UNIT 1 • SIMIILARITY, CONGRUENCE, AND PROOFS

Lesson 9: Proving Theorems About Triangles

Instruction

Prerequisite Skills

This lesson requires the use of the following skills:

- classifying triangles
- identifying and using vertical angles, supplementary angles, and complementary angles to find unknown angle measures
- applying the Triangle Sum Theorem and the Exterior Angle Theorem to find unknown measures of triangles
- justifying congruence of triangles
- writing various forms of proofs

Introduction

Isosceles triangles can be seen throughout our daily lives in structures, supports, architectural details, and even bicycle frames. Isosceles triangles are a distinct classification of triangles with unique characteristics and parts that have specific names. In this lesson, we will explore the qualities of isosceles triangles.

Key Concepts

- Isosceles triangles have at least two congruent sides, called legs.
- The angle created by the intersection of the legs is called the vertex angle.
- Opposite the vertex angle is the base of the isosceles triangle.
- Each of the remaining angles is referred to as a base angle. The intersection of one leg and the base of the isosceles triangle creates a base angle.

UNIT 1 • SIMIILARITY, CONGRUENCE, AND PROOFS

Lesson 9: Proving Theorems About Triangles

Instruction

- The following theorem is true of every isosceles triangle.

Theorem

Isosceles Triangle Theorem

If two sides of a triangle are congruent, then the angles opposite the congruent sides are congruent.

$m \angle B \cong m \angle C$

UNIT 1 • SIMIILARITY, CONGRUENCE, AND PROOFS

Lesson 9: Proving Theorems About Triangles

Instruction

- If the Isosceles Triangle Theorem is reversed, then that statement is also true.
- This is known as the converse of the Isosceles Triangle Theorem.

Theorem

Converse of the Isosceles Triangle Theorem

If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

$$
\overline{A B} \cong \overline{A C}
$$

- If the vertex angle of an isosceles triangle is bisected, the bisector is perpendicular to the base, creating two right triangles.

UNIT 1 • SIMIILARITY, CONGRUENCE, AND PROOFS

Lesson 9: Proving Theorems About Triangles

- In the diagram that follows, D is the midpoint of $\overline{B C}$.

- Equilateral triangles are a special type of isosceles triangle, for which each side of the triangle is congruent.
- If all sides of a triangle are congruent, then all angles have the same measure.

Theorem

If a triangle is equilateral then it is equiangular, or has equal angles.

$$
\angle A \cong \angle B \cong \angle C
$$

UNIT 1 • SIIMILARITY, CONGRUENCE, AND PROOFS

Lesson 9: Proving Theorems About Triangles

- Each angle of an equilateral triangle measures $60^{\circ}(180 \div 3=60)$.
- Conversely, if a triangle has equal angles, it is equilateral.

Theorem

If a triangle is equiangular, then it is equilateral.

$$
\overline{A B} \cong \overline{B C} \cong \overline{A C}
$$

- These theorems and properties can be used to solve many triangle problems.

Common Errors/Misconceptions

- incorrectly identifying parts of isosceles triangles
- not identifying equilateral triangles as having the same properties of isosceles triangles
- incorrectly setting up and solving equations to find unknown measures of triangles
- misidentifying or leaving out theorems, postulates, or definitions when writing proofs

UNIT 1 • SIIMIILARITY, CONGRUENCE, AND PROOFS

Lesson 9: Proving Theorems About Triangles

Guided Practice 1.9.2

Example 1

Find the measure of each angle of $\triangle A B C$.

1. Identify the congruent angles.

The legs of an isosceles triangle are congruent; therefore, $\overline{A B} \cong \overline{A C}$.
The base of $\triangle A B C$ is $\overline{B C}$.
$\angle B$ and $\angle C$ are base angles and are congruent.
2. Calculate the value of x.

Congruent angles have the same measure.
Create an equation.

$m \angle B=m \angle C$	The measures of base angles of isosceles triangles are equal.
$4 x=6 x-36$	Substitute values for $m \angle B$ and
$m \angle C$.	
$-2 x=-36$	Solve for x.
$x=18$	

UNIT 1 • SIMIILARITY, CONGRUENCE, AND PROOFS

Lesson 9: Proving Theorems About Triangles

Instruction

3. Calculate each angle measure.

$$
\begin{array}{ll}
m \angle B=4 x=4(18)=72 & \begin{array}{l}
\text { Substitute the value of } x \text { into the } \\
\text { expression for } m \angle B .
\end{array} \\
m \angle C=6(18)-36=72 & \begin{array}{l}
\text { Substitute the value of } x \text { into the } \\
\text { expression for } m \angle C .
\end{array}
\end{array}
$$

$m \angle A+m \angle B+m \angle C=180 \quad$ The sum of the angles of a triangle is 180°.
$m \angle A+72+72=180 \quad$ Substitute the known values.
$m \angle A=36 \quad$ Solve for $m \angle A$.
4. Summarize your findings.

$$
m \angle A=36
$$

$m \angle B=72$
$m \angle C=72$

UNIT 1 • SIIMIILARITY, CONGRUENCE, AND PROOFS

Lesson 9: Proving Theorems About Triangles

Instruction

Example 2

Determine whether $\triangle A B C$ with vertices $A(-4,5), B(-1,-4)$, and $C(5,2)$ is an isosceles triangle. If it is isosceles, name a pair of congruent angles.

1. Use the distance formula to calculate the length of each side. Calculate the length of $\overline{A B}$.

$$
\left.\begin{array}{ll}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & \\
A B=\sqrt{[(-1)-(-4)]^{2}+[(-4)-(5)]^{2}} & \text { Substitute } \\
\text { for }\left(x_{1}, y_{1}\right)
\end{array}\right) \quad \text { Simplify. } \quad \begin{array}{ll}
A B=\sqrt{(3)^{2}+(-9)^{2}} & \\
A B=\sqrt{9+81} & \\
A B=\sqrt{90}=3 \sqrt{10} &
\end{array}
$$

Calculate the length of $\overline{B C}$.

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& B C=\sqrt{[(5)-(-1)]^{2}+[(2)-(-4)]^{2}} \\
& B C=\sqrt{(6)^{2}+(6)^{2}} \\
& B C=\sqrt{36+36} \\
& B C=\sqrt{72}=6 \sqrt{2}
\end{aligned}
$$

Substitute $(-1,-4)$ and $(5,2)$ for $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.
Simplify.

Calculate the length of $\overline{A C}$.

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& A C=\sqrt{[(5)-(-4)]^{2}+[(2)-(5)]^{2}} \\
& A C=\sqrt{(9)^{2}+(-3)^{2}} \\
& A C=\sqrt{81+9} \\
& A C=\sqrt{90}=3 \sqrt{10}
\end{aligned}
$$

Substitute $(-4,5)$ and $(5,2)$
for $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.
Simplify.

UNIT 1 • SIMIILARITY, CONGRUENCE, AND PROOFS

Lesson 9: Proving Theorems About Triangles
2. Determine if the triangle is isosceles.

A triangle with at least two congruent sides is an isosceles triangle.
$\overline{A B} \cong \overline{A C}$, so $\triangle A B C$ is isosceles.
3. Identify congruent angles.

If two sides of a triangle are congruent, then the angles opposite the sides are congruent.

$$
\angle B \cong \angle C
$$

Example 3

Given $\overline{A B} \cong \overline{A C}$, prove that $\angle B \cong \angle C$.

1. State the given information.

$$
\overline{A B} \cong \overline{A C}
$$

UNIT 1 • SIIMIILARITY, CONGRUENCE, AND PROOFS

Lesson 9: Proving Theorems About Triangles
2. Draw the angle bisector of $\angle A$ and extend it to $\overline{B C}$, creating the perpendicular bisector of $B C$. Label the point of intersection D. Indicate congruent sides.

$\angle B$ and $\angle C$ are congruent corresponding parts.
3. Write the information in a two-column proof.

Statements	Reasons
1. $\overline{A B} \cong \overline{A C}$ 2. Draw the angle bisector of $\angle A$ and extend it to $\overline{B C}$, creating a perpendicular bisector of $\overline{B C}$ and the midpoint of $\overline{B C}$. 3. $\overline{B D} \cong \overline{B C}$ 4. $\overline{A D} \cong \overline{A D}$ 5. $\triangle A B D \cong \triangle A C D$ 6. $\angle B \cong \angle C$	1. Given 2. There is exactly one line through two points. 3. Definition of midpoint 4. Reflexive Property 5. SSS Congruence Statement 6. Corresponding Parts of Congruent Triangles are Congruent

UNIT 1 • SIMIILARITY, CONGRUENCE, AND PROOFS

Lesson 9: Proving Theorems About Triangles

Example 4

Find the values of x and y.

1. Make observations about the figure.

The triangle in the diagram has three congruent sides.
A triangle with three congruent sides is equilateral.
Equilateral triangles are also equiangular.
The measure of each angle of an equilateral triangle is 60°.
An exterior angle is also included in the diagram.
The measure of an exterior angle is the supplement of the adjacent interior angle.

UNIT 1 • SIIMIILARITY, CONGRUENCE, AND PROOFS

Lesson 9: Proving Theorems About Triangles

Instruction

2. Determine the value of x.

The measure of each angle of an equilateral triangle is 60°.
Create and solve an equation for x using this information.

$$
\begin{array}{ll}
4 x+24=60 & \text { Equation } \\
4 x=36 & \text { Solve for } x . \\
x=9 &
\end{array}
$$

The value of x is 9 .
3. Determine the value of y.

The exterior angle is the supplement to the interior angle.
The interior angle is 60° by the properties of equilateral triangles.
The sum of the measures of an exterior angle and interior angle pair equals 180.
Create and solve an equation for y using this information.

$$
\begin{array}{ll}
11 y-23+60=180 & \text { Equation } \\
11 y+37=180 & \text { Simplify. } \\
11 y=143 & \text { Solve for } y . \\
y=13 &
\end{array}
$$

The value of y is 13 .

UNIT 1 • SIIMIILARITY, CONGRUENCE, AND PROOFS

Lesson 9: Proving Theorems About Triangles
Instruction

Example 5

$\triangle A B C$ is equilateral. Prove that it is equiangular.

1. State the given information.
$\triangle A B C$ is an equilateral triangle.
2. Plan the proof.

Equilateral triangles are also isosceles triangles.
Isosceles triangles have at least two congruent sides.

$$
\overline{A B} \cong \overline{B C}
$$

$\angle A$ and $\angle C$ are base angles in relation to $\overline{A B}$ and $\overline{B C}$.
$\angle A \cong \angle C$ because of the Isosceles Triangle Theorem.

$$
\overline{B C} \cong \overline{A C}
$$

$\angle A$ and $\angle B$ are base angles in relation to $\overline{B C}$ and $\overline{A C}$.
$\angle A \cong \angle B$ because of the Isosceles Triangle Theorem.
By the Transitive Property, $\angle A \cong \angle B \cong \angle C$; therefore, $\triangle A B C$ is equiangular.
3. Write the information in a paragraph proof.

Since $\triangle A B C$ is equilateral, $\overline{A B} \cong \overline{B C}$ and $\overline{B C} \cong \overline{A C}$. By the Isosceles Triangle Theorem, $\angle A \cong \angle C$ and $\angle A \cong \angle B$. By the Transitive Property, $\angle A \cong \angle B \cong \angle C$; therefore, $\triangle A B C$ is equiangular.

