ACI 318-14 RC-PN EXAMPLE 001

Slab Punching Shear Design

Problem Description

The purpose of this example is to verify slab punching shear design in ETABS.
The numerical example is a flat slab that has three 24 -foot-long spans in each direction, as shown in Figure 1.

Figure 1: Flat Slab For Numerical Example
program name: ETABS
REVISION NO.: $\quad \underline{ }$
The slab overhangs the face of the column by 6 inches along each side of the structure. The columns are typically 12 inches wide by 36 inches long, with the long side parallel to the Y-axis. The slab is typically 10 inches thick. Thick shell properties are used for the slab.

The concrete has a unit weight of 150 pcf and an f'c of 4000 psi. The dead load consists of the self weight of the structure plus an additional 20 psf . The live load is 80 psf .

Technical Features of ETABS Tested

- Calculation of punching shear capacity, shear stress, and D/C ratio.

Results Comparison

Table 1 shows the comparison of the ETABS punching shear capacity, shear stress ratio, and D/C ratio with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this example.

Table 1 Comparison of Design Results for Punching Shear at Grid B-2

Method	Shear Stress (ksi)	Shear Capacity (ksi)	D/C ratio
ETABS	0.1930	0.158	1.22
Calculated	0.1930	0.158	1.22

Computer File: ACI 318-14 RC-PN Ex001.EDB

Conclusion

The ETABS results show an exact comparison with the independent results.

Hand Calculation

Hand Calculation for Interior Column Using ETABS Method
$\mathrm{d}=[(10-1)+(10-2)] / 2=8.5^{\prime \prime}$
Refer to Figure 2.

$$
\mathrm{b}_{0}=44.5+20.5+44.5+20.5=130 "
$$

Figure 2: Interior Column, Grid B-2 in ETABS Model

$$
\begin{aligned}
& \gamma_{V 2}=1-\frac{1}{1+\left(\frac{2}{3}\right) \sqrt{\frac{44.5}{20.5}}}=0.4955 \\
& \gamma_{V 3}=1-\frac{1}{1+\left(\frac{2}{3}\right) \sqrt{\frac{20.5}{44.5}}}=0.3115
\end{aligned}
$$

The coordinates of the center of the column $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ are taken as $(0,0)$.

Software Verification

COMPUTERS \& STRUCTURES INC.
program name: ETABS
REVISION NO.: $\underline{0}$
The following table is used for calculating the centroid of the critical section for punching shear. Side 1, Side 2, Side 3, and Side 4 refer to the sides of the critical section for punching shear, as identified in Figure 2.

Item	Side 1	Side 2	Side 3	Side 4	Sum
x_{2}	-10.25	0	10.25	0	N.A.
y_{2}	0	22.25	0	-22.25	N.A.
L	44.5	20.5	44.5	20.5	$\mathrm{~b}_{0}=130$
d	8.5	8.5	8.5	8.5	N.A.
Ld	378.25	174.25	378.25	174.25	1105
Ldx_{2}	-3877.06	0	3877.06	0	0
Ldy_{2}	0	3877.06	0	-3877.06	0

$$
\begin{aligned}
& x_{3}=\frac{\sum L d x_{2}}{L d}=\frac{0}{1105}=0^{\prime \prime} \\
& y_{3}=\frac{\sum L d y_{2}}{L d}=\frac{0}{1105}=0^{\prime \prime}
\end{aligned}
$$

The following table is used to calculate $\mathrm{I}_{\mathrm{XX}}, \mathrm{I}_{\mathrm{YY}}$ and I_{XY}. The values for $\mathrm{I}_{\mathrm{XX}}, \mathrm{I}_{\mathrm{YY}}$ and I_{XY} are given in the "Sum" column.

Item	Side 1	Side 2	Side 3	Side 4	Sum
L	44.5	20.5	44.5	20.5	N.A.
d	8.5	8.5	8.5	8.5	N.A.
$\mathrm{x}_{2}-\mathrm{x}_{3}$	-10.25	0	10.25	0	N.A.
$\mathrm{y}_{2}-\mathrm{y}_{3}$	0	22.25	0	-22.25	N.A.
Parallel to	Y-Axis	X -axis	Y-Axis	X-axis	N.A.
Equations	$5 \mathrm{~b}, 6 \mathrm{~b}, 7$	$5 \mathrm{a}, 6 \mathrm{a}, 7$	$5 \mathrm{~b}, 6 \mathrm{~b}, 7$	$5 \mathrm{a}, 6 \mathrm{a}, 7$	N.A.
I_{XX}	64696.5	86264.6	64696.5	86264.6	301922.3
I_{YY}	39739.9	7151.5	39739.9	7151.5	93782.8
I_{XY}	0	0	0	0	0

From the ETABS output at Grid B-2:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{U}}=189.45 \mathrm{k} \\
& \gamma_{V 2} M_{U 2}=-156.39 \mathrm{k}-\mathrm{in} \\
& \gamma_{V 3} M_{U 3}=91.538 \mathrm{k}-\mathrm{in}
\end{aligned}
$$

Software Verification
 program name: ETABS
 REVISION NO.:
 0

At the point labeled A in Figure 2, $\mathrm{x}_{4}=-10.25$ and $\mathrm{y}_{4}=22.25$, thus:

$$
\begin{gathered}
v_{U}=\frac{189.45}{130 \bullet 8.5}-\frac{156.39[93782.8(22.25-0)-(0)(-10.25-0)]}{(301922.3)(93782.8)-(0)^{2}}- \\
\frac{91.538[301922.3(-10.25-0)-(0)(22.25-0)]}{(301922.3)(93782.8)-(0)^{2}}
\end{gathered}
$$

$v_{U}=0.1714-0.0115-0.0100=\mathbf{0 . 1 4 9 9} \mathbf{k s i}$ at point A

At the point labeled B in Figure 2, $x_{4}=10.25$ and $y_{4}=22.25$, thus:

$$
\begin{gathered}
v_{U}=\frac{189.45}{130 \bullet 8.5}-\frac{156.39[93782.8(22.25-0)-(0)(10.25-0)]}{(301922.3)(93782.8)-(0)^{2}}- \\
\frac{91.538[301922.3(10.25-0)-(0)(22.25-0)]}{(301922.3)(93782.8)-(0)^{2}}
\end{gathered}
$$

$v_{U}=0.1714-0.0115+0.0100=\mathbf{0 . 1 6 9 9} \mathbf{k s i}$ at point B

At the point labeled C in Figure 2, $x_{4}=10.25$ and $y_{4}=-22.25$, thus:

$$
\begin{gathered}
v_{U}=\frac{189.45}{130 \bullet 8.5}-\frac{156.39[93782.8(-22.25-0)-(0)(10.25-0)]}{(301922.3)(93782.8)-(0)^{2}}- \\
\frac{91.538[301922.3(10.25-0)-(0)(-22.25-0)]}{(301922.3)(93782.8)-(0)^{2}}
\end{gathered}
$$

$v_{U}=0.1714+0.0115+0.0100=\mathbf{0 . 1 9 3 0} \mathbf{k s i}$ at point C

At the point labeled D in Figure 2, $x_{4}=-10.25$ and $y_{4}=-22.25$, thus:

$$
\begin{gathered}
v_{U}=\frac{189.45}{130 \bullet 8.5}-\frac{156.39[93782.8(-22.25-0)-(0)(-10.25-0)]}{(301922.3)(93782.8)-(0)^{2}}- \\
\frac{91.538[301922.3(-10.25-0)-(0)(-22.25-0)]}{(301922.3)(93782.8)-(0)^{2}} \\
v_{U}=0.1714+0.0115-0.0100=\mathbf{0 . 1 7 2 9} \mathbf{~ k s i} \text { at point } \mathrm{D}
\end{gathered}
$$

Software Verification

REVISION NO.:

0
Point C has the largest absolute value of v_{u}, thus $\mathrm{v}_{\text {max }}=0.1930 \mathrm{ksi}$

The shear capacity is calculated based on the smallest of ACI 318-14 equations 11-34, $11-35$ and 11-36 with the b_{0} and d terms removed to convert force to stress.

$$
\begin{aligned}
& \varphi v_{C}=\frac{0.75\left(2+\frac{4}{36 / 12}\right) \sqrt{4000}}{1000}=0.158 \text { ksi in accordance with equation 11-34 } \\
& \varphi v_{C}=\frac{0.75\left(\frac{40 \bullet 8.5}{130}+2\right) \sqrt{4000}}{1000}=0.219 \text { ksi in accordance with equation 11-35 } \\
& \varphi v_{C}=\frac{0.75 \bullet 4 \bullet \sqrt{4000}}{1000}=0.190 \text { ksi in accordance with equation 11-36 }
\end{aligned}
$$

Equation 11-34 yields the smallest value of $\phi v_{C}=0.158 \mathrm{ksi}$ and thus this is the shear capacity.

$$
\text { Shear } \text { Ratio }=\frac{v_{U}}{\varphi v_{C}}=\frac{0.193}{0.158}=1.22
$$

