

ACYCLE

version 1.0

a time-series analysis software for paleoclimate projects

User's Guide

Mingsong Li

www.mingsongli.com/acycle www.github.com/mingsongli/acycle

Pennsylvania State University, State College, USA

February 26, 2019

Contents

ACYCLE	1 -
1. COPYRIGHTS	4 -
2. REFERENCES	5 -
3. SOFTWARE SPECIFICATIONS	7 -
3.1 SYSTEM REQUIREMENTS	7 -
3.2 DOWNLOADING THE ACYCLE SOFTWARE	7 -
3.3 MATLAB VERSION	9 -
3.3.1 Installation	9 -
3.3.2 Startup	9 -
3.4 MAC VERSION	10 -
3.4.1 Introduction	10 -
3.4.2 AcycleX.X-Mac-green	10 -
3.4.3 AcycleX.X-Mac-Installer	13 -
3.5 WINDOWS VERSION	19 -
3.5.1 Introduction	
3.5.2 AcycleX.X-Win-Installer	
3.5.3 AcycleX.X-Win-green	
3.6 DATA REQUIREMENT	22 -
4. ACYCLE GRAPHICAL USER INTERFACE (GUI)	23 -
4.1 FUNCTIONS AND GUI	23 -
4.2 FILE	25 -
4.3 EDIT	25 -
4.4 PLOT	25 -
4.5 BASIC SERIES	27 -
Insolation	27 -
Astronomical Solution	27 -
LR04 Stack	
Sine Wave	29 -
White Noise	
Red Noise	29 -
Examples	29 -
4.6 MATH	31 -
Sort/Unique/Delete-empty	31 -
Interpolation	31 -
Select Parts	31 -
Merge Series	31 -
Add Gaps	32 -
Remove Parts	32 -
Remove Peaks	32 -
Clipping	
Smoothing:	
Moving Average	32 -

Moving Median	32 -
Bootstrap	32 -
Changepoint	33 -
Standardize	33 -
Principal Component	33 -
Log-transform	33 -
Derivative	33 -
Simple Function	33 -
Utilities	34 -
Find max/min	34 -
Image:	34 -
Show Image	34 -
RGB to Grayscale	34 -
Image Profile	
Plot Digitizer	
4.7 Time series	36 -
Detrending	36 -
Prewhitening - First Difference	
Spectral Analysis	
Evolutionary Spectral Analysis	
Wavelet transform	
Filtering	
Build Age Model	41 -
Age Scale	42 -
Sedimentary Rate to Age Model	
Power Decomposition Analysis	
Sedimentary Noise Model	
Correlation Coefficient (COCO)	
Evolutionary Correlation Coefficient (eCOCO)	
Track Sedimentation Rates	
TimeOpt	
eTimeOpt	48 -
4.8 HELP	49 -
Readme	49 -
Manuals	50 -
Find Updates	50 -
Copyright	50 -
Contact	50 -
4.9 MINI-ROBOT	51 -
5. DYNOT MODEL DESCRIPTION	
5.1 DATA FORMAT	
5.2 STARTUP	
5.3 SETTINGS	
5.4. RUNNING THE DYNOT MODEL	
5.5. OUTPUT FILES	
6. CASE STUDIES	
FYAMDI F #1. INSOLATION	_ 50 _

Step 1: Load data	58 -
Step 2: Data pre-processing	59 -
Step 3: Detrending	59 -
Step 4: Power Spectral Analysis	60 -
Step 4: Evolutionary Spectral Analysis	61 -
EXAMPLE #2: LA2004 ASTRONOMICAL SOLUTION (ETP)	63 -
Step 1: Load data	63 -
Step 2: Data pre-processing	64 -
Step 3: Detrending	64 -
Step 4: Power Spectral Analysis	65 -
Step 5: Evolutionary Spectral Analysis	66 -
Step 6: Wavelet transform	
EXAMPLE #3: CARNIAN CYCLOSTRATIGRAPHY	
Step 1. Load Data	69 -
Step 2. Data Preparation	70 -
Step 3. Interpolation	70 -
Step 4. Detrending	72 -
Step 5. Power spectral analysis	73 -
Step 6. Evolutionary power spectral analysis	74 -
Step 7. Correlation coefficient	
Step 8. Filtering	
Step 9. Age model and tuning	
Step 10. Repeat steps.	81 -
REFERENCES	82 -

1. Copyrights

Copyright (C) Mingsong Li.

This program is a free software; you can redistribute it and/or modify it under the terms of the GNU GENERAL PUBLIC LICENSE as published by the Free Software Foundation. You should have received a copy of the GNU General Public License. If not, see https://www.gnu.org/licenses/.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

The original author reserves the right to license this program or modified versions of this program under other licenses at the discretion.

Any questions regarding the license or the operation of this software may be directed to:

Mingsong Li
Research Assistant Professor
Department of Geosciences, Penn State University
410 Deike Bldg, University Park, PA 16802, USA
mul450@psu.edu or limingsonglms@gmail.com
www.mingsongli.com/acycle
github.com/mingsongli/acycle/

2. References

Please acknowledge the program author on any publication of scientific results based in part on use of the program and cite the following article in which the program was described:

Mingsong Li, Linda Hinnov, Lee Kump. 2019. Acycle: time-series analysis software for paleoclimate projects and education, Computers and Geosciences, in press

If you publish results using **correlation coefficient** (**COCO or eCOCO**) method, please **also** cite this paper:

• Li, Mingsong, Kump, Lee, Hinnov, Linda, Mann, Michael, 2018. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing. *Earth and Planetary Science Letters* 501, 165-179.

Bayesian Changepoint method:

• Ruggieri, E., 2013. A Bayesian approach to detecting change points in climatic records. International Journal of Climatology 33, 520-528.

Evolutionary fast Fourier Transform (evoFFT) method:

 Kodama, K.P., Hinnov, L., 2015. Rock Magnetic Cyclostratigraphy. Wiley-Blackwell.

eTimeOpt method:

• Meyers, S.R., 2019. Cyclostratigraphy and the problem of astrochronologic testing. Earth-Science Reviews 190, 190-223.

Filtering method (Gauss and Taner filter):

• Kodama, K.P., Hinnov, L., 2015. *Rock Magnetic Cyclostratigraphy*. Wiley-Blackwell.

Power decomposition analysis (*pda.m*):

• Li, Mingsong, Huang, Chunju, Hinnov, Linda, Ogg, James, Chen, Zhong-Qiang, Zhang, Yang, 2016. Obliquity-forced climate during the Early Triassic hothouse in China. *Geology* 44, 623-626. doi: 10.1130/G37970.1

Red noise model:

- Mann, M.E., Lees, J.M., 1996. Robust estimation of background noise and signal detection in climatic time series. Climatic Change 33, 409-445. [Robust AR(1)]
- Husson, D., 2014. MathWorks File Exchange: RedNoise_ConfidenceLevels, http://www.mathworks.com/matlabcentral/fileexchange/45539-rednoise-confidencelevels/content/RedNoise_ConfidenceLevels/RedConf.m. [Conventional AR(1)]

Sedimentary noise model (**DYNOT** or ρ_1 methods):

• Li, Mingsong, Hinnov, Linda, Huang, Chunju, Ogg, James, 2018. Sedimentary noise and sea levels linked to land–ocean water exchange and obliquity forcing. *Nature communications* 9, 1004. Doi: 10.1038/s41467-018-03454-y

TimeOpt method:

• Meyers, S.R., 2015. The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization. Paleoceanography. doi: 10.1002/2015PA002850

Wavelet analysis method:

• Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological society 79, 61-78.

3. Software Specifications

3.1 System Requirements

This software is developed in **MatLab version 2015b and 2017a**. It was tested in Mac OS Mojave system (macOS 10.14) and Windows 7 & 10.

[1. MatLab version]:

The package works with both Mac OS and Windows. MatLab is essential for the *Acycle* software package. Specified MatLab toolboxes may be needed.

[2. Mac version]:

This software is a stand-alone program. It was tested in Mac OS Mojave system (macOS 10.14). If the Mac runs with no MatLab, MatLab runtime R2015b is essential for the *Acycle* stand-alone software.

Two versions are available:

v1. AcycleX.X-Mac-green

No installation needed.

Size: ~100 Mb.

MatLab runtime **R2015b** is not included in this package and can be downloaded at: https://www.mathworks.com/products/compiler/matlab-runtime.html.

v2. AcycleX.X-Mac-Installer

Install Acycle and MatLab runtime **R2015b** simultaneously.

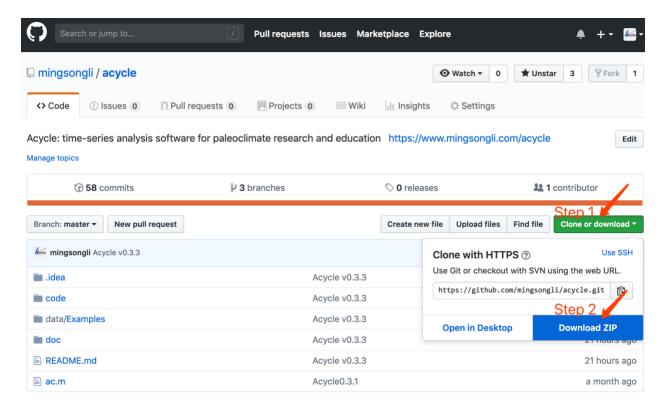
Size: ~100 Mb

[3. Windows version]:

This software is a stand-alone program. It was tested in Windows 10 & 7.

AcycleX.X-Win-Installer

Size: ~100 Mb.


If the computer runs with no MatLab, MatLab runtime **R2017a** is essential for the Acycle stand-alone software.

3.2 Downloading the Acycle software

The Acycle software is available for download from:

MatLab version:

GitHub (https://github.com/mingsongli/acycle/),

Mac / Windows stand-alone versions:

Dropbox (https://www.dropbox.com/sh/t53vjs539gmixnm/AAC0BqTR0U5xghKwuVc1Iwbma?dl=0), or **Baidu Cloud** (https://pan.baidu.com/s/14-xRzV -BBrE6XfyR 71Nw)

3.3 MatLab version

3.3.1 Installation

Unzip the *Acycle* software package to your root directory. No installation is needed.

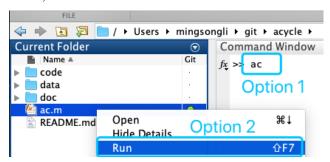
Warning: the working directory and file names contain NO SPACE or no language other than ENGLISH.

3.3.2 Startup

Step 1: Startup MatLab.

Step 2: Change the MatLab working directory to the *Acycle* directory.

You may use the icon in blue Box 1 or type the directory in blue Box 2 below.



Step 3: Launch ac.m

Option 1: Type ac in MatLab's command window, then press the Enter key.

Option 2: Right click ac.m file and choose Run.

Then, all set!

Warning: the working directory and file names contain NO SPACE or no language other than ENGLISH.

3.4 Mac version

3.4.1 Introduction

This version of *Acycle* is a stand-alone program. It is tested in Mac OS Mojave system (macOS 10.14). Two versions are available:

Section 3.4.2 AcycleX.X-Mac-green

Section 3.4.3 AcycleX.X-Mac-Installer

3.4.2 AcycleX.X-Mac-green

3.4.2.1 Download AcycleX.X-Mac-green

Dropbox (https://www.dropbox.com/sh/t53vjs539gmixnm/AAC0BqTR0U5xghKwuVc1Iwbma?dl=0), or **Baidu Cloud** (https://pan.baidu.com/s/14-xRzV -BBrE6XfyR 71Nw).

3.4.2.2 Installation of Runtime

Step 1: Download "MCR_R2015b_maci64_installer.zip" here: https://www.mathworks.com/products/compiler/matlab-runtime.html

Step 2: Install for mac OS X. Double click the file blue box below (left panel).

Or right-click and select "Show Package Contents". In the pop-up folder, double click "InstallForMacOSX". Then it may ask permission for installation. Follow instructions of the MatLab Runtime installer, you will install Runtime.

Step 3. Setup Runtime environment (detailed in Box 1).

Box 1 [How to set the MatLab Runtime environment variable DYLD LIBRARY PATH?]

Here is a nice answer by Walter Roberson on 14 Jan 2016.

https://www.mathworks.com/matlabcentral/answers/263824-mcr-with-mac-and-environment-variable

Step 1: Go into the Terminal app (it is under /Applications/Utilities).

While you are at the Terminal command window, command

ls ~/.bashrc

If it says that the file does not exist, then in the Terminal window, command

touch ~/.bashrc

to create the file. If the file already exists or you have now created it, then at the terminal window command

open ~/.bashrc

This will open TextEdit. In TextEdit you can add the line

export

DYLD_LIBRARY_PATH=/Applications/MATLAB/MATLAB_Runtime/v90/runtime/maci64:/Applications/MATLAB/MATLAB_Runtime/v90/sys/os/maci64:/Applications/MATLAB/MATLAB Runtime/v90/bin/maci64

to the end of the file, and then you can use the TextEdit File menu to Save the file.

If your SHELL showed up as csh or tcsh, or in any case if you just want to be more thorough, then you can use the same kind of steps as just above:

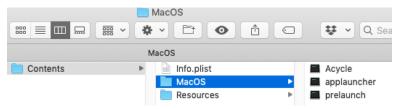
ls ~/.cshrc

and if it does not exist, "touch ~/.cshrc", and then once it exists, "open ~/.cshrc", and then in TextEdit, add the line they gave in the instructions,

setenv DYLD LIBRARY PATH

/Applications/MATLAB/MATLAB_Runtime/v90/runtime/maci64:/Applications/MATLAB/MATLAB_Runtime/v90/sys/os/maci64:/Applications/MATLAB/MATLAB_Runtime/v90/bin/maci64

and save.


These changes will not affect your current Terminal session, but they will affect the next time

3.4.2.3 Startup AcycleX.X-Mac-green

You only need to do Steps 1-3 for the first time. Then only Step 4 below is need.

Step 1: Drag the AcycleX.X-Mac file to the /Applications folder.

Step 2: Go to the "/Applications" folder. Right click "AcycleX.X-Mac" file, choose "Show Package Content".

Step 3: Go to "/Contents/MacOS" folder, drag the "applauncher" file to dock (**NOT** the "Acycle" file).

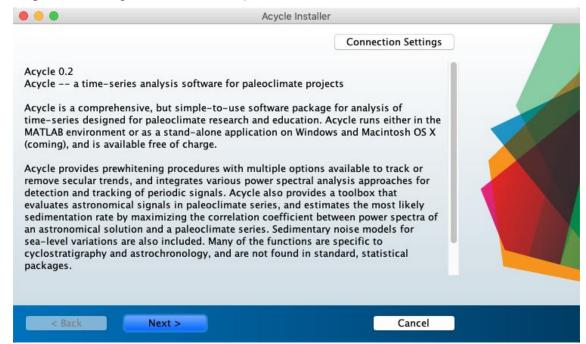
Step 4: Click icon of "applauncher" in the dock to start the *Acycle* software.

Note the first-time run will be very bit slow.

Warning: NEVER close the terminal window (left panel below) when using *Acycle*. This will close *Acycle*.

Warning: the working directory contains no SPACE or no language other than ENGLISH.

3.4.3 AcycleX.X-Mac-Installer

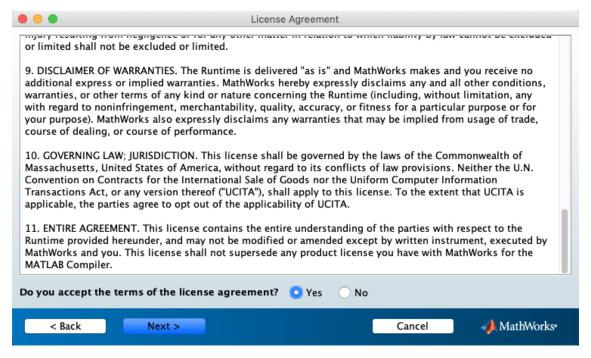

3.4.3.1 Download AcycleX.X-Mac-Installer

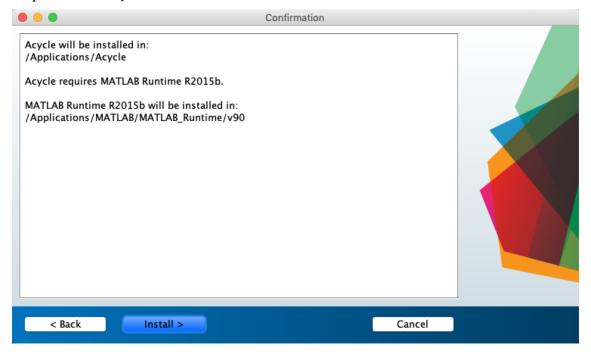
Dropbox (https://www.dropbox.com/sh/t53vjs539gmixnm/AAC0BqTR0U5xghKwuVc1Iwbma?dl=0), or **Baidu Cloud** (https://pan.baidu.com/s/14-xRzV -BBrE6XfyR 71Nw).

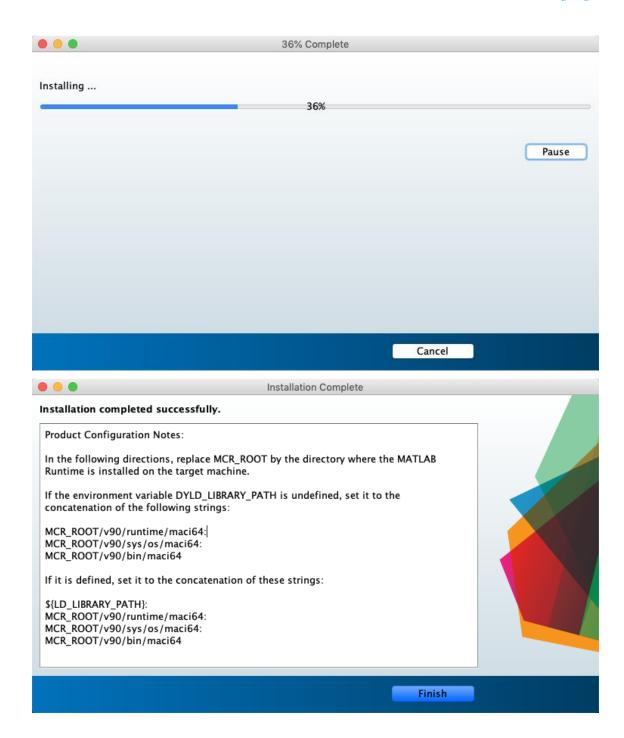
3.4.3.2 Installation of *Acycle* and MatLab runtime simultaneously.

Step 1: Double click "AcycleX.X-Mac-Installer" to start the installation. The admin permission may be required.

Step 2: Following instructions of *Acycle* Installer.


Choose *Acycle* installation folder (default folder is /Applications/Acycle).


Step 3: Choose MATLAB Runtime installation folder (default folder is /Applications/MATLAB/MATLAB_Runtime).



Step 4: License Agreement: Do you accept the terms of the license agreement? You may select Yes.

Step 5: Install Acycle.

Step 3. Setup Runtime environment (detailed in Box 2).

Box 2 [How to set the MatLab Runtime environment variable DYLD LIBRARY PATH?]

Here is a nice answer by Walter Roberson on 14 Jan 2016.

https://www.mathworks.com/matlabcentral/answers/263824-mcr-with-mac-and-environment-variable

Step 1: Go into the Terminal app (it is under /Applications/Utilities).

While you are at the Terminal command window, command

ls ~/.bashrc

If it says that the file does not exist, then in the Terminal window, command

touch ~/.bashrc

to create the file. If the file already exists or you have now created it, then at the terminal window command

open ~/.bashrc

This will open TextEdit. In TextEdit you can add the line

export

DYLD_LIBRARY_PATH=/Applications/MATLAB/MATLAB_Runtime/v90/runtime/maci64:/Applications/MATLAB/MATLAB_Runtime/v90/sys/os/maci64:/Applications/MATLAB/MATLAB Runtime/v90/bin/maci64

to the end of the file, and then you can use the TextEdit File menu to Save the file.

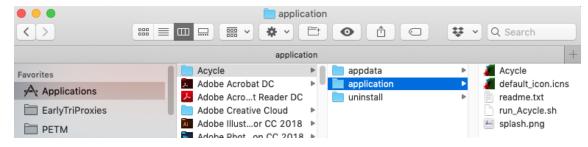
If your SHELL showed up as csh or tcsh, or in any case if you just want to be more thorough, then you can use the same kind of steps as just above:

ls ~/.cshrc

and if it does not exist, "touch ~/.cshrc", and then once it exists, "open ~/.cshrc", and then in TextEdit, add the line they gave in the instructions,

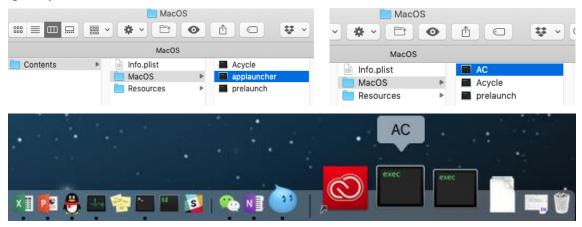
setenv DYLD LIBRARY PATH

/Applications/MATLAB/MATLAB_Runtime/v90/runtime/maci64:/Applications/MATLAB/MATLAB_Runtime/v90/sys/os/maci64:/Applications/MATLAB/MATLAB_Runtime/v90/bin/maci64


and save.

These changes will not affect your current Terminal session, but they will affect the next time

3.4.3.3 Startup AcycleX.X-Mac


You only need to do Steps 1-3 for the first run. Then only Step 4 below is need.

Step 1: Go to the installation folder (for example: /Applications/Acycle/application).

Step 2: Right click "Acycle" file, choose "Show Package Content"

Step 3: Go to the "Contents/MacOS" folder, drag the applauncher file to dock. Before that, you may want to change filename of the "applauncher" to "AC" or any other name except Acycle.

Step 4: Click icon of "applauncher" (or "AC") above to start the Acycle software.

Warning: NEVER close the terminal window (panel below) when using Acycle. This will close Acycle either. To kill Acycle software, press CTRL + C keys

```
### mingsongli—AC—Acycle—80x24

Warning: Name is nonexistent or not a directory: //users/mingsongli/.mcrCache9.0/

### Warning: Name is nonexistent or not a directory: //users/mingsongli/.mcrCache9.0/

### In path (Line 189)

In path (Line 189)

In startup (Line 11)

Warning: //users/mingsongli/.mcrCache9.0/Acycle1/code/guicode/code/guiwin* not found in path.

In rmpath (Line 57)

In Acycle (Line 38)

2018-12-23 12:43:01.033 Acycle[15730:5341834] WARNING: NSWindow drag regions sho uld only be invalidated on the Main Thread! This will throw an exception in the future. Called from (

0 AppKit

0 AppKit

1 AppKit

1 AppKit

2 AppKit

2 AppKit

2 AppKit

3 AppKit

3 AppKit

4 AppKit

6 AppRe000000110770758 0x0 + 4571256

6 AppRe00000110770758 0x0 + 4571256

6 AppRe00000110770758 0x0 + 4571256

6 AppRe00000110770758 0x0 + 4571256
```

Note the first-time run will be very slow. Please ignore various warning messages and forgive my naïve program skills.

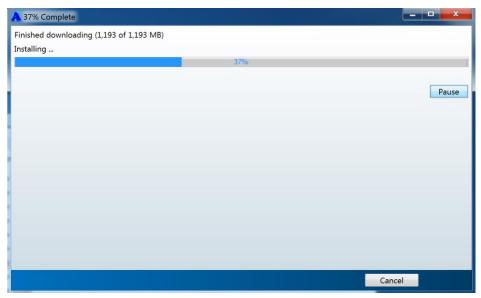
Warning: the working directory should contain NO SPACE or no language other than ENGLISH.

3.5 Windows version

3.5.1 Introduction

This version of Acycle is a stand-alone program. It has been tested in Windows 10 OS. Two versions are available:

3.5.2 AcycleX.X-Win-Installer

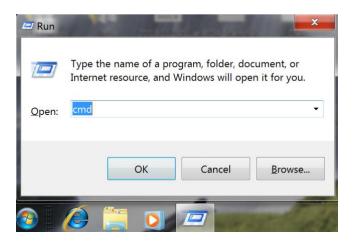

3.5.2.1 Download AcycleX.X-Win-Installer

Dropbox (https://www.dropbox.com/sh/t53vjs539gmixnm/AAC0BqTR0U5xghKwuVc1Iwbma?dl=0), or **Baidu Cloud** (https://pan.baidu.com/s/14-xRzV -BBrE6XfyR 71Nw).

3.5.2.2 Installation

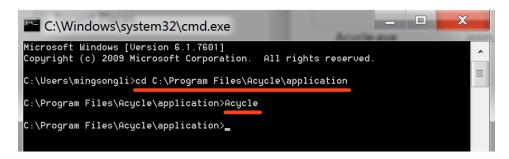
Double click "AcycleInstaller.exe" to install *Acycle* and MatLab runtime **R2017a**. Following the instructions, you will get everything set.

Downloading MatLab runtime **R2017a** can take a lot of time. The runtime needs 1 GB space.



3.5.2.3 Start-up

You could just double click the **Acycle** icon on the desktop to start or start from the Windows "All Program" menu like any other software.


However, **I strongly recommend the following start-up method**, which will enable a command window showing a lot of information about many time-consuming steps.

Step 1: Use "Win + R" short-cut keys to start the "RUN" of Windows (figure below). Then in the pop-up window, type cmd and click OK button.

Step 2: Type following two lines of commend below in the command window. My software was installed under the directory "C:\Program Files", so it should be:

cd C:\Program Files\Acycle\application\ Acycle

The Acycle will start.

Now, you need to change directory () to the working folder.

Warning: the working directory should contain NO SPACE or no language other than ENGLISH.

Warning: the first-time start-up can be very slow. Never close the command window when Acycle is running. The commend window will keep on showing information when it runs time-consuming steps.

3.5.3 AcycleX.X-Win-green

3.5.3.1 Download AcycleX.X-Win-green, unzip the file.

Dropbox (https://www.dropbox.com/sh/t53vjs539gmixnm/AAC0BqTR0U5xghKwuVc1Iwbma?dl=0), or **Baidu Cloud** (https://pan.baidu.com/s/14-xRzV_-BBrE6XfyR_71Nw).

3.5.3.2 Installation of MatLab runtime 2017a

https://www.mathworks.com/products/compiler/matlab-runtime.html

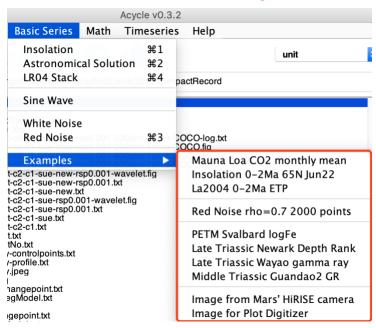
- 3.5.3.3 Double click "Acycle.exe" to run Acycle.
- 3.5.3.4 Now, you need to change directory () to the working folder.

Warning: the working directory should contain NO SPACE or no language other than ENGLISH.

3.6 Data Requirement

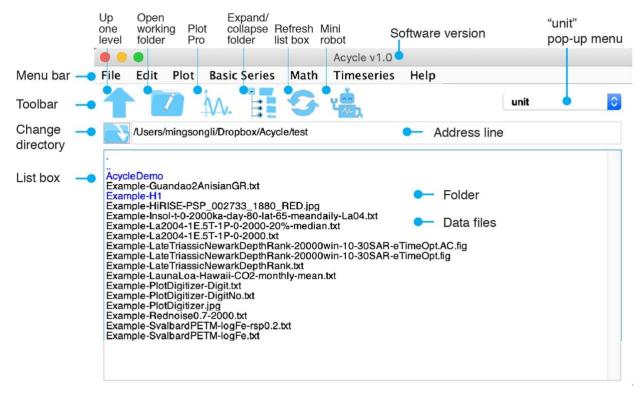
The input file of data series can be in a variety of formats, including comma-, table- or space-delimited text (*.txt), and comma-separated values files (*.csv) from an Excel-type spreadsheet. No header is permitted.

Most data files should contain two columns of series. The first column must be in depth or time, and the second column should be value in the corresponding depth or time.



/Users/mingsongli/Dropbox/Acycle/test

Please make sure there is NO SPACE or language other than ENGLISH in the address line (above). Or you need to change the directory () to new working folder.


??? Still have no idea, don't worry. Try this, you'll have a perfect example:

Choose "Basic Series" menu → Examples → choose any data or image file

The data will be saved in the working directory. All data files, plots, and folders are displayed in the GUI list box.

4. Acycle graphical user interface (GUI)

Acycle Graphical User Interface (GUI)

4.1 Functions and GUI

Acycle contains the following functions.

File

New Folder; New Text File; Save *.AC.fig; Open Working Directory; Extract Data

Edit

Refresh; Rename; Cut; Copy; Paste; Delete

Plot

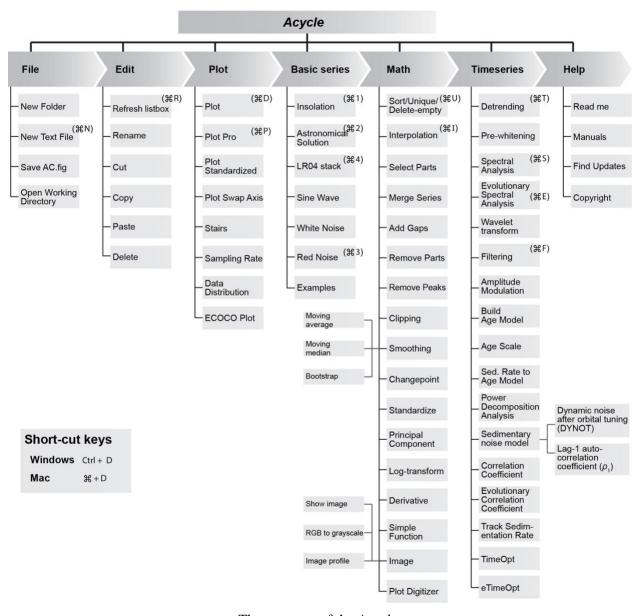
Plot; Plot Pro; Plot Standardized; Plot Swap Axis; Stairs, Sampling Rate; Data Distribution; ECOCO Plot

Basic Series

Insolation; Astronomical Solution; LR04 Stack; Sine Wave; White Noise; Red Noise; Examples (a couple of data series of data and images)

Math

Sort/Unique/Delete-empty; Interpolation; Select Parts; Merge Series; Add Gaps; Remove Parts; Remove Peaks; Clipping; Smoothing[Moving Average, Moving Median, Bootstrap]; Changepoint; Sampling Rate Sensitivity; Standardize; Principal Component; Log-transform; Derivative; Simple


Function; Utilities[Find Max/Min]; Image[Show Image, RGB to Grayscale; Image Profile]; Plot Digitizer

Time series

Detrending; Pre-whitening [First Difference]; Spectral Analysis; Evolutionary Spectral Analysis; Wavelet transform; Filtering; Amplitude Modulation; Build Age Model; Age Scale; Sedimentary Rate to Age Model; Power Decomposition Analysis; Sedimentary noise model (DYNOT; ρ_1 method); Correlation Coefficient; Evolutionary Correlation Coefficient; Track Sedimentation Rates; TimeOpt method; eTimeOpt method

Help

Readme; Manuals; Find Updates; Copyright; Contact

The structure of the Acycle program

4.2 File

New Folder:

make a new empty folder with a user-defined folder name.

New Text File:

make a new empty *.txt file with a user-defined file name.

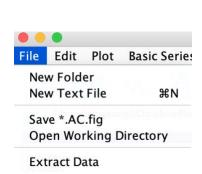
Shortcut keys [Mac]: $\mathcal{H} + N$; [Windows]: Ctrl + N

Save *.AC.fig file:

Save the current figure as an *.ac.fig file. This file enable users continue a suspended project.

For example, after running the eCOCO (evolutionary correlation coefficient), users may want to plot the eCOCO results anytime. One can save the current figure as an *.AC.fig file, then double click this *.AC.fig file and show "ECOCO plot" anytime.

4.3 Edit


Refresh: refresh the main listbox.

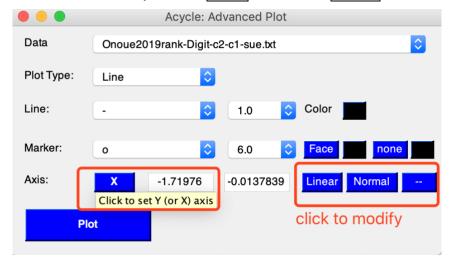
Shortcut keys [Mac]: $\mathcal{H} + R$; [Windows]: Ctrl + R

Rename:

Select one file, the "rename" function enable changing the name of the selected file.

Cut/Copy/Paste/Delete:

Plot	Basic Series	Math
Plo	t	ЖD
Plot Pro #1		₩P
Plo	t Standardized	
Plo	t Standardized	+ 2
Plo	t Swap Axis	
Sta	irs	
San	npling Rate	
Data Distribution		
Eco	co Plot	


4.4 Plot

Plot:

A quick plot of the selected data file. Shortcut keys [Mac]: $\mathcal{H} + D$; [Windows]: Ctrl + D

Plot Pro:

An advanced plot of the selected data file (GUI below). One can change plot type, line, and marker styles, and control the axis. *Shortcut keys* [Mac]: $\mathcal{H} + P$; [Windows]: Ctrl + P

Plot Standardized:

A quick plot of the standardized data file. Useful if one wants to compare 2 or more series.

Plot Standardized +2:

A quick plot of the standardized data file. Useful if one wants to compare 2 or more series.

Plot Swap Axis:

A quick plot, swap axis.

Stairs:

Stairs plot.

Sampling Rate:

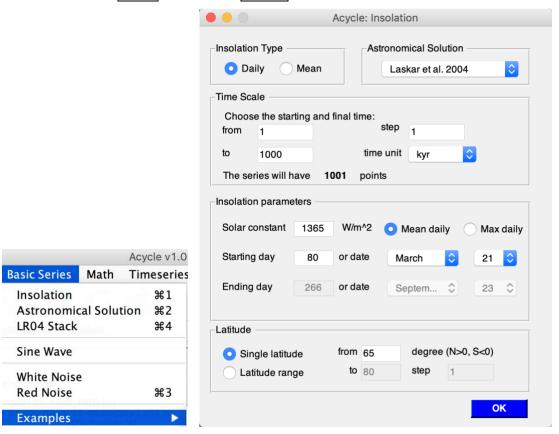
A quick plot showing the distribution of the 1st column (time/depth) of the selected data file.

Data Distribution:

A quick plot showing the distribution of the 2nd column (data) of the selected data file.

ECOCO Plot:

Plot eCOCO results from a *.AC.fig, or after running the eCOCO (Timeseries-eCOCO).

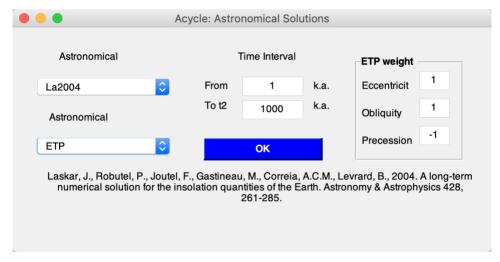

4.5 Basic Series

Insolation

A GUI calculates the insolation using various astronomical solutions. Based on the MatLab code **inso.m** by Jonathan Levine (2001), UC Berkeley. This code was modified by Peter Huybers (Harvard) and edited by Mingsong Li (Penn State, 2018) for the *Acycle* software.

Only insolation series younger than 249,000 k.a. are available.

Shortcut keys [Mac]: $\mathcal{H} + 1$; [Windows]: Ctrl + 1



This GUI generates <u>mean daily</u> insolation series on <u>March 21</u> for the past 1000 kyr ($\underline{1}$ - $\underline{1000}$) at $\underline{65}$ °N using the <u>Laskar et al.</u> (2004) solutions. The calculate uses a solar constant of $\underline{1365}$ w/m².

[NOTE: one has to click the Refresh button in the main window to see the generated insolation series]

Astronomical Solution


A GUI generates astronomical solutions of <u>Laskar et al. (2004)</u>; <u>Laskar et al. (2011)</u>, and Zeebe (2017). Shortcut keys [Mac]: $\mathcal{H}+2$; [Windows]: Ctrl+2

This GUI generates ETP series (standardized eccentricity, tilt, and precession, weights are 1, 1, and -1, respectively) for the past 1 million years from 1 k.a. throughout 1000 k.a. using the La2004 solution (Laskar et al., 2004).

LR04 Stack

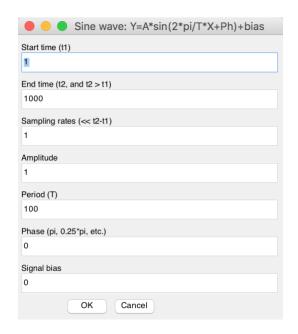
This function generates the classical LR04 stack of the Plio-Pleistocene benthic d18O record (<u>Lisiecki and Raymo, 2005</u>). The input time (below) should be within the interval of 0 and 5320 (k.a.). Shortcut keys [Mac]: $\mathcal{H}+4$; [Windows]: Ctrl+4

This GUI generates LR04 stack from 0 to 5320 k.a.

Sine Wave

Generate a sine wave using user-defined parameters and the following equation:

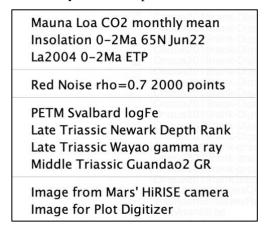
$$Y = A * \sin(2\pi / T * X + Ph) + bias$$


Where A is amplitude, T is period, X is a time series ranges from t1 to t2 and a sampling rate of dt, Ph is the phase, and bias is signal bias.

White Noise

This function generates the white noise.

Red Noise


This function generates the red noise using user-defined standard deviation, and autocorrelation coefficient (RHO-1, from 0 to 1). Shortcut keys [Mac]: $\mathcal{H}+3$; [Windows]: Ctrl+3

This GUI generates a sine wave from 1 to 1000 unit with a sampling rate of 1 unit. Its amplitude is 1, with a period of 100 unit and zero phase shift and 0 signal bias.

Examples

This function load various example data file to the working folder and show the data simultaneously. The example data includes:

(1) Mauna Loa CO2 monthly mean:

This data set includes carbon dioxide measurements (monthly mean value) at the Mauna Loa Observatory, Hawaii from 1958 to 2018.

It will load and save a text file entitled: "Example-LaunaLoa-Hawaii-CO2-monthly-mean.txt".

Ref: https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html

(2) Insolation 0-2Ma 65N Jun22:

This data set includes insolation intensity data at latitude of 65 $^{\circ}$ N on June 22 of each year over the past 2 million years, with a step of 1 kyr.

It will load and save a text file entitled: "Example-Insol-t-0-2000ka-day-80-lat-65-meandaily-La04.txt".

(3) La2004 0-2Ma ETP:

This data set includes La2004 (<u>Laskar et al., 2004</u>) ETP (eccentricity, tilt, and precession) data over the past 2 million years, with a step of 1 kyr.

It will load and save a text file entitled: "Example-La2004-1E.5T-1P-0-2000.txt".

(4) Red Noise rho=0.7 2000 points:

This data set includes a red noise time series with 2000 datapoints and a lag-1 autocorrelation coefficient of 0.7.

It will load and save a text file entitled: "Example-Rednoise0.7-2000.txt".

(5) PETM Svalbard logFe:

This data set includes log-transformed iron series for the Paleocene-Eocene thermal maximum event in the Svalbard (Charles et al., 2011).

It will load and save a text file entitled: "Example-SvalbardPETM-logFe.txt".

(6) Late Triassic Newark Depth Rank:

This data set includes depth rank series from the Late Triassic in the Newark Basin of the USA (Olsen and Kent, 1996).

It will load and save a text file entitled: "Example-LateTriassicNewarkDepthRank.txt".

(7) Late Triassic Wayao gamma ray:

This data set includes gamma ray series from the Late Triassic (middle Carnian) Wayao section of South China (Zhang et al., 2015).

It will load and save a text file entitled: "Example-WayaoCarnianGR0.txt".

(8) Middle Triassic Guandao2 gamma ray:

This data set includes gamma ray series from the Middle Triassic Guandao section of South China (Li et al., 2018b).

It will load and save a text file entitled: "Example-Guandao2AnisianGR.txt".

(9) Image from Mars' HiRISE camera:

This data set includes an image from Mars' HiRISE camera.

It will show and save an image file entitled: "Example-HiRISE-PSP_002733_1880_RED.jpg".

Ref: https://www.uahirise.org/PSP_002878_1880

(10) Image for Plot Digitizer:

This includes an image for the demonstration of the "Plot Digitizer" function.

It will show and save an image file entitled: "Example-PlotDigitizer.jpg".

4.6 Math

Sort/Unique/Delete-empty

This function will sort the selected data file like MS Excel's SORT function. If a dataset contains 2 or more data points with the same time/depth, then these data points will be replaced by their mean values.

Shortcut keys [Mac]: $\mathcal{H} + U$; [Windows]: Ctrl + U

New file name: *-sue.txt or *-s.txt or *-u.txt

Interpolation

Linear interpolation using MatLab's *interp1* function.

Shortcut keys [Mac]: $\mathcal{H} + I$; [Windows]: Ctrl + I

New file name: *-rsp0.3.txt, where 0.3 is user-defined interpolation sampling rate. Default value is the **median** of the sampling rate.

Select Parts

This function generates a new series from the selected data using user-defined 'start' and 'end' of the interval.

New file name: *-a-b.txt, where a is the "start" and b is the "end".

Merge Series

Two selected series may be merged if their first columns are exactly the same.

New file name: mergedseries.txt.

Add Gaps

This function generates a new series based on the selected data file via adding a gap or gaps using user-defined location and duration of the gap(s). Format, comma delimited:

10.5, 3.2

Add a 3.2-unit gap at the depth/time of 10.5 unit, or

10.5, 3.2, 13.3, 1.5

Add a 3.2-unit gap at the depth/time of 10.5 unit and add the second 1.5-unit gap at the depth/time of 13.3 unit.

Remove Parts

This function generates a new series based on the selected data file via removing an user-defined interval(s). Format, comma delimited

15, 3, 20.2, 4

Remove a 3-unit data at the 15 unit (remove 15-18-unit data), and remove the second interval of 20.2-24.2-unit.

Remove Peaks

This function generates a new series based on the selected data file via converting any (2nd column) data higher than the user-defined Maximum value to that value and any data smaller than Minimum value to that value.

Clipping

This function generates a new series based on the selected data file via clipping data higher or smaller than the user-defined threshold value.

Smoothing:

Moving Average

This function generates a new series based on selected data file using n-points smoothing, where n is a user-defined parameter.

New file name: *-3ptsm.txt, means 3 points smoothing output.

Moving Median

This function generates a new series based on selected data file using x% median smoothing, where x is a user-defined parameter. The default value is 0.2 (20%).

New file name: *-20%-median.txt, means a 20% median smoothing output.

Bootstrap

This function generates two new series based on selected data file using *user-defined* smoothing window, smoothing method, and number of bootstrap sampling.

New file name: *-WINDOW-METHOD-NUMBER-bootstp-meanstd.txt, mean and standard deviation data, and

*-WINDOW-METHOD-NUMBER-bootstp-percentile.txt, 0.5%, 2.275%, 15.865%, 50%, 84.135%, 97.725%, and 99.5% percentiles.

Changepoint

The Bayesian Change Point algorithm - A program to calculate the posterior probability of a change point in a time series.

Please acknowledge the program author on any publication of scientific results based in part on use of the program and cite the following article in which the program was described

E. Ruggieri (2013) "A Bayesian Approach to Detecting Change Points in Climatic Records," International Journal of Climatology, 33: 520-528. doi: 10.1002/joc.3447

Program Author: Eric Ruggieri

College of the Holy Cross

Worcester, MA 01610

Email: eruggier@holycross.edu

Standardize

Using MatLab's zscore function.

 $Z = (X-u)/\sigma$, where X is the second column data, u is the mean of X, and σ is the standard deviation of X.

New file name: *-stand.txt

Principal Component

This function has different requirements of the data inputs. All column (including the first column) of data should be value, not depth or time.

Log-transform

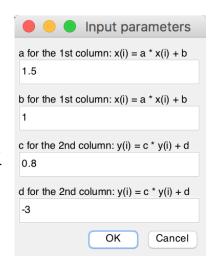
This function generates a new data file based on selected data file using log10 transformation of the second column of the selected data.

$$X_i = \log_{10}(X_i)$$

New file name: *-log10.txt

Derivative

Approximate derivatives (first, second, third, ...).


New file name: *-1derv.txt

Simple Function

This function is very useful. It generates a new data file based on the selected data file. Both columns $(1^{st} \text{ or } X \text{ column and } 2^{nd} \text{ or } Y \text{ column})$ can be modified. See below case study.

$$X_{(i)} = a * X_{(i)} + b$$

$$Y_{(i)} = c * Y_{(i)} + d$$

The selected data: all value in the first column data will be transformed using the equation $X_{(i)} = 1.5 * X_{(i)} + 1$; and all value in the second column data will be transformed using the equation $Y_{(i)} = 0.8 * Y_{(i)} + (-3)$.

New file name: *-new.txt

Utilities

Find max/min

Find max/min value within a user-defined interval. Output will be displayed in command window only.

Image:

Show Image

Plot selected image file.

RGB to Grayscale

Convert a image file in RGB format to a grayscale format, save new image .

New image name: *-gray.tif

Image Profile

Get the grayscale profile from a line constrained by two user-selected dots.

New file name: *-controlpoints.txt % location of two control points

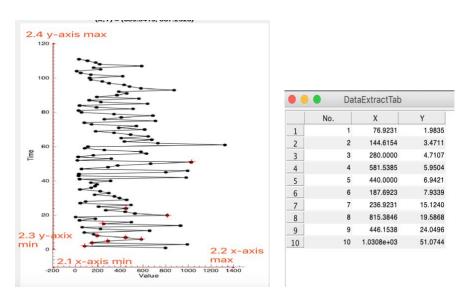
Step 1: Choose the image file, select "Math - Image - Image Profile" function.

Step 2: Click data cursor tool (1), press ALT key and click 2 points.

Step 3: Press Enter key. Grayscale profile data will be picked up and saved along the green line.

Plot Digitizer

Digitize data points from an image file. Example:


Load "Example-PlotDigitizer.jpg" and run "Plot Digitizer"

"Basic Series" → "Examples" → "Image for Plot Digitizer".

Left click to select the image file (or your own image -- a plot with data points) in the Acycle main window, select "Math" → "Plot Digitizer" to run this GUI (see figures below).

You will see the pop-up window of "Acycle: Plot Digitizer" (top panel). Follow the instructions in **blue text** (bottom left corner):

1) Click the "Calibrate axis" button

2) Pick-up axes limits

In the image plot figure, click four points in the correct order: minimum limit of x-axis (2.1), maximum limit of x-axis (2.2), minimum limit of y-axis (2.3), and maximum limit of y-axis (2.4).

3) Set axes limit values

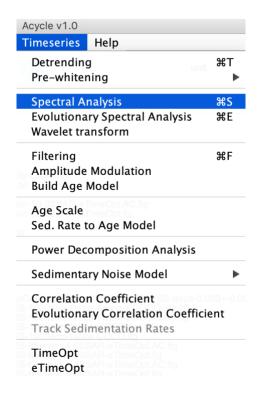
Return the window of "Acycle: Plot Digitizer", type the value of x- and y- axis limits. And select "Linear" or "Log" model.

4) Digitize

Click "Digitize" button, you are able to click in the image figure to select data points.

Data points will be recorded and displayed in "Data Extra Tab" GUI.

Right click to terminate the digitizer; press "Digitize" to continue.

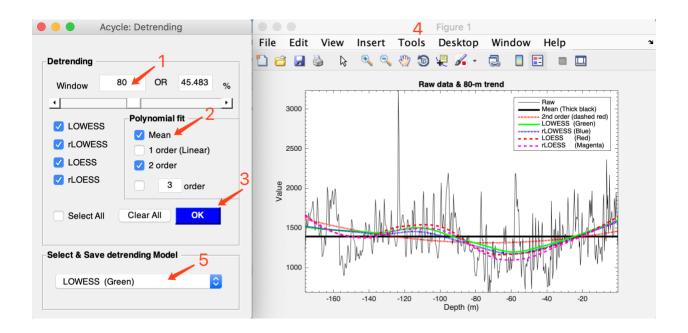

5) Save Data

Click "Save Data" button to save digitized data points in text files.

6) Undo

Press "Undo" to remove the last data point(s).

4.7 Time series


Detrending

This detrending function generates 2 new data files based on the selected data file and user-defined parameters: window length and detrending method. Steps:

- (0) Select a data file in the Main Window; Select **Timeseries** → **Detrending** menu
- (1) Type a window length or a percentage or move the slider. Default value is 35% of the total length, that is, if a data length is 100 m, then a window is 35 m.
 - (2) Tick one or more detrending method
- (3) Click OK button, wait for several seconds (up to a minute, depending on the length of the dataset and the speed of your machine). A new window (4) will popup showing the data and its 35% trend(s).
- (5) In the "Select & Save detrending Model" panel, select the preferred trend. The trend and detrended file will be displayed in the Main Window.
 - (Tips) Change window sizes, the trend lines in the right panel will be updated automatically.

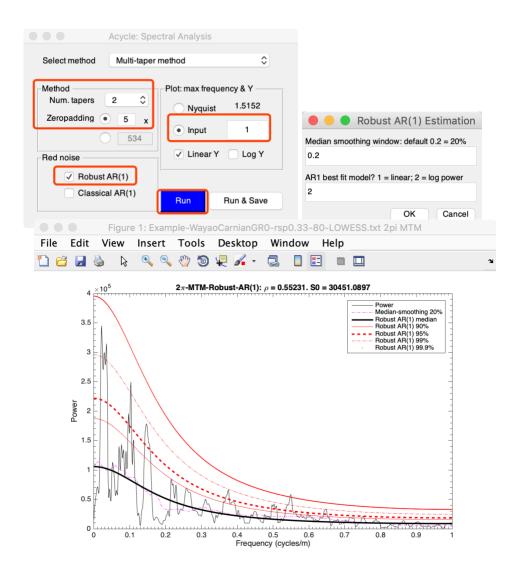
Shortcut keys [Mac]: $\mathcal{H} + T$; [Windows]: Ctrl + T

New file names: *-80-LOWESS.txt AND *-80-LOWESStrend.txt

Prewhitening - First Difference

Differences using MatLab's diff function.

Y = diff(X), calculates differences between adjacent elements of X.


New file name: *-1stdiff.txt

Spectral Analysis

This function conducts spectral analysis with user-defined parameters. Steps:

- (1) Select a data file in the Main Window
- (2) Select **Timeseries** → **Spectral Analysis** menu
- (3) Select one method for spectral analysis. Options are Multi-taper method (MTM) (<u>Thomson</u>, <u>1982</u>), Lomb-Scargle spectrum (<u>Lomb</u>, <u>1976</u>; <u>Scargle</u>, <u>1982</u>), and MatLab's periodogram.
- (4) If Multi-taper method (MTM) is selected, then the Method panel may be changed. The default value is using 2π MTM, with a no zero-padding.
 - (5) Plot panel: set the max frequency in the coming figure.
- (6) Red Noise panel: AR(1) noise model using RedNoise.m by <u>Husson (2014)</u> and modified by Linda Hinnov. Robust AR(1) noise model follows <u>Mann and Lees (1996)</u>.
- (7) Run or Run & Save button, generates power spectrum (and save power spectrum data and AR(1) series)

Shortcut keys [Mac]: $\mathcal{H} + S$; [Windows]: Ctrl + S

 2π MTM power sepctrum of the Wayao Carnian gamma ray data (interpolation = 0.33; detrend 80-m lowess trend)

New file name: *-2piMTM-CL.txt, means 2π MTM and confidence level series.

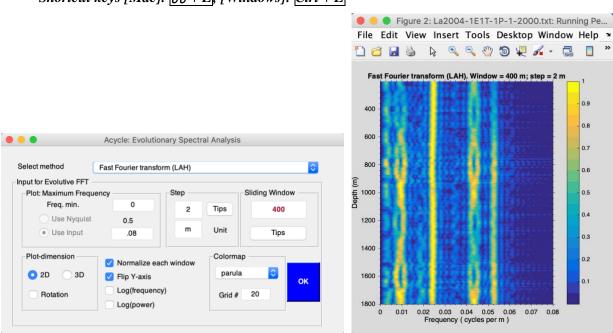
Evolutionary Spectral Analysis

This function conducts evolutionary spectral analysis with user-defined parameters. Steps:

(1) Select a data file in the Main Window.

Warning: The data file must be an evenly spaced depth/time series.

- (2) Select **Timeseries** → **Evolutionary Spectral Analysis** menu
- (3) Select Method. The default method is Fast Fourier transform (LAH) by Linda A. Hinnov (Kodama and Hinnov, 2015). Other options are MatLab's Fast Fourier transform, multi-taper method (MTM) (Thomson, 1982), and Lomb-Scargle spectrum (Lomb, 1976; Scargle, 1982).


(4) Input for evolutionary spectral analysis panel includes settings for plot frequencies. Default values from 0 to Nyquist ($f_{nyq} = 1 / (N * \Delta t)$), where N is the total number of data, and Δt is the sampling rate.

- (5) Step of sliding windows. The default value should be sufficient for most paleoclimate projects. The unit may be m, kyr, etc.
- (6) Sliding Window: **very important!** The length of the sliding window. The default value is 35% of the total length of the selected data. You may need to change this based on following tips.

Tips: assuming the data series is dominated by 35 m cycles, the window may be 2-4 times of 35 m, that is, 70 to 140 m. A large window can smooth out the higher frequencies signals while a small window cannot detect low-frequency signals.

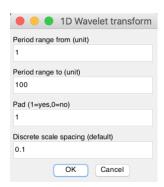
- (7) Plot-dimension: 2D or 3D with rotation option.
- (8) Flip Y-axis: give me a try.
- (9) Colormap style can be modified and grid levels can be set (empty value results in a smoothed figure).
- (10) OK button: generates a new figure showing the evolutionary spectral analysis results. No new files generated automatically.

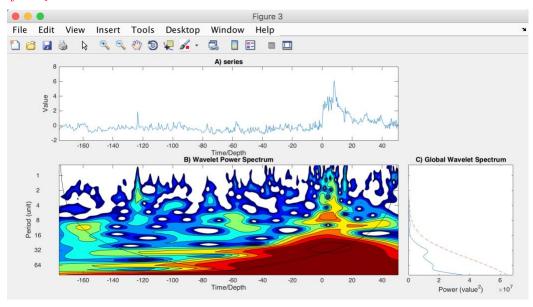
Shortcut keys [Mac]: $\mathcal{H} + E$; [Windows]: Ctrl + E

Evolutionary FFT of the La2004 astronomical solutions using a 400 kyr sliding window and 2 kyr step

Wavelet transform

This wavelet analysis function conducts wavelet analysis (<u>Torrence and Compo, 1998</u>) with user-defined parameters. Steps:


(1) Select a data file in the Main Window.


Warning: The data file must be an evenly spaced depth/time series.

- (2) Select **Timeseries** → **Wavelet Transform** menu
- (3) Modify parameters

Period ranges from [the first line] to [the second line] unit. Default values for all lines works well with the program. Users may need to modify the period range in the 2nd line using a smaller number (e.g., halved value).

[Issue: stand-alone versions of Acycle may have bugs in the wavelet transform.]

Wavelet analysis of the Wayao gamma ray series. The series has been interpolated using a 0.3 m sampling rate.

Filtering

This function generates a filter output series based on the selected data file with user-defined parameters. Steps:

(1) Select a data file in the Main Window.

Warning: The data file must be an evenly spaced depth/time series.

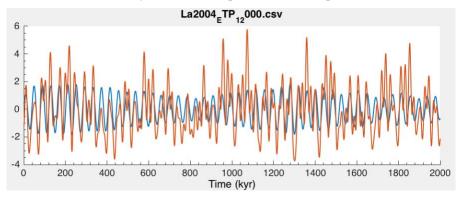
- (2) Select **Timeseries** → **Filtering** menu
- (3) **Bandpass filter** panel: very important! Type min and center frequencies of the passband, the max frequency will be set automatically. The bandpass filters are MatLab's Butter, Cheby1, and Ellip filters and Gaussian, and Taner-Hilbert filters. The recommended filters are Gaussian filter and Taner-Hilbert filters code by Linda Hinnov (Kodama and Hinnov, 2015).

Tips: The Taner-Hilbert filter generates both filtered output series and the amplitude modulation of the filtered output series.


Click Save Data button, the filter outputs will be displayed after clicking the refresh button in the Main Window.

(4) **Highpass and lowpass** panel: Two options are MatLab's Butter and Ellip filter. Type cutoff frequency in the text box and select a filter.

Click Save Data button, the filter outputs will be displayed.


(5) Power spectrum plot: give options for display the power spectrum in the right of the GUI.

Shortcut keys [Mac]: $\mathcal{H} + F$; [Windows]: Ctrl + F

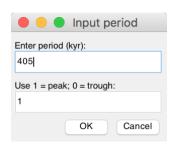
New file name: *-gaus-0.0243+-0.0053.csv, means filtered output series using gauss filter and a 0.0243 ± 0.0053 cycles/unit bandpass.

*-Tan-0.03+-0007.csv and *-Tan-0.03+-0007-AM.csv, mean filtered output series using Taner-Hilbert filter and a 0.03 ± 0.007 cycles/unit bandpass, with its amplitude modulation file saved.

Original La2004 solutions and filtered 41 kyr cycles

Build Age Model

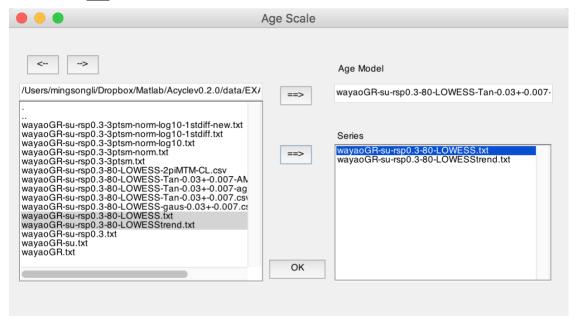
This function generates an age model file from a filter output data file. Steps:


(1) Assuming the filtering wavelength generates a filtered 35 m cycle series. The 35 m cycles are assumed to be 405 kyr long eccentricity cycles. This filtered data file should be selected.

(2) Select **Timeseries** → **Build Age Model** menu

(3) In the pop-up window, enter 405 and 1, and click OK button. This generates a new age model series via assigning every peak of 35 m cycles as peaks of the 405 kyr cycles.

New file name: *-agemodel-405-max.csv,


means an age model file using filtered wavelength peaks as 405 kyr anchors.

Age Scale

This function conducts depth-to-time transformation in a new standalone GUI. Steps:

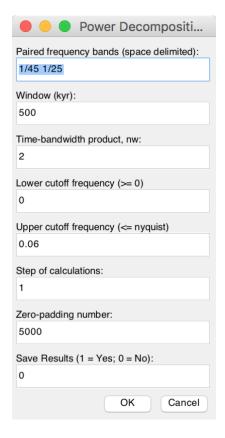
- (1) Select 1 (ONE) age model file, click the top $\models =>$ button to record this file as an age model file.
- (2) Select 1 or more data files, click the bottom => button to record this file (these files) as series needs to be transformed.
 - (3) Click the OK button. The transformed series can be displayed and saved.

New file name(s): *-TD-name-of-agemodel-file.csv

(Tips) Change directory using <-- or --> button

Sedimentary Rate to Age Model

Assuming you want to generate an age model file from a sedimentary rates file (2 columns: depth and sedimentation rate), this function generates the age model working well with acycle software.


Power Decomposition Analysis

This function subtracts power/variance within a user-defined frequency band. The code written by Mingsong Li and Linda Hinnov has been published in Li et al. (2016). Time-dependent amplitude modulations in the obliquity component were obtained from 2π multi-taper variance (power) spectra calculated along a sliding time window using the Matlab script *pda.m* (also available at https://doi.pangaea.de/10.1594/PANGAEA.859147). Steps:

(1) Select the original data file.

Warning: The data must be evenly spaced data in the first column. And the unit must be in kyr.

- (1) Type paired frequency bands; space delimited. If a dominated frequency is 1/33, then a 1/45 1/25 frequency band is used
- (2) Sliding window in kyr, a 500 kyr is used in <u>Li et al.</u> (2016)
- (3) Time-bandwidth product, '2' means 2π MTM method will be used.
- (4) cutoff frequencies, min = 0, max should cover all Milankovitch frequencies.

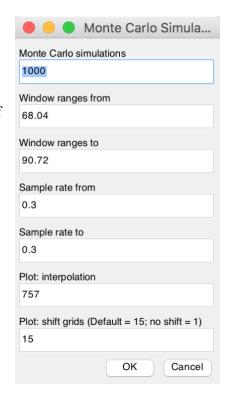
Sedimentary Noise Model

Dynamic noise after orbital tuning (DYNOT)

Dynamic noise after orbital tuning. Detect non-orbital variances from a tuned series. See **Chapter 5. DYNOT model Description**. See <u>Li et al. (2018a)</u> for details about this method.

Lag-1 autocorrelation coefficient (ρ_1)

This function conducts either single run or Monte Carlo simulations of lag-1 autocorrelation coefficient (ρ_1) using a sliding window. It works with both depth series and time series.


The "Single run" requires the input of "window" and "interpolation sampling rate".

The "Monte Carlo" requires several parameters: Number of Monte Carlo simulations (default is 1000), sliding window ranges from *win1* to *win2*, and a sampling rates from *sr1* to *sr2*, and plot settings (interpolation and shift grid).

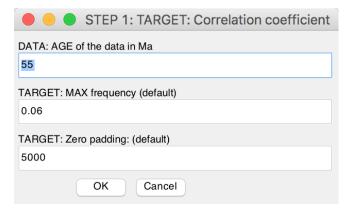
See <u>Li et al. (2018a)</u> for details about the parameters and significance of this method.

Correlation Coefficient (COCO)

This function addresses two fundamental issues in cyclostratigraphy and paleoclimatology: identification of astronomical forcing in sequences of stratigraphic cycles, and accurate evaluation of sedimentation rates. The technique considers these issues part of an inverse problem and estimates the product-moment correlation coefficient between the power

spectra of astronomical solutions and paleoclimate proxy series across a range of test sedimentation rates. The number of contributing astronomical parameters in the estimate is also considered. Our estimation procedure tests the hypothesis that astronomical forcing had a significant impact on proxy records. The null hypothesis of no astronomical forcing is evaluated using a Monte Carlo simulation approach. Details are included in (Li et al., 2018c).

Step 1: settings for generating target power spectrum

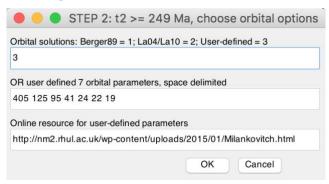

Select a depth series (interpolated, detrended), select **Timeseries --> Correlation Coefficient** menu

Note: the data series must have a unit in meter.

Type the approximate age for the depth series, the unit is million years ago (Ma).

Target frequency ranges from 0 cycle/kyr to the given "MAX frequency". Default values are recommended for the depth series with age less than 250 Ma.

For the depth series older than 250 Ma, the **MAX frequency may be set to 0.08**. This is because the precession cycle can be very short than 16 kyr.



Step 2: astronomical solution [optional]

If the age of the data in Ma is larger than 249 Ma, users need to select which astronomical solution should be used.

- 1 = Berger89 solution (Berger et al., 1989),
- 2 = Laskar 2004 solution (Laskar et al., 2004),
- 3 = user-defined solution and the second box should be filled by 7 astronomical periods.

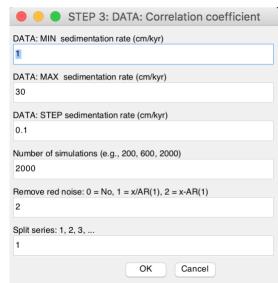
Online resource for user-defined astronomical parameters may be found at http://nm2.rhul.ac.uk/wp-content/uploads/2015/01/Milankovitch.html (Waltham, 2015).

Step 3: settings for generating data power spectrum

MIN sedimentation rate (cm/kyr):

MAX sedimentation rate (cm/kyr):

STEP sedimentation rate (cm/kyr): tested sedimentation rates range from *MIN* to *MAX*, with a step of *STEP* cm/kyr. In the following example, the tested sed. rates are 1, 1.5, 2, 2.5, 3, ..., 29.5, and 30 cm/kyr.


<u>Number of simulations:</u> 200-600 simulations are suggested for an initial run. And 2000 simulations generate publication quality results, however, 5000, or 10000 simulations are even better.

Remove red noise: 0 = no removing (recommended if the power spectrum is not "red"); else removing red noise:

1 = power spectrum / AR(1) series and those less than AR(1) series are set to 0;

2 = power spectrum - AR(1) series and those less than 0 are set to 0 (**Default**, the best option for the time series with a "red" spectrum).

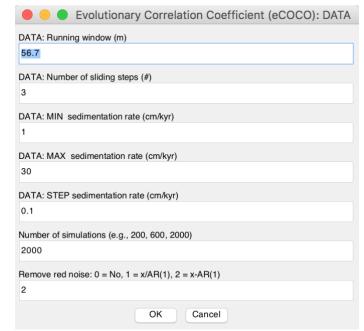
Split series: 1 (default), 2, 3. If a number of "2" is used, the series will be split into 2 or more slices.

Click the OK button, Monte Carlo simulation steps can be displayed in the Command Window of MatLab. A log file will be generated recording all parameters used in the correlation coefficient analysis.

Evolutionary Correlation Coefficient (eCOCO)

The method is applied using a sliding stratigraphic window to track variable sedimentation rates along the proxy series, in a procedure termed "eCOCO" (evolutionary correlation coefficient) analysis. (Li et al., 2018c)

Waning: the data series must have a unit in meter.


Step 1: same as that in COCO.

Step 2: same as that in COCO.

Step 3: most parameters are the same as those in COCO (see above). Two new parameters:

<u>DATA: running window (m)</u>: default window is 35% of the total length of the data series.

<u>DATA: Number of steps (#):</u> sliding steps. The default value will give about ~300 sliding windows for publication quality results.

Click the OK button, Monte Carlo simulation steps can be displayed in the Command Window of MatLab. A log file and the related *.AC.fig file will be generated recording all parameters used in the evolutionary correlation coefficient analysis. The user needs to decide which figure output should be saved or not.

Tips: Users may save the main window using "File" → "save ac.fig" menu anytime. This will save the data stored in the main window figure, and the user doesn't have to re-run the eCOCO using the same parameters.

Tips: User can plot eCOCO results anytime at "Plot" → "ECOCO plot" menu.

Q: Which window should I use?

A: A window that covers 1.5-2 * long eccentricity cycles will give a reliable result. If your series is dominated by 35 m cycles (405 kyr), then a 70 m window (= 35 * 2) may be good to keep the balance: A large window eCOCO losses resolution of variable sedimentation rates, and a small window may not give correct results.

Track Sedimentation Rates

Not finish yet...

TimeOpt

The method is to determine the optimal sedimentation rates of the proxy series, in a procedure termed "TimeOpt" analysis (Meyers, 2015). For a "test" sedimentation rate, the TimeOpt method extracts the precession-band amplitude envelope from the proxy data and evaluates the first correlation coefficient ($r^2_{envolope}$) between this envelope and reconstructed eccentricity model. It also evaluates a second correlation coefficient (r^2_{power}) between the reconstructed astronomical (eccentricity and precession) model series and the time-calibrated proxy series. Finally, a measure of fit (r^2_{opt}) combine both correlation coefficients using an equation: $r^2_{opt} = r^2_{envolope} * r^2_{power}$. Monte Carlo simulation with a first-order autoregressive model is used to determine the statistical significance of the observed r^2_{opt} value.

This function is largely based on the TimeOpt R script in Astrochron by Steve Meyers.

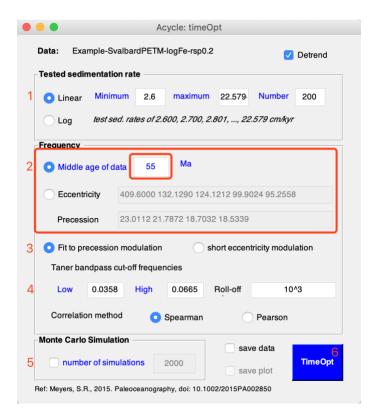
Step 0: Select a time series in depth domain (interpolation may be needed if the sampling rate is uneven).

Warning: the unit of depth-series should be in "meter".

Step 1: In the pop-up window, set the test sedimentation rate:

linear or log model?

Minimum, maximum, and the step of sedimentation rates. (Default values are usually okay)


Step 2: Set the middle age of data OR type frequencies of eccentricity and precession.

You'll only need to give the middle age of the data; the frequencies will be calculated automatically from an astronomical solution of La2004.

The Taner bandpass cut-off frequencies are also adjusted automatically.

If the middle age is > 249 Ma, you may type the frequencies.

- **Step 3**: Fit to precession modulations (default), and short-eccentricity modulation may not be reliable.
 - **Step 4**: If you have typed the frequencies in Step 2, you will also need to adjust frequencies here.
- **Step 5**: Simulations are to evaluate the null hypothesis of the optimal sedimentation rate. This can be very time-consuming.

eTimeOpt

evolutive TimeOpt method (Meyers, 2019).

Step 0: Select a time series in depth domain (interpolation may be needed if the sampling rate is un-even). For an example, select "Basic Series" → "Examples" → "Late Triassic Newark Depth Rank" → select generated text file entitled "Example-LateTriassicNewarkDepthRank.txt" in the Acycle main window.

Step 1: In the pop-up window, set the test sedimentation rate:

linear or log model?

Minimum, maximum, and the step of sedimentation rates.

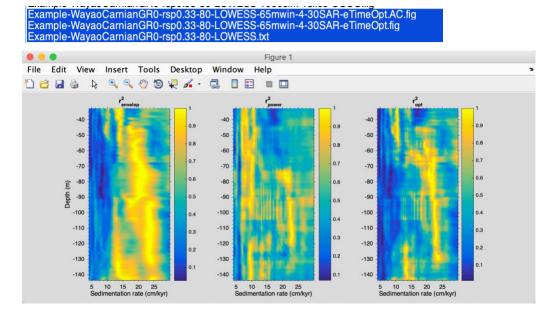
Step 2: Set the middle age of data OR type frequencies of eccentricity and precession.

You'll only need to give the middle age of the data; the frequencies will be calculated automatically from an astronomical solution of La2004.

If the middle age is > 249 Ma, you may type the frequencies.

Step 3: **Set filter.** Fit to precession modulations (default), and short-eccentricity modulation may not be reliable.

The Taner bandpass cut-off frequencies are also adjusted automatically.


Step 4: Set the sliding window and step. Default window size is 35% of total range of depth. This should be adjusted, a window size of $1.5 - 2 \times (405$ -kyr related wavelength) is usually good enough. Default step size usually generate ~200 sliding window, this is sufficient to generate a publication quality eTimeOpt result.

Step 5: You may select to normalize each sliding window (forcing the maxima values of each window to 1). Ticking "Flip Y-axis" checkbox will flip y-axis.

Step 6: Click OK button to run the eTimeOpt.

You will have following two new MatLab figure file, and eTimeOpt plot.

4.8 Help

Readme

Show update log file / online document

Manuals

Open the <User's Guide> document

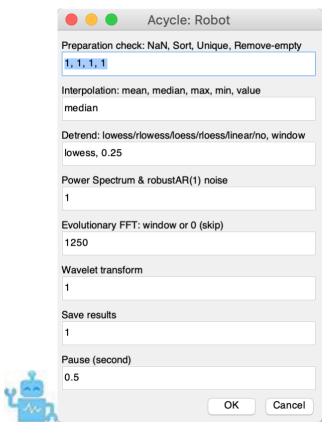
Find Updates

Visit websites to find updates of *Acycle* software.

www.mingsongli.com/acycle

https://github.com/mingsongli/acycle

Copyright


Copyright.

Contact

4.9 Mini-robot

This tiny tool can do some work automatically with default settings.

- Step 1: Click to select one data file (see **3.6 Data Requirement**) in *Acycle* main window.
- Step 2: Click the mini-robot button.
- Step 3: review parameters and click the "OK" button.

It will do:

- 1. Data preparation check selected data: remove NaN numbers, sort data (based on the first column), remove duplicated numbers (replace with their mean value), remove empty values
 - 2. Interpolation: using the median sampling rate
 - 3. Detrending: removing a 25% LOWESS trend
- 4. Power spectral analysis: to show significant frequencies; aided with a robust AR(1) red noise model using a log best-fit to the 20% median-smoothed spectrum.
 - 5. Evolutionary FFT: using an adjusted sliding window.
 - 6. Wavelet transform: using default settings.
 - 7. Save results
 - 8. Pause 0.5 seconds after each above step.

5. DYNOT model Description

Li et al. (2018a) developed a dynamic noise after orbital tuning, or DYNOT model for the sea-level changes based on the dynamic non-orbital signal in climate proxy records after subtracting orbital, i.e., astronomically forced climate signal. The DYNOT model is supplemented by a second, independent lag-1 autocorrelation coefficient, or ρ_1 model, which forms the basis of a statistical method for red noise estimation of time series. DYNOT and ρ_1 modeling of a GR series of ODP Site 1119 over the past 1.4 myr correlates with the classic low-passed $\delta^{18}O$ sea-level curve, demonstrating the efficacy of the sedimentary noise model.

5.1 Data format

data for the DYNOT model (support data in *.csv and *.txt format)

Name: data

Length: $m \times 2$ % must be a 2-column dataset

Column 1: time % unit must be in ka;

Column 2: value

Notes:

#1: Proxy data is assumed to be sensitive to water-depth related noise at your section/core.

#2: There is no requirement for interpolation, normalization, or removing long-term trend (i.e., pre-whitening) of the dataset.

#3: Extreme values should be removed.

#4: Both increasing-upward and decreasing-upward time series are valid.

5.2 Startup

- 1. Left click to select a dataset file in *Acycle* main window.
- 2. Select "Timeseries" "Sedimentary Noise Model" "DYNOT"
- 3. The DYNOT sea-level model GUI (Fig. 2) is below.

Dynamic noise after orbital tuning (DYNOT)

Lag-1 autocorrelation coefficient (ρ1)

Correlation Coefficient

Fig. 1. MatLab workspace for the DYNOT model.

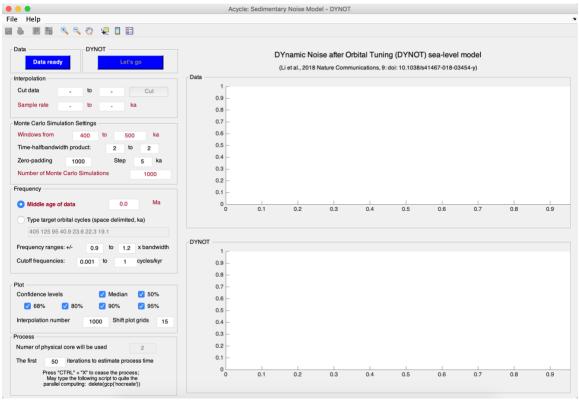


Fig. 2. The DYNOT model

4. Click Data ready button load data or load data from *.txt or *.csv file

In the DYNOT menu: Select "File" → "Import Data (*.txt, *.csv)" → Select data (chose "1119_gr_1400de_finetuned.txt" or "1119_gr_1400de_finetuned.csv") → Click "Open"

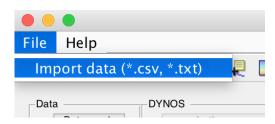


Fig. 3. Load data to DYNOT model.

5.3 Settings

Yellow: load data and run the model.

Red: Key settings. Check before running the model.

Green: Optional settings. Default values are okay for most running.

5.3.0. Click on Data ready (button) to load data into the DYNOT model.

5.3.1. Cut data (*optional*): These settings automatically show the beginning and the end of the time series, i.e., time span of dataset. Unit is ka. If you want to choose a different interval, just type two new ages and click Cut button.

- **5.3.2.** Sampling rates (*optional*): These show a range of sample rates covering 90% of sample rates (Green Box 20 in Fig. 4). Unit is ka. A Monte Carlo method of hypothesis testing and the multi-taper method (MTM) of power spectral analysis are to be undertaken, and so resampling must be applied. Sampling rates of proxy datasets in time are always greater than zero and so are non-normally distributed. Therefore, the Weibull distribution is used to represent sampling rate distributions for uncertainty analysis in the DYNOT model. To avoid an ultra-low or ultra-high, unrealistic sampling rate created by the Weibull distribution algorithm, we set the 5th and 95th percentiles of sampling rates of of the data as default, lower and upper limits of the generated, Weibull-distributed sampling rates.
- **5.3.3. Windows**: These values set sliding window range. Moving window length in units of time (<< total data length). Unit is ka.

Different windows in the DYNOT model can affect results in two ways.

- (1) The DYNOT model with a large window will shorten DYNOT results, and the model with a small window will generate longer DYNOT results, $N_r = N_{data} window + 1$, where Nr is total number of DYNOT values of each simulation, N_{data} is total number of interpolated data points, and window is the running window employed.
- (2) The DYNOT model with a small running window generates higher resolution results, however, the variance of low-frequency cycles and total variance diminish simultaneously, which leads to increased uncertainty in non-orbital signal ratio estimation.
- The DYNOT model with a small running window also increases the MTM power spectrum bandwidth (i.e., reduces frequency resolution). The expected sea-level variations of interest in the Early Triassic are 10⁴ to 10⁶ year-scale, i.e., the fifth to third-order sequences, therefore a comparable or shorter time window (e.g., 300-500 kyr, 400 kyr or shorter) should be adopted for DYNOT modeling.
- **5.3.4.** Time-bandwidth product (*optional*): Time-bandwidth product of discrete prolate spheroidal sequences used for window. Typical choices are 2, 5/2, 3, 7/2, 4.
- 5.3.5. Zero-padding (optional). zero-padding number, e.g., 1000.
- **5.3.6.** Step (*optional*). step of calculations; default is 5 ka.
- **5.3.7. Number of Monte Carlo Simulations:** default is 1000. Maybe use 100 or 300 for a trial running. Recommended value for publication is >5000.
- **5.3.8. Age of the time series**: The age in Ma will be used to estimated target orbital cycles in 5.3.9. You can use either 5.3.8 or 5.3.9 to tell the DYNOT model the target cycles.
- **Target orbital cycles** (space delimited, in ka): 6 orbital cycles of long-eccentricity (405), short-eccentricity (125 and 95), obliquity (40.9 or shorter), precession (23.6, 22.3, and 19.1 or shorter). This is age dependent (see 7.8). The 405, 125, and 95 kyr cycles are assumed to be invariant through time. While the obliquity = 41-0.0332*age;

precession 1 = 23.75-0.0121*age; precession 2 = 22.43-0.0121*age; precession 3=19.18-0.0079*age. These calculations are from <u>Yao et al. (2015)</u>, and are based on the La2004 astronomical model (<u>Laskar et al., 2004</u>).

Fig. 4. Settings of the DYNOT model.

Yellow: load data and run the model.

Red: Key settings. Check before running the model.

Green: Optional settings. Default values are okay for most running.

- **5.3.10.** Frequency ranges (*optional*): For the definition of the non-orbital signal ratio by <u>Li et al. (2018a)</u>, cutoff frequencies and their bandwidths are crucial for estimation of variances of eccentricity, obliquity and precession signals. We vary each cutoff frequency assuming a uniform distribution with cutoff frequency ranges at ± 90% to ± 120% bandwidth. Here the bandwidth (*bw*) equals *nw/window*, where *nw* is timebandwidth product of discrete prolate spheroidal sequences, and *window* is the running window.
- **5.3.11.** Cutoff frequencies (*optional*): lower cutoff frequency (> 0) for estimation of total variance and upper cutoff frequency (< Nyquist frequency) for estimation of total variance.
- **5.3.12.** Confidence levels (*optional*): default values show median and confidence levels (e.g., 50%, 68%, 80%, 90%, and 95%) of the DYNOT results.
- **5.3.13.** Interpolation (*optional*): In 5.3.3, a smaller *Nr* compared to *N_{data}* leads to a "no data" effect at the very beginning and/or very end of the DYNOT results. To avoid this problem and to provide a better constraint for noise estimation, technically, the

DYNOT model is interpolated and randomly shifts and plots simulation results of a single iteration at the same time scale of the dataset, although the plots also generate relatively smoothed DYNOT spectra when a gap is shorter than $2 \times window$. Here 1000 is adequate for the DYNOT model.

- **5.3.14** Shift plot grids (*optional*): See 5.3.13 for interpretation. Default is 15. One can also use 15-30 for the better shape of the beginning and the end of the DYNOT spectra.
- **5.3.15.** Number of physical cores (*optional*): This detects the physical cores of the CPU of the computer.
- **5.3.16.** Number of itineraries to estimate the process time (*optional*): To estimate process time of the time-consuming DYNOT model, the model will run some itineraries. Default is 50.
- **5.3.17.** Emergency note: Press "Ctrl" + "C" to cease the DYNOT process before the parallel computing. Press "Ctrl" + "X" to cease the DYNOT process during the parallel computing. You may need to type the following script in the command window to quite parallel computing.

>> delete(gcp('nocreate'))

- 5.3.18. Click the button to run the model.
- 5.3.19. A window shows the dataset.
- 5.3.20. A window shows sample rates of the dataset OR the DYNOT spectrum of the dataset.

5.4. Running the DYNOT model

Click the Let's go button to run the DYNOT code. In the command window, the estimated running time will appear:

16:21:20 Begin the process ...

16:22:54 First 50 iterations suggest: remain >= 0h:7m:27sec

% The model runs the first 50 iterations to estimate that the total running time will last ca. 7 minutes 27 seconds. The real run-time may be 10s seconds to several minutes longer than this estimate.

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.

16:23:07 Current iteration takes 1.11 seconds

16:23:08 Current iteration takes 1.21 seconds

16:23:15 Current iteration takes 1.19 seconds

16:26:26 Current iteration takes 1.38 seconds

% Start parallel computing and show time of each iteration.

Parallel pool using the 'local' profile is shutting down.

>> Done. % Stop parallel computing and display the DYNOT result (Fig. 5).

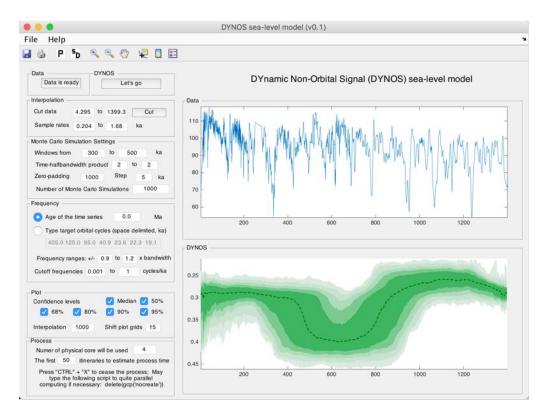


Fig. 5. DYNOT sea-level model of the gamma-ray series at ODP site 1119 from 0 to 1.4 Ma.

5.5. Output Files

After running the DYNOT model, the median value of noise and percentiles of the outputs will be saved as text files.

The GUI menu (Fig. 6) can be used to:

#1: save a MatLab-fig in the working directory entitled "plots .fig".

#2: save a PDF file of the plots in the working directory entitled "plots_.pdf"

#3: pop-up display the DYNOT spectrum in a new window.

#4: save DYNOT output data in the working directory entitled "result handles.mat".

Caution: Change names of output files, or they will be overwritten by new files.

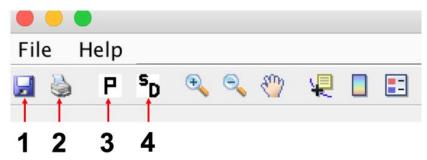


Fig. 6. Output files

6. Case Studies

Example #1: Insolation

Data: Insolation at 65°N on June 22 over the past 2 million years

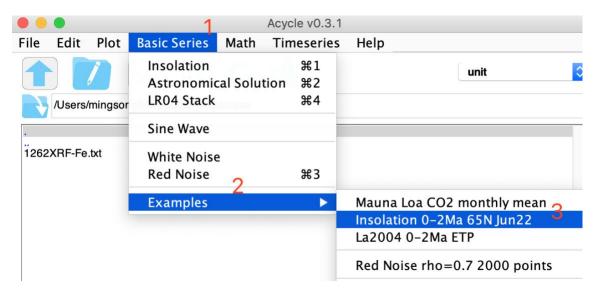
Age: 0-2000 ka

Proxy: Insolation.

Target:

Dominated cycles of insolation series

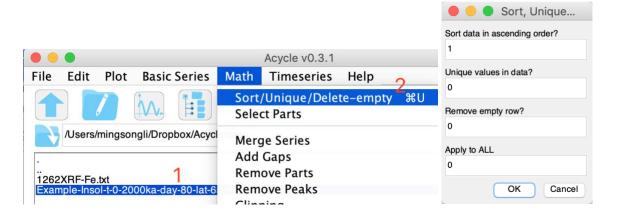
Tool:


Acycle software v0.3 (https://github.com/mingsongli/acycle)

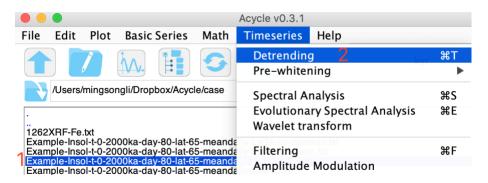
Reference:

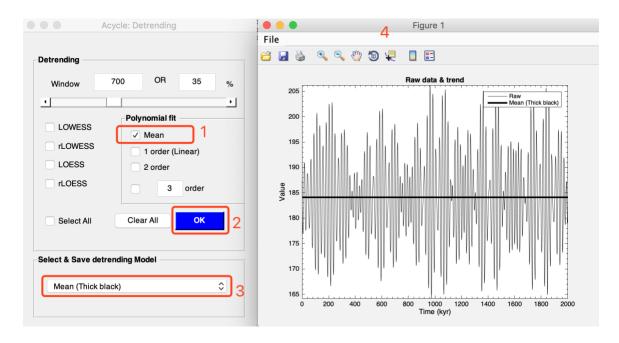

Berger, A., 1978. Long-term variations of daily insolation and Quaternary climatic changes. Journal of the atmospheric sciences 35, 2362-2367.

Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428, 261-285.

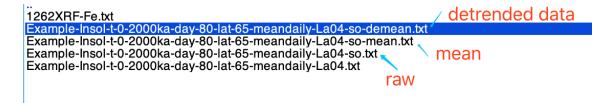

Step 1: Load data

You will have the following data and figure.

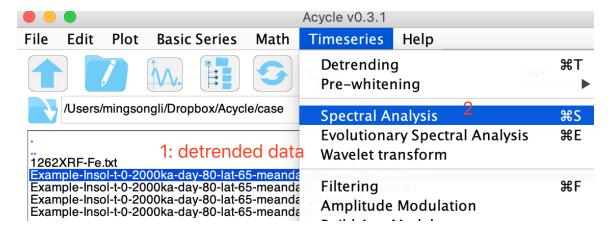

Step 2: Data pre-processing

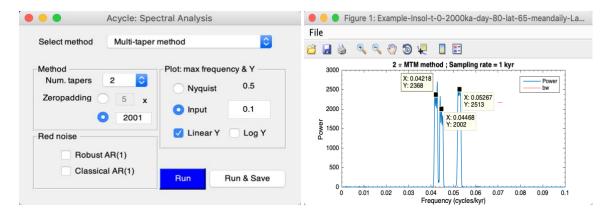


Since the data is not in ascending order. Here we'll need sort data first.

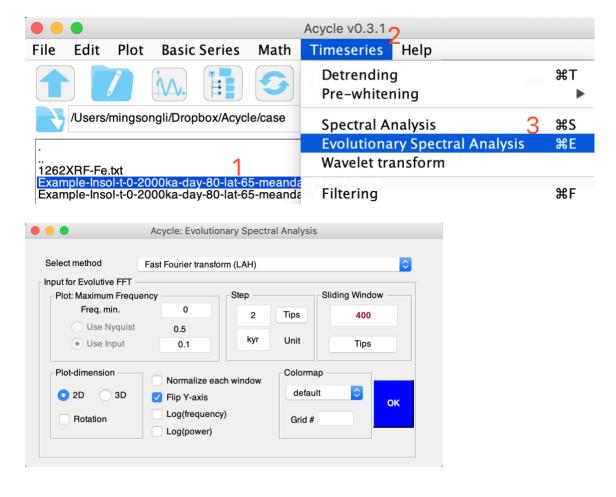

Step 3: Detrending

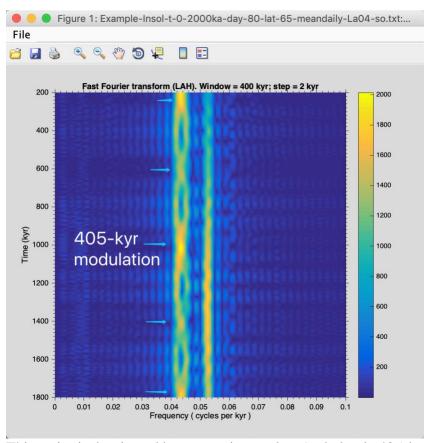
Remove the mean value of the insolation series.




You will have:

Step 4: Power Spectral Analysis




Using the following settings:

Three peaks in the 2π (@Num.tapers) MTM (multi-taper method) power spectrum are 1/0.04218 = 23.7 kyr, 1/0.04468 = 22.4 kyr, and 1/0.05267 = 19.0 kyr.

Step 4: Evolutionary Spectral Analysis

This series is dominated by precession cycles. And clearly 405-kyr modulation can be seen in the evolutionary fast Fourier transform (blue arrows).

Example #2: La2004 astronomical solution (ETP)

Data: La2004 ETP over the past 2 million years

Age: 0-2000 ka

Proxy:

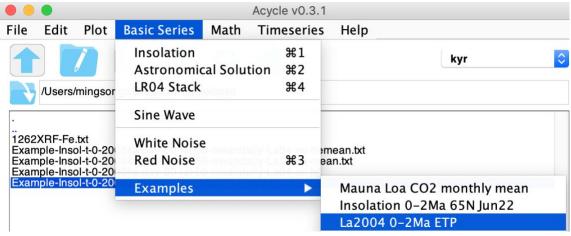
Laskar et al. (2004) astronomical solutions of <u>E</u>ccentricity, <u>T</u>ilt (obliquity), and Precession, or ETP is defined as:

ETP = standardized E + standardized T - standardized P

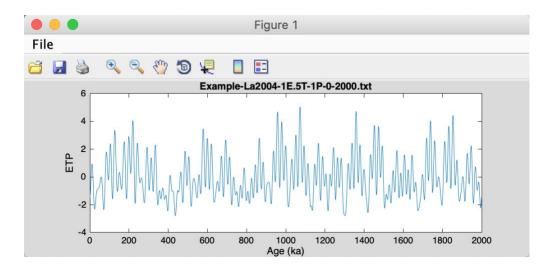
, where standardized E = (E - mean(E))/ standard deviation of E

Target:

Dominated cycles of ETP series

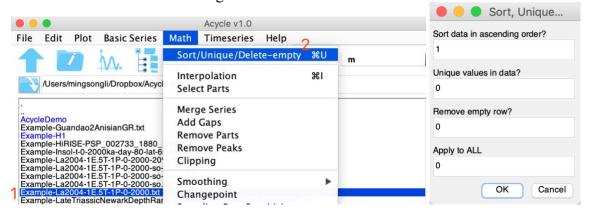

Tool:

Acycle software v0.3 (https://github.com/mingsongli/acycle)

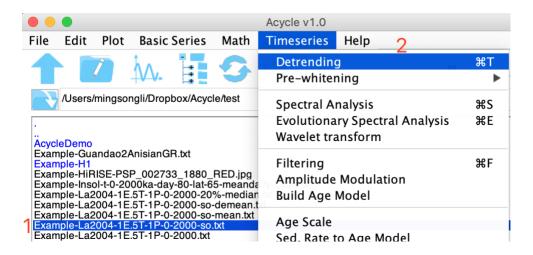

Reference:

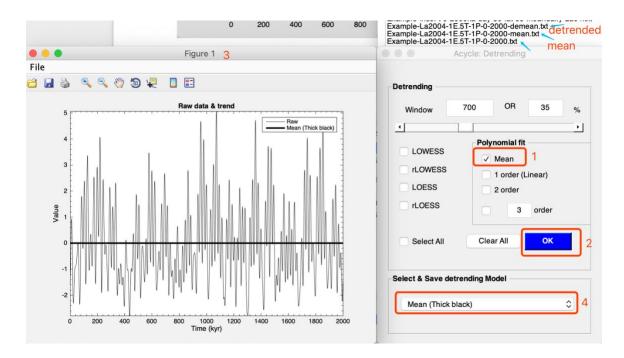
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428, 261-285.

Step 1: Load data



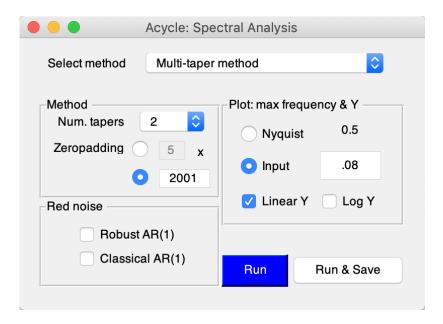
You will have:

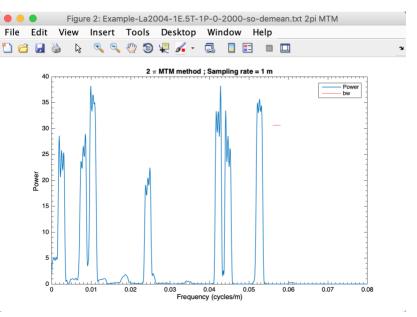

Step 2: Data pre-processing


Since the data is not in ascending order. Here we'll need sort data first.

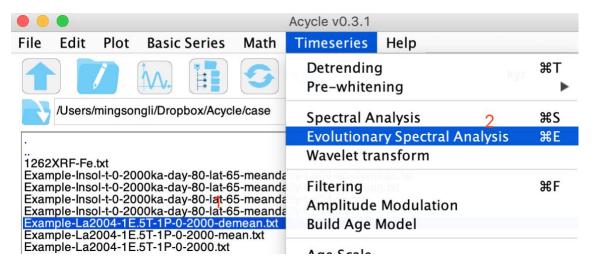
Step 3: Detrending

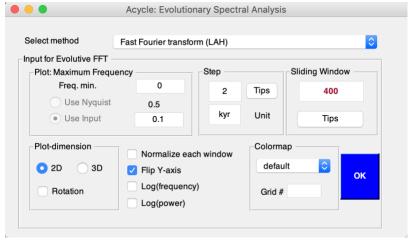
Remove the mean value of the insolation series.

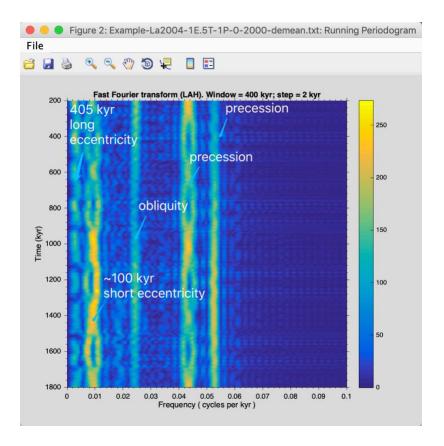




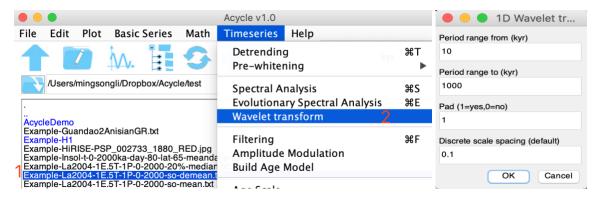
Step 4: Power Spectral Analysis


Using the following settings:


Seven peaks in the 2π (@Num.tapers) MTM (multi-taper method) power spectrum are 405 kyr, 125 kyr, 95 kyr, 41 kyr, 23.7 kyr, 22.4 kyr, and 19.0 kyr.



Step 5: Evolutionary Spectral Analysis



This series is dominated by 405 kyr long eccentricity, ~100 kyr short eccentricity, 41 kyr obliquity, 22 kyr and 19 kyr precession cycles.

Step 6: Wavelet transform

Using the following settings:

Seven peaks in the 2π (@Num.tapers) MTM (multi-taper method) power spectrum are 405 kyr, 125 kyr, 95 kyr, 41 kyr, 23.7 kyr, 22.4 kyr, and 19.0 kyr.

Example #3: Carnian cyclostratigraphy

Section: Wayao section, Guizhou, South China

Age: middle Carnian

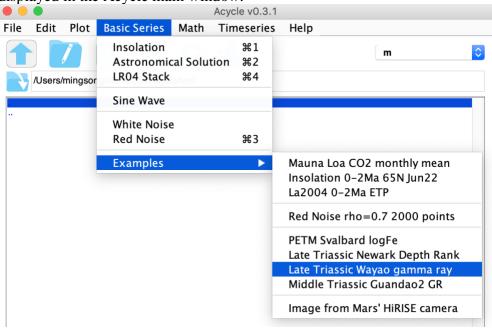
Lithology: The limestone beds of the Zhuganpo Formation displays patterns of variable bed thicknesses and changing clay content within the limestones as reflected in relative weathering resistance.

Proxy: These factors influence the natural gamma-ray signal with higher intensities indicating higher average clay contents.

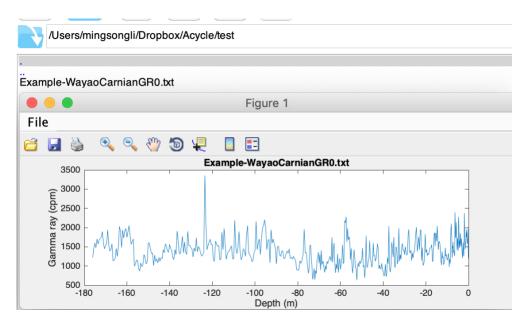
Target:

Cyclostratigraphic analysis of gamma ray series

Tool:

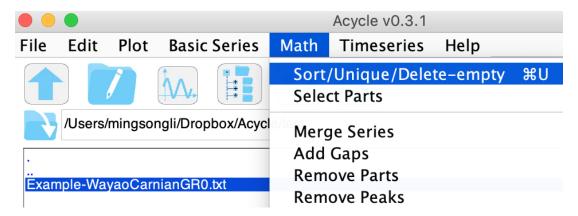

Acycle v0.3 (https://github.com/mingsongli/acycle).

Reference:


Zhang, Y., Li, M., Ogg, J.G., Montgomery, P., Huang, C., Chen, Z.-Q., Shi, Z., Enos, P., Lehrmann, D.J., 2015. Cycle-calibrated Magnetostratigraphy of middle Carnian from South China: Implications for Late Triassic Time Scale and Termination of the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology 436, 135-166.

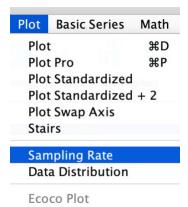
Step 1. Load Data

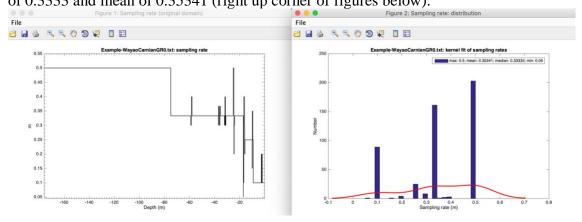
Select: Basic Series → Examples → Late Triassic Wayao gamma ray. The gamma ray data entitled "Example-WayaoCarnianGR0.txt" will be loaded and displayed in the Acycle main window.



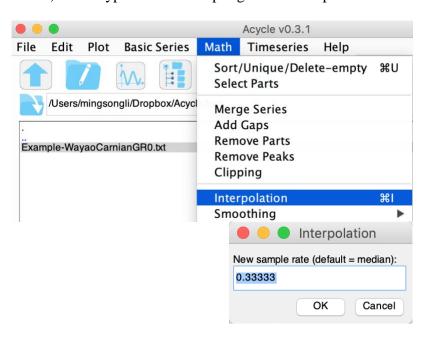
Left click to select the data file and select Plot \rightarrow Plot to plot the data. Double click the data file to see the accepted format of Acycle software.

Step 2. Data Preparation


Acycle includes several toolboxes to facilitate data preparation. Users can sort data in ascending order. Two or more values for the same time (or depth) may be averaged with the "Unique" function.

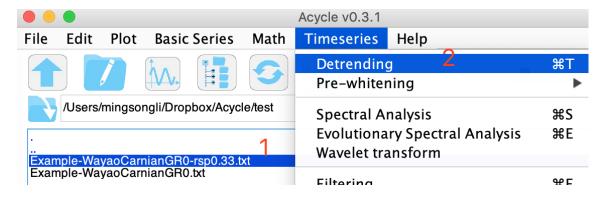

Step 3. Interpolation

Stratigraphic depth or time series are typically irregularly spaced due to uncertain timescales or difficulty in data collection. This necessitates interpolation to generate uniformly spaced time (or depth) series.


Let's look at the sampling rate plot first. Select Plot → Sampling Rate.

You'll see the sampling intervals of gamma ray data are irregularly spaced with a median of 0.3333 and mean of 0.35341 (right up corner of figures below).

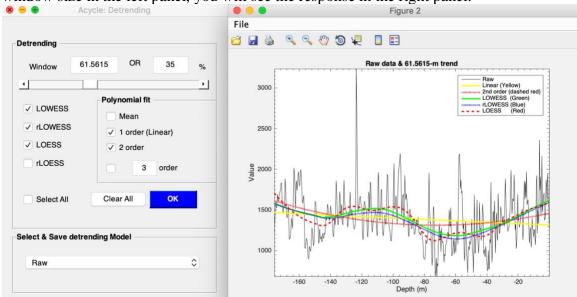
Math \rightarrow Interpolation (or Ctrl + I). Then type the new sampling rate to interpolate.



I use a 0.33 m as a new sampling rate, Acycle will generate a uniformly-spaced file entitled:

"Example-WayaoCarnianGR0-rsp0.33.txt".

Step 4. Detrending

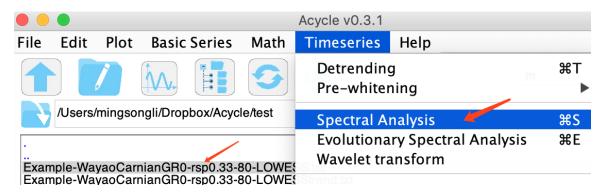

Detrending is a key step in time series analysis. Removal of these long-term trends, or detrending, is a critical step for power spectral analysis to ensure that data variability oscillates about a zero mean, and to avoid power leakage from very low-frequency components into higher frequencies of the spectrum.

Select the file; then select Timeseries \rightarrow Detrending (or CTRL + T).

In the pop-up window, select window size, detrending method. Then click OK to see the various trending.

Don't close "Acycle: Detrending" window or "New figure" window. Now change window size in the left panel, you will see the response in the right panel.

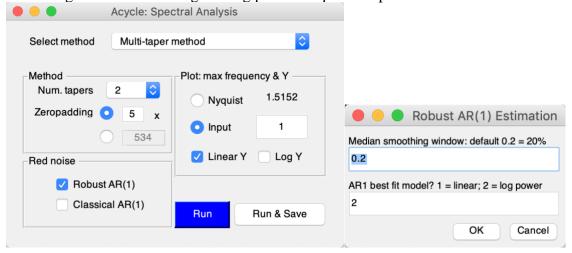
You will need to <u>Select & Save detrending Model</u>. I will choose an 80-m LOWESS trend for the best fit of the data without removing too many cycles.


The Acycle main window now displays an "Example-WayaoCarnianGR0-rsp0.33-80-LOWESS.txt" detrended file and a "***-LOWESStrend.txt" trend file.

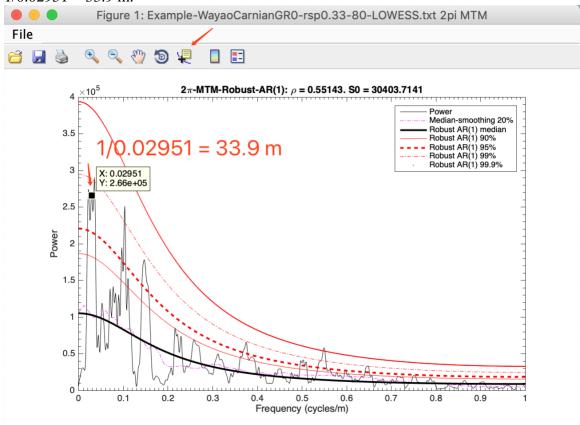
Example-WayaoCarnianGR0-rsp0.33-80-LOWESS.txt
Example-WayaoCarnianGR0-rsp0.33-80-LOWESStrend.txt

Step 5. Power spectral analysis

Power spectral analysis has become a cornerstone in paleoclimatology and cyclostratigraphy. Power spectral analysis evaluates the distribution of time series variance (power) as a function of frequency. The primary use of power spectral analysis is for the recognition of periodic or quasi-periodic components in a data series


Select the detrended file and choose "TimeSeries" → "Spectral Analysis"

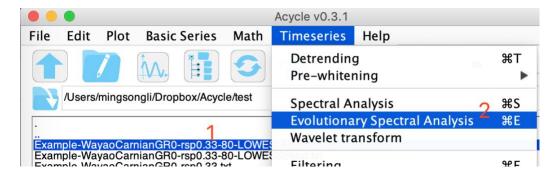
Then choose Multi-taper method (MTM) with robust AR (1) red noise models.


Use the following setting:

2 pi MTM with a 5 times zero-padding (to increase frequency resolution). The maximum frequency set to 1 cycle/m and use a linear Y plot. Testing with a robust AR1 red noise model, then (right panel) using a 20% median smoothing window and fitting to a log power of spectrum power.

You will have the MTM power spectrum with red noise models.

Remember the period of a given cycle (frequency peak) is 1/frequency. For example, the highest frequency peak (middle value) is 0.02951 cycles/m. The corresponding cycle is 1/0.02951 = 33.9 m.



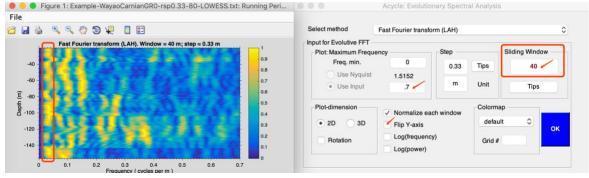
 2π MTM power spectrum of the gamma ray series is shown with 20% median-smoothed spectrum, background AR(1) model, and 90%, 95%, 99%, and 99.9% confidence levels.

[If you count all peaks higher than 95% confidence levels, you will find the 33.9 m, 10 m, 7 m, 2.6 m, and 1.8 m cycles. The ratios of these cycles are 405 kyr, 119 kyr, 83 kyr, 31 kyr, and 21.5 kyr cycles].

Step 6. Evolutionary power spectral analysis

Select data and then select "TimeSeries" → Evolutionary Spectral Analysis

Use the following settings.

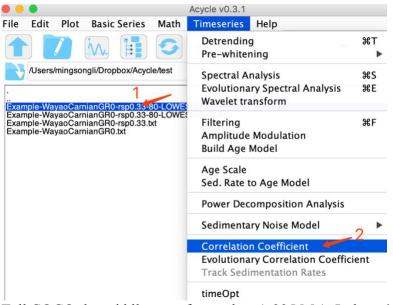

A sliding window of 40 m (Why? The longest cycle is 33.9 m, this window should be larger than 33.9 m. A 1.5-2 times of 33.9 m is good enough).

The maximum frequency is 0.7, this is to highlight low-frequency power.

Normalize each window: make spectral peaks in each window to be 1.

Flip Y-axis: because the first column of this data is increasing upward.

Then click ok to show results.

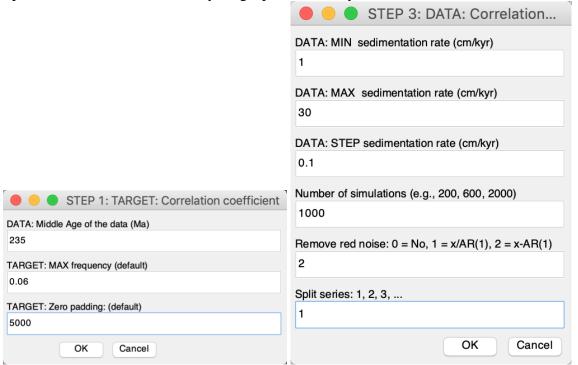


Don't close these two windows. Now, you may change frequency limit, flip Y-axis, change colormap to change the left window.

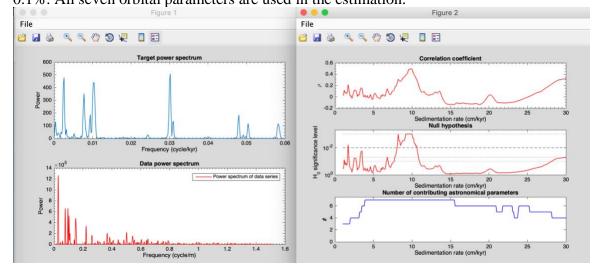
This figure tells me the dominated cycles of ~34 m is stable in frequency (period). Therefore, the sedimentation rate is probably not variable (too much).

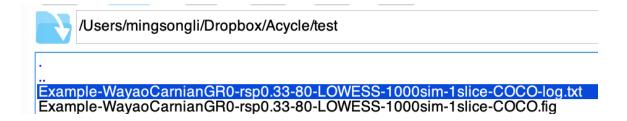
Step 7. Correlation coefficient

To estimate the most likely sedimentation rate. Select the detrended data, then click "Timeseries" → Correlation coefficient.

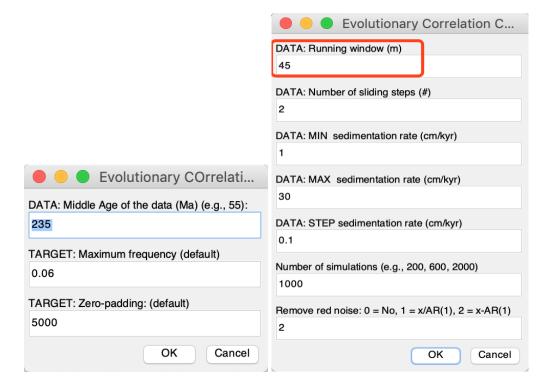


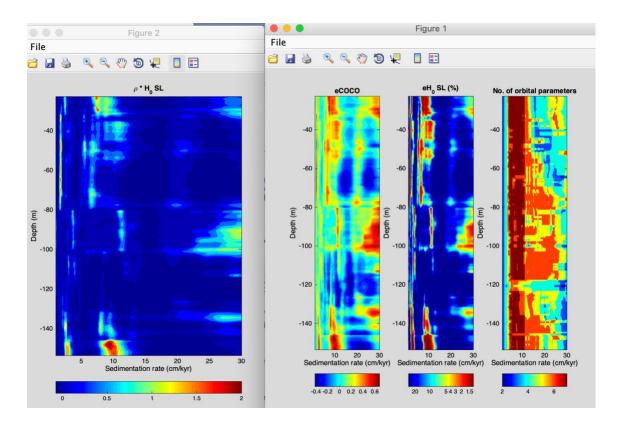
Tell COCO the middle age of your data (~235 Ma). It doesn't matter if this age has an uncertainty, an uncertainty less than 2-5 Myr can be okay.

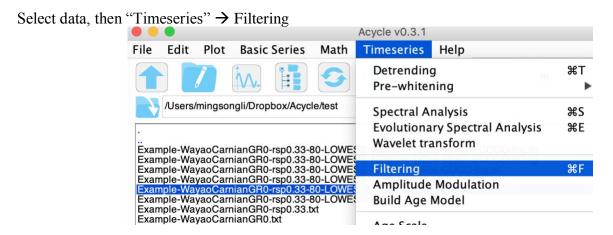

Tell the testing sedimentation rate range: from 1 to 30 cm/kyr, with a step of 0.1 It will test: 1, 1.1, 1.2, 1.3, 29.8, 29.9, 30 cm/kyr.

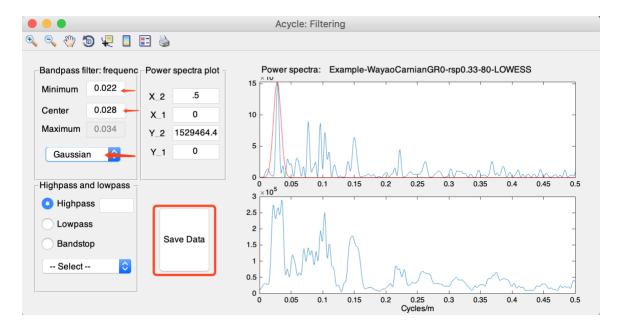

Monte Carlo simulation: the number is 1000 (or 500) for an initial test. A 2000 (or more) number is recommended for a publication purpose.

Split series: If the data set is very long, split series may use 2 or 3.

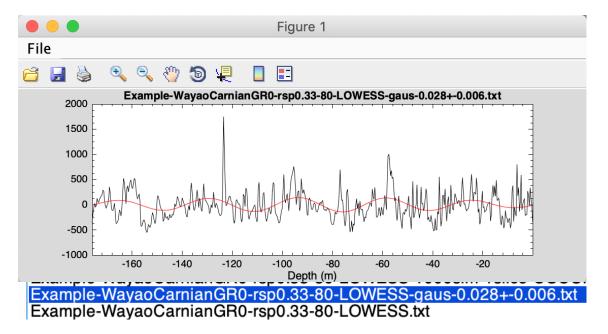



You will have the following figure and a log file saving all settings: It tells the most likely sedimentation rate is ~ 10 cm/kyr, with a significance level of 0.1%. All seven orbital parameters are used in the estimation.


Now using a 45 m window eCOCO analysis to track variable sedimentation rate.

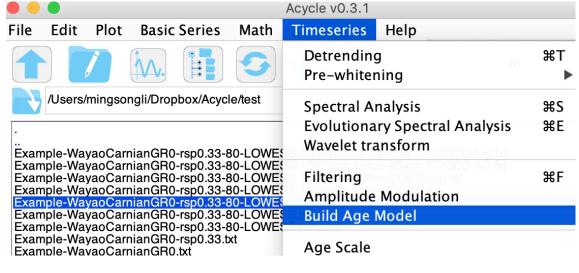

Step 8. Filtering

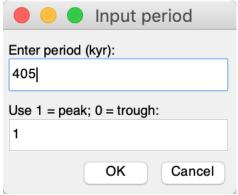
Filters are also essential tools to aid in the isolation of specific frequency components in the paleoclimate data series.



In the pop-up window

Select the center frequency, low frequency. Then select the Gaussian method. And "save data" button.

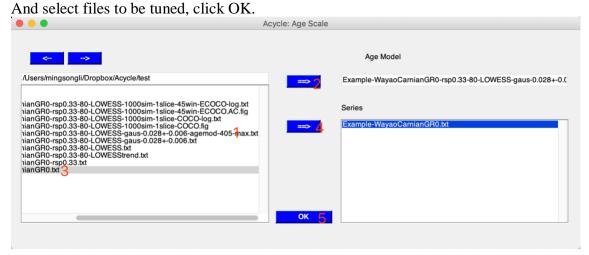

You will see the filtered series and data in the Acycle main window.



Step 9. Age model and tuning

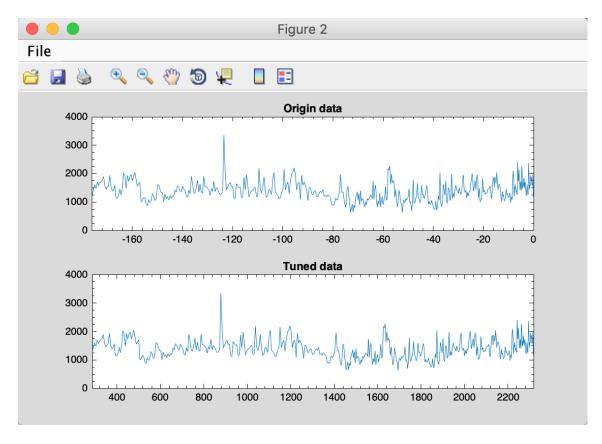
"Age Scale" toolbox in *Acycle* is useful to transform original data (usually in the depth domain) to tuned data (usually in the time domain) when an age model file is available.

Assuming these 33.4 m cycles are 405 kyr cycles
Select "Example-WayaoCarnianGR0-rsp0.33-80-LOWESS-gaus-0.028+-0.006.txt"
And then Timeseries → Build Age Model



Click OK, you will have an Age Model file:

Example-Wayao Carnian GR0-rsp0.33-80-LOWESS-gaus-0.028+-0.006-age mod-405-max.txt


Timeseries → Age Scale

Select the age model file

Tuned data will be ready.

 $\label{lem:continuous} ``Example-Wayao Carnian GR 0-rsp 0.33-80-LOWES S-gaus-0.028+-0.006-age mod-405-max.txt" \\$

Step 10. Repeat steps.

You can repeat Steps 3-6 and Step 8.

References

- Berger, A., Loutre, M., Dehant, V., 1989. Influence of the changing lunar orbit on the astronomical frequencies of pre-Quaternary insolation patterns. Paleoceanography 4, 555-564.
- Charles, A.J., Condon, D.J., Harding, I.C., Pälike, H., Marshall, J.E.A., Cui, Y., Kump, L., Croudace, I.W., 2011. Constraints on the numerical age of the Paleocene-Eocene boundary. Geochemistry, Geophysics, Geosystems 12.
- Husson, D., 2014. MathWorks File Exchange: RedNoise_ConfidenceLevels, http://www.mathworks.com/matlabcentral/fileexchange/45539-rednoise-confidencelevels/content/RedNoise_ConfidenceLevels/RedConf.m.
- Kodama, K.P., Hinnov, L., 2015. Rock Magnetic Cyclostratigraphy. Wiley-Blackwell.
- Laskar, J., Fienga, A., Gastineau, M., Manche, H., 2011. La2010: a new orbital solution for the long-term motion of the Earth. Astronomy & Astrophysics 532.
- Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428, 261-285.
- Li, M., Hinnov, L.A., Huang, C., Ogg, J.G., 2018a. Sedimentary noise and sea levels linked to land–ocean water exchange and obliquity forcing. Nature communications 9, 1004.
- Li, M., Huang, C., Hinnov, L., Chen, W., Ogg, J., Tian, W., 2018b. Astrochronology of the Anisian stage (Middle Triassic) at the Guandao reference section, South China. Earth and Planetary Science Letters 482, 591-606.
- Li, M., Huang, C., Hinnov, L., Ogg, J., Chen, Z.-Q., Zhang, Y., 2016. Obliquity-forced climate during the Early Triassic hothouse in China. Geology 44, 623-626.
- Li, M., Kump, L.R., Hinnov, L.A., Mann, M.E., 2018c. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing. Earth and Planetary Science Letters 501, 165-179.
- Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 20.
- Lomb, N.R., 1976. Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science 39, 447-462.
- Mann, M.E., Lees, J.M., 1996. Robust estimation of background noise and signal detection in climatic time series. Climatic Change 33, 409-445.
- Meyers, S.R., 2015. The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization. Paleoceanography.
- Meyers, S.R., 2019. Cyclostratigraphy and the problem of astrochronologic testing. Earth-Science Reviews 190, 190-223.
- Olsen, P.E., Kent, D.V., 1996. Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology 122, 1-26.
- Scargle, J.D., 1982. Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. The Astrophysical Journal 263, 835-853.
- Thomson, D.J., 1982. Spectrum estimation and harmonic analysis. Proceedings of the IEEE 70, 1055-1096.

Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological society 79, 61-78.

- Waltham, D., 2015. Milankovitch Period Uncertainties and Their Impact On Cyclostratigraphy. Journal of Sedimentary Research 85, 990-998.
- Yao, X., Zhou, Y., Hinnov, L.A., 2015. Astronomical forcing of a Middle Permian chert sequence in Chaohu, South China. Earth and Planetary Science Letters 422, 206-221.
- Zeebe, R.E., 2017. Numerical Solutions for the orbital motion of the Solar System over the Past 100 Myr: Limits and new results. The Astronomical Journal 154, 193.
- Zhang, Y., Li, M., Ogg, J.G., Montgomery, P., Huang, C., Chen, Z.-Q., Shi, Z., Enos, P., Lehrmann, D.J., 2015. Cycle-calibrated Magnetostratigraphy of middle Carnian from South China: Implications for Late Triassic Time Scale and Termination of the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology 436, 135-166.