Instruction

Prerequisite Skills

This lesson requires the use of the following skills:

- classifying triangles
- identifying and using vertical angles, supplementary angles, and complementary angles to find unknown angle measures
- applying the Triangle Sum Theorem and the Exterior Angle Theorem to find unknown measures of triangles
- justifying congruence of triangles
- writing various forms of proofs

Introduction

Isosceles triangles can be seen throughout our daily lives in structures, supports, architectural details, and even bicycle frames. Isosceles triangles are a distinct classification of triangles with unique characteristics and parts that have specific names. In this lesson, we will explore the qualities of isosceles triangles.

Key Concepts

- Isosceles triangles have at least two congruent sides, called **legs**.
- The angle created by the intersection of the legs is called the **vertex angle**.
- Opposite the vertex angle is the **base** of the isosceles triangle.
- Each of the remaining angles is referred to as a **base angle**. The intersection of one leg and the base of the isosceles triangle creates a base angle.

• The following theorem is true of every isosceles triangle.

- If the Isosceles Triangle Theorem is reversed, then that statement is also true.
- This is known as the converse of the Isosceles Triangle Theorem.

• If the vertex angle of an isosceles triangle is bisected, the bisector is perpendicular to the base, creating two right triangles.

Instruction

• In the diagram that follows, D is the midpoint of \overline{BC} .

- Equilateral triangles are a special type of isosceles triangle, for which each side of the triangle is congruent.
- If all sides of a triangle are congruent, then all angles have the same measure.

Instruction

- Each angle of an equilateral triangle measures 60° ($180 \div 3 = 60$).
- Conversely, if a triangle has equal angles, it is equilateral.

• These theorems and properties can be used to solve many triangle problems.

Common Errors/Misconceptions

- incorrectly identifying parts of isosceles triangles
- not identifying equilateral triangles as having the same properties of isosceles triangles
- incorrectly setting up and solving equations to find unknown measures of triangles
- misidentifying or leaving out theorems, postulates, or definitions when writing proofs

Instruction

Guided Practice 1.9.2

Example 1

Find the measure of each angle of $\triangle ABC$.

x = 18

 $m \angle C = 72$

3. Calculate each angle measure.	
$m \angle B = 4x = 4(18) = 72$	Substitute the value of x into the expression for $m \angle B$.
$m \angle C = 6(18) - 36 = 72$	Substitute the value of <i>x</i> into the expression for $m \angle C$.
$m \angle A + m \angle B + m \angle C = 180$	The sum of the angles of a triangle is 180°.
$m \angle A + 72 + 72 = 180$	Substitute the known values.
$m \angle A = 36$	Solve for $m \angle A$.
4. Summarize your findings.	
$m \angle A = 36$	
$m \angle B = 72$	

Example 2

Determine whether $\triangle ABC$ with vertices A (-4, 5), B (-1, -4), and C (5, 2) is an isosceles triangle. If it is isosceles, name a pair of congruent angles.

1. Use the distance formula to calculate the length of each side.
Calculate the length of
$$\overline{AB}$$
.
 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 $AB = \sqrt{[(-1) - (-4)]^2 + [(-4) - (5)]^2}$ Substitute (-4, 5) and (-1, -4)
for (x_1, y_1) and (x_2, y_2) .
 $AB = \sqrt{(3)^2 + (-9)^2}$ Simplify.
 $AB = \sqrt{90} = 3\sqrt{10}$
Calculate the length of \overline{BC} .
 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 $BC = \sqrt{[(5) - (-1)]^2 + [(2) - (-4)]^2}$ Substitute (-1, -4) and (5, 2)
for (x_1, y_1) and (x_2, y_2) .
 $BC = \sqrt{(6)^2 + (6)^2}$ Simplify.
 $BC = \sqrt{36 + 36}$
 $BC = \sqrt{72} = 6\sqrt{2}$
Calculate the length of \overline{AC} .
 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 $AC = \sqrt{[(5) - (-4)]^2 + [(2) - (5)]^2}$ Substitute (-4, 5) and (5, 2)
for (x_1, y_1) and (x_2, y_2) .
 $AC = \sqrt{[(5) - (-4)]^2 + [(2) - (5)]^2}$ Substitute (-4, 5) and (5, 2)
for (x_1, y_1) and (x_2, y_2) .
 $AC = \sqrt{[(9)^2 + (-3)^2}$ Simplify.
 $AC = \sqrt{90} = 3\sqrt{10}$

Example 3

Given $\overline{AB} \cong \overline{AC}$, prove that $\angle B \cong \angle C$.

Statements		Reasons	
1.	$\overline{AB} \cong \overline{AC}$	1.	Given
2.	Draw the angle bisector of $\angle A$ and extend it to \overline{BC} , creating a perpendicular bisector of \overline{BC} and the midpoint of \overline{BC} .	2.	There is exactly one line through two points.
3.	I	3.	Definition of midpoint
4.	$\overline{AD} \cong \overline{AD}$	4.	Reflexive PropertySSS Congruence Statement
5.	$\triangle ABD \cong \triangle ACD$	5.	
6.	$\angle B \cong \angle C$	6.	Corresponding Parts of Congruent Triangles are Congruent

Example 4

Find the values of *x* and *y*.

1. Make observations about the figure.

The triangle in the diagram has three congruent sides.

A triangle with three congruent sides is equilateral.

Equilateral triangles are also equiangular.

The measure of each angle of an equilateral triangle is 60° .

An exterior angle is also included in the diagram.

The measure of an exterior angle is the supplement of the adjacent interior angle.

Example 5

 $\triangle ABC$ is equilateral. Prove that it is equiangular.

1. State the given information.

 $\triangle ABC$ is an equilateral triangle.

2. Plan the proof.

Equilateral triangles are also isosceles triangles.

Isosceles triangles have at least two congruent sides.

 $\overline{AB} \cong \overline{BC}$

 $\angle A$ and $\angle C$ are base angles in relation to \overline{AB} and \overline{BC} .

 $\angle A \cong \angle C$ because of the Isosceles Triangle Theorem.

 $\overline{BC} \cong \overline{AC}$

 $\angle A$ and $\angle B$ are base angles in relation to \overline{BC} and \overline{AC} .

 $\angle A \cong \angle B$ because of the Isosceles Triangle Theorem.

By the Transitive Property, $\angle A \cong \angle B \cong \angle C$; therefore, $\triangle ABC$ is equiangular.

3. Write the information in a paragraph proof.

Since $\triangle ABC$ is equilateral, $\overline{AB} \cong \overline{BC}$ and $\overline{BC} \cong \overline{AC}$. By the Isosceles Triangle Theorem, $\angle A \cong \angle C$ and $\angle A \cong \angle B$. By the Transitive Property, $\angle A \cong \angle B \cong \angle C$; therefore, $\triangle ABC$ is equiangular.