAP, and ELN$K_NI_
UNUSED. Table 8-3 describes the message formats that these values
enable.

Table 8-3: Portal Message Formats
Format Description

Ethernet formatted frames. You can use a padded
Ethernet protocol by specifying the pad argument
in the call to ELN$NCCONNECT. The PI'T
(Ethernet Protocol Type) value in the multiplexing
field defines the Ethernet protocol type to be used.
Only one user can use a particular protocol at any
given time. If a user tries to use a busy protocol,
the connection fails and the routine returns an
error.

Ethernet/IEEE 802 Datalink Drivers 8-15

Table 8-3 (Cont.): Portal Message Formats
Format Description

IEEE 802 formatted frames. The DSAP (destina
tion SAP) value in the multiplexing field identifies
the SAP to be accepted. The DSAP value is an
8-bit number of which the low-order bit must be
O. The high-order 7 bits of DSAP identify the
SAP. Only one user can use a particular SAP at
any given time. If a user tries to use a busy SAP,
the connection fails and the routine returns an
error.

IEEE 802 format with SNAP SAP and protocol
identification. This format is an extended version
of the IEEE 802 SAP format. It increases the
number of allowable protocols in the IEEE 802
frame format by using a 5-byte protocol identi
fication field in addition to the SAP field during
frame dispatching. When the datalink driver re
ceives frames addressed to the SNAP SAP, it uses
the 5-byte protocol identification as the filtering
criteria. The PROTID value in the multiplexing
field identifies the protocol identification to be
accepted.

No multiplexing field is specified. This format in
dicates that the multiplexing field is not specified
for the connection request. Use this value when
you want to do the following:

• Use promiscuous mode (see Section 8.4.5)
• Enable group SAPs without having to enable

an individual SAP (see Section 8.4.7)

This is the default.

You specify the type of multiplexing to be used by specifying values for
the DSAp, PROTID, PI'T, SAP, and SSAP fields of the form argument's
multiplexing field. Table 8-4 describes the multiplexing fields.

8-16 Ethernet/IEEE 802 Datalink Drivers

Table 8-4: Portal Multiplexing Fields
Field

DSAP

PRO TID

PTT

SAP

SSAP

Description

Destination SAP. An 8-bit value that specifies the SAP.
The low-order bit must be O. You must specify a value
for this field if you specify the format ELN$K_NCSAP.

SNAP protocol identification. A 5-byte value that spec
ifies an Ethernet protocol that specifies the filtering
criteria. You must specify a value for this field if you
specify the format ELN$K_NCSNAP.

Ethernet Protocol Type. A value that specifies an
Ethernet protocol type. You must specify a value for
this field if you specify the format ELN$K_NCPTT.

Not applicable.

Not applicable.

You must also specify a form argument in calls to the ELN$NI_
RECEIVE and ELN$NI_TRANSMIT routines. However, the ELN$K_
NI_ UNUSED format value does not apply. In the case of ELN$NI_
RECEIVE, the argmnent receives the format and multiplexing in
formation. The ELN$NI_TRANSMIT routine specifies format and
multiplexing information for a particular message.

8.4.4 User Data

You can associate a user-defined integer value with a portal by spec
ifying a user data argument in the call to ELN$NI_ CONNECT. The
integer value is returned with each message sent to the portal's dis
patch port. You might use such data to distinguish between messages
sent to a dispatch port when the same dispatch port is specified in
separate calls to ELN$NI_CONNECT.

8.4.5 Promiscuous Mode

By default, the datalink driver delivers only those messages matching
the multiplexing information enabled for a network interface portal.
If you want the datalink driver to deliver a copy of each message
transmitted on the Ethernet, you must enable promiscuous mode for
the portal by setting the promiscuous Boolean argument in the call to
ELN$NI_CONNECT to TRUE.

Ethernet/IEEE 802 Datalink Drivers 8-17

Only one user can use promiscuous mode at any given time. If a second
user tries to enable this mode, the connection fails and the driver
returns an error.

8.4.6 Multicast Addresses

A multicast address is a 48-bit CSMA/CD LAN destination address.
If you want messages that have such addresses to be dispatched to a
portal, you must enable the addresses explicitly in the call to ELN$NI_
CONNECT. You can specify a set of up to eight multicast addresses for
a portal. If you specify a set of multicast addresses, you indicate the
number of addresses in the set by specifying a multicast address count
value. By default, the physical address of the node is accepted for each
portal.

8.4.7 Group SAPs.

In addition to or instead of specifying a single SAP address for a portal,
as you do when you use the IEEE 802 formatted frames message
format, you can specify up to four group SAPs. The datalink driver
dispatches the individual SAP and the group SAPs to the same portal.

You specify an 8-bit value for each group SAP. The low-order bit must
be 1. The high-order 7 bits specify a SAP address.

If you specify group SAPs, you indicate the number of SAPs being
specified by supplying a group SAP count value.

Multiple portals can enable the same group SAP.

8.4.8 LLC Classes

A portal's LLC class determines the types of messages that are sent to
an enabled SAP. The class can be either ELN$K_NI_CLl or ELN$K_
NI_VSER_SUPPLIED. If the class is ELN$K_NI_CLl class, the
datalink driver handles IEEE 802 exchange identification (XID) and
test (TEST) messages and sends unnumbered information protocol (VI)
messages to the user. If the class is ELN$K_NI_VSER_SUPPLIED, the
driver sends all messages addressed to the enabled SAP to the user. In
this case, you must supply the IEEE 802 control field as part of your
user data when you do a transmit operation. The IEEE 802 control
field is also returned as message user data in receive operations, and

8-18 Ethernet/IEEE 802 Datalink Drivers

you must process it. The default LLC class is ELN$K_NI_USER_
SUPPLIED.

8.4.9 Padded Ethernet Protocols

Portals can operate a padded Ethernet protocol. When using a padded
format, the datalink driver adds a padding field length of two bytes
to each message that it transmits and removes that field from each
message that it receives. You can enable the padded format by setting
a Boolean argument in the call to ELN$NI_ CONNECT to TRUE.

Keep in mind that if one user uses the padded format of a particular
protocol, all users using that protocol must also use the padded format.
Otherwise, the padding field may be missing or interpreted as user
data.

8.5 Transmitting and Receiving Messages

Once your application program establishes a network interface con
nection, it can use that connection to transmit and receive messages
over the CSMAlCD LAN. To transmit a message, you use the network
in terface routines to do the following:

• Allocate a buffer for transmitting the message (ELN$NI_
ALLOCATE_BUFFER)

• Transmit the message (ELN$NI_TRANSMIT)

• Retrieve the transmitted message and status (optional) (ELN$NI_
TRANSMIT_STATUS)

To receive messages, a job waits on the dispatch port. When a message
arrives, the job calls the ELN$NI_RECEIVE routine to receive the
message.

Sections 8.5.1 to 8.5.3 explain how to allocate a message buffer, trans
mit messages, and retrieve transmitted messages and status values.
Section 8.5.4 explains how to receive messages.

Ethernet/IEEE 802 Datalink Drivers 8-19

8.5.1 Allocating a Message Buffer

Before an application program can transmit a message over the
CSMA/CD LAN, the program must call the ELN$NI_ALLOCATE_
BUFFER routine to allocate a buffer for the message. A call to
ELN$NI_ALLOCATE_BVFFER must specify an integer indicating
the number of bytes of user data to be allocated, the MESSAGE vari
able that is to receive the new message, and a pointer to the first byte
of the data to be transmitted.

The size of the buffer that you allocate must be less than or equal to
the maximum allowable amount of user data for the format in which
the message is to be transmitted. Maximum allowable amounts for
various formats are as follows:

Format

IEEE 802 SNAP

IEEE 802 with I-byte control field

IEEE 802 with 2-byte control field

Ethernet protocol type (padding enabled)

Ethernet protocol type (padding disabled)

Maximum Size

1492 bytes

1497 bytes

1498 bytes

1498 bytes

1500 bytes

The data pointer argument receives a pointer to the first byte of the
data to be transmitted in the buffer. The pointer is passed unmodified
to ELN$NI_TRANSMIT. (Your program should not modify the pointer,
just the buffer to which the pointer points.)

The call to ELN$NI_ALLOCATE_BVFFER in the following example
allocates a buffer for a 36-character string:

TYPE
message_l_type = STRING(36);

VAR
status : INTEGER;
data-pointer : Arnessage_l_type;
user_data_size : INTEGER;
msg : MESSAGE;

BEGIN
user data size := SIZE(rnessage_l_type);

8-20 Ethernet/IEEE 802 Datalink Drivers

ELN$NI_ALLOCATE_BUFFER(STATUS := status,
USER_DATA_SIZE := user_data_size,
MESSAGE OBJECT := msg,
DATA_POINTER := data-pointer);

NOTE

If the portal is enabled with the IEEE 802 user-supplied LLC
class, you must allocate space for the IEEE 802 control field
in the user buffer area.

8.5.2 Transmitting Messages

After you allocate a message buffer, you can transmit messages over
the CSMA/CD LAN by calling the ELN$NI_TRANSMIT routine. A call
to ELN$NI_TRANSMIT must specify the following:

• The portal identification received in the call to ELN$NI_ CONNECT

• A data port in the configuration record obtained by the call to
ELN$NI_GET_CONFIGURATION

• The data pointer received in the call to ELN$NI_ALLOCATE_
BUFFER

• The message value that was received in the call to ELN$NI_
ALLOCATE_BUFFER

• The size of the message to be transmitted

• The message's destination address
• The form (message format and multiplexing values) of the message

being transmitted

NOTE

The value for the size argument can be smaller than the
value specified in the call to ELN$NI_ALLOCATE_BUFFER.
If the value is larger, the result of the transmit operation is
unpredictable.

The destination address must be a 48-bit address. It can be a multicast
address or an individual address.

Ethernetll EEE 802 Datalink Drivers 8-21

The form argument is a 2-field structure that identifies the message
format and type of multiplexing the datalink driver is to use for the
portal. As described in Section 8.4.3, you can specify the message
format using one of three values: ELNK_NI_PTT, ELNK_NI_SAP,
or ELN$K_NI_SNAP. You specify the type of multiplexing (message
header information) to be used by specifying values for the DSAP,
PROTID, PTT, and SSAP fields of the form argument's multiplexing
field. The format values and multiplexing fields are described in
Table 8-3 and Table 8-4.

The following section of code shows how you might transmit a message
over a CSMA/CD LAN:

TYPE
message_type = STRING(36);

VAR
status : INTEGER;
config count : INTEGER;
config-data : ELN$NI CONFIGURATION;
dispatch-port : PORT;
portal id : INTEGER;
format-and mux : ELN$NI FORMAT AND MUX;
user_data 7 INTEGER; - --
prom : BOOLEAN;
data-pointer : Aroessage_l_type;
user_data_size INTEGER;
msg : MESSAGE;
remote address : ELN$NI_DATALINK_ADDRESS;
sap_number : INTEGER;

BEGIN

ELN$NI_GET CONFIGURATION(STATUS := status,
COUNT := config_count,
CONFIG := config_data);

control-port := config_data.clist[l] .control-port;
data-port := config_data.clist[l] .data-port;

CREATE_PORT(dispatch-port);

format and mux.format := ELN$K NI SAP;
format=and=mux.dsap := sap_number-* 2;

format_and_mux.ssap := sap_number * 2;

8-22 Ethernet/IEEE 802 Datalink Drivers

{ Remote address filled }
{ in here also. }

ELN$NI_CONNECT(STATUS := status,
PORTAL ID := portal id,
CONTROL_PORT := control-port,
DISPATCH_PORT := dispatch-port,
FORM := format_and_mux,

CLASS_802 := class_802);

user data size := SIZE(message_l_type);

ELN$NI_ALLOCATE_BUFFER(STATUS := status,
USER_DATA_SIZE := user_data_size,
MESSAGE OBJECT := msg,
DATA_POINTER := msg_data-pointer);

data-pointerA := 'Transmitted message .. . f;

ELN$NI_TRANSMIT(STATUS := status,

END.

PORTAL_ID := portal_id,
DATA_PORT := data-port,
DATA_POINTER := data-pointer,
MESSAGE OBJECT := msg,
USER DATA SIZE := user data size,
DEST=ADDRESS := remote=address,
FORM := format_and_mux);

8.5.3 Retrieving Transmitted Messages

By default, the datalink drivers delete a message after a transmit
operation. However, you can instruct the driver to keep these messages
by specifying a reply port in the call to the ELN$NI_TRANSMIT
procedure. When you specify a reply port, the datalink driver sends
the message to that port upon completion of a transmit operation.
You can then extract the message from the reply port with a call to
the ELN$NI_TRANSMIT_STATUS routine and use the message in a
subsequent call to ELN$NI_TRANSMIT or delete it. For example:

TYPE
message_type = STRING(36);

Ethernet/IEEE 802 Datalink Drivers 8-23

VAR
status : INTEGER;
config count : INTEGER;
config~data : ELN$NI CONFIGURATION;
dispatch-port : PORT;
portal id : INTEGER;
format-and mux : ELN$NI FORMAT AND MUX;
user_data 7 INTEGER; -
prom : BOOLEAN;
data-pointer : Ames sage_I_type;
user_data_size INTEGER;
msg : MESSAGE;
remote address ELN$NI_DATALINK_ADDRESS;
reply~ort PORT;
sap_number : INTEGER;

BEGIN

ELN$NI_GET CONFIGURATION(STATUS := status,
COUNT := config count,
CONFIG := config_data);

control-port := config_data.clist[l] .control-port;.
data-port := config_data.clist[l] .data-port;

CREATE_PORT(dispatch-port);

format and mux.format := ELN$K NI SAP;
format-and-mux.dsap := sap number-* 2;
class_802 7= ELN$K_NI_CL1;-

ELN$NI CONNECT(STATUS := status,
- PORTAL ID := portal id,

CONTROL_PORT := control-port,
DISPATCH_PORT := dispatch-port,
FORM := format and mux,
CLASS_S02 := class=S02);

user_data_size := SIZE(message_l_type);

CREATE_PORT(reply-port);

ELN$NI_ALLOCATE_BUFFER(STATUS := status,
USER DATA SIZE := user_data_size,
MESSAGE OBJECT := msg,
DATA_POINTER := msg_data-pointer);

data-pointerA := 'Transmitted message .. . f;

8-24 Ethernet/IEEE 802 Datalink Drivers

ELN$NI TRANSMIT(STATUS := status,
- PORTAL ID := portal id,

DATA_PORT := data-port,
DATA_POINTER := data-pointer,
MESSAGE OBJECT := msg,
USER DATA SIZE := user data size,
DEST=ADDRESS := remote=address,
FORM := format and mux
REPLY_PORT := reply-port)i

WAIT_ANY(reply-port)i
ELN$NI TRANSMIT STATUS(STATUS := status,

- - REPLY_PORT := reply-port,
MESSAGE_OBJECT := msg)i

DELETE (msg) i

END.

The call to ELN$NI_TRANSMIT_STATUS must specify the reply
port and message object that were specified in the call to ELN$NI_
TRANSMIT. You can also specify an argument that is to receive a
pointer to the beginning of the user data portion of the message.
You then can use the message object and data pointer values in a
subsequent call to ELN$NI_TRANSMIT.

8.5.4 Receiving Messages

To receive a message on a CSMAlCD LAN, a program must wait on
the dispatch port that was specified in the call to ELN$NI_ CONNECT
and then call the ELN$NI_RECEIVE routine. The ELN$NI_RECEIVE
routine does the following:

• Receives a message in your program's address space
• Strips the header fields from the message and sends them back to

to you as parameters

• Returns a pointer to the beginning of the message's user data
• If requested, returns the size of the message's user data

A call to ELN$NI~RECEIVE must specify the dispatcp port that was
specified in the call to ELN$NI_CONNECT, the MESSAGE variable
that is to receive the message, and a variable that is to receive a
pointer that points to the beginning of the message's user data. You
can also specify variables that receive the following:

• The size of user data in the message

Ethernet/IEEE 802 Datalink Drivers 8-25

• The message's destination address

• The message's source address
• The message's form (message format and multiplexing type)

• User data (unique integer established in a call to ELN$NI_
CONNECT)

• The portal identification whose format and multiplexing data match
that of the received message

The destination and source addresses that the routine receives are
48-bit addresses.

The form argument receives a 2-field structure that identifies the
message format and the message's protocol data. As described in
Section 8.4.3, the message format can be one of three formats: ELN$K_
NI_PTT, ELN$K_NI_SAP, or ELN$K_NI_SNAP. Values for the DSAP,
PROTID, PTT, and SSAP fields of the form argument's multiplexing
field indicate the protocol data in the message header. The format
values and multiplexing fields are described in Tables 8-3 and 8-4.

The following section of code shows how an application program might
receive messages over a CSMAlCD LAN:

TYPE
message_type = STRING(36);

VAR
status : INTEGER;
con fig count : INTEGER;
config-data : ELN$NI CONFIGURATION;
dispatch-port : PORT;
portal id : INTEGER;
format-and mux : ELN$NI FORMAT AND MUX;
user_data 7 INTEGER; - --
prom : BOOLEAN;
data-pointer : Amessage_l_type;
user_data_size : INTEGER;
msg : MESSAGE;
reply-port : PORT;
dest address : ELN$NI DATALINK ADDRESS;
src_address ELN$NI_DATALINK_ADDRESS;

8-26 Ethernet/IEEE 802 Datalink Drivers

BEGIN

ELN$NI_GET CONFIGURATION(STATUS := status,
COUNT := config count,
CONFIG := config_data);

control-port := config_data.clist[1].control-port ;
data-port := config_data.c1ist[1] .data-port;

CREATE_PORT(dispatch-port);

prom : = TRUE;
user_data := 12345;

ELN$NI CONNECT(STATUS := status,
- PORTAL_ID := portal_id,

CONTROL_PORT := control-port,
DISPATCH_PORT := dispatch-port,
FORM := format_and_mux,
USER DATA := user data,
PROMISCUOUS := prom);

WAIT_ANY(dispatch-port)i

ELN$NI RECEIVE(STATUS := status,

END.

- DISPATCH_PORT := dispatch-port,
RECEIVED_MESSAGE := msg,
DATA_POINTER := data-pointer,
DATA SIZE := user data size,
DEST=ADDRESS := dest_address,
SRC ADDRESS := src address,
FORM := format and-mux,
USER_DATA := u;er_data)i

8.6 Setting Up an Ethernet/IEEE 802 Datagram Service
Environment

This section uses the sample application module sample_ni_app and
callout text to illustrate the use of the network interface routines.
The module consists of a main program that gets the CMSA/CD LAN
configuration and calls three procedures: get_attributes, transmit_msg,
and receive_msg.

Ethernet/IEEE 802 Datalink Drivers 8-27

The get_attributes procedure calls the ELN$NI_GET_ATrRIBUTES
routine to create a controller attributes record. The procedure then
accesses the record to extract the controller's device name, physical
address, and hardware address.

The transmiCmsg procedure transmits messages over a CMSAlCD
LAN and retrieves the messages that are sent by doing the following:

1. Creating a dispatch port

2. Specifying the message format, multiplexing type, and class

3. Establishing a promiscuous mode portal by passing the dispatch
port in a connection request

4. Creating a reply port

5. Allocating a buffer for transmitting the messages

6. Transmitting the messages

7. Waiting on the reply port

8. Retrieving the transmitted messages

The procedure also disconnects the process from the promicuous mode
portal when it is finished using the connection.

The receive_msg procedure receives messages over a CMSA/CDLAN by
doing the following:

1. Creating a dispatch port

2. Specifying the message format
3. Establishing a connection with a CSMAlCD LAN Ethernet protocol

by connecting the dispatch port to a controller's control port
4. Waiting on the dispatch port

5. Receiving the messages

This procedure also disconnects the process from the CSMA/CD LAN
Ethernet protocol when it is finished using the connection.

Example &-1 shows a sample network interface application. The
example assumes that an EthernetJIEEE 802 driver is built into the
VAXELN system. The discussion that follows is keyed to the numbered
callouts in the example.

8-28 Ethernet/IEEE 802 Datalink Drivers

Example 8-1 : Sample Network Interface Application

{ This module contains the sender program for the datalink external
{ interface.
{}

INCLUDE $NI_UTILITY, $KERNELMSG, $ELNMSGi

PROGRAM ni_example;

VAR
config data : ELN$NI CONFIGURATION;
config=count : INTEGER;
control-port : PORT;
data-port : PORT;
status : INTEGER;
remote address : ELN$NI DATALINK ADDRESS;
pass number : INTEGER; -
sap_number : INTEGER;

PROCEDURE get_attributes;

{
{ Get controller attributes.
{}

VAR
status : INTEGER;
i : INTEGER;
controller_attributes-pointer AELN$NI~TTRIBUTES;

BEGIN
ELN$NI_GET ATTRIBUTES(STATUS := status, C.

CONTROL_PORT := control-port,
ATTRIBUTES_PTR := controller_attributes-pointer);

WITH controller_attributes-pointerA DO
BEGIN

WRITELN('Device name = " deVice_name);
WRITELN('Physical address = ');
FOR i := 1 TO 6 DO

WRITE (HEX (PHYSICAL ADDRESS: :ELN$NI DATALINK ADDRESS BYTE[I],2));
WRITELN('Hardware address = '); -
FOR i := 1 TO 6 DO

WRITE (HEX (HARDWARE_ADDRESS: :ELN$NI_DATALINK ADDRESS BYTE[I],2);
END;

DISPOSE(controller_attributes-pointer);
END;

Example 8-1 Cont'd on next page

Ethernet/IEEE 802 Datalink Drivers 8-29

Example 8-1 (Cont.): Sample Network Interface Application

PROCEDURE transmit_msg;

{
{ Transmit messages using IEEE 802 formatted frames and a SAP
{ address.
{}

TYPE
message_l_type = STRING(36);

VAR
status : INTEGER;
portal_id : INTEGER;
sapyort : PORT;
format and mux ELN$NI_FORMAT AND MUX;
user data size INTEGER;
msg : MESSAGE;
datayointer Amessage_1_type;
replyyort : PORT;
i : INTEGER;
class_802 : ELN$NI_BYTE;

BEGIN
format and mux.format := ELN$K NI SAP;
format-and-mux.mux.dsap := sap-number * 2;
class~02 7= ELN$K_NI_CL1; -

CREATE_PORT(sapyort);

ELN$NI_CONNECT(STATUS := status,
PORTALID := portal_id,
CONTROL_PORT := controlyort,
DISPATCH_PORT := sapyort,
FORM : = format_and _mux,
CLASS_802 := class_802);

CREATE_PORT(replyyort);

FOR i := 1 TO 100 DO
BEGIN

user data size := SIZE(message_1_type);

ELN$NI_ALLOCATE_BUFFER(STATUS := status, ~
USER DATA SIZE := user_data_size,
MESSAGE OBJECT := msg,
DATA_POINTER := datayointer);

datayointerA := 'This is the message ... ';
format_and_mux.mux.ssap := sap_number * 2;

Example 8-1 Cont'd on next page

8-30 Ethernet/IEEE 802 Datalink Drivers

Example 8-1 (Cont.): Sample Network Interface Application

ELN$NI_TRANSMIT (STATUS := status, 8
PORTAL ID := portal id,
DATA_PORT := data-p~rt,
DATA~OINTER := data-pointer,
MESSAGE OBJECT := msg,
USER DATA SIZE := user data size,
DEST=ADDRESS := remote=address,
FORM := format and mux,
REPLY_PORT := reply-port);

WAIT_ANY(reply-port); ~

ELN$NI TRANSMIT STATUS(STATUS := status, ~
- - REPLY_PORT := reply-port,

MESSAGE_OBJECT := msg);

DELETE (msg) ;
END;

ELN$NI_DISCONNECT(STATUS := status,
PORTAL ID := portal id,
CONTROL PORT := control-port);

DELETE(sap-port);
DELETE(reply-port);

END;

PROCEDURE receive_msg;

{ Receive messages that are transmitted over a CSMA/CD LAN.
{}

VAR
dispatch-port : PORT;
format and mux : ELN$NI_FORMAT AND MUX;
prom : BOOLEAN;
i : INTEGER;
user data out : INTEGER;
user-data-in : INTEGER;
portal_id-: INTEGER;
msg : MESSAGE;
data-pointer : ABYTE_DATA(1500);
data size : INTEGER;
da,;a ELN$NI_DATALINK_ADDRESS;
status : INTEGER;

BEGIN

CREATE_PORT(dispatch-port);

Example 8-1 Cont'd on next page

Ethernet/IEEE 802 Datalink Drivers 8-31

Example 8-1 (Cont.): Sample Network Interface Application

format and mux.format := ELN$K_NI_UNUSED;
prom := TRUE;
user_data_out := 12345;

ELN$NI_CONNECT(STATUS := status,
PORTAL ID := portal id,
CONTROL_PORT := control-port,
DISPATCH_PORT := dispatch-port,
FORM := format and mux,
USER DATA := user data out,
PROMISCUOUS := prom); -

FOR i := 1 to 100 DO

BEGIN
user data_in := 0;

WAIT_ANY(dispatch-port);

ELN$NI RECEIVE(STATUS := status,

END;

- DISPATCH_PORT := dispatch-port,
RECEIVED MESSAGE := msg,
DATA_POINTER := data-pointer,
DATA SIZE := data size,
DEST:ADDRESS := d~,
SOURCE ADDRESS := sa,
FORM :~ format_and_mux,
USER_DATA := user_data_in);

ELN$NI_DISCONNECT(STATUS := status,
PORTAL ID := portal id,
CONTROL PORT := control-port);

DELETE(dispatch-port);

END;

{

{ Main
{}

BEGIN

pass_number .- 0;

REPEAT

Example 8-1 Cont'd on next page

8-32 Ethernet/IEEE 802 Datalink Drivers

Example 8-1 (Cont.): Sample Network Interface Application

sap number := (sap number + 1) MOD 128;
IF (sap number = «(ELN$ SNAP SAP DIV 2) DIV 2»

OR (sap number (ELN$ SNAP SAP DIV 2»
OR (sap:=number = 0) - -

THEN
sap_number := sap number + 1;

WRITELN('SAP number-=', sap_number);

WRITELN('Get the configuration ... ');

{

{ Get the CSMA/CD LAN configuration and assign the control
{ port and data port values to control-port and data-port,
{ respectively.
{}

ELN$NI_GET_CONFIGURATION(STATUS := status, ~
COUNT := config_count,
CONFIG := config_data);

control-port := config_data.clist[l] .control-port; ~
data-port := config_data.clist[l] .data-port;

WRITELN('Get the controller attributes ... ');
get_attributes;

WRITELN('Transmit messages ... ');
transmit_msg;

WRITELN('Receive messages ... ');
receive_msg;

WRITELN('Pass =', pass_number);

UNTIL FALSE;
END.
END;

o Get the controller attributes. Get the controller attributes by
calling the ELN$NI_GET_ATTRIBUTES routine. The routine
stores the version number of the network interface routines being
used and the device type, name, physical address, and hardware
address of the controller whose control port value is control-port
(see step 18). The get_attributes procedure then extracts the con
troller's device name, physical address, and hardware address. For
more information about retrieving Ethernet controller attributes,
see Section 8.3.

Ethernet/IEEE 802 Datalink Drivers 8-33

G Create a dispatch port for the SAP. Use the CREATE_PORT
procedure to create a dispatch port for the SAP. The sample mod
ule creates the dispatch port sap...]Jort. The module will connect
the dispatch port to the first controller's control port. For more
information about dispatch ports, see Section 8.4.2.

o Specify the message format, multiplexing type, and LLC
class. If necessary, specify the message format, type of multi
plexing, and LLC class. The sample module specifies IEEE 802
formatted frames for the message format by assigning the value
ELN$K_NI_SAP to the variable format_and_mux.format. The
value calculated from the expression sap_number * 2 is assigned to
the DSAP multiplexing field format_and_mux.mux.dsap. Thus, the
datalink driver will deliver messages addressed to the SAP identi
fied by format_and_mux.mux.dsap to the dispatch port dispatch_
port.

The sample module specifies that the LLC class ELN$K_NI_CLl
is to be used. This indicates that the datalink driver is to handle
IEEE 802 XID and TEST messages and send UI messages to the
user.

o Establish the dispatch port for the portal. Establish the
dispatch port by specifying it in a call to the ELN$NI_CONNECT
routine. A call to this routine must specify a portal identification
number, control port, dispatch port, and message form.

The call to ELN$NI_CONNECT in the sample module establishes
the dispatch port sap...]Jort. The variable portal_id receives an
integer value identifying the connection.

The format_and_mux and class_802 arguments specify the message
format, multiplexing type, and LLC class to be accepted on behalf
of the specified portal. These values were specified in step 2.

o Create a reply port. Use the CREATE_PORT procedure to
create a reply port. This port is specified in the calls to ELN$NI_
TRANSMIT and ELN$NI_TRANSMIT_STATUS for returning
transmitted messages and their status values.

o Allocate the message buffer. Allocate a message buffer for
transmitting the messages by calling the ELN$NI_ALLOCATE_
BUFFER routine. A call to this routine must specify the number of
bytes of data to be allocated, a variable of type MESSAGE that is to
receive the messages, and a pointer variable that receives a pointer
to the first byte of the message's user data.

8-34 Ethernetll EEE 802 Datalink Drivers

The sample module allocates space for a 36-character string. The
arguments msg and data-yointer receive the message data and
data pointer, respectively.

& Transmit a message. Transmit a message by calling the ELN$NI_
TRANSMIT routine. The call to ELN$NI_TRANSMIT must specify
the portal's identification number, the controller's data port, the
message's data pointer and object value, the user data size, the
destination address, and the form argument.

The call to ELN$NI_ TRANSMIT specifies the portal identification
number that the portal_id argument received in step 4 and the
controller's data port value (see step 18). The data-yointer points
to the beginning of the message's user data. The message data is
transmitted using the SAP address that results from the computa
tion sap_number * 2. The computation shifts the SAP number left
by one bit, making the low-order bit O. This indicates that the SAP
is an individual DSAP.

The optional reply -yort argument lets you retrieve the messages
that are transmitted and their status values.

For more information about transmitting messages, see Section 8.5.2.

G Wait on the reply port. Wait on the reply port by specifying the
port in a call to the WAIT_ANY procedure. The sample module
waits on reply -yort.

o Retrieve the transmitted message. Retrieve a message on
the reply port by specifying the port in a call to the ELN$NI_
TRANSMIT_STATUS routine. You must also specify the message
object. The call to ELN$NI_TRANSMIT_STATUS in the sample
module retrieves the message msg from reply-yort.

~ Disconnect the portal. Disconnect the portal after all messages
are transmitted. The sample module disconnects the connection
identified by portal_ide

CD Create a dispatch port. Use the CREATE_PORT procedure to
create a dispatch port. The sample module creates the dispatch
port dispatch-yort. The module will establish the dispatch port for
the created portal. For more information about dispatch ports, see
Section 8.4.2.

o Specify the message format. If necessary, specify the message
format, multiplexing information, and LLC class to be used. The
sample module specifies the unused message format so that promis
cuous mode can be used. When in promiscuous mode, the datalink
driver delivers a copy of each message transmitted on the Ethernet.

Ethernet/IEEE 802 Datalink Drivers 8-35

G) Establish the dispatch port for the portal. Establish the
dispatch port by calling the ELN$NI_CONNECT routine. A call
to this routine must specify a portal identification number, control
port, dispatch port, and message form.

The call to ELN$NI_CONNECT in the sample module estab
lishes the dispatch port dispatch-port for the specified portal.
The variable portal_id receives an integer value identifying the
connection.

The format_and_mux argument specifies the message format to be
used. This value was specified in step 12.

The user _data_out and prom arguments specify the integer value
that is to be returned in each call to ELN$NI_RECEIVE and a
Boolean that enables promiscuous mode.

(D Wait on the dispatch port. Wait on the dispatch port by speci
fying the port in a call to the WAIT_ANY procedure. The sample
module waits on dispatch-port.

ce Receive a message. Receive a message by calling the ELN$NI_
RECEIVE routine. The call to ELN$NI_RECEIVE must specify the
dispatch port, a variable of type MESSAGE to receive the message,
and a pointer variable to receive a pointer to the beginning of the
message's user data. The call to ELN$NI_RECEIVE in the sample
module includes these arguments and arguments that receive the
size of the message's user data, destination address, source address,
the message format, and the user data value that was defined in
the call to ELN$NI_ CONNECT.

~ Disconnect the dispatch port from the control port.
Disconnect the dispatch port from the control port after all mes
sages are received. The sample module disconnects the connection
identified by portal_ide

'i Get the system's CSMAlCD LAN configuration. Get the
system's CSMA/CD LAN configuration by calling the ELN$NI_
GET_CONFIGURATION routine. The call to ELN$NI_GET_
CONFIGURATION stores the version number of the network in
terface routines and the device types, device names, control port
values, and data port values for all active CSMA/CD LAN con
trollers. You must retrieve this information before you can use the
other network interface routines. The sample module returns the
configuration record to config_data.

8-36 Ethernet/IEEE 802 Datalink Drivers

G) Extract the control port and data port values from the con
troller configuration record. Once you retrieve the controller
configuration record, extract the control and data port values.
You must specify a control port in calls to ELN$NI_CONNECT,
ELN$NI_DISCONNECT, and ELN$NI_GET_ATTRIBUTES. You
must specify a data port in calls to ELN$NI_TRANSMIT. The
sample module extracts the port values for the first controller and
assigns them to control-port and data-port, respectively.

Ethernet/IEEE 802 Datalink Drivers 8-37

Chapter 9

DECnet Network Services

The VAXELN Toolkit's DECnet Network Service routes messages sent
between two DECnet network nodes, manages the list of universal
names for the network, and provides a runtime interface for managing
local system DECnet software. The Network Service calls the datalink
driver to transmit messages; in tum, the datalink driver calls the
Network Service to dispatch received messages.

When a process gets a value for a port that is not on the process's node,
the kernel and the Network Service on the local node cooperate to route
the message to the destination, through the Network Service on the
receiver's node. Once received at the destination, the message has the
same format as any message. The methods for receiving a message and
replying to it are always the same.

When a process attempts to translate a universal name, the Network
Service and the kernel cooperate to obtain the translation. The
Network Service also provides for communication with other DECnet
network nodes and implements functions for managing nodes in the
network.

You configure multinode VAXELN systems with a Network Service
at each node. However, the methods by which a program sends and
receives messages are the same whether jobs communicate between
nodes or within a single node. Data transmission between network
nodes is transparent.

NOTE

The processors configured for a closely coupled symmetric
multiprocessing system constitute one Ethernet node.

DECnet Network Services 9-1

This chapter describes the protocols that the Network Service employs
(see Section 9.1). The rest of the chapter provides information about
the following DECnet Network Service services:

• Message transmission services, Section 9.2

• Name service, Section 9.3
• Network management services, Section 9.4
• Services for communicating with VMS Nodes, Section 9.5

• Remote Terminal Utility, Section 9.6

9.1 Network Service Protocols

The Network Service employs the following Phase IV DECnet protocols:

• Routing protocol, Version 2.0
• Network services protocol (NSP), Version 4.0

• Session control protocol (SCP), Version 1.0

• Data access protocol (DAP), Version 7.1

The routing protocol routes system-level datagrams between VAXELN
nodes and other DECnet nodes. The protocol provides Ethernet end
node routing. Although end-node routing limits a VAXELN system to
only one Ethernet datalink controller, such as a DEUNA or DEQNA,
the routing capabilities let the VAXELN system communicate directly
over the Ethernet with any DECnet node on the same Ethernet. If a
full routing system is present on the Ethernet, for example, a VMS
system, the VAXELN system can communicate through the routing
system to any node on the entire network.

NSP and SCP support transparent application-level circuits that are
connected to remote nodes. Such circuits are also known as logical
links. They connect two remote application- or session-level ports.
Therefore, a call to the VAXELN CONNECT_CIRCUIT procedure
that specifies a remote destination port causes the VAXELN Network
Service to create an NSP logical link with the specified destination.
Likewise, the ACCEPT_CIRCUIT procedure lets the calling program
accept logical links from remote destination ports. Once the circuits
(logical links) are established, the NSP uses the routing protocol to
deliver messages to remote systems.

9-2 DEC net Network Services

VAXELN uses DAP in all communications tasks within an applica
tion, not just for message-passing. For example, console and disk 1/0
use DAP as their highest-level interface. All VAXELN drivers have
DAP front ends to facilitate transparent multiprocessing in local area
network configurations.

In addition, the VAXELN Toolkit uses direct device access (DDA) to
perform local disk and terminal 110 functions that the DAP architecture
does not define. DDA provides an interface for disk and serial-line read
and write operations. This protocol also provides an interface for
dynamically setting serial-line characteristics, setting serial lines to
the spacing state, monitoring the use of out-of-band characters, and
controlling modem signals.

9.2 Message Transmission Services

The Network Service uses Phase IV DECnet protocols to add trans
parent network extensions to the message-pa~ing kernel procedures
ACCEPT_CIRCUIT, CONNECT_CIRCUIT, DISCONNECT_CIRCUIT,
RECEIVE, and SEND. When an application uses these procedures to
pass messages between two network nodes, the kernel and Network
Service on each node cooperate to ensure message delivery. When
a process sends a message, the kernel checks whether the specified
port value is known to the executing node. If it is not, the kernel
and Network Service route the message through the receiving node's
Network Service to the destination port. The receiving process receives
and replies to the message as though executing on the same node as
the sending process.

Applications that include the Network Service can pass messages be
tween nodes explicitly by using the SEND procedure and implicitly
through 110 operations that use services, drivers, or hardware on a dif
ferent node. The system that runs on each node in such an application
must include the Network Service.

Figure 9-1 shows a 2-node VAXELN network. When Job A sends a
message to Job B, the Network Service on Target VAX 1 delivers a
formatted message to the datalink driver on that system.

DECnet Network Services 9-3

Figure 9-1: A Two-Node VAXELN Network USing the Network
Service

Target VAX 1 Target VAX 2

I Job A H Kernel I I Job B H Kernel I
• +

Network Network
Service Service

_t ~
Datalink Datalink
Driver Driver

&

Ethernet f' r---\
\---~J----(

MLO-004287

Part of the formatted message is the 48-bit Ethernet address of the
destination node, Target VAX 2. The datalink driver on Target VAX
2 recognizes its Ethernet address in the message and forwards the
message to the Network Service on its machine. The Network Service
then delivers the message to a message port in the destination job, Job
B.

Neither the sending nor the receiving job communicates directly with
the Network Service. Instead, the kernel on each node determines
whether an outgoing message is destined for a message port on the
local node or a remote node.

NOTE

When jobs on the same target processor send messages to
each other, the Network Service is not involved. Therefore,
you can omit the Network Service from such systems.

9-4 DEC net Network Services

The use of circuits is recommended, especially in network applications.
However, the Network Service functions the same way when messages
are sent between two unconnected message ports on different nodes.

Circuits are recommended because, whether or not you use a network,
they guarantee message delivery if the physical connection is intact.
(The Ethernet does not guarantee intact connections.) Circuits also
guarantee that messages are delivered in the correct sequence and that
messages of any length will be split, or segmented, into messages of the
maximum size supported by the hardware. The message segments are
reassembled into messages of the original size.

Generally, these guarantees are especially important in networks. If
your application requires communication without circuits, you probably
will have to program guarantees, such as message delivery, yourself.

An alternative to using circuits is to send data as a datagram remote
port. However, the Ethernet and general DECnet networks impose a
limit on message size. This limit restricts the size of datagrams that
you can send to a remote port to 1500 bytes: the maximum Ethernet
message size (1514 bytes) minus the size of the message header (14
bytes).

9.3 Name Service

When you build the Network Service into a VAXELN system, you
can also include the Name Service. The Name Service adds network
extensions to the CREATE_NAME, TRANSLATE_NAME, and DELETE
procedures. These extensions let jobs access and maintain a table of
universal port names (port names that are known to all nodes in a
VAXELN local area network). Using universal port names, jobs can
identify message destinations without having to know or maintain
other jobs' PORT values.

If you include the Name Service in a VAXELN system, your application
programs can do the following:

• Use the CREATE_NAME procedure to create universal names
• Use the TRANSLATE_NAME procedure to translate universal

names

• Use the DELETE procedure to delete universal names

DECnet Network Services 9-5

Universal port names are the key to distributed applications. By using
universal port names, a VAXELN system can move a job or disk file to
another node without your having to modify code. The Network Service
ensures the validity of the communications path. Thus, a job running
on one node can open, read, and write files that are located on another
node, while the use of multiple nodes remains transparent to the user.

Each target system in a VAXELN network application retains a list of
the universal names it creates and sends a copy of those names to the
universal Name Service. One of these target systems acts as a name
server and manages the universal name table.

NOTE

The set of universal names in a VAXELN local area network
is known only to the VAXELN nodes in that network. That
set of names is not known to nodes running other systems,
such as VMS, nor to other VAXELN nodes not directly
connected to the local area network's Ethernet.

9.3.1 Name Server

A VAXELN network's name server is the VAXELN system that is
responsible for managing the network's universal name table. The
name server is elected from the pool of VAXELN systems that include
the Name Service. If your VAXELN system includes the VAXELN
Command Language Utility (ECL), you can display the name of the
current name server node by issuing the SHOW NAME_SERVER
command. If the name server is a remote node, this command displays
the node's Ethernet address and DECnet area and node number. If
the local node is the name server, the command displays a message to
inform you.

9.3.2 Kernel and Name Service Interaction

The kernel and Name Service on each node in a VAXELN network
communicate with each other and with the name server. Messages are
sent between the Name Service on each node and name server until
a valid reply is received. Kernel and Name Service interaction can be
summarized as follows:

• Name Creation

9-6 DECnet Network Services

When a job creates a universal name, the kernel on its node sends
a message to its node's Name Service. The Name Service then
sends the name and its PORT value to the name server. The
name server enters the universal name in its table and sends an
acknowledgment back to the Name Service. The Name Service
waits for the acknowledgment from the name server (a message
indicating the success or failure of the name creation) and forwards
the reply back to its local kernel. The completion status is returned
to the program that initiated the name creation.

• Name Deletion

When a job deletes a universal name, the kernel informs its local
Name Service of the deletion, and the Name Service informs the
name server. The name server removes the name from the table,
unless it has been already deleted, and replies to the Name Service.
The completion status is returned to the program that initiated the
name deletion.

• Name Translation

When a job translates a universal name, the local kernel sends a
message to each node's Name Service. The Name Service forwards
the translation request to the name server. The name server
translates the name to a PORT value, which the name server
returns to the Name Service in its reply. The completion status is
returned to the program that initiated the name translation.

9.3.;3 Name Server Election

The Name Service preserves universal names if the current name
server shuts down and at least one other system in the VAXELN
network has the Name Service. Each VAXELN system in a VAXELN
network that includes the Name Service is eligible to serve as the
network's name server. Each of these nodes can nominate itself as the
name server, but it will not necessarily be one.

The protocol for electing a name server is as follows:

• The current name server periodically broadcasts its Ethernet
address to inform the other nodes that it is the current name
server.

• If you build the Name Service into a system, the service retains a
list of the universal names that the system creates.

DECnet Network Services 9-7

• Nodes that have the Name Service listen for the name server's
periodic broadcast. If a timeout interval elapses with no broadcast,
another node is elected as the current name server, and each
system that includes the Name Service sends its list of universal
names to the new server.

Assuming that a name server is elected, the preceding protocol ensures
that a system's universal port names are available to the other nodes.
Thus, the failure of one node does not prevent other nodes from using
universal names.

To ensure the integrity of a network's universal name table, include
the Name Service in a sufficient number of systems. If necessary, you
can include the service in systems that use only local names. However,
keep in mind that as the size of a network and the number of systems
that include the Name Service increase, the amount of overhead that
resul ts from the election process increases.

9.4 Network Management Services

The Network Service provides services for managing VAXELN DECnet
nodes. The Network Service supports a subset of the Phase IV network
management protocol (NMP). Thus, you can manage VAXELN DECnet
nodes from a VMS host system by using the DECnet-VAX network
control program (NCP). You can use the NCP to invoke functions of the
following facilities:

• Network management listener (NML), Version 4.0. Monitors the
network and controls DECnet systems.

• Loopback Mirror. Tests the Network Service and its ability to
communicate with other nodes on the network.

The Network Service also provides the following services for managing
VAXELN DECnet nodes from VAXELN target systems:

• Network Management Service. Provides a routine interface for
dynamically starting and stopping DECnet software at runtime.

• Down-Line Load Service. Provides a runtime routine interface for
down-line loading VAXELN system images to other VAXELN target
nodes.

9-8 DEC net Network Services

Section 9.4.1 explains how to use NML to manage VAXELN DECnet
systems from a VMS host system. Section 9.4.2 explains how to use the
Loopback Mirror to test the Network Service. Sections 9.4.3 and 9.4.4
explain how to use the Network Management Service and Down-Line
Load Service.

9.4.1 Managing VAXELN DECnet Systems from a VMS Host System

You can monitor and control DECnet systems from a VMS host system
by using NML. You invoke NML functions by using NCP. For informa
tion about using NCp, see the DECnet-VAX System Manager's Guide.
This section explains NCP features that the VAXELN Toolkit supports
remotely.

To use the NCP to invoke the VAXELN NML, you must first define the
VAXELN system's node name and address in the VMS system's net
work node data base. This definition is usually established when the
network is installed, but you should check that each node in your net
work has a unique address and name. The following VMS commands
define a VAXELN system for use by the network management services:

$ RUN SYS$SYSTEM:NCP
NCP> DEFINE NODE FRED ADDRESS 5
NCP> SET NODE FRED ALL

Once you define the node, you can verify its existence in the network
node data base by using the NCP SHOW NODE and SHOW CIRCUIT
commands. (The circuit that you specify in the NCP command is a
datalink-Ievel circuit between nodes, not the application-level circuit
referred to in VAXELN programs.)

NCP> SHOW NODE FRED

Node Volatile Summary as of 8-MAR-1990 12:44:41

Node State

5 (FRED) reachable

Active Delay Circuit Next Node
Links

UNA-O 5 (FRED)

To invoke the VAXELN NML through the NCp, use the NCP SET
EXECUTOR command or the TELL prefix. The following example
shows how to use the SET EXECUTOR command:

DECnet Network Services 9-9

NCP> SET EXECUTOR NODE FRED
NCP> SHOW EXECUTOR

Node Volatile Summary as of 8-MAR-1990 10:48:00

Executor node = 5 (FRED)

State = on
Identification = VAXELN V4.1

The VAXELN NML supports the following NCP commands and options.
Brackets identify optional items, which in most cases are mutually
exclusive.

• LOOP NODE node-id [WITH block-type] [COUNT count] [LENGTH
length]

• SHOW EXECUTOR [SUMMARY] [STATUS] [CHARACTERISTICS]
[COUNTERS]

• SHOW KNOWN CIRCUIT [SUMMARY] [COUNTERS]
• SHOW KNOWN LINE [SUMMARY] [COUNTERS]
• SHOW NODE node-id [SUMMARY] [COUNTERS]

• ZERO EXECUTOR
• ZERO KNOWN CIRCUIT

• ZERO KNOWN LINE
• ZERO NODE node-id

9.4.2 Testing the Network Service

You can test a VAXELN system's Network Service from a VMS system
or another VAXELN system by using the Loopback Mirror facility. The
mirror passively loops messages sent to it, using the NCP LOOP NODE
command.

The mirror is a good test of the Network Service and its ability to
communicate with other nodes on the network. Therefore, you should
use the LOOP NODE command whenever communication between
systems is in doubt. For example, to test the communication between
a remote VAXELN system and the local VMS system, use a command
similar to the following:

NCP> LOOP NODE ENODE COUNT 100

9-10 DECnet Network Services

To test communication between two VAXELN systems, use a command
similar to the following:

NCP> TELL ENODE LOOP NODE ENODE2 COUNT 100

9.4.3 Using the Network Management Service

Argument

Node name

Node address

Line name

The Network Service provides network management routines that an
application can use to modify the state of its DECnet software. An
application can start and stop DECnet software at runtime by calling
the ELN$NETMAN_START_NETWORK and ELN$NETMAN_STOP_
NETWORK routines.

Calls to the ELN$NETMAN_START_NETWORK routine can specify
a node name, node address, and line name. A fields argument points
to an aggregate that identifies which arguments you are specifying.
If you are using Pascal or C, you can identify the arguments that are
to be used individually, using Boolean values, or collectively, using a
bit mask value. For FORTRAN applications you must use a bit mask
value. If you choose the Boolean method, you set the Boolean value for
each argument that you are going to specify to TRUE. When using the
bit mask method, you specify the sum of the appropriate mask values.
The argument fields and mask values are defined as follows:

Field Name Mask Name Mask Value

node_name..field NETMAN$NODE_NAME_ 1
MASK

node_address..field NETMAN$NODE_ADDRESS_ 2
MASK

line_nameJield NETMAN$LINE_NAME_MASK 4

For each field that you set, you must specify a value for a corresponding
argument. For example, to specify a line name, you must set the bit for
the line name in the fields argument and specify a line name for the
line name argument. For the fields that you choose not to set, you can
specify a null string for the corresponding argument.

The line name argument identifies the Ethernet controller over which
the DECnet software is to run. If you do not specify a line name, the
Network Service starts DECnet on the default Ethernet controller. If
the call to ELN$NETMAN_START_NETWORK starts DECnet for the
first time, the default controller is the Ethernet controller that you

DECnet Network Services 9-11

specified on the Network Node Characteristics Menu when you built
the system. Otherwise, the default controller is the last controller on
which DECnet successfully started.

If a system image is built with DECnet software disabled and that
system calls ELN$NETMAN_START_NETWORK for the first time, the
routine call can also specify the node address and node name that the
DECnet software is to use. The values that you specify in the routine
call override the node address and node name that may have been
specified previously when the system was built or down-line loaded.

• If the call to ELN$NETMAN_START_NETWORK is starting
DECnet for the first time and you do not specify a node address
and node name, DECnet uses the address and name that were
specified when the system was built or down-line loaded.

• If a call to ELN$NETMAN_START_NETWORK specifies a node
address and node name and the call is not starting DECnet for the
first time, the routine returns an error.

The universal Name Service is not available to systems on which
DECnet software is disabled. If the Name Service was built into a
system, the universal Name Service becomes available when DECnet
starts on that system.

When an application calls the ELN$NETMAN_STOP _NETWORK
routine to stop the DECnet software, the Network Service aborts
existing network logical links, shuts down the universal name service,
and stops all DECnet operations. Although DECnet operations stop,
the EthemetlIEEE 802 Datagram Service continues to run. Thus,
applications can continue to use the Datagram Service's network
interface routines for networking operations.

To use the Network Management Service routines, a program must
include the appropriate include files. The include modules vary for
each language. For Pascal programs you must include the modules
$NETMAN_UTILITY and $NET_DEFINITIONS. If you are program
ming in C, you must include the modules $vaxelnc and $netman_
utility. For FORTRAN programs, you must include the definition file
ELN$:NETMAN_UTILITY.FOR.

For descriptions of Down-Line Load Service routines, see the VAXELN
Pascal Runtime Library Reference Manual, VAXELN C Runtime
Library Reference Manual, or VAXELN FORTRAN Runtime Library
Reference Manual.

9-12 DECnet Network Services

The sections that follow explain how to use the ELN$NETMAN_
START_NETWORK and ELN$NETMAN_STOP _NETWORK routines
to do the following:

• Initialize DECnet addresses at runtime, Section 9.4.3.1

• Start and stop DECnet to temporarily reduce network overhead,
Section 9.4.3.2

• Switch the Ethernet controller on which DECnet is to run,
Section 9.4.3.3

9.4.3.1 Initializing DECnet Node Addresses at Runtime

You can use the ELN$NETMAN_START_NETWORK routine to initial
ize the local node's DECnet node address at runtime. A VAXELN ap
plication configuration that requires the loading of the same VAXELN
system image onto multiple targets could benefit from such initializa
tion. Some ROM-based applications use such configurations. You can
load a VAXELN system image that has DECnet disabled onto multiple
targets and then start DECnet at runtime on each system, specifying
the appropriate DECnet node address. This may be more appropriate
than hard-coding DECnet node addresses into multiple versions of a
system image that is the same otherwise.

If the system images are to be down-line loaded or if the DECnet
node addresses were supplied when the systems were built, you can
specify the calls to ELN$NETMAN_START_NETWORK without the
node addresses and node names. When you omit these arguments,
the routine uses the address and name that were specified when the
system was built or down-line loaded.

If the image is not down-line loaded and the DECnet node information
is not supplied when a system is built, the application must retrieve
the information. The task of retrieving the node address and node
name that needs to be specified in the call to ELN$NETMAN_START_
NETWORK is left to the application designer. Three approaches are as
follows:

• Create a user-defined EthernetlIEEE 802 protocol that determines
a system's node address.

• Include a table in the application that maps DECnet node ad
dresses with CPU identification numbers or Ethernet controller
hardware addresses.

• Prompt for the information at the console at system start-up.

DECnet Network Services 9-13

9.4.3.2 Stopping and Starting DECnet Software to Reduce Network Overhead

VAXELN networking applications can use the ELN$NETMAN_STOP_
NETWORK and ELN$NETMAN_START_NETWORK routines to tem
porarily shut down DECnet operations to reduce network overhead for
time-critical tasks. You can eliminate the following types of overhead
by stopping DECnet:

• Connection requests
• End-node routing announcement messages

• Periodic network timer

• Universal Name Service operations

Although applications retain the overhead incurred from user-defined
EthernetlIEEE 802 protocols and datalink-Ievel system identification
messages (sent by ESA, EZA, and QNA device drivers), the reduction
in overhead that you gain from shutting down DECnet operations may
provide a significant contribution to system performance when it is
most needed.

A VAXELN application that collects time-critical data and sends that
data to other systems for processing is an example of an application
that can benefit by temporarily shutting down DECnet operations.
Such an application might stop DECnet, collect the time-critical data,
and then start DECnet again to transmit the collected data to another
system for processing.

To use ELN$NETMAN_START_NETWORK and ELN$NETMAN_
STOP_NETWORK in such an application, you do the following:

1. Build the system image with DECnet enabled.

2. At a time-critical point in the application, call the ELN$NETMAN_
STOP_NETWORK routine to stop DECnet.

3. Perform the time-critical task.
4. Call the ELN$NETMAN_START_NETWORK routine to start

DECnet.

5. Communicate with other systems over the network.

9-14 DECnet Network Services

The following code shows how you might program this in an applica
tion:

MODULE stop_n_start_decnet;

INCLUDE $NETMAN_UTILITY, $NET_DEFINITIONS;

PROGRAM st op_n_st art (INPUT, OUTPUT);

VAR
stat : INTEGER;
specified_fields : NETMAN$INFORMATION FIELDS;
node address : NET$NODE ADDRESS;
node-name NET$NODE NAME;
line=name VARYING_STRING(32);

BEGIN

{

{ stop DECnet
{}

{
{ Perform the time-critical task and then restart DECnet using the
{ default node address, node name, and line name.
{}

{

{ Set specified_fields to zero to use the current settings for the
{ node name, node address, and line name.
{}

specified_fields.mask_value := 0;

ELN$NETMAN_START_NETWORK(stat,
specified fields,
node_address,
node name,
line=name);

DECnet Network Services 9-15

9.4.3.3 Switching DECnet Software Between Ethernet Controllers

The VAXELN datalink drivers can support up to eight Ethernet con
trollers, only one of which can run DECnet software at a given time.
If a VAXELN networking application employs a multiple Ethernet con
troller configuration, it can use the ELN$NETMAN_STOP _NETWORK
and ELN$NETMAN_START_NETWORK routines to switch DECnet
from one controller to another.

An application might use multiple controllers to maintain DECnet
networking integrity if a communications path is broken. If an applica
tion can switch DECnet to another controller dynamically at runtime,
another controller can take over if the communications path to the
controller running DECnet fails.

The task of preparing a mechanism that determines whether a com
munications path has failed is left to the application designer. One
approach is to program an application to do the following:

1. Check for the KER$_DISCONNECT status value. The SEND and
RECEIVE procedures return this status value to notify their callers
when a port was disconnected.

2. Call the DISCONNECT_CIRCUIT procedure to disconnect the
partner port.

3. Call ELN$NETMAN_STOP _NETWORK to stop DECnet. The
Network Service aborts existing logical links, shuts down the
universal name service, and stops all network operations.

4. Close all connections to the datalink driver (established with the
ELN$NI_CONNECT routine) running on the controller to which
the DECnet software is to be switched.

5. Restart DECnet on the other controller with a call to ELN$NETMAN_
START_NETWORK, specifying the controller's line name.

6. Reestablish connections to the datalink driver.
7. Reestablish the circuit.

The following section of code shows this approach:

MODULE switch_controllers;

INCLUDE $NETMAN_UTILITY, $NET_DEFINITIONS;

PROGRAM switch(INPUT, OUTPUT);

9-16 DECnet Network Services

VAR
data-port : PORT;
stat : INTEGER;
specified fields : NETMAN$INFORMATION FIELDS;
node address : NET$NODE ADDRESS;
node=name NET$NODE_NAME;
line name VARYING_STRING(32);

Check for and handle a disconnected circuit. }

IF stat = KER$_DISCONNECT THEN
BEGIN

{ Disconnect the port before trying to reestablish the connection. }

DISCONNECT_CIRCUIT(data-port);

{ Stop DECnet. }

ELN$NETMAN_STOP_NETWORK;

{ Start DECnet on another controller. }

specified_fields.mask_value := NETMAN$LINE_NAME MASK;

node address. area := 0;
node-address.node := 0;
node=name := ";
line_name := 'XQBO';

ELN$NETMAN_START_NETWORK(stat,
node_address,
node name,
line=name) ;

{ Reestablish the connection. }

CONNECT_CIRCUIT (data-port,
DESTINATION NAME := dest-port_name,
STATUS := stat);

SEND(msg, data-port, STATUS := stat);
END;

For more information about programming circuits, see Section 5.3.6.

Another approach is to program an application to implement a user
defined EthernetlIEEE 802 protocol that periodically multicasts
datagrams to other nodes on a LAN. Based on information that the
application gathers from sending the datagrams, it can determine
which nodes are available on the LAN. If nodes are not available on
that LAN, the application can use ELN$NETMAN_STOP_NETWORK
and ELN$NETMAN_START_NETWORK to switch DECnet operations

DECnet Network Services ~17

to another controller (and LAN) that provides communications paths to
all the necessary nodes.

9.4.4 Using the Down-Line Load Service

The VAXELN Down-Line Load Service handles VAXELN system load
requests and provides runtime interface routines. Using the interface
routines, VAXELN applications can configure, manage, and monitor a
memory-resident down-line load data base. Applications can also use
routines to trigger boot or down-line load VAXELN systems to remote
VAXELN target nodes.

You build the Down-Line Load Service into a VAXELN system as a
program image, and it runs as a system job. When the job starts
executing, it creates and starts a process for each Ethernet controller
on the local system. The process for a controller handles all load
requests sent to and from that controller. The master process waits for
data base, trigger, and load requests.

When you build the Down-Line Load Service into a VAXELN system,
you can specify that it is to start when the system begins executing
by selecting Yes for the Run entry on the System Builder's Program
Description Menu. Alternatively, you can activate the Down-Line Load
Service at runtime by using one of the following:

• A call to the CREATE_JOB procedure from an application program

• The EXECUTEIWAIT ECL command
• The RUN ECL command
• The CREATE JOB debugger command

The down-line load data base can store information about remote
VAXELN target nodes and physical lines known to the local node. An
application can set up the data base for a local node, using the supplied
routines. Alternatively, you can create a down-line load data base script
file and specify the file as a program argument for the Down-Line Load
Service job. You can specify the script file when you build the service
into the system image or when you activate the service at runtime.

The data base can contain an aggregate for each node and line, with
the aggregate fields identifying specific node or line characteristics.
The Down-Line Load Service uses the characteristics in the data base
as defaults for information not supplied in load requests.

9-18 DECnet Network Services

An application can keep the data base current by adding new entries,
modifying existing entries, clearing duplicate information, and so on.
An application can also obtain current information from the data base.

An application communicates with the Down-Line Load Service by
using the following routines:

Routine

ELN$DLL_CLEAR_NODE

ELN$DLL_GET_LINE

ELN$DLL_TRIGGER

Description

Clears or resets down-line load data base line
entries.

Clears down-line load data base node entries.

Returns line infonnation from the down-line
load data base.

Returns node infonnation from the down-line
load data base.

Loads a VAXELN system onto another
VAXELN target node.

Adds infonnation to or modifies infonnation in
down-line load data base line entries.

Adds infonnation to or modifies infonnation in
down-line load data base node entries.

Trigger boots a VAXELN system.

To use these routines, a program must include the appropriate include
files and establish a connection with the Down-Line Load Service's
control port. Before calling some of the routines, you must also get the
line name for an Ethernet device.

The include modules vary for each language. For Pascal programs you
must include the modules $DLL_VTILITY and $NET_DEFINITIONS.
If you are programming in C, you must include the modules $vaxelnc
and $dll_utility. For FORTRAN programs, you must include the
definition file ELN$:DLL_VTILITY.FOR.

Sections 9.4.4.1 to 9.4.4.6 explain how to use the runtime interface.
Section 9.4.4.1 explains how to establish a circuit for Down-Line Load
Service communication. Sections 9.4.4.2 to 9.4.4.6 explain how to use
the Down-Line Load Service routines to do the following:

• Manage and monitor data base node entries
• Manage the monitor data base line entries

• Trigger boot VAXELN target nodes

DECnet Network Services 9-19

• Down-line load VAXELN system images

For descriptions of Down-Line Load Service routines, see the VAXELN
Pascal Runtime Library Reference Manual, VAXELN C Runtime
Library Reference Manual, or VAXELN FORTRAN Runtime Library
Reference Manual.

For information ab~ut building the Down-Line Load Service into
VAXELN systems, activating the service at runtime, and setting up
script files, see the VAXELN Development Utilities Guide.

For information about down-line loading system images from VMS host
nodes, see the VAXELN Development Utilities Guide.

9.4.4.1 Establishing Circuits for Down-Line Load Service Communication

An application program communicates with the Down-Line Load
Service using a VAXELN virtual circuit. A program must establish the
circuit connection by getting its job port value and connecting that port
with the Down-Line Load Service control port $DLL_CONTROL. The
following example shows how to establish such a connection:

MODULE test_dll;

INCLUDE $NI UTILITY, $ELNMSG,
$DLL_UTILITY, $NET_DEFINITIONS;

PROGRAM do_down_line_load(INPUT,OUTPUT);

VAR
application_job-port, dll-port : PORT;
stat : INTEGER;

BEGIN
TRANSLATE_NAME (dll-port, '$DLL_CONTROL', NAME$LOCAL, STATUS := stat);

{ Get job port. }

JOB_PORT(application_job-port);

{ Connect the job port to the Down-Line Load Service.

CONNECT_CIRCUIT (application_job-port, DESTINATION PORT := dll-port);

END.
END;

9-20 DECnet Network Services

Once the connection between applicationJobJJort and the Down-Line
Load Service port is established, the program can call the Down-Line
Load Service routines, specifying applicationJobJJort as a circuit
argument.

9.4.4.2 Managing and Monitoring Data Base Node Entries

An application can use Down-Line Load Service routines to set up the
local host's initial data base node configuration or update an existing
configuration. The data base should identify remote VAXELN nodes
that the local node might trigger boot or to which the local node might
down-line load a VAXELN system image.

The data base node entries include the node's name and DECnet
address. Optionally, an entry can specify the hardware address, a
line name, a VAXELN system image file, a secondary load file, and
a tertiary load file. The line name identifies the controller on the
local node to be used for trigger boot and down-line load operations.
All other node entry information pertains to a remote target node.
Table 9-1 summarizes these characteristics.

Table 9-1 : Down-Line Load Data Base Node Characteristics
Characteristic

Node name

N ode address

Hardware address

Line name

Image file name

Secondary loader file name

Description

The name of the target node.

The DECnet node address of the target node.

The hardware address of the Ethernet con
troller on the target node.

The name of the line device on the local node
to be used for down-line load operations for
the target node.

The name of the VAXELN system image file to
be down-line loaded to the target node.

The name of the secondary loader file. The
secondary loader is a small image that a
system's primary loader may request. In turn,
the secondary loader may request a tertiary
loader.

DECnet Network Services g...21

Table 9-1 (Cont.): Down-Line Load Data Base Node Characteristics
Characteristic

Tertiary loader file name

Description

The name of the tertiary loader file. The ter
tiary loader is a larger image that a system's
secondary loader may request. In turn, the
tertiary loader may request the VAXELN
system image file.

When you trigger boot or down-line load an image, the Down-Line Load
Service uses the data that you specify in the routine call and gets any
missing information from the data base. Thus, if a call to ELN$DLL_
LOAD specifies only a node name, the Down-Line Load Service looks
for a line name, image file, secondary loader file, and tertiary loader file
in the data base. If necessary, the service also tries to derive a physical
address from the DECnet node address stored in the data base.

An application can modify and monitor the data base by calling the
ELNDLL_SET_NODE, ELNDLL_CLEAR_NODE, and ELN$DLL_
GET_NODE routines. ELN$DLL_SET_NODE adds or modifies data
base entries. ELN$DLL_CLEAR_NODE clears the information stored
in the entries. ELN$DLL_GET_NODE returns target node information
from the data base.

Calls to these routines must specify the port connected in a circuit to
the $DLL_CONTROL port. The routines use the connected circuit to
communicate with the Down-Line Load Service.

Calls to ELN$DLL_CLEAR_NODE and ELN$DLL_GET_NODE must
also identify the node for which information is to be cleared or returned.
The node identifier must be a string representing the node's name (for
example, BNODE) or DECnet node address (for example, 12.2). You
can specify a wildcard string ('*') to indicate that the routine is to clear
or return information from all node entries in the data base.

To set or clear a node's characteristics, an application must also specify
a fields argument. This argument indicates that the corresponding
value in the data base aggregate is to be set or cleared. You can set
or clear the node name, node address, hardware address, line name,
image file, secondary loader file, and tertiary loader file.

You can specify the aggregate fields to be set or cleared individually,
using Boolean values, or collectively, using a bit mask value. If you
choose the Boolean method, you set the Boolean value for each char
acteristic that you want to set or clear to TRUE. If you choose the bit

9-22 DECnet Network Services

Characteristic

Node name

Node address

Hardware ad-
dress

Line name

System image
file name

Secondary load
file name

Tertiary load file
name

mask method, you specify the sum of the appropriate mask values in
the mask value field. The characteristic fields and mask values are
defined as follows:

Field Name Mask Name Mask Value

node_name..field DLL$NODE_NAME_MASK 1

node_addressJield DLL$NODE_ADDRESS_MASK 2

hardware_addressJield DLL$HARDVVARE_ADDRESS_ 8
MASK

line_nameJield DLL$LINE_NAME_MASK 16

imageJile..field DLL$IMAGE_FILE_MASK 64

sec_loader ..fileJield DLL$SEC_LOADER_FILE_ 128
MASK

terCloader ..fileJield DLL$TERT_LOADER_FILE_ 256
MASK

NOTE

The mask values 4 and 32 are for use with the ELN$DLL_
LOAD and ELN$DLL_TRIGGER routines; the values do
not represent node characteristics that you can set or clear.
The value 4 indicates that you specified a node identifier
(name or DECnet address). The value 32 indicates whether
you specified a physical address. For more information, see
Sections 9.4.4.5 and 9.4.4.6.

You can set or clear fields without changing other fields in the aggre
gate. However, for each field that you set, you must specify a value
for a corresponding argument. For example, to set a node name, you
must set the bit for the node name field in the fields argument and
specify the name of a target node for the node name argument. For the
fields that you choose not to set, you can specify a null string for the
corresponding argument.

If a node entry that you want to modify contains a node name but no
address and you specify only the node address in the call to ELN$DLL_
SET_NODE, the routine creates a new entry, using the node address as
the node's identification. When this happens, you should combine the
information in the two entries for that node to avoid conflicts between
the original and updated information. To combine the entries, clear the

DECnet Network Services 9-23

data in one entry and set the information from the cleared entry in the
second entry.

To return node information from the data base, an application must
specify the name of a user-defined show node routine. ELN$DLL_
GET_NODE invokes the show node routine if it finds the specified node
in the data base. If you specify the string '*' for the node identifier,
ELN$DLL_GET_NODE calls your routine once for each node in the
data base and returns all user-specified node information.

Example 9-1 adds a node entry to the down-line load data base, clears
the hardware address for that entry, and then returns the information
stored in the entry.

Example 9-1: Managing and Monitoring Down-Line Load Data Base
Node Entries

MODULE manage_dll_node_entries;

INCLUDE $NI UTILITY, $ELNMSG,
$DLL_UTILITY, $NET_DEFINITIONS;

PROGRAM manage_nodes(INPUT,OUTPUT);

VAR
app_joh-port, dll-port : PORT;
set status, clear status, get status : INTEGER;
new-fields, clear-fields : DLL$NODE INFORMATION FIELDS;
nod; name : NET$NODE NAME; - -
node-address: NET$NODE ADDRESS;
node-identifier : NET$NODE NAME ADDRESS;
hardware address : NET$ETHERNET-ADDRESS;
line_nam; : VARYING_STRING(32);-
image file: VARYING STRING(255);
sec_loader_file : VARYING_STRING(255);
tert loader file: VARYING STRING(255);
dll_msg : MESSAGE; -

BEGIN

{ Get the values for the Down-Line Load Service control port and the
{ program's job port and establish a connection.
{}

JOB_PORT(app_job-port); Ct
CONNECT_CIRCUIT (app_j oh-port ,

DESTINATION NAME := '$DLL_CONTROL');

Example 9-1 Cont'd on next page

9-24 DECnet Network Services

Example 9-1 (Cont.): Managing and Monitoring Down-Line Load
Data Base Node Entries

{ Add an entry to the down-line load data base.
{}

new_fields.mask_value := 0;

new fields.node name field := TRUE;
new-fields.node-address field := TRUE;
new-fields.hardware add;ess field := TRUE;
new-fields. line name field 7= TRUE;
new=fields.image_file_field := TRUE;

node name := 'BNODE';
node-address. area := 12;
node-address.node := 1;
line-name := 'XQAO';
hardware address.address := "(%XOO, %XOO, %Xll, %XOO, %X22, %X33);
image file := 'BNODE: :DUAO: [DLL]IMAGEFILE.SYS';
sec leader file := ";
tert_loader_file := ";

ELi.:$DLL_SET_NODE (set_status,
app_jobyort,
new_fields,
node name,
node-address,
hardware_address,
line name,
image file,
sec_leader_file,
tert_loader_file);

WRITELN('status of data base set operation:' set_status);

{ Clear the new entry's hardware address.
{}

clear_fields.mask_value := 0; ()

clear_fields.hardware_address_field := TRUE;

ELN$DLL CLEAR NODE (clear status, ~
- - app_jobyort,

clear_fields,
'BNODE') ;

WRITELN('Status of data base clear operation: " clear_status);

{ Display the information in the data base entry.
{}

Example 9-1 Cont'd on next page

DECnet Network Services 9-25

Example 9-1 (Cont.): Managing and Monitoring Down-Line Load
Data Base Node Entries

ELN$DLL GET NODE(get status,
- - app=job-port ,

'12.1' ,
show_node) ;

WRITELN('Status of data base get operation: " get_status);

DISCONNECT_CIRCUIT (app_job-port); &
END;

PROCEDURE show_node of type ELN$DLL_SHOW NODE ROUTINE; ~

BEGIN

{ Return information from the fields that are set.
{}

WITH node_info-ptr: :ADLL$NODE_INFORMATIONA DO
BEGIN

WRITELN('************************************')
WRITELN(' Version = " version);
IF node flag set. node name field THEN

WRITELN (' - Node name =', node name);
IF node_flag_set.node_address_field THEN

BEGIN
WRITELN('
WRITELN ('

END;

Node address area =', node_address.area);
Node address node =', node_address.node);

IF node flag set.hardware address field THEN
WRITELN(' - Hardwa~e addre;s =', hardware address.address);

IF node flag set. line name field THEN -
WRITELN(' - Li~e name =', line name);

IF node flag set. image file field THEN
WRITELN(' - System image file =', image_file);

IF node flag set. sec loader file field THEN
WRITELN(' - Secondary loader file =', sec loader file);

IF node flag set.tert loader file field THEN - -
WRITELN(' - Te~tiary loade~ file =', tert loader file);

WRITELN('************************************') - -
END;

END;
END.

9-26 DECnet Network Services

o Connect to the Down-Line Load Service control port. Get the
value of the program's job port and connect that port in a circuit
to the Down-Line Load Service control port. The sample module
connects the job port app.JobJJort in a circuit to the local control
port $DLL_CONTROL. For information about connecting to the
Down-Line Load Service control port, see Section 9.4.4.1.

@ Set up the data base aggregate for a new node entry. Set
up the data base aggregate for a new node entry by clearing
the new fields mask value, setting the appropriate fields in the
aggregate, and assigning values to the corresponding arguments.
The sample module uses the Boolean method to set the node name,
node address, line name, hardware address, and image file fields
to TRUE. Alternatively, the module could have set the fields by
assigning a mask value of 91 (the sum of the mask values 1, 2,
8, 16, and 64) to the mask value field. The module then assigns
appropriate values to the node_name, node_address, line_name,
hardware_address, and imageJile arguments. Null strings are
assigned to the sec_loader Jile and tert_loader Jile arguments
because those fields are not being set. Although, you do not have to
specify values for fields that are not being set; the arguments are
ignored.

6) Add a new node entry to the data base. Add a new node entry
to the down-line load data base by calling ELN$DLL_SET_NODE.
A call to this routine must specify the port connected in a circuit to
the $DLL_CONTROL port and a value for the new fields argument.
The call must also specify values for arguments representing the
node's name, DECnet address, and hardware address; the name of
the line on the local node to be used for load operations; and the
name of the system image file, secondary load file, and tertiary
load file to be loaded. The newJields argument identifies the node
characteristics the application will be setting. The routine call
in the sample application sets the node name, node address, line
name, hardware address, and image file name.

o Set up the data base aggregate for a clear operation. Set
up the data base aggregate for a clear operation by clearing the
clear fields mask value and setting the appropriate fields in the
aggregate. The sample module uses the Boolean method to set the
hardware address field to TRUE. Alternatively, the module could
have assigned a mask value of 8 to the mask value field.

DECnet Network Services 9-27

o Clear node information from the data base. Clear node infor
mation from the down-line load data base by calling ELN$DLL_
CLEAR_NODE. You must specify the port connected in a circuit
to the $DLL_CONTROL port, a value for the clear ...fields argu
ment, and a node identifier. The routine call in the sample module
specifies that the hardware address for node BNODE be cleared.
Alternatively, the node identifier could have been specified as '12.1'.

@ Return node information from the data base. To check
the data that is in the down-line load data base, issue a call to
ELN$DLL_GET_NODE. The call must specify the port connected
in a circuit to the $DLL_CONTROL port, a node identifier, and the
name of a user-defined show node routine. The call to ELN$DLL_
GET_NODE in the sample module returns information about the
node whose DECnet node number is 12.1. Alternatively, the node
identifier could have been specified as 'BNODE'.

8 Disconnect the application job port from the Down-Line
Load Service control port. Disconnect the application job port
from the Down-Line Load Service control port when the circuit is
no longer needed. The sample module disconnects the connection
identified byapp.Job.JJort.

o Define the show node routine to be invoked by ELN$DLL_
GET_NODE. The user-defined routine show_node displays infor
mation that is in the aggregate fields that are set. For BNODE, the
routine will display the node name, node address, line name, and
system image file name.

9.4.4.3 Managing and Monitoring Data Base Line Entries

An application can use Down-Line Load Service routines to update
the local host's data base line configuration. The data base should
identify the physical Ethernet lines on the local node that can be used
for trigger boot and down-line load operations.

The data base line entries include the line name. Optionally, an entry
can specify the line's state, retry count, and service timer. Table 9-2
summarizes these characteristics.

9-28 DECnet Network Services

Table 9-2: Down-Line Load Data Base Line Characteristics
Characteristic

Down-line load enabled

Retry count

Service timer

Description

Flag that specifies whether the line is enabled for
trigger boot and down-line load operations.

The number of times the Down-Line Load Service
is to send an unacknowledged load request to
the target node. The service abandons the load
attempt when the number of tries exceeds the
count value.

The amount of time the Down-Line Load Service
is to wait for a response message from a target
node during a down-line load operation before
resending the load message.

When you trigger boot or down-line load an image, the Down-Line Load
Service uses the line characteristics that are in the data base for the
specified line. Thus, if a call to ELN$DLL_LOAD specifies the line
name XQAO, the Down-Line Load Service looks for the characteristics
for XQAO in the data base.

An application can modify and monitor the data base by calling the
ELNDLL_SET_LINE, ELNDLL_CLEAR_LINE, and ELN$DLL_
GET_LINE routines. ELN$DLL_SET_LINE modifies data base entries.
ELN$DLL_CLEAR_LINE resets the information stored in the entries.
ELN$DLL_GET_LINE returns local node line information from the
data base.

Calls to ELNDLL_SET_LINE, ELNDLL_ CLEAR_LINE, and
ELN$DLL_GET_LINE must specify the port connected in a circuit
to the $DLL_CONTROL port and a line name. The routines use the
connected circuit to communicate with the Down-Line Load Service.
The line name is a string that identifies a physical line on the local
node (for example, XQAO). You can get the names of available lines
from controller configuration aggregates returned by ELN$NI_GET_
CONFIGURATION (see Section 8.2) or by using the ECL command
SHOW DEVICES.

When calling ELN$DLL_CLEAR_LINE or ELN$DLL_GET_LINE
you can specify a wildcard string ('*') for the line name argument.
The wildcard string indicates that the routine is to reset or return
information from all line entries in the data base.

DECnet Network Services 9-29

Characteristic

Down-line load
enabled

Retry count

Service timer

To set or clear a line's characteristics, an application must also specify
a fields argument. This argument identifies the fields in the data base
for the line that you intend to set or clear. You can set or clear the
down-line load enabled flag, the retry count, and service timer. When
you clear the retry count or service timer, ELN$DLL_ CLEAR_LINE
resets the values to 5 and 4000 milliseconds, respectively.

You can specify the aggregate fields to be set or cleared individually,
using Boolean values, or collectively, using a bit mask value. If you
choose the Boolean method, you set the Boolean value for each char
acteristic that you want to set or clear to TRUE. If you choose the bit
mask method, you specify the sum of the appropriate mask values in
the mask value field. The characteristics fields and mask values are
defined as follows:

Field Name Mask Name Mask Value

dlCenabledJield DLL$DLL_ENABLED_MASK 1

retry _countJield DLL$RETRY_COUNT_MASK 2

service_timer Jield DLL$SERVICE_TIMER_MASK 4

You can set or clear fields without changing other fields in the aggre
gate. However, for each field that you set, you must specify a value for
a corresponding argument. For example, to set the retry count, you
must set the bit for the retry count field in the fields argument and
specify a count value for the retry count argument. For the fields that
you choose not to set, you can specify a null string for the corresponding
argument.

NOTE

The fields argument is ignored if you specify a wildcard
string for the line name in a call to ELN$DLL_CLEAR_
LINE.

To return node information from the data base, an application must
specify the name of a user-defined show line routine. ELN$DLL_
GET_LINE invokes the show line routine if it finds the specified line
in the data base. If you specify a wildcard string for the line name,
ELN$DLL_GET_LINE calls your routine once for each line in the data
base and returns the name of the line, state of the down-line load
enabled flag, retry count value, service timer value, and the hardware
address of the local node's Ethernet controller with which the line is
associated.

9-30 DECnet Network Services

Example 9-2 resets the retry count and service timer for a line entry
that is in the down-line load data base and returns the information
stored in that entry.

Example 9-2: Managing and Monitoring Down-Line Load Data Base
Line Entries

MODULE manage_dll_line_entries;

INCLUDE $NI UTILITY, $ELNMSG,
$DLL_UTILITY, $NET_DEFINITIONS;

PROGRAM manage_lines (INPUT,OUTPUT);

VAR
app_job-port, dll-port : PORT;
status : INTEGER;
set_status, clear status, get status : INTEGER;
new fields, clear=fields DLL$LINE_INFORMATION~IELDS;
dll=enabled BOOLEAN;
retry_count : INTEGER;
service timer : LARGE INTEGER;
line name: VARYING STRING(32);
hardware address : NET$ETHERNET ADDRESS;
config :-ELN$NI CONFIGURATION :~ ZERO;
line_count : INTEGER;

BEGIN

{ Get the values for the Down-Line Load Service control port and
{ the program's job port and establish a connection.
{}

JOB_PORT(app_job-port);

CONNECT_CIRCUIT (app_job-port,

o
DESTINATION NAME := '$DLL_CONTROL');

{ Set the retry count and service timer for line XQAO.
{}

ELN$NI_GET_CONFIGURATION(status,
line count,
confIg) ;

IF ODD (status) THEN
line_name := config.clist[l] . name;

Example 9-2 Cont'd on next page

DECnet Network Services 9-31

Example 9-2 (Cont.): Managing and Monitoring Down-Line Load
Data Base Line Entries

new fields.retry count field := TRUE;
new=fields.service_timer_field := TRUE;

retry count := 10;
service_timer := TIME_VALUE('O 00:00:20');

ELN$DLL_SET_LINE(set_status,
app_jobyort,
new fields,
line_name,
dll_enabled,
retry count,
service_timer) ;

WRITELN('Status of data base set operation: " set_status);

{ Reset the entry's retry count and service timer.
{}

clear_fields.mask_value := 0;

clear fields.retry count field := TRUE;
clear=fields.service_timer_field := TRUE;

ELN$DLL CLEAR LINE (clear status,
- - app_jobyort,

clear fields,
line_i;'ame) ;

WRITELN('Status of data base clear operation: " clear_status);

{ Display the information in the data base entry.
{}

ELN$DLL GET LINE (get status, ~
- - app=jobyort,

line name,
show=line);

WRITELN('Status of data base get operation: ' get_status);

DISCONNECT_CIRCUIT (app_jobyort) ; 0
END;

Example 9-2 Cont'd on next page

9-32 DECnet Network Services

Example 9-2 (Cont.): Managing and Monitoring Down-Line Load
Data Base Line Entries

PROCEDURE show line of type ELN$DLL_SHOW_LINE_ROUTINE; ~

BEGIN

WITH line_info-ptrA DO
BEGIN

WRITELN('************************************');
WRITELN(' Version = " version);
WRITELN(' Line name =', line name);
WRITELN(' Down-line load enabled =', dll_enabled);
WRITELN(' Retry count =', retry count);
WRITELN (' Service timer =', TIME_STRING (service_timer»;
WRITELN(' Hardware address =', hardware address.address);
WRITELN('************************************')

END;

END;
END.

o Connect to the Down-Line Load Service control port. Get the
value of the program's job port and connect that port in a circuit
to the Down-Line Load Service control port. The sample module
connects the job port app.Job.J1ort in a circuit to the local control
port $DLL_CONTROL. For information about connecting to the
Down-Line Load Service control port, see Section 9.4.4.1.

@ Get the name of a line. Use a call to the ELN$NI_GET_
CONFIGURATION routine to get the controller aggregates that
describe the Ethernet controller on the local node. From the ag
gregates, you can extract the names of the controllers and specify
the names for the line name argument in calls to ELN$DLL_SET_
LINE, ELN$DLL_CLEAR_LINE, and ELN$DLL_GET_LINE. The
sample module extracts the name of the first controller and assigns
that name to line_name.

6) Set up the data base aggregate for the line entry. Set up the
data base aggregate for the line entry by clearing the new fields
mask value, setting the appropriate fields in the aggregate, and
assigning values to the corresponding arguments. The sample
module uses the Boolean method to set the retry count and service
timer fields to TRUE. Alternatively, the module could have set the
fields by assigning a mask value of 6 (the sum of the mask values
2 and 4) to the mask value field. The module then assigns the

DECnet Network Services 9-33

values 10 and 5000 to the retry_count and service_timer arguments,
respectively.

e Modify a line entry in the data base. Modify a line entry in the
down-line load data base by calling ELN$DLL_SET_LINE. A call
to this routine must specify the port connected in a circuit to the
$DLL_CONTROL port and a value for the newfolds argument.
The call must also specify values for arguments representing the
line's down-line load enabled flag, retry count, and service timer.
The new folds argument identifies the line characteristics the
application will set. The routine call in the sample application sets
the retry count and service timer.

" Set up the data base aggregate for a clear operation. Set
up the data base aggregate for a clear operation by clearing the
clear fields mask value and setting the appropriate fields in the
aggregate. The sample module uses the Boolean method to set the
retry count and service timer fields to TRUE. Alternatively, the
module could have assigned a mask value of 6 to the mask value
field.

G Clear line information from the data base. Clear line infor
mation from the down-line load data base by calling ELN$DLL_
CLEAR_LINE. You must specify the port connected in a circuit to
the $DLL_CONTROL port, a value for the clear folds argument,
and a line name. The routine call in the sample module specifies
that the retry counter and service timer for line_name be cleared.

6 Return line information from the data base. To check the data
that is in the down-line load data base, issue a call to ELN$DLL_
GET_LINE. The call must specify the port connected in a circuit to
the $DLL_CONTROL port, a line name, and the name of a user
defined show_line routine. The call to ELN$DLL_GET_LINE in the
sample module returns information about line_name.

($) Disconnect the application job port from the Down-Line
Load Service control port. Disconnect the application job port
from the Down-Line Load Service control port when the circuit is
no longer needed. The sample module disconnects the connection
identified byapp.Job.JJort.

CD Define the show line routine to be invoked by ELN$DLL_
GET_LINE. The user-defined routine show_line displays infor
mation that is in the aggregate fields. The show-line routine in
the sample module displays the version number of the Down Line
Load Service and the name, down-line load flag value, retry count,
service timer, and hardware address for line_name.

9-34 DECnet Network Services

9.4.4.4 Managing Target-Initiated Down-Line Load Requests

A VAXELN system can set up a down-line load data base for ser
vicing load requests by calling routines to set, clear, and retrieve
information from data base entries. The VAXELN Down-Line Load
Service services both application- and target-initiated down-line load
requests. Application-initiated requests are trigger boot and down-line
load requests that result from calls to the ELN$DLL_TRIGGER and
ELN$DLL_LOAD routines. Trigger booting and down-line loading are
discussed in Sections 9.4.4.5 and 9.4.4.6, respectively.

A target-initiated load request is an unsolicited request that a target
node transmits in response to a console BOOT command. A target
node might direct the load request to a specific node or to a multicast
address.

Figure 9-2 shows the load request message flow that might result from
a console BOOT command.

Figure 9-2: Target-Initiated Down-Line Load Request

VAXELN Host Node

Down-Line Load
Service

Load Request

VAXELN Target Node

Primary Bootstrap
Loader

MLO-004156

The Down-Line Load Service listens for load requests on lines for which
it is enabled. After receiving such a request, the service creates a
process that reads and processes the request.

The Down-Line Load Service extracts the data in the load request and
determines whether a request is directed to a multicast address or
the local node. If the request is for a multicast address, the service
volunteers to perform the load if a node entry in the down-line load
data base matches the target node's hardware address.

DECnet Network Services 9-35

The service volunteers by sending a message to the requesting node.
If the target node does not respond, the service drops the initial load
request. Otherwise, it continues to service the request.

When servicing the remainder of a multicast load request or a request
directed to the local node, the Down-Line Load Service checks for
other information that may have been supplied in the load request.
If the request includes additional information, it is used to service
the request. If the load request does not supply all the necessary
information, the Down-Line Load Service searches the down-line
load data base for information it needs. When the service has all the
required information, it performs the load operation.

The typical load sequence for a target-initiated load request begins with
the primary bootstrap loader running on the target node. Typically, this
program executes directly from the target node's bootstrap ROM, or it
is in the microcode of the load device. Mter the primary loader is
triggered, the target node sends a message requesting a program load
to an eligible host node. (The host node may be a specific node defined
by the target node, or any node on the Ethernet.) Usually, the primary
loader requests a secondary loader program, which may request a
tertiary loader. The tertiary loader may then request a VAXELN
system image file.

9.4.4.5 Trigger Booting a VAXELN Target Node

A VAXELN application can trigger boot another VAXELN target node
by calling the ELN$DLL_TRIGGER routine. This routine triggers
a remote node's bootstrap ROM, causing the target node to issue a
request for a load operation. Depending on how the target node's
primary bootstrap loader is programmed, a system image is loaded
from a specific host, any host on the LAN, or a local disk.

To trigger boot a target node, an application sends a trigger request
message to that node. The trigger request must specify the name of
the line over which the trigger and load requests are to be sent and the
target node's Ethernet address.

Depending on how a target node's primary bootstrap loader is pro
grammed, a target node might respond to a trigger request by sending
a load request message back to the host VAXELN system. The Down
Line Load Service running on the host system extracts the load infor
mation it needs from the message; if information is missing, the service
searches the down-line load data base for the missing information.
The host system then uses the information to down-line load (copy) a
system image over the Ethernet to the target node.

9-36 DECnet Network Services

Figure 9-3 shows the message flow that might result from a trigger
boot operation.

Figure 9-3: Trigger Boot Request

V AXELN Host Node

Down-Line Load
Service

Trigger Request

Load Request

V AXELN Target Node

Primary Bootstrap
Loader

MLO-004157

An application initiates a trigger boot with a call to ELN$DLL_
TRIGGER. A call to this routine must specify the port connected in
a circuit to the $DLL_CONTROL port. The routine uses the connected
circuit to communicate with the Down-Line Load Service.

A call to ELN$DLL_TRIGGER must also identify the name of the
line to be used for the operation and the Ethernet address of the
target node. You can identify the line name and Ethernet address by
specifying a node identifier or a line name and physical address. If you
specify a node identifier, the Down-Line Load Service searches for the
required information in the down-line load data base.

The Down-Line Load Service uses the node identifier to get information
needed to derive a physical Ethernet address. The service derives a
physical Ethernet address from the DECnet node address that you
specify as a node identifier or that is stored in the data base. In
addition to trying to derive the physical address, the service searches
the node's data base entry for a hardware address. If both addresses
are available, both are used to trigger the target node. The target node
responds to the address that is appropriate for the target node's state
(running or not running). If only one of the addresses is available, the
service tries to trigger boot the target node using that address.

DECnet Network Services 9-37

Status

N ode identifier

Ethernet ad-
dress

Line name

The information that you specify in the routine call overrides the
data in the data base. Thus, if you specify a node identifier, line
name, and physical address, the Down-Line Load Service uses the line
name and physical address specified in the routine call; corresponding
information in the data base is ignored. Specifically, if you specify a
physical address in the call to ELN$DLL_TRIOOER, the Down-Line
Load Service uses only that address to trigger the target node. An
available hardware address will not be used.

A fields argument points to an aggregate that identifies which argu
ments you are specifying. You can identify the arguments that are to
be used individually, using Boolean values, or collectively, using a bit
mask value. If you choose the Boolean method, you set the Boolean
value for each argument that you will be specifying to TRUE. If you
choose the bit mask method, you specify the sum of the appropriate
mask values in the mask value field. The argument fields and mask
values are defined as follows:

Field Name Mask Name Mask Value

node_name_address_ DLL$NODE_NAME_ADDRESS_ 4
field MASK

physical_address..field DLL$PHYSICAL_ADDRESS_ 16
MASK

line_name..field DLL$LINE_NAME_MASK 32

For each field that you set, you must specify a value for a corresponding
argument. For example, to specify a line name and Ethernet address,
you must set the hits for the line name and Ethernet address fields in
the fields argument and specify a line name and Ethernet address for
the line name and physical address arguments. For the fields that you
choose not to set, you can specify a null string for the corresponding
argument.

Example 9-3 shows how a VAXELN application might trigger boot
another VAXELN target node.

9-38 DECnet Network Services

Example 9-3: Trigger Booting a VAXELN Target Node

MODULE manage_dll_line_entries;

INCLUDE $NI_UTILITY, $ELNMSG,
$DLL_UTILITY, $NET_DEFINITIONS;

PROGRAM manage_lines(INPUT,OUTPUT);

VAR

app_job-port, dll-port : PORT;
status : INTEGER;
specified fields : DLL$NODE INFORMATION FIELDS;
node_identifier NET$NODE_NAME_ADDRESS;

BEGIN

{ Get the values for the Down-Line Load Service control port and
{ the program's job port and establish a connection.
{}

JOB_PORT(app_job-port);

CONNECT_CIRCUIT (app_job-port,
DESTINATION NAME := '$DLL_CONTROL');

specified_fields.mask_value := 0;

specified_fields.node_name_address_field := TRUE;

node identifier := 'BNODE';
line-name := ";
physical_address := ";

ELN$DLL TRIGGER(status,
- app_job-port,

specified_fields,
node identifer,
line-name,
physical_address);

WRITELN('Status of trigger operation: " status);

DISCONNECT_CIRCUIT(app_job-port);
END;
END.

The call to ELN$DLL_TRIGGER in Example 9-3 boots the target node
identified by the node name BNODE. The Down-Line Load Service
uses the specified node identifier, BNODE, to find the appropriate line
name and Ethernet address for the trigger operation in the down-line

DECnet Network Services 9-39

load data base. If the service does not find a line name and Ethernet
address for BNODE, the trigger request is dropped.

NOTE

If a VAXELN system is to be trigger booted with the Down
Line Load Service, you must build that system with trigger
booting enabled. To enable trigger booting, you must select
1'es for the Node triggerable entry on the Network Node
Characteristics Menu. trigger booting on) The target node
does not need to be running the Down-Line Load Service.
You can specify Disk, ROM, or Downline for Boot method.

9.4.4.6 Down-Line Loading VAXELN Systems

A VAXELN application can down-line load a VAXELN system image to
another VAXELN target node by calling the ELN$DLL_LOAD routine.
This routine tries to down-line load a system image to a remote target
node. You supply the load information as arguments in the routine call.
The Down-Line Load Service gets any unspecified information from the
down-line load data base. If the service cannot find all the information
it needs to service the request, an error status value is returned.

A down-line load request must specify the name of the line over which
the load requests are to be sent, the target node's Ethernet address,
and the name of the file to be loaded.

Figure 9-4 shows the message flow that might result from a down-line
load operation.

Figure 9-4: Down-Line Load Request

V AXELN Host Node

Down-Line Load
Service

9-40 DECnet Network Services

Load Request
VAXELN Target Node

Primary Bootstrap

MLO-004158

The Down-Line Load Service can accept multiple load requests.
However, the service can perform only one load operation for a par
ticular target at a given time. A load request to a particular target
node overrides preceding requests to that node. However, if the ser
vice receives a request to trigger a node during a load operation of
that node, the service honors the trigger request, overriding the load
operation.

An application initiates a down-line load operation with a call to
ELN$DLL_LOAD. A call to this routine must specify the port con
nected in a circuit to the $DLL_CONTROL port. The routine uses the
connected circuit to communicate with the Down-Line Load Service.

A call to ELN$DLL_LOAD must also identify the name of the line to
be used for the operation, the Ethernet address of the target node, and
the name of the system image file to be loaded. Some target nodes also
require secondary and tertiary loader files. You can identify this data
by specifying it in the routine call or by specifying a node identifier. If
you specify a node identifier, the Down-Line Load Service searches for
the required information in the down-line load data base.

The Down-Line Load Service uses the node identifier to get information
needed to derive a physical Ethernet address. The service derives a
physical Ethernet address from the DECnet node address that you
specify as a node identifier or that is stored in the data base. In
addition to trying to derive the physical address, the service searches
the node's data base entry for a hardware address. If both addresses
are available, both are used to load the system image. The target node
responds to the address that is appropriate for the target node's state
(running or not running). If only one of the addresses is available, the
service tries to down-line load the system image using that address.

The information that you specify in the routine call overrides the
data in the data base. Thus, if you specify a node identifier, line
name, and physical address, the Down-Line Load Service uses the line
name and physical address specified in the routine call; corresponding
information in the data base is ignored. Specifically, if you specify a
physical address in the call to ELN$DLL_LOAD, the Down-Line Load
Service uses only that address to down-line load the system image. An
available hardware address will not be used.

A fields argument points to an aggregate that identifies which argu
ments you are specifying. You can identify the arguments that are to
be used individually, using Boolean values, or collectively, using a bit
mask value. If you choose the Boolean method, you set the Boolean
value for each argument to be specified to TRUE. If you choose the bit

DECnet Network Services 9-41

Argument

N ode identifier

Ethernet ad-
dress

Line name

Load file

Secondary
loader file

Tertiary loader
file

mask method, you specify the sum of the appropriate mask values in
the mask value field. The argument fields and mask values are defined
as follows:

Field Name Mask Name Mask Value

node_name_address - DLL$NODE_NAME_ADDRESS_ 4
field MASK

physicaCaddress...field DLL$PHYSICAL_ADDRESS_ 16
MASK

line_name...field DLL$LINE_NAME_MASK 32

image...file...field DLL$IMAGE_FILE_MASK 64

sec_loader ...file...field DLL$SEC_LOADER_FILE_ 128
MASK

terCloader ...file...field DLL$TERT_LOADER_FILE_ 256
MASK

For each field that you set, you must specify a value for a corresponding
argument. For example, to specify a line name and Ethernet address,
you must set the bits for the line name and Ethernet address fields in
the fields argument and specify a line name and Ethernet address for
the line name and physical address arguments. For the fields that you
choose not to set, you can specify a null string for the corresponding
argument.

Example 9-4 shows how a VAXELN application might down-line load a
VAXELN system image to another VAXELN target node.

9-42 DECnet Network Services

Example 9-4: Down-Line Loading a VAXELN System Image

MODULE manage_dll_line_entries;

INCLUDE $NI UTILITY, $ELNMSG,
$DLL_UTILITY, $NET_DEFINITIONS;

PROGRAM manage_lines(INPUT,OUTPUT);

VAR
app_job-port, dll-port : PORT;
status : INTEGER;
specified fields : DLL$NODE INFORMATION FIELDS;
node identifier : NET$NODE NAME ADDRESS;
image file: VARYING STRING(255);
sec l;ader file: VARYING STRING(255);
tert_loader_file VARYING_STRING(255);

BEGIN

{ Get the values for the Down-Line Load Service control port and
{ the program's job port and establish a connection.
{}

JOB_PORT(app_job-port);

CONNECT_CIRCUIT (app_job-port,
DESTINATION NAME := '$DLL_CONTROL');

specified_fields.mask_value := 0;

specified fields.node name address field := TRUE;
specified=fields.image_file_field 7= TRUE;

node identifier := 'BNODE';
line-name := ";
physical address := ";
image file := 'HNODE: :DUAO: [DLL1IMAGEFILE.SYS';
sec l;ader. file : = ";
tert_loader_file := ";

ELN$DLL LOAD(status,
- app_job-port,

specified_fields,
node identifer,
line-name,
physical address,
image file,
sec l;ader file,
tert_loader_file);

Example 9-4 Cont'd on next page

DECnet Network Services 9-43

Example 9-4 (Cont.): Down-Line Loading a VAXELN System Image

WRITELN('Status of down-line load operation: " status);

DISCONNECT_CIRCUIT(app_job-port);
END;
END.

The call to ELN$DLL_LOAD in Example 9-4 down-line loads the
image IMAGEFILE.SYS to the target node identified.by the node name
BNODE. The Down-Line Load Service uses the specified node identifier,
BNODE, to find the appropriate line name and Ethernet address for
the trigger operation in the down-line load data base. If the service
does not find a line name and Ethernet address for BNODE, the load
request is dropped.

NOTE

A VAXELN system that the Down-Line Load Service is to
load must be built with down-line loading enabled. To enable
down-line loading, select Downline for the Boot method
entry on the System Characteristics Menu. down-line loading
on)

9.5 Services for Communicating with VMS Nodes

VAXELN and VMS systems can communicate transparently or non
transparently. Using transparent communication, VAXELN and VMS
programs can exchange information with standard I/O statements
over the network as if the programs were running on the same system.
Transparent communication offers the basic mechanism for establishing
a connection, exchanging messages, and breaking the connection.

Nontransparent communication allows VMS programs to use network
specific features to handle the message exchange. The features avail
able are a superset of those available in the transparent case but
require more knowledge of DECnet operation and more sophisti-
cated programming. (For example, a VAXELN program can use the

9-44 DECnet Network Services

ACCEPT_DATA and CONNECT_DATA parameters of the kernel's cir
cuit procedures to exchange up to 16 bytes of data with a remote VMS
program as part of the NSP connection requests and acceptances.)

When using nontransparent communication, VMS systems use mail
boxes to handle multiple connection requests and the $QIO function
codes IO$_ACPCONTROL and IO$_ACCESS to establish names and
accept connections from multiple VAXELN processes. (For more infor
mation and examples, see the DECnet-VAX User's Guide.)

A complete explanation of VMS network I/O is beyond the scope of
this manual. The following sections provide information specific to the
VAXELN Toolkit about the following:

• Specifying nodes, Section 9.5.1
• Requesting connections from VAXELN systems, Section 9.5.2

• Accepting connections on VMS systems, Section 9.5.3
• Requesting connections from VMS systems, Section 9.5.4
• Accepting connections on VAXELN systems, Section 9.5.5

• Using object numbers in connection requests, Section 9.5.6

For more information, see the DECnet-VAX User's Guide.

9.5.1 Specifying Nodes

When nodes running VAXELN systems and nodes running other
operating systems are connected to the same network, you need to be
able to identify them to each other. This allows VAXELN systems to
operate on files stored on all systems, to establish circuits to the other
system, and so on.

You do not need to use node specifications to identify VAXELN nodes
to each other. For example, a VAXELN program on one node can use a
file stored on another node without giving a node identifier in the file
specification. The network locations of VAXELN jobs are transparent
to one another. Node specifications are needed only for communication
between VAXELN nodes and nodes running other operating systems.

In DECnet networks, nodes are identified by node name and by node
number; either is a unique identification of a node. A node name has a
maximum of six characters, and a node number is an integer. The VMS
command SHOW NETWORK displays both the name and number of
the nodes known to the DECnet-VAX software.

DECnet Network Services 9-45

VAXELN systems use node numbers to access a remote node. Other
operating systems can use either node numbers or node names (assum
ing node names are supported on the particular system) to access a
VAXELN node.

You can use the network control program (NCP) on a VMS system to
assign node names and numbers to VAXELN nodes as usual. (For a
brief introduction to NCp, see Section 9.4.1.)

Once you use NCP to establish the VAXELN node in the DECnet-VAX
data base, you can use the SHOW NETWORK command to display the
node any time the node is running and its system image includes the
Network Service.

9.5.1.1 Using Node Names and Node Numbers In VMS

You can use a VAXELN node name or number from another operating
system to display directories, perform other directory- or file-related
operations on File Service volumes, and perform network management
operations. Suppose you want to display a directory that resides on
a VAXELN file-server node named ENODE. If you enter the SHOW
NETWORK command on the VMS system, the system might display
something like the following:

$ SHOW NETWORK

Node Links
10 RVAXAA 0
12 ENODE 1

cost
o
3

Hops
o
1

Next Hop to Node
(Local)
UNA-O

Here, RVAXAA is the node from which you want to access a file on
ENODE. You can use either of the following VMS commands to dis
play the directory [ANALOG.DATA] on disk volume DISK$A on node
ENODE (12):

$ DIR ENODE::DISK$A: [ANALOG.DATA]

$ DIR 12::DISK$A: [ANALOG. DATA]

If you have used this feature on VMS before, you will be familiar
with this syntax for network file and directory operations. The name
or number preceding the double colon (::) is the node containing the
specified directory or file.

9-46 DECnet Network Services

9.5.1.2 Using Node Numbers In VAXELN

When working from a VAXELN node, you specify a remote node (such
as a VMS node) by number. Suppose you want to open a file on the
VMS node RVAXAA. The SHOW NETWORK command on the VMS
system might display something like the following:

$ SHOW NETWORK

Node Links
10 RVAXAA 0

3 ELN1 1

cost
o
3

Hops
o
1

Next Hop to Node
(Local)

UNA-O

Here, ELNI is the node from which you want to access a file on
RVAXAA. You can open the file as usual, with the OPEN procedure
appropriate to the language, and the node number of RVAXAA in the
file specification. For example, you specify a call to the Pascal OPEN
procedure as follows:

OPEN (pasvar, FILE_NAME := '10::SYS$LIBRARY:DIGITAL.DAT');

You specify the C equivalent as follows:

:/Finclude stdio
FILE *fileJ>tr;
fileJ>tr=fopen("10::SYS$LIBRARY:DIGITAL.DAT","r");

The FORTRAN equivalent would look like the following:

OPEN(FILE = 'lO::SYS$LIBRARY:DIGITAL.DAT', TYPE = 'NEW', UNIT = 100);

9.5.2 Requesting Connections from VAXELN Systems

You can use the CONNECT_CIRCUIT procedure to request a connec
tion with a VMS program on the same DECnet network by specifying
the destination_name argument in the following format:

'nodenumber::objectname'

The nodenumber is a network node number (as described in
Section 9.5.1), and objectname is the name of the object on the VMS
system that will handle the connection.

Set up a command procedure that runs the desired VMS program im
age, name the procedure objectname.COM, and place it in the default
DECnet directory on the VMS system. The command procedure exe
cutes when the DECnet-VAX. software gets a request for a connection
to the specified object. The VMS image then handles the connection.

DECnet Network Services 9-47

9.5.3 Accepting Connections on VMS Systems

A VMS program image has two ways of waiting for and accepting a
connection from a VAXELN system:

• You can use an operation that is comparable to using the VAXELN
ACCEPT_CIRCUIT procedure.

• You can specify the name SYS$NET in a high-level language OPEN
procedure (or equivalent).

(In a VAX MACRO program, you can use the $ASSIGN system service.)

You can break the connection by calling the DISCONNECT_CIRCUIT
procedure from your VAXELN program or by performing a close opera
tion in the VMS program.

9.5.4 Requesting Connections from VMS Systems

A VMS program can request a connection with a VAXELN program by
using a high-level language OPEN procedure or the $ASSIGN system
service with a name of the form:

nodename::"TASK=portname"

The node name is the name of the VAXELN network node, and the
portname is the character string name of the port created by the
VAXELN program;

9.5.5 Accepting Connections on VAXELN Systems

The VAXELN program does nothing special to accept a connection
from a remote VMS program. The VAXELN program needs only to
create a PORT object and a NAME object for the port and then call the
ACCEPT_CIRCUIT procedure to await the connection request.

9-48 DECnet Network Services

9.5.6 Using OECnet Object Numbers in Connection Requests

A VAXELN program can connect and accept connections using requests
that specify DECnet object numbers instead of names. This feature is
useful only for compatibility with existing DECnet applications.

To connect to a port or object by number, specify a string with this
format for the DESTINATION_NAME parameter of CONNECT_
CIRCUIT:

'nodenumber::objectnumber'

To accept a connection for an object by number, create a port name of
the form:

'NET$OBJECT_objectnumber'

Here, objectnumber is the object number in ASCII. Once the name is
created, connections can be accepted as usual.

9.6 Remote Terminal Utility

The Network Service provides a Remote Terminal Utility that lets
you connect to a remote computer system from a terminal on another
computer system by using a SET HOST command. For example, you
can connect to a VAXELN system from a VMS system terminal by
using the DCL SET HOST command, or you can connect to a VMS
system from a VAXELN system terminal by using the ECL SET HOST
command. Once connected to a remote system, you can log in, use
operating system commands (such as DCL and ECL commands),
receive messages, and interact with programs that run on that system.

To use the Remote Terminal Utility, you must build it into your
VAXELN system with the outbound, inbound, or outbound/inbound
capability. The outbound capability lets you connect to computer sys
tems from your VAXELN system. The inbound capability lets you
connect to your VAXELN system from other systems.

For more information about the Remote Terminal Utility and the ECL
SET HOST command, see the VAXELN Development Utilities Guide.

DECnet Network Services 9-49

Chapter 10

Internet Services

You can use the VAXELN Internet Services for VAXELN applications
that need to communicate between two computer hosts that reside
on the same or on different networks. The hosts are the sources and
destinations ,of transferred data. The Internet Services provide the
protocols necessary for VAXELN applications to transfer data over an
Internet.

An Internet is a set of connected networks. Higher-level software hides
the underlying Internet architecture and makes a collection of networks
appear as a single large network. The hosts on a network are physi
cally connected and networks on the Internet are physically connected.
Applications can communicate across intermediate networks even
though the networks are not connected to the source or destination
host. The hosts that connect and transfer messages between networks
are called gateways.

NOTE

Although VAXELN systems can use gateways for Internet
communication, they cannot function as gateways.

The VAXELN Internet Services provide the following:

• Connectionless or end-to-end connection-oriented packet delivery
service

• Packet delivery service that is independent of the communications
medium over which data is transmitted

• Communications environment that supports a variety of computer
platforms

• Communications protocol standards

Internet Services 10-1

This chapter explains Internet Service concepts in Section 10.1, how
to configure a VAXELN system that uses the Internet Services in
Section 10.2, and how an application can use runtime routines to do
the following:

• Control the Internet Services, Section 10.3

• Convert the byte order of Internet and host physical addresses,
Section 10.4

• Manipulate Internet addresses, Section 10.5

• Communicate over the Internet, Section 10.6

• Retrieve and set socket characteristics, Section 10.7

NOTE

The VAXELN Intern,et Services cUlTently support a C lan
guage runtime interface only.

10.1 Internet Service Concepts

Before using the VAXELN Internet Services, you should understand
the following Internet Service concepts:

• Client-server model

• Internet architecture
• Internet addresses
• Ports as Internet communication endpoints

• Sockets
• Routing
• Fragmentation

Sections 10.1.1 to 10.1.7 explain these concepts.

10-2 Internet Services

10.1.1 Client-Server Model

The hosts in a network environment communicate through processes.
A process that offers a service over the network to another process is
known as a server. Servers accept requests from other processes known
as clients. A client sends requests and waits for the results from the
server. Figure 10-1 represents a client-server model.

Figure 10-1: Client-Server Model

A process name on a host cannot be used as the destination for message
communication for the following reasons:

• Heterogeneous operating systems define processes differently.
• Not all processes that send data have enough information to iden

tify a process on another host.

• Process IDs can change.

Therefore, the hosts on the Internet identify communication endpoints
using ports (see Section 10.1.4). Internet protocols that comprise the
Internet architecture allow communication between the client and
server endpoints.

10.1.2 Internet Architecture

The Internet architecture consists of four layers of protocol that allow
two-way interprocess data flow between hosts, gateways, and net
works. The architecture includes an application layer, host-to-host
protocol layer, Internet Protocol (IP) layer, and network protocol layer.
Figure 10-2 illustrates the Internet layers.

Internet Services 10-3

The host-to-host layer supports two protocols: the User Datagram
Protocol (UDP) and the Transmission Control Protocol (TCP).

Figure 10-2: Internet Layers

Application Layer Application Code

Host-to-Host Protocol Layer

Internet Protocol Layer IP

Network Protocol Layer Datalink Driver

... Communications Medium ------I .. ~

MLO-004160

Processes on a host transmit data by passing it to the lower protocol
layers. A process at the application layer passes the data to the host
to-host protocol layer. The host-to-host protocol layer then packages
the data according to protocol functions. For example, TCP adds a
header that ensures reliable communication. Then the protocol sends
the packaged data to the IP layer. The IP also adds a header and sends
the data to the local datalink driver.

Sections 10.1.2.1, 10.1.2.2, and 10.1.2.3 describe IP, UDP, and TCp,
respectively.

10-4 Internet Services

10.1.2.1 Internet Protocol

The Internet Protocol (IP) is a protocol that is used for data com
munication in a packet-switched computer network. IP implements
mechanisms for connecting networks and gateways into a system that
can deliver network packets from source to destination.

IP saves applications from addressing network specifics by doing the
following:

• Routing packets to destinations through networks

• Keeping track of routes for hosts and networks
• Accounting for incompatibilities

The protocol packages message data and a header in blocks called
datagrams. The header provides fixed-length source and destination
Internet addresses, a protocol number that identifies the host-to-
host protocol being used, and a checksum value. The datagrams
are encapsulated in the network packets that are delivered between
the source and destination hosts. IP can fragment and reassemble
datagrams if necessary to accommodate requirements of smaller packet
networks.

IP is specifically limited to delivering datagrams, without provisions
for reliability, flow control, sequencing, or other services found in
host-to-host protocols.

In addition to handling datagram fragmentation, IP implements ad
dress mapping, and transmits control and error messages by using the
following protocols:

• Address Resolution Protocol (ARP). Dynamically maps Internet
addresses to physical Ethernet addresses and stores the address
pairs in an ARP cache. Using this protocol, an application can
determine a target host's physical (built-in) Ethernet address.
Section 10.1.3 provides more information about Internet ad
dresses. For more information about managing the ARP cache,
see Section 10.3.l.

• Internet Control Message Protocol (ICMP). Transmits error
and control messages to a destination host's IP when an IP data
gram delivery fails. ICMP provides routing information and notifies
hosts when a datagram cannot reach its destination or when a
datagram's keep-alive time reaches zero.

Internet Services 10-5

• Reverse Address Resolution Protocol (RARP). Determines a
diskless host's Internet address at start-up so that the host can
operate in an Internet network. A host can broadcast a message
that specifies its physical Ethernet address to all hosts in a local
area network (LAN). A host running an RARP server searches
its address data base and responds by returning the appropriate
Internet address. See Section 10.1.3 for more information about
Internet addresses.

10.1.2.2 User Datagram Protocol

The User Datagram Protocol (UDP) is layered on IP and provides
host-to-host datagram communication for applications that do not re
quire streamed communication. UDP adds multiplexing to IP, letting
multiple processes use the protocol to send and receive data indepen
dently. The protocol achieves mutliplexing by using ports to identify
the processes executing on a host.

UDP lets application programs send messages to programs running
on other hosts in a network using minimal protocol. The protocol is
transaction oriented, and it does not guarantee delivery or duplicate
protection.

UDP accepts a message from an application, places the message in a
datagram, and tries to deliver the datagram. The datagrams may not
arrive at the destination or may arrive out of order. Because UDP does
not provide a reliable service, applications generally add reliability by
incl uding error and sequence control.

Table 10--1 summarizes UDP characteristics:

Table 10-1 : UDP Characteristics
Protocol Characteristic

Initial setup

Transmission path

Error handling

Remote address

End-to-end flow control

Data sequencing

10-6 Internet Services

UDP Specifics

Not required

Datagram

Done by application

Remote address may be specified on each
transmission

Not provided

Passed in order of arrival

Table 10-1 (Cont.): UDP Characteristics
Protocol Characteristic UDP Specifics

Checksum computation Provided

The VAXELN Toolkit provides a Boot Protocol (BOOTP) that is based
on UDP. Like RARp, BOOTP determines a diskless host's Internet
address at start-up so that the host can operate in an Internet network.
A host can broadcast a message that specifies its physical address to all
hosts in a LAN. A host running a BOOTP server searches its address
data base and responds by returning the appropriate Internet address.

10.1.2.3 Transmission Control Protocol

The Transmission Control Protocol (TCP) is layered on IP and provides
host-to-host, connection-oriented communication in a network environ
ment. TCP adds multiplexing, checksum computations, connectivity,
and reliability to IP. TCP provides for reliable interprocess communica
tion between pairs of processes executing on host computers attached
to distinct but interconnected networks. Although TCP is layered on
IP, TCP does not require reliability of the underlying IP and datalink
driver.

TCP uses virtual circuits for data transmission. The virtual circuits
provide automatic sequencing, error control, and flow control.

Applications that use TCP must establish a virtual circuit connec
tion before transferring data. Once an application establishes the
connection, the application can use data transfer calls to send data
to a destination without specifying a destination address. When the
connection is no longer needed, the application must explicitly shut it
down.

TCP provides the following functions:

• Transfers a continuous stream of bytes in each direction between
a source and destination. TCP breaks up a message into bytes,
packages the bytes into segments for transmission through the
Internet, and reassembles the message at the destination. TCP
ensures that all data is transferred.

Internet Services 10-7

• Recovers lost, duplicated, or out-of-order data by assigning a se
quence number to each octet (eight bits) transmitted, and requiring
a positive acknowledgment (ACK) from the receiving TCP. If the
ACK is not received within a timeout interval, the data is retrans
mitted. The receiver's TCP uses the sequence numbers to reorder
segments that are received out of order and to eliminate duplicates.
TCP handles damaged data by adding a checksum to each trans
mitted segment, checking it at the receiver end, and discarding
damaged segments.

• Handles flow control. TCP controls data flow by returning a sliding
window (message buffer size) with every ACK indicating a range of
acceptable sequence numbers beyond the last segment successfully
received. The window identifies the number of octets that the
sender can transmit before receiving an ACK.

• Provides for multiplexing. Using ports, multiple processes rtmning
on a host can use TCP simultaneously.

• Establishes connections using unique device interfaces that spec
ify connection-related information, such as status information,
sequence numbers, and window sizes.

TCP establishes a connection by using a handshaking mechanism
with initial sequence numbers to avoid connection initialization
errors. An application should terminate a connection and free
resources when the connection is no longer needed.

Table 10-2 summarizes TCP characteristics:

Table 10-2: TCP Characteristics
Protocol Characteristic

Initial setup

Transmission path

Error handling

Remote address

End-to-end flow control

Data sequencing

Checksum computation

10-8 Internet Services

TCP Specifics

Required

Virtual circuit

Transparent to application

Remote address is required at setup

Provided

Passed in order sent

Provided

10.1.3 Internet Addresses

For a source host to communicate with a destination host, it must know
the Internet address of the destination host. An Internet address is a
32-bit (four octets) address that identifies a network and a host.

32 o

I Network Identifier Host Identifier

MLO-004161

The network identifier must be the same for all hosts connected to
the same network, and no two networks can have the same network
identifier if they are connected in any way.

No two hosts on the same network can have the same host identifier.

The notation used to represent a 32-bit Internet address consists of four
decimal integer fields separated by periods. The value in each field can
range from 0 to 255. A sample Internet address might be represented
as 5.0.2.10.

An Internet address can fall into one of three network classes and can
identify subnetworks (see Section 10.1.6). A network mask informs a
system which bits of an Internet address to interpret as the network,
subnetwork, and host addresses. A broadcast mask interprets an
Internet address as a broadcast address. Sections 10.1.3.1, 10.1.3.2,
and 10.1.3.3 provide more information about network classes, network
masks, and broadcast masks, respectively.

10.1.3.1 Network Classes

In addition to providing a network identifier, the network part of an
Internet address identifies a network class. The Internet supports
three network classes: Class A, Class B, and Class C. The network
configuration determines a network's class type.

The four Internet address fields are used in different ways to specify
the network class, network number, and host number. The high-order
bits in an Internet address designate the network class of the address.
The first high-order bits for each class are defined as follows:

Internet Services 10-9

Class

A

B

C

High-Order Bits

o
10

110

For a Class A network, the first field specifies the network number
and class and the remaining three fields specify a subnet number, if
subnetworks are being used (see Section 10.1.6), and the host number.
The following figure shows such an Internet address:

32 24 16 8 o

MLO-004162

The value in the first field can range from 1 to 126, inclusive. By
convention, 127 is reserved as the loopback address. Loopback is used
for testing the connectivity to a specific host in the network.

NOTE

Currently, the VAXELN Internet Services do not use 127 as
the loopback address.

For a Class B network, the first two fields specify the network number
and class, and the remaining two fields specify a sub net number, if
subnetworks are being used, and the host number. The value in the
first field can range from 128 to 191 and the value in the second field
can range from 1 to 254. The following figure shows the Internet
address format for a Class B network:

MLO-004163

10-10 Internet Services

For a Class C network, the first three fields specify the network number
and class, and the remaining ;field specifies the host number, as shown
in the following figure:

MLO-004164

The value in the first field can range from 192 to 223, the value in
the second field can range from 0 to 255, and the value in the third
field can range from 1 to 254. Subnet routing is not generally used
with a Class C network because there are only eight bits in the host
field. Table 10-3 lists the ranges of the network numbers for the three
network classes.

Table 10-3: Network Class Number Ranges
Class

A

B

C

Number

1.-126.

128.1-191.254

192.0.1-223.255.254

To determine which network class to use, you must consider the num
ber of network hosts and the number of Internet networks.

The Class A network is best suited for sites with a few networks but
numerous hosts, because it has 24 bits in the host part of its Internet
address. The 24 bits allow for the most host-number combinations. In
this case, the network part of the Internet address consists of seven
usable bits, leaving 126 usable network-number combinations (0 and
127 are reserved).

The Class B network is best suited for sites where the number of
networks is about equal to the number of hosts, because the 32 bits of
the Internet address are evenly divided between the network and the
host part of the address. The network part uses 16 bits and the host
part uses 16 bits.

Internet Services 10-11

The Class C network is best suited for sites with numerous networks
but few hosts, because the network part of the Internet address has
21 usable bits. The 21 bits allow up to 2,097,152 network-number
combinations, while the eight bits of the host part of the Internet
address can have only up to 254 host-number combinations.

If you are planning to set up a LAN, you should obtain a registered
Internet address. This way, if you choose to connect your network with
another network, you will not have to change your Internet addresses.
You can obtain a registered Internet address by calling the Network
Information Center at 1--800-235-3155 from inside the United States.

10.1.3.2 Network Mask

A network mask is a 32-bit number that informs the system which bits
of the Internet address to interpret as the network, subnetwork, and
host addresses. A one-to-one correspondence exists between the 32 bits
in the network mask and the 32 bits in the Internet address.

For each bit in the network mask that is set (binary 1), the correspond
ing bit position in the Internet address is interpreted as part of the
network and subnetwork address.

The decimal number 255 is 11111111 in binary notation. The value 255
means that an entire 8-bit field is set because each bit position is a 1.
Generally, an 8-bit field is either set (255) or cleared (0). Values other
than 255 and 0 can be used, but by using 255 or 0 you make it easier
to differentiate between the network, subnetwork, and host fields.

If the network mask bit position is part of the host field and is set, the
corresponding bit in the Internet address is interpreted as part of the
subnetwork address. If the network mask bit position is part of the
host field and is cleared, the corresponding bit in the Internet address
is interpreted as part of the host address.

Each bit in the first (leftmost) field of the network mask must be set
(decimal value of 255, binary value of 11111111), because the first field
of the Internet address must always be interpreted as the network
address regardless of whether subnetworks exist. If a bit in the first
field of the network mask is cleared, part of the network field of the
Internet address is interpreted as part of the host address. This may
cause errors.

The second and third fields are usually 255 or 0, depending on how
the Internet address is to be interpreted. The fourth field is usually 0,
indicating that it represents the host address.

10-12 Internet Services

A Class A network mask is usually 255.255.0.0 or 255.255.255.0. When
the network mask is 255.255.0.0, the first octet is the network address,
the second octet is the subnet address, and the third and fourth octets
are the host address. If the network mask is 255.255.255.0, the first
octet is the network address, the second and third octets are the subnet
address, and the fourth octet is the host address.

If a Class B network uses 255.255.255.0 for a network mask, the first
and second octets are the network address, the third octet is the subnet
address, and the fourth octet is the host address.

Normally, Class C networks do not have subnetworks, because only
eight bits are allocated for the host part of the Internet address. Eight
bits may not be enough to divide between a subnetwork address and a
host address.

The default network masks for each class are as follows:

Class Default Network Mask

A

B

C

255.0.0.0

255.255.0.0

255.255.255.0

1 0.1.3.3 Broadcast Mask

A broadcast mask interprets an Internet address as a broadcast ad
dress. Using the broadcast address, a process can send messages to all
hosts on the network that have the same Internet broadcast address at
the same time.

The format of the broadcast address consists of the network number
followed by all ones (1).

NOTE

Some operating systems, such as UNIX BSD 4.2 and
ULTRIX-32 prior to Version 1.2, require that the Internet
broadcast address be the network number followed by all
zeros (0). Currently, the VAXELN Internet Services support
only the default format.

The network number includes the subnet, if there is one.

Internet Services 10-13

Table 10-4:
Host Internet
Address

3.0.0.10

11.1.0.12

129.39.0.15

128.45.2.8

192.0.1.8

192.0.1.223

If you know the Internet address and the network mask for a particular
host, you can calculate the broadcast mask by using the following
formula:

(NOT networkmask) OR (internetaddress)

For example, if a host has an Internet address of 128.50.100.100 and
the network mask 255.255.0.0 (the default), the host's broadcast mask
is 128.50.255.255. The NOT of the host's network mask is 0.0.255.255.
You then substitute the first two fields of the Internet address for the
two zeros to get the broadcast mask.

Table 10-4 lists examples of broadcast addresses.

Broadcast Addresses
Host Network Network Network Mask Broadcast
Number Class Number (Subnet Mask) Address

10 A 3. 255.0.0.0 3.255.255.255

12 A 11.1. 255.255.0.0 11.1.255.255

15 B 129.39. 255.255.0.0 129.39.255.255

8 B 128.45.2. 255.255.255.0 128.45.2.255

8 C 192.0.1. 255.255.255.0 192.0.1.255

223 C 192.0.1. 255.255.255.0 192.0.1.255

10.1.4 Ports as Internet Communication Endpoints

While Internet addresses identify source and destination hosts, ports
represent the endpoints of a communications link between two pro
cesses. Like the messages sent to a VAXELN port, Internet mes
sages sent to a port are queued until another process extracts them.
Processes that are waiting for messages are blocked until a message
arrives.

To send data to a port on another host, a process uses a destination
host's Internet address and a port number. The Internet address
identifies a network and a host. The port number identifies a particular
destination on the host. A process also specifies a source port when it
sends a message. The process that receives the message can use the
source port to return a reply.

10-14 Internet Services

Integers identify the communications ports. The source and destination
ports are not necessarily identified with the same port number. TCPIIP
and UDPIIP use port numbers that range from 1 to 65535.

Port numbers ranging from 1 to 1023 identify privileged ports.
Privilege means something different for each operating system. In
general, when a host receives a message from a privileged port, you
can assume that the destination host has done some level of checking
against the application using the port.

The port numbers ranging from 1 to 255 are reserved to provide a
service contact point to known callers. Digital honors these assigned
ports as implemented in the Department of Defense (DoD) and Defense
Advanced Research Projects Agency (DARPA) Internet communities.

Before an application can use UDPIIP or TCP/IP for communication, a
process must be bound to a port. An application binds a process to a
port by specifying an Internet address and port number in a call to the
bind function (see Section 10.6.2).

NOTE

To bind a process to a privileged port, the calling program
must be authorized with a system group UIC (that is, a UIC
less than or equal to %X0008FFFF or [10, 177777]).

10.1.5 Sockets

A socket is a communication endpoint abstraction that allows two peers
to communicate. The peers can be entities such as two programs, two
processes within a program, or a program itself.

Sockets have the following properties:

• Communication domain

• Protocol type
• Protocols

A communication domain is the collective common properties of pro
cesses communicating through sockets. One such property would be the
naming scheme of the sockets. The VAXELN Internet Services support
the Internet (AF _INET) domain.

Internet Services 10-15

Protocol types are the communication properties that are visible to the
user. Normally, processes communicate only between sockets of the
same protocol type. Three protocol types are available as defined in
Table 10-5.

Table 10-5: Socket Protocol Types
Protocol Type Description

Stream Provides bidirectional, reliable, sequenced, and undupli
cated data flow without record boundaries. The receiving
processes are guaranteed to receive messages, in order,
without duplication.

Datagram Provides bidirectional data flow that does not guarantee
that messages will be received in sequence, without du
plication, or at all. The record boundaries of the data are
preserved.

Raw Provides access to underlying communicati.ons protocols
that support sockets. Raw sockets are not intended for the
general user; they are mainly available for developing new
communications protocols.

The stream, datagram, and raw protocol types map to the protocols
TCP, UDP, and IP, respectively. These protocols are described in
Section 10.1.2.

Before a process can use a socket, the process must bind a name
(Internet destination) to the socket. A socket name consists of an
Internet address (network and host) and port number (process on the
host). Once a socket has a name, an application can use the socket
for connection or connectionless communication. Sections 10.1.5.1 and
10.1.5.2 provide more information about these two modes of communi
cation.

10.1.5.1 Connection Socket Communication

After a process binds a name to a socket, the process can use that
socket to establish a connection and communicate with another process
over the Internet. One process can function as a client and the other
as a server. Once a socket is created, the server listens to its socket
for service requests. The client requests services from the server by
initiating a connection request.

10-16 Internet Services

If the client process's socket is unnamed at the time of a connection
request, the Internet software assigns a name to the socket. If the
connection is successful, the socket is associated with the server and
data can be transmitted. If the connection is unsuccessful, an error is
returned (the name that the system binds to the socket remains).

A connection may be unsuccessful for one of the following reasons:

• A lack of resources on the source or destination host

• An application problem such as:
Conventions not being followed

The incorrect port number being specified

A privileged port number being required

Mter binding the socket, the server can receive a client's connection
request if the following conditions exist:

• Server is listening for the connection request

• Maximum number of outstanding connections that can be queued
to the server's port has not been reached

If a client requests a connection when the queue is full, the messages
that comprise the request are ignored and the client retries the request.
Once a connection is established, data can be exchanged between the
two sockets.

For communication to take place between the source and destination
hosts, the socket at each endpoint must be bound to a name. The
application program on the source host must provide its Internet
address and the destination socket name. The source port number
is optional. If the application program omits the port number, the
Internet software on the source host selects a port number.

10.1.5.2 Connectlonless Socket Communication
Sockets can also support connectionless communication typical of
datagram facilities found in packet-switched networks. While processes
are still likely to have a client-server relationship, applications do
not need to establish connections. Instead, each message includes a
destination address.

You create datagram sockets the same way that you create sockets for
connection-oriented communication. However, you must bind a name to
each datagram socket to identify the message sender and receiver.

Internet Services 10-17

For source and destination hosts to communicate, applications must
specify the source and destination socket names. The application
program on the source host must provide its Internet address and the
destination socket name. The source port number is optional. If the
application program omits the port number, the Internet software on
the source host selects a port number.

10.1.6 Routing

A route is the path over the Internet that information takes to get
from one host to another. A route can be a path to either a host or a
network. IP uses routes to hosts for sending packets to a remote host
and uses routes to networks for sending packets to any host in a remote
network.

A subnetwork is a set of hosts within a network that are organized into
a logical group. A network can be made up of several subnetworks.
A host on another network can access a host on a subnetwork if a
gateway connects the networks. The data from the host on the other
network is routed through the gateway to the network and onto the
appropriate subnetwork, where the destination host ultimately receives
the data. A subnet mask identifies the bits in an Internet address to be
used for the network and subnet addressing.

The VAXELN Internet Services support static routing. This method of
routing employs a table that pairs destination Internet addresses with
Internet addresses that specify routes. Each table entry also contains
flags that specify the following:

• Whether IP should use only the network portion of an Internet ad
dress or an entire Internet address when searching for a matching
destination Internet address in the routing table

• Whether the route for a destination Internet address is to a host on
the local network or to a gateway on the local network

• Whether the route is locked to prevent ICMP from updating the
route with redirect messages

10-18 Internet Services

The destination Internet address identifies a host or network. The
Internet address that specifies a route can identify a host or gateway
on the local network. The Internet address for a gateway is an inter
mediate destination for datagrams being sent to the network identified
in the table entry. Figure 10-3 shows the routing table format.

Figure 10-3: Routing Table

Flags Destination Route

Network or Local? Destination Gateway or Local
Locked? Internet Address Internet Address

MLO-004165

IP uses the routing table to determine the appropriate path for a
datagram. The protocol extracts the destination Internet address from
the datagram and searches for a matching destination Internet address
in the routing table, extracting the network portion of the address as
necessary.

Figure 10-4 provides an overview of the routing algorithm.

Internet Services 10-19

Figure 10-4: Routing Algorithm

Extract Internet
address from datagram

Search routing table for
destination Internet address

Broadcast datagram over the
Ethernet using the address

FF--FF--FF--FF--FF--FF

Loop datagram back to
port on local host

Transmit on the
local network

MLO-004166

Figure 10-4 Cont'd on next page

10-20 Internet Services

Figure 10-4 (Cont.): Routing Algorithm

Search for match using
entire destination
Internet address

Discard datagram

Search for match using network
portion of destination

Intemet address

Use destination Internet
address to transmit datagram

Use gateway Intemet
address to transmit datagram

Use default gateway
address to transmit datagram

MLO-004167

Internet Services 10-21

IP first checks whether the destination Internet address equals a
broadcast address, or the local host's Internet address. If the ad
dress is a broadcast address, IP broadcasts the datagram over the
Ethernet using the FF-FF-FF-FF-FF-FF Ethernet address. A desti
nation Internet address is considered a broadcast address if one of the
following conditions applies:

• The address is 255.255.255.255
• The network part of the address matches the network part of the

local host's Internet address and the logical OR of the destination
address and the network mask equals 255.255.255.255

• The address is local and the logical OR of the address and the
subnet mask equals 255.255.255.255

NOTE

IP cannot check for a broadcast address if it has not yet
determined the local Internet address.

If the destination Internet address is equal to the local host's Internet
address, IP loops the datagram back to a port on the local host.

If the destination Internet address is not a broadcast address or the
local host's Internet address, IP checks whether the address is local
and if so, sends the datagram to a node on the local network. The
destination Internet address is local if one of the following applies:

• The subnet mask isO
• The logical AND of the destination Internet address and the subnet

mask equals the logical AND of the local host's Internet address
and the subnet mask

If the destination Internet address is not local, IP searches the routing
table for a matching address. If the network flag is set, IP uses only the
network portion of the address when checking for a match. Otherwise,
IP uses the entire address for the search.

If IP finds an entry for the address, the protocol checks the state of the
local flag. If the flag is set, IP uses the destination Internet address
to route the datagram to a host on the local network. Otherwise, IP
uses the gateway address in the table entry to route the datagram to a
gateway on the local network.

If IP does not find an entry in the routing table for the destination
address, IP checks the table for a default gateway. If IP does not find a
default, the protocol discards the datagram.

10-22 I nternet Services

An application can manage a routing table at runtime by using Internet
service routines. For more information, see Section 10.3.2.

10.1. 7 Fragmentation

IP fragments a datagram when a datagram originates in a local net
work that allows a large packet size and must traverse a local network
that limits packets to a smaller size to reach its destination, IP may
also fragment a datagram when no gateway exists and applications
send messages that are greater in length than the network layer
supports.

A gateway can fragment an Internet datagram into smaller Internet
datagrams. The gateway produces a set of Internet datagrams, each
carrying a fragment. If necessary, subsequent gateways can break
down the fragments into smaller fragments.

The fragment format is designed so that the destination IP can re
assemble fragments into datagrams.

10.2 Configuring Internet Services

To use the Internet Services, you must build the appropriate datalink
driver and the Internet Services into your VAXELN system. You
configure the Internet Services for a system by selecting the Edit
Internet Service Characteristics entry on the System Builder's
Main Menu. When you select this entry, the System Builder displays
two menu options: Edit Internet Characteristics and Edit Internet
Network Description. The Internet Characteristics Menu lets you
define systemwide Internet characteristics. You must use the Internet
Network Description Menu to provide an Internet network description
for the Ethernet controller that is to use the Internet Services.

You include the Internet Services in a VAXELN system by selecting
Yes for the Internet Services entry on the Internet Characteristics
Menu. This menu defines the following general systemwide Internet
characteristics:

• Maximum number of ARP cache entries
• Maximum number of routing table entries
• Maximum number of bytes in an Internet datagram

Internet Services 1 ~23

• Default gateway

You also can use the Internet Characteristics Menu to define the
following systemwide TCP characteristics:

• Maximum number of octets in a segment

• Default number of octets in the sliding window
• Maximum number of octets in the sliding window

• Number of seconds to wait for a connection
• Number of seconds a connection should linger after it is closed

• Number of seconds to wait for a connection acknowledgment
• Number of seconds to wait for message acknowledgments

• Maximum number of message resends

You provide an Internet network interface description for an Ethernet
controller in your system by editing the Internet Network Description
Menu. Using this menu, you specify the following controller informa
tion:

• Name
• Internet address
• Internet network mask

• Broadcast mask
• Address resolution method
• Whether the Internet Services are to determine the network mask
• Number of seconds to wait for the Internet address before timing

out (0 indicates no timeout)

• Number of seconds to wait for the Internet network mask before
timing out (0 indicates no timeout)

If you include the Internet Services in a VAXELN system, an applica
tion program can use runtime routines to control the Internet Services,
convert byte order Internet and host physical addresses, communicate
over the Internet, and retrieve and set socket characteristics.

For descriptions of the Internet Service routines, see the VAXELN
C Reference Manual and VAXELN C Runtime Library Reference
Manual. For more information about building the Internet Services
into VAXELN systems, see the VAXELN Development Utilities Guide.

10-24 Internet Services

10.3 Controlling Internet Services

A VAXELN application can use Internet Service control routines to
manage the ARP cache, routing table, and Internet network interfaces
dynamically at runtime. Control routines also provide a means for
retrieving IP, UDP, and TCP statistics and connection information.

10.3.1 Managing the ARP Cache

ARP maps Internet addresses to Ethernet addresses and stores the
address pairs in an ARP cache. A host searches its ARP cache for an
Internet address binding. If the host does not find the binding, the
host broadcasts the target host's Internet address to all hosts on the
network. The target host recognizes its Internet address and responds
by returning its physical address to the requesting host.

The VAXELN Internet Services provide the following Internet network
control routines for managing a host's ARP cache:

Routine

ELN$INET_SET_ARP _ENTRY

ELN$INET_SHOW _ARP _ENTRIES

Description

Deletes an entry from the ARP
cache.

Returns an Ethernet address from
the ARP cache.

Adds an entry to the ARP cache.

Returns the entries currently
stored in the ARP cache.

For information about Internet addresses, see Section 10.1.3. Sections
10.3.1.1 to 10.3.1.3 explain how to use the Internet control routines to
do the following:

• Add and delete ARP cache entries
• Retrieve Ethernet addresses from the ARP cache

• Retrieve ARP cache entries

Internet Services 10-25

10.3.1.1 Adding and Deleting ARP Cache Entries

An application can add entries to and delete entries from a host's ARP
cache by calling the ELN$INET_SET_ARP _ENTRY and ELN$INET_
DELETE_ARP _ENTRY routines.

A call to ELN$INET_SET_ARP _ENTRY maps an Internet address
to an Ethernet address and places the mapping in the cache. The
call must specify an Internet address, Ethernet address, and an ARP
option. The Internet address must be the Internet address of the host
on which the Internet interface resides. The Ethernet address is the
target interface address that the routine maps to the Internet address.
The Ethernet address cannot be a multicast address.

The option argument specifies whether an entry is permanent. A
permanent entry can be deleted only with a call to the ELN$INET_
DELETE_ARP _ENTRY routine. However, ARP requests can continue
to update entries marked with this option.

You can set or clear the permanent option using a Boolean or bit mask
value. If you choose the Boolean method, set the permanent field of the
INET$SET_ROUTE_OPTIONS aggregate to TRUE. When using the
bit mask method, specify the mask name INET$ARP _PERMANENT_
MASK for the aggregate's mask value field.

You should delete an ARP cache entry when the entry is no longer
needed. 1b delete an entry from the ARP cache, specify the host
Internet address of the entry to be deleted in a call to the ELN$INET_
DELETE_ARP_ENTRY routine. If ARP does not find a cache entry for
the specified Internet address, the routine returns an error.

NOTE

The Internet address that you specify in a call to
ELN$INET_SET_ARP _ENTRY or ELN$INET_DELETE_
ARP _ENTRY cannot be the Internet address of a network
interface.

10-26 .Internet Services

The following function adds and deletes an ARP cache entry:

tinclude $vaxelnc
tinclude $internet_utility

void add_and_delete_arp_entry()
{

long int status;
INET$INTERNET ADDRESS internet_address;
INET$ETHERNET=ADDRESS ethernet address;
INET$SET_ARP_OPTIONS options;

1* Get an Internet address, Ethernet address, and options. *1

internet address.S un.S addr = get ia(IIInternet address: ");
get epa("Ethernet ~ddre-;s: ", ðernet address);
optlons.mask_value = get_ulong("Options- (l=NODELETE): ");

1* Add the input to the ARE cache. *1

eln$inet set arp entry(&status,
- - - &internet address,

if (! (status & 1»
disp_status(status);

ðernet=address,
&options);

1* When the entry is no longer needed, delete it. *1

eln$inet delete arp entry(&status,
- - - &internet_address);

if (! (status & 1»
disp_status(status);

10.3.1.2 Retrieving Ethernet Addresses from the ARP Cache

An application can retrieve the Ethernet address that corresponds to
an Internet address by calling the ELN$INET_FIND_ARP _ENTRY
routine. A call to this routine must specify an Internet address and
the variable that is to receive the corresponding Ethernet address. If
ARP does not find a cache entry for the specified Internet address, the
routine returns an error.

The following function retrieves the Ethernet address that corresponds
to a specified Internet address:

Internet Services 10-27

#include $vaxelnc
#include $internet_utility

void find_arp_entry()
{

long int status;
INET$INTERNET ADDRESS internet address;
NET$ETHERNET_ADDRESS ethernet=address;

/* Get an Internet address. */

internet_address.s_un.s_addr = get_ia("Internet address: ");

/* Find the entry for the specified address. */

eln$inet_find_arp_entry(&status,

if (! (status & 1))
disp status(status);

else -
{

&internet address,
ðernet=address);

printf ("\nArp entry for %s", format ia(internet address));
printf (" is %s\n\n", format_epa (ðernet_address));

1 0.3.1.3 Retrieving ARP Cache Entries

An application can retrieve all the cache entries currently stored in a
host's ARP cache by calling the ELN$INET_SHOW _ARP _ENTRIES
routine. A call to this routine must specify the name of a user-defined
routine that returns ARP entry information. ELN$INET_SHOW _ARP _
ENTRIES invokes the user-defined routine once for each entry in the
cache. If the ARP cache is empty, ELN$INET_SHOW _ARP _ENTRIES
returns an error.

The user-defined routine returns the cache data to an aggregate called
INET$ARP _ENTRY. A program can then extract the following informa
tion:

• Internet address
• Ethernet address

• ARP status information

1 ~28 Internet Services

Status

Pennanent

In use

Complete

The ARP status information is returned to a flag field of bits that
indicate whether the entry is permanent, in use, and complete. An
application can set the permanent bit in calls to ELN$INET_SET_
ARP _ENTRY. ARP sets the in use bit when the host broadcasts an
entry's Internet address. When a target host returns its physical
address to the requesting host, ARP sets the complete bit.

Once the ARP entry data is returned, a program can examine and
manipulate the data using the field names interneCaddress, ethernet_
address, and arp_status. You can examine the ARP status hits individ
ually using Boolean values, or collectively, using bit mask values. If
you choose the Boolean method, examine the hits using aggregate field
names. When using the bit mask method, specify one or more mask
values. The status fields and mask values are defined as follows:

Field Name Mask Name Mask Value

permanent.field ARP _PERMANENT_MASK 1

inuseJield ARP _INUSE_MASK 2

completeJield ARP _COMPLETE_MASK 4

You can also manipulate groups of status values by specifying the sum
of the appropriate mask values for the mask_value field.

The following code shows an example of how an application might use
ELN$INET_SHOW _ARP _ENTRIES:

#include $vaxelnc
#include $internet_utility

void show arp entries()
{ --

char ch;
long int status;
FUNCTION DESCRIPTOR fn desc;
void sho;_arp_entry();-

version_displayed = FALSE;

/* Show the entries that are in the ARP cache. */

eln$inet show arp entries (&status,
-ELN$PASS=FUNCTI ON_DE SCRIP TOR (fn_desc, show_arp_entry));

Internet Services 1 0-29

if (! (status & 1»
disp status(status);

else -
ch = get_char ("\nPress <RETURN> to continue.\n");

INET$SHOW ARP ENTRY(show arp entry)
{ - - --

BOOLEAN parenthesis_displayed = FALSE;

if (!version displayed)
{ -

version displayed = TRUE;
printf (iiARP Information version number is: %d\n\n", version);

printf ("%S", format ia (entry->internet address»;
printf (" => %S", format_epa (&entry->ethernet_address»;

i.f (entry->arp_status . mask_value)
{

if (entry->arp status.fields.permanent field)
{- -

parenthesis displayed = TRUE;
printf(" (PERM");

if (entry->arp status.fields.inuse field)
{- -

if (parenthesis_displayed)
printf(",INUSE");

else

parenthesis displayed
printf(" (INUSE");

TRUE;

if (entry->arp_status.fields.complete_field)
{

if (parenthesis displayed)
print £(11 , COMPL ") ;

else
{

parenthesis displayed
printf (" (COMPL");

printf (")");

printf ("\n");

1 0-30 Internet Services

TRUE;

10.3.2 Managing the Internet Routing Table

IP maps Internet routes (addresses) to host and network addresses
and stores the address pairs in a routing table. The VAXELN Internet
Services provide the following Internet network control routines for
managing the Internet routing table:

Routine

ELN$INET_SET_ROUTE

ELN$INET_SHOW _ROUTES

Description

S~arches for a route to a specified
Internet address.

Deletes an entry from the routing
table.

Adds an entry to the routing table.

Returns the entries currently stored
in the routing table.

For more information about routing, see Section 10.1.6. Sections
10.3.2.1 to 10.3.2.3 explain how to use the Internet control routines to
do the following:

• Add and delete routing table entries

• Checking the status of routing table entries

• Retrieve routing table entries

10.3.2.1 Adding and Deleting Routing Table Entries

An application can add entries to and delete entries from an Internet
routing table by calling the ELN$INET_SET_ROUTE and ELN$INET_
DELETE_ROUTE routines.

A call to ELN$INET_SET_ROUTE maps a routing path to a host or
network and places the mapping in the table. The call must specify
an Internet address, gateway address, and route options. The Internet
address must be the host or network destination address. The gateway
address is the Internet address of the gateway host.

The options argument is an aggregate of bit fields that specify the
following:

• Whether the entry is for a network or host route

• Whether the route is to a host or gateway

Internet Services 10-31

Option

• Whether the route is locked (can be updated by ICMP redirect
messages)

You can set or clear the route entry options individually, using Boolean
values, or collectively, using bit mask values. If you choose the Boolean
method, you set the Boolean value for the appropriate aggregate fields
to TRUE or FALSE, as appropriate. When using the bit mask method,
specify the sum of the appropriate mask values in the mask field. The
option fields and mask values are defined as follows:

Mask
Field Name Mask Name Value

Search for network networkJield INET$ROUTE_NETWORK_ 1
address

Local route

Lock route

MASK

local..field INET$ROUTE_LOCAL_MASK 2

lock..field lNET$ROUTE_LOCK_MASK 4

If you do not specify options, the entry identifies a host route.

You can specify multiple route options by specifying the sum of the
mask values for the desired options in the mask_value field. For
example, to specify a network route that cannot be updated by ICMP
redirect messages, use a mask value of 5 (the sum of mask values
INET$ROUTE_NETWORK_MASK and INET$ROUTE_LOCK_MASK).

NOTE

You cannot add a route to the static routing table until the
Internet address and Internet network mask are known.

You should mark a routing table entry for deletion when the entry is
no longer needed. Once an entry is marked, the Internet software can
delete the entry when it is no longer in use. The Internet software
uses a reference count to determine whether an entry is being used. A
reference count is maintained for each entry in the routing table.

To mark an entry for deletion, specify the Internet address of the entry
to be deleted in a call to the ELN$INET_DELETE_ROUTE routine. If
the Internet software does not find an entry for the specified Internet
address, the routine returns an error.

You must also specify an option argument in calls to ELN$INET_
DELETE_ROUTE. The route option indicates whether the Internet
software is to delete a network or host route.

10-32 Internet Services

The following function adds a route to the routing table and then
deletes the route when it is no longer needed:

#include $vaxelnc
#include $internet_utility

void set_route ()
{

long int
INET$INTERNET ADDRESS
INET$INTERNET-ADDRESS
INET$SET ROUTE OPTIONS
INET$DELETE_ROUTE_OPTIONS

status;
internet address;
gateway address;
set options;
del=options;

/* Get an Internet address, gateway address, and the options to */
/* be set. */

internet address.S un.S addr = get ia("Internet address: ");
gateway address.S un.s addr = get ia("Gateway address: ");
set_options.mask_value-= -

get_ulong("Options BITMASK (l=NETWRK, 2=LOCAL, 4=LOCK): ");

/* Add the input to the routing table. */

eln$inet_set_route(&status,
&internet address,
&gateway address,
&set_options) ;

/* When the routing table entry is no longer needed, mark it for */
/* deletion. */

del_options.mask_value = get_ulong("Options BITMASK (l=NETWRK): ");

eln$inet delete route(&status,
- - &internet address,

&del_ options) ;

Internet Services 10-33

10.3.2.2 Checking the Status of, Routing Table Entries

An application can check the status of a routing table entry by calling
the ELN$INET_ CHECK_ROUTE routine. Using this routine an appli
cation can check whether an entry contains a network or local route,
can be updated by ICMP redirect messages, or is marked for deletion
but is still in use.

A call to ELN$INET_CHECK_ROUTE must specify an Internet ad
dress, a credit value, a routing table entry returned by a previous call
to ELN$INET_CHECK_ROUTE, and variables that are to receive the
gateway address and the routing table entry status value.

The Internet address identifies the entry for which the Internet soft
ware is to return the status information. If the Internet software does
not find an entry for the specified Internet address, the routine returns
an error.

The Internet software uses reference counts for the table entries to
prevent a route from being deleted while it is being used. The credit
argument specifies whether or not the table entry's reference count is
to be updated. You must specify one of the following credit values:

Credit Value

o
1

-1

Effect

Reference count remains unchanged.

Increments reference count.

Decrements reference count.

If you specify a credit value of -1, ELN$INET_CHECK_ROUTE
uses the routing table entry argument. This argument specifies an
entry returned by a previous call to ELN$INET_CHECK_ROUTE and
receives the table entry number for the specified Internet address's
route upon successful completion.

The gateway address and route status arguments receive the destina
tion Internet address and the route status, respectively.

The route status indicates whether the entry is for a network route,
whether the route is to a host, whether I CMP redirect messages
can update the entry, and whether the entry is marked for deletion.
The status information is returned as an aggregate of bits. You can
examine and manipulate the status bits individually, using aggregate
field names, or collectively, using one or more mask values. The status
fields and mask values are defined as follows:

10-34 Internet Services

Mask
Status Field Name Mask Name Value

Searched for network networkJield INET$ROUTE_NETWORK_ 1
address MASK

U sed host route localJield INET$ROUTE_LOCAL_MASK 2

Route is locked lock..field INET$ROUTE_LOCK_MASK 4

Route is marked for deleted..field INET$ROUTE_DELETED_ 8
deletion MASK

If multiple status values apply to an entry, the Internet software adds
the mask values of the appropriate status values and returns the sum.

The following function checks the status of a routing table entry and
displays the status information:

#include $vaxelnc
#include $internet_utility

void check_route()
{

long int status;
INET$INTERNET ADDRESS internet address;
INET$INTERNET-ADDRESS gateway_address;
INET$ROUTE_STATUS route_status;
short int credit;
unsigned long int rte;
BOOLEAN parenthesis_displayed = FALSE;

credit = 0;
rte = 0;

/* Get an Internet address. */

internet_address.S_un.S addr = get_ia(IIInternet address: ");

/* Search the routing table for an entry for the specified address. */

eln$inet check route(&status,
- - &internet address,

credit, -
&rte,
&gateway_address,
&route_status) ;

Internet Services 10-35

/* If an entry is found, display the data. */

if (! (status & 1»
disp_status(status);

else

printf (IIRoute for %S", format_ia(internet_address»;
printf (" is %S", format_ia(gateway address»;
if (route status.mask value)
{- -

if (route status.fields.network_field)

parenthesis displayed = TRUE;
printf (" (NETWRK")

if (route status. fields. local_field)

if (parenthesis displayed)
printf (", LOCAL") ;

else

parenthesis displayed = TRUE;
printf (" (LOCAL");

if (route status.fields.lock_field)
T

if (parenthesis displayed
print f (", LOCKED II) ;

else

parenthesis displayed
printf(" (LOCKED");

TRUE;

if (route_status.fields.deleted_field)

if (parenthesis displayed)
printf(",DELETED");

else

parenthesis displayed
printf(" (DELETED");

printf (")");

printf (II\n");

10-36 Internet Services

TRUE;

10.3.2.3 Retrieving Routing Table Entries

Status

An application can retrieve all the entries in the Internet routing table
by calling the ELN$INET_SHOW _ROUTES routine. A call to this
routine must specify the name of a user-defined routine that returns
routing table entry information. ELN$INET_SHOW _ROUTES invokes
the user-defined routine once for each entry in the table. If the table is
empty, ELN$INET_SHOW _ROUTES returns an error.

The user-defined routine returns the routing data to an aggregate
called INET$ROUTE_ENTRY. A program can then extract the follow
ing information:

• Destination Internet address

• Gateway address

• Route status
• Reference count

• Usage count

The route status information is returned to a flag field of bits that
indicate whether IP is to search for a match using only the network
portion of the destination Internet address, the route is to a host, the
route is locked, and the route is marked for deletion. An application
can set the deleted bit in calls to ELN$INET_SET_ROUTE. IP sets the
deleted bit when an application calls ELN$INET_DELETE_ROUTE.

Once the route entry data is returned, a program can examine and ma
nipulate the data using the field names destination_address, gateway_
address, route_status, reference_count, and use_count. You can examine
the route status bits individually, using Boolean values, or collectively,
using bit mask values. If you choose the Boolean method, examine the
bits using aggregate field names. When using the bit mask method,
specify one or more mask values. The status fields and mask values
are defined as follows:

Field Name Mask Name
Mask
Value

Searched for network
address

networkJield INET$ROUTE_NETWORK_
:MASK

1

U sed host route localJield INET$ROUTE_LOCAL_:MASK 2

Internet Services 10-37

Status

Route is locked

Route is marked for
deletion

Field Name

lockJield

deletedJield

Mask Name

lNET$ROUTE_LOCK_MASK

lNET$ROUTE_DELETED_
MASK

Mask
Value

4

8

You can also manipulate groups of status values by specifying the sum
of the appropriate mask values for the mask_value field.

The following function shows the contents of the routing table:

#include $vaxelnc
#include $internet_utility

void show_routes()
{

char Chi
long int status;
FUNCTION DESCRIPTOR fn desc;
void show route entry();
version_dIsplayed = FALSE;

/* Show the routing table entries. */

eln$inet show routes (&status,
- - ELN$PASS FUNCTION DESCRIPTOR(fn dese,

show_route_entry»;

if (! (status & 1»
disp status (status);

else -
ch = get_char("\nPress <RETURN> to eontinue.\n");

INET$SHOW ROUTE ENTRY(show route entry)
{ - - --

BOOLEAN parenthesis_displayed = FALSE;

if (!version displayed)
{ -

version_displayed = TRUE;
printf("Route information version number is: %d\n\n", version);

printf ("%S", format ia(entry->destination address»;
printf (tl => %S", format ia (entry->gateway address»;
printf (" REFCNT: %d USECNT: %d", entry->referenee_count,

entry->use_count);

10-38 Internet Services

if (entry->route_status.rnask_value)
{

if (entry->route status.fields.network field)
{- -

parenthesis displayed = TRUE;
printf (" (NETWRK");

if (entry->route status.fields.local field)
{ - -

if (parenthesis_displayed)
printf (", LOCAL") ;

else
{

parenthesis_displayed
printf(" (LOCAL");

TRUE;

if (entry->route status.fields.lock field)
{ - -

if (parenthesis displayed)
printf (" ,LOCKED");

else
{

parenthesis_displayed
printf(" (LOCKED");

TRUE;

if (entry->route status.fields.deleted field)
{- -

if (parenthesis_displayed)
printf (", DELETED");

else
{

parenthesis displayed
printf (" (DELETED");

printf (")");

printf ("\n");

TRUE;

Internet Services 1 0-39

10.3.3 Managing Internet Network Interfaces

The VAXELN Internet Services provide the following Internet network
control routines for managing Internet network interfaces:

Routine Description

Associates an Internet address with the
name of an Internet network interface
that resides on the VAXELN target
system.

Returns the Internet network charac
teristics for Internet interfaces.

For more information about setting up Internet network interfaces
for VAXELN systems, see the. VAXELN Development Utilities Guide.
Sections 10.3.3.1 and 10.3.3.2 explain how to use the Internet control
routines to do the following:

• Set an Internet network interface dynamically at runtime

• Retrieve Internet network interface characteristics

10.3.3.1 Setting Internet Network Interfaces

If you did not specify an Internet address for an Internet network
interface when you built your system, you can do so at runtime by
calling the ELN$INET_SET_INTERFACE routine. You can also use
this routine to set an interface's broadcast and network masks once.

A call to ELN$INET_SET_INTERFACE must specify the name of
the communication interface that is to be associated with an Internet
address. You must also specify a new fields argument and values for
the Internet address, broadcast mask, and network mask arguments.

The new fields argument is an aggregate that identifies characteristics
that you intend to set. You set characteristics by setting the appro
priate bits in the aggregate. You can specify the aggregate fields to be
set individually, using Boolean values, or collectively, using a bit mask
value. If you choose the Boolean method, you set the Boolean value for
aggregate fields to TRUE, as appropriate. If you choose the bit mask
method, you specify the sum of the appropriate mask values in the
mask value field. The interface characteristics fields and mask values
are defined as follows:

10-40 Internet Services

Characteristic

Internet address

Broadcast ad-
dress

Network mask

Field Name Mask Name Mask Value

interneCaddress_ INET$INTERNET_ADDR_ 1
field MASK

broadcast _address_ INET$BROADCAST_MASK 2
field

network_maskJield INET$NETWORK_MASK 4

You can set fields without changing other fields in the aggregate.
However, for each field that you set, you must specify a value for a
corresponding argument. For example, to set the Internet address, you
must set the bit for the Internet address field in the fields argument
and specify the Internet address for the Internet address argument.
For the fields that you choose not to set, you can specify a null string
for the corresponding argument.

The following section of code shows how an application might use
ELN$INET_SET_INTERFACE:

iinclude $vaxelnc
iinclude $internet_utility

void show~interface()
{

char Chi
int status;
VARYING STRING(32) interface_name;
INET$SET INTERFACE FIELDS new fields;
INET$INTERNET ADDRESS internet address;
INET$INTERNET-ADDRESS network mask;
INET$INTERNET-ADDRESS broadcast mask;
INET$SET_INTERFACE_OPTIONS options;

/* Get interface input. */

new fields.mask value = 0;
get:=varying_str'ing("Interface to set: ", 32, &interface_name);

ch = get_char("Set Interface address? Y or N: [N] ");
if (toupper(ch) == 'Y')

{
new fields.mask value += INET$INTERNET ADDR MASK;
internet_address.s_un.S_addr = get_ia ("Internet address: ");

Internet Services 10-41

ch = get char ("Set Address (subnet) mask address? Y or N: [NJ ");
if (toupper(ch) == 'Y')

{
new fields.mask value += INET$NETWORK MASK;
network_mask.s_un.s_addr = get_ia ("Address mask: ");

ch = get char ("Set Broadcast mask address? Y or N: [NJ ");
if (toupper(ch) == 'Y')

{
new fields.mask value += INET$BROADCAST MASK;
broadcast_mask. S _un. S _ addr = get _ ia ("Broadcast mask: ");

options.mask_value = get_ulong("Interface options (reserved) : ");

/* Set the interface. */

eln$inet set interface(&status,
- - &interface name,

&new fields,
&internet address,
&network mask,
&broadcast_mask,
&options);

if (! (status &1»
disp_status (status);

You must also specify an interface options argument. This argument is
reserved for future use.

10.3.3.2 Retrieving Internet Network Interface Characteristics

An application can retrieve the characteristics for all Internet network
interfaces on a VAXELN system by calling the ELN$INET_SHOW_
INTERFACES routine. A call to this routine must specify the name of
a communication interface and the name of a user-defined routine.

The interface name identifies the interface for which information is to
be returned. To return information about all network interfaces, specify
an asterisk (*). If you specify a name that has not been defined, the
routine returns an error.

The user-defined routine returns the network interface information.
ELN$INET_SHOW _INTERFACES invokes the user-defined routine for
the specified interface. If you specify an asterisk, ELN$INET_SHOW_
INTERFACES invokes the routine once for each interface defined for
the system. If no interfaces are defined, ELN$INET_SHOW_ROUTES
returns an error.

10-42 Internet Services

Once the program retrieves the interface data, it can extract the
following information:

• Interface name

• Interface state

• Internet address

• Ethernet address

• Network mask

• Broadcast mask

• Number of IP datagrams received

• Number of IP data grams transmitted

• Number of trailer datagrams received

• Number of trailer datagrams transmitted

• Number of ARP datagrams received

• Number of ARP datagrams transmitted

• Number of ICMP datagrams received

• Number oflCMP datagrams transmitted

• Number of receive errors

• Number of transmit errors

The following code shows the characteristics for a specified interface:

finclude $vaxelnc
finclude $internet_utility

void show_interface()
{

char ch;
int status;
FUNCTION DESCRIPTOR fn desc;
void show_interface_entry();
VARYING_STRING (32) interface_name;

/* Get the name of an interface. */

get_varying_string(ltInterface name: [* for all] It,
32,
&interface_name);

eln$inet_show_interface(&status,
&interface name,
ELN$PAS S_FUNCTI ON_DE SCRIP TOR (fn_desc, show_interface_entry»;

Internet Services 10-43

if (! (status & 1»
disp_status (status);

lNET$SHOW INTERFACE ENTRY(show interface entry)
{ - - - -

char Chi

printf("\nlnterface: %.*s\n",
entry->interface name. string length,
&entry->interface name. string text);

printf("Interface state:- %d\n", -
entry->interface state.mask value);

printf("Internet Address-;- %s\n", -
format ia(entry->internet address»;

printf ("Ether~et Address: %s\n",-
format epa (&entry->ethernet address»;

printf("Address Mask: %s\n",-
format ia(entry->network mask»;

printf("Broadcast Mask: %s\n";
format ia(entry->broadcast mask»;

printf("\n\n Counters: (version %d):\n\n", version);
printf(" RECEIVED TRANSMITTED\n");
printf ("IP Packets %10u %lOu\n", entry->ip rcvd,entry->ip xmit);
printf("IP Trailer 1 %10u --\n", entry->trailer1 rcvd);
printf("IP Trailer 2 %lOu --\n", entry->trailer2-rcvd);
printf ("ARP Packets %lOu %lOu\n", entry->arp rcvd, entry->arp xmit);
printf("ICMP Packets %10u %lOu\n", entry->icmp rcvd, entry->icmp xmit);
printf ("Errors %10u %lOu\n", entry->errors rcvd, -

entry->xmit_errors); -

ch = get_char ("\nPress <RETURN> to continue. \n");

10.3.4 Retrieving Internet Performance and Error Data

The VAXELN Internet Services provide the following Internet network
control routines for retrieving data concerning performance and errors:

Routine

10-44 Internet Services

Description

Returns perfonnance and error
statistics for IP.

Returns perfonnance and error
statistics for Tel'.
Returns perfonnance and error
statistics for UDP.

The ELN$INET_SHOW _IP _STATISTICS, ELN$INET_SHOW _UDP_
STATISTICS, and ELN$INET_SHOW_TCP_STATISTICS routines
return performance and error statistics for IP, UDp, andTCP, respec
tively. /These routines allocate a statistics aggregate for the appropriate
protocol. The application program can then extract the following
information from the aggregate:

IP

Transmission time in seconds

Number of packets received

IP datagram received

Received IP datagram has bad
size

Received IP datagram has bad
checksum

Received IP datagram has bad
destination address

Received IP datagram includes
disabled IP protocol

Received IP datagram frag
mented

Received IP datagram fragments
dropped

Received fragmented IP data
gram reassembled

ICMP datagram received

Received ICMP datagram has
bad size

Received ICMP datagram has
bad checksum

ARP datagram received

Received ARP datagram replies

Received ARP datagram requests

UDP TCP

Transmission time in seconds Transmission time in sec
onds

Datagrams transmitted Connection requests for
warded

Datagrams received Connections accepted

Invalid transmit Connection requests issued

Invalid receive

Datagrams received but not
delivered

Open connections

Connections reset

Segments transmitted

Segments retransmitted

Segments received

Invalid segments received

Out-of-sequence segments
received

Concatenated record de
scriptor buffers

Internet Services 10-45

IP

Trailers received

Trailers received invalid

Packets transmitted

Packet trasmissions that failed

Transmitted IP datagram invalid

Transmitted IP datagram has
bad destination address

IP datagram transmitted

Transmitted IP datagram frag
mented

Transmitted IP datagram frag
ments

ICMP datagram transmitted

ARP datagram transmitted

Transmitted ARP datagram
replies

Transmitted ARP datagram
requests

UDP TCP

A call to ELN$INET_SHOW_IP_STATISTICS, ELN$INET_SHOW_
UDP _STATISTICS, or ELN$INET_SHOW _TCP _STATISTICS must
specify a Boolean flag that indicates whether counters are to be cleared
after they are read and variables that receive a version number and
a pointer to the appropriate protocol statistics aggregate. The version
number identifies the version of the statistics aggregate that the
routine returns to the statistics argument.

When you finish accessing a statistics record, you must use the free
function to deallocate it.

The following code shows how an application might retrieve TCP
statistics:

10-46 Internet Services

tinclude $vaxelnc
tinclude $internet_utility

void show_tcp_statistics()
{

int status;
int version;
char chi
BOOLEAN clear counters = FALSE;
INET$TCP_STATISTICS *statistics;

/* Check whether counters should be cleared. */

ch = get char ("Clear Counters? Y or N: [N] ");
if (toupper(ch) == 'Y')

clear_counters = TRUE;

/* Show all TCP statistics. */

eln$inet show tcp statistics(&status,
- - - clear_counters,

if (status & 1)
{

&version,
&statistics) ;

printf ("TCP Statistics Version %10u\n",
version) ;

printf ("Seconds %10u\n",
statistics->seconds);

printf ("Connections forwarded: %10u\n",
statistics->connects forwarded);

printf ("Connections accepted: %10u\n",
statistics->connects accepted);

printf ("Connections issued:- %10u\n",
statistics->connects issued);

printf ("Connections opened:- %10u\n",
statistics->connects opened);

printf ("Connections reset: - %10u\n",
statistics->connects reset);

printf ("Segments transmitted: %10u\n",
statistics->segments xmit);

printf ("Segments retransmitted: %10u\n",
statistics->segments rexmit);

printf ("Segments received: - %10u\n",
statistics->segments rcvd);

printf ("Invalid segments received: %10u\n",
statistics->invalid rcvd);

printf ("Out of sequence received: %10u\n",
statistics->out of sequence rcvd);

printf ("Concatenated m;ss-;ges: -%10u\n",
statistics->concatenated_rdbs);

Internet Services 10-47

free(statistics);
ch = get_char ("\nPress <RETURN> to continue\n");

else
disp_status(status);

10.3.5 Retrieving TCP Connection Data

An application can retrieve data concerning active TCP connections
by calling the ELN$INET_SHOW_CONNECTIONS routine. This rou
tine does not report information about listening servers (applications
waiting on a connection).

A call to ELN$INET_SHOW_TCP_CONNECTIONS must specify the
name of a user-defined routine to be invoked by ELN$INET_SHOW_
TCP_CONNECTIONS once for each active TCP connection. The user
defined routine returns the connection information. If no connections
exist, ELN$INET_SHOW _TCP _CONNECTIONS returns an error.

Once the program retrieves the connection data, it can extract the
following information:

• Local Internet address

• Local port number
• Remote Internet address

• Remote port number
• Connection state

• Connection options
• Number of messages in the receive queue
• Number of messages in the send queue
• Number of urgent messages received

• Number of urgent messages sent
• Number of messages in the receive window
• Number of messages in the send window

• Send sequence number
• Acknowledgment sequence number

• Retransmit timer value
• Persist timer value

10-48 Internet Services

• Keep-alive timer value
• Maximum linger timer value

• Number of retransmissions

The connection state and connection options information is returned to
flag bit fields. For the connection state, the bits indicate whether:

• The connection is open
• The connection is listening
• The connection is waiting for a matching connection request

• The connection is waiting for a connection request ACK message
after having received and transmitted a connection request

• The connection is established
• The connection is waiting for a connection termination request from

a remote peer or an ACK message for the connection termination
request previously sent

• The connection is waiting for a connection termination request from
a remote peer

• The wait is closed
• The connection is being closed

• The last ACK has been sent

• The wait time expired

For the connection options, the bits indicate whether the connection is
to have a linger time and keep-alive time.

A program can examine and manipulate the connection data using
field names. You can examine or manipulate the state and option
bits individually using Boolean values, or collectively, using bit mask
values. If you choose the Boolean method, examine the bits using
aggregate field names. When using the bit mask method, specify one
or more mask values. The state fields and mask values are defined as
follows:

Internet Services 10-49

Mask
State Field Name Mask Name Value

Connection is closed closed ..field INET$TCP_STATE_CLOSED_ 1
MASK

Connection is listening listen..field INET$TCP_STATE_LISTEN_ 2
for requests MASK

Waiting for matching syn_sen..field INET$TCP_STATE_SYN_SENT_ 4
connection request MASK

Waiting for ACK mes- syn_rcvd..field INET$TCP_STATE_SYN_ 8
sage after receive and RCVD_MASK
transmit

Connection is estab- established..field INET$TCP _STATE_ 16
lished ESTABLISHED_MASK

Waiting for connection fin_waiCl..field INET$TCP_STATE_FIN_WAIT_ 32
termination request I_MASK
from remote peer

Waiting for connection fin_waiC2.Jield INET$TCP_STATE_FIN_WAIT_ 64
termination request 2_MASK
from remote peer

Wait is closed close_wait .Jield INET$TCP_STATE_CLOSE_ 128
WAIT_MASK

Connection is being closing.Jield INET$TCP _STATE_CLOSING_ 256
closed MASK

Last ACK has been lasCack..field INET$TCP_STATE_LAST_ACK_ 512
received MASK

Time to wait for connec- lasCackJield INET$TCP _STATE_TIME_ 1024
tion expired WAIT_MASK

The option fields and mask values are defined as follows:

Mask
Option Field Name Mask Name Value

No linger time nolinger Jield INET$TCP _ OPT_NOLINGER_ 1
MASK

Linger time linger ..field INET$TCP _OPT_LINGER_ 2
MASK

10-50 Internet Services

Mask
Option Field Name Mask Name Value

No keep alive time nokeepalive..field lNET$TCP _OPT_ 4

Keep alive time

NOKEEPALIVE_MASK

keep alive ..field lNET$TCP _STATE_ S
KEEP ALIVE_MASK

You can also examine groups of status values by specifying the sum of
the appropriate mask values for the mask_value field.

The following function shows how an application might use
ELN$INET_SHOW _TCP _CONNECTIONS to retrieve information
about active TCP connections:

#include $vaxelnc
#include $internet_utility

void show_tcp_connections()
{

char ch;
int status;
FUNCTION DESCRIPTOR fn desc;
void show_tcp_connection_entry();

1* Clear error in version displayed flag. *1

con_ver_err_dspld = FALSE;

eln$inet show tcp connections(&status,
- ELN$PASS FUNCTION DESCRIPTOR(fn desc,

- - show_tcp_connection_entry»;

if (! (status & 1»
disp status(status);

else -
ch = get_char (lI\nPress <RETURN> to continue.\n");

Internet Services 10-51

INET$SHOW TCP CONNECTION ENTRY(show tcp connection entry)
{ - - - - - -

if (version != INET$TCP CONNECTION VERSION
{ --

if (! (con ver err dspld»
{ - - -

printf("TCP connection entry version number is
unrecognized. \n");

con_ver_err_dspld = TRUE;

return;

else
{

10-52 Internet Services

printf ("TCP Connection version: %10u\n", version);
printf("Local IA: %s Local PN: %u\n",

format ia (entry->local internet address),
entry->local-F0rt_number); -

printf("Remote IA: %s Remote PN: %u CCB ID: %X (hex)\n",
format ia (entry->remote internet address),
entry->remote-Fort_number, -
entry->ccb id);

printf(ftTCP state:-%s, Options: %s\n",
format_tcp_state (entry->state),
format options (entry->options»;

printf(ftReceive: Q: %8u, Urg: %8u, Window: %6u\n",
entry->recv queue,
entry->recv-urgent,
entry->recv-window);

printf(nSend: Q~ %8u, Urg: %8u, Window: %6u\n",
entry->send queue,
entry->send=urgent,
entry->send window);

printf(nTimers: RexIDit: %u, Prst: %u, Keep: %u, MSL: %u\n",
entry->rexmit_tmr,
entry->persist tmr,
entry->keep tmr,
entry->msl tmr);

printf (nRexmit value: %u, Snd seq: %12u, Ack seq: %12u\n",
entry->rexmit value,
entry->snd seq,
entry->ack=seq);

10.4 Converting the Byte Order of Network and Host Binary
Data

Not all hosts store bits the same way. To enable different types of
hosts to communicate, regardless of how bits are represented, the
Internet Services define a standard byte order for Internet packet
binary fields. The standard network byte order places the byte with the
most significant bits at the lower addresses. All hosts must use this
format when sending data.

The VAXELN Internet Services provide the following routines for
converting the byte order of network and host binary data:

Routine

htonl

htons

ntohl

ntons

Description

Converts a 32-bit unsigned integer from host byte order to
network byte order.

Converts a short integer from host byte order to network byte
order.

Converts a 32-bit unsigned integer from network byte order to
host byte order.

Converts s short integer from network byte order to host byte
order.

Before sending a message, a host must convert the byte order of
binary data from its local representation to the standard network
representation. An application can convert data to network byte
order by calling htonl or htons. You specify htonl and htons with
a longword or short integer, as appropriate, in host byte order. The
functions return a longword or short integer in network byte order. You
cannot use integers in network byte order for arithmetic computations
on VAX systems.

When a host receives a message, it must convert the byte order of the
message data to its byte-order representation. To convert data to the
host's representation, call ntohl and ntons. Specify these functions
with a longword or short integer, as appropriate, in network byte order.
The functions return a longword or short integer in host byte order.

For descriptions of the conversion routines, see the VAXELN C
Reference Manual.

Internet Services 10-53

10.5 Manipulating Internet Addresses

The VAXELN Internet Services provide a set of routines for manipulat
ing Internet addresses. An application might use these routines while
managing an ARP cache or for programming socket communication.
The routines are as follows:

Routine

inet_netof

inet_network

Description

Converts an Internet address in the standard text
Internet "." notation to a numeric (binary) Internet
address in network byte order.

Returns the local network (subnet) portion of an
Internet address.

Returns an Internet address given a network address
and local (subnet and host) address on that network.

Returns the network portion of an Internet address.

Converts an Internet address in the standard text
Internet "." notation to a numeric (binary) Internet
address in host byte order.

Converts an Internet address to a text string rep
resenting the addess in the standard Internet "."
notation.

The inet_makeaddr and inet_addr functions provide a means for
deriving an Internet address in network byte format given appropriate
Internet address information. In the case of inet_makeaddr, you
specify the network and local portions of an Internet address in host
byte order. You specify inet_addr with a pointer to an ASCIZ NULL
terminated text string that identifies an Internet address in standard
Internet ce." notation. If the argument does not point to a valid Internet
address, the function returns -1.

If you have an Internet address in network byte order, you can use
the inet_netof, inet_Inaof, or inet_ntoa function to get the network
portion, local portion, or string representation of an Internet address.
The inet_netof and inet_lnaof functions return the network and local
portions of the specified Internet address in byte host order. To get a
pointer to a text string that identifies an Internet address in standard
Internet "." notation, specify the network byte order Internet address
in a call to inet_ntoa.

10-54 Internet Services

To convert the string representation of an Internet address to a numeric
(binary) Internet address in host byte order, use the inet_network
function. Specify a pointer to an ASCIZ NUL-terminated text string
that identifies an Internet address in standard Internet "." notation. If
the argument does not point to a valid Internet address, the function
returns -1.

For descriptions of the Internet address manipulation routines, see the
VAXELN C Reference Manual.

10.6 Programming Internet Communication

You program Internet communication using socket interface routines.
You can use the routines to program connectionless communication,
sending datagrams to specified destinations, or you can use them to
program connection-oriented communication. The VAXELN Toolkit
provides the following socket interface routines:

Routine

accept

bind

close

connect

listen

read

recv

recvfrom

recvmsg

select

send

sendmsg

sendto

Description

Accepts a connection on a socket.

Binds a name to a socket.

Closes a socket.

Initiates a connection on a socket.

Sets the maximum limit of outstanding connection requests for
a connection-oriented socket.

Reads bytes from a file or connected socket and places them in
a buffer.

Receives bytes from a connected socket and places them in a
buffer.

Receives bytes for a socket from any source.

Receives bytes from a socket and places them in scattered
buffers.

Polls and checks a group of sockets for 110 activity.

Sends bytes through a socket to its connected peer.

Sends gathered bytes through a socket to any other socket.

Sends bytes. through a socket to any other socket.

Internet Services 10-55

Routine Description

Shuts down a socket. shutdown

socket Creates a socket and returns the socket's descriptor.

vaxc$get_ Returns a socket device descriptor.
sdc

vaxc$socket_ Sets socket characteristics.
control

write Writes bytes from a buffer to a file or connected socket.

Table 10-6 lists the calling sequence for programming connection
oriented and connectionless socket communication.

Table 10-6: Calling Sequence for Socket Communication

Task

Create a socket.

Bind a name to. the socket.

Define the socket as a listener.

Client: Send a connection request.

Server: Accept a connection request.

Send data.

Receive data.

Shut down the socket.

Close (delete) the socket.

Connectionless
(IP and UPDIIP)

socket

bind

sendto
sendmsg

recvfrom
recvmsg

shutdown

close

Connection
Oriented
(TCPIIP)

socket

bind

listen

connect

accept

write
send
sendto
sendmsg

read
recv
recvfrom
recvmsg

shutdown

close

Sections 10.6.1 to 10.6.7 explain how to use the socket communication
routines. Sections 10.6.1 and 10.6.2 explain how to create and bind
names to sockets. Section 10.6.4 explains how to establish connections
for TCPIIP communication. Section 10.6.5 explains how applications

10-56 Internet Services

can use sockets to transfer data. Sections 10.6.6 and 10.6.7 explain
how to shut down and close sockets, respectively. .

For descriptions of the socket communication routines, see the VAXELN
C Reference Manual.

10.6.1 Creating Sockets

An application creates sockets by calling the socket function. A call to
socket must specify an address format, type, and protocol. The address
format argument defines the address format to be used in subsequent
operations that use the socket. The VAXELN socket routines support
Internet (AF _INET) addresses.

A socket's type and protocol affect the way the socket operates and
how an application uses it. The type argument specifies whether the
socket operates as a stream, datagram, or raw data transmission mech
anism. Sockets of type SOCK_STREAM are for reliable, sequenced,
two-way connection-based communication that can handle out-of-band
data. Sockets of type SOCK_DGRAM are for connectionless communi
cation. Sockets of type SOCK_RAW provide access to internal network
interfaces, and are available only to programs authorized with a sys
tem group UIC (that is, a mc less than or equal to %X0008FFFF or
[10,177777]).

The protocol argument specifies the protocol to be used with the socket.
Normally, only one protocol supports a particular socket type using a
given address format. Generally, the stream, datagram, and raw socket
types map to the protocols TCP, UDP, and IP, respectively. However,
multiple protocols can exist for a socket type. If so, you must specify
a protocol. The protocol number you need to specify depends on the
communication domain in which the socket is to be used.

The following call to socket creates a stream socket and returns a
socket descriptor to socket_2:

Internet Services 10-57

tinclude types .
tinclude socket
tinclude in

main (argc, argv)
int argc;
char **argv;
{

socket 2 = socket(AF_INET, SOCK_STREAM, 0)

You can gain more control over how a socket operates by using the
setsockopt function to set the following socket options:

• Let local addresses be reused

• Keep connections alive
• Do not apply routing on outgoing messages

• Linger on close operations if data is present

• Let broadcast messages be sent

For more information about setting socket options, see Section 10.7.2.

10.6.2 Binding Names to Sockets

When an application creates a socket, the socket exists in an address
family's name space but has no name (direct address) assigned. To use
the socket, the application must bind a name to it, using a call to the
bind function. A call to bind must specify a socket descriptor returned
by socket, a name, and the length of the name.

The name argument specifies the address of a structure that defines
a name for the socket. The structure must define the name using the
socket's address format. The VAXELN socket interface defines two such
structures: sockaddr and sockaddr_in. The sockaddr structure
defines names for sockets that use a general address format. Members
of this structure identify the socket's address family and a data string
of up to 14 bytes of direct address. The sockaddr_in structure defines

10-58 Internet Services

names for sockets that use the Internet address format. This structure
defines a name that includes the socket's address family (AF _INET),
a port number in network byte order, an Internet address in network
byte order, and an 8-byte field that contains all zeros.

The name length argument must specify the size of the name structure
in bytes.

The following code binds an Internet address name socket_2_name to
the socket socket-.2:

:hnclude types
:fI:include socket
:fI:include in

main (argc, argv)
int argc;
char **argv;
{

int socket_2;
static struct sockaddr in socket_2_name;

/*
* Fill in the name structure.
*/

socket_2_name.sin_family = AF_INET;
socket_2_name.sinyort = htons(atoi(argv[l]»;
socket_2_name.sin_addr.s_un.S_addr inet_addr("5.0.0.1");

/*
* Bind the name to the socket.
*/

Once a socket has a name, an application can use the socket for either
connection-oriented or connectionless communication.

Internet Services 10-59

10.6.3 Controlling Socket Characteristics

/*

The VAXELN Internet software provides the routines vaxc$get_sdc
and vaxc$socket_control for controlling certain socket characteris
tics. The vaxc$get_sdc routine returns the socket device descriptor
associated with a specified socket descriptor. Once an application has
the socket device descriptor, it can specify that descriptor in calls to
vaxc$socket_control to do the following:

• Set the socket to a blocking or nonblocking state
• Determine whether the socket's read pointer is pointing at the

out-of-band data marker

A blocking socket waits for the current operation to complete, while a
nonblocking socket does not block if the requested operation takes a
considerable amount of time.

Calls to the vaxc$socket_control must specify a socket device de
scriptor returned by vaxc$get_sdc, a request, and an argument
pointer. The request argument specifies the characteristic to be set or
returned. The argument pointer specifies the address of a buffer that
supplies information to or receives characteristics from the routine.

To set a socket to the blocking or nonblocking state, you must specify
FIONBIO as the request. If you specify FIONBIO and the specified
buffer contains 0, the socket is set to the blocking state. Otherwise, it
is set to the nonblocking state.

To determine whether a socket's read pointer is pointing at the out-of
band data marker in the data stream, specify SIOCATMARK as the
request. When you specify this request, the routine returns the value 1
to the specified buffer if the next read is to return data after the mark.

The following example shows how you might use vaxc$get_sdc and
vaxc$socket_control to create an 1/0 control function that is similar
to the UNIX ioctl function.

** Include files
*/

iinclude inetdef

10-60 Internet Services

/*
* I/O control functions have the command encoded in the lower word
* and the size of the input and output parameters in the upper word.
* The high two bits of the upper word are used to encode the
* parameter's I/O status. For now, we restrict parameters to at most
* 128 bytes.

*
* The IOC VOID field of Ox20000000 is defined so that new I/O control
* functions can be distinguished from old I/O control functions.
*/

tl=ifndef
tl=define
tl=define
tl=define
tl=define
tl=define
tl=define
tl=define
tl=define
tl=define
tl=endif

IO
IOCPARM MASK
IOC VOID
IOC OUT
IOC IN
IOC INOUT

IO(x,y)
:=IOR(x,y,t)

IOW(x,y,t)
:=IOWR(x,y,t)
IO

Ox7f /* Parameters are < 128 bytes */
(int)Ox20000000 /* No parameters */
(int)Ox40000000 /* Copy output parameters */
(int)OxSOOOOOOO /* Copy input parameters */
(int) (IOC INIIOC OUT)
(int) (IOC-VOIDI ('x'«8) Iy)
(int) (IOC-OUTI «sizeof(t) & IOCPARM MASK) «16) I ('x'«8) Iy)
(int) (IOC-INI «sizeof(t)&IOCPARM MASK) «16) I ('x'«8) Iy)
(int) (IOC:=INOUTI «sizeof(t) & IOCPARM_MASK) «16) I ('x'«S) Iy)

tl=define ODD (s) (s & 01)

/*---*/
int ioctl(d, request, argp)

int d, request;
char *argp;

/* Arguments:
** d - Specifies the socket descriptor
** request - Specifies the characteristics; either FIONBIO or
** SIOCATMARK

**
**
*/
{

argp - Points to the buffer that specifies input to or
receives output from the routine

int
int

sdd;
retval;

/* Socket device descriptor */
/* Return value */

/*
** Get the socket device descriptor.
** If failure, then errno will contain error number.
*/

sdd vaxc$get_sdc(d);

/*
** Do socket control.
** If failure, then errno will contain error number.
*/

Internet Services 10-61

if (sdd) {
ret val = vaxc$socket_control(sdd,

request,
argp) ;

return(retval);

else
return (-1); /* Return failure */

For descriptions of the vaxc$get_sdc and vaxc$socket_control, see
the VAXELN C Reference Manual.

10.6.4 Establishing Connections for Socket Communication

To use sockets for TCP communication, an application must establish
a connection between client and server sockets. A client initiates a
connection by sending a connection request to a server's socket. A
server waits for connection requests, and depending on the state and
characteristics of its socket, receives the requests, places the requests
in a queue, or rejects the requests.

The following sections explain how to establish socket connections.
Sections 10.6.4.1 and 10.6.4.3 explain how to send and accept socket
connection requests. Section 10.6.4.2 explains how to associate a socket
with a queue for pending connection requests.

10.6.4.1 Initiating Socket Connections

A client initiates a~ connection on a socket by calling the connect
function. The function call must specify a socket descriptor returned by
socket, the name of a remote socket, and the length of the name.

The socket descriptor can be of type SOCK_DGRAM or SOCK_
STREAM. If the socket is of type SOCK_DGRAM, the call perma
nently specifies the peer to which data is to be sent. If the socket is
of type SOCK_STREAM, the function sends a connection request to
another socket.

The name argument specifies the address of a structure that names
the remote socket to which the specified socket is to connect. The
structure must define the name using the remote socket's address
format. Section 10.6.2 provides information about the VAXELN socket
address structures and binding names to sockets.

10-62 Internet Services

NOTE

If an application does not bind an Internet address (name)
to a socket before calling the connect function, the function
uses the local Internet address. If the Internet address is
not defined when the application calls connect, the function
blocks until the Internet address is set.

The name length argument must specify the size of the name structure
in bytes.

The following code fragment connects the socket socket_l to the remote
socket named socket~_name:

#include types
#include socket
#include in

main (argc, argv)
int argc;
char **argv;
{

int socket_l;
static struct sockaddr in socket_2_name;

/*
* Fill in the name structure for the remote socket.
*/

socket 2 name. sin family = AF INET;
socket=2=name.sin:port = hton;(atoi(argv[2]»;
socket_2_name.sin_addr.S_un.S_addr = inet_addr("5.0.0.5");

/*
* connect socket 1 to socket 2 name.
*/ - --

Internet Services 10-63

10,6.4.2 Creating a Queue for Pending Connection Requests

Before a server can accept a connection on a socket, it must create
and associate the socket with a queue that stores pending connection
requests. The socket uses the queue to listen for requests. If the server
is busy when a request arrives, the request is queued. If the queue is
empty when the server is ready to service a request, the server waits
on the queue for a new request.

To create a queue for a socket, call the listen function. The function
call must specify a socket descriptor of type SOCK_STREAM returned
by socket and an integer in the range 1 to 5 that specifies the maxi
mum number of pending connections that may be queued for the socket
at any given time. If a connection request arrives when the queue is
full, the client receives an error.

The call to listen in the following example creates a connection request
queue for socket_2. The queue entry limit is set to 5.

#include types
#include socket
#include in

main (argc, argv)
int argc;
char **argv;
{

int socket _2;

/*
* Listen on socket 2 for connection requests.
*/

return val = listen(socket_2, 5);

10-64 Internet Services

10.6.4.3 Accepting Socket Connections

A server accepts a connection on a socket by calling the accept func
tion. A call to accept must specify a socket descriptor of type SOCK_
STREAM returned by socket, a variable that receives the address of
the connecting entity, and an argument that specifies and receives the
length of the connecting entity's address in bytes. The socket descriptor
that you specify must be bound to a name and listening for connection
requests.

The address of the connecting entity is filled in as it is known to the
communication layer. The format of the structure to which the address
points is determined by the communication domain. The VAXELN
Internet Services support the Internet (AF _INET) domain.

The address length argument should specify the size of the structure
to which the address argument points. When the function returns,
the argument contains the actual length of the structure that the
communication layer places in the address argument.

The accept function completes the first connection on the socket's con
nection pending queue, creates a new socket with the same properties
as the specified socket, and allocates and returns a new descriptor for
the socket. If no connections are pending and the socket is not marked
as nonblocking, the function blocks the calling process until a connec
tion request is present. If the socket is marked as nonblocking and no
connections are pending, the function returns an error. The original
socket continues to listen for other connection requests.

The following code accepts a connection from socket_2 and places the
accepted connection on socket_3:

Internet Services 10-65

iinclude types
tinclude socket
tinclude in

main (argc, argv)
int argc;
char **argv;
{

int socket 2, socket 3;
static struct sockaddr in socket 2 name;

int socket_2:namelen; --

/*
* Accept connection request from socket 2.
* Accepted connection will be on socket:3.
*/

socket 2 namelen = sizeof (socket 2 name);
socket:3-= accept(socket_2, &socket_2_name, &socket_2_namelen);

10.6.5 Transferring Data

A variety of socket communication routines are available for trans
ferring data between sockets. Sections 10.6.5.1 and 10.6.5.2 ex
plain how to use the routines to send and receive data, respectively.
Section 10.6.5.3 explains how to poll sockets for I/O activity while
programming data transfers between sockets.

10.6.5.1 Sending Data to Sockets

Internet applications can send data from sockets by calling the write,
send, sendto, or sendmsg function. You can use any of these func
tions to send data in connection-oriented communication. You must use
sendto or sendmsg to send data in a connectionless environment.

The write function writes a buffer of data to a connected socket or
file. You specify write with a destination socket or file descriptor,
the address of contiguous storage from which the output data is to be
taken, and the maximum number of bytes to be written.

10-66 Internet Services

The send function provides an alternative method of sending data
between connected sockets. A call to send must specify a socket
descriptor, the address of the buffer containing the data to be sent, the
length (in bytes) of the data being sent, and an out-of-band character
flag. In the case of send, the socket descriptor specifies a source socket
- the socket from which data is sent - that is connected to another
socket. The function sends bytes of data through the specified socket
to its connected peer and returns an integer indicating the number of
bytes of data that were sent.

The out-of-band character flag that you specify with send can be 0
or MSG_OOB. If you specify MSG_OOB, data can be received before
other pending data on the receiving socket if the receiver also specifies
MSG_OOB.

The following code uses a call to send to send a message to socket_2:

#include types
#include socket
#include in

main (argc, argv)
int argc;
char **argv;

int socket 1;
static struct sockaddr_in socket 2 name;

int socket_2_namelen;

/*
* Fill in the name structure for the remote socket.
*/

socket 2 name. sin family = AF lNET;
socket=2=name.sin~ort = htons(atoi(argv[2]»;
socket_2_name.sin_addr.s_un.s_addr = inet_addr("5.0.0.5");

/*

*
*/

socket 2 namelen = sizeof(socket 2 name);
return=val = connect(socket_l, &socket_2_name, &socket_2_namelen);

/*
* Send message to socket 2.
*/

Internet Services 10-67

flag = 0;
return val send (socket_l, message, sizeof(message), flag);

If your application uses connectionless socket communication, you can
send data by calling the sendto or sendmsg function. These functions
send data to any other socket. The sendto function sends bytes of data
through a socket to any other socket. The sendmsg function sends
gathered bytes of data through a socket to any other socket.

Like calls to send, calls to sendto must specify a socket descriptor,
the address of the buffer containing the data to be sent, the length
(in bytes) of the data being sent, and an out-of-band character flag.
In addition, you must supply the destination socket by specifying the
address of the destination socket's address structure and the length of
that structure.

The call to sendto in the following code fragment sends data between
unconnected sockets:

:fI:include types
:fI:include socket
:fI:include in

main (argc, argv)
int argc;
char **argv;

int sendlength,
static char sendbuf [] =

int flag;
int return val;

static struct sockaddr in

/*

tolength;
"Hi.";

socket _2_name;

* Fill in the address structure for socket 2.
*/

socket 2 name. sin family = AF INET;
socket=2=name.sin~ort = htons(atoi(argv[2]»;
socket_2_name.sin_addr.S_un.S_addr = inet_addr("5.0.0.5");

/*
* Initialize send block.
*/

10-68 Internet Services

sendlength = sizeof(sendhuf);
tolength = sizeof(socket 2 name);
flag =0; - -

/*
* Send message from socket_l to socket_2.

*/

return_val sendto(socket_l, sendhuf, sendlength, flag, &socket_2_name,
tolength) ;

When you use the sendmsg function, you must specify a socket de
scriptor created by socket, a message argument, and an out-of-band
character flag.

The message argument specifies the address of a message header
structure of type msghdr that contains the message to be sent. The
message header structure lets the sendmsg function gather data from
several user transmit buffers before sending a message. Members of
the msghdr structure identify the following:

• The address of the destination socket if the source socket is not
connected.

• The length of the message name field.
• An array of I/O buffer pointers of the iovec structure form. Each of

the buffer pointers specifies the address of a buffer and that buffer's
length.

• The number of buffers in the message array.
• The address of a buffer containing access rights sent with the

message.

• The length of the access rights buffer.

The sendmsg function sends the data in the mSlL,iovec field of the
msghdr structure to the socket whose address is specified in the msg_
name field of msghdr. The receiving socket can then receive the data.
If the array specifies multiple buffers, sendmsg gathers the data from
all specified buffers before sending the message.

If blocking is enabled for a socket, send, sendto, and sendmsg will
block if the receiving end of a socket connection does not have enough
space to buffer the data being sent. However, if the sending socket is
defined as nonblocking, an error results and the send operation fails.

Internet Services 10-69

The send operation will fail also if the sending socket is of type SOCK_
DGRAM and the message is too large to be sent in one piece.

10.6.5.2 Receiving Data from Sockets

Internet applications can receive data from sockets by calling the
read, recv, recvfrom, or recvmsg function. You can use any of these
functions for receiving data in connection-oriented communication. You
must use recvfrom or recvmsg to receive data in a connectionless
environment.

The read function reads data from a connected socket or file and places
the data in a buffer. You specify read with the descriptor of a socket
or file opened for reading, address of contiguous storage in which the
input data is to be placed, and the maximum number of bytes to be
read. The function returns the number of bytes actually read and
placed in the buffer.

The recv function provides an alternative means of receiving data
between connected sockets. A call to recv must specify a socket de
scriptor, the address of the buffer into which received data is to be
placed, the length (in bytes) of the specified buffer, and a flags argu
ment. In the case of read, the socket descriptor specifies a destination
socket - the socket from which data is received - that is connected to
another socket. The function receives bytes of data through the spec
ified socket from its connected peer and returns an integer indicating
the number of bytes of data received and placed in the buffer.

The flags argument is a bit mask that specifies whether the function
should receive out-of-band characters and be allowed to peek at data
before it is read. The out-of-band character flag can be 0 or MSG_OOB.
If you specify MSG_OOB, available out-of-band data will be read before
any other available data. The peek flag can be 0 or MSG_PEEK

The following code uses a call to recv to receive a message from socket_
2:

10-70 Internet Services

:f/:include types
:f/:include socket
:f/:include in

main (argc, argv)
int argc;
char **argv;
{

int socket 2, socket 3;
static char message[BUFSIZ];
static struct sockaddr in socket 2 name;

int socket 2-namelen; --
int flag; --

/*
* Accept connection request from socket 2.
* Accepted connection will be on socket=3.
*/

socket 2 namelen = sizeof(socket 2 name);
socket=3-= accept(socket_2, &socket_2_name, &socket_2_namelen);

/*
* Receive message from socket 1.
*/

flag = 0;

ret val recv(socket_3, message, sizeof(message), flag);

If your application uses connectionless socket communication, you can
receive data by calling the recvfrom or recvmsg function. These
functions receive data from another source. The recvfrom function
receives bytes of data on a socket from any source. The recvmsg
function receives bytes of data on a socket and places them in scattered
buffers.

Like calls to recv, calls to recvfrom must specify a socket descriptor,
the address of the buffer into which received data is to be placed, the
size of the buffer, and a flags argument. In addition, you must supply a
source and source length. The source argument can be zero or nonzero.
If nonzero, the argument points to the buffer into which recvfrom is to
place the address structure of the socket from which data is received.
If you specify zero, the address is not returned. The source length
argument points to an integer that indicates the buffer's size. When

Internet Services 10-71

the function returns, the size is modified such that it contains the
actual length of the socket address returned.

The call to recvfrom in the following code fragment receives data from
an unconnected socket:

tinclude types
iinclude socket
tinclude in

main (argc, argv)
int argc;
char **argv;
{

int buflength, fromlength;
static char recvbuf[] = "Hi.";

int flag;
int return val;

static struct sockaddr in socket_2_name;

/*
* Receive data from socket 1 on socket_2.
*/

buflength = sizeof(recvbuf);
fromlength = sizeof(socket 1 name);
flag = 0; - -

return val recvfrom(socket 2, recvbuf, buflen, flag, &socket_l_name,
&fromlength) ;

When you use the recvmsg function, you must specify a socket descrip
tor created by socket, a message argument, and a flags argument.

The message argument specifies the address of a message header struc
ture of type msghdr into which the received message is to be placed.
The message header structure lets the recvmsg function scatter data
to several user transmit buffers after a message is received. Members
of the msghdr structure identify the following:

• The address of the destination socket if the source socket is not
connected.

• The length of the message name field.

10-72 Internet Services

• An array of I/O buffer pointers of the iovec structure form. Each of
the buffer pointers specifies the address of a buffer and that buffer's
length.

• The number of buffers in the message array.

• The address of a buffer containing access rights sent with the
message.

• The length of the access rights buffer.

The recvmsg function scatters a message into several user buffers
if such buffers are available. The data is scattered into the message
array buffers as specified by the iovec structure.

When recvmsg receives a message, the message is split among buffers
by filling the first buffer in the list, then the second, and so on, until all
the buffers are full or no more data is available.

If blocking is enabled for a socket, recv and recvto block and wait
for data to arrive if no data is available at the time of the function
call. However, if the sending socket is defined as nonblocking, an error
results and the receive operation fails.

10.6.5.3 Polling Sockets for 1/0 Activity

While programming data transfers to and from sockets, you may want
to poll the sockets for I/O activity. By polling the sockets, you can check
which sockets are ready to receive or send data, or which sockets have
a pending exception.

To poll sockets for I/O activity, use the select function. This function
determines the I/O status of the sockets. specified in various mask
arguments. The function returns when a socket is ready to receive or
send data, or when a timeout value expires.

A call to select must specify the highest numbered socket descriptor
for which the function must search; pointers to arrays of bits that
indicate which sockets should be checked for read or write readiness
or for exceptions; and a timeout value. The first argument improves
efficiency by specifying the highest numbered bit + 1 to be checked. A
descriptor is represented by 1«8 (1 shifted to the left 8 times). If you
are not sure what the highest numbered descriptor is, you can safely
specify a number less than 64.

Internet Services 10-73

The read, write, and exception fields arguments are pointers to arrays
of bits, organized as integers (each integer describes 32 descriptors)
that you can examine. If bit n of a bit array is set, the function checks
to see if socket descriptor n is ready to be read from, is ready to be
written to, or has any pending exceptions. All bits in the bit masks
must correspond to socket descriptors.

On return, the bit array to which each of the fields arguments points
contains a bit mask of sockets that are ready for reading, are ready for
writing, or have exceptions pending. Only bits that are set on entry to
select can be set on exit.

The timeout argument is a timeval structure that specifies the max
imum interval to wait for a selection to be completed. The timeval
structure consists of members that specify the number of seconds and
number of microseconds to wait. If one of the sockets specified in the
bit masks is ready for liD, the function returns before the timeout
expires.

The following code fragment selects a socket to receive a message:

:fI:include types
:fI:include socket
:fI:include in

main (argc, argv)
int argc;
char **argv;
{

unsigned long rmask, wmask, emask;
int socket 2;
int return=val;

static struct sockaddr in socket_2_name;
struct timeval timeout;

/*
* Select socket to receive message.
*/

emask = wmask = 0;
rmask = (l«socket 2);
timeout.tv_sec = 30;
timeout.tv_usec ~ 0;

/* Set read mask */

return val = select(32, &~mask, &wmask, &emask, &timeout);

10-74 Internet Services

switch(return val)
{ -

case -1: perror("select error");
break;

case 0: printf("Select timed out with status O.\n");
break;

default: if «rmask& (l«socket 2)) == 0)
printf("Select not reading on socket_2. \n");

break;
/* switch */

If a call to select blocks a process while waiting for input from a socket
and the sending process closes the socket, select notes this as an event
and unblocks the process. The descriptors are modified on return if
select returns because of a timeout.

10.6.6 Shutting Down Sockets

When an application no longer needs a socket, it should use the shut
down function to shut down the socket. An application can shut down
a socket completely or shut down the socket's ability to receive or send
data. You might use this function to program a more controlled shut
down. The shutdown function is also useful for setting up one-way
(half-duplex) communication rather than normal two-way (full-duplex)
communication.

A call to shutdown must specify a socket descriptor and an integer in
the range 0 to 2 that indicates how the socket is to be shut down. If
you specify 0, the socket can no longer receive data. If you specify 1,
the socket can no longer send data. The value 2 prevents the socket
from receiving or sending data.

In the following example, shutdown shuts down socket_l completely:

Internet Services 10--75

:f/:include types
:f/:include socket
:f/:include in

main(argc, argv)
int argc;
char **argv;
{

int socket 1;
int return=val;

/*
* Shut down socket 1.
*/

return val select (socket_1, 2);
} -

10.6.7 Closing Sockets

When a socket is no longer being used, the application should close
it. To close a socket, call the close function. If the socket is a con
nected socket, the function breaks the connection and then deletes the
socket's descriptor from the appropriate reference table. Otherwise, the
function just deletes the descriptor. If the close operation is the last
reference to the socket, the socket is deactivated.

The following code fragment shuts down and closes the socket socket_I:

:f/:include types
:f/:include socket
:f/:include in

main (argc, argv)
int argc;
char **argv;

int socket 1;
int return=val;

/*
* Shut down and close socket 1.
*/

1 e-76 Internet Services

return_val = shutdown(socket_l, 2);

return_val = close(socket_l);

10.6.8 Programming Socket Communication for a UDP Application

This section shows an example of how you might use the socket com
munication routines to program a UDP application. The example
consists of a UDP server (see Example 10-1) and a UDP client (see
Example 10-2). The server creates a socket of type SOCK_DGRAM
(UDP), binds it, and selects to receive a message on the socket. The
server program expects the number of the port where it is waiting for
requests. The client creates a socket of type SOCK_DGRAM (UDP),
binds it, and sends a message to a specified destination address. The
client program expects the name of a remote host and the port number
where the remote host is waiting.

To run the sample application you must do the following:

• Pass 7 as the fourth program argument for both the server and
client programs. The first argument (program name) is not sup
ported by the VAXELN Toolkit, and the stdin, stdout, and stderr
arguments are not used.

• Set the priority of the server to a higher priority than that of the
client if the server and· client are to run on the same node.

• The Internet address in the example code must match the Internet
address that you specify for the Internet address entry on the
System Builder's Internet Network Description menu.

Internet Services 10-77

Example 10-1: Sample UDP Server

/*
* Include Files

*/

#include $vaxe1nc
#inc1ude errno
#inc1ude types
#inc1ude stdio
#inc1ude socket
#inc1ude in
#inc1ude inet

main (argc, argv)
int argc;
char **argv;

unsigned long read mask, write mask, exception mask;
int socket 2; - /* Socket 2" descriptor. * /
int buf1en; from1en;
char recvbuf[BUFSIZ];

static struct sockaddr in socket 1 name; /* Address structure for Socket 1. */
static struct sockaddr-in socket:2:name; /* Address structure for Socket 2. */

int name1ength;
int retva1;
int flag;
struct timeva1 timeout;

/*
* Check input parameters.
*/

if (argc ! = 2)
{

/*

printf("Usage: server port number. \n");
exit ();
}

* Create a datagram socket (SOCK DGRAM) that is to use Internet
* addresses. Return the socket descriptor to socket_2.
*/

if ((socket 2 = socket(AF INET, SOCK_DGRAM, 0» -1)
{ -

perror("socket error");
exit () ;

Example 10-1 Cont'd on next page

10-78 Internet Services

Example 10-1 (Cont.): Sample UDP Server

/*
* Build the address structure for socket 2.
*/

socket 2 name. sin family = AF lNET;
socket=2=name.sin:p0rt = hton;(atoi(argv[l]»;
socket_2_name.sin_addr.S_un.S_addr = inet_addr("5.0.0.5");

/*
* Bind socket 2 to the name structure socket 2 name.
*/

retval bind (socket_2, &socket_2_name, sizeof(socket_2_name»;
if (retval)

/*
*
*

{

*/

perror ("bind error");
cleanup(socket_2);

set the read mask and poll socket 2 for read requests.
a timeout value of 30 seconds. -

exception mask = write mask = 0;
read mask-= (1«socket-2); /* set read mask */
timeout.tv sec = 30; -
timeout.tv-usec = 0;

Example 10-1 Cont'd on next page

Use

Internet Services 10-79

Example 10-1 (Cont.): Sample UDP Server

ret val = select(32, &read mask, &write mask,
&exception_mask, &timeout);

switch (retval)
{

/*

case -1:
{

perror("select error");
cleanup(socket_2);

break;
case 0:

{
printf("Select timed out with status o. \n");
cleanup(socket_2);

break;
default:

if «read mask & (l«socket 2» == 0)
{ -

}
/*switch*/

printf("Select not reading on socket_2.\n");
cleanup(socket_2);

* Initialize the receive buffer.
*/

buflen sizeof(recvbuf);
fromlen = sizeof(socket 1 name);
flag = 0; /* Flag can-be MSG_OOB or MSG PEEK */

/*
* Receive data from a socket named socket 1 name, using
* socket_2, and place the data in the buffer recvbuf.
*/

retval = recvfrom(socket 2, recvbuf, buflen, flag,
&socket_1_name, &fromlen);

if (retval == -1)
perror (" recvfrom error II) ;

else
printf (" %s\n", recvbuf);

Example 10-1 Cont'd on next page

1 ~80 Internet Services

Example 10-1 (Cont.): Sample UDP Server

/*
* Call cleanup to shut down and close socket_2.
*/

cleanup(socket_2);

} 1* end main */

1*---*/
cleanup (aocket)
int socket;

int retval;

1*
* shut down socket completely.
*1

retval - shutdown(socket,2);
if (retval -- -1)

perror ("udp_server shutdown error");

1*
* Close the socket.
*/

retval = close(socket);
if (retval)

perror ("close error");

exit ();

} /* end cleanup *1

Internet Services 10-81

Example 10-2: Sample UDP Client

/*
* Include Files
*/

tinclude
tinclude
tinclude
tinclude
tinclude
tinclude
tinclude

$vaxelnc
errno
types
stdio
socket
in
inet

main (argc, argv)
int argc;
char **argv;
{

socket 1;
sendle~, tolen;

/* Socket descriptor for Socket 1 */ int
int

static char
static struct

int

sendhuf [] = "Have a nice day.";

int
int

/*
*
*/

sockaddr in socket_2_name; /* Address structure for Socket 2 */
namelength;
flag;
retval;

Check input parameters.

if (argc != 2)
{

/*

printf(ttUsage: port number. \n");
exit () ;
}

* Create a datagram socket (SOCK DGRAM) that is to use Internet
* addresses. Return the socket descriptor to socket_1.
*/

if «socket_1 = socket(AF_INET, SOCK_DGRAM, 0» == -1)

/*
*
*
*/

perror(ttsocket error");
exit () ;

Build an address structure for socket 2 for receiving the
message.

Example 10-2 Cont'd on next page

10-82 Internet Services

Example 10-2 (Cont.): Sample UDP Client

socket 2 name. sin family = AF INET;
socket=2=name.sin~ort = htons(atoi(argv[1]»;
socket_2_name.sin_addr.S_un.S_addr inet_addr("5.0.0.5");

/*
* Initialize the send buffer.
*/

sendlen = sizeof(sendhuf);
tolen = sizeof(socket 2 name);
flag = 0; /* Flag may-be MSG_OOB */

/*
* Send data from the buffer sendhuf using socket 1 to
* a socket named socket 2 name.
*/

ret val = sendto(socket 1, sendhuf, sendlen, flag,
&socket 2 name, tolen);

if (retval == -1) - -
{

/*

perror("sendto error");
cleanup(socket_1);

* Call cleanup to shut down and close socket 1.
*/

cleanup(socket_1);

} /* end main */

/*---*/
cleanup (socket)
int socket;

int retval;

/*
* Shut down socket completely.
*/

retval = shutdown(socket, 2);
if (retval == -1)

perror ("udp _client shutdown error");

Example 10-2 Cont'd on next page

Internet Services 10-83

Example 10-2 (Cont.): Sample UDP Client

/*
* Close the socket.
*/

retval = close(socket};
if (retval)

perror("close error");

exit ();

/* end cleanup */

10.6.9 Programming Socket Communication for a TCP/IP Application

This section shows an example of how you might use the socket com
munication routines to program a TCPIIP application. The example
consists of a TCPIIP server (see Example 10-3) and a TCPIIP client (see
Example 10-4). The server creates a socket of type SOCK_STREAM
(TCP), binds it, listens on it, receives a message, and closes it. The
server program expects the number of the port where it is listening.
The client creates a socket of type SOCK_STREAM (TCP), initiates
a connection to the remote host, sends a message to the remote host,
and closes the connection. The client program expects the name of the
remote host port where the remote host (server) is listening ..

To run the sample application you must do the following:

• Pass 7 as the fourth program argument for both the server and
client programs. The first argument (program name) is not sup
ported by the VAXELN Toolkit, and the stdin, stdout, and stderr
argumen ts are not used.

• Set the priority of the server to a higher priority than that of the
client if the server and client are to run on the same node.

• The Internet address in the example code must match the Internet
address that you specify· for the Internet address entry o·n the
System Builder's Internet Network Description menu.

10-84 Internet Services

Example 10-3: Sample TCP/IP Server

/*
* Include Files
*/
:/J:include
:/J:include
:/J:include
:/J:include
:/J:include
:/J:include
:/J:include

$vaxelnc
errno
types
stdio
socket
in
inet

main (argc, argv)
int argc;
char **argv;
{

int

message[BUFSIZ];

/* Socket descriptors for
/* Socket 2 and Socket 3.

*/
*/

static char
static struct
static struct

int
int
int

sockaddr in socket 2 name; /* Address structure for socket 2 */
sockaddr-in retsocket_2_name; /* Address structure for socket 2 */
flag;
retval;
namelength;

/*
* Check input parameters.
*/

if (argc != 2)
{

/*

printf(flUsage:- server port number. \n");
exit () ;

* Create a stream socket (SOCK STREAM) that is to use Internet
* addresses. Return the socket descriptor to socket_2.
*/

if «socket 2 = socket(AF INET, SOCK_STREAM, 0» -1)
{ -

perror(flsocket errorfl);
exit () ;

Example 10-3 Cont'd on next page

Internet Services 10-85

Example 10-3 (Cont.): Sample TCP/IP Server

/*
* Build an address structure for socket 2.
*/

socket 2 name. sin family = AF INET;
socket=2=name.sin:p0rt = htons(atoi(argv[l]»;
socket_2_name.sin_addr.s_un.s_addr = inet_addr("5.0.0.5");

/*
* Bind socket 2 to the name structure socket 2 name.
*/

retval bind (socket_2, &socket_2_name, sizeof(socket_2_name»;
if (retval)

{

/*

perror("bind error");
cleanup (1, socket_2, 0);

* create and associate socket 2 with a queue for pending connection
* requests. The socket uses the queue to listen for requests.
*/

retval = listen(socket_2, 5);
if (retval)

/*
*
*

{

*/

perror("listen error");
cleanup (1, socket_2, 0);

Accept a connection request from socket 2.
requests on socket 3.

Place accepted

namelength sizeof(socket 2 name);
socket 3 = accept (socket_2; &socket_2_name, &namelength);
if (socket 3 == -1)

{ -
perror ("accept error");
cleanup (2, socket_2, socket_3);

Example 10-3 Cont'd on next page

10-86 Internet Services

Example 10-3 (Cont.): Sample TCP/IP Server

/*
*
*
*/

Receive data from socket 1, using socket_3, and place the
data in the buffer message.

flag = 0; /* Can be 0, MSG_OOB, or MSG_PEEK. */

retval = recv(socket 3, message, sizeof(message), flag);
if (retval == -1) -

{

else

perror("receive error");
cleanup (2, socket_2, socket_3);

printf (" %s\n", message);

/*
* Call cleanup to shut down and close the sockets.
*/

cleanup (2, socket_2,. socket_3);

} /* end main */

/*---*/
cleanup(how many, socket 1, socket 2)
int how many; - -
int socket_1, socket_2;

int retval;

/*
* Shut down and close socket 1 completely.
*/

retval = shutdown(socket 1, 2);
if (retval == -1) -

perror("tcp_server shutdown error, socket_1");

retval = close(socket 1);
if (retval) -

perror("close error");

Example 10-3 Cont'd on next page

Internet Services 10-87

Example 10-3 (Cont.): Sample TCP/IP Server

/*
* If given, shut down and close socket 2.
*/

if (how many == 2)
{ -

retval = shutdown(socket 2, 2);
if (retval == -1) -

perror("tcp_server shutdown error, socket_2");

retval = close(socket 2);
if (retval) -

perror("close error");

exit ();

} /* end cleanup*/

Example 10-4: Sample TCP/IP Client

/*
* Include Files
*/

#include
include
#include
#include
:jj:include
#include
include

$vaxelnc
errno
types
stdio
socket
in
inet

main (argc, argv)
int argc;
char **argv;
{

int socket 1; /* Socket descriptor
static char message[] "Have a nice day. ";
static struct sockaddr_in socket _2_name; /* Address structure

int flag;
int retval;
int shut = FALSE; /* Flag to cleanup

Example 10-4 Cont'd on next page

10-88 Internet Services

for Socket 1 */

for Socket 2 */

*/

Example 10-4 (Cont.): Sample TCP/IP Client

/*
* Check input parameters.
*/

if (argc != 2)
{

/*

printf("Usage: port number. \n");
exit ();

* Create a stream socket (SOCK STREAM) that is to use Internet
* addresses. Return the socket descriptor to socket_l.
*/

if «socket_l = socket(AF INET, SOCK_STREAM, 0» == -1)
{

/*

perror ("socket error");
exit ();

* Build an address structure for socket 2.
*/

socket 2 name. sin family = AF INET;
socket:2:name.sin:port = htons(atoi(argv[l]»;
socket_2_name.sin_addr.S_un.S_addr = inet_addr("5.0.0.5");

/*

* Connect socket_1 to the remote socket named socket_2_name.
*/

retval connect(socket 1, &socket_2_name, sizeof(socket_2_name»;
if (retval) -

{
perror ("connect error");
cleanup (shut, socket_1);

Example 10-4 Cont'd on next page

Internet Services 10-89

Example 10-4 (Cont.): Sample TCP/IP Client

/*
*
*
*/

send data from the message buffer, using socket_l, to
the connected socket.

flag = 0; /* Can be 0 or MSG OOB. */
ret val = send(socket 1, message, sizeof(message), flag);
if (retval < 0) -

{

/*

perror ("send error");
shut = TRUE;

* Call cleanup to shut down and close the socket.
*/

cleanup (shut, socket_1);

} /* end main */

/*---*/
cleanup (shut, socket)
int shut;
int socket;

int retval;

/*

* Shut down socket completely if it was connected.
*/

if (shut)
{

retval = shutdown(socket, 2);
if (retval == -1)

perror ("tcp _client shutdown error");

Example 10-4 Cont'd on next page

10-90 Internet Services

Example 10-4 (Cont.): Sample TCP/IP Client

/*
* Close the socket.
*/

retval = close(socket);
if (retval)

perror("close error");

exit () ;

/* end main */

10.7 Retrieving and Setting Socket Characteristics

The VAXELN Toolkit also provides routines for retrieving and setting
socket characteristics. These routines include the following:

Routine

getpeername

getsockname

getsockopt

setsockopt

Description

Returns the name of a socket's connected peer.

Returns the name associated with a socket.

Returns the options set for a socket.

Sets options for a socket.

Sections 10.7.1 and 10.7.3 explain how to retrieve socket names and
options. Section 10.7.2 explains how to set socket options.

10.7.1 Retrieving Socket Names

An application can retrieve a socket name by calling the getsockname
or getpeername routine. The getsockname routine returns the name
associated with a socket. The getpeername routine returns the name
of a socket's connected peer.

You must specify these routines with a socket descriptor that was
previously created with socket, a pointer to a buffer in which the name
is to be returned, and the size of the name buffer. The socket descriptor
that you specify in a call to getsockname must be bound to a name.

Internet Services 10-91

The routines return the socket name and update the name length
argument with the name's actual size.

10.7.2 Setting Socket Characteristics

To set options on a socket, an application must call the setsockopt
routine. A call to setsockopt must specify a socket descriptor, the
protocol level for which the options are to be modified, the options to
be set, the address of a buffer that contains option parameters, and the
size of the option parameter buffer.

Options can exist at multiple protocol levels. However, options are
always present at the uppermost socket level. To set options at the
socket level, you specify the level SOL_SOCKET. To set options at
any other level, specify the number of the protocol that controls the
option. For example, to specify that an option be interpreted by the
TCP protocol, specify the TCP protocol number (IPPROTO_TCP). See
the module in.h for a list of the protocol values.

The interpretation of the options you specify is based on the protocol
level. Table 10-7 lists the options that are available at the socket level:

Table 10-7: SOCket-Level Socket Options
Option

SO_BROADCAST

SO_DONTROUTE

10-92 Internet Services

Description

Lets the socket broadcast messages.

Specifies that messages sent through the socket are
to bypass the routing facilities. Messages are directed
to the appropriate network interface' according to the
network portion of the destination address.

Lets a connected socket transmit messages periodically.
If a connected peer fails to respond to the messages, the
connection is considered broken and the processes using
the socket receive an error.

Specifies that reused local addresses can be supplied in
calls to bind.

Delays the deletion of transmitted data when a socket is
closed until the data is transmitted or the device times
out (approximately eight minutes).

You must specify all socket-level options except SO_LINGER with
an integer parameter. Specify a nonzero value if the option is to be
enabled. Specify zero to disable the option.

When you use the SO_LINGER option, you must specify the address
of a linger structure that indicates the state of the option (on or off)
and the linger interval. The linger interval indicates the number of
seconds to linger. If the linger interval is zero, the value specified
for the linger time when the system was built is used. The linger
structure is defined as follows:

struct linger
int 1 onoff;
int l=linger;

} ;

/* option on/off */
/* linger time */

If the value of l_onoffis nonzero, the system does not delete the socket
until the socket is able to transmit the data or until the socket times
out. If the value of l_onoffis zero, the system processes a close opera
tion as quickly as possible.

10.7.3 Retrievi ng Socket Options

An application can check which options are set for a socket by calling
the getsockopt routine. A call to getsockopt must specify a socket
descriptor, the protocol level for which the options are to be returned,
the option to be returned, the address of a buffer into which the option
val ue is to be placed, and the size of the option value buffer.

To retrieve options at the socket level, specify the level SOL_SOCKET.
To retrieve options at any other level, specify the number of the protocol
that controls the option. For example, to specify that an option or the
TCP protocol be returned, specify the TCP protocol number (IPPROTO_
TCP). See the module in.h for a list of the protocol values.

The interpretation of the . options you specify is based on the protocol
level. See Table 10-7 for a list of the socket level options.

Internet Services 10-93

Chapter 11

LAT Host Services

The VAXELN Toolkit includes local area transport (LAT) host services
that VAXELN systems can use to communicate with devices attached
to terminal servers, such as the DECserver 500. This chapter provides
an overview of theLAT host services (see Section 11.1) and explains
how to use the services to do the following:

• Establish circuits for LAT communication, Section 11.2

• Manage VAXELN service nodes, Section 11.3
• Set up a dedicated service environment, Section 11.4

• Set up an application device environment, Section 11.5

• Retrieve and set terminal characteristics, Section 11.6

11.1 LAT Host Services Overview

LAT is a communications protocol that lets system nodes running
LAT host services communicate with dedicated terminal server nodes
running LAT server services. The collection of system nodes and
terminal server nodes in a local area network (LAN) constitutes a LAT
network.

The VAXELN LAT host services support the following:

• Terminal server communication

• Terminal I/O
• A control interface that LAT application programs can use to

manage and monitor the LAT environment on a VAXELN system

LAT Host Services 11-1

• An interactive utility you can use to manage and monitor the LAT
environment on a VAXELN system

A VAXELN system that includes the LAT host services is a VAXELN
service node. A service node can offer services to or request access to
services offered by a terminal server. By default, a service node offers
VAXELN Command Language Utility (EeL) as a service. You can
access that service from an interactive terminal attached to a terminal
server.

The LAT host services let application programs:

• Manage and monitor a VAXELN service node's characteristics and
activities by calling VAXELN LAT utility procedures

• Set up dedicated service environments

• Set up application device environments

You can initiate communication between a service node and terminal
server from an interactive terminal attached to the terminal server or
from an application program running on the service node. From an
interactive terminal, you establish a session with a service offered by
the service node. The service can be ECL or a user-created dedicated
service that is built into your VAXELN system and that executes as a
job.

An application program running on a service node can establish a
session with a remote application device or service attached to a
terminal server. An application device offers a service to VAXELN
service nodes in a LAT network. For example, a printer would offer
printing services; a terminal device might offer display services.

Figure 11-1 shows a sample VAXELN LAT configuration.

11-2 LAT Host Services

Figure 11-1: Sample VAXELN LAT Configuration

V AXElN Service Nodes

VAXElN
LAT

Host Services

VAXElN
LAT

Host Services

D Interactive terminal accessing Eel

lili~ililililijl Interactive terminal accessing a dedicated service

o Application device

MLO-004288

To include the LAT host services, you build the VAXELN LAT driver
(LTDRIVER) into your VAXELN system by selecting ACTNE or
INACTNE for the LAT host services option on the System Builder's
Network Node Characteristics Menu. If you specify ACTNE, the
driver's LAT protocol becomes active when your system starts execut
ing. When the LAT protocol is active, the driver periodically multicasts
a message to the terminal servers in the LAN, advertising the services
that it offers. If a terminal server user tries to. connect to one of the
services, the service node accepts the connection request.

LAT Host Services 11-3

When the LAT protocol is inactive, the LAT driver does not multicast
advertising messages to or accept connection requests from terminal
servers. However, you can activate the protocol at run time with a
utility command or a runtime procedure call. By using an initial
inactive state, an application program can set up a LAT service node
environment before the driver establishes connections with terminal
servers. For example, you can set the service node's characteristics,
or you can create ports for establishing connections with dedicated
services or application devices.

A VAXELN application program can manage and monitor a LAT service
node environment by calling LAT utility procedures. For descriptions
of the utility procedures, see the VAXELN Pascal Runtime Library
Reference Manual, VAXELN C Runtime Library Reference Manual, or
VAXELN FORTRAN Runtime Library Reference Manual.

The LAT driver also supports a LAT Control Program (LATCP) Utility
that lets you manage and monitor LAT service node characteristics
and activities interactively by entering LATCP commands. For more
information about the LATCP Utility, see the VAXELN Development
Utilities Guide.

The rest of this chapter explains how to do the following:

• Establish circuits for LAT communication, Section 11.2

• Manage VAXELN service nodes, Section 11.3

• Set up a dedicated service environment, Section 11.4
• Set up an application device environment, Section 11.5
• Retrieve and set terminal characteristics, Section 11.6

11.2 Establishing Circuits for LAT Communication

The LAT driver relies on VAXELN virtual circuits for communicating
with application programs. Therefore, an application program must
establish the appropriate circuit connections before it can call the
VAXELN LAT utility procedures. Sections 11.2.1, 11.2.2, and 11.2.3
explain how to establish these connections.

11-4 LAT Host Services

11.2.1 Connecting to a LAT Control Port

LAT host service utility procedures manage the LAT environment on
a VAXELN service node. Before an application program can call these
procedures, it must create a VAXELN message port and connect that
port in a circuit to a LAT control port.

When the LAT driver starts executing, it creates two control ports and
two corresponding port names: the local port name $LAT_ CONTROL
and a universal PORT name of the form node_name$LAT_ CONTROL.
For example, if the LAT driver starts executing on the service node
RTNODE, the driver names the control ports $LAT_CONTROL and
RTNODE$LAT_CONTROL. The $LAT_CONTROL port makes the host
service utility procedures available to application programs running
on the local node; the node_name$LAT_CONTROL port makes the
procedures available to programs running on remote nodes.

The following example shows how you might connect to the local LAT
control port:

MODULE create_a_lat-port;

INCLUDE $LAT_UTILITY;

PROGRAM create_lat-port;

VAR

lat_ctrl-port : PORT;

BEGIN

{ Create a VAXELN message port.

{ Connect that message port in a circuit to the local LAT control
port. }

CONNECT_CIRCUIT (lat_ctrl-port, DESTINATION_NAME := '$LAT_CONTROL');

{ Now call a LAT host service utility procedure.

ELN$LAT_CREATE_PORT(CIRCUIT := lat_ctrl-port,
PORT NAME : = ' LTAO' ,
PORT=TYPE := LAT$APPLICATION);

END.
END;

LAT Host Services 11-5

Once a program connects to a control port, the program specifies the
port on its end of the connection in calls to the LAT host service utility
procedures. In the preceding example, the port lat_ctrCport connects to
the local control port $LAT_CONTROL. Thus, lat_ctrtport can be used
in the subsequent call to ELN$LAT_CREATE_PORT.

You must specify a LAT control port in calls to the following LAT host
service utility procedures.

Routine

ELN$LAT_DELETE_PORT

ELN$LAT_DELETE_SERVlCE

11-6 LAT Host Services

Description

Clears a VAXELN service node's coun
ters.

Creates a VAXELN LAT port on a
VAXELN service node.

Creates a service to be offered by a
VAXELN service node.

Deletes a VAXELN LAT port.

Deletes a service that is offered by a
VAXELN service node.

Sets a VAXELN service node's charac
teristics.

Associates a dedicated LAT port with
application service; or associates an
application LAT port on a VAXELN
service node with a remote port on a
terminal server.

Sets the characteristics of a service
being offered by a VAXELN service
node.

Returns a VAXELN service node's
characteristics.

Returns performance and error statis
tics for a VAXELN service node or for
all terminal servers connected to a
VAXELN service node.

Returns the characteristics of a
VAXELN service node's LAT ports.

Routine Description

Returns the characteristics of terminal
servers known to a VAXELN service
node.

Activates the LAT protocol on a
VAXELN service node.

Stops the LAT protocol on a VAXELN
service node.

To use these procedures, you must also include the appropriate modules
from the VAXELN runtime libraries.

Language Module

VAXELN Pascal $LAT_UTILITY

C $vaxelnc and $lat_utility

FORTRAN 'ELN$FORTRAN_DEFS.FOR'

NOTE

The LAT utility procedures are in the shareable image
LATSHR.EXE. If you dynamically load programs that use
LAT utility procedures into a VAXELN system, you should
specify ELN$:LATSHR.EXE in the Guaranteed image list
entry on the System Builder's System Characteristics Menu
when you build that system.

For descriptions of the LAT utility routines, see the VAXELN Pascal
Runtime Library Reference Manual, VAXELN C Runtime Library
Reference Manual, or VAXELN FORTRAN Runtime Library Reference
Manual.

11.2.2 Creating a VAXELN LAT Port

A VAXELN LAT port is a service node structure for terminal 110
operations. The VAXELN LAT driver supports three types of LAT
ports: interactive, dedicated, and application. The driver dynamically
creates interactive LAT ports that offer the ECL service to terminal
server users. A dedicated LAT port offers an application service (a
service other than ECL) to terminal server users. An application LAT
port lets application programs running on the service node gain access

LAT Host Services 11-7

to a remote terminal's dedicated or application LAT port by using the
LATCP command CREATE PORT or a call to the ELN$LAT_CREATE_
PORT procedure.

A call to ELN$LAT_CREATE_PORT must specify the port connected in
a circuit to a LAT control port, a LAT port name, and a LAT port type.
The following call to ELN$LAT_CREATE_PORT creates an application
LAT port named LTAO:

MODULE create_a_lat-port;

INCLUDE $LAT_UTILITY;

PROGRAM create_lat-port;

VAR
lat_ctrl-port : PORT;

BEGIN

{ Create a VAXELN message port.

CREATE_PORT(lat_ctrl-port);

{ Connect that message port in a circuit to the local LAT control port.

CONNECT_CIRCUIT(lat_ctrl-port, DESTINATION_NAME:= '$LAT_CONTROL');

{ Create an application LAT port named LTAO. }

ELN$LAT_CREATE_PORT(CIRCUIT := lat_ctrl-port,

END.
END;

PORT NAME := 'LTAO',
PORT-TYPE := LAT$APPLICATION);

The LAT driver associates two VAXELN message ports with each
LAT port that it creates: a DAP port for file- and record-oriented
I/O and a DDA port for accessing serial line devices and managing
connections between VAXELN LAT ports and remote terminal server
ports. In the case of interactive LAT ports, the driver associates the
DAP port with the name LTAn and associates the DDA port with
the name LTAn$ACCESS, where n identifies a unique port name.
When you create a dedicated or application LAT port, the driver
associates the DAP port with the port name you specify with the
CREATE PORT command or ELN$LAT_CREATE_PORT procedure.
The driver also associates the DDA port with a port name of the form
port-name$ACCESS, where port-name is the name of the DAP port.

11-8 LAT Host Services

Figure 11-2 distinguishes a VAXELN LAT port from its DAP and DDA
VAXELN message ports.

Figure 11-2: VAXELN LAT Port

V AXELN LA T Port

DAP Port

DAP Port Name

DDA Port

DDA Port Name

Kernel
Objects

MLO-004289

The LAT host services include a set of port utility procedures for
managing a connection between a VAXELN LAT port and a remote port
or service on a terminal server. To use these procedures, an application
program must connect to a LAT port's DDA port (see Section 11.2.3).

11.2.3 Connecting to a DDA Port

To use the VAXELN LAT port utility procedures, an application must
create a port and connect that port in a circuit to a VAXELN LAT
port's DDA port. The DDA port provides an interface for accessing
serial line devices. The following example builds upon the example in
Section 11.2.1 by showing how you might connect to a DDA port:

LAT Host Services 11-9

MODULE map_a_dda-port;

INCLUDE $LAT_UTILITY;

PROGRAM map_dda-port;

VAR
lat_ctrl-port, dda_interface-port PORT;

BEGIN
{ Create a VAXELN message port.

CREATE_PORT(lat_ctrl-port);

{ Connect that port in a circuit to the local LAT control port. }

CONNECT_CIRCUIT (lat_ctrl-port, DESTINATION_NAME := '$LAT_CONTROL');

{ Create VAXELN LAT port named LTAO. Driver creates DAP and DDA }
{ ports named LTAO and LTAO$ACCESS, respectively. }

ELN$LAT_CREATE_PORT(CIRCUIT := lat_ctrl-port,
PORT NAME := 'LTAO',
PORT=TYPE := LAT$APPLICATION);

{ Create a VAXELN message port for connecting to the DDA port. }

CREATE_PORT(dda_interface-port);

{ Connect that port in a circuit to the LAT port's DDA port. }

CONNECT_CIRCUIT (dda_interface-port, DESTINATION NAME := 'LTAO$ACCESS')

{ Now call a port utility procedure. }

ELN$LAT_MAP_PORT(CIRCUIT := dda_interface-port,

END.
END;

NEW FIELDS := [LAT$SET NODE, LAT$SET QUEUED STATUS,
- LAT$SET=PORT1, -

QUEUED STATUS := TRUE,
REMOTE-SERVER NAME := 'LAT100',
REMOTE = PORT_NAME : = , PORT _2' ,
SERVICE NAME := ");

Once a program connects a circuit to the LAT port's DDA port, the
program specifies the port on its end of the connection in calls to
the port utility procedures. The preceding example connects the port
dda_interface..port to the DDA port named LTAO$ACCESS. Thus,
the subsequent call to the ELN$LAT_MAP _PORT procedure can
associate the LAT port LTAO with the remote port named PORT_2
on the terminal server named LATIOO.

11-10 LAT Host Services

You must specify a LAT port's DDA port in calls to the following port
utility procedures:

Routine

ELN$LAT_DISCONNECT

Description

Connects an application LAT port
on a VAXELN service node to a
remote port or service offered by
a terminal server.

Disconnects a VAXELN LAT port
from a remote port offered by a
terminal server.

Associates (maps)· a dedicated
LAT port with a service offered
by a VAXELN service node; or
associates an application LAT
port on a VAXELN service node
with a remote port or service
offered by a terminal server.

Returns mapping information for
a LAT port on a VAXELN service
node.

Waits for a connection to be
established between a dedicated
LAT port on a VAXELN service
node and a remote device port
or service offered by a terminal
server.

To use these procedures, you must also include the appropriate modules
from the VAXELN runtime . libraries.

Language Module

VAXELN Pascal $LAT_UTILITY

C $vaxelnc and $lat_ utility

FORTRAN 'ELN$FORTRAN_DEFS.FOR'

NOTE

The LAT utility procedures are in the shareable image
LATSHR.EXE. If you dynamically load programs that use
LAT utility procedures into a VAXELN system, you should

LAT Host Services 11-11

specify ELN$:LATSHR.EXE in the Guaranteed image list
entry on the System Builder's System Characteristics Menu
when you build that system.

For descriptions of these routines, see the VAXELN Pascal Runtime
Library Reference Manual, VAXELN C Runtime Library Reference
Manual, or VAXELN FORTRAN Runtime Library Reference Manual.
For more information about DDA or establishing a circuit with a DDA
port, see Section 14.4.5.

11.3 Managing VAXELN Service Nodes

You can manage a VAXELN service node's characteristics and activities
by calling LAT host service utility procedures from an application
program. The procedures let you:

• Retrieve and set service node characteristics, Section 11.3.1

• Manage service node services, Section 11.3.2
• Retrieve port characteristics, Section 11.3.3

• Retrieve terminal server characteristics, Section 11.3.4
• Monitor a LAT environment's performance and error statistics,

Section 11.3.5

11.3.1 Retrieving and Setting Service Node Characteristics

The LAT driver stores a service node's characteristics in a character
istics record. The values in this record identify the following node
characteristics:

• Name
• Identification string
• Enabled LAT network groups
• Service announcement message time interval
• LAT driver state (active or inactive)

• LAT protocol version

11-12 LAT Host Services

An application program can retrieve a service node's characteristics by
calling the ELN$LAT_SHOW _CHAR procedure. and ELN$TTY_GET_
CHARACTERISTICS procedures This procedure allocates a character
istics record that the application program can access to retrieve service
node characteristics. A call to ELN$LAT_SHOW _CHAR must specify
the port connected in a circuit to a LAT control port, an argument that
receives the version number of the characteristics record, and a pointer
that points to the service node's characteristics record. For example:

VAR
lat_ctrl-port : PORT;
char record version, status INTEGER;
char-record-:. "'LAT$NODE CHAR;
one_~hown : BOOLEAN := FALSE;

BEGIN
CREATE~ORT(lat_ctrl-port);

CONNECT_CIRCUIT(lat_ctrl-port, DESTINATION NAME := '$LAT_CONTROL');

ELN$LAT_SHOW_CHAR(CIRCUIT := lat_ctrl-port,
VERSION := char_record_version,
CHARACTERISTICS := char_record);

WITH char record'" DO
BEGIN

WRITELN('Node name = I NAME);
WRITELN('Groups enabled =)';
FOR i := LAT$GROUPO TO LAT$GROUP255 DO

IF i IN GROUPS THEN
BEGIN

IF one shown THEN WRITE(' ,');
WRITE(i:l);
one shown := TRUE;

END;
WRITELN(')');

END;
DISPOSE(char_record);

END.

This section of code allocates a service node's characteristics record and
then accesses the fields containing the service node's name and enabled
LAT network groups.

Deallocate the characteristics record when the record is no longer
needed.

LAT Host Services 11-13

An application program can also change a service node's characteristics
by calling the ELN$LAT_SET_NODE procedure. You can use this
procedure to change all characteristics but the LAT driver's state and
the LAT protocol version. The call to ELN$LAT_SET_NODE in the
following section of code changes a service node's name, identification
string, and enabled groups:

VAR
lat_ctrl-port : PORT;
msg_interval : LAT$MULTICAST;
disable grps : LAT$GROUPS;
status 7 INTEGER;

BEGIN
CREATE_PORT(lat_ctrl-port);
CONNECT_CIRCUIT (lat_ctrl-port, DESTINATION NAME := '$LAT_CONTROL');

ELN$LAT_SET_NODE(CIRCUIT := lat_ctrl-port,

END.

NEW FIELDS := [LAT$SET NODE, LAT$SET IDENT,
- LAT$ENABLE_GROUPS] , -

NODE NAME := 'RTNODE',
NODE-IDENT := 'VAXELN Service Node -- RTNODE',
SECONDS := msg_interval,
ENABLE GROUPS := [0,4,7],
DISABLE_GROUPS := disable_grps);

Sections 11.3.1.1 to 11.3.1.5 provide more information about VAXELN
service node names, identification strings, network groups, multicast
timers, and LAT driver states.

11.3.1.1 Node Names

A LAT service node must have a node name that consists of 1 to 16
ASCII characters and is unique within the LAT network.

If a service node is part of a DECnet network, the LAT service node
name should be the same as the DECnet node name. The DECnet
node name must be unique within the same logical Ethernet and
must be unique within the entire DECnet network. If a node name
is not defined for a service node, the LAT driver uses a node name of
the form LAT-nnnnnnnnnnnn, where nnnnnnnnnnnn represents the
hexadecimal string for the Ethernet controller's address.

11-14 LAT Host Services

11.3.1.2 Node Identification Strings

A node identification string is a string of up to 64 ASCII characters
that describes a LAT service node. When the LAT driver is active, it
advertises the string by including it in periodic service announcement
messages it sends to terminal servers.

If you do not specify a node identification string, the default is the
VAXELN system identification string.

11.3.1.3 LAT Network Groups

You can distribute a LAT network among LAT network groups. Groups
help manage the size of terminal server data bases by limiting the
number of service nodes for which the server maintains information.

By controlling groups, you can restrict message traffic between the
terminal servers and service nodes in a LAT network. For a terminal
server to establish a connection with a service node, the server must
share at least one group with that service node. A terminal server
ignores the messages it receives from service nodes that are not in one
of the server's groups.

For example, suppose a LAT configuration consists of two terminal
servers, TSl and TS2, and the service node RTNODE. Assume that the
following groups are enabled for each:

Device Groups Enabled

TSI 1,7

TS2 0,6

RTNODE 0

Initially, terminal server TS2 can communicate with service node
RTNODE because the group 0 is enabled for both devices. If you
use the LATCP command SET NODE or the ELN$LAT_SET_NODE
procedure to enable group 7 for RTNODE, both terminal servers can
communicate with that service node.

Group 0 is enabled by default -for all service nodes and terminal servers.
If you do not want group 0 enabled, you must disable it.

LAT Host Services 11-15

11.3.1.4 Multicast Timer

The multicast timer determines the time between a service node's
service announcement messages. Service nodes send announcement
messages to terminal servers to advertise the services that they offer.
The messages include the following information:

• Node name
• Identification string

• Group designations

• Service names
• Service identification strings

• Service ratings

By default, the LAT driver sends the announcement messages every 60
seconds. However, the time interval can range from 10 to 255 seconds.

If you specify a larger value for the multicast timer, the LAT driver
sends service announcement messages less frequently. Thus, a larger
value minimizes network overhead but causes terminal server users
to wait longer for services to become available after a server reboot,
or after recovering from a network problem. Infrequent message
announcements can also affect a server's load balancing.

Smaller multicast time values cause the LAT driver to consume more
network resources because it sends service announcement messages
more frequently.

Multicast service announcement messages broadcast service node
characteristic changes. When you change a service node's characteris
tics, the LAT driver notifies the servers in the LAN by including the
changed information in the service node's announcement messages.

11.3.1.5 Service Node States

A service node can be active or inactive. When active, the service node
periodically sends service announcement messages to terminal servers
in the LAT network. An active service node can also accept connection
requests from terminal servers. For example, you can issue a connect
request from an interactive terminal.

11-16 LAT Host Services

When inactive, a service node driver does not send service announce
ment messages to or accept connection requests from terminal servers
until you start the LAT protocol with the LATCP command START
NODE or a call to the ELN$LAT_START_NODE procedure. By using
an initial inactive state, an application program can set up a service
node before the LAT driver establishes connections with terminal
servers. For example, an application program can set the service
node's characteristics or create ports for establishing connections with
dedicated services or application devices.

11.3.2 Managing Service Node Services

A service is a resource offered by a VAXELN service node or a terminal
server on the LAT network. A VAXELN service node can offer up to
eight uniquely named services, with each service offering all of the
node's resources.

You can manage a service node's services by calling LAT host service
utility procedures from an application program. The procedures let
you:

• Create and delete services
• Change service characteristics

• Advertise services

11.3.2.1 Creating and Deleting Services

To add services to and delete services from a service node's list of
offerings, use the ELN$LAT_CREATE_SERVICE and ELN$LAT_
DELETE_SERVICE procedures, respectively. Each service offered by a
service node has a name, identification string, and rating. The terminal
server uses the service rating to balance the loads of service nodes in a
LAT network.

When you create a service, you must specify the port connected in a
circuit to aLAT control port, a service name, a service identification
string, and a Boolean value indicating whether you want the driver
to use a service rating that you specify or the service rating that
it generates. You must also specify a link argument; however, this
argument is reserved for future use.

LAT Host Services 11-17

The following call to ELN$LAT_CREATE_SERVICE creates a service
named RT_SERVICE:

VAR
lat_ctrl-port : PORT;
service rating : LAT$SERVICE RATING;
link count, status : INTEGER;
link-names LAT$LINK_NAME_LIST;

BEGIN
CREATE_PORT(lat_ctrl-port);
CONNECT_CIRCUIT (lat_ctrl-port, DESTINATION NAME := '$LAT_CONTROL');

ELN$LAT_CREATE_SERVICE(CIRCUIT := lat_ctrl-port,
SERVICE NAME := 'RTSERVICE',

END.

SERVICE-IDENT := 'Real Time Service -- RTSERVICE',
STATIC SERVICE RATING := FALSE,
SERVICE RATING-:= service rating,
LINK COUNT := link count,-
LINK-NAMES := link=names);

The value FALSE specified for the static service rating tells the driver
to use a dynamically determined service rating and to ignore any
user-specified service rating.

When you delete a service, you only need to specify the port connected
in a circuit to the LAT control port and the name of the service you
want to delete.

The following sections provide more information about VAXELN service
names, identification strings, and ratings.

Service Names

Service names are strings that can consist of up to 16 of the following
ASCII characters:

• Alphanumeric characters - A to Z, a to z, and 0 to 9
• A subset of the international character set - decimal character

values 192(10) to 253(10)

11-18 LAT Host Services

• Punctuation characters - dollar sign ($), hyphen (-), period (.), and
underscore CJ

The names of services that a service node offers must be unique.
However, multiple service nodes in a LAT network can share a service
name. Having multiple service nodes in a LAT network offer the same
service provides for fa ilover .

Failover is a terminal server service that takes over if a session is
disrupted because a service node becomes unavailable. When a session
is disrupted, the terminal server uses the automatic failover service to
search for other nodes that offer the service that was being used by the
disrupted session. If the server finds one or more such nodes, it tries to
connect to the service on the node that is least busy.

When the LAT driver executes, it creates a default service representing
the name of the VAXELN service node. If no name is defined for
the service node, the driver uses a node name and service name of
the form LAT-nnnnnnnnnnnn, where nnnnnnnnnnnn represents the
hexadecimal string for the Ethernet controller's address.

Service Identification Strings

A service identification string is a string of up to 64 ASCII characters
that describes a service offered by a service node. The service node
incl udes service identification strings in its service announcement
messages.

If you do not specify a service identification string, the default is the
VAXELN system identification string.

Service Ratings

Service ratings provide a system load balancing feature. The LAT
driver running on each service node that offers a particular service can
dynamically calculate a service rating for that service. If a service's
rating is calculated dynamically, the driver recalculates the rating
every time the multicast timer expires. Thus, the rating reflects the
availability of resources on the service node.

A service rating can range from 0 to 255, where 0 indicates that a
service is not available and 255 indicates that a service is highly avail
able. Dynamic service ratings are based on a service node's activity and
processor type. Generally, services offered by nodes experiencing high
levels of activity receive low ratings to inhibit new connections.

LAT Host Services 11-19

Terminal servers use service ratings to balance the load among service
nodes that offer the same service; servers establish connections with a
service on the least busy service node that offers that service.

11.3.2.2 Changing Service Characteristics

An application program can change a service's characteristics by calling
the ELN$LAT_SET_SERVICE procedure. A call to this procedure
must specify the port connected in a circuit to the LAT control port,
a value for a new fields argument, and values for characteristics you
want to change: name, identification string, and rating. The new
fields argument identifies the characteristics you will be changing. You
must also specify two link arguments. However, these arguments are
reserved for future use.

Normally, the LAT driver generates adequate service ratings. However,
you can override the driver's rating by assigning a static service rating
to a service. For example, suppose a service needs to run on a service
node that is not busy. An application program could let the LAT driver
set up the service's initial service rating and then adjust the rating
to inhibit new connections. The following call to ELN$LAT_SET_
SERVICE changes a service's service rating:

VAR
lat_ctrl-port : PORT;
service ident : LAT$IDENT STRING;
link count, status : INTEGER;
link=names LAT$LINK_NAME_LIST;

BEGIN
CREATE_PORT(lat_ctrl-port);
CONNECT_CIRCUIT (lat_ctrl-port, DESTINATION NAME := '$LAT_CONTROL');

{ Lower service rating to inhibit new connections. }

11-20 LAT Host Services

ELN$LAT_SET_SERVICE(CIRCUIT := lat_ctrl-port,
NEW FIELDS := [LAT$SET STATIC RATING],
SERVICE NAME := 'RTSERVICE', -
SERVICE-IDENT := service ident,
SERVICE=RATING := 10, -
LINK COUNT : = 0,
LINK NAMES := link_names);

END.

When you specify a static service rating, you disable a dynamic service
rating.

11.3.2.3 Advertising Services

All of the service nodes in a LAT network advertise their services by
multicasting service announcement messages to all terminal servers in
the LAN. A service node starts multicasting these messages as soon as
it becomes active. You can activate a service node from an application
program by calling the ELN$LAT_START_NODE procedure as follows:

VAR
lat_ctrl-port : PORT;
link_names : LAT$LINK_NAME_LIST;
status : INTEGER;

BEGIN
CREATE_PORT(lat_ctrl-port);
CONNECT_CIRCUIT(lat_ctrl-port, DESTINATION NAME := '$LAT_CONTROL');

ELN$LAT_START NODE(CIRCUIT := lat_ctrl-port,
LINK COUNT := 0,
LINK-NAMES := link_names);

END.

A call to ELN$LAT_START_NODE must specify the port connected
in a circuit to a LAT control port and two link arguments. The link
arguments are reserved for future use.

LAT Host Services 11-21

As a terminal server receives service announcement messages, it
checks whether the service nodes sending the messages share one of its
enabled LAT network groups. If a service node and a terminal server
share a group, the server accepts the message and adds the name of
the service node and the names of the services the node offers to its
services data base.

To shut down a VAXELN service node, call the ELN$LAT_STOP _NODE
procedure. You should precede the call with a call to ELN$LAT_SET_
NODE and identify the reason for the shut-down in its node_ident
argument. For example:

VAR
lat_ctrl-port : PORT;
seconds : LAT$MULTICAST
disable grps, enable grps : LAT$GROUPS;
link_names : LAT$LINK_NAME_LIST;
status : INTEGER;

BEGIN
CREATE_PORT(lat_ctrl-port);
CONNECT_CIRCUIT (lat_ctrl-port, DESTINATION NAME := '$LAT_CONTROL');

ELN$LAT_SET_NODE(CIRCUIT := lat_ctrl-port,
NEW FIELDS := [LAT$SET IDENT],
NODE_NAME := 'RTNODE',-
NODE IDENT := 'RTNODE shutting down for PM ... ',
SECONDS := seconds,
ENABLE GROUPS := endable grps,
DISABLE_GROUPS := disable_grps);

ELN$LAT_STOP_NODE(CIRCUIT := lat_ctrl-port,
LINK COUNT := 0,
LINK NAMES := LAT$LINK_NAME_LIST);

END.

11-22 LAT Host Services

11.3.3 Retrieving LAT Port Characteristics

A VAXELN LAT port has the following characteristics:

• Port name

• Port type

• Queue status

• Remote server name

• Remote port name

• Service name

• Actual remote server name

• Actual remote port name

An application program can retrieve a LAT port's characteristics
by calling the ELN$LAT_SHOW _PORT procedure. This procedure
allocates a characteristics record from which the application program
can retrieve the characteristics.

A call to ELN$LAT_SHOW _PORT must specify the port connected
in a circuit to a LAT control port, the name of the LAT port whose
characteristics record is to be accessed, a LAT port type, and the name
of a user-specified procedure to be invoked by ELN$LAT_SHOW _PORT.
For example:

VAR

1 at_ctrlyort PORT;

BEGIN
CREATE_PORT(lat_ctrlyort);
CONNECT_CIRCUIT (lat_ctrlyort, DESTINATION NAME := '$LAT_CONTROL')i

ELN$LAT_SHOW_PORT(CIRCUIT := lat_ctrlyort,
PORT NAME := 'LTAO',
PORT-TYPES := [LAT$APPLICATION, LAT$DEDICATED,

- LAT$INTERACTIVE],
SHOW PORT := show_latyort);

END.

PROCEDURE show_latyort OF TYPE LAT$SHOW_PORT_ROUTINEi

LAT Host Services 11-23

BEGIN
WITH port_characteristicsA DO

END;

BEGIN
WRITELN('Port name = " name);
WRITE('Port type = ');
CASE port type OF

LAT$RESERVED PORT: WRITELN('Reserved');
LAT$APPLICATION : WRITELN('Application');
LAT$DEDICATED : WRITELN('Dedicated');
LAT$INTERACTIVE : WRITELN('Interactive');
OTHERWISE WRITELN('Unknown')i

END;

END;

The ELN$LAT_SHOW _PORT procedure invokes the user-specified
procedure only if the driver finds a characteristics record for the
specified LAT port. When the call to ELN$LAT_SHOW _PORT in the
preceding example executes, the driver searches for a characteristics
record for the LAT port named LTAO. If it finds one, the user-defined
procedure show _la(JJort is invoked.

You can also access a LAT port's mapping information by calling the
port utility procedure ELN$LAT_SHOW _PORT_MAPPING. A call to
this procedure specifies a. port connected in a circuit to the LAT port's
DDA port. Other arguments receive the LAT port's name, type, and
queue status, and depending on the port's mapping, a remote terminal
server name, a remote port name, and a service name.

The following sections give more information about LAT port names,
queue statuses, remote server names, and remote port names. For
information about service names, see Section 11.3.2.1.

11.3.3.1 LAT Port Names

VAXELN LAT port names are strings that can consist of up to 16 of the
following ASCII characters:

• Alphanumeric characters - A to Z, a to z, and 0 to 9
• A subset of the international character set - decimal character

values 192 to 253

• Punctuation characters - dollar sign ($), hyphen (-), period (.), and
underscore (_)

A service node's LAT port names must be unique.

11-24 LAT Host Services

11.3.3.2 Queue Statuses

A LAT port's queue status indicates whether connection requests to a
remote device port or service are to be queued. If the remote port is
busy and queuing is enabled on the terminal server and the VAXELN
service node, the remote request is queued. If queuing is disabled, the
terminal server rejects connection requests when the device or service
is busy.

11.3.3.3 Remote Server Names

A remote server name is a string of up to 255 characters that identifies
a terminal server that supports an application device or service. You
get a remote server name from the terminal server manager.

11.3.3.4 Remote Port Names

A remote port name is a string of up to 255 characters that identifies a
terminal server port that supports an application device or service. You
get a remote port name from the terminal server manager.

11.3.4 Retrieving Terminal Server Characteristics

When an application program establishes a virtual circuit with a
remote terminal server, the server becomes known to the service node.
The LAT driver creates a terminal server characteristics record for each
known terminal server. A terminal server characteristics record stores
the following characteristics:

• Name
• State (active or inactive)

• Address
• Number of active users

• Link name

An active terminal server is connected to a VAXELN service node.
Inactive servers are known to the service node, but are not connected
to the node.

LAT Host Services 11-25

An application program can retrieve the characteristics of terminal
servers known to a service node by calling the ELN$LAT_SHOW_
SERVERS procedure. This procedure allocates a characteristics record
from which the application program can retrieve the characteristics.

A call to ELN$LAT_SHOW _SERVERS must specify the port connected
in a circuit to a LAT control port, a Boolean value that indicates
whether the driver is to return characteristics for active and inactive
servers, and the name of a user-specified procedure to be invoked by
ELN$LAT_SHOW_SERVERS. For example:

VAR
lat_ctrl-port : PORT;

BEGIN
CREATE_PORT(lat_ctrl-port);
CONNECT_CIRCUIT(lat_ctrl-port~ DESTINATION NAME := '$LAT_CONTROL');

ELN$LAT_SHOW_SERVERS(CIRCUIT := lat_ctrl-port,
INACTIVE := TRUE,
SHOW_SERVER := show_lat_server);

END.

PROCEDURE show_lat_server OF TYPE LAT$SHOW_PORT_ROUTINE;

BEGIN
WITH server_characteristicsA DO

END;

BEGIN
WRITELN (' Server name = " SERVER_NAME);
WRITE('Server is ');
IF active THEN WRITELN('active') ELSE WRITELN('inactive');

END;

The ELN$LAT_SHOW _SERVERS procedure invokes the user-specified
procedure for all known servers or only active servers, depending
on the value of the inactive argument. When the call to ELN$LAT_
SHOW_SERVERS in the preceding example executes, the driver uses

11-26 LAT Host Services

the show_lat_server procedure to return server characteristic records
for known terminal servers.

11.3.5 Monitoring LAT Network Performance and Error Statistics

The LAT driver maintains performance and error counters for a service
node and the terminal servers logically connected to a service node.
The LAT driver stores the following counters in node, server, and
device counter records:

Node Counters

Circuit timeouts

Discarded output bytes

Last transmit failure

No transmit buffer

Protocol errors

Protocol bit mask

Receive frames

Receive errors

Receive duplicates

Resource errors

Retransmissions

Solicitation failures

Transmit frames

Transmit errors

Unit timeouts

Server Counters

Invalid messages

Invalid slots

Out-of-sequence frames

Receive frames

Retransmissions

Server name

Transmit frames

Device Counters

Line name

Seconds since last
zeroed

Receive frames

Receiv~ multicast
frames

Receive errors

Bytes received

Multicast bytes received

Data overruns

Local buffer errors

Transmit frames

Transmit multicast
frames

Frames sent, multiple
collisions

Frames sent, single
collision

Frames sent, initially
deferred

Bytes sent

Multicast bytes sent

Transmit errors

LAT Host Services 11-27

Node Counters Server Counters Device Counters

Transmit collisions
detect check failure

Unrecognized frame
destination

User buffer unavailable

Receive errors bit mask

Transmit errors bit
mask

An application program can monitor these counters by calling the
ELN$LAT_CLEAR_COUNTERS and ELN$LAT_SHOW_COUNTERS
procedures. Use the ELN$LAT_CLEAR_COUNTERS procedure to
initialize the node counters. You can then call ELN$LAT_SHOW_
COUNTERS at various points in the program to retrieve various
counter values.

The ELN$LAT_SHOW _COUNTERS procedure allocates a record for
the type of counter the application program is to access. A call to the
procedure must specify the port connected in a circuit to a LAT control
port, a counter type, a Boolean value that indicates whether the driver
is to return counters for active and inactive servers (if you specify the
server counter type), and the name of a user-specified procedure to be
invoked by ELN$LAT_SHOW_COUNTERS. For example:

VAR
lat_ctrl-port : PORT;
link_name LAT$LINK_NAME;

BEGIN
CREATE_PORT(lat_ctrl-port);
CONNECT_CIRCUIT (lat_ctrl-port, DESTINATION NAME := '$LAT_CONTROL');

ELN$LAT_SHOW_COUNTERS(CIRCUIT := lat_ctrl-port,
COUNTER_TYPE := LAT$SERVER,
INACTIVE := FALSE,
LINK := link name,
SHOW_COUNTER-:= show_server_counters);

END.

11-28 LAT Host Services

PROCEDURE show_server_counters OF TYPE LAT$SHOW_COUNTER_ROUTlNE;

BEGIN
WITH server counters A DO

BEGIN
WRITELN (' Server name =' SERVER_NAME);

END;

END;

When the call to ELN$LAT_SHOW_COUNTERS in the preceding
example executes, the driver uses the show_server_counters procedure
to return server counter records for active terminal servers.

If you specify the counter type LAT$NODE, the ELN$LAT_SHOW_
COUNTERS procedure invokes the user-declared procedure to return a
service node counter record. Similarly, if you specify the counter type
LAT$DEVICE, the procedure invokes the user-declared procedure to
return device counter records.

11.4 Setting Up a Dedicated Service Environment

The VAXELN LAT host services provide support that lets a VAXELN
service node offer user-created dedicated services, such as data entry
and on-line status programs, to terminal server users. When you
create a service on a VAXELN service node, that service offers ECL by
default. To offer a dedicated service instead of ECL, you must associate
the service with a dedicated port.

You initiate a connection to a dedicated service running on a VAXELN
service node from a device attached to a terminal server, as shown in
Figure 11-3.

To make a service other than ECL available to a terminal attached to a
terminal server, you must do the following:

1. Connect to a LAT control port

2. Create a service

3. Create a dedicated LAT port

LAT Host Services 11-29

Figure 11-3: Dedicated Service Environment

V AXELN Service Node

VAXELN
LAT

Host Services

..... _+-__ Dedicated

t Direction of I connection request

LAT Port

Interactive terminal accessing
a dedicated service

MLO-004290

4. Associate the dedicated LAT port with the service

5. Access the dedicated LAT port from an application program
6. Request notification of a terminal server connection (optional)

The rest of this section uses the sample application module sample_
lat_dedic_srvc and callout text to illustrate these steps. The module
executes as one job of a two-job application that offers the VAXELN
Display Utility as a dedicated service to terminal server users. The
sample module creates a LAT service named EDISPLAY and the
dedicated LAT port LTAO. The module then associates the LAT port
with the service EDISPLAY.

Once the port/service association is made, the module activates the
LAT protocol. U sing the protocol, the LAT driver multicasts service
announcement messages to terminal servers in the LAT network, ad
vertising the EDISPLAY service. While the driver multicasts these
messages, the application module waits for a terminal server user to

11-30 LAT Host Services

connect to the service. When a connection is established, the applica
tion module creates the EDISPLAY job and then waits for that job to
execute. When the terminal server user exits the Display Utility, the
application module waits for another connection request.

Example 11-1 assumes that the LAT driver is built into the VAXELN
system with the LAT protocol inactive. It also assumes that the LAT
application module sample_laCdedic_srvc is built into the system"
with the initial state set to RUN and that EDISPLAY is built into the
system with the initial state set to ... 1VORUN.

Example 11-1: LAT Dedicated Service

MODULE sample_lat_dedic_srvc;

INCLUDE $LAT_UTILITY, $KERNELMSG;

PROGRAM example (INPUT, OUTPUT);

VAR
lat_control-port, dda_interface-port PORT;
job-port, edisplay_exit-port : PORT;
link names : LAT$LINK NAME LIST;
stat -: INTEGER; --
mid : MESSAGE;
mptr : AINTEGER;

BEGIN

{ Create a VAXELN message port, then connect that port in a circuit to
{ a LAT control port.
o
CREATE_PORT(lat_control-port);
CONNECT_CIRCUIT (lat.:...control-port,

DESTINATION NAME:= '$LAT_CONTROL');

{ Create the LAT service that is to offer EDISPLAY.

o

ELN$LAT_CREATE_SERVICE(CIRCUIT := lat_control-port, f)
SERVICE_NAME := 'EDISPLAY',
SERVICE_IDENT := 'VAXELN Display Utility',
STATIC_SERVICE_RATING := FALSE,
SERVICE_RATING := 0,
LINK COUNT := 0,
LINK NAMES := link_names);

{ Create a dedicated LAT port. }

Example 11-1 Cont'd on next page

LAT Host Services 11-31

Example 11-1 (Cont.): LAT Dedicated Service

ELN$LAT_CREATE_PORT(CIRCUIT := lat_control-port,
PORT TYPE := LAT$DEDICATED,
PORT=NAME := 'LTAO');

{ Associate the dedicated LAT port LTAO with the LAT service EDISPLAY.

ELN$LAT_SET_PORT(CIRCUIT := lat_control-port,
NEW FIELDS := [LAT$SET SERVICE],
PORT_NAME : = 'LTAO', -
QUEUE := TRUE,
REMOTE SERVER NAME : = "
REMOTE-PORT NAME : = ",
SERVICE NAME : = 'EDISPLAY',
LINK_NAME := ");

{ Activate the LAT protocol to advertise service.

ELN$LAT_START_NODE(CIRCUIT := lat_control-port,
LINK COUNT := 0,
LINK NAMES := link_names);

{ Access the LAT port. }

CREATE_PORT(dda_interface-port);
CONNECT_CIRCUIT (dda_interface_port,

DESTINATION_NAME := 'LTAO$ACCESS',
STATUS : = stat);

{ Create a port to be notified when EDISPLAY exits.

CREATE_PORT(edisplay_exit-port);

WHILE TRUE DO
BEGIN

{ Wait for a terminal server user to connect to the EDISPLAY service.

ELN$LAT_WAIT_FOR_CONNECTION(CIRCUIT := dda_interface-port, ~
STATUS : = stat);

{
{ If the wait fails because the terminal server user
{ disconnected the session, reestablish a circuit connection
{ with the LAT port's DDA port.
o

Example 11-1 Cont'd on next page

11-32 LAT Host Services

Example 11-1 (Cont.): LAT Dedicated Service

END;

IF stat = KER$_DISCONNECT THEN
BEGIN

DISCONNECT_CIRCUIT(dda_interface-port);
CONNECT_CIRCUIT (dda_interface-port,

DESTINATION NAME := 'LTAO$ACCESS',
STATUS : = stat);

ELN$LAT WAIT_FOR_CONNECTION(CIRCUIT := dda_interface-port,
STATUS : = stat);

END;

If an error occurs, terminate this job.

IF NOT(ODD(stat» THEN
BEGIN

WRITELN('Exiting, status is: stat: 1);
EXIT(EXIT_STATUS := stat);

END;

Run EDISPLAY on the VAXELN LAT port and wait for it to complete.

IF ODD (stat) THEN
CREATE_JOB (job-port,

'EDISPLAY' ,
Program argument 1
Program argument 2
Program argument 3

'LTAO:' ,
'LTAO:' ,
'LTAO:' ,
NOTIFY := edisplay_exit-port,
STATUS

IF ODD (stat) THEN
BEGIN

:= stat);

{ Wait for the EDISPLAY job to terminate. }

WAIT_ANY(edisplay_exit-port); ~
RECEIVE (mid, mptr, edisplay_exit-port, STATUS := stat);
DELETE (mid, STATUS := stat);

{ Disconnect the session with the terminal server user. }

ELN$LAT_DISCONNECT_PORT(CIRCUIT := dda_interface-port, ~
STATUS : = stat);

END;

END. {P rogram
END; {Module}

LAT Host Services 11-33

o Connect to a LAT control port. Create a VAXELN message
port and connect that port in a circuit to a LAT control port. The
sample module creates the message port lat_controlJlort and
connects that port in a circuit to the local control port $LAT_
CONTROL. For information about connecting to a LATcontrol port,
see Section 11.2.1.

@ Create a service. Create a service to be offered by the service
node by calling the ELN$LAT_CREATE_SERVICE procedure. The
sample module creates the service named EDISPLAY. The proce
dure call specifies FALSE for the static service rating argument.
Thus, the LAT driver will calculate the service rating dynamically.
For information about services, see Section 11.3.2.

6) Create a dedicated LAT port. Create a dedicated LAT port by
calling the ELN$LAT_CREATE_PORT procedure with the port type
LAT$DEDICATED. The sample module creates a dedicated LAT
port named LTAO. The LAT driver creates a DAP message port
and a DDA message port for the LAT port and associates the ports
with the names LTAO and LTAO$ACCESS. For information about
creating LAT ports, see Section 11.2.2.

o Associate the dedicated LAT port with the service. Associate
the dedicated LAT port with the service by calling the ELN$LAT_
MAP_PORT or ELN$LAT_SET_PORT procedure. Use ELN$LAT_
SET_PORT to make the association using the LAT control interface.
Use ELN$LAT_MAP_PORT to associate the port and service using
the DDA interface.

A call to the ELN$LAT_SET_PORT procedure must specify the port
connected in a circuit to a LAT control port, the name of a LAT
port, and a value for a new fields argument. You can change the
LAT port's queue status, remote server.name, remote port name,
and service name. The new fields argument identifies the LAT port
characteristics you will be changing.

You must also specify a link argument. This argument is reserved
for future use.

The call to ELN$LAT_SET_PORT in the sample module associates
the LAT port LTAO with the service EDISPLAY.

A call to the ELN$LAT_MAP_PORT procedure must specify the
port connected in a circuit to a LAT port's DDA port and a value for
a new fields argument. You can also change the LAT port's queue
status, remote server name, remote port name, and service name.
The new fields argument identifies the LAT port characteristics you
will be changing.

11-34 LAT Host Services

The following procedure call makes the same association using the
LAT port's DDA interface:

ELN$LAT_MAP_PORT(CIRCUIT := dda_interface-port,
NEW_FIELDS := [LAT$SET_SERVICE],
QUEUED STATUS := TRUE,
REMOTE - SERVER NAME : = ",
REMOTE=PORT_NAME : = ",
SERVICE_NAME := 'EDISPLAY');

o Activate the LAT protocol. Advertise the service node's services
by activating the LAT protocol with a call to ELN$LAT_START_
NODE. When you activate the protocol, the driver starts adver
tising services in announcement messages that it multicasts to
the terminal servers in the LAT network. The call to ELN$LAT_
START_NODE in the sample module causes the LAT driver to
activate the LAT protocol. The driver then starts advertising the
service EDISPLAY.

You can skip this step if the LAT protocol is already active.
o Access the dedicated LAT port from the application pro~

gram. An application program running on the service node can
access a dedicated LAT port by using a call to a language-dependent
open statement or a call to CONNECT_CIRCUIT. Use a call to an
open statement to perform file- and record-oriented I/O operations.
Your application program accesses the LAT port's DAP port to
process these I/O requests.

Use a call to CONNECT_CIRCUIT to connect to the LAT port's
DDA port. You need to connect to the DDA port to perform op
erations that involve accessing serial line devices or managing a
VAXELN LAT port connection to a remote terminal server port.

The sample module uses a call to CONNECT_CIRCillT to es
tablish a circuit connection with the DDA port LTAO$ACCESS.
For information about connecting to a LAT port's DDA port, see
Section 11.2.3.

f) Request notification of a terminal server connection. A
dedicated service application program can request notification of
a terminal server connection by calling the ELN$WAIT_FOR_
CONNECTION port utility procedure. A call to this procedure
causes your program to wait for a connection to be established
between a dedicated LAT port and a terminal server port. The
application program unblocks when the terminal server connects to
the service node.

LAT Host Services 11-35

A call to ELN$LAT_WAIT_FOR_CONNECTION procedure must
specify a port connected in a circuit to the LAT port's DDA port.
Since the sample module established a circuit between the port
dda_interfaceJJort and the DDA port LTAO$ACCESS, it can call
ELN$WAIT_FOR_CONNECTION by specifying the port dda_
interfaceJJort.

e Create a job for the service. The sample module creates ajob for
EDISPLAY, specifying the LAT port name as program arguments.

CD Wait for the job to terminate. Wait for the job to terminate by
specifying the service's exit port in a WAIT_ANY procedure call.
The sample module waits on the exit port edisplay _exit..]Jort.

G> Disconnect the session between the service~ode and ter
minal server. A session between a dedicated LAT port and a
terminal server's device port terminates when one of the following
occurs:

• The terminal server user disconnects the session (for example,
by logging out).

• All open files to the dedicated LAT port are closed, and all DDA
circuit connections to the dedicated LAT port are disconnected.

• The application program forces a disconnection by calling the
ELN$LAT_DISCONNECT_PORT port utility procedure.

An application program can force a session to disconnect a dedi
cated LAT port from a remote terminal server port by calling the
ELN$LAT_DISCONNECT_PORT port utility procedure. The pro
cedure call must specify the port connected in a circuit to the LAT
port's DDA port.

When a session terminates, all open files are closed and all DDA
circuit connections between application programs and the dedicated
LAT port on the service node are terminated.

11.5 Setting Up an Application Device Environment

The VAXELN LAT driver supports access to remote application devices
attached to terminal servers. For example, application programs
running on VAXELN service nodes in a LAT network can share a
remote printer.

11-36 LAT Host Services

To access an application device, an application program associates a
remote terminal server port with an application LAT port. As shown in
Figure 11-4, once a program running on a service node makes the port
association, it can initiate a connection to the terminal server to which
the application LAT port is associated.

Figure 11-4: Application Device Environment

V AXELN Service Node

VAXELN
LAT

Host Services

I Direction of + connection request

Application device

MLO-004291

To communicate with a remote application device, you must do the
following:

1. Create an application LAT port

2. Access the application LAT port from the application program

3. Associate the application LAT port with a terminal server device
port or service

4. Issue a connection request to establish a session with the remote
terminal server port

LAT Host Services 11-37

The rest of this section uses the sample application module sample_
lat_app_device and callout text to illustrate these steps. The module
executes as one job of a two-job application. This application uses
a terminal attached to a terminal server as a device that displays
VAXELN Display Utility output. The sample module creates the
application LAT port LTAO. The module then accesses the LAT port by
connecting to the LAT port's DDA port.

The module then associates the application LAT port with a port on a
terminal server. Once the port/device association is made, the module
activates the LAT protocol, allowing the service node and terminal
server to communicate.

Example 11-2 assumes that the LAT driver is built into the VAXELN
system with the LAT protocol inactive. It also assumes that the LAT
application module sample_lat_dedic_srvc is built into the system
with the initial state set to RUN and that EDISPLAY is built into the
system with the initial state set to NORUN.

Example 11-2: LAT Application Service

MODULE sample_lat_app_device;

INCLUDE $LAT_UTILITY;

PROGRAM example (INPUT, OUTPUT);

VAR
lat_control-port, dda_interface-port PORT;
job-port, edisplay_exit-port : PORT;
link names : LAT$LINK NAME LIST;
stat~ reject reason :-INTEGER;
mid : MESSAGE;
mptr : AINTEGER;

BEGIN

{ Create a VAXELN message port, then connect that port in a circuit
{ to a LAT control port.
o
CREATE_PORT(lat_control-port);
CONNECT_CIRCUIT (lat_control-port,

DESTINATION NAME:= '$LAT_CONTROL');

{ Create an application LAT port. }

Example 11-2 Cont'd on next page

11-38 LAT Host Services

o

Example 11-2 (Cont.): LAT Application Service

ELN$LAT_CREATE_PORT(CIRCUIT := lat_control-port,
PORT TYPE := LAT$APPLICATION,
PORT-NAME := 'LTAO');

{ Activate the LAT protocol. }

ELN$LAT_START_NODE(CIRCUIT := lat_control-port,
LINK COUNT := 0,
LINK NAMES := link_names);

{ Access the LAT port. }

CREATE_PORT(dda_interface-port);
CONNECT_CIRCUIT (dda_interface-port,

DESTINATION NAME := 'LTAO$ACCESS',
STATUS := stat);

{ Create a port to be notified when EDISPLAY exits.

CREATE_PORT(edisplay_exit-port);

{ Associate the application LAT port LTAO with the remote terminal
{ server port PORT_2.
{}

ELN$LAT_MAP_PORT(CIRCUIT := dda_interface-port, ~
NEW_FIELDS := [LATSET_QUEUED_STATUS, LATSET_PORT],
QUEUED STATUS := TRUE,
REMOTE-SERVER NAME : = 'LAT100',
REMOTE-PORT NAME : = 'PORT 2',
SERVICE_NAME := "); -

{ Issue a connection request to connect the application LAT port
{ with a remote terminal server port.
o
ELN$LAT_CONNECT PORT (CIRCUIT := dda_interface-port,

REJECT REASON := reject reason,
STATUS-:= status); -

IF ODD (stat) THEN
BEGIN

{ If the connection was established, execute the Display
{ Utility on the application LAT port.
o

Example 11-2 Cont'd on next page

LAT Host Services 11-39

Example 11-2 (Cont.): LAT Application Service

CREATE_JOB (job-port,
'EDISPLAY' ,
'LTAO:', { Program argument 1
'LTAO:', { Program argument 2
'LTAO:', { Program argument 3

NOTIFY := edisplay_exit-port,
STATUS : = stat);

IF ODD (stat) THEN
BEGIN

END;

{ An EDISPLAY job was created successfully. Wait for it
{ to complete.
{}

WAIT_ANY(edisplay_exit-port);
RECEIVE(mid, mptr, edisplay_exit-port, STATUS := stat);
DELETE (mid, STATUS := stat);

{ Disconnect the session with the terminal server. }

ELN$LAT_DISCONNECT_PORT(CIRCUIT := dda_interface-port, ~
STATUS : = stat);

END;

END. {Program}
END; {Module}

o Connect to a LAT control port. Create a VAXELN message
port and connect that port in a circuit to a LAT control port. The
sample module creates the message port lat_controtport and
connects that port in a circuit to the local control port $LAT_
CONTROL. For information about connecting to a LAT control port,
see Section 11.2.1.

@ Create an application LAT port. Create an application LAT
port by calling the ELN$LAT_CREATE_PORT procedure with
the port type LAT$APPLI CATI ON. The sample module creates
an application LAT port named LTAO. The LAT driver creates a
DAP message port and a DDA message port for the LAT port and
associates the ports with the names LTAO and LTAO$ACCESS. For
information about creating LAT ports, see Section 11.2.2.

11-40 LAT Host Services

6) Activate the LAT protocol. Activate the LAT protocol with a
call to ELN$LAT_START_NODE. When you activate the protocol,
the driver starts advertising services in service announcement
messages that it multicasts to the terminal servers in the LAT
network. The call to ELN$LAT_START_NODE in the sample
module causes the LAT driver to activate the LAT protocol.

You can skip this step if the LAT protocol is already active.

e Access the application LAT port from the application pro
gram. Use a call to CONNECT_CIRCUIT to connect the VAXELN
message port to the LAT port's DDA port. The DDA port provides
an interface for operations that access serial line devices or manage
a VAXELN LAT port.

The sample module creates the VAXELN message port dda_
interfaceJ)ort, then uses a call to CONNECT_CIRCUIT to connect
that port in a circuit to the DDA port LTAO$ACCESS. For informa
tion about connecting to a LAT port's DDA port, see Section 11.2.3.

o Associate the application LAT port with the remote device.
Associate an application LAT port with a remote device port or
service on a terminal server by calling the ELN$LAT_MAP _PORT
or ELN$LAT_SET_PORT procedure. Use ELN$LAT_SET_PORT
to make the association using the LAT control interface. Use
ELN$LAT_MAP _PORT to associate the port and service using the
DDA interface.

A call to the ELN$LAT_MAP_PORT procedure must specify the
port connected in a circuit to a LAT port's DDA port and a value for
a new fields argument. You can also change the LAT port's queue
status, remote server name, remote port name, and service name.
The new fields argument identifies the LAT port characteristics you
will be changing.

The call to ELN$LAT_MAP_PORT in the sample module associates
the LAT port LTAO with the remote device port named PORT_2 on
the terminal server LAT100.

A call to the ELN$LAT_SET_PORT procedure must specify the
port connected in a circuit to a LAT control port, the name of a
LAT port, and a value for a new fields argument. You can also
change the LAT port's queue status, remote server name, remote
port name, and service name. The new fields argument identifies
the LAT port characteristics you will be changing.

Get the names of the remote terminal server and remote port by
using the terminal server manager.

LAT Host Services 11-41

You must also specify a link argument. This argument is reserved
for future use.

The following procedure call makes the same association from the
LAT control port: .

ELN$LAT_SET_PORT(CIRCUIT := lat_control-port,
NEW FIELDS := [LAT$SET QUEUE STATUS, LAT$SET_PORT],
PORT_NAME := 'LTAO', - -
QUEUE := TRUE,
REMOTE SERVER NAME : = 'LATl 00' ,
REMOTE-PORT NAME : = 'PORT 2',
SERVICE NAME := ", -

LINK_NAME: : = ");

(:) Connect to the application device. You can issue a connection
request from the application LAT port to the remote device port on
a terminal server with a call to the ELN$LAT_CONNECT_PORT
procedure. In the procedure call, you specify the port connected in
a circuit to the LAT port's DDA port. The sample module connects
the LAT port LTAO to the device port PORT_2.

A call to ELN$LAT_CONNECT_PORT causes the LAT driver to
send a request to a terminal server to establish a session between
the service node and a terminal server device port or service. If
the terminal server establishes a session, the LAT port is ready
to be used for I/O and DDA operations. If the server rejects the
connection request or if the request times out, the server returns
an error code that identifies the reason for the connection failure.

The LAT driver initiates connection requests automatically when
an application program performs read and write operations, if an
application LAT port is associated with a terminal server and is not
already connected in a session. However, if an automatic connection
attempt fails, the 1/0 operation returns the status value ELN$DNR.
It does not identify the reason for the connection failure.

8 Disconnect the session between the service node and termi
nal server. An application program disconnects a session between
an application LAT port and a terminal server's device port by
calling the ELN$LAT_DISCONNECT_PORT port utility procedure.
The procedure call must specify the port connected in a circuit to
the LAT port's DDA port.

When a session terminates, ·all open files are closed and all DDA
circuit connections between application programs and the applica
tion LAT port on the service node are terminated.

11-42 LAT Host Services

A session is also terminated if all open files are closed and all DDA
circuit connections are disconnected.

11.6 Retrieving and Setting Terminal Characteristics

The VAXELN LAT driver supports the DDA interface procedures
ELN$TTY_GET_CHARACTERISTICS and ELN$TTY_SET_
CHARACTERISTICS. An application program can use a VAXELN LAT
port's DDA port in a call to ELN$TTY_GET_CHARACTERISTICS to
retrieve the following characteristics for that LAT port:

• Terminal type

• Speed

• Parity

• Parity type

• Display type

• Escape recognition

• Echo

• Passall

• Eight-bit

• Display type

• Character size

• Terminal synchronization

• Modem

• DDCMP

Similarly, a program can use a VAXELN LAT port's DDA port in a call
to ELN$TTY_SET_CHARACTERISTICS to set the following subset of
these characteristics, which includes escape recognition, echo, passall,
eight-bit, display type, and terminal synchronization.

For more information about retrieving and setting terminal character
istics, see Section 14.4.5.2.

LAT Host Services 11-43

Chapter 12

System Security

The VAXELN Toolkit includes system security features that protect
system resources and data from unauthorized use, examination, or
modification. Since VAXELN is primarily for developing and running
dedicated applications, the security features are disabled by default for
programs running on a single system. You might use these features,
however, to protect an application from inexperienced or malicious
users.

This chapter provides an overview of the security features that the
VAXELN Toolkit supplies (see Section 12.1) and describes the following:

• User names and identification codes, Section 12.2

• Authorization Service, Section 12.3

• User identities, Section 12.4
• File service security, Section 12.5

12.1 Security Features Overview

The VAXELN Toolkit provides security features that application de
signers must explicitly include and enable. If, for example, a VAXELN
system is to be included as part of a larger network of systems, the
system would normally include the security features.

Since VAXELN is not intended to provide a multiuser time-sharing
environment, no protection is enforced among programs running on a
single system. That is, although the VAX. memory management ensures
that incorrectly coded programs cannot accidentally modify the memory
allocated to other programs, the VAXELN kernel and runtime services
do not attempt to dictate which programs can run in kernel mode,

System Security 12-1

alter priorities, stop and start program execution, or, in general, fairly
distribute the resources of the single-node system.

The programs running on a system control the resources of the system.
Therefore, if a VAXELN application is potentially vulnerable to inexpe
rienced or even malicious users, you should ensure that the application
and the system are protected. Also, if protection of system resources is
required, users should not be allowed to run their own programs.

Many VAXELN systems are part of a larger network. Programs must
protect the resources of these systems from use or abuse by other
users of the network. In particular, programs that accept requests
from other network nodes need to somehow determine the identity of
the requestor. An example of a program with this requirement is the
File Service, which needs to provide protection for the disk files that it
services.

The most basic security feature of a VAXELN system, therefore, pro
vides the capability for a program to determine the identity of a user
issuing a network request. This feature is provided by an optional
service called the Authorization Service. The Authorization Service
maintains a data base of the users authorized to use a particular
VAXELN system or network of systems. When an application program
accepts a circuit connection to handle a request, the program can query
the data base to determine the identity of the requestor.

Other VAXELN facilities use the Authorization Service to protect the
resources and data that they control. The Network Service running
on a particular node accepts incoming circuit connections only from
authorized users in the Authorization Service's data base. The File
Service provides read, write, and delete protection for files on disk
volumes that it controls. The Authorization Service itself uses the data
base to protect the data base. Likewise, application programs can use
the service to protect their resources and data.

12.2 User Names and Identification Codes

Each process in a VAXELN system has an associated user name string
and a user identification code (UIC). These two values are maintained
by the kernel and are inherited by a process from the process or job
that created it. A process can also set its own user name and UI C to
desired values by calling the KER$SET_USER kernel procedure (see
Section 12.4).

12-2 System Security

The mes are integer values that provide a shorthand way of identi
fying a user or group of users. mes can then be used by application
programs to protect their resources. For example, the File Service
stores a me with each file that is created. The File Service then uses
the stored me, called the owner UIC, to determine whether a requestor
should be allowed to access the file.

The VAXELN use of mes is compatible with the VMS use. On
VAXELN and VMS, me values are 32-bit longwords, partitioned
into two 16-bit words. The least significant word is called the member
number, and the most significant word is called the group number.
me values are normally displayed in octal, in the format [group
number,member-number J - for example, [1,4J, [11,32J, [200,200J.
The partitioning of the value into group/member fields allows groups
of values to be associated with each other for protection. Also, group
numbers less than or equal to octal 10 are considered part of the system
groups. The use of VIes is explained in Section 12.5.

A process can determine its own user name and me by calling the
KER$GET_VSER kernel procedure. Since, as just described, the
security features in VAXELN are based upon validating network
requests, a process can also determine the user name and me of the
process from which it has accepted a circuit connection. This capability
is also provided by calling KER$GET_VSER, although the port object
connected in the circuit is then one of the arguments.

12.3 Authorization Service

The Authorization Service is the key component of the VAXELN secu
rity facilities. It protects system resources and data by maintaining
a data base of a system's authorized users and identifying users who
issue network requests.

A target system can include local or network authorization services.
When a system includes the network authorization services, it handles
authorization for the nodes in a local area network that do not have
their own service. At least one node in a local area network must in
clude this service. If multiple nodes include the network authorization
service and all nodes in the local area network use the same data base
file, one target system acts as an authorization server and manages the
data base while the other nodes serve as backups. By designating mul
tiple authorization servers, you can preserve the application's security
if the acting server shuts down.

System Security 12-3

The Authorization Service's primary task is to determine the identity
of the requestor of a network connection request. The service gets the
requestor's host system user name and node name and looks them up
in the authorization data base. The service can also accept a specific
user name and password, or access control string, and look them up in
the data base.

Figure 12-1 and the accompanying text illustrate and explain how the
service works.

Figure 12-1: Authorization Service Example

User:
FRED

DEPOT1

Application

Network and
Authorization

Services

DOCK2

Application

Network and
Authorization

Services

1
I"FRED,DEPOT1"1

MLO-004292

In Figure 12-1, a user named FRED is executing a program on a
VAXELN node named DEPOTl. FRED issues a request for a service
on another node named DOCK2, so the Network Service on node
DEPOT1 sends a connection request message that identifies FRED
and DEPOT1 to DOCK2. The DOCK2 Network Service then sends a
request to its Authorization Service to verify that user FRED on node
DEPOT1 is authorized to use the services provided by node DOCK2.
The Authorization Service replies to the Network Service with a Yes or
No indication; if Yes, the Authorization Service returns the UIC with
which the user is to be identified.

12-4 System Security

This type of authorization is termed proxy access control. Since FRED
is authorized to use the resources of node DEPOT!, his DEPOT! name
is sent, by network proxy, to determine if he can use the resources of
node DOCK2.

The other type of authorization provided by the Authorization Service is
called destination authorization. It is used when a connection request
or open file operation specifies a user name and password, or access
control string, with the connection request. Destination authorization
provides a means of assuming a new identity on the remote system.

Proxy access control and destination authorization are provided in
a compatible manner by the VMS operating system. Other Digital
operating systems support only the destination authorization provided
with access control strings.

The CONNECT_CIRCillT procedure allows you to specify a remote
destination as a string by using the optional DESTINATION_NAME
parameter. Like other DECnet systems, the node specification for
CONNECT_CIRCUIT can include a user name and password, which
can be optionally enclosed in quotes and separated from each other by
a space.

To specify the remote destination by object name, use a string of one of
the following forms:

'nodenumber::objectname'

'nodenumber"username password" ::objectname'

'nodenumber"username" ::objectname'

'nodenumber"[ggg,mmm] password"::objectname'

For example, the following call connects to object TESTOR on node
number 3, using a user name of FRED and a password of SWIZZLE:

CONNECT_CIRCUIT(p, DESTINATION_NAME := '3"FRED SWIZZLE"::TESTOR');

To specify the remote destination by object number, use a string of one
of the following forms:

'nodenumber: :objectnumber'

'nodenumber"username password" ::objectnumber'

'nodenumber"username" ::objectnumber'

'nodenumber"[ggg ,mmm] password"::objectnumber'

System Security 12-5

For example, the following call connects to object number 129 on node
4, using a user name of [10,150] and a password of QUAKE. This
format is typically used only to connect to RSTS/E systems.

CONNECT_CIRCUIT (p, DESTINATION_NAME := '4" [10,150] QUAKE":: 129');

To connect to a port in a VAXELN system, use a string of one of the
following forms:

'nodename::objectname'

'nodename"username password": :objectname'

'nodename"username": :objectname'

'nodename"[ggg,mmm] password"::objectname'

'nodename: :objectnumber'

'nodename"username password" ::objectnumber'

'nodename"username" ::objectnumber'

'nodename"[ggg,mmm] password"::objectnumber'

For example, the following call would connect to object TEST on node
NODEA, using a user name of FRED and a password of ABC:

CONNECT_CIRCUIT(p, DESTINATION_NAME := 'NODEA"FRED ABC"::TEST');

Since the OPEN routine uses CONNECT_CIRCUIT to access remote
files on other DECnet nodes, its FILE_NAME parameter can also
include a user name and password if a node number is specified.

For example, the following call would open FILE99.DAT on node
number 3, using a user name of FRED and a password of SWIZZLE:

OPEN(f, FILE NAME := '3"FRED SWIZZLE"::FILE99.DAT');

12.3.1 Including the Authorization Service

The Authorization Service is supplied as a program image that can be
included in a VAXELN system using the System Builder. To include
this service in a system, do the following:

1. Select Yes for the Authorization required entry on the Network
Node Characteristics Menu. When you select Yes, the Network

12-6 System Security

Service monitors inbound circuit connections and honors a connec
tion only if it can authorize the user through the Authorization
Service.

2. Select Local or Network for the Authorization service entry
on the Network Node Characteristics Menu. When you select
Local, the service is included in the system image but handles
authorization for only the local target system. When you select
Network, the service is included, and it handles authorization for
any node in the local area network that does not have its own
Authorization Service.

The network Authorization Service uses VAXELN universal names.
Thus, at least one system in the network must include the Name
Service. Only one of the nodes can run the network Authorization
Service, even if multiple nodes include the Name Service.

3. Specify an authorization data file for the Authorization :file entry
on the Network Node Characteristics Menu. The data file must
exist on the same node as the Authorization Service or on a node
that the service is authorized to access, for example, a node with its
own local service. The default file is [O,O]AUTHORIZE.DAT on the
local default disk.

When the Authorization Service starts running, it opens and reads
the specified data file. If the data file is not found, the Authorization
Service creates a new one. The file should be modified only by using
the maintenance procedures described in Section 12.3.2.

Typically, the authorization data file is on a disk directly attached to
the node running the Authorization Service. In such a case, when
the file is first created by the service, it can be modified only by users
running programs on the same node. That is, since the data file is
empty, no remote users are authorized to access the node.

Once other users are authorized, if they have UIes in the system
group, they can remotely maintain the authorization data file.

12.3.2 Authorization Service Utility Procedures

The Authorization Service provides the capability to maintain the
authorization data base. Since the Authorization Service can run
as a server in a local area network, it performs the maintenance
functions, using messages and its own maintenance request protocol.
To simplify the development of maintenance programs, the VAXELN

System Security 12-7

Toolkit includes a set of utility procedures that handle the protocol,
eliminating the need for user programs to code the protocol explicitly.

The Authorization Service utility procedures are as follows:

Routine

ELN$AUTH_MODIFY_ USER

Description

Adds a new user record to the autho
rization data base.

Modifies a user record in the authoriza
tion data base.

Removes a user record from the autho
rization data base.

Returns the authorization data base
information for the specified users.

To use the Authorization Service utility procedures, your program
must be authorized with a system group UIC - that is, a mc that
is less than or equal to %X0008FFFF or [10,177777]. You must also
include the $AUTHORIZE_UTILITY module in the compilation. For
descriptions of these routines, see the VAXELN Pascal Runtime Library
Reference Manual, VAXELN C Runtime Library Reference Manual, or
VAXELN FORTRAN Runtime Library Reference Manual.

12.3.3 Establishing Circuits for Authorization Service Communication

An application program communicates with the Authorization Service
using a VAXELN virtual circuit. The program must establish the
circuit connection by creating a port and connecting that port to'
Authorization Service's AUTH$MAINTENANCE port. Once the con
nection is made, the program can call the Authorization Service utility
procedures to set up and access the authorization base. The following
Pascal example connects the port authorization-port in a circuit to the
AUTH$MAINTENANCE port.

MODULE test_authorization;

INCLUDE $AUTHORIZE_UTILITY;

PROGRAM authorization_maintenance;

12-8 System Security

VAR
authorization-port PORT;

BEGIN

CREATE_PORT(authorization-port);
CONNECT_CIRCUIT (authorization-port,

DESTINATION NAME := 'AUTH$MAINTENANCE');

END;
END.

Once the connection between authorization-port and the authorization
maintenance port is established, the program can call the Authorization
Service utility routines, specifying authorization-port as an argument.

12.3.4 Adding Users to the Authorization Data Base

To add new user records to the authorization data base, call
the ELN$AUTH_ADD_USER procedure. A call to ELN$AUTH_
ADD_USER must specify the port connected in a circuit to the
AUTH$MAINTENANCE port, a user name, a node name, a password,
a user identification code, and user data.

The user name can specify a name, a null string, or the reserved word
$ANY. If you specify $ANY, any user from the specified node that does
not match one the explicit user names is authorized with the specified
user identification code.

The node name argument specifies the name or number of the node on
which the new user is authorized. You can specify a node name, node
number, a null string, or the reserved name $ANY.

• If you specify a node name or number, the data base record repre
sents a proxy access control, and the Authorization Service does not
use the password.

• If you specify a null string, the data base record represents a
destination authorization.

System Security 12-9

• If you specify $ANY, any user with the specified name from any
node that does not match one of the explicit node names is autho
rized with the specified user identification code.

You can specify a password or null string for the password argument. If
you add a destination authorization record to the data base (that is, if
you specify a null string for the node name), the Authorization Service
stores the password in the record. The Authorization Service stores
all passwords in scrambled form so they cannot be read once they are
stored.

You must specify a user identification code for each new user.

A user data argument lets you store unmodified user-defined data in
a user record. If you do not need to store such data, you can specify a
null string.

The following section of Pascal code adds a new record to the authoriza
tion data base for user FRED:

VAR
authorization-port
node

PORT;
AUTH$NODENAME;
AUTH$USERNAME;
INTEGER;
AUTH$NODENAME;

user
uic
node

BEGIN

CREATE_PORT(authorization-port);
CONNECT_CIRCUIT (authorization-port,

DESTINATION NAME := 'AUTH$MAINTENANCE');

user := 'FRED';
node := 'DEPOT1';
uic := %X00010002;
ELN$AUTH_ADD_USER(CIRCUIT := authorization-port,

USERNAME := user,

END;
END.

12-10 System Security

NODENAME := node,
PASSWORD :=
UIC := uic,
USERDATA := 'f);

The call to ELN$AUTH_ADD_USER adds user FRED to the data base
with authorization on node DEPOT1 and the user identification code
%X00010002. Since a node name is specified, the record represents a
proxy access control. Thus, a null string is specified for the password
argument. The call also omits user data by specifying a null string for
that argument.

For information about establishing a circuit with the
AUTH$MAlNTENANCE port, see Section 12.3.3. For a description
of the ELN$AUTH_ADD _USER procedure, see the VAXELN Pascal
Runtime Library Reference Manual, VAXELN C Runtime Library
Reference Manual, or VAXELN FORTRAN Runtime Library Reference
Manual.

12.3.5 Modifying Records in the Authorization Data Base

To modify user records in the authorization data base, call the
ELN$AUTH_MODIFY_USER procedure. A call to ELN$AUTH_
MODIFY_USER must specify the port connected in a circuit to the
AUTH$MAlNTENANCE port, a user name, and a node name. You
must also specify a new fields argument that identifies the record fields
that you intend to modify and new values for the user name, node
name, password, user identification code, and user data, as appropriate.

The user name and node name arguments specify the name of the user
whose record is to be modified and the name or number of the node on
which that user is authorized.

The new fields argument identifies the user record fields you will be
changing: user name, node name, password, user identification code, or
user data. You can modify fields without changing other fields in the
record. To change a record, you must indicate the appropriate fields
in the value you specify for this argument and specify values for the
fields you are changing. The call to ELN$AUTH_MODIFY_USER in
the following section of code changes the node for user FRED:

System Security 12-11

VAR
authorization-port
node
user
uic
new_node

BEGIN

PORT;
AUTH$NODENAME;
AUTH$USERNAME;
INTEGER;
AUTH$NODENAME;

CREATE_PORT(authorization-port);
CONNECT_CIRCUIT (authorization-port,

DESTINATION NAME := 'AUTH$MAINTENANCE');

user := 'FRED';
node := 'DEPOT1';

new node := 'DEPOT2';
uic-:= %X00010002;
ELN$AUTH_MODIFY_USER(CIRCUIT := authorization-port,

USERNAME := user,

END;
END.

NODENAME := node,
NEW_FIELDS := [AUTH$NODENAME_FIELD],
NEW USERNAME : = "
NEW NODENAME := new_node,
NEW PASSWORD : = "
NEW:=UIC := ",
NEW USERDATA : = ");

You can specify a new user name or the reserved name $ANY. If you
specify $ANY, any user from the specified node that does not match
one of the explicit user names is authorized with the specified user
identification code. If you modify the user name, you must reset the
password.

The value for the new node name argument can be a node name, a
node number, a null string, or the reserved name $ANY. If you specify
a node name of number, the data base record represents a proxy access
control and the Authorization Service does not use the password. If
you specify a null string, the data base record represents a destination
authorization. If you specify $ANY, any user with the specified name
from any node that does not match one of the explicit node names is
authorized with the specified user identification code.

12-12 System Security

The hashing algorithm that the Authorization Service uses for pass
words includes the user name. Thus, you must reset the password if
you modify the user name.

You can reset a password to another password or to a null string. If
you add a destination authorization record to the data base (that is, if
you specify a null string for the node name), the Authorization Service
stores the password with the record. The Authorization Service stores
all passwords in scrambled form so they cannot be read once they are
stored.

To establish a circuit with the AUTH$MAINTENANCE port, see
Section 12.3.3. For a description of the ELN$AUTH_MODIFY_USER
procedure, see the VAXELN Pascal Runtime Library Reference Manual,
VAXELN C Runtime Library Reference Manual, or VAXELN FORTRAN
Runtime Library Reference Manual.

12.3.6 Removing User Records from the Authorization Data Base

To remove user records from the authorization data base, call the
ELN$AUTH_REMOVE_USER procedure. A call to ELN$AUTH_
REMOVE_USER must specify the port connected in a circuit to the
AUTH$MAINTENANCE port, a user name, and a node name. The
user name identifies the user record to be removed. The node name
argument specifies the name or number of the node on which the user
is no longer authorized. The call to ELN$AUTH_REMOVE_ USER in
the following section of Pascal code removes user FRED from the data
base:

VAR
authorization-port PORT;
node AUTH$NODENAME;
user AUTH$USERNAME;
uic INTEGER;
node AUTH$NODENAME; .

BEGIN

CREATE_PORT(authorization-port);

System Security 12-13

CONNECT_CIRCUIT (authorization-port,
DESTINATION NAME := 'AUTH$MAINTENANCE');

user : = , FRED' ;
node := 'DEPOT1';
uic := %X00010002;
ELN$AUTH_REMOVE_USER(CIRCUIT := authorization-port,

USERNAME := user,

END;
END.

NODENAME := node);

To establish a circuit with the AUTH$MAINTENANCE port, see
Section 12.3.3. For a description of the ELN$AUTH_REMOVE_USER
procedure, see the VAXELN Pascal Runtime Library Reference Manual,
VAXELN C Runtime Library Reference Manual, or VAXELN FORTRAN
Runtime Library Reference Manual.

12.3.7 Retrieving Authorization Data Base Information

To retrieve information from the authorization data base, call the
ELN$AUTH_SHOW_USER procedure. A call to ELN$AUTH_
SHOW_USER must specify the port connected in a circuit to the
AUTH$MAINTENANCE port, a user name, a node name, and the
name of a show user procedure.

The user name specifies the name of the user for which data base
information is to be accessed. If you specify the string '*', the procedure
returns all the records in the data base.

The node name argument specifies the name or number of the node on
which the user is authorized. You must specify a nonnull string if the
proxy information for the specified users is requested, in which case the
Authorization Service returns the proxy information.

The show user routine is a user-defined routine that the ELN$AUTH_
SHOW_USER procedure invokes. The procedure invokes your routine
only if it finds the specified user entry in the authorization data base.
If you specify the string ,*, for the user name, ELN$AUTH_SHOW_
USER calls your routine once for each record in the data base.

12-14 System Security

The call to ELN$AUTH_SHOW_USERS in the following section of
Pascal code instructs the Authorization Service to invoke the procedure
show _all_users for all records in the authorization data base:

VAR
authorization-port
uic
node

BEGIN

PORT;
INTEGER;
AUTH$NODENAME;

CREATE_PORT(authorization-port);
CONNECT_CIRCUIT (authorization-port,

DESTINATION NAME := 'AUTH$MAINTENANCE');

node := 'DEPOT1';
uic := %X00010002;
ELN$AUTH_SHOW_USER(CIRCUIT := authorization-port,

USERNAME : = , *, ,
NODE NAME := node,
SHOW_USER := show_alI_users);

END.

PROCEDURE show all users OF TYPE AUTH$SHOW_USER_ROUTINE;

BEGIN
WRITELN('User name =', usernameA);

WRITELN('Node name =', nodename A
);

WRITELN('UIC =', uicA
);

END;

For information about establishing a circuit with the
AUTH$MAINTENANCE port, see Section 12.3.3. For a description
of the ELN$AUTH_SHOW _USER procedure, see the VAXELN Pascal
Runtime Library Reference Manual, VAXELN C Runtime Library
Reference Manual, or VAXELN FORTRAN Runtime Library Reference
Manual.

System Security 12-15

12.4 User Identities

The Network Service ensures that inbound connection requests are
from authorized users. However, application programs that accept
such requests should use calls to KER$GET_USER to query the user's
identity and use the information to protect program resources.

Each process in a VAXELN system has a user identity that consists
of a user name and a UIC. The user name can be a string of up to 20
characters, and the mc is an integer. Using the KER$GET_USER and
KER$SET_USER procedures, you can retrieve and set these values for
a calling process.

The KER$GET_USER procedure returns the user identity of one of the
following:

• The calling process
• A process connected in a circuit to a port owned by a process in the

current job

To retrieve the user identity of a process whose port is connected to the
calling process, you must specify that port in an optional circuit port
argument. The port that you specify must be connected in a circuit
that was established as follows:

• The process in the current job whose port is to be specified in the
call to KER$GET_USER initiated the connection with a call to the
CONNECT_CIRCUIT procedure.

• The process calling KER$GET_USER accepted the connection with
a call to the ACCEPT_CIRCUIT procedure.

If the appropriate circuit connection is established, the kernel returns
the user name and UIC associated with the process that initiated
the connection to optional user name and UIC arguments. If the
appropriate circuit connection is not established, KER$GET_USER
returns invalid user information.

If the process that initiates the circuit connection is a remote process,
you should ensure that the Authorization Service is built into your
system. That is, you should select Yes for the Authorization required
entry and Network for the Authorization service entry on the System
Builder's Network Node Characteristics Menu. If you do not build the
Authorization Service into the system, KER$GET_USER returns 0 to
the UIC argument.

12-16 System Security

The Network Service ensures that inbound connection requests are
from authorized users. However, application programs that accept
such requests must use calls to KER$GET_USER to query the user's
identity and use the information to protect program resources. The
following example accepts an inbound connection request and checks
that it is from a user in a system group, less than or equal to octal 10:

VAR
np, p: PORT;
username: VARYING_STRING(20);
uic: INTEGER;

ACCEPT CIRCUIT(np, CONNECT := p);
KER$GET_USER(CIRCUIT := p,

USERNAME := username,
UIC := uic);

IF (uic div %X10000) > %010 THEN
DISCONNECT_CIRCUIT(p)

ELSE

To set the user identity of the current process, call the KER$SET_
USER procedure. Specify the user name and UIC that are to be
associated with the process.

The mc that the KER$SET_ USER procedure sets is valid only on the
local system. When you specify a remote destination port in a call to
CONNECT_CIRCUIT, only the calling process's user name is sent to
the destination system. The Authorization Service on the destination
system adds that name to the authorization data base and associates
the name with a new UIC. Calls to KER$GET_USER on the destination
system then return the user name and new UIC as they are defined on
that system.

If you include an access control string in the remote destination ar
gument that you specify in a call to CONNECT_CIRCUIT, the user
name specified in the argument is sent to the remote system rather
than the user name set with KER$SET_USER. The argument in the
following call to CONNECT_CIRCUIT authorizes the user name FRED
and password ABC on the remote system NODEA:

CONNECT_CIRCUIT(DESTINATION_NAME := 'NODEA"FRED ABC"::TEST');

Calls to KER$GET_USER on the destination system get the mc
authorized by the destination system.

System Security 12-17

You can use the KER$SET_ USER procedure to authorize a process's
access requests to a remote system. Consider the following entries in
the Authorization Service data base on node DOCK2.

Authorization Type

Proxy access control

Destination authorization

Host Node

DEPOT1

SAM

UIC

[1,2]

[1,3]

Password

NOODLE

The first entry is a proxy access control because it includes a host
node name. The second entry is a destination authorization because it
includes a password instead of a node name.

Suppose program A on node DEPOT1 executes the following:

KER$SET USER(username := 'FRED');
CONNECT:CIRCUIT(destination_name := 'DOCK2::TESTOR');

When program B executes the following code on node DOCK2, the
Authorization Service on node DOCK2 uses the proxy access control
entry to authorize the remote user:

CREATE NAME(p, 'TESTOR');
ACCEPT-CIRCUIT(p);
KER$GET USER(CIRCUIT := p,

- USERNAME:= partner user,
UIC := partner_uic);

Program B receives a user name value of FRED in variable partner _
user and a UIC value of [1,2] (%X00010002) in variable partner_uic.

Suppose, instead, that program A on node DEPOT1 executes the
following:

CONNECT_CIRCUIT (DESTINATION_NAME: : = , DOCK2" SAM NOODLE": : TESTOR') ;

When Program B executes the following code on node DOCK2, the
Authorization Service on node DOCK2 uses the destination authoriza
tion entry to authorize the remote user.

CREATE_NAME(p, 'TESTOR');
ACCEPT CIRCUIT(p);
KER$GET_USER(CIRCUIT := p,

USERNAME := partner_user,
UIC := partner_uic);

Program B receives a user name value of SAM in variable partner _user
and a UIC value of [1,3] (%X00010003) in variable partner_uic.

12-18 System Security

12.5 File Service Security

The File Service uses the VAXELN features explained in this chapter
to protect the disk volumes and files that the File Service manages.
Since the File Service uses the Files-II on-disk structure, it uses the
standard Files-II protection facilities. Those facilities are compatible
with the VMS operating sysetm.

The standard Files-II protection facilities are as follows:

• When a new file is created, one of its attributes is the primary ule
of the user requesting the creation. This mc is called the owner
Ule of the file. If the File Service is unable to determine the me of
the user creating a new file (for example, no Authorization Service
is available) the file owner ule is set to the mc of the disk volume
owner.

• A new file also gets, as one of its attributes, a protection mask that
describes how the File Service protects the file·from the folloWing
categories of users:

Category

System

Owner

Group

World

Description

Users with mcs with a group number less than or equal to
8

Users with UICs that match the owner mc

Users with UICs with a group number that matches the
owner UIC's group number

Users with UICs in none of the previous categories

The protection mask is a 16-bit word composed of four fields. Each
of the four fields corresponds to one of the four categories of users.
Each of the four fields consists of I-bit indicators that specify the
access allowed to the category: read, write, execute, and delete.

Figure 12-2 shows the protection mask.

If a bit is set in a category's field, users in that category are denied
the corresponding access. For example, if bit 1 is set, then system
users are denied write access.

System Security 12-19

Figure 12-2: Protection Mask

15 11 7 3 0

I 01 E 1 WI R I °i E i wi R I 01 E i WI R I 01 E 1 wi R I
World Group Owner System

MLO-004293

The Pascal programmer can specify the protection mask fields
defined by the $FILE_ UTILITY module. The C programmer typi
cally specifies unsigned octal values. (For compatibility with UNIX
systems, the C creat and chmod functions do not use the same
format for the protection mask.)

• The owner and protection for a new file can be specified as param
eters to the Pascal OPEN procedure and the C creat function. The
protection for an existing file can be changed by using the Pascal
PROTECT_FILE procedure and the C chmod and chown func
tions. If a new file is created and no protection mask is specified,
the File Service sets the protection to the disk volume's default file
protection.

• The owner UIC and protection mask for a new disk volume can be
specified as a parameter to the ELN$INIT_ VOLUME procedure.

• The default protection mask for files on a new disk volume can be
specified as a parameter to the ELN$INIT_ VOLUME procedure.

• If the File Service is unable to determine the mc of a user re
questing access to a file (for example, no Authorization Service is
available) it allows unprotected access by the user. (See the descrip
tion of the Authorization required Network Node Characteristic in
Section 12.3.1, for a means of preventing this unprotected access.)

12-20 System Security

Chapter 13

File Service

The File Service is a set of services provided by the disk and tape
drivers in a system that allows programs to perform file-oriented I/O
on disks and tapes. The File Service is not used for terminal or printer
I/O.

The File Service consists of a disk File Service and a tape File Service:

• The disk File Service provides Files-11 On-Disk Structure Level
2 file services. The disk File Service is compatible with the VMS
Version 4.4 file system and with the RMS-32 system routines.

• The tape File Service is based on Version 3 of the ANSI standard
for magnetic tapes. The tape File Service provides users with a
convenient means of transporting files to and from VMS systems,
since it is compatible with the VMS Version 4.4 file system.

For disk and tape devices supported by Digital, the File Service is
already linked with the VAXELN drivers. If you are writing your own
disk or tape drivers that will use the File Service, the appropriate
shareable image must be linked, as explained in Section 13.12.

When several VAXELN systems are running on nodes in a local area
network, only one node needs to have disk or magnetic tape hardware.
An appropriate hardware configuration, running a system containing
the File Service, thus can act as a file server for other jobs on the same
node or on other nodes, handling all file storage and retrieval for the
local area network.

With disks, for example, programs can identify files, regardless of their
network locations, by using file specifications that give the File Service
volume name for the storage device; node specifications are needed
only when you use a file that is stored on an operating system other
than a VAXELN system. Systems that support file access from remote

File Service 13-1

nodes also include a separate job, the File Access Listener, to handle
connection requests between nodes.

This chapter discusses the following:

• Device specifications, Section 13.1

• Volume names, Section 13.2
• File specifications, Section 13.3

• Mount procedure for multiple volumes with identical volume labels,
Section 13.4

• Use of the DISK$DEFAULT_ VOLUME device name, Section 13.5

• File Access Listener, Section 13.6
• Use of file service volumes from VMS, Section 13.7

• File service operations, Section 13.8

• File utility procedures, Section 13.9
• Disk utility procedures, Section 13.10

• Tape utility procedures, Section 13.11
• File Service interface for disk and tape drivers, Section 13.12

• Data Access Protocol, Section 13.13

13.1 Device Specifications

You must provide descriptions of the devices to be used by a VAXELN
system when you build the system by editing the System Builder's
Device Description Menu, as explained in the VAXELN Development
Utilities Guide.

Each device name identifies a specific unit on a specific controller.
Typically, the controller is specified by a letter and the unit by a num
ber. For example, the device specification DQAl identifies controller
A, unit 1, for an RB02 or RB80 disk attached to the Integrated Disk
Controller of a VAX-11/730 processor.

Table 13-1 lists the storage device types used in VAXELN program
ming.

13-2 File Service

Table 13-1: Storage Device TYpes
Device Type

DQ

DD

DU

BD

MU

Meaning

VAX-ll/730 Integrated Disk Controller (RB02 cartridge
disks and RB80 :fixed disks) .

TU58 cartridge drive in VAX console

UDA50 UNIBUS interface to Storage Interconnect (SI)
disks, RQDXn (MicroVAX) interface to RXnn diskettes and
RDnn Winchester disks, RC25 fixed and removable disks,
KDA50 Q-bus RAxx-series disk adapter

KDB50 BI RAxx-series disk adapter

TK50 streaming cartridge tape drive, TK70 streaming
cartridge tape drive, or TU81 reel tape system

The device types in Table 13-1 are conventional names for these
devices; you can use any names that you like, provided the usage is
consistent in the System Builder and in user programs.

13.2 Volume Names

After you enter the device specifications for the drives used by the File
Service, you can supply volume names, or volume labels, for disks or
tapes that are to be mounted by the service when the system is started.
Volume names are specified on the System Builder's Edit System
Characteristics Menu (see the VAXELN Development Utilities Guide).

The volume name is paired with a device specification; the following
System Builder menu argument establishes two such pairings:

"DUAl TEST1", "DUAO TEST2"

TEST1 is established as the volume to be mounted on drive DUAl
and TEST2 as the volume for DUAO. The first volume mounted in the
system becomes the default volume for the File Service. That is, any
file specification that lacks a volume name or device name refers to
this volume. In systems with a single disk controller, the first volume
specified in the list (here, TEST1) will be the first volume mounted.

In systems with multiple disk controllers, volumes are mounted in the
order in which the disk driver jobs controlling their disks are created
and initialized at system start-up. The order in which the driver jobs
are created is determined by their job priority; the driver with the
highest job priority is created first. If two or more drivers with the

File Service 13-3

same priority exist, their jobs are created in the order in which they
appear in the System Builder's program list, as shown in a full System
Builder map. In this case, the default volume will be the first volume
in the disk/volume name list that is associated with the first driver job
to be initialized.

The controller name (here, DUA) is also supplied as an argument to
the driver. The VAXELN Development Utilities Guide explains how
the controller device is described to the System Builder and how the
appropriate driver is built into the system.

The specified volumes are mounted automatically if the VAXELN
system is built with the File Service. If no volume name is supplied
for a specified device, the File Service tries to mount the volume that
exists in the drive. If the specified volume name is not the same as
the name specified when the volume was initialized, the File Service
mounts the volume anyway and displays an informational message on
the target machine's console terminal. However, the specified name is
overridden by the volume name of the volume mounted in the drive.
For example, if you specify the volume name TEST1, but the volume in
the drive was initialized with the name TEST3, you would have to refer
to the mounted volume by the name DISK$TEST3, not DISK$TESTl.

If no argument is supplied for a drive, no volume is mounted initially
by the File Service, but a volume can be mounted dynamically with the
ELN$MOUNT_ VOLUME procedure or with the ELN$MOUNT_TAPE_
VOLUME procedure, as appropriate. If the drive is a disk, it can also
be used directly (for nonfile, or logical, 1/0) by opening it for logical 1/0
with the Pascal OPEN procedure or corresponding C open functions.
(Logical 110 treats the volume as if it were a single large file; logical 1/0
is explained in Chapter 14.)

13-4 File Service

NOTE

If you attempt to mount a VMS disk volume that was im
properly dismounted - for exmaple, if the VMS system
crashed - the File Service prints a warning message on the
target machine's console. The volume should be remounted
on VMS, which rebuilds it; then it can be mounted on the
VAXELN system. You can successfully mount a VAXELN or
VMS tape volume that was improperly dismounted and can
read all of its files. If the tape structure was corrupted - for
example, by a crash of the VAXELN system when a file was
being written - additional files cannot be written to it.

13.3 File Specifications

When used in programs, such as in a call to the Pascal OPEN proce
dure, file specifications with volume labels are interpreted by the File
Service as referring to a particular mounted disk or tape on the target
machine. The format for specifying a volume label is as follows:

DISK$name or TAPE$name

If you supplied volume names with the System Builder's Edit System
Characteristics Menu, name must match a volume name you defined.
If you did not define volume names through the System Builder or if a
different volume is in the drive, name must match the actual volume
name.

The first time a volume is mounted - whether by the File Service or
with the ELN$MOUNT_ VOLUME or ELN$MOUNT_TAPE_ VOLUME
procedure - its DISK$ or TAPE$ name is established as a universal
name by the File Service and uniquely identifies the volume to local
area network nodes.

If another process in the application mounts a volume with the same
volume name, the volume's DISK$ or TAPE$ name is established as a
local name for that process's node. The use of local names allows, for
example, a VAXELN system to initialize, mount, and write duplicate
copies of a volume, all with the same volume name.

To illustrate the use of volume labels in file specifications, suppose that
the following volume name definitions are entered on the Edit System
Characteristics Menu:

"DQAl TEST1", "DQAO TEST2"

The volume specifications DISK$TESTI and DISK$TEST2 in programs
now refer to disks mounted on drives DQAl and DQAO, respectively.
Furthermore, DISK$TESTI (DQAl) is the default disk volume; if no
volume or device is specified in a file specification, the File Service
refers to the specified directory, file name, and so forth on TEST!.

For example, the following Pascal procedure call creates a file on
DISK$TEST2:

OPEN (myfile, FILE NAME := 'DISK$TEST2: [data]analog.dat')i

Rle Service 13-5

The corresponding example in C is as follows:

:fI:include. stdio
FILE *fileytr
fileytr=fopen ("DISK$TEST2: [data] analog. datil , "r");

Here, the file analog.dat in directory data is created and is represented
by the program variable myfile.

NOTE

If a volume is mounted, you can also refer to it with an
explicit device name. For example, the following OPEN
statement refers to the disk volume in drive DUAO:

OPEN(f,FILE_NAME := 'DUAO: [TEST]TEST.DAT')

The corresponding example in C is as follows:

:fI:include stdio
FILE *fileytr
fileytr=fopen("DUAO: [TEST]TEST.DAT","r");

Device names are local to their network node.

If you access a file on a remote node by using file specification syntax
other than VMS syntax, you must enclose the specification in quotation
marks. For example, the following file specification file reference
contains a question mark, which is not valid under VMS. Therefore,
you must enclose the file reference in quotation marks:

2.9: : "DATA? . DATil

13.4 Procedure for Mounting Multiple Volumes with Identical
Volume Labels

You can mount multiple disk volumes that have the same volume label.
However, the presence or absence of the Network Service and Name
Service can affect such an operation.

If the system does not include the Network Service and Name Service
and you try to mount a volume that has the same volume name as an
already mounted volume, the mount fails.

13-6 File Service

If the system includes the Network Service and Name Service (the
System Builder defaults), and you try to mount a volume that includes
the volume label of an already mounted volume, several outcomes are
possible.

Consider a situation in which two disk volumes are to be mounted in
the system. The first volume has the name TEST and will be mounted
in the physical device DUAO. The second volume, also named TEST,
will be mounted in the physical device DUAL

Suppose a mount request is made specifying the device DUAO. When
you mount the volume, the following names are created:

• DUAO. This is the first name created; it is placed in the local name
table. If this name cannot be created, the mount operation fails.

• DISK$DEFAULT_ VOLUME. This is the second name created; it is
also placed in the local name table. If this name cannot be created,
the system assumes that another disk volume is to be used as the
default volume and has already been mounted in the system.

• DISK$TEST. The system tries to create this name in the universal
name table. If this fails, the system tries to create the name in the
local name table. For example, if the universal name DISK$TEST
does not exist in the network, the name DISK$TEST is created in
the universal name table.

You can use these names to access the mounted volume.

If you try to mount another volume that has the same volume label,
assuming that the mount request is made to the DUAl device, the
following events occur:

1. The name DUAl is created in the local name table.

2. The system's attempt to create the name DISK$DEFAULT_
VOLUME fails because the name already exists.

3. The system's attempt to create the name DISK$TEST in the
universal name table fails, so the name is created in the local name
table.

When the second mount operation is completed, the system knows the
following names:

File Service 13-7

Name Name Table Device Represented

DUAO Local DUAO

DISK$TEST Universal DUAO

DISK$DEFAULT _VOLUME Local DUAO

DUAl Local DUAl

DISK$TEST Local DUAl

The preceding operations have the following consequences for use of
volume labels:

• If you try to access a file by using the device specification
DISK$TEST:, you get access to device DUAl because local names
are· used first.

• If you call the ELN$DIRECTORY_OPEN procedure, it returns a
volume name string that does not correctly refer to the volume
accessed. For example, if you specify DUAO:[OOOOOO]*. *;* for the
search_name argument in a call to ELN$DIRECTORY_OPEN, the
procedure returns DISK$TEST as the volume name. If you include
this volume name in the file name you specify with a file utility
routine, such as ELN$DELETE_FILE, you access the volume
DUAl, not DUAO.

Therefore, you should use the device that you specify for the search_
name argument, not the device that you specify for volume_name,
in subsequent file operations.

13.5 DISK$DEFAULT_VOLUME Device Name

The name DISK$DEFAULT_ VOLUME is used as the device name
when a file is accessed without the device name specification.
When you mount a volume, the system tries to create the name
DISK$DEFAULT_ VOLUME. If the name does not exist, it is cre
ated. If another volume is already mounted, the name already exists,
and the second attempt to create the name fails.

If you dismount the volume that corresponds to DISK$DEFAULT_
VOLUME, the name is deleted. A subsequent attempt to access files
on DISK$DEFAULT_ VOLUME fails. The next mount request recreates
the name DISK$DEFAULT_ VOLUME. The system does not check to
see whether other volumes 'are already mounted in the system. The
following sequence of ECL commands illustrates this behavior:

13-8 File Service

ECL> MOUNT DUAO:
ECL> DIRECTORY DISK$DEFAULT_VOLUME:

Directory DISK$VOLUME1: [000000]

OOOOOO.DIR
CONTIN.SYS
VOLUME1.DAT

BACKUP.SYS
CORMIG.SYS

Total of 9 files.

ECL> MOUNT DUAl:
ECL> DISMOUNT DUAO:

BADBLK.SYS
INDEXF.SYS

ECL> DIRECTORY DISK$DEFAULT VOLUME:

BITMAP.SYS
VOLSET.SYS

$DIRECT-E-OPENIN, error opening DISK$DEFAULT_VOLUME: [000000]*.*;
* as input
-ELN-F-DEV, error in device name or inappropriate device type
for operation

ECL> DISMOUNT DUAl:
ECL> MOUNT DUAl:
ECL> DIRECTORY DISK$DEFAULT_VOLUME:

Directory DISK$VOLUME2: [000000]

OOOOOO.DIR
CONTIN.SYS
VOLUME2.DAT

BACKUP.SYS
CORMIG.SYS
VOLUME2.DAT

Total of 10 files.

13.6 File Access Listener

BADBLK.SYS
INDEXF.SYS

BITMAP.SYS
VOLSET.SYS

The file access listener (FAL) is built into VAXELN systems that
support file access from remote nodes. You include the FAL in a
VAXELN system by selecting Yes for the File access listener entry on
the System Builder's Network Node Characteristics Menu, as explained
in the VAXELN Development Utilities Guide.

The FAL handles connection requests, such as file openings, that
involve different network nodes, including incoming requests from VMS
nodes. Accordingly, the inclusion of the FAL in a VAXELN system also
presumes that the Network Service is present.

Inclusion of the FAL does not necessarily mean that the File Service
must be present. For example, a VAXELN network could use a system
that includes a line printer, a line printer device driver, and the FAL as
a print server. The FAL would accept I/O connection requests directed
at the printer and establish the connection with the printer driver's
message ports.

File Service 13-9

13.7 File Service Volumes from VMS

The File Service uses the same on-disk and tape file structure as
the VMS operating system, and supports most VMS file-handling
operations, such as COPY, DIFFERENCES, DIRECTORY, EDIT, and so
forth.

For example, assume that node MILDEW is a VAX system with two
disks, DQAO and DQAl, and that MILDEW is running a VAXELN
system with the File Service, Network Service, and FAL. Assume also
that the following volume name definitions were entered on the System
Builder's Edit System Characteristics Menu:

"DQAl 'I'ES'I'l", "DQAO 'I'ES'I'2"

You can copy a file from MILDEW with the following VMS command,
which refers by default to DQAl on MILDEW:

$ COpy MILDEW:: [directory] filename. type *.*

Or, you can copy with the following command, which refers to DQAO on
MILDEW:

$ COpy MILDEW: :DISK$'I'ES'I'2: [directory]filename.type *.*

You can also use the device specification directly, as in the following
command:

$ COpy MILDEW: :DQAO: [directory] filename. type *.*

13.8 File Service Operations

The File Service performs the following disk file and record 1/0 opera
tions:

• Creating a new file or opening an existing file - for example, using
the Pascal OPEN procedure or the C open function

• Retrieving information from the file - for example, using the
Pascal READLN procedure or the C gets function

• Adding information to the file - for example, using the Pascal
WRITELN procedure or the C puts function

• Closing a file - for example, using the Pascal CLOSE procedure or
the C close function

13-10 File Service

When you are familiar with Pascal or CliO, all you need to know about
the File Service is how to initialize, mount, and dismount volumes and
how to create directories.

The call formats and detailed argument descriptions for all file 110
routines, as well as for the file utility, disk utility, and tape utility
procedures summarized in the following sections, are contained in
the VAXELN Pascal Runtime Library Reference Manual, VAXELN C
Runtime Library Reference Manual, and VAXELN FORTRAN Runtime
Library Reference Manual.

13.9 File Utility Procedures

The file utility procedures provided by the File Service are summarized
in this section. To use these procedures, you must include the $FILE_
UTILITY module appropriate to the language you are using in the
compilation of your program. (For more information, see the VAXELN
Development Utilities Guide.

NOTE

The VAXELN File Service supports all of the file util-
ity procedures for disk and tape volumes. However,
the ELN$CREATE_DIRECTORY, ELN$DELETE_FILE,
ELN$RENAME_FILE, and ELN$PROTECT_FILE proce
dures are invalid for tapes. An error message is returned if
you attempt to apply them to tape volumes.

13.9.1 ELN$COPY _FILE Procedure

The ELN$COPY_FILE procedure makes a duplicate of a specified file.
A string of 1 to 255 characters gives the :file specification of the source
file. A second string of 1 to 2Q5 characters gives the file specification of
the destination file. You can supply file specification defaults for both
the source and destination files.

Optional parameters return the resultant file name strings of both files,
the mode (block or record) and the number of blocks or records copied.
If an error exists in one of the files, an optional Boolean expression is
returned, indicating which file contains the error.

File Service 13-11

NOTE

The ELN$COPY_FILE procedure provides the only means
of creating an ISAM or RELATIVE organization file in a
VAXELN system, by copying an existing file of the organiza
tion.

13.9.2 ELN$CREATE_DIRECTORY Procedure

The ELN$CREATE_DIRECTORY procedure creates a directory on the
specified file service disk volume. This procedure is invalid for tape
volumes.

A string of 1 to 255 characters gives the file specification for the
directory or subfile directory to be created. You can supply a file
specification default for the directory. A file owner user identification
code (mC) can also be specified. An optional parameter returns the
resultant file name string of the directory file created.

For example, the following Pascal command creates the directory
DATA.DIR in the master file directory of the volume:

CREATE_DIRECTORY ('DISK$TEST: [DATA]');

The directory must be created on a VAXELN disk volume; the pro
cedure cannot create a directory on a volume that is not part of a
VAXELN system. Also, the procedure creates only the last directory in
the specification; any intermediate directories must already exist.

When you create a directory and do not specify an owner, the directory
is assigned the same owner as the directory under which it is created.
Furthermore, all files created under a directory are assigned the owner
of that directory's owner, unless you specify otherwise in the call to
OPEN. Unless you desire the default owner, you should specify an
owner when creating directories and files. (Specifying 0 has the same
effect as not specifying a value.)

13.9.3 ELN$DELETE_FILE Procedure

The ELN$DELETE_FILE procedure deletes a file from a mounted disk
volume. This procedure is invalid for tape volumes.

13-12 File Service

A string of 1 to 255 characters gives the file specification, with either
an explicit version number or a semicolon or period to indicate the most
recent version. For example, test.dat;23 designates version 23 is to be
deleted; test.dat; and test.dat. designate the most recent version of the
file. You can supply a file specification default for the file to be deleted.
Another optional parameter stores the resultant file name string of the
deleted file.

13.9.4 ELN$DIRECTORY_CLOSE Procedure

The ELN$DIRECTORY_CLOSE procedure closes a directory on a
mounted disk volume. A variable supplies a pointer to the directory file
variable.

The preferred method for obtaining directory listings is to use the
ELN$DIRECTORY_OPEN procedure to open the directory, then loop,
calling the ELN$DIRECTORY_LlST procedure until no more files are
found. You should call ELN$DIRECTORY_CLOSE only if you db not
want the program to continue the directory list loop until all the files
are exhausted.

13.9.5 ELN$DIRECTORY _LIST Procedure

The ELN$DIRECTORY_LIST procedure obtains the next file name
from a mounted disk directory. A variable supplies a pointer
to the directory file. If more than one directory is traversed by
ELN$DIRECTORY_LIST, the directory name will change. An optional
variable supplies a pointer to a file attributes record that receives the
file's attributes; if you specify this argument, you must supply the
pointer that was returned by a previous call to ELN$DIRECTORY_
OPEN.

13.9.6 ELN$DIRECTORY_OPEN Procedure

The ELN$DIRECTORY_OPEN procedure opens a directory on a
mounted disk volume in preparation for a ELN$DIRECTORY_LIST
operation, returning the volume name and directory name if the pro
cedure is successful. A variable supplies a pointer to the directory file
variable.

File Service 13-13

A string of 1 to 255 characters supplies the file specification of a
directory for which to search. The general form of the character string
is as follows:

node::disk:[directory Jlilename.type;version

The file name, type, and version can use the wildcard characters, per
cent sign (%) and askerisk (*), as in VMS file specifications. The
% character matches any single character in the corresponding posi
tion; the * character matches any character or string in the indicated
positions, including null strings.

For example, the following string matches any specification with a file
name of at least four characters, the last being C and the fourth-from
last being A, and any file type or version.

DISK$TEST: [testdata]*A%%C.*;*

Wildcards are not allowed in volume names or, for VAXELN disks, in
directory specifications.

If the directory is not on a VAXELN disk - for example, it is serviced
by a VMS system - the asterisk (*), percent sign (%), and ellipsis
(...) can be used in the directory specification. The ellipsis following
a directory name matches all subdirectories contained in and including
the named directory.

In addition, an optional string of 1 to 64 characters receives the re
sultant node specification or server process port name. An optional
variable receives a pointer to the file attributes record allocated by
ELN$DIRECTORY_OPEN; you can use this pointer in subsequent calls
to ELN$DIRECTORY_LIST to receive a file's attributes.

13.9.7 ELN$PROTECT_FILE Procedure

The ELN$PROTECT_FILE procedure changes the protection of a disk
file. This procedure is invalid for tape volumes.

A string of 1 to 255 characters gives the file specification. The pro
cedure sets the file ownership user identification code (UIC), the
protection code, or both for the specified file. You can supply a file
specification default for the file. Another optional parameter returns
the resultant file name string of the file.

13-14 File Service

13.9.8 ELN$RENAME_FILE Procedure

The ELN$RENAME_FILE procedure renames a disk file. This proce
dure is invalid for tape volumes.

A string of 1 to 255 characters gives the current file specification; no
wildcard characters are permitted. (To rename several related files, use
ELN$DIRECTORY_LIST to find them and ELN$RENAME_FILE to
rename each one.) A second string of 1 to 255 characters gives the new
file specification. You can supply file specification defaults for both the
current file and the new file. Optional parameters return the resultant
file name strings of both files.

The new volume name must be the same as the old one; that is, if the
old specification includes a volume name, the new one must supply the
same name or no name. Any parts of the current specification that are
not supplied in this argument are obtained from the old file name.

13.9.9 ELN$SET_DEFAULT_FILESPEC Procedure

The ELN$SET_DEFAULT_FILESPEC procedure establishes a default
file specification to be used within the current job. The default is ap
plied to procedures that take a file specification as an input parameter.
For example, if you set the default to DISK$YAHOO:[TEST]FILE1.DAT
and if you call the OPEN procedure with the file name TEST, the re
sulting file reference for the OPEN is DISK$YAHOO:[TEST]TEST.DAT.

A string of 1 to 255 characters gives the default file specification for
the current job. The string replaces the previous default specification
each time you call ELN$SET_DEFAULT_FILESPEC within a job. You
cannot use wildcards in the file specification.

13.10 Disk Utility Procedures

The disk utility procedures provided by the disk File Service are sum
marized in this section. To use these procedures, you must include in
the compilation of your program the $DISK_ UTILITY module appro
priate for the language you are using (see the VAXELN Development
Utilities Guide).

File Service 13-15

13.10.1 ELN$DISMOUNT _ VOLUME Procedure

The ELN$DISMOUNT_ VOLUME procedure dismounts a file service
disk volume on the specified device. The procedure must be called on
the same node that has the File Service. A dismounted disk can be
opened and used for nonfile, or logical block, 110.

A string of 1 to 30 characters names the device, for example, DQAl
for drive 1 on disk controller DQA. The user must have read, write,
execute, and delete (RWED) privileges to dismount a volume.

13.10.2 ELN$INIT_VOLUME Procedure

The ELN$INIT_ VOLUME procedure initializes a disk for use as a
Files-II file-structured volume. Disks must be initialized once before
they are used. You can initialize any volume on any node running
a VAXELN system, provided the volume is not mounted or already
open. The procedure must be called on the same node that has the File
Service.

A string of 1 to 30 characters gives the device specification of the disk
drive, for example, DQAl for drive 1 on disk controller DQA. The node
must be specified explicitly for a drive on another node. A string of 1 to
12 characters gives the volume label for the disk.

An optional argument supplies the default extension quantity in blocks
for the files on the disk volume. The extension quantity is applied
when the size of a file is increased beyond its initial allocation by
writing more records to the file.

Optional arguments supply a user name to be recorded on the volume
and an integer identifying the UIC of the volume owner. The volume,
file, and record protection for the volume are also specified by optional
arguments. (See Chapter 12 for more information on protection.)

Other optional arguments designate the following:

• The number of directories that can be cached by the File Service by
default

• The maximum number of files that can exist on a disk
• The number of entries that are preallocated for user directories

• The number of file headers allocated initially for the index file (the
file for the volume's file structure)

13-16 File Service

• The number of mapping pointers to be allocated for file windows,
which are used to describe the logical segments of the file for access

• The cluster size (the minimum allocation unit for the volume)
• The position of the index file (beginning, middle, or end)

• Whether data checking on read or write operations is enabled or
disabled

• Whether the volume is shareable
• Whether the volume is a group volume

• Whether the volume is a system volume
• Whether the volume has information about where bad blocks are

located

A required argument supplies a list of bad blocks. Bad blocks are areas
on the volume that are known to be faulty and are marked by the
procedure so that no data will be written on them. The bad-block list
specifies a range of either logical or physical block numbers. You: can
specify a null list.

13.10.3 ELN$MOUNT _ VOLUME Procedure

The ELN$MO'ONT_ VOLUME procedure mounts a disk for use as a
file-structured volume. The procedure requires the device, its driver,
and the File Service to be present in the same system from which it is
called. The procedure does not return until the disk is mounted.

A string of 1 to 30 characters names the disk drive on which the volume
is to be mounted, for example, DQAl for drive Ion disk controller DQA.

An optional argument of 1 to 12 characters supplies the volume label.
If the argument is omitted, the procedure mounts whichever volume is
loaded in the indicated drive.

13.11 Tape Utility Procedures

The tape utility procedures provided by the tape File Service are sum
marized in this section. To use these procedures, you must include the
$TAPE~UTILITY module appropriate for the language you are using
in the compilation of your program (see the VAXELN Development
Utilities Guide).

File Service 13-17

13.11.1 ELN$DISMOUNT_TAPE_VOLUME Procedure

The ELN$DISMOUNT_TAPE_ VOLUME procedure dismounts a file
service magnetic tape volume on the specified device. The procedure
must be called on the same node that has the File Service. A string of
1 to 30 characters names the device - for example, MUAO for drive 0
on tape controller MUA. An optional argument designates whether the
tape will be unloaded by the device.

13.11.2 ELN$INIT_TAPE_VOLUME Procedure

The ELN$INIT_TAPE_VOLDME procedure initializes a file service
magnetic tape as a tape volume that conforms to American National
Standards Institute (ANSI) standard X3.27-1978. Tapes must be
initialized before they are used. The procedure requires the device,
its driver, and the tape File Service to be present in the same system
from which it is called. The procedure does not return until the tape is
ini tialized.

A string of 1 to 30 characters gives the device specification of the tape
drive, for example, MUAO for drive 0 on tape controller MUA. The node
must be specified explicitly for a drive on another node. A string of 1 to
6 characters gives the volume label for the tape. An optional argument
designates the density of data recorded on the tape.

13.11.3 ELN$MOUNT _ TAPE_ VOLUME Procedure

The ELN$MOUNT_TAPE_ VOLUME procedure mounts a file service
magnetic tape as a tape volume that conforms to American National
Standards Institute (ANSI) standard X3.27-1978. The procedure
requires the device, its driver, and the tape File Service to be present in
the same system from which it is called. The procedure does not return
until the tape is mounted.

A string of 1 to 30 characters names the tape drive on which the
volume is to be mounted, for example, MUAO for drive 0 on tape
controller MUA. An optional argument of 1 to 6 characters supplies
the volume label. If the argument is omitted, the procedure mounts
whichever volume is loaded in the indicated drive.

Optional arguments designate the block size of new files and whether
the tape volume can be written to.

13-18 File Service

13.12 File Service Interface for Disk and Tape Drivers

This section is provided for anyone who is writing new disk or tape
drivers that will use the File Service or who wants to study the
drivers supplied with the development toolkit. You do not need this
information for normal use of the VAXELN Toolkit.

The File Service consists of two separate shareable images: FILE.EXE,
which is the disk File Service shareable image, and TAPE.EXE, which
is the tape File Service shareable image. The appropriate shareable
image is linked to each disk and tape driver installed in a VAXELN
system and is activated by calling routines from the respective driver.

The following File Service initialization routines are available:

• The function ELN$FILE_INITIALIZE defines the actions open,
close, get, and put for the specific disk device being driven.

• The function ELN$TAPE_INITIALIZE defines the actions open,
close, get, put, reposition, tapemark, erase, and return for the
specific tape device being driven.

Normally, one of these functions is called by the driver's master process
as part of its initialization sequence. The arguments are functions, or
action routines, that define the operations for the device. The function
returns a file context variable that is used by the File Service.

Since most controllers support multiple units, typical drivers are multi
tasking programs that create a process to handle each drive. Therefore,
after defining the action routines with ELN$FILE_INITIALIZE or
ELN$TAPE_INITIALIZE, as appropriate, the driver creates a process
for each attached drive.

The drive process is usually passed some kind of argument identifying
the drive, such as a unit number. The initializing process then waits
for a start-up event to be signaled, meaning that one drive is initialized
and the initializing process can proceed with creating other drive
processes. (Depending on the driver, the event value can be passed
explicitly to the process or obtained in the drive process with an
up-level reference.)

When all the drive processes have been started, the initializing process
calls INITIALIZATION_DONE and proceeds with its other work.

Each drive process calls one of the following file service routines:

• The procedure ELN$FILE_SERVICE for disk device drivers

File Service 13-19

• The procedure ELN$TAPE_SERVICE for tape device drivers

In either case, the procedure's arguments are as follows:

• The start-up event value (startup_event)

• The file context (file_context)
• A string naming the drive (drive_name) (typical drivers take the

controller name as a program argument and concatenate a digit to
it to form the drive name)

• A drive context pointer, where the drive context (drive_context) is
a structure defining the state of an individual drive and is usually
initialized by the drive process

Forming these arguments and calling the procedure are the only
actions required of the drive processes.

From this point on, the File Service is in effective control of the drive
and performs all 1/0 operations on it, including handling protocol
messages. The File Service signals the start-up event after performing
its own initialization, allowing the master process to proceed with the
creation of the other driver processes.

The source modules for user-written drivers are as follows:

• ELN$:DAP.PAS. This module contains the Pascal language decla
rations of the two disk routines described in this section and the
declarations of the function types you can use to declare action
routines for ELN$FILE_INITIALIZE. The two tape routines de
scribed in this section and the Pascal language declarations of the
function types for the action routines of ELN$TAPE_INITIALIZE
are in ELN$:TAPE.PAS. The action routines' types are prefixed
with DISK$ or TAPE$, as appropriate. DISK$PUT_ACTION, for
example, is the function type used to declare put actions for disk
devices.

The precompiled version of DAP.PAS is the module $DAP and the
precompiled version of TAPE.PAS is $TAPE. If you are writing a
disk or tape driver for use with the File Service, be sure to include
the appropriate module in its compilation.

• $DAP in ELN$:VAXELNC.TLB. This module contains the defini
tions for disk drivers written in C. You include this module when
you compile your driver source module by issuing a command of the
following form:

#include $DAl?

13-20 File Service

After including the appropriate Pascal or C module in your compilation,
link the compiled driver with ELN$:RTLSHARE.OLB, which contains
the shareable image of the File Service.

NOTE

A user-written driver should be capable of having any of its
functions called in the context of any process, and its data
base should, therefore, either be statically allocated or be
allocated on the heap.

13.13 Data Access Protocol

The data access protocol (DAP) is a method for exchanging data be
tween processes in your system and record-oriented device driver pro
grams or services. DAP is used by the Pascal and C runtime libraries
to exchange 1/0 requests and results between the user's program and
device drivers.

This section explains the use of the development system's DAP facilities
for anyone who is writing file- or record-oriented device drivers, or for
anyone who is studying the drivers that Digital supplies. You will not
need this information for normal use of the VAXELN Toolkit or for
writing disk or tape drivers that will not use the File Service. A typical
occasion for using the DAP is to add support for a new type of disk
controller.

Writing drivers with the DAP is usually simple because you have
only to write definitions of a set of preestablished functions called
action routines. Typically, you write definitions of open, close, get data,
and put data that are appropriate for the device in question. The
definition of each action routine in your program is accomplished with
predeclared constants, data types, and functions, which are discussed
in this section.

For practical information on the use of the DAP in driver writing,
study the driver and definition sources supplied with your development
system.

Figure 13-1 illustrates the message flow in a typical 1/0 operation.

File Service 13-21

Figure 13-1: DAP Message Transmission (Read Request)

Target VAX 1

User Program: ,Call Pascal
~ Runtime GET(f);

Library

DAP Message .- .. --- -- --- _ .. -. _ .. _ -_ _ .. --- .. _ _ .. -... _ .. --- -_ .. _

1-?,!,:~-1 g:=E~::~

[: __ : ____ ~~:_~~:~~~iVQr:
DataJink
Driver

Target VAX 2

Disk Driver:
DAP$SERVER

File Access Listener

File Server/Disk Driver:
DAP$SERVER

Network
Service

Datalink
Driver

............

•1

...........•

~~~~.~.J 

Ethemet ~ f---\ 
\,...-------~J---{ 

MLO-004294 

In the example illustrated by Figure 13-1, a user program makes a 
read request, the Pascal GET procedure. When the runtime library 
is called, it generates a DAP message formulating the read request. 
There are then five cases that describe the destination and processing 
of the message, depending on the way the file was originally opened: 

13-22 File Service 



Case 1 

Case 2 

CaseS 

Case 4 

Case 5 

The program has opened a local terminal for logical I/O, as in: 

OPEN(f,FILE_NAME := 'TTAO:') 

The message is sent directly to the terminal driver by translating 
the local name TTAO, which has called the function DAP$SERVER 
to define the actions for servicing DAP requests directed at its 
device. (Action routines are discussed in Section 13.13.2.) 

The program has opened a file on a mounted disk volume, as in: 

OPEN(f, FILE_NAME := 'DISK$VDATA: [mydir]file.dat') 

In this case, DISK$VDATA is a universal name established by the 
File Service, naming the port that receives DAP requests for the 
disk volume of the given name. The DAP request is thus received 
and processed by the File Service and the associated disk driver for 
that volume. 

The OPEN call is as in Case 2, but the volume name does not have 
a local translation. The Network Service receives the message and 
encloses it in an NSP message for transmission by the datalink 
drivers over the Ethernet to the node (here, VAX2) that has the 
named message port. The DAP message reemerges from node B's 
Network Service with the NSP envelope removed. The named port 
is defined in the job running node B's disk driver, and the read 
request is handled there. 

The OPEN call used an explicit node name to access a file on a 
mounted disk (DUAl), as in: 

OPEN(f, FILE_NAME := 'VAX2: :DUA1: [mydir] file.dat') 

After transmission to node VAX2, the message is intercepted by 
that node's FAL and sent on to the File Service on that node. (In 
most respects, this case also applies if node VAX2 is a VMS node, 
although the node is then specified by number instead of by name; 
similarly, it could occur if node VAX1 is a VMS node at which a 
comparable OPEN call was made from a VMS program.) 

The OPEN call specified a node explicitly, to open a remote terminal, 
as in: 

OPEN(f,FILE_NAME := 'VAX2::TTAO:') 

This is the network version of Case 1; the terminal TTAO on node 
VAX2 was opened for logical I/O. 

In all cases, the device driver manipulates the device registers to 
perform the input or output. The device driver or File Service uses the 
function DAP$SERVER to handle the message. Figure 13-1 shows the 
flow of the read-request message; the requested record, in each case, 
flows back to the requesting program on the same path. 

File Service 13-23 



When the driver uses the data access protocol, the driver must be on 
the same network node as the device it controls, but the driver - and 
thus, the device - can be used by programs located anywhere in the 
local area network. 

The DAP is supported by a set of precompiled modules (for Pascal only) 
and a set of declarations, including types, constants, and function types 
(action routines). The Pascal declarations are used in programs by 
including the module $DAP from RTLOBJECT.OLB in the compilation. 
The corresponding definitions for C are contained in the module $DAP 
in ELN$:VAXELNC.TLB. 

13.13.1 CAP General Principles 

In data communication, a protocol is a definition of a set of messages 
and, usually, the means of exchanging the messages. 

The data access protocol defines two things: 

• A set of messages. Each message has a predefined format and 
meaning, and definitions are provided in the DAP for messages 
of every kind likely to be relevant to talking to record-oriented 
devices: specifying a file and the kind of access requested, sending 
control information (commands to read, write, and so on) defining 
the characteristics of files and devices, and so forth. 

• A method of starting a message exchange (action routines). 

The DAP assumes that a communications path already exists for 
the messages, which, in VAXELN programming, is a circuit. (See 
Section 5.3.B.) 

The low-level operations of locating the communicating processes 
and formatting, interpreting, and transmitting messages are done by 
runtime library routines. When writing a device driver, you can regard 
these routines as black boxes, since you do not have to call any of them 
explicitly, except DAP$SERVER. 

In writing device drivers, the use of the DAP requires three steps: 

1. Define a set of action routines appropriate to the device. 

2. Establish circuits with any user processes that want to do some
thing with the device. 

13-24 File Service 



3. Call the library function DAP$SERVER with parameters that 
supply the circuit - that is, the communication path between the 
device and the user process - and the set of action routines you 
have defined in the driver. 

The management of messages and other low-level operations is then 
done implicitly by DAP$SERVER. Almost all other code in DAP device 
drivers is concerned with servicing device interrupts. 

13.13.2 Action Routines and DAP$SERVER 

An action routine defines your choice of DAP information that should 
be transmitted to perform a particular operation, such as reading a 
data record. The information is represented by a set of predeclared 
data types and constants. 

DAP$SERVER is a predeclared function. The following Pascal declara
tion is included with module $DAP. (See also the source file DAP.PAS.) 

FUNCTION dap$server(VAR circuit-port: port; 
FUNCTION open action OF TYPE dap$open action; 
[OPTIONAL] FUNCTION rename action OF TYPE dap$rename action; 
[OPTIONAL] FUNCTION dir op;n OF TYPE dap$dir open; -
[OPTIONAL] FUNCTION dir-list OF TYPE dap$dir-list; 
[OPTIONAL] FUNCTION erase action OF TYPE dap$erase action; 
[OPTIONAL] FUNCTION get action OF TYPE dap$get action; 
[OPTIONAL] FUNCTION put-action OF TYPE dap$put-action; 
[OPTIONAL] FUNCTION find action OF TYPE dap$fi~d action; 
[OPTIONAL] FUNCTION update action OF TYPE dap$update action; 
[OPTIONAL] FUNCTION rewind:action OF TYPE dap$rewind:action; 
[OPTIONAL] FUNCTION truncate action OF TYPE dap$truncate action; 
[OPTIONAL] FUNCTION flush action OF TYPE dap$flush actio~; 
[OPTIONAL] FUNCTION extend action OF TYPE dap$exte~d action; 
[OPTIONAL] FUNCTION display action OF TYPE dap$display action; 
[OPTIONAL] FUNCTION close action OF TYPE dap$close action; 
dap_buffer_size: integer := 0; -
context: integer := 0 
): integer; 

SEPARATE; 

The action routines, in tum, are represented by function types, for 
example: 

File Service 13-25 



FUNCTION dap$put action ( 
record access 7 dap$b rac; 
record-number: INTEGER; 
record=options : dap$l_rop; 
buffer: ASTRING(32767); 
buffer_length : INTEGER; 
context: integer; 
var record file address: dap$r_rfai 
next record: BOOLEAN) 
: dap$l_statusi 

FUNCTION_TYPE; 

For the definitions of all DAP function types - that is, the action 
routines' parameters - and DAP$SERVER's parameters, see the file 
DAP.PAS. 

NOTE 

The preceding discussion applies to Pascal programs 
only. The equivalent interface is available to C pro
grammers using the $DAP include module contained in 
ELN$:VAXELNC.TLB. 

13.13.3 DAP Data Types 

Each kind of action routine is associated with a set of data types 
representing the routine's parameters. In addition, the result type 
dap$l_status, shown in Section 13.13.2, represents the success/failure 
status of each action-routine call. For the definitions of the types of 
action-routine parameters and the result type dap$l_status, see the 
source file DAP.PAS, supplied with your development system. 

13.13.4 DAP Constants 

A large set of named constants are declared for use in DAP device 
drivers. For example, the named constant dap$k_seq_acc can be used 
as an open-file argument to indicate sequential access. For the list of 
names and their definitions, see the source file DAP.PAS, supplied with 
your development system. This same file defines the named constants 
representing action routine completion status, error status, control 
functions, and so forth. 

13-26 File Service 



Many of the status constants are defined in DAP.PAS with reference to 
other, lower-level named constants. The definitions of these constants 
are in the file DAPSTATUS.PAS. 

13.13.5 DAP Wildcard Functions 

The DAP$SERVER, upon receiving a retrieval, rename, or delete 
access function, checks the file specification parameter for any wildcard 
characters. If there are any, it recursively invokes itself to perform the 
function. 

File Service 13-27 





Chapter 14 

VAXELN Device Drivers 

The VAXELN Toolkit supplies drivers for a variety of devices. The 
supplied drivers include the following: 

• Disk drivers, Section 14.1 

• Tape driver, Section 14.2 
• Printer drivers, Section 14.3 

• Terminal drivers, Section 14.4 
• Small Computer System Interface (SCSI) bus driver, Section 14.5 

• Realtime device drivers, Section 14.6 

This chapter discusses the features of the supplied drivers and explains 
how VAXELN applications can perform parallel 110. 

14.1 Disk Drivers 

The VAXELN Toolkit includes device drivers for a number of mass 
storage devices. Table 14-1 lists these drivers with the devices they 
support. 

Table 14-1: Disk Drivers 
Driver 

BDDRIVER 

Supported Mass Storage Devices 

Disk devices that use the VAXBI bus through a KDB50 VAXBI 
bus disk adapter, including the RAnn disks 

VAXELN Device Drivers 14-1 



Table 14-1 (Cont.): Disk Drivers 
Driver Supported Mass Storage Devices 

DDDRIVER TU58 (VAX-ll/730 and VAX-111750) console tape cartridges, 
which, operationally, resemble disk devices 

DIDRIVER RFnn disks attached to the MicroVAX 3300 and 3400 
Integrated Disk Controller 

DQDRIVER RB02 and RB80 disks attached to the VAX-111730 Integrated 
Disk Controller 

DUDRIVER Disk devices that use the UNIBUS through a UDA50 UNIBUS 
disk adapter, including the RAnn disk drives 

Disk devices that use the RQDXn interfaces on the MicroVAX, 
including RXnn diskettes and RDnn Winchester disks 

The RC25 controller for the Q-bus and UNIBUS 

Disk devices that use the KDA50 interface on the MicroVAX, 
incl uding the RAnn disks 

Disk devices that use the KFQSA Q-bus controller, including 
the RFnn disks 

DVSDRIVER RX33, RD53, and RD54 disk devices attached to the MicroVAX 
2000 disk subsystem 

SCDRIVER RZnn Winchester disks, RX23 SCSI diskettes, RRD40 compact 
discs, and third-party Small Computer System Interface (SCSI) 
devices attached to a SCSI bus on MicroVAX, VAXstation, and 
rtVAXstation 3100 series systems. 

To use the disk interfaces and drives on a VAXELN target processor, 
you must build the appropriate driver into the VAXELN system that 
is to run on that processor. If you use the supported disk types and 
drivers as supplied, you can regard the drivers, and the File Service, 
as self-contained programs that perform I/O for you. All you need to 
know in such cases is how to build the drivers into your systems. This 
information is provided in the VAXELN Development Utilities Guide. 

NOTE 

If you build DID RIVER into a VAXELN system, you must 
specify an additional 256 pages for the system's system 
region size. 

14-2 VAXELN Device Drivers 



14.1.1 Logical 1/0 

When a disk is not mounted, you can access it directly by using 
language-specific I/O routines or statements. You open a disk for 
logical I/O (nonfile I/O) by specifying the disk's device name instead of 
a file name in a call to the Pascal OPEN procedure, C open functions, 
or FORTRAN OPEN statement. Operations that you perform on the 
open file variable apply to the disk volume itself, as if it were a single, 
large file with the first record (record number 1) starting at block 0 on 
the disk. 

Logical I/O lets a program maintain and use its own information about 
the logical structure of records in a file. It is up to the program to 
interpret the structure of individual records, read from the disk, record 
the placement of records relative to one another, and perform other 
operations that the File Service normally handles. 

NOTE 

When you open a disk for logical 110, no other job can access 
the disk. 

You can write your own disk drivers that are compatible with this 
method and with the File Service. For information on writing disk 
drivers that are compatible with the File Service, and for general 
information on the Data Access Protocol (DAP) used by the language
specific I/O routines and statements, see Sections 13.12 and 13.13. 

14.1.2 Disk Specifications 

Table 14-2 lists specifications for the devices that the VAXELN disk 
drivers support. 

Table 14-2: Disk Devices 
Device Disks! Drives! 

Drive Code Media Type ByteslDisk Drive Controller Driver Image 

RA60 DU Cartridge 205 Mbyte 1 4 DUDRlVER.EXE 
BD BDDRIVER.EXE 

RA70 DU Fixed disk 280 Mbyte 1 4 DUDRlVER.EXE 
BD BDDRIVER.EXE 

VAXELN Device Drivers 14-3 



Table 14-2 (Cont.): Disk Devices 
Device Disks! Drives! 

Drive Code Media Type ByteslDisk Drive Controller Driver Image 

RA80 DU Fixed disk 121 Mbyte 1 4 DUDRIVER.EXE 
BD BDDRIVER.EXE 

RA81 DU Fixed disk 456 Mbyte 1 4 DUDRIVER.EXE 
BD BDDRIVER.EXE 

RA82 DU Fixed disk 622 Mbyte 1 4 DUDRIVER.EXE 
BD BD DRIVER. EXE 

RA90 DU Fixed disk 1.2 Gbyte 1 4 DUDRIVER.EXE 
BD BDDRIVER.EXE 

RB02 DQ Cartridge 10 Mbyte 1 4 DQDRIVER.EXE 

RB80 DQ Fixed disk 119 Mbyte 1 1 DQDRIVER.EXE 

RD31 DU Fixed disk 20 Mbyte 1 2 DUDRIVER.EXE 

RD32 DU Fixed disk 42 Mbyte 1 2 DUDRIVER.EXE 
DVSDRIVER.EXE 

RD51 DU Fixed disk 10 Mbyte 1 2 DUDRlVER.EXE 

RD52 DU Fixed disk 31 Mbyte 1 2 DUDRIVER.EXE 

RD53 DU Fixed disk 71 Mbyte 1 2 DUDRIVER.EXE 
DVSDRIVER.EXE 

RD54 DU Fixed disk 150 Mbyte 1 2 DUDRIVER.EXE 
DVSDRIVER.EXE 

RF30 DI Fixed disk 150 Mbyte 1 6 DIDRIVER.EXE 
1 1 DUDRlVER.EXEl 

RF71 DI Fixed disk 400 Mbyte 1 6 DIDRIVER.EXE 
1 1 DUDRlVER.EXEl 

RRD402 DU Compact disc 577 Mbyte 1 1 SCDRIVER.EXE 

RX23 DU Diskette 1.4 Mbyte 1 1 SCDRIVER.EXE 

RX33 DU RX33 1.2 Mbyte 1 2 DUDRIVER.EXE 
diskette3 1 1 DVSDRIVER.EXE 

RX50 DU Diskette 400 Kbyte 2 4 DUDRIVER.EXE 

RZ22 DU Fixed disk 52 Mbyte 1 1 SCDRIVER.EXE 

1 When used with the KFQSA Q-bus controller 

2Read-only device 

3The RX33 drive also supports RX50 diskettes. 

14-4 VAXELN Device Drivers 



Table 14-2 (Cont.): Disk Devices 

Drive 

RZ23 

RZ55 

RZ56 

TU58 

Device Disks! Drives! 
Code Media Type ByteslDisk Drive Controller Driver Image 

DU 

DU 

DU 

DD 

Fixed disk 104 Mbyte 1 1 SCDRIVER.EXE 

Fixed disk 332 Mbyte 1 1 SCDRIVER.EXE 

Fixed disk 665 Mbyte 1 1 SCDRIVER.EXE 

Tape car- 256 Kbyte 2 2 DDDRIVER.EXE 
tridge 

The RB02 and RB80 devices use the VAX-111730 Integrated Disk 
Controller (RB730). You can attach a total of four drives to the con
troller and only one of them can be an RB80. RB02 cartridges are 
identical to RL02 cartridges, and the cartridges can be interchanged 
between these two drive types. 

The TU58 cartridge is the console medium on VAX-111730 and VAX-
111750 processors. The cartridge is treated as if it were a random
access disk with one cylinder, four tracks per cylinder, 128 512-byte 
blocks per track. It is controlled by processor registers. 

RQDXn controllers interface up to four disk drives to the Micro VAX 
Q22-bus; up to two of these drives can be Winchester RDnn disks. 

The RD32, RD53, RD54, and RX33 devices can use the MicroVAX 2000 
Integrated Disk Controller. This controller interfaces up to three disk 
drives; up to two of these drives can be Winchester RDnn disks, and 
one can be an RX33 drive. Devices that use this controller use the 
driver image DVSDRIVER.EXE. 

The RF30 and RF71 disks are integrated storage elements (ISEs) that 
can interface with the MicroVAX 3300 and MicroVAX. 3400 Integrated 
Disk Controller or the KFQSA Q-bus controller. The disks use the 
DIDRIVER.EXE image to interface with the integrated disk controller. 
This controller communicates with up to six disks using the Digital 
Storage System Interconnect (DSS!) bus. 

The RF30 and RF71 disks use the DUDRIVER.EXE image when 
interfacing with the KFQSA Q-bus controller. This controller also 
supports up to six RFnn disks. However, only one disk is supported per 
driver image. Th support multiple RFnn disks, you must include a copy 
of the DUDRIVER.EXE image in your system for each disk. 

VAXELN Device Drivers 14-5 



Bad blocks are handled on disks and diskettes according to the de
vice. RDnn disk devices support controller-initiated bad block re
placement; that is, the RQDXn controller automatically handles bad 
blocks. However, the DVSDRlVER handles bad block replacement and 
vectoring for RDnn disks used with the Micro VAX 2000 Integrated 
Controller. 

An RAnn disk interfaces to a VAX bus by using a disk adapter or 
controller. 

• The UDA50 disk adapter interfaces RAnn disks to the VAX 
UNIBUS. 

• The KDA50 disk controller interfaces the RAnn disks to the 
MicroVAX Q-bus. 

• The KDB50 disk adapter interfaces the RAnn disks to the VAXBI 
bus. 

The disk adapter or disk controller you use for an RAnn disk 
determines the driver image you should use. The driver im
age DUDRIVER.EXE is for UDA50 and KDA50 I/O; the image 
BDDRIVER.EXE is for KDB50 I/O. 

RAnn and RC25 devices support host-initiated bad block replacement; 
that is, the driver automatically revectors bad blocks as they occur on 
the disks. 

14.1.3 Disk Driver Interface to the File Service 

The VAXELN disk drivers include the disk File Service, which supports 
the Files-ll on-disk structure that the VMS systems use. Therefore, 
you can move disk volumes to a VMS system and use them with 
VMS software. Also, most VMS file-handling commands can use disks 
mounted on VAXELN systems when the systems are part of a network 
that includes VMS systems. 

A disk driver uses the File Service to perform the following operations 
on a disk: 

14-6 VAXELN Device Drivers 



Operation 

Open 

Get 

Put 

Close 

Description 

Prepares a device and its driver for program I/O. The File 
Service performs this operation when you mount a disk 
volume or when the first user program accessing the disk 
for logical I/O calls the Pascal OPEN procedure, Copen 
functions, or FORTRAN OPEN statement. 

Reads data from a disk. The File Service performs this op
eration when language-specific input routines or statements 
retrieve information from a disk volume. 

Writes data on a disk. The File Service performs this oper
ation when language-specific output routines or statements 
add information to a disk volume. 

Terminates I/O exchange with a user program. The File 
Service performs this operation when you dismount a disk 
volume or when the last user program accessing the disk 
for logical I/O calls the Pascal CLOSE procedure, C close 
functions, or FORTRAN CLOSE statement. 

14.1.4 Recovery from Power Failure 

When disks are on line and mounted, they are brought back on line 
and remounted automatically following a power failure. The device 
driver reinitializes the disk controller. The File Service operations that 
were in progress when the power failed are retried, and the disks can 
be used again without manual intervention. 

Spinning down an RC25 controller and later spinning it back up is 
equivalent to a power-failure recovery. The actions just described apply 
in this case. 

14.1.5 Direct Device Access for Disk Devices 

Direct device access (DDA) provides an interface that VAXELN appli
cations can use to read data from and write data to local disks directly, 
avoiding the overhead incurred by the data access protocol (DAP). The 
DDA disk interface also provides for physical memory transfers by 
allowing applications to transfer data to and from an allocated system 
region. The interface consists of the runtime routines ELN$DISK_ 
READ and ELN$DISK_WRITE, which read blocks of data from and 
write blocks of data to a local disk drive using the DDA protocol. 

VAXELN Device Drivers 14-7 



When the kernel initializes a disk driver, it creates a DDA port and 
a corresponding local port name of the form drive-name$ACCESS for 
each drive. For example, if DUDRIVER controls the drive named 
DUAl, the kernel creates the local name DUA1$ACCESS. 

To use the DDA disk interface routines, an application must first open 
the appropriate file or device (to gain access to an unmounted disk) and 
establish a VAXELN virtual circuit with a disk driver. The application 
uses the circuit to communicate with the driver. To establish the circuit 
connection, the application must create a port and connect that port to 
the disk drive's DDA port. Once the connection is made, the program 
can call ELN$DISK_READ and ELN$DISK_ WRITE to read and write 
data. 

For descriptions of the ELN$DISK_READ and ELN$DISK_ WRITE 
routines, see VAXELN Pascal Runtime Library Reference Manual, 
VAXELN C Runtime Library Reference Manual, and VAXELN 
FORTRAN Runtime Library Reference Manual. Section 14.1.5.1 ex
plains how to establish a circuit for the DDA disk interface. Sections 
14.1.5.2 to 14.1.5.5 explain how to use the interface to do the following: 

• Perform direct read and write operations, Section 14.1.5.2 

• Read logical blocks from an unmounted disk, Section 14.1.5.3 
• Read logical blocks from a mounted disk, Section 14.1.5.4 

• Transfer data to physical addresses, Section 14.1.5.5 

14.1.5.1 Establishing Circuits for the DDA Disk Interface 

An application program communicates with a disk driver using a 
VAXELN virtual circuit. The program must establish the circuit 
connection by creating a port and connecting that port to a disk drive's 
DDA port. Once the connection is made, the program can call the 
ELN$DISK_READ and ELN$DISK_ WRITE routines to read and write 
data. The following example connects the port drivelJ10rt in a circuit 
to the DDA port named DUA1$ACCESS: 

MODULE test_drive; 

INCLUDE $DDA_UTILITY; 

PROGRAM test_read_write; 

14-8 VAXELN Device Drivers 



VAR 
drivel-port, dda-port PORTi 

BEGIN 
CREATE_PORT (drivel-port) i 
CONNECT_CIRCUIT (drivel-port, DESTINATION NAME := 'DUA1$ACCESS')i 

END. 
ENDi 

Once the connection between drivel-port and the DDA port is es
tablished, the program can call ELN$DISK_READ and ELN$DISK_ 
WRITE, specifying drivelJJort as an argument. 

14.1.5.2 Reading Data from and Writing Data to a Local Disk 

An application program can read data from and write data to a local 
mounted or unmounted disk by calling the ELN$DISK_READ and 
ELN$DISK_WRITE routines. These routines communicate with a disk 
driver by using a user-defined message. They send the message to the 
disk driver and wait for and receive a response. In the case of read 
operations, the message sent contains a read request and the message 
returned contains the data being read. In the case of write operations, 
the message sent contains the data to be written and the message 
returned contains the status of the write operation. 

Alternatively, an application can transfer data to an allocated system 
region. An application must use this method if it needs to lock the 
data buffer at a specific physical address. If an application specifies a 
physical address, ELN$DISK_READ and ELN$DISK_ WRITE transfer 
the data directly to or from the system region at that address. The 
message sent or received contains a DDA header. 

Before calling ELN$DISK_READ or ELN$DISK_ WRITE, you must 
create a message to be used for the data transfers. The message 
must be large enough to handle the largest possible transfer request 
and accommodate a DDA header of size DDA$_HEADER_SIZE. The 
following figure shows such a message: 

VAXELN Device Drivers 14-9 



DDA Header Message Data 

MLO-004168 

If the application is to transfer data to and from an allocated system 
region, the message must be large enough to accommodate just the 
header. 

Calls to ELN$DISK_READ and ELN$DISK_ WRITE must specify the 
port connected in a circuit to the disk drive's DDA port, the number of 
bytes of data to be read or written (read or write size), and the starting 
logical block number on the disk where the read or write operation is to 
begin. 

A bytes transferred argument receives the number of bytes of data 
actually read or written. 

You must also specify the identifier and pointer for the previously 
created message. These input/output arguments represent the message 
sent to and received from the driver. ELN$DISK_READ uses the 
specified message to send a read request to the driver and to receive 
the data read. ELN$DISK_WRITE uses the message to send the 
data being written and to receive the completion status of the write 
operation. If you specify an allocated system region, the routines use 
the message to transfer only the DDA header. 

If an application uses the message arguments - for example, to gain 
access to the message data, it must ensure that it uses the current 
values, and if necessary, points to the message data. The message 
arguments are input/output arguments and the kernel may not map 
the sent and received messages to the same PO virtual address space. 
For example, this might happen if another process in the job runs 
and either uses some memory or returns memory to the system while 
the read or write operation is in progress. If this occurs, the message 
pointer value that the kernel returns might differ from the pointer 
value of the message that was sent. Similarly, the value of the message 
identifier might change. 

To read data from or write data to the message data buffer, an applica
tion must also set up a pointer to the data portion of the message. An 
application can do this by doing one of the following: 

14-10 VAXELN Device Drivers 



• Declaring a 2-field aggregate to represent the message and declar
ing a pointer to that aggregate 

• Setting up a pointer to the message data directly 

An example of how an application might use an aggregate to represent 
a DDA message that has a data buffer of size 4096 bytes (eight disk 
blocks) follows: 

TYPE 
RECORD = dda message; 

VAR 

dda-header : BYTE DATE(DDA$ HEADER SIZE); 
data_buffer: ARRAY[l .. 1024] OF INTEGER; 
END; 

msg-ptr : Adda_message; 

Mter declaring the pointer to the aggregate, the application can specify 
the message pointer in the calls to CREATE_MESSAGE, ELN$DISK_ 
READ, and ELN$DISK_WRITE. The application can also use the 
pointer value to gain access to data read or to fill in data to be written. 
The following code shows how an application might gain access to the 
data buffer after a read operation. The assignment statement adjusts 
the pointer such that it points to the twelfth array element in the data 
buffer. 

ELN$DISK_READ(status, 
access-port, 
READ SIZE := bytes to read, 
BLOCK NUMBER := starting Ibn, 
BYTES=TRANSFERRED := bytes_read, 
MSG OBJ := msg object, 
MSG=PTR : = msgytr); 

data-ptr := msg-ptrA.data_buffer[12] 

If you prefer not to use the an aggregate representation, you might 
set up a pointer to the message data buffer before a write operation or 
after a read operation as follows: 

data-ptr: : INTEGER := msg-ptr: : INTEGER + DDA$_HEADER_SIZE; 

For information about transferring data to an allocated system region 
see Section 14.1.5.5. 

VAXELN Device Drivers 14-11 



14.1.5.3 Reading Logical Blocks from an Unmounted Disk 

You can use the DDA disk interface to transfer data to and from a 
mounted or unmounted local disk. Example 14-1 shows an example of 
how you might use the interface to read logical blocks of data from an 
unmounted disk. 

Example 14-1: Reading Logical Blocks from an Unmounted Disk 

MODULE disk_read_unmounted; 

INCLUDE $dda_utility; 

PROGRAM disk_read_unmounted(INPUT, OUTPUT); 

TYPE 
byte = -128 .. 127; 
block = PACKED ARRAY [1 .. 512] OF BYTE; 

VAR 
total blocks : INTEGER; 
device file : FILE OF block; 
msg obj : MESSAGE; 
msg:ptr : AANYTYPE; 
bytes to read, starting Ibn INTEGER; 
data~tr-: AANYTYFE; -
access-port : PORT; 
drive_name, remote-port_name, file name VARYING STRING (32); 
status, bytes read : INTEGER; 
s_time, e_time, d_time : LARGE_INTEGER; 
s_time_asc, e_time_asc, d time asc VARYING_STRING(23); 

BEGIN { Main program } 

CREATE_PORT(access-port); 

WRITE ('Enter the drive name [DUAl]: '); 
READLN(drive name); 
IF drive name = " THEN drive name := 'DUAl'; 
remote-p;rt_name := drive_name + '$ACCESS'; 

file name := drive name + ' :'; 
OPEN(device_file, -

FILE NAME := file name, 
HISTORY := HISTORY$READONLY); 

o 

CONNECT_CIRCUIT(access-port, DESTINATION NAME := remote-port_name); 

Example 14-1 Cont'd on next page 

14-12 VAXELN Device Drivers 



Example 14-1 (Cont.): Reading Logical Blocks from an Unmounted 
Disk 

REPEAT 
WRITE ('How many blocks are to be read: '); 
READLN(total blocks); 
bytes to read := total blocks * 512; 
starting-Ibn := 0; -
bytes_reid := 0; 

CREATE MESSAGE (msg obj, fl 
- msg-ptr~:ABYTE_DATA(DDA$_HEADER_SIZE + bytes_to_read) 

) ; 

GET_TIME(s_time); 

ELN$DISK_READ(status, 
access-port, 
READ SIZE := bytes to read, 
BLOCK_NUMBER := stirting_lbn, 
BYTES_TRANSFERRED := bytes_read, 
MSG_OBJ := msg_obj, 
MSG_PTR := msg-ptr); 

GET TIME(e time); 
WRITELN('ELN$DISK READ status: " status); 
d time := e time ~ s time; 
d-time asc ~= TIME STRING(-(d time»; 
wRITELN('Time for " bytes read, ' byte transfer -- , 

d time asc); -
WRITELN ('Transfer Rate = " 

bytes_read DIV (d_time::INTEGER DIV 10000), ' Kb/s'); 

data-ptr::INTEGER := msg-ptr: : INTEGER + DDA$_HEADER_SIZE; C) 
{ 
{ Use the data read. 
{} 

DELETE(msg_obj); 

UNTIL total blocks 1; 

{ Clean up } 

DISCONNECT_CIRCUIT(access-port); 
DELETE(access-port); 
CLOSE(device_file); 

Example 14-1 Cont'd on next page 

VAXELN Device Drivers 14-13 



Example 14-1 (Cont.): Reading Logical Blocks from an Unmounted 
Disk 

END; of main program } 
END. 

o Create a port, open the device, and connect to the drive's 
DDA port. Create a VAXELN message port and connect it in a 
circuit to the drive's DDA port. The sample module creates the 
message port access,JJort and connects it in circuit to the DDA port 
remote,JJort_name, where remote,JJort_name is a specified drive 
name and the string $ACCESS. The sample module also uses the 
specified drive name to open the device. The call to OPEN ensures 
that the device driver sets up the appropriate structures for the 
data transfer. 

@ Create a message object. Call CREATE_MESSAGE to create the 
message that is to be sent to the DDA port. The sample module 
creates the message msg_obj. The message's size is calculated 
based on the number of blocks that the user specifies. 

6) Read data from the disk drive. Call ELN$DISK_READ to read 
data from the disk drive. You must specify the port connected in 
a circuit to the drive's DDA port, the read size, the starting logical 
block number, a variable that is to receive the number of bytes 
read, the message identifier, and the message pointer. The call to 
ELN$DISK_READ in the sample module reads data of size bytes_ 
toyead, starting at block starting_lbn, using port access,JJort. The 
number of bytes read is returned to bytes_read. The message is 
transferred using the message msg_obj. 

e Set up a pointer to the message data. Set up a pointer to the 
data portion of the message and use the data read. 

o Clean up resources for the read operation. Clean up resources 
for this read operation by deleting the message and its associated 
data buffer. 

eD Clean up resources and exit. When the user enters 1 for the 
number of blocks to read, clean up resources by disconnecting the 
access port from the drive's DDA port, deleting the access port, and 
closing the device file. When the cleanup is complete, exit. 

14-14 VAXELN Device Drivers 



14.1.5.4 Reading Logical Blocks from a Mounted Disk 

You can use the DDA disk interface to transfer data to and from a 
mounted local disk. Example 14-2 shows an example of how you might 
use the interface to read a contiguous file from or write a contiguous 
file to a mounted disk. 

Example 14-2: Reading Logical Blocks from a Mounted Disk 

MODULE disk_read_rnounted; 

INCLUDE $kernelrnsg, $elnrnsg, $dda_utility, $file_utilitYi 

PROGRAM disk_read_mounted(INPUT, OUTPUT); 

TYPE 
byte = -128 .. 127; 
block = PACKED ARRAY [1 .. 512] OF BYTE; 

VAR 
dda file FILE OF block; 
filesize INTEGER; 
attr rec AFILE$ATTRIBUTES RECORD; 
rnsg obj : MESSAGE; -
msg:ptr : AANYTYPE; 
total bytes, starting Ibn : INTEGER; 
dataytr : AANYTYPE; -
access-port : PORT; 
drive_name, remote-port_name, file_name VARYING STRING (32); 
status, bytes_xfr : INTEGER; 
s time, e time, d time : LARGE INTEGER; 
s=tirne_asc, e_time_asc, d_time=asc : VARYING_STRING(23)i 

[INLINE] PROCEDURE populate_data_buffer(flag : INTEGER); 

{++ 
{ This procedure writes and checks an easily recognizable pattern on 
{ each block. 
{--} 

VAR 
vbn, offset : INTEGER; 
pointer : AINTEGER; 

Example 14-2 Co nt' d on next page 

VAXELN Device Drivers 14-15 



Example 14-2 (Cont.): Reading Logical Blocks from a Mounted Disk 

BEGIN 
FOR vbn := 1 TO filesize DO 

BEGIN 
FOR offset := 1 TO 128 DO 

BEGIN 
pointer::INTEGER := 

data-ptr: : INTEGER + «vbn - 1) * 512 ) + (offset - 1) * 4; 
CASE flag OF 

0: pointerA := 0; 
1: pointerA := vbn; 
2: IF pointerA <> vbn THEN 

BEGIN 
WRITELN('Verify failed @ VBN, offset' vbn, offset); 
RAISE_EXCEPTION(KER$_BAD_VALUE); 

END; 
END; { CASE } 

END; { for offset } 
END; {for vbn } 

END; { procedure } 

BEGIN { Main program } 

CREATE_PORT(access-port); 

WRITE('Enter the drive name [DUAl]: '); 
READLN(drive_name); 

WRITE('Enter file size in blocks: '); 
READLN(filesize); 

IF drive name = II THEN drive name := 'DUAl'; 
remote-port_name := drive_name + I $ACCESS ' ; 

file_name := drive_name + ':' + ' [OOOOOO]dda_file,img/; 

OPEN(dda file, 
FILE NAME := file name, 
HISTORY := HISTORY$NEW, 
RECORD LENGTH := 512, 
RECORD-TYPE := RECORD$FIXED, 
ACCESS:METHOD := ACCESS$DIRECT, 
CONTIGUOUS := TRUE, 
FILESIZE := filesize); 

IF filesize > 0 THEN 
BEGIN 

LOCATE(dda file, filesize); 
PUT (dda_file) ; 

END; 

Example 14-2 Cont'd on next page 

14-16 VAXELN Device Drivers 

o 



Example 14-2 (Cont.): Reading Logical Blocks from a Mounted Disk 

CLOSE(dda_file); 

OPEN (dda_file, 
FILE NAME := file name, 
HISTORY := HISTORY$OLD, 
FILE_ATTRIBUTES := attr_rec); 

IF attr rec = NIL THEN 
RAISE-EXCEPTION(KER$ BAD STATE) 

ELSE IF-attr recA.starting-block number 
RAISE_EXCEPTION (KER$_BAD=STATE); 

o THEN 

CONNECT_CIRCUIT (access-port, ~ 
DESTINATION NAME := remote-port_name); 

total bytes := files·ize * 512; 
startIng lbn := attr recA.starting block number; 
bytes_xfr := 0; - --

create message (msg obj, tt 
- msg~tr::Abyte_data(dda$_header_size + total_bytes»; 

data-ptr::INTEGER := msg-ptr::INTEGER + DDA$_HEADER_SIZE; 

{ Initialize the message data buffer for a write operation. 

populate_data_buffer(l); 

GET_TIME(s_time); 

ELN$DISK_WRITE(status, 
access.-port , 
WRITE SIZE := total bytes, 
BLOCK-NUMBER := starting lbn, 
BYTES=TRANSFERRED := bytes_xfr, 
MSG OBJ := msg_obj, 
MSG_PTR := msg-ptr); 

GET TIME(e time); 
WRITELN('ELN$DISK WRITE status: " status); 
d time := e time ~ s time; 
d-time asc 7= TIME STRING(-(d time»; 
WRITELN('Time for T, bytes xfr, , byte transfer --' d_time_asc); 
WRITELN('Write Transfer Rate = " 

bytes_xfr DIV (d_time::INTEGER DIV 10000), , Kb/s'); 

data-ptr::INTEGER := msg-ptr::INTEGER + DDA$_HEADER_SIZEi 

{ Clear message data buffer before read operation. } 

populate_data_buffer(O); 

Example 14-2 Cont'd on next page 

VAXELN Device Drivers 14-17 



Example 14-2 (Cont.): Reading Logical Blocks from a Mounted Disk 

GET_TIME(s_time); 

ELN$DISK_READ(status, ~ 
accessyort, 
READ SIZE := total bytes, 
BLOCK NUMBER := starting Ibn, 
BYTES-TRANSFERRED := bytes xfr, 
MSG OBJ := msg obj, -
MSG=PTR := msg~tr); 

GET TIME(e time); 
WRITELN('ELN$DISK READ status: " status); 
d time := e time ~ s time; 
d-time asc 7= TIME STRING(-(d time)); 
WRITELN('Time for f, bytes xfr, , byte transfer d_time_asc); 
WRITELN('Read Transfer Rate = " 

bytes_xfr DIV (d_time::INTEGER DIV 10000), , Kb/s'); 

dataytr::INTEGER := msg-ptr: : INTEGER + DDA$_HEADE~SIZE; 

{ Check the message data read. 

populate_data_buffer(2); 

DELETE(msg_obj)i 
DISCONNECT_CIRCUIT(access-port)i 
CLOSE(dda file); 
DELETE(accessyort)i 

ENDi { of main program 
END. 

o Create a port to be connected to the drive's DDA port. Use 
a call to CREATE_PORT to create a VAXELN message port. This 
port is to be connected to the drive's DDA port. The sample module 
creates the message port access-port. 

@ Get the name of the drive's DDA port. Get the name of the 
drive's DDA port. The name of the DDA port in the sample module 
is remote-port_name, where remote-port_name is a specified drive 
name and the string $ACCESS. 

6) Create a file. Use a call to OPEN to create a file. The sample 
module creates an empty contiguous file defined as having 512-byte, 
fixed-length records. 

o Extend the file to the correct size. Extend the file to the correct 
size by locating the last block and writing to it. The sample module 
uses the LOCATE routine to write to the last record. The file is 
then closed to ensure that the correct EOF marker is set. 

14-18 VAXELN Device Drivers 



o Reopen the file and get the starting block number. Reopen 
the file so that data can be written to it. The sample module 
reopens the file and retrieves its file attributes record to get the 
starting logical block number and the file's size. The sample checks 
for the correct starting block number to prevent the disk from being 
destroyed. If the file is not contiguous, the starting block will be 
zero. In this case the application should stop immediately. 

o Connect to the drive's DDA port. Use a call to CONNECT_ 
CIRCUIT to connect the previously created message port to the 
drive's DDA port. The sample module connects the port access-port 
in a circuit to the DDA port remote-port_name, where remote-port_ 
name is a specified drive name and the string $ACCESS. 

8 Create a message object. Call CREATE_MESSAGE to create the 
message that is to be sent to the DDA port. The sample module 
creates the message msg_obj. The message's size is calculated 
based on a specified number of blocks. 

The module calls the routine populate_data_buffer with the argu
ment 1. The routine writes the value 1 to each location in block 1, 
the value 2 to each location in block 2, and so forth. 

€) Write data to the disk drive. Call ELN$DISK_WRITE to write 
data to the disk drive by calling ELN$DISK_ WRITE. You must 
specify the port connected in a circuit to the drive's DDA port, 
the write size, the starting logical block number, a variable that 
is to receive the number of bytes written, the message identifier, 
and the message pointer. The call to ELN$DISK_ WRITE in the 
sample module writes data of size total_bytes, starting at block 
starting_Ibn, using port access-port. The number of bytes written 
is returned to bytes_xfr. The message is transferred using the 
message object msg_obj. 

When the routine returns, msg_obj receives the message identifier 
and msg-ptr receives a pointer to the message that is returned by 
the driver. The sample module uses the returned pointer to set up 
a pointer to the message data. 

The module then calls the routine populate_data_buffer with an 
argument of O. This routine call initializes all locations in the 
message data buffer to o. 

o Read data from the disk drive. Call ELN$DISK_READ to read 
data from the disk drive. You must specify the port connected 
in a circuit to the drive's DDA port, the read size, the starting 
logical block number, a variable that is to receive the number of 
bytes read, the message identifier, and the message pointer. The 

VAXELN Device Drivers 14-19 



call to ELN$DISK_READ in the sample module reads data of size 
totaCbytes, starting at block starting_lbn, using port access-port. 
The number of bytes read is returned to bytes_xrf. The message is 
transferred using the message msg_obj. 

Note that the message that was used for the write operation is also 
used for the read operation. When the routine returns, msg_obj 
receives the message identifier and msg-ptr receives a pointer to 
the message that is returned by the driver. The sample module 
uses the returned pointer to set up a pointer to the message data. 

The module then calls the routine populate_data_buffer with an 
argument of 2. This routine call checks the data read against the 
data that was written. 

~ Clean up resources. Clean up resources by deleting the message 
object and its associated buffer, disconnecting the access port from 
the drive's DDA port, closing the data file, and deleting the access 
port. 

14.1.5.5 Transferring Data to a System Region 

You can transfer data to a region of memory at a specified phys-
ical address by specifying a system region address in the call to 
ELN$DISK_READ or ELN$DISK_ WRITE. The address you specify 
must be aligned on a page boundary and must point to the starting lo
cation of a system region buffer that was previously allocated by a call 
to KER$ALLOCATE_SYSTEM_REGION. When you specify a system 
region address, the data is transferred directly to or from the sys
tem region at that address; the message associated with the specified 
message object is used only for the DDA header. 

Example 14-3 shows an example of how you might use the DDA disk 
interface to read logical blocks of data from an unmounted disk using 
system virtual address space. The sample module must run in kernel 
mode. 

14-20 VAXELN Device Drivers 



Example 14-3: Transferring Data to a System Region 

MODULE xfr_to-physical_adr; 

INCLUDE $dda_utility, $KERNEL; 

PROGRAM xfr_to-physical_adr(INPUT, OUTPUT); 

CONST 
pages in ebuild = 6144; 
phy addr-= pages in ebuild * 512; 
free-pages_left = 10240 - pages_in_ebuild; 

TYPE 
byte = -128 .. 127; 
block = PACKED ARRAY [1 .. 512] OF BYTE; 

VAR 
sO addr : AANYTYPE; 
total blocks : INTEGER; 
device file : FILE OF BLOCK; 
mag obj : MESSAGE; 
msg~tr : AANYTYPE; 
bytes to read, starting Ibn INTEGER; 
data~tr-: AANYTYPE; -
access-port : PORT; 
drive_name, remote-port_name, file name VARYING STRING (32); 
status, bytes read : INTEGER; 
s time, e time, d time : LARGE INTEGER; 
s=time_as~, e_time_asc, d time-asc VARYING_STRING(23); 

BEGIN { Main program } 

CREATE_PORT(access-port); 

WRITE('Enter the drive name [DUAl]: '); 
READLN(drive name); 
IF drive name = " THEN drive name := 'DUAl'; 
remote-p~rt_name := drive_name + '$ACCESS'; 

file name := drive name + ' :'; 
OPEN(device_file, -

FILE NAME := file name, 
HISTORY := HISTORY$READONLY); 

CONNECT_CIRCUIT (access-port, 
DESTINATION NAME := remote-port_name); 

CREATE MESSAGE (msg obj, 
msg-ptr::Abyte_data(DDA$_HEADER_SIZE»; 

REPEAT 

Example 14-3 Cont'd on next page 

o 

VAXELN Device Drivers 14-21 



Example 14-3 (Cont.): Transferring Data to a System Region 

WRITE('How many blocks are to be read: '); 
READLN(total_blocks); 

bytes to read := total blocks * 512; 
starting-lbn := 0; -
bytes_reid := 0; 

KER$ALLOCATE SYSTEM REGION(, 
- - sO_addr, 

bytes to read, 
PHYSICAL-:= phy_addr ); 

data-ptr := sO_addr; 

GET_TIME(s_time); 

ELN$DISK_READ(status, 
access-port, 
READ SIZE := bytes to read, 
BLOCK NUMBER := stirting lbn, 
BYTES=TRANSFERRED := bytes_read, 
MSG_OBJ := msg_obj, 
MSG_PTR := msg-ptr, 
SYS_REG~DR := sO_addr); 

GET TIME(e time); 
WRITELN('ELN$DISK READ status: " status); 
d time := e time ~ s time; 
d-time asc 7= TIME STRING(-(d time»; 
wRITELN('Time for I, bytes read, , byte transfer --' d_time_asc); 
WRITELN('Transfer Rate = ,~ 

bytes_read DIV (d_time::INTEGER DIV 10000), , Kb/s'); 

{ 
{ Use the data read from address sO addr. 
{ 
{ 
{ 
{} 

KER$FREE_SYSTEM REGION(, bytes_to_read, sO_addr); ~ 

UNTIL total blocks = 1; 

DELETE (msg obj); 
DISCONNECT=CIRCUIT(access-port); 
CLOSE(device file); 
DELETE(access-port); 

Example 14-3 Cont'd on next page 

14-22 VAXELN Device Drivers 



Example 14-3 (Cont.): Transferring Data to a System Region 

END; { of main program } 
END. 

o Create a port, open the device, and connect to the drive's 
DDA port. Create a VAXELN message port and connect that port 
in a circuit to the drive's DDA port. The sample module creates the 
message port access...Jlort and connects it in a circuit to the DDA 
port remote...Jlort_name, where remote...Jlort_name is a specified drive 
name and the string $ACCESS. The sample module also uses the 
specified drive name to open the device. The call to OPEN ensures 
that the device driver sets up the appropriate structures for the 
data transfer. 

fJ Create a message object. Create the message that is to be sent to 
the DDA port by calling CREATE_MESSAGE. The sample module 
creates the message msg_obj. The message's size is equal to the 
size of the DDA header. 

6) Allocate necessary system region. Use a call to the 
KER$ALLOCATE_SYSTEM_REGION routine to allocate memory 
in system virtual address space. The memory allocated is physically 
and virtually contiguous and comes from the system region built 
into the system. A pointer to the first location of the allocated 
memory is returned to sO_addr. The region size is calculated based 
on the number of blocks specified in bytes_toJead. 

e Read data from the disk drive. Read data from the disk drive 
by calling ELN$DISK_READ. You must specify the port connected 
in a circuit to the drive's DDA port, the read size, the starting 
logical block number, a variable that is to receive the number of 
bytes read, the message identifier, and the message pointer. The 
call to ELN$DISK_READ in the sample module reads data of size 
bytes_to_read, starting at block starting_lbn, using port access...Jlort. 
The number of bytes read is returned to bytes_read. The data 
is transferred to system region memory, starting at the address 
specified by sO _addr. The message object msg_obj is used for the 
DDA header. The routine returns the identifier and pointer values 
for the message returned by the driver. 

VAXELN Device Drivers 14-23 



o Free the system region. Use a call to the KER$FREE_SYSTEM_ 
REGION routine to free memory that was previously allocated 
with the KER$ALLOCATE_SYSTEM_REGION routine. The call 
to KER$FREE_SYSTEM_REGION in the sample module frees the 
number of bytes read starting at the address specified by sO_addr. 

o Clean up resources. Mter one block is read, clean up resources 
by deleting the message object and its associated buffer (from the 
last read operation), disconnecting the access port from the drive's 
DDA port, closing the device file, and deleting the access port. 
When the cleanup is complete, the module exits. 

14.1.6 Virtual-Memory Disk Driver 

The VAXELN Toolkit includes a virtual-memory driver (VMDRIVER) 
that lets you create a virtual RAM disk structure in system memory 
and use the disk as you would an actual disk drive. You can use the 
VM disk as a scratch disk for the life of the system. Multiple readers 
and writers can share the disk and it can participate in network file 
operations. 

The VMDRIVER runs as a job in a VAXELN system. You build the 
driver into a system by entering the driver's characteristics on the 
System Builder's Program Description Menu. 

Once the VM disk is initialized, you cannot extend it. The memory 
pages used for the disk are allocated from contiguous addresses in 
system virtual address space. If insufficient virtual or physical memory 
is available for the disk, the driver raises the exception appropriate for 
the missing resource. If the debugger is present in the system, it gains 
control and shows the specific error message; otherwise, the driver is 
deleted from the system. 

The module in Example 14-4 initializes, mounts, and writes to the 
virtual-memory disk: 

14-24 VAXELN Device Drivers 



Example 14-4: Using the Virtual-Memory Driver 

MODULE vrn_sample; 

INCLUDE $DISK_UTILITY, $FILE_UTILITY; 

PROGRAM Vffi_sample(INPUT, OUTPUT, data_file); 

CONST 
cluster size 
record size 
file size 

TYPE 

1; 
1024; 
1000; 

Bytes } 
Blocks } 

block record PACKED ARRAY[l .. record_size] OF CHAR; 

VAR 
i, j, m : INTEGER; 
bad block list: DSK$ BADLIST(O); 
dati file-: FILE OF block record; 
number records: INTEGER;
buffer-size : INTEGER; 
more_dita : block_record; 
status : INTEGER; 
cstat : INTEGER; 
cerror : BOOLEAN; 
rdest : VARYING_STRING(255); 
rsource : VARYING STRING(255); 
file name: VARYING STRING(30); 
old file: VARYING STRING(255); 
target file VARYING STRING(255); 
volume=name : VARYING=STRING(12); 

BEGIN 
file name := 'DATA.DAT'; 
volume ,name :='VDISK'; 
number=records := 500; 

WRITELN(fInitializing virtual disk volume .. . f); 

Example 14-4 Cont'd on next page 

VAXELN Device Drivers 14-25 



Example 14-4 (Cant.): Using the Virtual-Memory Driver 

ELN$INIT VOLUME(DEVICE := 'VM', 
- VOLUME := volume_name, 

DEFAULT EXTENSION := 10, 
USERNAME := 'VAXELN', 
WINDOWS : = 7, 
CLUSTER SIZE := cluster size, 
INDEX POSITION := DSK$ BEGINNING, 
DATA YHECK : = DSK$ _ NOCHECK, 
SHARE : = FALSE, 
GROUP := FALSE, 
SYSTEM := FALSE, 
VERIFIED := FALSE, 
BAD LIST := bad block list::DSK$ BADLIST(O); 
STATUS := statu;); -

WRITELN('Mounting virtual disk volume ... '); 

ELN$MOUNT_VOLUME(DEVICE := 'VM', 
STATUS := status); 

buffer size := 4096; 
WRITELN('Opening file on virtual disk ... '); 

OPEN(data file, 
FILE-NAME := file name, 
HISTORY := HISTORY$NEW, 
RECORD_LENGTH := record_size, 
RECORD LOCKING := FALSE, 
ACCESS-METHOD := ACCESS$SEQUENTIAL, 
RECORD-TYPE := RECORD$FIXED, 
CARRIAGE CONTROL := CARRIAGE$NONE, 
DISPOSITION := DISPOSITION$SAVE, 
SHARING := SHARE$NONE, 
APPEND := TRUE, 
BUFFERING := TRUE, 
BUFFERSIZE := buffer_size, 
EXTENDSIZE := 0, 
FILESIZE := file_size, 
TRUNCATE := FALSE, 
STATUS := status); 

more data [1] : = 'A'; 
more:data[record_size] := 'Z'; 

Example 14-4 Cont'd on next page 

14-26 VAXELN Device Drivers 



Example 14-4 (Cont.): Using the Virtual-Memory Driver 

FOR i := 1 TO number records DO 
WRITE(data file, m~re data); 

CLOSE (data file); -
target_file := 'll.lll"name passwd"::log$nam:data.dat'; 
old file := file name; 
ELN$COPY FILE(old file, target file,cstat, cerror, , , 

- rsource, rdest);-
END; 
END. 

For information on how to build the virtual-memory driver into a 
VAXELN system, see the VAXELN Development Utilities Guide. 

14.2 Tape Driver 

The VAXELN Toolkit includes the tape driver MUDRIVER for TK50 
and TK70 magnetic streaming cartridge tape devices and the TUB1 
reel tape system. This driver also supports all other byte-structured 
magnetic tape mass storage control protocol (TMSCP) tape drives. 

To use the tape interface and drive on a VAXELN target processor, 
you must include the driver in the VAXELN system that runs on that 
processor. If you use the supported tape types and driver as supplied, 
you can regard the driver, and the File Service, as a self-contained 
program that performs I/O for you. All you need to know in such 
cases is how to include the driver in your systems. This information is 
provided in the VAXELN Development Utilities Guide. 

14.2.1 Logicall/O 

Tape file operations use the ANSI file structure. Since you cannot 
directly read from or write to this type of structure, you cannot use 
logical I/O with tapes as you can with disks. 

VAXELN Device Drivers 14-27 



14.2.2 Tape Specifications 

Table 14-3 lists specifications for the devices that the VAXELN tape 
driver supports. 

Table 14-3: Tape Specifications 
Drive Device Type Driver Image 

TK50 MU Streaming cartridge MUDRIVER.EXE 

TK70 MU Streaming cartridge MUDRIVER.EXE 

TUB 1 MU Reel tape system MUDRIVER.EXE 

14.2.3 Tape Driver Interface to the File Service 

The VAXELN tape driver, MUDRIVER, includes the tape File Service, 
which supports the ANSI tape file structure. ANSI is the tape file 
structure used by VMS. Therefore, you can move tape volumes to a 
VMS system and use them with VMS software. Also, tapes mounted 
on VAXELN systems can be used by most VMS file-handling commands 
when the VAXELN systems are part of a network with VMS systems. 

The tape driver uses the File Service to perform the following opera
tions on a tape: 

Operation 

Open 

Get 

Put 

Reposition 

14-28 VAXELN Device Drivers 

Description 

Prepares a device and its driver for program 110. The File 
Service performs this operation when you mount a tape 
volume or the first time a user program accesses the device. 

Asynchronously reads the next block from the tape and 
returns a context to the read operation. 

Asynchronously writes the next block to the tape and 
returns a context to the write operation. 

Asynchronously repositions the tape and returns a context 
to the reposition operation. The File Service performs this 
operation when a new file is accessed. 



Operation 

Tapemark 

Return 

Description 

Asynchronously writes a tape mark to the tape and returns 
a context to the tape mark operation. The File Service 
performs this operation when a file or the tape is closed. 

Provides the status of the completed action of the context 
given. 

14.2.4 Recovery from Power Failure 

When a power failure occurs, tapes that are on line and mounted 
are automatically brought back on line, remounted, rewound to the 
beginning, and repositioned at the last known position. The device 
driver reinitializes the tape controller. The File Service operations that 
were in progress when the power failed are retried, and the tapes can 
be used again without manual intervention. 

14.2.5 Recovery from Errors 

Tape mass storage control protocol (TMSCP) devices can detect errors 
and recover. The only data errors reported are unrecoverable errors, 
which the driver forwards to the File Service. 

14.3 Printer Drivers 

The VAXELN Toolkit includes three device driver images that support 
LP11-type line printers. Table 14-4 lists these drivers with the devices 
they support. 

Table 14-4: Printer Drivers 
Driver 

LCD RIVER 

LIDRIVER 

Supported Printer Device 

Printers attached to the parallel printer port of a DMF -32 
board 

Printers attached to the parallel printer port of a DMB32 
communications adapter 

VAXELN Device Drivers 14-29 



Table 14-4 (Cont.): Printer Drivers 
Driver Supported Printer Device 

LPVDRIVER Printers attached to an LPVl1 printer interface 

You can use the parallel port on a DMF-32 for a line printer or for 
parallel 110, but not both simultaneously (see Section 14.4.9). 

14.3.1 Accessing Printer Devices 

You can open a printer device for output by specifying its device name 
instead of a file specification to the language-specific procedures that 
open files. Operations on the opened file then apply to the printer. 

To use line printer output on a VAXELN target system, you must 
build the appropriate driver in the VAXELN system that runs on that 
processor. Several systems in a network can use the printer configured 
for one node. For instructions on including a line printer driver in a 
VAXELN system, see the VAXELN Development Utilities Guide. 

A printer driver generally has one program parameter: the device 
controller name that you supply with the System Builder. The driver 
creates the printer unit's local name by appending 0 to the controller 
name. If you load the driver using a System Builder program descrip
tion, you can specify a second program argument. The driver uses 
this argument to create the unit's universal name; again, the driver 
appends 0 to the argument. 

For example, if you specify LPA as the name of a printer controller 
when you build your system, you can use the local name LPAO: in 
place of a file specification when opening a file on that node. If you also 
supply a universal-name argument, such as PRINTER, you can use the 
name PRINTERO to access the printer from any node. 

Alternatively, you can access a printer on a remote node by supplying a 
node specification in the file specification .. However, the use of universal 
names is more transparent. 

If you are printing a file that was opened or created with FORTRAN 
carriage control, the driver interprets the first character of every line 
as a carriage control character. 

14-30 VAXELN Device Drivers 



LCDRIVER also initializes theDMF-32 parallel interface for line 
printer operation, which means that the same DMF-32 cannot be used 
for parallel I/O. 

14.3.2 Printer Driver Characteristics 

The source files LCDRlVER.PAS, LPVDRIVER.PAS, and LIDRIVER.PAS 
define the printer driver characteristics. These characteristics are de
fined as Pascal named constants. To change a driver's behavior, modify 
the appropriate constant definitions, recompile the source file, and 
relink to generate a new driver image. 

Table 14-5 summarizes the driver characteristics. 

Table 14-5: Printer Driver Characteristics 
Characteristic 

Maximum record length 

Lines per page 

Form-feedlline-feed conversion 

Page width 

Line wrapping 

Description 

The maximum length of single records 
written to the line printer. The stan
dard value is 512 bytes, or characters. 

The number of consecutive lines written 
on a page before a page eject. The 
standard value is 66 lines. A user
generated page eject resets the count. 

A Boolean value that specifies whether 
the American Standard Code for 
Information Interchange (ASCII) char
acter FF (form feed) is converted to an 
equivalent sequence of LFs (line feeds) 
in the output. The default is FALSE. 
Use TRUE for printers that do not have 
a mechanical form-feed feature. 

The maximum number of characters on 
a printed line. The standard value is 
132 characters. 

A Boolean value that specifies whether 
lines longer than the specified page 
width are wrapped automatically. The 
default is FALSE. 

VAXELN Device Drivers 14-31 



Table 14-5 (Cont.): Printer Driver Characteristics 
Characteristic Description 

Lowercase-to-uppercase conversion 

N onprinting character handling 

Insertion of CR before LF 

14.4 Terminal Drivers 

A Boolean value that specifies whether 
lowercase characters are converted to 
uppercase when printed. The default is 
FALSE. To have all letters printed in 
uppercase, change. the value to TRUE. 

A Boolean value that specifies whether 
nonprinting characters are allowed in 
the output. The default is TRUE. 

A Boolean value that specifies whether 
the ASCII character CR (carriage re
turn) is inserted before every occurrence 
of LF (line feed) in the output. (Some 
printers assume a CR when an LF is 
printed.) The default is FALSE. 

The VAXELN Toolkit includes device drivers for performing program 
1/0 with console terminals and terminals attached to asynchronous 
serial communication line interfaces. Table 14--6 lists these drivers 
with the devices they support. 

Table 14-6: Terminal Drivers 
Driver Supported Terminal Devices 

CONSOLE Target processor's console terminal 

CXDRIVER CXA16 and CXB 16 devices, which interface up to 16 
asynchronous serial lines to a Q-bus on a VAX processor 

DECW$CONSOLE Console emulator for VAXELN DECwindows applica
tions 

DECW$TE VT3nn terminal emulator for VAXELN DECwindows 
applications 

14-32 VAXELN Device Drivers 



Table 14-6 (Cont.): Terminal Drivers 
Driver 

DHVDRIVER 

DHTDRIVER 

DZSDRIVER 

DZVDRIVER 

DMBDRIVER 

LTDRIVER 

RTDRIVER 

SCNDRIVER 

YCDRIVER 

Supported Terminal Devices 

CXY08 device, which interfaces up to 8 asynchronous 
serial lines to an Industrial VAX processor 

DHQll and DHVll devices, which interface up to 8 
asynchronous serial lines to a MicroVAX processor 

DHT32 device, which interfaces up to 8 asynchronous 
serial lines to a MicroVAX 2000 processor 

DSH32 device, which interfaces up to 8 asynchronous 
serial lines to MicroVAX 2000 and 3100 processors 

MicroVAX 2000 integrated serial-line controller, which 
interfaces up to 4 asynchronous serial lines to a 
MicroVAX 2000 processor 

DZQ11 and DZV11 devices, which interface up to 4 
asynchronous serial lines to a Micro VAX processor 

DMB32 devices, which interface up to 8 asynchronous 
serial lines to a VAX processor 

Serial-line devices attached to terminal servers 

Remote Terminal Utility, which lets you access a 
VAXELN target from a remote host and enter commands 
as if you were connected to a local terminal 

User-implemented console or terminal device using the 
Signetics DUART chip in an rtVAX 300 configuration 

DMF-32 device, which interfaces up to 8 asynchronous 
serial lines to a VAX. processor 

For information about the DECW$CONSOLE and DECW$TE drivers, 
see the VAXELN Guide to DECwindows. Chapter 11 discusses the 
LAT driver. For information about the Remote Terminal Facility, see 
Section 9.6. 

The VAXELN serial-line drivers are self-contained programs. To 
use the supported serial-line device types, build the corresponding 
driver program into your VAXELN system, using the System Builder's 
Terminal Description Menu or Console Characteristics Menu, as ap
propriate. If you include a terminal driver or the console driver in a 
VAXELN system, you may need to increase the pool size allocated for 
the system to at least 512 blocks. For more information about building 
terminal drivers and the console driver into VAXELN systems, see the 
VAXELN Development Utilities Guide. 

VAXELN Device Drivers 14-33 



NOTE 

To use the DHVDRlVER for the CXY08 or DHQ11 controller, 
you must set the onboard mode switch to DHV mode. The 
factory-default setting for these controllers is DHU mode. 
If you use a CXY08 or DHQ11 controller for 110 operations 
while the device is in DHU mode, 110 inconsistencies may 
occur. 

All data transmissions involving terminals are full-duplex transmis
sions with the same speed, or baud rate, for sending and receiving. In 
addition, you can use all the supported serial-line interfaces to com
municate between remote VAXELN and VMS systems, as discussed in 
Section 14.4.4. 

Other VAXELN drivers support the printer and parallel 110 features of 
the DMF -32 device. For information about these features, see Sections 
14.3 and 14.4.9. 

The modules $TERMCLASS and $DDCMP _ V2 in library 
RTLOBJECT.OLB contain several useful support routines for pro
gramming terminal drivers. You can use these declarations in your 
own terminal drivers by including the modules when you compile your 
driver programs. For details, see terminal driver source files such as 
DZVDRlVER.PAS, TERMCLASS.PAS, and YCDRlVER.PAS. 

Sections 14.4.1 to 14.4.9 discuss a variety of topics concerning the 
terminal drivers that Digital supplies. Specifically, they discuss termi
nal 110, the type-ahead buffer and output synchronization, and direct 
device access. They also explain how to do the following: 

• Terminate lines of input 
• Set up point-to-point Digital Data Communications Message 

Protocol (DDCMP) communication 

• Establish circuits for serial-line communication 

• Retrieve and set terminal characteristics 

• Read data from and write data to serial lines 

• Set serial lines to the spacing state 
• Use control characters 

• Monitor the use of out-of-band characters 

• Use modem control 

14-34 VAXELN Device Drivers 



• Use escape and control sequences 

• Perform parallel 110 

14.4.1 Terminal 1/0 

You read input from and write output to a terminal by sending mes
sages to message ports that the Console Driver or other terminal driver 
creates. 

The Console Driver handles transmissions between the program and 
the console terminal; asynchronous line drivers handle transmissions 
between the program and one or more terminals attached to asyn
chronous serial interfaces. For instructions on including terminal 
drivers in your systems, see the VAXELN Development Utilities Guide. 

The runtime code for VAXELN procedures, such as the Pascal READ 
and WRITE procedures, formulates and transmits the necessary mes
sages implicitly when you call these procedures with reference to a 
terminal. 

14.4.2 Type-Ahead and Synchronization 

Input characters that you type before a read request are buffered in 
a type-ahead buffer. The type-ahead feature lets you, for example, 
answer a prompt without waiting for it to appear and usually prevents 
the loss of characters typed by a fast typist. Input characters remain 
in the type-ahead buffer until the drivers receive a read request from a 
program in the application. They are not echoed until then. 

If the type-ahead buffer fills up before the drivers get a read request, 
the drivers sound the bell on the terminal. 

The drivers synchronize their output with the terminal by using the 
XON and XOFF control characters. Therefore, for most applications, 
you should enable the terminal's AUTO XONIXOFF setting. 

VAXELN Device Drivers 14-35 



14.4.3 Terminating Lines of Input 

You terminate lines of input by pressing the Return key or by typ-
ing Ctrl/Z or any other character with an ASCII code less than 32 
(decimal), except those that have special interpretations as control 
characters (see Section 14.4.6). When escape recognition is enabled, an 
entire valid escape sequence is treated as a line terminator. The escape 
sequence is not echoed and is returned to the program writing the 
input. This is the only case in which a line terminator also constitutes 
program input. 

14.4.4 Setting Up Point-to-Point OOCMP Communication 

You can use the following interfaces for error-free, though not trans
parent (as Ethernet is), communication between remote VAXELN and 
VMS systems: 

CXA16/CXB16 
CXY08, 
DHQ11 
DHT32 
DHV11 
DMB32 
DMF-32 
DZQ11 
DZV11 

You can establish a virtual circuit between jobs on remote machines 
over a serial line. To set up such a circuit, let each line act as a full
duplex asynchronous point-to-point Digital Data Communications 
Message Protocol (DDCMP) communications link. 

The DDCMP is a datalink control procedure that ensures a reliable 
data communications path between communications devices connected 
by data links. You specify the DDCMP option line-by-line when you 
build your system, using the System Builder. 

Figure 14-1 shows a typical VAXELN serial DDCMP link. 

14-36 VAXELN Device Drivers 



Figure 14-1: A VAXELN Serial DDCMP Link 

Target VAX 1 Target VAX 2 

I Job A H Kernel I 
t 

I Job B H Kernel I 
+ 

I YCDR,V:R I 

DHV11 DMF-32 

A job starts the DDCMP protocol on a line by connecting a circuit to 
the driver handling the line; the job stops the protocol by disconnecting 
from the circuit. In Figure 14-1, Job B receives messages sent by Job A 
and Job A receives messages sent by Job B. For example, if Job A uses 
line TTA2 on a DHV11 interface, part of the Pascal program would be 
the following: 

VAXELN Device Drivers 14-37 



VAR 
data-port : PORT; 
msg MESSAGE; 
str : ASTRING(512); 

CREATE_PORT(data-port); 
CONNECT_CIRCUIT(data-port, DESTINATION_NAME := 'TTA2'); 
CREATE_MESSAGE (msg, str); 

SEND (msg, data-port); 
WAIT_ANY(data-port); 
RECEIVE (msg, str, data-port); 

On the other end, Job B's program for using line TTXl on a DMF-32 
interface would look like the following: 

VAR 
data-port : PORT; 
msg MESSAGE; 
str : ASTRING(512); 

CREATE_PORT(data-port); 
CONNECT_CIRCUIT (data-port, DESTINATION NAME := 'TTX1'); 
CREATE~SSAGE(msg, str); 

SEND (msg, data-port); 
WAIT_ANY(data-port); 
RECEIVE (msg, str, data-port); 

The message data can be any data type and can have a length of 1 to 
1024 bytes. 

The CONNECT_CIRCUIT procedure starts the DDCMP protocol 
running; the DISCONNECT_CIRCUIT procedure stops it. If the 
driver determines that the line is down due to excessive errors or 
retransmissions, it disconnects the circuit. Because this is a full-duplex 
communications line, both jobs can send messages simultaneously. 

The following limitations apply to DDCMP communication: 

• Messages received are guaranteed to be received in proper order 
and error-free. However, due to the nature of the DDCMP protocol, 
flow control is not as complete or as transparent as for normal 
circuits. For example, if a job sends enough messages to fill the 

14-38 VAXELN Device Drivers 



destination port before the receiving job can call the RECEIVE 
procedure to receive them, the driver refuses additional messages. 

• If the receiver does not receive the messages within a timeout pe
riod of approximately 20 seconds (accounting for retransmissions 
and acknowledgments) the sending driver stops the protocol and 
disconnects the circuit. To prevent this, the two jobs should syn
chronize their transmissions so as not to exceed each other's port. 
The transmission lines are full-duplex, and messages can be over
lapped for higher throughput. However, you should avoid prolonged 
uncontrolled sending of messages. 

• Only one virtual circuit is allowed for each line. 

14.4.5 Direct Device Access for Serial-Line Devices 

Direct device access (DDA) provides an interface for controlling and 
monitoring serial-line device characteristics at runtime. The VAXELN 
terminal drivers use this interface. Likewise, user-written programs, 
including terminal drivers, can use this interface to retrieve and set 
serial-line characteristics. Additionally, programs in systems that 
include modem control- DHVDRIVER, DMBDRIVER, or YCDRIVER 
- can use the interface to monitor modem events. 

When the kernel initializes a serial-line terminal driver, it cre
ates a port and a corresponding local port name of the form line
name$ACCESS for each serial line. For example, if DHVDRlVER 
controls the line named TTAl, the kernel creates the local name 
TTAl$ACCESS. For systems that include an attached console, the 
kernel names the console port CONSOLE$ACCESS. 

The DDA serial-line device interface consists of a set of terminal utility 
procedures. To use these routines, a program must first connect a 
circuit to a serial line's DDA port named line-name$ACCESS. After 
the driver accepts the circuit, the program can call the procedures. 
A program can perform simultaneous DDA operations by connecting 
multiple circuits to the serial line's DDA port. A program can maintain 
multiple circuits with a terminal driver for each serial line. 

The terminal utility procedures are as follows: 

VAXELN Device Drivers 14-39 



Routine 

ELN$'ITY_GET_CHARACTERISTICS 

Description 

Requests that a serial line be 
set to the spacing state. 

Cancels a request to be no
tified when a serial line's 
modem state changes. 

Cancels a request to be no
tified when a serial line 
receives an out-of-band char
acter. 

Returns a serial line's charac
teristics. 

Requests that data be read 
from a serial line. 

Receives a datagram from the 
terminal driver containing 
information about a serial 
line's modem state changes. 

Receives a datagram from 
the terminal driver notify
ing you that the serial line 
has received an out-of-band 
character. 

Sets a serial line's character
istics. 

Sends a request to the termi
nal driver to be notified when 
a serial line's modem state 
changes. 

Sends a request to the ter
minal driver to be notified 
when a serial line receives an 
out-of-band character. 

Requests that data be written 
to a serial line. 

For descriptions of these procedures, see the VAXELN Pascal Runtime 
Library Reference Manual, VAXELN C Runtime Library Reference 
Manual, or VAXELN FORTRAN Runtime Library Reference Manual. 

14-40 VAXElN Device Drivers 



14.4.5.1 Establishing Circuits for Serial-Line Communication 

An application program communicates with a terminal driver using 
a VAXELN virtual circuit. The program must establish the circuit 
connection by creating a port and connecting that port to a serial line's 
DDA port. Once the connection is made, the program can call the 
terminal utility procedures to get and set terminal characteristics, read 
and write data, and so forth. The following code fragment connects the 
port linel...]Jort in a circuit to the DDA port named TTA1$ACCESS: 

MODULE test_terminal; 

INCLUDE $DDA_UTILITY; 

PROGRAM test_term_characteristics; 

VAR 
linelyort, ddayort : PORT; 

BEGIN 
CREATE_PORT(linelyort); 
TRANSLATE_NAME (ddayort, 'TTA1$ACCESS', NAME$LOCAL); 
CONNECT_CIRCUIT (linelyort, DESTINATION PORT := ddayort); 

END. 
END; 

Once the connection between linel...]Jort and the DDA port is estab
lished, the program can call the terminal utility procedures, specifying 
linel...]Jort as an argument. 

14.4.5.2 Retrieving and Setting Terminal Characteristics 

The VAXELN terminal drivers store a serial line's characteristics in a 
terminal characteristics record. The record fields define the character
istics listed in Table 14-7. 

Table 14-7: Terminal Driver Characteristics 
Characteristic 

Controller type 

Description 

The type of asynchronous serial-line controller in 
use. 

VAXELN Device Drivers 14-41 



Table 14-7 (Cont.): Terminal Driver Characteristics 
Characteristic 

Speed 

Parity 

Parity type 

14-42 VAXELN Device Drivers 

Description 

For terminals other than the console, the baud 
rate for transmission and reception is on the 
indicated line. Valid baud rates include the 
following: 
50 134 600 

75 150 1200 

110 300 1800 

2000 

2400 

3600 

4800 

7200 

9600 

19200 

38400 

The default for the console and hard-copy termi
nals is 1200 baud. (The console is assumed to 
be a hard-copy terminal by default.) The default 
for CRT terminals is 9600 baud. You must set 
the terminal to the same speed by using its set
up mode. Not all serial-line devices support the 
setting of this characteristic. 

A Boolean value that specifies whether parity 
checking is enabled for the line. The default is 
FALSE. To enable parity checking, specify TRUE. 
You must set the terminal to the same value by 
using its set-up mode. Not all serial-line devices 
support the setting of this characteristic. 

For terminals other than the console, the value 
is DDA$_PARITY_SPACE, DDA$_PARITY_ODD, 
DDA$_PARITY_EVEN, DDA$_PARITY_MARK, 
or DDA$_PARITY_IGNORE, which specifies the 
type of parity checking used by the connected 
terminal. The default is DDA$_PARITY_EVEN. 
You must set the terminal to the same parity 
type by using its set-up mode. Not all serial-line 
devices support the setting of this characteristic. 



Table 14-7 (Cont.): Terminal Driver Characteristics 
Characteristic 

Display type 

Escape recognition 

Echo 

Passall 

Description 

The type of terminal in use. HARDCOPY specifies 
that the terminal is a hard-copy device, such as 
an LA120 printing terminal; this is the default 
for the console terminal. SCOPE specifies that 
the device is a video terminal; this is the default 
for terminals other than the console. SCOPE 
causes the DELETE key to backspace and rub out 
a deleted character; HARDCOPY makes it rewrite 
a deleted character enclosed in backslashes 
(\deleted-character\). DDCMP lines ignore this 
setting. 

A Boolean value that specifies whether the ter
minal driver is to check that the format of escape 
sequences conforms to the American National 
Standards Institute (ANSI) format. The default 
is TRUE. To disable escape recognition, spec-
ify FALSE. Section 14.4.7 describes the correct 
formats. In general, if you enable escape recogni
tion for a terminal, you should set the terminal's 
escape-sequence format to ANSI by using the 
terminal's set-up mode. DDCMP lines ignore the 
escape recognition setting. 

A Boolean value that specifies whether the termi
nal displays (echoes) input lines it receives. The 
default is TRUE. If the terminal is to display only 
characters that the software writes to it, specify 
FALSE. DDCMP lines ignore this setting. 

A Boolean value that specifies whether the termi
nal driver passes all characters - including tabs, 
form feeds, control characters, and XONIXOFF -
directly from the terminal, without interpretation 
or translation. The default is FALSE, meaning 
that special interpretations apply to certain char
acters (see Section 14.4.6). DDCMP lines ignore 
this setting. 

VAXELN Device Drivers 14-43 



Table 14-7 (Cont.): Terminal Driver Characteristics 
Characteristic 

Eight-bit 

Character size 

TTYSYNC 

Modem 

DDCMP 

14-44 VAXELN Device Drivers 

Description 

A Boolean value that specifies whether the at
tached terminal uses 8-bit ASCII characters. The 
default is FALSE, in which case the high-order 
bits of all input characters are masked to o. To 
prevent the terminal driver from masking the 
high-order bit of an input character to 0, spec
ify FALSE. This characteristic determines how 
software interprets input characters; the bits
per-character setting in a terminal's set-up mode 
governs the number of bits the terminal displays 
or prints. This setting is ignored for DDCMP 
lines. 

The number of bits that comprise a character. 
Valid sizes are 5, 6, 7, and 8. Not all serial-line 
devices support the setting of this characteristic. 

A Boolean value that specifies whether the ter
minal driver is to respond to XONIXOFF flow 
control (CtrllS and Ctr1lQ) sent from the device to 
synchronize output written by the system. TRUE 
is the default. To disable XON/OFF flow control, 
specify FALSE. 

For terminals other than the console, a Boolean 
value that specifies whether a serial line is con
nected to a modem or cable that supplies stan
dard (EIA) modem control signals. The default 
is FALSE; modem control signals are ignored. 
You can use modems only with CXY08, DHQ11, 
DHV11, DMB32, and DMF-32 devices. With the 
DMF-32 device, only the first two of its eight lines 
can be used for modems. (See Section 14.4.8.) Not 
all serial-line devices support the setting of this 
characteristic. 

A Boolean value that specifies whether the line 
uses DDCMP for asynchronous communication 
with another system. The default is FALSE; the 
line acts as a regular terminal line. If the line is 
to act as a point-to-point full-duplex DDCMP line, 
specify TRUE. Not all serial-line devices support 
the setting of this characteristic. 



Table 14-7 (Cont.): Terminal Driver Characteristics 
Characteristic 

Passthru 

Description 

A Boolean value that specifies whether the termi
nal driver passes all characters except XONIXOFF 
directly from the terminal, without interpretation 
or translation. The default is FALSE, meaning 
that special interpretations apply to certain char
acters (see Section 14.4.6). DDCMP lines ignore 
this setting. 

NOTE 

If you change the escape recognition, echo, or display type 
terminal driver characteristic, the change does not take effect 
during the current read operation. However, the change 
will take effect for the next read operation. Unless you 
are using DECW$CONSOLE, DECW$TE, or RTDRIVER, 
all other terminal driver characteristics that you set by 
calling ELN$TTY_SET_CHARACTERISTICS take effect 
immediately, regardless of whether a read operation is in 
progress. 

You can retrieve a terminal's serial-line characteristics by: 

• Issuing the ECL command SHOW TERMINAL 
• Including a call to the ELN$TTY_GET_CHARACTERISTICS 

procedure in an application program 

Similarly, you can set all or a subset of the serial-line characteristics in 
the following situations: 

• When you build your VAXELN system. If you include a terminal 
driver in your system, you can specify the characteristics of the ter
minal on each serial line by editing the System Builder's Terminal 
Characteristics Menu. You can specify the console terminal's 
characteristics on the Console Characteristics Menu. 

• When using ECL. You can change the character size, echo, 8-bit, 
escape, parity, passall, speed, scope, and terminal synchronization 
characteristics by issuing the SET TERMINAL command with the 
appropriate qualifiers. 

VAXELN Device Drivers 14-45 



• At runtime. You can modify a serial line's characteristics dy
namically at runtime by including a call to the ELN$TTY_SET_ 
CHARACTERISTICS procedure in an application program. 

The ELN$TTY_GET_CHARACTERISTICS procedure allocates a 
terminal characteristics record that the application program can ac
cess to retrieve terminal characteristics. A call to ELN$TTY_GET_ 
CHARACTERISTICS must specify the port connected in a circuit to 
the serial line's DDA port and a pointer that points to the serial line's 
characteristics record. For example: 

VAR 

linel-port, dda-port PORT; 
char record ADDA$_TERMINAL CHARACTERISTICS; 

BEGIN 

{ Establish a circuit connection with the serial line's DDA port. 
CREATE_PORT(linel-port); 
TRANSLATE_NAME (dda-port, 'TTA1$ACCESS', NAME$LOCAL); 
CONNECT_CIRCUIT (linel-port, DESTINATION_PORT := dda-port); 

ELN$TTY_GET CHARACTERISTICS(CIRCUIT := linel-port, 
LINE_CHAR_PTR := char_record); 

WITH char recordA DO 
BEGIN 

WRITELN('Device type = " DEV TYPE); 
WRITELN('Revision level = " REVISION); 

END; 
END. 

This section of code allocates a serial line's characteristics record and 
then accesses the fields containing the serial line's device type and the 
revision level of the characteristics record. 

An application program can change a serial line's characteristics by 
calling ELN$TTY_SET_CHARACTERISTICS. The call ELN$TTY_ 
SET_CHARACTERISTICS in the following section of code changes a 
serial line's passall characteristic to TRUE. 

14-46 VAXELN Device Drivers 



VAR 
linel-port, dda-port PORT; 
char record ADDA$_TERMINAL CHARACTERISTICS; 

BEGIN 

{ Establish a circuit connection with the serial line's DDA port. 
CREATE_PORT(linel-port); 
TRANSLATE_NAME (dda-port, 'TTA1$ACCESS', NAME$LOCAL); 
CONNECT_CIRCUIT(linel-port, DESTINATION_PORT := dda-port); 

ELN$TTY_GET_CHARACTERISTICS(CIRCUIT := linel-port, 
LINE CHAR PTR := char_record); 

char recordA.PASSALL := TRUE; 
ELN$TTY_SET_CHARACTERISTICS(CIRCUIT := linel-port, 

LINE CHAR PTR := char_record); 

END. 

Before the terminal driver sets a line's characteristics, it checks the 
values that you supply in the terminal characteristics record to ensure 
their compatibility with the driver. If you supply an incompatible value, 
the driver returns an error status and does not set any characteristics. 
You must then resubmit the request with compatible values. For 
example, if you specify a line speed that is not available to the driver, 
the driver returns the ELN$_INVALSPEED status and does not set 
any characteristics. In this case, you would resubmit the request with 
a valid line speed. 

You should determine whether a serial line's characteristics are set 
appropriately for your application before modifying the characteristics. 

You can also use the ELN$TTY_GET_CHARACTERISTICS and 
ELN$TTY_SET_CHARACTERISTICS procedures to retrieve and 
set a terminal's modem characteristics if your VAXELN system in
cludes modem support. For information about using modem control, 
see Section 14.4.8.1. 

VAXELN Device Drivers 14-47 



The following information sources might also be useful: 

• For information about establishing a circuit with a serial line's 
DDA port, see Section 14.4.5.1. 

• For information about specifying terminal characteristics at build 
time or about using the ECL commands SET TERMINAL and 
SHOW TERMINAL, see the VAXELN Development Utilities Guide. 

• For descriptions of the ELN$TTY_SET_CHARACTERISTICS and 
ELN$TTY_GET_CHARACTERISTICS procedures, see the VAXELN 
Pascal Runtime Library Reference Manual, VAXELN C Runtime 
Library Reference Manual, or VAXELN FORTRAN Runtime Library 
Reference Manual. 

14.4.5.3 Reading Data from and Writing Data to a Serial Line 

Your application programs can read data from and write data to a 
serial-line device by calling the ELN$TTY_READ and ELN$TTY_ 
WRITE procedures. These procedures read and write characters 
without interpretation. 

ELN$TTY_READ honors input flow control. However, you can disable 
input flow control when you build your system or at runtime. You 
disable flow control at build time by selecting Yes for the Pass all 
entry on the System Builder's Terminal Description Menu. You disable 
it at runtime by using the ELN$TTY_SET_C:HARACTERISTICS 
procedure to change the values in the passall and TTYSYNC fields of 
the serial line's terminal characteristics record to TRUE and FALSE, 
respectively. 

Calls to the ELN$TTY_READ and ELN$TTY_WRITE procedures must 
specify the port connected in a circuit to the serial line's DDA port, a 
buffer, the transfer request size (in bytes), and a variable that receives 
the number of bytes of data transferred. The buffer receives the data to 
be read or contains the data to be written. In calls to ELN$TTY_READ, 
the buffer size can represent the maximum number of characters that 
can be read or the number of characters to be read. 

You can also specify the ELN$TTY_READ and ELN$TTY _WRITE 
procedures with arguments that specify a message object and its 
pointer. ELN$TTY_READ also provides an extended status argument 
that you can use for reporting character errors. 

14-48 VAXELN Device Drivers 



The message object arguments are input/output arguments that sim
plify read and write requests. By default, ELN$TTY_READ and 
ELN$TTY_ WRITE create messages, send the messages to the serial
line driver, wait for and receive response messages, and delete the 
received messages. In the case of read operations, the messages are 
used to transfer data fragments that are copied to the specified buffer. 
In the case of write operations, the messages are used to transfer data 
fragments that are copied from the specified buffer. Rather than having 
the routines create and delete multiple messages to transfer data, you 
can create a message to be used in subsequent transfer requests. 

To use the message arguments, you must create a message that is large 
enough to handle the largest possible transfer request and accommo
date a DDA header of size DDA$_HEADER_SIZE, prior to calling the 
ELN$TTY_READ or ELN$TTY_ WRITE routine. The following figure 
shows such a message: 

DDA Header Message Data 

MLO-004168 

You can then specify the message's identifier and pointer in the call 
to ELN$TTY_READ or ELN$TTY_ WRITE. ELN$TTY_READ uses 
messages to send a read request to the driver and to receive the data 
read. ELN$TTY_ WRITE uses messages to send the data being written 
and to receive the completion status of the write operation. 

If an application uses the message arguments - for example, to gain 
access to the message data, it must ensure that it uses the current 
values. The message arguments are input/output arguments and the 
kernel may not map the sent and received messages to the same PO vir
tual address space. For example, this might happen if another process 
in the job runs and either uses some memory or returns memory to the 
system while the read or write operation is in progress. If this occurs, 
the message pointer value that the kernel returns might differ from the 
pointer value of the message that was sent. Similarly, the value of the 
message identifier might change. 

When calling ELN$TTY_READ, you can also specify read options, the 
minimum number of characters required to complete a read request, a 
read terminator mask, and a timeout value. 

VAXELN Device Drivers 14-49 



Read options specify a specific type of read operation. The read options 
are defined as follows: 

Option Description 

1 

2 

4 

Read a minimum number of characters up to the maximum value 

Read until a specified timeout value expires 

Read until a specified character is read 

If you do not specify a read option, the procedure reads characters 
without interpretation while honoring input flow control. 

If the default action for ELN$TTY_READ is not appropriate for your 
application, use the read options to tailor the procedure's action to your 
needs. You can define a minimum read size by specifying option 1 and 
an argument representing the minimum number of characters required 
to complete a read request. The minimum read size that you specify 
must be less than the buffer size. 

You can use the minimum read size option to flush a terminal driver's 
typeahead buffer. To do this, specify option 1 and a minimum read 
size of o. This combination will cause ELN$TrY _READ to read as 
many bytes as are available in the driver's typeahead buffer, up to a 
maximum equal to the specified buffer size. If necessary, repeat the 
read operation until the number of bytes read equals 0 and the status 
value is odd (success). 

You can define a terminator mask by specifying option 4 and an argu
ment that specifies a read terminator mask array. Each element in the 
mask corresponds to a character in the DEC Multinational Character 
Set. Setting the value associated with an element to TRUE indicates 
that the character is to terminate the read operation. If you specify op
tion 4 without specifying a value for the argument, the read terminates 
when the specified number of characters are read or a specified timeout 
value expires. 

NOTE 

When you specify option 4, a read operation may terminate 
due to two conditions: success (ELN$_SUCCESS) and the 
receipt of a terminating character (ELN$_TERM_RECV). In 
this case, the ELN$TrY_READ procedure returns the status 
value ELN$_TERM_RECV. 

14-50 VAXELN Device Drivers 



If you specify option 2 and a timeout value argument, the ELN$TTY_ 
READ procedure reads data until a time interval expires. You specify 
the time interval as a time value as shown in the following example: 

tmo := TIME_VALUE('O 00:02:00.00'); 

If you specify option 2 without specifying a timeout value, the read 
terminates immediately with as many characters as are available (from 
the type-ahead buffer) up to the buffer size or a specified terminating 
character. 

You can specify multiple read options by supplying a read option value 
that is the sum of the desired options. For example, to initiate a read 
operation that is to use a terminator mask and a timeout value, specify 
6 (the sum of options 2 and 4) for the read option. 

If an elTor occurs on a serial-line device during a read operation, the 
driver terminates the operation and does the following: 

• Checks whether the elTor condition is ELN$_PARITY, ELN$_ 
BREAK_DETECTED, or ELN$_FRAME_ERROR. These conditions 
are associated with elTor characters. If one of these conditions 
occurs, the cOlTesponding elTor character is stored in the first 
(low-order) byte of the optional extended status argument. 

• Stores the number of good characters read in the number of bytes 
read argument. If the elTor occurs while the first character is being 
read, the value of the number of bytes read argument is 0 even if 
the specified minimum read size is greater than O. 

Thus, you should check for elTor conditions and check the value of the 
number of bytes argument before using data that the ELN$TTY_READ 
procedure reads. 

The program in Example 14-5 reads data from a serial line and writes 
the characters that are read using the default transfer mechanism. 
Example 14--6 shows how you might read data to and write data. from a 
serial-line device using the user-defined message transfer mechanism. 
The discussions that follow refer to the callouts in the examples. 

VAXELN Device Drivers 14-51 



Example 14-5: Reading and Writing Serial-Line Data 

MODULE readit; 

INCLUDE $ELNMSG, $PASCALMSG, 
$KERNELMSG, $GET MESSAGE TEXT, 
$DDA_UTILITY, $DDA; -

VAR 
dda-packet : ADDA$_PACKET; { I/O packet } 
dda msg : MESSAGE; 
dda:port : PORT; 
app_job-port : PORT; 
status : INTEGER := ELN$ SUCCESS; 
stat : INTEGER := ELN$ SUCCESS; 
options : INTEGER := 0; 
buffer_size : INTEGER; 
buffer: STRING(80); 
nbr bytes read: INTEGER := 0; 
nbr-bytes-written : INTEGER := 0; 
ter;inato~ mask : DDA$ BREAK MASK; 
tmo value 7 LARGE INTEGER :=-0; 
min-read size : INTEGER := 0; 
error_status: DDA$_EXTENDED_READ_STATUS := ZERO; 

PROGRAM readit(INPUT,OUTPUT); 

VAR 
i : INTEGER := 0; 

BEGIN 
JOB_PORT(app_job-port ); 
CONNECT_CIRCUIT (app_job-port, 

DESTINATION NAME := 'TTAO$ACCESS'); 

WHILE TRUE DO 
BEGIN 

options := 0; 
buffer size := 50; 
ELN$TTY READ (status, 

- app_job-port , 
buffer size, 
buffer~ 
nbr_bytes_read, 
options, 
terminator_mask, 
tmo_value, 
min_read_size, 
error_status) ; 

Example 14-5 Cont'd on next page 

14-52 VAXELN Device Drivers 

o 



Example 14-5 (Cont.): Reading and Writing Serial-Line Data 

WRITELN('Status from first read is: " status:l); 
WRITELN('Nurnber of characters read is: " nbr bytes read:l}; 
WRITELN('Data read was: " buffer::string(nbr:bytes:read»; 

IF «status = ELN$ PARITY) OR 
(status = ELN$-FRAME ERROR) OR 
(status = ELN$:BREAK:DETECTED» 

THEN 
WRITELN('Error character is: " error_status.error_character); 

buffer size := nbr bytes read; 
ELN$TTY_WRITE(status, -

app _j ob yort, 
buffer size, 
buffer; 
nbr_bytes_written); 

o 

END; {WHILE TRUE } 

DISCONNECT_CIRCUIT(app_jobyort); 
END; 

o 
END. 

o Connect to a DDA port. Get the application's job port and 
connect it in a circuit to a DDA port. The sample module gets the 
application job port appJob..,port and connects it in a circuit to the 
DDA port TTAO$ACCESS. 

@ Read the data. Use a call to ELN$TTY_READ to read the data. 
The call to ELN$TTY_READ must specify the port connected in a 
circuit to a serial line's DDA port, a buffer, the size of the buffer, 
and a variable that receives a value indicating the amount of data 
read. You can also specify options, terminator mask, timeout value, 
minimum read size, extended status size, message object, and 
message pointer arguments. 

The sample module indicates that no read options will be used, de
fines a buffer size of 50 bytes, and then issues a call to ELN$TTY_ 
READ. The call to ELN$TTY_READ reads data into a buffer of size 
50 bytes and uses error _status to receive extended status informa
tion. Because no read options are specified, ELN$TTY_READ reads 
characters without interpretation while honoring input flow control. 

VAXELN Device Drivers 14-53 



6) Check for a read operation error. Check for a parity error, 
frame error, or break. If one of these conditions occurs, the low byte 
of the extended status argument will contain the character in error. 
The sample module checks whether status receives ELN$_PARITY, 
ELN$_FRAME_ERROR, or ELN$_BREAK_DETECTED. If one of 
these conditions occurs, the sample uses extended status argument 
error _status to write the character in error. 

o Write the data. Use a call to ELN$TrY_WRITE to read the data. 
The call to ELN$TTY_ WRITE must specify the port connected in 
a circuit to a serial line's DDA port, a buffer, the size of the buffer, 
and a variable that receives a value indicating the amount of data 
that is written. You can also specify message object and message 
pointer arguments. The call to ELN$TTY_ WRITE in the sample 
module writes the data that is in buffer to the serial-line device. 

o Disconnect the circuit to the DDA port. Use a call to 
DISCONNECT CIRCUIT to disconnect the circuit to the DDA 
port. The sample module disconnects the circuit between app.Job_ 
port and the DDA port TTAO$ACCESS. 

The numbered callouts that follow refer to the call outs in Example 14-6. 

Example 14-6: Reading and Writing Serial-Line Data Using a User-Defined Message 

MODULE dda_read_with_msg; 

INCLUDE $dda_utility; 

PROGRAM dda_msg_read(INPUT, OUTPUT); 

CONST 
request_size = 5; {Read in 5 bytes with each read 

VAR 
line_buffer: STRING(request_size); 
my yort : PORT; 
size read, 
size=written, 
stat : INTEGER; 
message_obj MESSAGE; 
messageytr "'STRING(DDA$_HEADER SIZE + request_size); 

BEGIN 

Example 14-6 Cont'd on next page 

14-54 VAXELN Device Drivers 



Example 14-6 (Cont.): Reading and Writing Serial-Line Data Using a User-Defined 
Message 

JOB_PORT(app_job-port ); o 
CONNECT_CIRCUIT (my-port, 

DESTINATION_NAME := 'CONSOLE$ACCESS'); 

CREATE_MESSAGE (message_obj, ~ 
message-ptr: : ASTRING(DDA$_HEADER_SIZE + request_size»; 

ELN$TTYREAD(STATUS := stat, 
-- CIRCUIT:= app_job-port, 

BUFFER SIZE := request size, 
BUFFER-:= line buffer,-
NBR BYTES READ-:= size read, 
OPTIONS :~ 0, -
MIN READ SIZE := 0, 
MSG:OBJ 7= message_obj, 
MSG_PTR := message-ptr); 

IF (size read. >0) THEN 
ELN$TTY_WRITE(STATUS := stat, 

CIRCUIT := app_job-port, 
BUFFER SIZE:= size read, 
BUFFER-:= line buff;r, 
NBR BYTES WRITTEN := size written, 
MSG:OBJ := message_obj, -
MSG_PTR := message-ptr)i 

DELETE(message_obj)i 

DISCONNECT_CIRCUIT(app-port ); 

o 
o 

END. {program} 
END; {module} 

o Connect to a DDA port. Get the application's job port and 
connect it in a circuit to a DDA port. The sample module gets the 
application job port app.Job...]Jort and connects it in a circuit to the 
DDA port CONSOLE$ACCESS. 

~ Create a message object. Create the first message that is to be 
used to transfer data between the application and the serial-line 
driver by calling CREATE_MESSAGE. The sample module creates 
the message message_obj. The message has a size of 5 bytes plus 
512 bytes for the DDA header as indicated by the message pointer 
argument message...]Jtr. 

VAXELN Device Drivers 14-55 



6) Read the data. Use a call to ELN$TTY_READ to read the data. 
The call to ELN$TTY_READ must specify the port connected in a 
circuit to a serial line's DDA port, a buffer, the size of the buffer, 
and a variable that receives a value indicating the amount of data 
read. You can also specify options, terminator mask, timeout value, 
minimum read size, extended status size, message object, and 
message pointer arguments. 

The call to ELN$TTY_READ in the sample module reads data 
into a buffer of size 5 bytes (request_size), using the user-defined 
message for the data transfer. The message_ob) and message,JJtr 
arguments specify the user-defined message to be used. The routine 
returns the message identifier and message pointer values of the 
message returned by the driver. The call to ELN$TTY_ WRITE in 
step 4 specifies these values to reuse the message. Because no read 
options are specified, ELN$TTY_READ reads characters without 
interpretation while honoring input flow control. 

e Write the data. Use a call to ELN$TTY_WRITE to read the data. 
The call to ELN$TTY_ WRITE must specify the port connected in 
a circuit to a serial line's DDA port, a buffer, the size of the buffer, 
and a variable that receives a value indicating the amount of data 
that is written. You can also specify message object and message 
pointer arguments. 

In the sample module, ELN$TTY_ WRITE echoes the data that is 
read back to the serial line. ELN$TTY_WRITE writes the number 
of characters read (size_read) from the buffer line_buffer, using 
the user-defined message for the data transfer. The message_ob) 
and messageJJtr arguments specify the message that was returned 
by the call to ELN$TTY_READ in step 3. The ELN$TTY_WRITE 
routine returns the message identifier and message pointer values 
of the message returned by the driver. 

o Delete the message. Use a call to the DELETE procedure to 
delete the last message received from the driver. 

o Disconnect the circuit to the DDA port. Use a call to 
DISCONNECT_CIRCUIT to disconnect the circuit to the DDA 
port. The sample module disconnects the circuit between appJob_ 
port and the DDA port CONSOLE$ACCESS. 

For information about establishing a circuit with a serial line's DDA 
port, see Section 14.4.5.1. For descriptions of the ELN$TTY_READ 
and ELN$TTY_ WRITE procedures, see the VAXELN Pascal Runtime 
Library Reference Manual, VAXELN C Runtime Library Reference 
Manual, or VAXELN FORTRAN Runtime Library Reference Manual. 

14-56 VAXELN Device Drivers 



14.4.5.4 Setting a Serial Line to the Spacing State 

An application program that must get the attention of a device attached 
to a serial line can do so by calling the ELN$TTY_ASSERT_BREAK 
procedure. This procedure sets a device's serial line to the spacing 
state. While in the spacing state, the serial line waits for a default or 
user-specified period of time and asserts a break. The wait ensures 
that all characters are transmitted to the device. 

All VAXELN terminal drivers except CONSOLE, DECW$CONSOLE, 
DECW$TE, and RTDRIVER support the ELN$TTY_ASSERT_BREAK 
procedure. When you call the procedure, you must specify the port 
connected in a circuit to the serial line's DDA port. Optionally, you 
can specify break options, a break duration period, and a break delay 
period. 

Break options specify the type of break that the serial line is to trans
mit. The break options are defined as follows: 

Option 

1 

2 

4 

8 

Description 

Short break (235 milliseconds) 

Long break (3.5 seconds) 

User-specified break duration 

User-specified break delay 

If you do not specify a break option, the serial line transmits a short 
break after transmitting all current output characters. 

If the predefined short and long breaks are not appropriate for your 
application, you can define your own break. You can define a break 
duration by specifying option 4 and a break duration period. Likewise, 
you define a break delay by specifying option 8 and a break delay 
period. You specify the duration and delay periods as time intervals as 
shown in the following example: 

delay := TIME_VALUE('O 00:02:00.00'); 

You can specify multiple break options by supplying a break option 
value that is the sum of the desired options. For example, to de
fine break duration and delay periods, specify the value 12 (the sum 
of options 4 and 8) for the break option, as shown in the following 
example: 

VAXELN Device Drivers 14-57 



VAR 
linel-port, dda-port PORT; 
stat : INTEGER; 

BEGIN 

{ Establish a circuit connection with the serial line's DDA port. 
CREATE_PORT(linel-port); 
TRANSLATE_NAME (dda-port, 'TTA1$ACCESS', NAME$LOCAL); 
CONNECT_CIRCUIT (line1-port, DESTINATION_PORT := dda-port); 

ELN$TTY ASSERT BREAK (STATUS := stat, 

END. 

- - CIRCUIT := linel-port, 
OPTIONS := 12, 
DURATION := TIME VALUE('O 00:02:00.00'), 
DELAY := TIME_VALUE{'O 00:00:00.00')); 

When you specify multiple break options, the terminal driver applies 
the following precedence to determine the type of break to use: 

1. Short break 
2. Long break 
3. User-defined break 

NOTE 

When you specify break option 4 or 8, you should also specify 
a break duration or delay period, as appropriate. If you 
specify option 4 and omit or specify 0 for the break duration 
period, the duration period is unpredictable. If you specify 
break option 8 and omit or specify 0 for the break delay 
period, the terminal driver does not impose a delay. 

For information about establishing a circuit with a serial line's DDA 
port, see Section 14.4.5.1. For a description of the ELN$TTY_ASSERT_ 
BREAK procedure, see the VAXELN Pascal Runtime Library Reference 
Manual, VAXELN C Runtime Library Reference Manual, or VAXELN 
FORTRAN Runtime Library Reference Manual. 

14-58 VAXELN Device Drivers 



14.4.5.5 Monitoring the Use of Out-of-Band Characters 

VAXELN application programs can use the following terminal utility 
procedures to monitor the receipt of out-of-band characters: 

• ELN$TTY_SIGNAL_OOB_CHARACTERS 

• ELN$TTY_RECEIVE_OOB_CHARACTER 
• ELN$TTY_CANCEL_OOB_CHARACTERS 

A program can instruct a terminal driver to perform special actions 
based on the use of a specified character in the DEC Multinational 
Character Set. 

Before an application program can call ELN$TTY_SIGNAL_OOB_ 
CHARACTERS,ELN$TTY_RECEIVE_OOB_CHARACTER, and 
ELN$TTY_CANCEL_ OOB_ CHARACTERS, the program must establish 
a circuit with the serial line's DDA port (see Section 14.4.5.1). Once 
you establish the circuit, the application program can call ELN$TTY_ 
SIGNAL_OOB_CHARACTERS to request that the terminal driver 
notify the program when a serial-line device receives an out-of-band 
character. In the routine call, you specify the port connected in a circuit 
to the DDA port, user data, the response port that is to receive the out
of-band character, and the out-of-band characters for which notification 
is requested. 

The ELN$TTY_SIGNAL_OOB_CHARACTERS routine signals the 
receipt of an out-of-band on a serial line or the console only if the line 
is not in the PASSALL or PASSTHRU state; if the line is in one of 
these states, the routine ignores the out-of-band character. However, if 
the line is in a temporary PASSTHRU state, the routine will signal the 
receipt of an out-of-band character. 

You specify the out-of-band characters by setting values in an out
of-band character mask. Each element in the mask corresponds to a 
character in the DEC Multinational Character Set. Setting the value 
associated with an element to TRUE indicates that the terminal driver 
is to notify the application when the driver receives that character. 

You can also specify out-of-band character options in a call to 
ELN$TTY_SIGNAL_OOB_CHARACTERS. The options provide more 
control over the terminal driver's actions and are defined as follows: 

VAXELN Device Drivers 14-59 



Option 

1 

2 

Description 

Signal only once. The request for out-of-band character notification 
is canceled after the first datagram is sent. 

Inel ude the out-of-band character in the input stream. 

If you do not specify an option, your application program receives all 
characters that match the specified out-of-band characters and the 
characters are not placed in the input stream. 'lb specify both options, 
specify 3, the sum of the two options. 

Mter you call the ELN$TTY_SIGNAL_OOB_CHARACTERS, you must 
wait on the response port as shown in the following call to WAIT_ANY: 

WAIT_ANY (response-port 

A subsequent call to ELN$TTY_RECEIVE_OOB_CHARACTER can 
then receive an out-of-band character from the terminal driver when 
the driver receives such a character. The call to this procedure must 
specify the response port that you specified in the call to ELN$TTY_ 
SIGNAL_OOB_CHARACTERS, user data, and a variable that is to 
receive the out-of-band character. 

The terminal driver sends a notification, in the form of a datagram, 
to the response port each time it receives an out-of-band character for 
which notification was requested. If you specified out-of-band character 
option 1 in the call to ELN$TTY_S I GNAL_M OD EM_EVENTS , the 
driver sends one datagram. Otherwise, the driver sends a separate 
datagram to your program each time an out-of-band character is re
ceived until you cancel the request with a call to ELN$TTY_CANCEL_ 
OOB_CHARACTERS. A call to this procedure must specify the port 
connected in a circuit to the serial line's DDA port. 

A user data argument (in calls to ELN$TTY_SIGNAL_OOB_ 
CHARACTERS and ELN$TTY_RECElVE_OOB_CHARACTER) lets 
you pass unmodified user-defined data between your program and the 
terminal driver. You might use this argument to distinguish different 
serial lines reporting out-of-band characters to the specified response 
port. 

Example 14-7 shows how you might use the ELN$TTY_SIGNAL_ 
OOB_CHARACTERS, ELN$TTY_RECEIVE_OOB_CHARACTER, and 
ELN$TTY_CANCEL_OOB_GHARACTERS procedures to monitor the 
transmission of out-of-band characters over a serial line. 

14-60 VAXELN Device Drivers 



Example 14-7: Monitoring the Use of Out-of-Band Characters 

MODULE oob; 
INCLUDE $elnmsg, $pascalmsg, 

$kernelmsg, $get message text, 
$dda_utility, $dda; -

VAR 
{ I/O packet } 

MESSAGE; 
Port to connect to 

dda...,.packet 
dda_msg 
dda...,.port 
my...,.port 
status 
response...,.port 
user data 

PORT; 
PORT; 
INTEGER 

Port for circuit connection} 
:= ELN$_SUCCESS; 

PORT; 

oob char mask 
oob char received 

INTEGER : = 0; 
DDA$_OOB_CHAR_MASK := ZERO; 
CHAR; 

PROGRAM oob (INPUT,OUTPUT); 

VAR 
i : INTEGER; 

BEGIN 

{ Establish a circuit connection with the serial line's DDA port. 
TRANSLATE_NAME (dda...,.port, 'TTA1$ACCESS', NAME$LOCAL); 
JOB_PORT(my...,.p0rt); { DDA circuit connection ID } 
CREATE_PORT (response...,.port, 

limit := 20); { Response port} 
CONNECT_CIRCUIT (my...,.port, DESTINATION_PORT := dda...,.port); 

oob_char_mask[ord('3')] := TRUE; 
oob_char_mask[ord('4')] := TRUE; 

{ Choose '3' and '4' as the } 
{ characters for which we want to } 
{ be notified. } 

{ Make the request. } 

ELN$TTY_SIGNAL_OOB_CHARACTERS(status, 
my...,.port, 
user_data, 
response...,.port, 
oob_char_mask); 

{ Wait for notification from the driver. } 

WHILE NOT (done) DO 
BEGIN 

WAIT_ANY(response""'port); 

{ Get the out-of-band character. 

Example 14-7 Cont'd on next page 

VAXELN Device Drivers 14-61 



Example 14-7 (Cont.): Monitoring the Use of Out-of-Band 
Characters 

ELN$TTY_RECElVE_OOB_CHARACTER(status, 
response...,port, 
user data, 
oob_char_received); 

{ The received character will either be a 3 or a 4. 

WRITELN('The received character is: ' ,oob_char_received); 
END; 

ELN$TTY CANCEL OOB CHARACTERS (status, 
- - - mYJort) ; 

RETURN: 
DISCONNECT_CIRCUIT(my...,p0rt); 

END; 
END. 

For information about establishing a circuit with a serial line's 
DDA port, see Section 14.4.5.1. For a description of the ELN$TTY_ 
CANCEL_OOB_CHARACTERS,ELN$TTY_RECEIVE_OOB_ 
CHARACTER, and ELN$TTY_SIGNAL_OOB_CHARACTERS pro
cedures, see the VAXELN Pascal Runtime Library Reference Manual, 
VAXELN C Runtime Library Reference Manual, or VAXELN FORTRAN 
Runtime Library Reference Manual. 

14.4.6 Using Control Characters 

Unless you enable the passall, passthru, or DDCMP terminal char
acteristic, control characters identify special actions to be performed 
by the driver rather than actual characters to be sent to a program. 
Control characters have ASCII codes from 0 to 31 or equal to 127 
(DELETE). Table 14-8 lists the control characters with corresponding 
ASCII codes and action taken. 

You generate the characters designated Ctrl/x, where x is a letter, by 
holding down the Ctrl key while pressing key x. 

14-62 VAXELN Device Drivers 



In some cases, when the echo characteristic is enabled, a CtrVx charac
ter is echoed as a circumflex followed by the letter x - for example, AU 
for CtrVU. 

Table 14-8: Control Characters 
Terminal Key 
or Name 

Bell 

BACKSPACE 

TAB, CTRUI 

LINE FEED, 
CTRL/J 

CTRLIK 

CTRLIL 

NO SCROLL,! 
CTRL/Q 

CTRLIR 

NO SCROLL,! 
CTRL/S 

CTRLIU 

CTRLIZ 

DELETE 

ESC 

Code Action 

7 Sound the terminal's bell or buzzer. 

8 Back up the cursor one character. This does not 
delete the previous character from the input. 

9 Advance to the next horizontal tab stop. The 
terminal controls the tab placement. 

10 Advance to the next line, without a carriage 
return. 

11 Advance to the next vertical tab stop. The termi
nal controls the tab placement. 

12 Advance to next page or display (form feed) and 
terminate the current input line. 

17 Resume transmitting output from the program. 

18 Redisplay the current input line. 

19 Suspend transmitting output from the program. 

21 Erase the current input line. 

26 Designate end-of-file to the program and terminate 
the current input line. 

127 Delete the previous character or, if escape recogni
tion is in effect, the partial escape sequence from 
the input. 

27 Begin escape sequence if the escape recognition 
characteristic is enabled. Otherwise, echo a dollar 
sign ($), perform a carriage return and line feed, 
and terminate the current input line. 

!The key NO SCROLL, on VT100 and similar terminals, alternates between CtrllS (for 
the first and other odd-numbered keystrokes) and CtrllQ. 

VAXELN Device Drivers 14-63 



Table 14-8 (Cont.): Control Characters 
Terminal Key 
or Name 

ENTER,2 
RETURN 

Code Action 

13 Perform a carriage return and line feed and 
terminate the current input line. 

2The key ENTER, on the keypad of VT100 and similar terminals, is normally the same 
as RETURN. 

14.4.7 Using Escape and Control Sequences 

When the escape recognition characteristic is enabled and you are using 
a regular terminal line, you can read escape sequences from a terminal 
with terminal driver checking syntax. In all cases, whether or not es
cape recognition is enabled, you can write escape sequences to perform 
actions specific to the terminal. (For example, the VT100-, VT200-, 
and VT300-series terminals let you control the cursor's movement with 
escape sequences.) 

The driver checks the syntax of escape sequences only on input and 
only when escape recognition is enabled. Only ANSI-format escape 
sequences, such as those used with VT100-, VT200-, and VT300-series 
terminals, are recognized on input. See the hardware documenta
tion for your terminal for the set of escape sequences used with that 
terminal. 

When escape recognition is enabled, the terminal driver checks any 
sequence of input characters beginning with the ESC character (ASCII 
code 27) to determine whether the syntax is correct. An invalid se
quence, including the ESC character itself, is effectively removed from 
the input. Pressing the Delete key in the middle of an escape sequence 
deletes the entire sequence from the input. 

The valid syntax is determined by an ANSI standard as follows (no 
space should separate the syntax elements): 

ESC character-sequence final-character 

character-sequence 
A sequence of zero or more characters, each of which has an 
ASCII code in the range 32 to 47. This range consists of the space 
character and 15 punctuation marks. 

14-64 VAXELN Device Drivers 



final-character 
A single character that has an ASCII code in the range 48 to 127, 
which includes uppercase and lowercase letters, digits, and an 
assortment of punctuation marks. 

The following alternative forms are permitted: 

ESC ; character-sequence final-character 

ESC ? character-sequence final-character 

ESC ° character-sequence final-character 

With ESC 0, the final character can have an ASCII code in the range 
64 to 127. The character sequence is the same in all cases. (The 8-bit 
character SS3 [8F16J can introduce an escape sequence in place of ESC 
0.) 

ANSI control sequences are also valid. In these sequences, the charac
ter sequence and final character are preceded by a left bracket ( [) and 
a sequence of parameter specifiers (no space should separate the syntax 
elements): 

ESC [ param-sequence char-sequence final-char 

The 8-bit character CSI [9B16J can be used to introduce an escape 
sequence, in place of ESC [. 

param-sequence 
Zero or more parameter specifiers, each of which has an ASCII code 
in the range 48 to 63. For example, for some control sequences on 
VT100-, VT200-, and VT300-series terminals, this is a sequence of 
digit characters separated by semicolons. 

char-sequence 
A sequence of zero or more characters, each of which has an ASCII 
code in the range 32 to 47. 

final-char 
A single character, which has an ASCII code in the range 64 to 127. 

For example, the following control sequence erases from the current 
cursor position to the end of the line on a VT100 terminal: 

ESC[OK 

The 0 is a parameter and the K is the final character. 

VAXELN Device Drivers 14-65 



The following sequence turns on the bold and reverse video character 
attributes on a VT100 terminal: 

ESC[1;7m 

The 1 and 7 are parameters separated by a semicolon, and m is the 
final character. 

14.4.7.1 Using VTS2-Type Escape Sequences 

The VT52 terminal uses escape sequences that do not comply fully 
with the ANSI format. VT100-, VT200-, and VT300-series terminals let 
you designate, in the terminal's set-up mode, that they will use VT52 
escape sequences instead of the larger ANSI set supported on that 
terminal type. 

You should use ANSI escape sequences whenever possible. However, 
most VT52 escape sequences are compatible with the ANSI syntax and 
can be recognized if the terminal is set up in VT52 mode. 

For example, the following valid sequence erases from the cursor to the 
end of the screen on a VT52 terminal: 

ESCJ 

In ANSI terms, J is the final-character and there is no character
sequence. 

In contrast, the following control sequence, for positioning the cursor to 
line 2, column 2, is invalid: 

ESC! ! 

Here, the sequence is invalid in ANSI syntax because the final
character (1) does not have an ASCII code in the range 48 to 127. 

14.4.8 Using Modem Control 

Modems let you connect telephone or other remote lines with the 
terminal interface to access the target computer from remote terminals. 
The terminal drivers DHVDRIVER, DMBDRIVER, and YCDRIVER 
support modem control for modems such as the DF03 and DF224 in 
full-duplex, autoanswer mode. Of the eight asynchronous lines on a 
DMF -32, only the first two lines can be connected to modems. 

14-66 VAXELN Device Drivers 



You can include modem support in a VAXELN system by selecting Yes 
for the Modem entry on the System Builder's Terminal Description 
Menu when you build your system. For more information, see the 
VAXELN Development Utilities Guide. 

A modem is controlled by a set of signals it exchanges with a target 
computer. The terminal driver transmits and interprets these signals. 
To be usable, the modem must support all signals listed in Table 14-9. 

Table 14-9: Modem Control Signals 
Signal Name Source 

TxD (transmit- Computer 
ted data) 

RxD (received Modem 
data) 

RTS (request to Computer 
send) 

CTS (clear to Modem 
send) 

DSR (data set Modem 
ready) 

CARRIER Modem 

Action 

Identifies data originated by the computer 
and transmitted through the modem to one 
or more remote terminals. 

Identifies data generated by the modem, in 
response to signals received from a remote 
terminal, and sent to the computer. 

If present, RTS tells the modem to enter 
transmission mode; if absent, the modem 
leaves transmission mode after data trans
mission is complete. 

If present, CTS tells the computer that the 
modem is ready to transmit data; if absent, 
it tells the computer that the modem is not 
ready. 

If present, DSR tells the computer that the 
modem is ready to operate. That is, the 
modem is connected to the line properly and 
is ready to exchange more signals. If absent, 
it tells the computer that the modem is not 
ready. 

If present, CARRIER tells the computer that 
the signal received on the data channel line is 
within the limits specified for the modem. If 
absent, it tells the computer that the received 
signal is not within these limits. 

VAXELN Device Drivers 14-67 



Table 14-9 (ConI.): Modem Control Signals 
Signal Name Source Action 

DTR (data Computer If present, DTR tells the modem that the 
computer is ready to operate, prepares the 
modem for connection to the telephone line, 
and maintains this connection after it is 
made. DTR can be present whenever the 
computer is ready to transmit or receive 
data; if it is absent, the modem disconnects 
itself from the line. 

terminal ready) 

RING Modem If present, RING tells the computer that a 
calling signal is being received by the modem 
(for example, a remote telephone user has 
dialed the computer's telephone number). 

When modem control is enabled for a terminal line, the line is mon
itored continually by the interface hardware for the RING signal. If 
the driver detects the CARRIER and DSR signals, the ring is answered 
whether or not a read request is pending for the line. If the line's 
CARRIER signal is lost, the driver waits 2 seconds for it to reappear. 
If it does not, the driver returns an error to any current or future read 
request. 

14.4.8.1 Retrieving and Setting Modem Characteristics 

If you build terminal modem support into your VAXELN system, you 
can use the ELN$TTY_GET_CHARACTERISTICS and ELN$TTY_ 
SET_CHARACTERISTICS procedures to retrieve and set the modem 
characteristics listed in Table 14-10. 

Table 14-10: Modem Characteristics 
Characteristic 

Modem control 

14-68 VAXELN Device Drivers 

Description 

The type of modem control in effect. The modem 
can be controlled by the terminal driver or the user. 
The driver controls the modem by default. Not 
all serial-line devices support the setting of this 
characteristic. 



Table 14-10 (Cont.): Modem Characteristics 
Characteristic 

RING 

CD (carrier detect) 

CTS (clear to send) 

DSR (data set ready) 

DTR (data tenninal 
ready) 

RTS (request to send) 

Description 

A Boolean value that specifies whether the termi
nal's modem RING indicator is set. You cannot set 
this characteristic. 

A Boolean value that specifies whether the tenni
nal's modem CD indicator is set. You cannot set 
this characteristic. 

A Boolean value that specifies whether the tenni
nal's modem CTS indicator is set. You cannot set 
this characteristic. 

A Boolean value that specifies whether the tenni
nal's modem DSR indicator is set. You cannot set 
this characteristic. 

A Boolean value that specifies whether the ter
minal's modem DTR indicator is set. To set this 
characteristic, the modem control characteristic 
must be set to DDA$_MODEM_CONTROL_USER, 
and the Modem entry on the System Builder's 
Tenninal Description Menu must be set to Yes. Not 
all serial-line devices support the setting of this 
characteristic. 

A Boolean value that specifies whether the tenni
nal's modem RTS indicator is set. 

For information about using the ELN$TTY_GET_CHARACTERISTICS 
and ELN$TTY_SET_CHARACTERISTICS procedures, see 
Section 14.4.5.2. 

14.4.8.2 Monitoring Modem Events 

Programs in systems that support modem control (that is, systems 
that include the terminal driver DHVDRIVER, DMBDRIVER, or 
YCDRlVER and terminal· modem support) can use the terminal util
ity procedures ELN$TTY_SIGNAL_MODEM_EVENTS, ELN$TTY_ 
RECEIVE_MODEM_EVENTS, and ELN$TTY_CANCEL_MODEM_ 
EVENTS to monitor modem events. 

VAXELN Device Drivers 14-69 



Before an application program can call these procedures, the pro
gram must establish a circuit with the serial line's DDA port (see 
Section 14.4.5.1). Once you establish the circuit, the application pro
gram can call ELN$TTY_SIGNAL_MODEM_EVENTS to request that 
the terminal driver notify the program when a serial line's modem state 
changes. In the routine call, you specify the port connected in circuit 
to the DDA port, user data, and the response port that is to receive the 
modem state change data. You must then wait on the response port as 
shown in the following call to WAIT_ANY: 

WAIT~NY(response_port) 

A subsequent call to ELN$TTY_RECEIVE_MODEM_EVENTS can then 
receive modem state change information from the terminal driver. The 
call to this routine must specify the response port that you specified 
in the call to ELN$TTY_SIGNAL_MODEM_EVENTS, user data, and 
a pointer that indicates the record that is to receive the modem state 
change information. 

The terminal driver sends a notification, in the form of a datagram, to 
the response port each time the modem's state changes. The modem 
state change information is then stored in a record that identifies the 
following: 

• The revision level of the modem event information record 

• The type of modem control in effect (driver or user) 
• If the driver is controlling the modem, the modem's current state 

(connected or disconnected) 

• Whether the terminal's modem RING indicator is set 

• Whether the terminal's modem CD indicator is set 
• Whether the terminal's modem CTS indicator is set 

• Whether the terminal's modem DSR indicator is set 
• Whether the terminal's modem DTR indicator is set 

• Whether the terminal's modem RTS indicator -is set 

The driver continues to send the modem event information to your pro
gram until you cancel the request with a call to ELN$TTY_CANCEL_ 
MODEM_EVENTS. A call to this procedure must specify the port 
connected in a circuit to the serial line's DDA port. 

14-70 VAXELN Device Drivers 



A user data argument (in calls to ELN$TTY_SIGNAL_MODEM_ 
EVENTS and ELN$TTY_RECElVE_MODEM_EVENTS) lets you pass 
unmodified user-defined data between your program and the terminal 
driver. You might use this argument to distinguish between serial lines 
reporting modem state changes to the specified response port. 

Example 14-8 shows how you might use the ELN$TTY_SIGNAL_ 
MODEM_EVENTS, ELN$TTY_RECEIVE_MODEM_EVENTS, and 
ELN$TTY_CANCEL_MODEM_EVENTS to monitor a serial line's 
modem events. 

Example 14-8: Monitoring Modem Events 

INCLUDE $DDA_UTILITY; 

PROGRAM getmodem; 

VAR 
line1yort 
ddayort 
modem_eventsyort 
modem_eventytr 
user_data 

BEGIN 

PORT; 
PORT; 
PORT; 
ADDA$_MODEM EVENT INFORMATION; 
INTEGER; 

{ Establish a circuit connection with the serial line's DDA port. } 

CREATE_PORT(line1yort); 
CREATE_PORT(modem_eventsyort); 
TRANSLATE_NAME (ddayort, 'TTA1$ACCESS', NAME$LOCAL); 
CONNECT_CIRCUIT (linelyort, 

DESTINATION PORT := ddayort); 

{ Request to be signaled when modem events occur on line 1. } 

ELN$TTY_SIGNAL_MODEM_EVENTS(CIRCUIT := line1yort, 
USER DATA := user data, 
RESPONSE_PORT := mOdem_eventsyort); 

{ Process all modem change events. } 

Example 14-8 Cont'd on next page 

VAXELN Device Drivers 14-71 



Example 14-8 (Cont.): Monitoring Modem Events 

WHILE TRUE DO 
BEGIN 

{ Wait for the driver to signal a mode status change occurrence. } 

WAIT_ANY(modem_events-port); 

{ Get the modem status change information. } 

ELN$TTY~CEIVE_MODEM_EVENTS(RESPONSE_PORT := modem_events-port, 
USER DATA := user data, 
MODEM_EVENT_PTR := modem_event-ptr); 

WITH modem_event-ptrA do 
BEGIN 

END; 
END; 

Do something with the modem state information. For } 
example, you might notify the user if the line was } 
disconnected. } 

{ Cancel notification request. } 

END. 
END; 

You can also monitor a serial line's modem characteristics, except 
the revision level and modem state, by calling ELN$TTY_GET_ 
CHARACTERISTICS. If the modem is user-controlled, you can use 
the ELN$TTY_SET_CHARACTERISTICS procedure to set the DTR 
and RTS characteristics. For more information about retrieving modem 
characteristics, see Sections 14.4.5.2 and 14.4.8.1. 

14-72 VAXELN Device Drivers 



14.4.9 Performing Parallel 1/0 

You can use the parallel port on a DMF -32 device as a line printer 
port or to send and receive up to 16 bits of data on 16 parallel lines. 
The Pascal source file DR11C.PAS, included in the VAXELN Toolkit, 
contains declarations of the DMF -32 device registers suitable for using 
the device's parallel port for digital input and output. 

You can use the source file DR11C.PAS as a template to write programs 
that perform parallel I/O. Use the type and variable declarations 
as delivered and modify the rest of the code to fit your application 
needs. In some cases, you need to add just a PROGRAM block that 
uses the declarations the module provides. In addition to the register 
declarations, the module provides templates for the following: 

• An ISR and communication region 
• An initialization procedure that creates DEVICE objects represent

ing the device's request A and request B lines, as well as initializing 
the parallel port for digital 110 instead of for a line printer 

• 110 procedures to read and write a 16-bit word of data from the 
device 

14.5 Small Computer System Interface Driver 

The VAXELN Toolkit provides a driver image that supports the 
American National Standards Institute, Small Computer System 
Interface (SCSI) devices on MicroVAX, VAXstation, and rtVAXsta
tion 3100 series systems. The image includes a disk class driver 
(SCSIDISK) and a generic class driver (SCSIGNRC). 

• The disk class driver supports RZ22, RZ23, RZ55, and RZ56 
Winchester disks, RX23 SCSI diskettes, and RRD40 compact discs. 

• The generic class driver provides an interface for all other types of 
SCSI devices, including scanners, optical devices, test equipment, 
and medical devices. 

VAXELN application programs use a supplied message interface to 
communicate with the generic class driver. 

VAXELN Device Drivers 14-73 



A system can support up to two SCSI buses and each bus can support 
up to eight devices: a SCSI host adapter and up to seven device 
controllers connected to the SCSI bus. An integer in the range 0 to 7 
uniquely identifies each of the SCSI devices. Each device controller 
supports one device unit; that is, VAXELN systems support only logical 
unit number (LUN) O. 

Only two devices connected to a SCSI bus can communicate on the bus 
at any given time. On VAXELN systems, the host adapter initiates 
communication to another device. The target device then performs a 
task. SCSI devices usually have a fixed role as an initiator or target, 
although some devices can perform both roles. On VAXELN systems, 
the host adapter is always the initiator and the device controllers are 
targets; target devices cannot handle selection operations. 

The VAXELN SCSI driver image employs a class/port driver archi
tecture for device communication. The architecture clearly defines 
class and port driver responsibilities. The class drivers are device
independent and provide standard interfaces to an underlying port 
driver (see Figure 14-2). The class drivers format commands, interpret 
status values, and manage user data. The port driver monitors and 
controls SCSI bus phase changes and sends and receives SCSI path 
control messages. Using this architecture, you can develop a class 
driver without regard to the underlying port software and hardware. 

You can use the VAXELN SCSI driver image for third-party SCSI 
devices that attach to MicroVAX, VAXstation, and rtVAXstation 3100 
series systems. The disk class driver supports disk and compact disc 
devices, while the generic class driver supports all other devices. 

You can also combine a user-written SCSI class driver with the supplied 
VAXELN SCSI port driver to produce a vendor-specific VAXELN SCSI 
driver image. You can then build that image into a VAXELN system. 

NOTE 

The American National Standard for Information Systems
Small Computer System Interface-2 (SCSI-2) specification 
allows flexibility for some device implementation details 
and omits other details. Thus, implementations of the SCSI 
standard may differ from manufacturer to manufacturer 

14-74 VAXELN Device Drivers 



Figure 14-2: SCSI Class/Port Driver Architecture 

VAXELN System 

SCSI Host Adapter 

MLO-004169 

and from device to device. Although you can use third
party devices with the VAXELN SCSI disk class driver, the 
VAXELN Toolkit does not necessarily support such devices. 

Digital does not guarantee that third-party devices that 
currently run with the supplied class driver will continue to 
run under subsequent releases of the VAXELN Toolkit. 

At this writing, the Small Computer System Interface is 
under development. The draft American National Standard 
for Information Systems-Small Computer System Interface-2 
(SCSI-2) specification (Revision lOb) should be the official 
guide to what a third-party device implements. 

To ensure that your third-party device will work properly in 
a VAXELN environment, Digital encourages the use of an 
established and supported VAXELN interface, such as those 
described in Sections 14.5.1 to 14.5.3. 

VAXELN Device Drivers 14-75 



Sections 14.5.1, 14.5.2, and Section 14.5.3 explain how to build third
party SCSI device support into VAXELN systems using the following: 

• VAXELN SCSI disk class driver 
• VAXELN SCSI generic class driver message interface 

• A user-defined class driver 

The decision as to which method to use for a particular SCSI device 
application is left to the application designer. The designer should 
consider the SCSI device's capabilities, user needs, and available 
programming resources. 

For information about building the SCSI driver into a VAXELN system, 
see the VAXELN Development Utilities Guide. 

For more information about Digital's implementation of the American 
National Standard for Information Systems-Small Computer System 
Interface-2 (SCSI-2) specification and how to use the implementation to 
develop SCSI peripheral devices that are currently available through 
Digital, see Small Computer System Interface: An Overview and Small 
Computer System Interface: A Developer's Guide. 

14.5.1 Using the VAXELN SCSI Disk Class Driver 

The device-independent design of the VAXELN SCSI disk class driver 
enables it to control most disk and compact disc device drives that 
conform to the American National Standard for Information Systems
Small Computer System Interface-2 (SCSI-2) specification. If your 
third-party device conforms to the specification, you should consider 
using the supplied disk class driver for your system. 

If you use the supplied SCSI driver image for a third-party disk or 
compact disc device and your application does not need the generic 
SCSI device support, you should consider removing the generic device 
support from the SCSI driver. You can remove device support from the 
supplied driver by modifying the VAXELN SCSI driver start-up module. 
For information about modifying this module, see Section 14.5.3.1. 

14-76 VAXELN Device Drivers 



14.5.2 Using the VAXELN SCSI Generic Class Driver 

The VAXELN SCSI generic class driver provides support for third-party 
SCSI devices that do not require file system services. 1YPical generic 
SCSI devices include devices such as scanners, optical devices, test 
equipment, and medical devices. 

An application that uses a SCSI generic device communicates with the 
generic class driver, using a generic class driver message interface. The 
interface consists of the following runtime routines: 

Routine Description 

ELN$SCSCCONNECT_DEVICE Connects the application to a 
SCSI device process. 

ELN$SCSCDISCONNECT_DEVICE Disconnects the circuit between 
the application and a SCSI device 
process. 

ELN$SCSCFREE_ CONFIG_DATA Deletes a message object contain
ing SCSI bus configuration data 
from the system. 

ELN$SCSCFREE_CONTROL_PORT Deletes application's source 
control port from the system. 

ELN$SCSCGET_CONFIG_DATA Returns SCSI bus configuration 
data from the generic class 
driver. 

ELN$SCSCGET_CONTROL_PORTS Connects the application to the 
generic class driver and returns 
the source and destination con
trol ports used to establish the 
connection. 

ELN$SC SCI SSUE_COMMAND Delivers a SCSI command to a 
target SCSI device. 

ELN$SCSCMAP _MESSAGE_BUFFER Creates a message for sending 
SCSI commands and data to a 
SCSI device. 

ELN$SCSCUNMAP_MESSAGE_BUFFER Deletes a message used to send 
SCSI commands and data to a 
SCSI device. 

Sections 14.5.2.1 to 14.5.2.4 explain how to use the interface routines 
to do the following: 

VAXELN Device Drivers 14-77 



• Connect to the generic class driver 
• Get configuration data for devices attached to a SCSI bus from the 

generic class driver 

• Connect to SCSI devices 
• Issue SCSI commands 

To use the message interface routines, you must include the appropriate 
modules from the VAXELN runtime libraries. 

Language Module 

VAXELN Pascal $SCSCUTILITY 

C $scsi_utility 

FORTRAN ELN$:FORTRAN_DEFS.FOR 

For descriptions of the message interface routines, see the VAXELN 
Pascal Runtime Library Reference Manual, VAXELN C Runtime 
Library Reference Manual, or VAXELN FORTRAN Runtime Library 
Reference Manual. 

Section 14.5.2.5 shows an example (see Example 14-9) of how you 
might use the message interface routines to program communication 
between a SCSI bus and a third-party SCSI generic device. 

In addition to programming communication to the generic device driver, 
you may want to tailor the SCSI driver to your application. That is, if 
you use the supplied SCSI driver image for a third-party generic device 
and your application does not need the SCSI disk device support, you 
should consider removing the disk device support from the SCSI driver. 
You can remove device support from the supplied driver by modifying 
the VAXELN SCSI driver start-up module. For information about 
modifying this module, see Section 14.5.3.1. 

14.5.2.1 Connecting to the Generic Class Driver 

To use the SCSI generic class driver message interface, an application 
must first connect to the driver by calling the message interface routine 
ELN$SCSI_GET_CONTROL_PORTS. This routine creates two control 
ports - one for the calling job and one for the driver - and establishes 
a circuit connection between the ports. Once the circuit is established, 
the application can use it to issue requests for the following: 

• Configuration data about the devices attached to the SCSI bus 

14-78 VAXELN Device Drivers 



• Connections to SCSI devices 

A call to ELN$SCSI_GET_CONTROL_PORTS must specify the name 
of a SCSI bus controller and two port variables. The controller name 
that you specify must match the device name that you specify when 
configuring the SCSI bus at build time. For example, if you specify the 
device name DUA, you must specify DUA when you configure the bus 
with the System Builder. 

Source and destination port variables receive the control port values. 
The source port variable receives the message port value for the calling 
job. The destination port variable receives the generic class driver port 
value for the specified device controller. 

If your application needs to communicate with devices on two SCSI 
buses, you might design the application such that communication for 
devices on each bus is handled by a separate process. In this case, each 
process would call ELN$SCSI_GET_CONTROL_PORTS to establish a 
circuit connection for each bus. 

When a connection to the generic class driver is no longer needed, the 
application should free the resources associated with source port by 
calling ELN$SCSI_FREE_CONTROL_PORT. 

The following section of C code shows how you might establish a circuit 
connection for the bus controller named DUA and free the source port 
when it is no longer needed: 

VARYING_STRING_CONSTANT(scsiyort_name, "DUA"); 

PORT 
PORT 
int 

source_controlyort; 
destination_controlyort; 
status; 

status = eln$scsi_get_controlyorts(&scsiyort_name, 
&source_controlyort, 
&destination_controlyort); 

VAXELN Device Drivers 14-79 



14.5.2.2 Requesting SCSI Bus Configuration Data 

Once an application connects to the generic class driver, the application 
can use the circuit connection to request SCSI bus device configuration 
data from the driver. The VAXELN SCSI driver stores the configuration 
data for each SCSI bus in a table and sends that data to applications in 
a message upon request. The configuration data includes information 
that the application needs to connect to the devices on the bus. 

To retrieve the configuration data, an application must call the 
ELN$SCSI_GET_CONFIG_DATA routine. Specify the routine with the 
source and destination ports returned by ELN$SCSI_GET_CONTROL_ 
PORTS for a particular bus. You must also specify a variable that 
receives a pointer to the SCSI bus configuration table. The table that 
the application receives includes information about the message that 
was used to transfer the data and the data for each device attached to 
the bus. 

The message information includes an error code, the message identifier, 
the size of the message in bytes, and an array that identifies the 
devices on the bus for which information was returned. The error code 
indicates whether the request was successful (ELN$_SUCCESS) or 
unsupported (ELN$_UNSUPPORTED). 

Table 14-11 lists the characteristics returned for each device (the host 
adapter and device controllers). 

Table 14-11: SCSI Device Characteristics 
Characteristic 

Valid data 

14-80 VAXELN Device Drivers 

Description 

A flag that indicates whether a device exists for the 
SCSI bus identifier. If the flag is set to 1, a device is 
physically attached and the data in the table entry is 
valid. If the flag is set to 0, the data in the entry is 
ignored. 



Table 14-11 (Cont.): SCSI Device Characteristics 
Characteristic 

Device type 

Class attached 

Current connection 

Removable media 

Description 

An integer that identifies the type of peripheral 
device that is attached to the SCSI bus. The value 
can be one of the following: 

Value Device Type 

0 Direct-access device 

1 Sequential-access device 

2 Printer device 

3 Processor device 

4 Write-once, read-multiple device 

5 CDROM device 

6 Scanner device 

7 Optical memory device 

8 Medium changer device 

9 Communications device 

10 to 30 Reserved 

31 Unknown or no device type 

You can get the value for a device by using the SCSI 
INQUIRY command (see the American National 
Standard for Information Systems-Small Computer 
System Interface-2 (SCSI-2J specification). 

A flag that indicates whether a class driver is as
signed to the device. If the flag is set to 1, the device 
is not available to other class drivers. If the flag is 
set to 0, the device is available to other class drivers. 

A flag that informs the generic class driver whether 
a class driver has made a connection to the device. If 
the flag is set to 1, the device is currently being used. 
If the flag is set to 0, the device is not currently being 
used. 

A flag that indicates whether the device is removable. 
If the flag is set to 1, the device is removable. If the 
flag is set to 0, the device is not removable. 

VAXELN Device Drivers 14-81 



Table 14-11 (Cont.): SCSI Device Characteristics 
Characteristic 

Product identifier 

Description 

A 16-byte ASCII text string that identifies the de
vice type. You can get the product identifier for a 
device by using the SCSI INQUIRY command (see 
the American National Standard for Information 
Systems-Small Computer System Interface-2 (SCSI-
2) specification). 

To connect successfully to a SCSI device, an application must use the 
configuration data to determine whether the following conditions exist: 

• A device exists for the SCSI bus identifier (valid data is set to 1) 

• A class driver is assigned to the device (class attached is set to 1) 
• The driver is not connected (current connection is set to 0) 

Thus, the valid data and class attached attributes must be set and the 
current connection attribute must be cleared. 

When the configuration data is no longer needed, the application should 
free the resources used for the configuration data message by calling 
ELN$SCSI_FREE_CONFIG_DATA. 

The following section of C code shows how you might retrieve the 
configuration data for a SCSI bus, check the configuration data for 
a direct access device that is not currently connected, and free the 
configuration data message when it is no longer needed: 

VARYING_STRING_CONSTANT{scsiyort_name, "DUA"); 

PORT source_controlyort; 
PORT destination_control-port; 
struct scsi$config_msg *config_msgyrt; 
int scsi device 
int status; 

status = eln$scsi_get_controlyorts{&scsiyort_name, 
&source_control-port , 
&destination_controlyort); 

14-82 VAXELN Device Drivers 



status = eln$scsi_get_config_data(&source_control-port, 
&destination_control-port 
&config_msg-ptr); 

for (scsi device = 0; scsi device < SCSI$K_MAX_UNITS; scsi_device++) 
if «config_msg-ptr -> -

(config info.config tbl[scsi device]. 
valid data) && - -

(config_isg-ptr->config_info. config_tbl [scsi_device] . 
device type == 0) && 

(config_msg-ptr->config_info. config_tbl [scsi_device] . 
class attached) && 

(!config:msg-prt->config_info.config_tbl[scsi_device]. 
current_connection» 

break; 

status = eln$scsi_free_config_data(&config_msg-ptr); 

status = eln$scsi~free_control-port(&source_control-port); 

14.5.2.3 Connecting to SCSI Devices 

If an application determines from the bus configuration data that the 
data for a device is valid, a class driver is assigned to the device, and 
the device is not already connected, the application can connect to it by 
calling ELN$SCSI_CONNECT_DEVICE. A call to this routine creates a 
driver process for handling communication for the device and connects 
that process to your application. 

When an application connects to a SCSI device, the call to ELN$SCSI_ 
CONNECT_DEVICE must specify the control ports returned by 
ELN$SCSI_GET_CONTROL_PORTS for a particular bus, a vari-
able that receives a circuit port value, a process priority, and the SCSI 
ID for the device to which the application is connecting. The connection 
request is sent over the circuit connection between the control ports. 
When the driver receives the request, it creates a process for the speci
fied SCSI device and assigns the specified priority to that process. The 
driver also creates a message port for the process and connects that 
port to the application's control port; the new port value is returned to 
the circuit port argument. 

VAXELN Device Drivers 14-83 



The process priority must be an integer in the range 0 to 15. The 
highest priority is 0; Digital recommends a priority of 10. If you specify 
a value that is not in the valid range, the driver uses the default value 
of 10. A value other than 10 can adversely affect system performance. 

If your a.pplication needs to communicate with multiple SCSI devices, 
you might design the application such that communication for each 
device is handled by a separate application process. In this case, each 
process would call ELN$SCSI_CONNECT_DEVICE to establish a 
circuit connection for each device. 

When the circuit between the application and the driver's device 
process is no longer needed, the application should disconnect it by 
calling ELN$SCSI_DISCONNECT_DEVICE. You must specify the 
circuit port returned by ELN$SCSI_CONNECT_DEVICE. The routine 
disconnects the circuit port from the application's circuit port, deletes 
the device process, returns the PORT and PROCESS objects to the 
system's kernel object pool, and returns the device to the available list. 

The following section of C code connects to a device associated with 
SCSI ID 3 and disconnects the driver's device process when the connec
tion is no longer needed: 

VARYING_STRING_CONSTANT(scsiyort_name, "DUA"); 

PORT source_controlJ>ort; 
PORT destination_controlJ>ort; 
PORT deviceyrocessyort; 
struct scsi$config_msg *config_msgyrt; 
int scsi_device 
int status; 

status = eln$scsi_get_controlyorts(&scsiyort_name, 
&source_controlJ>ort, 
&destination_controlyort); 

status = eln$scsi_get_config_data(&source_controlyort, 
&destination_controlJ>ort 
&config_msgytr); 

14-84 VAXELN Device Drivers 



for (scsi device = 0; scsi device < SCSI$K MAX UNITS; scsi_device++) 
if «co;fig_msgytr -> - - -

(config info.config thl[scsi device]. 
valid_data) && - -

(config_msgytr->config_info. config_thl [scsi_device] . 
device type == 0) && 

(config_msgytr->config_info.config_thl[scsi_device] . 
class attached) && 

(!config=msgyrt->config_info.config_tbl[scsi_device] . 
current_connection» 

break; 

status = eln$scsi_connect_device(&source_controlyort, 
&destination_controlyort, 
&deviceyrocess_port, 
10, 
scsi_device) ; 

eln$scsi_disconnect_device(&deviceyrocessyort); 

status eln$scsi_free_config_data(&config_msgytr); 

status eln$scsi_free_controlyort(&source_contro1yort); 

14.5.2.4 Issuing SCSI Commands 

Once an application is connected to a SCSI device, the application can 
use the connected circuit to issue SCSI commands. Commands are 
sent to a device in a message that the application creates with a call 
to ELN$SCSI_MAP _MESSAGE_BUFFER. After creating the message, 
the application can specify the message identifier in subsequent calls to 
ELN$SCSI_ISSUE_COMMAND. 

SCSI command messages include a header and a command buffer. 
Optionally, the message can include a buffer for read and write data. 
The following figure shows the SCSI command message format: 

VAXELN Device Drivers 14-85 



Header I Command Buffer I Data Buffsr 

MLO-004171 

An application must specify ELN$SCSI_MAP ~MESSAGE_BUFFER 
with variables that are to receive the message object identifier and a 
pointer to the command buffer. The routine call must also specify the 
size of the command buffer in bytes. The buffer size cannot exceed 256 
bytes. 

A call to ELN$SCSI_MAP _MESSAGE_BUFFER can also specify a 
variable that is to receive a pointer to the data buffer, the size of the 
data buffer, and a pad size. If you specify the data buffer argument, 
you must also specify a size for the buffer. The size of the data buffer 
can range from 1 to 65,536 bytes; 0 bytes is the default. 

The pad size argument is for SCSI device commands that require a 
transfer size that is larger than the size specified by the data buffer 
size argument. If the amount of data requested in a SCSI command 
exceeds the space allocated for the data buffer, the pad size accounts 
for the difference. 

For example, the SCSI READ command transfers data in logical blocks 
- 512-byte units. Suppose an application uses the READ command 
to read the first two bytes of a disk block. The call to ELN$SCSI_ 
MAP _MESSAGE_BUFFER will specify 2 for the data buffer size to 
accommodate the two bytes to be read. Since the READ command 
reads data a block at a time, the call must also specify a pad size of 510 
to account for'the extra 510 bytes. 

Once the message is created, the application can use it to issue SCSI 
commands, such as INQUIRY, READ, and WRITE. To issue a com
mand, the application must use the ELN$SCSI_ISSUE_ COMMAND 
routine. A call to this routine must specify variables that are to re
ceive the status byte returned by the target device (as defined by 
the American National Standard for Information Systems-Small 
Computer System Interface-2 (SCSI-2) specification) and the status 
value returned by a SCSI port driver. The status value that the 
port driver returns indicates whether the command was completed 
successfully or whether a controller or timeout error occurred. 

14-86 VAXELN Device Drivers 



When issuing a SCSI command, the application must also specify the 
following: 

• A port returned by a call to ELN$SCSI_CONNECT_DEVICE 
• The SCSI ID for the device to which the application is issuing the 

command 

• Whether data is being sent or received 
• Whether the target device can disconnect during command execu

tion 

• Whether the initiator and target devices support synchronous mode 
for data transfers 

• Whether the port driver should attempt to repeat a command that 
fails due to a timeout, bus parity, or invalid phase transition error 

• A phase timeout value 

• A disconnect timeout value 
• The identifier for the message object created by a call to 

ELN$SCSI_MAP _MESSAGE_BUFFER 

• The message command buffer pointer returned by the call to 
ELN$SCSI_MAP _MESSAGE_BUFFER 

Optionally, the routine call can specify the message data buffer pointer. 

The values you can specify for the direction, disconnect, synchronous, 
and port retry arguments are defined as follows: 

Values 

Direction 

Descriptions 

Target device enters a Data In phase to send 
data to the initiator. 

Target device enters a Data Out phase to 
receive data from the initiator. 

VAXELN Device Drivers 14-87 



Values 

Disconnect 

SCSI$K_DISCONNECT 

SCSI$K_NODISCONNECT 

Synchronous 

SCSI$K_NOSYNCH 

Port Retry 

SCSI$K_NORETRY 

Descriptions 

Target device can disconnect. 

Target device cannot disconnect. Target de
vices that remain connected to a bus for long 
periods of time can adversely affect system 
performance. 

Initiator and target devices support syn
chronous mode for data transfers. 

The initiator or a target device does not 
support synchronous mode for data transfers. 
Currently, the port driver does not support 
synchronous mode data transfers. There(ore, 
you must specify SCSI$K_NOSYNCH. 

Port driver can retry a command that fails 
due to a timeout, bus parity, or invalid phase 
transition error up to three times. 

Port driver cannot retry a command that fails 
due to a timeout, bus parity, or invalid phase 
transition error. 

If you do not specify a size for the message data buffer in the call to 
ELN$SCSI_MAP _MESSAGE_BUFFER, the driver ignores the direction 
argument. 

The phase and disconnect timeout values an application specifies can 
range from 0 to 420 seconds. The phase timeout value specifies the 
amount of time a target device has to change to another SCSI bus 
phase or to complete a data transfer. The disconnect timeout value 
specifies the amount of time a target device has to reselect an initiator 
to proceed with a disconnected data transfer. If you specify 0 or an 
invalid value, the driver uses a timeout value of 20 seconds. 

14-88 VAXELN Device Drivers 



You can use ELN$SCSI_ISSUE_COMMAND to issue commands that 
are in the Common Command Set (CCS) for direct access devices. 
For information about these commands, see the American National 
Standard for Information Systems-Small Computer System Interface-2 
(SCSI-2) specification. 

When a SCSI command message is no longer needed, the application 
should delete the message by calling ELN$SCSI_ UNMAP _MESSAGE_ 
BUFFER. You must specify the message identifier returned by the 
call to ELN$SCSI_MAP _MESSAGE_BUFFER. The routine deletes the 
message object and returns the resources to the system's kernel pool. 

The following section of C code calls a function that creates a SCSI 
command message and uses it to issue a SCSI INQUIRY command. 
When the function returns, the module uses the returned data and 
then deletes the command message. 

struct inquiry info { 
unsigned char device type:S; 
unsigned char perif_qual:3; 
unsigned char resvOl:7; 
unsigned char rmb:l; 
unsigned char ansi ver:3; 
unsigned char ecma-ver:3; 
unsigned char iso ver:2; 
unsigned char rd_format:4; 
unsigned char resv03:2; 
unsigned char trmiop:l; 
unsigned char aenc:l; 
unsigned char add length; 
unsigned char resv05; 
unsigned char resv06; 
unsigned char stfre:l; 
unsigned char cmdque:l; 
unsigned char resv07:1; 
unsigned char linked:l; 
unsigned char sync:l; 
unsigned char wbus16:1; 
unsigned char wbus32:1; 
unsigned char reladr:l; 
unsigned char vendor ideS]; 
unsigned char product id[16]; 
unsigned char product=rev[4]; 

{18,O,O,O,36,O}; 

VAXELN Device Drivers 14-89 



PORT 
PORT 
PORT 
struct inquiry_info 
MESSAGE 

unsigned char 
int 
int 
int 

source_control-port ; 
destination_control_port; 
device-process-port; 
*inquiry data; 
inquiry msg obj; 
scsi status-byte; 
scsi~ort_status; 
scsi device 
status; 

status get_inquiry_info(&device-process-port, 
scsi device, 

/* 
* Use the inquiry data. 
*/ 

status 

int get inquiry info(PORT 
- - int 

&scsI status byte, 
&scsi~ort_status, 
&inquiry data, 
&inquiry=:msg_obj) ; 

*device-process-port, 
scsi id, 

unsigned char 
int 

*status byte, 
*port status, 
*inqj>rt, char 

MESSAGE 

int i, status; 
char *scsi_cmd-prt; 

*inCLobj) 

status = eln$scsi_map_message_buffer(inCLobj, 
&scsi_cmd-ptr, 
sizeof(inquirycmd), 
inct....Ptr , -
sizeof(struct inquiry_info), 
NULL) ; 

for(i = 0; i < sizeof(inquiry cmd); i++) 
scsi_cmd-ptr[i] = inquiry_cmd[i]; 

14-90 VAXELN Device Drivers 



status eln$scsi issue command( 
status_byte, /* 
port status, /* 
circuit-port, /* 
scsi id, /* 
SCSI$K READ, /* 
SCSI $K=DISCONNECT , /* 
SCSI$K NOSYNC, /* 
SCSI$K=RETRY, /* 
0, 
0, 
in<Lobj, 
&scsi_cmd-ptr, 
in<L..Ptr ) ; 

/* 
/* 
/* 
/* 
/* 

Receives SCSI bus status */ 
Receives port function status */ 
This job's half of circuit port */ 
SCSI bus ID of target device */ 
Direction = read */ 
Allow disconnects */ 
Synchronous disallowed */ 
Port retries allowed */ 
Phase change timeout */ 
Disconnect timeout */ 
Get message object */ 
Get return pointer to command */ 
Get return pointer to buffer */ 

return (status); 

14.5.2.5 Programming a Generic Class Driver Message Interface Application 

This section provides a sample program that demonstrates how an 
application might use the SCSI generic class driver message interface 
(see Example 14-9). The program uses the message interface routines 
to perform a nondestructive read and write test on a block of data on a 
direct access SCSI device. The program consists of a main routine and 
seven functions. 

The main routine connects the application to the generic class driver 
and requests that the driver return bus configuration data for the 
SCSI bus attached to controller DUA. The program then searches ~he 
configuration table for a direct access device that has a class driver 
attached, but is not connected. If such a device exists, the application 
connects to it. 

Mter the program connects to a device, it calls the functions get_ 
inquiry_info, go_spinup_drive, and go_waitJor _uniCready. These 
functions are defined as follows: 

Function 

geCinquiry _info 

go_spinup _drive 

Description 

Issues an INQUIRY command. 

Brings the disk drive on line. This function 
calls issue_start_unit and get_request_ 
sense_info. These functions issue START 
UNIT and REQUEST SENSE commands, 
respectively. 

VAXELN Device Drivers 14-91 



Function Description 

Calls issue_tesCuniCready and geC 
requesCsense_info functions. These func
tions issue START UNIT and REQUEST 
SENSE commands, respectively. 

When the device unit is ready, the main routine creates SCSI command 
messages for reading and writing data and performs a nondestructive 
read and write operation by calling the function go_issue_read_write_ 
cmd five times. The first call to go_issue_read_write_cmd issues a 
READ command. The second call writes the complement of the data 
read to the write buffer. The third call reads the data that was written 
to the device; the data is returned in the write buffer. The fourth 
and fifth calls to go_issue_read_write_cmd write the complemented 
(original) data to and read it from the device. 

Mter performing the read and write operations, the program returns 
resources to the system by deleting the SCSI command messages, 
disconnecting the circuit to the driver's device port, deleting the 
configuration data message, and deleting the application's control 
port. 

Example 14-9: Programming a SCSI Generic Class Driver Message Interface 
Application 

/******************************************************************************* 
* * This ~rogram demonstrates the use of the calls to the SCSI 
* generic class driver message interface. It assumes that the 
* device being used is a direct access device that has read/write 
* capabilities. Each user interface call is utilized at least once 
* within the program. It is not the intent of this program 
* to perform corrective actions on errors. In most cases, however, 
* the program will retry error conditions continuously until the 
* command succeeds or is stopped by the user. The program will attempt 
* to perform a nondestructive read/write test on one block of data 
* on the device. 

* 
******************************************************************************* 
*/ 

Example 14-9Cont'd on next page 

14-92 VAXELN Device Drivers 



Example 14-9 (Cont.): Programming a SCSI Generic Class Driver Message 
Interface Application 

iinclude $scSi utility 
iinclude $kern;lmsg 
iinclude $elnmsg 
iinclude descrip 

idefine DIRECT ACCESS DEVICE 0 
ide fine SIX BYTE CMD LENGTH 6 
idefine CHECK_CONDITION 2 

union Ibn type 
unsigned int 
struct { 

unsigned char 
unsigned char 
unsigned char 
unsigned char 
bits; 

} ; 

num; 

lsb:8; 
mid: 8; 
msb:8; 
tmsb: 8; 

struct inquiry info { 
unsigned char device type:5; 
unsigned char perif_qual:3; 
unsigned char resvOl:7; 
unsigned char rmb:l; 
unsigned char ansi_ver:3; 
unsigned char ecma ver:3; 
unsigned char iso ver:2; 
unsigned char rd format: 4; 
unsigned char resv03:2; 
unsigned char trmiop:l; 
unsigned char aenc:l; 
unsigned char add length; 
unsigned char resv05; 
unsigned char resv06; 
unsigned char stfre:l; 
unsigned char cmdque:l; 
unsigned char resv07:1; 
unsigned char linked:l; 
unsigned char sync:l; 
unsigned char wbus16:1; 
unsigned char wbus32:1; 
unsigned char reladr:l; 
unsigned char vendor id[8]; 
unsigned char product id[16]; 
unsigned char product=rev[4]; 

Example 14-9 Cont'd on next page 

VAXELN Device Drivers 14-93 



Example 14-9 (Cont.): Programming a SCSI Generic Class Driver Message 
Interface Application 

struct request sense info { 
unsigned char error_code; 
unsigned char segment number; 
unsigned char sense code; 
unsigned char resvOl; 
unsigned char resv02; 
unsigned char resv03; 
unsigned char resv04; 
unsigned char additional sense length; 
unsigned char resvOS; - -
unsigned char resv06; 
unsigned char resvO?; 
unsigned char resv08; 
unsigned char additional sense code; 
unsigned char additional-sense-code qualifier; 
unsigned char field repl;ceable unit code; 
unsigned char resv09; --
unsigned char resvlO; 
unsigned char resv11; 
unsigned char resv12; 

VARYING_STRING_CONSTANT(scsiyort_name,"DUA"); 

$DESCRIl?TOR(time 1sec,"0 00:00:01"); 
LARGE_INTEGER ;econd_timeout; 

unsigned char inquiry cmd[SIX BYTE CMD LENGTH] 
unsigned char start cmd[SIX BYTE CMD LENGTH] 
unsigned char reque;t sense-cmd[SIX BYTE CMD LENGTH] 
unsigned char test unit ready cmd[SIX BYTE CMo LENGTH] 
unsigned char read-cmd[SIX BYTE CMD LENGTH] -
unsigned char write_cmd[SIX_BYTE_CMD_LENGTH] 

int get_inquiry_info(); 
int go spinup drive(); 
int go-wait for unit ready(); 
int get request-sense info(); 
int issue start-unit ()o; 
int issue-test unit ready(); 
int go_is;ue_read_write_cmd(); 

Example 14-9 Cont'd on next page 

14-94 VAXELN ,Device Drivers 

{ 18,0,0,0,36,0 }; 
{27,1,0,0,1,0 }; 
{ 3,0,0,0,19,0}; 
{ 0,0,0,0,0,0 }; 
{ 8,0,0,0,0,0 }; 
{10,0,0,0,0,0 }; 



Example 14-9 (Cont.): Programming a SCSI Generic Class Driver Message 
Interface Application 

scsi msg class teste) 
{ - - -

PORT 
PORT 
PORT 
struct scsi$config msg 
struct inquiry_info 
MESSAGE 
unsigned char 
int 

int 
int 
int 
int 

char 
char 
MESSAGE 

char 
char 
MESSAGE 

int 
int 

/* 

src_dgyort; 
dest_dgyort; 
circuityort; 
* config_msgytr; 
*inquiry data; 
inquiry msg obj; 
scsi status-byte; 
scsi:port_status; 

status,i; 
xfer size; 
pad size; 
num=:of_blocks; 

*rd cmd; 
*rd-buff; 
rd_msg_obj; 

*wrt cmd; 
*wrt:buff; 
wrt_msg_obj; 

test device; 
block = 100; 

* convert the one-second time string to a LARGE_INTEGER. 
*/ 

second timeout eln$time_value(&time_1sec); 

/* 
* Get the PORT values associated with this job's message port and the SCSI 
* generic class driver's message port. The ports are used for passing 
* datagrams between this process and the generic class driver. 
*/ 

status eln$scsi_get_controlyorts(&scsiyort_name, 
&src_dgyort, 
&dest_dgyort) ; 

/* 
* 
* 
* 
*/ 

Get the SCSI bus configuration data. The data is placed in a 
configuration aggregate and a pointer to that aggregate is returned to 
config_msgytr. 

Example 14-9 Cont'd on next page 

VAXELN Device Drivers 14-95 



Example 14-9 (Cont.): Programming a SCSI Generic Class Driver Message 
Interface Application 

status eln$scsi_get_config_data(&src_dg-port , 
&dest_dg-port , 
&config_msg-ptr); 

/* 
* 
* 
*/ 

Search the configuration data for a direct access device that 
is not currently connected. 

for (test device = 0; test device < SCSI$K MAX UNITS; test device++) 

/* 

if «config~sg-ptr->config_info.config_tbl[test_device]~valid_data) && 
(config_msg-ptr->config_info.config_tbl[test_device].device_type 

DIRECT ACCESS DEVICE) && 
(config_msg-ptr->config_info.config_tbl[test_device] . class_attached) && 
(!config_msg-ptr->config_info.config_tbl[test..;.device] . 

current_connection) 
break; 

* Check whether a SCSI .device has been found. If not; exit because 
* no devices are available for testing. 
*/ 

if (test_device != SCSI$K MAX UNITS) 

/* 
* 
* 
*/ 

Connect the application to the SCSI device found in the configuration 
data. Set the generic class driver process priority to 10. 

status = eln$scsi_connect_device(&src_dg-port, 
&dest_dgyort, 
&circuit-port, 
10, 
test_device) ; 

status get_inquiry_info(&circuityort, 
test_device, 

/* 
* 
* 
* 
*/ 

&scsi status byte, 
& scsi:port_status , 
&inquiry_data, 
&inquiry_msg_obj); 

Use the inquiry data. When the data is no longer needed, 
unmap the SCSI command message buffer to free system resources 
and memory. 

Example 14-9 Cont'd on next page 

14-96 VAXELN Device Drivers 



Example 14-9 (Cont.): Programming a SCSI Generic Class Driver Message 
Interface Application 

status = eln$scsi_unmap_message_buffer(&inquiry_msg_obj); 

/* 
* Issue a START UNIT command to the specified device. 
*1 

status = go_spinup_drive(&circuit-port, test_device); 

/* 
* I~sue a TEST UNIT READY command to wait for the drive to spin up. 
*/ 

status = go_wait_for_unit_ready(&circuit-port, test_device); 

xfer size = 512; 
num of blocks = «xfer size+511) » 9); 1* Divide by 512. *1 
pad:size = (num_of_blo~ks * 512) - xfer_size; 

1* 
* The following code assumes that the read buffer, write buffer, 
* and SCSI READ and WRITE commands are all of the same size. 
*1 

/* 
* Map a buffer for the read request. 
*1 

status = eln$scsi map message buffer(&rd msg obj, 
- - - &rd-crnd:-

1* 

sizeof(read cmd) , 
&rd buff, -
xfe-; size, 
pad_size) ; 

* Map a buffer for the write request. 
*1 

status 

1* 

eln$scsi map message buffer(&wrt msg obj, 
- - - &wrt-cmd:-

sizeof(write cmd), 
&wrt buff, -
xfer-size, 
pad_size) ; 

* Initialize the read buffer to all ones. 
*1 

Example 14-9 Cont'd on next page 

VAXELN Device Drivers 14-97 



Example 14-9 (Cont.): Programming a SCSI Generic Class Driver Message 
Interface Application 

for (i=O; i < xfer size; i++) 
rd_buff [i] = OY.FF; 

/* 
* Issue a READ command. 
*/ 

status go_issue_read_write_cmd(&circuit-port, 
test device, 

/* 

&rd cmd, 
&rd-buff, 
&rd-msg obj, 
read cmd, 
sizeof(read cmd), 
num of blocks, 
block,
SCSI$K_READ) ; 

* Write the complement of the data just read into the write buffer. 
*/ 

for (i=O; i < xfer size; i++) 
wrt_buff[i] = -rd~buff[i]; 

/* 
* Issue a WRITE command, using the write buffer. 
*/ 

status 

/* 

go_issue_read_write_cmd(&circuit-port, 
test device, 
&wrt-cmd, 
&wrt-buff, 
&wrt - msg obj, 
write cmd, 
sizeof(write cmd) , 
num_of_blocks, 
block, 
SCSI$K_WRITE ); 

* Initialize the write buffer. It will be used for the next read. 
*/ 

for (i=Oi i < xfer size; i++) 
wrt~uff[i] = OxFF; 

Example 14-9 Cont'd on next page 

14-98 VAXELN Device Drivers 



Example 14-9 (Cont.): programming a SCSI Generic Class Driver Message 
Interface Application 

/* 
* Read the data just written to the device. The write buffer 
* will be used for the return data this time. 
*/ 

status 

/* 

gO_i s sue_re ad_writ e_cmd (&circuit-port, 
test device, 
&wrt-cmd, 
&wrt-buff, 
&wrt - msg obj, 
read-cmd~ 
sizeof(read cmd), 
num of blocks, 
block, -
SCSI$K _ READ ); 

* write the complement of the data just read. 
*/ 

for (i=O; i < xfer size; i++) 
wrt_buff[i) = -wrt_buff[i); 

/* 
* write the complemented data to the device. This should 
* be the original data. 
*/ 

status 

/* 

go_issue_read_write_cmd(&circuit-port, 
test_device, 
&wrt cmd, 
&wrt -buff, 
&wrt - msg obj, 
write cmCi, 
sizeof(write cmd), 
num_of_blocks, 
block, 
SCSI$K_WRITE ); 

* Initialize the write buffer. It will be used for the next read. 
*/ 

for (i=O; i < xfer size; i++) 
wrt_buff[i) = OxFF; 

Example 14-9 Cont'd on next page 

VAXELN Device Drivers 14-99 



Example 14-9 (Cont.): Programming a SCSI Generic Class Driver Message 
Interface Application 

/* 

/* 
* Read the complemented data. The data should be the original data 
* read. 
*/ 

status = go_issue_read_write_cmd(&circuit-port, 
test device, 
&wrt-cmd, 

/* 

&wrt -buff, 
&wrt - msg obj, 
read-cmd; 
sizeof(read cmd) , 
num of blocks, 
block,
SCSI$K_READ ); 

* Return the resources back to the system. 
*/ 

status = eln$scsi unmap message buffer(&rd msg obj); 
status = eln$scsi:unmap:message:buffer(&wrt_msg_obj); 

/* 
* Disconnect the circuit to the generic class driver and return the 
* associated devices to the available list. 
*/ 

status eln$scsi_disconnect_device(&circuit-port); 

/* End of if (test_device != SCSI$K_MAX_UNITS) */ 

* Return memory resources and the MESSAGE object back to the pool 
* associated with the configuration data. 
*/ 

status - eln$scsi_free_config_data(&config_msg-ptr); 

/* 
* 
* 
*/ 

Delete the PORT assigned to this job by the call to 
eln$scsi_get_control-ports . 

Example 14-9 Cont'd on next page 

14-100 VAXELN Device Drivers 



Example 14-9 (Cont.): Programming a SCSI Generic Class .Drlver Message 
Interface Application 

int 
int 
int 
int 
int 
st~uct request_sense_data 
~SSAGE 

unsigned char 
unsigned char 
union Ibn_type 

/* 

int 
char 
char 
MESSAGE 
char 
int 
int 
int 
int 

*circuityort, 
scsi id, 
**cmd, 
**buffer, 
*msg obj, 
* cmdytr, 
cmd_size, 
block count, 
starting block, 
direction) 

scsiyort_status; 
scsiyort_statusl; 
status; 
statusl; 
i; 
*request sense data; 
request_sense_obj; 
scsi status byte; 
scsi-status-bytel; 
Ibn; - -

* Copy the READ or WRITE command into the SCSI command message 
* buffer. 
*/ 

for (i=O; i < cmd size; i++) 
(*cmd) [i] cmdytr[i]; 

/* 
* Insert the logical block number and the number of blocks to transfer 
* into the command. 
*/ 

lbn.num 
(*cmd) [1] 
(*cmd) [2] 
(*cmd) [3] 
(*cmd) [4] 

do { 
/* 

starting block; 
lbn.bits.msb; 
lbn.bits.mid; 
lbn.bits.lsb; 
block_count; 

* Issue the SCSI READ or WRITE command. The host requests the 
* target to return read data or sends write data to the target. 
*/ 

Example 14-9 Cont'd on next page 

VAXELN Device Drivers 14-101 



Example 14-9 (Cont.): Programming a SCSI Generic Class Driver Message 
Interface Application 

status eln$scsi_issue_command( 
&scsi status byte, 
&scsi:port_status, 
circuityort, 
scsi id, 
direction, 
SCSI$K DISCONNECT, 
SCSI $K-NOSYNC , 
SCSI $K-RE TRY , 
0, -
0, 
msg obj, 
cmd:
buffer) ; 

/* Receives SCSI bus status */ 
/* Receives port function status */ 
/* This job's half of circuit port*/ 
/* SCSI bus ID of target device */ 
/* Direction = read or write */ 
/* Allow disconnects */ 
/* Synchronous disallowed */ 
/* Port retries allowed */ 
/* Phase change timeout */ 
/* Disconnect timeout */ 
/* Get message object */ 
/* Get return pointer to command */ 
/* Get return pointer to buffer */ 

if «scsiyort_status ELN$_SUCCESS) && 
(scsi_status_byte == CHECK_CONDITION) ) { 

/* 
* On error, issue a SCSI REQUEST SENSE command to the specified device 
* to determine the error condition. Refer to the ANSI SCSI specification 
* for information about this command and its response. 
*/ 

statusl get_request_sense_info(circuityort, 
scsi id, 

/* 

&scsI status by tel, 
&scsi:p0rt_statusl, 
&request sense data, 
&request=sense=obj ); 

* Return the request sense data to the system. Otherwise, 
* we may use up system resources while waiting for the command 
* to succeed. 
*/ 

while ( (status != KER$ SUCCESS) I I (scsi status byte) I I 
(scsiyort_status != ELN$_SUCCESS); -

return (status) ; 

Example 14-9 Cont'd on next page 

14-102 VAXELN Device Drivers 



Example 14-9 (Cont.): Programming a SCSI Generic Class Driver Message 
Interface Application 

int get inquiry info(PORT 
- - int 

*circuityort, 
scsi id, 
*status byte, 
*port status, 
**inutr, 
*inCLobj) 

int 
char 

/* 

unsigned char 
int 
char 
MESSAGE 

i, status; 
* scsi _ cmd ytr; 

* 
* 
*/ 

Map buffers for the SCSI INQUIRY command and for storing 
data. 

status eln$scsi_map_message_buffer(inCLobj, 

/* 

& scsi_cmdytr, 
sizeof(inquiry_cmd), 
in<L,Ptr, 
sizeof(struct inquiry_info), 
NULL) ; 

* Use the pointer to the SCSI command buffer to insert the SCSI 
* command into the message packet. 
*/ 

for (i = 0; i < sizeof(inquiry cmd); i++ ) 
scsi_cmdytr[i] = inquiry_cmd[i]; 

/* 
* Issue the SCSI INQUIRY command. The host requests that the target 

* return inquiry data. 
*/ 

Example 14-9 Cont'd on next page 

VAXELN Device Drivers 14-103 



Example 14-9 (Cont.): Programming a SCSI Generic Class Driver Message 
Interface Application 

status eln$scsi issue command ( 
status_byte, /* Receives SCSI bus status */ 
port status, /* Receives port function status */ 
circuityort, /* This job's half of circuit port*/ 
scsi id, /* SCSI bus ID of target device 
SCSI$K READ, /* Direction = read 
SCSI$K-DISCONNECT, /* Allow disconnects 
SCSI$K-NOSYNC, /* Synchronous disallowed 
SCSI$K:=RETRY, /* Port retries allowed 
0, /* Phase change timeout 
0, /* Disconnect timeout 
inCL.0bj, /* Get message object 
&scsi_cmdytr, /* Get return pointer 
inct.,Ptr) ; /* Get return pOinter 

return (status) ; 

int go_spinup_drive(PORT *circuityort, int scsi_id) 
{ 

int 
int 
int 
int 
unsigned char 
unsigned char 
struct request_sense_info 
MESSAGE 

do { 

/* 

scsiyort_status; 
scsiyort_statusl; 
status; 
statusl; 
scsi status byte; 
scsi-status-bytel; 
*request sense data; 
request_sense_obj; 

* Issue the SCSI START UNIT command. 
*/ 

status = issue_start_unit(circuityort, 
scsi id, 

if ( (scsiyort_status 
(scsi_status-pyte 

/* 

&scsi status byte, 
&scsi:p0rt_status); 

ELN$ SUCCESS) && 
CHECK_CONDITION) ) 

to 
to 

command 
buffer 

* On error, issue the SCSI REQUEST SENSE command to determine the 
* error condition. Refer to the ANSI SCSI specification for 
* information about the command and its response. 
*/ 

Example 14-9 Cont'd on next page 

14-104 VAXELN Device Drivers 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 



Example 14-9 (Coni.): Programming a SCSI Generic Class Driver Message 
Interface Application 

statusl get_request_sense_info(circuit-port, 
scsi id, 
&scsI status by tel, 
&scsi~ort_statusl, 
&request sense data, 
&request=sense=obj ); 

* Return the request sense data to the system. Otherwise, 
* we may use up system resources while waiting for the command 
* to succeed. 
*/ 

while ( (status != KER$ SUCCESS) I I (scsi status byte) I I 
(scsi-port_stat~s != ELN$_SUCCESS»; -

return (status) ; 

int go_wait_for_unit_ready(PORT *circuit-port, int scsi_id) 
{ 

int 
int 
int 

int 
unsigned char 
unsigned char 

struct request_sense_info 
MESSAGE 

do { 

/* 

scsi-port_status; 
scsi-port_statusl; 
status; 

statusl; 
scsi status byte; 
scsi=status=bytel; 

*request sense data; 
request_sense_obj; 

* Issue the SCSI TEST UNIT READY command. 
*/ 

status issue_test_unit_ready(circuit-port, 
scsi id, 

if ( (scsi-port_status 
(scsi_status_byte 

&scsI status byte, 
&scsi~ort_status); 

ELN$_SUCCESS) && 
CHECK_CONDITION) ) { 

Example 14-9 Cont'd on next page 

VAXELN Device Drivers 14-105 



Example 14-9 (Cont.): Programming a SCSI Generic Class Driver Message 
Interface Application 

/* 
* On error, issue the SCSI REQUEST SENSE command to determine 
* the error condition. Refer to the ANSI SCSI specification 
* for information about this command and its response. 
*/ 

statusl get_request_sense_info(circuit-port, 
scsi id, 

/* 

&scsi status by tel, 
&scsi:p0rt_statusl, 
&request sense data, 
&request:sense:obj); 

* Return the request sense data to the system. Otherwise, 
* we may use up system resources while waiting for the command 
* to succeed. 
*/ 

statusl = eln$scsi_unmap_message_buffer(&request_sense_obj); 

1* 
* 
* 
* 
*1 

To give the device time to spin up, wait a second before issuing 
the TEST UNIT READY command again. Some devices may take up to a 
minute to spin up. 

ker$wait_any(NULL, 

while 

NULL, 
&second_timeout); 

(status != KER$ SUCCESS) I I (scsi status byte) I I 
(scsi-port_status != ELN$_SUCCESS»; -

return (status) ; 

int get request sense info(PORT 
- - - int 

int 
char 

unsigned char 
int 
char 
MESSAGE 

i,status; 
*scsi_cmd-ptr; 

Example 14-9 Cont'd on next page 

14-106 VAXELN Device Drivers 

*circuit-port, 
scsi_id, 
*status byte, 
*port status, 
**re<iJ>tr, 
*reCLobj) 



Example 14-9 (Cont.): Programming a SCSI Generic Class Driver Message 
Interface Application 

/* 

* 
* 

Map a buffer for the SCSI REQUEST SENSE command and a buffer for 
storing the data. 

*/ 

status eln$scsi_map_message_buffer(re~obj, 

&scsi_cmdytr, 
sizeof(request_sense_cmd), 
re<L.Ptr , 
sizeof (struct request_sense_info), 
NULL) ; 

/* 

* 
* 
*/ 

Use the pointer to the SCSI command buffer to insert the SCSI 
command into the message packet. 

for (i = 0; i < sizeof(request sense cmd); i++ ) 
scsi_cmdytr[i] = request_sense_cmd[i]; 

/* 
* Issue the SCSI REQUEST SENSE command. The host requests that the 

* target return request sense data. 
*/ 

status = eln$scsi issue command ( 
status_byte, 
port_status, 
circuityort, 
scsi id, 
SCSI$K READ, 
SCSI$K-DISCONNECT, 
SCSI$K-NOSYNC, 
SCSI$K:RETRY, 
0, 
0, 
re~obj, 
&scsi_cmdytr, 
re<L.Ptr ); 

return (status); 

Example 14-9 Cont'd on next page 

/* Receives SCSI bus status */ 
/* Receives port function status */ 
/* This job's half of circuit port*/ 
/* Device bus ID of target */ 
/* Direction = read */ 
/* Allow disconnects */ 
/* Synchronous disallowed */ 
/* Port retries allowed */ 
/* Phase change timeout */ 
/* Disconnect timeout */ 
/* Get message object */ 
/* Get return pointer to command */ 
/* Get return pointer to buffer */ 

V AXELN Device Drivers 14-107 



Example 14-9 (Cont.): Programming a SCSI Generic Class Driver Message 
Interface Application 

int issue start_unit (PORT 
int 

*circuityort, 
scsi id, 
*status byte, 
*port_status) 

int 
char 
MESSAGE 

/* 

unsigned char 
int 

i, status; 
*scsi_cmdytr; 
msg_obj; 

* Map a buffer for the SCSI START UNIT command. 
*/ 

status eln$scsi map message buffer(&msg obj, 
- - - & scsi_cmdytr, 

/* 

sizeof(start_cmd), 
NULL, 
NULL, 
NULL) ; 

* Use the pointer to the SCSI command buffer to insert the SCSI 
* command into the message packet. 
*/ 

for (i = 0; i < sizeof(start cmd); i++ ) 
scsi_cmdytr[i) = start_cmd[i); 

/* 
* Issue the START UNIT command. The SCSI status byte, port status, and 
* message status are returned from the device. 
*/ 

status eln$scsi issue command ( 
status_byte, 
port_status, 
circuityort, 
scsi id, 
SCSI$K_READ, 
SCSI$K DISCONNECT, 
SCSI$K-NOSYNC, 
SCSI$K=RETRY, 
0, 
0, 
&msg obj, 
&scs'i_cmdytr, 
NULL) ; 

Example 14-9 Cont'd on next page 

14-108 VAXELN Device Drivers 

/* Receives SCSI bus status */ 
/* Receives port function status */ 
/* This job's half of circuit port*/ 
/* Device bus ID of target */ 
/* Direction = read */ 
/* Allow disconnects */ 
/* Synchronous disallowed */ 
/* Port retries allowed */ 
/* Phase change timeout */ 
/* Disconnect timeout */ 
/* Get message object */ 
/* Get return pointer to command */ 
/* No buffer needed for command */ 



Example 14-9 (Cont.): Programming a SCSI Generic Class Driver Message 
Interface Application 

if (status != KER$ SUCCESS) 
return(status); -

/* 
* Return the resource back to the system. Otherwise, we may use 
* up system resources. 
*/ 

status = eln$scsi_unmap_message_buffer(&msg_obj); 

return (status) ; 

int issue test unit ready(PORT 
- - - int 

*circuityort, 
scsi id, 

int 
char 
MESSAGE 

/* 

unsigned char 
int 

* status_byte, 
*port_status) 

i,status; 
*scsi_cmdytr; 
msg_obj; 

* Map a buffer for the SCSI TEST UNIT READY command. 
*/ 

status 

/* 

eln$scsi map message buffer(&msg 9bj, 
- - - & scsi_cmdytr, 

sizeof(start_cmd), 
NULL, 
NULL, 
NULL) ; 

* Use the pointer to the SCSI command buffer to insert the SCSI 
* command into the message packet. 
*/ 

for (i = 0; i < sizeof(test unit ready cmd); i++ ) 
scsi_cmdytr[iJ = test_unit_ready_cmd[iJ; 

/* 
* Issue the SCSI START UNIT command. The SCSI status byte, port 
* status, and message status are returned from the device. 
*/ 

Example 14-9 Cont'd on next page 

VAXELN Device Drivers 14-109 



Example 14-9 (Cont.): Programming a SCSI Generic Class Driver Message 
Interface Application 

status eln$scsi_issue_command( 
status_byte, /* Receives SCSI bus status */ 

/* Receives port function status */ 
/* This job's half of circuit port*/ 

port status, 
circuityort, 
scsi id, 
SCSI$K READ, 
SCSI$K-DISCONNECT, 
SCSI$K-NOSYNC, 
SCSI$K-RETRY, 
0, -
0, 
&msg_obj, 
&scsi_cmdytr, 
NULL) ; 

/* Device bus ID of target */ 
/* Direction = read */ 
/* Allow disconnects */ 
/* Synchronous disallowed */ 
/* Port retries allowed */ 
/* Phase change timeout */ 
/* Disconnect timeout */ 
/* Get message object */ 
/* Get return pointer to command */ 
/* No buffer needed for command */ 

if (status != KER$_SUCCESS) 
return (status) ; 

/* 
* Return the resource for this command to the system. Otherwise, we 
* may use up system resources. 
*/ 

status = eln$scsi_unmap~essage_buffer(&msg_obj); 
return (status) ; 

14.5.3 Developing User-Defined SCSI Class Drivers 

If the supplied VAXELN SCSI class drivers do not provide the device 
support that you need, you can create an application-specific SCSI class 
driver that communicates with the VAXELN SCSI port driver. Before 
developing such a driver, you should be familiar with the SCSI driver 
components and understand how they communicate. 

Table 14-12 describes the components of the VAXELN SCSI driver. 

14-110 VAXELN Device Drivers 



Table 14-12: VAXELN SCSI Driver Components 
Component Description 

Start-up module SC DRIVER. C 

Sniffer module SCSISNIF.C 

Class drivers SCSIDISK.C 
SCSIGNRC.C 

Port driver SCSI5380.C 

Data structure and $SCSCUTILITY.H 
constant definitions $SCSiPORT.H 

Associates class drivers with 
supported device types and starts 
the class drivers. 

Searches a bus for available de
vices, sets up a bus configuration 
table based on the information 
it finds, and informs the class 
drivers about devices they are to 
service. 

Format commands, interpret 
status values, and manage user 
data. 

Monitors and controls SCSI 
bus phase changes and sends 
and receives SCSI path control 
messages. 

Define the data structures and 
constants used by the SCSI driver 
modules. These definition files 
are in the definition module 
vaxelnc. 

The start-up module specifies the device types that each class driver 
is to service. For example, the supplied start-up module associates 
the disk class driver with direct-access and CDROM devices and the 
generic class driver with all other devices. The sniffer module uses this 
information when it determines which devices are to service available 
SCSI devices. 

The sniffer module checks whether a device is attached to a SCSI bus 
at each of the eight SCSI device IDs and builds a configuration table 
based on the information that it finds. The configuration table consists 
of eight entries, one for each SCSI device ID. Table 14-13 lists the 
types of data that each table entry provides. 

VAXELN Device Drivers 14-111 



Table 14-13: SCSI Bus Configuration Data 
Data Description 

Valid data A flag that indicates whether a device exists for the 
SCSI bus identifier. If the flag is set to 1, a device is 
physically attached and the data in the table entry is 
valid. If the flag is set to 0, the data in the entry is 
ignored. 

Device type An integer that identifies the type of peripheral device 
that is attached to the SCSI bus. The value can be one 
of the following: 

Class attached 

Current connection 

14-112 VAXELN Device Drivers 

Value Device Type 

0 Direct-access device 

1 Sequential-access device 

2 Printer device 

3 Processor device 

4 Write-once, read-multiple device 

5 CDROM device 

6 Scanner device 

7 Optical memory device 

8 Medium changer device 

9 Communications device 

10 to 30 Reserved 

31 Unknown or no device type 

You can get the value for a device by using the 
SCSI Inquiry command (see the American National 
Standard for Information Systems-Small Computer 
System Interface-2 (SCSI-2) specification). 

A flag that indicates whether a class driver is assigned 
to the device. If the flag is set to 1, the device is not 
available to other class drivers. If the flag is set to 0, 
the device is not available to other class drivers. 

A flag that indicates whether a class driver has made 
a connection to the device. If the flag is set to 1, the 
device is currently being used. If the flag is set to 0, 
the device is not currently being used. 



Table 14-13 (Cont.): SCSI Bus Configuration Data 
Data 

Removable media 

Product identifier 

Description 

A :flag that indicates whether the device is removable. 
If the flag is set to 1, the device is removable. If the 
:flag is set to 0, the device is not removable. 

A 16-byte ASCII text string that identifies the device 
type. You can get the product identifier for a device by 
using the SCSI INQUIRY command (see the Amencan 
National Standard for Infonnation Systems-Small 
Computer System Interface-2 (SCSI-2J specification). 

/ 

The sniffer module uses the valid data and device type information to 
create a device marker for each class driver. The device marker is an 8-
element array that identifies which devices on the bus the class driver 
is to service. If a configuration table entry contains valid data, the 
sniffer module compares the device type with the device types defined 
for each class driver's in the start-up module. If a match exists for a 
class driver, the sniffer module places a value of 1 in the appropriate 
field of that class driver's device marker. 

Consider the following scenario: 

• The start-up module associates the supplied disk class driver with 
direct-access devices (0) and CDROM devices (5) and associates a 
user-defined class driver with a scanner device (6). 

• The sniffer module finds valid data in the configuration table 
entries for SCSI devices 2, 4, and 7. 

• SCSI device 2 is a direct-access device (device type 0), SCSI device 4 
is a CDROM device (device type 5), and SCSI device 7 is a scanner 
device (device type 6). 

Based on this information, the sniffer module will create the device 
markers shown in Figure 14-3 for the disk and user-supplied class 
drivers. 

The sniffer module then passes the device marker and configuration 
table information to the class drivers. 

VAXELN Device Drivers 14-113 



Figure 14-3: SCSI Device Markers 

Disk Class Driver 

SCSIID 0 1 2 3 4 5 6 7 

0 0 0 0 0 0 

User-Defined Class Driver 

SCSIID 0 2 3 4 5 6 7 

0 0 0 0 0 0 0 

MLO-004172 

To develop a user-written class driver for inclusion in a VAXELN 
system, you must do the following: 

• Modify the SCSI driver start-up module 

• Program the class driver 
• Compile and link the SCSI driver modules 

Sections 14.5.3.1 to 14.5.3.3 explain how to modify the start-up module, 
program a driver, and compile and link the driver modules, respectively. 

14.5.3.1 Modifying the SCSI Driver Start-Up Module 

To add user-written class driver support to the VAXELN SCSI driver, 
you must edit the SCSI driver's start-up module. This module associ
ates your class driver with the device types it supports. 

Example 14--10 shows the start-up module that the toolkit supplies. 
Callouts identify the lines in the module that you need to edit. The 
list accompanying the example explains the changes that you need to 
make. 

o Declares the class driver source. The supplied start-up module 
declares the driver source for the disk class driver, scsidisk, and 

14-114 VAXELN Device Drivers 



Example 14-10: Modifying the SCSI Driver Start-Up Module 

imodule scdriver /* SCSI start-up module */ 

iinclude $vaxelnc 

extern void scsi_class$start(); 

extern void scsidisk(); o 
extern void scsignrc(); 

struct scsi descriptor type 
int (*class start)(); 
int dev_type[8]; 

} ; 

struct scsi_descriptor_type disk class = { scsidisk, 0, 5, -I}; @ 
struct scsi_descriptor_type generic_class = { scsignrc, -1 }; 

void scsi$start() 
{ 

scsi_class$start(&disk_class, &generic_class); 

the generic class driver, scsignrc. If your application does not 
need the supplied class drivers, you can delete the corresponding 
declarations. 

To add support for your user-defined class driver, add the appropri
ate declaration. For example: 

extern void scsiuser(); 

@ Associates the class driver with supported device types. The 
descriptors 0 and 5 in the first structure definition identify direct 
access and CDROM devices, respectively. The -1 flag signifies 
the end of the list of supported device types for the class driver. 
When the -1 flag is the first element of the descriptor list, as is 
the case in the second structure definition, the driver is generic 
and supports all other valid SCSI devices whose descriptors are not 
listed in the structure definition. 

If your VAXELN application does not need the supplied class 
drivers, you can delete the corresponding structure definitions. 

To add support for your user-defined class driver, add the appropri
ate structure definition. For example: 

struct scsi_descriptor_type user_class = { scsiuser, 6, -1 } 

V AXELN Device Drivers 14-115 



This structure definition adds the class driver SCSIUSER, which 
supports scanner devices (device type 6). 

6) Starts the class drivers. The supplied start-up module starts the 
supplied disk and generic drivers. If your VAXELN application does 
not need the supplied class drivers, delete the appropriate pointers. 
To add support for your user-defined class driver, add a pointer to 
your class driver. For example: 

scsi_class$start(&disk_class, &user_class, &generic_class); 

NOTE 

The generic class driver provides support for all SCSI 
devices in the configuration table that do not have a class 
driver attached. Therefore, if you include the generic 
SCSI class driver, you must list it as the last driver in 
the call to scsi_class$start. 

For information about recompiling and relinking the start-up module, 
see Section 14.5.3.3. 

14.5.3.2 Programming SCSI Class Drivers 

SCSI class drivers communicate with the VAXELN SCSI port driver by 
using a port driver interface that includes the following routines: 

Routine Description 

PORT$ALLOCATE_DEVICE Reserves an I/O request packet for a 
device. 

PO RT$FREE_DEVICE Returns an I/O request packet to the 
free list. 

PORT$INITIALIZE_CONTROLLER Initializes a SCSI bus controller. 

PORT$ISSUE_COMMAND Issues a SCSI command. 

PORT$MAP _BUFFER Maps consecutive SCSI DMA RAM 
bit map data bytes for an I/O request 
packet. 

PORT$UNMAP _BUFFER Unmaps consecutive SCSI DMA RAM 
bit map data bytes used by an I/O 
request packet. 

The sniffer module declares a routine address structure that the class 
drivers use to call these routines. The structure is declared as follows: 

14-116 VAXELN Device Drivers 



struct routine addresses 
char *ctx a context; 
int (*ctx=a=init) (); 
int (*ctx_a_issue)· () ; 
int (*ctx a alloc) (); 
int (*ctx-a-free) (); 
int (*ctx=a=map) (); 
int (*ctx a unmap) (); 
int (*ctx=a=exit) (); 

} ; 

struct contxt routine_addresses; 

The structure contains a pointer to the port driver's data structures 
and the addresses of the entry points for the interface routines. Mter 
starting the port driver, the sniffer module fills in the correct addresses. 
The structure elements are defined as follows: 

Element Description 

A pointer to the port driver's data structures. The first 
argument in calls to the port driver interface routines must 
specify this context pointer. 

The address of the entry point for the PORT$INITIALIZE_ 
CONTROLLER routine. The sniffer module calls this 
routine to initialize the bus controller. Class drivers should 
not use this routine. 

The address of the entry point for the PORT$ISSUE_ 
COMMAND routine. 

The address of the entry point for the PORT$ALLOCATE_ 
DEVICE routine. 

The address of the entry point for the PORT$FREE_ 
DEVICE routine. 

The address of the entry point for the PORT$MAP_ 
BUFFER routine. 

The address of the entry point for the PORT$UNMAP_ 
BUFFER routine. 

The address of the entry point for the PORT$EXIT_ 
HANDLER routine. 

A class driver calls (invokes) a port driver interface routine by spec
ifying the appropriate routine address, the context pointer, and the 
routine's arguments. The format you use for calling the routines in C 
follows: 

VAXELN Device Drivers 14-117 



status = (*routine_addresses.ctx_a....,Port-routine) 
(routine_addresses.ctx_a_context, 
routine-argument, . . . ); 

The following example shows how a class driver written in C might call 
the PORT$ISSUE_COMMAND routine: 

status = (*routine addresses.ctx a issue) 
(routine_addresses.ctx_a_context, 
virtual_device, 
DISCONNECT, 
0, 
0, 
0) ; 

A class driver written in Pascal must use calls to the INVOKE func
tion to invoke the port driver interface routines. Prior to invoking an 
interface routine, the driver must declare a function type for the rou
tine. The call to INVOKE then specifies a pointer to the routine's entry 
mask, the name of the function type, and the routine's arguments. For 
more information about using the port driver interface routines from 
Pascal, see Appendix D. 

Prior to calling the interface routines, a FORTRAN class driver must 
declare the variables routine_addresses and lock_device as external 
data, using the EXTERNAL statement as follows: 

EXTERNAL routine addresses 
EXTERNAL lock device 

These statements ensure that the symbols are resolved such that they 
are the addresses for the SCSI port interface callback routines as 
declared in the VAX C global definition (globaldef) storage class. 

One way a FORTRAN driver can gain access to the interface routines, 
given their addresses, is to do the following: 

• Pass the external variable routine_addresses to a subroutine that 
declares the variable as a RECORD /PORT_ROUTINES!. This 
enables the driver to access the necessary fields of the routine_ 
addresses. 

• As appropriate, pass a routine address (for example, routine_ 
addresses.alloc) by value to another subroutine that redeclares the 
address to be EXTERNAL. The driver can then call the routine by 
using the name of the-dummy argument. 

For more information about using the port driver interface routines 
from FORTRAN, see Appendix D. 

14-118 VAXELN Device Drivers 



To use the port driver interface routines, a driver must include 
the modules $SCSIPORT, $MUTEX, and $KERNELMSG from the 
VAXELN runtime libraries. 

Before calling the port driver interface routines, a class driver must do 
the following: 

• Define device locks 
• Set up the appropriate entry point 

• Check for devices to service 
• Set the current connection flag 

Once the driver completes these tasks, it can use the port driver 
interface routines to: 

• Allocate and free device I/O request packets 
• Map and unmap buffers for I/O requests 

• Issue commands 
• Stop the port driver 

Sections 14.5.3.2.1 to 14.5.3.2.4 explain how to define the device locks, 
set up the driver's entry point, check for devices to service, and set the 
current connection flag. Sections 14.5.3.2.5 to 14.5.3.2.8 explain how 
to use the interface routines to program driver communication. For 
descriptions of the interface routines, see Appendix D. 

For examples of user-written class drivers in Pascal, C, and 
FORTRAN, see the modules SAMPLE_SCSIDRIVER.PAS, SAMPLE_ 
SCSIDRIVER.C, and SAMPLE_SCSIDRIVER.FOR in the VAXELN 
ELN$ directory. You might also consider using the supplied disk and 
generic class drivers as models while preparing an application-specific 
class driver. 

14.5.3.2.1 Defining Device Locks 

The SCSI driver's sniffer module declares eight device locks for control
ling the class drivers' ability to gain access to the SCSI devices. The 
locks are declared as follows: 

MUTEX lock_device[max_units]; 

Thus, lock_de v icef 0] is the lock for SCSI device 0, lock_devicefl] is the 
lock for SCSI device 1, and so forth. 

VAXELN Device Drivers 14-119 



A class driver must declare the device locks as external data. The 
following line of code declares the locks in a class driver written in C: 

extern MUTEX lock_device[max_units]; 

A class driver must use the device locks to gain exclusive access to a 
device for issuing commands. Before issuing a command to a device, 
the driver must lock the device. Mter issuing the command, the driver 
must make the device available to other drivers by unlocking it. For 
more information about issuing commands, see Section 14.5.3.2.7. 

14.5.3.2.2 Setting Up an Entry Point 

The SCSI driver's sniffer module passes a device marker array and 
the bus configuration data to each of the class drivers responsible for 
servicing devices on a bus. Thus, the entry point for class drivers must 
include two arguments: a pointer to the device marker array and a 
pointer to the bus configuration table. The marker array identifies the 
devices on the bus that the class driver is to service. The configuration 
table provides information about the devices on the bus. An example of 
an entry point for a user-written class driver follows: 

void scsi_special(marker_array, scsi$config_table-prt) 
struct marker arry type *marker array; 
struct scsi$config=tbl_data *scsi$config_table-prt; 

In the sniffer module, the device markers are stored as an array of 
array structures, with each structure defining the device marker for a 
particular class driver. The markers are declared as follows: 

struct marker array type 
{ --

unsigned char match[max units]; 
}; -

The max_units defines the maximum number of device markers that 
the sniffer module can create. Currently, the maximum is eight, 
allowing a different class driver to service each of the eight SCSI 
devices on a bus. 

The sniffer module defines the configuration table and table entries as 
follows: 

14-120 VAXELN Device Drivers 



struct scsi$config_tbl_data scsi$config_table 

struct scsi$config_tbl_type { 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 

valid data; 
devcie_type; 
class attached; 
curre~t connection; 
rernove~le_rnedia; 
product_id[16] ; 

struct scsi$config tbl data { 
struct scsi$config tbl type config_tbl[SCSI$K_MAX_UNITS]; 

}; - -

See Table 14-13 for descriptions of the types of data stored in the 
configuration table. 

14.5.3.2.3 Checking for Devices to Service 

A class driver must check for the devices that it is to service. A class 
driver is responsible for servicing a device if the valid data flag in the 
configuration table is set and the corresponding element in the marker 
array contains the value 1. The following lines of C code show how a 
class driver might check for devices that it needs to service: 

if «scsi$config_table-prt->config_tbl[unit] .valid_data == 1) && 
(marker_array->rnatch[unit] == 1» 

14.5.3.2.4 Setting the Current Connection Flag 

After a class driver checks for devices that it is to service and is 
ready to service a particular device, the driver should set the current 
connection flag for that device to 1. When this flag is set to 1, the 
device cannot be used by another class driver. 

For example, if unit represents SCSI device 2, the following line of C 
code sets the current connection flag for SCSI device 2: 

scsi$config_table-ptr->config_tbl[unit] . current_connection = 1; 

NOTE 

The current connection flag is the only data in the configura
tion table that a class driver should modify. 

When a class driver no longer needs to service a device, the driver 
should clear the current connection flag. This allows another class 
driver to connect to the device. 

VAXELN Device Drivers 14-121 



14.5.3.2.5 Allocating 1/0 Request Packets for Devices 

A class driver communicates with a SCSI device using one of 16 
available VO request packets. The request packet transfers command 
data to the port driver and returns command status information to 
the class driver. To allocate a request packet, the driver must call the 
PORT$ALLOCATE_DEVICE routine. This routine allocates a request 
packet for the calling driver and returns the packet's ID. 

When allocating a request packet, a driver must specify the pointer 
to the port driver's data structures (routine_addresses.ctx_a_context), 
a SCSI device ID, and a command buffer byte count. The routine call 
must also specify variables that receive pointers to the packet's SCSI 
command buffer and SCSI status buffer. 

The SCSI device ID identifies the device on the SCSI bus that is to 
handle the 110 request. 

The command buffer byte count specifies the number of bytes to be 
allocated for the packet's SCSI command buffer. The command buffer 
can store up to 256 bytes of command data. PORT$ALLOCATE_ 
DEVICE returns the address of the command buffer to the specified 
buffer argument. The driver must use the returned address to place a 
SCSI command in the request packet. 

PORT$ALLOCATE_DEVICE returns the address of the packet's SCSI 
status buffer to the specified status buffer argument. The I-byte 
status buffer receives a status code from the target device after 
the class driver issues a SCSI command. Using the returned status 
buffer address, the class driver can check the status code and respond 
appropriately. 

When a class driver no longer needs an 1/0 request packet, the driver 
should deallocate the packet by calling the PORT$FREE_DEVICE rou
tine. This routine returns a packet to the list of free request packets. If 
another process is waiting for a request packet, PORT$FREE_DEVICE 
will signal that process. 

The call to PORT$FREE_DEVICE must specify the pointer to the 
port driver's data structure and the request packet ID returned by 
PORT$ALLOCATE_DEVICE. 

The following section of C code shows how a class driver might allocate 
and free an 1/0 request packet: 

14-122 VAXELN Device Drivers 



globalref struct contxt routine_addresses; 

int scsi dev, cmd buf length, packet_id, status; 
unsigned char *cmd=buf-ptr;- -
unsigned char *stat_buf-ptr; 

packet_id = (*routine addresses.ctx a alloc) 
(routine_addresses.ctx_a_context, 
scsi dev, 
cmd bUf length, 
&cmd _but -ptr, 
&stat_buf-ptr) ; 

status = (*routine_addresses.ctx_a_free) 
(routine addresses.ctx a context, 
packet_id); --

14.5.3.2.6 Mapping Data Buffers for 1/0 Requests 

To issue a SCSI command that reads or writes data, a class driver 
must map a data buffer for the 1/0 request packet. A driver maps 
a data buffer by calling the PORT$MAP _BUFFER routine. This 
routine searches the 12B-Kbyte SCSI DMA RAM bit map for a specified 
amount of contiguous data bytes, updates the I/O request packet with 
the appropriate mapping information, and marks the bit map pages as 
unavailable. 

A call to PORT$MAP _BUFFER must specify the pointer to the port 
driver's data structures (routine_addresses.ctx_a_context), a packet 
request ID, a pointer to the buffer to be mapped, the length of the data 
buffer, a pad size, and the direction of the transfer. 

The packet request ID must be a request ID returned by a call to 
PORT$ALLOCATE_DEVICE. 

The buffer pointer identifies the address at which the data buffer is to 
be mapped. The buffer can store up to 65,536 bytes of read or write 
data. 

VAXELN Device Drivers 14-123 



The pad size argument is for SCSI device commands that require a 
transfer size that is larger than the size specified by the data buffer 
size argument. If the amount of data requested in a SCSI command 
exceeds the space allocated for the data buffer, the pad size accounts 
for the difference. 

For example, the SCSI READ command transfers data in logical blocks 
- 512-byte units. Suppose a driver uses the READ command to read 
the first two bytes of a disk block. The call to PORT$MAP _BUFFER 
will specify 2 for the data buffer size to accommodate the two bytes to 
be read. Since the READ command reads data a block at a time, the 
call must also specify a pad size of 510 to account for the extra 510 
bytes. 

The direction argument specifies whether the data transfer is a read 
or write operation. A value of SCSI$K_WRITE indicates a write 
operation; a value of SCSI$K_READ indicates a read operation~ 

When a class driver no longer needs an 1/0 request packet data buffer, 
the driver should unmap the buffer by calling the PORT$UNMAP_ 
BUFFER routine. This routine returns the memory used for a data 
buffer back to the 128-Kbyte DMA RAM bit map and marks the 
returned pages as available. If another process is waiting for DMA 
RAM memory, PORT$UNMAP _BUFFER signals that process. 

The call to PORT$UNMAP _BUFFER must specify the pointer to the 
port driver's data structures, a request packet ID, the address of the 
data buffer to be unmapped, the size of the buffer being unmapped, and 
the buffer's pad size. 

The following section of C code shows how a class driver might map 
and unmap an 1/0 request packet data buffer: 

14-124 VAXELN Device Drivers 



extern struct contxt routine_addresses; 

int packet id, data buf size, data_buf-pad_size; 
unsigned char *data_buf-ptr; - -

status 

status 

(*routine addresses.ctx a map) 
(routine addresses.ctx-a context, 
packet_id, - -
data _buf -ptr, 
data buf size, 
data=buf~ad_size); 

(*routine addresses.ctx a unmap) 
(routine_addresses.ctx_a_context, 
packet id, 
data_buf-ptr, 
data_buf_size, 
data_buf-pad_size); 

14.5.3.2.7 Issuing SCSI Commands 

Once a class driver has set up an 1/0 request packet, the driver can 
use it to issue SCSI commands, such as INQUIRY, READ, and WRITE. 
To issue a command, the application must use the PORT$ISSUE_ 
COMMAND routine. This routine arbitrates and selects a device 
on the SCSI bus, issues the SCSI command that is in the specified 
request packet, and performs the operations necessary to complete the 
operation. 

A call to the PORT$ISSUE_ COMMAND routine must supply a pointer 
to the port driver's data structures, a request packet ID, and values 
that specify the following: 

• Whether the target device can disconnect during command execu
tion 

• Whether the port driver should attempt to repeat a command that 
fails 

• A phase timeout value 
• A disconnect timeout value 

V AXELN Device Drivers 14-125 



You specify constant values for the disconnect and port retry ar
guments. The value for the disconnect argument can be SCSI$K_ 
DISCONNECT or SCSI$K_NODISCONNECT. SCSI$K_DISCONNECT 
indicates that a target device can disconnect; SCSI$K_NODISCONNECT 
indicates that the target cannot disconnect. Target devices that remain 
connected to a bus for long periods of time can adversely affect system 
performance. 

The value for the port retry argument can be SCSI$K_RETRY or 
SCSI$K_NORETRY. If the value is SCSI$K_RETRY, the port driver 
can retry a command that fails due to a timeout, bus parity, or invalid 
phase transition error up to three times. If the value is SCSI$K_ 
NORETRY, the port driver cannot retry commands. 

The phase and disconnect timeout values a driver specifies can range 
from 0 to 420 seconds. The phase timeout value specifies the amount 
of time a target device has to change to another SCSI bus phase or to 
complete a data transfer. The disconnect timeout value specifies the 
amount of time a target device has to reselect an initiator to proceed 
with a disconnected data transfer. If you specify 0 or an invalid value, 
the driver uses a timeout value of 20 seconds. 

A driver can use PORT$ISSUE_COMMAND to issue commands that 
are in the Common Command Set (CCS). For information about these 
commands, see the American National Standard for Information 
Systems-Small Computer System Interface-2 (SCSI-2) specification. 

The following section of C code shows how a class driver might issue a 
SCSI command: 

14-126 VAXELN Device Drivers 



extern struct contxt routine_addresses; 

int packet id, disconnect, disable_retry, phase_timeout 
disconnect_timeout; 

status = (*routine addresses.ctx a issue) 
(routine addresses.ctx-a context, 
disconnect, - -
disable retry, 
phase timeout, 
disconnect_timeout); 

14.5.3.2.8 Initializing a SCSI Device Controller 

A class driver might want to initialize a SCSI bus controller when 
a SCSI bus is hung. To initialize a controller, a driver must call the 
PORT$INITIALIZE_CONTROLLER routine. This routine asserts the 
SCSI RST signal on the SCSI bus. This signal causes all devices on the 
SCSI bus to release all asserted signals and places the bus in a BUS 
FREE state. 

A call toPORT$INITIALIZE_CONTROLLER must specify the pointer 
to the port driver's data structures and the SCSI device ID for a 
working SCSI target device. For example: 

status = (*routine addresses.ctx a init) 
(routine addresses.ctx a context, 
scsi_de~) ; - -

NOTE 

The sniffer module calls PORT$INITIALIZE_CONTROLLER 
once after starting the port driver. A class driver should not 
call this routine unless the bus is hung. 

VAXELN Device Drivers 14-127 



14.5.3.3 Compiling and Linking the SCSI Driver Modules 

After you modify the SCSI driver start-up module and program your 
class driver, you must compile the modules and then link them into a 
new VAXELN SCSI driver image. 

Compile the start-up module (SCDRIVER.C) and a user-written C class 
driver as follows: 

$ CC SCDRIVER + ELN$:VAXELNC/LIBRARY 
$ cc SCSIUSER + ~LN$:VAXELNC/LIBRARY 

After compiling the modules, you must link them with the VAXELN 
SCSI driver components to produce a· new VAXELN SCSI driver image. 
For example: 

$ LINK SCDRIVER + SCSISNIF + SCSIDISK + SCSIGNRC + -
$ + SCSIUSER + SCSI5380 + ELN$:CRTLSHARE/LIB + -

=$ RTLSHARE/LIB + RTL/LIB . 

This LINK command links a user class driver with the start-up module, 
the sniffer module, the supplied disk and generic class drivers, and the 
port driver. If you modified the start-up module such that it does not 
include the supplied class drivers, omit those driver modules when 
linking the driver image as follows: 

$ LINK SCDRIVER + SCSISNIF + SCSIUSER + SCSI5380 + -
_$ ELN$:CRTLSHARE/LIB + RTLSHARE/LIB + RTL/LIB 

After you compile and link the driver module, you can build the image 
into your VAXELN system. For information about building the SCSI 
driver into VAXELN systems, see the VAXELN Development Utilities 
Guide. 

14.6 Realtime Device Drivers 

The VAXELN Toolkit includes device drivers for the realtime devices 
listed in Table 14-14. 

Table 14-14: Realtime Devices 
Devices 

ADQ32 

14-128 VAXELN Device Drivers 

Description 

Analog-to-digital converter. The ADQ32 transfers data in DMA. 
mode. 



Table 14-14 (Cont.): Realtime Devices 
Devices 

ADVll-C 
AXVII-C 

ADVll-D 

DLVJI 

DRB32-E 
DRB32-M 
DRB32-W 

DRQ3B 

DRVI1-J 

DRVII-W 

IEQII-A 
lEU II-A 

KWVII-C 

Description 

Analog-to-digital converter. The AXVll-C is an ADVII-C with 
two additional digital-to-analog output channels. 

Analog-to-digital converter. The ADV1I-D transfers data in 
programmed and DMA modes. 

Asynchronous serial-line controller. The DLVJI (formerly 
DLVII-J) is a Q-bus interface that contains four asynchronous 
serial-line channels. It is intended for realtime applications 
that collect data and control realtime devices by using asyn
chronous serial lines. 

Parallel-line interface devices. The DRB32 is a 32-bit, half
duplex DMA parallel port for the VAXBI bus. The DRB32-W 
option is for users who have equipment currently designed to 
interface with DRII-W devices. 

Parallel-line interface device. The DRQ3B is a I6-bit parallel 
port for the Q-bus that can run in full-duplex or half-duplex 
mode. 

Parallel-line interface device. The DRVll-J is a Q-bus in
terface that provides communication, in I6-bit word lengths, 
between a MicroVAX system and up to four user devices by 
using four I/O ports. 

Parallel-line interface device. The DRVll-W is a I6-bit half
duplex DMA parallel port for the Q-bus that supports 18- and 
22-bit addressing. 

IECIIEEE-488 instrument bus interfaces. The IEQ II-A 
and IEUII-A interface a Q-bus system to two independent 
IECIIEEE instrument buses. 

Programmable, realtime clock. You can use the KWVI1-C 
to initiate action after a specified time interval (by using an 
interrupt or an external signal) or to time an event. 

The design of these drivers prohibits access to a given device from more 
than one job. However, you can gain access from different processes 
within the same job, provided the caller ensures that processes do not 
access the same device simultaneously. 

VAXELN Device Drivers 14-129 



14.6.1 ADQ32 DMA Analog-to-Digital Converter 

The VAXELN Toolkit supplies a programming interface for applications 
that use ADQ32 modules. The ADQ32 module is a high-speed DMA 
analog input device for Q-bus systems. Up to 32 single-ended or 16 
differential channels of input data are converted to 12-bit digital data. 
Both single-ended and differential input sampling can be used in a 
single application. 

An application can sample multiple channels in any order and can 
use the programmable gain amplifier at any gain for any sample. The 
application can sample channel 0 at unity gain and sample channel 
1 at a gain of 8. You specify the gain to be used for each sample, 
independent of each channel. 

The interface lets the device's DMA mode logic use block mode data 
transfers. If you prefer, you can use the ADQ32 device in extended 
block mode, which provides even more use of Q-bus systems. 

The ADQ32 supports a variety of clock modes. The nature of an 
application determines the clock mode that you should use. Based on 
the clock mode used" you can also specify the following: 

• Base frequency for the sample clock 
• Number of ticks to wait before a sample is taken 

• Base frequency for the sweep clock 
• Number of ticks to wait before a sweep is taken 
• Number of conversions to be performed for each sweep 

• Base frequency for the delay clock 

• Number of ticks to delay before sampling is started 

You can access an ADQ32 module from only one job, which must be 
running in kernel mode. This job can be an ADQ32 server if desired, 
which allows other jobs to communicate with the device. More than one 
process in the same job can access the device. 

The ADQ32 interface consists of the following routines: 

14-130 VAXELN Device Drivers 



Routine 

ELN$AD(LINITIALIZE 

ELN$AD(LSTART 

ELN$AD(LTRANSFER_DONE 

Description 

Prepares an ADQ32 device for in
put and creates the necessary data 
structures. 

Places a DMA read request for an 
ADQ32 on a request queue. 

Tells the ADQ32 to start processing 
data. 

Removes an ADQ32 read request from 
the done queue and returns the status 
of that request. 

An application can call the ADQ32 interface routines only from pro
grams running in kernel mode. To use the routines you must include 
the appropriate modules from the VAXELN runtime libraries. For 
Pascal programs, you must include the module $ADQ32_UTILITY. If 
you are programming in C, you must include the modules $vaxelnc 
and $adq32_utility. For FORTRAN programs, you must include the 
definition file ELN$FORTRAN_DEFS.FOR. 

The supplied modules can be linked as delivered with your calling 
programs to perfonn analog-to-digital conversion. The modules also 
define constants. and types used by the routines and status codes 
returned by the routines. The driver source can serve as a model for 
drivers for other realtime devices. 

Descriptions of the ADQ32 interface procedures are provided for Pascal, 
C, and FORTRAN programming in VAXELN Pascal Runtime Library 
Reference Manual, VAXELN C Runtime Library Reference Manual, and 
VAXELN FORTRAN Runtime Library Reference Manual, respectively. 

For more infonnation about the ADQ32, see the ADQ32 AID Converter 
Module User~s Guide. 

14.6.2 ADV11-CI AXV11-C Analog-to-Dig ital Converter 

The Pascal module $AXV _UTILITY, supplied with your development 
system, defines the procedures provided to interface with the ADVll-C 
analog-to-digital converter and the AXVll-C. The AXVll-C provides 
all of the functionality of the ADVll-C and two digital-to-analog 
outputs as well. 

VAXELN Device Drivers 14-131 



By using a hardware jumper, you can configure an ADVll-C device 
to have 8 or 16 input channels. With 8 channels, analog voltage 
is measured across 2 input channels; with 16 channels, voltage is 
measured with respect to ground. The device has a built-in multiplexer, 
which permits the sampling and conversion of one channel at a time 
to a 12-bit binary integer. You can also write a value to the device to 
be used as a gain in the conversion. (The LSl-11 Analog System User's 
Guide contains more information on the hardware.) 

An analog-to-digital conversion can be initiated by program control 
(setting a bit in the controVstatus register) by an external signal, or by 
overflow from the KWVll-C clock option (see Section 14.6.10). 

You can access an AXVll-C from only one job, which must be running 
in kernel mode. This job can be an AX.V11-C server if desired, which 
allows other jobs to communicate with the device. More than one 
process in the same job is permitted to access the device; however, the 
caller must ensure that no simultaneous accesses to the same device 
occur. 

The procedures provided in the $AXV_UTILITY module can be linked 
as delivered with your calling programs to perform analog-to-digi tal 
conversion. This module also defines status codes returned by the 
procedures and types needed by the routines. The driver can serve as 
a model for drivers for other realtime devices. Because the KWVll-C 
clock can be used in conjunction with an AXVll-C device, some types 
used in $AXV_UTILITY are defined in the module $KWV_UTILITY. 

The $AXV _UTILITY module provides the following procedures: 

Routine 

ELN$AXV _INITIALIZE 

14-132 VAXELN Device Drivers 

Description 

Causes an ADVII-C or AXVll-C device to be 
readied for input, output, or both, and causes 
all needed data structures to be created. This 
procedure must be called at least once for 
each device; it may be called more than once 
for the same device to change the value of a 
parameter - for example, to enable the device 
to gather a larger number of values. 



Routine Description 

Causes analog data to be sampled from the 
specified channels, converted to binary form 
by the device, and stored in a data array. One 
read is performed for each specified channel. 
The process is repeated until all data has been 
collected. This procedure may be called for 
either an ADVll-C or AXVII-C device. 

Causes a binary number to be converted to an 
analog voltage on one of the digital-to-analog 
output channels. This procedure may be called 
only for an AXVII-C device. 

The procedures just described return optional status values. To ensure 
good realtime response, the procedures provide limited error checking; 
they report only errors detected by the device. No input parameters are 
verified, and kernel service calls made in the course of execution raise 
exceptions upon failure. 

Call formats and detailed argument descriptions for the AXV11-C 
support routines are provided in the VAXELN Pascal Runtime Library 
Reference Manual, VAXELN C Runtime Library Reference Manual, and 
VAXELN FORTRAN Runtime Library Reference Manual. 

14.6.3 ADV11-D DMA Analog-to-Digital Converter 

The Pascal module $ADV_DMA_UTILITY, supplied with your de
velopment system, defines the procedures provided to interface with 
the ADV11-D DMA analog-to-digital converter. The ADV11-D is an 
analog-to-digital converter that can transfer data in programmed mode 
or DMA mode. Up to 16 channels of input data are converted to 12-bit 
digital data. In DMA mode, one command can transfer up to 32,768 
words. (For more information about the ADV11-D device, see the 
Q-bus DMA Analog System User's Guide.) 

An analog-to-digital conversion can be initiated by program control, by 
an external signal, or by overflow from the KWV11-C clock option (see 
Section 14.6.10). To use the clock to trigger input, you should jump the 
clock-overflow tab to either pin 1 or pin 3 of the J2 connector on the 
ADV11-D device. 

VAXELN Device Drivers 14-133 



You can access an ADVI1-D from only one job, which must be running 
in kernel mode. This job can be an ADVll-D server if desired, which 
allows other jobs to communicate with the device. More than one 
process in the same job is permitted to access the device; however, the 
caller must ensure that no simultaneous accesses to the same device 
occur. 

The procedures provided in the $ADV_DMA_UTILITY module can be 
linked as delivered with your calling programs to perform analog-to
digital conversion. This module also defines status codes returned by 
the procedures and types needed by the routines. The driver source can 
serve as a model for drivers for other realtime devices. 

The $ADV_DMA_UTILITY module provides the following procedures: 

Routine 

ELN$ADV _INITIALIZE 

Description 

Prepares an ADVII-D device for in
put and creates the necessary data 
structures. 

Places a programmed or DMA read 
request on an ADVII-D request queue. 

Removes the entry of a completed 
request from the ADVII-D done queue 
and returns the status of that request. 

Call formats and detailed argument descriptions for the ADVII-D 
support routines are provided in the VAXELN Pascal Runtime Library 
Reference Manual, VAXELN C Runtime Library Reference Manual, and 
VAXELN FORTRAN Runtime Library Reference Manual. 

14.6.4 DLVJ1 Asynchronous Serial-line Controller 

The Pascal module $DLV_VTILITY, supplied with your development 
system, defines the procedures provided to interface with the DLVJl 
(formerly DLVII-J) asynchronous serial-line controller. The DLVJl 
is a Q-bus interface that contains four asynchronous serial-line chan
nels. The channels can be configured independently for EIA RS-422, 
RS-423 , or RS-232C signal compatibility. Provisions are also made 
for configuring the channels for 20 milliampere (rnA) current loop 
operation. 

14-134 VAXELN Device Drivers 



Four independent serial-line interfaces exist with consecutive bus 
device address and vector assignments that can be user-configured by 
using wire-wrap jumpers on the module. Each serial line can also be 
configured independently for the following: 

• Baud rates 150, 300, 600, 1200, 2400, 4800, 9600, 19200, or 38400 
bi ts per second 

• Number of data bits (7 or 8) 

• Number of stop bits (lor 2) 

• Parity (none, even, or odd) 

All of these configuration parameters are also set by using wire-wrap 
jumpers on the controller module. (The DLVll-J User's Guide contains 
more information on the hardware.) 

The $DLV _UTILITY procedures are intended to provide the most effi
cient method of controlling the DLV J1. The procedures are intended 
for realtime applications that collect data and control realtime devices 
using asynchronous serial lines. This is in contrast to the support 
provided for CXY08, CXA16/CXB16, DHQ11, DHT32, DHV11, DMB32, 
DZV11, DZQ11, which is intended to provide a more functional inter
face for reading and writing using standard Pascal, C, and FORTRAN 
1/0 routines to terminals connected over the serial lines. 

The procedures provided in the $DLV_UTILITY module can be linked 
with your calling program, which must be running in kernel mode. 
This module also defines status codes returned by the procedures 
and types needed by the routines. The driver source, contained in 
DLVUTIL.PAS and DLVBODY.PAS, can also serve as a model for 
other drivers for realtime devices. The $DLV_UTILITY module also 
exports definitions of the DLVJl's device registers if it is desirable 
to directly read and write the registers. (See DLVUTIL.PAS for the 
Pascal definitions or extract the $DLV_UTILITY module from the 
VAXELNC.TLB library for the C definitions.) 

The $DLV_UTILITY module provides the following procedures: 

VAXELN Device Drivers 14-135 



Routine 

ELN$DLV _INITIALIZE 

Description 

Prepares a DLV device line for input and 
output and creates all needed data struc
tures. This procedure must be called once 
for each DLV serial line used. Since each 
line is initialized and handled separately 
from other lines, each line should have 
its own device description specified in the 
target system's System Builder menus. 

Causes characters to be read from the 
serial line until the specified number of 
characters is read. This procedure should 
be called to read from the serial line if the 
string_mode argument was FALSE in the 
call to ELN$DLV _INITIALIZE. 

Causes characters to be read from the 
serial line until a carriage return character 
is encountered. This procedure should be 
called to read from the serial line if the 
string_mode argument was TRUE in the 
call to ELN$DLV _INITIALIZE. 

Causes the specified character string to be 
written to the serial line. The characters 
are not interpreted by this procedure; 
therefore, any variable-length string can be 
written. 

Call formats and detailed argument descriptions for the DLVJ1 support 
routines are provided in the VAXELN Pascal Runtime Library Reference 
Manual, VAXELN C Runtime Library Reference Manual, and VAXELN 
FORTRAN Runtime Library Reference Manual. 

14.6.5 DRB32 DMA Parallel-Line Interface 

The Pascal module $DRB_UTILITY, supplied with your development 
system, defines the procedures provided to interface with the DRB32-E, 
DRB32-M, and DRB32-W DMA parallel-line controllers. The DRB32 
is a VAXBI bus interface that provides communication through a 
half-duplex DMA parallel port at data widths of 8, 16, or 32 bits. In 
addition, the DRB32: 

• Uses page tables so that buffers do not need to be physically 
contiguous. 

14-136 VAXELN Device Drivers 



• Uses two sets of control registers for hardware-supported double 
buffering. When the device finishes a transfer by using one set of 
registers and page tables, the device automatically starts a transfer 
from the second set of registers. 

• Has 8-bit input and output control/status registers that correspond 
to control lines on the port and have a fixed meaning. You can set 
the DRB32 to interrupt when an input control line changes. 

• Can check the parity on its data lines. 

The DRB32-W option is for users of equipment currently designed to 
interface with the DRII-W device. 

In closely coupled symmetric multiprocessing configurations, KA800 
processors can use DRB32 devices to communicate with user devices. 
KA800 processors can directly control the DRB32 parallel port for high 
interrupt response time. 

The $DRB_UTILITY procedures are intended to provide the most 
efficient method of controlling the DRB32. The procedures are intended 
for realtime applications that collect data and control realtime devices 
using parallel lines. This is in contrast to the support provided for 
devices that are not used in a realtime environment and are intended 
to provide a more functional interface for reading and writing using 
standard Pascal and C I/O routines. 

The procedures provided in the $DRB_UTILITY module can be linked 
with your calling program, which must be running in kernel mode. 
This module also defines status codes returned by the procedures 
and types needed by the routines. The driver source, contained in 
DRB32UTIL.PAS and DRB32BODY.PAS, can also serve as a model for 
other drivers for realtime devices. The $DRB_UTILITY module also 
exports definitions of the DRB32's device registers if it is desirable to 
directly read and write the registers. (See DRB32UTIL.PAS for the 
Pascal definitions or extract the $DRB_UTILITY module from the 
VAXELNC.TLB library for the C definitions.) 

These procedures assume that the user device connected to the DRB32 
asserts the SYNCH OUT, SYNCH IN, CONTROL SYNCH OUT, and 
CONTROL SYNCH IN lines when the device is to inform the DRB32 
that data is available for the application program to read or that 
the application program wrote data to the device. See the DRB32 
Hardware Manual for more information. 

VAXELN Device Drivers 14-137 



The $DRB_UTILITY module provides the following procedures: 

Routine Description 

ELN$DRB_FINISHED_TRANSFER Dequeues a completed request from 
the device driver and returns its status 
and a pointer to its data buffer. If no 
completed request is available, the 
procedure can wait or return, at your 
option. 

ELN$DRB_INITIALIZE Initializes a DRB32 device for input 
and output, creates all needed data 
structures, starts the queues that 
handle requests, and aborts current 
or queued commands. This procedure 
must be called once for each DRB32 
controller used. The procedure call 
specifies the data width. 

14-138 VAXELN Device Drivers 

Two arguments are provided for use 
with a DRB32-W device. One argu
ment identifies whether the device 
being initialized is a DRB32-W device. 
The other argument specifies whether 
a DRB32-W device is to operate in 
link mode, which typically means two 
DRB32-W devices are connected for 
data transfer. The default mode speci
fies that the DRB32-W is connected to 
a DRI1-W device. 

Queues a read request to the driver, 
starts the request if the queue is empty, 
and returns. The request causes data to 
be read into a buffer you specify. 

If you are using a DRB32-W device, 
you may have to use the ELN$DRB_ 
WRITE_CTRL procedure to set or clear 
appropriate function bits in the IOCTL 
register (FUNCT1, FUNCT2, FUNCT3) 
before calling ELN$DRB_ QUEUE_ 
READ, or· to properly establish the 
direction of transfer. 



Routine Description 

Queues a write request to the driver, 
starts the request if the queue is empty, 
and returns. The request causes data to 
be written from a buffer you specify. 

If you are using a DRB32-W device, 
you may have to use the ELN$DRB_ 
WRITE_CTRL procedure to set or 
clear appropriate function bits in the 
IOCTL register (FUNCT1, FUNCT2, 
FUNCT3) before calling ELN$DRB_ 
QUEUE_ WRITE to properly establish 
the direction of transfer. 

Writes an 8-bit pattern to a DRB32's 
8-bit control register. 

An argument is provided for use with 
DRB32-W devices. This argument spec
ifies which bits of the IOCTL register 
are to be returned: the upper bits 8 
to 15 (output) or the lower bits 0 to 7 
(input). 

Returns an 8-bit pattern from a 
DRB32's 8-bit control register. 

NOTE 

These routines assume that the user device is connected to 
the DRB32 device and asserts the SYNCH OUT, SYNCH IN, 
CONTROL SYNCH OUT, and CONTROL SYNCH IN lines 
to inform the device that data is available for the application 
program to read or that the application program wrote data 
to the device. See the DRB32 Hardware Manual for more 
information. 

To link two DRB32-W devices, the receiving end must post a read 
request (ELN$DRB_QUEUE_READ) before the sending end posts a 
write request (ELN$DRB_QUEUE_ WRITE). Also, the receiving end 
must not post a subsequent read until the sending end has completed 
sending its data. For more information on links, refer to the DRll-W 
Direct Memory Access Interface User's Guide. 

VAXELN Device Drivers 14-139 



Call formats and detailed argument descriptions for the DRB32 support 
routines are provided in the VAXELN Pascal Runtime Library Reference 
Manual, VAXELN C Runtime Library Reference Manual, and VAXELN 
FORTRAN Runtime Library Reference Manual. 

14.6.6 DRQ38 DMA Parallel-Line Interface 

The Pascal module $DRQ3B_UTILITY, supplied with your development 
system, defines the procedures provided to interface with the DRQ3B 
DMA parallel-line controller. The DRQ3B module performs DMA data 
transfers to or from system memory through I6-bit parallel data ports. 
The module provides two distinct ports for connection to external 
devices: an input port that supports device-to-memory or memory-to
memory transfers and an output port that supports memory-to-device 
or memory-to-memory transfers. Each channel is unique, allowing a 
full-duplex mode. 

The DRQ3B device performs DMA operations in nonblock mode (single
cycle or burst-mode) or block mode. In nonblock mode, each data word 
to be transferred is accompanied by an address location when placed on 
the Q-bus. In block mode, only the first address asserted in each block 
(up to 16 words) of data is asserted on the bus to indicate the starting 
address. 

For nonblock mode, you can specify two types of DMA operations: 
single-cycle and burst-mode transfers. Single-cycle operations transfer 
one address and one data word per bus cycle, then release the bus. 
Burst-mode operations transfer one address word for each data word. 
However, up to four address/data word combinations are transferred 
before the bus is released. 

For block mode transfers, the address location of the first data word is 
placed on the bus, followed by up to 16 data words, before the DRQ3B 
device gives up the bus. 

For more information about the DRQ3B device, see the DRQ3B Parallel 
DMA I/O Module User's Guide. 

The $DRQ3B_ UTILITY procedures are intended to provide the most 
efficient method of controlling the DRQ3B. The procedures are intended 
for realtime applications that collect data and control realtime devices 
using parallel lines. This is in contrast to the support provided for 
devices that are not used in a realtime environment and are intended 
to provide a more functional interface for reading and writing using 
standard Pascal and C I/O routines. 

14-140 VAXELN Device Drivers 



You can access a DRQ3B from only one job, which must be running in 
kernel mode. More than one process in the same job is permitted to 
access the device; however, the caller must ensure that no simultaneous 
accesses to the same device occur. 

The procedures provided in the $DRQ3B_UTILITY module can be 
linked as delivered with your calling programs to perform DRQ3B 1/0. 
This module also defines status codes returned by the procedures and 
types needed by the routines. The driver source can serve as a model 
for drivers for other realtime devices. 

The $DRQ3B_UTILITY module provides the following procedures: 

Routine 

ELN$DRQ3B_INITIALIZE 

ELN$DRQ3B_QUEUE_ WRITE 

ELN$DRQ3B_READ_FUNCTION 

ELN$DRQ3B_TRANSFER_DONE_ 
READ 

ELN$DRQ3B_TRANSFER_DONE_ 
WRITE 

ELN$DRQ3B_ WRITE_FUNCTION 

Description 

Initializes a DRQ3B device, creates 
necessary data structures, starts the 
internal request queues, and aborts 
current or queued commands. 

Queues a read request to the DRQ3B 
driver and returns. 

Queues a write request to the DRQ3B 
driver and returns. 

Returns the DRQ3B general-purpose 
function bits. 

Dequeues a completed DRQ3B read 
request and returns its status. 

Dequeues a completed DRQ3B write 
request and returns its status. 

Writes to the DRQ3B general-purpose 
latched function bits. 

Call formats and detailed argument descriptions for the DRQ3B sup
port routines are provided in the VAXELN Pascal Runtime Library 
Reference Manual, VAXELN C Runtime Library Reference Manual, and 
VAXELN FORTRAN Runtime Library Reference Manual. 

VAXELN Device Drivers 14-141 



14.6.7 DRV11-J Parallel-Line Interface 

The Pascal module $DRV _UTILITY, supplied with your development 
system, defines the procedures provided to interface with the DRVII-J 
parallel-line interface device. The DRVI1-J is a Q-bus interface that 
provides communication between a MicroVAX system and up to -four 
user devices in I6-bit word lengths through four 1/0 ports. 

Four control lines are associated with each of the four ports to ensure 
orderly information transfers. Word transfers are executed by pro
grammed 1/0 bus operations using either polling or interrupt-driven 
routines. Write data is output by the DRVII-J to the 1/0 bus through 
three-state data latches, and read data is input through unlatched bus 
drivers. 

The $DRV_UTILITY procedures are intended to provide the most effi
cient method of controlling the DRVII-J. The procedures are intended 
for realtime applications that collect data and control realtime devices 
using parallel lines. This is in contrast to the support provided for 
devices that are not used in a realtime environment and are intended 
to provide a more functional interface for reading and writing using 
standard Pascal and CliO routines. 

The procedures provided in the $DRV_UTILITY module can be linked 
with your calling program, which must be running in kernel mode. 
This module also defines status codes returned by the procedures and 
types needed by the routines. The driver source, contained in the 
DRVUTIL.PAS and DRVBODY.PAS modules can also serve as a model 
for other drivers for realtime devices. The $DRV _UTILITY module also 
exports definitions of the DRVI1-J's device registers if it is desirable to 
directly read and write the registers. (See the DRVUTIL.PAS module 
for the Pascal definitions or extract the $DRV_UTILITY module from 
the VAXELNC.TLB library for the C definitions.) 

The procedures perform all 1/0 operations, using a dynamically allo
cated, 2-dimensional buffer array. The first array index specifies the 
parallel port number (0 to 3), and the second array index specifies a 
data word. The procedures internally utilize a separate DEVICE object 
for each parallel port. Therefore, a user program can have interrupt
driven 1/0 in progress on each port simultaneously. For example, an 
application program can have a process writing data to ports 0 and 1 
and another process reading data from ports 2 and 3. Due to the way 
the DRVII-J functions, though, only one port can have concurrent 1/0 
if polling is used instead of interrupts. 

14-142 VAXELN Device Drivers 



The procedures assume that the user device connected to the DRVII--J 
asserts the USER REPLY lines when the user device is to inform the 
DRVII-J either that data is available for reading by the application 
program or that data has been accepted (written by the application 
program). 

The $DRV_UTILITY module provides the following procedures: 

Routine 

ELN$DRV _INITIALIZE 

Description 

Prepares a DRV device controller for input and 
output and creates all needed data structures. 
This procedure must be called once for each 
DRV controller used. 

Causes data words to be read from the speci
fied parallel port. The resulting data is stored 
in the buffer pointed to by the buffer parame
ter returned by ELN$DRV _INITIALIZE. 

Causes data words to be written to the spec
ified parallel port. Before you call this pro
cedure, the data words should be stored in 
the buffer pointed to by the buffer parameter 
returned by ELN$DRV _INITIALIZE. 

NOTE 

These procedures assume that the user device connected to 
the DRVII--J asserts the USER REPLY lines to inform the 
DRVII--J device either that data is available for reading 
by the application program or that data has been accepted 
(written by the application program). 

Call formats and detailed argument descriptions for the DRVII--J 
support routines are provided in the VAXELN Pascal Runtime Library 
Reference Manual, VAXELN C Runtime Library Reference Manual, 
VAXELN FORTRAN Runtime Library Reference Manual. 

VAXELN Device Drivers 14-143 



14.6.8 DRV11-W DMA Parallel-Line Interface 

The Pascal module $DRV_DMA_UTILITY, supplied with your devel
opment system, defines the procedures provided to interface with the 
DRV11-W DMA parallel-line controller. The DRV11-W is a Q-bus in
terface that provides communication through a 16-bit, half-duplex DMA 
parallel port. The device supports 18- and 22-bit addressing but does 
not support page tables (data must be contiguous) or double buffering. 

The $DRV_DMA_UTILITY procedures are intended to provide the 
most efficient method of controlling the DRV11-W. The procedures 
are intended for realtime applications that collect data and control 
realtime devices using parallel lines. This type of support is in contrast 
to the support provided for devices that are not used in a realtime 
environment and are intended to provide a more functional interface 
for reading and writing using standard Pascal and C I/O routines. 

The procedures provided in the $DRV _DMA_ UTILITY module can 
be linked with your calling program, which must be running in kernel 
mode. This module also defines status codes returned by the procedures 
and types needed by the routines. The driver source, contained in the 
DRV11 WAUTIL.PAS and DRV11 WABODY.PAS modules, can also serve 
as a model for other drivers for realtime devices. The $DRV _DMA_ 
UTILITY module also exports definitions of the DRV11-W's device 
registers if it is desirable to directly read and write the registers. (See 
the DRV11 WAUTIL.PAS module for the Pascal definitions or extract 
the $DRV11W_UTILITY module from the VAXELNC.TLB library for 
the C definitions.) 

These procedures assume that the user device connected to the DRV11-
W asserts the USER REPLY lines when the user device is to inform the 
DRVII-W that data is available for the program to read or that data 
written by the program was accepted. 

The $DRV_DMA_UTILITY module provides the following procedures: 

14-144 VAXELN Device Drivers 



Routine 

ELN$DRV_DMA_TRANSFER_ 
DONE 

ELN$DRV _DMA_ WRITE_ 
FUNCTION 

Description 

Initializes a DRVll-W device controller 
for input and output, creates all needed 
data structures, and starts the queues 
that handle requests. This procedure 
must be called once for each DRVll-W 
controller used. 

Queues a read request to the driver, 
starts the request if the queue is empty, 
and returns. The request causes data 
to be read into the buffer you specify; 
you are responsible for creating your 
data area using messages to ensure 
physically contiguous data. 

Queues a write request to the driver, 
starts the request if the queue is empty, 
and returns. The request causes data to 
be written from the buffer you specify; 
again, you must create your data area 
using messages to ensure physically 
contiguous data. 

Dequeues a completed request from 
the device driver and returns its status 
and a pointer to its data buffer. If no 
completed request is available, the 
procedure can wait or return, at your 
option. 

Modifies the function bits of the 
DRVII-W control status register (CSR). 
This procedure writes a 3-bit pattern to 
the 3-bit CSR function field. 

Returns the status bits (3-bit field) from 
the DRVII-W CSR. 

NOTE 

These procedures assume that the user device connected to 
the DRVII-W asserts the USER REPLY lines to inform the 
DRVII-W device either that data is available for reading 
by the application program or that data has been accepted 
(written by the application program), 

VAXELN Device Drivers 14-145 



Call formats and detailed argument descriptions for the DRV11-W 
support routines are provided in the VAXELN Pascal Runtime Library 
Reference Manual, VAXELN C Runtime Library Reference Manual, and 
VAXELN FORTRAN Runtime Library Reference Manual. 

14.6.9 IEQ11-A and IEU11-A DuallECIIEEE Instrument Bus Interfaces 

The Pascal module $GPIB_SUB supplied with your development sys
tem defines the procedures provided to interface with the IEQ11-A 
and IEUII-A devices. The IEQI1-A is a DMA controller that inter
faces a Q-bus system to two independent IECIIEEE instrument buses. 
Similarly, the IEUII-A is a DMA controller that interfaces a UNIBUS 
system (not a VAXBI system with the DWBUA BI-to-UNIBUS adapter) 
to two independent IECIIEEE instrument buses. (Alternatively, the 
IEQII-A and IEQ11U-A devices can provide two ports to the same 
instrument bus.) Each instrument bus can have up to 15 devices, 
including the IEQ11-A or IEU11-A, in a sequential configuration. 
Each bus allows instruments on the same bus to communicate with 
each other. Each device on the bus has a unique address to which it 
responds. Information is transmitted in byte, serial-bit, or parallel 
format and may consist of either commands or data. 

The IECIIEEE instrument bus is a General Purpose Interface Bus 
(GPIB). ANSIIIEEE 488-1978, IEEE Standard Digital Interface for 
Programmable Instrumentation, specifies the characteristics of the bus 
and the functions it performs. 

The bus consists of 24 lines. Of these, 8 lines are ground wires, and 
16 carry information. Of the 16 information lines, 3 are used for 
handshaking control, and 5 for bus management; 8 carry data between 
devices on the bus. 

You will generally not be concerned with the control lines (NRFD, DAV, 
and NDAC), since the hardware takes care of the handshaking. 

The five bus management lines are: 

Line 

Attention 

Service request 

Interface clear 

14-146 VAXELN Device Drivers 

Mnemonic 

ATN 
SRQ 
IFC 



Line 

End or identify 

Remote enable 

Mnemonic 

EOI 

REN 

The eight data lines are used to transfer a byte of data at a time across 
the bus. 

At any time, only one device on the bus acts as bus controller. The bus 
controller issues the commands needed to perform data transfers. Each 
device on the bus has the potential to perform the following functions: 

• Act as bus controller 
• Act as talker in a bus transfer 
• Act as listener in a bus transfer 

• Issue a service request to the bus controller 
• Respond to polls by the bus controller 

The IEQII-A and IEUII-A provide two independent ports to the 
IECIIEEE bus. These ports can interface to two different buses or 
provide two ports into the same bus. The ports are treated as separate 
controllers. 

The functioning of these ports is controlled by eight hardware registers 
for each port. The registers are: 

Register Mnemonic Address 

IEEE Status ISR 76XXXO 
Read: Address StatuslBus Status 
Write: Int Mask OlInt Mask 1 

IEEE Interrupt IIR 76XXX2 
Read: Int Status OlInt Status 1 
Write: -/Address 

IEEE Command ICR 76XXX4 
Read: Cmd Pass Thrul-
Write: Serial Poll/Auxiliary Cmd 

IEEE Data IDR 76XXX6 
Read: -/Data In 
Write: Parallel PolllData Out 

VAXELN Device Drivers 14-147 



Register Mnemonic Address 

Control/Status CSR 76XXIO 

Bus Address BAR 76XX12 

Byte Count BCR 76XX14 

Match Character MCR 76XX16 

The corresponding registers for the two ports have identical addresses. 
The setting of a multiplexer bit in the CSR, based on a user-specified 
controller ID or unit number, determines which port's register is 
referenced. Aside from register sharing, however, the two instrument 
bus ports are functionally independent. 

As indicated by the Read and Write designations in the preceding 
table, the four IEEE register addresses reference different registers, 
depending on whether a reference is a read or a write. 

For more information about the IEQII-A or IEUII-A device, see the 
IEUII-A/ IEQII-A User's Guide and the IEXI1-A IEC / IEEE Bus 
Interface. 

To use the procedures provided in the $GPIB_SUB module, you must 
link your programs with RTLOBJECT.OLB, or in the case of C pro
grams, with CTRLOBJECT.OLB. In addition to providing the proce
dures, the $GPIB_SUB module defines status codes returned by the 
procedures and the data types that the procedures use. The driver 
source can serve as a model for drivers for other realtime devices. 

The $GPIB_SUB module provides the following procedures: 

Routine Description 

ELN$GP _AUXILIARY_COMMAND Issues a specified auxiliary command 
to an IEQII-A or lEU ll-A unit's 
auxiliary command register. 

ELN$GP _CLEAR_EVENT Clears all events set previously by 
GP _SET_EVENT for an IEQII-A or 
IEUII-A unit. 

ELN$GP _CONFIGURE Configures an IECIIEEE instrument 
bus. 

14-148 VAXELN Device Drivers 



Routine 

ELN$GP _INITIALIZE 

ELN$GP_PARALLEL_POLL_ 
CONFIG 

ELN$GP _PASS_CONTROL 

Description 

Defines the data paths between devices 
that can be talkers and listeners on an 
IECIIEEE instrument bus. 

Takes control of an IECIIEEE bus if the 
specified IEQll-A or lEU ll-A unit is 
the controller-in-charge. 

Issues the auxiliary command GTS 
(go to standby mode) to an IEQll
A or IEUII-A unit if the unit is the 
controller-in-charge. 

Establishes communication with the 
IEQII-A or IEUII-A instrument-bus 
interface device. 

Loads an IEQII-A unit's parallel-poll 
hardware register with a specified 
value. 

Requests a parallel poll of devices 
on an IECIIEEE bus and returns a 
parallel-poll value. 

Configures a parallel poll for the speci
fied devices on an IECIIEEE bus. 

Passes control from an IEQII-A or 
IEUII-A unit to another device on the 
IECIIEEE bus. 

Lets an IEQII-A or IEUII-A unit 
receive control from another device on 
the IECIIEEE bus. 

Issues a service request (SRQ) on behalf 
of a specified IEQII-A or IEUII-A 
unit. 

Sends the specified number of interface 
commands or data bytes to the IEQII-A 
or IEUII-A data output register. 

Returns the IECIIEEE bus status and 
the specified IEQII-A or IEUII-A 
unit's controller status. 

VAXELN Device Drivers 14-149 



Routine 

ELN$GP _TRANSFER 

Description 

Performs a serial poll of the specified 
devices on an IECIIEEE instrument bus 
while the service request (SRQ) bit is 
asserted, to determine which devices 
requested service. 

Specifies events to watch for on an 
IECIIEEE bus. 

Transfers data between devices on an 
IECIIEEE instrument bus according 
to the data paths specified in a call to 
GP _DEFINE_PATH. 

Initializes a specified IEQII-A or 
IEUII-A port (unit). 

Call formats and detailed argument descriptions for the IEQII-A 
and IEUII-A support routines are provided in the VAXELN Pascal 
Runtime Library Reference Manual, VAXELN C Runtime Library 
Reference Manual, and VAXELN FORTRAN Runtime Library Reference 
Manual. 

14.6.10 KWV11-C Realtime Clock 

The Pascal module $KWV_UTILITY, supplied with your development 
system, defines the procedures provided to interface with the KWVI1-C 
realtime clock. The KWVl1_ C is a programmable, realtime clock that 
can be used to initiate action after a specified time interval (through 
an interrupt or an external signal) or to time an event. In the first 
mode, it can be used with an ADVI1-C, AXV11-C, or ADV11-D device 
to initiate the collection of data. 

The device's clock counter has a resolution of 16 bits. The clock counter 
can be driven from any of five internal crystal-controlled frequencies, 
from a line frequency input, or from Schmitt Trigger #1, which is fired 
by an external input. Another Schmitt Trigger, #2, can be used to 
start the counter. (A Schmitt Trigger is a logic device that responds to 
voltage levels rather than to voltage transitions. The LSl-11 Analog 
System User's Guide contains more information on the hardware.) 

14-150 VAXELN Device Drivers 



The driver interface provided for the KWVII-C is of the same style as 
that provided for the ADVII-C and ADVII-D, described previously. 
The VAXELN Toolkit supplies the KWVII-C driver to allow you to use 
all of the functionality of the ADVII-C and ADVII-D. 

The design of this driver precludes accessing a given KWVII-C device 
from more than one job, and that job must be running in kernel mode. 
More than one process in the same job is permitted to access the device; 
however, the caller must ensure that no simultaneous accesses to the 
same device occur. 

The procedures provided in the $KWV_UTILITY module can be linked 
as delivered with your calling programs to interface with the KWVII-C 
clock. This module also defines status codes returned by the proce
dures and types needed by the routines. The$KWV_UTILITY module 
provides the following procedures: 

Routine Description 

Causes a KWVII-C device to be readied for 
input and causes all needed data structures to 
be created. This procedure must be called at 
least once for each KWVII-C; it may be called 
more than once for the same device to change 
the value of a parameter - for example, to 
enable the device to gather a larger number of 
values. 

Causes time values to be read from the de
vice and stored in a data array; these values· 
represent timings of external events. This pro
cedure may also be used to gather the elapsed 
time that began with a call to ELN$KWV_ 
WRITE. 

Causes the device to be set up such that, when 
the given number of ticks has occurred, the 
clock overflow signal is generated. Overflow 
signals may be repeatedly generated, depend
ing on how the device was initialized. This 
procedure can also be used to start the clock 
if the intent is to later stop and read it with 
ELN$KWV _READ. 

The procedures just described return optional status values. To ensure 
good realtime response, the procedures provide limited error checking; 
they report only errors detected by the device. No input parameters are 

VAXELN Device Drivers 14-151 



verified, and kernel service calls made in the course of execution raise 
exceptions upon failure. 

Call fonnats and detailed argument descriptions for the KWVII-C 
support routines are provided in the VAXELN Pascal Runtime Library 
Reference Manual, VAXELN C Runtime Library Reference Manual, and 
VAXELN FORTRAN Runtime Library Reference Manual. 

14-152 VAXELN Device Drivers 



Appendix A 

Status Values/Exception Names 

The VAXELN Kernel procedures and some utility procedures accept 
an optional status argument that receives the procedure's completion 
status. If you specify the status argument in a procedure call, you 
can check the status value after the call to determine whether the 
operation was successful. If you omit the status argument and a fatal 
error occurs, an exception condition results. 

Exceptions have the same names as the corresponding status values. 
For example, KER$_NO_SUCH_PROGRAM can be either a status 
value or exception name, depending on whether you specify the status 
argument. You can use these names in exception handlers. 

For information about checking status arguments and establishing 
exception handlers, see Chapter 7. Table A-llists the status val
ues/exception names that VAXELN programs raise. For more details 
about a particular status value/exception name, see the corresponding 
message symbol in the VAXELN Messages Manual. 

Table A-1 : Status Values/Exception Names 
Name 

C Runtime Library 

C$_EACCES 

C$_EADDRlNUSE 

C$_EADDRNOTAVAIL 

C $_EAFNO SUPPORT 

Description 

Permission denied 

Address already in use 

Cannot assign requested address 

Address family not supported 

Status Values/Exception Names A-1 



Table A-1 (Cont.): Status Values/exception Names 
Name 

C Runtime Library 

C$_EAGAIN 

C$_EALREADY 

C$_EBADF 

C$_E2BIG 

C$_EBUSY 

C$_ECHILD 

C$_ECONNABORTED 

C$_ECONNREFUSED 

C$_ECONNRESET 

C$_EDESTADDRREQ 

C$_EDOM 

C$_EEXIST 

C$_EFAULT 

C$_EFBIG 

C$_EHOSTDOWN 

C$_EHOSTUNREACH 

C$_EINPROGRESS 

C$_EINTR 

C$_EINVAL 

C$_EIO 

C$_EISCONN 

C$_EISDIR 

C$_ELOOP 

C$_EMSGSIZE 

C$_EMFILE 

C$_EMLINK 

C$_ENAMETOOLONG 

A-2 Status Values/Exception Names 

Description 

No more processes 

Operation already in progress 

Bad file number 

Argument list too long 

Mount device busy 

No children 

Software caused connection to abort 

Connection refused 

Connection reset by peer 

Destination address required 

Math argument error 

File exists 

Bad address 

File too large 

Host is down 

No route to host 

Operation in progress 

Interrupted system call 

Invalid argument 

I/O error 

Socket is already connected 

Is a directory 

Too many levels of symbolic links 

Message too long 

Too many open files 

Too many links 

File name too long 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

C Runtime Library 

C$_ENETDOWN 

C$_ENETRESET 

C$_ENETUNREACH 

C$_ENFILE 

C$_ENOBUFS 

C$_ENODEV 

C$_ENOENT 

C$_ENOEXEC 

C$_ENOMEM 

C$_ENOPROTOOPT 

C$_ENOSPC 

C$_ENOTBLK 

C$_ENOTCONN 

C$_ENOTDIR 

C$_ENOTSOCK 

C$_ENOTTY 

C$_ENXIO 

C$_EOPNOTSUPP 

C$_EPERM 

C$_EPFNOSUPPORT 

C$_EPIPE 

C$~EPROTONOSUPPORT 

C$_EPROTOTYPE 

C$_ERANGE 

Description 

Network is down 

Network dropped connection on reset 

Network is unreachable 

File table overflow 

No buffer space available 

No such device 

No such file or directory 

Exec format error 

Not enough core 

Protocol not available 

No space left on device 

Block device required 

Socket is not connected 

Not a directory 

Not a socket; socket operation requires a 
socket 

Not a typewriter 

No such device or address 

Operation not supported on socket 

Not owner; need appropriate privileges 

Protocol family not supported 

Broken pipe 

-Protocol not supported 

Protocol wrong type for socket 

Result too large 

Status Values/Exception Names A-3 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

C Runtime Library 

C$_EROFS 

C$_ESHUTDOWN 

C$_ESOCKTNOSUPPORT 

C$_ESPIPE 

C$_ESRCH 

C$_ETIMEDOUT 

C$_ETOO~EFS 

C$_ETXTBSY 

C$_EVMSERR 

C$_EWOULDBLOCK 

C$_EXDEV 

Description 

Read-only file system 

Cannot send after socket shutdown 

Socket type not supported 

Invalid seek 

No such process 

Connection timed out 

Too many references; cannot splice 

Text file busy 

VMS error code for non-translatable errors 

I/O operation would block channel 

Cross-device link 

DEC windows XVI Toolkit Runtime Library 

VAXELN Runtime Library 

ELN$_ABORTED 

ELN$_ACC 

ELN$_ACS 

ELN$_ACT 

ELN$_ADAWI 

ELN$_ALLRDYRUN 

ELN$_ALQ 

ELN$_AMBENUMSTR 

ELN$_ANI 

ELN$_ARGUMENT 

ELN$_ARRAYBOUND 

A-4 Status Values/Exception Names 

X Toolkit fatal error 

Connection attempt failed 

Files-II ACP access failed 

Error in access control string 

File activity precludes operation 

First argument in call to 
ADD_INTERLOCKED is out of range 

Device is already running 

Invalid allocation quantity 

Ambiguous specification for enumerated type 

Not ANSI "D" format 

Nonexistent argument in call to ARGUMENT 

Corresponding array bounds are not equal 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

VAXELN Runtime Library 

ELN$_ASSERT 

ELN$_AUTH_DUPLICATE_ 
USER 

ELN$_AUTH_INVALID_UIC 

ELN$.-AUTH_NO_ 
AUTHORIZATION 

ELN$_AUTH_NO_PRIVILEGE 

ELN$_AUTH_NO_SUCH_ 
USER 

ELN$_AUTH_UNKNOWN_ 
REQUEST 

ELN$_AXV _DEVICE_ERROR 

ELN$_BADIMGFMT 

ELN$_BADSTATE 

ELN$_BADVALUE 

ELN$_BES 

ELN$_BLKCHK_CRC_ERR 

ELN$_BOF 

ELN$_BOOTERROR 

ELN$_BUGDAP 

ELN$_CASELAB 

ELN$_CHARASGN 

ELN$_CHR 

ELN$_CONFLICTINGVAL 

ELN$_CRC 

Description 

Failed assertion 

Duplicate user 

Invalid UIC value 

No authorization for user 

No privilege for request 

No such user 

Unknown request 

Device error; clock too fast for requests 

Bad image format 

Bad state exists 

Bad parameter value 

Bad escape sequence 

Block check or CRC error 

Beginning-of-file detected 

Insufficient physical memory, insufficient 
contiguous physical memory, processor iden
tification mismatch, unexpected interrupt or 
exception, or unexpected machine check 

Internal network error condition detected 

No case label exists corresponding to the 
selector value 

Assignment of a string not of length 1 to a 
character 

Operand to CHR is out of the range 0 to 255 

Conflicting argument values specified 

Network DAP level CRC check failed 

Status Values/Exception Names A-5 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

VAXELN Runtime Library 

ELN$_DATA_ OVERRUN 

ELN$_DEL 

ELN$_DEV 

ELN$_DEVACTIVE 

ELN$_DEVNOTREADY 

ELN$_DEVOFFLINE 

ELN$_DIR 

ELN$_DIR_FNM 

ELN$_DIR_FUL 

ELN$_DISK_ALLOCFAIL 

ELN$_DISK_BADRANGE 

ELN$_DISK_BLKZERO 

ELN$_DISK_CLUSTER 

ELN$_DISK_DEVMOUNT 

ELN$_DISK_DIAGPACK 

ELN$_DISK_FACTBAD 

ELN$_DISK_INVCHRVOL 

ELN$_DISK_LARGECNT 

ELN$_DISK_MAXBAD 

ELN$_DISK_NOBADDATA 

ELN$_DISK_NOTFILEDEV 

ELN$_DME 

ELN$_DNF 

ELN$_DNR 

A-6 Status Values/Exception Names 

Description 

No current record; operation not preceded by 
$GET or $FIND 

Data overrun 

RFA-accessed record was deleted 

Error in device name or inappropriate device 
type for operation 

Device already active 

Device not ready 

Device is not on line 

Error in directory name 

Directory listing; error in reading volume-set 
name, directory name, or file name 

Directory full 

Index file allocation failure 

Bad block address not on volume 

Block zero is bad; volume not bootable 

Unsuitable cluster factor 

Device is already mounted 

Disk is a diagnostic pack 

Cannot read factory bad block data 

Invalid character in volume label 

Disk too large to be supported 

Bad block table overflow 

Bad block data not found on volume 

Device is not file structured 

Dynamic memory exhausted 

Directory not found 

Device not ready or not mounted 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

VAXELN Runtime Library 

ELN$_DPE 

ELN$_END_OF _TAPE 

ELN$_END_OF _VOLUME 

ELN$_ENTR~STS 

ELN$_EOF 

ELN$_EOFNOTDEF 

ELN$_EOLN 

ELN$_ERRDURLOA 

ELN$_FAC 

ELN$_FATAL_HWE 

ELN$_FEX 

ELN$_FILE_ALROPEN 

ELN$_FILE_ALTHOMBLK 

ELN$_FILE_ALTIDXFHD 

ELN$_FILE_BADIDXFHD 

ELN$_FILE_BITMAPERR 

ELN$_FILE_DEVINUSE 

ELN$_FILE_DEVNOTMNT 

ELN$_FILE_FILESTRUCT 

ELN$_FILE_HDR_CHKSUM 

ELN$_FILE_HDR_FULL 

ELN$_FILE_IDXMAPERR 

ELN$_FILE_INCVOLLABEL 

ELN$_FILE_MAPHDRBAD 

ELN$_FILE_MLTVOLABEL 

Description 

Device positioning error 

End-of-tape detected 

End-of-volume detected 

Entry already exists 

End-of-file detected 

EOF taken when undefined 

EOLN taken when file at end-of-file 

Error occurred during load operation 

Record operation not permitted by specified 
file access (FAC) 

Fatal hardware error 

File already exists, not superseded 

File already open 

Alternate home block used 

Alternate index file header used 

No valid index file header found 

I/O error on storage bitmap; volume locked 

Another processor is using device 

No volume mounted on device 

Unsupported file structure level or ODS 
feature 

File header checksum. failure 

File header full 

I/O error on index file bitmap; volume locked 

Incorrect volume label, volume mounted 
anyway 

Storage map header is bad; volume locked 

A volume with this name has already been 
mounted 

Status Values/Exception Names A-7 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

VAXELN Runtime Library 

ELN$_FILE_NOHOMEBLOCK 

ELN$_FILE_ VOLALRMNT 

ELN$_FILE_ VOLIMPDSM 

ELN$.;..FINDFIRST 

ELN$_FLK 

ELN$_FND 

ELN$_FNF 

ELN$_FNM 

ELN$_FOP 

ELN$_FSZ 

ELN$_FTM 

ELN$_FUL 

ELN$_IDR 

ELN$_IDXF _FULL 

ELN$_IFA 

ELN$_INTCONVERT 

ELN$_INVALADDR 

ELN$_INVALBUFSIZ 

ELN$_INVALCHARSIZ 

ELN$_INVALDSKSIZ 

ELN$_INVALFUNC 

ELN$_INVALLINE 

ELN$_INVALNAM 

A-8 Status Values/Exception Names 

Description 

No valid home block found on volume 

ELN$MOUNT_VOLUME 

Volume was improperly dismounted; rebuild 
on VMS system 

Start index out-of-range in call to FIND_ 
FIRST_BIT_CLEAR or FIND_FIRST_BIT_ 
SET 

File currently locked by another user 

Files-11 ACP file or directory lookup failed 

File not found 

Error in file name 

Invalid file options 

Invalid fixed control header size 

Network file transfer mode precludes opera
tion (SQO) set 

Device full; insufficient space for allocation 

Invalid directory rename operation 

Index file full 

Invalid file attributes detected; file header 
corrupted 

Expression out-of-range for conversion to 
type BOOLEAN or an enumerated type 

Invalid or missing address value 

Invalid buffer size 

Invalid character size 

Bad parameter input for VM disk size 

Invalid function 

Invalid line name 

Invalid node, port, or service name 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

VAXELN Runtime Library 

ELN$_INVALNODE 

ELN$_INVALPARITY 

ELN$_INVALREC 

ELN$_INVALSPEED 

ELN$_INVALSUBFUNC 

ELN$_INVALTYP 

ELN$_INVDBLSTR 

ELN$_INVENUMSTR 

ELN$_INVENUMVAL 

ELN$_INVREALSTR 

ELN$_INVTIMSTR 

ELN$_INVTIMVAL 

ELN$_IOP 

ELN$_KEY 

ELN$_~_DATA_OVERRUN 

ELN$_LATACTIVE 

ELN$_LATNOTACTIVE 

ELN$_LBL 

ELN$_LNE 

ELN$_LOCKED 

ELN$_MAXLOADS 

Description 

Invalid node name or address 

Invalid parity type 

Invalid record definition 

Invalid terminal speed 

Invalid subfunction 

Invalid port type 

Invalid specification for a number of type 
DOUBLE 

Invalid enumerated type syntax 

Invalid enumerated type value 

Invalid specification for a number of type 
REAL 

Invalid time specification 

Invalid time value 

Invalid operation for file organization or 
device 

Invalid record encountered; with sequential 
files only 

Invalid record number key or key value 

Data overrun; external events occurring too 
fast 

LAT protocol already active 

LAT protocol is not active 

Tape label is not ANSI format 

Logical name translation count exceeded 

Entry is locked 

Maximum number of concurrent loads 
reached 

Maximum number of services reached 

Status Values/Exception Names A-9 



Table A-1 (Cont.): Status Values/exception Names 
Name 

VAXELN Runtime Library 

ELN$_MISLINNAM 

ELN$_MISLOAFIL 

ELN$_MISNODID 

ELN$_MISPHYADR 

ELN$_MKD 

ELN$_MOVVEC 

ELN$_MRS 

ELN$_NEF 

ELN$_NEGSIZE 

ELN$_NEGSTRLEN 

ELN$_NET 

ELN$_NCADDRNOTSET 

ELN$_NCBSHORT 

ELN$_NI_CARRIERLOSS 

ELN$_NI_EXCESSCOLL 

ELN$_NI_ILLEGALCMD 

ELN$_NI_INVALIDBUFF 

ELN$_NCINVALIDCMD 

ELN$_NCINVALIDPTDB 

ELN$_NCINVALIDSAP 

ELN$_NCINVLLCCLASS 

ELN$_NCLENGTH 

ELN$_NCLONG 

ELN$_NCNOTENABLED 

ELN$_NCNOTUNIQUE 

ELN$_NI_PROMENABLED 

A-10 Status Values/Exception Names 

Description 

Missing line name 

Missing load file 

Missing node name or address 

Missing physical address 

Files-II ACP could not mark file for deletion 

Vector moved from shareable image 

Invalid maxim urn. record size 

Not positioned to EOF on $PUT; sequential 
organization only 

The size of a dynamic aggregate is negative 

Negative string length specified 

Network operation failed at remote node 

Physical address could not be set 

Buffer too short 

Carrier loss during transmission 

Excessive collisions; transmission stopped 

Illegal command opcode 

Invalid buffer specified 

Invalid command parameters 

Invalid PTDB 

Invalid SAP value; even group SAPJ or odd 
individual SAP 

Invalid LLC class specified for this user 

Invalid length 

Frame too long 

User not enabled in a connection request 

PTT, SAP, or PROTID not unique 

Promiscuous mode already enabled 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

VAXELN Runtime Library 

ELN$_NI_RCVFAIL802TR 

ELN$_NI_RCVFAILNRSN 

ELN$_NI_SHORT 

ELN$_NI_TOOMANYADR 

ELN$_NI_TOOMANYFQ 

ELN$_NCTOOMANYPTDB 

ELN$_NI_TRANSFAlLED 

ELN$_NI_UNKNOWNPrDB 

ELN$_NI_XMTFAILLCOL 

ELN$_NI_XMTFAILNRSN 

ELN$_NCXMTFAILTIME 

ELN$_NMF 

ELN$_NOBLOCKSPEC 

ELN$_NOD 

ELN$_NOHANDLER 

ELN$_NOMODEM 

ELN$_NOMOREINFO 

ELN$_NORESOURC 

ELN$_NORMAL 

ELN$_NOSERVERS 

ELN$_NOSUCHENTRY 

ELN$_NOSUCHLINK 

ELN$_NOSUCHOPrION 

ELN$_NOSUCHPORT 

ELN$_NOSUCHSERV 

ELN$_NOTENUMSTR 

ELN$_ OBSVEC 

Description 

Receive failed; IEEE 802 packet truncated 

Receive failed; no reason given 

Frame too short 

Too many addresses defined 

Too many FQs defined 

Too many PTDBs defined 

Transmission failed 

Specified PTDB is unknown 

Transmit failed; late collision 

Transmit failed; no reason given 

Transmit failed; transmit timeout 

No more files found 

Device driver indicated zero blocks on device 

Error in node name 

Exit handler not in system 

No modem support 

No information in data base 

No resources available 

Operation successful 

No terminal servers known to service node 

No matching entry found 

No such link 

Hardware option not present 

No such port 

No such service 

String is not of the enumerated type 

Obsolete termclass vectored routine 

Status Values/Exception Names A-11 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

VAXELN Runtime Library 

ELN$_ORG 

ELN$_PAOC 

ELN$_PES 

ELN$_PORTEXISTS 

ELN$_PRED 

ELN$_PROBESIZE 

ELN$_QUO 

ELN$_RAC 

ELN$_RAT 

ELN$_RECEIVE 

ELN$_RENAME_2 

ELN$_REQMAX 

ELN$_REQUEST_ 
OUTSTANDING 

ELN$_RFA 

ELN$_RFM 

ELN$_RLK 

A-12 Status Values/Exception Names 

Description 

Invalid file organization value 

A packed array of type CHAR is too large to 
be used as a string 

Assignment of string of wrong length to 
packed array of type CHAR 

Partial escape sequence 

Port already exists 

Operand to PRED is too small 

Size of argument to PROBE_READ or 
PROBE_WRITE is greater than 65535 bytes 

DAP protocol error detected; message field 
contains invalid format 

DAP protocol error detected; message field is 
invalid 

Insufficient privilege or file protection viola
tion 

Error in quoted string 

Invalid record access mode 

Invalid record attributes 

Size of message received is different from the 
size of the associated type of the data pointer 

Rename; 2 different device names specified 

Maximum number of requests already 
queued 

Modem event signaling request already 
exists 

Invalid record's file address (RFA) 

Invalid record format 

Target record currently locked by another 
stream 

Files-II ACP remove function failed 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

VAXELN Runtime Library 

ELN$_RNF 

ELN$_RNL 

ELN$_ROP 

ELN$_RSZ 

ELN$_SEND_RECEIVE 

ELN$_SERVEXlSTS 

ELN$_SETASGN 

ELN$_SETCONSTR 

ELN$_SHR 

ELN$_SNE 

ELN$_STRLEN 

ELN$_SUBRASGN 

ELN$_SUBSCR 

ELN$_SUBSTR 

ELN$_SUC 

ELN$_SUCC 

ELN$_SUCCESS 

ELN$_SUCCESS_ERROR 

ELN$_SUP 

ELN$_SYN 

ELN$_TAPE_DEVERROR 

ELN$_TAPE_DEVINUSE 

ELN$_TAPE_DEVMOUNT 

ELN$_TAPE_DIFLBLMNT 

ELN$_TAPE_ VOLNAMMSK 

Description 

Record not found 

Record not locked 

Invalid record options 

Invalid record size 

Send or receive failure 

Service already exists 

Members present in the set source are out of 
range specified by target 

An expression in a set constructor is out of 
range 

Invalid file sharing (SHR) options 

File sharing not enabled 

A string length exceeds 32767 

The source value is out of the range of the 
target subrange 

Array index value is out of range 

Operand in a call to SUBSTR is out of range 

Operation successful 

Operation in call to SUCC is too large 

Operation completed successfully 

Error in DAP success message 

Network operation not supported 

File specification syntax error 

Device error occurred 

Another process is using the device 

Device is already mounted 

A volume with a different label was mounted 

Specified volume's name is masked by an
other volume 

Status Values/Exception Names A-13 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

VAXELN Runtime Library 

ELN$_TERM_RECV 

ELN$_TIMEOUT 

ELN$_TMO 

ELN$_TNS 

ELN$_TRANSLATE 

ELN$_TUTL_BLKSIZ 

ELN$_TUTL_INVCHRVOL 

ELN$_TYP 

ELN$_TYPECAST 

ELN$_TYPEEXTENT 

ELN$_UNSUPPORT 

ELN$_UNSUPPORTED 

ELN$_UPI 

ELN$_VER 

ELN$_VOL 

ELN$_WCC 

ELN$_WLD 

ELN$_ZEROSIZE 

File Service 

FLS$K_ALLFHDNOTMAP 

FLS$K_BADBLOCK 

FLS$K_BADFILEID 

FLS$K_BADFILENAME 

A-14 Status Val ues/Exception Names 

Description 

Tenninator received 

Timeout occurred 

Timeout occurred 

Tenninator not seen 

No translation exists for a character in the 
source specified with TRANSLATE 

Invalid block size specified 

Invalid character in volume label 

Error in file type 

Target type is larger than the variable being 
cast 

Corresponding type extents are not equal 

Network operation not supported 

Driver received unsupported request 

UPI not set when sharing and BIO or BRO 
set 

Error in version number 

No such volume 

Invalid wildcard context (WCC) value. 

Invalid wildcard operation 

Size of the target specified with ZERO is 
greater than 65,535 bytes 

Allocated file header not mapped 

Bad block encountered; handling not imple
mented 

File number out of range for this volume 

Bad file name for enter operation 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

File Service 

FLS$K_BADFILEVER 

FLS$K_BADPARAM 

FLS$K_BADSBMBLK 

FLS$K_ERRDURDMT 

FLS$K_ERREXTIDX 

FLS$K_ERRRDIDX 

FLS$K_ERRWRTIDX 

FLS$K_FILBLKNOTMAP 

FLS$K_FILESTRUCT 

FLS$K_ILLEGALEXT 

FLS$K_ILLPTRCNT 

FLS$K_MAPCNTZERO 

FLS$K_MOUNTED 

FORTRAN Runtime Library 

FOR$_ADJARRDIM 

FOR$_ATTACCNON 

FOR$_BACERR 

FOR$_CLOERR 

FOR$_DUPFILSPE 

FOR$_ENDDURREA 

FOR$_ENDFILERR 

FOR$_ERRDURREA 

FOR$_ERRDURWRI 

Description 

Bad version number for enter operation 

Bad input parameter 

Bad storage bitmap block specified in bitmap 
search 

Error during dismount; outstanding file open 

Error extending index file 

Error reading index file header 

Error writing index file header 

Attem pt to read from or write to block not 
mapped in file 

Unsupported file structure level or unsup
ported ODS2 feature 

Illegal extent specified in bitmap deallocation 

Illegal pointer count specified during re
trieval pointer creation 

Attempt to create map pointer with zero 
block count 

Actual volume name is name 

Adjustable array dimension error 

Attempt to access nonexistent record 

BACKSPACE error 

CLOSE error 

Duplicate file specifications 

End-of-file during read 

ENDFILE error 

Error during read 

Error during write 

Status Values/Exception Names A-15 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

FORTRAN Runtime Library 

FOR$_FILNAMSPE 

FOR$_FILNOTFOU 

FOR$_FINERR 

FOR$_FLOUNDEXC 

FOR$_FORVARMIS 

FOR$_INCFILORG 

FOR$_INCOPECLO 

FOR$_INCRECLEN 

FOR$_INCRECTYP 

FOR$_INFFORLOO 

FOR$_INPCONERR 

FOR$_INPRECTOO 

FOR$_INPSTAREQ 

FOR$_INSVIRMEM 

FOR$_INVARGFOR 

,FOR$_INVLOGUNI 

FOR$_INVREFVAR 

FOR$_KEYVALERR 

FOR$_LISIO_SYN 

FOR$_NO_CURREC 

FOR$_NO_SUCDEV 

FOR$_NOTFORSPE 

FOR$_OPEFAI 

FOR$_OUTCONERR 

FOR$_OUTSTAOVE 

FOR$_RECIO_OPEN 

FOR$_RECNUMOUT 

A-16 Status Values/Exception Names 

Description 

File name specification error 

File not found 

FIND error 

Floating underflow exception 

Format and variable type mismatch 

Inconsistent file organization 

Inconsistent OPEN and CLOSE parameters 

Inconsistent record length 

Inconsistent record type 

Infinite format loop 

Input conversion error 

Input record too long 

Input statement requires too much data 

Insufficient virtual memory 

Invalid argument 

Invalid logical unit number 

Invalid reference to variable in NAMELIST 
input 

Keyword value error in OPEN statement 

List-directed 110 syntax error 

No currrent record 

No such device 

Not a FORTRAN-specific error 

Open failure 

Output conversion error 

Output statement overflows record 

Recursive I/O operation 

Record number outside range 



Table A-1 (Cont.): Status Values/exception Names 
Name 

FORTRAN Runtime Library 

FOR$_REWERR 

FOR$_REWRITERR 

FOR$_SEGRECFOR 

FOR$_SPERECLOC 

FOR$_SYNERRFOR 

FOR$_SYNERRNAM 

FOR$_TOOMANREC 

FOR$_TOOMANVAL 

FOR$_UNIALROPE 

FOR$_UNLERR 

FOR$_ vFEVALERR 

FOR$_ WRIREAFIL 

VAXELN Kernel 

KER$_AREA_EXISTS 

KER$_BAD_ACCESS_ 
CONTROL 

KER$_BAD_COUNT 

KER$_BAD_CREATE 

KER$_BAD_IMAGE_FORMAT 

KER$_BAD_LENGTH 

KER$_BAD_MESSAGE_SIZE 

KER$_BAD_MODE 

KER$_BAD_STACK 

KER$_BAD_STATE 

KER$_BAD_TYPE 

KER$_BAD_VALUE 

Description 

REWIND error 

REWRITE error 

Segmented record format error 

Specified record locked 

Syntax error in format 

Syntax error in NAMELIST input 

Too many records in I/O statement 

Too many values for NAMELIST variable 

U nit already open 

UNLOCK error 

Variable format expression value error 

Write to READONLY file 

Previous job created area 

Remote system rejected user name or pass
word 

Bad parameter count 

Bad job or process creation 

Unsupported program image format 

Bad string parameter length 

Bad message size 

Bad access mode 

Bad stack 

Bad object state 

Bad object type 

Bad parameter value 

Status Values/Exception Names A-17 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

VAXELN Kernel 

KER$_CONNECT_PENDING 

KER$_CONNECT_TIMEOUT 

KER$_COUNT_OVERFLOW 

KER$_COUNT_UNDERFLOW 

KER$_DEVICE_CONNECTED 

KER$_DISCONNECT 

KER$_DUPLICATE 

KER$.:..EX.PEDITED 

KER$_KERNEL_STACK 

KER$_MACHINECHK 

KER$_NO_ACCESS 

KER$_NO_DESTINATION 

KER$_NO _INITIALIZATION 

KER$_NO_MAP _REGISTER 

KER$_NO_MEMORY 

KER$_NO _MESSAGE 

KER$_NO_OBJECT 

KER$_NO_PAGE_TABLE 

KER$_NO_PATH_REGISTER 

KER$_NO_POOL 

KER$_NO_PORT 

KER$_NO_STATUS 

KER$_NO_SUCH_DEVICE 

KER$_NO_SUCH_IMAGE 

KER$_NO_SUCH_NAME 

KER$_NO_SUCH_PORT 

A-18 Status Values/Exception Names 

Description 

Not enough free memory process's kernel or 
user stack 

Connect circuit pending 

Connect circuit timeout 

Count overflow 

Count underflow 

Device already connected 

Circuit disconnected by partner 

Duplicate name 

Expedited message 

Kernel stack not valid 

Machine check 

No access to parameter 

No destination port 

No job initialization specified 

No I/O mapping register available 

No physical memory available 

No message available 

No object table entry available 

No process page table available 

No data path register available 

No pool available 

No port available 

No exit status value specified 

No such device 

No such image 

No such name 

No such port 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

VAXELN Kernel 

KER$_NO_SUCH_PROGRAM 

KER$_NO_SUCH_SERVICE 

KER$_NO_SYSTEM_PAGE 

KER$_NO_ VIRTUAL 

KER$_POWER_SIGNAL 

KER$_PROCESS_ATTENTION 

KER$_QUIT_SIGNAL 

KER$_SUCCESS 

KER$_TIME_NOT_SET 

KER$_UNREACHABLE 

General Runtime Library 

LIB$_AMBKEY 

LIB$_AMBSYMDEF 

LIB$-ATTCONSTO 

LIB$_ATTREQREF 

LIB$_BADBLOADR 

LIB$_BADBLOSIZ 

LIB$_BADCCC 

LIB$_BADSTA 

LIB$_BADTAGVAL 

LIB$_DECOVF 

LIB$_DESSTROVF 

LIB$_EF _ALRFRE 

LIB$_EF _ALRRES 

LIB$_EF _RESSYS 

LIB$_EOMERROR 

Description 

No such program 

No such service 

No system page table entries available 

No virtual address space available 

System power recovery is in progress 

Interprocess signal 

Quit signal 

Operation completed successfully 

Time has not been set 

Remote system currently unreachable 

Ambiguous keyword 

Ambiguous symbol definition 

Attempt to continue from stop 

Attach request refused 

Bad block address 

Bad block size 

Invalid compilation code 

Bad stack 

Bad boundary tag value 

Decimal overflow 

Destination string overflow 

Event flag already free 

Event flag already reserved 

Event flag reserved to system 

Compilation errors in module 

Status ValueS/Exception Names A-19 



Table A-1 (Cont.): Status Values/exception Names 
Name 

General Runtime Library 

LIB$_EOMFATAL 

LIB $_EO MWARN 

LIB$_ERRROUCAL 

LIB$_FATERRLIB 

LIB$_FLTOVF 

LIB$_FLTUND 

LIB$_GSDTYP 

LIB$_ILLFMLCNT 

LIB$_ILLMODNAM 

LIB$_ILLPSCLEN 

LIB$_ILLRECLEN 

LIB$_ILLRECLN2 

LIB$_ILLRECTYP 

LIB$_ILLRECTY2 

LIB$_ILLSYMLEN 

LIB$_INPSTRTRU 

LIB$_INSEF 

LIB$_INSLUN 

LIB$_INSVIRMEM 

LIB$_INTLOGERR 

LIB$_INTOVF 

LIB$_INVARG 

LIB$_INVARGORD 

LIB$_INVCHA 

LIB$_INVCLADSC 

LIB$_INVCLADTY 

A-20 Status Values/Exception Names 

Description 

Fatal compilation errors in module 

Compilation warnings in module 

Error in routine call 

Fatal error in library 

Floating overfiow 

Floating underflow 

Invalid GSD record type in module 

Minimum argument count exceeds maximum 
for procedure in module 

Invalid module name length for module 

Psect has invalid length in module 

Invalid record length in module 

Invalid record length 

Invalid record type in module 

Invalid record type 

Symbol has invalid length in module 

Input string truncated 

Insufficient event flags 

Insufficient logical unit numbers 

Insufficient virtual memory 

Internal logic error 

Integer overfiow 

Invalid arguments 

Invalid argument order 

Invalid character 

Invalid class descriptor 

Invalid class data type combination in de
scriptor 



Table A-1 (Cont.): Status Values/exception Names 
Name 

General Runtime Library 

LIB$ .. JNVCVT 

LIB$_INVDTYDSC 

LIB$_INVFILSPE 

LIB $_INVNB DS 

LIB$_INVOPEZON 

LIB$_INVSCRPOS 

LIB$_INVSTRDES 

LIB$_INVS~NAJd 

LIB$_INVTYPE 

LIB$_IVTIME 

LIB$_KEYALRINS 

LIB$_KEYNOTFOU 

LIB$_LUNALRFRE 

LIB$_LUNRESSYS 

LIB$_NEGTIM 

LIB$_NOEOM 

LIB$_NORMAL 

LIB$_NOSUCHSYM 

LIB$_NOTFOU 

LIB$_ONEDELTIM 

LIB$_ONEENTQUE 

LIB$_OUTSTRTRU 

LIB$_PAGLIMEXC 

LIB$_PUSSTAOVE 

LIB$_QUEWASEMP 

LIB$_RECTOOSML 

LIB$_ROPRAND 

Description 

Invalid conversion 

Invalid data type in descriptor 

Invalid file specification 

Invalid numeric byte data string 

Invalid operation for zone 

Invalid screen position 

Invalid string descriptor 

Invalid symbol name 

Invalid LIB$TPARSE state table entry 

Invalid time passed in or computed 

Key already inserted in tree 

Key not found in tree 

Logical unit number already free 

Logical unit number reserved to system 

Negative time was computed 

Module does not contain end-of-module 
record 

Operation completed successfully 

No such symbol 

Not found 

At least one delta time is required 

One entry in queue 

Output string truncated 

Page limit exceeded for zone 

Pushdown stack overflow 

Queue was empty 

Data overflows object record in module 

Reserved operand 

Status Values/Exception Names A-21 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

General Runtime Library 

LIB$_SCRBUFOVF 

LIB$_SECINTFAI 

LIB$_SEQUENCE 

LIB$_SEQUENCE2 

LIB$_SIGNO_ARG 

LIB$_STRIS_INT 

LIB$_STRLVL 

LIB$_STRTRU 

LIB$_SYNTAXERR 

LIB$_UNRKEY 

LIB$_USEFLORES 

LIB$_ WRONUMARG 

Math Runtime Library 

MTH$_FLOOVEMAT 

MTH$_FLOUNDMAT 

MTH$_INVARGMAT 

MTH$_LOGZERNEG 

MTH$_SQUROONEG 

MTH$_UNDEXP 

MTH$_ WRONUMARG 

Description 

Screen buffer overflow 

Secondary interlock failure in queue 

Invalid record sequence in module 

Invalid record sequence 

Signal with no arguments 

String is interlocked 

Invalid object language structure level in 
module 

String truncated 

String syntax error detected by LIB$TPARSE 

Unrecognized keyword 

Use of floating reserved operand 

Wrong number of arguments 

Floating-point overflow 

Floating-point underflow 

Invalid argument 

Logarithm of zero or negative value 

Square root of negative value 

Undefined exponentiation 

Wrong number of arguments 

Language Independent Runtime Library 

OTS$_FATINTERR 

OTS$_INPCONERR 

OTS$_INSVIRMEM 

OTS$_INTDATCOR 

A-22 Status Values/Exception Names 

Fatal internal error 

Input conversion error 

Insufficient virtual memory 

Internal data corrupted 



Table A-1 (Cont.): Status Values/Exception Names 
Name Description 

Language Independent Runtime Library 

OTS$_INVSTRDES 

OTS$_IO_CONCLO 

OTS$_OUTCONERR 

OTS$_STRIS_INT 

OTS$_USEFLORES 

OTS$_ WRONUMARG 

Pascal Runtime Library 

PAS$-ACCMETINC 

PAS$_AMBVALENU 

PAS$_BUGCHECK 

PAS$_ERRDURCLO 

PAS$_ERRDURDIS 

PAS$_ERRDURFIN 

PAS$_ERRDURGET 

PAS$_ERRDURNEW 

PAS$_ERRDUROPE 

PAS$_ERRDURPRO 

PAS$_ERRDURPUT 

PAS$_ERRDURRES 

PAS$_ERRDURREW 

PAS$_ERRDURWRI 

PAS$_FAIGETLOC 

PAS$_FlLALRACT 

PAS$_FlLALRCLO 

PAS$_FlLALROPE 

Invalid string descriptor 

I/O continued to closed file 

Output conversion error 

String is interlocked 

Use of floating reserved operand 

Wrong number of arguments 

ACCESS_METHOD specified is incompatible 
with file 

Ambiguous value for enumerated type 

Internal consistency failure 

Error during CLOSE 

Error during DISPOSE 

Error during FIND 

Error during GET 

Error during NEW 

Error during OPEN 

Error during prompting 

Error during PUT 

Error during RESET 

Error during REWRITE 

Error during WRITELN 

Failed to get locked component 

File already active 

File already closed 

File already open 

Status Values/Exception Names A-23 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

Pascal Runtime Library 

PAS$_FILNOTDIR 

PAS$_FILNOTFOU 

PAS$_FILNOTGEN 

PAS$_FILNOTINS 

PAS$_FILNOTOPE 

PAS$_FILNOTTEX 

PAS$_GENNOTALL 

PAS$_GETAFTEOF 

PAS$_GOTO 

PAS$_GOTOFAILED 

PAS$_HALT 

PAS$_INSVIRMEM 

PAS$_INVARGPAS 

PAS$_INVFILSYN 

PAS$_INVFIL"AR 

PAS$_INVRECLEN 

PAS$_INVSYNENU 

PAS$_INVSYNINT 

PAS$_INVSYNREA 

PAS$_INVSYNUNS 

PAS$_LINTOOLON 

PAS$_LINVALEXC 

PAS$_NEGDIGARG 

PAS$_NEGWIDDIG 

A-24 Status Values/Exception Names 

Description 

File name required for this history or dispo
sition 

File not opened for direct access 

File not found 

File not in generation mode 

File not in inspection mode 

File not open 

File not a text file 

Generation mode not allowed for a 
READONLY file 

GET attempted after end-of-file 

Non-local GOTO requested 

Non-local GOTO failed 

Program execution terminated 

Insufficient virtual memory 

Invalid argument 

Invalid filename syntax 

Invalid file variable 

Invalid record length 

Invalid syntax for an enumerated value 

Invalid syntax for an integer value 

Invalid syntax for a real value 

Invalid syntax for an unsigned value 

Line too long 

LINELIMIT value exceeded 

Negative digits argument to BIN, HEX, or 
OCT not allowed 

Negative width or digits specification not 
allowed 



Table A-1 (Cont.): Status Values/exception Names 
Name 

Pascal Runtime Library 

PAS$_NOTVALTYP 

PAS$_RECLENINC 

PAS$_REWNOTALL 

PAS$_TEXREQSEQ 

Runtime System 

SS$_ACCVIO 

SS$_BREAK 

SS$_CMODUSER 

SS$_COMPAT 

SS$_DECOVF 

SS$_FLTDIV 

SS$_FLTDIV _F 

SS$_FLTOVF 

SS$_FLTOVF _F 

SS$_FLTUND 

SS$_FLTUND_F 

SS$_INSFRAME 

SS$_INTDIV 

SS$_INTOVF 

SS$_IVTIME 

Description 

Item not a value of specified type 

RECORD_LENGTH specified is inconsistent 
with this file 

RECORD_TYPE specified is inconsistent 
with this file 

RESET not allowed on an unopened internal 
file 

REWRITE not allowed for a shared file 

Text files require sequential organization and 
access 

WRITE of an invalid enumerated value 

Access violation 

Breakpoint fault 

Change mode to user trap 

Compatibility mode fault 

Arithmetic trap, decimal overflow 

Arithmetic trap, floating-point/decimal divide 
by zero 

Arithmetic trap, floating-point divide by zero 

Arithmetic trap, floating-point overflow 

Arithmetic trap, floating-point overflow 

Arithmetic trap, floating-point underflow 

Arithmetic trap, floating-point underflow 

Insufficient call frames to unwind 

Arithmetic trap, integer divide by zero 

Arithmetic trap, integer overflow 

Invalid time 

'Status Values/Exception Names A-25 



Table A-1 (Cont.): Status Values/Exception Names 
Name 

Runtime System 

SS$_NORMAL 

SS$_NOSIGNAL 

SS$_OPCCUS 

SS$_OPCDEC 

SS$_RADRMOD 

SS$_ROPRAND 

SS$_SUBRNG 

SS$_TBIT 

SS$_UNWIND 

SS$_UNWINDING 

String Runtime Library 

STR$_DIVBY_ZER 

STR$_FATINTERR 

STR$_ILLSTRCLA 

STR$_ILLSTRPOS 

STR$_ILLSTRSPE 

STR$_INSVIRMEM 

STR$_MATCH 

STR$_NEGSTRLEN 

STR$_NOMATCH 

STR$_STRIS_INT 

STR$_STRTOOLON 

STR$_TRU 

STR$_ WRONUMARG 

A-26 Status Values/Exception Names 

Description 

Normal successful completion 

No signal currently active 

Opcode reserved to customer fault 

Opcode reserved to Digital fault 

Reserved addressing fault 

Reserved operand fault 

Arithmetic trap, subscript out of range 

T-bit pending trap 

Unwind currently in progress 

Unwind already in progress 

Division by zero 

Fatal internal error 

Invalid string class 

Invalid string position 

Invalid string specification 

Insufficient virtual memory 

Match found against input string 

Negative string length 

No match found against input string 

String interlocked 

String too long 

Truncation 

Wrong number of arguments 



Table A-1 (Cont.): Status Values/exception Names 
Name Description 

DECwindows Xlib Runtime Library 

X$_ERROREVENT 

X$_INSFMEM 

X$_IOERROR 

X$_LIBABORT 

X$_OBSOLETE 

Error event received from server 

Insufficient dynamic memory 

Xlib 110 error 

Xlib fatal error 

Obsolete Xlib entry point referenced 

Status Values/Exception Names A-27 





Appendix B 

Machine-Check Stack Frames 

The VAXELN software supports optional error logging in a VAXELN 
target application. If you select error logging at system build time, an 
error log file is produced that you can analyze by using the VMS Error 
Log Utility. The reports generated by the VMS utility are primarily 
intended to assist Digital Customer Services personnel. (See the 
VAXELN Development Utilities Guide for more information on VAXELN 
error logging.) 

Among the errors that can be logged when error logging is built into a 
VAXELN system are processor machine checks. A machine check is an 
exception that is reported when the processor or an external adapter 
detects an error. When a machine-check occurs, the processor pushes 
a machine-check stack frame onto an interrupt stack that consists of a 
count longword, an implementation-dependent number of error report 
longwords, a program counter (PC), and a process status longword 
(PSL). The count longword reports the number of bytes of error report 
pushed onto the stack. For example, if four longwords of error report 
are pushed onto the stack, the countlongword will contain 16. 

The initial processing of a machine check or interrupt is processor
specific. However, the VAXELN machine-check handler for all processor 
types determines the seriousness of a machine check, whether the 
machine check is fatal to a job or to the system, and how to respond 
based on the following: 

• The nature of the machine check 

• The access mode in which the machine check occurred 

Machine-Check Stack Frames B-1 



If the job or system can recover from a machine check, the machine
check handler places the machine-check stack frame in the error log 
file. If error logging is not enabled, you can locate and inspect the stack 
frame manually. 

When a machine check places a system in a state from which it cannot 
recover, the machine-check handler checks the access mode in which 
the machine check occurred. If it occurred in user mode or kernel mode 
- at interrupt priority level (IPL) 0 - the handler reports a machine
check exception through the exception dispatching mechanism. (Unless 
the process has taken special action, process execution terminates.) 
If the machine check occurred in kernel mode at an elevated IPL, a 
fatal system bugcheck may occur, causing an orderly shut-down of the 
system. 

When machine-check stack frames are not logged, you can look for 
the stack frame in the interrupt stack. This appendix describes how 
to locate and interpret machine-check stack frames manually. This 
material is presented to assist Digital Customer Services personnel. 

NOTE 

In order for you to use the procedures described in this 
appendix, the VAXELN system on which the machine check 
occurred must have a system console. 

B.1 Obtaining a Machine-Check Stack Frame 

When a machine check occurs in kernel mode at an elevated IPL, a 
VAXELN system attempts to display the entire current stack on the 
system console terminal (if the system has no console) in a raw format 
(address and contents only). If the stack is successfully displayed, you 
can locate the start of the machine-check stack frame, which follows 
the count longword on the stack. The value of the count longword 
depends on the target processor type; these values are shown in the 
uppermost portions of Figures B-1 to B-8. For example, on a VAX-
111730 processor, the machine-check stack frame follows a length 
parameter of OOOOOOOC(hex) on the stack. 

B-2 Machine-Check Stack Frames 



If the failure is very serious, the attempt to display the current stack 
might not succeed. In that case, you must use console commands 
to manually examine the VAX computer's processor status longword 
(PSL), program counter (PC), stack pointer (SP), and in-memory stack. 
For example, on a VAX-ll/750 processor, you would use the following 
commands: 

»> E P Get PSL 
»> E/G F Get PC 
»> E/G E Get SP 
»> ElL (SP) Get first (bottom) stack longword 
»> ElL Get next stack longword, then repeat ElL 

For examine (E) commands subsequent to the last one shown, the 
address being examined will increment automatically, allowing you to 
progress toward the top of the stack. The object is to locate the start 
of the machine-check stack frame, which on a VAX.-111750 processor 
follows a length parameter of 00000028(hexadecimal) on the stack, 
ignoring the intervening locations, which contain parameters pushed by 
VAXELN bugcheck code and exceptions pushed on the stack after the 
machine check occurred. 

Once you locate the start of the machine-check stack frame, you exam
ine the stack frame and interpret it according to the frame layout for 
the particular processor. The remaining sections in this appendix give 
the machine-check stack frame formats for each supported target VAX. 
processor. 

Machine-Check Stack Frames B-3 



B.2 Machine-Check Stack Frame for MicroVAX I Processors 

Figure B-1 shows the information that is left on the stack when a 
machine check occurs on a MicroVAX I processor. 

Figure B-1: Machine-Check Stack Frame for MicroVAX I Processors 

Byte Count (OOOOOOOC hex) :(SP) 

Machine-Check Type Code 

First Parameter 

Second Parameter 

PC 

PSL 

MLO-004295 

8-4 Machine-Check Stack Frames 



Table B-1 lists the possible values for the machine-check type code 
field. 

Table B-1: Machine-Check Type Codes for MicroVAX I Processors 
Code 

o 
1 

2 

3 

4 

5 

6 

7 

8 

9 

Meaning 

Memory-controller bug checkl 

Unrecoverable memory-read errorl 

Nonexistent memoryl 

Illegal I/O-space operationl 

Unrecoverable PTE-read errorl 

Unrecoverable PTE-write errorl 

Control-store parity error2 

Micromachine bug check2 

Q22-bus vector read erro~ 

Write parameter errors 

lBits<29,21:0> of the first parameter contain the corresponding bits of the physical 
address of the last memory reference, and the second parameter contains the address 
presented to the memory controller. 

2Both parameters are O. 

sThe first parameter contains the virtual address that was being written, and the second 
parameter is O. 

Machine-Check Stack Frames 8-5 



B.3 Machine-Check Stack Frame for MicroVAX II and 2000, 
VAXstation II and 2000, and KA800 Processors 

Figure B-2 shows the information that is left on the stack when a 
machine check occurs on one of the following processors: 

• MicroVAX II 
• VAXstation II 
• MicroVAX 2000 

• VAXstation 2000 

• KABOO 

Figure B-2: Machine-Check Stack Frame for MicroVAX II and 2000, 
VAXstatlon II and 2000, and KA800 Processors 

Byte Count (OOOOOOOC hex) :(SP) 

Machine-Check Type Code 

Most Recent Virtual Address 

Internal State Information 

PC 

PSL 

MLO-004296 

8-6 Machine-Check Stack Frames 



Table B-2 lists the possible values for the machine-check type code 
field. 

Table B-2: Machine-Check Type Codes for MicroVAX II and 2000, 
VAXstation II and 2000, and KA800 Processors 

Code Meaning 

1 Impossible microcode state (FSD) 

2 Impossible microcode state (SSD) 

3 Undefined FPU error code 0 

4 Undefined FPU error code 7 

5 Undefined memory management status (TB miss) 

6 Undefined memory management status (M = 0) 

7 Process PrE in PO space 

8 Process PrE in PI space 

9 Undefined interrupt ID code 

80 Read bus error, address parameter is virtual 

81 Read bus error, address parameter is physical 

82 Write bus error, address parameter is virtual 

83 Write bus error, address parameter is physical 

8.4 Machine-Check Stack Frame for rtVAX 300, MicroVAX 
3nnnSeries, VAXstation 3100,3200, and 3500, and VAX 
6000-2nn and 6000-3nn Series Processors 

Figure B-3 shows the information that is left on the stack when a 
machine check occurs on one of the following processors: 

• rtVAX 300 
• MicroVAX 3nnn 
• VAXstation 3100 

• VAXstation 3200 

Machine-Check Stack Frames B-7 



• VAXstation 3500 

• VAX 6000-2nn 

• VAX 6000-3nn 

Figure B-3: Machine-Check Stack Frame for rtVAX 300, MlcroVAX 
3nnn Series, VAXstation 3100, 3200, and 3500, and VAX 
6000-2nn and 6000-3nn Series Processors 

Byte Count (00000010 hex) :(SP) 

Machine-Check Type Code 

Most Recent Virtual Address 

Intemal State Information 1 

Intemal State Information 2 

PC 

PSL 

MLO-004297 

8-8 Machine-Check Stack Frames 



Table B-3 lists the possible values for the. machine-check type code 
field. 

Table B-3: Machine-Check Type Codes for rtVAX 300, MicroVAX 
3nnn Series, VAXstation 3100, 3200, and 3500,and VAX 
6000-2nn and 6000-3nn Series Processors 

Code 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

80 

81 

82 

83 

Meaning 

FPU detected protocol error 

FPU detected reserved instruction 

FPU error of unknown origin 

FPU error of unknown origin 

Process PrE address in PO space (TB miss) 

Process PrE address in PI space (TB miss) 

Process PrE address in PO space (M = 0) 

Process PrE address in PI space (M = 0) 

Undefined IPL 

Impossible MOVe state detected 

Read error 

Read error 

Write error 

Write error 

Machine-Check Stack Frames B-9 



B.5 Machine .. Check Stack Frame for VAX 6000-4nn Series 
Processors 

Figure B-4 shows the information that is left on the stack when a 
machine check occurs on a VAX 6000-400 series processor. 

Figure 8-4: Machine-Check Stack Frame for VAX 6000-4nn Series 
Processors 

Byte Count (00000018 hex) :(SP) 

V AX Result Bit I 0 I Machine-Check Type Code 

Most Recent Virtual Address 

Prefetch Virtual Instruction-Buffer Address 

Interrupt State Information 

Internal State Information 

SC 

PC 

PSL 

MLO-004173 

B-10 Machine-Check Stack Frames 



Table B-4 possible values for the machine-check type code field. 

Table 8-4: Machine-Check Type Codes for VAX 6000-4nn Series 
Processors 

Code 

1 

2 

3 

4 

5 

8 

9 

10 

11 

12 

13 

16 

17 

18 

19 

20 

Meaning 

Protocol error during F-chip operand/result transfer 

F -chip detected invalid opcode 

F-chip detected operand parity error 

F -chip returned unknown status 

F-chip result parity error 

TB miss status generated in ACVITNV microfiow 

TB hit status generated in ACVfrNV microflow 

Undefined INT.ID value during interrupt service 

Undefined state bit combination in MOVCx 

Undefined trap code produced by the IBOX 

Undefined control store address reached 

P-cache tag or data parity error during read 

DAL bus or data parity error during read 

DAL bus error on write or clear write buffer 

Undefined bus error microtrap 

Vector unit error 

Machine-Check Stack Frames 8-11 



8.6 Machine-Check Stack Frame for VAX 8200 and 8250 
Processors 

Figure B-5 shows the information that is left on the stack when a 
machine check occurs on a VAX 8200 or 8250 processor. 

Figure 8-5: Machine-Check Stack Frame for VAX 8200 and 8250 
Processors 

Byte Count (0000001 C hex) :(SP) 

First Parameter 

Virtual Address Register Contents 

Virtual Address Prime Register Contents 

Memory Address Register Contents 

Status Word 

PC at Failure 

Microcode PC at Failure 

PC 

PSL 

MLO-004298 

8-12 Machine-Check Stack Frames 



B.7 Machine-Check Stack Frame for VAX 8500, 8550,8700, 
8800, and 8810 Processors 

Figure B-6 shows the information that is left on the stack when 
a machine check occurs on a VAX 8500, 8550, 8700, 8800, or 8810 
processor. 

Figure 8-6: Machine-Check Stack Frame for VAX 8500,8550,8700, 
8800, and 8810 Processors 

Count of Bytes Pushed, Excluding PC, PSL, and Count. 10 hex. :(SP) 

MCSTS 

PC 

VANIBA 

IBER 

CBER 

EBER 

NMIFSR 

NMIEAR 

PC 

PSL 

MLO-004299 

Machine-Check Stack Frames 8-13 



Table B-5 lists the offset value and contents for each field in the stack 
frame. 

Table 8-5: Machine-Check Stack Frame Contents for VAX 8500, 8550, 
8700, 8800, and 8810 Processors 

Mnemonic Offset Contents 

COUNT 00 Count of bytes pushed, excluding PC, PSL, and count 

MCSTS 04 Machine-check status 

PC 08 Current PC 

VAIVIBA OC Virtual address/virtual instruction-buffer address 

IBER 10 IBOX error 

CBER 14 CBOX error 

EBER 18 EBOX error 

NMIFSR lC NMI fault summary 

NMIEAR 20 NMI error address 

PC 24 PC offaulted opcode 

PSL 28 Processor status longword 

B-14 Machine-Check Stack Frames 



8.8 Machine-Check Stack Frame for VAX-11n30 Processors 

Figure B-7 shows the information that is left on the stack when a 
machine check occurs on a VAX-11/730 processor. 

Figure B-7: Machine-Check Stack Frame for VAX-111730 Processors 

Byte Count (OOOOOOOC hex) :(SP) 

Machine-Check Type Code 

First Parameter 

Second Parameter 

PC 

PSL 

MLO-004295 

Table B-6 lists the possible values for the machine-check error type 
code field. 

Table 8-6: Machine-Check Error Type Codes for VAX-11/730 
Processors 

Code Meaning 

o Microcode should not be here. If the first parameter is 0, no other 
information is available. If the first parameter is 2, the problem 
was inability to write back a PTE<M> bit. If the parameter is 3, the 
problem was a bad 8085 interrupt. The second parameter is always 
O. 

1 Translation-buffer parity error. The first parameter is the bad value 
from the TB. PFN is in bits<23:0>. PTE<V>, the protection code, 
and PTE<M> are in bits<31:26>. TB valid bit is in bit<25>. The 
second parameter is the virtual address referenced. 

Machine-Check Stack Frames B-15 



Table B-6 (Cont.): Machine-Check Error Type Codes for VAX-11n30 
Processors 

Code 

3 

4 

5 

6 

7 

8 

9 

A 

B 

Meaning 

Impossible value in memory CSR. The first parameter is the virtual 
address referenced. The second parameter is the bad value of the 
CSR. 

Fast interrupt without support. A fast interrupt was requested and 
no microcode was loaded to handle it. Both parameters are o. 
FPA parity error. The FPA control store had a parity error. The first 
parameter has parity error summary in bit<O>, group 0 parity in 
bit<l>, group 1 parity in bit<2>, and is unpredictable in bits<31:3>. 
The second parameter is o. 
Error on SPTE read. The first parameter is the physical address of 
the SPTE. The second parameter contains the error syndrome bits. 

U ncorrectable ECC error. The first parameter is the physical 
address of the reference. The second parameter contains the error 
syndrome bits. 

Nonexistent memory. The first parameter is the physical address 
referenced. The second parameter is o. 
Unaligned or nonlongword reference to 1/0 space. The first param
eter is the physical address referenced. The second parameter is 
o. 
Illegal I/O-space address. The first parameter is the physical ad
dress referenced. The second parameter is o. 
Illegal UNIBUS reference. The first parameter is the physical 
address referenced. The second parameter is O. 

8-16 Machine-Check Stack Frames 



B.9 Machine-Check Stack Frame for VAX-11nSO Processors 

Figure B-8 shows the information that is left on the stack when a 
machine check occurs on a VAX-11/750 processor. 

Figure 8-8: Machine-Check Stack Frame for VAX-11I7S0 Processors 

Count of Bytes Pushed, Excluding PC, PSL, and Count. 28 hex. :(SP) 

Error Code 

VA Register 

PC at the Time of the Error 

MDR 

Saved Mode Register 

Read Lock Timeout 

TB Group Parity Error Register 

Cache Error Register 

Bus Error Register 

Machine-Check Error Summary Register 

PC 

PSL 

MLO-004300 

Machine-Check Stack Frames 8-17 



Table B-7lists the possible values for the machine-check error type 
code field. 

Table B-7: Machine-Check Error Codes for VAX-11/7S0 Processors 
Code 

1 

2 

6 

7 

Meaning 

Control-store parity error 

Translation-buffer parity error, bus error, or cache parity error 

"Microcode should not be here" error 

"Unused IRD ROM slot" error 

B-18 Machine-Check Stack Frames 



Appendix C 

VMS Emulation Routines 

The VAXELN Toolkit supports subsets of the VMS system services and 
Runtime Library routines to simplify the task of porting VMS programs 
to the VAXELN environment. System services are procedures that the 
VMS operating system uses to control resources that are available to 
processes, provide for communication among processes, and perform 
basic operating system functions, such as coordination of input/output 
operations. The Runtime Library routines are commonly used to 
perform a wide variety of operations. You can call the supported system 
services and Runtime Library routines from your VAXELN Pascal, VAX 
C, or FORTRAN programs using the standard VAX procedure-calling 
conventions. 

This appendix provides a summary of the supported emulation routines 
(see Section C.l), explains how to call the routines (see Section C.2), 
and describes the following: 

• VMS system service emulation routines, Section C.3 

• LIB$ emulation routines, Section C.4 

• STR$ emulation routines, Section C.5 

C.1 VMS Emulation Routine Summary 

This section summarizes the VAXELN Toolkit's VMS emulation rou
tine support. Table C-l summarizes the supported system services. 
Table C-2 provides a summary of the supported Runtime Library 
routines. 

VMS Emulation Routines C-1 



Table C-1 : VMS System Service Emulation Routines 
Routine 

SYS$ASCTIM 

SYS$GETTIM 

SYS$UNWIND 

Function 

Convert binary time to ASCII string 

Get the CUITent system time 

Unwind the procedure call stack 

For brief descriptions of the supported system services, see Section C.3. 
For detailed descriptions, see the VMS System Services Reference 
Manual. 

The VMS Runtime Library routines are grouped as facilities according 
to the tasks they perfonn. The VAXELN Toolkit supports a subset 
of LIB$ facility routines and an STR$ facility routine. LIB$ facility 
routines provide access to VMS components such as system services 
and VAX machine instructions and perform such functions as the 
following: 

• Get records from devices 

• Manipulate strings 
• Convert data types for I/O 

• Allocate resources 

• Get system information 

• Signal exceptions 
• Enable detection of hardware exceptions 

The STR$ facility provides string manipulation routines that perform 
such tasks as searching for substrings, concatenating strings, and 
prefixing and appending strings. 

Table C-2: VMS Runtime Library Emulation Routines 
Routine 

Lm$ Facility Routines 

LIB$ADD_TlMES 

LIB$ADDX 

C-2 VMS Emulation Routines 

Function 

Add two quadword times 

Add two multiple-precision binary 
numbers 



Table C-2 (Cont.): VMS Runtime Library Emulation Routines 
Routine 

LIB$ Facility Routines 

LIB$ANALYZE_SDESC 

LIB$CREATE_USER_V]d_ZONE 

LIB$CREATE_~_ZONE 

LIB$CVT_DTB 

LIB$CVT_OTB 

LIB$DELETE_ ~_ZONE 

LIB$EDIV 

LIB$EMUL 

LIB$FLT_UNDER 

LIB$FREE_~ 

LIB$FREE_ ~_PAGE 

LIB$GET_INPUT 

LIB$GET_~l 

LIB$GET_ ~_PAGEI 

LIB$INT_OVER 

LIB$LEN 

LIB$MATCH_COND 

LIB$MULTF _DELTA_TIME 

LIB$MULT_DELTA_TIME 

LIB$PUT_OUTPUT 

LIB$RESET_ V]d_ZONE 

1 Differs from VMS routine. 

Function 

Analyze a string descriptor 

Create a user-defined storage zone 

Create a new storage zone 

Convert ASCII decimal number to 
binary 

Convert ASCII hexadecimal number to 
binary 

Convert ASCII octal number to binary 

Delete virtual memory zone 

Perform an extended-precision divide 

Perform an extended-precision mUltiply 

Enable or disable floating-point under
flow detection 

Free virtual memory from the program 
region 

Free virtual memory page 

Get a line from SYS$INPUT 

Allocate virtual memory 

Get a virtual memory page 

Enable or disable integer overflow 
detection 

Return the length of a string as a 
longword 

Match condition values 

Multiply delta time by scalar 

Multiply delta time by F _floating scalar 

Put a line in SYS$OUTPUT 

Reset virtual memory zone 

VMS Emulation Routines C-3 



Table C-2 (Cont.): VMS Runtime Library Emulation Routines 
Routine 

LIB$ Facility Routines 

LIB$SIGNAL 

LIB$SIG_TO _RET 

LIB$STOP 

LIB $ SUBX 

LIB$SUB_TIMES 

STR$ Facility Routines 

STR$ANALYZE_SDESC 

Function 

Copy source string by descriptor to 
destination 

Copy source string by reference to 
destination 

Signal exception condition 

Convert signaled message to a return 
status 

Stop execution and signal the condition 

Perform multiple-precision binary 
subtraction 

Subtract two quadword times 

Analyze· a string descriptor 

For brief descriptions of the supported Runtime Library routines, see 
Sections C.4 and C.5. For detailed descriptions, see VMS RTL Library 
(LIB$) Manual and VMS RTL String Manipulation (STR$) Manual. 

C.2 Calling VMS Emulation Routines 

The VMS systems services and Runtime Library routines are external 
routines that accept arguments. The VAXELN Pascal, VAX C, and VAX 
FORTRAN languages each provide a mechanism for calling external 
procedures and for passing arguments to those procedures. The specific 
mechanisms and the associated terminology for the different languages 
vary. For example, FORTRAN programs invoke external routines with 
CALL statements or function references. 

The call formats for the supported system services and Runtime 
Library routines are summarized in Sections C.3 to C.5. The VMS 
System Services Reference Manual, VMS RTL Library (LIB$) Manual, 
and VMS RTL String Manipulation (STR$) Manual provide detailed 
routine descriptions that indicate how arguments are to be passed and 
describe routine-specific data structures. 

C-4 VMS Emulation Routines 



You must pass arguments to a routine in the order shown in the 
documented call formats. Each argument has four characteristics: 
VMS usage, data type, access type, and passing mechanism. These 
characteristics are described in the VMS System Services Reference 
Manual and the Introduction to the VMS Run-Time Library. 

Some arguments are optional and are indicated with square brackets 
( [ ]). In VAXELN Pascal and FORTRAN programs, you can omit such 
arguments at the end of an argument list. If an optional argument 
is not at the end of the argument list, you must either pass a zero by 
value or use a comma as a place holder to indicate the position of the 
omitted argument. In C programs, you must specify all arguments. 
For optional arguments you choose not to specify, you must supply the 
value NULL. 

The following examples show how to call external routines from 
VAXELN Pascal, VAX C, and VAX FORTRAN programs. For language
specific information about calling external routines, see the appropriate 
language documentation. 

VAXELN Pascal 

MODULE ernul; 

FUNCTION LIB$EMUL (VAR multiplier: INTEGER; 
VAR multiplicand: INTEGER; 
VAR addend: INTEGER; 
VAR product: LARGE_INTEGER): 
INTEGER; EXTERNAL; 

PROGRAM emul~rog( INPUT, OUTPUT ); 

VAR 
multiplier: INTEGER; 
multiplicand: INTEGER; 
addend: INTEGER; 
product: LARGE_INTEGER; 
status: INTEGER; 

VMS Emulation Routines C-5 



BEGIN 
multiplier := 4096; 
multiplicand := 268435456; 
addend := 0; 
status := LIB$EMUL(multiplier, multiplicand, addend, product); 
IF ODD (status) THEN 

BEGIN 

END; 
ELSE 

WRITELN('Error calling LIB$EMUL'); 
END; 
END. 

VAXC 

finclude $vaxelnc 

main ( 
{ 

int multiplier, multiplicand, addend, status; 
int lib$emul(); 
LARGE_INTEGER product; 

multiplier = 4096; 
multiplicand = 268435456; 
addend = 0; 
status = lib$emul(&multiplier, &multiplicand, &addend, &product); 

if (status == TRUE) 

else 

VAX FORTRAN 

c 
C This FORTRAN program demonstrates how to use LIB$EDIV. 
C 

INTEGER divisor,dividend(2),quotient,remainder 

C-6 VMS Emulation Routines 



c 
c 
c 

C 

C 
C 

divisor = 4096 
dividend (1) '12345678'x 
dividend (2) = 'OOOOOOOl'x 

return = LIB$EDIV(divisor,dividend,quotient,remainder) 
TYPE *,'The longword integer quotient of 4600387192/4096 is:' 
TYPE *,' , ,quotient 
TYPE *,'The longword integer remainder of 4600387192/4096 is:' 
TYPE 
END 

* , , , , remainder 

C.3 VMS System Service Emulation Routine Descriptions 

This section briefly describes the VMS system services that the 
VAXELN Toolkit supports. For details, see the VMS System Services 
Reference Manual. 

SYS$ASCTIM - Convert Binary Time to ASCn String 

The SYS$ASCTIM system service converts an absolute or delta time 
from 64-bit system time to an ASCII string. 

Call Format Type Access Mechanism 

SYS$ASCTIM 
[tim len] Word (unsigned) Write only By reference 
,timbuf Character-coded text Write only By descriptor 
[,timadr] string Read only By reference 
[,cvtjlg] Quadword (unsigned) Read only By value 

Longword (unsigned) 

The timbuf argument specifies the buffer into which the ASCII string 
is to be written. The optional argument timlen receives the length (in 
bytes) of the ASCII string that the system service returns. The optional 
arguments timadr and cvtflg specify the time value the system service 
is to convert and a conversion indicator that specifies the date and time 
fields the system service is to return, respectively. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By reference 

VMS Emulation Routines C-7 



SYS$GE'ITIM - Get Time 

The SYS$GETIM system service returns the current system time in 
64-bit format. 

Call Format 

SYS$GETTIM 
timadr 

Type 

Quadword (unsigned) 

Access Mechanism 

Write only By refere~ce 

The timadr argument receives the current time in 64-bit format. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

SYS$UNWIND - Unwind Procedure Call Stack 

The SYS$UNWIND system service removes a specified number of 
call frames from the procedure call stack. Optionally, it can return 
control to a new program counter (PC) after unwinding the stack. 
The SYS$UNWIND service is intended to be called from within a 
condition-handling routine. 

Call Format 

SYS$UNWIND 
[depadr] 
[,newpc] 

Type 

Longword (unsigned) 
Longword (unsigned) 

Access 

Read only 
Read only 

Mechanism 

By reference 
By reference 

The optional arguments depadr and newpc specify the depth to which 
the procedure call stack is to unwind and the new value for the PC, 
respectively. The new PC value replaces the current value of the PC in , 
the call frame of the procedure that receives control when the unwind 
operation is complete. 

Returns: 

Type: Longword (unsign~d) 
Access: Write only 
Mechanism: By value 

C-8 VMS Emulation Routines 



C.4 LIB$ Emulation Routine Descriptions 

This section briefly describes the LIB$ Runtime Library routines that 
the VAXELN Toolkit supports. 'For details, see the VMS RTL Library 
(LIB$) Manual. 

LIB$ADD_TIMES - Add Two Quadword Times 

The LIB$ADD_TIMES routine adds two time values in internal-time 
format. 

Call Format Type Access Mechanism 

Lm$ADD_TIMES 
timel Quadword (unsigned) Read only By reference 
,time2 Quadword (unsigned) Read only By reference 
,resultant.time Quadword (unsigned) Write only By reference 

The time1 and time2 arguments specify the times to be added. The 
resultant-time argument receives the sum. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$ADDX - Add Two Multiple-Precision Binary Numbers 

The LIB$ADDX routine adds two signed two's complement integers of 
arbitrary length. 

Call Format Type Access Mechanism 

Lm$ADDX 
addend.array Unspecified Read only By reference (array) 
,augend.arro.y Unspecified Read only By reference (array) 
,resultant.array Unspecified Write only By reference (array) 
[,array.length] Longword integer (signed) Read only By reference 

The addend-array and augend-array arguments specify the 
multiple-precision, signed two's complement integers to be added. 
The resultant-array argument receives the multiple-preci.sion, signed 
two's complement integer result of the addition. The optional argument 
array-length specifies the length of the arrays on which the routine is 
to operate. 

VMS Emulation Routines C-9 



Returns: 

Type: Longword (unsigned) 
Access:· Write only 
Mechanism: By value 

LIB$ANALYZE_SDESC - Analyze String Descriptors 

The LIB$ANALYZE_SDESC routine extracts the length and the 
address at which the data starts for a variety of string descriptor 
classes. 

Call Format Type Access Mechanism 

Lm$ANALYZE_SDESC 
input-descriptor Character string Read only By descriptor 
,data-length Word (unsigned) Write only By reference 
,data-address Longword (unsigned) Write only By reference 

The input-descriptor argument specifies the input descriptor from 
which the routine is to extract the data's length and starting address. 
The data-length and data-address arguments specify the length and 
starting address of the data, respectively. The routine extracts the 
length and address from the input descriptor. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

Lm$CREATE_USER_VM_ZONE - Create User-Defined Storage 
Zone 

The LIB$CREATE_USER_VM_ZONE routine creates a new 
user-defined storage zone. 

Call Format 

Lm$CREATE_USER_~_ZONE 
zone-id 
[,user-argument] 
[,user-a.llocation-procedure] 
[,user-deallocation-procedure] 
[,user-reset-procedure] 
[,uBer-delete-procedure] 
[,zone-name] 

C-10 VMS Emulation Routines 

Type 

Longword (unsigned) 
Longword (unsigned) 
Procedure entry mask 
Procedure entry mask 
Procedure entry mask 
Procedure entry mask 
Character string 

Access 

Write only 
Read only 
Function call 
Function call 
Function call 
Function call 
Read only 

Mechanism 

By reference 
By reference 
By value 
By value 
By value 
By value 
By descriptor 



The zone-id argument specifies a zone identifier. The optional 
argument user-argument specifies a user argument. The optional 
arguments user-aLlocation-procedure, user-deallocation-procedure, 
user-reset-procedure, and user-delete-procedure specify user allocation, 
deallocation, reset zone, and delete zone routines, respectively. The 
optional zone-name argument specifies a name to be associated with 
the zone being created. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

Lm$CREATE_ VM_ZONE - Create a New Zone 

The LIB$CREATE_ VM_ZONE routine creates a new storage zone 
according to specified arguments. 

Call Format 

Lm$CREATE_VM_ZONE 
zone-id 
[,algorithm] 
[,algorithm-argument] 
[Jlags] 
[,extend-size] 
[,initial-size] 
[,block-size] 
[,alisnment] 
[,page-limit] 
[,smallest-block-size] 
[,zone-name] 
[,number-ot-areas] 
[,get-Pl18e] 
[Jree-Pl18e] 

Type 

Longword (unsigned) 
Longword integer (signed) 
Longword integer (signed) 
Longword (unsigned) 
Longword integer (signed) 
Longword integer (signed) 
Longword integer (signed) 
Longword integer (signed) 
Longword integer (signed) 
Longword integer (signed) 
Character string 
Longword (signed) 
Procedure entry mask 
Procedure entry mask 

Access 

Write only 
Read only 
Read only 
Read only 
Read only 
Read only 
Read only 
Read only 
Read only 
Read only 
Read only 
Read only 
Read only 
Read only 

Mechanism 

By reference 
By reference 
By reference 
By reference 
By reference 
By reference 
By reference 
By reference 
By reference 
By reference 
By descriptor 
By reference 
By value 
By value 

The zone-id argument specifies a zone identifier. The optional 
algorithm and algorithm-argument arguments specify the algorithm 
and algorithm arguments to be used to create the new zone. The 
optional flags argument specifies flag bits that control various options. 
The optional arguments extend-size, initial-size, block-size, alignment, 
page-limit, smallest-block-size, zone-name, and number-ot-areas 
specify the zone's extend size, initial size, block size, block alignment, 
maximum page limit, smallest block size, name, and number of memory 
areas, respectively. The optional get-page and free-page arguments 
specify routines that allocate and deallocate pages of memory. 

VMS Emulation Routines C-11 



Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$Cvr_DTB - Convert Numeric Decimal Text to Binary 

The LIB$CVT_DTB routine returns a binary representation of the 
ASCII text string representation of a decimal number. 

Call Format Type Access Mechanism 

Lm$CVT_DTB 
byte. count Longword integer (signed) Read only By value 
,numeric.8tring Character string Read only By reference 
,re8ult Longword integer (signed) Write only By reference 

The byte-count argument specifies the byte count of the input ASCII 
text string. The numeric-string argument specifies the ASCII text 
string representation of a decimal number that the routine is to convert 
to binary representation. The result argument receives the binary 
representation of the input string. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$Cvr_HTB - Convert Numeric Hexadecimal Text to Binary 

The LIB$CVT_HTB routine returns a binary representation of the 
ASCII text string representation of a hexadecimal number. 

Call Format Type Access Mechanism 

Lm$CVT_HTB 
byte.count Longword integer (signed) Read only By value 
,numeric'8tring Character string Read only By reference 
,re8ult Longword integer (signed) Write only By reference 

The byte-count argument specifies the byte count of the input ASCII 
text string. The numeric-string argument specifies the ASCII text 
string representation of a hexadecimal number that the routine is to 
convert to binary representation. The result argument receives the 
binary representation of the input string. 

C-12 VMS Emulation Routines 



Returns: 

Type: Longword (unsigned) 
.Access: Write only 
Mechanism: By value 

LIB$CVT_OTB - Convert Numeric Octal Text to Binary 

The LIB$CVT_OTB routine returns a binary representation of the 
ASCII text string representation of an octal number. 

Call Format Type Access Mechanism 

Lm$CVT_OTB 
byte-count Longword integer (signed) Read only By value 
,numeric-string Character string Read only By reference 
,result Longword integer (signed) Write only By reference 

The byte-count argument specifies the byte count of the input ASCII 
text string. The numeric-string argument specifies the ASCII text 
string representation of a octal number that the routine is to convert 
to binary representation. The result argument receives the binary 
representation of the input string. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$DELETE_ VM_ZONE - Delete Virtual Memory Zone 

The LIB$DELETE_ VM_ZONE routine deletes a zone and returns all 
pages owned by the zone to the processwide page pool. 

Call Format 

Lm$DELETE_ VM_ZONE 
zone-UJ 

Type 

Longword (unsigned) 

Access 

Read only 

The zone-id argument specifies a zone identifier. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

Mechanism 

By reference 

VMS Emulation Routines C-13 



LIB$EDIV - Extend-Precision Divide 

The LIB$EDIV routine performs extended-precision division. This 
routine makes the VAX EDIV instruction available as a callable 
routine. 

Call Format 

Lm$EDIV 
longword.integer.dilJiBor 
,quadword.integer-dilJidend 
,longword.integer.quotient 
,remainder 

Type 

Longword integer (signed) 
Quadword integer (signed) 
Longword integer (signed) 
Longword integer (signed) 

.Access 

Read only 
Read only 
Write only 
Write only 

Mechanism 

By reference 
By reference 
By reference 
By reference 

The longword-integer-divisor and quadword-integer-dividend 
arguments specify the divisor and dividend. The 
longword-integer-quotient and remainder arguments receive the 
quotient and remainder. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$EMUL - Extend-Precision Multiply 

The LIB$EMUL routine performs extended-precision multiplication. 
This routine makes the VAX EMUL instruction available as a callable 
routine. 

Call Format 

LIB$EMUL 
longword.integer.multiplier 
,longword.integer.multiplicand 
,addend 
,product 

Type 

Longword integer (signed) 
Longword integer (signed) 
Longword integer (signed) 
Quadword integer (signed) 

.Access 

Read only 
Read only 
Read only 
Write only 

Mechanism 

By reference 
By reference 
By reference 
By reference 

The longword-integer-multiplier, longword-integer-multiplicand, and 
addend arguments specify the multiplier, multiplicand and addend, 
respectively. The product argument receives the product. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

C-14 VMS Emulation Routines 



LIB$FLT_UNDER - Floating-Point Underflow Detection 

The LIB$FLT_DNDER routine enables or disables floating-point 
underflow detection for the calling routine activation and returns 
the previous setting as a function value. 

Call Format 

Lm$FLT_UNDER 
new-setting 

Type 

Longword (unsigned) 

.Access Mechanism 

Read only By reference 

The new-setting argument specifies the new floating-point underflow 
enable setting. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$FREE_ VM - Free Virtual Memory 

The LIB$FREE_ VM routine deallocates an entire block of contiguous 
bytes in the program region that were allocated by a previous call to 
LIB$GET_VM. The arguments passed are the same as for 
LIB$GET_VM. 

Call Format Type Access Mechanism 

Lm$FREE_VM 
number-or-bytes Longword integer (signed) Read only By reference 
,base-address Longword (unsigned) Read only By reference 
[,zone-idl Longword (unsigned) Read only By reference 

The number-of-bytes and base-address arguments specify the number of 
contiguous bytes to be deallocated and the address of the first byte to 
be deallocated, respectively. The optional argument zone-id specifies a 
zone identifier created by a previous call to LIB$CREATE_ VM_ZONE 
or LIB$CREATE_USER_ VM_ZONE. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$FREE_ VM_PAGE - Free Virtual Memory Page 

VMS Emulation Routines C-15 



The LIB$FREE_ VM_PAGE routine deallocates a block of contiguous 
pages that were allocated by a previous call to LIB$GET_ VM_PAGE. 

Call Format 

LIB$FREE_V14_PAGE 
number-or-pages 
,ba.se-address 

Type Access 

Longword integer (signed) Read only 
Longword (unsigned) Read only 

Mechanism 

By reference 
By reference 

The number-of-pages argument specifies the number of contiguous 
pages to be deallocated. The base-address argument specifies the 
address of the first byte of the first page to be deallocated. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$GET_INPUT - Get Line from SYS$INPUT 

The LIB$GET_INPUT routine gets one record of ASCII text from the 
current controlling input device, specified by SYS$INPUT. 

Call Format Type Access Mechanism 

LIB$GET_INPUT 
resultant-string Character string Write only By descriptor 
[,prompt-string] Character string Read only By descriptor 
[,resultant-length] Word (unsigned) Write only By reference 

The resultant-string argument receives a string from the input device. 
The optional argument prompt-string specifies a prompt message 
that is to be displayed on the controlling terminal. The optional 
resultant-length argument receives a value indicating the number 
of bytes written into the resultant-string argument. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$GET_ VM - Allocate Virtual Memory 

The LIB$GET_ VM routine allocates a specified number of contiguous 
bytes in the program region and returns the virtual address of the :first 
byte allocated. 

C-16 VMS Emulation Routines 



When calling the LIB$GET_ VM routine, you can specify the address 
of a longword that contains a zone identifier. If you do not specify 
this argument or if the longword contains the value 0, the default 
zone is used. The default zone has a set of attributes, two of which 
are the initial size and the area extension size. The values for these 
attributes differ for VAXELN systems. For VAXELN systems, the 
initial size is zero pages, and the area extension size is two pages. If 
you need to allocate over 1000 pages in a single request, you should call 
KER$ALLOCATE_MEMORY instead of LIB$GET_ VM_PAGE. 

Call Format Type Access Mechanism 

LIB$GET_VM 
number-or-bytes Longword integer (signed) Read only By reference 
,bcue-address Longword (unsigned) Write only By reference 
[,zone-id] Longword (unsigned) Read only By reference 

The number-oi-bytes argument specifies the number of contiguous bytes 
the routine is to allocate. The base-address argument receives the first 
virtual address of the contiguous block of bytes the routine allocates. 

The optional argument zone-id specifies the address of a longword 
that contains a zone identifier created by a previous call to 
LIB$CREATE_ VM_ZONE or LIB$CREATE_USER_ VM_ZONE. 

Returns~ 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$GET_VM_PAGE - Get Virtual Memory Page 

The LIB$GET_ VM_PAGE routine allocates a specified number of 
contiguous pages of memory in the program region and returns the 
virtual memory address of the first page allocated. 

LIB$GET_ VM_PAGE allocates blocks of contiguous (512-byte) 
pages in the program region. The LIB$GET_ VM_PAGE routine is 
designed for memory allocation request sizes ranging from one page 
to a few hundred pages. If not enough contiguous free pages are 
available to satisfy a request, the system calls the kernel procedure 
KER$ALLOCATE_MEMORY (instead of the VMS system service 
SYS$EXPREG). If you need to allocate over 1000 pages in a single 
request, you should call KER$ALLOCATE_MEMORY instead of 
LIB$GET_ VM_PAGE. 

VMS Emulation Routines C-17 



Call Format 

Lm$GET_ VM;..PAGE 
number.or·page8 
,baBe-oddre88 

Type Access 

Longword integer (signed) Read only 
Longword (unsigned) Write only 

Mechanism 

By reference 
By reference 

The number-of-pages argument specifies the number of contiguous 
pages to be allocated. The base-address argument receives the address 
of the first byte of the allocated block of pages. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$INT_OVER - Integer Overflow Detection 

The LIB$INT_OVER routine enables or disables integer overflow 
detection for the calling routine activation and returns the previous 
in teger overflow enable setting. 

Call Format 

Lm$INT_OVER 
neW.8etting 

Type 

Longword (unsigned) 

Access Mechanism 

Read only By reference 

The new-setting argument specifies the new integer overflow enable 
setting. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$LEN - Length of String Returned 

The LIB$LEN routine returns the length of a string as a longword 
value. 

Call Format 

Lm$LEN 
80Urce.Btring 

C-18 VMS Emulation Routines 

Type 

Character string 

Access Mechanism 

Read only By descriptor 



The source-string argument specifies the source string whose length the 
routine is to return. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$MATCH_COND - Match Condition Values 

The LIB$MATCH_COND routine checks to see if a given condition 
value matches a list of condition values that you supply. 

Call Format Type Access Mechanism 

LIB$MATCH.-COND 
match-condition-value Longword (unsigned) Read only By reference 
,compare-condition-ualue, ... Longword (unsigned) Read only By reference 

The match-condition-value argument specifies the condition value to be 
matched. The compare-condition-value argument specifies the condition 
values to be compared to match-condition-value. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$MULT_DELTA_TIME - Multiply Delta Time by Scalar 

The LIB$MULT_DELTA_TIME routine multiplies a delta time by a 
longword integer scalar. 

Call Format 

LIB$MULT_DELTA_TIME 
multiplier 
,delta-time 

Type 

Longword (signed) 
Quadword (unsigned) 

Access 

Read only 
Modify 

Mechanism 

By reference 
By reference 

The multiplier argument specifies the value by which the routine is to 
multiply the delta time. The delta-time argument specifies the delta 
time to be multiplied. 

VMS Emulation Routines C-19 



Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$MULTF_DELTA_TIME - Multiply Delta Time by an 
F _Floating Scalar 

The LIB$MULTF _DELTA_TIME routine multiplies a delta time by an 
F _floating scalar. 

Call Format 

LIB$MULTF _DELTA_TIME 
mUltiplier 
,delta-time 

Type 

F_floating 
Quadword (unsigned) 

.Access 

Read only 
Modify 

Mechanism 

By reference 
By reference 

The multiplier argument specifies the value by which the routine is to 
multiply the delta time. The delta-time argument specifies the delta 
time to be multiplied. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$PUT_OUTPUT - Put Line to SYS$OUTPUT 

The LIB$PUT_OUTPUT routine writes a record to the current 
controlling output device, specified by SYS$OUTPUT. 

Call Format 

LIB$PUT_OUTPUT 
message-string 

Type 

Character string 

.Access Mechanism 

Read only By descriptor 

The message-string specifies the message string that the routine is to 
write to the current controlling output device. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

C-20 VMS Emulation Routines 



LIB$RESET_ VM_ZONE - Reset Virtual Memory Zone 

The LIB$RESET_ VM_ZONE routine frees all blocks of memory that 
previously were allocated from the zone. 

Call Format 

LrB$RESET_V14S_Z0NE 
zone-jd 

Type Access 

Longword (unsigned) Read only 

The zone-id argument specifies the identifier of a zone 
created by a previous call to LIB$CREATE_ VM_ZONE or 
LIB $ CREATE_ USER_ VM_ZONE. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

Mechanism 

By reference 

LIB$SCOPY_DXDX - Copy Source String Passed by Descriptor 
to Destination 

The LIB$SCOPY_DXDX routine copies a source string passed by 
descriptor to a destination string. 

Call Format 

Lm$SCOPY_DXDX 
source-string 
,destination-string 

Type 

Character string 
Character string 

Access 

Read only 
Write only 

Mechanism 

By descriptor 
By descriptor 

The source-string argument specifies the source string to be copied to 
the destination string and the destination-string argument specifies the 
destination string to which the source string is to be copied. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$SCOPY_R_DX - Copy Source String Passed by Reference 
to Destination 

VMS Emulation Routines C-21 



The LIB$SCOPY_R_DX routine copies a source string passed by 
reference to a destination string. 

Call Format Type Access Mechanism 

Lm$SCOPY_R_DX 
word-integer-source-length Word (unsigned) Bead only By reference 
,source-string-address Character string Bead only By reference 
,destination-string Character string Bead only By descriptor 

The word-integer-source-length argument specifies the length of 
the source string. The source-string-address and destination-string 
arguments specify the source string to be copied to the destination 
string and the destination string to which the source string is copied, 
respectively. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

Lm$SIGNAL - Signal Exception Condition 

The LIB$SIGNAL routine generates a signal that indicates that an 
exception condition has occurred in your program. If a condition 
handler does not take corrective action and the condition is severe, 
then your program will exit. 

Call Format 

Lm$SIGNAL 
condition-valuel 
[,number-or-argumentsl] 
[,FAD-argumentl •.. ] 
[,condition-value2] 
[,number-of-arguments2] 
[,FAD-argument2 ••• ] 

Type 

Longword (unsigned) 
Longword integer (signed) 
Unspecified 
Longword (unsigned) 
Longword integer (signed) 
Unspecified 

Access 

Bead only 
Bead only 
Bead only 
Bead only 
Bead only 
Bead only 

Mechanism 

By value 
By value 
By value 
By value 
By value 
By value 

The condition-valuel and condition-value2 arguments specify VAX 
32-bit condition values. The optional arguments number-of-argumentsl 
and number-of-arguments2specify the number of formatted ASCII 
output (FAO) arguments associated with the first and second conditiol1 
values. The optional arguments FAO-argumentl and FAO-argument-2 
specify optional FAO arguments associated with the first and second 
condition value. 

Returns: None 

C-22 VMS Emulation Routines 



LIB$SIG_TO_RET - Signal Converted to a Return Status 

The LIB$SIG_TO_RET routine converts a signaled condition value to a 
value returned as a function. The signaled condition is returned to the 
caller of the user routine that established the handler that is calling 
LIB$SIG_TO_RET. This routine may be established as or called from a 
condition handler. 

Call Format Type Access Mechanism 

LIB$SIG_TO_RET 
signal-arguments Unspecified Read only By reference (array) 
,mechanism-arguments Unspecified Read only By reference (array) 

The signal-arguments and mechanism_arguments arguments specify 
the addresses of arrays that are the signal argument and mechanism 
argument vector stacks, respectively. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

Lm$STOP - Stop Execution and Signal the Condition 

The LIB$STOP routine generates a signal that indicates that an 
exception condition has occurred in your program. Exception conditions 
signaled by LIB$STOP cannot be continued from the point of the 
signal. 

Call Format Type Access Mechanism 

LIB$STOP 
condition-valueI Longword (unsigned) Read only By value 
[,number-of-argumentsl] Longword integer (signed) Read only By value 
[,FAO-ar.qumentl " . ] Unspecified Read only Unspecified 
[,condition-value2] Longword (unsigned) Read only By value 
[,number-of-arguments2] Longword integer (signed) Read only By value 
[,FAO-argument2 .•. ] Unspecified Read only Unspecified 

The condition-valuel and condition-value2 arguments specify VAX 
32-bit condition values. The optional arguments number-of-argumentsl 
and number-of-arguments2 specify the number of formatted ASCII 
output (FAO) arguments associated with the first and second condition 
values. The optional arguments FAO-argument1 and FAO-argument-2 
specify optional FAO arguments associated with the first and second 
condition value. 

VMS Emulation Routines C-23 



Returns: None 

LIB$SUB_TIMES - Subtract Two Quadword Times 

The LIB$SUB_TIMES routine subtracts two time values in 
internal-time format. 

Call Format Type .Access Mechanism 

LIB$SUB_TIMES 
timel Quadword (unsigned) Read only By reference 
,time2 Quadword (unsigned) Read only By reference 
,resultant-time Quadword (unsigned) Write only By reference 

The timel argument specifies the time from which the routine subtracts 
another time. The time2 argument specifies the time that the routine 
subtracts from the first time. The resultant-time argument receives the 
difference. 

Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

LIB$SUBX - Multiple.Precision Binary Subtraction 

The LIB$SUBX routine performs subtraction on signed two's 
complement integers of arbitrary length. 

Call Format Type .Access Mechanism 

LIB$SUBX 
minuend-array Unspecified Read only By reference (array) 
,subtrahend-array Unspecified Read only By reference (array) 
,difference-array Unspecified Write only By reference (array) 
[,array-length] Longword integer (signed) Read only By reference 

The minuend-array and subtrahend-array specify the minuend and 
subtrahend, multiple-precision, signed two's complement integers. The 
difference-array argument receives the difference, a multiple-precision, 
signed two's complement integer. The opitional argument array-length 
specifies the length of the arrays on which the routine is to operate. 

C-24 VMS Emulation Routines 



Returns: 

Type: Longword (unsigned) 
Access: Write only 
Mechanism: By value 

C.5 STR$ Emulation Routine Description 

This section briefly describes the STR$ Runtime Library routine 
STR$ANALYZE_SDESC. For details, see the VMS RTL String 
Manipulation (STR$) Manual. 

STR$ANALYZE_SDESC - Analyze String Descriptor 

The STR$ANALYZE_SDESC routine extracts the length and starting 
address of the data for a variety of string descriptor classes. 

Call Format Type .Access Mechanism 

STR$ANALY2E_SDESC 
input.descriptor Character string Read only By descriptor 
,word.integer.length Word (unsigned) Write only By reference 
,data.address Longword (unsigned) Write only By reference 

The input-descriptor argument specifies the input descriptor from 
which the routine is to extract the length of the data and the address 
at which the data starts. The word-integer-length and data-address 
arguments specify the length and address of the data. The routine 
extracts the length and address from the descriptor. 

Returns: None 

VMS Emulation Routines C-25 





Appendix D 

SCSI Port Driver Interface Routines 

The VAXELN Toolkit provides a set of interface routines for 
programming communication between user-written SCSI class drivers 
and the VAXELN SCSI port driver. The port driver interface routines 
let you allocate and build a SCSI command request packet and send 
it to a device on a SCSI bus. The interface also provides routines for 
freeing resources after a SCSI command performs its operations. 

This appendix provides descriptions of the SCSI port driver interface 
routines. Each description provides an overview; call formats and 
argument information for Pascal, C, and FORTRAN; argument 
descriptions; a description of the routine's return value; and examples. 

The call formats for the Pascal interface show how to invoke the 
routines using the INVOKE function. A call to INVOKE specifies 
a pointer. to the routine's entry mask, the name of a function type 
declared for the routine, and the routine's arguments. Descriptions are 
provided for only the port interface routine arguments; the argument 
descriptions listed for each routine do not include the INVOKE 
function's entry mask pointer or function type arguments. 

Before a class driver written in Pascal can invoke the interface 
routines, the driver must declare the routine addresses as follows: 

TYPE 
PORT ROUTINES = RECORD 

ctx AANYTYPE; 
init AANYTYPE; 
issue AANYTYPE; 
alloc AANYTYPE; 
free AANYTYPE; 
map AANYTYPE; 
unmap AANYTYPE; 
exit AANYTYPE; 

END; 

SCSI Port Driver Interface Routines D-1 



VAR 
routine addresses : [EXTERNAL] port_routines; 

Similarly, before a class driver written in FORTRAN can invoke the 
interface routines, the driver must declare the type definition for the 
routine addresses defined in $SCSIPORT.H as follows: 

STRUCTURE /PORT_ROUTINES/ 
INTEGER*4 ctx 
INTEGER*4 init 
INTEGER*4 issue 
INTEGER*4 alloc 
INTEGER*4 free 
INTEGER*4 map 
INTEGER*4 unmap 
INTEGER*4 exit 

END STRUCTURE 

RECORD /PORT_ROUTINES/ routine addresses 

Prior to the calling the routines, the FORTRAN class driver must also 
delcare the variables routine_addresses and lock_device as external 
data, using the EXTERNAL statement as follows: 

EXTERNAL routine addresses 
EXTERNAL lock device 

These statements ensure that the symbols are resolved such that they 
are the addresses for the SCSI port interface callback routines as 
declared by the VAX C global definition (globaldef) storage class. For 
more information, see Section 14.5.3.2. 

A SCSI class driver gains access to the interface routines by using their 
addresses. One way of doing this from a FORTRAN driver is to apply 
the usual method for dealing with pointers in FORTRAN. For example: 

• Pass the external variable routine_addresses to a subroutine 
that declares the variable as a RECORD /PORT_ROUTINES/. 
This enables the driver to access the necessary fields of the 
routine_addresses. 

• As appropriate, pass a routine address (for example, 
routine_addresses.alloc) by value to another subroutine that 
redeclares the address to be EXTERNAL. The driver can then 
call the routine by using the name of the dummy argument. 

For information about developing a user-written class 
driver, see Section 14.5.3. See SAMPLE_SCSIDRIVER.PAS, 
SAMPLE_SCSIDRIVER.C, and SAMPLE_SCSIDRIVER.FOR in the 
VAXELN ELN$ directory for sample user-written SCSI class drivers. 

D-2 SCSI Port Driver Interface Routines 



PORT$ALLOCATE_DEVICE 

PORT$ALLOCATE_DEVICE 

Pascal 
Format 

Allocates a virtual device (SCSI command request packet) for the 
calling SCSI class driver and returns the virtual device number. 

To invoke this routine from a class driver written in Pascal, the driver 
must first declare the following function type: 

FUNCTION scsiport$allocate device(ctx : AANYTYPE; 
- scsi target : INTEGER; 

cmd_bcnt : INTEGER; 
cmd-ptr : AANYTYPE; 
sts-ptr : AANYTYPE): INTEGER; 

FUNCTION_TYPE; 

INCLUDE SCSIPORT 
INCLUDE $SCSI_UTILITY 
virtual device:= INVOKE 

(routine_addresses. a I/o c, 
scsiport$allocate _ device, 
routine_addresses.ctx, 
scsLtarget, 
cmd_bcnt, 
cmd_ptr, 
sts_ptr) 

argument information 
routine addresses.ctx: "ANYTYPE 
scsi target: INTEGER 
cmer bcnt: INTEGER 
cmaptr: "ANYTYPE 
stsyfr: "ANYTYPE 

SCSI Port Driver Interface Routines D-3 



PORT$ALLOCATE_DEVICE 

C Format #include $scsiport 
#include $scsi_utility 

virtual_device = (*routine_addresses.ctx_a_alloc) 

(routine_addresses.ctx, 
scsLtarget, 
cmd_bcnt, 
cmd_ptr, 
sts_ptr) 

argument information 
char *routine addresses.ctx 
char scsi target 
int cmdocn1 
unsignedchar **cmd_ptr 
unsigned char **stsyfr 

FORTRAN INCLUDE 'ELN$:FORTRAN_DEFS.FOR' 
Format virtual_device = alloc_routine 

(% val (routine _ addresses~ ctx), 
%val(scsLtarget), 
%val(cmd_bcnt), 
cmd_ptr, 
sts_ptr) 

argument information 
INTEGER*4 routine addresses.ctx 
INTEGER*4 scsi target 
INTEGER*4 cma bcnt 
INTEGER*4 cmaptr 
INTEGER*4 stsyfr 

0-4 SCSI Port Driver Interface Routines 



PORT$ALLOCATE_DEVICE 

Arguments 
routine_addresses.ctx 

Returns 

Examples 

Specifies the pointer to the port driver's data structures. 

scsltarget 
Specifies the SCSI device ID for the device on the SCSI bus that is to 
handle the command request. 

cmd_bcnt 
Specifies the number of bytes to be allocated for the request packet's 
SCSI command buffer. The command buffer can store up to 256 bytes 
of command data. 

cmdJ'tr 
Receives a pointer to the request packet's command buffer. A driver 
must use the returned pointer to place a SCSI command in the request 
packet. 

stsJ'tr 
Receives a pointer to the request packet's SCSI status buffer. The 
status buffer receives a status code from the target device, as defined in 
the ANSI SCSI specification, after the completion of a SCSI command. 

An integer in the range 0 to 15 that identifies the SCSI command 
request packet. 

1. virtual deviee := INVOKE(routine addresses.alloe, 
sesiport$alloeate_deviee, 
sesi target, 
emd bent, 
ADDRESS(emd-ptr), 
ADDRESS(sts-ptr»; 

Shows a call to PORT$ALLOCATE_DEVICE in VAXELN Pascal. 

SCSI Port Driver Interface Routines D-5 



PO RT$AL LOCATE_D EVICE 

2. virtual device = (*routine addresses.ctx a alloc) 
(routi~e addresses.ctx-a context, 
scsi target, - -
cmd_bcnt, 
& cmdytr, 
&stsytr) ; 

Shows a call to PORT$ALLOCATE_DEVICE in C. 

3. call allloc = alloe routine (%val (routine addresses.ctx), 
- - %val(scsi target), 

%val (emdj>ent), 
emdytr, 
stsytr) 

Shows a call to PORT$ALLOCATE_DEVICE in FORTRAN. The 
call_alloc identifier is the name of the function that is to handle the 
address of the PORT$ALLOCATE_DEVICE callback routine. 

D-6 SCSI Port Driver Interface Routines 



PORT$EXIT _HANDLER 

PORT$EXIT _HANDLER 

Pascal 
Format 

Terminates the SCSI port driver and returns all port driver resources 
back to the system. 

NOTE 

An application should call this function only if the port driver 
needs to be terminated. This function frees all resources 
associated with the port and disconnects the device from 
the interrupt service routine (ISR). Digital recommends that 
user-defined class drivers not invoke this function. 

To invoke this routine from a class driver written in Pascal, the driver 
must first declare the following function type: 

FUNCTION scsiport$exit_handler(ctx : AANYTYPE): INTEGER; 
FUNCTION_TYPE; 

INCLUDE $SCSIPORT 
INCLUDE $SCSI_UTILITY 

status := INVOKE 
(routine_8ddresses.exit, 
scsiport$exiLhandler, 
routine_addresses. ctx) 

argument information 
routine addresses.ctx: AANYTYPE 

C Format #include $scsiport 
#include $scsi_utility 

result = (*routine_addresses.ctx_a_exit) 
(ctx) 

SCSI Port Driver Interface Routines D-7 



PORTSEXIT _HANDLER 

argument information 
char *routine_addresses.ctx 

FORTRAN INCLUDE 'ELNS:FORTRAN_DEFS.FOR' 
Format result = exit routine 

(%val(routine_addresses.ctx)) 

argument information 
INTEGER*4 routine_addresses.ctx 

Arguments 
routine_sddresses.ctx 

Returns 

Examples 

Specifies the pointer to the port driver's data structures. 

A status value returned by kernel routine calls. 

1. status := INVOKE(routine addresses. exit, 
scsiport$exit handler, 
routine_addre;ses.ctx); 

Shows a call to PORT$EXIT_HANDLER in VAXELN Pascal. 

2. status = (*routine addresses.ctx a exit) 
(routine_addresses.ctx=a_context) 

Shows a call to PORT$EXIT_HANDLER in C. 

D-8 SCSI Port Driver Interface Routines 



PORT$EXIT _HANDLER 

3. call_exit = exit_routine (%val (routine_addresses.ctx» 

Shows a call to PORT$EXIT_HANDLER in FORTRAN. The 
call exit identifier is the name of the function that is to handle 
the -;ddress of the PORT$EXIT_HANDLER callback routine. 

SCSI Port Driver Interface Routines 0-9 



PORT$FREE_DEVICE 

PORT$FREE_DEVICE 

Pascal 
Format 

Returns a SCSI command request packet to the list of free SCSI 
command request packets. If another process is waiting for a request 
packet, PORT$FREE_DEVICE signals that process. 

To invoke this routine from a class driver written in Pascal, the driver 
must first declare the following function type: 

FUNCTION scsiport$deallocate device(ctx : AANYTYFEi 
- virtual_device : INTEGER) : INTEGER; 

FUNCTION_TYPE; 

INCLUDE $SCSIPORT 
INCLUDE $SCSI_UTILITY 
status := INVOKE 

(routine_addresses. free, 
scsiport$deallocate_device, 
routine addresses.ctx, 
virtuaL de vice) 

argument information 
routine addresses.ctx: AANYTYPE 
virtuaLaevice: INTEGER 

C Format #include $scsiport 
#include $scsi_utility 
status = (*routine_addresses.ct~a_free) 

(routine_addresses.ctx, 
virtuaL de vice) 

0-10 SCSI Port Driver Interface Routines 



argument information 
char *routine addresses.ctx 
int virtual device 

PORT$FREE_DEVICE 

FORTRAN INCLUDE 'ELN$:FORTRAN_DEFS.FOR' 
Format status = free routine 

(% val (routine_addresses. ctx), 
%val(virtuaL device)) 

argument information 
INTEGER*4 routine addresses.ctx 
INTEGER*4 virtual aevice 

Arguments 

Returns 

Examples 

routine _sddresses.ctx 
Specifies the pointer to the port driver's data structures. 

virtusl device 
Specifies the packet ID for the SCSI command request packet to be 
returned to the request packet free list. You must specify a packet ID 
returned by PORT$ALLOCATE_DEVICE. 

An integer status value of SS$_NORMAL. 

1. status:= INVOKE(routine addresses. free, 
scsiport$deallocate device, 
routine addresses.ctx, 
virtual:=device) 

Shows a call to PORT$FREE_DEVICE in VAXELN Pascal. 

SCSI Port Driver Interface Routines D-11 



PORT$FREE_DEVICE 

2. status = (*routine addresses.ctx a free) 
(routi~e addresses.ctx-a context, 
virtual=device); --

Shows a call to PORT$FREE_DEVICE in C. 

3. call free = free routine(%val(routine addresses.ctx), 
- - %val (virtual=device») 

Shows a call to PORT$FREE_DEVICE in FORTRAN. The callJree 
identifier is the name of the function that is to handle the address 
of the PORT$FREE_DEVICE callback routine. 

0-12 SCSI Port Driver Interface Routines 



PORT$INITIALIZE_ CONTROLLER 

PORT$INITIALIZE_ CONTROLLER 

Pascal 
Format 

Asserts the SCSI RST signal on the SCSI bus. This signal causes all 
devices on the SCSI bus to release all asserted signals and places the 
bus in a BUS FREE state. 

NOTE 

A class driver should not call this routine unless the SCSI 
bus is hung. 

To invoke this routine from a class driver written in Pascal, the driver 
must first declare the following function type: 

FUNCTION scsiport$initialize controller(ctx : AANYTYFE; 
scsi_target : INTEGER): INTEGER; 

FUNCTION_TYPE; 

INCLUDE $SCSIPORT 
INCLUDE $SCSI_UTILITY 

status := INVOKE 

(routine _ addresses.init, 
scsiport$initialize _ controller, 
routine addresses.ctx, 
scsLtarget) 

argument information 
routine addresses.ctx: AANYTYPE 
scsLtarget: INTEGER 

SCSI Port Driver Interface Routines D-13 



PORT$INITIALIZE_ CONTROLLER 

C Format #include $scsiport 
#include $scsi_utility 
status = (*routine_addresses.ctx_a_init) 

(routine_addresses.ctx, 
scsLtarget) 

argument information 
char *routine addresses.ctx 
char scsLtarget 

FORTRAN INCLUDE 'ELN$:FORTRAN_DEFS.FOR' 
Format status = init_routine 

(%val(routine_addresses.ctx), 
%val(scsLtarget)) 

argument information 
INTEGER*4 routine addresses.ctx 
INTEGER*4 scsLtarget 

Arguments 
routine_ addresses.ctx 
Specifies the pointer to the port driver's data structures. 

scsltarget 
Specifies the SCSI device ID for a working SCSI target device. 

Returns 
An integer status value of SS$_NORMAL. 

0-14 SCSI Port Driver Interface Routines 



Examples 

PORT$INITIALIZE_ CONTROLLER 

1. status:- ZNVOKB(routine addresses.init, 
scsiport$initialize controller, 
routine addresses.ctx, 
scsi_target) ; 

Shows a call to PORT$INITIALIZE_CONTROLLER in VAXELN 
Pascal. 

2. atatus _ (*routine addresses.ctx a init) 
(routine addresses.ctx-a context, 
scsi_target) - -

Shows a call to PORT$INITIALIZE_CONTROLLER in C. 

S. call init = init routine(%val(routine addresses.ctx), 
- - %val(scsi_target» 

Shows a call to PORT$INITIALIZE_CONTROLLER in FORTRAN. 
The call init identifier is the name of the function that is to handle 
the address of the PORT$INITIALIZE_CONTROLLER callback 
routine. 

SCSI Port Driver Interface Routines D-15 



PORT$ISSUE_ COMMAND 

PORT$ISSUE_COMMAND 

Pascal 
Format 

Arbitrates and selects a device on the SCSI bus, issues the SCSI 
command that is in the specified SCSI command request packet, and 
performs the tasks necessary to complete the operation. 

To invoke this routine from a class driver written in Pascal, the driver 
must first declare the following constants and function type: 

CONST 
SCSI$K DISCONNECT = 0; 
SCSI$K-NODISCONNECT = 1; 
SCSI$K-RETRY = 0; 
SCSI$K=NORETRY = 1; 

FUNCTION scsiport$issue command(ctx : AANYTYPE; 
- virtual_device : INTEGER; 

FUNCTION_TYPE; 

disconnect : INTEGER; 
disable retry : INTEGER; 
phase_timeout : INTEGER; 
disconnect_timeout : INTEGER) : INTEGER; 

The constants SCSI$K_DISCONNECT, SCSI$K_NODISCONNECT, 
SCSI$K_RETRY, and SCSI$K_NORETRY are declared in the modules 
$scsi_utility and ELN$:FORTRAN_DEFS.FOR for drivers written in 
C and FORTRAN, respectively. 

INCLUDE $SCSIPORT 
INCLUDE $SCSI_UTILITY 

status := INVOKE 

(routine_addresses.issue, 
scsiport$issue _ command, 
routine addresses.ctx, 
virtual device, 
disconnect, 
disable_retry, 
phase_timeout, 
disconnecLtimeout) 

0-16 SCSI Port Driver Interface Routines 



PORT$ISSUE_ COMMAND 

argument information 
routine addresses.ctx: AANYTYPE 
virtual aevice: INTEGER 
disconnect: INTEGER 
disable retry: INTEGER 
p'hase timeout: INTEGER 
'disconnecLtimeout: INTEGER 

C Format #include $scsiport 
#include $scsi_utility 

status = (*routine_addresses.ctx_a_issue) 

(routine_addresses.ctx, 
virtual device, 
disconnect, 
disable_retry, 
phase_timeout, 
disconnecLtimeout) 

argument information 
char *routine addresses.ctx 
int virtual device 
int disconnect 
int disable retry 
int p'hase timeout 
int'disconnect timeout 

FORTRAN INCLUDE 'ELN$:FORTRAN_DEFS.FOR' 
Format status = issue routine 

(%val(routine_addresses.ctx), 
% val (virtuaL device), 
%val(disconnect), 
% val (disable_retry), 

SCSI Port Driver Interface Routines D-17 



PORT$ISSUE_ COMMAND 

%val(phase _ timeout), 
% val(disconnecL timeout)) 

argument information 
INTEGER*4 routine addresses.ctx 
INTEGER*4 virtual aevice 
INTEGER*4 disconnect 
INTEGER*4 disable retry 
INTEGER*4 p'hase Timeout 
INTEGER*4 CiisconnecLtimeout 

Arguments 
routlne_addresses.ctx 
Specifies the pointer to the port driver's data structures. 

virtual device 
Specifies the packet ID for the SCSI command request packet that 
contains the command being issued. You must specify a packet ID 
returned by PORT$ALLOCATE_DEVICE. 

disconnect 
Specifies whether the target device can disconnect during command 
execution. Specify SCSI$K_DISCONNECT to allow the device to 
disconnect. Specify SCSI$K_NODISCONNECT to prevent the device 
from disconnecting. 

disable_retry 
Specifies whether the port driver should attempt to repeat a command 
that fails due to a timeout, bus parity, or invalid phase transition error. 
Specify SCSI$K_RETRY to allow the port driver to retry commands. 
When this characteristic is set, the port driver will attempt three 
retries. Specify SCSI$K_NORETRY to disable retries. 

phase_timeout 
Specifies the amount of time a target device has to change to another 
SCSI bus phase. You can specify from 0 to 420 seconds. If you specify 
o seconds or an invalid value, the driver uses a timeout value of 20 
seconds. 

D-18 SCSI Port Driver Interface Routines 



Returns 

Examples 

PORT$ISSUE_ COMMAND 

dlsconnecLtlmeout 
Specifies the amount of time a target device has to reselect an initiator 
to proceed with a disconnected data transfer. You can specify from 0 
to 420 seconds. If you specify 0 seconds or an invalid value, the driver 
uses a timeout value of 20 seconds. 

The status value SS$_CTRLERR, SS$_TIMEOUT, or SS$_NORMAL. 

1. status := INVOKE(routine addresses. issue, 
scsiport$issue_command, 
routine addresses.ctx, 
virtual-device, 
SCSI$K DISCONNECT, 
SCSI$K-RETRY, 
phase timeout, 
disconnect_timeout); 

Shows a call to PORT$ISSUE_COMMAND in VAXELN Pascal. 

2. status = (*routine_addresses.ctx_a_issue) 
(routine addresses.ctx a context, 
virtual-device, - -
SCSI$K DISCONNECT, 
SCSI$K-RETRY, 
phase timeout, 
disconnect_timeout); 

Shows a call to PORT$ISSUE_COMMAND in C. 

3. call issue = issue_routine(%val(routine_addresses.ctx), 
%val(virtual device), 
%val(SCSI$K DISCONNECT), 
%val(SCSI$K=RETRY), 
%val(phase timeout), 
%val(disconnect_timeout» 

Shows a call to PORT$ISSUE_COMMAND in FORTRAN. The 
call issue identifier is the name of the function that is to handle 
the address of the PORT$ISSUE_COMMAND callback routine. 

SCSI Port Driver Interface Routines D-19 



PORT$MAP _BUFFER 

PORT$MAP _BUFFER 

Pascal 
Format 

Searches the 128-Kbyte SCSI DMA RAM bitmap for a specified amount 
of contiguous data bytes, updates the SCSI command request packet 
with the appropriate mapping information, and marks the bitmap 
pages as unavailable. 

To invoke this routine from a class driver written in Pascal, the driver 
must first declare the following constants and function type: 

CONST 
SCSI$K WRITE = 0; 
SCSI$K=READ = 1; 

FUNCTION scsiport$map_buffer(ctx : AANYTYPE; 
virtual device : INTEGER; 
buffer 7 AANYTYPE; 
buf len : INTEGER; 
pad=len : INTEGER; 
direction : INTEGER) : INTEGER; 

The constants SCSI$K_READ and SCSI$K_ WRITE are declared in the 
modules $scsi_utility and ELN$:FORTRAN_DEFS.FOR for drivers 
written in C and FORTRAN, respectively. 

INCLUDE $SCSIPORT 
INCLUDE $SCSI_UTILITV 

status := INVOKE 
(routine_addresses. map, 
scsiport$map _buffer, 
routine_addresses.ctx, 
virtual device, 
buffer,-
buLlen, 
pad_len, 
direction) 

0-20 SCSI Port Driver Interface Routines 



PORT$MAP _BUFFER 

argument information 
routine addresses.ctx: AANYTYPE 
virtual aevice: INTEGER 
buffer: AANYTYPE 
but len: INTEGER 
p'aa len: INTEGER 
'direction: INTEGER 

C Format #include $scsiport 
#include $scsi_utility 

status = (*routine_addresses.ctx_a_map) 

(routine_addresses.ctx, 
virtual device, 
*butter, 
buLlen, 
pad_len, 
direction) 

argument information 
char *routine addresses.ctx, 
int virtual device 
unsi.g'ned char * buffer 
int Dut len 
int p'aa len 
int 'direction 

FORTRAN INCLUDE 'ELN$:FORTRAN_DEFS.FOR' 
Format status = map_routine 

(%val(routine_addresses.ctx), 
% val (virtuaL device}, 
%ret(buffer}, 
%val(buLlen}, 

SCSI Port Driver Interface Routines 0-21 



PORT$MAP _BUFFER 

%val(pad_len), 
%val(direction)) 

argument information 
INTEGER*4 routine addresses.ctx 
INTEGER*4 virtual aevice, 
CHARACTER*n buffer 
INTEGER*4 but len 
INTEGER*4 ~aa I~n 
INTEGER*4 'direction 

Arguments 
routine_addresses.ctx 
Specifies the pointer to the port driver's data structures. 

virtuaL device 
Specifies the packet ID for the SCSI command request packet for which 
a data buffer is to be mapped. You must specify a packet ID returned 
by PORT$ALLOCATE_DEVICE. 

buffer 
Specifies a pointer to the data buffer to be mapped. 

bu,-Ien 
Specifies the size of the data buffer to be mapped. Specify a value in 
the range 1 to 65536. 

pad_len 
Specifies the pad size needed for a SCSI command that requires a 
transfer size that is larger than the size specified by buf_len. If the 
amount of data requested in a SCSI command exceeds the space 
allocated for the data buffer, the pad size accounts for the difference. 

direction 
Specifies whether the data transfer is a read or write operation. Specify 
SCSI$K_ WRITE for a write operation; specify SCSI$K_READ for a 
read operation. 

0-22 SCSI Port Driver Interface Routines 



Returns 

Examples 

PORT$MAP _BUFFER 

An integer status value of SS$_NORMAL. 

1. 

2. 

3. 

status := INVOKE(routine addresses.map, 
scsiport$map buffer, 
routine addresses.ctx, 
virtual-device, 
buffer, -
buf len, 
pad-len, 
SCSI$K_READ) ; 

Shows a call to PORT$MAP_BUFFER in VAXELN Pascal. 

status (*routine_addresses.ctx_a_map) 
(routine addresses.ctx a context, 
virtual-device, - -
*buffer; 
buf len, 
pad-len, 
SCSI$K_READ); 

Shows a call to PORT$MAP_BUFFER in C. 

call map = map routine (%val (routine addresses.ctx), 
- - %val(virtual-device) , 

%ref(buffer); 
%val (buf len), 
%val (pad-len), 
%val(SCSI$K_READ» 

Shows a call to PORT$MAP_BUFFER in FORTRAN. The call_map 
identifier is the name of the function that is to handle the address 
of the PORT$MAP _BUFFER callback routine. 

SCSI Port Driver Interface Routines 0-23 



PORT$UNMAP _BUFFER 

PORT$UNMAP _BUFFER 

Pascal 
Format 

Returns the memory used for a SCSI command request packet data 
buffer back to the 128-Kbyte DMA RAM bitmap and marks the 
returned pages as available. If another process is waiting for DMA 
RAM memory, PORT$UNMAP _BUFFER signals that process. 

To invoke this routine from a class driver written in Pascal, the driver 
must first declare the following function type: 

FUNCTION scsiport$unmap buffer(ctx : AANYTYPE; 
- virtual_device : INTEGER; 

buffer : AANYTYPE; 
buf len : INTEGER; 
pad=len : INTEGER): INTEGER; 

FUNCTION_TYPE; 

INCLUDE $SCSIPORT 
INCLUDE $SCSI_UTILITY 
status := INVOKE 

(routine_addresses.unmap, 
scsiport$unmap _ buffer, 
routine_addresses.ctx, 
virtual device, 
buffer,-
but len, 
pad len) 

argument information 
routine addresses.ctx: AANYTYPE 
virtual aevice: INTEGER 
buffer: AANYTYPE 
but len: INTEGER 
paetJen: INTEGER 

0-24 SCSI Port Driver Interface Routines 



C Format #include $scsiport 
#include $scsi_utility 

PORT$UNMAP_BUFFER 

status = (*routine_addresses.ctx_a_unmap) 
(routine_addresses.ctx, 
virtuaL de vice, 
*bufter, 
but len, 
pad len) 

argument information 
char *routine addresses.ctx, 
int virtual device 
unsi,gned char * buffer 
int ouf len 
int palLlen 

FORTRAN INCLUDE 'ELN$:FORTRAN_DEFS.FOR' 
Format status = unmap_routine 

(%val(routine_addresses.ctx), 
% val (virtuaL device), 
%ret(buffer), 
%val(bul/en), 
%val(pad_len)) 

argument information 
INTEGER*4 routine addresses.ctx 
INTEGER*4 virtual aevice, 
CHARACTER*n buffer 
INTEGER*4 buf len 
INTEGER*4 pact len 

SCSI Port Driver Interface Routines D-25 



PORT$UNMAP _BUFFER 

Arguments 
routlne_addresses.ctx 

Returns 

Examples 

Specifies the pointer to the port driver's data structures. 

virtual device 
Specifies the packet ID for the SCSI command request packet for which 
a data buffer is to be unmapped. You must specify a packet ID returned 
by PORT$ALLOCATE_DEVICE. 

buffer 
Specifies a pointer to the data buffer to be unmapped. 

bu,--Ien 
Specifies the size of the data buffer to be unmapped. Specify a value in 
the range 1 to 65536. 

pad_len 
Specifies the pad size of the data buffer to be unmapped. 

An integer status value of SS$_NORMAL. 

1. 
status := INVOKE(routine addresses.unmap, 

scsiport$unmap buffer, 
routine_addresses.ctx, 
virtual device, 
buffer,-
buf_Ien, 
pad_len) ; 

Shows a call to PORT$UNMAP _BUFFER in VAXELN Pascal. 

D-26 SCSI Port Driver Interface Routines 



PORT$UNMAP_BUFFER 

2. status (*routine_addresses.ctx_a_unmap) 
(routine addresses.ctx a context, 
virtual-device, - -
*buffer; 
buf len, 
pa()en) ; 

Shows a call to PORT$UNMAP _BUFFER in C. 

3. call unmap = unmap routine(%val(routine addresses.ctx), 
- - %val (virtual-device), 

%ref(buffer); 
%val (buf len), 
%val (pad:=len) ) 

Shows a call to PORT$UNMAP _BUFFER in FORTRAN. The 
call_unmap identifier is the name of the function that is to handle 
the address of the PORT$UNMAP _BUFFER callback routine. 

SCSI Port Driver Interface Routines 0-27 





A 
Absolute pointers, in areas • 5-32 
Absolute time • 4-2 

waiting for an • 4-6 
ACCEPT_CIRCUIT procedure 

accepting logical links with • 9-2 
accepting messages from network nodes with· 

9-3 
accepting VMS connections with • 9-48 
as PORT object operation· 2-12 
controlling message flow with· 5-17 
establishing circuits for authorization with • 12-16 
establishing circuits with· 5-17 
waiting for circuit connection with • 5-23 

accept function· 10-55 
accepting connection requests with • 1 0-65 

Access control string • 12-5, 12-18 
Access to shared resources • 4-1 0 to 4-18 

See also Synchronization 
types of· 4-11 

ACK (acknowledgement) 
receiving from TCP • 10-8 
setting time to wait for • 10-24 

Acknowledgement (ACK) 

See ACK (acknowledgement) 
Active service nodes • 11-16, 11-21 

See also LAT (local area transport) 
ADD_INTERLOCKED function • 5-2 
Addresses 

See also Ethernet addresses; Hardware 
addresses; Internet addresses; Physical 
addresses 

multicast· 8-18 

Index 

Address notation, Internet 
See Internet addresses 

Address resolution method • 10-24 
Address Resolution Protocol (ARP) 

See ARP (Address Resolution Protocol) 
AD032 device ·14-128,14-130 
ADO device driver utility procedures· 14-130 
ADO_INITIALIZE procedure· 14-131 
ADO_OUEUE_READ procedure· 14-131 
ADO_START procedure· 14-131 
ADO_TRANSFER_DONE procedure ·14-131 
ADV11-C device· 14-128, 14-131 
ADV11-D device· 14-128, 14-133 
ADV device driver utility procedures ·14-134 
ADVJNITIALIZE procedure ·14-134 
ADV_OUEUE_READ procedure· 14-134 
ADV_TRANSFER_DONE procedure ·14-134 
AF _IN ET communication domain • 10-15 

specified in socket names • 10-59 
Allocated system region • 3-30 

freeing • 3-31 
using to transfer data • 14-7, 14-1 0, 14-20 to 

14-24 
ALLOCATE_MAP procedure· 6-10 
ALLOCATE_MEMORY procedure • 3-29 
ALLOCATE_PATH procedure· 6-11 
ALLOCATE_STACK procedure • 3-28 
ALLOCATE_SYSTEM_REGION procedure • 3-30 
Analog-to-digital converter 

AD032 ·14-130 
ADV11-C/AXV11-C· 14-131 
ADV11-D· 14-133 

ANSI control sequences· 14-65 
Application devices, LAT· 11-2 

See also LAT (local area transport) 

Index-1 



Application devices, LAT (Cont.) 

accessing • 11-36 
associating with application LAT ports· 11-41 
environment of (figure)· 11-37 
example· 11-38 to 11-40 
setting up • 11-36 to 11-43 

Application-initiated load requests· 9-35, 9-36, 9-40 
Application LAT port • 11-7, 11-40 

See also LAT (local area transport) 
Application services 

See LAT (local area transport) 
Area-locking procedures 

ELN$INITIALIZE AREA LOCK· 5-29 
initializing a~ea lock variables with • 5-40 

ELN$LOCK_AREA • 5-29 
ELN$UNLOCK_AREA • 5-29 

unlocking areas with· 5-40 
AREA_LOCK_VARIABLE data type· 2-16,5-40 
Area lock variables· 2-1, 2-16,5-40 

See also AREA objects; Areas; Binary 
semaphores 

initializing • 5-40 
using to lock and unlock areas· 5-40 

AREA_LOCK_VARIABLE values· 2-16 
Area name· 5-31 
AREA objects • 2-4 

See also Area lock variables; Areas 
creating • 4-16, 5-30 
definition of· 2-4 
deleting • 5-46 
initializing state of synchronization object for • 

5-31 
operations on • 2-5 
satisfying a wait on • 4-3 
sharing data with • 5-28 to 5-46 
signaling· 4-12, 5-33, 5-39 
starting address of • 5-31 
waiting on • 4-12, 5-33, 5-39 

Areas 
See also AREA objects; Area lock variables 
creating· 4-11 
initializing area lock variables for· 5-40 
interjob communication using • 5-28 to 5-46 
locking • 5-40 
pointers in • 5-32 
position-dependent • 5-32 
position-independent • 5-32 

2-lndex 

Areas (Cont.) 

synchronizing access to • 5-33 to 5-41 
synchronizing access to with area lock variables • 

5-40 
synchronizing access to with events • 5-33 to 

5-38 
synchronizing access to with semaphores • 5-39 
synchronizing job execution with· 5-41 

example of· 5-42 to 5-46 
unlocking· 5-40 

Area size • 5-31 
AREA values • 2-5 
ARP (Address Resolution Protocol) 

See also ARP cache 
datagrams • 1 0-43 
definition of· 10-5, 10-25 
status information • 10-28 

ARP cache • 10-5 
See also ARP (Address Resolution Protocol) 
adding entries to· 10-26 
deleting entries from • 10-26 
entries, setting maximum number of • 10-23 
entry characteristics· 1 0-29 
managing • 10-25 to 10-30 
retrieving entries from • 10-28 
retrieving Ethernet addresses from • 1 0-27 

Asynchronous exceptions· 7-4,7-11 
disabling • 7-12 
enabling· 7-12 
KER$RAISE PROCESS EXCEPTION· 7-13 

Asynchronous s;rial-line co~rollers • 14-134 
AUTH_ADD_USER procedure ·12-8, 12-9 
AUTH_MODIFY_USER procedure· 12-8, 12-11 
Authorization data base· 12-4,12-7 

adding users to· 12-9 
modifying records in • 12-11 
removing user records from • 12-13 
returning information from ·12-14 

Authorization procedures • 12-16 to 12-18 
KER$GET_USER· 12-16 
KER$SET _USER ·12-17 

Authorization Service· 1-16, 12-3 to 12-15 
Authorization Service utility procedures • 12-7 to 

12-15 
See also Authorization procedures 
ELN$AUTH_ADD_USER· 12-9 
ELN$AUTH_MODIFY_USER ·12-11 



Authorization Service utility procedures (Cont.) 
ELN$AUTH_REMOVE_USER 012-13 
ELN$AUTH_SHOW_USER 012-14 

AUTH_REMOVE_USER procedure -12-8, 12-13 
AUTH_SHOW_USER procedure 012-8, 12-14 
AXV11~ device -14-128,14-131 
AXV device driver utility procedures -14-132 
AXV_INITIALIZE procedure -14-132 
AXV _READ procedure - 14-133 
AXV_WRITE procedure - 14-133 

B 
BDDRIVER disk driver - 14-1 
Binary semaphores 0 4-11 

See also Semaphores 
example of - 4-13 
for controlling access to areas 0 5-30 
optimizations of 0 4-14 

bind function· 10-55 
binding names to sockets with 0 1 0-58 

BLNODE_MASK procedure· 6-13 
BLSTOP procedure 06-14 
Blocking sockets 010-60, 10-69, 10-73 
Blocks of data 

reading from mounted disks • 14-15 to 14-20 
reading from unmounted disks 014-12 to 14-14 

BOOTP (Boot Protocol) 0 1 0-7 
BOOTP servers • 10-7 
Bootstrap loader, primary 0 9--36 
Bootstrap ROM • 9--36 
Broadcast addresses 

as Internet addresses· 10-9, 10-13 
examples of 010-14 

in Internet routing algorithm • 10-22 
Broadcast masks 

for network interfaces 0 1 0-43 
Internet address • 10-9 

calculating • 10-14 
default value of 010-13 
definition of· 10-13 

setting 0 10-24, 1 0-40 
Broadcast messages, setting for sockets • 10-92 
Buffered data path 

allocating 0 6-11 
freeing • 6-12 

Buffers 

Buffers (Cont.) 
command 

mapping for SCSI command request packets 
• 0-20 

unmapping for SCSI command request 
packets· D-24 

memory 
mapping· 6-12 
unmapping - 6-13 

SCSI command • 14-85 
Byte order 

c 

conversion functions • 10-53 
converting· 10-53, 10-54 

Call frame • 7-2 
calloe function 0 ~3 
Call sequence, extracting· 7-3 
Call stack 

See Stacks 
CANCEL_EXIT _HANDLER procedure 0 3-6 
Carrier Sense Multiple Access/Collision Detect 

(CSMAlCD) LAN 
See CSMAlCD LAN 

Checksum values, Internet address • 10-5 
Circuits·~11, ~16 

characteristics of • 5-11, 9-5 
connected to remote nodes • 9-2 
connecting • ~17, 5-24 
datalink· 9-9, 9-16 
disconnecting. 5-19, ~26 
flow control with • 5-17, ~22 
for DDA disk interface • 14-8 
for DDA serial-line interface· 14-41 
for Down-Line Load Service· 9-20 
for LAT communication· 11-4 
in network applications 0 9-5 
message segmentation with· ~17 
programming· ~17 to ~21 
programming considerations for • ~22 
requesting multiple connections for • ~18 
TCP ·10-7 
used for I/O • 5-17 
waiting for connections of· ~23 

Class A Internet networks • 10-10 
network masks for· 10-13 

Index-3 



Class A Internet networks (Cont.) 

when to use • 10-11 
Class attached flag, SCSI device· 14-81, 14-112 
Class B Internet networks • 10-1 0 

network masks for· 1 0-13 
when to use· 10-11 

Class C Internet networks • 1 0-11 
network masks for· 1 0-13 
when to use· 10-12 

Class drivers, SCSI· 14-111 
associating with device types ·14-115 
compiling and linking· 14-128 
declaring • 14-115 
defining device locks for • 14-119 
device types for • 14-114 
disk· 14-76 
generic· 14-77 to 14-110 

con necting to • 14-78 
example • 14-91 to 14-11 0 
message interface· 14-77 to 14-110 

programming ·14-116 to 14-127 
setting up entry point for • 14-120 
starting • 14-116 
user-defined ·14-110 to 14-128 

Classes 
Internet network· 10-9 

default network masks for· 1 0-13 
number ranges for· 10-11 

Classes, llC· 8-18,8-34 
specifying • 8-35 

CLEAR_EVENT procedure • 4-4, 5-28 
as area event operation • 2-6 
as EVENT object operation • 2-8 
clearing EVENT objects with • 4-17 

Clients • 1 0-3 
See also Processes 
sample TCP • 10-88 to 1 0-91 
sample UDP ·10-82 to 10-84 

Client-server model • 10-3 
close function • 10-55 

closing sockets with • 10-76 
Closely coupled symmetric multiprocessing. 1-11, 

3-32 
Ethernet node· 9-1 
sharing memory areas during • 5-30 

Command buffer, SCSI· 14-85 
Command language commands 

See ECl commands 

4-lndex 

Command language Utility • 1-7 
as lAT host service· 11-2 

Commands 
See DCl commands; ECl commands; NCP 

commands 
Common Command Set (CCS)· 14--89, 14-126 
Commons, global· 5-2 
Communication 

interjob· 1-15, 5-10 to 5--46 
through areas • 5-28 to 5--46 
through message passing • 5-10 to 5-28 

Internet 
connectionless ·10-6, 10-17 
connection-oriented • 10-7, 10-16 
datagram-based • 10-6 
half-duplex socket· 10-75 
programming • 10-55 to 10-91 
stream-based • 10-7 

interprocess· 5-1, 5-1 to 5-9 
through data sharing • 5-1 to 5--4 
through queues • 5--4 to 5-9 

LAT ·11-4 
protocol • 5-15 
with other operating systems • 9-44 

Communication domain • 10-15 
Communication region 

See Device communication region 
Communications environments 

See Datalink drivers; Ethernet/IEEE 802 
Datagram Service; Internet Services; 
Network Service 

Communications ports 
Internet· 10-6, 10-14 

privileged • 1 0-15 
Concepts, VAXElN programming • 1-7 
Concurrency· 1-7, 1-9 

See also Concurrent programming 
scheduling for • 3-9 
types of • 1-9 

Concurrent processes 

See Concurrency; Concurrent programming 
Concurrent programming· 1-9, 4-1 

multiprocessing in· 1-10 to 1-12 
multiprogramming in· 1-10 
multitasking in· 1-10 

CONNECT_CIRCUIT procedure ·12-5 
accessing lAT ports with ·11-35,11-41 



CONNECT_CIRCUIT procedure (Cont.) 

as PORT object operation· 2-12 
connecting to VMS with • 9-47 
connect to a port with· 5-24 
controlling message flow with· 5-17 
creating logical links with • 9-2 
establishing circuits for authorization with • 12-16 
establishing circuits with· 5-17 
establishing network node connections with • 9-3 
named ports used with • 5-14 
setting up DDCMP communication with • 14-38 
specifying DECnet object numbers with • 9-49 

connect function • 1 0-55 
initiating socket connections with • 10-62 

Connection data, retrieving TCp· 10-48 
Connection options, TCP· 10-48 
Connection requests 

DECnet, stopping· 9-14 
LAT· 11-25 
socket • 10-84 

Connections 
socket 

accepting • 10-65 
closing • 10-76 
establishing • 10-8, 10-82 to 10-66 
initiating • 10-82 
requirements of • 1 0-17 
shutting down • 10-75 
state of· 1 0-49 

VAXELN 
accepting on VMS systems • 9-48 
requesting from VMS systems • 9-48 

VMS 
accepting on VAXELN systems· 9-48 
requesting from VAXELN systems· 9-47 

Connection state, TCP· 10-48 
Constants, shared • 5-2 
Control characters • 14-82 
Controllers 

Ethernet 
See Ethernet controllers 

SCSI device • 14-74 
initializing • 14-127 

Control messages, Internet protocol for returning • 
10-5 

Control ports • 14-78 
Down-Line Load Service • 9-20 

Control region • 3-26 

Control sequences, ANSI • 14-85 
COPY_FILE procedure ·13-11 
Counting semaphores • 4-12 

See also Semaphores 
example of • 4-12 
for controlling access to areas • 5-30 

CREATE_AREA_EVENT procedure • 4-4, 5-28 
as area event operation • 2-5 
creating area events with • 4-16 
creating AREA objects with· 5-30 

CREATE_AREA procedure • 4-4, 5-28 
as AREA object operation • 2-5 
creating AREA objects with • 5-30 
creating area semaphores with • 4-11 

CREATE-AREA_SEMAPHORE procedure • 4-4, 
5-29 

as area semaphore operation • 2-5 
creating AREA objects with • 5-30 
creating area semaphores with· 4-11 

CREATE_DEVICE procedure 
as DEVICE object operation • 2-7 
creating DEVICE objects with • 6-3 
specifying a power-failure recovery routine with • 

6-17 
CREATE_DI RECTORY procedure • 13-12 
CREATE_EVENT procedure • 4-4 

as EVENT object operation· 2-7 
creating EVENT objects with • 4-16 

CREATE JOB command· 3-3 
activating Down-Line Load Service with· 9-18 

CREATE_JOB procedure· 3-15 
activating Down-Line Load Service with • 9-18 
creating jobs with • 3-1 , 3-3 

CREATE_MESSAGE procedure 
as MESSAGE object operation· 2-8 
creating MESSAGE objects with· 5-11,5-25 
setting up message communication with· 5-14 

CREATE_MUTEX procedure • 4-4 
as mutex operation • 2-18 
creating mutexes with • 4-14 

CREATE_NAME procedure 
as NAME object operation· 2-10 
creating NAME objects with· 5-13,5-25 
creating universal port names with • 9-5 

CREATE_PORT procedure 
as PORT object operation· 2-11 
creating PORT objects with· 5-12,5-25 

Index-5 



CREATE_PROCESS procedure· 3-15,4-4 
as PROCESS object operation • 2-13 
creating processes with· 3-2 
terminating subprocesses with • 3-5 
using exit parameter with • 4-10 

CREATE_SEMAPHORE procedure· 4-4 
as SEMAPHORE object operation· 2-14 
creating SEMAPHORE objects with· 4-11 

Credit values· 10-34 
C runtime library message files· 7-16,7-17,7-23 
CSMAlCD LAN • 8-4 

getting configuration of· 8-7,8-36 
Current connection flag, SCSI device ·14-81,14-112 

setting • 14-121 
CURRENT_PROCESS procedure· 3-16,4-5 

as PROCESS object operation· 2-13 

D 
DAP (data acc.ess protocol) • 13-21, 14-3 

action routines· 13-19, 13-20 to 13-26 
constants· 13-26 
data types • 13-26 
general principles • 13-24 
in communication tasks • 9-3 
message transmission example· 13-21 
port for LAT port· 11-8 
wildcard functions • 13-27 

DAP$SERVER function· 13-23 to 13-26, 13-27 
Data access protocol (DAP) 

See DAP (data access protocol) 
Data base 

down-line load • 9-18 
clearing node information from • 9-22, 9-29 
line characteristics • 9-28 
managing and monitoring line entries in • 

9-28 
managing and monitoring node entries in • 

9-21 
node characteristics· 9-21 
overriding information in· 9-38, 9-41 
returning node information from • 9-22, 9-24, 

9-29,9-30 
setting line information in • 9-29 
setting node information in • 9-22 

Internet address ·10-6,10-7 
VMS network node· 9-9 

6-lndex 

Data buffers 
mapping • 0-20 
unmapping • 0-24 

Data flow 
interprocess, Internet· 10-3 
message 

controlling • 5-17, 5-27 
controlling with circuits • 5-22 
controlling with unconnected ports • 5-21 

Datagram fragments • 10-23 
Datagram protocol type • 10-16 
Datagrams· 5-10,5-16 

ARP ·10-43 
characteristics of • 5-10, 9-5 
fragmentation of • 10-5 
ICMP ·10-43 
in DECnet network applications - 9-5 
Ip· 10-5, 10-43 
maximum size of • 9-5, 10-23 
multicasting to LAN nodes· 9-17 
sending to remote ports • 9-5 
trailer • 1 0-43 
UDP ·10-6 

Datagram Service 

See Ethernet/IEEE 802 Datagram Service 
Datagram sockets -10-16 
Datalink circuits - 9-9, 9-16 
Datalink drivers - 9-3 

as Internet layer • 10-4 
building into VAXELN systems • 8-2, 10-23 
clOSing connections to - 9-16 
establishing connections with • 9-16 
interface with Network Service· 9-1 
table of • 8-2 

Data path, buffered 
allocating· 6-11 
freeing· 6-12 

Data sharing • 5-1 
See also Communication; Synchronization 
interjob • 5-28 to 5-46 
interprocess· 5-1 to 5-9 

Data structures, realtime· 2-1 
Data transfers 

using DDA disk interface· 14-7 to 14-24 
using DDA serial-line interface • 14-48 
using sockets for • 10-66 to 10-75 

Data types 



Data types (Cont.) 

AREA_LOCK_VARIABLE· 2-16,5-40 
MUTEX· 2-17 
system· 2-2 

DCL commands 
SET HOST • 9-49 
SHOW NETWORK ·9-45, 9-46, 9-47 

DDA (direct device access) • 9-3 
for disk devices· 14-7 to 14-24 

reading and writing data with • 14-9 
reading data from mounted disks with • 

14-15 to 14-20 
reading data from unmounted disks with • 

14-12 to 14-14 
transferring data to system regions with • 

14-20 to 14-24 
for serial-line devices • 14-39 to 14-62 

reading and writing data with· 14-48 
DDA port 

connecting to for disk read and write DDA 
operations • 14-8 

connecting to for LAT operations • 11-9 
connecting to for serial-line DDA operations· 

14-41 
for LAT port· 11-8, 11-35 

DDCMP communication • 14-36 
DDDRIVER disk driver· 14-2 
Deadlock prevention • 4-4 
DEALLOCATE_STACK procedure • 3-28 
Debugger· 1-7 

creating jobs with • 3-3 
including in KA800 systems· 3-32 
loading jobs with • 3-3 

Debugger commands 
CREATE JOB • 3-3 

activating Down-Line Load Service with· 
9-18 

LOAD PROGRAM· 3-3 
DECLARE_EXIT _HANDLER procedure • 3-6 
DECnet addresses· 8-11 . 

in down-line load data base • 9-21 
name server, display 0 9-6 

DECnet networks 0 ~1' 

See also DECnet nodes; DECnet software; 
Network Service 

circuit connections in 09-47 
expedited messages for use in • 5-15 
node identification in 0 9-45 

DECnet Network Service 
See Network Service 

DECnet nodes 
addresses of, initializing at runtime· 9-13 
identifiers for 0 9-22 
modifying state of 0 9-11 
multicasting datagrams to 09-17 
remote, connecting to· 9-49 
specifying· 9-45 
stopping and starting DECnet software on· 9-14 
VAXELN, managing from VMS systems 0 9-9 

DECnet object numbers • 9-49 
DECnet software 

connection requests, stopping 0 9-14 
end-node routing announcement messages, 

stopping • 9-14 
periodic network timer, stopping· 9-14 
shutting down 0 9-14 
starting for first time 09-12 
stopping 0 9-12 
stopping and starting • 9-11, 9-14 
switching between Ethernet controllers • 9-16 
universal name service operations, stopping • 

9-14 
DECwindows software 

message files 07-17,7-23 
runtime libraries· 1-17 
runtime library message files· 7-16 
server 01-6 
server image 0 1-17 
support· 1-17 
terminal emulators 01-17 
user-environment components 0 1-7 
Window Manager • 1-17 

Dedicated applications 01-1 
Dedicated LAT host services 

See LAT (local area transport) 
Dedicated LAT port· 11-7, 11-34 

See also LAT (local area transport) 
DELETE_FILE procedure· 13-12 
DELETE_MUTEX procedure 0 4-5 

as mutex operation 0 2-18 
deleting mutexes with, 4-15 

DELETE procedure • 4-5, 5-29 
as AREA object operation • 2-6 
as DEVICE object operation 0 2-7 
as EVENT object operation· 2-8 

Index-7 



DELETE procedure (Cont.) 

as MESSAGE object operation' 2-9 
as NAM E object operation • 2-10 
as PORT object operation' 2-12 
as PROCESS object operation' 2-13 
as SEMAPHORE object operation • 2-14 
deleting AREA objects with • 5-46 
deleting DEVICE objects with • 6-5 
deleting EVENT objects with' 4-18 
deleting kernel objects with • 2-2 
deleting MESSAGE objects with, 5-26 
deleting NAME objects with· 5-13,5-26 
deleting PORT objects with • 5-12, 5-26 
deleting PROCESS objects with· 3-16 
deleting SEMAPHORE objects with, 4-14 
deleting universal port names with • 9-5 
terminating jobs with • 3-4 
terminating processes with, 3-5 

Destination authorization • 12-5, 12-18 
Destination Internet addresses 

extracting from routing table entries • 10-37 
in Internet routing algorithm • 10-22 

Device communication region • 2-6, 6-2 
synchronizing access to • 6-6 

Device Description Menu • 8-2 
Device drivers • 1-6, 6-1, 14-1 

allocating buffered data paths for • 6-11 
allocating map registers for • 6-10 
controlling DMA devices with • 6-10 
creating DEVICE objects for • 6-3 
File Service interface for· 13-19 
freeing buffered data paths for • 6-11 
freeing map registers for • 6-10 
LAT· 11-3 
mapping memory buffers for • 6-12 
mass storage • 14-1 to 14-27 
parallel 1/0 support for· 14-73 
printer' 14-29 to 14-32 
reading and writing data with • 6-9 
realtime ·14-128 to 14-152 
serial-line ·14-32 to 14-73 
setting priorities for· 6-7 
setting processor eligibility in' 6-8 
synchronizing access to communication region 

in· 6-6 
tape· 14-27 to 14-29 
unmapping memory buffers for· 6-12 
Virtual-memory • 14-24 

8-lndex 

Device drivers (Cont.) 

waiting on ISR in • 6-5 
writing • 6-1 

Device handling· 6-1 
Device interrupts· 6-2, 13-25 

disabling· 6-7,6-8 
enabling • 6-8 
handling • 6-5 
waiting for an ISR to service' 6-5 

Device locks, SCSI· 14-119 
Device markers, SCSI· 14-113, 14-120 
DEVICE objects • 2-6, 6-2 

creating • 6-3 
definition of • 2-4 
deleting • 6-5 
operations on • 2-6 
satisfying a wait on' 4-3 
signaling • 6-5 
waiting for • 6-5 

Device register routines • 6-9 
Device registers • 6-9 

using for interprocess data sharing • 5-4 
Devices 

disk· 14-1 
handling interrupts for· 6-1 
interrupt priority of· 6-7 
LAT application' 11-2 

accessing • 11-36 
associating with application LAT ports • 

11-41 
environment of (figure) • 11-37 
example ·11-38 to 11-40 

printer • 14-29 
realtime • 14-128 
SCSI· 14-73 
tape· 14-27 
terminal • 14-32 

DEVICE values • 2-6 
DIDRIVER disk driver· 14-2 
Direct device access (DDA) • 9-3 

See DDA (direct device access) 
DIRECTORY_CLOSE procedure· 13-13 
DIRECTORY_LIST procedure '13-13 
DIRECTORY_OPEN procedure '13-13 
DISABLE-ASYNCH_EXCEPTION procedure • 7-12 
DISABLE_INTERRUPT procedure • 6-7 
DISABLE_SWITCH procedure' 3-11,3-16 



DISCONNECT_CIRCUIT procedure 
switching DECnet software between controllers 

with· 9-16 
DISCONNECT_CIRCUIT procedure 

as PORT object operation· 2-12 
disconnecting circuits with • 5-19, 5-26 
disconnecting network node connections with· 

9-3 
disconnecting VMS connections with· 9-48 
terminating DDCMP communication with • 14-38 

Disk class driver, SCSI • 14-73, 14-76 
Disk data, transferring to system regions· 14-20 to 

14-24 
Disk devices • 14-3 

local, reading data from· 14-7, 14-9 
local, writing data to· 14-7, 14-9 

Disk drivers • 14-1 
as interface to File Service· 14-6 
DDA interface for -14-7 to 14-24 

reading and writing data with • 14-9 
reading data from mounted disks with -

14-15 to 14-20 
reading data from unmounted disks with • 

14-12 to 14-14 
transferring data to system regions with • 

14-20 to 14-24 
disk specifications for - 14-3 
features of • 14-6 
power-failure recovery of· 14-7 

Disk File Service - 1-16, 13-1 
using to interface with disk drivers • 13-19 
utility procedures provided by· 13-15 

Disk utility procedures - 13-15 to 13-17 
ELN$DISMOUNT_VOLUME ·13-16 
ELN$INIT_VOLUME -12-20,13-16 
ELN$MOUNT_VOLUME-13-4,13-17 

Disk volumes 
dismounting· 13-16 
initializing· 13-16 
mounting· 13-17 

DISMOUNT_TAPE_VOLUME procedure ·13-18 
DISMOUNT_VOLUME procedure - 13-16 
Dispatch ports - 8-13,8-15 

creating • 8-34, 8-35 
disconnecting - 8-36 
establishing • 8-34, 8-36 
waiting on • 8-36 

Display Utility • 1-7 
Distributed applications, universal port names for • 

9-6 
DLV device driver utility procedures· 14-135 
DLV_INITIALIZE procedure - 14-136 
DLVJ1 device· 14-128, 14-134 
DLV_READ_BLOCK procedure -14-136 
DLV_READ_STRING procedure ·14-136 
DLV_WRITE_STRING procedure· 14-136 
DMA (direct memory access) devices • 6-10, 14-129 

DRB32· 14-136 
DR03B· 14-140 
DRV11-W· 14-144 

DMA device-handling procedures· 6-10 
ELN$LOAD_UNIBUS_MAP • 6-10 
ELN$UNIBUS_MAP • 6-12 
ELN$UNIBUS_UNMAp· 6-13 
KER$ALLOCATE_MAP· 6-10 
KER$ALLOCATE_PATH - 6-11 
KER$FREE_MAP· 6-11 
KER$FREE_PATH • 6-12 

DMA parallel-line interface 
DRB32· 14-136 
DR03B - 14-140 
DRV11-W· 14-144 

Down-line load data base - 9-18 
clearing node information from • 9-22, 9-29 
combining entries in • 9-24 
line characteristics· 9-28 
managing and monitoring line entries in· 9-28 

example of • 9-31 to 9-34 , 
managing and monitoring' node entries in • 9-21 

example of • 9-24 to ~28 
node characteristics· 9-21 
overriding information in • 9-38, 9-41 
returning node information from - 9-22, ~24, 

~29,~30 

script file • 9-18 
setting line information in • ~29 
setting node information in· 9-22 

Down-line loading· ~18, 9-40 to 9-44 
enabling • 9-44 
example of • 9-42 

Down-line load procedures • ~ 19 
combining data base entries with • 9-24 
connecting to control port for· 9-20 
ELN$DLL_CLEAR_LlNE· 9-19 

Index-9 



Down-line load procedures 
ELN$DLL_CLEAR_LlNE (Cont.) 

clearing data base line entries with • 9--29 
ELN$DLL_CLEAR_NODE 0 9--19 

clearing data base node entries with 0 9--22 
ELN$DLL_GET_LlNE 09--19 

getting data base line information with 0 
9-29,9--30 

ELN$DLL_GET_NODE 0 9--19 
getting data base node information with 0 

9-22,9--24 
ELN$DLL_LOAD 0 9--19 

down-line loading with 0 9--41 
ELN$DLL_SET_LlNE 0 9--19 

setting data base line entries with 0 9--29 
ELN$DLL_SET_NODE 0 9--19 

setting data base node entries with 0 9--22 
ELN$DLL_TRIGGER • 9--19 

trigger booting with • 9--36, 9--37 
mask values for 0 9--23 
modules for using 0 9--19 

Down-line load requests 0 9--40 
figure of 09--40 
overriding with trigger request 0 9--41 

Down-Line Load Service 0 9-8, 9--18 to 9-44 
See also Down-line load procedures 
application-initiated load requests· 9--35 
building into VAXELN systems 09--18 
control port 0 9--20 
data base script file for 0 9--18 
data bases for· 9--18 
down-line loading with • 9--40 to 9--44 

example of 0 9--42 
establishing circuits for 0 9--20 
managing and monitoring line entries with • 9--28 

example of 0 9--31 to 9--34 
managing and monitoring node entries with 0 9--21 

example of 0 9--24 to 9--28 
managing target-initiated down-line load requests 

• 9--35 
trigger booting with· 9--36 to 9--40 

example of • 9--38 
DQDRIVER disk driver ·14-2 
DRB32 device 014-129, 14-136 
DRB device driver utility procedures 014-138 
DRB_FINISHED_TRANSFER procedure 014-138 
DRB_INITIALIZE procedure ·14-138 

10-Index 

DRB_QUEUE_READ procedure 014-138 
DRB_QUEUE_WRITE procedure 0 14-139 
DRB_READ_CTRL procedure 014-139 
DRB_WRITE_CTRL procedure· 14-139 
Drive context pointer 0 13-20 
Drivers 

See Device drivers 
Driver utility functions 014-148 to 14-150 
DRQ3B device 014-129, 14-140 
DRQ3B device driver utility procedures 014-141 
DRQ3B_INITIALIZE procedure 0 14-141 
DRQ3B_QUEUE_READ procedure 014-141 
DRQ3B_QUEUE_WRITE procedure 014-141 
DRQ3B_READ_FUNCTION procedure 014-141 
DRQ3B_TRANSFER_DONE_READ procedure· 

14-141 
DRQ3B_TRANSFER_DONE_WRITE procedure 0 

14-141 
DRQ3B_WRITE_FUNCTION procedure· 14-141 
DRV device driver utility procedures· 14-143 
DRV_DMA device driver utility procedures· 14-144 
DRV _DMA_INITIALIZE procedure 0 14-145 
DRV_DMA_QUEUE_READ procedure 014-145 
DRV_DMA_QUEUE_WRITE procedure 0 14-145 
DRV_DMA_READ_STATUS procedure 014-145 
DRV _DMA_ TRANS FER_DON E procedure 0 14-145 
DRV_DMA_WRITE_FUNCTION procedure 014-145 
DRV_INITIALIZE procedure 014-143 
DRV11-J device· 14-129, 14-142 
DRV_READ procedure 014-143 
DRV11-W device 014-129, 14-144 
DRV_WRITE procedure 014-143 
DUDRIVER disk driver 014-2 
DVSDRIVER disk driver • 14-2 
Dynamic memory management 0 3-26 
Dynamic program loader 0 3-13 

E 
ECL commands 

EXECUTE 0 3-3 
activating Down-Line Load Service with· 

9--18 
LOAD/PROGRAM 03-3 
RUN 03-3 

activating Down-Line Load Service with 0 
9--18 



ECL commands (Cont.) 

SET HOST • 9-49 
SHOW DEVICES • 9-29 
SHOW NAME_SERVER • 9-6 

ECL utility· 1-7 
as LAT host service· 11-2 
displaying current name server with • 9-6 

EDISPLAY utility· 1-7 
ELN$ADQ_INITIALIZE procedure· 14-131 
ELN$ADQ_QUEUE_READ procedure ·14-131 
ELN$ADQ_START procedure· 14-131 
ELN$ADQ_TRANSFER_DONE procedure· 14-131 
ELN$ADV_INITIALIZE procedure ·14-134 
ELN$ADV _QUEUE_READ procedure • 14-134 
ELN$ADV_ TRANSFER_DONE procedure· 14-134 
ELN$ALLOCATE_STACK procedure • 3-28 
ELN$AUTH_ADD_USER procedure ·12-8, 12-9 
ELN$AUTH_MODIFY _USER procedure· 12-8, 

12-11 
ELN$AUTH_REMOVE_USER procedure ·12-8, 

12-13 
ELN$AUTH_SHOW_USER procedure • 12-8, 12-14 
ELN$AXV_INITIALIZE procedure ·14-132 
ELN$AXV_READ procedure ·14-133 
ELN$AXV_WRITE procedure· 14-133 
ELN$BLNODE_MASK procedure· 6-13 
ELN$BLSTOP procedure· 6-14 
ELN$CANCEL_EXIT _HANDLER procedure • 3-6 
ELN$COPY _FILE procedure • 13-11 
ELN$CREATE_DIRECTORY procedure· 13-12 
ELN$CREATE_MUTEX procedure • 4-4 

as mutex operation· 2-18 
creating mutexes with • 4-14 

ELN$DEALLOCATE_STACK procedure· 3-28 
ELN$DECLARE_EXIT _HAN DLER procedure • 3-6 
ELN$DELETE_FILE procedure· 13-12 
ELN$DELETE_MUTEX procedure • 4-5 

as mutex operation • 2-18 
deleting mutexes with • 4-15 

ELN$DIRECTORY _CLOSE procedure • 13-13 
ELN$DIRECTORY_LlST procedure ·13-13 
ELN$DIRECTORY_OPEN procedure· 13-13 
ELN$DISK_READ procedure ·14-7 

reading data from local disks with • 14-9 
ELN$DISK_WRITE procedure ·14-7 

writing data to local disks with • 14-9 
ELN$DISMOUNT _ TAPE_VOLUME procedure· 

13-18 

ELN$DISMOUNT_VOLUME procedure· 13-16 
ELN$DLL_CLEAR_LlNE procedure· 9-19 

clearing data base line entries with • 9-29 
ELN$DLL_CLEAR_NODE procedure· 9-19 

clearing data base node entries with • 9-22 
ELN$DLL_GET _LINE procedure • 9-19 

getting data base line information with· 9-29, 
9-30 

ELN$DLL_GET_NODE procedure· 9-19 
getting data base node information with· 9-22, 

9-24 
ELN$DLL_LOAD procedure· 9-19 

down-line loading with • 9-41 
ELN$DLL_SET _LINE procedure· 9-19 

setting data base line entries with • 9-29 
ELN$DLL_SET _NODE procedure • 9-19 

setting data base node entries with • 9-22 
ELN$DLL_ TRIGG ER procedure • 9-19 

trigger booting with • 9-36, 9-37 
ELN$DLV _INITIALIZE procedure· 14-136 
ELN$DLV_READ_BLOCK procedure ·14-136 
ELN$DLV _READ_STRING procedure • 14-136 
ELN$DLV_WRITE_STRING procedure· 14-136 
ELN$DRB_FINISHED_TRANSFER procedure· 

14-138 
ELN$DRB_INITIALIZE procedure· 14-138 
ELN$DRB_QUEUE_READ procedure ·14-138 
ELN$DRB_QUEUE_WRITE procedure· 14-139 
ELN$DRB_READ_CTRL procedure· 14-139 
ELN$DRB_WRITE_CTRL procedure· 14-139 
ELN$DRQ3B_INITIALIZE procedure· 14-141 
ELN$DRQ3B_QUEUE_READ procedure ·14-141 
ELN$DRQ3B_QUEUE_WRITE procedure ·14-141 
ELN$DRQ3B_READ_FUNCTION procedure ·14-141 
ELN$DRQ3B_ TRANSFER_DONE_READ procedure 

• 14-141 
ELN$DRQ3B_ TRANSFER_DONE_WRITE procedure 

·14-141 
ELN$DRQ3B_WRITE_FUNCTION procedure • 

14-141 
ELN$DRV_DMA_INITIALIZE procedure· 14-145 
ELN$DRV_DMA_QUEUE_READ procedure· 14-145 
ELN$DRV _DMA_QUEUE_WRITE procedure· 

14-145 
ELN$DRV_DMA_READ_STATUS procedure· 

14-145 

Index-11 



ELN$DRV _DMA_ TRANSFER_DONE procedure • 
14-145 

ELN$DRV_DMA_WRITE_FUNCTION procedure· 
14-145 

ELN$DRV_INITIALIZE procedure ·14-143 
ELN$DRV_READ procedure - 14-143 
ELN$DRV_WRITE procedure - 14-143 
ELN$FILE_INITIALIZE function - 13-19, 13-20 
ELN$FILE_SERVICE procedure - 13-19 
ELN$GET_STATUS_TEXT procedure - 7-15,7-21 
ELN$GP _AUXILIARY_COMMAND function -14-148 
ELN$GP _CLEAR_EVENT function - 14-148 
ELN$GP _CONFIGURE function -14-148 
ELN$GP _DEFINE_PATH function -14-148 
ELN$GP _GET_CONTROL function -14-148 
ELN$GP _GOTO_STANDBY function - 14-148 
ELN$GP _INITIALIZE function· 14-148 
ELN$GP _LOAD_PARALLEL_POLL function -14-148 
ELN$GP _PARALLEL_POLL_CONFIG function-

14-150 
ELN$GP _PARALLEL_POLL function -14-150 
ELN$GP _PASS_CONTROL function - 14-150 
ELN$GP _RECEIVE_CONTROL function - 14-150 
ELN$GP _REQUEST_SERVICE function -14-150 
ELN$GP _SEND_COMMAND function -14-150 
ELN$GP _SENSE_MODE function - 14-150 
ELN$GP _SERIAL_POLL function -14-150 
ELN$GP _SET_EVENT function - 14-150 
ELN$GP _TRANSFER function -14-150 
ELN$GP _UNIT_INIT function - 14-150 
ELN$INET_CHECK_ROUTE procedure - 10-31 

checking status of routing table entries with-
10-34 

ELN$INET _DELETE_ARP _ENTRY procedure-
10-25 

deleting ARP cache entries with - 1 0-26 
ELN$INET _DELETE_ROUTE procedure - 10-31 

deleting routing table entries with - 10-31 
ELN$INET_FIND_ARP _ENTRY procedure - 10-25 

retrieving Ethernet addresses with - 1 0-27 
ELN$INET_SET-ARP _ENTRY procedure -10-25 

adding entries to ARP cache with - 1 0-26 
ELN$INET_SET_INTERFACE procedure -10-40 

setting network interfaces with - 1 ~O 
ELN$INET _SET _ROUTE procedure - 10-31 

adding entries to routing table with - 10-31 

12-lndex 

ELN$INET _SHOW_ARP _ENTRIES procedure-
10-25 

retrieving ARP entries with - 10-28 
ELN$INET_SHOW_CONNECTIONS procedure 

retrieving TCP connection data with - 1 ~8 
ELN$INET_SHOW_INTERFACE procedure -1~0 

retrieving network interface characteristics with -
10-42 

ELN$INET_SHOW_IP _STATISTICS procedure-
10-44 

retrieving IP statistics with - 10-46 
ELN$INET_SHOW_ROUTES procedure -10-31 

retrieving routing table entries with • 10-37 
ELN$INET _SHOW_ TCP _STATISTICS procedure -

10-44 
retrieving TCP statistics with - 1 ~6 

ELN$INET_SHOW_UDP _STATISTICS procedure-
10-44 

retrieving IP statistics with - 10-46 
ELN$INITIALlZE_AREA_LOCK procedure - 5-29 

as area lock variable operation - 2-17 
initializing area lock variables with - 5-40 

ELN$INIT _ TAPE_VOLUME procedure - 13-18 
ELN$INIT_VOLUME procedure -12-20,13-16 
ELN$KWV_INITIALIZE procedure -14-151 
ELN$KWV_READ procedure - 14-151 
ELN$KWV_WRITE procedure-14-151 
ELN$LAT_CLEAR_COUNTERS procedure -11-6 

initializing LAT counters with - 11-28 
ELN$LAT_CONNECT_PORT procedure-11-11 

connecting LAT port to device port with - 11-42 
ELN$LAT_CREATE_PORT procedure -11-6 

creating application LAT ports with - 11-40 
creating dedicated LAT ports with - 11-34 
creating LAT ports with - 11-8 

ELN$LAT _CREATE_SERVICE procedure - 11-6 
creating services with - 11-17, 11-34 

ELN$LAT _DELETE_PORT procedure - 11-6 
ELN$LAT_DELETE_SERVICE procedure-11-6 

deleting services with - 11-17 
ELN$LAT_DISCONNECT_PORT procedure-11-11 

disconnecting LAT connection with - 11-36, 11-42 
ELN$LAT_MAP _PORT procedure-11-11 

associating application LAT port with - 11-41 
mapping dedicated LAT port with - 11-34 

ELN$LAT_SET_NODE procedure - 11-6 
setting service node characteristics with· 11-14 



ELN$LAT _SET _NODE procedure (Cont.) 

specifying shut-down message with • 11-22 
ELN$LAT_SET_PORT procedure· 11-6 

associating application LAT port with· 11-41 
setting dedicated LAT port with· 11-34 

ELN$LAT_SET _SERVICE procedure· 11-6 
changing service characteristics with· 11-20 

ELN$LAT_SHOW_CHAR procedure ·11-6 
retrieving service node characteristics with • 11-13 

ELN$LAT_SHOW_COUNTERS procedure· 11-6 
retrieving LAT counters with ·11-28 

ELN$LAT_SHOW_PORT_MAPPING procedure· 
11-11 

ELN$LAT_SHOW_PORT procedure ·11-6 
retrieving LAT port characteristics with • 11-23 

ELN$LAT_SHOW_SERVERS procedure· 11-7 
retrieving terminal server characteristics with • 

11-26 
ELN$LAT_START_NODE procedure ·11-7 

activating LAT protocol with ·11-21, 11-35, 11-41 
ELN$LAT_STOP _NODE procedure ·11-7 

shutting down LAT protocol with • 11-22 
ELN$LAT _WAIT _FOR_CONN ECTION procedure· 

11-11 
requesting LAT connection notification with • 

11-35 
ELN$LOAD_KA800_PROCESSOR procedure· 3-32 
ELN$LOAD_PROGRAM procedure· 3-13 

loading program images with • 3-3 
ELN$LOAD_UNIBUS_MAP procedure· 6-10 
ELN$LOCK_AREA procedure • 5-29 

as area lock variable operation • 2-17 
locking areas with • 5-40 

ELN$LOCK_MUTEX procedure • 4-5 
as mutex operation • 2-18 
locking mutexes with· 4-14 

ELN$MOUNT_TAPE_VOLUME procedure· 13-4, 
13-18 

ELN$MOUNT_VOLUME procedure· 13-4, 13-17 
ELN$NETMAN_START_NETWORK procedure· 9-11 

initializing node addresses with· 9-13 
stopping and starting DECnet software with· 9-14 
switching DECnet software between controllers 

with· 9-16 
ELN$NETMAN_STOP _NETWORK procedure· 9-11 

stopping and starting DECnet software with· 9-14 
switching DECnet software between controllers 

with· 9-16 

ELN$NLALLOCATE_BUFFER procedure· 8-6,8-34 
allocating message buffers with • 8-20 

ELN$NLCONNECT procedure • 8-0, 8-34, 8-36 
connecting Ethernet/IEEE 802 protocols with· 

8-12 
ELN$NLDISCONNECT procedure • 8-6, 8-35 

disconnecting Ethernet/IEEE 802 protocols with· 
8-13 

ELN$NLGET _ATTRIBUTES procedure· 8-0 
retrieving Ethernet controller attributes with • 8-10 

ELN$NLGET _CONFIGURATION procedure· 8-6 
getting line names with • 9-29 
retrieving CSMAlCD LAN configuration with· 8-7 

ELN$NLRECEIVE procedure • 8-6, 8-36 
receiving messages with • 8-25 

ELN$NLTRANSMIT procedure· 8-6,8-35 
transmitting messages with • 8-21 

ELN$NLTRANSMIT_STATUS procedure· 8-6,8-35 
retrieving transmitted messages with • 8-23 

ELN$PHYSICAL_ADDRESS function· 6-13 
ELN$P ROTECT _FILE procedure • 13-14 
ELN$RENAME_FILE procedure ·13-15 
ELN$SCSLCONNECT_DEVICE procedure ·14-77 

connecting to SCSI devices with • 14-83 
ELN$SCSLDISCONNECT _DEVICE procedure· 

14-77 
disconnecting SCSI device processes with· 

14-84 
ELN$SCSLFREE_CONFIG_DATA procedure • 

14-77 
freeing configuration data resources with • 14-82 

ELN$SCSLFREE_CONTROL_PORT procedure· 
14-77 

freeing source port resources with • 14-79 
ELN$SCSLGET_CONFIG_DATA procedure· 14-77 

requesting SCSI bus configuration data with • 
14-80 

ELN$SCSLGET _CONTROL_PORTS procedure· 
14-77 

connecting to generic class driver with ·14-78 
ELN$SCSUSSUE_COMMAND procedure· 14-77 

issuing SCSI commands with ·14-85 
ELN$SCSLMAP _MESSAGE_BUFFER procedure • 

14-77 
creating SCSI command message buffer with • 

14-85 
ELN$SCSLUNMAP _MESSAGE_BUFFER procedure 

·14-77 

Index-13 



ELN$SCSLUNMAP _MESSAGE_BUFFER procedure 
(Cont.) 

deleting SCSI command message buffer with • 
14-89 

ELN$SET_DEFAULT_FILESPEC procedure· 13-15 
ELN$TAPE_INITIALIZE function· 13-19, 13-20 
ELN$TAPE_SERVICE procedure ·13-20 
ELN$ITY_ASSERT_BREAK procedure ·14-40 

setting serial lines to spacing state with • 14-57 
ELN$TTY _CANCEL_MODEM_EVENTS procedure • 

14-40 
canceling requests for modem events with ·14~9 

ELN$ITY_CANCEL_OOB_CHARACTERS 
procedure· 14-40 

canceling out-of-band character requests with· 
14-59 

ELN$ITY _GET _CHARACTERISTICS procedure· 
14-40 

getting terminal characteristics with • 11-13, 11-43 
retrieving modem characteristics with • 14~8 
retrieving serial-line characteristics with· 14-47 

ELN$ITY _READ procedure· 14-40 
reading serial-line data with • 14-48 

ELN$ITY _RECEIVE_MODEM_EVENTS procedure • 
14-40 

receiving modem events with· 14~9 
ELN$ITY _RECEIVE_OOB_CHARACTER procedure 

• 14-40 
receiving out-of-band characters with • 14-59 

ELN$ITY _SET_CHARACTERISTICS procedure· 
14-40 

setting modem characteristics with • 14-68 
setting serial-line characteristics with· 14-47 
setting terminal characteristics with • 11-43 

ELN$ITY _SIGNAL_MODEM_EVENTS procedure • 
14-40 

signaling modem events with ·14~9 
ELN$ITY _SIGNAL_ OOB_ CHARACTERS procedure 

·14-40 
signaling receipt of out-of-band characters with • 

14-59 
ELN$ITY_WRITE procedure ·14-40 

writing serial-line data with· 14-48 
ELN$UNIBUS_MAP procedure • 6-12 
ELN$UNIBUS_UNMAP procedure· 6-13 
ELN$UNLOAD _PROGRAM procedure· 3-13 
ELN$UNLOCK_AREA procedure • ~29 

as area lock variable operation • 2-17 

14-lndex 

ELN$UNLOCK_AREA procedure (Cont.) 

unlocking areas with· 5-40 
ELN$UNLOCK_MUTEX procedure • 4-5 

as mutex operation • 2-18 
unlocking mutexes with • 4-15 

Emulation routines, VMS 
See VMS emulation routines 

ENABLE_ASYNCH_EXCEPTION procedure. 7-12 
ENABLE_INTERRUPT procedure • 6-7 
ENABLE_SWITCH procedure· 3-11,3-17 
End-node routing • 9-2 

announcement messages, stopping· 9-14 
ENTER_KERNEL_CONTEXT procedure • 6-14 
Error checking· 7-19 
Error counters 

See LAT (local area transport) 
Error Logging Service ·1-6 
Error messages, Internet protocol for returning • 10-5 
Errors 

checking for and handling· 7-14 
Internet, retrieving • 10-44 
network interface • 10-43 

Error status codes· 7-14 
Escape sequences ·14~4 

VT52-type ·14~6 
ESDRIVER datalink driver • 8-2 

system region size for· 8-3 
ETDRIVER datal ink driver • 8-2 
Ethernet/IEEE 802 Datagram Service· 1~, 8-1,8-4 

See also Network interface procedures 
setting up • 8-27 
when D ECnet operations stop • 9-12 

Ethernet/IEEE 802 Datalink Drivers 
See Datalink drivers 

Ethernet/IEEE 802 protocols 
connecting and disconnecting· 8-12 
padded • 8-19 
that multicasts datagrams to LAN nodes· 9-17 

Ethernet addresses· 8-11 
broad casted by name server· 9-7 
broadcasting ·10~, 10-7 
destination node • 9-4 
displaying name server • 9-6 
extracting from ARP cache • 10-28 
for network interfaces • 1 0-43 
mapping Internet addresses to • 10-26 
protocol for mapping Internet addresses to • 10-5 



Ethernet addresses (Cont.) 
retrieving from ARP cache • 10-27 
specified for down-line load operations • 9-40 
specified for trigger boot operations • 9-37 

Ethernet controllers 
See also Line names 
configuring for Internet Services • 10-23 
control ports for- 8-9,8-12 
data ports for • 8-9 
device names of • 8-9 
device types of • 8-8 
getting attributes of· 8-10, 8-33 
hardware address of • 8-12 
identifying with line names • 9-11 
Internet characteristics of, setting • 10-24 
physical address of· 8-11 
switching DECnet software between· 9-16 
using muttiple· 8-1 

Ethernet formatted frames • 8-15 
EVENT objects· 2-7,4-15,4-16 

See also Events 
creating • 4-16 
definition of • 2-4 
deleting • 4-18 
operations on • 2-7 
satisfying a wait on • 4-3 
using to synchronize access to areas· 5-33 
waiting on • 4-16 

Event response • 4-1 
Events· 4-15 to 4-18 

See also EVENT objects 
associated with AREA objects· 5-31 
example of· 4-17 
for controlling access to areas • 5-30 
synchronizing job execution with • 5-41 

EVENT values • 2-7 
Exception handlers • 7-5 

arguments for • 7-5 
continue operation of· 7-7 
example of· 7-9 
mechanism argument block in • 7~ 
resignal operation of • 7-7 
signal argument block in - 7~ 
unwind operation of - 7-8 

Exception handling· 7-1 
Exception-handling procedures· 7-12 
Exceptions • 7-4 

Exceptions (Cont.) 
asynchronous· 7-11 

disabling· 7-12 
enabling· 7-12 
raising process· 7-13 

job termination - 3-4 
kernel procedure failure· 7-11 
multiple concurrent· 7-11 
names of· A-1 
QUIT· 3-5 
raising· 3-19, 7-11,7-13 

EXECUTE command • 3--3 
activating Down-Line Load Service with· 9-18 

Exit handlers· 3-6 
EXIT procedure· 3-17 

as PROCESS object operation· 2-13 
terminating jobs with· 3-4 

Exit status, using· 4-10 
Exit utility procedures • 3-6 
Expedited messages· 5-15 
extern attribute • 5-2 
EZDRIVER datalink driver - 8-2 

F 
FAL (file access listener)· 13-9 
Fatal status codes· 7-14 
File access ·1-16 
File access listener (FAL) • 13-9 
File context variable· 13-19,13-20 
File 1/0· 13-1, 13-10 

See also 1/0 
Files 

message· 7-15 
table-7-15 to 7-17 

message source, example· 7-18 
File server • 13-1 
File Service • 1 ~ 

device specifications • 13-2, 13~ 
disk· 1-16 
disk volumes ·13-1,13-3 
file specifications • 13-5 
initialization routines ·13-19 
interface for device drivers - 13-19 
operations ·13-10 
security • 12-19 
tape -1-16 

Index-15 



File Service (Cont.) 

tape volumes • 13-1, 13-3 
volume names • 13-3 

File utility procedures· 13-11 to 13-15 
ELN$COPY_FILE - 13-11 
ELN$CREATE_DIRECTORY -13-12 
ELN$DELETE_FILE -13-12 
ELN$DIRECTORY_CLOSE -13-13 
ELN$DIRECTORY_LlST -13-13 
ELN$DIRECTORY_OPEN ·13-13 
ELN$PROTECT_FILE -13-14 
ELN$RENAME_FILE ·13-15 
ELN$SET_DEFAULT_FILESPEC - 13-15 

File variables, shared - 5-3 
Flow control, message - 5-17,5-27 

with circuits· 5-22 
with TCP • 10-8 
with unconnected ports • 5-21 

Formatted message frames • 8-15 
FORTRAN runtime library message files - 7":"'16,7-17 
Fragmentation 

by gateway • 1 0-23 
datagram • 1 0-23 

Frame depths • 7-6, 7-8 
Frame pointer' 7-1, 7-8 
FREE_MAP procedure' 6-11 
FREE_MEMORY procedure· 3-31 
FREE_PATH procedure • 6-12 
FREE_SYSTEM_REGION procedure • 3-31 
Functions 

accept· 10-55 
accepting connection requests with • 10-65 

bind ·10-55 
binding names to sockets with • 10-58 

close • 10-55 
closing sockets with • 10-76 

connect· 10-55 
initiating socket connections with • 10-62 

ELN$GP -.AUXILIARY_COMMAND '14-148 
ELN$GP _CLEAR_EVENT ·14-148 
ELN$GP _CONFIGURE' 14-148 
ELN$GP _DEFINE_PATH ·14-148 
ELN$GP _GET_CONTROL '14-148 
ELN$GP _GOTO_STANDBY - 14-148 
ELN$GP JNITIALIZE ·14-148 
ELN$GP _LOAD_PARALLEL_POLL· 14-148 
ELN$GP _PARALLEL_POLL - 14-150 
ELN$GP _PARALLEL_POLL_CONFIG'14-150 

16-lndex 

Functions (Cont.) 
ELN$GP _PASS_CONTROL· 14-150 
ELN$GP _RECEIVE_CONTROL' 14-150 
ELN$GP _REQUEST_SERVICE' 14-150 
ELN$GP _SEND_COMMAND' 14-150 
ELN$GP _SENSE_MODE' 14-150 
ELN$GP _SERIAL_POLL • 14-150 
ELN$GP _SET_EVENT • 14-150 
ELN$GP _TRANSFER ·14-150 
ELN$GP _UNIT_INIT ·14-150 
ELN$PHYSICAL_ADDRESS· 6-13 
getpeername • 10-91 

retrieving socket names with 0 10-91 
getsockname • 1 0-91 

retrieving socket names with 0 10-91 
getsockopt 0 10-91 

retrieving socket options with '10-93 
htonl • 10-53 
htons 0 1 0-53 
inet_addr • 10-54 
inet_lnaof' 10-54 
inet_makeaddr • 10-54 
inet_ netof • 1 0-54 
Inet_ network • 10-54 
Inet_ ntoa· 1 0-54 
listen • 1 0-55 

listening for connection requests with 0 10-64 
MFPR· 6-10 
ntohl - 10-53 
ntons - 1 0-53 
PORT$ALLOCATE_DEVICE ·14-116 

allocating SCSI device request packets with • 
14-122 

description of - D-3 
PORT$EXIT _HANDLER 0 0-7 
PORT$FREE_DEVICE 014-116 

deallocating SCS I device request packets 
with • 14-122 

description of • 0-1 0 
PORT$INITIALlZE_CONTROLLER ·14-116 

description of - 0-13 
initializing SCSI device controllers with • 

14-127 
PORT$ISSUE_COMMAND· 14-116 

description of - 0-16 
issuing SCSI commands with 014-125 

PORT$MAP _BUFFER 014-116 
description of • 0-20 



Functions 

G 

PORT$MAP _BUFFER (Cont.) 

mapping 110 request packet buffer with· 
14-123 

PORT$UNMAP _BUFFER ·14-116 
description of· 0-24 
unmapping 1/0 request packet buffer with· 

14-124 
read ·10-55 

receiving data from sockets with • 1 0-70 
READ_REGISTER • 5-4, 6-9 
recv ·10-55 

receiving data from sockets with • 10-70 
recvfrom • 1 0-55 

receiving data from sockets with· 10-71 
recvmsg • 10-55 

receiving data from sockets with· 10-71 
select • 10-55 

polling sockets for 110 activity with • 10-73 
send ·10-55 

sending data to sockets with ·10-67 
sendmsg • 10-55 

sending data to sockets with • 10-68 
sendto • 10-55 

sending data to sockets with • 10-68 
setsockopt· 10-91 

setting socket characteristics with • 1 0-92 
shutdown • 10-56 

shutting down sockets with • 10-75 
socket· 10-56 

creating sockets with • 1 0-57 
vax$get_sdc 

returning socket device descriptors with • 
10-60 

vax$socket control 
setting -;ocket characteristics with • 1 0-60 

vaxc$get_sdc· 10-56 
vaxc$socket_ control • 1 0-56 
write • 1 0-56 

sending data to sockets with • 1 0-66 

Gateway addresses 
extracting from routing table entries • 10-37 
in Internet routing algorithm • 10-22 

Gateway routes • 10-31 

Gateways 
default· 1 0-22 

setting • 1 0-24 
definition of· 10-1 

General runtime library message files· 7-16 
Generic class driver, SCSI • 14-73, 14-77 to 14-11 0 

See also SCSI generic class driver procedures 
connecting to ·14-78 
example • 14-91 to 14-11 0 

GET _JCB procedure • 3-17 
$GETMSG system service· 7-14,7-21 
getpeername function • 1 0-91 

retrieving socket names with • 10-91 
getsockname function 0 1 0-91 

retrieving socket names with 010-91 
getsockopt function· 10-91 

retrieving socket options with • 10-93 
GET _STATUS_TEXT procedure 07-21 
GET_TIME procedure· 4-5,4-8 
GET_USER procedure 0 3-18, 12-3, 12-16 
Global common • ~2 
Global data· ~1 
globaldef attribute· ~2 
globalref attribute 0 ~2 

GP AUXILIARY COMMAND function· 14-148 
GP -CLEAR EVENT function 014-148 
GP-CONFIGURE function· 14-148 
GP -DEFINE PATH function 014-148 
GP-GET CONTROL function ·14-148 
GP-GOTO STANDBY function 014-148 
GP-INITIALIZE function 0 14-148 
GP -LOAD PARALLEL POLL function· 14-148 
GP-PARALLEL POLL -CONFIG function 014-150 
GP - PARALLEL-POLL function • 14-150 
GP -PASS CONTROL function ·14-150 
GP -RECEIVE CONTROL function· 14-150 
GP -REQUEST SERVICE function • 14-150 
GP -SEND COMMAND function • 14-150 
GP -SENSE MODE function ·14-150 
GP - SERIAL- POLL function 0 14-150 
GP-SET EVENT function 014-150 
GP-TRANSFER function 014-150 
GP=UNIT_INIT function 014-150 
Groups 

See LAT (local area transport) 

Index-17 



H 
Hardware addresses 

Ethernet controller· 8-11, 8-12 
for trigger boot operations • 9-37 
in down-line load data base • 9-21 

Hardware requirements· 1-2 
Headers 

I P datagram • 10-5 
Heterogeneous network environments • 8-1 
Homogeneous network environments • 8-1 
Host adapter, SCSI· 14-74 
Host byte order· 10-53 

converting Internet addresses to • 10-54 
Host identifier, Internet address • 10-9 
Host routes • 10-31 
Hosts, Internet· 10-1 
Host services, LAT· 1-15, 1f-1 
Host system • 1-1 
Host-to-host Internet layer - 10-4, 10-6, 10-7 

identifier - 10-5 
htonl function - 10-53 
htons function - 10-53 

ICMP (Internet Control Message Protocol) 
datagrams· 10-43 
definition of - 10-5 
redirect messages • 10-34 

Identification strings 
service - 11-19 
service node-11-15 

IECIIEEE-488 instrument bus - 14-129, 14-146 
IEEE 802 Datagram Service 

See Ethernet/IEEE 802 Datagram Service 
IEEE 802 formatted frames - 8-16 
IEQ11-A device -14-129,14-146 
IEQ11-A device driver utility functions -14-148 
IEU11-A device -14-129,14-146 
IEU11-A device driver utility functions - 14-148 
Inactive LAT service node -11-17 

See also LAT (local area transport) 
INET_CHECK_ROUTE procedure ·10-31 

checking status of routing table entries with -
10-34 

18-lndex 

INET _DELETE_ARP _ENTRY procedure - 10-25 
deleting ARP cache entries with - 10-26 

INET _DELETE_ROUTE procedure· 10-31 
deleting routing table entries with - 10-31 

INET_FIND_ARP _ENTRY procedure -10-25 
retrieving Ethernet addresses with • 1 0-27 

INET _SET _ARP _ENTRY procedure - 10-25 
adding entries to ARP cache with - 10-26 

INET _SET _INTERFACE procedure· 10-40 
setting network interfaces with - 1 0-40 

INET_SET_ROUTE procedure -10-31 
adding entries to routing table with· 10-31 

INET _SHOW_ARP _ENTRIES procedure - 10-25 
retrieving ARP entries with - 10-28 

INET SHOW CONNECTIONS procedure 
retrieving TCP connection data with - 10-48 

INET_SHOW_INTERFACE procedure -10-40 
retrieving network interface characteristics with -

10-42 
IN ET_SHOW_I P _STATISTICS procedure -10-44 

retrieving IP statistics with - 10-46 
INET_SHOW_ROUTES procedure ·10-31 

retrieving routing table entries with • 10-37 
INET SHOW TCP STATISTICS procedure - 10-44 

retrieving TCP ~atistics with - 10-46 
INET SHOW UDP STATISTICS procedure - 10-44 

retrieving IP statistics with - 10-46 
inet_addr function· 10-54 
inet Inaof function - 1 0-54 
ine(makeaddr function • 10-54 
inet netof function - 1 0-54 
inet=network function • 10-54 
inet ntoa function • 1 0-54 
Info~mational status codes· 7-14 
INITIALIZATION_DONE procedure - 3-12, 3-18, 

13-19 
Initialization programs - 3-12,3-18 
INITIALlZE_AREA_LOCK procedure - 5-29 

as area lock variable operation • 2-17 
initializing area lock variables with - 5-40 

Initiator, SCSI bus - 14-74 
INIT_TAPE_VOLUME procedure -13-18 
INIT_VOLUME procedure-12-20, 13-16 
Input, terminating lines of terminal - 14-36 
INSERT_ENTRY procedure - 5-2 
Instrument bus interface· 14-146 
Interjob communication - 5-10 to 5-46 



Interjob communication (Cont.) 

through areas· &-28 to 5--46 
through message passing • &-10 to &-28 

Internet 
See also Internet addresses; Internet Services 
address manipulation functions • 10-54 
architecture· 10-3 
communication 

connection less • 10-6, 10-17 
connection-oriented· 10-7, 10-16 
datagram-based • 10-6 
domain ·10-15 
half-duplex socket • 10-75 
programming • 10-55 to 10-91 
stream-based • 10-7 

communication domain ·10-15 
datagrams, size of • 10-23 
defining characteristics of • 10-23 
definition of • 10-1 
layers 

figure of· 10-4 
host-to-host· 10-4, 10-6, 10-7 

identifier • 10-5 
Internet protocol • 10-4 

network interfaces 
See also Ethernet controllers 
information about· 1 0-43 
managing • 1 0-40 to 10-44 
retrieving characteristics of· 10-42 
setting • 1 0-40 

network masks • 1 0-12 
setting for Internet network interfaces· 10-24 

network packets • 1 0-5 
networks 

Class A· 10-10 
Class B· 10-10 
Class C· 10-11 
classes of· 1 0-9 
class number ranges for· 10-11 
default network masks for • 1 0-13 
network masks for Class A· 10-13 
network masks for Class B • 10-13 
network masks for Class C • 10-13 
when to use Class A • 1 0-11 
when to use Class B ·10-11 
when to use Class C ·10-12 

performance and error data • 10-44 
routes • 10-18 

Internet (Cont.) 

routing, types of ·10-31 
routing algorithm • 1 0-19 to 10-23 

broadcast addresses used in • 1 0-22 
destination addresses used in • 10-22 
gateway addresses used in • 10-22 

routing table • 1 0-19 
adding entries to • 10-31 
deleting entries from • 10-31 
managing· 10-31 to 10-39 

socket names· 10-16 
subnetworks of • 10-18 

Internet addresses 
as routes· 10-19 
broadcast· 10-9, 10-13 

examples of· 10-14 
broadcast masks for • 10-13 
classes defined by • 10-9 
converting to from network and local addresses • 

10-54 
converting to host byte order • 1 0-54 
converting to network byte order· 1 0-54 
converting to text string representation • 10-54 
data base of· 10-6, 10-7 
definition of· 10-9 
destination • 1 0-37 
extracting from ARP cache • 10-28 
for network interfaces • 1 0-43 
gateway • 1 0-37 
getting at start-up • 10-6, 1 0-7 
in IP datagrams ·10-5 
in socket names • 10-16 
local • 10-48 
manipulating • 10-54 
mapping· 10-5, 10-26 
network classes for· 10-9 
network masks for • 10-12 
notation for • 10-9 
protocol for mapping • 1 0-5 
remote • 10-48 
retrieving Ethernet address for· 10-27 
returning network portion of • 10-54 
returning subnetwork portion of· 10-54 
setting for network interfaces • 10-24, 10-40 

Internet Characteristics Menu • 10-23 
Internet Control Message Protocol (ICMP) 

See ICMP (Internet Control Message Protocol) 

Index-19 



Internet network control procedures 

See also Internet; Internet addresses; Internet 
Services 

ELN$INET_CHECK_ROUTE 010-31 
checking status of routing table entries with 0 

10-34 
ELN$INET DELETE ARP ENTRY 010-25 

deleti;:;g ARP c.rehe ~tries with 0 10-26 
ELN$INET_DELETE_ROUTE 010-31 

deleting routing table entries with 0 10-31 
ELN$INET_FIND_ARP _ENTRY 010-25 

retrieving Ethernet addresses with 0 1 0-27 
ELN$INET_SET_ARP _ENTRY 010-25 

adding entries to ARP cache with 010-26 
ELN$INET_SET_INTERFACE 010-40 

setting network interfaces with 0 10-40 
ELN$INET_SET_ROUTE 010-31 

adding entries to routing table with 0 10-31 
ELN$INET_SHOW_ARP _ENTRIES 010-25 

retrieving ARP entries with 0 10-28 
ELN$INET_SHOW_CONNECTIONS 

retrieving TCP connection data with 0 10-48 
ELN$INET_SHOW_INTERFACE 010-40 

retrieving network characteristics with 0 
10-42 

ELN$INET_SHOWJP _STATISTICS 010-44 
retrieving IP statistics with 010-46 

ELN$INET_SHOW_ROUTES 010-31 
retrieving routing table entries with 0 10-37 

ELN$INET_SHOW_TCP _STATISTICS 010-44 
retrieving TCP statistics with 010-46 

ELN$INET_SHOW_UDP _STATISTICS 010-44 
retrieving UDP statistics with 0 10-46 

Internet Network Description Menu 0 10-23 
Internet protocol (IP) 0 10-4 

See IP (Internet protocol) 
Internet protocols 

AR P (Address Resolution Protocol)· 1 0-5, 1 0-25 
BOOTP (Boot Protocol) 0 10-7 
ICMP (Internet Control Message Protocol) 0 10-5 
IP (Internet protocol)· 10-3, 10-4 

description of 0 1 0-5 
layers of 0 1 0-4 
RARP (Reverse Address Resolution Protocol) • 

10-6 
TCP (Transmission Control Protocol) 0 10-4 

characteristics of • 10-8 

20-Index 

Internet protocols 
TCP (Transmission Control Protocol) (Cont.) 

description of 0 10-7 
functions of • 1 0-7 

types of· 10-16 
datagram • 10-16 
raw· 10-16 
stream· 10-16 

UDP (User Datagram Protocol)· 10-4 
characteristics • 1 O~ 
description of· 10~ 

Internet Services 01-15,8-1,10-1 
See also Internet; Internet addresses 
concepts • 1 0-2 
configuring • 10-23 
configuring Ethernet controller for • 10-23 
controlling • 1 0-25 to 1 0-52 

by managing ARP cache • 10-25 to 10-30 
by managing Internet network interfaces • 

1 0-40 to 10-44 
by managing Internet routing table· 10-31 

to 10-39 
datagrams • 1 0-5 
features of • 10-1 
routing algorithm ·10-19 to 10-23 

broadcast addresses used in • 1 0-22 
destination addresses used in 0 10-22 
gateway addresses used in • 10-22 

routing table for·1 0-19 
sockets for • 1 0-15 

Interprocess communication • 5-1 to 5-9 
through data sharing • 5-1 to 5-4 
through queues· 5-4 to 5-9 

Interprocess data flow, Internet· 10-3 
Interprocess synchronization 

• 5-41 
Interrupt priorities • 6-7 
Interrupt priority level (IPL) 

See IPL (interrupt priority level) 
Interrupts 

See Device interrupts 
Interval time • 4-2 

waiting for an 0 4-6 
1/0 

between nodes· 9-3 
control functions • 1 o~o 
logical • 13-4 



1/0 (Cont.) 
using circuits for· 5-17 

IP (Internet protocol) • 10-3 
characteristics of • 1 0-5 
datagrams • 10-43 
description of· 1 0-5 
Internet layer· 10-4 
reliability of· 1 0-5 
returning statistics for • 10-45 

I PL (interrupt priority level) • 6-6 
lowering • 6-8 
raising • 6-7, 6-8 

ISR (interrupt service routine)· 2-6, 6-1 
associating device with • 6-3 
reading and writing data with • 6-9 
shared· 5-3 
signaling DEVICE object from • 6-5 

J 
JCB Gob control block), returning address of • 3-17 
Job eligibility mask, modifying • 3-19, 6-8 

See also Tightly coupled symmetric mUltiprocess
ing 

JOB_PORT procedure· 5-26 
as PORT object operation • 2-11 

Job ports • 2-10 
returning PORT object for· 5-26 
sending messages to· 5-14 

Job priorities· 3-9,6-7 
setting • 3-20 

Jobs· 1-8, 3-1 
activating • 3-3 
communication between • 5-10 to 5-46 

by passing messages • 5-1 0 to 5-28 
by sharing memory· 5-28 to 5-46 

configurations of • 3-2 
creating • 3-3 
priorities of • 3-9, 6-7 

setting • 3-20 
returning the JCB of· 3-17 
running in symmetric multiprocessing 

configurations • 6-8 
scheduling of • 3-9 
setting processor eligibility for· 3-19, 6-8 

See also Tightly coupled symmetric 
multiprocessing 

Jobs (Cont.) 

K 

synchronizing execution of • 5-31, 5-41 
termination of· 3-3 

KA800 processors 
loading VAXELN systems into memory of • 3-32 
sharing memory areas in • 5-30 

Keep-alive time 
setting • 1 0-24 
setting for sockets • 10-92 

Keep-alive timer, TCP· 10-49 
KER$RAISE_PROCESS_EXCEPTION asynchronous 

exception· 7-13 
KER$_DISCONNECT status value, checking for· 

9-16 
KER$ALLOCATE_MAP procedure· 6-10 
KER$ALLOCATE_PATH procedure • 6-11 
KER$ALLOCATE_SYSTEM_REGION procedure • 

3-30 
KER$ENTER_KERNEL_CONTEXT procedure • 6-14 
KER$FREE_MAP procedure· 6-11 
KER$FREE_PATH procedure· 6-12 
KER$FREE_SYSTEM_REGION procedure • 3-31 
KER$GET _JCB procedure • 3-17 
KER$GET _UPTIME procedure • 4-5, 4-8 
KER$GET_USER procedure· 3-18,12-3,12-16 
KER$LOCK_DEVICE procedure· 6-8 
KER$MEMORY_SIZE procedure· 3-31 
KER$NAME_OBJECT procedure· 3-18 

as NAME object operation· 2-10 
Kernel· 1-6, 1-14, 2-1 

See also Kernel procedures 
communication with Name Service • 9-6 
data structures· 2-1 
message-passing procedures· 9-3 
objects 

See Objects 
operations • 2-1 
optimized data structures· 2-15 to 2-18 
runtime message files • 7-16 
scheduler • 3-9 

Kernel mode, executing routines in· 6-14 
Kernel procedures 

ACCEPT_CIRCUIT 
accepting logical links with • 9-2 

Index-21 



Kernel procedures 
ACCEPT_CIRCUIT (Cont.) 

accepting messages from network nodes 
with· 9-3 

accepting VMS connections with • 9-48 
as PORT object operation • 2-12 
contrOlling message flow with· 5-17 
establishing circuits for authorization with • 

12-16 
establishing circuits with • 5-17 
waiting for circuit connection with • 5-23 

CLEAR_EVENT • 4-4, 5-28 
as EVENT object operation· 2-8 
clearing EVENT objects with· 4-17 

CONNECT_CIRCUIT ·12-5 
as PORT object operation· 2-12 
connecting to VMS with· 9-47 
connect to a port with • 5-24 
controlling message flow with • 5-17 
creating logical links with • 9-2 
establishing circuits for authorization with • 

12-16 
establishing circuits with • 5-17 
establishing network node connections with • 

9-3 
named ports used with • 5-14 
setting up DDCMP communication with· 

14-38 
specifying DECnet object numbers with • 

9-49 
CREATE_AREA • 4-4, 5-28 

as AREA object operation • 2-5 
creating AREA objects with· 5-30 
creating area semaphores with • 4-11 

CREATE_AREA_EVENT • 4-4, 5-28 
as area event operation • 2-5 
creating area events with • 4-16 
creating AREA objects with • 5-30 

CREATE_AREA_SEMAPHORE • 4-4, 5-29 
as area event operation • 2-5 
creating AREA objects with • 5-30 
creating area semaphores with· 4-11 

CREATE;..,.DEVICE 
as DEVICE object operation • 2-7 
creating DEVICE objects with· 6-3 
specifying a power-failure recovery routine 

with· 6-17 
CREATE_EVENT • 4-4 

22-lndex 

Kernel procedures 
CREATE_EVENT (Cont.) 

as EVENT object operation • 2-7 
creating EVENT objects with· 4-16 

CREATE_JOB • 3-15 
activating Down-Line Load Service with· 

9-18 
creating jobs with· 3-1, 3-3 

CREATE_MESSAGE 
as MESSAGE object operation· 2-8 
creating MESSAGE objects with· 5-11, 5-25 
setting up message communication with· 

5-14 
CREATE_NAME 

as NAME object operation· 2-10 
creating NAME objects with· 5-13,5-25 
creating universal port names with • 9-5 

CREATE_PORT 
as PORT object operation· 2-11 
creating PORT objects with • 5-12, 5-25 

CREATE_PROCESS • 3-15, 4-4 
as PROCESS object operation· 2-13 
creating processes with • 3-2 
using exit parameter with • 4-10 

CREATE_SEMAPHORE • 4-4 
as SEMAPHORE object operation· 2-14 
creating SEMAPHORE objects with • 4-11 

CURRENT_PROCESS· 3-16,4-5 
as PROCESS object operation· 2-13 

DELETE • 4-5, 5-29 
as AREA object operation· 2-6 
as DEVICE object operation • 2-7 
as EVENT object operation • 2-8 
as MESSAGE object operation • 2-9 
as NAME object operation • 2-10 
as PORT object operation • 2-12 
as PROCESS object operation. 2-13 
as SEMAPHORE object operation • 2-14 
deleting AREA objects with • 5-46 
deleting DEVICE objects with • 6-5 
deleting EVENT objects with· 4-18 
deleting MESSAGE objects with· 5-26 
deleting NAME objects with· 5-13, 5-26 
deleting PORT objects with· 5-12, 5-26 
deleting PROCESS objects with • 3-16 
deleting SEMAPHORE objects with· 4-14 
deleting universal port names with • 9-5 
terminating processes with • 3-5 



Kernel procedures (Cont.) 

DISABLE_ASYNCH_EXCEPTION • 7-12 
DISABLE_SWITCH· 3-11,3-16 
DISCONNECT_CIRCUIT 

as PORT object operation • 2-12 
disconnecting circuits with • 5-19, 5-26 
disconnecting network node connections 

with· 9-3 
disconnecting VMS connections with • 9-48 
switching DECnet software between 

controllers with • 9-16 
terminating DDCMP communication with • 

14-38 
ENABLE_ASYNCH_EXCEPTION • 7-12 
ENABLE_SWITCH· 3-11,3-17 
EXIT· 3-17 

as PROCESS object operation· 2-13 
failure exceptions for· 7-11 
for message transmission • 5-23 
for processes and jobs • 3-14 
GET_TIME· 4-5, 4-8 
INITIALIZATION_DONE· 3-12,3-18,13-19 
JOB_PORT • 5-26 

as PORT object operation· 2-11 
KER$ALLOCATE_MAP· 0-10 
KER$ALLOCATE_PATH· 0-11 
KER$FREE_MAP· 0-11 
KER$FREE_PATH· 0-12 
KER$GET_JCB· 3-17 
KER$GET _UPTIME • 4-8 
KER$GET_USER· 3-18,12-3 
KER$LOCK_DEVICE • 0-8 
KER$NAME_OBJECT· 3-18 

as NAME object operation· 2-10 
KER$RAISE_PROCESS_EXCEPTION· 3-19, 

7-12,7-13 
KER$SET_JOB_ELlGIBILlTY· 3-19 

See also Tightly coupled symmetric 
multiprocessing 

in device drivers • 0-8 
KER$SET_USER· 3-22,12-2 
KER$UNLOCK_DEVICE • 0-8 
KER$UNWIND· 7-13 
KERGET_UPTIME· 4-5 
RAISE_EXCEPTION· 7-11,7-13 
RECEIVE 

as MESSAGE object operation· 2-9 

Kernel procedures 
RECEIVE (Cont.) 

receiving expedited messages with· 5-16 
receiving messages from network nodes 

with· 9-3 
receiving messages with· 5-12, 5-15,5-26 
when circuit is disconnected • 5-19 

RESUME· 3-19 
as PROCESS object operation • 2-13 

SEND 
as MESSAGE object operation • 2-9 
sending expedited messages with • 5-15 
sending messages to network nodes with • 

9-3 
sending messages with • 5-14, 5-27 
when circuit is disconnected • 5-19 

SET _JOB_PRIORITY • 3-20 
SET _PROCESS_PRIORITY • 3-21 

as PROCESS object operation • 2-13 
SET_TIME • 4-5 
SIGNAL • 4-5, 5-29 

as area event operation • 2-6 
as area semaphore operation • 2-6 
as EVENT object operation • 2-8 
as PROCESS object operation· 2-13 
as SEMAPHORE object operation· 2-14 
signaling AREA objects with ·5-33,5-39 
signaling EVENT objects with • 4-16 
signaling PROCESS objects with • 3-22 
signaling SEMAPHORE objects with • 4-12 

SIGNAL_DEVICE • 6-5 
as DEVICE object operation· 2-7 

status of • 7-11 
SUSPEND • 3-22 

as PROCESS object operation· 2-13 
TRANSLATE_NAME 

as NAME object operation • 2-10 
for using named message ports • 5-14 
translating named ports with • 5-27 
translating universal port names with • 9-5 

WAIT_ALL • 0-5 
applied to AREA objects· 5-29,5-33,5-39 
applied to EVENT objects • 4-16 
applied to PORT objects· 5-12,5-27 
applied to PROCESS objects· 3-23 
applied to SEMAPHORE objects· 4-12 
as AREA object operation· 2-5 
as DEVICE Object operation • 2-7 

Index-23 



Kernel procedures 
WAIT_ALL (Cont.) 

as EVENT object operation • 2-7 
as PORT object operation • 2-12 
as PROCESS object operation· 2-13 
as SEMAPHORE object operation· 2-14 
specifying a time value with • 4-0 
synchronizing processes with· 4-2 

WAIT_ANY· 6-5 
applied to AREA objects • 5-29, 5-33, 5-39 
applied to EVENT objects· 4-16 
applied to PORT objec~s· 5-12,5-27 
applied to PROCESS objects • 3-23 
applied to SEMAPHORE objects • 4-12 
as AREA object operation • 2-5 
as DEVICE object operation· 2-7 
as EVENT object operation • 2-7 
as PORT object operation • 2-12 
as PROCESS object operation • 2-13 
as SEMAPHORE object operation· 2-14 
specifying a time value with • 4-0 
synchronizing processes with· 4-2 

Kernel runtime message files· 7-16 
KER$_POWER_SIGNAL exception • 7-12 
KER$_PROCESS_ATTENTION exception· 7-12 
KER$_QUIT_SIGNAL exception· 7-12 
KER$RAISE_PROCESS _EXCEPTION procedure • 

3-19,7-12, 7-13 
KER$SET _JOB_ELIGIBILITY procedure· 3-19 

See also Tightly coupled symmetric multiprocess
ing 

in device drivers • 6-8 
KER$SET_USER procedure. 3-22, 12-2, 12-17 
KER$UNLOCK_DEVICE procedure • 6-8 
KER$UNWIND procedure· 7-8,7-13 
KWV11-C device· 14-129,14-150 
KWV device driver utility procedures· 14-151 
KWV_INITIALIZE procedure ·14-151 
KWV _READ procedure • 14-151 
KWV _WRITE procedure· 14-151 

L 
Language-independent runtime library message 

files· 7-17 
LAT (local area transport) 

application devices ·11-2 

24-lndex 

LAT (local area transport) 
application devices (Cont.) 

accessing· 11-36 
example • 11-38 to 11-40 
setting up • 11-36 to 11-43 

communication, establishing circuits for· 11-4 
connection, requesting notification of· 11-35 
connection requests, queued. 11-25 
control ports, connecting to ·11-5, 11-34, 11-40 
counters • 11-27 
dedicated services • 11-2 

environment of (figure) • 11-29 
example • 11-31 to 11-33 
setting up· 11-29 to 11-36 

default service· 11-2 
driver· 11-3 
groups· 11-15 
host services ·1-6,1-15, 11-1 

building into VAXELN systems· 11-3 
network ·11-1 

ports 

balancing load of· 11-19 
groups· 11-15 
monitoring performance and error statistics 

of· 11-27 

accessing· 11-35, 11-41 
associating with application devices • 11-41 
associating with services· 11-34 
characteristics record for· 11-23, 11-26 
connecting to DDA port of· 11-9 
connecting to device port • 11-42 
creating • 11-7 
creating application • 11-40 
creating dedicated· 11-34 
disconnecting from device port· 11-42 
disconnecting from service • 11-36 
interactive • 11-7 
names of • 11-24 
queue statuses of· 11-25 
retrieving characteristics of • 11-23 

service announcement messages· 11-16 
service nodes· 11-2 

advertising services of· 11-21 
characteristics records for • 11-12 
identification strings of • 11-15 
inhibiting connections to • 11-20 
LAT network groups of· 11-15 
managing ·11-12 



LAT (local area transport) 
service nodes (Cont.) 

managing services of - 11-17 
multicast timer of - 11-16 
names of - 11-14 
returning characteristics of-11-13 
service announcement messages sent by -

11-16 
setting characteristics of - 11-14 
shutting down - 11-22 
states of - 11-3, 11-16 

services 
advertising - 11-21, 11-35 
associating with dedicated LAT ports - 11-34 
changing characteristics of - 11-20 
creating - 11-17, 11-34 
dedicated - 11-2, 11-29, 11-31 to 11-33 
deleting -11-17 
ECL as - 11-2 
identification strings of - 11-19 
managing - 11-17 
names of - 11-18 
ratings of - 11-19 
setting up dedicated - 11-29 to 11-36 

utility procedures - 11-4 
LATCP utility - 1-7, 11-2 

See also LAT (local area transport) 
LAT host services -1-6 
LAT host service utility procedures 

connecting to control port for - 11-5 
ELN$LAT_CLEAR_COUNTERS -11-6 

initializing LAT counters with - 11-28 
ELN$LAT_CREATE_PORT -11-6 

creating application LAT ports with - 11-40 
creating dedicated LAT ports with - 11-34 
creating LAT ports with - 11-8 

ELN$LAT_CREATE_SERVICE - 11-6 
creating services with - 11-17, 11-34 

ELN$LAT_DELETE_PORT -11-6 
ELN$LAT_DELETE_SERVICE -11-6 

deleting services with - 11-17 
ELN$LAT_SET_NODE -11-6 

setting service node characteristics with -
11-14 

specifying shut-down message with - 11-22 
ELN$LAT_SET_PORT -11-6 

setting application LAT port with -11-41 

LAT host service utility procedures 
ELN$LAT _SET_PORT (Cont.) 

setting dedicated LAT port with - 11-34 
ELN$LAT _SET_SERVICE - 11-6 

changing service characteristics with - 11-20 
ELN$LAT _SHOW_CHAR - 11-6 

retrieving service node characteristics with -
11-13 

ELN$LAT_SHOW_COUNTERS -11-6 
retrieving LAT counters with - 11-28 

ELN$LAT_SHOW_PORT -11-6 
retrieving LAT port characteristics with-

11-23 
ELN$LAT_SHOW_SERVERS -11-7 

retrieving terminal server characteristics 
with - 11-26 

ELN$LAT_START_NODE -11-7 
activating LAT protocol with - 11-21, 11-35, 

11-41 
ELN$LAT_STOP _NODE -11-7 

shutting down LAT protocol with - 11-22 
LAT port utility procedures 

ELN$LAT_CONNECT_PORT -11-11 
connecting LAT port to device port with-

11-42 
ELN$LAT_DISCONNECT_PORT - 11-11 

disconnecting LAT connection with -11-36, 
11-42 

ELN$LAT_MAP _PORT -11-11 
associating application LAT port with - 11-41 
mapping dedicated LAT port with - 11-34 

ELN$LAT_SHOW_PORT_MAPPING -11-11 
ELN$LAT_WAIT_FOR_CONNECTION -11-11 

requesting LAT connection notification with -
11-35 

LlB$ emulation routines - C-9 
LlB$ADD_TIMES routine - C-9 
LlB$ADDX routine - C-9 
LlB$ANALYZE_SDESC routine - C-10 
LlB$CREATE_USER_VM_ZONE routine - C-10 
LlB$CREATE_VM~ONE routine - C-11 
LlB$CVT _DTB routine - C-12 
LlB$CVT_HTB routine- C-12 
LlB$CVT_OTB routine- C-13 
LlB$DELETE_ VM_ZONE routine - C-13 
LlB$EMUL routine - C-14 
LlB$FLT_UNDER routine- C-15 
LlB$FREE_VM_PAGE routine - C-15 

Index-2S 



L1B$GET _INPUT routine • 0-16 
LIB$GET_VM_PAGE routine· 0-17 
L1B$GET _ VM routine· 0-16 
L1B$INT _OVER routine· 0-18 
L1B$MATCH_COND routine • 0-19 
L1B$MULT_DELTA_TIME routine· 0-19 
L1B$MULTF _DELTA_TIME routine· 0-20 
Libraries 

object module 
RTL· 7-15 
RTLOBJECT· 7-15 

runtime • 1-3, 1-6, 7-15 
L1B$RESET_VM_ZONE routine • 0-21 
L1B$SCOPY _DXDX routine • 0-21 
LIB$SCOPY _R_DX routine • 0-21 
LIB$SIGNAL routine • 0-22 
L1B$SIG_TO_RET routine· 0-23 
L1B$STOP routine • 0-23 
LIB$SUB_ TIMES routine • 0-24 
LIB$SUBX routine • 0-24 
Line names • 9-28 

in down-line load data base· 9-21 
specified for down-line load operations • 9-40 
specified for trigger boot operations· 9-37 
specified with Network Management Service 

proced ures • 9-11 
Lines 

names of· 9-28 
retry count for • 9-28 
service timer for • 9-28 
state of· 9-28 

Line state • 9-28 
Linger time 

setting • 10-24, 10-92 
Linger timer, TCP • 10-49 
listen function • 1 0-55 

listening for connection requests with • 10-64 
LLC classes· 8-18,8-34 

specifying • 8-35 
LOAD/PROGRAM command· 3-3 
Loader 

KA800 ·3-32 
primary • 9-36 
secondary • 9-36, 9-41 
tertiary • 9-36, 9-41 

LOAD_KA800_PROCESSOR procedure • 3-32 
LOAD PROGRAM debugger command • 3-3 

26-lndex 

LOAD_PROGRAM procedure' 3-13 
loading program images with • 3-3 

Load requests • 9-35 
application-initiated • 9-36, 9-40 
as response to trigger boot request • 9-36 
sending to local node· 9-35 
sending to multicast addresses • 9-35 
target-initiated 

figure of • 9-35 
load sequence for • 9-36 

Load sequence, for target-initiated requests. 9-36 
LOAD_UNIBUS_MAP procedure • 6-10 
Local addresses, reusing in socket names • 10-92 
Local area network (LAN) • 9-3 

See also CSMAlCD LAN 
Authorization Service for • 12-3 

Local area transport (LAT) 

See LAT (local area transport) 
Local data, sharing • 5-1 
Local disk devices 

reading data from ·14-7, 14-9 
writing data to· 14-7, 14-9 

Local nodes, load requests sent to· 9-35 
Local port names' 2-9,5-10,5-13, 13-5 

See also Universal port names 
creating • 5-25 

Local routes • 10-34 
LOCK_AREA procedure • 5-29 

as area lock variable operation • 2-17 
locking areas with· 5-40 

LOCK_DEVICE procedure • 6-8 
Locked routes • 1 0-32 
LOCK_MUTEX procedure • 4-5 

as mutex operation • 2-18 
locking mutexes with, 4-14 

Logical blocks 
reading from mounted disks • 14-15 to 14-20 
reading from unmounted disks' 14-12 to 14-14 

Logical 110 '13-4, 14-3,14-27 
Logical links· 9-2 
Logical unit number (LUN) • 14-74 
Loopback address • 1 0-10 
Loopback Mirror· 9-8,9-10 
LOOP NODE command • 9-10 
Loosely coupled symmetric multiprocessing' 1-10 

See also Multiprocessing 
LUN (logical unit number)' 14-74 



M 
Machine check stack frames • 8-1 
Main Menu· 10-23 
malloc function • 5-3 
Map registers 

allocating • 6-1 0 
freeing • 6-11 
loading. 6-10 

Mask values 
for down-line load procedures· 9-23, 9-30 
for ELN$DLL_LOAD procedure • 9-42 
for ELN$DLL_ TRIGGER procedure • 9-38 
for ELN$INET _CHECK_ROUTE procedure • 

10-34 
for ELN$INET_SET_ARP _ENTRY procedure· 

10-26 
for ELN$INET _SET _INTERFACE procedure • 

10-40 
for ELN$INET_SET_ROUTE procedure· 10-32 
for ELN$INET _SHOW_ARP _ENTRIES procedure 

·10-29 
for ELN$INET _SHOW_ROUTES procedure • 

10-37 
for ELN$INET_SHOW_TCP _CONNECTIONS 

procedure • 10-49 
for network management procedures· 9-11 

Master process· 1-8, 3-1 
Math runtime library message files· 7-17 
Memory 

See also Memory allocation procedures 
allocating· 3-29,3-30 

for kernel objects· 2-2,2-14 
freeing • 3-31 . 
sharing • ~28 to ~6 

Memory allocation procedures • 3-29 
ALLOCATE_MEMORY • 3-29 
FREE_MEMORY • 3-31 
KER$ALLOCATE_SYSTEM_REGION • 3-30 
KER$FREE_SYSTEM_REGION • 3-31 
KER$MEMORY SIZE· 3-31 

Memory buffers -
mapping • 6-12 
unmapping· 6-13 

Memory management· 3-23 to 3-33 
MEMORY_SIZE procedure • 3-31 
Message buffer 

Message buffer (Cont.) 

allocating· 8-20,8-34 
TCP, size of • 1 0-8 

Message files· 7-15 
table· 7-15 to 7-17 

Message formats· 8-13,8-15,8-34 
specifying • 8-35 

Message interface, SCSI generic class driver· 14-77 
to 14-110 

Message object modules· 7-15 
MESSAGE objects· 2-8,5-11 

creating • ~ 11, ~25 
definition of· 2-4 
deleting • ~26 
operations on • 2-8 
shared· 5-3 

Message ports 

See PORT objects; Ports 
Message protocol • ~ 15 
Messages· ~10, 5-11 

See also Circuits; Datagrams; MESSAGE objects 
constructing· 7-14 
constructing application-specific • 7-18 
contrOlling flow of· 5-17, ~27 

with circuits· 5-22 
with unconnected ports· ~21 

creating ports for • 5-25 
I/O as·~17 
passing • ~ 10 to 5-28 

between network nodes· 9-3 
using circuits for • ~ 16 
using datagrams for· 5-16 

receiving • ~26 
over CSMAlCD LAN • 8-19, 8-25, 8-36 

retrieving transmitted· 8-23,8-35 
runtime· 7-14 

using with programs· 7-19 
segmentation of • 5-17 
sending • ~27 
transmitting over CSMAlCD LAN • 8-19, 8-21, 

8-35 
urgent, TCP· 10-48 
using to read and write data • 14-9 

Message source files • 7-15 
example· 7-18 

Message symbols· 7-15,7-19 
Message text 

Index-27 



Message text (Cont.) 

displaying on VMS systems • 7-23 
enabling • 7-24 
getting· 7-14 
retrieving • 7-21 
shareable· 7-19,7-22,7-23 

Message Utility· 7-14 
MESSAGE values· 2-8,5-14 
MFPR function· 6-10 
Modems· 14-66 

characteristics of • 14-68 
control signals of • 14-67 
events of, monitoring· 14-69 

Modes, SCSI command • 14-88 
Module-level data 

See also Outer-level variables 
sharing • 5-1 to 5-4 

Mounted disks, reading from· 14-15 to 14-20 
MOUNT_TAPE_VOLUME procedure ·13-4, 13-18 
MOUNT_VOLUME procedure· 13-4, 13-17 
msghdr structure • 10-69, 10-72 
MTPR procedure· 6-10 
Multicast addresses· 8-18 

load requests sent to • 9-35 
Multicast messages ·11-16 

See also LAT (local area transport); Service 
announcement messages 

sending· 11-21 
Multiplexing 

data· 8-13, 8-15,8-34 
specifying • 8-35 

in Internet environment • 10-6, 10-7 
Multiprocessing • 1-10 to 1-12 

closely coupled symmetric· 1-11,3-32 
Ethernet node· 9-1 
sharing memory areas during • 5-30 

loosely coupled symmetric· 1-10 
scheduling • 3-14 
synchronizing access to device communication 

region for· 6-7 
tightly coupled symmetric· 1-11 

returning a JCB address during • 3-17 
scheduling for· 3-14 
setting processor eligibility during • 3-19, 6-8 

Multiprogramming • 1-10 
Multitasking· 1-10, 4-1,13-19 
MUTEX data type· 2-17 

28-lndex 

Mutexes· 2-1,2-16,4-14 
creating. 4-14 
deleting • 4-15 
initializing • 4-14 
internal representation of • 2-18 
locking· 4-14 
operations with • 2-17 
unlocking· 4-15 

Mutex procedures • 2-18 
ELN$CREATE_MUTEX·4-4 

creating mutexes with· 4-14 
ELN$DELETE_MUTEX·4-5 

deleting mutexes with· 4-15 
ELN$LOCK_MUTEX • 4-5 

locking mutexes with· 4-14 
ELN$UNLOCK_MUTEX • 4-5 

unlocking mutexes with • 4-15 
Mutual exclusion· 4-1 

N 
NAME_OBJECT procedure· 3-18 

as NAME object operation· 2-10 
NAME objects· 2-9,5-13 

See also Names 
creating • 5-13, 5-25 
definition of • 2-4 
deleting· 5-26 
operations on· 2-10 

Names 
See also NAME objects 
binding to sockets • 10-58 
LAT port· 11-24 
LAT service· 11-18 
port· 2-4,2-9,5-10,5-13,13-5 

creating • 5-25 
universal· 2-10,5-10,5-13,9-5,9-7,13-5 

socket • 1 0-16 
VAXELN service node· 11-14 

Name server • 9-6 
communication • 9-6 
displaying current • 9-6 
protocol for electing • 9-7 

Name Service· 9-5 
communication with kernel· 9-6 
name server • 9-6 

communication • 9-6 



Name Service 
name server (Cont.) 

displaying current· 9-6 
protocol for electing· 9-7 

Name structures, socket· 1 0-58 
Name table 

See Universal name table 
NAME values· 2-10,5-13 
NCP (network control program)· 9-8 
NCP commands 

list of· 9-10 
LOOP NODE· 9-10 
SET EXECUTOR· 9-9 
SHOW CIRCUIT • 9-9 
SHOW NODE • 9-9 

Network, LAT· 11-1 
See also LAT (local area transport) 
balancing load of· 11-19 
groups ·11-15 
monitoring performance and error statistics of • 

11-27 
Network byte order • 10-53 

converting Internet addresses to • 10-54 
Network connections • 9-16 
Network control program (NCP) • 9-8 

See also NCP commands 
assigning node names and numbers with • 9-46 
invoking NML functions with • 9-9 

Network environments· 8-1 
Network groups 

See LAT (local area transport) 
Network identifier, Internet address • 10-9 
Network interface 

See Internet 
Network interface procedures 

See also Ethernet/IEEE 802 Datagram Service 
ELN$NLALLOCATE_BUFFER • 8-6, 8-34 

allocating message buffers with • 8-20 
ELN$NLCONNECT • 8-6, 8-34, 8-36 

connecting Ethernet/IEEE 802 protocols 
with· 8-12 

ELN$NLDISCONNECT • 8-6, 8-35 
disconnecting Ethernet/IEEE 802 protocols 

with· 8-13 
ELN$NLGET _ATIRIBUTES • 8-6 

retrieving Ethernet controller attributes with· 
8-10 

Network interface procedures (Cont.) 

ELN$NLGET _CONFIGURATION • 8-6 
getting line names with· 9-29 
retrieving CSMAlCD LAN configuration with • 

8-7 
ELN$NLRECEIVE • 8-6, 8-36 

receiving messages with • 8-25 
ELN$NL TRANSMIT • 8-6, 8-35 

transmitting messages with • 8-21 
ELN$NLTRANSMIT_STATUS· 8-6,8-35 

retrieving transmitted messages with • 8-23 
using when DECnet operations stop • 9-12 

Network interfaces 
See also Ethernet controllers 
information about· 10-43 
managing • 10-40 to 10-44 
retrieving characteristics of • 1 0-42 
setting Internet addresses for • 10-40 

Network management 

See Network management services 
Network management listener (NML) • 9-8, 9-9 
Network management procedures • 9-11 

See also Network Management Service 
modules for using· 9-12 

Network management protocol (NMP) • 9-8 
Network Management Service· 9-8,9-11 to 9-18 

See also Network management services 
initializing DECnet node addresses with· 9-13 
initializing node addresses with· 9-13 
reducing network overhead with· 9-14 
stopping and starting DECnet software with· 9-14 
switching DECnet sqftware between controllers 

with· 9-16 
Network management services • 9-8 to 9-44 

See also Down-Line Load Service; Network 
Service; Network Management Service 

for managing systems from VMS systems • 9-9 
for testing Network Service • 9-10 
Loopback Mirror • 9-10 
network control program (NCP) • 9-9 
network management listener (NML) • 9-9 

Network masks • 10-12 
for network interfaces • 1 0-43 
Internet address • 10-9 
setting· 10-24, 10-40 

Network Node Characteristics Menu • 8-2 
enabling trigger booting on • 9-40 

Index-29 



Network node data base, VMS· 9-9 
Network packets, Internet· 10-5 
Network routes· 10-34 

types of· 10-31 
Network routing, Internet 

See also Internet; Internet addresses; Internet 
Services 

managing table for • 10-31 to 1 0-39 
Networks 

See also Internet; Internet addresses; Internet 
Services 

Class A· 10-10 
network masks for· 1 0-13 
when to use· 10-11 

Class B· 10-10 
network masks for • 1 0-13 
when to use· 10-11 

Class C· 10-11 
network masks for· 1 0-13 
when to use· 10-12 

classes of • 10-9 
default network masks for· 10-13 
number ranges for· 10-11 

DECnet, reducing overhead· 9-14 
Internet 

routing· 10-18 
static routing· 10-18 

packet-switched • 10-5 
Networks, DECnet· 9-1 

circuit connections in • 9-47 
node identification in • 9-45 

Network Service· 1--6, 1-15,8-1,9-1 
See also DECnet nodes; Network management 

services 
Down-Line Load Service • 9-8, 9-18 to 9-44 
name server for • 9-6 

communication • 9-6 
displaying current • 9-6 
protocol for electing • 9-7 

Name Service • 9-5 
communication with kernel • 9-6 

Network Management Service· 9-8, 9-11 to 
9-18 

protocols • 9-2 
reducing overhead· 9-14 
Remote Terminal Utility • 9-49 
testing • 9-10 

30-Index 

Network Service (Cont.) 

using to pass messages between nodes· 9-t3 
Network services protocol (NSP). 9-2 
NEW procedure· 5-3 
NLALLOCATE_BUFFER procedure • 8-6, 8-34 

~lIocating message buffers with· 8-20 
NIJ)ONNECT procedure' 8-6,8-34,8-36 

. bonnecting Ethernet/IEEE 802 protocols with· 
8-12 

NLDISCONNECT procedure • 8--6, 8-35 
disconnecting Ethernet/IEEE 802 protocols with· 

8-13 
NLGET_ATTRIBUTES procedure· 8--6 

retrieving Ethernet controller attributes with • 8-10 
NLGET_CONFIGURATION procedure· 8--6 

retrieving CSMAlCD LAN configuration with· 8-7 
NLRECEIVE procedure· 8--6,8-36 

receiving messages with • 8-25 
NLTRANSMIT procedure· 8--6. 8-35 

transmitting messages with • 8-21 
NLTRANSMIT _STATUS procedure· 8-6, 8-35 

retrieving transmitted messages with, 8-23 
NML (network management listener)· 9-8 
NMP (network management protocol) • 9-8 
Node addresses 

initializing at runtime· 9-13 
specified with network management procedures • 

9-11 
Node identifier· 9-22 

specified for trigger boot operations' 9-37 
Node identifiers 

specified for down-line load operations • 9-41 
Node names • 9-45 

in down-line load data base • 9-21 
specified with network management procedures • 

9-11 
VAXELN system 

using from VMS systems • 9-46 
Node numbers • 9-45 

remote, using from VAXELN systems • 9-47 
V AXELN system 

using from VMS systems • 9-46 
Nodes-

local DECnet, load requests sent to • 9-35 
specifying • 9-45 

Node specifications • 9-45 
NSP (network services protocol) • 9-2 
ntohl function • 10-53 



ntons function • 1 0-53 

o 
Object module library 

RTL, message modules in • 7-15 
RTLOBJECT, message modules in • 7-15 

Object modules 
message· 7-15 

Object numbers, DECnet· ~9 
Objects • 2-2 to 2-15 

AREA· 2-4 
creating· 4-16,5-30 
definition of· 2-4 
deleting • 5-46 
initializing state of synchronization object 

for· 5-31 
operations on • 2-5 
satisfying a wait on • 4-3 
signaling • 4-12, 5-33, 5-39 
starting address of· 5-31 
waiting on· 4-12,5-33, 5-39 

DEVICE· 2-6 
creating • 6-3 
definition of· 2-4 
deleting· 6-5 
operations on • 2-6 
satisfying a wait on • 4-3 
signaling· 6-5 

EVENT· 2-7,4-15,4-16 
creating • 4-16 
definition of· 2-4 
deleting • 4-18 
operations on • 2-7 
satisfying a wait on· 4-3 
using to synchronize access to -areas • 5-33 
waiting on • 4-16 

implementation of • 2-14 
memory allocation for • 2-2, 2-14 
MESSAGE· 2-8,5-11 

creating • 5-11, 5-25 
definition of· 2-4 
deleting • 5-26 
operations on • 2-8 
shared· 5-3 

NAME • 2-9, 5-13 
creating· 5-13,5-25 

Objects 
NAME (Cont.) 

definition of· 2-4 
deleting • 5-26 
operations on • 2-1 0 

PORT· 2-10, 5-12 
creating • 5-12, 5-25 
definition of· 2-4 
deleting • 5-26 
operations on • 2-11 
satisfying a wait on • 4-3 
waiting for • 5-27 

PROCESS· 2-12,4-9 to 4-10 
creating • 3-15 
definition of· 2-4 
deleting· 3-5,3-16 
naming • 3-18 
operations on • 2-12 
returning value of current· 3-16 
satisfying a wait on • 4-3 
signaling • 3-22 
waiting for • 3-23, 4-9 to 4-1 0 

SEMAPHORE· 2-13 
creating • 4-11 
definition of· 2-4 
deleting • 4-14 
operations on • 2-14 
satisfying a wait on • 4-3 
signaling· 4-12 
waiting on.! 4-12 

table defining • 2-3 
waiting for • 6-5 

Octets • 10-8 
OPEN statement 

accessing LAT ports with· 11-35 
Options, socket • 10-92 
Outer-level variables· 5-1 
Out-of-band characters, monitoring • 14-59 
Overhead, DECnet· 9-14 

p 

PO address space· 2-8, 3-24 
after creating job • 3-4 
when creating AREA objects • 2-5, 5-30 
when creating M ESSAG E objects • 2-8 
when passing messages • 5-12 

Index-31 



P1 address space • 3-26, 3-27, 7-1 
after creating job • 3-4 
during interprocess data sharing· 5-1 
when activating subprocesses • 3-4 
when terminating subprocesses· 3-5 

Packets, Internet· 10-5 
Padded Ethernet protocols· 8-19 
Parallel 1/0· 14-73 
Parallel-line interface 

DRB32 • 14-136 
DRQ3B· 14-140 
DRV11-J ·14-142 
DRV11-W ·14-144 

Pascal runtime library message files • 7 ..... 17 
Performance counters 

See LAT (local area transport) 
Performance data, Internet· 10-44 
Performance tools 

See EDISPLAY utility; Error Logging Service; 
VAXELN Performance Utility 

Performance Utility 

See VAXELN Performance Utility 
Periodic network timer, stopping· 9-14 
Persist timer, TCP • 10-48 
Physical addresses 

broadcasting • 10-6, 10-7 
Ethernet controller • 8-11 
for trigger boot operations • 9-37 
protocol for mapping Internet addresses to • 10-5 

PHYSICAL_ADDRESS function· 6-13 
PORT$ALLOCATE_DEVICE function ·14-116 

allocating SCSI device request packets with • 
14-122 

description of· 0-3 
Portals • 8-12, 8-14 

disconnecting • 8-35 
Port driver 

See SCSI port driver 
Port driver interface, SCSI· 14-116 
PORT$EXIT _HANDLER function • 0-7 
PORT$FREE_DEVICE function ·14-116 

deallocating SCSI device request packets with • 
14-122 

description of • 0-1 0 
PORT$INITIALlZE_CONTROLLER function ·14-116 

description of • 0-13 
initializing SCSI device controllers with ·14-127 

32-lndex 

PORT$ISSUE_COMMAND function ·14-116 
description of • 0-16 
issuing SCSI commands with ·14-125 

PORT$MAP _BUFFER function· 14-116 
description of· 0-20 
mapping lio request packet buffer with· 14-123 

Port names • 2-9, 5-10, 5-13 
creating • 5-25 
local· 5-10, 13-5 
remote 

See Terminal servers 
translating • 5-27 
universal· 2-10,5-10,5-13,9-5,9-7,13-5 

Port numbers 
in socket names • 10-16, 1 0-59 
local • 10-48 
privileged • 10-1 5 
range of· 10-15 
remote • 10-48 
reserved • 10-15 

PORT objects· 2-10, 5-12 

See also Ports 
creating • 5-12, 5-25 
definition of • 2-4 
deleting· 5-26 
operations on • 2-11 
satisfying a wait on· 4-3 
waiting for • 5-27 

Ports ·5-10 
See also PORT objects 
DAP, for LAT port· 11-8 
DDA 

connecting to for disk read and write DDA 
operations • 14-8 

connecting to for serial-line DDA operations • 
14-41 

for LAT port· 11-8, 11-35 
dispatch· 8-13,8-15 

creating • 8-34, 8-35 
disconnecting • 8-36 
establishing • 8-34, 8-36 
waiting on ·8-36 

Internet· 10-6, 10-14 
privileged • 1 0-15 

binding a process to • 10-15 
LAT 

See LAT (local area transport) . 



Ports (Cont.) 

remote· 9-2 
remote names of • 11-25 
reply 

creating • 8-34 
waiting on • ~5 

waiting on • 5-27 
PORT$UNMAP _BUFFER function· 14-116 

description of· D-24 
unmapping SCSI 1/0 request packet buffer with • 

14-124 
PORT values· 2-11,5-12,5-13 
Power-failure recovery· 6-17 
Preemptive priority scheduling • 3-9 
Primary bootstrap loader • 9-36 
Printer drivers· 14-29 

characteristics of· 14-31 
Print server • 13-9 
Priorities 

See Job priorities; Process priorities 
Procedures 

ACCEPT_CIRCUIT 
accepting logical links with • 9-2 
accepting messages from network nodes 

with· 9-3 
accepting VMS connections with • 9-48 
as PORT object operation. 2-12 
controlling message flow with· 5-17 
establishing circuits for authorization with· 

12-16 
establishing circuits with • 5-17 
waiting for circuit connection with • 5-23 

ALLOCATE_MEMORY • 3-29 
CLEAR_EVENT • 4-4, 5-28 

as EVENT object operation • 2-8 
clearing EVENT objects with· 4-17 

CONNECT_CIRCUIT ·12-5 
accessing LAT ports with • 11-35, 11-41 
as PORT object operation • 2-12 
connecting to VMS with· 9-47 
connect to a port with • 5-24 
controlling message flow with· 5-17 
creating logical links with • 9-2 
establishing circuits for authorization with· 

12-16 
establishing circuits with· 5-17 
establishing network node connections with • 

9-3 

Procedures 
CONNECT_CIRCUIT (Cont.) 

named ports used with • 5-14 
setting up DDCMP communication with • 

14-38 
specifying DECnet object numbers with • 

9-49 
CREATE_AREA· 4-4, 5-28 

as AREA object operation· 2-5 
creating AREA objects with • 5-30 
creating area semaphores with • 4-11 

CREATE_AREA_EVENT • 4-4, 5-28 
as area event operation • 2-5 
creating area events with • 4-16 
creating AREA objects with • 5-30 

CREATE_AREA_SEMAPHORE • 4-4, 5-29 
as area event operation • 2-5 
creating AREA objects with • 5-30 
creating area semaphores with • 4-11 

CREATE_DEVICE 
as DEVICE object operation • 2-7 
creating DEVICE objects with· 6-3 
specifying a power-failure recovery routine 

with· 6-17 
CREATE_EVENT • 4-4 

as EVENT object operation • 2-7 
creating EVENT objects with· 4-16 

CREATE_JOB· 3-15 
activating Down-Line Load Service with • 

9-18 
creating jobs with • 3-1, 3-3 

CREATE_MESSAGE 
as MESSAGE object operation • 2-8 
creating MESSAGE objects with· 5-11,5-25 
setting up message communication with • 

5-14 
CREATE_NAME 

as NAME object operation • 2-10 
creating NAM E objects with • 5-13, 5-25 
creating universal port names with • 9-5 

CREATE_PORT 
as PORT object operation· 2-11 
creating PORT objects with • 5-12, 5-25 

CREATE_PROCESS· 3-15, 4-4 
as PROCESS object operation· 2-13 
creating processes with • 3-2 
using exit parameter with • 4-10 

CREATE_SEMAPHORE • 4-4 

Index-33 



Procedures 
CREATE_SEMAPHORE (Cont.) 

as SEMAPHORE object operation· 2-14 
creating SEMAPHORE·objects with· 4-11 

CURRENT_PROCESS • 3-16, 4-5 
as PROCESS object operation· 2-13 

DELETE • 4-5, 5-29 
as AREA object operation • 2-6 
as DEVICE object operation • 2-7 
as EVENT object operation • 2-8 
as MESSAGE object operation· 2-9 
as NAM E object operation • 2-10 
as PORT object operation • 2-12 
as PROCESS object operation· 2-13 
as SEMAPHORE object operation· 2-14 
deleting AREA objects with • 5-46 
deleting DEVICE objects with • 6-5 
deleting EVENT objects with • 4-18 
deleting kernel objects with • 2-2 
deleting MESSAGE objects with· 5-26 
deleting NAME objects with· 5-13,5-26 
deleting PORT objects with· 5-12,5-26 
deleting PROCESS objects with, 3-16 
deleting SEMAPHORE objects with· 4-14 
deleting universal port names with • 9-5 
terminating processes with • 3-5 

device-handling • 6-2 
DISABLE_ASYNCH_EXCEPTION· 7-12 
DISABLE_INTERRUPT • 6-7 
DISABLE_SWITCH' 3-11,3-16 
DISCONNECT_CIRCUIT 

as PORT object operation • 2-12 
disconnecting circuits with • 5-19, 5-26 
disconnecting network node connections 

with, 9-3 
disconnecting VMS connections with • 9-48 
switching DECnet software between 

controllers with • 9-16 
terminating DDCMP communication with • 

14-38 
down-line load • 9-19 
ELN$ADQ_INITIALIZE ·14-131 
ELN$ADQ_QUEUE_READ • 14-131 
ELN$ADQ_START ·14-131 
ELN$ADQ_TRANSFER_DONE· 14-131 
ELN$ADV-,NITIALIZE ·14-134 
ELN$ADV_QUEUE_READ· 14-134 
ELN$ADV _TRANSFER_DONE • 14-134 

34-lndex 

Procedures (Cont.) 
ELN$ALLOCATE_STACK • 3-28 
ELN$AUTH~DD_USER'12-8,12-9 
ELN$AUTH_MODIFY_USER·12-8,12-11 
ELN$AUTH_REMOVE_USER '12-8,12-13 
ELN$AUTH_SHOW_USER '12-8, 12-14 
ELN$AXV_INITIALlZE'14-132 
ELN$AXV_READ· 14-133 
ELN$AXV_WRITE ·14-133 
ELN$BLNODE_MASK • 6-13 
ELN$BLSTOP • 6-14 
ELN$CANCEL_EXIT _HANDLER • 3-6 
ELN$COPY _FILE' 13-11 
ELN$CREATE_DIRECTORY· 13-12 
ELN$CREATE_MUTEX 

as mutex operation • 2-18 
creating mutexes with' 4-4,4-14 

ELN$DEALLOCATE_STACK'3-28 
ELN$DECLARE_EXIT _HANDLER • 3-6 
ELN$DELETE_FILE ·13-12 
ELN$DELETE_MUTEX·4-5 

as mutex operation· 2-18 
deleting mutexes with • 4-15 

ELN$DlRECTORY_CLOSE'13-13 
ELN$DIRECTORY_LlST ·13-13 
ELN$DIRECTORY_OPEN ·13-13 
ELN$DISK_READ • 14-7 

reading data from local disks with • 14-9 
ELN$DISK_WRITE ·14-7 

writing data to local disks with • 14-9 
ELN$DISMOUNT_TAPE_VOLUME· 13-18 
ELN$DISMOUNT_VOLUME'13-16 
ELN$DLL_CLEAR_LlNE· 9-19 

clearing data base line entries with • 9-29 
ELN$DLL_CLEAR_NODE· 9-19 

clearing data base node entries with • 9-22 
ELN$DLL_GET_LlNE· 9-19 

getting data base line information with • 
9-29, 9-30 

ELN$DLL_GET_NODE· 9-19 
getting data base node information with • 

9-22, 9-24 
ELN$DLL_LOAD • 9-19 

down-line loading with • 9-41 
ELN$DLL_SET_LlNE· 9-19 

setting data base line entries with, 9-29 
ELN$DLL_SET _NODE • 9-19 

setting data base node entries with • 9-22 



Procedures (Cont.) 

ELN$DLL_TRIGGER· 9-19 
trigger booting with • 9-36, 9-37 

ELN$DLV_INITIALlZE· 14-136 
ELN$DLV_READ_BLOCK ·14-136 
ELN$DLV_READ_STRING· 14-136 
ELN$DLV_WRITE_STRING· 14-136 
ELN$DRB_FINISHED_TRANSFER·14-138 
ELN$DRB_INITIALlZE· 14-138 
ELN$DRB_QUEUE_READ· 14-138 
ELN$DRB_QUEUE_WRITE· 14-139 
ELN$DRB_READ_CTRL·14-139 
ELN$DRB_WRITE_CTRL ·14-139 
ELN$DRQ3B_INITIALlZE· 14-141 
ELN$DRQ3B_QUEUE_READ· 14-141 
ELN$DRQ3B_QUEUE_WRITE ·14-141 
ELN$DRQ3B_READ_FUNCTION ·14-141 
ELN$DRQ3B_TRANSFER_DONE_READ· 

14-141 
ELN$DRQ3B_TRANSFER_DONE_WRITE • 

14-141 
ELN$DRQ3B_WRITE_FUNCTION ·14-141 
ELN$DRV_DMA-'NITIALIZE ·14-145 
ELN$DRV_DMA_QUEUE_READ ·14-145 
ELN$DRV_DMA_QUEUE_WRITE'14-145 
ELN$DRV_DMA_READ_STATUS ·14-145 
ELN$DRV_DMA_TRANSFER_DONE ·14-145 
ELN$DRV_DMA_WRITE_FUNCTION ·14-145 
ELN$DRV_INITIALlZE· 14-143 
ELN$DRV_READ· 14-143 
ELN$DRV_WRITE· 14-143 
ELN$GET_STATUS_TEXT· 7-21 
ELN$INET_CHECK_ROUTE ·10-31 

checking status of routing table entries with • 
10-34 

ELN$INET _DELETE_ARP _ENTRY • 10-25 
ELN$INET _DELETE_ROUTE • 10-31 
ELN$INET_FIND_ARP _ENTRY ·10-25 

retrieving Ethernet addresses with • 10-27 
ELN$INET _SET _ARP _ENTRY ·10-25 

adding entries to ARP cache with • 10-26 
deleting ARP cache entries with • 10-26 

ELN$INET _SET_INTERFACE • 10-40 
setting network interfaces with • 10-40 

ELN$INET_SET_ROUTE ·10-31 
adding entries to routing table with • 1 0-31 
deleting routing table entries with • 10-31 

ELN$INET_SHOW_ARP _ENTRIES ·10-25 

Procedures 
ELN$INET _SHOW _ARP _ENTRI ES (Cont.) 

retrieving ARP entries with • 10-28 
ELN$INET _SHOW_CONNECTIONS 

retrieving TCP connection data with • 10-48 
ELN$INET _SHOW-,NTERFACE· 10-40 

retrieving characteristics for network 
interfaces with • 1 0-42 

ELN$INET_SHOW-,P _STATISTICS ·10-44 
retrieving IP statistics with • 10-46 

ELN$INET_SHOW_ROUTES ·10-31 
retrieving routing table entries with • 10-37 

ELN$INET_SHOW_TCP _STATISTICS ·10-44 
retrieving TCP statistics with • 10-46 

ELN$INET_SHOW_UDP _STATISTICS· 10-44 
retrieving UDP statistics with· 10-46 

ELN$INITIALlZE_AREA_LOCK • 5-29 
as area lock variable operation • 2-17 
initializing area lock variables with • 5-40 

ELN$INIT_TAPE_VOLUME ·13-18 
ELN$INIT_VOLUME ·12-20,13-16 
ELN$KWV_INITIALlZE· 14-151 
ELN$KWV_READ ·14-151 
ELN$KWV_WRITE ·14-151 
ELN$LAT_CLEAR_COUNTERS ·11-6 

initializing LAT counters with • 11-28 
ELN$LAT _CONNECT_PORT· 11-11 

connecting LAT port to device port with· 
11-42 

ELN$LAT_CREATE_PORT· 11-6 
creating application with • 11-40 
creating dedicated LAT ports with • 11-34 
creating LAT ports with· 11-8 

ELN$LAT _CREATE_SERVICE· 11-6 
creating services with ·11-17,11-34 

ELN$LAT _DELETE_PORT • 11-6 
ELN$LAT _DELETE_SERVICE· 11-6 

deleting services with • 11-17 
ELN$LAT_DISCONNECT_PORT·11-11 

disconnecting LAT connection with • 11-36, 
11-42 

ELN$LAT _MAP _PORT· 11-11 
mapping application LAT port with ·11-41 
mapping dedicated LAT port with· 11-34 

ELN$LAT _SET_NODE • 11-6 
setting service node characteristics with· 

11-14 
specifying shut-down message with· 11-22 

Index-3S 



Procedures (Cont.) 

ELN$LAT _SET_PORT· 11-6 
setting application LAT port with • 11-41 
setting dedicated LAT port with· 11-34 

ELN$LAT _SET_SERVICE • 11-6 
changing service characteristics with • 11-20 

ELN$LAT_SHOW_CHAR· 11-6 
retrieving service node characteristics 

with • 11-13 
ELN$LAT_SHOW_COUNTERS ·11-6 

retrieving LAT counters with· 11-28 
ELN$LAT_SHOW_PORT ·11-6 

retrieving LAT port characteristics with • 
11-23 

ELN$LAT_SHOW_PORT_MAPPING ·11-11 
ELN$LAT_SHOW_SERVERS ·11-7 

retrieving terminal server characteristics 
with· 11-26 

ELN$LAT_START_NODE ·11-7 
activating LAT protocol with • 11-21, 11-35, 

11-41 
ELN$LAT_STOP _NODE ·11-7 

shutting down LAT protocol with • 11-22 
ELN$LAT _WAIT _FOR_CONNECTION· 11-11 

requesting connection notification with • 
11-35 

ELN$LOAD_KA800_PROCESSOR • 3-32 
ELN$LOAD_PROGRAM· 3-13 

loading program images with • 3-3 
ELN$LOAD_UNIBUS_MAP· 6-10 
ELN$LOCK_AREA • 5-29 

as area lock variable operation • 2-17 
locking areas with • 5-40 

ELN$LOCK_MUTEX • 4-5 
as mutex operation • 2-18 
locking mutexes with· 4-14 

ELN$MOUNT_TAPE_VOLUME ·13-4,13-18 
ELN$MOUNT_VOLUME·13-4,13-17 
ELN$NETMAN_START_NETWORK· 9-11 

initializing node addresses with· 9-13 
stopping and starting DECnet software with • 

9-14 
switching DECnet software between 

controllers with • 9-16 
ELN$NETMAN_STOP _NETWORK· 9-11 

stopping and starting DECnet software with • 
9-14 

3S-lndex 

Procedures 
ELN$NETMAN_STOP _NETWORK (Cont.) 

switching DECnet software between 
controllers with • 9-16 

ELN$NLALLOCATE_BUFFER • 8-6, 8-34 
allocating message buffers with • 8-20 

ELN$NLCONNECT· 8-6,8-34,8-36 
connecting Ethernet/IEEE 802 protocols 

with· 8-12 
ELN$NLDISCONNECT • 8-6, 8-35 

disconnecting Ethernet/IEEE 802 protocols 
with· 8-13 

ELN$NLGET _ATTRIBUTES· 8-6 
retrieving Ethernet controller attributes with • 

8-10 
ELN$NLGET _CONFIGURATION • 8-6 

getting line names with • 9-29 
retrieving CSMAlCD LAN configuration with· 

8-7 
ELN$NLRECEIVE • 8-6, 8-36 

receiving messages with • 8-25 
ELN$NLTRANSMIT • 8-6, 8-35 

transmitting messages with • 8-21 
ELN$NLTRANSMIT _STATUS • 8-6, 8-35 

retrieving transmitted messages with· 8-23 
ELN$PROTECT_FILE· 13-14 
ELN$RENAME_FILE • 13-15 
ELN$SCSLCONNECT_DEVICE· 14-77 

connecting to SCSI devices with· 14-83 
ELN$SCSLDISCONNECT _DEVICE • 14-77 

disconnecting SCSI device processes with· 
14-84 

ELN$SCSLFREE_CONFIG_DATA. 14-n 
freeing configuration data resources with· 

14-82 
ELN$SCSLFREE_CONTROL_PORT· 14-77 

freeing source port resources with • 14-79 
ELN$SCSLGET_CONFIG_DATA· 14-77 

requesting SCSI bus configuration data with • 
14-80 

ELN$SCSLGET_CONTROL_PORTS· 14-n 
connecting to generic class driver with • 

14-78 
ELN$SCSUSSUE_COMMAND· 14-77 

issuing SCSI commands with • 14-85 
ELN$SCSLMAP _MESSAGE_BUFFER· 14-77 

creating SCSI command message buffer 
with ·14-85 



Procedures (Cont.) 

ELN$SCS,-UNMAP _MESSAGE_BUFFER • 
14-77 
deleting SCSI command message buffer 

with ·14-89 
ELN$SET_DEFAULT_FILESPEC· 13-15 
ELN$TTY _ASSERT_BREAK· 14-40 

setting serial lines to spacing state with • 
14-57 

ELN$TTY _CANCEL_MODEM_EVENTS· 14-40 
canceling requests for modem events with • 

14--69 
ELN$TTY _CANCEL_OOB_CHARACTERS· 

14-40 
canceling out-of-band character requests 

with ·14-59 
ELN$TTY _GET_CHARACTERISTICS ·14-40 

getting terminal characteristics with • 11-13, 
11-43 

retrieving modem characteristics with • 14--68 
retrieving serial-line characteristics with • 

14-47 
ELN$TTY _READ • 14-40 

reading serial-line data with • 14-48 
ELN$TTY _RECE IVE_MODEM_EVENTS • 14-40 

receiving modem events with • .14-69 
ELN$TTY _RECEIVE_OOB_CHARACTER • 

14-40 
receiving out-of-band characters with • 14-59 

ELN$TTY _SET_CHARACTERISTICS· 14-40 
setting modem characteristics with • 14--68 
setting serial-line characteristics with • 14-47 
setting terminal characteristics with • 11-43 

ELN$TTY _SIGNAL_MOD EM_EVENTS • 14-40 
signaling modem events with • 14-69 

ELN$TTY _SIGNAL_OOB_CHARACTERS· 14-40 
signaling receipt of out-of-band characters 

with ·14-59 
ELN$TTY _WRITE· 14-40 

writing serial-line data with • 14-48 
ELN$UNIBUS_MAP • 6-12 
ELN$UNIBUS_UNMAP· 6-13 
ELN$UNLOAD_PROGRAM· 3-13 
ELN$UNLOCK_AREA • 5-29 

as area lock variable operation • 2-17 
unlocking areas with· 5-40 

ELN$UNLOCK_MUTEX • 4-5 
as mutex operation • 2-18 

Procedures 
ELN$UNLOCK_MUTEX (Cont.) 

unlocking mutexes with· 4-15 
ENABLE_ASYNCH_EXCEPTION· 7-12 
ENABLE_INTERRUPT· 6-7 
ENABLE_SWITCH ·3-11,3-17 
EXIT· 3-17 

as PROCESS object operation· 2-13 
FREE_MEMORY • 3-31 
GET_TIME· 4-5,4-8 
INITIALIZATION_DONE ·3-12,3-18,13-19 
JOB_PORT • 5-26 

as PORT object operation· 2-11 
KER$ALLOCATE_MAP· 6-10 
KER$ALLOCATE_PATH· 6-11 
KER$ALLOCATE_SYSTEM_REGION • 3-30 
KER$FREE_MAP· 6-11 
KER$FREE_PATH • 6-12 
KER$FREE_SYSTEM_REGION • 3-31 
KER$GET_JCB· 3-17 
KER$GET_UPTIME· 4-5,4-8 
KER$GET_USER· 3-18,12-3,12-16 
KER$LOCK_DEVICE • 6-8 
KER$MEMORY _SIZE • 3-31 
KER$NAME_OBJECT· 3-18 

as NAM E object operation • 2-1 0 
KER$RAISE_PROCESS_EXCEPTION • 3-19, 

7-12,7-13 
KER$SET _JOB_ELIGIBILITY· 3-19 

See also Tightly coupled symmetric 
multiprocessing 

in device drivers • 6-8 
KER$SET_USER· 3-22,12-2,12-17 
KER$UNLOCK_DEVICE • 6-8 
KER$UNWIND· 7--8,7-13 
KER$_ENTER_KERNEL_CONTEXT·6-14 
message-passing • 9-3 
MTPR· 6-10 
RAISE_EXCEPTION· 7-11,7-13 
RECEIVE 

as M ESSAG E object operation • 2-9 
receiving expedited messages with • 5-16 
receiving messages from network nodes 

with· 9-3 
receiving messages with· 5-12, 5-15, 5-26 
when circuit is disconnected· 5-19 

RESUME· 3-19 

Index-37 



Procedures 
RESUME (Cont.) 

as PROCESS object operation • 2-13 
SEND 

as MESSAGE object operation· 2-9 
sending expedited messages with • 5-15 
sending messages to network nodes with • 

9-3 
sending messages with· 5-14,5-27 
when circuit is disconnected • 5-19 

SET_JOB_PRIORITY· 3-20 
SET _PROCESS_PRIORITY • 3-21 

as PROCESS object operation· 2-13 
SET_TIME • 4-5, 4-8 
SIGNAL • 4-5, 5-29 

as area event operation • 2--6 
as area semaphore operation • 2-6 
as EVENT object operation· 2-8 
as PROCESS object operation· 2-13 
as SEMAPHORE object operation· 2-14 
signaling AREA objects with· 5-33,5-39 
signaling EVENT objects with· 4-16 
signaling PROCESS objects with • 3-22 

SIGNAL_DEVICE • 6-5 
as DEVICE object operation· 2-7 

SUSPEND • 3-22 
as PROCESS object operation • 2-13 

TRANSLATE_NAME 
as NAME object operation • 2-10 
for using named message ports· 5-14 
translating named ports with • 5-27 
translating universal port names with • 9-5 

VAXBI· 6-13 
WAIT_ALL· 6-5 

applied to AREA objects • 5-29, 5-33, 5-39 
applied to EVENT objects • 4-16 
applied to PORT objects • 5-12, 5-27 
applied to PROCESS objects • 3-23 
applied to SEMAPHORE objects • 4-12 
as AREA object operation • 2-5 
as DEVICE object operation • 2-7 
as EVENT object operation • 2-7 
as PORT object operation • 2-12 
as PROCESS object operation· 2-13 
as SEMAPHORE object operation • 2-14 
signaling SEMAPHORE objects with· 4-12 
specifying a time value with • 4-6 
synchronizing processes with • 4-2 

3S-lndex 

Procedures (Cont.) 

WAIT_ANY • 6-5 
applied to AREA objects • 5-29, 5-33, 5-39 
applied to EVENT objects· 4-16 
applied to PORT objects· 5-12,5-27 
applied to PROCESS objects • 3-23 
applied to SEMAPHORE objects • 4-12 
as AREA object operation· 2-5 
as DEVICE object operation • 2-7 
as EVENT object operation • 2-7 
as PORT object operation • 2-12 
as PROCESS object operation· 2-13 
as SEMAPHORE object operation· 2-14 
specifying a time value with • 4-6 
synchronizing processes with • 4-2 

WRITE_REGISTER • 5-4, 6-9 
Processes • 1-8, 3-1 

See also PROCESS objects 
activating· 3-4 
client • 1 0-3 
communication between • 5-1 ,5-1 to 5-9 

by sharing module-level data· 5-1 to 5-4 
by using queues • 5-4 to 5-9 

concurrent· 4-1 
creating • 3-2 
data passed by • 10-4 
disabling switching for • 3-11, 3-16 
enabling switching for· 3-11,3-17 
exiting from • 3-17 
multiple • 10-8 
name of· 10-3 
naming· 3-18 
priorities of • 3-9 

setting • 3-21 
resuming • 3-19 
returning user identity of • 3-1 e 
scheduling of· 3-9 
server • 1 0-3 
setting user identity of • 3-22 
suspending • 3-22 
switching of· 3-11 
synchronizing • 4-1 

by time ·4-6 
routines for • 4-4 
using events • 4-15 
using semaphores· 4-10 to 4-15 
with other processes; • 4-9 to 4-10 



Processes (Cont.) 

terminating • 3-5 
unblocking· 4-7 

due to deleted event· 4-18 
due to deleted semaphore· 4-14 
due to signaled event • 4-16 
due to signaled semaphor~· 4-11, 4-12 

waiting on • 4-9 
PROCESS objects • 2-12, 4-9 to 4-10 

See also Processes 
creating • 3-15 
definition of • 2-4 
deleting· 3-5,3-16 
naming • 3-18 
operations on • 2-12 
returning value of current • 3-16 
satisfying a wait on • 4-3 
signaling • 3-22 
waiting for· 3-23, 4-9 to 4-10 

Processor eligibility· 3-19 

See also Tightly coupled symmetric multiprocess
ing 

Processor registers • 6-10 
Process priorities· 3-9 

setting • 3-21 
Process scheduling· 3-9 
Process states • 3-6 to 3-8 

transitions between • 3-7 
Process sWitching· 3-11 
Process synchronization 

See Processes, synchronizing 
PROCESS values • 2-12 
Productivity and performance tools 

See ECl utility, EDISPLAY utility; Error logging 
Service; lATCP utility; -Remote Terminal 
Utility 

Program arguments • 3-4 
Program counter· 7-8 
Program Description Menu· 9-18 
Program image· 3-23 
Program loader utility procedures. 3-13 
Program region· 3-24 . 
Programs 

arguments of • 3-4 
initializing· 3-12,3-18 
routine bodies of· 3-4 

Promiscuous mode· 8-17 

PROTECT_FilE procedure ·13-14 
Protection, system· 1-16, 12-1 
Protection mask· 12-19 
Protocol identification • 8-16 
Protocol numbers 

in Internet protocol datagrams • 10-5 
Protocols 

DAP (data access protocol) • 14-3 
in communication tasks • 9-3 

DDA (direct device access) • 9-3, 14-7 to 14-24, 
14-39 to 14-62 
reading and writing data with· 14-9, 14-48 
reading data from mounted disks with· 

14-15 to 14-20 
reading data from unmounted disks with • 

14-12 to 14-14 
transferring data to system regions with • 

14-20 to 14-24 
Ethernet/IEEE 802 protocol 

that multicasts datagrams to LAN· nodes • 
9-17 . 

Internet 
See Internet protocols 

Internet Service • 1-15 
Network Service • 9-2 
routing, DECnet· 9-2 

Proxy access control • 12-5, 12-18 

Q 

Queues • 5-4 to 5-9 
Queue statuses, lAT port • 11-25 
QUIT exception· 3-5 

R 
RAISE_EXCEPTION procedure· 7-11,7-13 
RAISE_PROCESS_EXCEPTION procedure· 3-19, 

7-12, 7-13 
RARP (Reverse Address Resolution Protocol) 

definition of • 1 0-6 
servers • 1 0-6 

Raw protocol type· 1 0-16 
Raw sockets • 1 0-16 
read function • 1 0-55 

receiving data from sockets with • 1 0-70 
READ_REGISTER function • 5-4, 6-9 

Index-39 



READ_REGISTER function (Cont.) 
interprocess data sharing with - 5-2 

Ready state - 3-7 
realloc function - 5-3 
Realtime applications -1-1 
Realtime clock - 14-150 
Realtime device drivers -14-128 to 14-152 

AD032 -14-130 
ADV11-C 014-131 
ADV11-0 014-133 
AXV11-C 014-131 
DLVJ1 014-134 
DRB32 0 14-136 
DR03B· 14-140 
DRV11-J 014-142 
DRV11-W 014-144 
IEQ11-AlIEU11-A· 14-146 
KWV11-C·14-150 

Realtime executive 
See Kernel 

Receive errors, network interface - 10-43 
RECEIVE procedure 

as MESSAGE object operation· 2-9 
receiving expedited messages with· 5-16 
receiving messages from network nodes with -

9-3 
receiving messages with - 5-12, 5-15, 5-26 
when circuit is disconnected· 5-19 

Receive queue, TCP ·10-48 
recvfrom function • 10-55 

receiving data from sockets with • 10-71 
recv function • 1 0~55 

receiving data from sockets with • 10-70 
recvmsg function • 1 0-55 

receiving data from sockets with • 10-71 
Redirect messages, ICMp· 10-34 
Reference count • 10-32, 10-37 
Registers, device, reading from and writing to· 6-9 
Relative pointers, in areas • 5-32 
Remote nodes 

connecting to - 9-49 
specifying 09-47 

Remote port names 

See Terminal servers 
Remote ports 0 9-2 
Remote server names 

, See Terminal servers 

40-Index 

Remote Terminal Utility • 1-7, 9-49 
Remote VAXELN systems, testing communication 

of· 9-10 
Removable media flag, SCSI device-14-81, 14-113 
REMOVE_ENTRY procedure • 5-4 
RENAME_FILE procedure ·13-15 
Reply ports • 8-34 

waiting on· 8-35 
RESUME procedure • 3-19 

as PROCESS object operation· 2-13 
Retransmit timer, TCP • 10-48 
Retry count • 9-28 
Reverse Address Resolution Protocol (RARP) 

See RARP (Reverse Address Resolution 
Protocol) 

ROM, bootstrap· 9-36 
Routes, Internet· 10-18 

status of • 10-37 
types of • 10-31 

Routine address structure, SCSI port driver interface • 
14-116 

Routine bodies, activating - 3-4 
Routines 

See also Functions; Procedures 
executing in kernel mode - 6-14 
LlB$ADDX • C-9 
LlB$ADD_TIMES - C-9 
LlB$ANALYZE_SDESC· C-10 
LlB$CREATE_USER_VM_ZONE - C-10 
LlB$CREATE_VM_ZONE· C-11 
LlB$CVTDTB" C-12 
LI B$CVTOTB • C-13 
LlB$CVT _HTB • C-12 
LlB$DELETE_ VM_ZONE • C-13 
LlB$EMUL 0 C-14 
LlB$FLTUNDER· C-15 
LlB$FREE_VM_PAGE· C-15 
LlB$GET _INPUT • C-16 
LlB$GET_VM· C-16 
LlB$GET_VM_PAGE· C-17 
LlB$INT_OVER· C-18 
LlB$MATCH_COND - C-19 
LlB$MULTF _DELTA_TIME· C-20 
LlB$MULT _DELTA_TIME - C-19 
LlB$RESET_VM_ZONE· C-21 
LlB$$COPY _DXDX - C-21 
LlB$SCOPY _R_DX • C-21 



Routines (Cont.) 

LlB$SIGNAL • C-22 
LlB$SIG_TO_RET· C-23 
LlB$STOP • C-23 
LlB$SUBX • C-24 
LlB$SUB_TIMES· C-24 
STR$ANALYZE_SDESC. C-25 
SYS$ASCTIM • C-7 
SYS$GETMSG • 7-21 
SYS$GETTIM • C-8 
SYS$UNWIND • C-8 

Routing, Internet 
description of • 1 0-18 
information, protocol for returning • 10-5 
setting bypass for sockets • 1 0-92 
static • 10-18 
subnetwork • 10-18 

Routing algorithm • 10-19 to 10-23 
addresses used in • 10-22 

Routing protocol, DECnet· 9-2 
Routing table • 1 0-19 

adding entries to • 10-31 
deleting entries from • 10-31 
managing • 10-31 to 1 0-39 

Routing table entries 
adding to routing table· 10-31 
checking status of • 10-34 
credit values for· 1 0-34 
deleting from routing table· 1 0-31 
marking for deletion • 10-32 
reference count for· 10-32, 10-34, 10-37 
retrieving· 10-37 
setting maximum number of· 10-23 
usage count for • 10-37 

RTL object module library 

See Object module library 
RTLOBJECT object module library 

See Object module library 
RUN command • 3-3 

activating Down-Line Load Service with • 9-18 
Run state • 3-7 
Runtime environment· 1-2 
Runtime facilities· 1-14 
Runtime libraries· 1-3, 1-6 

DECwindows ·1-7,1-17 
Runtime library message files • 7-16, 7-23 
Runtime messages· 7-14 

Runtime messages (Cont.) 

using with programs· 7-19 
Runtime services 

Authorization Service· 1-16, 12-3 to 12-15 
Down-Line Load Service • 9-18 
Error Logging Service· 1-6 
Ethernet/IEEE 802 Datagram Service· 1-6, 8-1, 

8-4 
File Service· 1-6, 13-1 
Internet Services ·1-6, 1-15,8-1, 10-1 
LAT host services· 1-6, 11-1 
Name Service 

See Name Service 
Network Service· 1-6, 1-15,8-1,9-1 

See also Network Service 
Runtime utilities 

See ECL utility; EDISPLAY utility; LATCP utility; 
VAXELN Performance Utility; Remote 
Terminal Utility 

s 
SO address space • ~23 

allocating· 3-30 
freeing· 3-31 
using to transfer data ·14-7, 14-10, 14-20 to 

14-24 
SAPs (service access points) • 8-18 
SCDRIVER disk driver • 14-2 
Scheduler • 3-6 to 3-14 

initializing programs for· 3-12 
job and process scheduling by· 3-9 
loading programs for· 3-13 
multiprocessing scheduling by. 3-14 
process states • 3-6 

SCP (session control protocol) • 9-2 
Script file, down-line load data base • 9-18 
SCSI buses • 14-74 

configuration data • 14-111, 14-120 
requesting· 14-80 

configuration tables for· 14-80, 14-111 
initiator on· 14-74 
target devices on • 14-74 

SCS I class drivers 
associating with device types ·14-115 
association with device types • 14-114 
compiling and linking • 14-128 

Index-41 



SCSI class drivers (Cont.) 

declaring 0 14-115 
defining device locks for 0 14-119 
programming 014-116 to 14-127 
setting up entry point for 0 14-120 
starting 0 14-116 

SCSI command request packets 
allocating 0 0-3 
freeing· 0-10 
mapping data buffers for 0 0-20 
unmapping data buffers for 0 0-24 

SCSI commands 
information for· 14-87 
issuing 00-16 

using generic class driver interface • 14-85 
using port driver interface • 14-125 

message buffer for • 14-85 
SCSI configuration table 0 14-111 . 
SCSLCONNECT_DEVICE procedure 014-77 

connecting to SCSI devices with ·14-83 
SCSI device controllers· 14-74 
SCSI device markers 014-113,14-120 
SCSI devices· 14-73 

allocating command request packet for 0 D-3 
allocating I/O request packets for 0 14-122 
characteristics of 0 14-80 
configuration table for· 14-120 
connecting to· 14-83 
deallocating I/O request packets for 014-122 
defining locks foro 14-119 
descriptors for 0 14-115 
1/0 req uests 

mappi ng data buffers for 0 14-123 
unmapping data buffers for· 14-124 

IDs for· 14-82 
initializing • 0-13 
initializing controliers· 14-127 
issuing commands to 00-16 
setting current connection flag for 0 14-121 
to service, checking for 0 14-121 
types of 014-81, 14-112 

SCSLDISCONNECT _DEVICE procedure 0 14-77 
disconnecting SCSI device processes with • 

14-84 
SCSI driver 014-73 

See also SCSI generic class driver 
architecture· 14-74 
class drivers· 14-111 

42-lndex 

SCSI driver (Cont.) 

components of· 14-110 
data structures and constants • 14-111 
disk class driver· 14-73 

using 0 14-76 
modifying start-up module· 14-114 

example of 014-114 
modules, compiling and linking· 14-128 
port driver 014-111 

interface 0 14-116 
sniffer module • 14-111 
start-up module 014-111 
user-defined class drivers 014-110 to 14-128 

SCSLFREE_CONFIG_DATA procedure ·14-77 
freeing configuration data resources with • 14-82 

SCSI_FREE_CONTROL_PORT procedure 014-77 
freeing source port resources with • 14-79 

SCSI generic class driver 

See also SCSI generic class driver procedures 
connecting to 0 14-78 
example • 14-91 to 14-11 0 
message interface 0 14-77 to 14-11 0 
using 014-77 to 14-110 

SCSI generic class driver procedures 
ELN$SCSLCONNECT_DEVICE 014-77 

connecting to SCSI devices with 0 14-83 
ELN$SCSI_DISCONNECT_DEVICE 014-77 

disconnecting SCSI device processes with 0 

14-84 
ELN$SCSLFREE_CONFIG_DATA 014-77 

freeing configuration data resources with • 
14-82 

ELN$SCSLFREE_CONTROL_PORT 014-77 
freeing source port resources with • 14-79 

ELN$SCSLGET_CONFIG_DATA· 14-77 
requesting SCSI bus configuration data with· 

14-80 
ELN$SCSLGET_CONTROL_PORTS· 14-77 

connecting to generic class driver with • 
14-78 

ELN$SCSUSSUE_COMMAND· 14-77 
issuing SCSI commands with • 14-85 

ELN$SCSLMAP _MESSAGE_BUFFER 0 14-77 
creating SCSI command message buffer 

with ·14-85 
ELN$SCSLUNMAP _MESSAGE_BUFFER • 

14-77 



SCSI generic class driver procedures 
ELN$SCSLUNMAP _MESSAGE_BUFFER (Cont.) 

deleting SCSI command message buffer 
with ·14-89 

modules for using· 14-78 
SCSLGET_CONFIG_DATA procedure ·14-77 

requesting SCSI bus configuration data with • 
14-80 

SCSLGET_CONTROL_PORTS procedure ·14-77 
connecting to generic class driver with· 14-78 

SCSI host adapter· 14-74 
SCSUSSUE_COMMAND procedure· 14-77 

issuing SCSI commands with ·14-85 
SCSLMAP _MESSAGE_BUFFER procedure • 14-77 

creating SCSI command message buffer with • 
14-85 

SCSI port driver· 14-110, 14-111 
See also SCSI port driver interface functions 
linking· 14-128 
terminating· ~7 

SCSI port driver functions 
PORT$INITIALlZE_CONTROLLER 

initializing SCSI device controllers with • 
14-127 

SCSI port driver interface· 14-116 
See also SCSI port driver interface functions 
routine address structure· 14-116 

SCSI port driver interface functions· ~1 
entry points for· 14-116 
invoking • 14-117 
linking • 14-128 
modules for using· 14-118 
PORT$ALLOCATE_DEVICE ·14-116 

allocating SCSI device request packets with • 
14-122 

description of • ~3 
PORT$EXITHANDLER • ~7 
PORT$FREE_DEVICE • 14-116 

deallocating SCSI device request packets 
with· 14-122 

description of· ~1 0 
PORT$INITIALlZE_CONTROLLER· 14-116 

description of· ~13 
PORT$ISSUE_COMMAND· 14-116 

description of • ~ 16 
issuing SCSI commands with· 14-125 

PORT$MAP _BUFFER • 14-116 

SCSI port driver interface functions 
PORT$MAP _BUFFER (Cont.) 

description of • 0-20 
mapping I/O request packet buffer with • 

14-123 
PORT$UNMAP _BUFFER ·14-116 

description of • 0-24 
unmapping I/O request packet buffer with • 

14-124 
SCSLUNMAP _MESSAGE_BUFFER procedure· 

14-77 
deleting SCSI command message buffer with • 

14-89 
SCSI user-defined class drivers· 14-110 to 14-128 
Secondary loader • 9-36, 9-41 

in down-line load data base • 9-21 
Security • 12-1 
Segmentation • 9-5 
Segmentation, message· 5-17 
Segments 

setting maximum number of octets in • 10-24 
select function • 1 0-55 

polling sockets for I/O activity with • 1 0-73 
Semaphore count • 4-12 
SEMAPHORE objects· 2-13 

See also Semaphores 
creating • 4-11 
definition of· 2-4 
deleting· 4-14 
operations on • 2-14 
satisfying a wait on· 4-3 
signaling • 4-12 
waiting on· 4-12 

Semaphores • 4-1 0 to 4-15 
See also SEMAPHORE objects 
associated with AREA objects· 5-31 
binary· 4-11 

example of • 4-13 
optimizations of· 4-14 

counting· 4-12 
example of· 4-12 

synchronizing job execution with • 5-41 
SEMAPHORE values· 2-14,4-12 
send function • 10-55 

sending data to sockets with • 1 0-67 
sendmsg function • 1 0-55 

sending data to sockets with • 10-68 

Index-43 



SEND procedure 
as MESSAGE object operation - 2-9 
sending expedited messages with· 5-15 
sending messages to network nodes with • 9-3 
sending messages with· 5-14,5-27 
when circuit is disconnected - 5-19 

Send queue, TCP - 10-48 
sendto function - 10-55 

sending data to sockets with - 1 0-68 
Sequence numbers, TCp· 10-8, 10-48 
Serial-line device drivers • 14-32 
Serial lines 

getting characteristics of • 14-41 
reading data from - 14-48 
setting characteristics of • 14-41 
setting to spacing state - 14-57 
writing data to· 14-48 

Server names 
See Terminal servers 

Servers· 10-3 
See also Processes 
BOOTP ·10-7 
DECwindows -1-17 
name-9-6 

communication • 9-6 
displaying current - 9-6 
protocol for electing - 9-7 

RARP ·10-6 
sample TCP • 10-84 to 10-88 
sample UDP -10-77 to 10-81 
terminal 

See Terminal servers 
Service 

Authorization -1-16, 12-3 to 12-15 
Down-Line Load • 9-8, 9-18 
Error Logging • 1--6 
Ethernet/IEEE 802 Datagram· 1--6, 8-1 
File - 1--6 
Internet ·1--6, 1-15, 8-1, 10-1 
LAT 

See LAT (local area transport) 
Name 

See Name Service 
Network· 1-6, 1-15, 8-1 

See also Network Service 
Network Management· 9-8,9-11 

Service access points (SAPs)· 8-18 

44-lndex 

Service announcement messages • 11-16 
See also LAT (local area transport) 
sending - 11-21 

Service nodes 
See LAT (local area transport) 

Service ratings • 11-17 
See also LAT (local area transport) 
overriding default of • 11-20 

Service timer • 9-28 
Session control protocol (SC P) • 9-2 
Sessions, disconnecting LAT ·11-36, 11-42 

See also LAT (local area transport) 
SET DEFAULT FILESPEC procedure ·13-15 
SET-EXECUTOR command • 9-9 
SET HOST command • 9-49 
SET_JOB_ELlGIBILITY procedure· 3-19 

in device drivers • 6-8 
SET JOB PRIORITY procedure • 3-20 
SET-MESSAGE command • 7-23 
SET PROCESS PRIORITY procedure· 3-21 

a-; PROCESS object operation· 2-13 
setsockopt function· 10-91 

setting socket characteristics with • 1 0-92 
SET_TIME procedure. 4-5,4-8 
SET_USER procedure· 3-22,12-2, 12-17 
Shareable message text· 7-19,7-22,7-23 
Shared data 

between jobs • 5-28 to 5-46 
between processes - 5-1 to 5-9 
unmapping • 5-46 

SHOW CIRCUIT command· 9-9 
SHOW DEVICES command • 9-29 
SHOW EXECUTOR command· 9-10 
SHOW KNOWN CIRCUIT command • 9-10 
SHOW KNOWN LINE command· 9-10 
SHOW NETWORK command • 9-45, 9-46, 9-47 
SHOW NODE command· 9-9,9-10 
Shut-down, socket - 10-75 
shutdown function • 10-56 

shutting down sockets with • 10-75 
SIGNAL_DEVICE procedure • 6-5 

as DEVICE object operation • 2-7 
SIGNAL procedure· 4-5, 5-29 

as area event operation • 2--6 
as area semaphore operation • 2--6 
as EVENT object operation • 2-8 
as PROCESS object operation • 2-13 



SIGNAL procedure (Cont.) 

as SEMAPHORE object operation • 2-14 
signaling AREA objects with· 5-33,5-39 
signaling EVENT objects with· 4-16 
signaling PROCESS objects with • 3-22 
signaling SEMAPHORE objects with· 4-12 

Sliding windows, TCP • 10-8, 10-48 
setting number of octets in • 10-24 

Small Computer System Interface devices 

See SCSI devices 
SNAP SAP • 8-16 
Sniffer module, SCSI driver· 14-111 
sockaddr structure· 10-58 
sockaddr_in structure ·10-58 
Socket, types of • 1 0-57 
Socket communication 

connectionless·10-17, 10-68, 10-71 
connection-oriented • 10-16, 10-66, 10-70 
in TCP applications • 10-84 to 10-91 
in UDP applications • 10-77 to 10-84 

Socket connections 
accepting • 10-65 
establishing • 10-62 to 10-66 
initiating • 10-62 
requests for • 1 0-64 

Socket descriptors • 10-57 
Socket device descriptors • 10-60 
socket function ·10-56 

creating sockets with· 1 0-57 
Socket interface functions • 10-55 
Socket names • 10-16 

retrieving • 10-91 
Sockets 

accepting socket connections for • 10-65 
binding names to • 10-58 
blocking • 10-69, 10-73 
closing • 1 0-76 
controlling characteristics of· 1 0-60 
creating • 10-57 
datagram • 1 0-16 
definition of ·10-15 
establishing connections for • 10-62 to 10-66 
getting options for • 10-93 
initiating connections for • 10-62 
listening on • 10-64 
name structures for • 1 0-58 
nonblocking • 10-65, 10-69, 10-73 

Sockets (Cont.) 
pending exceptions for· 10-73 
polling for VO activity • 10-73 
properties of • 1 0-15 
raw ·10-16 
receiving data from • 10-70 
retrieving and setting characteristics of • 10-91 
sending data to • 10-66 
setting characteristics of· 1 0-92 
setting to blocking or nonblocking • 10-60 
shutting down· 10-75 
stream· 10-16 
types of • 10-16, 1 0-57 
using in TCP applications • 10-84 to 10-91 
using in UDP applications ·10-n to 10-84 
using to transfer data • 10-66 to 10-75 

Source files, message· 7-15 
Spacing state, setting serial lines to· 14-57 
SYS$GETMSG routine· 7-21 
Stack frames· 7-2 
Stack pointer • 7-1 
Stacks 

architecture of· 7-1 
call frames of· 7-2 
direction of growth for· 7-2 
frames of· 7-2 
initial· 7-1 
managing • 3-27 
popping data from • 7-2 
pushing data onto • 7-2 
unwinding • 7-13 
virtual addresses for· 7-1 

Stack utility procedures· 3-28 
Start-up module, SCSI driver· 14-111 
States, process • 3-6 to 3-8 
static attribute • 5-2 
Static service rating • 11-20 

See also LAT (local area transport) 
Status codes· 7-13 
Status values • A-1 

See also Exceptions; Status codes 
STR$ emulation routines • 0-25 
STR$ANALYZE_SDESC routine • 0-25 
Stream-based communication • 10-7 
Stream protocol type • 10-16 
Stream sockets • 10-16 
String runtime library message files· 7-17 
Subnet masks • 1 0-18 

Index-45 



Subnet routing· 10-18 
Subnetworks ·10-10 
Subprocesses 

See Processes 
SUSPEND procedure • 3-22 

as PROCESS object operation • 2-13 
Suspend state· 3-7 
Symbols, message· 7-15, 7-19 
Symmetric multiprocessing 

See Multiprocessing 
Synchronization· 4-1 

by time· 4-6 
by waiting on process completion • 4-9 
routines for • 4-4 
using wait procedures for • 4-2 
with events • 4-15 
with mutexes· 4-14 
with other processes • 4-3, 4-9 to 4-1 0 
with semaphores • 4-10 to 4-15 

Synchronous exceptions • 7-4 
SYS$ASCTIM routine • C-7 
SYS$GETMSG system service· 7-14 
SYS$GETIIM routine • C-8 
System Builder 

creating jobs with • 3-3 
loading program images with • 3-3 
menus 

See System Builder menus 
setting terminal characteristics with • 14-41 

System Builder menus 
Device Description • 8-2 
I nternet Characteristics • 10-23 
I nternet Network Description • 1 0-23 
Main· 10-23 
Network Node Characteristics • 8-2 

enabling trigger booting on • 9-40 
Program Description· 9-18 
System Characteristics 

enabling down-line loading on • 9-44 
System Characteristics Menu 

enabling down-line loading on • 9-44 
System images· 1-1, 1-3 

components of· 1-4 
down-line loading· 9-41 
in down-line load data base • 9-21 
loading into KA800 processor • 3-32 
memory mapping of· 3-23 

46-lndex 

System images (Cont.) 

specified for down-line load operations • 9-40 
System-level routines • 6-9 to 6-10 
System region • 3-23 

allocating· 3-30 
freeing· 3-31 
using to transfer data ·14-7, 14-10, 14-20 to 

14-24 
System service emulation routines· C-7 
System service runtime message files • 7-17 
System services, $GETMSG· 7-14 
System time, setting and getting • 4-8 
SYS$UNWIND routine • C-8 

T 
Tape devices • 14-28 
Tape driver ·14-27 

error recovery· 14-29 
features • 14-28 
interface to File Service • 14-28 
power-failure recovery of· 14-29 
tape specifications • 14-28 

Tape File Service· 1-16, 13-1 
using to interface with tape drivers· 13-19 
utility procedures provided by· 13-17 

Tape utility procedures • 13-4, 13-17 to 13-18 
Target devices, SCSI· 14-74 
Target-initiated load requests • 9-35 

figure of • 9-35 
load sequence for • 9-36 

TCP (Transmission Control Protocol) • 10-4 
characteristics, setting • 10-24 
characteristics of· 10-8 
circuits • 10-7 
connection data, retrieving • 10-48 
description of· 10-7 
functions of· 10-7 
returning statistics for· 10-45 
sample client • 1 0-88 to 10-91 
sample server· 1 0-84 to 1 0-88 
socket communication example • 10-84 to 10-91 
urgent messages • 1 0-48 

Terminal characteristics • 14-41 
getting· 11-43, 14-41 
setting • 11-43, 14-41 

Terminal drivers • 14-32 



Terminal drivers (Cont.) 

ANSI control sequences -14--65 
characteristics of - 14-41 
DDA interface for • 14-39 to 14--02 
line terminators • 14-36 
monitoring modem events with· 14-69 
monitoring out-of-band characters with • 14-59 
reading and writing data with· 14-48 
retrieving terminal characteristics with • 14-41 
setting spacing state with • 14-57 
setting terminal characteristics with • 14-41 
setting up DDCMP communication with • 14-36 
synchronizing • 14-35 
terminal I/O - 14-35 
type-ahead buffer - 14-35 
using control characters with • 14-62 
using escape sequences with • 14-64 
using modem control with· 14--66 

Terminal emulators - 1-17 
Terminal servers· 1-15, 11-1 

See also LAT (local area transport) 
characteristics record for • 11-25 
groups ·11-15 
names of • 11-25 
ports on • 11-25 
retrieving characteristics of • 11-25 
waiting for connection from LAT port. 11-35 

Terminal utility procedures • 14-40 
ELN$TTY_ASSERT_BREAK 

setting serial lines to spacing state with • 
14-57 

ELN$TTY_CANCEL_MODEM_EVENTS 
canceling requests for modem events with • 

14-69 
ELN$TTY_CANCEL_OOB_CHARACTERS 

canceling out-ot-band character requests 
with· 14-59 

ELN$TTY_GET_CHARACTERISTICS· 11-43 
retrieving modem characteristics with • 14--68 
retrieving serial-line characteristics with • 

14-47 
ELN$TTY_READ 

reading serial-line data with • 14-48 
ELN$TTY _RECEIVE_MODEM_EVENTS 

receiving modem events with • 14-69 
ELN$TTY _RECEIVE_OOB_CHARACTER 

receiving out-ot-band characters with • 14-59 

Terminal utility procedures (Cont.) 

ELN$TTY _SET_CHARACTERISTICS 
setting modem characteristics with • 14-68 
setting serial-line characteristics with • 14-47 
setting terminal characteristics with· 11-43 

ELN$TTY _SIGNAL_MODEM_EVENTS 
signaling modem events with • 14--09 

ELN$TTY _SIGNAL_OOB_CHARACTERS 
signaling receipt of out-of-band characters 

with ·14-59 
ELN$TTY _WRITE 

writing serial-line data with· 14-48 
Tertiary loader • 9-36, 9-41 

in down-line load data base • ~21 
Tightly coupled symmetric multiprocessing • 1-11 

See also Multiprocessing 
returning a JCB address during • 3-17 
scheduling for· 3-14 
setting processor eligibility during • 3-19, 6-8 
synchronizing access to device communication 

region for • 6-8 
Time 

setting and getting • 4-8 
specifying absolute • 4-2 
specifying interval of - 4-2 
waiting for an absolute· 4-6 
waiting for an interval of • 4-6 

Timeout 
in WAIT procedures • 4-2 
waiting on • 4-6 

Timer 
keep-alive, TCP • 10-49 
linger, TCP • 10-49 
persist, TCp· 10-48 
retransmit, TCP • 10-48 

Time record· 4-6 
Time representation routines· 4-8 
timeval structure • 10-74 
Trailer datagrams ·10-43 
TRANSLATE_NAME procedure 

as NAM E object operation • 2-10 
for using named message ports • 5-14 
translating named ports with • 5-27 
translating universal port names with • ~5 

Transmission Control Protocol (TCP) 

See TCP (Transmission Control Protocol) 
Transmit errors, network interface· 10-43 

Index-47 



Trigger booting • 9-18, 9-36 to 9-40 
enabling 0 9-40 
example of • 9-38 

Trigger boot requests • 9-36 
figure of • 9-37 
overriding load request with • 9-41 

TTY_ASSERT_BREAK procedure ·14-40 
setting serial lines to spacing state with • 14-57 

TTY_CANCEL_MODEM_EVENTS procedure 0 14-40 
canceling requests for modem events with • 14-69 

TTY_CANCEL_OOB_CHARACTERS procedure· 
14-40 

canceling out-of-band character requests with· 
14-59 

TTY_GET_CHARACTERISTICS procedure ·14-40 
retrieving modem characteristics with • 14-68 
retrieving serial-line characteristics with· 14-47 

TTY_READ procedure 0 14-40 
reading serial-line data with • 14-48 

TTY _RECEIVE_MODEM_EVENTS procedure· 
14-40 

receiving modem events with· 14-69 
TTY_RECEIVE_OOB_CHARACTER procedure· 

14-40 
receiving out-of-band characters with· 14-59 

TTY_SET _CHARACTERISTICS procedure· 14-40 
setting modem characteristics with • 14-68 
setting serial-line characteristics with 0 14-47 

TTY _SIGNAL_MODEM_EVENTS procedure· 14-40 
signaling modem events with 014-69 

TTY_SIGNAL_OOB_CHARACTERS procedure· 
14-40 

signaling receipt of out-of-band characters with· 
14-59 

TTY_WRITE procedure • 14-40 
writing seriaHine data with 0 14-48 

u 
UDP (User Datagram Protocol) 010-4 

characteristics • 1 0-6 
description of· 1 0-6 
reliability of • 1 0-6 
returning statistics for • 10-45 
sample client • 10-82 to 10-84 
sample server ·10-77 to 10-81 
socket communication example· 10-77 to 10-84 

48-lndex 

UIC (user identification code) 012-2, 12-19 
UNIBUS_MAP procedure· 6-12 
UNIBUS_UNMAP procedure· 6-13 
Universal name service 

stopping· 9-14 
Universal name table 

ensuring integrity of • 9-8 
managing • 9-5, 9-6 

Universal port names· 2-10, 5-10, 5-13, 9-5,9-7, 
13-5 

See also Local port names 
creating • 5-25 
creation of • 9-6 
deletion of • 9-7 
managing • 9-5 
scope of • 9-6 
translation of· 9-7 

UNLOAD_PROGRAM procedure • 3-13 
UNLOCK_AREA procedure • 5-29 

as area lock variable operation· 2-17 
unlocking areas with • 5-40 

UNLOCK_DEVICE procedure 0 6-8 
UNLOCK_MUTEX procedure • 4-5 

as mutex operation 0 2-18 
unlocking mutexes with· 4-15 

Unmounted disks 
reading from ·14-12 to 14-14 

Unwind exception condition • 7-9 
Unwind operations· 7-8 

special cases of • 7-8 
UNWIND procedure • 7-8, 7-13 
Urgent messages, TCp· 10-48 
Usage count • 1 0-37 
User Datagram Protocol (UDP) 

See UDP (User Datagram Protocol) 
User name 0 12-2 
Utilities 

v 

See ECL utility; EDISPLAY utility; LATCP utility; 
VAXELN Performance Utility; Remote 
Terminal Utility 

Valid data flag, SCSI device 014-80,14-112 
Values 

AREA· 2-5 
AREA_LOCK_VARIABLE 02-16 



Values (Cont.) 
DEVICE· 2-6 
EVENT· 2-7 
MESSAGE· 2-8,5-14 
NAME· 2-10,5-13 
PORT· 2-11, 5-12, 5-13 
PROCESS· 2-12 
SEMAPHORE· 2-14,4-12 

Variables, shared· 5-1 
VAXBI bus device-handling procedures· 6-13 
vaxc$get_sdc function • 10-56 
vaxc$sockeCcontrol function ·10-56 
VAXElN Command language (ECl) Utility • 1-7 

See also ECl commands 
as LAT host service· 11-2 

VAXElN debugger 

See Debugger 
VAXElN DECnet systems 

managing, from VMS systems· 9-9 
testing Network Service for • 9-10 

VAXElN DECwindows software 
See DECwindows software 

VAXElN Display Utility • 1-7 
VAXElN Down-Line load Service 

See Down-Line load Service 
VAXElN Internet Services 

See Internet Services 
VAXElN Kernel 

See Kernel 
VAXElN Name Service 

See Name Service 
VAXElN Network Management Service 

See Network Management Service 
VAXElN Network Service 

See Network Service 
VAXElN Pascal system data types· 2-2 
VAXElN Performance Utility • 1-7 
VAXElN programming concepts ·1-7 
VAXElN runtime libraries 

See Libraries 
VAXElN runtime messages 

See Runtime messages 
VAXElN SCSI driver 

See SCSI driver 
VAXElN service nodes 

See LAT (local area transport) 
VAXElN systems ·1-1,1-3 

VAXElN systems (Cont.) 

accepting connections on • 9-48 
components of • 1-4 
down-line loading • 9-41 
managing from VMS system • 9-9 
memory mapping of· 3-23 
multinode· 9-1 
node names for 

using from VMS systems • 9-46 
node numbers for 

using from VMS systems • 9-46 
protecting • 1-16 
requesting connections from • 9-47 
specified for down-line load operations • 9-40 
testing communication of remote· 9-10 
testing Network Service for • 9-10 
that communicate with VMS nodes • 9-44 
using remote node numbers from • 9-47 

VAXElN utilities 
See ECl utility; EDISPlAY utility; lATCP utility; 

VAXElN Performance Utility; Remote 
Terminal Utility 

vaxc$get_sdc function 
returning socket device descriptors with • 10-60 

vaxc$socket_ control function 
setting socket characteristics with • 10-60 

VAX stack architecture· 7-1 
Virtual address space • 3-23 
Virtual circuits 

See Circuits 
Virtual-memory driver • 14-24 
VMS emulation routines· C-1 

calling· C-4 
LlB$ADDX • C-9 
LlB$ADD_ TIMES • C-9 
LlB$ANAlYZE_SDESC· C-10 
LlB$CREATE_USER_VM_ZONE· C-10 
LlB$CREATE_VM_ZONE· C-11 
LlB$CVTDTB • C-12 
LlB$CVTOTB • C-13 
LlB$CVT_HTB· C-12 
LlB$DElETE_ VM_ZONE • C-13 
LlB$EMUl· C-14 
LlB$FlTUNDER· C-15 
LlB$FREE_VM_PAGE· C-15 
LlB$GET _INPUT • C-16 
LlB$GET_VM· C-16 
LlB$GET_VM_PAGE· C-17 

Index-49 



VMS emulation routines (Cont.) 

LlB$INT_OVER· C-18 
LlB$MATCH_COND • C-19 
LlB$MULTF_DELTA_TIME· C-20 
LlB$MULT_DELTA_TIME· C-19 
LlB$RESET _ VM_ZONE • C-21 
LlB$SCOPY _DXDX • C-21 
LlB$SCOPY _R_DX • C-21 
LlB$SIGNAL • C-22 
LlB$SIG_TO_RET· C-23 
LlB$STOP • C-23 
LlB$SUBX • C-24 
LlB$SUB_TIMES· C-24 
STR$ANALYZE_SDESC· C-25 
summary of· C-1 
SYS$ASCTIM • C-7 
SYS$GETIIM • C-8 
SYS$UNWIND • C-8 

VMS file-handling operations • 13-10 
VMS Message Utility· 7-14 
VMS network 110 • 9-45 
VMS nodes 

accepting connections on· 9-48 
communicating with· 9-44 
requesting connections from • 9-48 

Volume names ·13-3 
in file specifications • 13-5 

w 
WAIT_ALL procedure • 6-5 

applied to AREA objects • 5-29, 5-33, 5-39 
applied to EVENT objects • 4-16 
applied to PORT objects· 5-12, 5-27 
applied to PROCESS objects • 3-23 
applied to SEMAPHORE objects. 4-12 
as AREA object operation • 2-5 
as DEVICE object operation • 2-7 
as EVENT object' operation· 2-7 
as PORT object operation· 2-12 
as PROCESS object operation· 2-:-13 
as SEMAPHORE Object operation • 2-14 
specifying a time value with • 4-6 
synchronizing processes with • 4-2 

WAIT_ANY procedure • 6-5 
applied to AREA objects • 5-29, 5-33, 5-39 
applied to EVENT objects • 4-16 

50-Index 

WAIT_ANY procedure (Cont.) 

applied to PORT objects· 5-12,5-27 
applied to PROCESS objects· 3-23 
applied to SEMAPHORE objects • 4-12 
as AREA object operation • 2-5 
as DEVICE object operation· 2-7 
as EVENT object operation • 2-7 
as PORT object operation • 2-12 
as PROCESS object operation· 2-13 
as SEMAPHORE object operation· 2-14 
specifying a time value with • 4-6 
synchronizing processes with • 4-2 

Waiting· 3-23,4-2 
for a DEVICE Object· 2-7, 6-5 
for an AREA object • 2-5 
for an EVENT object • 2-7 
for a PORT object· 2-12 
for a PROCESS object· 2-13,4-9 to 4-10 
for a SEMAPHORE object· 2-14 
for a specified time • 4-6 
for processes • 4-9 
on events • 4-15 
on semaphores· 4-10 to 4-15 

Wait state • 3-7 
Warning status codes • 7-14 
Wildcards 

in calls to down-line load procedures • 9-22 
in calls to Down-Line Load Service procedures • 

9-24,9-29,9-30 
in calls to ELN$INET _SHOW_INTERFACE 

procedure • 10-42 
Window Manager • 1-17 
Windows, sliding • 10-48 
write function • 10-56 

sending data to sockets with • 10-66 
WRITE_REGISTER procedure· 5-4, 6-9 

interprocess data sharing with • 5-2 

x 
XBDRIVER datalink driver· 8-2 
XEDRIVER datalink driver • 8-2 
XQDRIVER datalink driver • 8-2 

z 
ZERO EXECUTOR command· 9-10 



ZERO KNOWN CIRCUIT command· 9-10 
ZERO KNOWN LINE command • 9-10 
ZERO NODE command· 9-10 

Index-51 





HOW TO ORDER ADDITIONAL DOCUMENTATION 

From Call 

Alaska, Hawaii, 603-884-6660 
or New Hampshire 

Rest of U.S.A 
and Puerto Ricol 

800-DIGITAL 

Write 

Digital Equipment Corporation 
P.O. Box CS2008 
Nashua NH 03061 

lPrepaid orders from Puerto Rico, call Digitars local subsidiary (809-754-7575) 

Canada 

Internal orders 
(for software 
documentation) 

Internal orders 
(for hardware 
documentation) 

800-267-6219 
(for software 
documentation) 

613-592-5111 
(for hardware 
documentation) 

DTN: 241-3023 
508-874-3023 

DTN: 234-4323 
508-351-4323 

Digital Equipment of Canada Ltd. 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 
Attn: Direct Order Desk 

Software Supply Business (SSB) 
Digital Equipment Corporation 
Westminster MA 01473 

Publishing & Circulation Services (P&CS) 
NR03-1IW3 
Digital Equipment Corporation 
Northboro MA 01532 





Reader's Comments 
VAXELN Runtime Facilities Guide 

AA-JM81 E-TE 

Your comments and suggestions will help us improve the quality of our future documen
tation. Please note that this form is for comments on documentation only. 

I rate this manual's: Excellent Good Fair 

Accuracy (product works as described) 0 0 0 
Completeness (enough information) 0 0 0 
Clarity (easy to understand) 0 0 0 
Organization (structure of subject matter) 0 0 0 
Figures (useful) 0 0 0 
Examples (useful) 0 0 0 
Index (ability to find topic) 0 0 0 
Page layout (easy to find information) 0 0 0 

What I like best about this manual: 

What I like least about this manual: 

My additional comments or suggestions for improving this manual: 

I found the following errors in this manual: 
Page Description 

Please indicate the type of user/reader that you most nearly represent: 

o Administrative Support 
o Computer Operator 
o EducatorlTrainer 
o Programmer/Analyst 
o Sales 

Name!I'itle 

Company 

Mailing Address 

10/87 

o ScientistiEngineer 
o Software Support 
o System Manager 
o Other (please specify) 

Dept. 

Date 

Phone 

Poor 

0 
0 
0 
0 
0 
0 
0 
0 



Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - - - -

BUSINESS REPL V MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
CORPORATE USER PUBLICATIONS 
PK03-1/D30 
129 PARKER STREET 
MAYNARD, MA 01754-2198 

111'"111111 ••• 1.1.1 •• 1"11.1"1.1"1".1.1.1 ••• 11.1 
Do Not Tear - Fold Here 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 


