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An Overview of
Regression Analysis

What Is Econometrics?

“Econometrics is too mathematical; it’s the reason my best friend isn’t

majoring in economics.”

“There are two things you are better off not watching in the making:

sausages and econometric estimates.”1

“Econometrics may be defined as the quantitative analysis of actual eco-

nomic phenomena.”2

“It’s my experience that ‘economy-tricks’ is usually nothing more than a

justification of what the author believed before the research was begun.”

Obviously, econometrics means different things to different people. To

beginning students, it may seem as if econometrics is an overly complex

obstacle to an otherwise useful education. To skeptical observers, econo-

metric results should be trusted only when the steps that produced those

1

1. Ed Leamer, “Let’s take the Con out of Econometrics,” American Economic Review, Vol. 73, 

No. 1, p. 37.

2. Paul A. Samuelson, T. C. Koopmans, and J. R. Stone, “Report of the Evaluative Committee for

Econometrica,” Econometrica, 1954, p. 141.

From Chapter 1 of Using Econometrics: A Practical Guide, 6/e. A. H. Studenmund. Copyright © 2011

by Pearson Education. Published by Addison-Wesley. All rights reserved.
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results are completely known. To professionals in the field, econometrics is

a fascinating set of techniques that allows the measurement and analysis of

economic phenomena and the prediction of future economic trends.

You’re probably thinking that such diverse points of view sound like the

statements of blind people trying to describe an elephant based on what they

happen to be touching, and you’re partially right. Econometrics has both a

formal definition and a larger context. Although you can easily memorize the

formal definition, you’ll get the complete picture only by understanding the

many uses of and alternative approaches to econometrics.

That said, we need a formal definition. Econometrics—literally,“economic

measurement”—is the quantitative measurement and analysis of actual eco-

nomic and business phenomena. It attempts to quantify economic reality

and bridge the gap between the abstract world of economic theory and the

real world of human activity. To many students, these worlds may seem far

apart. On the one hand, economists theorize equilibrium prices based on

carefully conceived marginal costs and marginal revenues; on the other,

many firms seem to operate as though they have never heard of such con-

cepts. Econometrics allows us to examine data and to quantify the actions of

firms, consumers, and governments. Such measurements have a number of

different uses, and an examination of these uses is the first step to under-

standing econometrics.

Uses of Econometrics

Econometrics has three major uses:

1. describing economic reality

2. testing hypotheses about economic theory

3. forecasting future economic activity

The simplest use of econometrics is description. We can use economet-

rics to quantify economic activity because econometrics allows us to esti-

mate numbers and put them in equations that previously contained only

abstract symbols. For example, consumer demand for a particular com-

modity often can be thought of as a relationship between the quantity 

demanded (Q) and the commodity’s price (P), the price of a substitute

good (Ps), and disposable income (Yd). For most goods, the relationship

between consumption and disposable income is expected to be positive,

because an increase in disposable income will be associated with an in-

crease in the consumption of the good. Econometrics actually allows us to

estimate that relationship based upon past consumption, income, and

AN OVERVIEW OF REGRESSION ANALYSIS
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AN OVERVIEW OF REGRESSION ANALYSIS

prices. In other words, a general and purely theoretical functional relation-

ship like:

(1)

can become explicit:

(2)

This technique gives a much more specific and descriptive picture of the

function.3 Let’s compare Equations 1 and 2. Instead of expecting consump-

tion merely to “increase” if there is an increase in disposable income, Equa-

tion 2 allows us to expect an increase of a specific amount (0.23 units for

each unit of increased disposable income). The number 0.23 is called an esti-

mated regression coefficient, and it is the ability to estimate these coefficients

that makes econometrics valuable.

The second and perhaps most common use of econometrics is hypothesis

testing, the evaluation of alternative theories with quantitative evidence.

Much of economics involves building theoretical models and testing them

against evidence, and hypothesis testing is vital to that scientific approach.

For example, you could test the hypothesis that the product in Equation 1 is

what economists call a normal good (one for which the quantity demanded

increases when disposable income increases). You could do this by applying

various statistical tests to the estimated coefficient (0.23) of disposable in-

come (Yd) in Equation 2. At first glance, the evidence would seem to support

this hypothesis, because the coefficient’s sign is positive, but the “statistical

significance” of that estimate would have to be investigated before such a

conclusion could be justified. Even though the estimated coefficient is posi-

tive, as expected, it may not be sufficiently different from zero to convince us

that the true coefficient is indeed positive.

The third and most difficult use of econometrics is to forecast or predict

what is likely to happen next quarter, next year, or further into the future,

based on what has happened in the past. For example, economists use

econometric models to make forecasts of variables like sales, profits, Gross

Q 5 27.7 2 0.11P 1 0.03Ps 1 0.23Yd

Q 5 f(P, Ps, Yd)

3. The results in Equation 2 are from a model of the demand for chicken. It’s of course naïve to

build a model of the demand for chicken without taking the supply of chicken into considera-

tion. Unfortunately, it’s very difficult to learn how to estimate a system of simultaneous 

equations until you’ve learned how to estimate a single equation. You should be aware that we

sometimes will encounter right-hand-side variables that are not truly “independent” from a 

theoretical point of view.
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AN OVERVIEW OF REGRESSION ANALYSIS

Domestic Product (GDP), and the inflation rate. The accuracy of such fore-

casts depends in large measure on the degree to which the past is a good guide

to the future. Business leaders and politicians tend to be especially interested

in this use of econometrics because they need to make decisions about the

future, and the penalty for being wrong (bankruptcy for the entrepreneur and

political defeat for the candidate) is high. To the extent that econometrics can

shed light on the impact of their policies, business and government leaders

will be better equipped to make decisions. For example, if the president of a

company that sold the product modeled in Equation 1 wanted to decide

whether to increase prices, forecasts of sales with and without the price in-

crease could be calculated and compared to help make such a decision.

Alternative Econometric Approaches

There are many different approaches to quantitative work. For example, the

fields of biology, psychology, and physics all face quantitative questions similar

to those faced in economics and business. However, these fields tend to use

somewhat different techniques for analysis because the problems they face

aren’t the same. For example, economics typically is an observational discipline

rather than an experimental one. “We need a special field called econometrics,

and textbooks about it, because it is generally accepted that economic data

possess certain properties that are not considered in standard statistics texts or

are not sufficiently emphasized there for use by economists.”4

Different approaches also make sense within the field of economics. The

kind of econometric tools used depends in part on the uses of that equation.

A model built solely for descriptive purposes might be different from a fore-

casting model, for example.

To get a better picture of these approaches, let’s look at the steps used in

nonexperimental quantitative research:

1. specifying the models or relationships to be studied

2. collecting the data needed to quantify the models

3. quantifying the models with the data

The specifications used in step 1 and the techniques used in step 3 differ

widely between and within disciplines. Choosing the best specification for a

given model is a theory-based skill that is often referred to as the “art” of

4. Clive Granger, “A Review of Some Recent Textbooks of Econometrics,” Journal of Economic Lit-

erature, Vol. 32, No. 1, p. 117.
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econometrics. There are many alternative approaches to quantifying the same

equation, and each approach may produce somewhat different results. The

choice of approach is left to the individual econometrician (the researcher

using econometrics), but each researcher should be able to justify that choice.

This text will focus primarily on one particular econometric approach:

single-equation linear regression analysis. The majority of this text will thus con-

centrate on regression analysis, but it is important for every econometrician

to remember that regression is only one of many approaches to econometric

quantification.

The importance of critical evaluation cannot be stressed enough; a good

econometrician can diagnose faults in a particular approach and figure out

how to repair them. The limitations of the regression analysis approach must

be fully perceived and appreciated by anyone attempting to use regression

analysis or its findings. The possibility of missing or inaccurate data, incor-

rectly formulated relationships, poorly chosen estimating techniques, or im-

proper statistical testing procedures implies that the results from regression

analyses always should be viewed with some caution.

What Is Regression Analysis?

Econometricians use regression analysis to make quantitative estimates of eco-

nomic relationships that previously have been completely theoretical in nature.

After all, anybody can claim that the quantity of compact discs demanded will

increase if the price of those discs decreases (holding everything else constant),

but not many people can put specific numbers into an equation and estimate by

how many compact discs the quantity demanded will increase for each dollar

that price decreases. To predict the direction of the change, you need a knowl-

edge of economic theory and the general characteristics of the product in ques-

tion. To predict the amount of the change, though, you need a sample of data,

and you need a way to estimate the relationship. The most frequently used

method to estimate such a relationship in econometrics is regression analysis.

Dependent Variables, Independent Variables, and Causality

Regression analysis is a statistical technique that attempts to “explain” move-

ments in one variable, the dependent variable, as a function of movements in

a set of other variables, called the independent (or explanatory) variables,

through the quantification of a single equation. For example, in Equation 1:

(1)Q 5 f(P, Ps, Yd)

2
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Don’t be deceived by the words “dependent” and “independent,” how-

ever. Although many economic relationships are causal by their very na-

ture, a regression result, no matter how statistically significant, cannot

prove causality. All regression analysis can do is test whether a significant

quantitative relationship exists. Judgments as to causality must also in-

clude a healthy dose of economic theory and common sense. For exam-

ple, the fact that the bell on the door of a flower shop rings just before a

customer enters and purchases some flowers by no means implies that

the bell causes purchases! If events A and B are related statistically, it may

be that A causes B, that B causes A, that some omitted factor causes both,

or that a chance correlation exists between the two.

AN OVERVIEW OF REGRESSION ANALYSIS

Q is the dependent variable and P, Ps, and Yd are the independent vari-

ables. Regression analysis is a natural tool for economists because most

(though not all) economic propositions can be stated in such single-equation

functional forms. For example, the quantity demanded (dependent vari-

able) is a function of price, the prices of substitutes, and income (indepen-

dent variables).

Much of economics and business is concerned with cause-and-effect

propositions. If the price of a good increases by one unit, then the quantity

demanded decreases on average by a certain amount, depending on the price

elasticity of demand (defined as the percentage change in the quantity de-

manded that is caused by a one percent increase in price). Similarly, if the

quantity of capital employed increases by one unit, then output increases by

a certain amount, called the marginal productivity of capital. Propositions

such as these pose an if-then, or causal, relationship that logically postulates

that a dependent variable’s movements are determined by movements in a

number of specific independent variables.

The cause-and-effect relationship often is so subtle that it fools even the

most prominent economists. For example, in the late nineteenth century,

English economist Stanley Jevons hypothesized that sunspots caused an in-

crease in economic activity. To test this theory, he collected data on national

output (the dependent variable) and sunspot activity (the independent vari-

able) and showed that a significant positive relationship existed. This result

led him, and some others, to jump to the conclusion that sunspots did

indeed cause output to rise. Such a conclusion was unjustified because re-

gression analysis cannot confirm causality; it can only test the strength and

direction of the quantitative relationships involved.

6



AN OVERVIEW OF REGRESSION ANALYSIS

Single-Equation Linear Models

The simplest single-equation linear regression model is:

(3)

Equation 3 states that Y, the dependent variable, is a single-equation linear

function of X, the independent variable. The model is a single-equation

model because it’s the only equation specified. The model is linear be-

cause if you were to plot Equation 3 it would be a straight line rather than

a curve.

The s are the coefficients that determine the coordinates of the straight

line at any point. is the constant or intercept term; it indicates the value

of Y when X equals zero. is the slope coefficient, and it indicates the

amount that Y will change when X increases by one unit. The solid line in

Figure 1 illustrates the relationship between the coefficients and the graphical

meaning of the regression equation. As can be seen from the diagram, Equa-

tion 3 is indeed linear.

�1

�0

�

Y 5 �0 1 �1X

Y

Y2

Y1

0 X1

ΔX 

ΔY

X2

Y = �0 + �1X

Y = �0 + �1X2

X

 �0

ΔY
ΔX

Slope = �1 =

Figure 1  Graphical Representation of the Coefficients 

of the Regression Line

The graph of the equation is linear with a constant slope equal to

The graph of the equation on the other hand, is nonlin-

ear with an increasing slope (if �1 . 0).

Y 5 �0 1 �1X2,�1 5 �Y>�X.

Y 5 �0 1 �1X
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The slope coefficient, , shows the response of Y to a one-unit increase

in X. Much of the emphasis in regression analysis is on slope coefficients

such as . In Figure 1 for example, if X were to increase by one from X1 to

X2 ( X), the value of Y in Equation 3 would increase from Y1 to Y2 ( Y).

For linear (i.e., straight-line) regression models, the response in the pre-

dicted value of Y due to a change in X is constant and equal to the slope

coefficient :

where is used to denote a change in the variables. Some readers may recog-

nize this as the “rise” ( Y) divided by the “run” ( X). For a linear model, the

slope is constant over the entire function.

If linear regression techniques are going to be applied to an equation, that

equation must be linear. An equation is linear if plotting the function in

terms of X and Y generates a straight line. For example, Equation 3:

(3)

is linear, but Equation 4:

(4)

is not linear, because if you were to plot Equation 4 it would be a quadratic,

not a straight line. This difference5 can be seen in Figure 1.

If regression analysis requires that an equation be linear, how can we deal

with nonlinear equations like Equation 4? The answer is that we can redefine

most nonlinear equations to make them linear. For example, Equation 4 can

be converted into a linear equation if we create a new variable equal to the

square of X:

Z � X2 (5)

and if we substitute Equation 5 into Equation 4:

Y � �0 � �1Z (6)

Y 5 �0 1 �1X2

Y 5 �0 1 �1X

��
�

(Y
2

2 Y
1
)

(X2 2 X1)
5

�Y

�X
5 �1

�1

��
�1

�1

5. Equations 3 and 4 have the same in Figure 1 for comparison purposes only. If the equa-

tions were applied to the same data, the estimated values would be different. Not surpris-

ingly, the estimated �1 values would be different as well.

�0

�0
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This redefined equation is now linear6 and can be estimated by regression

analysis.

The Stochastic Error Term

Besides the variation in the dependent variable (Y) that is caused by the in-

dependent variable (X), there is almost always variation that comes from

other sources as well. This additional variation comes in part from omitted

explanatory variables (e.g., X2 and X3). However, even if these extra vari-

ables are added to the equation, there still is going to be some variation in

Y that simply cannot be explained by the model.7 This variation probably

comes from sources such as omitted influences, measurement error, incor-

rect functional form, or purely random and totally unpredictable occur-

rences. By random we mean something that has its value determined entirely

by chance.

Econometricians admit the existence of such inherent unexplained variation

(“error”) by explicitly including a stochastic (or random) error term in their re-

gression models. A stochastic error term is a term that is added to a regression

equation to introduce all of the variation in Y that cannot be explained by the

included Xs. It is, in effect, a symbol of the econometrician’s ignorance or in-

ability to model all the movements of the dependent variable. The error term

(sometimes called a disturbance term) usually is referred to with the symbol

epsilon ( ), although other symbols (like u or v) sometimes are used.

The addition of a stochastic error term ( ) to Equation 3 results in a typical

regression equation:

(7)Y 5 �0 1 �1X 1 �

�
�

6. Technically, this equation is linear in the coefficients �0 and �1 and linear in the variables Y

and Z, but it is nonlinear in the variables Y and X. The application of regression techniques to

equations that are nonlinear in the coefficients, however, is much more difficult.

7. The exception would be the extremely rare case where the data can be explained by some sort

of physical law and are measured perfectly. Here, continued variation would point to an omit-

ted independent variable. A similar kind of problem is often encountered in astronomy, where

planets can be discovered by noting that the orbits of known planets exhibit variations that can

be caused only by the gravitational pull of another heavenly body. Absent these kinds of physi-

cal laws, researchers in economics and business would be foolhardy to believe that all variation

in Y can be explained by a regression model because there are always elements of error in any

attempt to measure a behavioral relationship.

9
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Equation 7 can be thought of as having two components, the deterministic

component and the stochastic, or random, component. The expression

is called the deterministic component of the regression equation be-

cause it indicates the value of Y that is determined by a given value of X,

which is assumed to be nonstochastic. This deterministic component can

also be thought of as the expected value of Y given X, the mean value of the

Ys associated with a particular value of X. For example, if the average height of

all 13-year-old girls is 5 feet, then 5 feet is the expected value of a girl’s height

given that she is 13. The deterministic part of the equation may be written:

(8)

which states that the expected value of Y given X, denoted as is a linear

function of the independent variable (or variables if there are more than one).8

Unfortunately, the value of Y observed in the real world is unlikely to be

exactly equal to the deterministic expected value . After all, not all 13-

year-old girls are 5 feet tall. As a result, the stochastic element ( ) must be

added to the equation:

(9)Y 5 E(Y k X) 1 � 5 �0 1 �1X 1 �

�
E(Y k X)

E(Y k X),

E(Y k X) 5 �0 1 �1X

�0 1 �1X

8. This property holds as long as (read as “the expected value of epsilon, given X”

equals zero), which is true as long as the Classical Assumptions are met. It’s easiest to think of

as the mean of but the expected value operator E technically is a summation or integra-

tion of all the values that a function can take, weighted by the probability of each value. The ex-

pected value of a constant is that constant, and the expected value of a sum of variables equals

the sum of the expected values of those variables.

�,E(�)

E(� k X) 5 0

The stochastic error term must be present in a regression equation be-

cause there are at least four sources of variation in Y other than the varia-

tion in the included Xs:

1. Many minor influences on Y are omitted from the equation (for

example, because data are unavailable).

2. It is virtually impossible to avoid some sort of measurement error

in the dependent variable.

3. The underlying theoretical equation might have a different functional

form (or shape) than the one chosen for the regression. For example,

the underlying equation might be nonlinear.

4. All attempts to generalize human behavior must contain at least

some amount of unpredictable or purely random variation.

10
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To get a better feeling for these components of the stochastic error term,

let’s think about a consumption function (aggregate consumption as a func-

tion of aggregate disposable income). First, consumption in a particular year

may have been less than it would have been because of uncertainty over the

future course of the economy. Since this uncertainty is hard to measure, there

might be no variable measuring consumer uncertainty in the equation. In

such a case, the impact of the omitted variable (consumer uncertainty)

would likely end up in the stochastic error term. Second, the observed

amount of consumption may have been different from the actual level of

consumption in a particular year due to an error (such as a sampling error) in

the measurement of consumption in the National Income Accounts. Third,

the underlying consumption function may be nonlinear, but a linear con-

sumption function might be estimated. (To see how this incorrect functional

form would cause errors, see Figure 2.) Fourth, the consumption function at-

tempts to portray the behavior of people, and there is always an element of

Y

0

Errors “True” Relationship

(nonlinear)

Linear Functional Form

X

 �2

 �1

 �3

Figure 2  Errors Caused by Using a Linear Functional Form to Model 

a Nonlinear Relationship

One source of stochastic error is the use of an incorrect functional form. For example, if a

linear functional form is used when the underlying relationship is nonlinear, systematic er-

rors will occur. These nonlinearities are just one component of the stochastic error

term. The others are omitted variables, measurement error, and purely random variation.

(the �s)
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unpredictability in human behavior. At any given time, some random event

might increase or decrease aggregate consumption in a way that might never

be repeated and couldn’t be anticipated.

These possibilities explain the existence of a difference between the ob-

served values of Y and the values expected from the deterministic component

of the equation, These sources of error will be covered to recognize

that in econometric research there will always be some stochastic or random

element, and, for this reason, an error term must be added to all regression

equations.

Extending the Notation

Our regression notation needs to be extended to allow the possibility of more

than one independent variable and to include reference to the number of obser-

vations. A typical observation (or unit of analysis) is an individual person, year,

or country. For example, a series of annual observations starting in 1985 would

have Y1 = Y for 1985, Y2 for 1986, etc. If we include a specific reference to the

observations, the single-equation linear regression model may be written as:

(10)

where: Yi � the ith observation of the dependent variable

Xi � the ith observation of the independent variable

� the ith observation of the stochastic error term

� the regression coefficients

N � the number of observations

This equation is actually N equations, one for each of the N observations:

That is, the regression model is assumed to hold for each observation. The

coefficients do not change from observation to observation, but the values of

Y, X, and do.

A second notational addition allows for more than one independent vari-

able. Since more than one independent variable is likely to have an effect on

�

 YN 5 �0 1 �1XN 1 �N

(

 Y3 5 �0 1 �1X3 1 �3

 Y2 5 �0 1 �1X2 1 �2

 Y1 5 �0 1 �1X1 1 �1

�0, �1

�i

Yi 5 �0 1 �1Xi 1 �i  (i 5 1, 2, . . . , N)

E(Y k X).

12



The resulting equation is called a multivariate (more than one indepen-

dent variable) linear regression model:

(11)

The meaning of the regression coefficient in this equation is the im-

pact of a one-unit increase in X1 on the dependent variable Y, holding

constant X2 and X3. Similarly, gives the impact of a one-unit increase

in X2 on Y, holding X1 and X3 constant. 

�2

�1

Yi 5 �0 1 �1X1i 1 �2X2i 1 �3X3i 1 �i

AN OVERVIEW OF REGRESSION ANALYSIS

the dependent variable, our notation should allow these additional explana-

tory Xs to be added. If we define:

X1i � the ith observation of the first independent variable

X2i � the ith observation of the second independent variable

X3i � the ith observation of the third independent variable

then all three variables can be expressed as determinants of Y.

These multivariate regression coefficients (which are parallel in nature to

partial derivatives in calculus) serve to isolate the impact on Y of a change in

one variable from the impact on Y of changes in the other variables. This is

possible because multivariate regression takes the movements of X2 and X3
into account when it estimates the coefficient of X1. The result is quite similar

to what we would obtain if we were capable of conducting controlled labora-

tory experiments in which only one variable at a time was changed.

In the real world, though, it is very difficult to run controlled economic ex-

periments,9 because many economic factors change simultaneously, often in

opposite directions. Thus the ability of regression analysis to measure the im-

pact of one variable on the dependent variable, holding constant the influence

of the other variables in the equation, is a tremendous advantage. Note that if a

variable is not included in an equation, then its impact is not held constant in

the estimation of the regression coefficients.

9. Such experiments are difficult but not impossible.

13
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This material is pretty abstract, so let’s look at an example. Suppose we

want to understand how wages are determined in a particular field, perhaps

because we think that there might be discrimination in that field. The wage

of a worker would be the dependent variable (WAGE), but what would be

good independent variables? What variables would influence a person’s wage

in a given field? Well, there are literally dozens of reasonable possibilities,

but three of the most common are the work experience (EXP), education

(EDU), and gender (GEND) of the worker, so let’s use these. To create a re-

gression equation with these variables, we’d redefine the variables in Equa-

tion 11 to meet our definitions:

Y � WAGE � the wage of the worker

X1 � EXP � the years of work experience of the worker

X2 � EDU � the years of education beyond high school of the worker

X3 � GEND � the gender of the worker (1 � male and 0 � female)

The last variable, GEND, is unusual in that it can take on only two values, 0

and 1; this kind of variable is called a dummy variable, and it’s extremely

useful when we want to quantify a concept that is inherently qualitative

(like gender).

If we substitute these definitions into Equation 11, we get:

WAGEi � �0 � �1EXPi � �2EDUi � �3GENDi � i (12)

Equation 12 specifies that a worker’s wage is a function of the experience,

education, and gender of that worker. In such an equation, what would the

meaning of �1 be? Some readers will guess that �1 measures the amount by

which the average wage increases for an additional year of experience, but

such a guess would miss the fact that there are two other independent vari-

ables in the equation that also explain wages. The correct answer is that �1
gives us the impact on wages of a one-year increase in experience, holding con-

stant education and gender. This is a significant difference, because it allows

researchers to control for specific complicating factors without running con-

trolled experiments.

Before we conclude this section, it’s worth noting that the general multi-

variate regression model with K independent variables is written as:

(13)

where i goes from 1 to N and indicates the observation number.

Yi 5 �0 1 �1X1i 1 �2X2i 1 c1 �KXKi 1 �i

�
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10. The order of the subscripts doesn’t matter as long as the appropriate definitions are pre-

sented. We prefer to list the variable number first (X1i) because we think it’s easier for a begin-

ning econometrician to understand. However, as the reader moves on to matrix algebra and

computer spreadsheets, it will become common to list the observation number first, as in Xi1.

Often the observational subscript is deleted, and the reader is expected to understand that the

equation holds for each observation in the sample.

11. Our use of the word ”true” throughout the text should be taken with a grain of salt. Many

philosophers argue that the concept of truth is useful only relative to the scientific research pro-

gram in question. Many economists agree, pointing out that what is true for one generation

may well be false for another. To us, the true coefficient is the one that you’d obtain if you could

run a regression on the entire relevant population. Thus, readers who so desire can substitute

the phrase “population coefficient” for “true coefficient” with no loss in meaning.

If the sample consists of a series of years or months (called a time series),

then the subscript i is usually replaced with a t to denote time.10

The Estimated Regression Equation

Once a specific equation has been decided upon, it must be quantified. This

quantified version of the theoretical regression equation is called the

estimated regression equation and is obtained from a sample of data for ac-

tual Xs and Ys. Although the theoretical equation is purely abstract in nature:

(14)

the estimated regression equation has actual numbers in it:

(15)

The observed, real-world values of X and Y are used to calculate the coeffi-

cient estimates 103.40 and 6.38. These estimates are used to determine 

(read as “Y-hat”), the estimated or fitted value of Y.

Let’s look at the differences between a theoretical regression equation and

an estimated regression equation. First, the theoretical regression coefficients

in Equation 14 have been replaced with estimates of those coeffi-

cients like 103.40 and 6.38 in Equation 15. We can’t actually observe the val-

ues of the true11 regression coefficients, so instead we calculate estimates of

those coefficients from the data. The estimated regression coefficients,

more generally denoted by (read as “beta-hats”), are empirical best

guesses of the true regression coefficients and are obtained from data from a

sample of the Ys and Xs. The expression

(16)Ŷi 5 �̂0 1 �̂1Xi

�̂0 and �̂1

�0 and �1

Ŷ

Ŷi 5 103.40 1 6.38Xi

Yi 5 �0 1 �1Xi 1 �i

3
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is the empirical counterpart of the theoretical regression Equation 14. The

calculated estimates in Equation 15 are examples of the estimated regression

coefficients For each sample we calculate a different set of esti-

mated regression coefficients.

is the estimated value of Yi, and it represents the value of Y calculated

from the estimated regression equation for the ith observation. As such, is

our prediction of from the regression equation. The closer these s

are to the Ys in the sample, the better the fit of the equation. (The word fit is

used here much as it would be used to describe how well clothes fit.)

The difference between the estimated value of the dependent variable 

and the actual value of the dependent variable (Yi) is defined as the residual (ei):

(Ŷi)

ŶE(Yi k Xi)

Ŷi

Ŷi

�̂0 and �̂1.

(17)ei 5 Yi 2 Ŷi

Note the distinction between the residual in Equation 17 and the error 

term:

(18)

The residual is the difference between the observed Y and the estimated re-

gression line while the error term is the difference between the observed

Y and the true regression equation (the expected value of Y). Note that the

error term is a theoretical concept that can never be observed, but the resid-

ual is a real-world value that is calculated for each observation every time a

regression is run. The residual can be thought of as an estimate of the error

term, and e could have been denoted as Most regression techniques not

only calculate the residuals but also attempt to compute values of 

that keep the residuals as low as possible. The smaller the residuals, the better

the fit, and the closer the will be to the Ys.

All these concepts are shown in Figure 3. The (X, Y) pairs are shown as

points on the diagram, and both the true regression equation (which cannot

be seen in real applications) and an estimated regression equation are in-

cluded. Notice that the estimated equation is close to but not equivalent to

the true line. This is a typical result.

In Figure 3, the computed value of Y for the sixth observation, lies on

the estimated (dashed) line, and it differs from Y6, the actual observed value

of Y for the sixth observation. The difference between the observed and esti-

mated values is the residual, denoted by e6. In addition, although we usually

would not be able to see an observation of the error term, we have drawn the

Ŷ6,

Ŷs

�̂0 and �̂1

�̂.

(Ŷ),

�i 5 Yi 2 E(Yi k Xi)
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assumed true regression line here (the solid line) to see the sixth observation

of the error term, which is the difference between the true line and the ob-

served value of Y, Y6.

The following table summarizes the notation used in the true and esti-

mated regression equations:

True Regression Equation Estimated Regression Equation

The estimated regression model can be extended to more than one inde-

pendent variable by adding the additional Xs to the right side of the equa-

tion. The multivariate estimated regression counterpart of Equation 13 is:

(19)Ŷi 5 �̂0 1 �̂1X1i 1 �̂2X2i 1 c1 �̂KXKi

ei�i

�̂1�1

�̂0�0

�6,

 �6

Y

Y6

0 X6

Yi = �0 + �1Xi

(Estimated Line)

E(Yi|Xi) = �0 + �1Xi

(True Line)

X

 �0

Y6

e6
e6

 �0

Figure 3  True and Estimated Regression Lines

The true relationship between X and Y (the solid line) typically cannot be observed, but

the estimated regression line (the dashed line) can. The difference between an observed

data point (for example, i = 6) and the true line is the value of the stochastic error term

The difference between the observed Y6 and the estimated value from the regres-

sion line is the value of the residual for this observation, e6.(Ŷ6)

(�6).
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Diagrams of such multivariate equations, by the way, are not possible for

more than two independent variables and are quite awkward for exactly two

independent variables.

A Simple Example of Regression Analysis

Let’s look at a fairly simple example of regression analysis. Suppose you’ve

accepted a summer job as a weight guesser at the local amusement park,

Magic Hill. Customers pay two dollars each, which you get to keep if you

guess their weight within 10 pounds. If you miss by more than 10 pounds,

then you have to return the two dollars and give the customer a small prize

that you buy from Magic Hill for three dollars each. Luckily, the friendly

managers of Magic Hill have arranged a number of marks on the wall behind

the customer so that you are capable of measuring the customer’s height accu-

rately. Unfortunately, there is a five-foot wall between you and the customer,

so you can tell little about the person except for height and (usually) gender.

On your first day on the job, you do so poorly that you work all day and

somehow manage to lose two dollars, so on the second day you decide to

collect data to run a regression to estimate the relationship between weight

and height. Since most of the participants are male, you decide to limit your

sample to males. You hypothesize the following theoretical relationship:

(20)

where: Yi � the weight (in pounds) of the ith customer

Xi � the height (in inches above 5 feet) of the ith customer

� the value of the stochastic error term for the ith customer

In this case, the sign of the theoretical relationship between height and

weight is believed to be positive (signified by the positive sign above Xi in the

general theoretical equation), but you must quantify that relationship in

order to estimate weights given heights. To do this, you need to collect a data

set, and you need to apply regression analysis to the data.

The next day you collect the data summarized in Table 1 and run your re-

gression on the Magic Hill computer, obtaining the following estimates:

This means that the equation

(21)Estimated weight 5 103.40 1 6.38?Height (inches above five feet)

�̂0 5 103.40  �̂1 5 6.38

�i

Yi 5 f( X

1

i) 1 �i 5 �0 1 �1Xi 1 �i

4
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Table 1 Data for and Results of the Weight-Guessing Equation

Observation Height Weight Predicted Residual $ Gain or
i Above 5’ Xi Yi Weight ei Loss

(1) (2) (3) (4) (5) (6)

1 5.0 140.0 135.3 4.7 �2.00

2 9.0 157.0 160.8 �3.8 �2.00

3 13.0 205.0 186.3 18.7 �3.00

4 12.0 198.0 179.9 18.1 �3.00

5 10.0 162.0 167.2 �5.2 �2.00

6 11.0 174.0 173.6 0.4 �2.00

7 8.0 150.0 154.4 �4.4 �2.00

8 9.0 165.0 160.8 4.2 �2.00

9 10.0 170.0 167.2 2.8 �2.00

10 12.0 180.0 179.9 0.1 �2.00

11 11.0 170.0 173.6 �3.6 �2.00

12 9.0 162.0 160.8 1.2 �2.00

13 10.0 165.0 167.2 �2.2 �2.00

14 12.0 180.0 179.9 0.1 �2.00

15 8.0 160.0 154.4 5.6 �2.00

16 9.0 155.0 160.8 �5.8 �2.00

17 10.0 165.0 167.2 �2.2 �2.00

18 15.0 190.0 199.1 �9.1 �2.00

19 13.0 185.0 186.3 �1.3 �2.00

20 11.0 155.0 173.6 �18.6 �3.00

TOTAL � $25.00

Note: This data set, and every other data set in the text, is available on the text’s website in four

formats.

Ŷi
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is worth trying as an alternative to just guessing the weights of your cus-

tomers. Such an equation estimates weight with a constant base of 103.40

pounds and adds 6.38 pounds for every inch of height over 5 feet. Note that

the sign of is positive, as you expected.

How well does the equation work? To answer this question, you need to

calculate the residuals (Yi minus ) from Equation 21 to see how many were

greater than ten. As can be seen in the last column in Table 1, if you had ap-

plied the equation to these 20 people, you wouldn’t exactly have gotten rich,

but at least you would have earned $25.00 instead of losing $2.00. Figure 4

shows not only Equation 21 but also the weight and height data for all 

20 customers used as the sample.

Equation 21 would probably help a beginning weight guesser, but it could

be improved by adding other variables or by collecting a larger sample. 

Ŷi

�̂1
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Figure 4 A Weight-Guessing Equation

If we plot the data from the weight-guessing example and include the estimated regres-

sion line, we can see that the estimated come fairly close to the observed Ys for all

but three observations. Find a male friend’s height and weight on the graph; how well

does the regression equation work?

Ŷs

Such an equation is realistic, though, because it’s likely that every successful

weight guesser uses an equation like this without consciously thinking about

that concept.

Our goal with this equation was to quantify the theoretical weight/height

equation, Equation 20, by collecting data (Table 1) and calculating an esti-

mated regression, Equation 21. Although the true equation, like observations

of the stochastic error term, can never be known, we were able to come up

with an estimated equation that had the sign we expected for and that

helped us in our job. Before you decide to quit school or your job and try to

make your living guessing weights at Magic Hill, there is quite a bit more to

learn about regression analysis, so we’d better move on.

Using Regression to Explain Housing Prices

As much fun as guessing weights at an amusement park might be, it’s hardly

a typical example of the use of regression analysis. For every regression run

on such an off-the-wall topic, there are literally hundreds run to describe the

5

�̂1
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reaction of GDP to an increase in the money supply, to test an economic

theory with new data, or to forecast the effect of a price change on a firm’s

sales.

As a more realistic example, let’s look at a model of housing prices. The

purchase of a house is probably the most important financial decision in an

individual’s life, and one of the key elements in that decision is an appraisal

of the house’s value. If you overvalue the house, you can lose thousands of

dollars by paying too much; if you undervalue the house, someone might

outbid you.

All this wouldn’t be much of a problem if houses were homogeneous

products, like corn or gold, that have generally known market prices with

which to compare a particular asking price. Such is hardly the case in the real

estate market. Consequently, an important element of every housing pur-

chase is an appraisal of the market value of the house, and many real estate

appraisers use regression analysis to help them in their work.

Suppose your family is about to buy a house in Southern California, but

you’re convinced that the owner is asking too much money. The owner says

that the asking price of $230,000 is fair because a larger house next door sold

for $230,000 about a year ago. You’re not sure it’s reasonable to compare the

prices of different-sized houses that were purchased at different times. What

can you do to help decide whether to pay the $230,000?

Since you’re taking an econometrics class, you decide to collect data on

all local houses that were sold within the last few weeks and to build a re-

gression model of the sales prices of the houses as a function of their

sizes.12 Such a data set is called cross-sectional because all of the observa-

tions are from the same point in time and represent different individual

economic entities (like countries or, in this case, houses) from that same

point in time.

To measure the impact of size on price, you include the size of the house

as an independent variable in a regression equation that has the price of that

house as the dependent variable. You expect a positive sign for the coefficient

of size, since big houses cost more to build and tend to be more desirable

than small ones. Thus the theoretical model is:

(22)PRICEi 5 f(SIZE

1

i) 1 �i 5 �0 1 �1SIZEi 1 �i

12. It’s unusual for an economist to build a model of price without including some measure of

quantity on the right-hand side. Such models of the price of a good as a function of the attributes

of that good are called hedonic models.
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PRICEi

0
Size of the house (square feet)

Slope = .138
Intercept = 40.0

PRICE
(thousands of $)

PRICEi = 40.0 + 0.138SIZEi

SIZEi

Figure 5 A Cross-Sectional Model of Housing Prices

A regression equation that has the price of a house in Southern California as a function of

the size of that house has an intercept of 40.0 and a slope of 0.138, using Equation 23.

where: PRICEi � the price (in thousands of $) of the ith house

SIZEi � the size (in square feet) of that house

� the value of the stochastic error term for that house

You collect the records of all recent real estate transactions, find that 43

local houses were sold within the last 4 weeks, and estimate the following re-

gression of those 43 observations:

(23)

What do these estimated coefficients mean? The most important coefficient

is since the reason for the regression is to find out the impact of

size on price. This coefficient means that if size increases by 1 square foot,

price will increase by 0.138 thousand dollars ($138). thus measures the

change in PRICEi associated with a one-unit increase in SIZEi. It’s the slope of

the regression line in a graph like Figure 5.

What does mean? is the estimate of the constant or intercept

term. In our equation, it means that price equals 40.0 when size equals zero.

As can be seen in Figure 5, the estimated regression line intersects the price

�̂0�̂0 5 40.0

�̂1

�̂1 5 0.138,

PRICEi 5 40.0 1 0.138SIZEi

�i
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axis at 40.0. While it might be tempting to say that the average price of a

vacant lot is $40,000, such a conclusion would be unjustified for a num-

ber of reasons. It’s much safer either to interpret as nothing

more than the value of the estimated regression when Si � 0, or to not in-

terpret at all.

What does mean? is the estimate of the coefficient of SIZE

in Equation 22, and as such it’s also an estimate of the slope of the line in

Figure 5. It implies that an increase in the size of a house by one square foot

will cause the estimated price of the house to go up by 0.138 thousand dol-

lars or $138. It’s a good habit to analyze estimated slope coefficients to see

whether they make sense. The positive sign of certainly is what we 

expected, but what about the magnitude of the coefficient? Whenever you

interpret a coefficient, be sure to take the units of measurement into consider-

ation. In this case, is $138 per square foot a plausible number? Well, it’s hard

to know for sure, but it certainly is a lot more reasonable than $1.38 per

square foot or $13,800 per square foot!

How can you use this estimated regression to help decide whether to pay

$230,000 for the house? If you calculate a (predicted price) for a house that

is the same size (1,600 square feet) as the one you’re thinking of buying, you

can then compare this with the asking price of $230,000. To do this, substi-

tute 1600 for SIZEi in Equation 23, obtaining:

The house seems to be a good deal. The owner is asking “only” $230,000

for a house when the size implies a price of $260,800! Perhaps your original

feeling that the price was too high was a reaction to the steep housing prices

in Southern California in general and not a reflection of this specific price.

On the other hand, perhaps the price of a house is influenced by more than

just the size of the house. (After all, what good’s a house in Southern California

unless it has a pool or air-conditioning?) Such multivariate models are the

heart of econometrics.

Summary

1. Econometrics—literally, “economic measurement”—is a branch of

economics that attempts to quantify theoretical relationships. Regres-

sion analysis is only one of the techniques used in econometrics, but

it is by far the most frequently used.

6

PRICEi 5 40.0 1 0.138(1600) 5 40.0 1 220.8 5 260.8

Ŷ

Ŷ

�̂1

�̂1�̂1 5 0.138

�̂0

�̂0 5 40.0
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2. The major uses of econometrics are description, hypothesis testing,

and forecasting. The specific econometric techniques employed may

vary depending on the use of the research.

3. While regression analysis specifies that a dependent variable is a func-

tion of one or more independent variables, regression analysis alone

cannot prove or even imply causality.

4. A stochastic error term must be added to all regression equations to

account for variations in the dependent variable that are not ex-

plained completely by the independent variables. The components of

this error term include:

a. omitted or left-out variables

b. measurement errors in the data

c. an underlying theoretical equation that has a different functional

form (shape) than the regression equation

d. purely random and unpredictable events

5. An estimated regression equation is an approximation of the true

equation that is obtained by using data from a sample of actual Ys

and Xs. Since we can never know the true equation, econometric

analysis focuses on this estimated regression equation and the esti-

mates of the regression coefficients. The difference between a particu-

lar observation of the dependent variable and the value estimated

from the regression equation is called the residual.

EXERCISES

(The answer to Exercise 2 is at the end of the chapter.)

1. Write the meaning of each of the following terms without referring to

the book (or your notes), and compare your definition with the ver-

sion in the text for each:

a. stochastic error term

b. regression analysis

c. linear

d. slope coefficient

e. multivariate regression model

f. expected value

g. residual

h. time series

i. cross-sectional data set

24



AN OVERVIEW OF REGRESSION ANALYSIS

2. Use your own computer’s regression software and the weight (Y) and

height (X) data from Table 1 to see if you can reproduce the estimates

in Equation 21. There are three different ways to load the data: You

can type in the data yourself, you can open datafile HTWT1 on the

EViews CD-ROM, or you can download datafile HTWT1 

(in Excel, Stata or ASCII formats) from the text’s website: www

.pearsonhighered.com/studenmund. Once the datafile is loaded,

run Y � f(X), and your results should match Equation 21. Different

programs require different commands to run a regression. For help

in how to do this with EViews and Stata, see the answer to this

question at the end of the chapter.

3. Decide whether you would expect relationships between the follow-

ing pairs of dependent and independent variables (respectively) to be

positive, negative, or ambiguous. Explain your reasoning.

a. Aggregate net investment in the United States in a given year and

GDP in that year.

b. The amount of hair on the head of a male professor and the age of

that professor.

c. The number of acres of wheat planted in a season and the price of

wheat at the beginning of that season.

d. Aggregate net investment and the real rate of interest in the same

year and country.

e. The growth rate of GDP in a year and the average hair length in that

year.

f. The quantity of canned tuna demanded and the price of a can of

tuna.

4. Let’s return to the height/weight example in Section 4:

a. Go back to the data set and identify the three customers who seem

to be quite a distance from the estimated regression line. Would we

have a better regression equation if we dropped these customers

from the sample?

b. Measure the height of a male friend and plug it into Equation 21.

Does the equation come within 10 pounds? If not, do you think

you see why? Why does the estimated equation predict the same

weight for all males of the same height when it is obvious that all

males of the same height don’t weigh the same?

c. Look over the sample with the thought that it might not be ran-

domly drawn. Does the sample look abnormal in any way? (Hint:

Are the customers who choose to play such a game a random sam-

ple?) If the sample isn’t random, would this have an effect on the

regression results and the estimated weights?
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d. Think of at least one other factor besides height that might be a

good choice as a variable in the weight/height equation. How

would you go about obtaining the data for this variable? What

would the expected sign of your variable’s coefficient be if the vari-

able were added to the equation?

5. Continuing with the height/weight example, suppose you collected

data on the heights and weights of 29 different male customers and

estimated the following equation:

(24)

where: Yi � the weight (in pounds) of the ith person

Xi � the height (in inches over five feet) of the ith person

a. Why aren’t the coefficients in Equation 24 the same as those we es-

timated previously (Equation 21)?

b. Compare the estimated coefficients of Equation 24 with those in

Equation 21. Which equation has the steeper estimated relation-

ship between height and weight? Which equation has the higher

intercept? At what point do the two intersect?

c. Use Equation 24 to “predict” the 20 original weights given the

heights in Table 1. How many weights does Equation 24 miss by

more than 10 pounds? Does Equation 24 do better or worse than

Equation 21? Could you have predicted this result beforehand?

d. Suppose you had one last day on the weight-guessing job. What

equation would you use to guess weights? (Hint: There is more

than one possible answer.)

6. Not all regression coefficients have positive expected signs. For exam-

ple, a Sports Illustrated article by Jaime Diaz reported on a study of

golfing putts of various lengths on the Professional Golfers’ Associa-

tion (PGA) Tour.13 The article included data on the percentage of

putts made (Pi) as a function of the length of the putt in feet (Li).

Since the longer the putt, the less likely even a professional is to make

it, we’d expect Li to have a negative coefficient in an equation explain-

ing Pi. Sure enough, if you estimate an equation on the data in the ar-

ticle, you obtain:

(25)P̂i 5 f(Li) 5 83.6 2 4.1Li

Ŷi 5 125.1 1 4.03Xi

13. Jaime Diaz, “Perils of Putting,” Sports Illustrated, April 3, 1989, pp. 76–79.
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a. Carefully write out the exact meaning of the coefficient of Li.

b. Suppose someone else took the data from the article and estimated:

Is this the same result as that of Equation 25? If so, what definition

do you need to use to convert this equation back to Equation 25?

c. Use Equation 25 to determine the percent of the time you’d expect a

PGA golfer to make a 10-foot putt. Does this seem realistic? How

about a 1-foot putt or a 25-foot putt? Do these seem as realistic?

d. Your answer to part c should suggest that there’s a problem in apply-

ing a linear regression to these data. What is that problem? (Hint: If

you’re stuck, first draw the theoretical diagram you’d expect for Pi as

a function of Li, then plot Equation 25 onto the same diagram.)

7. Return to the housing price model of Section 5 and consider the fol-

lowing equation:

(26)

where: SIZEi � the size (in square feet) of the ith house

PRICEi � the price (in thousands of $) of that house

a. Carefully explain the meaning of each of the estimated regression

coefficients.

b. Suppose you’re told that this equation explains a significant por-

tion (more than 80 percent) of the variation in the size of a house.

Have we shown that high housing prices cause houses to be large?

If not, what have we shown?

c. What do you think would happen to the estimated coefficients of

this equation if we had measured the price variable in dollars in-

stead of in thousands of dollars? Be specific.

8. If an equation has more than one independent variable, we have to be

careful when we interpret the regression coefficients of that equation.

Think, for example, about how you might build an equation to ex-

plain the amount of money that different states spend per pupil on

public education. The more income a state has, the more they proba-

bly spend on public schools, but the faster enrollment is growing, the

less there would be to spend on each pupil. Thus, a reasonable equa-

tion for per pupil spending would include at least two variables: in-

come and enrollment growth:

(27)Si 5 �0 1 �1Yi 1 �2Gi 1 �i

SIZEi 5 2290 1 3.62 PRICEi

Pi 5 83.6 2 4.1Li 1 ei
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where: Si � educational dollars spent per public school student in

the ith state

Yi � per capita income in the ith state

Gi � the percent growth of public school enrollment in the

ith state

a. State the economic meaning of the coefficients of Y and G. (Hint:

Remember to hold the impact of the other variable constant.)

b. If we were to estimate Equation 27, what signs would you expect

the coefficients of Y and G to have? Why?

c. Silva and Sonstelie estimated a cross-sectional model of per stu-

dent spending by state that is very similar to Equation 27:14

(28)

N � 49

Do these estimated coefficients correspond to your expectations?

Explain Equation 28 in common sense terms.

d. The authors measured G as a decimal, so if a state had a 10 percent

growth in enrollment, then G equaled .10. What would 

Equation 28 have looked like if the authors had measured G in per-

centage points, so that if a state had 10 percent growth, then G

would have equaled 10? (Hint: Write out the actual numbers for

the estimated coefficients.)

9. Your friend has an on-campus job making telephone calls to alumni

asking for donations to your college’s annual fund, and she wonders

whether her calling is making any difference. In an attempt to mea-

sure the impact of student calls on fund raising, she collects data from

50 alums and estimates the following equation:

(29)

where: GIFTi � the 2008 annual fund donation (in dollars)

from the ith alum 

INCOMEi � the 2008 estimated income (in dollars) of the

ith alum

CALLSi � the # of calls to the ith alum asking for a do-

nation in 2008 

GIFTi 5 2.29 1 0.001INCOMEi 1 4.62CALLSi

Ŝi 5 2183 1 0.1422Yi 2 5926Gi

14. Fabio Silva and Jon Sonstelie, “Did Serrano Cause a Decline in School Spending?” National

Tax Review, Vol. 48, No. 2, pp. 199–215. The authors also included the tax price for spending

per pupil in the ith state as a variable.
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a. Carefully explain the meaning of each estimated coefficient. Are

the estimated signs what you expected?

b. Why is the left-hand variable in your friend’s equation GIFTi and

not GIFTi?

c. Your friend didn’t include the stochastic error term in the estimated

equation. Was this a mistake? Why or why not?

d. Suppose that your friend decides to change the units of INCOME

from “dollars” to “thousands of dollars.” What will happen to the

estimated coefficients of the equation? Be specific.

e. If you could add one more variable to this equation, what would it

be? Explain.

10. Housing price models can be estimated with time-series as well as

cross-sectional data. If you study aggregate time-series housing prices

(see Table 2 for data and sources), you have:

N � 38 (annual 1970–2007)

where: Pt � the nominal median price of new single-family houses

in the United States in year t

Yt � the U.S. GDP in year t (billions of current $)

a. Carefully interpret the economic meaning of the estimated coefficients.

b. What is Yt doing on the right side of the equation? Isn’t Y always

supposed to be on the left side?

c. Both the price and GDP variables are measured in nominal (or cur-

rent, as opposed to real, or inflation-adjusted) dollars. Thus a

major portion of the excellent explanatory power of this equation

(almost 99 percent of the variation in Pt can be explained by Yt
alone) comes from capturing the huge amount of inflation that

took place between 1970 and 2007. What could you do to elimi-

nate the impact of inflation in this equation?

d. GDP is included in the equation to measure more than just infla-

tion. What factors in housing prices other than inflation does the

GDP variable help capture? Can you think of a variable that might

do a better job?

e. To be sure that you understand the difference between a cross-

sectional data set and a time-series data set, compare the variable

you thought of in part d with a variable that you could add to

Equation 22. The dependent variable in both equations is the price

of a house. Could you add the same independent variable to both

equations? Explain.

P̂t 5 f(GDP

1

) 5 12,928 1 17.08Yt
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Table 2 Data for the Time-Series Model of Housing Prices

t Year Price (Pt) GDP (Yt)

1 1970 23,400 1,038.5

2 1971 25,200 1,127.1

3 1972 27,600 1,238.3

4 1973 32,500 1,382.7

5 1974 35,900 1,500.0

6 1975 39,300 1,638.3

7 1976 44,200 1,825.3

8 1977 48,800 2,030.9

9 1978 55,700 2,294.7

10 1979 62,900 2,563.3

11 1980 64,600 2,789.5

12 1981 68,900 3,128.4

13 1982 69,300 3,255.0

14 1983 75,300 3,536.7

15 1984 79,900 3,933.2

16 1985 84,300 4,220.3

17 1986 92,000 4,462.8

18 1987 104,500 4,739.5

19 1988 112,500 5,103.8

20 1989 120,000 5,484.4

21 1990 122,900 5,803.1

22 1991 120,000 5,995.9

23 1992 121,500 6,337.7

24 1993 126,500 6,657.4

25 1994 130,000 7,072.2

26 1995 133,900 7,397.7

27 1996 140,000 7,816.9

28 1997 146,000 8,304.3

29 1998 152,500 8,747.0

30 1999 161,000 9,268.4

31 2000 169,000 9,817.0

32 2001 175,200 10,128.0

33 2002 187,600 10,469.6

34 2003 195,000 10,960.8

35 2004 221,000 11,685.9

36 2005 240,900 12,421.9

37 2006 246,500 13,178.4

38 2007 247,900 13,807.5

Pt � the nominal median price of new single-family houses in the United States in year t.

(Source: The Statistical Abstract of the U.S.)

Yt � the U.S. GDP in year t (billions of current dollars). (Source: The Economic Report of the

President )

Datafile � HOUSE1
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11. The distinction between the stochastic error term and the residual is

one of the most difficult concepts to master in this chapter.

a. List at least three differences between the error term and the residual.

b. Usually, we can never observe the error term, but we can get around

this difficulty if we assume values for the true coefficients. Calculate

values of the error term and residual for each of the following six

observations given that the true equals 0.0, the true equals

1.5, and the estimated regression equation is :

Yi 2 6 3 8 5 4

Xi 1 4 2 5 3 4

(Hint: To answer this question, you’ll have to solve Equation 14 for

.) Note: Datafile � EX1.

12. Let’s return to the wage determination example of Section 2. In that

example, we built a model of the wage of the ith worker in a particular

field as a function of the work experience, education, and gender of

that worker:

WAGEi � �0 � �1EXPi � �2EDUi � �3GENDi � i (12)

where: Yi � WAGEi � the wage of the ith worker

X1i � EXPi � the years of work experience of the ith worker

X2i � EDUi � the years of education beyond high school

of the ith worker

X3i � GENDi � the gender of the ith worker (1 � male and

0 � female)

a. What is the real-world meaning of �2? (Hint: If you’re unsure

where to start, review Section 2.)

b. What is the real-world meaning of �3? (Hint: Remember that

GEND is a dummy variable.)

c. Suppose that you wanted to add a variable to this equation to mea-

sure whether there might be discrimination against people of color.

How would you define such a variable? Be specific.

d. Suppose that you had the opportunity to add another variable to

the equation. Which of the following possibilities would seem

best? Explain your answer.

i. the age of the ith worker

ii. the number of jobs in this field

iii. the average wage in this field

�

�

Ŷi 5 0.48 1 1.32Xi

�1�0
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iv. the number of “employee of the month” awards won by the ith

worker

v. the number of children of the ith worker

13. Have you heard of “RateMyProfessors.com”? On this website, students

evaluate a professor’s overall teaching ability and a variety of other attrib-

utes. The website then summarizes these student-submitted ratings for

the benefit of any student considering taking a class from the professor. 

Two of the most interesting attributes that the website tracks are how

“easy” the professor is (in terms of workload and grading), and how

“hot” the professor is (presumably in terms of physical attractiveness).

A recently published article15 indicates that being “hot” improves a

professor’s rating more than being “easy.” To investigate these ideas

ourselves, we created the following equation for RateMyProfessors.com:

RATINGi � �0 � �1EASEi � �2HOTi � �i (30)

where: RATINGi � the overall rating (5 � best) of the ith professor

EASEi � the easiness rating (5 � easiest) of the ith

professor

HOTi � 1 if the ith professor is considered “hot,” 0 

otherwise

To estimate Equation 30, we need data, and Table 3 contains 

data for these variables from 25 randomly chosen professors on 

RateMyProfessors.com. If we estimate Equation 30 with the data in

Table 3, we obtain:

RATINGi � 3.23 � 0.01EASEi � 0.59HOTi (31)

a. Take a look at Equation 31. Do the estimated coefficients support

our expectations? Explain.

b. See if you can reproduce the results in Equation 31 on your own.  To

do this, take the data in Table 3 and use EViews, Stata, or your own re-

gression program to estimate the coefficients from these data.  If you

do everything correctly, you should be able to verify the estimates in

Equation 31. (If you’re not sure how to get started on this question,

take a look at the answer to Exercise 2 at the end of the chapter.)

c. This model includes two independent variables. Does it make

sense to think that the teaching rating of a professor depends on

15. James Otto, Douglas Sanford, and Douglas Ross, “Does RateMyProfessors.com Really Rate

My Professor?” Assessment and Evaluation in Higher Education, August 2008, pp. 355–368.
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just these two variables? What other variable(s) do you think might

be important?

d. Suppose that you were able to add your suggested variable(s) to

Equation 31. What do you think would happen to the coefficients

of EASE and HOT when you added the variable(s)? Would you ex-

pect them to change? Would you expect them to remain the same?

Explain.

e. (optional) Go to the RateMyProfessors.com website, choose 25 obser-

vations at random, and estimate your own version of Equation 30.

Now compare your regression results to those in Equation 31. 

Do your estimated coefficients have the same signs as those in

Equation 31? Are your estimated coefficients exactly the same as

those in Equation 31? Why or why not?

Table 3 RateMyProfessors.com Ratings

Observation RATING EASE HOT

1 2.8 3.7 0

2 4.3 4.1 1

3 4.0 2.8 1

4 3.0 3.0 0

5 4.3 2.4 0

6 2.7 2.7 0

7 3.0 3.3 0

8 3.7 2.7 0

9 3.9 3.0 1

10 2.7 3.2 0

11 4.2 1.9 1

12 1.9 4.8 0

13 3.5 2.4 1

14 2.1 2.5 0

15 2.0 2.7 1

16 3.8 1.6 0

17 4.1 2.4 0

18 5.0 3.1 1

19 1.2 1.6 0

20 3.7 3.1 0

21 3.6 3.0 0

22 3.3 2.1 0

23 3.2 2.5 0

24 4.8 3.3 0

25 4.6 3.0 0

Datafile � RATE1
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Answers

Exercise 2

Using EViews:

a. Install and launch the software.

b. Open the datafile. All datafiles can be found in EViews format at

www.pearsonhighered.com/studenmund. Alternatively, on your

EViews disc, you can click through File � Open � Workfile. Then

browse to the CD-ROM, select the folder “Studenmund,” and

double-click on “HTWT1” followed by “OK.”

c. Run the regression. Type “LS Y C X” on the top line, making sure

to leave spaces between the variable names. (LS stands for Least

Squares and C stands for constant.) Press Enter, and the regres-

sion results will appear on your screen.

Using Stata:

a. Install and launch the regression software.

b. Open the datafile. All datafiles can be found in Stata format at

www.pearsonhighered.com/studenmund. This particular datafile

is “HTWT1.”

c. Run the regression. Click through Statistics � Linear Models and

Related � Linear Regression. Select Y as your dependent variable

and X as your independent variable. Then click “OK,” and the

regression results will appear on your screen.

AN OVERVIEW OF REGRESSION ANALYSIS
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From Chapter 2 of Using Econometrics: A Practical Guide, 6/e. A. H. Studenmund. Copyright © 2011

by Pearson Education. Published by Addison-Wesley. All rights reserved.
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The bread and butter of regression analysis is the estimation of the coeffi-

cients of econometric models with a technique called Ordinary Least Squares

(OLS). The first two sections of this chapter summarize the reasoning behind

and the mechanics of OLS. Regression users rely on computers to do the ac-

tual OLS calculations, so the emphasis here is on understanding what OLS

attempts to do and how it goes about doing it.

How can you tell a good equation from a bad one once it has been esti-

mated? There are a number of useful criteria, including the extent to which the

estimated equation fits the actual data. A focus on fit is not without perils, how-

ever, so the chapter concludes with an example of the misuse of this criterion.

Estimating Single-Independent-Variable 
Models with OLS

The purpose of regression analysis is to take a purely theoretical equation like:

(1)

and use a set of data to create an estimated equation like:

(2)

where each “hat” indicates a sample estimate of the true population value.

(In the case of Y, the “true population value” is The purpose of theEfY k Xg.)

Ŷi 5 �̂0 1 �̂1Xi

Yi 5 �0 1 �1Xi 1 �i

1

1 Estimating Single-Independent-Variable Models with OLS

2 Estimating Multivariate Regression Models with OLS

3 Evaluating the Quality of a Regression Equation

4 Describing the Overall Fit of the Estimated Model

5 An Example of the Misuse of 

6 Summary and Exercises

R2

Ordinary Least Squares
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estimation technique is to obtain numerical values for the coefficients of an

otherwise completely theoretical regression equation.

The most widely used method of obtaining these estimates is Ordinary

Least Squares (OLS), which has become so standard that its estimates are pre-

sented as a point of reference even when results from other estimation tech-

niques are used. Ordinary Least Squares (OLS) is a regression estimation

technique that calculates the so as to minimize the sum of the squared

residuals, thus:1

(3)

Since these residuals (eis) are the differences between the actual Ys and the es-

timated Ys produced by the regression (the in Equation 2), Equation 3 is

equivalent to saying that OLS minimizes 

Why Use Ordinary Least Squares?

Although OLS is the most-used regression estimation technique, it’s not the

only one. Indeed, econometricians have developed what seem like zillions of

different estimation techniques.

There are at least three important reasons for using OLS to estimate regres-

sion models:

1. OLS is relatively easy to use.

2. The goal of minimizing is quite appropriate from a theoretical

point of view.

3. OLS estimates have a number of useful characteristics.

ge2
i

g  (Yi 2 Ŷi)
2.

Ŷs

OLS minimizes g
N

i51
e˛

2
i  (i 5 1, 2, . . . , N)

�̂s

ORDINARY LEAST SQUARES

1. The summation symbol, , means that all terms to its right should be added (or summed)

over the range of the i values attached to the bottom and top of the symbol. In Equation 3, for

example, this would mean adding up for all integer values between 1 and N:

Often the notation is simply written as , and it is assumed that the summation is over all

observations from i � 1 to i � N. Sometimes, the i is omitted entirely and the same assumption

is made implicitly. For more practice in the basics of summation algebra, see Exercise 3.

g
 

i
g

g
N

i51
e2

i 5 e2
1 1 e2

2 1 c1 e2
N

e2
i

g
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The first reason for using OLS is that it’s the simplest of all econometric

estimation techniques. Most other techniques involve complicated non-

linear formulas or iterative procedures, many of which are extensions of

OLS itself. In contrast, OLS estimates are simple enough that, if you had

to, you could compute them without using a computer or a calculator

(for a single-independent-variable model). Indeed, in the “dark ages” be-

fore computers and calculators, econometricians calculated OLS estimates

by hand!

The second reason for using OLS is that minimizing the summed, squared

residuals is a reasonable goal for an estimation technique. To see this, recall

that the residual measures how close the estimated regression equation

comes to the actual observed data:

(17)

Since it’s reasonable to want our estimated regression equation to be as

close as possible to the observed data, you might think that you’d want to

minimize these residuals. The main problem with simply totaling the resid-

uals is that ei can be negative as well as positive. Thus, negative and positive

residuals might cancel each other out, allowing a wildly inaccurate equa-

tion to have a very low For example, if Y � 100,000 for two consecu-

tive observations and if your equation predicts 1.1 million and �900,000,

respectively, your residuals will be �1 million and �1 million, which add

up to zero!

We could get around this problem by minimizing the sum of the absolute

values of the residuals, but absolute values are difficult to work with mathe-

matically. Luckily, minimizing the summed squared residuals does the job.

Squared functions pose no unusual mathematical difficulties in terms of ma-

nipulations, and the technique avoids canceling positive and negative residu-

als because squared terms are always positive.

The final reason for using OLS is that its estimates have at least two useful

characteristics:

1. The sum of the residuals is exactly zero.

2. OLS can be shown to be the “best” estimator possible under a set of

specific assumptions.

An estimator is a mathematical technique that is applied to a sample of

data to produce real-world numerical estimates of the true population re-

gression coefficients (or other parameters). Thus, OLS is an estimator, and a

produced by OLS is an estimate.�̂

gei.

ei 5 Yi 2 Ŷi  (i 5 1, 2, . . ., N)
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How Does OLS Work?

How would OLS estimate a single-independent-variable regression model

like Equation 1?

(1)

OLS selects those estimates of that minimize the squared residuals,

summed over all the sample data points.

For an equation with just one independent variable, these coefficients

are:2

�0 and �1

Yi 5 �0 1 �1Xi 1 �i

2. Since

and OLS actually minimizes

by choosing the that do so. For those with a moderate grasp of calculus and algebra, the

derivation of these equations is informative. See Exercise 12.

�̂s

g
i

e2
i 5 g

i
 (Yi 2 �̂0 2 �̂1Xi)

2

Ŷi 5 �̂0 1 �̂X1i,

g
N

i51
e2

i 5 g
N

i51
 (Yi 2 Ŷi)

2

and, given this estimate of �1,

where the mean of X, or and the mean of Y, or 

Note that for each different data set, we’ll get different estimates of 

depending on the sample.

�1 and �0,

gYi>N.Y 5gXi>N,X 5

(4)�̂1 5

g
N

i51

f(X
i

2 X) (Y
i

2 Y)g

g

N

i51
(Xi 2 X)

2

(5)�̂0 5 Y 2 �̂1X
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An Illustration of OLS Estimation

The equations for calculating regression coefficients might seem a little for-

bidding, but it’s not hard to apply them yourself to data sets that have only a

few observations and independent variables. Although you’ll usually want to

use regression software packages to do your estimation, you’ll understand

OLS better if you work through the following illustration.

To keep things simple, let’s attempt to estimate the regression coef-

ficients of the height and weight data given in Table 1. The formulas for

OLS estimation for a regression equation with one independent variable

are Equations 4 and 5:

(4)

(5)

If we undertake the calculations outlined in Table 1 and substitute them into

Equations 4 and 5, we obtain these values:

or

(6)

As can be seen in Table 1, the sum of the (column 8) equals the sum of the

Ys (column 2), so the sum of the residuals (column 9) does indeed equal

zero (except for rounding errors).

Ŷs

Ŷi 5 103.4 1 6.38Xi

 �̂0 5 169.4 2 (6.38 ? 10.35) 5 103.4

 �̂1 5
590.20

92.50
5 6.38

 �̂0 5 Y 2 �̂1X

 �̂1 5

g
N

i51

f(X
i

2 X) (Y
i

2 Y)g

g
N

i51
 (Xi 2 X)

2
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Table 1 The Calculation of Estimated Regression Coefficients 
for the Weight/Height Example

Raw Data Required Intermediate Calculations

i Yi Xi

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 140 5 �29.40 �5.35 28.62 157.29 135.3 4.7

2 157 9 �12.40 �1.35 1.82 16.74 160.8 �3.8

3 205 13 35.60 2.65 7.02 94.34 186.3 18.7

4 198 12 28.60 1.65 2.72 47.19 179.9 18.1

5 162 10 �7.40 �0.35 0.12 2.59 167.2 �5.2

6 174 11 4.60 0.65 0.42 2.99 173.6 0.4

7 150 8 �19.40 �2.35 5.52 45.59 154.4 �4.4

8 165 9 �4.40 �1.35 1.82 5.94 160.8 4.2

9 170 10 0.60 �0.35 0.12 �0.21 167.2 2.8

10 180 12 10.60 1.65 2.72 17.49 179.9 0.1

11 170 11 0.60 0.65 0.42 0.39 173.6 �3.6

12 162 9 �7.40 �1.35 1.82 9.99 160.8 1.2

13 165 10 �4.40 �0.35 0.12 1.54 167.2 2.2

14 180 12 10.60 1.65 2.72 17.49 179.9 0.1

15 160 8 �9.40 �2.35 5.52 22.09 154.4 5.6

16 155 9 �14.40 �1.35 1.82 19.44 160.8 �5.8

17 165 10 �4.40 �0.35 0.12 1.54 167.2 �2.2

18 190 15 20.60 4.65 21.62 95.79 199.1 �9.1

19 185 13 15.60 2.65 7.02 41.34 186.3 �1.3

20 155 11 �14.40 0.65 0.42 �9.36 173.6 �18.6

Sum 3388 207 0.0 0.0 92.50 590.20 3388.3 �0.3

Mean 169.4 10.35 0.0 0.0 169.4 0.0

ei 5 Yi 2 ŶiŶi(Xi 2 X)  (Yi 2 Y)(Xi 2 X)2(Xi 2 X)(Yi 2 Y)

Estimating Multivariate Regression 
Models with OLS

Let’s face it: only a few dependent variables can be explained fully by a single

independent variable. A person’s weight, for example, is influenced by more

than just that person’s height. What about bone structure, percent body fat,

exercise habits, or diet?

As important as additional explanatory variables might seem to the

height/weight example, there’s even more reason to include a variety of in-

dependent variables in economic and business applications. Although the

quantity demanded of a product is certainly affected by price, that’s not the

2
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3. The term “partial regression coefficient” will seem especially appropriate to those readers

who have taken calculus, since multivariate regression coefficients correspond to partial 

derivatives.

whole story. Advertising, aggregate income, the prices of substitutes, the influ-

ence of foreign markets, the quality of customer service, possible fads, and

changing tastes all are important in real-world models. As a result, it’s vital

to move from single-independent-variable regressions to multivariate regres-

sion models, or equations with more than one independent variable.

The Meaning of Multivariate Regression Coefficients

The general multivariate regression model with K independent variables can

be represented by Equation 13:

(13)

where i, as before, goes from 1 to N and indicates the observation number.

Thus, X1i indicates the ith observation of independent variable X1, while X2i
indicates the ith observation of another independent variable, X2.

The biggest difference between a single-independent-variable regression

model and a multivariate regression model is in the interpretation of the lat-

ter’s slope coefficients. These coefficients, often called partial regression coef-

ficients,3 are defined to allow a researcher to distinguish the impact of one

variable from that of other independent variables.

Yi 5 �0 1 �1X1i 1 �2X2i 1 c1 �KXKi 1 �i

This last italicized phrase is a key to understanding multiple regression (as

multivariate regression is often called). The coefficient measures the im-

pact on Y of a one-unit increase in X1, holding constant X2, X3, . . . and XK
but not holding constant any relevant variables that might have been omitted

�1

Specifically, a multivariate regression coefficient indicates the change

in the dependent variable associated with a one-unit increase in the in-

dependent variable in question holding constant the other independent

variables in the equation.
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from the equation (e.g., XK�1). The coefficient is the value of Y when all

the Xs and the error term equal zero. You should always include a constant

term in a regression equation, but you should not rely on estimates of for

inference.

As an example, let’s consider the following annual model of the per capita

demand for beef in the United States:

(7)

where: CBt � the per capita consumption of beef in year t (in pounds per

person)

Pt � the price of beef in year t (in cents per pound)

Ydt � the per capita disposable income in year t (in thousands of

dollars)

The estimated coefficient of income, 9, tells us that beef consumption will in-

crease by 9 pounds per person if per capita disposable income goes up by

$1,000, holding constant the price of beef. The ability to hold price constant

is crucial because we’d expect such a large increase in per capita income to

stimulate demand, therefore pushing up prices and making it hard to distin-

guish the effect of the income increase from the effect of the price increase.

The multivariate regression estimate allows us to focus on the impact of the

income variable by holding the price variable constant.

Note, however, that the equation does not hold constant other possible

variables (like the price of a substitute) because these variables are not in-

cluded in Equation 7. Before you move on to the next section, take the time

to think through the meaning of the estimated coefficient of P in Equation 7;

do you agree that the sign and relative size fit with economic theory?

OLS Estimation of Multivariate Regression Models

The application of OLS to an equation with more than one independent vari-

able is quite similar to its application to a single-independent-variable

model. To see this, consider the estimation of the simplest possible multi-

variate model, one with just two independent variables:

(8)

The goal of OLS is to choose those that minimize the summed square resid-

uals. These residuals are now from a multivariate model, but they can be mini-

mized using the same mathematical approach used in Section 1. Thus the 

�̂s

Yi 5 �0 1 �1X1i 1 �2X2i 1 �i

CBt 5 37.54 2 0.88Pt 1 11.9Ydt

�0

�0
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4. For Equation 8, the estimated coefficients are:

where lowercase variables indicate deviations from the mean, as in 

and x2 5 X2i 2 X2.

y 5 Yi 2 Y; x1 5 X1i 2 X1;

 �̂0 5 Y 2 �̂1X1 2 �̂2X2

 �̂2 5
(gyx2)(gx2

1) 2 (gyx1)(gx1x2)

(gx2
1)(gx2

2) 2 (gx1x2)2

�̂1 5
(gyx1)(gx2

2) 2 (gyx2)(gx1x2)

(gx2
1)(gx2

2) 2 (gx1x2)2

OLS estimation of multivariate models is identical in general approach to the

OLS estimation of models with just one independent variable. The equations

themselves are more cumbersome,4 but the underlying principle of estimating

that minimize the summed squared residuals remains the same.

Luckily, user-friendly computer packages can calculate estimates with

these cumbersome equations in less than a second of computer time. Indeed,

only someone lost in time or stranded on a desert island would bother esti-

mating a multivariate regression model without a computer. The rest of us

will use EViews, Stata, SPSS, SAS, or any of the other commercially available

regression packages.

An Example of a Multivariate Regression Model

As an example of multivariate regression, let’s take a look at a model of financial

aid awards at a liberal arts college. The dependent variable in such a study

would be the amount, in dollars, awarded to a particular financial aid applicant:

FINAIDi � the financial aid (measured in dollars of grant per year)

awarded to the ith applicant

What kinds of independent variables might influence the amount of finan-

cial aid received by a given student? Well, most aid is either need-based or

merit-based, so it makes sense to consider a model that includes at least these

two attributes:

� �

FINAIDi � f(PARENTi, HSRANKi) (9)

and

FINAIDi � �0 � �1PARENTi, � �2HSRANKi � i (10)�

�̂s
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5. These data are from an unpublished analysis of financial aid awards at Occidental College.

The fourth variable in Table 2 is MALEi, which equals 1 if the ith student is male and 0 otherwise.

where: PARENTi � the amount (in dollars per year) that the parents of

the ith student are judged able to contribute to col-

lege expenses

HSRANKi � the ith student’s GPA rank in high school, measured

as a percentage (ranging from a low of 0 to a high 

of 100)

Note from the signs over the independent variables in Equation 9 that we

anticipate that the more parents can contribute to their child’s education, the

less the financial aid award will be. Similarly, we expect that the higher the

student’s rank in high school, the higher the financial aid award will be. Do

you agree with these expectations?

If we estimate Equation 10 using OLS and the data5 in Table 2, we get:

FINAIDi � 8927� 0.36PARENTi � 87.4HSRANKi (11)

What do these coefficients mean? Well, the –0.36 means that the model

implies that the ith student’s financial aid grant will fall by $0.36 for every

dollar increase in his or her parents’ ability to pay, holding constant high

school rank. Does the sign of the estimated coefficient meet our expecta-

tions? Yes. Does the size of the coefficient make sense? Yes.

To be sure that you understand this concept, take the time to write down

the meaning of the coefficient of HSRANK in Equation 11. Do you agree

that the model implies that the ith student’s financial aid grant will in-

crease by $87.40 for each percentage point increase in high school rank,

holding constant parents’ ability to pay? Does this estimated coefficient

seem reasonable?

To illustrate, take a look at Figures 1 and 2. These figures contain two dif-

ferent views of Equation 11. Figure 1 is a diagram of the effect of PARENT

on FINAID, holding HSRANK constant, and Figure 2 shows the effect of

HSRANK on FINAID, holding PARENT constant. These two figures are graph-

ical representations of multivariate regression coefficients, since they mea-

sure the impact on the dependent variable of a given independent variable,

holding constant the other variables in the equation.
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0

Slope = 87.40 = �2 (holding PARENTi constant)

HSRANKi

FINAIDi

Figure 2 Financial Aid as a Function of High School Rank

In Equation 11, an increase of one percentage point in high school rank increases the 

financial aid award by $87.40, holding constant parents’ ability to pay.

0

Slope = 20.36 = �1 (holding HSRANKi constant)

PARENTi

FINAIDi 

Figure 1  Financial Aid as a Function of Parents’ Ability to Pay

In Equation 11, an increase of one dollar in the parents’ ability to pay decreases the 

financial aid award by $0.36, holding constant high school rank.
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Table 2 Data for the Financial Aid Example

i FINAID PARENT HSRANK MALE

1 19,640 0 92 0

2 8,325 9,147 44 1

3 12,950 7,063 89 0

4 700 33,344 97 1

5 7,000 20,497 95 1

6 11,325 10,487 96 0

7 19,165 519 98 1

8 7,000 31,758 70 0

9 7,925 16,358 49 0

10 11,475 10,495 80 0

11 18,790 0 90 0

12 8,890 18,304 75 1

13 17,590 2,059 91 1

14 17,765 0 81 0

15 14,100 15,602 98 0

16 18,965 0 80 0

17 4,500 22,259 90 1

18 7,950 5,014 82 1

19 7,000 34,266 98 1

20 7,275 11,569 50 0

21 8,000 30,260 98 1

22 4,290 19,617 40 1

23 8,175 12,934 49 1

24 11,350 8,349 91 0

25 15,325 5,392 82 1

26 22,148 0 98 0

27 17,420 3,207 99 0

28 18,990 0 90 0

29 11,175 10,894 97 0

30 14,100 5,010 59 0

31 7,000 24,718 97 1

32 7,850 9,715 84 1

33 0 64,305 84 0

34 7,000 31,947 98 1

35 16,100 8,683 95 1

36 8,000 24,817 99 0

37 8,500 8,720 20 1

38 7,575 12,750 89 1

39 13,750 2,417 41 1

40 7,000 26,846 92 1

41 11,200 7,013 86 1

42 14,450 6,300 87 0

(continued)
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Table 2 (continued)

i FINAID PARENT HSRANK MALE

43 15,265 3,909 84 0

44 20,470 2,027 99 1

45 9,550 12,592 89 0

46 15,970 0 57 0

47 12,190 6,249 84 0

48 11,800 6,237 81 0

49 21,640 0 99 0

50 9,200 10,535 68 0

Datafile � FINAID2

Total, Explained, and Residual Sums of Squares

Before going on, let’s pause to develop some measures of how much of the

variation of the dependent variable is explained by the estimated regression

equation. Such comparison of the estimated values with the actual values can

help a researcher judge the adequacy of an estimated regression.

Econometricians use the squared variations of Y around its mean as a

measure of the amount of variation to be explained by the regression. This

computed quantity is usually called the total sum of squares, or TSS, and is

written as:

(12)

For Ordinary Least Squares, the total sum of squares has two components,

variation that can be explained by the regression and variation that cannot:

(13)

Total Sum � Explained � Residual

of Sum of Sum of 

Squares Squares Squares

(TSS) (ESS) (RSS)

This is usually called the decomposition of variance.

Figure 3 illustrates the decomposition of variance for a simple regression

model. The estimated values of Yi lie on the estimated regression line

g
i

 (Yi 2 Y)2 5 g
i

 (Ŷi 2 Y)2 1 g
i

 e2
i

TSS 5 g
N

i51
 (Yi 2 Y)2
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Y

0 XiX

= Yi – Yi

Yi – Y

X

 �0

ei

Y

(Xi, Yi)

(Xi, Yi)

Yi – Y

Yi = + �iXi

Figure 3 Decomposition of the Variance in Y

The variation of Y around its mean can be decomposed into two parts: 

(1) the difference between the estimated value of and the mean value of

and (2) the difference between the actual value of Y and the estimated

value of Y.

(Yi 2 Ŷi),Y (Y);

Y(Ŷ)(Ŷi 2 Y),

(Y 2 Y)

6. Note that some authors reverse the definitions of RSS and ESS (defining ESS as ), and

other authors reverse the order of the letters, as in SSR. 
ge˛

2
i

. The variation of Y around its mean can be decom-

posed into two parts: (1) the difference between the estimated

value of and the mean value of and (2) the difference

between the actual value of Y and the estimated value of Y.

The first component of Equation 13 measures the amount of the squared

deviation of Yi from its mean that is explained by the regression line. This

component of the total sum of the squared deviations, called the explained

sum of squares, or ESS, is attributable to the fitted regression line. The un-

explained portion of TSS (that is, unexplained in an empirical sense by the

estimated regression equation), is called the residual sum of squares, or

RSS.6

(Yi 2 Ŷi),Y (Y);Y (Ŷ)

(Ŷi 2 Y),

(Yi 2 Y)Ŷi 5 �̂0 1 �̂1Xi
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We can see from Equation 13 that the smaller the RSS is relative to the TSS,

the better the estimated regression line fits the data. OLS is the estimating

technique that minimizes the RSS and therefore maximizes the ESS for a

given TSS.

Evaluating the Quality of a Regression Equation

If the bread and butter of regression analysis is OLS estimation, then the heart

and soul of econometrics is figuring out how good these OLS estimates are.

Many beginning econometricians have a tendency to accept regression es-

timates as they come out of a computer, or as they are published in an article,

without thinking about the meaning or validity of those estimates. Such

blind faith makes as much sense as buying an entire wardrobe of clothes

without trying them on. Some of the clothes will fit just fine, but many oth-

ers will turn out to be big (or small) mistakes.

Instead, the job of an econometrician is to carefully think about and eval-

uate every aspect of the equation, from the underlying theory to the quality

of the data, before accepting a regression result as valid. In fact, most good

econometricians spend quite a bit of time thinking about what to expect

from an equation before they estimate that equation.

Once the computer estimates have been produced, however, it’s time to

evaluate the regression results. The list of questions that should be asked dur-

ing such an evaluation is long. For example:

1. Is the equation supported by sound theory?

2. How well does the estimated regression fit the data?

3. Is the data set reasonably large and accurate?

4. Is OLS the best estimator to be used for this equation?

5. How well do the estimated coefficients correspond to the expectations

developed by the researcher before the data were collected?

6. Are all the obviously important variables included in the equation?

7. Has the most theoretically logical functional form been used?

8. Does the regression appear to be free of major econometric problems?

The goal of this text is to help you develop the ability to ask and appropri-

ately answer these kinds of questions. The rest of the chapter will be devoted

to the second of these topics—the overall fit of the estimated model.

3
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Describing the Overall Fit of the Estimated Model

Let’s face it: we expect that a good estimated regression equation will explain

the variation of the dependent variable in the sample fairly accurately. If it

does, we say that the estimated model fits the data well.

Looking at the overall fit of an estimated model is useful not only for eval-

uating the quality of the regression, but also for comparing models that have

different data sets or combinations of independent variables. We can never

be sure that one estimated model represents the truth any more than another,

but evaluating the quality of the fit of the equation is one ingredient in a

choice between different formulations of a regression model. Be careful, how-

ever! The quality of the fit is a minor ingredient in this choice, and many be-

ginning researchers allow themselves to be overly influenced by it.

R2

The simplest commonly used measure of fit is R2 or the coefficient of deter-

mination. R2 is the ratio of the explained sum of squares to the total sum of

squares:

(14)

The higher R2 is, the closer the estimated regression equation fits the sam-

ple data. Measures of this type are called “goodness of fit” measures. R2

measures the percentage of the variation of Y around that is explained

by the regression equation. Since OLS selects the coefficient estimates that

minimize RSS, OLS provides the largest possible R2, given a linear model.

Since TSS, RSS, and ESS are all nonnegative (being squared deviations),

and since R2 must lie in the interval , a value of R2

close to one shows an excellent overall fit, whereas a value near zero

shows a failure of the estimated regression equation to explain the values

of Yi better than could be explained by the sample mean Y.

0 # R2 # 1ESS # TSS,

Y

R2 5
ESS

TSS
5 1 2

RSS

TSS
5 1 2

ge˛

2
i

g (Yi 2 Y)
2

4
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Y

Y

0 X

Regression Line

R2 = 0

Figure 4
X and Y are not related; in such a case, R2 would be 0.

Figures 4 through 6 demonstrate some extremes. Figure 4 shows an X and

Y that are unrelated. The fitted regression line might as well be the

same value it would have if X were omitted. As a result, the estimated linear

regression is no better than the sample mean as an estimate of Yi. The ex-

plained portion, ESS, � 0, and the unexplained portion, RSS, equals the total

squared deviations TSS; thus, R2 � 0.

Figure 5 shows a relationship between X and Y that can be “explained”

quite well by a linear regression equation: the value of R2 is .95. This kind of

result is typical of a time-series regression with a good fit. Most of the varia-

tion has been explained, but there still remains a portion of the variation that

is essentially random or unexplained by the model.

Goodness of fit is relative to the topic being studied. In time series data,

we often get a very high R2 because there can be significant time trends on

both sides of the equation. In cross-sectional data, we often get low R2s

because the observations (say, countries) differ in ways that are not easily

quantified. In such a situation, an R2 of .50 might be considered a good

fit, and researchers would tend to focus on identifying the variables that

have a substantive impact on the dependent variable, not on R2. In other

words, there is no simple method of determining how high R2 must be for

the fit to be considered satisfactory. Instead, knowing when R2 is relatively

large or small is a matter of experience. It should be noted that a high

R2 does not imply that changes in X lead to changes in Y, as there may be

an underlying variable whose changes lead to changes in both X and Y

simultaneously.

Ŷ 5 Y,
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Figure 6 shows a perfect fit of R2 � 1. Such a fit implies that no estima-

tion is required. The relationship is completely deterministic, and the

slope and intercept can be calculated from the coordinates of any two

points. In fact, reported equations with R2s equal to (or very near) one

should be viewed with suspicion; they very likely do not explain the move-

ments of the dependent variable Y in terms of the causal proposition ad-

vanced, even though they explain them empirically. This caution applies to

economic applications, but not necessarily to those in fields like physics or

chemistry.

Y

0 X

R2 = .95

Figure 5
A set of data for X and Y that can be “explained” quite well with a regression line 

(R2 � .95).

Y

0 X

R2 = 1

Figure 6
A perfect fit: all the data points are on the regression line, and the resulting R2 is 1.
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The Simple Correlation Coefficient, r

A related measure that will prove useful in future chapters is “r,” the simple

correlation coefficient. The simple correlation coefficient, r, is a measure of

the strength and direction of the linear relationship between two variables.7

The range of r is from �1 to �1, and the sign of r indicates the direction of

the correlation between the two variables. The closer the absolute value of r is

to 1, the stronger the correlation between the two variables. Thus:

7. The equation for r12, the simple correlation coefficient between X1 and X2, is:

r12 5
g f(X1i 2 X1)(X2i 2 X2)g

"g (X1i 2 X1)2 g (X2i 2 X2)2

If two variables are perfectly positively correlated, then r � �1

If two variables are perfectly negatively correlated, then r � �1

If two variables are totally uncorrelated, then r � 0

We’ll use the simple correlation coefficient to describe the correlation be-

tween two variables. Interestingly, it turns out that r and R2 are related if the

estimated equation has exactly one independent variable. The square of r

equals R2 for a regression where one of the two variables is the dependent

variable and the other is the only independent variable.

, The Adjusted R2

A major problem with R2 is that adding another independent variable to a

particular equation can never decrease R2. That is, if you compare two equa-

tions that are identical (same dependent variable and independent variables),

except that one has an additional independent variable, the equation with the

greater number of independent variables will always have a better (or equal)

fit as measured by R2.

To see this, recall the equation for R2, Equation 14.

(14)R2 5
ESS

TSS
5 1 2

RSS

TSS
5 1 2

ge˛

2
i

g (Yi 2 Y)
2

R2
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What will happen to R2 if we add a variable to the equation? Adding a vari-

able can’t change TSS (can you figure out why?), but in most cases the added

variable will reduce RSS, so R2 will rise. You know that RSS will never increase

because the OLS program could always set the coefficient of the added vari-

able equal to zero, thus giving the same fit as the previous equation. The coef-

ficient of the newly added variable being zero is the only circumstance in

which R2 will stay the same when a variable is added. Otherwise, R2 will

always increase when a variable is added to an equation.

Perhaps an example will make this clear. Let’s return to our weight guess-

ing regression:

The R2 for this equation is .74. If we now add a completely nonsensical

variable to the equation (say, the campus post office box number of each in-

dividual in question), then it turns out that the results become:

but the R2 for this equation is .75! Thus, an individual using R2 alone as the

measure of the quality of the fit of the regression would choose the second

version as better fitting.

The inclusion of the campus post office box variable not only adds a non-

sensical variable to the equation, but it also requires the estimation of another

coefficient. This lessens the degrees of freedom, or the excess of the number of

observations (N) over the number of coefficients (including the intercept) esti-

mated (K � 1). For instance, when the campus box number variable is added

to the weight/height example, the number of observations stays constant at 20,

but the number of estimated coefficients increases from 2 to 3, so the number

of degrees of freedom falls from 18 to 17. This decrease has a cost, since the

lower the degrees of freedom, the less reliable the estimates are likely to be.

Thus, the increase in the quality of the fit caused by the addition of a variable

needs to be compared to the decrease in the degrees of freedom before a deci-

sion can be made with respect to the statistical impact of the added variable.

To sum, R2 is of little help if we’re trying to decide whether adding a variable

to an equation improves our ability to meaningfully explain the dependent

variable. Because of this problem, econometricians have developed another

measure of the quality of the fit of an equation. That measure is (pro-

nounced R-bar-squared), which is R2 adjusted for degrees of freedom:

(15)R2 5 1 2
ge˛

2
i
>(N 2 K 2 1)

g  (Yi 2 Y)
2>(N 2 1)

R2

Estimated weight 5 102.35 1 6.36 (Height . five feet) 1 0.02 (Box#)

Estimated weight 5 103.40 1 6.38 ? Height (over five feet)
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will increase, decrease, or stay the same when a variable is added to an

equation, depending on whether the improvement in fit caused by the addi-

tion of the new variable outweighs the loss of the degree of freedom. Indeed,

the for the weight-guessing equation decreases to .72 when the mail box

variable is added. The mail box variable, since it has no theoretical relation to

weight, should never have been included in the equation, and the measure

supports this conclusion.

The highest possible is 1.00, the same as for R2. The lowest possible 

however, is not .00; if R2 is extremely low, can be slightly negative.R2
R2,R2

R2

R2

R2

Finally, a warning is in order. Always remember that the quality of fit of an

estimated equation is only one measure of the overall quality of that regres-

sion. As mentioned previously, the degree to which the estimated coefficients

conform to economic theory and the researcher’s previous expectations

about those coefficients are just as important as the fit itself. For instance, an

estimated equation with a good fit but with an implausible sign for an esti-

mated coefficient might give implausible predictions and thus not be a very

useful equation. Other factors, such as theoretical relevance and usefulness,

also come into play. Let’s look at an example of these factors.

An Example of the Misuse of 

Section 4 implies that the higher the overall fit of a given equation, the 

better. Unfortunately, many beginning researchers assume that if a high is

good, then maximizing is the best way to maximize the quality of an

equation. Such an assumption is dangerous because a good overall fit is only

one measure of the quality of an equation.

R2
R2

R25

measures the percentage of the variation of Y around its mean that is

explained by the regression equation, adjusted for degrees of freedom.

R2

can be used to compare the fits of equations with the same dependent

variable and different numbers of independent variables. Because of this

property, most researchers automatically use instead of R2 when evaluat-

ing the fit of their estimated regression equations.

R2

R2
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8. The principle involved in this section is the same one that was discussed during the actual

research, but these coefficients are hypothetical because the complexities of the real equation

are irrelevant to our points.

Perhaps the best way to visualize the dangers inherent in maximizing 

without regard to the economic meaning or statistical significance of an

equation is to look at an example of such misuse. This is important because it

is one thing for a researcher to agree in theory that “ maximizing” is bad,

and it is another thing entirely for that researcher to avoid subconsciously

maximizing on projects. It is easy to agree that the goal of regression is not

to maximize but many researchers find it hard to resist that temptation.

As an example, assume that you’ve been hired by the State of California to

help the legislature evaluate a bill to provide more water to Southern Califor-

nia.8 This issue is important because a decision must be made whether to

ruin, through a system of dams, one of the state’s best trout fishing areas. On

one side of the issue are Southern Californians who claim that their desert-

like environment requires more water; on the other side are nature lovers and

environmentalists who want to retain the natural beauty for which California

is famous. Your job is to forecast the amount of water demanded in Los An-

geles County, the biggest user of water in the state.

Because the bill is about to come before the state legislature, you’re forced to

choose between two regressions that already have been run for you, one by the

state econometrician and the other by an independent consultant. You will base

your forecast on one of these two equations. The state econometrician’s equation:

(16)

or the independent consultant’s equation:

(17)

where: � the total amount of water consumed in Los Angeles County

in a given year (measured in millions of gallons)

PR � the price of a gallon of water that year (measured in real

dollars)

P � the population in Los Angeles County that year

RF � the amount of rainfall that year (measured in inches)

DF � degrees of freedom, which equal the number of observations

(N � 29) minus the number of coefficients estimated

W

R2 5 .847 DF 5 26

Ŵ 5 30,000 1 0.62P 2 400RF

R2 5 .859 DF 5 25

Ŵ 5 24,000 1 48,000PR 1 0.40P 2 370RF

R2,

R2

R2

R2
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9. A couple of caveats to this example are in order. First, we normally wouldn’t leave price out

of a demand equation, but it’s appropriate to do so here because the unexpected sign for the

coefficient of price would otherwise cause forecast errors. Second, average rainfall would be

used in forecasts, because future rainfall would not be known. Finally, income does indeed

belong in the equation, but it turns out to have a relatively small coefficient, because water

expenditure is minor in relation to the overall budget.
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Review these two equations carefully before going on with the rest of the

section. What do you think the arguments of the state econometrician were

for using his equation? What case did the independent econometrician make

for her work?

The question is whether the increased is worth the unexpected sign in

the price of water coefficient in Equation 16. The state econometrician ar-

gued that given the better fit of his equation, it would do a better job of fore-

casting water demand. The independent consultant argued that it did not

make sense to expect that an increase in price in the future would, holding

the other variables in the equation constant, increase the quantity of water

demanded in Los Angeles. Furthermore, given the unexpected sign of the co-

efficient, it seemed much more likely that the demand for water was unre-

lated to price during the sample period or that some important variable

(such as real per capita income) had been left out of both equations. Since

the amount of money spent on water was fairly low compared with other

expenditures during the sample years, the consultant pointed out, it was pos-

sible that the demand for water was fairly price-inelastic. The economic argu-

ment for the positive sign observed by the state econometrician is difficult to

justify; it implies that as the price of water goes up, so does the quantity of

water demanded.

Was this argument simply academic? The answer, unfortunately, is no. If a

forecast is made with Equation 16, it will tend to overforecast water demand

in scenarios that foresee rising prices and underforecast water demand with

lower price scenarios. In essence, the equation with the better fit would do a

worse job of forecasting.9

Thus, a researcher who uses as the sole measure of the quality of an

equation (at the expense of economic theory or statistical significance) in-

creases the chances of having unrepresentative or misleading results. This

practice should be avoided at all costs. No simple rule of econometric esti-

mation is likely to work in all cases. Instead, a combination of technical

competence, theoretical judgment, and common sense makes for a good

econometrician.

R2

R2
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To help avoid the natural urge to maximize without regard to the

rest of the equation, you might find it useful to imagine the following

conversation:

You: Sometimes, it seems like the best way to choose between two models

is to pick the one that gives the highest 

Your Conscience: But that would be wrong.

You: I know that the goal of regression analysis is to obtain the best possi-

ble estimates of the true population coefficients and not to get a high but

my results “look better” if my fit is good.

Your Conscience: Look better to whom? It’s not at all unusual to get a high

but find that some of the regression coefficients have signs that are con-

trary to theoretical expectations.

You: Well, I guess I should be more concerned with the logical relevance of

the explanatory variables than with the fit, huh?

Your Conscience: Right! If in this process we obtain a high , well and

good, but if is high, it doesn’t mean that the model is good.

Summary

1. Ordinary Least Squares (OLS) is the most frequently used method of

obtaining estimates of the regression coefficients from a set of data.

OLS chooses those that minimize the summed squared residuals

for a particular sample.

2. R-bar-squared measures the percentage of the variation of Y

around its mean that has been explained by a particular regression

equation, adjusted for degrees of freedom. increases when a vari-

able is added to an equation only if the improvement in fit caused 

by the addition of the new variable more than offsets the loss of the 

degree of freedom that is used up in estimating the coefficient of the

new variable. As a result, most researchers will automatically use 

when evaluating the fit of their estimated regression equations.

3. Always remember that the fit of an estimated equation is only one of

the measures of the overall quality of that regression. A number of

other criteria, including the degree to which the estimated coefficients

conform to economic theory and expectations (developed by the re-

searcher before the data were collected) are more important than the

size of .R2

R2

R2

(R2)

(ge2
i )

�̂s

6

R2
R2

R2

R2,

R2.

R2
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EXERCISES

(The answer to Exercise 2 is at the end of the chapter.)

1. Write the meaning of each of the following terms without referring to

the book (or your notes), and compare your definition with the ver-

sion in the text for each:

a. Ordinary Least Squares

b. the meaning of a multivariate regression coefficient

c. total, explained, and residual sums of squares

d. simple correlation coefficient

e. degrees of freedom

f.

2. Just as you are about to estimate a regression (due tomorrow), mas-

sive sunspots cause magnetic interference that ruins all electrically

powered machines (e.g., computers). Instead of giving up and flunk-

ing, you decide to calculate estimates from your data (on per capita

income in thousands of U.S. dollars as a function of the percent of

the labor force in agriculture in 10 developed countries) using meth-

ods like those used in Section 1 without a computer. Your data are:

Country A B C D E F G H I J

Per Capita Income 6 8 8 7 7 12 9 8 9 10

% in Agriculture 9 10 8 7 10 4 5 5 6 7

a. Calculate and 

b. Calculate R2 and 

c. If the percent of the labor force in agriculture in another developed

country was 8 percent, what level of per capita income (in thou-

sands of U.S. dollars) would you guess that country had?

3. To get more practice in the use of summation notation, use the data

in Exercise 2 on per capita income (Y) and percent of the labor force

in agriculture (X) to answer the following questions. (Hint: Before

starting this exercise, reread footnote 1 in this chapter which defines

a. Calculate (Hint: Note that N � 10.)

b. Calculate 

c. Calculate Does it equal 3 ?

d. Calculate . Does it equal ?gX 1 gYg (X 1 Y)
gXg3X.

gY.
gX.

gX 5 X1 1 X2 1 c1 XN.)

R2.

�̂1.�̂0

R2
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4. Consider the following two least-squares estimates of the relationship

between interest rates and the federal budget deficit in the United States:

Model A: 

where: Y1 � the interest rate on Aaa corporate bonds

X1 � the federal budget deficit as a percentage of GNP

(quarterly model: N � 56)

Model T: 

where: Y2 � the interest rate on 3-month Treasury bills

X2 � the federal budget deficit in billions of dollars

X3 � the rate of inflation (in percent) 

(quarterly model: N � 38)

a. What does “least-squares estimates” mean? What is being estimated?

What is being squared? In what sense are the squares “least”?

b. What does it mean to have an R2 of .00? Is it possible for an R2 to

be negative?

c. Based on economic theory, what signs would you have expected for

the estimated slope coefficients of the two models?

d. Compare the two equations. Which model has estimated signs that

correspond to your prior expectations? Is Model T automatically

better because it has a higher R2? If not, which model do you prefer

and why?

5. Let’s return to the height-weight example presented earlier and recall

what happened when we added a nonsensical variable that measured

the student’s campus post office box number (MAIL) to the equation.

The estimated equation changed from:

WEIGHT � 103.40 � 6.38HEIGHT

to:

WEIGHT � 102.35 � 6.36HEIGHT � 0.02MAIL 

a. The estimated coefficient of HEIGHT changed when we added

MAIL to the equation. Does that make sense? Why?

b. In theory, someone’s weight has nothing to do with their campus

mail box number, yet R2 went up from .74 to .75 when MAIL was

added to the equation! How is it possible that adding a nonsensi-

cal variable to an equation can increase R2?

Ŷ2 5 0.089 1 0.369X2 1 0.887X3  R2 5 .40

Ŷ1 5 0.103 2 0.079X1  R2 5 .00
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10. David Romer, “Do Students Go to Class? Should They?” Journal of Economic Perspectives,

Vol. 7, No. 3, pp. 167–174.

c. Adding the nonsensical variable to the equation decreased from

.73 to .72. Explain how it’s possible that can go down at the

same time that R2 goes up.

d. If a person’s campus mail box number truly is unrelated to their

weight, shouldn’t the estimated coefficient of that variable equal

exactly 0.00? How is it possible for a nonsensical variable to get a

nonzero estimated coefficient?

6. In an effort to determine whether going to class improved student aca-

demic performance, David Romer10 developed the following equation:

where: Gi � the grade of the ith student in Romer’s class (A � 4, 

B � 3, etc.)

ATTi � the percent of class lectures that the ith student

attended

PSi � the percent of the problem sets that the ith student

completed

a. What signs do you expect for the coefficients of the independent

variables in this equation? Explain your reasoning.

b. Romer then estimated the equation:

Do the estimated results agree with your expectations?

c. It’s usually easier to develop expectations about the signs of coeffi-

cients than about the size of those coefficients. To get an insight

into the size of the coefficients, let’s assume that there are 25 hours

of lectures in a semester and that it takes the average student

approximately 50 hours to complete all the problem sets in a se-

mester. If a student in one of Romer’s classes had only one more

hour to devote to class and wanted to maximize the impact on his

or her grade, should the student go to class for an extra hour or

work on problem sets for an extra hour? (Hint: Convert the extra

hour to percentage terms and then multiply those percentages by

the estimated coefficients.)

d. From the given information, it’d be easy to draw the conclusion

that the bigger a variable’s coefficient, the greater its impact on the

N 5 195 R2 5 .33

Ĝi 5 1.07 1 1.74ATTi 1 0.60PSi

Gi 5 f(ATTi, PSi) 1 �i

R2
R2
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dependent variable. To test this conclusion, what would your an-

swer to part c have been if there had been 50 hours of lecture in a

semester and if it had taken 10 hours for the average student to

complete the problem sets? Were we right to conclude that the

larger the estimated coefficient, the more important the variable?

e. What’s the real-world meaning of having R2 � .33? For this specific

equation, does .33 seem high, low, or just about right?

f. Is it reasonable to think that only class attendance and problem-set

completion affect your grade in a class? If you could add just one more

variable to the equation, what would it be? Explain your reasoning.

What should adding your variable to the equation do to R2? To ?

7. Suppose that you have been asked to estimate a regression model to

explain the number of people jogging a mile or more on the school

track to help decide whether to build a second track to handle all the

joggers. You collect data by living in a press box for the spring semes-

ter, and you run two possible explanatory equations:

where: Y � the number of joggers on a given day

X1 � inches of rain that day

X2 � hours of sunshine that day

X3 � the high temperature for that day (in degrees F)

X4 � the number of classes with term papers due the 

next day

a. Which of the two (admittedly hypothetical) equations do you pre-

fer? Why?

b. How is it possible to get different estimated signs for the coefficient

of the same variable using the same data?

8. David Katz11 studied faculty salaries as a function of their “productivity”

and estimated a regression equation with the following coefficients:

Ŝi 5 22,310 1 460Bi 1 36Ai 1 204Ei 1 978Di 1 378Yi 1 c

B: Ŷ 5 123.0 2 14.0X1 1 5.5X2 2 3.7X4         R2 5 .73

A: Ŷ 5 125.0 2 15.0X1 2 1.0X2 1 1.5X3  R2 5 .75

R2

11. David A. Katz, “Faculty Salaries, Promotions, and Productivity at a Large University,”

American Economic Review, Vol. 63, No. 3, pp. 469–477. Katz’s equation included other variables

as well, as indicated by the “ ” at the end of the equation. Estimated coefficients have been

adjusted for inflation.

1 c
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where: Si � the salary of the ith professor in dollars per year

Bi � the number of books published, lifetime

Ai � the number of articles published, lifetime

Ei � the number of “excellent” articles published, lifetime

Di � the number of dissertations supervised

Yi � the number of years teaching experience

a. Do the signs of the coefficients match your prior expectations?

b. Do the relative sizes of the coefficients seem reasonable? (Hint:

Most professors think that it’s much more important to write an ex-

cellent article than to supervise a dissertation.)

c. Suppose a professor had just enough time (after teaching, etc.) to

write a book, write two excellent articles, or supervise three disser-

tations. Which would you recommend? Why?

d. Would you like to reconsider your answer to part b? Which coeffi-

cient seems out of line? What explanation can you give for that re-

sult? Is the equation in some sense invalid? Why or why not?

9. What’s wrong with the following kind of thinking: “I understand that

R2 is not a perfect measure of the quality of a regression equation be-

cause it always increases when a variable is added to the equation.

Once we adjust for degrees of freedom by using , though, it seems

to me that the higher the , the better the equation.”

10. Charles Lave12 published a study of driver fatality rates. His overall con-

clusion was that the variance of driving speed (the extent to which vehi-

cles sharing the same highway drive at dramatically different speeds) is

important in determining fatality rates. As part of his analysis, he esti-

mated an equation with cross-state data from two different years:

where: Fi � the fatalities on rural interstate highways (per 100

million vehicle miles traveled) in the ith state

� an unspecified estimated intercept�̂0

R2 5 .532  N 5 44

Year 2: F̂i 5 �̂0 1 0.190Vi 1 0.0071Ci 2 5.29Hi

R2 5 .624  N 5 41

Year 1: F̂i 5 �̂0 1 0.176Vi 1 0.0136Ci 2 7.75Hi

R2
R2
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Vi � the driving speed variance in the ith state

Ci � driving citations per driver in the ith state

Hi � hospitals per square mile (adjusted) in the ith state

a. Think through the theory behind each variable, and develop ex-

pected signs for each coefficient. (Hint: Be careful with C.) Do

Lave’s estimates support your expectations?

b. Should we attach much meaning to the differences between the esti-

mated coefficients from the two years? Why or why not? Under what

circumstances might you be concerned about such differences?

c. The equation for the first year has the higher but which equa-

tion has the higher R2? (Hint: You can calculate the R2s with the in-

formation given, but such a calculation isn’t required.)

11. In Exercise 5 in Chapter 1, we estimated a height/weight equation on

a new data set of 29 male customers, Equation 1.24:

where: Yi � the weight (in pounds) of the ith person

Xi � the height (in inches above five feet) of the ith person

Suppose that a friend now suggests adding Fi, the percent body fat

of the ith person, to the equation.

a. What is the theory behind adding Fi to the equation? How does the

meaning of the coefficient of X change when you add F?

b. Assume you now collect data on the percent body fat of the 29

males and estimate:

(18)

Do you prefer Equation 18 or the first equation listed above? Why?

c. Suppose you learn that the of Equation the first equation is .75

and the of Equation 18 is .72. Which equation do you prefer

now? Explain your answer.

d. Suppose that you learn that the mean of F for your sample is 12.0.

Which equation do you prefer now? Explain your answer.

12. For students with a background in calculus, the derivation of Equa-

tions 4 and 5 is useful. Derive these two equations by carrying out the

following steps. (Hint: Be sure to write out each step of the proof.)

a. Differentiate the second equation in footnote 2 with respect to 

and then with respect to 

b. Set these two derivatives equal to zero, thus creating what are called

the “normal equations.”

�̂1.

�̂0

R2
R2

Ŷi 5 120.8 1 4.11Xi 1 0.28Fi

Ŷi 5 125.1 1 4.03Xi

R2,
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c. Solve the normal equations for obtaining Equation 4.

d. Solve the normal equations for obtaining Equation 5.

13. Suppose that you work in the admissions office of a college that

doesn’t allow prospective students to apply by using the Common

Application.13 How might you go about estimating the number of

extra applications that your college would generate if it allowed the

use of the Common Application? An econometric approach to this

question would be to build the best possible model of the number of

college applications and then to examine the estimated coefficient of

a dummy variable that equaled one if the college in question allowed

the use of the “common app” (and zero otherwise).

For example, if we estimate an equation using the data in Table 3

for high-quality coed national liberal arts colleges, we get:

APPLICATIONi � 523.3 � 2.15SIZEi � 32.1RANKi
� 1222COMMONAPPi

(19)

N � 49 R2 � .724 � .705

where: APPLICATIONi � the number of applications received by

the ith college in 2007

SIZEi � the total number of undergraduate stu-

dents at the ith college in 2006

RANKi � the U.S. News14 rank of the ith college 

(1 � best) in 2006

COMMONAPPi � a dummy variable equal to 1 if the ith

college allowed the use of the Common

Application in 2007 and 0 otherwise.

a. Take a look at the signs of each of the three estimated regression

coefficients. Are they what you would have expected? Explain.

b. Carefully state the real-world meaning of the coefficients of SIZE

and RANK. Does the fact that the coefficient of RANK is 15 times

bigger (in absolute value) than the coefficient of SIZE mean that

the ranking of a college is 15 times more important than the size

R2

�̂0,

�̂1,

13. The Common Application is a computerized application form that allows high school stu-

dents to apply to a number of different colleges and universities using the same basic data. For

more information, go to www.commonap.org.

14. U.S. News and World Report Staff, U.S. News Ultimate College Guide. Naperville, Illinois:

Sourcebooks, Inc., 2006–2008.

66



ORDINARY LEAST SQUARES

Table 3 Data for the College Application Example

COLLEGE APPLICATION COMMONAPP RANK SIZE

Amherst College 6680 1 2 1648

Bard College 4980 1 36 1641

Bates College 4434 1 23 1744

Bowdoin College 5961 1 7 1726

Bucknell University 8934 1 29 3529

Carleton College 4840 1 6 1966

Centre College 2159 1 44 1144

Claremont McKenna 

College 4140 1 12 1152

Colby College 4679 1 20 1865

Colgate University 8759 1 16 2754

College of the Holy Cross 7066 1 32 2790

Colorado College 4826 1 26 1939

Connecticut College 4742 1 39 1802

Davidson College 3992 1 10 1667

Denison University 5196 1 48 2234

DePauw University 3624 1 48 2294

Dickinson College 5844 1 41 2372

Franklin and Marshall 

College 5018 1 41 1984

Furman University 3879 1 41 2648

Gettysburg College 6126 1 45 2511

Grinnell College 3077 1 14 1556

Hamilton College 4962 1 17 1802

Harvey Mudd College 2493 1 14 729

Haverford College 3492 1 9 1168

Kenyon College 4626 1 32 1630

Lafayette College 6364 1 30 2322

Lawrence University 2599 1 53 1409

Macalester College 4967 1 24 1884

Middlebury College 7180 1 5 2363

Oberlin College 7014 1 22 2744

Occidental College 5275 1 36 1783

Pitzer College 3748 1 51 918

Pomona College 5907 1 7 1545

Reed College 3365 1 53 1365

Rhodes College 3709 1 45 1662

Sewanee-University of 

the South 2424 0 34 1498

Skidmore College 6768 1 48 2537

St. Lawrence University 4645 0 57 2148

St. Olaf College 4058 0 55 2984

(continued)
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of that college in terms of explaining the number of applications to

that college? Why or why not?

c. Now carefully state the real-world meaning of the coefficient of

COMMONAPP. Does this prove that 1,222 more students would

apply if your college decided to allow the Common Application?

Explain. (Hint: There are at least two good answers to this question.

Can you get them both?)

d. To get some experience with your computer’s regression software,

use the data in Table 3 to estimate Equation 19. Do you get the

same results?

e. Now use the same data and estimate Equation 19 again without the

COMMONAPP variable. What is the new ? Does go up or down

when you drop the variable? What, if anything, does this change tell

you about whether COMMONAPP belongs in the equation?

R2R2
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Table 3 (continued)

COLLEGE APPLICATION COMMONAPP RANK SIZE

Swarthmore College 5242 1 3 1477

Trinity College 5950 1 30 2183

Union College 4837 1 39 2178

University of Richmond 6649 1 34 2804

Vassar College 6393 1 12 2382

Washington and Lee 

University 3719 1 17 1749

Wesleyan University 7750 1 10 2798

Wheaton College 2160 1 55 1548

Whitman College 2892 1 36 1406

Williams College 6478 1 1 2820

Sources: U.S. News & World Report Staff, U.S. News Ultimate College Guide, Naperville, 

IL: Sourcebooks, Inc. 2006–2008.

Datafile � COLLEGE2
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Answers

Exercise 2

a. 1 � �0.5477, 0 � 12.289

b. R2 � .465, � .398

c. Income � 12.289 � 0.5477 (8) � 7.907

R2

�̂�̂
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Learning to Use
Regression Analysis

1 Steps in Applied Regression Analysis

2 Using Regression Analysis to Pick Restaurant Locations

3 Summary and Exercises

It’d be easy to conclude that regression analysis is little more than the me-

chanical application of a set of equations to a sample of data. Such a notion

would be similar to deciding that all that matters in golf is hitting the ball

well. Golfers will tell you that it does little good to hit the ball well if you

have used the wrong club or have hit the ball toward a trap, tree, or pond.

Similarly, experienced econometricians spend much less time thinking about

the OLS estimation of an equation than they do about a number of other 

factors. Our goal in this chapter is to introduce some of these “real-world”

concerns.

The first section, an overview of the six steps typically taken in applied re-

gression analysis, is the most important in the chapter. We believe that the

ability to learn and understand a specific topic, like OLS estimation, is en-

hanced if the reader has a clear vision of the role that the specific topic plays

in the overall framework of regression analysis. In addition, the six steps

make it hard to miss the crucial function of theory in the development of

sound econometric research.

This is followed by a complete example of how to use the six steps in ap-

plied regression: a location analysis for the “Woody’s” restaurant chain that is

based on actual company data and to which we will return in future chapters

to apply new ideas and tests.

Steps in Applied Regression Analysis

Although there are no hard and fast rules for conducting econometric research,

most investigators commonly follow a standard method for applied regression

analysis. The relative emphasis and effort expended on each step will vary,

1

From Chapter 3 of Using Econometrics: A Practical Guide, 6/e. A. H. Studenmund. Copyright © 2011

by Pearson Education. Published by Addison-Wesley. All rights reserved.
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but normally all the steps are necessary for successful research. Note that we

don’t discuss the selection of the dependent variable; this choice is deter-

mined by the purpose of the research. Once a dependent variable is chosen,

however, it’s logical to follow this sequence:

LEARNING TO USE REGRESSION ANALYSIS

1. Review the literature and develop the theoretical model.

2. Specify the model: Select the independent variables and the 

functional form.

3. Hypothesize the expected signs of the coefficients.

4. Collect the data. Inspect and clean the data.

5. Estimate and evaluate the equation.

6. Document the results.

The purpose of suggesting these steps is not to discourage the use of inno-

vative or unusual approaches but rather to develop in the reader a sense of

how regression ordinarily is done by professional economists and busi-

ness analysts.

Step 1: Review the Literature and Develop the Theoretical Model

The first step in any applied research is to get a good theoretical grasp of the

topic to be studied. That’s right: the best data analysts don’t start with data,

but with theory! This is because many econometric decisions, ranging from

which variables to include to which functional form to employ, are deter-

mined by the underlying theoretical model. It’s virtually impossible to build

a good econometric model without a solid understanding of the topic you’re

studying.

For most topics, this means that it’s smart to review the scholarly literature

before doing anything else. If a professor has investigated the theory behind

your topic, you want to know about it. If other researchers have estimated

equations for your dependent variable, you might want to apply one of their

models to your data set. On the other hand, if you disagree with the 

approach of previous authors, you might want to head off in a new direction.

In either case, you shouldn’t have to “reinvent the wheel.” You should start

your investigation where earlier researchers left off. Any academic paper on
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an empirical topic should begin with a summary of the extent and quality of

previous research.

The most convenient approaches to reviewing the literature are to obtain

several recent issues of the Journal of Economic Literature or a business-

oriented publication of abstracts, or to run an Internet search or an EconLit

search1 on your topic. Using these resources, find and read several recent arti-

cles on your topic. Pay attention to the bibliographies of these articles. If an

older article is cited by a number of current authors, or if its title hits your

topic on the head, trace back through the literature and find this article 

as well. 

In some cases, a topic will be so new or so obscure that you won’t be able

to find any articles on it. What then? We recommend two possible strategies.

First, try to transfer theory from a similar topic to yours. For example, if

you’re trying to build a model of the demand for a new product, read articles

that analyze the demand for similar, existing products. Second, if all else

fails, pick up the telephone and call someone who works in the field you’re

investigating. For example, if you’re building a model of housing in an unfa-

miliar city, call a real estate agent who works there.

Step 2: Specify the Model: Select the Independent 
Variables and the Functional Form

The most important step in applied regression analysis is the specification of

the theoretical regression model. After selecting the dependent variable, the

specification of a model involves choosing the following components:

1. the independent variables and how they should be measured,

2. the functional (mathematical) form of the variables, and

3. the properties of the stochastic error term.

A regression equation is specified when each of these elements has been

treated appropriately. 

Each of the elements of specification is determined primarily on the basis

of economic theory. A mistake in any of the three elements results in a

LEARNING TO USE REGRESSION ANALYSIS

1. EconLit is an electronic bibliography of economics literature. EconLit contains abstracts, reviews,

indexing, and links to full-text articles in economics journals. In addition, it abstracts books

and indexes articles in books, working papers series, and dissertations. EconLit is available at 

libraries and on university websites throughout the world. For more, go to www.EconLit.org.
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specification error. Of all the kinds of mistakes that can be made in applied

regression analysis, specification error is usually the most disastrous to the

validity of the estimated equation. Thus, the more attention paid to economic

theory at the beginning of a project, the more satisfying the regression results

are likely to be.

The emphasis in this text is on estimating behavioral equations, those that

describe the behavior of economic entities. We focus on selecting independent

variables based on the economic theory concerning that behavior. An explana-

tory variable is chosen because it is a theoretical determinant of the dependent

variable; it is expected to explain at least part of the variation in the dependent

variable. Recall that regression gives evidence but does not prove economic

causality. Just as an example does not prove the rule, a regression result does

not prove the theory.

There are dangers in specifying the wrong independent variables. Our goal

should be to specify only relevant explanatory variables, those expected theo-

retically to assert a substantive influence on the dependent variable. Variables

suspected of having little effect should be excluded unless their possible im-

pact on the dependent variable is of some particular (e.g., policy) interest.

For example, an equation that explains the quantity demanded of a con-

sumption good might use the price of the product and consumer income or

wealth as likely variables. Theory also indicates that complementary and sub-

stitute goods are important. Therefore, you might decide to include the prices

of complements and substitutes, but which complements and substitutes? Of

course, selection of the closest complements and/or substitutes is appropri-

ate, but how far should you go? The choice must be based on theoretical

judgment, and such judgments are often quite subjective.

When researchers decide, for example, that the prices of only two other

goods need to be included, they are said to impose their priors (i.e., previous

theoretical belief) or their working hypotheses on the regression equation.

Imposition of such priors is a common practice that determines the number

and kind of hypotheses that the regression equation has to test. The danger is

that a prior may be wrong and could diminish the usefulness of the esti-

mated regression equation. Each of the priors therefore should be explained

and justified in detail.

Some concepts (for example, gender) might seem impossible to include in

an equation because they’re inherently qualitative in nature and can’t be

quantified. Such concepts can be quantified by using dummy (or binary)

variables. A dummy variable takes on the values of one or zero depending on

whether a specified condition holds.

As an illustration of a dummy variable, suppose that Yi represents 

the salary of the ith high school teacher, and that the salary level depends 

LEARNING TO USE REGRESSION ANALYSIS
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primarily on the experience of the teacher and the type of degree earned. All

teachers have a B.A., but some also have a graduate degree, like an M.A. An

equation representing the relationship between earnings and the type of de-

gree might be:

(1)

where:

the number of years of teaching experience of the ith

teacher

The variable X1 takes on only values of zero or one, so X1 is called a dummy

variable, or just a “dummy.” Needless to say, the term has generated many a

pun. In this case, the dummy variable represents the condition of having a

master’s degree. The coefficient indicates the additional salary that can be

attributed to having a graduate degree, holding teaching experience constant.

Step 3: Hypothesize the Expected Signs of the Coefficients

Once the variables are selected, it’s important to hypothesize the expected

signs of the regression coefficients. For example, in the demand equation for

a final consumption good, the quantity demanded (Qd) is expected to be in-

versely related to its price (P) and the price of a complementary good (Pc),

and positively related to consumer income (Y) and the price of a substitute

good (Ps). The first step in the written development of a regression model

usually is to express the equation as a general function:

(2)

The signs above the variables indicate the hypothesized sign of the respective

regression coefficient in a linear model.

In many cases, the basic theory is general knowledge, so the reasons for

each sign need not be discussed. However, if any doubt surrounds the selec-

tion of an expected sign, you should document the opposing forces at work

and the reasons for hypothesizing a positive or negative coefficient.

Qd 5 f( P
2

, Y
1

, P
2

c, P
1

s) 1 �

�1

X2i 5

X1i 5 e
1 if the ith teacher has a graduate degree

0 otherwise

Yi 5 �0 1 �1X1i 1 �2X2i 1 �i
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Step 4: Collect the Data. Inspect and Clean the Data

Obtaining an original data set and properly preparing it for regression is a

surprisingly difficult task. This step entails more than a mechanical recording

of data, because the type and size of the sample also must be chosen.

A general rule regarding sample size is “the more observations the better,”

as long as the observations are from the same general population. Ordinarily,

researchers take all the roughly comparable observations that are readily

available. In regression analysis, all the variables must have the same number

of observations. They also should have the same frequency (monthly, quar-

terly, annual, etc.) and time period. Often, the frequency selected is deter-

mined by the availability of data.

The reason there should be as many observations as possible concerns the

statistical concept of degrees of freedom. Consider fitting a straight line to two

points on an X, Y coordinate system as in Figure 1. Such an exercise can be done

mathematically without error. Both points lie on the line, so there is no estima-

tion of the coefficients involved. The two points determine the two parameters,

the intercept and the slope, precisely. Estimation takes place only when a straight

line is fitted to three or more points that were generated by some process that is

not exact. The excess of the number of observations (three) over the number of

coefficients to be estimated (in this case two, the intercept and slope) is the
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0 X

Figure 1 Mathematical Fit of a Line to Two Points

If there are only two points in a data set, as in Figure 1, a straight line can be fitted to

those points mathematically without error, because two points completely determine a

straight line.
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Y

0 X

Figure 2 Statistical Fit of a Line to Three Points

If there are three (or more) points in a data set, as in Figure 2, then the line must

almost always be fitted to the points statistically, using the estimation procedures of 

Ordinary Least Squares (OLS).

2. We will calculate the number of degrees of freedom (d.f.) in a regression equation as

where K is the number of independent variables in the equation. Equiva-

lently, some authors will set and define . Since equals the num-

ber of independent variables plus 1 (for the constant), it equals the number of coefficients to

be estimated in the regression.

Krd.f. 5 (N 2 Kr)Kr 5 K 1 1

d.f. 5 (N 2 K 2 1),

degrees of freedom.2 All that is necessary for estimation is a single degree of

freedom, as in Figure 2, but the more degrees of freedom there are, the bet-

ter. This is because when the number of degrees of freedom is large, every

positive error is likely to be balanced by a negative error. When degrees of

freedom are low, the random element is likely to fail to provide such

offsetting observations. For example, the more a coin is flipped, the more

likely it is that the observed proportion of heads will reflect the true proba-

bility of 0.5.

Another area of concern has to do with the units of measurement of the

variables. Does it matter if a variable is measured in dollars or thousands 

of dollars? Does it matter if the measured variable differs consistently from

the true variable by 10 units? Interestingly, such changes don’t matter in

terms of regression analysis except in interpreting the scale of the coeffi-

cients. All conclusions about signs, significance, and economic theory are

independent of units of measurement. For example, it makes little difference
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whether an independent variable is measured in dollars or thousands of

dollars. The constant term and measures of overall fit remain unchanged.

Such a multiplicative factor does change the slope coefficient, but only by

the exact amount necessary to compensate for the change in the units of

measurement of the independent variable. Similarly, a constant factor

added to a variable alters only the intercept term without changing the

slope coefficient itself.

The final step before estimating your equation is to inspect and clean the

data. You should make it a point always to look over your data set to see if

you can find any errors. The reason is obvious: why bother using sophisti-

cated regression analysis if your data are incorrect?

To inspect the data, obtain a printout and a plot (graph) of the data and

look for outliers. An outlier is an observation that lies outside the range of

the rest of the observations, and looking for outliers is an easy way to find

data entry errors. In addition, it’s a good habit to look at the mean, maxi-

mum, and minimum of each variable and then think about possible incon-

sistencies in the data. Are any observations impossible or unrealistic? Did

GDP double in one year? Does a student have a 7.0 GPA on a 4.0 scale? Is

consumption negative?

Typically, the data can be cleaned of these errors by replacing an incor-

rect number with the correct one. In extremely rare circumstances, an obser-

vation can be dropped from the sample, but only if the correct number

can’t be found or if that particular observation clearly isn’t from the same

population as the rest of the sample. Be careful! The mere existence of an

outlier is not a justification for dropping that observation from the sample.

A regression needs to be able to explain all the observations in a sample,

not just the well-behaved ones.

Step 5: Estimate and Evaluate the Equation

Believe it or not, it can take months to complete steps 1–4 for a regression

equation, but a computer program like EViews or Stata can estimate that

equation in less than a second! Typically, estimation is done using OLS, but

if another estimation technique is used, the reasons for that alternative tech-

nique should be carefully explained and evaluated.

You might think that once your equation has been estimated, your work

is finished, but that’s hardly the case. Instead, you need to evaluate your 
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results in a variety of ways. How well did the equation fit the data? Were 

the signs and magnitudes of the estimated coefficients what you expected?

Most of the rest of this text is concerned with the evaluation of estimated

econometric equations, and beginning researchers should be prepared to

spend a considerable amount of time doing this evaluation.

Once this evaluation is complete, don’t automatically go to step 6. Regres-

sion results are rarely what one expects, and additional model development

often is required. For example, an evaluation of your results might indicate

that your equation is missing an important variable. In such a case, you’d go

back to step 1 to review the literature and add the appropriate variable to

your equation. You’d then go through each of the steps in order until you

had estimated your new specification in step 5. You’d move on to step 6 only

if you were satisfied with your estimated equation. Don’t be too quick to

make such adjustments, however, because we don’t want to adjust the theory

merely to fit the data. A researcher has to walk a fine line between making 

appropriate changes and avoiding inappropriate ones, and making these

choices is one of the artistic elements of applied econometrics.

Finally, it’s often worthwhile to estimate additional specifications of an

equation in order to see how stable your observed results are. This approach,

called sensitivity analysis.

Step 6: Document the Results

A standard format usually is used to present estimated regression results:

(3)

The number in parentheses is the estimated standard error of the esti-

mated coefficient, and the t-value is the one used to test the hypothesis

that the true value of the coefficient is different from zero. What is 

 N 5 20 R2 5 .73

 t 5 7.22

 (0.88)

Ŷi 5 103.40 1 6.38Xi
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important to note is that the documentation of regression results using an

easily understood format is considered part of the analysis itself. For time-

series data sets, the documentation also includes the frequency (e.g., quarterly

or annual) and the time period of the data.

Most computer programs present statistics to eight or more digits, but 

it is important to recognize the difference between the number of digits

computed and the number of meaningful digits, which may be as low as two

or three.

One of the important parts of the documentation is the explanation of the

model, the assumptions, and the procedures and data used. The written doc-

umentation must contain enough information so that the entire study could

be replicated by others.3 Unless the variables have been defined in a glossary

or table, short definitions should be presented along with the equations. If

there is a series of estimated regression equations, then tables should provide

the relevant information for each equation. All data manipulations as well as

data sources should be documented fully. When there is much to explain,

this documentation usually is relegated to a data appendix. If the data are not

available generally or are available only after computation, the data set itself

might be included in this appendix.

Using Regression Analysis to Pick 
Restaurant Locations

To solidify your understanding of the six basic steps of applied regression

analysis, let’s work through a complete regression example. Suppose that

you’ve been hired to determine the best location for the next Woody’s

restaurant, where Woody’s is a moderately priced, 24-hour, family restau-

rant chain.4 You decide to build a regression model to explain the gross

sales volume at each of the restaurants in the chain as a function of various

descriptors of the location of that branch. If you can come up with a

sound equation to explain gross sales as a function of location, then you

2
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3. For example, the Journal of Money, Credit, and Banking has requested authors to submit their

actual data sets so that regression results can be verified. See W. G. Dewald et al., “Replication in

Empirical Economics,” American Economic Review, Vol. 76, No. 4, pp. 587–603 and Daniel S.

Hamermesh, “Replication in Economics,” NBER Working Paper 13026, April 2007.

4. The data in this example are real (they’re from a sample of 33 Denny’s restaurants in South-

ern California), but the number of independent variables considered is much smaller than was

used in the actual research. Datafile � WOODY3
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can use this equation to help Woody’s decide where to build their newest

eatery. Given data on land costs, building costs, and local building and

restaurant municipal codes, the owners of Woody’s will be able to make an

informed decision.

1. Review the literature and develop the theoretical model. You do some read-

ing about the restaurant industry, but your review of the literature con-

sists mainly of talking to various experts within the firm. They give 

you some good ideas about the attributes of a successful Woody’s loca-

tion. The experts tell you that all of the chain’s restaurants are identical

(indeed, this is sometimes a criticism of the chain) and that all the 

locations are in what might be called “suburban, retail, or residential”

environments (as distinguished from central cities or rural areas, for 

example). Because of this, you realize that many of the reasons that might

help explain differences in sales volume in other chains do not apply in

this case because all the Woody’s locations are similar. (If you were com-

paring Woody’s to another chain, such variables might be appropriate.)

In addition, discussions with the people in the Woody’s strategic

planning department convince you that price differentials and con-

sumption differences between locations are not as important as the

number of customers a particular location attracts. This causes you

concern for a while because the variable you had planned to study orig-

inally, gross sales volume, would vary as prices changed between loca-

tions. Since your company controls these prices, you feel that you

would rather have an estimate of the “potential” for such sales. As a 

result, you decide to specify your dependent variable as the number of

customers served (measured by the number of checks or bills that the

waiters and waitresses handed out) in a given location in the most 

recent year for which complete data are available.

2. Specify the model: Select the independent variables and the functional form.

Your discussions lead to a number of suggested variables. After a while,

you realize that there are three major determinants of sales (customers)

on which virtually everyone agrees. These are the number of people

who live near the location, the general income level of the location,

and the number of direct competitors close to the location. In addi-

tion, there are two other good suggestions for potential explanatory

variables. These are the number of cars passing the location per day

and the number of months that the particular restaurant has been

open. After some serious consideration of your alternatives, you decide

not to include the last possibilities. All the locations have been open
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long enough to have achieved a stable clientele. In addition, it would

be very expensive to collect data on the number of passing cars for all

the locations. Should population prove to be a poor measure of the

available customers in a location, you’ll have to decide whether to ask

your boss for the money to collect complete traffic data.

The exact definitions of the independent variables you decide to

include are:

: the number of direct market competitors within a

two-mile radius of the Woody’s location

: the number of people living within a three-mile 

radius of the Woody’s location

: the average household income of the population

measured in variable P

Since you have no reason to suspect anything other than a linear func-

tional form and a typical stochastic error term, that’s what you decide

to use.

3. Hypothesize the expected signs of the coefficients. After thinking about

which variables to include, you expect hypothesizing signs will be easy.

For two of the variables, you’re right. Everyone expects that the more

competition, the fewer customers (holding constant the population

and income of an area), and also that the more people who live near a

particular restaurant, the more customers (holding constant the com-

petition and income). You expect that the greater the income in a par-

ticular area, the more people will choose to eat in a family restaurant.

However, people in especially high-income areas might want to eat in a

restaurant that has more “atmosphere” than a family restaurant like

Woody’s. As a result, you worry that the income variable might be only

weakly positive in its impact. To sum, you expect:

(4)

where the signs above the variables indicate the expected impact of that

particular independent variable on the dependent variable, holding

constant the other two explanatory variables, and is a typical stochastic

error term.

�i

5 �0 1 �NNi 1 �PPi 1 �IIi 1 �iYi 5 f(N
2

i,
 P
1

i, I
1?

i) 1 �i

I 5 Income

P 5 Population

N 5 Competition
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4. Collect the data. Inspect and clean the data. You want to include every

local restaurant in the Woody’s chain in your study, and, after some

effort, you come up with data for your dependent variable and your 

independent variables for all 33 locations. You inspect the data, and

you’re confident that the quality of your data is excellent for three rea-

sons: each manager measured each variable identically, you’ve included

each restaurant in the sample, and all the information is from the same

year. [The data set is included in this section, along with a sample com-

puter output for the regression estimated by EViews (Tables 1 and 2)

and Stata (Tables 3 and 4).]

5. Estimate and evaluate the equation. You take the data set and enter it into

the computer. You then run an OLS regression on the data, but you do

so only after thinking through your model once again to see if there are

hints that you’ve made theoretical mistakes. You end up admitting that

although you cannot be sure you are right, you’ve done the best you

can, so you estimate the equation, obtaining:

(5)

This equation satisfies your needs in the short run. In particular, the

estimated coefficients in the equation have the signs you expected. The

overall fit, although not outstanding, seems reasonable for such a

diverse group of locations. To predict Y, you obtain the values of N, P,

and I for each potential new location and then plug them into Equa-

tion 5. Other things being equal, the higher the predicted Y, the better

the location from Woody’s point of view.

6. Document the results. The results summarized in Equation 5 meet our

documentation requirements. (Note that we include the standard 

errors of the estimated coefficients and t-values5 for completeness,

N 5 33 R2 5 .579

 t 5 24.42  4.88  2.37

(2053)  (0.073)  (0.543)

Ŷi 5 102,192 2 9075Ni 1  0.355Pi 1  1.288Ii
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5. The number in parentheses below a coefficient estimate will be the standard error of that 

estimated coefficient. Some authors put the t-value in parentheses, though, so be alert when

reading journal articles or other books.
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Table 1 Data for the Woody’s Restaurants Example (Using the 
EViews Program)
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Table 2 Actual Computer Output (Using the EViews Program)
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Table 3 Data for the Woody’s Restaurant Example (Using the Stata Program)

1.
2.
3.
4.
5.

6.
7.
8.
9.

10.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

26.
27.
28.
29.
30.

31.
32.
33.

11.
12.
13.
14.
15.

IPN

3
5
7
2
3

13240
22554
16916
20967
19576

15039
21857
26435
24024
14987

21384
18800
15289
16702
19093

26502
18760
33242
14988
18505

16839
28915
19033
19200
22833

14409
20307
20111

30902
31573
19001
20058
16194

65044
101376
124989
55249
73775

5
8
2
6
2

48484
138809
50244

104300
37852

5
6
6
3
6

139900
171740
149894
57386

185105

114520
52933

203500
39334
95120

3
3
5
4
3

3
4
9
7
7

49200
113566
194125
233844
83416

6
3
2

183953
60457
65065

107919
118866
98579

122015
152827

Y

91259
123550
160931
98496

108052

127030
166755
125343
121886
134594

152937
109622
149884
98388

140791

101260
139517
115236
136749
105067

136872
117146
163538

144788
164571
105564
102568
103342

3
4
3
5
2

66921
166332
61951

100441
39462

1.0000
–0.1442

0.3926
0.5370

Y
N
P
I

1.0000
0.7263

–0.0315
1.0000
0.2452 1.0000

P IPNY

(obs=33)
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Table 4 Actual Computer Output (Using the Stata Program)

Source

Model
Residual

Total

Coef. [95% Conf.          Interval ]

–4876.485
.5033172
2.399084

128371

–13272.86
.2060195
.1767628
76013.84

P>| t |

0.000
0.000
0.025
0.000

t

–4.42
4.88
2.37
7.98

Std. Err.

–9074.674
.3546684
1.287923
102192.4

2052.674
.0726808
.5432938
12799.83

Y

N
P
I

_cons

32 5019432461.6062e+10

9.9289e+09
6.1333e+09

3.3096e+09
211492485

3
29

SS df MS Number of obs    =
F(      3,      29)    =
Prob  >  F            =
R–squared         =
Adj  R–squared  =
Root  MSE          =

33
15.65

0.0000
0.6182
0.5787
14543

1.
2.
3.
4.
5.

6.
7.
8.
9.

10.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

26.
27.
28.
29.
30.

31.
32.
33.

11.
12.
13.
14.
15.

residu~s

115089.6
121821.7
104785.9

130642
126346.5

93383.88
106976.3
135909.3
115677.4
116770.1

133978.1
132868.1
120598.1
116832.3
137985.6

149717.6
117903.5
171807.2
99147.65
132537.5

114105.4
143412.3
113883.4
146334.9
97661.88

131544.4
122564.5

133021

138502.6
165550

121412.3
118275.5
118895.6

107919
118866
98579

122015
152827

Y

91259
123550
160931
98496

108052

127030
166755
125343
121886
134594

152937
109622
149884
98388

140791

101260
139517
115236
136749
105067

136872
117146
163538

144788
164571
105564
102568
103342

Yhat

115089.6
121821.7
104785.9

130642
126346.5

93383.88
106976.3
135909.3
115677.4
116770.1

133978.1
132868.1
120598.1
116832.3
137985.6

149717.6
117903.5
171807.2
99147.65
132537.5

114105.4
143412.3
113883.4
146334.9
97661.88

131544.4
122564.5

133021

138502.6
165550

121412.3
118275.5
118895.6
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even though we won’t make use of them.) However, it’s not easy 

for a beginning researcher to wade through a computer’s 

regression output to find all the numbers required for documentation.

You’ll probably have an easier time reading your own computer sys-

tem’s printout if you take the time to “walk through” the sample com-

puter output for the Woody’s model in Tables 1–4. This sample output

was produced by the EViews and Stata computer programs, but it’s sim-

ilar to those produced by SAS, SHAZAM, TSP, and others.

The first items listed are the actual data. These are followed by the

simple correlation coefficients between all pairs of variables in the

data set. Next comes a listing of the estimated coefficients, their esti-

mated standard errors, and the associated t-values, and follows with

the standard error of the regression, RSS, the F-ratio, and other

items. Finally, we have a listing of the observed Ys, the predicted Ys, the

residuals for each observation and a graph of these residuals. Numbers

followed by “E�06” or “E–01” are expressed in a scientific notation in-

dicating that the printed decimal point should be moved six places to

the right or one place to the left, respectively.

We’ll return to this example in order to apply various tests and ideas

as we learn them.

Summary

1. Six steps typically taken in applied regression analysis for a given de-

pendent variable are:

a. Review the literature and develop the theoretical model.

b. Specify the model: Select the independent variables and the func-

tional form.

c. Hypothesize the expected signs of the coefficients.

d. Collect the data. Inspect and clean the data.

e. Estimate and evaluate the equation.

f. Document the results.

2. A dummy variable takes on only the values of 1 or 0, depending on

whether some condition is met. An example of a dummy variable

would be X equals 1 if a particular individual is female and 0 if the

person is male.

3

R2, R2,
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EXERCISES

(The answer to Exercise 2 is at the end of the chapter.)

1. Write the meaning of each of the following terms without referring to

the book (or your notes), and compare your definition with the ver-

sion in the text for each:

a. the six steps in applied regression analysis

b. dummy variable

c. cross-sectional data set

d. specification error

e. degrees of freedom

2. Contrary to their name, dummy variables are not easy to understand

without a little bit of practice:

a. Specify a dummy variable that would allow you to distinguish 

between undergraduate students and graduate students in your

econometrics class.

b. Specify a regression equation to explain the grade (measured on

a scale of 4.0) each student in your class received on his or her

first econometrics test (Y) as a function of the student’s grade in

a previous course in statistics (G), the number of hours the stu-

dent studied for the test (H), and the dummy variable you cre-

ated above (D). Are there other variables you would want to add?

Explain.

c. What is the hypothesized sign of the coefficient of D? Does the sign

depend on the exact way in which you defined D? (Hint: In particu-

lar, suppose that you had reversed the definitions of 1 and 0 in

your answer to part a.) How?

d. Suppose that you collected the data and ran the regression 

and found an estimated coefficient for D that had the expected

sign and an absolute value of 0.5. What would this mean in 

real-world terms? By the way, what would have happened if 

you had only undergraduates or only graduate students in 

your class?

3. Do liberal arts colleges pay economists more than they pay other

professors? To find out, we looked at a sample of 2,929 small-college
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faculty members and built a model of their salaries that included 

a number of variables, four of which were:

(6)

where: Si � the salary of the ith college professor

Mi � a dummy variable equal to 1 if the ith professor is a

male and 0 otherwise

Ai � a dummy variable equal to 1 if the ith professor is

African American and 0 otherwise

Ri � the years in rank of the ith professor

Ti � a dummy variable equal to 1 if the ith professor

teaches economics and 0 otherwise

a. Carefully explain the meaning of the estimated coefficient of M.

b. The equation indicates that African Americans earn $426 more

than members of other ethnic groups, holding constant the other

variables in the equation. Does this coefficient have the sign you

expected? Why or why not?

c. Is R a dummy variable? If not, what is it? Carefully explain the

meaning of the coefficient of R. (Hint: A professor’s salary typically

increases each year based on rank.)

d. What’s your conclusion? Do economists earn more than other pro-

fessors at liberal arts colleges? Explain.

e. The fact that the equation ends with the notation “+ . . .” indi-

cates that there were more than four independent variables in the

equation. If you could add a variable to the equation, what would

it be? Explain.

4. Return to the Woody’s regression example of Section 2.

a. In any applied regression project, there is the distinct possibility

that an important explanatory variable has been omitted. Reread

the discussion of the selection of independent variables and come

up with a suggestion for an independent variable that has not been

included in the model (other than the variables already men-

tioned). Why do you think this variable was not included?

b. What other kinds of criticisms would you have of the sample or 

independent variables chosen in this model?

R2 5 .77  N 5 2929

 (259)  (456)  (24)  (458)

Ŝi 5 36,721 1 817Mi 1  426Ai 1  406Ri 1  3539Ti 1 c
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5. Suppose you were told that although data on traffic for Equation 5

are still too expensive to obtain, a variable on traffic, called Ti, is

available that is defined as 1 if traffic is “heavy” in front of the restau-

rant and 0 otherwise. Further suppose that when the new variable

(Ti) is added to the equation, the results are:

(7)

a. What is the expected sign of the coefficient of the new variable?

b. Would you prefer this equation to the original one? Why?

c. Does the fact that is higher in Equation 7 mean that it is

necessarily better than Equation 5?

6. Suppose that the population variable in Section 2 had been defined

in different units, as in:

P � Population: thousands of people living within a three-mile

radius of the Woody’s location

a. Given this definition of P, what would the estimated slope coeffi-

cients in Equation 5 have been?

b. Given this definition of P, what would the estimated slope coeffi-

cients in Equation 7 above have been?

c. Is the estimated constant affected by this change?

7. Use EViews, Stata, or your own computer regression software to esti-

mate Equation 5 using the data in Table 1. Can you get the same 

results?

8. The Graduate Record Examination (GRE) subject test in economics

was a multiple-choice measure of knowledge and analytical ability

in economics that was used mainly as an entrance criterion for 

students applying to Ph.D. programs in the “dismal science.” For

years, critics claimed that the GRE, like the Scholastic Aptitude 

Test (SAT), was biased against women and some ethnic groups. 

To test the possibility that the GRE subject test in economics 

was biased against women, Mary Hirschfeld, Robert Moore, and

R2

N 5 33  R2 5 .617

 t 5 23.39  4.24  2.47  1.97

 (2153)  (0.073)  (0.51)  (5577)

Ŷi 5 95,236 2 7307Ni 1  0.320Pi 1  1.28Ii 1  10,994Ti

LEARNING TO USE REGRESSION ANALYSIS
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Eleanor Brown estimated the following equation (standard errors

in parentheses):6

(8)

where: GREi � the score of the ith student in the Graduate

Record Examination subject test in economics

Gi � a dummy variable equal to 1 if the ith student

was a male, 0 otherwise

GPAi � the GPA in economics classes of the ith student

(4 � A, 3 � B, etc.)

SATMi � the score of the ith student on the mathematics

portion of the Scholastic Aptitude Test

SATVi � the score of the ith student on the verbal portion

of the Scholastic Aptitude Test

a. Carefully explain the meaning of the coefficient of G in this equa-

tion. (Hint: Be sure to specify what 39.7 stands for.)

b. Does this result prove that the GRE is biased against women? Why

or why not?

c. If you were going to add one variable to Equation 8, what would it

be? Explain your reasoning.

d. Suppose that the authors had defined their gender variables as Gi
� a dummy variable equal to 1 if the ith student was a female, 0

otherwise. What would the estimated Equation 8 have been in that

case? (Hint: Only the intercept and the coefficient of the dummy

variable change.)

9. Michael Lovell estimated the following model of the gasoline mileage

of various models of cars (standard errors in parentheses):7

R2 5 .82

 (0.001)  (0.71)  (1.41)  (0.097)

Ĝi 5 22.008 2 0.002Wi 2  2.76Ai 1  3.28Di 1  0.415Ei

N 5 149 R2 5 .46

 (10.9)  (10.4)  (0.071)  (0.058)

 GREi 5 172.4 1 39.7Gi 1  78.9GPAi 1  0.203SATMi 1  0.110SATVi
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6. Mary Hirschfeld, Robert L. Moore, and Eleanor Brown, “Exploring the Gender Gap on the

GRE Subject Test in Economics,” Journal of Economic Education, Vol. 26, No. 1, pp. 3–15.

7. Michael C. Lovell, “Tests of the Rational Expectations Hypothesis,” American Economic Review,

Vol. 76, No. 1, pp. 110–124.
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where: Gi � miles per gallon of the ith model as reported by Con-

sumers’ Union based on actual road tests

Wi � the gross weight (in pounds) of the ith model

Ai � a dummy variable equal to 1 if the ith model has an

automatic transmission and 0 otherwise

Di � a dummy variable equal to 1 if the ith model has a

diesel engine and 0 otherwise

Ei � the U.S. Environmental Protection Agency’s estimate

of the miles per gallon of the ith model

a. Hypothesize signs for the slope coefficients of W and E. Which, if

any, of the signs of the estimated coefficients are different from

your expectations?

b. Carefully interpret the meanings of the estimated coefficients of Ai
and Di. (Hint: Remember that E is in the equation.)

c. Lovell included one of the variables in the model to test a specific

hypothesis, but that variable wouldn’t necessarily be in another re-

searcher’s gas mileage model. What variable do you think Lovell

added? What hypothesis do you think Lovell wanted to test?

10. Your boss is about to start production of her newest box-office

smash-to-be, Invasion of the Economists, Part II, when she calls you in

and asks you to build a model of the gross receipts of all the movies

produced in the last five years. Your regression is (standard errors in

parentheses):8

where: Gi � the final gross receipts of the ith motion picture (in

thousands of dollars)

Ti � the number of screens (theaters) on which the ith

film was shown in its first week

Fi � a dummy variable equal to 1 if the star of the ith film

is a female and 0 otherwise

R2 5 .485 N 5 254

 (5.9)  (674)  (800)  (1006)  (2381)

Ĝi 5 781 1 15.4Ti 2  992Fi 1  1770Ji 1  3027Si 2  3160Bi 1 c
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8. This estimated equation (but not the question) comes from a final exam in managerial eco-

nomics given at the Harvard Business School.
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Ji � a dummy variable equal to 1 if the ith movie was re-

leased in June or July and 0 otherwise

Si � a dummy variable equal to 1 if the star of the ith film

is a superstar (like Tom Cruise or Milton) and 0

otherwise

Bi � a dummy variable equal to 1 if at least one member

of the supporting cast of the ith film is a superstar

and 0 otherwise

a. Hypothesize signs for each of the slope coefficients in the equa-

tion. Which, if any, of the signs of the estimated coefficients are dif-

ferent from your expectations?

b. Milton, the star of the original Invasion of the Economists, is demand-

ing $4 million from your boss to appear in the sequel. If your esti-

mates are trustworthy, should she say “yes” or hire Fred (a nobody)

for $500,000?

c. Your boss wants to keep costs low, and it would cost $1.2 million

to release the movie on an additional 200 screens. Assuming

your estimates are trustworthy, should she spring for the extra

screens?

d. The movie is scheduled for release in September, and it would cost

$1 million to speed up production enough to allow a July release

without hurting quality. Assuming your estimates are trustworthy,

is it worth the rush?

e. You’ve been assuming that your estimates are trustworthy. Do

you have any evidence that this is not the case? Explain your 

answer. (Hint: Assume that the equation contains no specifica-

tion errors.)

11. Let’s get some more experience with the six steps in applied regres-

sion. Suppose that you’re interested in buying an Apple iPod (either

new or used) on eBay (the auction website) but you want to avoid

overbidding. One way to get an insight into how much to bid would

be to run a regression on the prices9 for which iPods have sold in 

previous auctions. 
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9. This is another example of a hedonic model, in which the price of an item is the dependent

variable and the independent variables are the attributes of that item rather than the quantity

demanded/supplied of that item.
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The first step would be to review the literature, and luckily you find

some good material—particularly a 2008 article by Leonardo Rezende10

that analyzes eBay Internet auctions and even estimates a model of the

price of iPods.

The second step would be to specify the independent variables

and functional form for your equation, but you run into a problem.

The problem is that you want to include a variable that measures the

condition of the iPod in your equation, but some iPods are new, some

are used and unblemished, and some are used and have a scratch or

other defect.

a. Carefully specify a variable (or variables) that will allow you to

quantify the three different conditions of the iPods. Please answer

this question before moving on.

b. The third step is to hypothesize the signs of the coefficients of your

equation. Assume that you choose the following specification.

What signs do you expect for the coefficients of NEW, SCRATCH,

and BIDRS? Explain.

PRICEi � �0 � �1NEWi � �2SCRATCHi � �3BIDRSi � �i

where: PRICEi � the price at which the ith iPod sold on eBay

NEWi � a dummy variable equal to 1 if the ith iPod

was new, 0 otherwise

SCRATCHi � a dummy variable equal to 1 if the ith iPod

had a minor cosmetic defect, 0 otherwise

BIDRSi � the number of bidders on the ith iPod

c. The fourth step is to collect your data. Luckily, Rezende has data for

215 silver-colored, 4 GB Apple iPod minis available on a website,

so you download the data and are eager to run your first regression.

Before you do, however, one of your friends points out that the

iPod auctions were spread over a three-week period and worries

that there’s a chance that the observations are not comparable be-

cause they come from different time periods. Is this a valid con-

cern? Why or why not?
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10. Leonardo Rezende, “Econometrics of Auctions by Least Squares,” Journal of Applied Econo-

metrics, November/December 2008, pp. 925–948.
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d. The fifth step is to estimate your specification using Rezende’s data,

producing:

PRICEi � 109.24 � 54.99NEWi � 20.44SCRATCHi � 0.73BIDRSi
(5.34) (5.11) (0.59)

t � 10.28 –4.00 1.23

N � 215

Do the estimated coefficients correspond to your expectations?

Explain.

e. The sixth step is to document your results. Look over the regression

results in part d. What, if anything, is missing that should be in-

cluded in our normal documentation format?

f. (optional) Estimate the equation yourself (Datafile � IPOD3), and

determine the value of the item that you reported missing in your

answer to part e.

LEARNING TO USE REGRESSION ANALYSIS

Answers

Exercise 2

a. D � 1 if graduate student and D � 0 if undergraduate (or D � 1

if undergraduate and D � 0 if graduate).

b. Yes; for example, E � how many exercises the student did.

c. If D is defined as in answer a, then its coefficient’s sign would

be expected to be positive. If D is defined as 0 if graduate 

student, 1 if undergraduate, then the expected sign would be

negative.

d. A coefficient with value of 0.5 indicates that holding constant

the other independent variables in the equation, a graduate

student would be expected to earn half a grade point higher

than an undergraduate. If there were only graduate students or

only undergraduates in class, the coefficient of D could not be

estimated.
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The classical model of econometrics has nothing to do with ancient Greece

or even the classical economic thinking of Adam Smith. Instead, the term

classical refers to a set of fairly basic assumptions required to hold in order for

OLS to be considered the “best” estimator available for regression models.

When one or more of these assumptions do not hold, other estimation tech-

niques (such as Generalized Least Squares) sometimes may be better than

OLS.

As a result, one of the most important jobs in regression analysis is to decide

whether the classical assumptions hold for a particular equation. If so, the OLS

estimation technique is the best available. Otherwise, the pros and cons of al-

ternative estimation techniques must be weighed. These alternatives usually

are adjustments to OLS that take account of the particular assumption that has

been violated. In a sense, most of the rest of this text deals in one way or an-

other with the question of what to do when one of the classical assumptions is

not met. Since econometricians spend so much time analyzing violations of

them, it is crucial that they know and understand these assumptions.

The Classical Assumptions

The Classical Assumptions must be met in order for OLS estimators to be

the best available. Because of their importance in regression analysis, the as-

sumptions are presented here in tabular form as well as in words. Subsequent

1

1 The Classical Assumptions

2 The Sampling Distribution of 

3 The Gauss–Markov Theorem and the Properties 

of OLS Estimators

4 Standard Econometric Notation

5 Summary and Exercises

�̂

The Classical Model

From Chapter 4 of Using Econometrics: A Practical Guide, 6/e. A. H. Studenmund. Copyright © 2011

by Pearson Education. Published by Addison-Wesley. All rights reserved.
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chapters will investigate major violations of the assumptions and introduce

estimation techniques that may provide better estimates in such cases.

An error term satisfying Assumptions I through V is called a classical error

term, and if Assumption VII is added, the error term is called a classical normal

error term.

I. The regression model is linear, is correctly specified, and has an additive

error term. The regression model is assumed to be linear:

(1)

The assumption that the regression model is linear1 does not require the

underlying theory to be linear. For example, an exponential function:

(2)

where e is the base of the natural log, can be transformed by taking the nat-

ural log of both sides of the equation:

(3)ln(Yi) 5 �0 1 �1 ln(Xi) 1 �i

Yi 5 e�0Xi
�1e�i

Yi 5 �0 1 �1X1i 1 �2X2i 1 c1 �KXKi 1 �i

THE CLASSICAL MODEL

1. The Classical Assumption that the regression model be “linear” technically requires the

model to be “linear in the coefficients.” We’ll cover the application of regression analysis to

equations that are nonlinear in the variables in that same section, but the application of regres-

sion analysis to equations that are nonlinear in the coefficients is beyond the scope of this 

textbook.

The Classical Assumptions

I. The regression model is linear, is correctly specified, and has an

additive error term.

II. The error term has a zero population mean.

III. All explanatory variables are uncorrelated with the error term.

IV. Observations of the error term are uncorrelated with each other

(no serial correlation).

V. The error term has a constant variance (no heteroskedasticity).

VI. No explanatory variable is a perfect linear function of any other

explanatory variable(s) (no perfect multicollinearity).

VII. The error term is normally distributed (this assumption is optional

but usually is invoked).
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If the variables are relabeled as , then the form

of the equation becomes linear:

(4)

In Equation 4, the properties of the OLS estimator of the still hold because

the equation is linear.

Two additional properties also must hold. First, we assume that the equa-

tion is correctly specified. If an equation has an omitted variable or an in-

correct functional form, the odds are against that equation working well.

Second, we assume that a stochastic error term has been added to the equa-

tion. This error term must be an additive one and cannot be multiplied by or

divided into any of the variables in the equation.

II. The error term has a zero population mean. Econometricians add a sto-

chastic (random) error term to regression equations to account for variation

in the dependent variable that is not explained by the model. The specific

value of the error term for each observation is determined purely by chance.

Probably the best way to picture this concept is to think of each observation

of the error term as being drawn from a random variable distribution such as

the one illustrated in Figure 1.

�s

Y*i 5 �0 1 �1X*i 1 �i

Y*i 5 ln(Yi) and X*i 5 ln(Xi)

THE CLASSICAL MODEL

0

Probability

2 1  �

Figure 1 An Error Term Distribution with a Mean of Zero

Observations of stochastic error terms are assumed to be drawn from a random variable

distribution with a mean of zero. If Classical Assumption II is met, the expected value

(the mean) of the error term is zero.
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Classical Assumption II says that the mean of this distribution is zero. That

is, when the entire population of possible values for the stochastic error term

is considered, the average value of that population is zero. For a small sam-

ple, it is not likely that the mean is exactly zero, but as the size of the sample

approaches infinity, the mean of the sample approaches zero.

To compensate for the chance that the mean of might not equal zero,

the mean of for any regression is forced to be zero by the existence of the

constant term in the equation. In essence, the constant term equals the

fixed portion of Y that cannot be explained by the independent variables,

whereas the error term equals the stochastic portion of the unexplained

value of Y.

Although it’s true that the error term can never be observed, it’s instructive

to pretend that we can do so to see how the existence of a constant term

forces the mean of the error term to be zero in a sample. Consider a typical

regression equation:

(5)

Suppose that the mean of is 3 instead of 0, then2 If we add

3 to the constant term and subtract it from the error term, we obtain:

(6)

Since Equations 5 and 6 are equivalent (do you see why?), and since

then Equation 6 can be written in a form that has a zero

mean for the error term:

(7)

where As can be seen, Equation 7 conforms

to Assumption II. This form is always assumed to apply for the true model.

Therefore, the second classical assumption is assured as long as a constant

term is included in the equation and all other classical assumptions are met.

�*0 5 �0 1 3 and �*i 5 �i 2 3.

Yi 5 �*0 1 �1Xi 1 �*i

E(�i 2 3) 5 0,

Yi 5 (�0 1 3) 1 �1Xi 1 (�i 2 3)

E(�i 2 3) 5 0.�i

Yi 5 �0 1 �1Xi 1 �i

�i

�

THE CLASSICAL MODEL

2. Here, the “E” refers to the expected value (mean) of the item in parentheses after it. Thus

equals the expected value of the stochastic error term epsilon minus 3. In this specific

example, since we’ve defined One way to think about

expected value is as our best guess of the long-run average value a specific random variable will

have.

E(�i) 5 3, we know that E(�i 2 3) 5 0.

E(�i 2 3)
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III. All explanatory variables are uncorrelated with the error term. It is as-

sumed that the observed values of the explanatory variables are independent

of the values of the error term.

If an explanatory variable and the error term were instead correlated with

each other, the OLS estimates would be likely to attribute to the X some of

the variation in Y that actually came from the error term. If the error term

and X were positively correlated, for example, then the estimated coefficient

would probably be higher than it would otherwise have been (biased up-

ward), because the OLS program would mistakenly attribute the variation

in Y caused by to X instead. As a result, it’s important to ensure that the ex-

planatory variables are uncorrelated with the error term.

Classical Assumption III is violated most frequently when a researcher

omits an important independent variable from an equation. One of the

major components of the stochastic error term is omitted variables, so if a

variable has been omitted, then the error term will change when the omitted

variable changes. If this omitted variable is correlated with an included inde-

pendent variable (as often happens in economics), then the error term is cor-

related with that independent variable as well.  We have violated Assumption

III! Because of this violation, OLS will attribute the impact of the omitted

variable to the included variable, to the extent that the two variables are cor-

related.

An important economic application that violates this assumption is any

model that is simultaneous in nature. In most economic applications, there

are several related propositions that, when taken as a group, suggest a system

of regression equations. In most situations, interrelated equations should be

considered simultaneously instead of separately. Unfortunately, such simul-

taneous systems violate Classical Assumption III.

IV. Observations of the error term are uncorrelated with each other. The

observations of the error term are drawn independently from each other. If

a systematic correlation exists between one observation of the error term

and another, then it will be more difficult for OLS to get accurate estimates

of the standard errors of the coefficients. For example, if the fact that the 

from one observation is positive increases the probability that the from

another observation also is positive, then the two observations of the error

term are positively correlated. Such a correlation would violate Classical As-

sumption IV.

In economic applications, this assumption is most important in time-

series models. In such a context, Assumption IV says that an increase in the

error term in one time period (a random shock, for example) does not

show up in or affect in any way the error term in another time period. 

�
�

�
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In some cases, though, this assumption is unrealistic, since the effects of a

random shock sometimes last for a number of time periods. For example,

a natural disaster like Hurricane Katrina will have a negative impact on a 

region far after the time period in which it was truly a random event. If,

over all the observations of the sample, is correlated with then the

error term is said to be serially correlated (or autocorrelated), and Assump-

tion IV is violated.

V. The error term has a constant variance. The variance (or dispersion) of

the distribution from which the observations of the error term are drawn is

constant. That is, the observations of the error term are assumed to be drawn

continually from identical distributions (for example, the one pictured in

Figure 1). The alternative would be for the variance of the distribution of 

the error term to change for each observation or range of observations. In

Figure 2, for example, the variance of the error term is shown to increase as

�t,�t11
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Y

0 Z

Small  �s
Associated with

Small Zs

Large  �s Associated
with Large Zs

 �0E(Y|X) = + �1Z

Figure 2 An Error Term Whose Variance Increases as Z Increases

(Heteroskedasticity)

One example of Classical Assumption V not being met is when the variance of the error

term increases as Z increases. In such a situation (called heteroskedasticity), the obser-

vations are on average farther from the true regression line for large values of Z than

they are for small values of Z.

102



the variable Z increases; such a pattern violates Classical Assumption V. The

actual values of the error term are not directly observable, but the lack of a

constant variance for the distribution of the error term causes OLS to gener-

ate inaccurate estimates of the standard error of the coefficients.

In economic applications, Assumption V is likely to be violated in cross-

sectional data sets. For example, suppose that you’re studying the amount of

money that the 50 states spend on education. Since New York and California

are much bigger than New Hampshire and Nevada, it’s probable that the

variance of the stochastic error term for big states is larger than it is for small

states. The amount of unexplained variation in educational expenditures

seems likely to be larger in big states like New York than in small states like

New Hampshire. The violation of Assumption V is referred to as heteroske-

dasticity.

VI. No explanatory variable is a perfect linear function of any other ex-

planatory variable(s). Perfect collinearity between two independent vari-

ables implies that they are really the same variable, or that one is a multiple

of the other, and/or that a constant has been added to one of the variables.

That is, the relative movements of one explanatory variable will be matched

exactly by the relative movements of the other even though the absolute

size of the movements might differ. Because every movement of one of the

variables is matched exactly by a relative movement in the other, the OLS

estimation procedure will be incapable of distinguishing one variable from

the other.

Many instances of perfect collinearity (or multicollinearity if more than

two independent variables are involved) are the result of the researcher not

accounting for identities (definitional equivalences) among the independent

variables. This problem can be corrected easily by dropping one of the per-

fectly collinear variables from the equation.

What’s an example of perfect multicollinearity? Suppose that you decide

to build a model of the profits of tire stores in your city and you include an-

nual sales of tires (in dollars) at each store and the annual sales tax paid by

each store as independent variables. Since the tire stores are all in the same

city, they all pay the same percentage sales tax, so the sales tax paid will be a

constant percentage of their total sales (in dollars). If the sales tax rate is 7%,

then the total taxes paid will be exactly 7% of sales for each and every tire

store. Thus sales tax will be a perfect linear function of sales, and you’ll have

perfect multicollinearity!

Perfect multicollinearity also can occur when two independent variables

always sum to a third or when one of the explanatory variables doesn’t

change within the sample. With perfect multicollinearity, the OLS computer

program (or any other estimation technique) will be unable to estimate the

THE CLASSICAL MODEL
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coefficients of the collinear variables (unless there is a rounding error).

While it’s quite unusual to encounter perfect multicollinearity in practice,

even imperfect multicollinearity can cause problems for estimation.

VII. The error term is normally distributed. Although we have already

assumed that observations of the error term are drawn independently

(Assumption IV) from a distribution that has a zero mean (Assumption II)

and that has a constant variance (Assumption V), we have said little about the

shape of that distribution. Assumption VII states that the observations of the

error term are drawn from a distribution that is normal (that is, bell-shaped,

and generally following the symmetrical pattern portrayed in Figure 3).

This assumption of normality is not required for OLS estimation. Its major

application is in hypothesis testing , which uses the estimated regression co-

efficient to investigate hypotheses about economic behavior. One example of

such a test is deciding whether a particular demand curve is elastic or inelas-

tic in a particular range. 

THE CLASSICAL MODEL

0 2.0 4.022.0

Probability

Distribution A      
μ = 0

σ2 = 1

Distribution B            
μ = 2   

 σ2  = 0.5

Figure 3 Normal Distributions

Although all normal distributions are symmetrical and bell-shaped, they do not neces-

sarily have the same mean and variance. Distribution A has a mean of 0 and a variance

of 1, whereas distribution B has a mean of 2 and a variance of 0.5. As can be seen, the

whole distribution shifts when the mean changes, and the distribution gets fatter as the

variance increases.
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Even though Assumption VII is optional, it’s usually advisable to add the

assumption of normality to the other six assumptions for two reasons:

1. The error term can be thought of as the sum of a number of minor

influences or errors. As the number of these minor influences gets

larger, the distribution of the error term tends to approach the normal

distribution.3

2. The t-statistic and the F-statistic are not truly applicable unless the 

error term is normally distributed (or the sample is quite large).

A quick look at Figure 3 shows how normal distributions differ when the

means and variances are different. In normal distribution A (a Standard

Normal Distribution), the mean is 0 and the variance is 1; in normal distri-

bution B, the mean is 2, and the variance is 0.5. When the mean is different,

the entire distribution shifts. When the variance is different, the distribution

becomes fatter or skinnier.

The Sampling Distribution of 

“It cannot be stressed too strongly how important it is for students to un-

derstand the concept of a sampling distribution.”4

Just as the error term follows a probability distribution, so too do the estimates

of �. In fact, each different sample of data typically produces a different esti-

mate of �. The probability distribution of these values across different sam-

ples is called the sampling distribution of .

Recall that an estimator is a formula, such as the OLS formula, while an

estimate is the value of computed by the formula for a given sample.

Since researchers usually have only one sample, beginning econometri-

cians often assume that regression analysis can produce only one estimate

of � for a given population. In reality, however, each different sample 

from the same population will produce a different estimate of �. 

The collection of all the possible samples has a distribution, with a 

�̂

�̂
�̂

�̂2

�i

3. This is because of the Central Limit Theorem, which states that:

The mean (or sum) of a number of independent, identically distributed random vari-

ables will tend to be normally distributed, regardless of their distribution, if the number

of different random variables is large enough.

4. Peter Kennedy, A Guide to Econometrics (Malden, MA: Blackwell, 2008), p. 403.
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mean and a variance, and we need to discuss the properties of this sampling

distribution of , even though in most real applications we will encounter

only a single draw from it. Be sure to remember that a sampling distribution

refers to the distribution of different values of across different samples, not

within one. These usually are assumed to be normally distributed because

the normality of the error term implies that the OLS estimates of � are nor-

mally distributed as well.

Let’s look at an example of a sampling distribution of . Suppose you de-

cide to build a regression model to explain the starting salaries of last year’s

graduates of your school as a function of their GPAs at your school:

�
SALARYi � f(GPAi) � �0 � �1GPAi � i (8)

For the time being, let’s focus on the sampling distribution of 1. If you select

a sample of 25 students and get data for their salaries and grades, you can es-

timate Equation 8 with OLS and get an estimate of �1. So far, so good.

But what will happen if you select a second sample of students and do the

same thing? Will you get the same exact 1 that you got from the first sam-

ple? Nope! Your estimate obviously depends on the sample you pick. If your

random sample includes by accident quite a few of the highest-paid gradu-

ates, the estimate will be fairly high. If another sample by chance includes an

underemployed student, then the estimate will be low. As a result, you’re al-

most certain to get a different 1 for every different sample you draw, because

different samples are likely to have different students with different character-

istics. In essence, there is a distribution of all the possible estimates that will

have a mean and a variance, just as the distribution of observations of the

error term does.

So, if you collect five different samples, you’re extremely likely to get five

different 1s. For instance, you might get:

First sample: � 8,612

Second sample: � 8,101

Third sample: � 11,355

Fourth sample: � 6,934

Fifth sample: � 7,994

Average � 8,599

Each sample yields an estimate of the true population � (which is, let’s say,

8,400), and the distribution of the of all the possible samples has its own�̂s

�̂

�̂1

�̂1

�̂1

�̂1

�̂1

�̂

�̂

�̂

�̂

�

�̂

�̂s

�̂

�̂
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mean and variance. For a “good” estimation technique, we’d want the mean

of the sampling distribution of the s to be equal to our true population � of

8,400. This is called unbiasedness. Although the mean for our five samples is

8,599, it’s likely that if we took enough samples and calculated enough ,

the average would eventually approach 8,400.

Therefore the estimated by OLS for Equation 8 form a distribution of

their own. Each sample of observations will produce a different , and the

distribution of these estimates for all possible samples has a mean and a vari-

ance like any distribution. When we discuss the properties of estimators in

the next section, it will be important to remember that we are discussing the

properties of the distribution of estimates generated from a number of sam-

ples (a sampling distribution).

Properties of the Mean

A desirable property of a distribution of estimates is that its mean equals the

true mean of the variable being estimated. An estimator that yields such esti-

mates is called an unbiased estimator.

�̂
�̂s

�̂
�̂s

�̂
�̂
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An estimator is an unbiased estimator if its sampling distribution has

as its expected value the true value of .

(9)E(�̂) 5 �

�
�̂

Only one value of is obtained in practice, but the property of unbiasedness

is useful because a single estimate drawn from an unbiased distribution is

more likely to be near the true value (assuming identical variances) than one

taken from a distribution not centered around the true value. If an estimator

produces that are not centered around the true the estimator is referred

to as a biased estimator.

We cannot ensure that every estimate from an unbiased estimator is better

than every estimate from a biased one, because a particular unbiased estimate5

could, by chance, be farther from the true value than a biased estimate might be.

�,�̂s

�̂

5. Technically, since an estimate has just one value, an estimate cannot be unbiased (or biased).

On the other hand, the phrase “estimate produced by an unbiased estimator” is cumbersome,

especially if repeated 10 times on a page. As a result, many econometricians use “unbiased esti-

mate” as shorthand for “a single estimate produced by an unbiased estimator.”
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This could happen by chance or because the biased estimator had a smaller vari-

ance. Without any other information about the distribution of the estimates,

however, we would always rather have an unbiased estimate than a biased one.

Properties of the Variance

Just as we would like the distribution of the to be centered around the true

population so too would we like that distribution to be as narrow (or pre-

cise) as possible. A distribution centered around the truth but with an extremely

large variance might be of very little use because any given estimate would quite

likely be far from the true value. For a distribution with a small variance, the

estimates are likely to be close to the mean of the sampling distribution. To see

this more clearly, compare distributions A and B (both of which are unbiased)

in Figure 4. Distribution A, which has a larger variance than distribution B, is

less precise than distribution B. For comparison purposes, a biased distribution

(distribution C) is also pictured; note that bias implies that the expected value

of the distribution is to the right or left of the true �.

�̂�

�,

�̂s
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True
�

Distribution B
(unbiased, small variance)

Distribution A
(unbiased, large variance)

Distribution C
(biased, medium variance)

Figure 4 Distributions of 

Different distributions of can have different means and variances. Distributions A and

B, for example, are both unbiased, but distribution A has a larger variance than does dis-

tribution B. Distribution C has a smaller variance than distribution A, but it is biased.

�̂

�̂
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The variance of the distribution of the can be decreased by increasing

the size of the sample. This also increases the degrees of freedom, since the

number of degrees of freedom equals the sample size minus the number of

coefficients or parameters estimated. As the number of observations in-

creases, other things held constant, the variance of the sampling distribution

tends to decrease. Although it is not true that a sample of 15 will always pro-

duce estimates closer to the true than a sample of 5, it is quite likely to do

so; such larger samples should be sought. Figure 5 presents illustrative sam-

pling distributions of for 15 and 5 observations for OLS estimators of 

when the true equals 1. The larger sample does indeed produce a sampling

distribution that is more closely centered around .

In econometrics, general tendencies must be relied on. The element of

chance, a random occurrence, is always present in estimating regression coeffi-

cients, and some estimates may be far from the true value no matter how good

the estimating technique. However, if the distribution is centered around the

�
�

��̂s

�

�̂s
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1 2 3

�

4

Probability

N = 15

N = 5

02122

Figure 5 Sampling Distribution of for Various Observations (N)

As the size of the sample increases, the variance of the distribution of s calculated

from that sample tends to decrease. In the extreme case (not shown), a sample equal to

the population would yield only an estimate equal to the mean of that distribution,

which (for unbiased estimators) would equal the true and the variance of the esti-

mates would be zero.

�,

�̂

�̂

109



true value and has as small a variance as possible, the element of chance is less

likely to induce a poor estimate. If the sampling distribution is centered around

a value other than the true (that is, if is biased) then a lower variance implies

that most of the sampling distribution of is concentrated on the wrong value.

However, if this value is not very different from the true value, which is usually

not known in practice, then the greater precision will still be valuable.

One method of deciding whether this decreased variance in the distribution

of the s is valuable enough to offset the bias is to compare different estimation

techniques by using a measure called the Mean Square Error (MSE). The Mean

Square Error is equal to the variance plus the square of the bias. The lower the

MSE, the better.

A final item of importance is that as the variance of the error term in-

creases, so too does the variance of the distribution of The reason for the

increased variance of is that with the larger variance of the more extreme

values of are observed with more frequency, and the error term becomes

more important in determining the values of Yi.

The Standard Error of

Since the standard error of the estimated coefficient, is the square root

of the estimated variance of the , it is similarly affected by the size of the

sample and the other factors we’ve mentioned. For example, an increase in

sample size will cause to fall; the larger the sample, the more precise

our coefficient estimates will be.

The Gauss–Markov Theorem and the Properties 
of OLS Estimators

The Gauss–Markov Theorem proves two important properties of OLS estima-

tors. This theorem is proven in all advanced econometrics textbooks and

readers interested in the proof should see Exercise 8. For a regression user,

however, it’s more important to know what the theorem implies than to be

able to prove it. The Gauss–Markov Theorem states that:

3

SE(�̂)

�̂s

SE(�̂),

�̂

�i

�i,�̂
�̂.

�̂

�̂
�̂�
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Given Classical Assumptions I through VI (Assumption VII, normality, is

not needed for this theorem), the Ordinary Least Squares estimator of 

is the minimum variance estimator from among the set of all linear un-

biased estimators of for k � 0, 1, 2, . . . , K.�k,

�k
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The Gauss–Markov Theorem is perhaps most easily remembered by stat-

ing that “OLS is BLUE” where BLUE stands for “Best (meaning minimum

variance) Linear Unbiased Estimator.” Students who might forget that “best”

stands for minimum variance might be better served by remembering “OLS is

MvLUE,” but such a phrase is hardly catchy or easy to remember.

If an equation’s coefficient estimation is unbiased (that is, if each of the es-

timated coefficients is produced by an unbiased estimator of the true popula-

tion coefficient), then:

Best means that each has the smallest variance possible (in this case, out

of all the linear unbiased estimators of An unbiased estimator with the

smallest variance is called efficient, and that estimator is said to have the

property of efficiency.

The Gauss–Markov Theorem requires that just the first six of the seven

classical assumptions be met. What happens if we add in the seventh as-

sumption, the assumption that the error term is normally distributed? In this

case, the result of the Gauss–Markov Theorem is strengthened because the

OLS estimator can be shown to be the best (minimum variance) unbiased es-

timator out of all the possible estimators, not just out of the linear estima-

tors. In other words, if all seven assumptions are met, OLS is “BUE.”

Given all seven classical assumptions, the OLS coefficient estimators can

be shown to have the following properties:

1. They are unbiased. That is, This means that the OLS estimates

of the coefficients are centered around the true population values of

the parameters being estimated.

2. They are minimum variance. The distribution of the coefficient estimates

around the true parameter values is as tightly or narrowly distributed as

is possible for an unbiased distribution. No other unbiased estimator

has a lower variance for each estimated coefficient than OLS.

3. They are consistent. As the sample size approaches infinity, the esti-

mates converge to the true population parameters. Put differently, 

as the sample size gets larger, the variance gets smaller, and each 

estimate approaches the true value of the coefficient being

estimated.

4. They are normally distributed. The Thus various

statistical tests based on the normal distribution may indeed be ap-

plied to these estimates.

�̂s are N(�, VARf�̂g).

E(�̂) is �.

�k).

�̂k

E(�̂k) 5 �k  (k 5 0, 1, 2, . . . , K)
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Standard Econometric Notation

This section presents the standard notation used throughout the economet-

rics literature. Table 1 presents various alternative notational devices used to

represent the different population (true) parameters and their corresponding

estimates (based on samples).

The measure of the central tendency of the sampling distribution of 

which can be thought of as the mean of the is denoted as read as

“the expected value of beta-hat.” The variance of is the typical measure of

dispersion of the sampling distribution of The variance (or, alternatively,

the square root of the variance, called the standard deviation) has several

alternative notational representations, including read as

the “variance of beta-hat.”

VAR(�̂) and �2(�̂),

�̂.

�̂
E(�̂),�̂s,

�̂,

4
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Table 1 Notation Conventions

Population Parameter Estimate
(True Values, but Unobserved) (Observed from Sample)

Name Symbol(s) Name Symbol(s)

Regression Estimated regression

coefficient coefficient

Expected value of

the estimated

coefficient

Variance of Estimated variance

the error of the error

term term

Standard Standard error of s or SE

deviation of the equation

the error term (estimate)

Variance of the Estimated variance

estimated of the estimated

coefficient coefficient

Standard deviation Standard error of 

of the estimated the estimated

coefficient coefficient

Error or Residual (estimate ei

disturbance of error in a

term loose sense)

�i

�̂(�̂k) or SE(�̂k)��̂k or �(�̂k)

s2(�̂k) or VAR(�̂k)�2(�̂k) or VAR(�̂k)

�

s2 or �̂2�2 or VAR(�i)

E(�̂k)

�̂k�k
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The variance of the estimates is a population parameter that is never actu-

ally observed in practice; instead, it is estimated with also written as

Note, by the way, that the variance of the true is zero, since

there is only one true with no distribution around it. Thus, the estimated

variance of the estimated coefficient is defined and observed, the true vari-

ance of the estimated coefficient is unobservable, and the true variance of the

true coefficient is zero. The square root of the estimated variance of the coef-

ficient estimate, is the standard error of which we will use exten-

sively in hypothesis testing.

Summary

1. The seven Classical Assumptions state that the regression model is

linear with an additive error term that has a mean of zero, is uncorre-

lated with the explanatory variables and other observations of the error

term, has a constant variance, and is normally distributed (optional).

In addition, explanatory variables must not be perfect linear functions

of each other.

2. The two most important properties of an estimator are unbiasedness

and minimum variance. An estimator is unbiased when the expected

value of the estimated coefficient is equal to the true value. Minimum

variance holds when the estimating distribution has the smallest vari-

ance of all the estimators in a given class of estimators (for example,

unbiased estimators).

3. Given the Classical Assumptions, OLS can be shown to be the min-

imum variance, linear, unbiased estimator (or BLUE, for best linear

unbiased estimator) of the regression coefficients. This is the

Gauss–Markov Theorem. When one or more of the classical proper-

ties do not hold (excluding normality), OLS is no longer BLUE,

although it still may provide better estimates in some cases than

the alternative estimation techniques discussed in subsequent

chapters.

4. Because the sampling distribution of the OLS estimator of is BLUE,

it has desirable properties. Moreover, the variance, or the measure of

dispersion of the sampling distribution of decreases as the num-

ber of observations increases.

�̂k,

�̂k

5

�̂, SE(�̂k),

�k

�, �2(�),s2(�̂k).

�̂2(�̂k),
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5. There is a standard notation used in the econometric literature. Table 1

presents this fairly complex set of notational conventions for use in

regression analysis. This table should be reviewed periodically as a

refresher.

EXERCISES

(The answer to Exercise 2 is at the end of the chapter.)

1. Write the meaning of each of the following terms without referring to

the book (or to your notes), and compare your definition with the

version in the text for each:

a. the Classical Assumptions

b. classical error term

c. standard normal distribution

d. SE( )

e. unbiased estimator

f. BLUE

g. sampling distribution

2. Consider the following estimated regression equation (standard errors

in parentheses):

where: Yt � the corn yield (bushels/acre) in year t

Ft � fertilizer intensity (pounds/acre) in year t

Rt � rainfall (inches) in year t

a. Carefully state the meaning of the coefficients 0.10 and 5.33 in this

equation in terms of the impact of F and R on Y.

b. Does the constant term of �120 really mean that negative amounts

of corn are possible? If not, what is the meaning of that estimate?

c. Suppose you were told that the true value of is known to be 0.20.

Does this show that the estimate is biased? Why or why not?

d. Suppose you were told that the equation does not meet all the clas-

sical assumptions and, therefore, is not BLUE. Does this mean that

the true is definitely not equal to 5.33? Why or why not?�R

�F

 (0.05)  (1.00)

Yt
ˆ 5 2120 1 0.10Ft 1  5.33Rt  R2 5 .50

�̂
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3. Which of the following pairs of independent variables would violate

Assumption VI? (That is, which pairs of variables are perfect linear

functions of each other?)

a. right shoe size and left shoe size (of students in your class)

b. consumption and disposable income (in the United States over the

last 30 years)

c. Xi and 2Xi
d. Xi and (Xi)

2

4. The Gauss–Markov Theorem shows that OLS is BLUE, so we, of course,

hope and expect that our coefficient estimates will be unbiased and

minimum variance. Suppose, however, that you had to choose one or

the other.

a. If you had to pick one, would you rather have an unbiased non-

minimum variance estimate or a biased minimum variance one?

Explain your reasoning.

b. Are there circumstances in which you might change your answer to

part a? (Hint: Does it matter how biased or less-than-minimum vari-

ance the estimates are?)

c. Can you think of a way to systematically choose between estimates

that have varying amounts of bias and less-than-minimum variance?

5. Edward Saunders published an article that tested the possibility that

the stock market is affected by the weather on Wall Street. Using daily

data from 28 years, he estimated an equation with the following signif-

icant variables (standard errors in parentheses):6

where: DJt � the percentage change in the Dow Jones industrial

average on day t

Rt � the daily index capital gain or loss for day t

Jt � a dummy variable equal to 1 if the ith day was in

January, 0 otherwise

N 5 6,911 (daily) R2 5 .02

 (0.01)  (0.0006)  (0.004)  (0.0002)

 DJt 5 �̂0 1 0.10Rt21 1  0.0010Jt 2  0.017Mt 1  0.0005Ct

THE CLASSICAL MODEL

6. Edward M. Saunders, Jr., “Stock Prices and Wall Street Weather,” American Economic Review,

Vol. 76, No. 1, pp. 1337–1346. Saunders also estimated equations for the New York and Amer-

ican Stock Exchange indices, both of which had much higher R2s than did this equation. Rt�1
was included in the equation “to account for nonsynchronous trading effects” (p. 1341).
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Mt � a dummy variable equal to 1 if the ith day was a

Monday, 0 otherwise

Ct � a variable equal to 1 if the cloud cover was 20 per-

cent or less, equal to �1 if the cloud cover was 100

percent, 0 otherwise

a. Saunders did not include an estimate of the constant term in his

published regression results. Which of the Classical Assumptions

supports the conclusion that you shouldn’t spend much time ana-

lyzing estimates of the constant term? Explain.

b. Which of the Classical Assumptions would be violated if you de-

cided to add a dummy variable to the equation that was equal to 1 if

the ith day was a Tuesday, Wednesday, Thursday, or Friday, and equal

to 0 otherwise? (Hint: The stock market is not open on weekends.)

c. Carefully state the meaning of the coefficients of R and M, being

sure to take into account the fact that R is lagged (one time period

behind) in this equation for valid theoretical reasons.

d. The variable C is a measure of the percentage of cloud cover from

sunrise to sunset on the ith day and reflects the fact that approxi-

mately 85 percent of all New York’s rain falls on days with 100 per-

cent cloud cover. Is C a dummy variable? What assumptions (or

conclusions) did the author have to make to use this variable?

What constraints does it place on the equation?

e. Saunders concludes that these findings cast doubt on the hypothe-

sis that security markets are entirely rational. Based just on the

small portion of the author’s work that we include in this question,

would you agree or disagree? Why?

6. Complete the following exercises:

a. Write out the Classical Assumptions without looking at your book

or notes. (Hint: Don’t just say them to yourself in your head—put

pen or pencil to paper!)

b. After you’ve completed writing out all six assumptions, compare

your version with the text’s. What differences are there? Are they

important?
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c. (Optional) Get together with a classmate and take turns explaining

the assumptions to each other. In this exercise, try to go beyond the

definition of the assumption to give your classmate a feeling for

the real-world meaning of each assumption.

7. W. Bowen and T. Finegan7 estimated the following regression equa-

tion for 78 cities (standard errors in parentheses):

where: Li � percent labor force participation (males ages 25 to 54)

in the ith city

Ui � percent unemployment rate in the ith city

Ei � average earnings (hundreds of dollars/year) in the ith

city

Ii � average other income (hundreds of dollars/year) in

the ith city

Si � average schooling completed (years) in the ith city

Ci � percent of the labor force that is nonwhite in the ith

city

Di � a dummy equal to 1 if the city is in the South, 0 

otherwise

a. Interpret the estimated coefficients of C and D. What do they

mean?

b. How likely is perfect collinearity in this equation? Explain your

answer.

c. Suppose that you were told that the data for this regression were

old and that estimates on new data yielded a much different coeffi-

cient of the dummy variable. Would this imply that one of the esti-

mates was biased? If not, why not? If so, how would you determine

which year’s estimate was biased?

d. Comment on the following statement. “I know that these results

are not BLUE because the estimated coefficient of S is wrong. It’s

negative when it should be positive!” Do you agree or disagree?

Why?

N 5 78 R2 5 .51

 (0.08)  (0.06)  (0.16)  (0.18)  (0.03)  (0.53)

 L̂i 5 94.2 2 0.24Ui 1  0.20Ei 2  0.69Ii 2  0.06Si 1  0.002Ci 2  0.80Di

7. W. G. Bowen and T. A. Finegan, “Labor Force Participation and Unemployment,” in Arthur

M. Ross (ed.), Employment Policy and Labor Markets (Berkeley: University of California Press,

1965), Table 2.
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8. A typical exam question in a more advanced econometrics class is to

prove the Gauss–Markov Theorem. How might you go about start-

ing such a proof? What is the importance of such a proof?

9. For your first econometrics project you decide to model sales at the

frozen yogurt store nearest your school. The owner of the store is

glad to help you with data collection because she believes that stu-

dents from your school make up the bulk of her business. After

countless hours of data collection and an endless supply of frozen

yogurt, you estimate the following regression equation (standard errors

in parentheses):

where: Yt � the total number of frozen yogurts sold during the tth

two-week time period

Tt � average high temperature (in degrees F) during period t

Pt � the price of frozen yogurt (in dollars) at the store in

period t

At � a dummy variable equal to 1 if the owner places an ad

in the school newspaper during period t, 0 otherwise

Ct � a dummy variable equal to 1 if your school is in regu-

lar session in period t (early September through early

December and early January through late May), 0

otherwise

a. Does this equation appear to violate any of the Classical Assump-

tions? That is, do you see any evidence that a Classical Assump-

tion is or is not met in this equation?

b. What is the real-world economic meaning of the fact that the esti-

mated coefficient of At is 134.3? Be specific.

c. You and the owner are surprised at the sign of the coefficient of Ct.

Can you think of any reason for this sign? (Hint: Assume that your

school has no summer session.)

d. If you could add one variable to this equation, what would it be?

Be specific.

10. In Hollywood, most nightclubs hire “promoters,” or people who walk

around near the nightclub and try to convince passersby to enter

N 5 29 R2 5 .78

 (0.7)  (20.0)  (108.0)  (138.3)

5 262.5 1 3.9Tt 2 46.94Pt 1 134.3At 2 152.1CtŶt
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the club. Recently, one of the nightclubs asked a marketing consultant to

estimate the effectiveness of such promoters in terms of their ability to

attract patrons to the club. The consultant did some research and

found that the main entertainment at the nightclubs were attractive

dancers and that the most popular nightclubs were on Hollywood

Boulevard or attached to hotels, so he hypothesized the following

model of nightclub attendance:

PEOPLEi � β0 � β1HOLLYi � β2PROMOi � β3HOTELi � β4GOGOi �

where: PEOPLEi � attendance at the ith nightclub at midnight on

Saturday 11/24/07

HOLLYi � equal to 1 if the ith nightclub is on Hollywood

Boulevard, 0 otherwise

PROMOi � number of promoters working at the ith night-

club that night

HOTELi � equal to 1 if the ith nightclub is part of a hotel,

0 otherwise

GOGOi � number of dancers working at the ith night-

club that night

He then collected data from 25 similarly sized nightclubs on or near

Hollywood Boulevard and came up with the following estimates

(standard errors in parentheses):

PEOPLEi � 162.8 � 47.4HOLLYi � 22.3PROMOi � 214.5HOTELi� 26.9GOGOi

(21.7)      (11.8)      (46.0) (7.2)

N � 25 � .57

Let’s work through the classical assumptions to see which assump-

tions might or might not be met by this model. As we analyze each as-

sumption, make sure that you can state the assumption from memory

and that you understand how the following questions help us under-

stand whether the assumption has been met.

a. Assumption I: Is the equation linear with an additive error term? Is

there a chance that there’s an omitted variable or an incorrect func-

tional form?

b. Assumption II: Is there a constant term in the equation to guaran-

tee that the expected value of the error term is zero?

R2

�i
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c. Assumption III: Is there a chance that there’s an omitted variable

or that this equation is part of a simultaneous system?

d. Assumption IV: Is the model estimated with time-series data with

the chance that a random event in one time period could affect the

regression in subsequent time periods?

e. Assumption V: Is the model estimated with cross-sectional data

with dramatic variations in the size of the dependent variable?

f. Assumption VI: Is any independent variable a perfect linear func-

tion of any other independent variable?

g. Assume that dancers earn about as much per hour as promoters. If

the equation is accurate, should the nightclub hire one more pro-

moter or one more dancer if they want to increase attendance? Ex-

plain your answer.

11. In 2001, Donald Kenkel and Joseph Terza published an article in

which they investigated the impact on an individual’s alcohol con-

sumption of a physician’s advice to reduce drinking.8 In that article,

Kenkel and Terza used econometric techniques well beyond the scope

of this text to conclude that such physician advice can play a signifi-

cant role in reducing alcohol consumption.

We took a fifth (no pun intended) of the authors’ dataset9 and

estimated the following equation (standard errors in parentheses):

DRINKSi � 13.00 � 11.36ADVICEi � 0.20EDUCi � 2.85DIVSEPi � 14.20UNEMPi

(2.12)       (0.31)             (2.55) (5.16)

t � 5.37                –0.65      1.11          2.75

N � 500 � .07

where: DRINKSi � drinks consumed by the ith individual in the

last two weeks

ADVICEi � 1 if a physician had advised the ith individual

to cut back on drinking alcohol, 0 otherwise

EDUCi � years of schooling of the ith individual

R2

8. Donald S. Kenkel and Joseph V. Terza, “The Effect of Physician Advice on Alcohol Consump-

tion: Count Regression with an Endogenous Treatment Effect,” Journal of Applied Econometrics,

2001, pp. 165–184.

9. The dataset, which is available on the JAE website, consists of more than 20 variables  for

2467 males who participated in the 1990 National Health Interview Survey and who were cur-

rent drinkers with high blood pressure.
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DIVSEPi � 1 if the ith individual was divorced or sepa-

rated, 0 otherwise

UNEMPi � 1 if the ith individual was unemployed, 0

otherwise

a. Carefully state the meaning of the estimated coefficients of

DIVSEP and UNEMP. Do the signs of the coefficients make sense

to you? Do the relative sizes of the coefficients make sense to

you? Explain.

b. Carefully state the meaning of the estimated coefficient of ADVICE.

Does the sign of the coefficient make sense to you? If so, explain. If

not, this unexpected sign might be related to a violation of one of

the Classical Assumptions. What Classical Assumption (other than

Assumption I) is this equation almost surely violating? (Hint:

Think about what might cause a physician to advise a patient to cut

back on alcohol drinking and then review the Classical Assump-

tions one more time.)

c. We broke up our sample of 500 observations into five different

samples of 100 observations each and calculated s for four of the

five samples.  The results (for ADVICE) were:

1st sample:     ADVICE � 10.43

2nd sample: ADVICE � 13.52

3rd sample: ADVICE � 14.39

4th sample: ADVICE � 8.01

The s are different! Explain in your own words how it’s possible

to get different s when you’re estimating identical specifications

on data that are drawn from the same source. What term would

you use to describe this group of s?

d. The data for the fifth sample of 100 observations are in Table 2.

Use these data to estimate DRINKS � f(ADVICE, EDUC, DIVSEP,

and UNEMP) with EViews, Stata, or another regression program.

What value do you get for ADVICE? How do your estimated coeffi-

cients compare to those of the entire sample of 500?

�̂

�̂

�̂
�̂

�̂

�̂

�̂

�̂

�̂
�̂
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Table 2 Data for the Physician Advice Equation

obs DRINKS ADVICE EDUC DIVSEP UNEMP

1 24.0 0 13 0 1

2 10.0 0 14 0 0

3 0.0 0 14 0 0

4 24.0 1 7 0 0

5 0.0 0 12 0 0

6 1.5 1 13 0 0

7 45.0 1 15 0 0

8 0.0 0 12 0 0

9 0.0 0 16 0 0

10 0.0 0 10 0 0

11 2.0 0 16 0 0

12 13.5 0 9 0 0

13 8.0 1 12 0 0

14 0.0 0 14 1 0

15 25.0 0 13 0 0

16 11.3 0 12 1 0

17 0.0 0 17 0 0

18 0.0 0 16 0 0

19 7.0 0 14 0 0

20 40.0 1 16 0 0

21 28.0 0 14 0 0

22 1.0 1 15 0 0

23 0.0 0 10 0 0

24 0.0 0 10 0 0

25 56.0 1 16 0 0

26 0.0 0 16 1 0

27 24.0 1 12 1 0

28 5.0 0 13 0 0

29 28.0 0 7 0 0

30 14.0 0 12 0 0

31 3.0 0 18 0 0

32 0.0 0 7 0 0

33 0.0 0 18 0 0

34 0.0 0 11 0 0

35 3.0 0 12 0 0

36 10.0 0 16 0 0

37 42.0 1 17 0 0

38 1.0 0 12 0 0

39 14.0 0 15 1 0

40 9.0 0 18 0 0

41 0.0 0 18 0 0

42 15.0 0 14 0 0

(continued)
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43 12.0 1 18 0 0

44 6.0 0 14 1 0

45 6.0 1 17 0 0

46 0.0 1 12 0 0

47 0.0 0 12 0 0

48 0.0 0 8 0 0

49 2.0 0 9 1 0

50 0.0 1 12 0 0

51 10.0 1 12 0 0

52 58.5 1 6 0 0

53 14.0 1 14 0 0

54 0.0 0 18 0 0

55 0.0 1 12 0 0

56 5.0 0 13 0 0

57 0.0 0 7 0 0

58 14.0 0 12 0 0

59 36.0 0 13 0 0

60 0.0 0 8 0 0

61 2.0 1 8 1 0

62 70.0 1 16 0 1

63 12.0 1 12 0 0

64 3.0 1 12 0 0

65 30.0 1 9 1 0

66 10.0 0 15 0 0

67 12.0 0 16 0 0

68 84.0 0 12 0 0

69 71.5 1 12 0 0

70 49.0 0 18 0 0

71 4.0 1 13 0 0

72 3.0 1 8 0 0

73 1.0 0 12 0 0

74 33.8 0 13 0 0

75 21.0 0 14 0 0

76 12.0 0 12 0 0

77 14.0 0 18 1 0

78 0.0 0 17 0 0

79 0.0 1 7 0 0

80 1.0 0 12 0 0

81 0.0 1 12 0 0

82 70.0 0 15 1 0

83 4.0 1 16 1 0

84 4.0 0 14 0 0

Table 2 (continued)

obs DRINKS ADVICE EDUC DIVSEP UNEMP

(continued)
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Table 2 (continued)

obs DRINKS ADVICE EDUC DIVSEP UNEMP

85 21.0 1 14 1 0

86 2.0 0 16 0 0

87 30.0 1 10 0 0

88 10.0 1 13 0 0

89 16.0 1 9 1 0

90 36.0 0 13 0 0

91 0.0 1 11 0 0

92 0.0 0 12 0 0

93 108.0 1 12 1 0

94 0.0 0 12 0 0

95 0.0 1 12 0 0

96 11.0 0 13 1 0

97 28.5 0 0 0 0

98 56.0 0 13 0 0

99 3.0 0 12 0 0

100 2.0 0 12 0 0

Datafile � DRINKS4

Source: Donald S. Kenkel and Joseph V. Terza, “The Effect of Physician Advice on Alcohol

Consumption: Count Regression with an Endogenous Treatment Effect,” Journal of Applied

Econometrics, 2001, pp. 165–184.
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Answers

Exercise 2

a. An additional pound of fertilizer per acre will cause corn yield to

increase by 0.10 bushels per acre, holding rainfall constant. An

additional inch of rain will increase corn yield by 5.33 bushels

per acre, holding fertilizer per acre constant.

b. No, for a couple of reasons. First, it’s hard to imagine zero inches

of rain falling in an entire year, so this particular intercept has no

real-world meaning. More generally, recall that the OLS estimate

of the intercept includes the nonzero mean of the error term in

order to meet Classical Assumption II, so even if rainfall were

zero, it wouldn’t make sense to attempt to analyze the OLS esti-

mate of the intercept.

c. No. An unbiased estimator will produce a distribution of esti-

mates that is centered around the true �, but individual estimates

can vary widely from that true value. 0.10 is the estimated coeffi-

cient for this sample, not for the entire population, so it could be

an unbiased estimate.

d. Not necessarily: 5.33 still could be close to or even equal to the

true value. More generally, an estimated coefficient produced by

an estimator that is not BLUE still could be accurate. For exam-

ple, the amount of the bias could be very small, or the variation

due to sampling could offset the bias.
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1 What Is Hypothesis Testing?

2 The t-Test

3 Examples of t-Tests

4 Limitations of the t-Test

5 Summary and Exercises

6 Appendix:The F -Test

Hypothesis Testing

In this chapter, we return to the essence of econometrics—an effort to quan-

tify economic relationships by analyzing sample data—and ask what conclu-

sions we can draw from this quantification. Hypothesis testing goes beyond

calculating estimates of the true population parameters to a much more com-

plex set of questions. Hypothesis testing determines what we can learn about

the real world from a sample. Is it likely that our result could have been

obtained by chance? Can our theories be rejected using the results generated

by our sample? If our theory is correct, what is the probability that this par-

ticular sample would have been observed? This chapter starts with a brief

introduction to the topic of hypothesis testing. We then examine the t-test,

the statistical tool typically used for hypothesis tests of individual regression

coefficients.

Hypothesis testing and the t-test should be familiar topics to readers

with strong backgrounds in statistics, who are encouraged to skim this

chapter and focus on only those applications that seem somewhat new.

The development of hypothesis testing procedures is explained here in

terms of the regression model, however, so parts of the chapter may be in-

structive even to those already skilled in statistics. Students with a weak

background in statistics are encouraged to review that subject before be-

gining this chapter.

Our approach will be classical in nature, since we assume that the sample

data are our best and only information about the population. An alternative,

From Chapter 5 of Using Econometrics: A Practical Guide, 6/e. A. H. Studenmund. Copyright © 2011

by Pearson Education. Published by Addison-Wesley. All rights reserved.
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Bayesian statistics, uses a completely different definition of probability and

does not use the sampling distribution concept.1

What Is Hypothesis Testing?

Hypothesis testing is used in a variety of settings. The Food and Drug Admin-

istration (FDA), for example, tests new products before allowing their sale. If

the sample of people exposed to the new product shows some side effect sig-

nificantly more frequently than would be expected to occur by chance, the

FDA is likely to withhold approval of marketing that product. Similarly, econ-

omists have been statistically testing various relationships between consump-

tion and income for almost a century; theories developed by John Maynard

Keynes and Milton Friedman, among others, have been tested on macroeco-

nomic and microeconomic data sets.

Although researchers are always interested in learning whether the theory

in question is supported by estimates generated from a sample of real-world

observations, it’s almost impossible to prove that a given hypothesis is correct.

All that can be done is to state that a particular sample conforms to a particu-

lar hypothesis. Even though we cannot prove that a given theory is “correct”

using hypothesis testing, we often can reject a given hypothesis with a certain

level of significance. In such a case, the researcher concludes that it is very un-

likely that the sample result would have been observed if the hypothesized

theory were correct. 

Classical Null and Alternative Hypotheses

The first step in hypothesis testing is to state the hypotheses to be tested. This

should be done before the equation is estimated because hypotheses devel-

oped after estimation run the risk of being justifications of particular results

rather than tests of the validity of those results.

The null hypothesis typically is a statement of the values that the re-

searcher does not expect. The notation used to specify the null hypothesis 

is “H0:” followed by a statement of the range of values you do not expect. 

1

1. Bayesians, by being forced to state explicitly their prior expectations, tend to do most of their

thinking before estimation, which is a good habit for a number of important reasons. For more

on this approach, see Peter Kennedy, A Guide to Econometrics (Malden, MA: Blackwell, 2008),

pp. 213–231. For more advanced coverage, see Tony Lancaster, An Introduction to Bayesian Econo-

metrics (Oxford: Blackwell Publishing, 2004).
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For example, if you expect a positive coefficient, then you don’t expect a zero

or negative coefficient, and the null hypothesis is:

Null hypothesis H0: � � 0 (the values you do not expect)

The alternative hypothesis typically is a statement of the values that the

researcher expects. The notation used to specify the alternative hypothesis is

“HA:” followed by a statement of the range of values you expect. To continue

our previous example, if you expect a positive coefficient, then the alternative

hypothesis is:

Alternative hypothesis HA: � � 0 (the values you expect)

To test yourself, take a moment and think about what the null and alterna-

tive hypotheses will be if you expect a negative coefficient. That’s right,

they’re:

H0: � � 0

HA: � � 0

The above hypotheses are for a one-sided test because the alternative hy-

potheses have values on only one side of the null hypothesis. Another ap-

proach is to use a two-sided test (or a two-tailed test) in which the alternative

hypothesis has values on both sides of the null hypothesis. For a two-sided

test around zero, the null and alternative hypotheses are:

H0: � � 0

HA: � 2 0

We should note that there are a few rare cases in which we must violate

our rule that the value you expect goes in the alternative hypothesis. Classical

hypothesis testing requires that the null hypothesis contain the equal sign in

some form (whether it be �, �, or �). This requirement means that re-

searchers are forced to put the value they expect in the null hypothesis if their

expectation includes an equal sign. This typically happens when the re-

searcher specifies a specific value rather than a range. Luckily, such exceptions

are unusual in elementary applications.

With the exception of the unusual cases previously mentioned, economists

always put what they expect in the alternative hypothesis. This allows us to

make rather strong statements when we reject a null hypothesis. However, we
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can never say that we accept the null hypothesis; we must always say that we

cannot reject the null hypothesis. As put by Jan Kmenta:

Just as a court pronounces a verdict as not guilty rather than

innocent, so the conclusion of a statistical test is do not reject rather

than accept.2

Type I and Type II Errors

The typical testing technique in econometrics is to hypothesize an expected

sign (or value) for each regression coefficient (except the constant term) and

then to determine whether to reject the null hypothesis. Since the regression

coefficients are only estimates of the true population parameters, it would be

unrealistic to think that conclusions drawn from regression analysis will al-

ways be right.

There are two kinds of errors we can make in such hypothesis testing:

Type I: We reject a true null hypothesis.

Type II: We do not reject a false null hypothesis.

We will refer to these errors as Type I and Type II Errors, respectively.

Suppose we have the following null and alternative hypotheses:

Even if the true parameter is not positive, the particular estimate ob-

tained by a researcher may be sufficiently positive to lead to the rejection of

the null hypothesis that This is a Type I Error; we have rejected the

truth! A Type I Error is graphed in Figure 1.

Alternatively, it’s possible to obtain an estimate of that is close enough

to zero (or negative) to be considered “not significantly positive.” Such a re-

sult may lead the researcher to “accept”3 the hypothesis that when in

truth This is a Type II Error; we have failed to reject a false null hy-

pothesis! A Type II Error is graphed in Figure 2. (The specific value of 

was selected as the true value in that figure purely for illustrative purposes.)

� 5 1

� . 0.

� # 0

�

� # 0.

�

HA: � . 0

H0: � # 0

HYPOTHESIS TESTING

2. Jan Kmenta, Elements of Econometrics (Ann Arbor: University of Michigan Press, 1986), p. 112.

(Emphasis added.)

3. We will consistently put the word accept in quotes whenever we use it. In essence, “accept”

means do not reject.
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0

Distribution of �s
Centered Around 0

�

� Quite Positive

Figure 1 Rejecting a True Null Hypothesis Is a Type I Error

If that is very positive, you might reject a true null 

hypothesis, and conclude incorrectly that the alternative hypothesis

is true.HA: � . 0

H0: � # 0,

� 5 0, but you observe a �̂

1.0

Distribution of �s
Centered Around 1

0
�

� Negative
(But Close to 0)

Figure 2 Failure to Reject a False Null Hypothesis Is a Type II Error

If that is negative but close to zero, you might fail to reject 

a false null hypothesis, and incorrectly ignore the fact that the alternative

hypothesis, , is true.HA: � . 0

H0: � # 0,

� 5 1, but you observe a �̂
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As an example of Type I and Type II Errors, let’s suppose that you’re on a

jury in a murder case.4 In such a situation, the presumption of “innocent

until proven guilty” implies that:

H0: The defendant is innocent.

HA: The defendant is guilty.

What would a Type I Error be? Rejecting the null hypothesis would mean

sending the defendant to jail, so a Type I Error, rejecting a true null hypothe-

sis, would mean:

Type I Error � Sending an innocent defendant to jail.

Similarly,

Type II Error � Freeing a guilty defendant.

Most reasonable jury members would want both levels of error to be quite

small, but such certainty is almost impossible. After all, couldn’t there be a

mistaken identification or a lying witness? In the real world, decreasing the

probability of a Type I Error (sending an innocent defendant to jail) means in-

creasing the probability of a Type II Error (freeing a guilty defendant). If we

never sent an innocent defendant to jail, we’d be freeing quite a few murderers!

Decision Rules of Hypothesis Testing

A decision rule is a method of deciding whether to reject a null hypothesis.

Typically, a decision rule involves comparing a sample statistic with a pre-

selected critical value found in tables such as those in the end of this text.

A decision rule should be formulated before regression estimates are ob-

tained. The range of possible values of is divided into two regions, an

“acceptance” region and a rejection region, where the terms are expressed rela-

tive to the null hypothesis. To define these regions, we must determine a

critical value (or, for a two-tailed test, two critical values) of Thus, a critical

value is a value that divides the “acceptance” region from the rejection region

when testing a null hypothesis. Graphs of these “acceptance” and rejection

regions are presented in Figures 3 and 4.

To use a decision rule, we need to select a critical value. Let’s suppose that

the critical value is 1.8. If the observed is greater than 1.8, we can reject the�̂

�̂.

�̂

HYPOTHESIS TESTING

4. This example comes from and is discussed in much more detail in Ed Leamer, Specification

Searches (New York: John Wiley and Sons, 1978), pp. 93–98.
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0

Distribution of �s

Probability of
Type I Error

1.8
�

“Acceptance” Region Rejection
Region

Figure 3 “Acceptance” and Rejection Regions for a One-Sided Test of

For a one-sided test of vs. the critical value divides the distribu-

tion of (centered around zero on the assumption that H0 is true) into “acceptance”

and rejection regions.

�̂

HA: � . 0,H0: � # 0

�

0

Distribution of �s

Probability of
Type I Error

�

“Acceptance” Region Rejection
Region

Rejection
Region

Figure 4 “Acceptance” and Rejection Regions for a Two-Sided Test of

For a two-sided test of vs. we divided the distribution of into an

“acceptance” region and two rejection regions.

�̂HA: � 2 0,H0: � 5 0

�
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null hypothesis that is zero or negative. To see this, take a look at Figure 3.

Any above 1.8 can be seen to fall into the rejection region, whereas any 

below 1.8 can be seen to fall into the “acceptance” region.

The rejection region measures the probability of a Type I Error if the null

hypothesis is true. Some students react to this news by suggesting that we

make the rejection region as small as possible. Unfortunately, decreasing

the chance of a Type I Error means increasing the chance of a Type II Error

(not rejecting a false null hypothesis). This is because if you make the rejec-

tion region so small that you almost never reject a true null hypothesis,

then you’re going to be unable to reject almost every null hypothesis,

whether they’re true or not! As a result, the probability of a Type II Error

will rise.

Given that, how do you choose between Type I and Type II Errors? The an-

swer is easiest if you know that the cost (to society or the decision maker) of

making one kind of error is dramatically larger than the cost of making the

other. If you worked for the FDA, for example, you’d want to be very sure that

you hadn’t released a product that had horrible side effects. We’ll discuss this

dilemma for the t-test later in this chapter.

The t-Test

The t-test is the test that econometricians usually use to test hypotheses

about individual regression slope coefficients. Tests of more than one coeffi-

cient at a time (joint hypotheses) are typically done with the F-test, pre-

sented in Section 6.

The t-test is easy to use because it accounts for differences in the units of

measurement of the variables and in the standard deviations of the esti-

mated coefficients. More important, the t-statistic is the appropriate test to

use when the stochastic error term is normally distributed and when the

variance of that distribution must be estimated. Since these usually are the

case, the use of the t-test for hypothesis testing has become standard prac-

tice in econometrics.

The t-Statistic

For a typical multiple regression equation:

(1)

we can calculate t-values for each of the estimated coefficients in the equa-

tion. The t-tests are usually done only on the slope coefficients; for these, the

relevant form of the t-statistic for the kth coefficient is

Yi 5 �0 1 �1X1i 1 �2X2i 1 �i

2

�̂�̂
�

HYPOTHESIS TESTING
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(2)tk 5

(�̂
k

2 �
H

0
)

SE(�̂k)
  (k 5 1, 2, . . . , K)

HYPOTHESIS TESTING

where: � the estimated regression coefficient of the kth variable

� the border value (usually zero) implied by the null

hypothesis for 

� the estimated standard error of (that is, the square

root of the estimated variance of the distribution of the

note that there is no “hat” attached to SE because SE

is already defined as an estimate)

How do you decide what border is implied by the null hypothesis? Some null

hypotheses specify a particular value. For these, is simply that value; if 

Other null hypotheses involve ranges, but we are 

concerned only with the value in the null hypothesis that is closest to the

border between the “acceptance” region and the rejection region. This border

value then becomes the then 

the value in the null hypothesis closest to the border is zero, and 

Since most regression hypotheses test whether a particular regression co-

efficient is significantly different from zero, is typically zero, and the

most-used form of the t-statistic becomes

which simplifies to

(3)

or the estimated coefficient divided by the estimate of its standard error. This

is the t-statistic formula used by most computer programs.

For an example of this calculation, let’s consider this equation for the

check volume at Woody’s restaurants:

(4)

N 5 33  R2 5 .579

 t 5 24.42  4.88  2.37

 (2053)  (0.0727)  (0.543)

 Ŷi 5 102,192 2 9075Ni 1  0.3547Pi 1  1.288Ii

tk 5
�̂

k

SE(�̂k)
  (k 5 1, 2, . . . , K)

tk 5
(�̂

k
2 0)

SE(�̂k)
  (k 5 1, 2, . . . , K)

�H0

�H0
5 0.

�H0
. For example, if H0: � $ 0 and HA: � , 0,

H0: � 5 S, then �H0
5 S.

�H0

�̂k;

�̂kSE(�̂k)

�k

�H0

�̂k
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In Equation 4, the numbers in parentheses underneath the estimated regression

coefficients are the estimated standard errors of the estimated and the num-

bers below them are t-values calculated according to Equation 3. The format

used to document Equation 4 is the one we’ll use whenever possible through-

out this text. Note that the sign of the t-value is always the same as that of the es-

timated regression coefficient, and the standard error is always positive.

Using the regression results in Equation 4, let’s calculate the t-value for the

estimated coefficient of P, the population variable. Given the values in Equa-

tion 4 of 0.3547 for and 0.0727 for SE , and given the rel-

evant t-value is indeed 4.88, as specified in Equation 4:

The larger in absolute value this t-value is, the greater the likelihood that the

estimated regression coefficient is significantly different from zero.

The Critical t-Value and the t-Test Decision Rule

To decide whether to reject or not to reject a null hypothesis based on a calcu-

lated t-value, we use a critical t-value. A critical t-value is the value that dis-

tinguishes the “acceptance” region from the rejection region. The critical

t-value, tc, is selected from a t-table (see the critical values of the t-Distribution

Table at the end of this chapter) depending on whether the test is one-sided or

two-sided, on the level of Type I Error you specify and on the degrees of freedom,

which we have defined as the number of observations minus the number of co-

efficients estimated (including the constant) or The level of Type I

Error in a hypothesis test is also called the level of significance of that test and will

be discussed in more detail later in this section. The t-table was created to save

time during research; it consists of critical t-values given specific areas under-

neath curves such as those in Figure 3 for Type I Errors. A critical t-value is thus a

function of the probability of Type I Error that the researcher wants to specify.

Once you have obtained a calculated t-value tk and a critical t-value tc, you

reject the null hypothesis if the calculated t-value is greater in absolute value

than the critical t-value and if the calculated t-value has the sign implied by HA.

Thus, the rule to apply when testing a single regression coefficient is that

you should:

N 2 K 2 1.

tP 5
�̂

P

SE(�̂P)
5

0.3547

0.0727
5 4.88

H0: �P # 0,(�̂P)�̂P

�̂s,

HYPOTHESIS TESTING

Reject H0 if |tk| � tc and if tk also has the sign implied by HA. Do not

reject H0 otherwise.
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This decision rule works for calculated t-values and critical t-values for one-

sided hypotheses around zero:

for two-sided hypotheses around zero:

for one-sided hypotheses based on hypothesized values other than zero:

and for two-sided hypotheses based on hypothesized values other than zero:

The decision rule is the same: Reject the null hypothesis if the appropriately

calculated t-value, tk, is greater in absolute value than the critical t-value, tc, as

long as the sign of tk is the same as the sign of the coefficient implied in HA.

Otherwise, do not reject H0. Always use Equation 2 whenever the hypothe-

sized value is not zero.

Statistical Table B-1 contains the critical values tc for varying degrees of free-

dom and levels of significance. The columns indicate the levels of significance

according to whether the test is one-sided or two-sided, and the rows indicate

the degrees of freedom. For an example of the use of this table and the decision

rule, let’s return to the Woody’s restaurant example and, in particular, to the 

t-value for calculated in the previous section. Recall that we hypothesized

that population’s coefficient would be positive, so this is a one-sided test:

HA: �p . 0

H0: �p # 0

�̂P

HA: �k 2 S

H0: �k 5 S

HA: �k , S

H0: �k $ S

HA: �k . S

H0: �k # S

HA: �k 2 0

H0: �k 5 0

HA: �k , 0

H0: �k $ 0

HA: �k . 0

H0: �k # 0

HYPOTHESIS TESTING
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There are 29 degrees of freedom (equal to in this

regression, so the appropriate t-value with which to test the calculated 

t-value is a one-tailed critical t-value with 29 degrees of freedom. To find this

value, pick a level of significance, say 5 percent, and turn to Statistical Table B-1.

Take a look for yourself. Do you agree that the number there is 1.699?

Given that, should you reject the null hypothesis? The decision rule is to

reject H0 if |tk| � tc and if tk has the sign implied by HA. Since the 5-percent,

one-sided, 29 degrees of freedom critical t-value is 1.699, and since the sign

implied by HA is positive, the decision rule (for this specific case) becomes:

Reject H0 if |tP| � 1.699 and if tP is positive

or, combining the two conditions:

Reject H0 if tP � 1.699

What is tP? In the previous section, we found that tP was �4.88, so we would

reject the null hypothesis and conclude that population does indeed tend to

have a positive relationship with Woody’s check volume (holding the other

variables in the equation constant).

Note from Statistical Table B-1 that the critical t-value for a one-tailed test

at a given level of significance is exactly equal to the critical t-value for a two-

tailed test at twice the level of significance as the one-tailed test. This relation-

ship between one-sided and two-sided tests is illustrated in Figure 5. The crit-

ical value tc � 1.699 is for a one-sided, 5-percent level of significance, but it

also represents a two-sided, 10-percent level of significance because if one tail

represents 5 percent, then both tails added together represent 10 percent.

Choosing a Level of Significance

To complete the previous example, it was necessary to pick a level of signifi-

cance before a critical t-value could be found in Statistical Table B-1. The

words “significantly positive” usually carry the statistical interpretation that

was rejected in favor of according to the pre-

established decision rule, which was set up with a given level of significance.

The level of significance indicates the probability of observing an estimated

t-value greater than the critical t-value if the null hypothesis were correct. It

measures the amount of Type I Error implied by a particular critical t-value. If

the level of significance is 10 percent and we reject the null hypothesis at that

level, then this result would have occurred only 10 percent of the time that

the null hypothesis was indeed correct.

HA (� . 0)H0 (� # 0)

N 2 K 2 1, or 33 2 3 2 1)

HYPOTHESIS TESTING

138



HYPOTHESIS TESTING

How should you choose a level of significance? Most beginning econome-

tricians (and many published ones, too) assume that the lower the level of

significance, the better. After all, they say, doesn’t a low level of significance

guarantee a low probability of making a Type I Error? Unfortunately, an ex-

tremely low level of significance also dramatically increases the probability of

making a Type II Error. Therefore, unless you’re in the unusual situation of

not caring about mistakenly “accepting” a false null hypothesis, minimizing

the level of significance is not good standard practice.

Instead, we recommend using a 5-percent level of significance except in

those circumstances when you know something unusual about the relative

costs of making Type I and Type II Errors. If you know that a Type II Error will

be extremely costly, for example, then it makes sense to consider using a 10-

percent level of significance when you determine your critical value. Such

judgments are difficult, however, so we encourage beginning researchers to

adopt a 5-percent level of significance as standard.

0 1.699

5% One-Sided

Level of Significance

21.699

10% Two-Sided Level of Significance

Figure 5 One-Sided and Two-Sided t-Tests

The tc for a one-sided test at a given level of significance is equal exactly to the tc for a

two-sided test with twice the level of significance of the one-sided test. For example, 

tc � 1.699 for a 10-percent two-sided and for a 5-percent one-sided test (for 29 degrees 

of freedom).
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If we can reject a null hypothesis at the 5-percent level of significance, we

can summarize our results by saying that the coefficient is “statistically signif-

icant” at the 5-percent level. Since the 5-percent level is arbitrary, we shouldn’t

jump to conclusions about the value of a variable simply because its coeffi-

cient misses being significant by a small amount; if a different level of signif-

icance had been chosen, the result might have been different.

Some researchers avoid choosing a level of significance by simply stating

the lowest level of significance possible for each estimated regression coeffi-

cient. The use of the resulting significance levels, called p-values, is an alterna-

tive approach to the t-test. p-values are described later in this chapter.

Other researchers produce tables of regression results, typically without hy-

pothesized signs for their coefficients, and then mark “significant” coefficients

with asterisks. The asterisks indicate when the t-score is larger in absolute

value than the two-sided 10-percent critical value (which merits one asterisk),

the two-sided 5-percent critical value (**), or the two-sided 1-percent critical

value (***). Such a use of the t-value should be regarded as a descriptive

rather than a hypothesis-testing use of statistics.

Now and then researchers will use the phrase “degree of confidence” or

“level of confidence” when they test hypotheses. What do they mean? The level

of confidence is nothing more than 100 percent minus the level of significance.

Thus a t-test for which we use a 5-percent level of significance can also be said

to have a 95-percent level of confidence. Since the two terms have identical

meanings, we will use level of significance throughout this text. Another reason

we prefer the term level of significance to level of confidence is to avoid any

possible confusion with the related concept of confidence intervals.

Confidence Intervals

A confidence interval is a range that contains the true value of an item a

specified percentage of the time.5 This percentage is the level of confidence

associated with the level of significance used to choose the critical t-value in

the interval. For an estimated regression coefficient, the confidence interval

can be calculated using the two-sided critical t-value and the standard error of

the estimated coefficient:

(5)Confidence interval 5 �̂ 6 tc ? SE(�̂)

HYPOTHESIS TESTING

5. Technically, if we could take repeated samples, a 90-percent confidence interval would con-

tain the true value in 90 out of 100 of these repeated samples.
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As an example, let’s return to Equation 4 and our t-test of the significance of

the estimate of the coefficient of population in that equation:

(4)

What would a 90 percent confidence interval for look like? Well,

and so all we need is a 90-percent two-sided

critical t-value for 29 degrees of freedom. As can be seen in Statistical Table 

B-1, this tc � 1.699. Substituting these values into Equation 5, we get:

In other words, we are confident that the true coefficient will fall between

0.2312 and 0.4782 90 percent of the time.

What’s the relationship between confidence intervals and two-sided hy-

pothesis testing? It turns out that if a hypothesized border value, falls

within the 90-percent confidence interval for an estimated coefficient, then

we will not be able to reject the null hypothesis at the 10-percent level of

significance in a two-sided test. If, on the other hand, falls outside the

90-percent confidence interval, then we can reject the null hypothesis.

Perhaps the most important econometric use of confidence intervals is

in forecasting. Many decision makers find it practical to be given a fore-

cast of a range of values because they find that a specific point forecast

provides them with little information about the reliability or variability

of the forecast.

p-Values

There’s an alternative approach to the t-test. This alternative, based on a mea-

sure called the p-value, or marginal significance level, is growing in popularity.

A p-value for a t-score is the probability of observing a t-score that size or

larger (in absolute value) if the null hypothesis were true. Graphically, it’s the

area under the curve of the t-distribution between the actual t-score and in-

finity (assuming that the sign of is as expected).

A p-value is a probability, so it runs from 0 to 1. It tells us the lowest level

of significance at which we could reject the null hypothesis (assuming that

�̂

�H0

�H0
,

 5 0.3547 6 0.1235

 90-percent confidence interval around �̂p 5 0.3547 6 1.699 ? 0.0727

SE(�̂p) 5 0.0727,�̂p 5 0.3547

�̂p

N 5 33  R2 5 .579

 t 5 24.42  4.88  2.37

 (2053)  (0.0727)  (0.543)

 Ŷi 5 102,192 2 9075Ni 1  0.3547Pi 1  1.288Ii
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the estimate is in the expected direction). A small p-value casts doubt on the

null hypothesis, so to reject a null hypothesis, we need a low p-value.

How do we calculate a p-value? One option would be to comb through

pages and pages of statistical tables, looking for the level of significance that

exactly matches the regression result. That could take days! Luckily, standard

regression software packages calculate p-values automatically and print them

out for every estimated coefficient.6 You’re thus able to read p-values off your

regression output just as you would your s. Be careful, however, because

virtually every regression package prints out p-values for two-sided alternative

hypotheses. Such two-sided p-values include the area in both “tails,” so two-

sided p-values are twice the size of one-sided ones. If your test is one-sided,

you need to divide the p-value in your regression output by 2 before doing

any tests.

How would you use a p-value to run a t-test? If your chosen level of signif-

icance is 5 percent and the p-value is less than .05, then you can reject your

null hypothesis as long as the sign is in the expected direction. Thus the 

p-value decision rule is:

�̂

HYPOTHESIS TESTING

Reject H0 if p-valueK � the level of significance and if has the sign

implied by HA.

�̂K

Let’s look at an example of the use of a p-value to run a t-test. If we return to

the Woody’s example of Equation 4 and run a one-sided test on the coefficient

of I, the income variable, we have the following null and alternative hypotheses:

H0: �I � 0

HA: �I � 0

As you can see from the regression output for the Woody’s equation on page

81 or 83 the p-value for is .0246. This is a two-sided p-value and we’re run-

ning a one-sided test, so we need to divide .0246 by 2, getting .0123. Since

.0123 is lower than our chosen level of significance of .05, and since the sign

of agrees with that in HA, we can reject H0. Not surprisingly, this is the

same result we’d get if we ran a conventional t-test.

�I
ˆ

�I
ˆ

6. Different software packages use different names for p-values. EViews, for example, uses the

term “Prob.” Stata, on the other hand, uses P � |t|. Note that such p-values are for H0: � � 0.
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p-values have a number of advantages. They’re easy to use, and they allow

readers of research to choose their own levels of significance instead of being

forced to use the level chosen by the original researcher. In addition, p-values

convey information to the reader about the relative strength with which we

can reject a null hypothesis. Because of these benefits, many researchers use 

p-values on a consistent basis.

Despite these advantages, we will not use p-values in this text. We think that

beginning researchers benefit from learning the standard t-test procedure, par-

ticularly since it’s more likely to force them to remember to hypothesize the

sign of the coefficient and to use a one-sided test when a particular sign can be

hypothesized. In addition, if you know how to use the standard t-test approach,

it’s easy to switch to the p-value approach, but the reverse isn’t necessarily true.

However, we acknowledge that practicing econometricians today spend far

more energy estimating models and coefficients than they spend testing hy-

potheses. This is because most researchers are more confident in their theo-

ries (say, that demand curves slope downward) than they are in the quality of

their data or their regression methods.7 In such situations, where the statisti-

cal tools are being used more for descriptive purposes than for hypothesis

testing purposes, it’s clear that the use of p-values saves time and conveys

more information than does the standard t-test procedure.

Examples of t-Tests

Examples of One-Sided t-Tests

The most common use of the one-sided t-test is to determine whether a re-

gression coefficient is significantly different from zero in the direction pre-

dicted by theory. Let’s face it: if you expect a positive sign for a coefficient and

you get a negative it’s hard to reject the possibility that the true might be

negative (or zero). On the other hand, if you expect a positive sign and get a

positive things get a bit tricky. If is positive but fairly close to zero, then a

one-sided t-test should be used to determine whether the is different

enough from zero to allow the rejection of the null hypothesis. Recall that in

order to be able to control the amount of Type I Error we make, such a theory

implies an alternative hypothesis of (the expected sign) and a null

hypothesis of Let’s look at some complete examples of these

kinds of one-sided t-tests.

H0: � # 0.

HA: � . 0

�̂
�̂�̂,

��̂,

3

HYPOTHESIS TESTING

7. With thanks to Frank Wykoff.
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Consider a simple model of the aggregate retail sales of new cars that hy-

pothesizes that sales of new cars (Y) are a function of real disposable income

(X1) and the average retail price of a new car adjusted by the consumer price

index (X2). Suppose you spend some time reviewing the literature on the au-

tomobile industry and are inspired to test a new theory. You decide to add a

third independent variable, the number of sports utility vehicles sold (X3), to

take account of the fact that some potential new car buyers now buy car-like

trucks instead. You therefore hypothesize the following model:

(6)

is expected to be positive and negative. This makes sense, since

you’d expect higher incomes, lower prices, or lower numbers of sports utility

vehicles sold to increase new car sales, holding the other variables in the

equation constant. The four steps to use when working with the t-test are:

1. Set up the null and alternative hypotheses.

2. Choose a level of significance and therefore a critical t-value.

3. Run the regression and obtain an estimated t-value (or t-score).

4. Apply the decision rule by comparing the calculated t-value with the

critical t-value in order to reject or not reject the null hypothesis.

Let’s look at each step in more detail. 

1. Set up the null and alternative hypotheses.8 From Equation 6, the one-

sided hypotheses are set up as:

 HA: �3 , 0

 3. H0: �3 $ 0

 HA: �2 , 0

 2. H0: �2 $ 0

 HA: �1 . 0

 1. H0: �1 # 0

�2 and �3�1

Y 5 f( X
1

1, X
2

2, X
2

3) 1 �

HYPOTHESIS TESTING

8. The null hypothesis can be stated either as or because the value used

to test is the value in the null hypothesis closest to the border between the accep-

tance and the rejection regions. When the amount of Type I Error is calculated, this border

value of is the one that is used, because over the whole range of , the value gives

the maximum amount of Type I Error. The classical approach limits this maximum amount to a

preassigned level—the chosen level of significance.

� 5 0� # 0�

H0: � # 0

H0: � 5 0H0: � # 0
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Remember that a t-test typically is not run on the estimate of the con-

stant term 

2. Choose a level of significance and therefore a critical t-value. Assume that

you have considered the various costs involved in making Type I and

Type II Errors and have chosen 5 percent as the level of significance

with which you want to test. There are 10 observations in the data set

that is going to be used to test these hypotheses, and so there are

degrees of freedom. At a 5-percent level of sig-

nificance, the critical t-value, tc, can be found in Statistical Table B-1 to

be 1.943. Note that the level of significance does not have to be the

same for all the coefficients in the same regression equation. It could

well be that the costs involved in an incorrectly rejected null hypothe-

sis for one coefficient are much higher than for another, so lower

levels of significance would be used. In this equation, though, for all

three variables:

tc � 1.943

3. Run the regression and obtain an estimated t-value. You now use the data

(annual from 2000 to 2009) to run the regression on your OLS com-

puter package, getting:

(7)

where: Y � new car sales (in hundreds of thousands of units) in

year t

X1 � real U.S. disposable income (in hundreds of billions

of dollars)

X2 � the average retail price of a new car in year t (in dollars)

X3 � the number of sports utility vehicles sold in year t 

(in millions)

Once again, we use our standard documentation notation, so the

figures in parentheses are the estimated standard errors of the The 

t-values to be used in these hypothesis tests are printed out by standard

OLS programs:

(3)tk 5
�̂

k

SE(�̂k)
  (k 5 1, 2, . . . , K)

�̂s.

 t 5 2.1  5.6  2 0.1

 (2.38)  (0.00022)  (71.38)

 Ŷt 5 1.30 1 4.91X1t 1  0.00123X2t 2  7.14X3t

10 2 3 2 1 5 6

�0.
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For example, the estimated coefficient of X3 divided by its estimated stan-

dard error is Note that since standard errors are al-

ways positive, a negative estimated coefficient implies a negative t-value.

4. Apply the decision rule by comparing the calculated t-value with the critical 

t-value in order to reject or not reject the null hypothesis. As stated in Sec-

tion 2, the decision rule for the t-test is to

Reject H0 if |tk| � tc and if tk also has the sign implied by HA.

Do not reject H0 otherwise.

What would these decision rules be for the three hypotheses, given the rele-

vant critical t-value (1.943) and the calculated t-values?

and if 2.1 is positive.

In the case of disposable income, you reject the null hypothesis that 

since 2.1 is indeed greater than 1.943. The result (that is, is as

you expected on the basis of theory, since the more income in the country,

the more new car sales you’d expect.

if |5.6| � 1.943 and if 5.6 is negative.

For prices, the t-statistic is large in absolute value (being greater than 1.943)

but has a sign that is contrary to our expectations, since the alternative hy-

pothesis implies a negative sign. Since both conditions in the decision rule

must be met before we can reject H0, you cannot reject the null hypothesis

that That is, you cannot reject the hypothesis that prices have a zero

or positive effect on new car sales! This is an extremely small data set that cov-

ers a time period of dramatic economic swings, but even so, you’re surprised

by this result. Despite your surprise, you stick with your contention that prices

belong in the equation and that their expected impact should be negative.

Notice that the coefficient of X2 is quite small, 0.00123, but that this size

has no effect on the t-calculation other than its relationship to the standard

error of the estimated coefficient. In other words, the absolute magnitude of

any is of no particular importance in determining statistical significance

because a change in the units of measurement of X2 will change both

in exactly the same way, so the calculated t-value (the ratio of

the two) is unchanged.

For sales of sports utility vehicles, the coefficient is not statistically differ-

ent from zero, since and you cannot reject the null hypothesis|20.1| , 1.943,

�̂3

For �3: Reject H0 if |20.1| . 1.943 and if 20.1 is negative.

�̂2 and SE(�̂2)

�̂

�2 $ 0.

For �2: Reject H0:

HA: �1 . 0)

�1 # 0

For �1: Reject H0 if |2.1| . 1.943

27.14>71.38 5 20.1.

HYPOTHESIS TESTING
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0
t

1.943 2.1

t�1

H0 : �1 < 0

HA : �1 > 0

Rejection
Region

“Acceptance”
Region

20.1
t

21.943 5.6

H0 : �2 > 0

HA : �2 < 0

Rejection
Region

“Acceptance”
Region

H0 : �3 > 0

HA : �3 < 0

t�3

t�2

Figure 6 One-Sided t-Tests of the Coefficients of the New 

Car Sales Model

Given the estimates in Equation 7 and the critical t-value of 1.943 for a 5-percent level

of significance, one-sided, 6 degrees of freedom t-test, we can reject the null hypothesis

for , but not for �̂2 or �̂3.�̂1

that even though the estimated coefficient has the sign implied by the

alternative hypothesis. After thinking this model over again, you come to the

conclusion that you were hasty in adding the variable to the equation.

Figure 6 illustrates all three of these outcomes by plotting the critical t-value

and the calculated t-values for all three null hypotheses on a t-distribution that

is centered around zero (the value in the null hypothesis closest to the border

between the acceptance and rejection regions). Students are urged to analyze

� $ 0
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the results of tests on the estimated coefficients of Equation 7 assuming differ-

ent numbers of observations and different levels of significance. Exercise 2 has a

number of such specific combinations, with answers at the end of the chapter.

The purpose of this example is to provide practice in testing hypotheses, and

the results of such a poorly thought-out equation for such a small number of

observations should not be taken too seriously. Given all that, however, it’s still

instructive to note that you did not react the same way to your inability to re-

ject the null hypotheses for the price and sports utility vehicle variables. That is,

the failure of the sports utility vehicle variable’s coefficient to be significantly

negative caused you to realize that perhaps the addition of this variable was ill-

advised. The failure of the price variable’s coefficient to be significantly nega-

tive did not cause you to consider the possibility that price has no effect on

new car sales. Put differently, estimation results should never be allowed to

cause you to want to adjust theoretically sound variables or hypotheses, but if

they make you realize you have made a serious mistake, then it would be fool-

hardy to ignore that mistake. What to do about the positive coefficient of price,

on the other hand, is what the “art” of econometrics is all about. Surely a posi-

tive coefficient is unsatisfactory, but throwing the price variable out of the

equation seems even more so. Possible answers to such issues are addressed

more than once in the chapters that follow.

Examples of Two-Sided t-Tests

Although most hypotheses in regression analysis should be tested with one-

sided t-tests, two-sided t-tests are appropriate in particular situations.

Researchers sometimes encounter hypotheses that should be rejected if

estimated coefficients are significantly different from zero, or a specific non-

zero value, in either direction. This situation requires a two-sided t-test. The

kinds of circumstances that call for a two-sided test fall into two categories:

1. Two-sided tests of whether an estimated coefficient is significantly dif-

ferent from zero, and

2. Two-sided tests of whether an estimated coefficient is significantly dif-

ferent from a specific nonzero value.

Let’s take a closer look at these categories:

1. Testing whether a is statistically different from zero. The first case

for a two-sided test of arises when there are two or more conflicting

hypotheses about the expected sign of a coefficient. For example, 

in the Woody’s restaurant equation, the impact of the average 

income of an area on the expected number of Woody’s customers in 

�̂
�̂
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H0 : �I = 0

HA : �I = 0
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t�I

Figure 7 Two-Sided t-Test of the Coefficient of Income 

in the Woody’s Model

Given the estimates of Equation 4 and the critical t-values of for a 5-percent

level of significance, two-sided, 29 degrees of freedom t-test, we can reject the null

hypothesis that �I 5 0.

62.045

that area is ambiguous. A high-income neighborhood might have more

total customers going out to dinner, but those customers might decide

to eat at a more formal restaurant than Woody’s. As a result, you might

run a two-sided t-test around zero to determine whether  the estimated

coefficient of income is significantly different from zero in either direc-

tion. In other words, since there are reasonable cases to be made for ei-

ther a positive or a negative coefficient, it is appropriate to test the for

income with a two-sided t-test:

As Figure 7 illustrates, a two-sided test implies two different rejection

regions (one positive and one negative) surrounding the acceptance 

region. A critical t-value, tc, must be increased in order to achieve the

HA: �I 2 0

H0: �I 5 0

�̂
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same level of significance with a two-sided test as can be achieved with a

one-sided test.9 As a result, there is an advantage to testing hypotheses

with a one-sided test if the underlying theory allows because, for the same

t-values, the possibility of Type I Error is half as much for a one-sided test

as for a two-sided test. In cases where there are powerful theoretical argu-

ments on both sides, however, the researcher has no alternative to using a

two-sided t-test around zero. To see how this works, let’s follow through

the Woody’s income variable example in more detail.

a. Set up the null and alternative hypotheses.

b. Choose a level of significance and therefore a critical t-value. You decide

to keep the level of significance at 5 percent, but now this amount

must be distributed between two rejection regions for 29 degrees of

freedom. Hence, the correct critical t-value is 2.045 (found in Statis-

tical Table B-1 for 29 degrees of freedom and a 5-percent, two-sided

test). Note that, technically, there now are two critical t-values,

�2.045 and 

c. Run the regression and obtain an estimated t-value. Since the value im-

plied by the null hypothesis is still zero, the estimated t-value of

�2.37 given in Equation 4 is applicable.

d. Apply the decision rule by comparing the calculated t-value with the criti-

cal t-value in order to reject or not reject the null hypothesis. We once

again use the decision rule stated in Section 2, but since the alterna-

tive hypothesis specifies either sign, the decision rule simplifies to:

In this case, you reject the null hypothesis that equals zero because

2.37 is greater than 2.045 (see Figure 7). Note that the positive sign im-

plies that, at least for Woody’s restaurants, income increases customer

volume (holding constant population and competition). Given this re-

sult, we might well choose to run a one-sided t-test on the next year’s

Woody’s data set. For more practice with two-sided t-tests, see Exercise 6.

�I

For �I Reject H0 if |2.37| . 2.045

22.045.

HA: �I 2 0

H0: �I 5 0

HYPOTHESIS TESTING

9. See Figure 5. In that figure, the same critical t-value has double the level of significance for a

two-sided test as for a one-sided test.
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2. Two-sided t-tests of a specific nonzero coefficient value. The second

case for a two-sided t-test arises when there is reason to expect a specific

nonzero value for an estimated coefficient. For example, if a previous

researcher has stated that the true value of some coefficient almost

surely equals a particular number, then that number would be the 

one to test by creating a two-sided t-test around the hypothesized

value, To the extent that you feel that the hypothesized value is

theoretically correct, you also violate the normal practice of using the

null hypothesis to state the hypothesis you expect to reject.10

In such a case, the null and alternative hypotheses become:

where is the specific nonzero value hypothesized.

Since the hypothesized value is no longer zero, the formula with

which to calculate the estimated t-value is Equation 2, repeated here:

(2)

This t-statistic is still distributed around zero if the null hypothesis is

correct, because we have subtracted from the estimated regression 

coefficient whose expected value is supposed to be is

true. Since the t-statistic is still centered around zero, the decision rule

developed earlier still is applicable. For practice with this kind of t-test,

see Exercise 6.

Limitations of the t-Test

A problem with the t-test is that it is easy to misuse; t-scores are printed out

by computer regression packages and the t-test seems easy to work with, so

beginning researchers sometimes attempt to use the t-test to “prove” things

4

�H0
 when H0

�H0

tk 5

(�̂
k

2 �
H

0
)

SE(�̂k)
  (k 5 1, 2, . . . , K)

�
�H0

HA: �k 2 �H0

H0: �k 5 �H0

�H0
.

�H0
,
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10. Instead of being able to reject an incorrect theory based on the evidence, the researcher who

violates the normal practice is reduced to “not rejecting” the value expected to be true. How-

ever, there are many theories that are not rejected by the data, and the researcher is left with a

regrettably weak conclusion. One way to accommodate such violations is to increase the level

of significance, thereby increasing the likelihood of a Type I Error.

�
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that it was never intended to even test. For that reason, it’s probably just as

important to know the limitations of the t-test11 as it is to know the appli-

cations of that test. Perhaps the most important of these limitations is that

the usefulness of the t-test diminishes rapidly as more and more specifica-

tions are estimated and tested. The purpose of the present section is to give

additional examples of how the t-test should not be used.

The t-Test Does Not Test Theoretical Validity

Recall that the purpose of the t-test is to help the researcher make inferences

about a particular population coefficient based on an estimate obtained from

a sample of that population. Some beginning researchers conclude that any

statistically significant result is also a theoretically correct one. This is danger-

ous because such a conclusion confuses statistical significance with theoreti-

cal validity.

Consider for instance, the following estimated regression that explains the

consumer price index in the United Kingdom:12

(8)

Apply the t-test to these estimates. Do you agree that the two slope coeffi-

cients are statistically significant? As a quick check of Statistical Table B-1

shows, the critical t-value for 18 degrees of freedom and a 5-percent two-

tailed level of significance is 2.101, so we can reject the null hypothesis of no

effect in these cases and conclude that C and C2 are indeed statistically signif-

icant variables in explaining P.

The catch is that P is the consumer price index and C is the cumulative

amount of rainfall in the United Kingdom! We have just shown that rain is

statistically significant in explaining consumer prices; does that also show

that the underlying theory is valid? Of course not. Why is the statistical result

so significant? The answer is that by chance there is a common trend on both

R2 5 .982  N 5 21

 t 5 213.9  19.5

 (0.23)  (0.02)

 P̂ 5 10.9 2 3.2C 1  0.39C2
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11. These limitations also apply to the use of p-values. For example, many beginning students

conclude that the variable with the lowest p-value is the most important variable in an equa-

tion, but this is just as false for p-values as it is for the t-test.

12. These results, and others similar to them, can be found in David F. Hendry, “Econometrics—

Alchemy or Science?” Economica, Vol. 47, pp. 383–406.
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sides of the equation. This common trend does not have any meaning. The

moral should be clear: Never conclude that statistical significance, as shown

by the t-test, is the same as theoretical validity.

Occasionally, estimated coefficients will be significant in the direction op-

posite from that hypothesized, and some beginning researchers may be

tempted to change their hypotheses. For example, a student might run a regres-

sion in which the hypothesized sign is positive, get a “statistically significant”

negative sign, and be tempted to change the theoretical expectations to “ex-

pect” a negative sign after “rethinking” the issue. Although it is admirable to be

willing to reexamine incorrect theories on the basis of new evidence, that evi-

dence should be, for the most part, theoretical in nature. If the evidence causes

a researcher to go back to the theoretical underpinnings of a model and find a

mistake, then the null hypothesis should be changed, but then this new hy-

pothesis should be tested using a completely different data set. After all, we al-

ready know what the result will be if the hypothesis is tested on the old one.

The t-Test Does Not Test “Importance”

One possible use of a regression equation is to help determine which inde-

pendent variable has the largest relative effect (importance) on the dependent

variable. Some beginning researchers draw the unwarranted conclusion that

the most statistically significant variable in their estimated regression is also

the most important in terms of explaining the largest portion of the move-

ment of the dependent variable. Statistical significance indicates the likeli-

hood that a particular sample result could have been obtained by chance, but

it says little—if anything—about which variables determine the major portion

of the variation in the dependent variable. To determine importance, a mea-

sure such as the size of the coefficient multiplied by the average size of the in-

dependent variable or the standard error of the independent variable would

make much more sense. Consider the following hypothetical equation:

(9)

where: Y � mail-order sales of O’Henry’s Oyster Recipes

X1 � hundreds of dollars of advertising expenditures in Gourmets’

Magazine

X2 � hundreds of dollars of advertising expenditures on the Julia

Adult TV Cooking Show

R2 5 .90  N 5 30

 t 5 10.0       8.0

 (1.0)  (25.0)

 Ŷ 5 300.0 1 10.0X1 1  200.0X2
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(Assume that all other factors, including prices, quality, and competition, re-

main constant during the estimation period.)

Where should O’Henry be spending his advertising money? That is, which

independent variable has the biggest impact per dollar on Y? Given that X2’s

coefficient is 20 times X1’s coefficient, you’d have to agree that X2 is more

important as defined, and yet which coefficient is more statistically significantly

different from zero? With a t-score of 10.0, X1 is more statistically significant

than X2 and its 8.0, but all that means is that we have more evidence that the co-

efficient is positive, not that the variable itself is necessarily more important in

determining Y. 

The t-Test Is Not Intended for Tests of the Entire Population

The t-test helps make inferences about the true value of a parameter from

an estimate calculated from a sample of the population (the group from

which the sample is being drawn). As the size of the sample approaches the

size of the population, an unbiased estimated coefficient approaches the

true population value. If a coefficient is calculated from the entire popula-

tion, then an unbiased estimate already measures the population value and

a significant t-test adds nothing to this knowledge. One might forget this

property and attach too much importance to t-scores that have been ob-

tained from samples that approximate the population in size. All the t-test

does is help decide how likely it is that a particular small sample will cause

a researcher to make a mistake in rejecting hypotheses about the true popu-

lation parameters.

This point can perhaps best be seen by remembering that the t-score is the

estimated regression coefficient divided by the standard error of the esti-

mated regression coefficient. If the sample size is large enough to approach

the population, then the standard error will fall close to zero because the dis-

tribution of estimates becomes more and more narrowly distributed around

the true parameter (if this is an unbiased estimate). The standard error will

approach zero as the sample size approaches infinity. Thus, the t-score will

eventually become:

The mere existence of a large t-score for a huge sample has no real substan-

tive significance, because if the sample size is large enough, you can reject al-

most any null hypothesis! It is true that sample sizes in econometrics can

t 5
�̂

0
5 `
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never approach infinity, but many are quite large; and others contain the en-

tire population in one data set.13

Summary

1. Hypothesis testing makes inferences about the validity of specific eco-

nomic (or other) theories from a sample of the population for which

the theories are supposed to be true. The four basic steps of hypothe-

sis testing (using a t-test as an example) are:

a. Set up the null and alternative hypotheses.

b. Choose a level of significance and, therefore, a critical t-value.

c. Run the regression and obtain an estimated t-value.

d. Apply the decision rule by comparing the calculated t-value with the

critical t-value in order to reject or not reject the null hypothesis.

2. The null hypothesis states the range of values that the regression coef-

ficient is expected to take on if the researcher’s theory is not correct.

The alternative hypothesis is a statement of the range of values that

the regression coefficient is expected to take if the researcher’s theory

is correct.

3. The two kinds of errors we can make in such hypothesis testing are:

Type I: We reject a null hypothesis that is true.

Type II: We do not reject a null hypothesis that is false.

4. The t-test tests hypotheses about individual coefficients from regres-

sion equations. The form for the t-statistic is

In many regression applications, is zero. Once you have calcu-

lated a t-value and chosen a critical t-value, you reject the null hypoth-

esis if the t-value is greater in absolute value than the critical t-value

and if the t-value has the sign implied by the alternative hypothesis.

�H0

tk 5

(�̂
k

2 �
H

0
)

SE(�̂k)
  (k 5 1, 2, . . . , K)

5
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13. D. N. McCloskey, “The Loss Function Has Been Mislaid: The Rhetoric of Significance Tests,”

American Economic Review, Vol. 75, No. 2, p. 204.
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5. The t-test is easy to use for a number of reasons, but care should be

taken when using the t-test to avoid confusing statistical significance

with theoretical validity or empirical importance.

EXERCISES

(The answer to Exercise 2 is at the end of the chapter.)

1. Write the meaning of each of the following terms without referring to

the book (or your notes), and compare your definition with the ver-

sion in the text for each.

a. null hypothesis

b. alternative hypothesis

c. Type I Error

d. level of significance

e. two-sided test

f. decision rule

g. critical value

h. t-statistic

i. confidence interval

j. p-value

2. Return to Section 3 and test the hypotheses implied by Equation 6

with the results in Equation 7 for all three coefficients under the fol-

lowing circumstances:

a. 10 percent significance and 15 observations

b. 10 percent significance and 28 observations

c. 1 percent significance and 10 observations

3. Create null and alternative hypotheses for the following coefficients:

a. the impact of height on weight

b. all the coefficients in Equation A in Exercise 7, Chapter 2

c. all the coefficients in Y � f(X1, X2, and X3) where Y is total gasoline

used on a particular trip, X1 is miles traveled, X2 is the weight of the

car, and X3 is the average speed traveled

d. the impact of the decibel level of the grunt of a shot-putter on the

length of the throw involved (shot-putters are known to make loud

noises when they throw, but there is little theory about the impact

of this yelling on the length of the put). Assume all relevant “non-

grunt” variables are included in the equation.

HYPOTHESIS TESTING
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4. Think of examples other than the ones in this chapter in which:

a. It would be more important to keep the likelihood of a Type I Error

low than to keep the likelihood of a Type II Error low.

b. It would be more important to keep the likelihood of a Type II

Error low than to keep the likelihood of a Type I Error low.

5. Return to Section 2 and test the appropriate hypotheses with the

results in Equation 4 for all three coefficients under the following cir-

cumstances:

a. 5 percent significance and 6 degrees of freedom

b. 10 percent significance and 29 degrees of freedom

c. 1 percent significance and 2 degrees of freedom

6. Using the techniques of Section 3, test the following two-sided hy-

potheses:

a. For Equation 9, test the hypothesis that:

at the 5-percent level of significance.

b. For Equation 4, test the hypothesis that:

at the 1-percent level of significance.

c. For Equation 7, test the hypothesis that:

at the 5-percent level of significance.

7. For all three tests in Exercise 6, under what circumstances would you

worry about possible violations of the principle that the null hypoth-

esis contains that which you do not expect to be true? In particular,

what would your theoretical expectations have to be in order to avoid

violating this principle in Exercise 6a?

8. Consider the following hypothetical equation for a sample of di-

vorced men who failed to make at least one child support payment in

the last four years (standard errors in parentheses):

 (0.10)  (20.0)  (1.00)  (3.0)  (0.05)

 P̂i 5 2.0 1 0.50Mi 1  25.0Yi 1  0.80Ai 1  3.0Bi 2  0.15Ci

HA: �2 2 0

H0: �2 5 0

HA: �3 2 0

H0: �3 5 0

HA: �2 2 160.0

H0: �2 5 160.0
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where: Pi � the number of monthly child support payments that

the ith man missed in the last four years

Mi � the number of months the ith man was unemployed

in the last four years

Yi � the percentage of disposable income that goes to

child support payments for the ith man

Ai � the age in years of the ith man

Bi � the religious beliefs of the ith man (a scale of 1 to 4,

with 4 being the most religious)

Ci � the number of children the ith man has fathered

a. Your friend expects the coefficients of M and Y to be positive. Test

these hypotheses. (Use the 5-percent level and N � 20.)

b. Test the hypothesis that the coefficient of A is different from zero.

(Use the 1-percent level and N � 25.)

c. Develop and test hypotheses for the coefficients of B and C. (Use

the 10-percent level and N � 17.)

9. Suppose that you estimate a model of house prices to determine the

impact of having beach frontage on the value of a house.14 You do

some research, and you decide to use the size of the lot instead of the

size of the house for a number of theoretical and data availability rea-

sons. Your results (standard errors in parentheses) are:

PRICEi � 40 � 35.0 LOTi 	 2.0 AGEi � 10.0 BEDi 	 4.0 FIREi � 100BEACHi
(5.0) (1.0) (10.0) (4.0) (10)

N � 30 2 � .63

where: PRICEi � the price of the ith house (in thousands of

dollars)

LOTi � the size of the lot of the ith house (in thousands

of square feet)

AGEi � the age of the ith house in years

BEDi � the number of bedrooms in the ith house

FIREi � a dummy variable for a fireplace (1 � yes for

the ith house)

BEACHi � a dummy for having beach frontage (1 � yes

for the ith house)

R
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14. This hypothetical result draws on Rachelle Rush and Thomas H. Bruggink, “The Value of

Ocean Proximity on Barrier Island Houses,” The Appraisal Journal, April 2000, pp. 142–150.
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a. You expect the variables LOT, BED, and BEACH to have positive co-

efficients. Create and test the appropriate hypotheses to evaluate

these expectations at the 5-percent level.

b. You expect AGE to have a negative coefficient. Create and test 

the appropriate hypotheses to evaluate these expectations at the

10-percent level.

c. At first you expect FIRE to have a positive coefficient, but one of

your friends says that fireplaces are messy and are a pain to keep

clean, so you’re not sure. Run a two-sided t-test around zero to test

these expectations at the 5-percent level.

d. What problems appear to exist in your equation? (Hint: Do you

have any unexpected signs? Do you have any coefficients that are

not significantly different from zero?)

e. Which of the problems that you outline in part d is the most worri-

some? Explain your answer.

f. What explanation or solution can you think of for this problem?

10. Suppose that you’ve been asked by the San Diego Padres baseball

team to evaluate the economic impact of their new stadium by ana-

lyzing the team’s attendance per game in the last year at their old sta-

dium. After some research on the topic, you build the following

model (standard errors in parentheses):

ATTi � 25000 � 15000 WINi � 4000 FREEi 	 3000 DAYi 	 12000 WEEKi
(15000) (2000) (3000) (3000)

N � 35 2 � .41

where: ATTi � the attendance at the ith game

WINi � the winning percentage of the opponent in the

ith game

FREEi � a dummy variable equal to 1 if the ith game was

a “promotion” game at which something was

given free to each fan, 0 otherwise

DAYi � a dummy variable equal to 1 if the ith game was

a day game and equal to 0 if the game was a

night or twilight game

WEEKi � a dummy variable equal to 1 if the ith game was

during the week and equal to 0 if it was on the

weekend

a. You expect the variables WIN and FREE to have positive coeffi-

cients. Create and test the appropriate hypotheses to evaluate these

expectations at the 5-percent level.

R
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b. You expect WEEK to have a negative coefficient. Create and test

the appropriate hypotheses to evaluate these expectations at the

1-percent level.

c. You’ve included the day game variable because your boss thinks it’s

important, but you’re not sure about the impact of day games on

attendance. Run a two-sided t-test around zero to test these expec-

tations at the 5-percent level.

d. What problems appear to exist in your equation? (Hint: Do you

have any unexpected signs? Do you have any coefficients that are

not significantly different from zero?)

e. Which of the problems that you outlined in part d is the most wor-

risome? Explain your answer.

f. What explanation or solution can you think of for this problem?

(Hint: You don’t need to be a sports fan to answer this question. If

you like music, think about attendance at outdoor concerts.)

11. Thomas Bruggink and David Rose15 estimated a regression for the an-

nual team revenue for Major League Baseball franchises:

where: Ri � team revenue from attendance, broadcasting, and

concessions (in thousands of dollars)

Pi � the ith team’s winning rate (their winning percentage

multiplied by a thousand, 1,000 � high)

Mi � the population of the ith team’s metropolitan area

(in millions)

Si � a dummy equal to 1 if the ith team’s stadium was

built before 1940, 0 otherwise

Ti � a dummy equal to 1 if the ith team’s city has two

Major League Baseball teams, 0 otherwise

a. Develop and test appropriate hypotheses about the individual co-

efficients at the 5 percent level. (Hint: You do not have to be a

sports fan to do this question correctly.)

R2 5 .682 N 5 78 (198421986)

 t 5 5.8  6.3  1.0  23.3

 (9.1)  (233.6)  (1363.6)  (2255.7)

 R̂i 5 21522.5 1 53.1Pi 1  1469.4Mi 1  1322.7Si 2  7376.3Ti
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15. Thomas H. Bruggink and David R. Rose, Jr., “Financial Restraint in the Free Agent Labor

Market for Major League Baseball: Players Look at Strike Three,” Southern Economic Journal,

Vol. 56, pp. 1029–1043.
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b. The authors originally expected a negative coefficient for S. Their

explanation for the unexpected positive sign was that teams in

older stadiums have greater revenue because they’re better known

and have more faithful fans. Since this is just one observation from

the sampling distribution of do you think they should have

changed their expected sign?

c. On the other hand, Keynes reportedly said, “When I’m wrong, I

change my mind; what do you do?” If one lets you realize an

error, shouldn’t you be allowed to change your expectation? How

would you go about resolving this difficulty?

d. Assume that your team is in last place with P � 350. According to

this regression equation, would it be profitable to pay $7 million a

year to a free agent who would raise the team’s winning rate (P) to

500? Be specific.

12. To get some practice with the t-test, let’s return to the model of iPod

prices on eBay that was developed in Exercise 11 in Chapter 3. That

equation was: 

PRICEi � 109.24 � 54.99NEWi 	 20.44SCRATCHi � 0.73BIDRSi
(5.34) (5.11) (0.59)

t � 10.28 	4.00 1.23

N � 215

where: PRICEi � the price at which the ith iPod sold on eBay

NEWi � a dummy variable equal to 1 if the ith iPod

was new, 0 otherwise

SCRATCHi � a dummy variable equal to 1 if the ith iPod

had a minor cosmetic defect, 0 otherwise

BIDRSi � the number of bidders on the ith iPod

a. Create and test hypothesis for the coefficients of NEW and SCRATCH

at the 5-percent level. (Hint: Use the critical value for 120 degrees

of freedom.)

b. In theory, the more bidders there are on a given iPod, the higher

the price should be. Create and test hypotheses at the 1-percent

level to see if this theory can be supported by the results. 

c. Based on the hypothesis tests you conducted in parts a and b, are

there any variables that you think should be dropped from the

equation? Explain. 

d. If you could add one variable to this equation, what would it be?

Explain. (Hint: All the iPods in the sample are silver-colored, 4 GB

Apple iPod minis.) 

�̂

�̂s,

�̂
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13. To get more experience with the t-test, let’s return to the model of al-

cohol consumption that we developed in Exercise 11 of Chapter 4.

That equation was:

DRINKSi � 13.00 � 11.36ADVICEi 	 0.20EDUCi � 2.85DIVSEPi � 14.20UNEMPi

(2.12) (0.31) (2.55) (5.16)

t � 5.37 	0.65 1.11 2.75 

N � 500 � .07

where: DRINKSi � drinks consumed by the ith individual in the

last two weeks

ADVICEi � 1 if a physician had advised the ith individual

to cut back on drinking alcohol, 0 otherwise

EDUCi � years of schooling of the ith individual

DIVSEPi � 1 if the ith individual was divorced or sepa-

rated, 0 otherwise

UNEMPi � 1 if the ith individual was unemployed, 0 

otherwise

a. It seems reasonable to expect positive coefficients for DIVSEP and

UNEMP. Create and test appropriate hypotheses for the coefficients

of DIVSEP and UNEMP at the 5-percent level. (Hint: Use the criti-

cal value for 120 degrees of freedom.)

b. Create and run a two-sided hypothesis test around zero of the coef-

ficient of EDUC at the 1-percent level. Why might a two-sided test

be appropriate for this coefficient?

c. Most physicians would expect that if they urged patients to drink less

alcohol, that’s what the patients actually would do (holding con-

stant the other variables in the equation). Create and test appropri-

ate hypotheses for the coefficient of ADVICE at the 10-percent level.

d. Does your answer to part c cause you to wonder if perhaps you

should change your hypotheses in part c? Explain.

14. Frederick Schut and Peter VanBergeijk16 published an article in which

they attempted to see if the pharmaceutical industry practiced inter-

national price discrimination by estimating a model of the prices of

pharmaceuticals in a cross section of 32 countries. The authors felt

R2
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16. Frederick T. Schut and Peter A. G. VanBergeijk, “International Price Discrimination: The

Pharmaceutical Industry,” World Development, Vol. 14, No. 9, pp. 1141–1150. The estimated co-

efficients we list are those produced by EViews using the original data and differ slightly from

those in the original article.
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that if price discrimination existed, then the coefficient of per capita

income in a properly specified price equation would be strongly posi-

tive. The reason they felt that the coefficient of per capita income

would measure price discrimination went as follows: the higher the

ability to pay, the lower (in absolute value) the price elasticity of de-

mand for pharmaceuticals and the higher the price a price discrimina-

tor could charge. In addition, the authors expected that prices would

be higher if pharmaceutical patents were allowed and that prices

would be lower if price controls existed, if competition was encour-

aged, or if the pharmaceutical market in a country was relatively large.

Their estimates were (standard errors in parentheses):

(10)

where: Pi � the pharmaceutical price level in the ith country

divided by that of the United States

GDPNi � per capita domestic product in the ith country

divided by that of the United States

CVNi � per capita volume of consumption of pharma-

ceuticals in the ith country divided by that of

the United States

PPi � a dummy variable equal to 1 if patents for phar-

maceutical products are recognized in the ith

country, 0 otherwise

DPCi � a dummy variable equal to 1 if the ith country

applied strict price controls, 0 otherwise

IPCi � a dummy variable equal to 1 if the ith country

encouraged price competition, 0 otherwise

a. Develop and test appropriate hypotheses concerning the regression

coefficients using the t-test at the 5-percent level.

b. Set up 90-percent confidence intervals for each of the estimated

slope coefficients.

c. Do you think Schut and VanBergeijk concluded that international

price discrimination exists? Why or why not?

d. How would the estimated results have differed if the authors had

not divided each country’s prices, per capita income, and per capita

N 5 32  R2 5 .775

t 52 2.25  2 1.59

 (6.93)  (7.16)

 2 15.63DPCi 2  11.38IPCi

 t 5  6.69  22.66  ̨1.19

   (0.21)  (0.22)  (6.12)

 P̂i 5 38.22 1  1.43GDPNi 2  0.6CVNi 1  7.31PPi
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pharmaceutical consumption by that of the United States? Explain

your answer.

e. Reproduce their regression results by using the EViews computer

program (datafile DRUGS5) or your own computer program and

the data from Table 1.

HYPOTHESIS TESTING

Table 1 Data for the Pharmaceutical Price Discrimination Exercise

Country P GDPN CV N CVN PP IPC DPC

Malawi 60.83 4.9 0.014 2.36 0.6 1 0 0

Kenya 50.63 6.56 0.07 6.27 1.1 1 0 0

India 31.71 6.56 18.66 282.76 6.6 0 0 1

Pakistan 38.76 8.23 3.42 32.9 10.4 0 1 1

Sri Lanka 15.22 9.3 0.42 6.32 6.7 1 1 1

Zambia 96.58 10.3 0.05 2.33 2.2 1 0 0

Thailand 48.01 13.0 2.21 19.60 11.3 0 0 0

Philippines 51.14 13.2 0.77 19.70 3.9 1 0 0

South Korea 35.10 20.7 2.20 16.52 13.3 0 0 0

Malaysia 70.74 21.5 0.50 5.58 8.9 1 0 0

Colombia 48.07 22.4 1.56 11.09 14.1 0 1 0

Jamaica 46.13 24.0 0.21 0.96 22.0 1 0 0

Brazil 63.83 25.2 10.48 50.17 21.6 0 1 0

Mexico 69.68 34.7 7.77 28.16 27.6 0 0 0

Yugoslavia 48.24 36.1 3.83 9.42 40.6 0 1 1

Iran 70.42 37.7 3.27 15.33 21.3 0 0 0

Uruguay 65.95 39.6 0.44 1.30 33.8 0 0 0

Ireland 73.58 42.5 0.57 1.49 38.0 1 0 0

Hungary 57.25 49.6 2.36 4.94 47.8 0 1 1

Poland 53.98 50.1 8.08 15.93 50.7 0 1 1

Italy 69.01 53.8 12.02 26.14 45.9 0 0 1

Spain 69.68 55.9 9.01 16.63 54.2 0 0 0

United Kingdom 71.19 63.9 9.96 26.21 38.0 1 1 1

Japan 81.88 68.4 28.58 52.24 54.7 0 0 1

Austria 139.53 69.6 1.24 3.52 35.2 0 0 0

Netherlands 137.29 75.2 1.54 6.40 24.1 1 0 0

Belgium 101.73 77.7 3.49 4.59 76.0 1 0 1

France 91.56 81.9 25.14 24.70 101.8 1 0 1

Luxembourg 100.27 82.0 0.10 0.17 60.5 1 0 1

Denmark 157.56 82.4 0.70 2.35 29.5 1 0 0

Germany, West 152.52 83.0 24.29 28.95 83.9 1 0 0

United States 100.00 100.0 100.00 100.00 100.0 1 1 0

Source: Frederick T. Schut and Peter A. G. VanBergeijk, “International Price Discrimination: The

Pharmaceutical Industry,” World Development, Vol. 14, No. 9, p. 1144.

Datafile � DRUGS5
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Appendix:The F -Test

Although the t-test is invaluable for hypotheses about individual regression

coefficients, it can’t be used to test multiple hypotheses simultaneously. Such

a limitation is unfortunate because many interesting ideas involve a number

of hypotheses or involve one hypothesis about multiple coefficients. For ex-

ample, suppose that you want to test the null hypothesis that there is no sea-

sonal variation in a quarterly regression equation that has dummy variables

for the seasons. To test such a hypothesis, most researchers would use the 

F-test.

What Is the F -Test?

The F-test is a formal hypothesis test that is designed to deal with a null hy-

pothesis that contains multiple hypotheses or a single hypothesis about a

group of coefficients.17 Such “joint” or “compound” null hypotheses are ap-

propriate whenever the underlying economic theory specifies values for mul-

tiple coefficients simultaneously.

The way in which the F-test works is fairly ingenious. The first step is to

translate the particular null hypothesis in question into constraints that will

be placed on the equation. The resulting constrained equation can be thought

of as what the equation would look like if the null hypothesis were correct;

you substitute the hypothesized values into the regression equation in order

to see what would happen if the equation were constrained to agree with the

null hypothesis. As a result, in the F-test the null hypothesis always leads to a

constrained equation, even if this violates our standard practice that the alter-

native hypothesis contains what we expect is true.

The second step in an F-test is to estimate this constrained equation with

OLS and compare the fit of this constrained equation with the fit of the un-

constrained equation. If the fits of the constrained equation and the uncon-

strained equation are not significantly different, the null hypothesis should

not be rejected. If the fit of the unconstrained equation is significantly better

than that of the constrained equation, then we reject the null hypothesis. The

fit of the constrained equation is never superior to the fit of the uncon-

strained equation, as we’ll explain next.

6

HYPOTHESIS TESTING

17. As you will see, the F-test works by placing constraints or restrictions on the equation to be

tested. Because of this, it’s equivalent to say that the F-test is for tests that involve multiple

linear restrictions.
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The fits of the equations are compared with the general F-statistic:

(11)

where: RSS � residual sum of squares from the unconstrained

equation

RSSM � residual sum of squares from the constrained

equation

M � number of constraints placed on the equation

(usually equal to the number of eliminated

from the unconstrained equation)

� degrees of freedom in the unconstrained equation

RSSM is always greater than or equal to RSS; imposing constraints on the co-

efficients instead of allowing OLS to select their values can never decrease the

summed squared residuals. (Recall that OLS selects that combination of val-

ues of the coefficients that minimizes RSS.) At the extreme, if the uncon-

strained regression yields exactly the same estimated coefficients as does the

constrained regression, then the RSS are equal, and the F-statistic is zero. In

this case, H0 is not rejected because the data indicate that the constraints ap-

pear to be correct. As the difference between the constrained coefficients and

the unconstrained coefficients increases, the data indicate that the null hy-

pothesis is less likely to be true. Thus, when F gets larger than the critical 

F-value, the hypothesized restrictions specified in the null hypothesis are re-

jected by the test.

The decision rule to use in the F-test is to reject the null hypothesis if the

calculated F-value (F) from Equation 11 is greater than the appropriate criti-

cal F-value (Fc):

(N 2 K 2 1)

�s

F 5
(RSS

M
2 RSS)>M

RSS>(N 2 K 2 1)

HYPOTHESIS TESTING

Reject

Do not reject H0 if F # Fc

H0 if F . Fc

The critical F-value, Fc, is determined from Statistical Table B-2 or B-3, found at

the end of the chapter, depending on a level of significance chosen by the re-

searcher and on the degrees of freedom. The F-statistic has two types of degrees of

freedom: the degrees of freedom for the numerator of Equation 11 (M, the num-

ber of constraints implied by the null hypothesis) and the degrees of freedom
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for the denominator of Equation 11 the degrees of freedom in

the regression equation). The underlying principle here is that if the calcu-

lated F-value (or F-ratio) is greater than the critical value, then the estimated

equation’s fit is significantly better than the constrained equation’s fit, and

we can reject the null hypothesis of no effect.

The F-Test of Overall Significance

Although R2 and measure the overall degree of fit of an equation, they

don’t provide a formal hypothesis test of that overall fit. Such a test is pro-

vided by the F-test. The null hypothesis in an F-test of overall significance is

that all the slope coefficients in the equation equal zero simultaneously. For

an equation with K independent variables, this means that the null and alter-

native hypotheses would be18:

To show that the overall fit of the estimated equation is statistically signifi-

cant, we must be able to reject this null hypothesis using the F-test.

For the F-test of overall significance, Equation 11 simplifies to:

(12)

This is the ratio of the explained sum of squares (ESS) to the residual sum of

squares (RSS), adjusted for the number of independent variables (K) and the

number of observations in the sample (N). In this case, the “constrained

equation” to which we’re comparing the overall fit is:

(13)

which is nothing more than saying . Thus the F-test of overall signifi-

cance is really testing the null hypothesis that the fit of the equation isn’t sig-

nificantly better than that provided by using the mean alone.

Ŷi 5 Y

Yi 5 �0 1 �i

F 5
ESS>K

RSS>(N 2 K 2 1)
5

g  (Ŷ
i

2 Y)2>K

g  e
2
i >(N 2 K 2 1)

HA: H0 is not true

H0: �1 5 �2 5 c 5 �K 5 0

R2

(N 2 K 2 1,

HYPOTHESIS TESTING

18. Note that we don’t hypothesize that This would imply that Note also 

that for the test of overall significance, M � K.

E(Y) 5 0.�0 5 0.
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To see how this works, let’s test the overall significance of the Woody’s

restaurant model of Equation 4 from Chapter 3. Since there are three inde-

pendent variables, the null and alternative hypotheses are:

To decide whether to reject or not reject this null hypothesis, we need to

calculate Equation 12 from Chapter 12 for the Woody’s example. There are

three constraints in the null hypothesis, so K � 3. If we check the EViews

computer output for the Woody’s equation in Chapter 3, we can see that 

N � 33 and RSS � 6,130,000,000. In addition, it can be calculated that ESS

equals 9,929,450,000.19 Thus the appropriate F-ratio is:

(14)

In practice, this calculation is never necessary, since virtually every computer

regression package routinely provides the computed F-ratio for a test of over-

all significance as a matter of course. On the Woody’s computer output, the

value of the F-statistic can be found in the right-hand column.

Our decision rule tells us to reject the null hypothesis if the calculated 

F-value is greater than the critical F-value. To determine that critical F-value,

we need to know the level of significance and the degrees of freedom. If we

assume a 5-percent level of significance, the appropriate table to use is the 

F-Distribution Table at the end of this chapter. The numerator degrees of 

freedom equal 3 (K), and the denominator degrees of freedom equal 29

so we need to look in Statistical Table B-2 for the critical F-

value for 3 and 29 degrees of freedom. As the reader can verify,20 Fc � 2.93 is

well below the calculated F-value of 15.65, so we can reject the null hypothe-

sis and conclude that the Woody’s equation does indeed have a significant

overall fit.

(N 2 K 2 1),

F 5
ESS>K

RSS>(N 2 K 2 1)
5

9,929,450,000>3

6,130,000,000>29
5 15.65

HA: H0 is not true

H0: �N 5 �P 5 �I 5 0

HYPOTHESIS TESTING

19. To do this calculation, note that If you substitute

the second equation into the first and solve for ESS, you obtain 

Since both RSS and R2 are included in the computer output, you can then calculate ESS.

20. Note that this critical F-value must be interpolated. The critical value for 30 denominator

degrees of freedom is 2.92, and the critical value for 25 denominator degrees of freedom is

2.99. Since both numbers are well below the calculated F-value of 15.65, however, the interpo-

lation isn’t necessary to reject the null hypothesis. As a result, many researchers don’t bother

with such interpolations unless the calculated F-value is inside the range of the interpolation.

RSS ? (R2)>(1 2 R2).ESS 5
R2 5 ESS>TSS and that TSS 5 ESS 1 RSS.
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Just as p-values provide an alternative approach to the t-test, so too can 

p-values provide an alternative approach to the F-test of overall significance.

Most standard regression estimation programs report not only the F-value for

the test of overall significance but also the p-value associated with that test.

Other Uses of the F -Test

There are many other uses of the F-test besides the test of overall significance.

For example, let’s look at a Cobb–Douglas production function.

(15)

where: Qt � the natural log of total output in the United States in year t

Lt � the natural log of labor input in the United States in year t

Kt � the natural log of capital input in the United States in year t

� a well-behaved stochastic error term

This is a double-log functional form, and one of the properties of a dou-

ble-log equation is that the coefficients of Equation 15 can be used to test

for constant returns to scale. (Constant returns to scale refers to a situation

in which a given percentage increase in inputs translates to exactly that per-

centage increase in output.) It can be shown that a Cobb–Douglas produc-

tion function with constant returns to scale is one where add up

to exactly 1, so the null hypothesis to be tested is:

To test this null hypothesis with the F-test, we must run regressions on the

unconstrained Equation 15 and an equation that is constrained to conform

to the null hypothesis. To create such a constrained equation, we solve the

null hypothesis for and substitute it into Equation 15, obtaining:

(16)

 5 �0 1 �1(Lt 2 Kt) 1 Kt 1 �t

 Qt 5 �0 1 �1Lt 1 (1 2 �1)Kt 1 �t

�2

 HA: otherwise

 H0: �1 1 �2 5 1

�1 and �2

�t

Qt 5 �0 1 �1Lt 1 �2Kt 1 �t

HYPOTHESIS TESTING
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If we move Kt to the left-hand side of the equation, we obtain our con-

strained equation:

(17)

Equation 17 is the equation that would hold if our null hypothesis were 

correct.

To run an F-test on our null hypothesis of constant returns to scale, we

need to run regressions on the constrained Equation 17 and the uncon-

strained Equation 15 and compare the fits of the two equations with the 

F-ratio from Equation 14. If we use annual U.S. data, we obtain an uncon-

strained equation of:

(18)

If we run the constrained equation and substitute the appropriate RSS into

Equation 14, with M � 1, we obtain F � 16.26. When this F is compared to a

5-percent critical F-value of only 4.32 (for 1 and 21 degrees of freedom) we

must reject the null hypothesis that constant returns to scale characterize the

U.S. economy. Note that M � 1 and the degrees of freedom in the numerator

equal one because only one coefficient ( ) has been eliminated from the

equation by the constraint.

Interestingly, the estimate of indicates

drastically increasing returns to scale. However, since and since

economic theory suggests that the slope coefficient of a Cobb–Douglas

production function should be between 0 and 1, we should be extremely

cautious. There are problems in the equation that need to be resolved before

we can feel comfortable with this conclusion.

Finally, let’s take a look at the problem of testing the significance of sea-

sonal dummies. Seasonal dummies are dummy variables that are used to

account for seasonal variation in the data in time-series models. In a quarterly

model, if:

X1t 5 e
1 in quarter 1

0 otherwise

�1
ˆ 5 1.28,

�̂1 1 �̂2 5 1.28 1 0.72 5 2.00

�2

N 5 24 (annual U.S. data) R2 5 .997 F 5 4,118.9

 t 5  4.24  13.29

   (0.30)  (0.05)

 Q̂t 5 2 38.08 1  1.28Lt 1  0.72Kt

(Qt 2 Kt) 5 �0 1 �1(Lt 2 Kt) 1 �t

HYPOTHESIS TESTING
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then:

(19)

where X4 is a nondummy independent variable and t is quarterly. Notice that

only three dummy variables are required to represent four seasons. In this

formulation shows the extent to which the expected value of Y in the first

quarter differs from its expected value in the fourth quarter, the omitted con-

dition. can be interpreted similarly.

Inclusion of a set of seasonal dummies “deseasonalizes” Y. This proce-

dure may be used as long as Y and X4 are not “seasonally adjusted” prior to

estimation. Many researchers avoid the type of seasonal adjustment done

prior to estimation because they think it distorts the data in unknown and

arbitrary ways, but seasonal dummies have their own limitations such as re-

maining constant for the entire time period. As a result, there is no unam-

biguously best approach to deseasonalizing data.

To test the hypothesis of significant seasonality in the data, one must test

the hypothesis that all the dummies equal zero simultaneously rather than

test the dummies one at a time. In other words, the appropriate test of sea-

sonality in a regression model using seasonal dummies involves the use of

the F-test instead of the t-test.

In this case, the null hypothesis is that there is no seasonality:

The constrained equation would then be To determine

whether the whole set of seasonal dummies should be included, the fit of

the estimated constrained equation would be compared to the fit of the esti-

mated unconstrained equation by using the F-test in equation 11. Note that

this example uses the F-test to test null hypotheses that include only a sub-

set of the slope coefficients. Also note that in this case M � 3, because three

coefficients ( ) have been eliminated from the equation.�2, and �3�1,

Y 5 �0 1 �4X4 1 �.

 HA: H0 is not true

 H0: �1 5 �2 5 �3 5 0

�2 and �3

�1

Yt 5 �0 1 �1X1t 1 �2X2t 1 �3X3t 1 �4X4t 1 �t

X3t 5 e
1 in quarter 3

0 otherwise

X2t 5 e
1 in quarter 2

0 otherwise

HYPOTHESIS TESTING
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The exclusion of some seasonal dummies because their estimated coeffi-

cients have low t-scores is not recommended. Seasonal dummy coefficients

should be tested with the F-test instead of with the t-test because seasonality

is usually a single compound hypothesis rather than 3 individual hypotheses

(or 11 with monthly data) having to do with each quarter (or month). To the

extent that a hypothesis is a joint one, it should be tested with the F-test. If

the hypothesis of seasonal variation can be summarized into a single dummy

variable, then the use of the t-test will cause no problems. Often, where sea-

sonal dummies are unambiguously called for, no hypothesis testing at all is

undertaken.

HYPOTHESIS TESTING
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HYPOTHESIS TESTING

Critical Values of the t-Distribution

Level of Significance

Degrees of One-Sided: 10% 5% 2.5% 1% 0.5%
Freedom Two-Sided: 20% 10% 5% 2% 1%

1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921

17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831

22 1.321 1.717 2.074 2.508 2.819

23 1.319 1.714 2.069 2.500 2.807

24 1.318 1.711 2.064 2.492 2.797

25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779

27 1.314 1.703 2.052 2.473 2.771

28 1.313 1.701 2.048 2.467 2.763

29 1.311 1.699 2.045 2.462 2.756

30 1.310 1.697 2.042 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704

60 1.296 1.671 2.000 2.390 2.660

120 1.289 1.658 1.980 2.358 2.617

(Normal)


 1.282 1.645 1.960 2.326 2.576

Source: Reprinted from Table IV in Sir Ronald A. Fisher, Statistical Methods for Research Workers,

14th ed. (copyright © 1970, University of Adelaide) with permission of Hafner, a division of the

Macmillan Publishing Company, Inc.
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Critical Values of the F-Statistic: 5-Percent Level of Significance

v1 � Degrees of Freedom for Numerator

1 2 3 4 5 6 7 8 10 12 20 �

1 161 200 216 225 230 234 237 239 242 244 248 254

2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.5

3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.79 8.74 8.66 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5.96 5.91 5.80 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.74 4.68 4.56 4.36

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.06 4.00 3.87 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.64 3.57 3.44 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.35 3.28 3.15 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.14 3.07 2.94 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 2.98 2.91 2.77 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.85 2.79 2.65 2.40

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.75 2.69 2.54 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.67 2.60 2.46 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.60 2.53 2.39 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.54 2.48 2.33 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.49 2.42 2.28 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.45 2.38 2.23 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.41 2.34 2.19 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.38 2.31 2.16 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.35 2.28 2.12 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.32 2.25 2.10 1.81

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.30 2.23 2.07 1.78

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.27 2.20 2.05 1.76

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.25 2.18 2.03 1.73

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.24 2.16 2.01 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.16 2.09 1.93 1.62

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.08 2.00 1.84 1.51

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 1.99 1.92 1.75 1.39

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.91 1.83 1.66 1.25


 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.83 1.75 1.57 1.00

Source: Abridged from M. Merrington and C. M. Thompson, “Tables of percentage points of the

inverted beta (F) distribution,” Biometrika, Vol. 33, 1943, p. 73, by permission of the Biometrika

trustees.
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Answers

Exercise 2

For all three parts:

X1 X2 X3

H0: �1 � 0 �2 � 0 �3 � 0

HA: �1 � 0 �2 � 0 �3 � 0

t1 � 2.1 t2 � 5.6 t3 � 	0.1

a. tc � 1.363. For �1, we reject H0, because |t1| � 1.363 and the sign

of t1 is that implied by HA. For �2, we cannot reject H0, even

though |t2| � 1.363, because the sign of t2 does not agree with HA.

For �3, we cannot reject H0, even though the sign of t3 agrees with

HA, because |t3| � 1.363.

b. tc � 1.318. The decisions are identical to those in part a, except

that tc � 1.318.

c. tc � 3.143. For �1, we cannot reject H0, even though the sign

of t1 is that implied by HA, because |t1| � 3.143. For �2 and

�3, the decisions are identical to those in parts a and b, except

that tc � 3.143.

HYPOTHESIS TESTING
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6Specification: Choosing 
the Independent Variables

1 Omitted Variables

2 Irrelevant Variables

3 An Illustration of the Misuse of Specification Criteria

4 Specification Searches

5 An Example of Choosing Independent Variables

6 Summary and Exercises

7 Appendix: Additional Specification Criteria

Before any equation can be estimated, it must be completely specified. Spec-

ifying an econometric equation consists of three parts: choosing the correct

independent variables, the correct functional form, and the correct form of

the stochastic error term.

A specification error results when any one of these choices is made incor-

rectly. This chapter is concerned with only the first of these, choosing the

variables.

That researchers can decide which independent variables to include in

regression equations is a source of both strength and weakness in economet-

rics. The strength is that the equations can be formulated to fit individual

needs, but the weakness is that researchers can estimate many different speci-

fications until they find the one that “proves” their point, even if many other

results disprove it. A major goal of this chapter is to help you understand

how to choose variables for your regressions without falling prey to the vari-

ous errors that result from misusing the ability to choose.

The primary consideration in deciding whether an independent variable

belongs in an equation is whether the variable is essential to the regression

on the basis of theory. If the answer is an unambiguous yes, then the vari-

able definitely should be included in the equation, even if it seems to be

lacking in statistical significance. If theory is ambivalent or less emphatic, a

From Chapter 6 of Using Econometrics: A Practical Guide, 6/e. A. H. Studenmund. Copyright © 2011

by Pearson Education. Published by Addison-Wesley. All rights reserved.
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SPECIFICATION: CHOOSING THE INDEPENDENT VARIABLES

dilemma arises. Leaving a relevant variable out of an equation is likely to

bias the remaining estimates, but including an irrelevant variable leads 

to higher variances of the estimated coefficients. Although we’ll develop

statistical tools to help us deal with this decision, it’s difficult in practice 

to be sure that a variable is relevant, and so the problem often remains 

unresolved.

We devote the fourth section of the chapter to specification searches and

the pros and cons of various approaches to such searches. For example,

poorly done specification searches often cause bias or make the usual tests of

significance inapplicable. Instead, we suggest trying to minimize the number

of regressions estimated and relying as much as possible on theory rather

than statistical fit when choosing variables. There are no pat answers, how-

ever, and so the final decisions must be left to each individual researcher.

Omitted Variables

Suppose that you forget to include one of the relevant independent variables

when you first specify an equation (after all, no one’s perfect!). Or suppose

that you can’t get data for one of the variables that you do think of. The result

in both these situations is an omitted variable, defined as an important

explanatory variable that has been left out of a regression equation.

Whenever you have an omitted (or left-out) variable, the interpretation and

use of your estimated equation become suspect. Leaving out a relevant vari-

able, like price from a demand equation, not only prevents you from getting

an estimate of the coefficient of price but also usually causes bias in the esti-

mated coefficients of the variables that are in the equation.

The bias caused by leaving a variable out of an equation is called

omitted variable bias (or, more generally, specification bias). In an equa-

tion with more than one independent variable, the coefficient represents

the change in the dependent variable Y caused by a one-unit increase in the

independent variable Xk, holding constant the other independent variables

in the equation. If a variable is omitted, then it is not included as an inde-

pendent variable, and it is not held constant for the calculation and inter-

pretation of This omission can cause bias: It can force the expected

value of the estimated coefficient away from the true value of the popula-

tion coefficient.

Thus, omitting a relevant variable is usually evidence that the entire esti-

mated equation is suspect, because of the likely bias in the coefficients 

of the variables that remain in the equation. Let’s look at this issue in

more detail.

�̂k.

�k

1
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The Consequences of an Omitted Variable

What happens if you omit an important variable from your equation (per-

haps because you can’t get the data for the variable or didn’t even think of the

variable in the first place)? The major consequence of omitting a relevant in-

dependent variable from an equation is to cause bias in the regression coeffi-

cients that remain in the equation. Suppose that the true regression model is:

(1)

where is a classical error term. If you omit X2 from the equation, then the

equation becomes:

(2)

where equals:

(3)

because the stochastic error term includes the effects of any omitted variables.

From Equations 2 and 3, it might seem as though we could get unbiased esti-

mates of even if we left X2 out of the equation. Unfortunately, this 

is not the case,1 because the included coefficients almost surely pick up some

of the effect of the omitted variable and therefore will change, causing bias.

To see why, take another look at Equations 2 and 3. Most pairs of variables

are correlated to some degree, even if that correlation is random, so X1 and X2
almost surely are correlated. When X2 is omitted from the equation, the im-

pact of X2 goes into , so and X2 are correlated. Thus if X2 is omitted from

the equation and X1 and X2 are correlated, both X1 and will change when

X2 changes, and the error term will no longer be independent of the explana-

tory variable. That violates Classical Assumption III!

In other words, if we leave an important variable out of an equation, we

violate Classical Assumption III (that the explanatory variables are indepen-

dent of the error term), unless the omitted variable is uncorrelated with all

the included independent variables (which is extremely unlikely). In gen-

eral, when there is a violation of one of the Classical Assumptions, the

Gauss–Markov Theorem does not hold, and the OLS estimates are not

BLUE. Given linear estimators, this means that the estimated coefficients are

�*

�*�*

�0 and �1

�*i 5 �i 1 �2X2i

�*i

Yi 5 �0 1 �1X1i 1 �*i

�i

Yi 5 �0 1 �1X1i 1 �2X2i 1 �i
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1. To avoid bias, X1 and X2 must be perfectly uncorrelated—an extremely unlikely result.
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no longer unbiased or are no longer minimum variance (for all linear unbi-

ased estimators), or both. In such a circumstance, econometricians first deter-

mine the exact property (unbiasedness or minimum variance) that no longer

holds and then suggest an alternative estimation technique that might be

better than OLS.

An omitted variable causes Classical Assumption III to be violated in a way

that causes bias. Estimating Equation 2 when Equation 1 is the truth will

cause bias. This means that:

(4)

Instead of having an expected value equal to the true the estimate will

compensate for the fact that X2 is missing from the equation. If X1 and X2 are

correlated and X2 is omitted from the equation, then the OLS estimation pro-

cedure will attribute to X1 variations in Y actually caused by X2, and a biased

estimate of will result.

To see how a left-out variable can cause bias, picture a production function

that states that output (Y) depends on the amount of labor (X1) and capital

(X2) used. What would happen if data on capital were unavailable for some

reason and X2 was omitted from the equation? In this case, we would be leav-

ing out the impact of capital on output in our model. This omission would

almost surely bias the estimate of the coefficient of labor because it is likely

that capital and labor are positively correlated (an increase in capital usually

requires at least some labor to utilize it and vice versa). As a result, the OLS

program would attribute to labor the increase in output actually caused by

capital to the extent that labor and capital were correlated. Thus the bias

would be a function of the impact of capital on output and the correla-

tion between capital and labor.

To generalize for a model with two independent variables, the expected

value of the coefficient of an included variable (X1) when a relevant variable

(X2) is omitted from the equation equals:

(5)

where is the slope coefficient of the secondary regression that relates X2
to X1:

(6)

where ui is a classical error term. can be expressed as a function of the cor-

relation between X1 and X2, the included and excluded variables, or f(r12).

�1

X2i 5 �0 1 �1X1i 1 ui

�1

E(�1) 5 �1 1 �2 ? �1

(�2)

�̂1

�1,

E(�̂1) 2 �1
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Let’s take a look at Equation 5. It states that the expected value of the in-

cluded variable’s coefficient is equal to its true value plus the omitted variable’s

true coefficient times a function of the correlation between the included (in)

and omitted (om) variables.2 Since the expected value of an unbiased estimate

equals the true value, the right-hand term in Equation 5 measures the omitted

variable bias in the equation:

SPECIFICATION: CHOOSING THE INDEPENDENT VARIABLES

(7)Bias 5 �2�1 or Bias 5 �omf(rin,om)

In general terms, the bias thus equals the coefficient of the omitted vari-

able, times , a function of the correlation between the included and

omitted variables.

This bias exists unless:

1. the true coefficient equals zero, or

2. the included and omitted variables are uncorrelated.

The term is the amount of specification bias introduced into

the estimate of the coefficient of the included variable by leaving out the

omitted variable. Although it’s true that there is no bias if the included and

excluded variables are uncorrelated, there almost always is some correlation

between any two variables in the real world (even if it’s just random), and so

bias is almost always caused by the omission of a relevant variable. Although

the omission of a relevant variable almost always produces bias in the esti-

mators of the coefficients of the included variables, the variances of these

estimators are generally lower than they otherwise would be.

An Example of Specification Bias

As an example of specification bias, let’s take a look at a simple model of the

annual consumption of chicken in the United States. There are a variety of

variables that might make sense in such an equation, and at least three vari-

ables seem obvious. We’d expect the demand for chicken to be a negative

�omf(rin,om)

f(rin,om)

�om,

2. Equations 5 and 7 hold when there are exactly two independent variables, but the more gen-

eral equations are quite similar.
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function of the price of chicken and a positive function of the price of beef

(its main substitute) and income:

� � �
Yt � f(PCt PBt YDt) �

where: Yt � per capita chicken consumption (in pounds) in year t

PCt � the price of chicken (in cents per pound) in year t

PBt � the price of beef (in cents per pound) in year t

YDt � U.S. per capita disposable income (in hundreds of dollars)

in year t

If we collect data for these variables for the years 1974 through 2002, we

can estimate the following equation. (The data for this example are included

in Exercise 5; t-scores differ because of rounding.)

(8)

(0.03) (0.02) (0.01)

t � �3.38 �1.86 �15.7

How does our estimated equation look? The overall fit of Equation 8 is 

excellent, and each of the individual regression coefficients is significantly

different from zero in the expected direction. The price of chicken does in-

deed have a significant negative effect (holding the price of beef and dispos-

able income constant), and the price of beef and disposable income do in-

deed have positive effects (holding the other independent variables constant).

If we estimate this equation without the price of the substitute, we obtain:

� 30.7 � 0.09PCt � 0.25YDt (9)

(0.03) (0.005)

t � �2.76 �46.1

� .9895 N � 29 (annual 1974–2002)

Let’s compare Equations 8 and 9 to see if dropping the beef price variable

had an impact on the estimated equations. If you compare the overall fit, for

example, you can see that fell from .9904 to .9895 when PB was dropped,

exactly what we’d expect to occur when a relevant variable is omitted.

More important, from the point of view of showing that an omitted variable

causes bias, let’s see if the coefficient estimates of the remaining variables

changed. Sure enough, dropping PB caused to go from to and

caused to go from 0.23 to 0.25. The direction of this bias, by the way, is con-

sidered positive because the biased coefficient of PC is more positive

(less negative) than the suspected unbiased one and the biased coeffi-

cient of YD (0.25) is more positive than the suspected unbiased one of (0.23).

(20.09)

(20.11)

�̂YD

20.0920.11�̂PC

R2

R2

Yt

R2 5 .9904 N 5 29 (annual 1974–2002)

 Yt 5 27.7 2  0.11PCt 1  0.03PBt 1  0.23YDt

�t
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The fact that the bias is positive could have been guessed before any regres-

sions were run if Equation 7 had been used. The specification bias caused by

omitting the price of beef is expected3 to be positive because the expected

sign of the coefficient of PB is positive and because the expected correlation

between the price of beef and the price of chicken itself is positive:

Similarly for YD:

Note that both correlation coefficients are anticipated to be (and actually

are) positive. To see this, think of the impact of an increase in the price of

chicken on the price of beef and then follow through the impact of any in-

crease in income on the price of beef.

To sum, if a relevant variable is left out of a regression equation,

1. there is no longer an estimate of the coefficient of that variable in the

equation, and

2. the coefficients of the remaining variables are likely to be biased.

Although the amount of the bias might not be very large in some cases

(when, for instance, there is little correlation between the included and ex-

cluded variables), it is extremely likely that at least a small amount of specifi-

cation bias will be present in all such situations.

Correcting for an Omitted Variable

In theory, the solution to a problem of specification bias seems easy: add the

omitted variable to the equation! Unfortunately, that’s easier said than

done, for a couple of reasons.

First, omitted variable bias is hard to detect. As mentioned earlier, the

amount of bias introduced can be small and not immediately detectable.

Expected bias in �̂YD 5 �PB ? f(rYD,PB) 5 (1) ? (1) 5 (1)

Expected bias in �̂PC 5 �PB ? f(rPC,PB) 5 (1) ? (1) 5 (1)
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3. It is important to note the distinction between expected bias and any actual observed differences

between coefficient estimates. Because of the random nature of the error term (and hence the 

the change in an estimated coefficient brought about by dropping a relevant variable from the

equation will not necessarily be in the expected direction. Biasedness refers to the central tendency

of the sampling distribution of the not to every single drawing from that distribution. However,

we usually (and justifiably) rely on these general tendencies. Note also that Equation 8 has three

independent variables, whereas Equation 7 was derived for use with equations with exactly two.

However, Equation 7 represents a general tendency that is still applicable.

�̂s,

�̂s),
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This is especially true when there is no reason to believe that you have mis-

specified the model. Some indications of specification bias are obvious (such

as an estimated coefficient that is significant in the direction opposite from

that expected), but others are not so clear. Could you tell from Equation 9

alone that a variable was missing? The best indicators of an omitted relevant

variable are the theoretical underpinnings of the model itself. What variables

must be included? What signs do you expect? Do you have any notions about

the range into which the coefficient values should fall? Have you accidentally

left out a variable that most researchers would agree is important? The best

way to avoid omitting an important variable is to invest the time to think

carefully through the equation before the data are entered into the computer.

A second source of complexity is the problem of choosing which variable

to add to an equation once you decide that it is suffering from omitted vari-

able bias. That is, a researcher faced with a clear case of specification bias

(like an estimated that is significantly different from zero in the unex-

pected direction) will often have no clue as to what variable could be causing

the problem. Some beginning researchers, when faced with this dilemma,

will add all the possible relevant variables to the equation at once, but this

process leads to less precise estimates, as will be discussed in the next sec-

tion. Other beginning researchers will test a number of different variables

and keep the one in the equation that does the best statistical job of appear-

ing to reduce the bias (by giving plausible signs and satisfactory t-values).

This technique, adding a “left-out” variable to “fix” a strange-looking regres-

sion result, is invalid because the variable that best corrects a case of specifi-

cation bias might do so only by chance rather than by being the true solution

to the problem. In such an instance, the “fixed” equation may give superb

statistical results for the sample at hand but then do terribly when applied

to other samples because it does not describe the characteristics of the true

population.

Dropping a variable will not help cure omitted variable bias. If the sign of

an estimated coefficient is different from expected, it cannot be changed to the

expected direction by dropping a variable that has a t-score lower (in absolute

value) than the t-score of the coefficient estimate that has the unexpected sign.

Furthermore, the sign in general will not likely change even if the variable to

be deleted has a large t-score.4

If an unexpected result leads you to believe that you have an omitted

variable, one way to decide which variable to add to the equation is to use

�̂
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4. Ignazio Visco, “On Obtaining the Right Sign of a Coefficient Estimate by Omitting a Variable

from the Regression,” Journal of Econometrics, Vol. 7, No. 1, pp. 115–117.
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expected bias analysis. Expected bias is the likely bias that omitting a par-

ticular variable would have caused in the estimated coefficient of one of the

included variables. It can be estimated with Equation 7:

(7)

If the sign of the expected bias is the same as the sign of your unexpected

result, then the variable might be the source of the apparent bias. If the sign

of the expected bias is not the same as the sign of your unexpected result,

however, then the variable is extremely unlikely to have caused your unex-

pected result. Expected bias analysis should be used only when you’re choos-

ing between theoretically sound potential variables.

As an example of expected bias analysis, let’s return to Equation 9, the

chicken demand equation without the beef price variable. Let’s assume 

that you had expected the coefficient of and

that you were surprised by the unexpectedly positive coefficient of PC in

Equation 9.

This unexpectedly positive result could have been caused by an omitted

variable with positive expected bias. One such variable is the price of beef.

The expected bias in due to leaving out PB is positive, since both the

expected coefficient of PB and the expected correlation between PC and PB

are positive:

Hence the price of beef is a reasonable candidate to be an omitted variable in

Equation 9.

Although you can never actually observe bias (since you don’t know the

true the use of this technique to screen potential causes of specification

bias should reduce the number of regressions run and therefore increase the

statistical validity of the results.

A brief warning: It may be tempting to conduct what might be called

“residual analysis” by examining a plot of the residuals in an attempt to find

patterns that suggest variables that have been accidentally omitted. A major

problem with this approach is that the coefficients of the estimated equation

will possibly have some of the effects of the left-out variable already altering

their estimated values. Thus, residuals may show a pattern that only vaguely

resembles the pattern of the actual omitted variable. The chances are high

that the pattern shown in the residuals may lead to the selection of an incor-

rect variable. In addition, care should be taken to use residual analysis only

to choose between theoretically sound candidate variables rather than to

generate those candidates.

�),

Expected bias in �̂PC 5 �PB ? f(rPC,PB) 5 (1) ? (1) 5 (1)

�̂PC

�PC to be in the range of 21.0

Expected bias 5 �om ? f(rin,om)
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Irrelevant Variables

What happens if you include a variable in an equation that doesn’t belong

there? This case, irrelevant variables, is the converse of omitted variables and

can be analyzed using the model we developed in Section 1. The addition of a

variable to an equation where it doesn’t belong does not cause bias, but it does

increase the variances of the estimated coefficients of the included variables.

Impact of Irrelevant Variables

If the true regression specification is:

(10)

but the researcher for some reason includes an extra variable,

(11)

the misspecified equation’s error term can be seen to be:

(12)

Such a mistake will not cause bias if the true coefficient of the extra (or irrele-

vant) variable is zero. That is, in Equation 11 is unbiased when 

However, the inclusion of an irrelevant variable will increase the variance

of the estimated coefficients, and this increased variance will tend to decrease

the absolute magnitude of their t-scores. Also, an irrelevant variable usually

will decrease the (but not the R2).

Thus, although the irrelevant variable causes no bias, it causes problems

for the regression because it reduces the t-scores and .

Table 1 summarizes the consequences of the omitted variable and the in-

cluded irrelevant variable cases (unless r12 � 0).

R2

R2

�2 5 0.�̂1

�**i 5 �i 2 �2X2i

Yi 5 �0 1 �1X1i 1 �2X2i 1 �**i

Yi 5 �0 1 �1X1i 1 �i

2
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Table 1 Effect of Omitted Variables and Irrelevant Variables on the 
Coefficient Estimates

Effect on Coefficient Estimates Omitted Variable Irrelevant Variable

Bias Yes No

Variance Decreases Increases
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An Example of an Irrelevant Variable

Let’s return to the equation from Section 1 for the annual consumption of

chicken and see what happens when we add an irrelevant variable to the

equation. The original equation was:

(8)

(0.03) (0.02) (0.01)

t � �3.38 �1.86 �15.7

Suppose you hypothesize that the demand for chicken also depends on TEMP,

the average annual change in temperature in tenths of a degree (included, per-

haps, on the dubious theory that demand for chicken might heat up when

temperatures are rising). If you now estimate the equation with TEMP included,

you obtain:

� 26.9 � 0.11PCt � 0.03PBt � 0.23YDt � 0.02TEMPt (13)

(0.03) (0.02) (0.015) (0.02)

t � �3.38 �1.99 �14.99 �0.93

� .9903 N � 29 (annual 1974–2002)

A comparison of Equations 8 and 13 will make the theory in Section 2 come

to life. First of all, has fallen slightly, indicating the reduction in fit adjusted

for degrees of freedom. Second, none of the regression coefficients from the

original equation changed; compare these results with the larger differences

between Equations 8 and 9. Further, the standard errors of the estimated co-

efficients increased or remained constant. Finally, the t-score for the potential

variable (TEMP) is small, indicating that it is not significantly different from

zero. Given the theoretical shakiness of the new variable, these results indi-

cate that it is irrelevant and never should have been included in the 

regression.

Four Important Specification Criteria

We have now discussed at least four valid criteria to help decide whether a

given variable belongs in the equation. We think these criteria are so impor-

tant that we urge beginning researchers to work through them every time a

variable is added or subtracted.

R2

R2

Yt

R2 5 .9904 N 5 29 (annual 1974–2002)

 Yt 5 27.7 2 0.11PCt 1  0.03PBt 1  0.23YDt
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If all these conditions hold, the variable belongs in the equation; if none

of them do, the variable is irrelevant and can be safely excluded from the

equation. When a typical omitted relevant variable is included in the equa-

tion, its inclusion probably will increase and change at least one other

coefficient. If an irrelevant variable, on the other hand, is included, it will

reduce have an insignificant t-score, and have little impact on the other

variables’ coefficients.

In many cases, all four criteria do not agree. It is possible for a variable to

have an insignificant t-score that is greater than one, for example. In such a

case, it can be shown that will go up when the variable is added to the

equation and yet the t-score still will be insignificant.

Whenever our four specification criteria disagree, the econometrician

must use careful judgment and should not rely on a single criterion like 

to determine the specification. Researchers should not misuse this freedom

by testing various combinations of variables until they find the results that

appear to statistically support the point they want to make. All such deci-

sions are a bit easier when you realize that the single most important deter-

minant of a variable’s relevance is its theoretical justification. No amount of

statistical evidence should make a theoretical necessity into an “irrelevant”

variable. Once in a while, a researcher is forced to leave a theoretically impor-

tant variable out of an equation for lack of data; in such cases, the usefulness

of the equation is limited.

An Illustration of the Misuse of Specification Criteria

At times, the four specification criteria outlined in the previous section will

lead the researcher to an incorrect conclusion if those criteria are applied to a

problem without proper concern for economic principles or common sense.

3

R2

R2

R2,

R2
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1. Theory: Is the variable’s place in the equation unambiguous and 

theoretically sound?

2. t-Test: Is the variable’s estimated coefficient significant in the expected

direction?

3. : Does the overall fit of the equation (adjusted for degrees of free-

dom) improve when the variable is added to the equation?

4. Bias: Do other variables’ coefficients change significantly when the

variable is added to the equation?

R2
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In particular, a t-score can often be insignificant for reasons other than the

presence of an irrelevant variable. Since economic theory is the most impor-

tant test for including a variable, an example of why a variable should not

be dropped from an equation simply because it has an insignificant t-score

is in order.

Suppose you believe that the demand for Brazilian coffee in the United

States is a negative function of the real price of Brazilian coffee (Pbc) and a

positive function of both the real price of tea (Pt) and real disposable income

in the United States (Yd).5 Suppose further that you obtain the data, run the

implied regression, and observe the following results:

(14)

The coefficients of the second and third variables, Pt and Yd, appear to be

fairly significant in the direction you hypothesized, but the first variable, Pbc,

appears to have an insignificant coefficient with an unexpected sign. If you

think there is a possibility that the demand for Brazilian coffee is perfectly

price-inelastic (that is, its coefficient is zero), you might decide to run the

same equation without the price variable, obtaining:

(15)

By comparing Equations 14 and 15, we can apply our four specification crite-

ria for the inclusion of a variable in an equation that were outlined in the

previous section:

1. Theory: Since the demand for coffee could possibly be perfectly price-

inelastic, the theory behind dropping the variable seems plausible.

2. t-Test: The t-score of the possibly irrelevant variable is 0.5, insignificant

at any level.

R2 5 .61 N 5 25

 t 5 2.6  4.0

 (1.0)  (0.0009)

 COFFEE 5 9.3 1 2.6Pt 1  0.0036Yd

R2 5 .60 N 5 25

 t 5 0.5  2.0  3.5

  (15.6)  (1.2)  (0.0010)

 COFFEE 5 9.1 1 7.8Pbc 1  2.4Pt 1  0.0035Yd

SPECIFICATION: CHOOSING THE INDEPENDENT VARIABLES

5. This example was inspired by a similar one concerning Ceylonese tea published in Potluri

Rao and Roger LeRoy Miller, Applied Econometrics (Belmont, CA: Wadsworth, 1971), pp. 38–40.

This wonderful book is now out of print.
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3. : increases when the variable is dropped, indicating that the variable

is irrelevant. (Since the t-score is less than 1, this is to be expected.)

4. Bias: The remaining coefficients change only a small amount when Pbc
is dropped, suggesting that there is little—if any—bias caused by exclud-

ing the variable.

Based upon this analysis, you might conclude that the demand for Brazilian

coffee is indeed perfectly price-inelastic and that the variable is therefore irrele-

vant and should be dropped from the model. As it turns out, this conclusion

would be unwarranted. Although the elasticity of demand for coffee in general

might be fairly low (actually, the evidence suggests that it is inelastic only over

a particular range of prices), it is hard to believe that Brazilian coffee is 

immune to price competition from other kinds of coffee. Indeed, one would

expect quite a bit of sensitivity in the demand for Brazilian coffee with respect

to the price of, for example, Colombian coffee. To test this hypothesis, the price

of Colombian coffee (Pcc) should be added to the original Equation 14:

(16)

By comparing Equations 14 and 16, we can once again apply our four speci-

fication criteria:

1. Theory: Both prices should always have been included in the model;

their logical justification is quite strong.

2. t-Test: The t-score of the new variable, the price of Colombian coffee, 

is 2.0, significant at most levels.

3. : increases with the addition of the variable, indicating that the

variable was an omitted variable.

4. Bias: Although two of the coefficients remain virtually unchanged, indi-

cating that the correlations between these variables and the price of

Colombian coffee variable are low, the coefficient for the price of Brazil-

ian coffee does change significantly, indicating bias in the original result.

The moral to be drawn is that theoretical considerations never should be

discarded, even in the face of statistical insignificance. If a variable known to

be extremely important from a theoretical point of view turns out to be sta-

tistically insignificant in a particular sample, that variable should be left in

the equation despite the fact that it makes the results look bad.

R2R2

R2 5 .65 N 5 25

 t 5 2.0  2 2.8  2.0  3.0

 (4.0)  (2.0)  (1.3)  (0.0010)

 COFFEE 5 10.0 1 8.0Pcc 2  5.6Pbc 1  2.6Pt 1  0.0030Yd

R2R2
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Don’t conclude that the particular path outlined in this example is the cor-

rect way to specify an equation. Trying a long string of possible variables until

you get the particular one that makes the coefficient of Pbc turn negative and

significant is not the way to obtain a result that will stand up well to other

samples or alternative hypotheses. The original equation should never have

been run without the Colombian coffee price variable. Instead, the problem

should have been analyzed enough so that such errors of omission were un-

likely before any regressions were attempted at all. The more thinking that’s

done before the first regression is run, and the fewer alternative specifications

that are estimated, the better the regression results are likely to be.

Specification Searches

One of the weaknesses of econometrics is that a researcher potentially can ma-

nipulate a data set to produce almost any result by specifying different regres-

sions until estimates with the desired properties are obtained. Because the 

integrity of all empirical work is thus open to question, the subject of how to

search for the best specification is quite controversial among econometricians.6

Our goal in this section isn’t to summarize or settle this controversy; instead, I

hope to provide some guidance and insight for beginning researchers.

Best Practices in Specification Searches

The issue of how best to choose a specification from among alternative possi-

bilities is a difficult one, but our experience leads us to make the following

recommendations:

4
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6. For an excellent summary of this controversy and the entire subject of specification, see Peter

Kennedy, A Guide to Econometrics (Malden, MA: Blackwell), pp. 71–92.

1. Rely on theory rather than statistical fit as much as possible when

choosing variables, functional forms, and the like.

2. Minimize the number of equations estimated (except for sensitivity

analysis, to be discussed later in this section).

3. Reveal, in a footnote or appendix, all alternative specifications

estimated.

191



If theory, not or t-scores, is the most important criterion for the inclu-

sion of a variable in a regression equation, then it follows that most of the

work of specifying a model should be done before you attempt to estimate the

equation. Since it’s unreasonable to expect researchers to be perfect, there will

be times when additional specifications must be estimated. However, these

new estimates should be few in number and should be thoroughly grounded

in theory. In addition, they should be explicitly taken into account when test-

ing for significance and/or summarizing results. In this way, the danger of

misleading the reader about the statistical properties of the final equation will

be reduced.

Sequential Specification Searches

Most econometricians tend to specify equations by estimating an initial

equation and then sequentially dropping or adding variables (or changing

functional forms) until a plausible equation is found with “good statistics.”

Faced with knowing that a few variables are relevant (on the basis of theory)

but not knowing whether other additional variables are relevant, inspecting

and t-tests for all variables for each specification appears to be the gener-

ally accepted practice. Indeed, casual reading of the previous section might

make it seem as if such a sequential specification search is the best way to go

about finding the “truth.” Instead, as we shall see, there is a vast difference

between a sequential specification search and our recommended approach.

The sequential specification search technique allows a researcher to esti-

mate an undisclosed number of regressions and then present a final choice

(which is based upon an unspecified set of expectations about the signs and

significance of the coefficients) as if it were the only specification estimated.

Such a method misstates the statistical validity of the regression results for

two reasons:

1. The statistical significance of the results is overestimated because the

estimations of the previous regressions are ignored.

2. The expectations used by the researcher to choose between various

regression results rarely, if ever, are disclosed. Thus the reader has no

way of knowing whether all the other regression results had opposite

signs or insignificant coefficients for the important variables.

Unfortunately, there is no universally accepted way of conducting sequen-

tial searches, primarily because the appropriate test at one stage in the proce-

dure depends on which tests previously were conducted, and also because

the tests have been very difficult to invent.

R2

R2
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Instead we recommend trying to keep the number of regressions estimated

as low as possible; to focus on theoretical considerations when choosing

variables or functional forms; and to document all the various specifications

investigated. That is, we recommend combining parsimony (using theory

and analysis to limit the number of specifications estimated) with disclosure

(reporting all the equations estimated).

Not everyone agrees with our advice. Some researchers feel that the true

model will show through if given the chance and that the best statistical 

results (including signs of coefficients, etc.) are most likely to have come

from the true specification. In addition, reasonable people often disagree as

to what the “true” model should look like. As a result, different researchers

can look at the same data set and come up with very different “best” equa-

tions. Because this can happen, the distinction between good and bad econo-

metrics is not always as clear-cut as is implied by the previous paragraphs. As

long as researchers have a healthy respect for the dangers inherent in specifi-

cation searches, they are very likely to proceed in a reasonable way.

Bias Caused by Relying on the t-Test to Choose Variables

In the previous section, we stated that sequential specification searches are

likely to mislead researchers about the statistical properties of their results. In

particular, the practice of dropping a potential independent variable simply

because its coefficient has a low t-score will cause systematic bias in the esti-

mated coefficients (and their t-scores) of the remaining variables.

Let’s say the hypothesized model is:

(17)

Assume further that, on the basis of theory, we are certain that X1 belongs in

the equation but that we are not as certain that X2 belongs. Many inexperi-

enced researchers use only the t-test on to determine whether X2 should

be included. If this preliminary t-test indicates that is significantly differ-

ent from zero, then these researchers leave X2 in the equation. If, however,

the t-test does not indicate that is significantly different from zero, then

such researchers drop X2 from the equation and consider Y to be a function

of X1.

Two kinds of mistakes can be made using such a system. First, X2 some-

times can be left in the equation when it does not belong there, but such a

mistake does not change the expected value of 

Second, X2 sometimes can be dropped from the equation when it belongs.

In this second case, the estimated coefficient of X1 will be biased. In other

�̂1.

�̂2

�̂2

�̂2

Yi 5 �0 1 �1X1i 1 �2X2i 1 �i
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words, will be biased every time X2 belongs in the equation and is left out,

and X2 will be left out every time that its estimated coefficient is not signifi-

cantly different from zero. We will have systematic bias in our equation!

To summarize, the t-test is biased by sequential specification searches.

Since most researchers consider a number of different variables before set-

tling on the final model, someone who relies on the t-test alone is likely to

encounter this problem systematically.

Sensitivity Analysis

We’ve encouraged you to estimate as few specifications as possible and to

avoid depending on fit alone to choose between those specifications. If you

read the current economics literature, however, it won’t take you long to find

well-known researchers who have estimated five or more specifications and

then have listed all their results in an academic journal article. What’s 

going on?

In almost every case, these authors have employed a technique called sen-

sitivity analysis.

Sensitivity analysis consists of purposely running a number of alterna-

tive specifications to determine whether particular results are robust (not

statistical flukes). In essence, we’re trying to determine how sensitive a 

potential “best” equation is to a change in specification because the true

specification isn’t known. Researchers who use sensitivity analysis run (and

report on) a number of different reasonable specifications and tend to dis-

count a result that appears significant in some specifications and insignif-

icant in others. Indeed, the whole purpose of sensitivity analysis is to gain

confidence that a particular result is significant in a variety of alternative

specifications, functional forms, variable definitions, and/or subsets of 

the data.

Data Mining

In contrast to sensitivity analysis, which consists of estimating a variety of

alternative specifications after a potential “best” equation has been identi-

fied, data mining involves estimating a variety of alternative specifications

before that “best” equation has been chosen. Readers of this text will not be

surprised to hear that we urge extreme caution when data mining. Improp-

erly done data mining is worse than doing nothing at all.

Done properly, data mining involves exploring a data set not for the pur-

pose of testing hypotheses or finding a specification, but for the purpose of

�̂1
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uncovering empirical regularities that can inform economic theory.7 After all,

we can’t expect economic theorists to think of everything!

Be careful, however! If you develop a hypothesis using data mining tech-

niques, you must test that hypothesis on a different data set (or in a different

context) than the one you used to develop the hypothesis. A new data set must

be used because our typical statistical tests have little meaning if the new

hypothesis is tested on the data set that was used to generate it. After all, the 

researcher already knows ahead of time what the results will be! The use of dual

data sets is easiest when there is a plethora of data. This sometimes is the case

in cross-sectional research projects but rarely is the case for time series research.

Data mining without using dual data sets is almost surely the worst way

to choose a specification. In such a situation, a researcher could estimate vir-

tually every possible combination of the various alternative independent

variables, could choose the results that “look” the best, and then could report

the “best” equation as if no data mining had been done. This improper use

of data mining ignores the fact that a number of specifications have been

examined before the final one is reported.

In addition, data mining will cause you to choose specifications that reflect

the peculiarities of your particular data set. How does this happen? Suppose

you have 100 true null hypotheses and you run 100 tests of these hypotheses.

At the 5-percent level of significance, you’d expect to reject about five true null

hypotheses and thus make about five Type I Errors. By looking for high 

t-values, a data mining search procedure will find these Type I Errors and incor-

porate them into your specification. As a result, the reported t-scores will over-

state the statistical significance of the estimated coefficients.

In essence, improper data mining to obtain desired statistics for the final 

regression equation is a potentially unethical empirical research method.

Whether the improper data mining is accomplished by estimating one equa-

tion at a time or by estimating batches of equations or by techniques like step-

wise regression procedures,8 the conclusion is the same. Hypotheses developed
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7. For an excellent presentation of this approach, see Lawrence H. Summers, “The Scientific

Illusion in Empirical Macroeconomics,” Scandinavian Journal of Economics, Vol. 93, No. 2, 

pp. 129–148.

8. A stepwise regression involves the use of an automated computer program to choose the 

independent variables in an equation. The researcher specifies a “shopping list” of possible inde-

pendent variables, and then the computer estimates a number of equations until it finds the

one that maximizes . Such stepwise techniques are deficient in the face of multicollinearity

and they run the risk that the chosen specification will have little theoretical justification

and/or will have coefficients with unexpected signs. Because of these pitfalls, econometricians

avoid stepwise procedures.
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by data mining should always be tested on a data set different from the

one that was used to develop the hypothesis. Otherwise, the researcher

hasn’t found any scientific evidence to support the hypothesis; rather, a

specification has been chosen in a way that is essentially misleading. As

put by one econometrician, “if you torture the data long enough, they will

confess.”9

An Example of Choosing Independent Variables

It’s time to get some experience choosing independent variables. After all,

every equation so far in the text has come with the specification already deter-

mined, but once you’ve finished this course you’ll have to make all such spec-

ification decisions on your own. We’ll use a technique called “interactive re-

gression learning exercises” to allow you to make your own actual

specification choices and get feedback on your choices. To start, though, let’s

work through a specification together.

To keep things as simple as possible, we’ll begin with a topic near and dear

to your heart—your GPA! Suppose a friend who attends a small liberal arts

college surveys all 25 members of her econometrics class, obtains data on the

variables listed here, and asks for your help in choosing a specification:

GPAi � the cumulative college grade point average on the ith student on

a four-point scale

HGPAi � the cumulative high school grade point average of the ith student

on a four-point scale

MSATi � the highest score earned by the ith student on the math section

of the SAT test (800 maximum)

VSATi � the highest score earned by the ith student on the verbal section

of the SAT test (800 maximum)

SATi � MSATi � VSATi

GREKi � a dummy variable equal to 1 if the ith student is a member of a

fraternity or sorority, 0 otherwise

HRSi � the ith student’s estimate of the average number of hours spent

studying per course per week in college

5
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9. Thomas Mayer, “Economics as a Hard Science: Realistic Goal or Wishful Thinking?” Economic

Inquiry, Vol. 18, No. 2, p. 175. (This quote also has been attributed to Ronald Coase.)
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PRIVi � a dummy variable equal to 1 if the ith student graduated from a

private high school, 0 otherwise

JOCKi � a dummy variable equal to 1 if the ith student is or was a member

of a varsity intercollegiate athletic team for at least one season,

0 otherwise

lnEXi � the natural log of the number of full courses that the ith student

has completed in college.

Assuming that GPAi is the dependent variable, which independent vari-

ables would you choose? Before you answer, think through the possibilities

carefully. What does the literature tell us on this subject? (Is there literature?)

What are the expected signs of each of the coefficients? How strong is the the-

ory behind each variable? Which variables seem obviously important? Which

variables seem potentially irrelevant or redundant? Are there any other vari-

ables that you wish your friend had collected?

To get the most out of this example, you should take the time to write down

the exact specification that you would run:

GPAi

It’s hard for most beginning econometricians to avoid the temptation of 

including all of these variables in a GPA equation and then dropping any

variables that have insignificant t-scores. Even though we mentioned in the

previous section that such a specification search procedure will result in

biased coefficient estimates, most beginners don’t trust their own judgment

and tend to include too many variables. With this warning in mind, do you

want to make any changes in your proposed specification?

No? OK, let’s compare notes. We believe that grades are a function of a stu-

dent’s ability, how hard the student works, and the student’s experience tak-

ing college courses. Consequently, our specification would be:

We can already hear you complaining! What about SATs, you say? Everyone

knows they’re important. How about jocks and Greeks? Don’t they have

lower GPAs? Don’t prep schools grade harder and prepare students better

than public high schools?

Before we answer, it’s important to note that we think of specification

choice as choosing which variables to include, not which variables to exclude.

That is, we don’t assume automatically that a given variable should be 

GPAi 5 f(HG
1

PAi, HR
1

Si, ln
1

EXi) 1 �

5 f(?, ?, ?, ?, ?) 1 �
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included in an equation simply because we can’t think of a good reason for

dropping it.

Given that, however, why did we choose the variables we did? First, we

think that the best predictor of a student’s college GPA is his or her high

school GPA. We have a hunch that once you know HGPA, SATs are redun-

dant, at least at a liberal arts college where there are few multiple choice tests.

In addition, we’re concerned that possible racial and gender bias in the SAT

test makes it a questionable measure of academic potential, but we recognize

that we could be wrong on this issue.

As for the other variables, we’re more confident. For example, we feel that

once we know how many hours a week a student spends studying, we couldn’t

care less what that student does with the rest of his or her time, so JOCK and

GREK are superfluous once HRS is included. In addition, the higher LnEX is,

the better student study habits are and the more likely students are to be

taking courses in their major. Finally, while we recognize that some private

schools are superb and that some public schools are not, we’d guess that

PRIV is irrelevant; it probably has only a minor effect.

If we estimate this specification on the 25 students, we obtain:

(18)

Since we prefer this specification on theoretical grounds, since the overall fit

seems reasonable, and since each coefficient meets our expectations in terms

of sign, size, and significance, we consider this an acceptable equation. The

only circumstance under which we’d consider estimating a second specifica-

tion would be if we had theoretical reasons to believe that we had omitted a

relevant variable. The only variable that might meet this description is SATi
(which we prefer to the individual MSAT and VSAT):

(19)

N 5 25 R2 5 .583

 t 5 3.12  0.93

 (0.14)  (0.00064)

 1 0.44lnEXi  1 0.00060SATi

 t 5 2.12  2.50

 (0.22)  (0.02)

GPAi 5 2 0.92 1  0.47HGPAi 1  0.05HRSi

N 5 25 R2 5 .585

 t 5 2.33  3.00  3.00

 (0.21)  (0.02)  (0.14)

GPAi 5 2 0.26 1  0.49HGPAi 1  0.06HRSi 1  0.42lnEXi
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Let’s use our four specification criteria to compare Equations 18 and 19:

1. Theory: As discussed previously, the theoretical validity of SAT tests is a

matter of some academic controversy, but they still are one of the most-

cited measures of academic potential in this country.

2. t-Test: The coefficient of SAT is positive, as we’d expect, but it’s not sig-

nificantly different from zero.

3. : As you’d expect (since SAT’s t-score is under 1), falls slightly when

SAT is added.

4. Bias: None of the estimated slope coefficients changes significantly when

SAT is added, though some of the t-scores do change because of the in-

crease in the caused by the addition of SAT.

Thus, the statistical criteria support our theoretical contention that SAT is

irrelevant.

Finally, it’s important to recognize that different researchers could come

up with different final equations on this topic. A researcher whose prior 

expectation was that SAT unambiguously belonged in the equation would

have estimated Equation 19 and accepted that equation without bothering to

estimate Equation 18. Other researchers, in the spirit of sensitivity analysis,

would report both equations.

Summary

1. The omission of a variable from an equation will cause bias in the esti-

mates of the remaining coefficients to the extent that the omitted vari-

able is correlated with included variables.

2. The bias to be expected from leaving a variable out of an equation

equals the coefficient of the excluded variable times a function of the

simple correlation coefficient between the excluded variable and the

included variable in question.

3. Including a variable in an equation in which it is actually irrelevant

does not cause bias, but it will usually increase the variances of the in-

cluded variables’ estimated coefficients, thus lowering their t-values

and lowering R2.

6

SE(�̂)s

R2R2
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4. Four useful criteria for the inclusion of a variable in an equation are:

a. theory

b. t-test

c.

d. bias

5. Theory, not statistical fit, should be the most important criterion for

the inclusion of a variable in a regression equation. To do otherwise

runs the risk of producing incorrect and/or disbelieved results.

EXERCISES

(The answer to Exercise 2 appears at the end of the chapter.)

1. Write the meaning of each of the following terms without referring to

the book (or your notes), and compare your definition with the ver-

sion in the text for each:

a. omitted variable

b. irrelevant variable

c. specification bias

d. sequential specification search

e. specification error

f. the four specification criteria

g. expected bias

h. sensitivity analysis

2. You’ve been hired by “Indo,” the new Indonesian automobile manufac-

turer, to build a model of U.S. car prices in order to help the company

undercut U.S. prices. Allowing Friedmaniac zeal to overwhelm any patri-

otic urges, you build the following model of the price of 35 different

American-made 2004 U.S. sedans (standard errors in parentheses):

where: Pi � the list price of the ith car (thousands of dollars)

Wi � the weight of the ith car (hundreds of pounds)

Ti � a dummy equal to 1 if the ith car has an automatic

transmission, 0 otherwise

R2 5 .92

 (0.07)  (0.4)  (2.9)  (0.20)

 Model A: P̂i 5 3.0 1 0.28Wi 1 1.2Ti 1 5.8Ci 1 0.19Li

R2
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Ci � a dummy equal to 1 if the ith car has cruise control, 

0 otherwise

Li � the size of the engine of the ith car (in liters)

a. Your firm’s pricing expert hypothesizes positive signs for all the slope

coefficients in Model A. Test her expectations at the 5-percent level.

b. What econometric problems appear to exist in Model A? In particu-

lar, does the size of the coefficient of C cause any concern? Why?

What could be the problem?

c. You decide to test the possibility that L is an irrelevant variable by

dropping it and rerunning the equation, obtaining the following

Model T equation. Which model do you prefer? Why? (Hint: Be

sure to use our four specification criteria.)

3. Consider the following annual model of the death rate (per million

population) due to coronary heart disease in the United States (Yt):

where: Ct � per capita cigarette consumption (pounds of tobacco)

in year t

Et � per capita consumption of edible saturated fats

(pounds of butter, margarine, and lard) in year t

Mt � per capita consumption of meat (pounds) in year t

a. Create and test appropriate hypotheses at the 10-percent level. What,

if anything, seems to be wrong with the estimated coefficient of M?

b. The most likely cause of a coefficient that is significant in the unex-

pected direction is omitted variable bias. Which of the following

variables could possibly be an omitted variable that is causing 

unexpected sign? Explain. (Hint: Be sure to analyze expected bias in

your explanation.)

Bt � per capita consumption of hard liquor (gallons) in year t

Ft � the average fat content (percentage) of the meat that was

consumed in year t

�̂M’s

N 5 31 (197522005) R2 5 .678

 t 5 4.0  4.0  2 2.0

 (2.5)  (1.0)  (0.5)

 Ŷt 5 140 1 10.0Ct 1 4.0Et 2 1.0Mt

R2 5 .93

 (0.07)  (0.30)  (2.9)

 Model T: P̂ 5 18 1 0.29Wi 1 1.2Ti 1 5.9Ci
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Wt � per capita consumption of wine and beer (gallons) in year t

Rt � per capita number of miles run in year t

Ht � per capita open-heart surgeries in year t

Ot � per capita amount of oat bran eaten in year t

c. If you had to choose a variable not listed in part b to add to the

equation, what would it be? Explain your answer.

4. Assume that you’ve been hired by the surgeon general of the United

States to study the determinants of smoking behavior and that you 

estimate the following cross-sectional model based on data for all 

50 states (standard errors in parentheses):10

(20)

where: Ci � the number of cigarettes consumed per day per person

in the ith state

Ei � the average years of education for persons over 21 in

the ith state

Ii � the average income in the ith state (thousands of dollars)

Ti � the tax per package of cigarettes in the ith state (cents)

Vi � the number of video ads against smoking aired on the

three major networks in the ith state.

Ri � the number of radio ads against smoking aired on the

five largest radio networks in the ith state

a. Develop and test (at the 5-percent level) appropriate hypotheses

for the coefficients of the variables in this equation.

b. Do you appear to have any irrelevant variables? Do you appear to

have any omitted variables? Explain your answer.

c. Let’s assume that your answer to part b was yes to both. Which

problem is more important to solve first—irrelevant variables or

omitted variables? Why?

d. One of the purposes of running the equation was to determine the

effectiveness of antismoking advertising on television and radio.

What is your conclusion?

R2 5 .40 N 5 50 (states)

 t 5 2 3.0  1.0  2 1.0  2 3.0  3.0

 (3.0)  (1.0)  (0.04)  (1.0)  (0.5)

 Ĉi 5 100 2 9.0Ei 1 1.0Ii 2 0.04Ti 2 3.0Vi 1 1.5Ri
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10. This question is generalized from a number of similar studies, including John A. Bishop and

Jang H. Yoo, “Health Scare, Excise Taxes, and Advertising Ban in the Cigarette Demand and Sup-

ply,” Southern Economic Journal, Vol. 52, No. 1, pp. 402–411.
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e. The surgeon general decides that tax rates are irrelevant to cigarette

smoking and orders you to drop the variable from your equation.

Given the following results, use our four specification criteria to de-

cide whether you agree with her conclusion. Carefully explain your

reasoning (standard errors in parentheses).

(21)

f. In answering part e, you surely noticed that the figures were

identical. Did this surprise you? Why or why not?

5. The data set in Table 2 is the one that was used to estimate the

chicken demand examples of Sections 1 and 2.

a. Use these data to reproduce the specifications in the chapter

(datafile � CHICK6).

b. Find data in Table 2 for the price of pork (another substitute for

chicken) and add that variable to Equation 8. Analyze your results.

In particular, apply the four criteria for the inclusion of a variable to

determine whether the price of pork is irrelevant or previously was

an omitted variable.

6. You have been retained by the “Expressive Expresso” company to help

them decide where to build their next “Expressive Expresso” store.

You decide to run a regression on the sales of the 30 existing “Expres-

sive Expresso” stores as a function of the characteristics of the loca-

tions they are in and then use the equation to predict the sales at the

various locations you are considering for the newest store. You end up

estimating (standard errors in parentheses):

where: Yi � average daily sales (in hundreds of dollars) of the 

ith store

X1i � the number of cars that pass the ith location per hour

X2i � average income in the area of the ith store

X3i � the number of tables in the ith store

X4i � the number of competing shops in the area of the 

ith store

 (0.02)  (0.01)  (1.0)  (1.0)

 Ŷi 5 30 1 0.1X1i 1 0.01X2i 1 10.0X3i 1 3.0X4i

R2

R2 5 .40 N 5 50 (states)

 (3.0)  (0.9)  (1.0)  (0.5)

 Ĉi 5 101 2 9.1Ei 1 1.0Ii 2 3.5Vi 1 1.6Ri
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a. Hypothesize expected signs, calculate the correct t-scores, and test

the significance at the 1-percent level for each of the coefficients.

b. What problems appear to exist in the equation? What evidence of

these problems do you have?

c. What suggestions would you make for a possible second run of this

admittedly hypothetical equation? (Hint: Before recommending the

inclusion of a potentially omitted variable, consider whether the ex-

clusion of the variable could possibly have caused any observed bias.)

SPECIFICATION: CHOOSING THE INDEPENDENT VARIABLES

Table 2 Data for the Chicken Demand Equation

Year Y PC PB YD TEMP PRP

1974 39.70 42.30 143.80 50.10 �16 107.80

1975 38.69 49.40 152.20 54.98 �4 134.60

1976 42.02 45.50 145.70 59.72 �24 134.00

1977 42.71 45.30 145.90 65.17 16 125.40

1978 44.75 49.30 178.80 72.24 5 143.60

1979 48.35 50.00 222.40 79.67 13 152.50

1980 48.47 53.50 233.60 88.22 21 147.50

1981 50.37 53.80 234.70 97.65 49 161.20

1982 51.52 51.50 238.40 104.26 4 185.60

1983 52.55 56.00 234.10 111.31 35 179.70

1984 54.61 61.50 235.50 123.19 11 171.40

1985 56.42 56.20 228.60 130.37 4 170.80

1986 57.70 63.10 226.80 136.49 18 188.80

1987 61.94 53.10 238.40 142.41 35 199.40

1988 63.80 62.10 250.30 152.97 46 194.00

1989 66.88 64.20 265.70 162.57 32 193.50

1990 70.34 60.50 281.00 171.31 64 224.90

1991 73.26 57.70 288.30 176.09 52 224.20

1992 76.39 59.00 284.60 184.94 18 209.50

1993 78.27 27.10 293.40 188.72 27 209.10

1994 79.65 26.20 282.90 195.55 48 209.50

1995 79.27 26.90 284.30 202.87 71 206.10

1996 80.61 28.00 280.20 210.91 36 233.70

1997 83.10 33.20 279.50 219.40 60 245.00

1998 83.76 33.40 277.10 231.61 89 242.70

1999 88.98 39.50 287.80 239.68 60 241.40

2000 90.08 43.00 306.40 254.69 62 258.20

2001 89.71 43.40 337.70 262.24 74 269.40

2002 94.37 43.90 331.50 271.45 85 265.80

Sources: U.S. Department of Agriculture. Agricultural Statistics; U.S. Bureau of the Census.
Historical Statistics of the United States, U.S. Bureau of the Census. Statistical Abstract of the
United States. (Datafile � CHICK6)
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7. Discuss the topic of specification searches with various members of

your econometrics class. What is so wrong with not mentioning previ-

ous (probably incorrect) estimates? Why should readers be suspicious

when researchers attempt to find results that support their hypothe-

ses? Who would try to do the opposite? Do these concerns have any

meaning in the world of business? In particular, if you’re not trying to

publish a paper, couldn’t you use any specification search techniques

you want to find the best equation?

8. For each of the following situations, determine the sign (and, if possi-

ble, comment on the likely size) of the expected bias introduced by

omitting a variable:

a. In an equation for the demand for peanut butter, the impact on the

coefficient of disposable income of omitting the price of peanut

butter variable. (Hint: Start by hypothesizing signs.)

b. In an earnings equation for workers, the impact on the coefficient

of experience of omitting the variable for age.

c. In a production function for airplanes, the impact on the coeffi-

cient of labor of omitting the capital variable.

d. In an equation for daily attendance at outdoor concerts, the impact

on the coefficient of the weekend dummy variable (1 � weekend)

of omitting a variable that measures the probability of precipita-

tion at concert time.

9. Most of the examples so far have been demand-side equations or pro-

duction functions, but economists often also have to quantify supply-

side equations that are not true production functions. These equations

attempt to explain the production of a product (for example, Brazilian

coffee) as a function of the price of the product and various other at-

tributes of the market that might have an impact on the total output of

growers.

a. What sign would you expect the coefficient of price to have in a

supply-side equation? Why?

b. What other variables can you think of that might be important in a

supply-side equation?

c. Many agricultural decisions are made months (if not a full year or

more) before the results of those decisions appear in the market.

How would you adjust your hypothesized equation to take account

of these lags?

d. Using the information given so far, carefully specify the exact equa-

tion you would use to attempt to explain Brazilian coffee produc-

tion. Be sure to hypothesize the expected signs, be specific with

respect to lags, and try to make sure that you have not omitted an

important independent variable.
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10. If you think about the previous question, you’ll realize that the same

dependent variable (quantity of Brazilian coffee) can have different

expected signs for the coefficient of the same independent variable

(the price of Brazilian coffee), depending on what other variables are

in the regression.

a. How is this possible? That is, how is it possible to expect different

signs in demand-side equations from what you would expect in

supply-side ones?

b. What can be done to avoid getting the price coefficient from the

demand equation in the supply equation and vice versa?

c. What can you do to systematically ensure that you do not have

supply-side variables in your demand equation or demand-side

variables in your supply equation?

11. Let’s use the model of financial aid awards at a liberal arts 

college. We estimate the following equation (standard errors in 

parentheses):

FINAIDi � 8927 � 0.36 PARENTi � 87.4 HSRANKi (22)

(0.03) (20.7)

t � �11.26 4.22

� 0.73 N � 50 

where: FINAIDi � the financial aid (measured in dollars of

grant) awarded to the ith applicant

PARENTi � the amount (in dollars) that the parents of

the ith student are judged able to contribute

to college expenses

HSRANKi � the ith student’s GPA rank in high school,

measured as a percentage (ranging from a

low of 0 to a high of 100)

a. Create and test hypotheses for the coefficients of the independent

variables.

b. What econometric problems do you see in the equation? Are there

any signs of an omitted variable? Of an irrelevant variable? Explain

your answer.

c. Suppose that you now hear a charge that financial aid awards at the

school are unfairly tilted toward males, so you decide to attempt to

test this charge by adding a dummy variable for gender (MALEi � 1

R2
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if the ith student is a male, 0 if female) to your equation, getting

the following results:

FINAIDi � 9813 � 0.34 PARENTi � 83.3 HSRANKi � 1570 MALEi (23)

(0.03) (20.1) (784)

t � �10.88 4.13 �2.00

� 0.75 N � 50 

d. Carefully explain the real-world meaning of the estimated coeffi-

cient of MALE.

e. Which equation is better, Equation 22 or Equation 23? Carefully

use our four specification criteria to make your decision, being sure

to state which criteria support which equation and why.

12. Determine the sign (and, if possible, comment on the likely size) of

the bias introduced by leaving a variable out of an equation in each 

of the following cases:

a. In an annual equation for corn yields per acre (in year t), the impact

on the coefficient of rainfall in year t of omitting average temperature

that year. (Hint: Drought and cold weather both hurt corn yields.)

b. In an equation for daily attendance at Los Angeles Lakers’ home bas-

ketball games, the impact on the coefficient of the winning percentage

of the opponent (as of the game in question) of omitting a dummy

variable that equals 1 if the opponent’s team includes a superstar.

c. In an equation for annual consumption of apples in the United

States, the impact on the coefficient of the price of bananas of

omitting the price of oranges.

d. In an equation for student grades on the first midterm in this class,

the impact on the coefficient of total hours studied (for the test) of

omitting hours slept the night before the test.

13. Suppose that you run a regression to determine whether gender or race

has any significant impact on scores on a test of the economic under-

standing of children.11 You model the score of the ith student on the

test of elementary economics (Si) as a function of the composite score

on the Iowa Tests of Basic Skills of the ith student, a dummy variable

equal to 1 if the ith student is female (0 otherwise), the average num-

ber of years of education of the parents of the ith student, and a

R2

SPECIFICATION: CHOOSING THE INDEPENDENT VARIABLES

11. These results have been jiggled to meet the needs of this question, but this research actually

was done. See Stephen Buckles and Vera Freeman, “Male-Female Differences in the Stock and

Flow of Economic Knowledge,” Review of Economics and Statistics, Vol. 65, No. 2, pp. 355–357.
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dummy variable equal to 1 if the ith student is nonwhite (0 other-

wise). Unfortunately, a rainstorm floods the computer center and makes

it impossible to read the part of the computer output that identifies

which variable is which. All you know is that the regression results are

(standard errors in parentheses):

a. Attempt to identify which result corresponds to which variable. Be

specific.

b. Explain the reasoning behind your answer to part a.

c. Assuming that your answer is correct, create and test appropriate hy-

potheses (at the 5-percent level) and come to conclusions about the

effects of gender and race on the test scores of this particular sample.

d. Did you use a one-tailed or two-tailed test in part c? Why?

14. Let’s use the model of the auction price of iPods on eBay. In 

this model, we use datafile IPOD3 to estimate the following 

equation:

PRICEi � 109.24 � 54.99NEWi � 20.44SCRATCHi � 0.73BIDRSi (24)

(5.34) (5.11) (0.59)

t � 10.28 �4.00 1.23

N � 215

where: PRICEi � the price at which the ith iPod sold on eBay

NEWi � a dummy variable equal to 1 if the ith iPod

was new, 0 otherwise

SCRATCHi � a dummy variable equal to 1 if the ith iPod

had a minor cosmetic defect, 0 otherwise

BIDRSi � the number of bidders on the ith iPod

The dataset also includes a variable (PERCENTi ) that measures the per-

centage of customers of the seller of the ith iPod who gave that seller a

positive rating for quality and reliability in previous transactions.12 In

theory, the higher the rating of a seller, the more a potential bidder

N 5 24 R2 5 .54

 (0.63)  (0.88)  (0.08)  (0.10)

 Ŝi 5 5.7 2 0.63X1i 2 0.22X2i 1 0.16X3i 1 1.20X4i

SPECIFICATION: CHOOSING THE INDEPENDENT VARIABLES

12. For more on this dataset and this variable, see Leonardo Rezende, “Econometrics of Auctions

by Least Squares,” Journal of Applied Econometrics, November/December 2008, pp. 925–948.
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would trust that seller, and the more that potential bidder would be

willing to bid. If you add PERCENT to the equation, you obtain

PRICEi � 82.67 � 55.42NEWi � 20.95SCRATCHi � 0.63BIDRSi � 0.28PERCENTi

(5.34) (5.12) (0.59) (0.20)

t � 10.38 �4.10 1.07 1.40 (25)

N � 215

a. Use our four specification criteria to decide whether you think

PERCENT belongs in the equation. Be specific. (Hint: isn’t

given, but you’re capable of determining which equation had the

higher .)

b. Do you think that PERCENT is an accurate measure of the quality and

reliability of the seller? Why or why not? (Hint: Among other things,

consider the case of a seller with very few previous transactions.)

c. (optional) With datafile IPOD3, use EViews, Stata, or your own 

regression program to estimate the equation with and without

PERCENT. What are the figures for the two specifications? Were

you correct in your determination (in part a) as to which equation

had the higher ?

15. Look back at Exercise 14 in Chapter 5, the equation on international

price discrimination in pharmaceuticals. In that cross-sectional study,

Schut and VanBergeijk estimated two equations in addition to the one

cited in the exercise.13 These two equations tested the possibility that

CVi, total volume of consumption of pharmaceuticals in the ith coun-

try, and Ni, the population of the ith country, belonged in the original

equation, Equation 5.10, repeated here:

N 5 32  R2 5 .775

 t 5  22.25  21.59

   (6.93)  (7.16)

 215.63DPCi 2 11.38IPCi

 t 5  6.69  22.66  1.19

   (0.21)  (0.22)  (6.12)

 P̂i 5 38.22 1 1.43GDPNi 2 0.6CVNi 1 7.31PPi

R2

R2

R2

R2
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13. Frederick T. Schut and Peter A. G. VanBergeijk, “International Price Discrimination: The

Pharmaceutical Industry,” World Development, Vol. 14, No. 9, pp. 1141–1150.
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where: Pi � the pharmaceutical price level in the ith country

divided by that of the United States

GDPNi � per capita domestic product in the ith country

divided by that of the United States

CVNi � per capita volume of consumption of pharma-

ceuticals in the ith country divided by that of

the United States

PPi � a dummy variable equal to 1 if patents for phar-

maceutical products are recognized in the ith

country, 0 otherwise

DPCi � a dummy variable equal to 1 if the ith country

applied strict price controls, 0 otherwise

IPCi � a dummy variable equal to 1 if the ith country

encouraged price competition, 0 otherwise

a. Using EViews, Stata (or your own computer program), and datafile

DRUG5, estimate:

i. Equation 10 from Chapter 5 with CVi added, and

ii. Equation 10 from Chapter 5 with Ni added

b. Use our four specification criteria to determine whether CV and N

are irrelevant or omitted variables. (Hint: The authors expected that

prices would be lower if market size were larger because of possible

economies of scale and/or enhanced competition.)

c. Why didn’t the authors run Equation 10 from Chapter 5 with both

CV and N included? (Hint: While you can estimate this equation

yourself, you don’t have to do so to answer the question.)

d. Why do you think that the authors reported all three estimated

specifications in their results when they thought that Equation 10

from Chapter 5 was the best?

16. You’ve just been promoted to be the product manager for “Amish Oats

Instant Oatmeal,” and your first assignment is to decide whether to

raise prices for next year. (Instant oatmeal is a product that can be

mixed with hot water to create a hot breakfast cereal in much less time

than it takes to make the same cereal using regular oatmeal.) In keeping

with your reputation as the econometric expert at Amish Oats, you de-

cide to build a model of the impact of price on sales, and you estimate

the following hypothetical equation (standard errors in parentheses):

(20) (6) (10) (0.0005)

R2 5 .78      N 5 29 (annual model)

 t 5 1.00  3.00   3.00   3.00

 OATt 5 30 1 20PRt 1 18PRCOMPt 1 30ADSt 1 0.0015YDt

SPECIFICATION: CHOOSING THE INDEPENDENT VARIABLES

210



where: OATt � U.S. sales of Amish Oats instant oatmeal in

year t

PRt � the U.S. price of Amish Oats instant oatmeal

in year t

PRCOMPt � the U.S. price of the competing instant oat-

meal in year t

ADSt � U.S. advertising for Amish Oats instant oat-

meal in year t

YDt � U.S. disposable income in year t

a. Create and test appropriate hypotheses about the slope coefficients

of this equation at the 5-percent level.

b. What econometric problems, if any, appear to be in this equation?

Do you see any indications that there is an omitted variable? Do

you see any indications that there is an irrelevant variable? Explain.

c. If you could add one variable to this equation, what would it be?

Explain your answer.

d. Suddenly it hits you! You’ve made a horrible mistake! What is it?

(Hint: Think about substitutes for OAT.)

Appendix: Additional Specification Criteria

So far in this chapter, we’ve suggested four criteria for choosing the indepen-

dent variables (economic theory, the t-test, and possible bias in the coeffi-

cients). Sometimes, however, these criteria don’t provide enough information

for a researcher to feel confident that a given specification is best. For instance,

there can be two different specifications that both have excellent theoretical

underpinnings. In such a situation, many econometricians use additional,

often more formal, specification criteria to provide comparisons of the prop-

erties of the alternative estimated equations.

The use of formal specification criteria is not without problems, however.

First, no test, no matter how sophisticated, can “prove” that a particular spec-

ification is the true one. The use of specification criteria, therefore, must be

tempered with a healthy dose of economic theory and common sense. A sec-

ond problem is that more than 20 such criteria have been proposed; how do

we decide which one(s) to use? Because many of these criteria overlap with

one another or have varying levels of complexity, a choice between the alter-

natives is a matter of personal preference.

In this section, we’ll describe the use of three of the most popular specifi-

cation criteria, J. B. Ramsey’s RESET test, Akaike’s Information Criterion, and

the Schwarz Criterion. Our inclusion of just these techniques does not imply

R2,

7
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that other tests and criteria are not appropriate or useful. Indeed, the reader

will find that most other formal specification criteria have quite a bit in com-

mon with at least one of the techniques that we include. We think that you’ll

be better able to use and understand other formal specification criteria14

once you’ve mastered these three.

Ramsey’s Regression Specification Error Test (RESET)

One of the most-used formal specification criteria other than is the Ram-

sey Regression Specification Error Test (RESET).15 The Ramsey RESET test is

a general test that determines the likelihood of an omitted variable or some

other specification error by measuring whether the fit of a given equation can

be significantly improved by the addition of terms.

What’s the intuition behind RESET? The additional terms act as proxies for

any possible (unknown) omitted variables or incorrect functional forms. If

the proxies can be shown by the F-test to have improved the overall fit of the

original equation, then we have evidence that there is some sort of specifica-

tion error in our equation. The terms form a polynomial func-

tional form. Such a polynomial is a powerful curve-fitting device that has a

good chance of acting as a proxy for a specification error if one exists. If there

is no specification error, then we’d expect the coefficients of the added terms

to be insignificantly different from zero because there is nothing for them to

act as a proxy for.

The Ramsey RESET test involves three steps:

1. Estimate the equation to be tested using OLS:

(26)

2. Take the values from Equation 26 and create terms.

Then add these terms to Equation 26 as additional explanatory vari-

ables and estimate the new equation with OLS:

(27)Yi 5 �0 1 �1X1i 1 �2X2i 1 �3Ŷ2
i 1 �4Ŷ3

i 1 �5Ŷ4
i 1 �i

Ŷ2
i , Ŷ3

i , and Ŷ4
iŶi

Ŷi 5 �̂0 1 �̂1X1i 1 �̂2X2i

Ŷ2, Ŷ3, and Ŷ4

Ŷ2, Ŷ3, and Ŷ4

R2
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14. In particular, the likelihood ratio test can be used as a specification test. For an introductory

level summary of six other specification criteria, see Ramu Ramanathan, Introductory Economet-

rics (Fort Worth: Harcourt Brace Jovanovich, 1998, pp. 164–166).

15. J. B. Ramsey, “Tests for Specification Errors in Classical Linear Squares Regression Analysis,”

Journal of the Royal Statistical Society, Vol. 31, No. 2, pp. 350–371.
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3. Compare the fits of Equations 26 and 27 using the F-test. If the two

equations are significantly different in overall fit, we can conclude that

it’s likely that Equation 26 is misspecified.

While the Ramsey RESET test is fairly easy to use, it does little more than

signal when a major specification error might exist. If you encounter a sig-

nificant Ramsey RESET test, then you face the daunting task of figuring out

exactly what the error is! Thus, the test often ends up being more useful in

“supporting” (technically, not refuting) a researcher’s contention that a given

specification has no major specification errors than it is in helping find an

otherwise undiscovered flaw.16

As an example of the Ramsey RESET test, let’s return to the chicken

demand model of this chapter to see if RESET can detect the known specifica-

tion error (omitting the price of beef) in Equation 9. Step one involves run-

ning the original equation without PB.

� 30.7 � 0.09PCt � 0.25YDt (9)

(0.03) (0.005)

t � �2.76 �46.1

� .9895 N � 29 (annual 1974–2002)    RSS � 83.22

For step two, we take from Equation 9, calculate and then

reestimate Equation 9 with the three new terms added in:

(28)

(0.59) (1.77) (0.17)

(0.002) (0.000006)

In step three, we compare the fits of the two equations by using the F-test.

Specifically, we test the hypothesis that the coefficients of all three of the

added terms are equal to zero:

HA: otherwise

H0: �3 5 �4 5 �5 5 0

R2 5 .991 N 5 29 (annual 1974–2002) RSS 5 57.43

   20.001Ŷt
3 1 0.000002Ŷt

4   1 et

 Y t 5 241.4 1 0.40PCt 2 1.09YDt 1 0.11Ŷt
2

Ŷt
2, Ŷt

3, and Ŷt
4,Ŷt

R2

Yt
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16. The particular version of the Ramsey RESET test we describe in this section is only one of a

number of possible formulations of the test. For example, some researchers delete the term from

Equation 27. In addition, versions of the Ramsey RESET test are useful in testing for functional

form errors and serial correlation.

Ŷ4
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The appropriate F-statistic to use is one that is presented in Section 5.6.

(29)

where RSSM is the residual sum of squares from the restricted equation (Equa-

tion 9), RSS is the residual sum of squares from the unrestricted equation17

(Equation 28), M is the number of restrictions (3), and is the

number of degrees of freedom in the unrestricted equation (34):

The critical F-value to use, 3.03, is found in Statistical Table B-2 at the 5-percent

level of significance with 3 numerator and 23 denominator degrees of free-

dom. Since 3.44 is greater than 3.03, we can reject the null hypothesis that the

coefficients of the added variables are jointly zero, allowing us to conclude that

there is indeed a specification error in Equation 9. Such a conclusion is no sur-

prise, since we know that the price of beef was left out of the equation. Note,

however, that the Ramsey RESET test tells us only that a specification error is

likely to exist in Equation 9; it does not specify the details of that error.

Akaike’s Information Criterion and the Schwarz Criterion

A second category of formal specification criteria involves adjusting the

summed squared residuals (RSS) by one factor or another to create an index

of the fit of an equation. The most popular criterion of this type is but a

number of interesting alternatives have been proposed.

Akaike’s Information Criterion (AIC) and the Schwarz Criterion (SC)

are methods of comparing alternative specifications by adjusting RSS for the

sample size (N) and the number of independent variables (K).18 These crite-

ria can be used to augment our four basic specification criteria when we try

R2,

F 5
(83.22 2 57.43)>3

57.43>23
5 3.44

(N 2 K 2 1)

F 5
(RSS

M
2 RSS)>M

RSS>(N 2 K 2 1)

SPECIFICATION: CHOOSING THE INDEPENDENT VARIABLES

17. Because of the obvious correlation between the three values, Equation 28 (with most
RESET equations) suffers from extreme multicollinearity. Since the purpose of the RESET equa-
tion is to see whether the overall fit can be improved by adding in proxies for an omitted vari-
able (or other specification error), this extreme multicollinearity is not a concern.

18. Hirotogu Akaike, “Likelihood of a Model and Information Criteria,” Journal of Econometrics,

Vol. 16, No. 1, pp. 3–14 and G. Schwarz, “Estimating the Dimension of a Model,” The Annals of

Statistics, Vol. 6, pp. 461–464. The definitions of AIC and SC we use in Equations 30 and 31

produce slightly different numbers than the versions used by EViews, but the versions map on a

one-to-one basis and therefore produce identical conclusions.

Ŷ
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to decide if the improved fit caused by an additional variable is worth the

decreased degrees of freedom and increased complexity caused by the addi-

tion. Their equations are:

(30)

(31)

To use AIC and SC, estimate two alternative specifications and calculate

AIC and SC for each equation. The lower AIC or SC are, the better the spec-

ification. Note that even though the two criteria were developed indepen-

dently to maximize different object functions, their equations are quite

similar. Both criteria tend to penalize the addition of another explanatory

variable more than does. As a result, AIC and SC will quite often19 be min-

imized by an equation with fewer independent variables than the ones that

maximize 

Let’s apply Akaike’s Information Criterion and the Schwarz Criterion to the

same chicken demand example we used for Ramsey’s RESET. To see whether

AIC and/or SC can detect the specification error we already know exists in 

Equation 9 (the omission of the price of beef), we need to calculate AIC and SC

for equations with and without the price of beef. The equation with the lower

AIC and SC values will, other things being equal, be our preferred specification.

The original chicken demand model, Equation 8, was:

(8)

(0.03) (0.02) (0.01)

t � �3.38 � 1.86 �15.7

RSS � 73.11

Plugging the numbers from Equation 8 into Equations 30 and 31, AIC and

SC can be seen to be:

 SC 5 Log(73.11>29) 1 Log(29)*4>29 5 1.39

 AIC 5 Log(73.11>29) 1 2(4)>29 5 1.20

R2 5 .9904 N 5 29 (annual 1974–2002)

 Yt 5 27.7 2  0.11PCt 1  0.03PBt 1  0.23YDt

R2.

R2

 SC 5 Log(RSS>N) 1 Log(N)(K 1 1)>N

 AIC 5 Log(RSS>N) 1 2(K 1 1)>N

SPECIFICATION: CHOOSING THE INDEPENDENT VARIABLES

19. Using a Monte Carlo study, Judge et al. showed that (given specific simplifying assump-

tions) a specification chosen by maximizing is more than 50 percent more likely to include an

irrelevant variable than is one chosen by minimizing AIC or SC. See George C. Judge, R. Carter Hill,

W. E. Griffiths, Helmut Lutkepohl, and Tsoung-Chao Lee, Introduction to the Theory and Practice

of Econometrics (New York: Wiley, 1988), pp. 849–850. At the same time, minimizing AIC or SC

will omit a relevant variable more frequently than will maximizing R2.

R2
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Equation 9 which omits the price of beef, has an RSS of 83.22 and two inde-

pendent variables, so:

For AIC, so both Akaike’s Information

Criterion and the Schwarz Criterion provide evidence that Equation 8 is

preferable to Equation 9. That is, the price of beef appears to belong in the

equation. In practice, these calculations may not be necessary because AIC

and SC are automatically calculated by some regression software packages,

including EViews.

As it turns out, then, all three new specification criteria indicate the pres-

ence of a specification error when we leave the price of beef out of the equa-

tion. This result is not surprising, since we purposely omitted a theoretically

justified variable, but it provides an example of how useful these specifica-

tion criteria could be when we’re less than sure about the underlying theory.

Note that AIC and SC require the researcher to come up with a particular

alternative specification, whereas Ramsey’s RESET does not. Such a distinc-

tion makes RESET easier to use, but it makes AIC and SC more informative if

a specification error is found. Thus our additional specification criteria serve

different purposes. RESET is useful as a general test of the existence of a spec-

ification error, whereas AIC and SC are useful as means of comparing two or

more alternative specifications.

1.20 , 1.26, and for SC, 1.39 , 1.40,

 SC 5 Log(83.22>29) 1 Log(29)*3>29 5 1.40

 AIC 5 Log(83.22>29) 1 2(3)>29 5 1.26

SPECIFICATION: CHOOSING THE INDEPENDENT VARIABLES
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Answers

Exercise 2

a. Wi Ti Ci Li

H0 �1 � 0 �2 � 0 �3 � 0 �4 � 0

HA �1 � 0 �2 � 0 �3 � 0 �4 � 0

tW � 4 tT � 3 tC � 2 tL � 0.95

tc � 1.697 tc � 1.697 tc � 1.697 tc � 1.697

For the first three coefficients, we can reject the null hypothesis,

because the absolute value of tk is greater than tc and the sign of

tk is that specified in HA. For L, however, we cannot reject the null

hypothesis, even though the sign is as expected, because the ab-

solute value of tL is less than 1.697.

b. Almost any equation potentially could have an omitted variable,

and this one is no exception. In addition, Li might be an irrele-

vant variable. Finally, the coefficient of C seems far too large, sug-

gesting at least one omitted variable. C appears to be acting as a

proxy for other luxury options or the general quality of the car.

c. Theory: Bigger engines cost more, so the variable’s place in the

equation seems theoretically sound. However, sedans with large

engines tend to weigh more, so perhaps the two variables are

measuring more or less the same thing.

t-Test: The variable’s estimated coefficient is insignificant in the

expected direction.

: The overall fit of the equation (adjusted for degrees of free-

dom) improves when the variable is dropped from the equation.

Bias: When the variable is dropped from the equation, the esti-

mated coefficients remain virtually unchanged.

The last three criteria are evidence in favor of dropping Li and the

theoretical argument for keeping it isn’t overwhelming, so we prefer

Model T. However, a researcher who firmly believed in the theo-

retical importance of engine size would pick Model A.

R2
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Even after you’ve chosen your independent variables, the job of specifying

the equation is not over. The next step is to choose the functional form of the

relationship between each independent variable and the dependent variable.

Should the equation go through the origin? Do you expect a curve instead of

a straight line? Does the effect of a variable peak at some point and then start

to decline? An affirmative answer to any of these questions suggests that an

equation other than the standard linear model might be appropriate. Such

alternative specifications are important for two reasons: a correct explanatory

variable may well appear to be insignificant or to have an unexpected sign if

an inappropriate functional form is used, and the consequences of an incor-

rect functional form for interpretation and forecasting can be severe.

Theoretical considerations usually dictate the form of a regression model.

The basic technique involved in deciding on a functional form is to choose the

shape that best exemplifies the expected underlying economic or business

principles and then to use the mathematical form that produces that shape.

To help with that choice, this chapter contains plots of the most commonly

used functional forms along with the mathematical equations that corre-

spond to each.

1 The Use and Interpretation of the Constant Term

2 Alternative Functional Forms

3 Lagged Independent Variables

4 Using Dummy Variables

5 Slope Dummy Variables

6 Problems with Incorrect Functional Forms

7 Summary and Exercises

Specification: Choosing 
a Functional Form

From Chapter 7 of Using Econometrics: A Practical Guide, 6/e. A. H. Studenmund. Copyright © 2011

by Pearson Education. Published by Addison-Wesley. All rights reserved.
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The chapter begins with a brief discussion of the constant term. In particu-

lar, we suggest that the constant term should be retained in equations even if

theory suggests otherwise and that estimates of the constant term should not

be relied on for inference or analysis. The chapter concludes with a discussion

of dummy variables.

The Use and Interpretation of the Constant Term

In the linear regression model, is the intercept or constant term. It is the

expected value of Y when all the explanatory variables (and the error term)

equal zero. An estimate of has at least three components:

1. the true ,

2. the constant impact of any specification errors (an omitted variable,

for example), and

3. the mean of for the correctly specified equation (if not equal to zero).

Unfortunately, these components can’t be distinguished from one another

because we can observe only , the sum of the three components. The result

is that we have to analyze differently from the way we analyze the other

coefficients in the equation.1

At times, is of theoretical importance. Consider, for example, the fol-

lowing cost equation:

where Ci is the total cost of producing output Qi. The term represents

the total variable cost associated with output level Qi, and represents the

total fixed cost, defined as the cost when output Thus, a regression

equation might seem useful to a researcher who wanted to determine the

relative magnitudes of fixed and variable costs. This would be an example of

relying on the constant term for inference.

Qi 5 0.

�0

�1Qi

Ci 5 �0 1 �1Qi 1 �i

�0

�0

�0

�

�0

�0

�0

1
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1. If the second and third components of �0 are small compared to the first component, then

this difference diminishes. See R. C. Allen and J. H. Stone, “Textbook Neglect of the Constant

Coefficient,” The Journal of Economic Education, Fall 2005, pp. 379–384.
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On the other hand, the product involved might be one for which it is

known that there are few—if any—fixed costs. In such a case, a researcher

might want to eliminate the constant term; to do so would conform to the no-

tion of zero fixed costs and would conserve a degree of freedom (which would

presumably make the estimate of more precise). This would be an example

of suppressing the constant term.

Neither suppressing the constant term nor relying on it for inference is ad-

visable, however, and reasons for these conclusions are explained in the fol-

lowing sections.

Do Not Suppress the Constant Term

Suppressing the constant term leads to a violation of the Classical Assump-

tions. This is because Classical Assumption II (that the error term has an ex-

pected value of zero) can be met only if the constant term absorbs any nonzero

mean that the observations of the error might have in a given sample.2

If you omit the constant term, then the impact of the constant is forced

into the estimates of the other coefficients, causing potential bias. This is

demonstrated in Figure 1. Given the pattern of the X and Y observations, esti-

mating a regression equation with a constant term would likely produce an

estimated regression line very similar to the true regression line, which has a

constant term quite different from zero. The slope of this estimated line

is very low, and the t-score of the estimated slope coefficient may be very

close to zero.

However, if the researcher were to suppress the constant term, which im-

plies that the estimated regression line must pass through the origin, then the

estimated regression line shown in Figure 1 would result. The slope coeffi-

cient is biased upward compared with the true slope coefficient. The t-score is

biased upward as well, and it may very well be large enough to indicate that

the estimated slope coefficient is statistically significantly positive. Such a

conclusion would be incorrect.

Thus, even though some regression packages allow the constant term to be

suppressed (set to zero), the general rule is: Don’t, even if theory specifically

calls for it.

(�0)

�1
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2. The only time that Classical Assumption II isn’t violated by omitting the constant term is

when the mean of the unobserved error term equals zero (exactly) over all the observations.

This result is extremely unlikely.
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Do Not Rely on Estimates of the Constant Term

It would seem logical that if it’s a bad idea to suppress the constant term,

then the constant term must be an important analytical tool to use in evalu-

ating the results of the regression. Unfortunately, there are at least two rea-

sons that suggest that the intercept should not be relied on for purposes of

analysis or inference.

First, the error term is generated, in part, by the omission of a number of

marginal independent variables, the mean effect of which is placed in the

constant term. The constant term acts as a garbage collector, with an un-

known amount of this mean effect being dumped into it. The constant term’s

estimated coefficient may be different from what it would have been without

performing this task, which is done for the sake of the equation as a whole.

As a result, it’s meaningless to run a t-test on �̂0.

SPECIFICATION: CHOOSING A FUNCTIONAL FORM

Y

0 X

Estimated Relationship

Suppressing the Intercept

True Relation

Observations �0

Figure 1 The Harmful Effect of Suppressing the Constant Term

If the constant (or intercept) term is suppressed, the estimated regression will go

through the origin. Such an effect potentially biases the and inflates their t-scores.

In this particular example, the true slope is close to zero in the range of the sample,

but forcing the regression through the origin makes the slope appear to be signifi-

cantly positive.

�̂s
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Second, the constant term is the value of the dependent variable when all

the independent variables and the error term are zero, but the variables used

for economic analysis are usually positive. Thus, the origin often lies outside

the range of sample observations (as can be seen in Figure 1). Since the con-

stant term is an estimate of Y when the Xs are outside the range of the sample

observations, estimates of it are tenuous.

Alternative Functional Forms

The choice of a functional form for an equation is a vital part of the specifi-

cation of that equation. Before we can talk about those functional forms,

however, we need to make a distinction between an equation that is linear

in the coefficients and one that is linear in the variables.

An equation is linear in the variables if plotting the function in terms of X

and Y generates a straight line. For example, Equation 1:

(1)

is linear in the variables, but Equation 2:

(2)

is not linear in the variables, because if you were to plot Equation 2 it would

be a quadratic, not a straight line.

An equation is linear in the coefficients only if the coefficients (the s)

appear in their simplest form—they are not raised to any powers (other than

one), are not multiplied or divided by other coefficients, and do not themselves

include some sort of function (like logs or exponents). For example, Equation 1

is linear in the coefficients, but Equation 3:

(3)

is not linear in the coefficients Equation 3 is not linear because

there is no rearrangement of the equation that will make it linear in the s of

original interest, In fact, of all possible equations for a single ex-

planatory variable, only functions of the general form:

(4)f(Y) 5 �0 1 �1f(X)

�0 and �1.

�
�0 and �1.

Y 5 �0 1 X�1

�

Y 5 �0 1 �1X2 1 �

Y 5 �0 1 �1X 1 �

2
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are linear in the coefficients Linear regression analysis can be ap-

plied to an equation that is nonlinear in the variables as long as the equation

is linear in the coefficients. Indeed, when econometricians use the phrase

“linear regression”(for example, in the Classical Assumptions) they usually

mean “regression that is linear in the coefficients.”

The use of OLS requires that the equation be linear in the coefficients,

but there is a wide variety of functional forms that are linear in the coef-

ficients while being nonlinear in the variables. We’ve already used several

equations that are linear in the coefficients and nonlinear in the vari-

ables, but we’ve said little about when to use such nonlinear equations.

The purpose of the current section is to present the details of the most

frequently used functional forms to help the reader develop the ability to

choose the correct one when specifying an equation.

The choice of a functional form almost always should be based on the un-

derlying theory and only rarely on which form provides the best fit. The logi-

cal form of the relationship between the dependent variable and the inde-

pendent variable in question should be compared with the properties of

various functional forms, and the one that comes closest to that underlying

theory should be chosen. To allow such a comparison, the paragraphs that

follow characterize the most frequently used forms in terms of graphs, equa-

tions, and examples. In some cases, more than one functional form will be

applicable, but usually a choice between alternative functional forms can be

made on the basis of the information we’ll present.

Linear Form

The linear regression model, used almost exclusively in this text thus far, is

based on the assumption that the slope of the relationship between the inde-

pendent variable and the dependent variable is constant:3

�Y

�Xk
5 �k  k 5 1, 2, . . . , K

�0 and �1.

SPECIFICATION: CHOOSING A FUNCTIONAL FORM

3. Throughout this section, the “delta” notation will be used instead of the calculus notation

to make for easier reading. The specific definition of is “change,” and it implies a small change

in the variable it is attached to. For example, the term should be read as “change in X.” Since a

regression coefficient represents the change in the expected value of Y brought about by a one-

unit increase in Xk (holding constant all other variables in the equation), then 

Those comfortable with calculus should substitute partial derivative signs for �s.

�k 5 �Y>�Xk.

�X

�
(�)
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If the hypothesized relationship between Y and X is such that the slope of the

relationship can be expected to be constant, then the linear functional form

should be used.

Since the slope is constant, the elasticity of Y with respect to X (the per-

centage change in the dependent variable caused by a 1-percent increase in

the independent variable, holding the other variables in the equation con-

stant) can be calculated fairly easily:

Unless theory, common sense, or experience justifies using some other

functional form, you should use the linear model. Because, in effect, it’s being

used by default, the linear model is sometimes referred to as the default func-

tional form.

Double-Log Form

The double-log form is the most common functional form that is nonlinear

in the variables while still being linear in the coefficients. Indeed, the double-

log form is so popular that some researchers use it as their default functional

form instead of the linear form. In a double-log functional form, the natural

log of Y is the dependent variable and the natural log of X is the independent

variable:

(5)

where lnY refers to the natural log of Y, and so on. For a brief review of the

meaning of a log, see the boxed feature on the following pages.

The double-log form, sometimes called the log-log form, often is used be-

cause a researcher has specified that the elasticities of the model are constant

and the slopes are not. This is in contrast to the linear model, in which the

slopes are constant but the elasticities are not.

In a double-log equation, an individual regression coefficient can be inter-

preted as an elasticity because:

(6)�k 5
�(lnY)

�(lnXk)
5

�Y>Y

�Xk>Xk
5 ElasticityY, Xk

lnY 5 �0 1 �1 lnX1 1 �2 lnX2 1 �

ElasticityY, Xk
5

�Y>Y

�Xk>Xk
5

�Y

�Xk
?

Xk

Y
5 �k 

Xk

Y
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Since regression coefficients are constant, the condition that the model have

a constant elasticity is met by the double-log equation.

The way to interpret in a double-log equation is that if Xk increases

by 1 percent while the other Xs are held constant, then Y will change by 

percent. Since elasticities are constant, the slopes are now no longer

constant.

Figure 2 is a graph of the double-log function (ignoring the error 

term). The panel on the left shows the economic concept of an isoquant or

an indifference curve. Isoquants from production functions show the dif-

ferent combinations of factors X1 and X2, probably capital and labor, that

can be used to produce a given level of output Y. The panel on the right of

Figure 2 shows the relationship between Y and X1 that would exist if X2

were held constant or were not included in the model. Note that the shape

of the curve depends on the sign and magnitude of coefficient If is

negative, a double-log functional form can be used to model a typical de-

mand curve.

Double-log models should be run only when the logged variables 

take on positive values. Dummy variables, which can take on the value 

of zero, should not be logged but still can be used in a double-log 

�1�1.

�k

�k
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What Is a Log?

What the heck is a log? If e (a constant equal to 2.71828) to the “bth power” pro-

duces x, then b is the log of x:

Thus, a log (or logarithm) is the exponent to which a given base must be taken in

order to produce a specific number. While logs come in more than one variety, we’ll

use only natural logs (logs to the base e) in this text. The symbol for a natural log is

“ln,” so ln(x) � b means that (2.71828)b � x or, more simply,

For example, since e2 � (2.71828)2 � 7.389, we can state that:

ln(7.389) � 2

Thus, the natural log of 7.389 is 2! Two is the power of e that produces 7.389. Let’s

look at some other natural log calculations:

ln(1000)  5  6.908
ln(100)  5  4.605

ln(x) 5 b  means that  eb 5 x

b is the log of x to the base e if: eb 5 x
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Note that as a number goes from 100 to 1,000,000, its natural log goes from 4.605 to

only 13.816! Since logs are exponents, even a small change in a log can mean a big

change in impact. As a result, logs can be used in econometrics if a researcher wants

to reduce the absolute size of the numbers associated with the same actual meaning.

One useful property of natural logs in econometrics is that they make it easier to

figure out impacts in percentage terms. If you run a double-log regression, the mean-

ing of a slope coefficient is the percentage change in the dependent variable caused

by a one percentage point increase in the independent variable, holding the other

independent variables in the equation constant.4 It’s because of this percentage

change property that the slope coefficients in a double-log equation are elasticities.

4. This is because the derivative of a natural log of X equals which is the

same as percentage change.

dX>X (or �X>X),

ln(1000000) 5  13.816
ln(100000)  5  11.513
ln(10000)  5  9.210

X2

0 X1

Y1

Y2

 lnY = �0 + �1lnX1 + �2lnX2

Y

0 X1

�1 > 1

�1 < 0

0 < �1 < 1

Figure 2 Double-Log Functions

Depending on the values of the regression coefficients, the double-log functional form
can take on a number of shapes. The left panel shows the use of a double-log function
to depict a shape useful in describing the economic concept of an isoquant or an indif-
ference curve. The right panel shows various shapes that can be achieved with a double-
log function if X2 is held constant or is not included in the equation.

(Holding X2 constant)
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equation if they’re adjusted.5 For an example of a double-log equation, see

Exercise 7.

Semilog Form

The semilog functional form is a variant of the double-log equation in

which some but not all of the variables (dependent and independent) are ex-

pressed in terms of their natural logs. For example, you might choose to use

the logarithm of one of the original independent variables, as in:

(7)

In this case, the economic meanings of the two slope coefficients are differ-

ent, since X2 is linearly related to Y while X1 is nonlinearly related to Y.

The right-hand side of Figure 3 shows the relationship between Y and X1
in this kind of semilog equation when X2 is held constant. Note that if is

greater than zero, the impact of changes in X1 on Y decreases as X1 gets big-

ger. Thus, the semilog functional form should be used when the relationship

between X1 and Y is hypothesized to have this “increasing at a decreasing

rate” form.

Applications of the semilog form are quite frequent. For example, most

consumption functions tend to increase at a decreasing rate past some

level of income. These Engel curves tend to flatten out because as incomes

get higher, a smaller percentage of income goes to consumption and a

greater percentage goes to saving. Consumption thus increases at a de-

creasing rate. If Y is the consumption of an item and X1 is disposable 

income (with X2 standing for all the other independent variables), then

the use of the semilog functional form is justified whenever the item’s con-

sumption can be expected to increase at a decreasing rate as income 

increases.

�1

Yi 5 �0 1 �1 ln X1i 1 �2X2i 1 �i
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5. If it is necessary to take the log of a dummy variable, that variable needs to be transformed to

avoid the possibility of taking the log of zero. The best way is to redefine the entire dummy

variable so that instead of taking on the values of 0 and 1, it takes on the values of 1 and e (the

base of the natural logarithm). The log of this newly defined dummy then takes on the values

of 0 and 1, and the interpretation of remains the same as in a linear equation. Such a trans-

formation changes the coefficient value but not the usefulness or theoretical validity of the

dummy variable.

�
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For example, use the beef demand equation:

(A)

where: � per capita consumption of beef

P � the price of beef in cents per pound

Yd � U.S. disposable income in thousands of dollars

If we substitute the log of disposable income (lnYd ) for disposable income

in the above equation, we get:

(8)

R2 5 .750 N 5 28 (annual)

 t 5  2 6.93  8.90

  (0.13)  (11.11)

 BCt 5 271.75 2  0.87Pt 1  98.87lnYdt

t

CB

R2 5 0.631 N 5 28 (annual)

 t 5  2 5.36  6.75

  (0.16)  (1.76)

 CBt 5 37.54 2  0.88Pt 1  11.9Ydt
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Y = (�0 + �2X2)
+ �1lnX1

Y

0 X1

(Holding X2 constant)

�1 > 0

�1 < 0

�1 > 0

Y

0 X1

(Holding X2 constant)

�1 < 0

 lnY= �0  + �1X1 + �2X2

Figure 3 Semilog Functions

The semilog functional form on the right (lnX) can be used to depict a situation in

which the impact of X1 on Y is expected to increase at a decreasing rate as X1 gets bigger

as long as is greater than zero (holding X2 constant). The semilog functional form

on the left (lnY) can be used to depict a situation in which an increase in X1 causes Y to

increase at an increasing rate.

�1
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In Equation 8, the independent variables include the price of beef and the log

of disposable income. Equation 8 would be appropriate if we hypothesize that

as income rises, consumption will increase at a decreasing rate. For other prod-

ucts, perhaps like yachts or summer homes, no such decreasing rate could be

hypothesized, and the semilog function would not be appropriate.

Not all semilog functions have the log on the right-hand side of the equa-

tion, as in Equation 7. The alternative semilog form is to have the log on the

left-hand side of the equation. This would mean that the natural log of Y

would be a function of unlogged values of the Xs, as in:

(9)

This model has neither a constant slope nor a constant elasticity, but the co-

efficients do have a very useful interpretation. If X1 increases by one unit,

then Y will change in percentage terms. Specifically, Y will change by 

percent, holding X2 constant, for every unit that X1 increases. The left-hand

side of Figure 3 shows such a semilog function.

This fact means that the lnY semilog function of Equation 9 is perfect for

any model in which the dependent variable adjusts in percentage terms to a

unit change in an independent variable. The most common economic and

business application of Equation 9 is in a model of the earnings of individu-

als, where firms often give annual raises in percentage terms. In such a model

Y would be the salary or wage of the ith employee, and X1 would be the expe-

rience of the ith worker. Each year X1 would increase by one, and would

measure the percentage raises given by the firm. For more on this example of a

left-side semilog functional form, see Exercise 4 at the end of the chapter.

Note that we now have two different kinds of semilog functional forms, cre-

ating possible confusion. As a result, many econometricians use phrases like

“right-side semilog” or “lin-log functional form” to refer to Equation 7 while

using “left-side semilog” or “log-lin functional form” to refer to Equation 9.

Polynomial Form

In most cost functions, the slope of the cost curve changes sign as output

changes. If the slopes of a relationship are expected to depend on the level of

the variable itself, then a polynomial model should be considered. Polynomial

functional forms express Y as a function of independent variables, some of

which are raised to powers other than 1. For example, in a second-degree poly-

nomial (also called a quadratic) equation, at least one independent variable is

squared:

(10)Yi 5 �0 1 �1X1i 1 �2(X1i)
2 1 �3X2i 1 �i

�1

�1 ? 100

lnY 5 �0 1 �1X1 1 �2X2 1 �
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Such a model can indeed produce slopes that change sign as the independent

variables change. The slope of Y with respect to X1 in Equation 10 is:

(11)

Note that the slope depends on the level of X1. For small values of X1, 

might dominate, but for large values of X1, will always dominate. If this

were a cost function, with Y being the average cost of production and X1
being the level of output of the firm, then we would expect to be negative

and to be positive if the firm has the typical U-shaped cost curve depicted

in the left half of Figure 4.

For another example, consider a model of annual employee earnings as a

function of the age of each employee and a number of other measures of pro-

ductivity such as education. What is the expected impact of age on earnings?

As a young worker gets older, his or her earnings will typically increase. Be-

yond some point, however, an increase in age will not increase earnings by

very much at all, and around retirement we expect earnings to start to fall

�2

�1

�2

�1

�Y

�X1
5 �1 1 2�2X1

SPECIFICATION: CHOOSING A FUNCTIONAL FORM

Y = (�0 + �3X2) + (�1X1 + �2X1)2

Y

0 X1(Holding X2 constant)

�2 > 0

�1 < 0

Y

0 X1(Holding X2 constant)

�2 < 0

�1 > 0

Figure 4 Polynomial Functions

Quadratic functional forms (polynomials with squared terms) take on U or inverted 

U shapes, depending on the values of the coefficients (holding X2 constant). The left

panel shows the shape of a quadratic function that could be used to show a typical cost

curve; the right panel allows the description of an impact that rises and then falls (like

the impact of age on earnings).
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abruptly with age. As a result, a logical relationship between earnings and age

might look something like the right half of Figure 4; earnings would rise,

level off, and then fall as age increased. Such a theoretical relationship could

be modeled with a quadratic equation:

(12)

What would the expected signs of be? Since you expect the impact

of age to rise and fall, you’d thus expect to be positive and to be nega-

tive (all else being equal). In fact, this is exactly what many researchers in

labor economics have observed.

With polynomial regressions, the interpretation of the individual regres-

sion coefficients becomes difficult, and the equation may produce unwanted

results for particular ranges of X. Great care must be taken when using a poly-

nomial regression equation to ensure that the functional form will achieve

what is intended by the researcher and no more.

Inverse Form

The inverse functional form expresses Y as a function of the reciprocal (or

inverse) of one or more of the independent variables (in this case, X1):

(13)

The inverse (or reciprocal) functional form should be used when the impact

of a particular independent variable is expected to approach zero as that

independent variable approaches infinity. To see this, note that as X1 gets

larger, its impact on Y decreases.

In Equation 13, X1 cannot equal zero, since if X1 equaled zero, dividing 

it into anything would result in infinite or undefined values. The slope with

respect to X1 is:

(14)

The slopes for X1 fall into two categories, both of which are depicted in

Figure 5:

1. When is positive, the slope with respect to X1 is negative and de-

creases in absolute value as X1 increases. As a result, the relationship

between Y and X1 holding X2 constant approaches 

increases (ignoring the error term).

�0 1 �2X2 as X1

�1

�Y

�X1

5
2�

1

X
2
1

Yi 5 �0 1 �1(1>X1i) 1 �2X2i 1 �i

�̂2�̂1

�̂1 and �̂2

Earningsi 5 �0 1 �1Agei 1 �2Age˛

2
i 1 c1 �i
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2. When is negative, the relationship intersects the X1 axis at 

and slopes upward toward the same horizontal line

(called an asymptote) that it approaches when is positive.

Applications of reciprocals or inverses exist in a number of areas in economic

theory and the real world. For example, the once-popular Phillips curve origi-

nally was estimated with an inverse function.

Choosing a Functional Form

The best way to choose a functional form for a regression model is to choose

a specification that matches the underlying theory of the equation. In a ma-

jority of cases, the linear form will be adequate, and for most of the rest,

common sense will point out a fairly easy choice from among the alterna-

tives outlined above. Table 1 contains a summary of the properties of the 

various alternative functional forms.

�1

(�0 1 �2X2)

2�1>�1
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Y = (�0 + �2X2) + �11/X1

(�0 + �2X2)

Y

0 X1

(Holding X2 constant)

�1 > 0

�1 < 0

Figure 5 Inverse Functions

Inverse (or reciprocal) functional forms allow the impact of an X1 on Y to approach

zero as X1 increases in size. The inverse function approaches the same value (the asymp-

tote) from the top or bottom depending on the sign of �1.
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Lagged Independent Variables

Virtually all the regressions we’ve studied so far have been “instantaneous” in

nature. In other words, they have included independent and dependent vari-

ables from the same time period, as in:

(15)

where the subscript t is used to refer to a particular point in time. If all vari-

ables have the same subscript, then the equation is instantaneous.

However, not all economic or business situations imply such instantaneous

relationships between the dependent and independent variables. In many

cases time elapses between a change in the independent variable and the re-

sulting change in the dependent variable. The length of this time between

cause and effect is called a lag. Many econometric equations include one or

more lagged independent variables like indi-

cates that the observation of X1 is from the time period previous to time pe-

riod t, as in the following equation:

(16)

In this equation, X1 has been lagged by one time period, but the relationship

between Y and X2 is still instantaneous.

For example, think about the process by which the supply of an agricultural

product is determined. Since agricultural goods take time to grow, decisions

Yt 5 �0 1 �1X1t21 1 �2X2t 1 �t

X1t21, where the subscript t 2 1

Yt 5 �0 1 �1X1t 1 �2X2t 1 �t

3
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Table 1 Summary of Alternative Functional Forms

Functional
Form Equation (one X only) The Meaning of 

Linear The slope of Y with respect to X

Double-log The elasticity of Y with respect to X

Semilog (lnX) The change in Y (in units) related to a 

1 percent increase in X

Semilog (lnY) The percent change in Y related to a 

one-unit increase in X

Polynomial Roughly, the slope of Y with respect to

X for small X

Inverse Roughly, the inverse of the slope of Y 

with respect to X for small X

Yi5 �0 1 �1a
1
Xi
b 1 �i

Yi5 �0 1 �1Xi1 �2X˛

2
i 1 �i

lnYi5 �0 1 �1Xi1 �i

Yi5 �0 1 �1 lnXi1 �i

lnYi5 �0 1 �1 lnXi1 �i

Yi5 �0 1 �1Xi1 �i

�1
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on how many acres to plant or how many eggs to let hatch into egg-producing

hens (instead of selling them immediately) must be made months, if not

years, before the product is actually supplied to the consumer. Any change in

an agricultural market, such as an increase in the price that the farmer can

earn for providing cotton, has a lagged effect on the supply of that product:

(17)

where: Ct � the quantity of cotton supplied in year t

� the price of cotton in year 

PFt �the price of farm labor in year 

Note that this equation hypothesizes a lag between the price of cotton and

the production of cotton, but not between the price of farm labor and the

production of cotton. It’s reasonable to think that if cotton prices change,

farmers won’t be able to react immediately because it takes a while for cotton

to be planted and to grow.

The meaning of the regression coefficient of a lagged variable is not the

same as the meaning of the coefficient of an unlagged variable. The estimated

coefficient of a lagged X measures the change in this year’s Y attributed to a

one-unit increase in last year’s X (holding constant the other Xs in the equa-

tion). Thus in Equation 17 measures the extra number of units of cotton

that would be produced this year as a result of a one-unit increase in last

year’s price of cotton, holding this year’s price of farm labor constant.

If the lag structure is hypothesized to take place over more than one time

period, or if a lagged dependent variable is included on the right-hand side

of an equation, the question becomes significantly more complex. Such cases

are called distributed lags.

Using Dummy Variables

We introduce the concept of a dummy variable, which we define as one that

takes on the values of 0 or 1, depending on a qualitative attribute such as

gender. We can use a dummy variable as an intercept dummy, a dummy vari-

able that changes the constant or intercept term, depending on whether the

qualitative condition is met. These take the general form:

(18)

where Di 5 e
1 if the ith observation meets a particular condition

0 otherwise

Yi 5 �0 1 �1Xi 1 �2Di 1 �i

4

�1

t 2 1PCt21

Ct 5 f(P
1

Ct21, PF
2

t) 1 �t 5 �0 1 �1PCt21 1 �2PFt 1 �t
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As can be seen in Figure 6, the intercept dummy does indeed change the

intercept depending on the value of D, but the slopes remain constant no

matter what value D takes. This is true even if we define the dummy variable

“backwards” and have D � 0 if the particular condition is met and D � 1

otherwise. The slopes still remain constant.

Note that in this example only one dummy variable is used even though

there were two conditions. This is because one fewer dummy variable is

constructed than conditions. The event not explicitly represented by a

dummy variable, the omitted condition, forms the basis against which the

included conditions are compared. Thus, for dual situations only one

dummy variable is entered as an independent variable; the coefficient is

interpreted as the effect of the included condition relative to the omitted

condition.

What happens if you use two dummy variables to describe the two condi-

tions? For example, suppose you decide to include gender in an equation by

specifying that X1 � 1 if a person is male and X2 � 1 if a person is female. In

such a situation, X1 plus X2 would always add up to 1—do you see why?

Y

0 X

Di = 0

�2

�0

�0 + �2

(�2 > 0)

Di = 1

Both Slopes = �1

Yi = �0 + �1Xi + �2Di

Figure 6 An Intercept Dummy

If an intercept dummy is added to an equation, a graph of the equation will

have different intercepts for the two qualitative conditions specified by the dummy vari-

able. The difference between the two intercepts is The slopes are constant with re-

spect to the qualitative condition.

�2.

(�2Di)
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Thus X1 would be perfectly, linearly correlated with X2, and the equation

would violate Classical Assumption VI! If you were to make this mistake,

sometimes called a dummy variable trap, you’d have perfect multicollinearity

and OLS almost surely would fail to estimate the equation.

For an example of the meaning of the coefficient of a dummy variable, let’s

look at a study of the relationship between fraternity/sorority membership and

grade point average (GPA). Most noneconometricians would approach this re-

search problem by calculating the mean grades of fraternity/sorority (so-called

Greek) members and comparing them to the mean grades of nonmembers.

However, such a technique ignores the relationship that grades have to charac-

teristics other than Greek membership.

Instead, we’d want to build a regression model that explains college GPA.

Independent variables would include not only Greek membership but also

other predictors of academic performance such as SAT scores and high school

grades. Being a member of a social organization is a qualitative variable, how-

ever, so we’d have to create a dummy variable to represent fraternity or sorority

membership quantitatively in a regression equation:

If we collect data from all the students in our class and estimate the equa-

tion implied in this example, we obtain:

(19)

where: CGi � the cumulative college GPA (4-point scale) of the ith student

HGi � the cumulative high school GPA (4-point scale) of the ith

student

Si � the sum of the highest verbal and mathematics SAT scores

earned by the ith student

The meaning of the estimated coefficient of Gi in Equation 19 is very specific.

Stop for a second and figure it out for yourself. What is it? The estimate that

means that, for this sample, the GPA of fraternity/sorority mem-

bers is 0.38 lower than for nonmembers, holding SATs and high school GPA

constant. Thus, Greek members are doing about a third of a grade worse than

otherwise might be expected. To understand this example better, try using

Equation 19 to predict your own GPA; how close does it come?

�̂G 5 20.38

R2 5 .45 N 5 25

CGi 5 0.37 1 0.81HGi 1 0.00001Si 2 0.38Gi

Gi 5 •

1 if the ith student is an active member of

  a fraternity or sorority

0 otherwise
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Before you rush out and quit whatever social organization you’re in, how-

ever, note that this sample is quite small and that we’ve surely omitted some

important determinants of academic success from the equation. As a result,

we shouldn’t be too quick to conclude that Greeks are dummies.

To this point, we’ve used dummy variables to represent just those qualita-

tive variables that have exactly two possibilities (such as gender). What about

situations where a qualitative variable has three or more alternatives? For ex-

ample, what if you’re trying to measure the impact of education on salaries in

business and you want to distinguish high school graduates from holders of

B.A.s and M.B.A.s? The answer certainly isn’t to have MBA � 2, BA � 1, and 0

otherwise, because we have no reason to think that the impact of having an

M.B.A. is exactly twice that of having a B.A. If not that, then what?

The answer is to create one less dummy variable than there are alternatives

and to use each dummy to represent just one of the possible conditions. In

the salary case, for example, you’d create two variables, the first equal to 1 if

the employee had an M.B.A. (0 otherwise) and the second equal to 1 if the

employee’s highest degree was a B.A. (and 0 otherwise). As before, the omit-

ted condition is represented by having both dummies equal to 0. This way

you can measure the impact of each degree independently without having to

link the impacts of having an M.B.A. and a B.A.

A dummy variable that has only a single observation with a value of 1

while the rest of the observations are 0 (or vice versa) is to be avoided unless

the variable is required by theory. Such a “one-time dummy” acts merely to

eliminate that observation from the data set, improving the fit artificially by

setting the dummy’s coefficient equal to the residual for that observation.

One would obtain exactly the same estimates of the other coefficients if that

observation were deleted, but the deletion of an observation is rarely, if ever,

appropriate. Finally, dummy variables can be used as dependent variables.

Slope Dummy Variables

Until now, every independent variable in this text has been multiplied by ex-

actly one other item: the slope coefficient. To see this, take another look at

Equation 18:

(18)

In this equation X is multiplied only by and D is multiplied only by 

and there are no other factors involved.

�2,�1,

Yi 5 �0 1 �1Xi 1 �2Di 1 �i

5
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This restriction does not apply to a new kind of variable called an interac-

tion term. An interaction term is an independent variable in a regression equa-

tion that is the multiple of two or more other independent variables. Each inter-

action term has its own regression coefficient, so the end result is that the

interaction term has three or more components, as in Such interaction

terms are used when the change in Y with respect to one independent variable

(in this case X) depends on the level of another independent variable (in this

case D). For an example of the use of interaction terms, see Exercise 14.

Interaction terms can involve two quantitative variables (B3X1X2) or two

dummy variables (B3D1D2), but the most frequent application of interaction

terms involves one quantitative variable and one dummy variable (B3X1D1), a

combination that is typically called a slope dummy. Slope dummy variables

allow the slope of the relationship between the dependent variable and an

independent variable to be different depending on whether the condition

specified by a dummy variable is met. This is in contrast to an intercept

dummy variable, which changes the intercept, but does not change the slope,

when a particular condition is met.

In general, a slope dummy is introduced by adding to the equation a vari-

able that is the multiple of the independent variable that has a slope you

want to change and the dummy variable that you want to cause the changed

slope. The general form of a slope dummy equation is:

(20)

Note the difference between Equations 18 and 20. Equation 20 is the same as

Equation 18, except that we have added an interaction term in which the

dummy variable is multiplied by an independent variable Let’s

check to make sure that the slope of Y with respect to X does indeed change if

D changes:

In essence, the coefficient of X changes when the condition specified by D is

met. To see this, substitute D � 0 and D � 1, respectively, into Equation 20

and factor out X.

Note that Equation 20 includes both a slope dummy and an intercept

dummy. It turns out that whenever a slope dummy is used, it’s vital to also

have and in the equation to avoid bias in the estimate of the coeffi-

cient of the slope dummy term. If there are other Xs in an equation, they

should not be multiplied by D unless you hypothesize that their slopes

change with respect to D as well.

�2D�1Xi

When D 5 1, �Y>�X 5 (�1 1 �3)

When D 5 0, �Y>�X 5 �1

(�3XiDi).

Yi 5 �0 1 �1Xi 1 �2Di 1 �3XiDi 1 �i

�3XiDi.
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Take a look at Figure 7, which has both a slope dummy and an intercept

dummy. In Figure 7 the intercept will be when D � 0 and when 

D � 1. In addition, the slope of Y with respect to X will be when D � 0 

and when D � 1. As a result, there really are two equations:

In practice, slope dummies have many realistic uses. For example, consider

the question of earnings differentials between men and women. Although there

is little argument that these differentials exist, there is quite a bit of controversy

over the extent to which these differentials are caused by sexual discrimination

(as opposed to other factors). Suppose you decide to build a model of earnings

to get a better view of this controversy. If you hypothesized that men earn more

than women on average, then you would want to use an intercept dummy vari-

able for gender in an earnings equation that included measures of experience,

special skills, education, and so on, as independent variables:

(21)ln(Earningsi) 5 �0 1 �1Di 1 �2EXPi 1 c1 �i

 Yi 5  (�0 1 �2) 1 (�1 1 �3)Xi 1 �i  fwhen D 5 1g
Yi 5  �0  1 �1Xi 1 �i  fwhen D 5 0g

�1 1 �3

�1

�0 1 �2�0
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Y

0 X

Di = 0

�2

�0

�0 + �2

(�2 > 0)

Di = 1

Slope = �1

Slope = �1 + �3

(�3 > 0)

Yi = �0 + �1Xi + �2Di + �3XiDi

Figure 7 Slope and Intercept Dummies

If slope dummy terms are added to an equation,

a graph of the equation will have different intercepts and different slopes depending on

the value of the qualitative condition specified by the dummy variable. The difference

between the two intercepts is whereas the difference between the two slopes is �3.�2,

(�3XiDi) and intercept dummy (�2Di)
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where: Di � 1 if the ith worker is male and 0 otherwise

EXPi � the years experience of the ith worker

� a classical error term

In Equation 21, would be an estimate of the average difference between

males and females, holding constant their experience and the other factors in

the equation. Equation 21 also forces the impact of increases in experience

(and the other factors in the equation) to have the same effect for females as

for males because the slopes are the same for both genders.

If you hypothesized that men also increase their earnings more per year of

experience than women, then you would include a slope dummy as well as

an intercept dummy in such a model:

(22)

In Equation 22, would be an estimate of the differential impact of an

extra year of experience on earnings between men and women. We could test

the possibility of a positive true by running a one-tailed t-test on . If 

were significantly different from zero in a positive direction, then we could

reject the null hypothesis of no difference due to gender in the impact of ex-

perience on earnings, holding constant the other variables in the equation.

Problems with Incorrect Functional Forms

Once in a while a circumstance will arise in which the model is logically non-

linear in the variables, but the exact form of this nonlinearity is hard to spec-

ify. In such a case, the linear form is not correct, and yet a choice between the

various nonlinear forms cannot be made on the basis of economic theory.

Even in these cases, however, it still pays (in terms of understanding the true

relationships) to avoid choosing a functional form on the basis of fit alone.

If functional forms are similar, and if theory does not specify exactly which

form to use, why should we try to avoid using goodness of fit over the sample

to determine which equation to use? This section will highlight two answers to

this question:

1. are difficult to compare if the dependent variable is transformed.

2. An incorrect functional form may provide a reasonable fit within the

sample but have the potential to make large forecast errors when used

outside the range of the sample.

Are Difficult to Compare When Y Is Transformed

When the dependent variable is transformed from its linear version, the overall

measure of fit, the cannot be used for comparing the fit of the nonlinearR2,

R2s

R2s

6

�̂3�̂3�3

�̂3

ln(Earningsi) 5 �0 1 �1Di 1 �2EXPi 1 �3DiEXPi 1 c1 �i

�̂1

�i

SPECIFICATION: CHOOSING A FUNCTIONAL FORM

241



equation with the original linear one. This problem is not especially important

in most cases because the emphasis in applied regression analysis is usually on

the coefficient estimates. However, if are ever used to compare the fit of two

different functional forms, then it becomes crucial that this lack of comparabil-

ity be remembered. For example, suppose you were trying to compare a linear

equation:

(23)

with a semilog version of the same equation (using the version of a semilog

function that takes the log of the dependent variable):

(24)

Notice that the only difference between Equations 23 and 24 is the func-

tional form of the dependent variable. The reason that the of the respec-

tive equations cannot be used to compare overall fits of the two equations is

that the total sum of squares (TSS) of the dependent variable around its

mean is different in the two formulations. That is, the are not comparable

because the dependent variables are different. There is no reason to expect

that different dependent variables will have the identical (or easily compara-

ble) degrees of dispersion around their means.

Incorrect Functional Forms Outside the Range of the Sample

If an incorrect functional form is used, then the probability of mistaken infer-

ences about the true population parameters will increase. Using an incorrect

functional form is a kind of specification error that is similar to the omitted

variable bias. Even if an incorrect functional form provides good statistics

within a sample, large residuals almost surely will arise when the misspecified

equation is used on data that were not part of the sample used to estimate the

coefficients.

In general, the extrapolation of a regression equation to data that are out-

side the range over which the equation was estimated runs increased risks of

large forecasting errors and incorrect conclusions about population values.

This risk is heightened if the regression uses a functional form that is inappro-

priate for the particular variables being studied.

Two functional forms that behave similarly over the range of the sample

may behave quite differently outside that range. If the functional form is cho-

sen on the basis of theory, then the researcher can take into account how the

equation would act over any range of values, even if some of those values are

R2s

R2s

lnY 5 �0 1 �1X1 1 �2X2 1 �

Y 5 �0 1 �1X1 1 �2X2 1 �

R2s
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outside the range of the sample. If functional forms are chosen on the basis of

fit, then extrapolating outside the sample becomes tenuous.

Figure 8 contains a number of hypothetical examples. As can be seen, some

functional forms have the potential to fit quite poorly outside the sample range.

Such graphs are meant as examples of what could happen, not as statements of

SPECIFICATION: CHOOSING A FUNCTIONAL FORM

Y

0 X

(a) Double-Log (� < 0)

Sample

Y

0 X

Out of Sample

(b) Polynomial

Sample

Y

0 X

Out of Sample

Out of Sample

(c) Semilog Right

Sample

Out of Sample

Y

0 X

(d) Linear

Sample

Figure 8 Incorrect Functional Forms Outside the Sample Range

If an incorrect form is applied to data outside the range of the sample on which it was

estimated, the probability of large mistakes increases. In particular, note how the poly-

nomial functional form can change slope rapidly outside the sample range (panel b) and

that even a linear form can cause mistakes if the true functional form is nonlinear (panel d).

243



what necessarily will happen, when incorrect functional forms are pushed

outside the range of the sample over which they were estimated. Do not con-

clude from these diagrams that nonlinear functions should be avoided com-

pletely. If the true relationship is nonlinear, then the linear functional form

will make large forecasting errors outside the sample. Instead, the researcher

must take the time to think through how the equation will act for values

both inside and outside the sample before choosing a functional form to use

to estimate the equation. If the theoretically appropriate nonlinear equation

appears to work well over the relevant range of possible values, then it should

be used without concern over this issue.

Summary

1. Do not suppress the constant term even if it appears to be theoreti-

cally likely to equal zero. On the other hand, don’t rely on estimates

of the constant term for inference even if it appears to be statistically

significant.

2. The choice of a functional form should be based on the underlying eco-

nomic theory to the extent that theory suggests a shape similar to that

provided by a particular functional form. A form that is linear in the

variables should be used unless a specific hypothesis suggests otherwise.

3. Functional forms that are nonlinear in the variables include the

double-log form, the semilog form, the polynomial form, and the in-

verse form. The double-log form is especially useful if the elasticities

involved are expected to be constant. The semilog and inverse forms

have the advantage of allowing the effect of an independent variable

to tail off as that variable increases. The polynomial form is useful if

the slopes are expected to change sign, depending on the level of an

independent variable.

4. A slope dummy is a dummy variable that is multiplied by an inde-

pendent variable to allow the slope of the relationship between the

dependent variable and the particular independent variable to

change, depending on whether a particular condition is met.

5. The use of nonlinear functional forms has a number of potential prob-

lems. In particular, the are difficult to compare if Y has been trans-

formed, and the residuals are potentially large if an incorrect functional

form is used for forecasting outside the range of the sample.

R2s

7
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EXERCISES

(The answer to Exercise 2 is at the end of the chapter.)

1. Write out the meaning of each of the following terms without refer-

ring to the book (or your notes), and compare your definition with

the version in the text for each:

a. elasticity

b. double-log functional form

c. semilog functional form

d. polynomial functional form

e. inverse functional form

f. slope dummy

g. natural log

h. omitted condition

i. interaction term

j. linear in the variables

k. linear in the coefficients

2. For each of the following pairs of dependent (Y) and independent (X)

variables, pick the functional form that you think is likely to be

appropriate, and then explain your reasoning (assume that all other

relevant independent variables are included in the equation):

a. Y � sales of shoes

X � disposable income

b. Y � the attendance at the Hollywood Bowl outdoor symphony

concerts on a given night

X � whether the orchestra’s most famous conductor was scheduled

to conduct that night

c. Y � aggregate consumption of goods and services in the United States

X � aggregate disposable income in the United States

d. Y � the money supply in the United States

X � the interest rate on Treasury Bills (in a demand function)

e. Y � the average production cost of a box of pasta

X � the number of boxes of pasta produced

3. Look over the following equations and decide whether they are linear

in the variables, linear in the coefficients, both, or neither:

a.

b. Yi 5 �0 1 �1ln Xi 1 �i

Yi 5 �0 1 �1X˛

3
i 1 �i
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c.

d.

e.

4. Consider the following estimated semilog equation (standard errors

in parentheses):

where: lnSALi � the log of the salary of the ith worker

EDi � the years of education of the ith worker

EXPi � the years of experience of the ith worker

a. Make appropriate hypotheses for signs, calculate t-scores, and test

your hypotheses.

b. What is the economic meaning of the constant in this equation?

c. Why do you think a left-side semilog functional form is used in this

model? (Hint: What are the slopes of salary with respect to educa-

tion and experience?)

d. Suppose you ran the linear version of this equation and obtained

an of .46. What can you conclude from this result?

5. In 2003, Ray Fair6 analyzed the relationship between stock prices and

risk aversion by looking at the 1996–2000 performance of the 65

companies that had been a part of Standard and Poor’s famous index

(the S&P 500) since its inception in 1957. Fair focused on the P/E

ratio (the ratio of a company’s stock price to its earnings per share)

and its relationship to the � coefficient (a measure of a company’s

riskiness—a high � implies high risk). Hypothesizing that the stock

price would be a positive function of earnings growth and dividend

growth, he estimated the following equation:

LNPEi � 2.74 � 0.22BETAi � 0.83EARNi � 2.81DIVi
(0.11) (0.57) (0.84)

t � �1.99 1.45 3.33

N � 65 R2 � .232 � .194 R2

R2

R2 5 .48  N 5 28

 (0.025)         (0.050)

 lnSALi 5 2̨8.10 1 0.100EDi 1  0.110EXPi

Y˛

�0
i 5 �1 1 �2X˛

2
i 1 �i

Yi 5 �0 1 �1X˛

�2
i 1 �i

ln Yi 5 �0 1 �1ln Xi 1 �i

6. Ray C. Fair, “Risk Aversion and Stock Prices,” Cowles Foundation Discussion Papers 1382,

Cowles Foundation: Yale University, revised February 2003. Most of the article is well beyond

the scope of this text, but Fair generously included the data (including proprietary data that he

generated) necessary to replicate his regression results.
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where: LNPEi � the log of the median P/E ratio of the ith com-

pany from 1996 to 2000

BETAi � the mean � of the ith company from 1958 to 1994

EARNi � the median percentage earnings growth rate for the

ith company from 1996 to 2000

DIVi � the median percentage dividend growth rate for

the ith company from 1996 to 2000

a. Create and test appropriate hypotheses about the slope coefficients

of this equation at the 5-percent level. 

b. One of these variables is lagged and yet this is a cross-sectional equa-

tion. Explain which variable is lagged and why you think Fair lagged it.

c. Is one of Fair’s variables potentially irrelevant? Which one? Use

EViews, Stata, or your own regression program on the data in Table 2

to estimate Fair’s equation without your potentially irrelevant

variable and then use our four specification criteria to determine

whether the variable is indeed irrelevant.

d. What functional form does Fair use? Does this form seem appropriate

on the basis of theory? (Hint: A review of the literature would certainly

help you answer this question, but before you start that review, think

through the meaning of slope coefficients in this functional form.) 

e. (optional) Suppose that your review of the literature makes you

concerned that Fair should have used a double-log functional form

for his equation. Use the data in Table 2 to estimate that functional

form on Fair’s data. What is your estimated result? Does it support

your concern? Explain.

6. In an effort to explain regional wage differentials, you collect wage data

from 7,338 unskilled workers, divide the country into four regions

(Northeast, South, Midwest, and West), and estimate the following equa-

tion (standard errors in parentheses):

where: Yi � the hourly wage (in dollars) of the ith unskilled worker

Ei � a dummy variable equal to 1 if the ith worker lives in

the Northeast, 0 otherwise

Si � a dummy variable equal to 1 if the ith worker lives in

the South, 0 otherwise

Wi � a dummy variable equal to 1 if the ith worker lives in

the West, 0 otherwise

R2 5 .49  N 5 7,338

 (0.019)  (0.010)  (0.012)

 Ŷi 5 4.78 2 0.038Ei 2  0.041Si 2  0.048Wi
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Table 2 Data for the Stock Price Example

COMPANY PE BETA EARN DIV

1 Alcan 12.64 0.466 0.169 –0.013

2 TXU Corp. 10.80 0.545 0.016 0.014

3 Procter & Gamble 19.90 0.597 0.066 0.050

4 PG&E 11.30 0.651 0.021 0.014

5 Phillips Petroleum 13.27 0.678 0.071 0.006

6 AT&T 13.71 0.697 –0.004 –0.008

7 Minnesota Mining 

& Mfg. 17.61 0.781 0.054 0.051

8 Alcoa 15.97 0.795 0.120 –0.015

9 American Electric 

Power 10.68 0.836 –0.001 –0.021

10 Public Service Entrp 9.63 0.845 –0.018 –0.011

11 Hercules 16.07 0.851 0.077 –0.008

12 Air Products & 

Chemicals 16.20 0.865 0.051 0.074

13 Bristol Myers 

Squibb 17.01 0.866 0.068 0.110

14 Kimberly-Clark 13.42 0.869 0.063 0.018

15 Aetna 8.98 0.894 –0.137 0.007

16 Wrigley 14.49 0.898 0.062 0.044

17 Halliburton 17.84 0.906 0.120 –0.011

18 Deere & Co. 12.15 0.916 –0.010 0.004

19 Kroger 11.82 0.931 0.010 0.000

20 Intl Business 

Machines 16.08 0.944 0.081 0.045

21 Caterpillar 16.95 0.952 –0.043 –0.005

22 Goodrich 12.06 0.958 0.028 –0.015

23 General Mills 17.16 0.965 0.060 0.048

24 Winn-Dixie Stores 16.10 0.973 0.045 0.047

25 Heinz (H J) 13.49 0.979 0.079 0.079

26 Eastman Kodak 28.28 0.983 0.023 0.009

27 Campbell Soup 16.33 0.986 0.028 0.025

28 Philip Morris 12.25 0.993 0.129 0.130

29 Southern Co. 11.26 0.995 0.034 0.000

30 Du Pont 14.16 0.996 0.099 0.001

31 Phelps Dodge 11.47 1.008 0.186 –0.011

32 Pfizer Inc. 17.63 1.019 0.052 0.062

33 Hershey Foods 14.66 1.022 0.025 0.058

34 Ingersoll-Rand 14.24 1.024 0.045 –0.018

35 FPL Group 11.86 1.048 0.038 0.019

36 Pitney Bowes 16.11 1.064 0.049 0.086

37 Archer-Daniels-Midland 14.43 1.073 0.073 –0.011

(continued)
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a. What is the omitted condition in this equation?

b. If you add a dummy variable for the omitted condition to the

equation without dropping Ei, Si, or Wi, what will happen?

c. If you add a dummy variable for the omitted condition to the

equation and drop Ei, what will the sign of the new variable’s esti-

mated coefficient be?

Table 2 (continued)

COMPANY PE BETA EARN DIV

38 Rockwell 9.42 1.075 0.062 0.020

39 Dow Chemical 15.25 1.081 0.042 0.026

40 General Electric 15.16 1.091 0.051 0.015

41 Abbott Laboratories 17.58 1.097 0.114 0.098

42 Merck & Co. 23.29 1.122 0.066 0.072

43 J C Penney 13.14 1.133 0.094 –0.003

44 Union Pacific Corp. 12.99 1.136 0.010 0.021

45 Schering-Plough 18.18 1.137 0.112 0.060

46 Pepsico 18.94 1.147 0.082 0.046

47 McGraw-Hill 16.93 1.150 0.051 0.052

48 Household 

International 8.36 1.184 0.019 0.008

49 Emerson Electric 17.52 1.196 0.047 0.044

50 General Motors 11.21 1.206 0.052 –0.023

51 Colgate-Palmolive 16.60 1.213 0.067 0.025

52 Eaton Corp. 10.64 1.216 0.137 0.001

53 Dana Corp. 10.26 1.222 0.069 –0.011

54 Sears Roebuck 12.41 1.256 0.030 –0.014

55 Corning Inc. 19.33 1.258 0.052 –0.013

56 General Dynamics 9.06 1.285 0.056 –0.023

57 Coca-Cola 21.68 1.290 0.085 0.055

58 Boeing 11.93 1.306 0.169 0.017

59 Ford 8.62 1.308 0.016 0.026

60 Peoples Energy 9.58 1.454 0.000 0.005

61 Goodyear 12.02 1.464 0.022 0.012

62 May Co. 11.32 1.525 0.050 0.006

63 ITT Industries 9.92 1.630 0.038 0.018

64 Raytheon 11.75 1.821 0.112 0.050

65 Cooper Industries 12.41 1.857 0.108 0.037

Source: Ray C. Fair, “Risk Aversion and Stock Prices,” Cowles Foundation Discussion Papers

1382, Cowles Foundation:Yale University, revised February 2003.

Datafile � STOCK7
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d. Which of the following three statements is most correct? Least cor-

rect? Explain your answer.

i. The equation explains 49 percent of the variation of Y around

its mean with regional variables alone, so there must be quite a

bit of wage variation by region.

ii. The coefficients of the regional variables are virtually identical,

so there must not be much wage variation by region.

iii. The coefficients of the regional variables are quite small com-

pared with the average wage, so there must not be much wage

variation by region.

e. If you were going to add one variable to this model, what would it

be? Justify your choice.

7. V. N. Murti and V. K. Sastri7 investigated the production characteris-

tics of various Indian industries, including cotton and sugar. They

specified Cobb–Douglas production functions for output (Q) as a

double-log function of labor (L) and capital (K):

and obtained the following estimates (standard errors in parentheses):

Industry

Cotton 0.97 0.92 0.12 .98

(0.03) (0.04)

Sugar 2.70 0.59 0.33 .80

(0.14) (0.17)

a. What are the elasticities of output with respect to labor and capital

for each industry?

b. What economic significance does the sum have?

c. Murti and Sastri expected positive slope coefficients. Test their hy-

potheses at the 5-percent level of significance. (Hint: This is much

harder than it looks!)

8. Suppose you are studying the rate of growth of income in a country as

a function of the rate of growth of capital in that country and of the

per capita income of that country. You’re using a cross-sectional data

set that includes both developed and developing countries. Suppose

further that the underlying theory suggests that income growth rates

(�̂1 1 �̂2)

R2�̂2�̂1�̂0

lnQi 5 �0 1 �1lnLi 1 �2lnKi 1 �i

7. V. N. Murti and V. K. Sastri, “Production Functions for Indian Industry,” Econometrica, Vol. 25,

No. 2, pp. 205–221.
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will increase as per capita income increases and then start decreasing

past a particular point. Describe how you would model this relation-

ship with each of the following functional forms:

a. a quadratic function

b. a semilog function

c. a slope dummy equation

9. A study of hotel investments in Waikiki estimated this revenue pro-

duction function:

lnR � �0 � �1 lnL � �2 lnK �

where: R � the annual net revenue of the hotel (in thousands of

dollars)

L � land input (site area in square feet)

K � capital input (construction cost in thousands of dollars)

a. Create specific null and alternative hypotheses for this equation.

b. Calculate the appropriate t-values and run t-tests given the follow-

ing regression result (standard errors in parentheses):

c. If you were going to build a Waikiki hotel, what input would you

most want to use? Is there an additional piece of information you

would need to know before you could answer?

10. William Comanor and Thomas Wilson8 specified the following re-

gression in their study of advertising’s effect on the profit rates of 41

consumer goods firms:

where: PRi � the profit rate of the ith firm

ADVi � the advertising expenditures in the ith firm (in

dollars)

SALESi � the total gross sales of the ith firm (in dollars)

CAPi � the capital needed to enter the ith firm’s market

at an efficient size

PRi 5 �0 1 �1ADVi>SALESi 1 �2 lnCAPi 1 �3 lnESi 1 �4 lnDGi 1 �i

N 5 25

 (0.125) (0.135)

 lnR 5 2 0.91750 1 0.273lnL 1  0.733lnK

�

8. William S. Comanor and Thomas A. Wilson, “Advertising, Market Structure and Performance,”

Review of Economics and Statistics, Vol. 49, p. 432.
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ESi � the degree to which economies of scale exist in

the ith firm’s industry

DGi � percent growth in sales (demand) of the ith firm

over the last 10 years

ln � natural logarithm

� a classical error term

a. Hypothesize expected signs for each of the slope coefficients.

b. Note that there are two different kinds of nonlinear (in the vari-

ables) relationships in this equation. For each independent vari-

able, determine the shape that the chosen functional form implies,

and state whether you agree or disagree with this shape. Explain

your reasoning in each case.

c. Comanor and Wilson state that the simple correlation coefficient

between and each of the other independent variables

is positive. If one of these other variables were omitted, in which

direction would likely be biased?

11. Suggest the appropriate functional forms for the relationships be-

tween the following variables. Be sure to explain your reasoning:

a. The age of the ith house in a cross-sectional equation for the sales

price of houses in Cooperstown, New York. (Hint: Cooperstown is

known as a lovely town with a number of elegant historic homes.)

b. The price of natural gas in year t in a demand-side time-series equa-

tion for the consumption of natural gas in the United States.

c. The income of the ith individual in a cross-sectional equation for

the number of suits owned by individuals.

d. A dummy variable for being a student (1 � yes) in the equation

specified in part c.

e. The number of long-distance telephone calls handled per year in a

cross-sectional equation for the marginal cost of a telephone call

faced by various competing long-distance telephone carriers.

12. Suppose you’ve been hired by a union that wants to convince workers in

local dry cleaning establishments that joining the union will improve

their well-being. As your first assignment, your boss asks you to build a

model of wages for dry cleaning workers that measures the impact of

union membership on those wages. Your first equation (standard errors

in parentheses) is:

N 5 34  R2 5 .14

 (0.10)  (0.002)  (0.20)  (1.00)

 Ŵi 5 2 11.40 1 0.30Ai 2  0.003A2
i 1  1.00Si 1  1.20Ui

�̂1

ADVi>SALESi

�i
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where: Wi � the hourly wage (in dollars) of the ith worker

Ai � the age of the ith worker

Si � the number of years of education of the ith worker

Ui � a dummy variable � 1 if the ith worker is a union

member, 0 otherwise

a. Evaluate the equation. How do and the signs and significance of

the coefficients compare with your expectations?

b. What is the meaning of the A2 term? What relationship between A

and W does it imply? Why doesn’t the inclusion of A and A2 violate

Classical Assumption VI of no perfect collinearity between two in-

dependent variables?

c. Do you think you should have used the log of W as your depen-

dent variable? Why or why not? (Hint: Compare this equation to

the one in Exercise 4.)

d. Even though we’ve been told not to analyze the value of the inter-

cept, isn’t �$11.40 too low to ignore? What should be done to cor-

rect this problem?

e. On the basis of your regression, should the workers be convinced

that joining the union will improve their well-being? Why or why

not?

13. Your boss manages to use the regression results in Exercise 12 to con-

vince the dry cleaning workers to join your union. About a year later,

they go on strike, a strike that turns violent. Now your union is being

sued by all the local dry cleaning establishments for some of the rev-

enues lost during the strike. Their claim is that the violence has intim-

idated replacement workers, thus decreasing production. Your boss

doesn’t believe that the violence has had a significant impact on pro-

duction efficiency and asks you to test his hypothesis with a regres-

sion. Your results (standard errors in parentheses) are:

where: LEt � the natural log of the efficiency rate (defined as the

ratio of actual total output to the goal output in

week t)

LQt � the natural log of actual total output in week t

At � the absentee rate (%) during week t

Vt � the number of incidents of violence during week t

N 5 24  R2 5 .855

 (0.04)  (0.010)  (0.0008)

 LEt 5 3.08 1 0.16LQt 2  0.020At 2  0.0001Vt

R2
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a. Hypothesize signs and develop and test the appropriate hypotheses

for the individual estimated coefficients (5-percent level).

b. If the functional form is correct, what does its use suggest about the

theoretical elasticity of E with respect to Q compared with the elas-

ticities of E with respect to A and V?

c. On the basis of this result, do you think the court will conclude

that the violence had a significant impact on the efficiency rate?

Why or why not?

d. What problems appear to exist in this equation? (Hint: The prob-

lems may be theoretical as well as econometric.) If you could make

one change in the specification of this equation, what would it be?

14. Richard Fowles and Peter Loeb studied the interactive effect of drink-

ing and altitude on traffic deaths.9 The authors hypothesized that

drunk driving fatalities are more likely at high altitude than at low

altitude because higher elevations diminish the oxygen intake of the

brain, increasing the impact of a given amount of alcohol. To test this

hypothesis, they used an interaction variable between altitude and

beer consumption. They estimated the following cross-sectional

model (by state for the continental United States) of the motor vehi-

cle fatality rate (t-scores in parentheses):

(25)

where: Fi � traffic fatalities per motor vehicle mile driven in the

ith state

Bt � per capita consumption of beer (malt beverages) in

state i

Si � average highway driving speed in state i

Di � a dummy variable equal to 1 if the ith state had a

vehicle safety inspection program, 0 otherwise

Ai � the average altitude of metropolitan areas in state i

(in thousands)

N 5 48  R2 5 .499

 (2 0.08)  (1.85)  (2 1.29)  (4.05)

 F̂i 5 2 3.36 2 0.002Bi 1  0.17Si 2  0.31Di 1  0.011Bi Ai

9. Richard Fowles and Peter D. Loeb, “The Interactive Effect of Alcohol and Altitude on Traffic

Fatalities,” Southern Economic Journal, Vol. 59, pp. 108–111. To focus the analysis, we have omit-

ted the coefficients of three other variables (the minimum legal drinking age, the percent of the

population between 18 and 24, and the variability of highway driving speeds) that were in-

significant in Equations 25 and 26.
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a. Carefully state and test appropriate hypotheses about the coeffi-

cients of B, S, and D at the 5-percent level. Do these results give any

indication of econometric problems in the equation? Explain.

b. Think through the interaction variable. What is it measuring? Care-

fully state the meaning of the coefficient of 

c. Create and test appropriate hypotheses about the coefficient of the

interaction variable at the 5-percent level.

d. Note that Ai is included in the equation in the interaction variable

but not as an independent variable on its own. If an equation in-

cludes an interaction variable, should both components of the in-

teraction be independent variables in the equation as a matter of

course? Why or why not? (Hint: Recall that with slope dummies,

we emphasized that both the intercept dummy term and the slope

dummy variable term should be in the equation.)

e. When the authors included Ai in their model, the results were as in

Equation 26. Which equation do you prefer? Explain.

(26)

15. Walter Primeaux used slope dummies to help test his hypothesis that

monopolies tend to advertise less intensively than do duopolies in the

electric utility industry.10 His estimated equation (which also included

a number of geographic dummies and a time variable) was (t-scores in

parentheses):

where: Yi � advertising and promotional expense (in dollars) per

1,000 residential kilowatt hours (KWH) of the ith

electric utility

R2 5 .456  N 5 350

 (2 5.0)  (2.3)

 2 20.0Si ? Di 1  0.49Gi ? Di

 (4.5) (0.4)  (2.9)

 Ŷi 5 0.15 1 5.0Si 1 0.015Gi 1  0.35Di

N 5 48 R2 5 .501

 (2 0.80)  (1.53) (2 0.96)  (2 1.07)  (1.97)

 F̂i 5 2 2.33 2 0.024Bi 1  0.14Si 2  0.24Di 2  0.35Ai 1  0.023Bi Ai

B*A.

10. Walter J. Primeaux, Jr., “An Assessment of the Effects of Competition on Advertising Inten-

sity,” Economic Inquiry, Vol. 19, No. 4, pp. 613–625.
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Si � number of residential customers of the ith utility

(hundreds of thousands)

Gi � annual percentage growth in residential KWH of the

ith utility

Di � a dummy variable equal to 1 if the ith utility is a du-

opoly, 0 if a monopoly

a. Carefully explain the economic meaning of each of the five slope co-

efficients. Note that both independent variables have slope dummies.

b. Hypothesize and test the relevant null hypotheses with the t-test at

the 5-percent level of significance. (Hint: Primeaux expected posi-

tive coefficients for all five.)

c. Assuming that Primeaux’s equation is correct, graph the relation-

ship between advertising (Yi) and size (Si) for monopolies and for

duopolies.

d. Assuming that Primeaux’s equation is correct, graph the relation-

ship between advertising and growth (Gi) for monopolies and for

duopolies.

16. What attributes make a car accelerate well? If you’re like most people,

you’d answer that the fastest accelerators are high-powered, light cars

with aerodynamic shapes. To test this, we used the data in Table 3 for

2009 model vehicles to estimate the following equation (standard er-

rors in parentheses):

TIMEi � 7.43 � 1.90TOPi � 0.0007WEIGHTi � 0.005HPi (27)

(0.29) (0.0003) (0.00060)

t   � � 6.49 2.23 � 7.74

N � 30 � .877

where: TIMEi � the time (in seconds) it takes the ith car to ac-

celerate from 0 to 60 miles per hour

TOPi � a dummy equal to 1 if the ith car has a hard

top, 0 if it has a soft top (convertible)

WEIGHTi � the curb weight (in pounds) of the ith car

HPi � the base horsepower of the ith car

a. Create and test appropriate hypotheses about the slope coefficients

of the equation at the 1-percent level.

b. What possible econometric problems, out of omitted variables, ir-

relevant variables, or incorrect functional form, does Equation 27

appear to have? Explain.

R2
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Table 3 Acceleration Times for 2009 Model Vehicles

MAKE MODEL TIME SPEED TOP WEIGHT HP

1 Audi TT Roadster 8.9 133 0 1335 150

2 Mini Cooper S 7.4 134 0 1240 168

3 Volvo C70 T5 Sport 7.4 150 0 1711 220

4 Saab Nine-Three 7.9 149 0 1680 247

5 Mercedes-

Benz SL350 6.6 155 0 1825 268

6 Jaguar XK8 6.7 154 0 1703 290

7 Bugatti Veyron 16.4 2.4 253 1 1950 1000

8 Lotus Exige 4.9 147 1 875 189

9 BMW M3 (E30) 6.7 144 1 1257 220

10 BMW 330i Sport 5.9 155 1 1510 231

11 Porsche Cayman S 5.3 171 1 1350 291

12 Nissan Skyline GT-R 

(R34) 4.7 165 1 1560 276

13 Porsche 911 RS 4.7 172 1 1270 300

14 Ford Shelby GT 5 150 1 1584 319

15 Mitsubishi Evo VII RS 

Sprint 4.4 150 1 1260 320

16 Aston Martin V8 Vantage 5.2 175 1 1630 380

17 Mercedes-

Benz SLK55 AMG 4.8 155 1 1540 355

18 Maserati Quattroporte 

Sport GT 5.1 171 1 1930 394

19 Spyker C8 4.5 187 1 1275 400

20 Ferrari 288GTO 4.9 189 1 1161 400

21 Mosler MT900 3.9 190 1 1130 435

22 Lamborghini Countach QV 4.9 180 1 1447 455

23 Chrysler Viper GTS-R 4 190 1 1290 460

24 Bentley Arnage T 5.2 179 1 2585 500

25 Ferrari 430 Scuderia 3.5 198 1 1350 503

26 Saleen S7 3.3 240 1 1247 550

27 Lamborghini Murcielago 4 205 1 1650 570

28 Pagani Zonda F 3.6 214 1 1230 602

29 McLaren F1 3.2 240 1 1140 627

30 Koenigsegg CCR 3.2 242 1 1180 806

Source: StrikeEngine. “Performance Car Specs: 0–60, 0–100, Power to Weight Ratio, Top Speed.”

StrikeEngine.com. 2009.
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c. Suppose that your next-door neighbor is a physics major who

tells you that horsepower can be expressed in terms of the follow-

ing equation: where , ,

and TIME and HP are as defined previously. Does

this change your answer to part b? How? Why?

d. On the basis of your answer to part c, you decide to change the func-

tional form of the relationship between TIME and HP to an inverse

because that’s the appropriate theoretical relationship between the

two variables. What would the expected sign of the coefficient of

be? Explain.

e. Equation 28 shows what happens if you switch your horsepower

functional form to an inverse. Which equation do you prefer? Why?

If Equation 28 had a higher and higher t-scores, would that

change your answer? Why or why not?

TIMEi � 2.26 � 1.26TOPi � 0.001WEIGHTi � 765.44(1/HPi) (28)

(0.33) (0.0003) (99.61)

t   � � 3.74 3.06 7.68

N � 30 � .875

f. Since the two equations have different functional forms, can be

used to compare the overall fit of the equations? Why or why not?

g. (optional) Note that Table 3 also includes data on SPEEDi, defined

as the top speed of the ith vehicle. Use EViews, Stata, or your com-

puter’s regression program to estimate Equations 27 and 28 with

SPEED as the dependent variable instead of TIME, and then answer

parts a–f of this exercise for the new dependent variable.

R2

R2

R2

1>HP

A 5 acceleration,

D 5 distanceM 5 massHP 5 MDA>TIME
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Answers

Exercise 2

a. Semilog right [where Y � f(lnX)]; as income increases, the sales of

shoes will increase, but at a declining rate.

b. Linear (intercept dummy); there is little justification for any other

form.

c. Semilog right [where Y � f(lnX)] or linear are both justifiable.

d. Inverse function [where Y � f(1/X)]; as the interest rate gets higher,

the quantity of money demanded will decrease, but even at very

high interest rates, there still will be some money held to allow

for transactions.

e. Quadratic function [where Y � f(X,X2)]; as output levels are in-

creased, we will encounter diminishing returns to scale.

SPECIFICATION: CHOOSING A FUNCTIONAL FORM
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2 The Consequences of Multicollinearity
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4 Remedies for Multicollinearity
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6 Summary and Exercises

7 Appendix:The SAT Interactive Regression Learning Exercise

Multicollinearity

This chapter addresses multicollinearity; a violation of the Classical Assump-

tions, and remedies. We will attempt to answer the following questions:

1. What is the nature of the problem?

2. What are the consequences of the problem?

3. How is the problem diagnosed?

4. What remedies for the problem are available?

Strictly speaking, perfect multicollinearity is the violation of Classical As-

sumption VI—that no independent variable is a perfect linear function of

one or more other independent variables. Perfect multicollinearity is rare, but

severe imperfect multicollinearity, although not violating Classical Assump-

tion VI, still causes substantial problems.

Recall that the coefficient can be thought of as the impact on the de-

pendent variable of a one-unit increase in the independent variable Xk,

holding constant the other independent variables in the equation. But if two

explanatory variables are significantly related, then the OLS computer pro-

gram will find it difficult to distinguish the effects of one variable from the

effects of the other. 

�k

From Chapter 8 of Using Econometrics: A Practical Guide, 6/e. A. H. Studenmund. Copyright © 2011

by Pearson Education. Published by Addison-Wesley. All rights reserved.
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1. The word collinearity describes a linear correlation between two independent variables, and

multicollinearity indicates that more than two independent variables are involved. In common

usage, multicollinearity is used to apply to both cases, and so we’ll typically use that term in

this text even though many of the examples and techniques discussed relate, strictly speaking,

to collinearity.

In essence, the more highly correlated two (or more) independent vari-

ables are, the more difficult it becomes to accurately estimate the coefficients

of the true model. If two variables move identically, then there is no hope of

distinguishing between the impacts of the two; but if the variables are only

roughly correlated, then we still might be able to estimate the two effects ac-

curately enough for most purposes.

Perfect versus Imperfect Multicollinearity

Perfect Multicollinearity

Perfect multicollinearity1 violates Classical Assumption VI, which specifies

that no explanatory variable is a perfect linear function of any other explana-

tory variables. The word perfect in this context implies that the variation in

one explanatory variable can be completely explained by movements in an-

other explanatory variable. Such a perfect linear function between two inde-

pendent variables would be:

(1)

where the are constants and the Xs are independent variables in:

(2)

Notice that there is no error term in Equation 1. This implies that X1 can be

exactly calculated given X2 and the equation. Examples of such perfect linear

relationships would be:

(3)

(4)

Figure 1 shows a graph of explanatory variables that are perfectly corre-

lated. As can be seen in Figure 1, a perfect linear function has all data points

on the same straight line. There is none of the variation that accompanies the

data from a typical regression.

X1i 5 2 1 4X2i

X1i 5 3X2i

Yi 5 �0 1 �1X1i 1 �2X2i 1 �i

�s

X1i 5 �0 1 �1X2i

1
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X1

0 X2

Figure 1  Perfect Multicollinearity

With perfect multicollinearity, an independent variable can be completely explained by

the movements of one or more other independent variables. Perfect multicollinearity

can usually be avoided by careful screening of the independent variables before a re-

gression is run.

What happens to the estimation of an econometric equation where there

is perfect multicollinearity? OLS is incapable of generating estimates of the

regression coefficients, and most OLS computer programs will print out an

error message in such a situation. Using Equation 2 as an example, we theoret-

ically would obtain the following estimated coefficients and standard errors:

(5)

(6)

Perfect multicollinearity ruins our ability to estimate the coefficients because

the two variables cannot be distinguished. You cannot “hold all the other in-

dependent variables in the equation constant” if every time one variable

changes, another changes in an identical manner.

Fortunately, instances in which one explanatory variable is a perfect linear

function of another are rare. More important, perfect multicollinearity should

be fairly easy to discover before a regression is run. You can detect perfect mul-

ticollinearity by asking whether one variable equals a multiple of another or if

one variable can be derived by adding a constant to another or if a variable

equals the sum of two other variables. If so, then one of the variables should

be dropped because there is no essential difference between the two.

�̂2 5 indeterminate  SE(�̂2) 5 `

�̂1 5 indeterminate  SE(�̂1) 5 `
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A special case related to perfect multicollinearity occurs when a variable that

is definitionally related to the dependent variable is included as an independent

variable in a regression equation. Such a dominant variable is by definition so

highly correlated with the dependent variable that it completely masks the ef-

fects of all other independent variables in the equation. In a sense, this is a case

of perfect collinearity between the dependent and an independent variable.

For example, if you include a variable measuring the amount of raw mate-

rials used by the shoe industry in a production function for that industry, the

raw materials variable would have an extremely high t-score, but otherwise

important variables like labor and capital would have quite insignificant 

t-scores. Why? In essence, if you knew how much leather was used by a shoe

factory, you could predict the number of pairs of shoes produced without

knowing anything about labor or capital. The relationship is definitional, and

the dominant variable should be dropped from the equation to get reason-

able estimates of the coefficients of the other variables.

Be careful, though! Dominant variables shouldn’t be confused with highly

significant or important explanatory variables. Instead, they should be recog-

nized as being virtually identical to the dependent variable. While the fit be-

tween the two is superb, knowledge of that fit could have been obtained from

the definitions of the variables without any econometric estimation.

Imperfect Multicollinearity

Since perfect multicollinearity is fairly easy to avoid, econometricians almost

never talk about it. Instead, when we use the word multicollinearity, we 

really are talking about severe imperfect multicollinearity. Imperfect multi-

collinearity can be defined as a linear functional relationship between two

or more independent variables that is so strong that it can significantly affect

the estimation of the coefficients of the variables.

In other words, imperfect multicollinearity occurs when two (or more) ex-

planatory variables are imperfectly linearly related, as in:

(7)

Compare Equation 7 to Equation 1; notice that Equation 7 includes ui, a sto-

chastic error term. This implies that although the relationship between X1 and

X2 might be fairly strong, it is not strong enough to allow X1 to be completely

explained by X2; some unexplained variation still remains. Figure 2 shows the

graph of two explanatory variables that might be considered imperfectly mul-

ticollinear. Notice that although all the observations in the sample are fairly

close to the straight line, there is still some variation in X1 that cannot be 

explained by X2.

X1i 5 �0 1 �1X2i 1 ui
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Imperfect multicollinearity is a strong linear relationship between the ex-

planatory variables. The stronger the relationship between the two (or more)

explanatory variables, the more likely it is that they’ll be considered signifi-

cantly multicollinear. Two variables that might be only slightly related in one

sample might be so strongly related in another that they could be considered

to be imperfectly multicollinear. In this sense, it is fair to say that multi-

collinearity is a sample phenomenon as well as a theoretical one. This con-

trasts with perfect multicollinearity because two variables that are perfectly

related probably can be detected on a logical basis. The detection of multi-

collinearity will be discussed in more detail in Section 3.

The Consequences of Multicollinearity

If the multicollinearity in a particular sample is severe, what will happen to

estimates calculated from that sample? The purpose of this section is to ex-

plain the consequences of multicollinearity and then to explore some exam-

ples of such consequences.

Recall the properties of OLS estimators that might be affected by this or some

other econometric problem. We stated that the OLS estimators are 

2

X1

0 X2

Figure 2  Imperfect Multicollinearity

With imperfect multicollinearity, an independent variable is a strong but not perfect

linear function of one or more other independent variables. Imperfect multicollinearity

varies in degree from sample to sample.
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BLUE (or MvLUE) if the Classical Assumptions hold. This means that OLS esti-

mates can be thought of as being unbiased and having the minimum variance

possible for unbiased linear estimators.

What Are the Consequences of Multicollinearity?

The major consequences of multicollinearity are:

1. Estimates will remain unbiased. Even if an equation has significant multi-

collinearity, the estimates of the still will be centered around the

true population if all the Classical Assumptions are met for a cor-

rectly specified equation.

2. The variances and standard errors of the estimates will increase. This is the

principal consequence of multicollinearity. Since two or more of the

explanatory variables are significantly related, it becomes difficult to

precisely identify the separate effects of the multicollinear variables.

When it becomes hard to distinguish the effect of one variable from the

effect of another, then we’re much more likely to make large errors in

estimating the than we were before we encountered multicollinear-

ity. As a result, the estimated coefficients, although still unbiased, now

come from distributions with much larger variances and, therefore,

larger standard errors.2

Figure 3 compares a distribution of from a sample with severe

multicollinearity to one with virtually no correlation between any of

the independent variables. Notice that the two distributions have the

same mean, indicating that multicollinearity does not cause bias. Also

note how much wider the distribution of becomes when multi-

collinearity is severe; this is the result of the increase in the standard

error of that is caused by multicollinearity.

Because of this larger variance, multicollinearity increases the likeli-

hood of obtaining an unexpected sign3 for a coefficient even though, as

mentioned earlier, multicollinearity causes no bias.

�̂

�̂

�̂s

�s

�s

�s

2. Even though the variances and standard errors are larger with multicollinearity than they are

without it, OLS is still BLUE when multicollinearity exists. That is, no other linear unbiased esti-

mation technique can get lower variances than OLS even in the presence of multicollinearity. Thus,

although the effect of multicollinearity is to increase the variance of the estimated coefficients, OLS

still has the property of minimum variance. These “minimum variances” are just fairly large.

3. These unexpected signs generally occur because the distribution of the with multi-

collinearity is wider than without it, increasing the chance that a particular observed will be

on the other side of zero from the true (have an unexpected sign).�
�̂

�̂s
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3. The computed t-scores will fall. Multicollinearity tends to decrease the 

t-scores of the estimated coefficients mainly because of the formula for

the t-statistic:

(8)

Notice that this equation is divided by the standard error of the esti-

mated coefficient. Multicollinearity increases the standard error of the

estimated coefficient, and if the standard error increases, then the

t-score must fall, as can be seen from Equation 8. Not surprisingly, it’s

quite common to observe low t-scores in equations with severe

multicollinearity.

4. Estimates will become very sensitive to changes in specification. The addition

or deletion of an explanatory variable or of a few observations will

tk 5

(�̂
k

2 �̂
H

0
)

SE(�̂k)

� �

With Severe
Multicollinearity

Without Severe
Multicollinearity

Figure 3  Severe Multicollinearity Increases the Variances of the 

Severe multicollinearity produces a distribution of the that is centered around the

true but that has a much wider variance. Thus, the distribution of with multi-

collinearity is much wider than otherwise.

�̂s�
�̂s

�̂s
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often cause major changes in the values of the when significant

multicollinearity exists. If you drop a variable, even one that appears to

be statistically insignificant, the coefficients of the remaining variables

in the equation sometimes will change dramatically.

These large changes occur because OLS estimation is sometimes

forced to emphasize small differences between variables in order to

distinguish the effect of one multicollinear variable from another. If

two variables are virtually identical throughout most of the sample, the

estimation procedure relies on the observations in which the variables

move differently in order to distinguish between them. As a result, a

specification change that drops a variable that has an unusual value for

one of these crucial observations can cause the estimated coefficients of

the multicollinear variables to change dramatically.

5. The overall fit of the equation and the estimation of the coefficients of non-

multicollinear variables will be largely unaffected. Even though the individ-

ual t-scores are often quite low in a multicollinear equation, the overall

fit of the equation, as measured by , will not fall much, if at all, in

the face of significant multicollinearity. Given this, one of the first indi-

cations of severe multicollinearity is the combination of a high with

no statistically significant individual regression coefficients. Similarly,

if an explanatory variable in an equation is not multicollinear with the

other variables, then the estimation of its coefficient and standard error

usually will not be affected.

Because multicollinearity has little effect on the overall fit of the

equation, it will also have little effect on the use of that equation for

prediction or forecasting, as long as the independent variables main-

tain the same pattern of multicollinearity in the forecast period that

they demonstrated in the sample.

Two Examples of the Consequences of Multicollinearity

To see what severe multicollinearity does to an estimated equation, let’s look

at a hypothetical example. Suppose you decide to estimate a “student

consumption function.” After the appropriate preliminary work, you come

up with the following hypothesized equation:

(9)

where: COi � the annual consumption expenditures of the ith student

on items other than tuition and room and board

COi 5 f(Yd
1

i, LA
1

i) 1 �i 5 �0 1 �1Ydi 1 �2LAi 1 �i

R2

R2

�̂s
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Ydi � the annual disposable income (including gifts) of that 

student

LAi � the liquid assets (savings, etc.) of the ith student

� a stochastic error term

You then collect a small amount of data from people who are sitting near you

in class:

Student COi Ydi LAi

Mary $2000 $2500 $25000

Robby 2300 3000 31000

Jim 2800 3500 33000

Lesley 3800 4000 39000

Sita 3500 4500 48000

Jerry 5000 5000 54000

Harwood 4500 5500 55000

Datafile � CONS8

If you run an OLS regression on your data set for Equation 9, you obtain:

(10)

On the other hand, if you had consumption as a function of disposable in-

come alone, then you would have obtained:

(11)

Notice from Equations 10 and 11 that the t-score for disposable income 

increases more than tenfold when the liquid assets variable is dropped

from the equation. Why does this happen? First of all, the simple correla-

tion coefficient between Yd and LA is quite high: rYd,LA � .986. This high

degree of correlation causes the standard errors of the estimated coeffi-

cients to be very high when both variables are included. In the case of 

the standard error goes from 0.157 to 1.03 with the inclusion of LA!�̂Yd,

R2 5 .861

 t 5 6.187

 (0.157)

 COi 5 2 471.43 1 0.9714Ydi

R2 5 .835

 t 5 0.496  0.453

 (1.0307)  (0.0942)

 COi 5 2 367.83 1 0.5113Ydi 1  0.0427LAi

�i
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In addition, the coefficient estimate itself changes somewhat. Further, note

that the of the two equations are quite similar despite the large differ-

ences in the significance of the explanatory variables in the two equations.

It’s quite common for to stay virtually unchanged when multicollinear

variables are dropped. All of these results are typical of equations with

multicollinearity.

Which equation is better? If the liquid assets variable theoretically belongs

in the equation, then to drop it will run the risk of omitted variable bias, but

to include the variable will mean certain multicollinearity. There is no auto-

matic answer when dealing with multicollinearity. We’ll discuss this issue in

more detail in Sections 4 and 5.

A second example of the consequences of multicollinearity is based on ac-

tual rather than hypothetical data. Suppose you’ve decided to build a cross-

sectional model of the demand for gasoline by state:

(12)

where: PCONi � petroleum consumption in the ith state (trillions of

BTUs)

UHMi � urban highway miles within the ith state

TAXi � the gasoline tax rate in the ith state (cents per gallon)

REGi � motor vehicle registrations in the ith state (thousands)

Given the definitions, let’s move on to the estimation of Equation 12

using a linear functional form (assuming a classical error term):

(13)

What’s wrong with this equation? The motor vehicle registrations variable

has an insignificant coefficient with an unexpected sign, but it’s hard to

believe that the variable is irrelevant. Is an omitted variable causing bias?

It’s possible, but adding a variable is unlikely to fix things. Does it help

to know that the simple correlation coefficient between REG and UHM is

0.98? Given that, it seems fair to say that one of the two variables is

redundant; both variables are really measuring the size of the state, so we have

multicollinearity.

N 5 50  R2 5 .919

 t 5 5.92  2 2.77  2 1.43

 (10.3)  (13.2)  (0.043)

 PCONi 5 389.6 1  60.8UHMi 2  36.5TAXi 2  0.061REGi

PCONi 5 f(UHM
1

i, TAX
2

i, REG
1

i) 1 �i

R2

R2s
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Notice the impact of the multicollinearity on the equation. The coefficient

of a variable such as motor vehicle registrations, which has a very strong the-

oretical relationship to petroleum consumption, is insignificant and has a

sign contrary to our expectations. This is mainly because the multicolline-

arity has increased the variance of the distribution of the estimated 

What would happen if we were to drop one of the multicollinear variables?

(14)

Dropping UHM has made REG extremely significant. Why did this occur?

The answer is that the standard error of the coefficient of REG has fallen

substantially (from 0.043 to 0.012) now that the multicollinearity has

been removed from the equation. Also note that the sign of the estimated

coefficient has now become positive as hypothesized. The reason is that

REG and UHM are virtually indistinguishable from an empirical point of

view, and so the OLS program latched onto minor differences between the

variables to explain the movements of PCON. Once the multicollinearity

was removed, the direct positive relationship between REG and PCON was

obvious. 

Either UHM or REG could have been dropped with similar results because

the two variables are, in a quantitative sense, virtually identical. In this case,

REG was judged to be theoretically superior to UHM. Even though fell

when UHM was dropped, Equation 14 should be considered superior to

Equation 13. This is an example of the point that the fit of the equation is

not the most important criterion to be used in determining its overall quality.

The Detection of Multicollinearity

How do we decide whether an equation has a severe multicollinearity prob-

lem? A first step is to recognize that some multicollinearity exists in every

equation. It’s virtually impossible in a real-world example to find a set of ex-

planatory variables that are totally uncorrelated with each other (except for

designed experiments). Our main purpose in this section will be to learn to

determine how much multicollinearity exists in an equation, not whether any

multicollinearity exists.

3

R2

N 5 50  R2 5 .861

 t 5 2 3.18  15.88

 (16.9)  (0.012)

 PCONi 5 551.7 2 53.6TAXi 1  0.186REGi

�̂s.
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A second key point is that the severity of multicollinearity in a given equa-

tion can change from sample to sample depending on the characteristics of the

sample. As a result, the theoretical underpinnings of the equation are not quite

as important in the detection of multicollinearity as they are in the detection of

an omitted variable or an incorrect functional form. Instead, we tend to rely

more on data-oriented techniques to determine the severity of the multi-

collinearity in a given sample. Of course, we can never ignore the theory be-

hind an equation. The trick is to find variables that are theoretically relevant

(for meaningful interpretation) and that are also statistically nonmulti-

collinear (for meaningful inference).

Because multicollinearity is a sample phenomenon, and the level of

damage of its impact is a matter of degree, many of the methods used to 

detect it are informal tests without critical values or levels of significance.

Indeed, there are no generally accepted, true statistical tests for multi-

collinearity. Most researchers develop a general feeling for the severity of

multicollinearity in an estimated equation by looking at a number of the

characteristics of that equation. Let’s examine two of the most-used of

those characteristics.

High Simple Correlation Coefficients

One way to detect severe multicollinearity is to examine the simple correla-

tion coefficients between the explanatory variables. If an r is high in ab-

solute value, then we know that these two particular Xs are quite correlated

and that multicollinearity is a potential problem. For example, in Equation

10, the simple correlation coefficient between disposable income and liquid

assets is 0.986. A simple correlation coefficient this high, especially in an

equation with only two independent variables, is a certain indication of se-

vere multicollinearity.

How high is high? Some researchers pick an arbitrary number, such as

0.80, and become concerned about multicollinearity any time the absolute

value of a simple correlation coefficient exceeds 0.80. A better answer might

be that r is high if it causes unacceptably large variances in the coefficient es-

timates in which we’re interested.

Be careful; the use of simple correlation coefficients as an indication of the

extent of multicollinearity involves a major limitation if there are more than

two explanatory variables. It is quite possible for groups of independent vari-

ables, acting together, to cause multicollinearity without any single simple

correlation coefficient being high enough to indicate that multicollinearity is

in fact severe. As a result, simple correlation coefficients must be considered

to be sufficient but not necessary tests for multicollinearity. Although a high r
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does indeed indicate the probability of severe multicollinearity, a low r by no

means proves otherwise.4

High Variance Inflation Factors (VIFs)

The use of tests to give an indication of the severity of multicollinearity in a

particular sample is controversial. Some econometricians reject even the sim-

ple indicator described previously, mainly because of the limitations cited.

Others tend to use a variety of more formal tests.5

One measure of the severity of multicollinearity that is easy to use and that

is gaining in popularity is the variance inflation factor. The variance infla-

tion factor (VIF) is a method of detecting the severity of multicollinearity by

looking at the extent to which a given explanatory variable can be explained

by all the other explanatory variables in the equation. There is a VIF for each

explanatory variable in an equation. The VIF is an index of how much multi-

collinearity has increased the variance of an estimated coefficient. A high VIF

indicates that multicollinearity has increased the estimated variance of the es-

timated coefficient by quite a bit, yielding a decreased t-score.

Suppose you want to use the VIF to attempt to detect multicollinearity in

an original equation with K independent variables:

Doing so requires calculating K different VIFs, one for each Xi. Calculating

the VIF for a given Xi involves two steps:

1. Run an OLS regression that has Xi as a function of all the other explanatory

variables in the equation. For i � 1, this equation would be:

(15)

where v is a classical stochastic error term. Note that X1 is not included

on the right-hand side of Equation 15, which is referred to as an 

X1 5 �1 1 �2X2 1 �3X3 1 c1 �KXK 1 v

Y 5 �0 1 �1X1 1 �2X2 1 c1 �KXK 1 �

4. Most authors criticize the use of simple correlation coefficients to detect multicollinearity in

equations with large numbers of explanatory variables, but many researchers continue to do so

because a scan of the simple correlation coefficients is a “quick and dirty” way to get a feel for

the degree of multicollinearity in an equation.

5. Perhaps the best of these is the Condition number. For more on the Condition number,

which is a single index of the degree of multicollinearity in the overall equation, see D. A. Belsley,

Conditioning Diagnostics (New York: Wiley, 1991).
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(16)VIF(�̂i) 5
1

(1 2 R
2
i )

auxiliary or secondary regression. Thus there are K auxiliary regressions,

one for each independent variable in the original equation.

2. Calculate the variance inflation factor for :�̂i

where is the coefficient of determination (the unadjusted R2) of the

auxiliary regression in step one. Since there is a separate auxiliary regres-

sion for each independent variable in the original equation, there also is

an The higher the VIF, the more severe the

effects of multicollinearity.

How high is high? An of 1, indicating perfect multicollinearity, pro-

duces a VIF of infinity, whereas an of 0, indicating no multicollinearity at

all, produces a VIF of 1. While there is no table of formal critical VIF values, a

common rule of thumb is that if the multicollinearity is severe.

As the number of independent variables increases, it makes sense to increase

this number slightly.

For example, let’s return to Equation 10 and calculate the VIFs for both inde-

pendent variables. Both VIFs equal 36, confirming the quite severe multi-

collinearity we already know exists. It’s no coincidence that the VIFs for the two

variables are equal. In an equation with exactly two independent variables, the

two auxiliary equations will have identical leading to equal VIFs.6

Some authors and statistical software programs replace the VIF with its 

reciprocal, called tolerance, or TOL. Whether we calculate VIF or

TOL is a matter of personal preference, but either way, the general approach

is the most comprehensive multicollinearity detection technique we’ve dis-

cussed in this text.

Unfortunately, there are a couple of problems with using VIFs. First, as

mentioned, there is no hard-and-fast VIF decision rule. Second, it’s possible

to have multicollinear effects in an equation that has no large VIFs. For in-

stance, if the simple correlation coefficient between X1 and X2 is 0.88, multi-

collinear effects are quite likely, and yet the VIF for the equation (assuming

no other Xs) is only 4.4.

(1 2 R2
i ),

R2
i s,

VIF(�i) . 5,

R2
i

R2
i

R2
i  and a VIF(�̂i) for each Xi.

R2
i

6. Another use for the R2s of these auxiliary equations is to compare them with the overall

equation’s R2. If an auxiliary equation’s R2 is higher, it’s yet another sign of multicollinearity.
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In essence, then, the VIF is a sufficient but not necessary test for multi-

collinearity, just like the other test described in this section. Indeed, as is

probably obvious to the reader by now, there is no test that allows a re-

searcher to reject the possibility of multicollinearity with any real certainty.

Remedies for Multicollinearity

What can be done to minimize the consequences of severe multicollinearity?

There is no automatic answer to this question because multicollinearity is a

phenomenon that could change from sample to sample even for the same

specification of a regression equation. The purpose of this section is to out-

line a number of alternative remedies for multicollinearity that might be ap-

propriate under certain circumstances.

Do Nothing

The first step to take once severe multicollinearity has been diagnosed is to

decide whether anything should be done at all. As we’ll see, it turns out that

every remedy for multicollinearity has a drawback of some sort, and so it

often happens that doing nothing is the correct course of action.

One reason for doing nothing is that multicollinearity in an equation will

not always reduce the t-scores enough to make them insignificant or change

the enough to make them differ from expectations. In other words, the mere

existence of multicollinearity does not necessarily mean anything. A remedy

for multicollinearity should be considered only if the consequences cause in-

significant t-scores or unreliable estimated coefficients. For example, it’s possi-

ble to observe a simple correlation coefficient of .97 between two explanatory

variables and yet have each individual t-score be significant. It makes no sense

to consider remedial action in such a case, because any remedy for multi-

collinearity would probably cause other problems for the equation. In a sense,

multicollinearity is similar to a non-life-threatening human disease that re-

quires general anesthesia to operate on the patient: The risk of the operation

should be undertaken only if the disease is causing a significant problem.

A second reason for doing nothing is that the deletion of a multicollinear vari-

able that belongs in an equation will cause specification bias. If we drop such a

variable, then we are purposely creating bias. Given all the effort typically spent

avoiding omitted variables, it seems foolhardy to consider running that risk on

purpose. As a result, experienced econometricians often will leave multicollinear

variables in equations despite low t-scores.

�̂s

4
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The final reason for considering doing nothing to offset multicollinearity

is that every time a regression is rerun, we risk encountering a specification

that fits because it accidentally works for the particular data set involved, not

because it is the truth. The larger the number of experiments, the greater the

chances of finding the accidental result. To make things worse, when there is

significant multicollinearity in the sample, the odds of strange results in-

crease rapidly because of the sensitivity of the coefficient estimates to slight

specification changes.

To sum, it is often best to leave an equation unadjusted in the face of all

but extreme multicollinearity. Such advice might be difficult for beginning

researchers to take, however, if they think that it’s embarrassing to report that

their final regression is one with insignificant t-scores. Compared to the alter-

natives of possible omitted variable bias or accidentally significant regression

results, the low t-scores seem like a minor problem. For an example of “doing

nothing” in the face of severe multicollinearity, see Section 5.

Drop a Redundant Variable

On occasion, the simple solution of dropping one of the multicollinear vari-

ables is a good one. For example, some inexperienced researchers include too

many variables in their regressions, not wanting to face omitted variable bias.

As a result, they often have two or more variables in their equations that are

measuring essentially the same thing. In such a case the multicollinear vari-

ables are not irrelevant, since any one of them is quite probably theoretically

and statistically sound. Instead, the variables might be called redundant;

only one of them is needed to represent the effect on the dependent variable

that all of them currently represent. For example, in an aggregate demand

function, it would not make sense to include disposable income and GDP

because both are measuring the same thing: income. A bit more subtle is the

inference that population and disposable income should not both be in-

cluded in the same aggregate demand function because, once again, they 

really are measuring the same thing: the size of the aggregate market. As pop-

ulation rises, so too will income. Dropping these kinds of redundant multi-

collinear variables is doing nothing more than making up for a specification

error; the variables should never have been included in the first place.

To see how this solution would work, let’s return to the student consump-

tion function example of Equation 10:

(10)

 t 5 0.496  0.453  R2 5 .835

 (1.0307)  (0.0942)

 COi 5 2367.83 1 0.5113Ydi 1  0.0427LAi
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where CO � consumption, Yd � disposable income, and LA � liquid assets.

When we first discussed this example, we compared this result to the same

equation without the liquid assets variable:

(11)

If we had instead dropped the disposable income variable, we would have

obtained:

(17)

Note that dropping one of the multicollinear variables has eliminated both the

multicollinearity between the two explanatory variables and also the low t-score

of the coefficient of the remaining variable. By dropping Yd, we were able to in-

crease tLA from 0.453 to 6.153. Since dropping a variable changes the meaning

of the remaining coefficient (because the dropped variable is no longer being

held constant), such dramatic changes are not unusual. The coefficient of the re-

maining included variable also now measures almost all of the joint impact on

the dependent variable of the multicollinear explanatory variables.

Assuming you want to drop a variable, how do you decide which variable

to drop? In cases of severe multicollinearity, it makes no statistical difference

which variable is dropped. As a result, it doesn’t make sense to pick the vari-

able to be dropped on the basis of which one gives superior fit or which one

is more significant (or has the expected sign) in the original equation. In-

stead, the theoretical underpinnings of the model should be the basis for

such a decision. In the example of the student consumption function, there is

more theoretical support for the hypothesis that disposable income deter-

mines consumption than there is for the liquid assets hypothesis. Therefore,

Equation 11 should be preferred to Equation 17.

Increase the Size of the Sample

Another way to deal with multicollinearity is to attempt to increase the size of

the sample to reduce the degree of multicollinearity. Although such an increase

may be impossible, it’s a useful alternative to be considered when feasible.

The idea behind increasing the size of the sample is that a larger data set

(often requiring new data collection) will allow more accurate estimates than

 t 5 6.153  R2 5 .860

 (0.01443)

 COi 5 2199.44 1 0.08876LAi

 t 5 6.187  R2 5 .861

 (0.157)

 COi 5 2471.43 1 0.9714Ydi
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a small one, since the larger sample normally will reduce the variance of the

estimated coefficients, diminishing the impact of the multicollinearity.

For most time series data sets, however, this solution isn’t feasible. After

all, samples typically are drawn by getting all the available data that seem

similar. As a result, new data are generally impossible or quite expensive to

find. Going out and generating new data is much easier with a cross-sectional

or experimental data set than it is when the observations must be generated

by the passage of time.

An Example of Why Multicollinearity Often 
Is Best Left Unadjusted

Let’s look at an example of the idea that multicollinearity often should be left

unadjusted. Suppose you work in the marketing department of a hypotheti-

cal soft drink company and you build a model of the impact on sales of your

firm’s advertising:

(18)

where: St � sales of the soft drink in year t

Pt � average relative price of the drink in year t

At � advertising expenditures for the company in year t

Bt � advertising expenditures for the company’s main competitor

in year t

Assume that there are no omitted variables. All variables are measured in real

dollars; that is, the nominal values are divided, or deflated, by a price index.

On the face of it, this is a reasonable-looking result. Estimated coefficients

are significant in the directions implied by the underlying theory, and both

the overall fit and the size of the coefficients seem acceptable. Suppose you

now were told that advertising in the soft drink industry is cut-throat in na-

ture and that firms tend to match their main competitor’s advertising expen-

ditures. This would lead you to suspect that significant multicollinearity was

possible. Further suppose that the simple correlation coefficient between the

two advertising variables is .974 and that their respective VIFs are well over 5.

Such a correlation coefficient is evidence that there is severe multi-

collinearity in the equation, but there is no reason even to consider doing

R2 5 .825  N 5 28

 t 5 2 3.00  3.99  2 2.04

 (25,000)  (1.06)  (0.51)

 Ŝt 5 3080 2 75,000Pt 1  4.23At 2  1.04Bt

5
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anything about it, because the coefficients are so powerful that their t-scores

remain significant, even in the face of severe multicollinearity. Unless multi-

collinearity causes problems in the equation, it should be left unadjusted. To

change the specification might give us better-looking results, but the adjust-

ment would decrease our chances of obtaining the best possible estimates of

the true coefficients. Although it’s certainly lucky that there were no major

problems due to multicollinearity in this example, that luck is no reason to

try to fix something that isn’t broken.

When a variable is dropped from an equation, its effect will be absorbed

by the other explanatory variables to the extent that they are correlated with

the newly omitted variable. It’s likely that the remaining multicollinear vari-

able(s) will absorb virtually all the bias, since the variables are highly corre-

lated. This bias may destroy whatever usefulness the estimates had before the

variable was dropped.

For example, if a variable, say B, is dropped from the equation to fix the

multicollinearity, then the following might occur:

(19)

What’s going on here? The company’s advertising coefficient becomes less in-

stead of more significant when one of the multicollinear variables is

dropped. To see why, first note that the expected bias on is negative be-

cause the product of the expected sign of the coefficient of B and of the corre-

lation between A and B is negative:

(20)

Second, this negative bias is strong enough to decrease the estimated coeffi-

cient of A until it is insignificant. Although this problem could have been

avoided by using a relative advertising variable (A divided by B, for instance),

that formulation would have forced identical absolute coefficients on A and

1/B. Such identical coefficients will sometimes be theoretically expected or

empirically reasonable but, in most cases, these kinds of constraints will

force bias onto an equation that previously had none.

This example is simplistic, but its results are typical in cases in which

equations are adjusted for multicollinearity by dropping a variable with-

out regard to the effect that the deletion is going to have. The point here 

Bias 5 �B ? f(rA,B) 5 (2) ? (1) 5 2

�̂A

R2 5 .531  N 5 28

 t 5 2 3.25  0.12

 (24,000)  (4.32)

 Ŝt 5 2586 2 78,000Pt 1  0.52At
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is that it’s quite often theoretically or operationally unwise to drop a vari-

able from an equation and that multicollinearity in such cases is best left 

unadjusted.

Summary

1. Perfect multicollinearity is the violation of the assumption that no ex-

planatory variable is a perfect linear function of other explanatory

variable(s). Perfect multicollinearity results in indeterminate esti-

mates of the regression coefficients and infinite standard errors of

those estimates.

2. Imperfect multicollinearity, which is what is typically meant when the

word “multicollinearity” is used, is a linear relationship between two

or more independent variables that is strong enough to significantly

affect the estimation of that equation. Multicollinearity is a sample

phenomenon as well as a theoretical one. Different samples can ex-

hibit different degrees of multicollinearity.

3. The major consequence of severe multicollinearity is to increase the

variances of the estimated regression coefficients and therefore de-

crease the calculated t-scores of those coefficients. Multicollinearity

causes no bias in the estimated coefficients, and it has little effect on

the overall significance of the regression or on the estimates of the co-

efficients of any nonmulticollinear explanatory variables.

4. Since multicollinearity exists, to one degree or another, in virtually

every data set, the question to be asked in detection is how severe the

multicollinearity in a particular sample is.

5. Two useful methods for the detection of severe multicollinearity are:

a. Are the simple correlation coefficients between the explanatory

variables high?

b. Are the variance inflation factors high?

If either of these answers is yes, then multicollinearity certainly exists,

but multicollinearity can also exist even if the answers are no.

6. The three most common remedies for multicollinearity are:

a. Do nothing (and thus avoid specification bias).

b. Drop a redundant variable.

c. Increase the size of the sample.

6
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7. Quite often, doing nothing is the best remedy for multicollinearity. If

the multicollinearity has not decreased t-scores to the point of in-

significance, then no remedy should even be considered. Even if the 

t-scores are insignificant, remedies should be undertaken cautiously,

because all impose costs on the estimation that may be greater than

the potential benefit of ridding the equation of multicollinearity.

EXERCISES 

(The answer to Exercise 2 appears of the end of the chapter.)

1. Write the meaning of each of the following terms without referring to

the book (or your notes), and then compare your definition with the

version in the text for each:

a. perfect multicollinearity

b. severe imperfect multicollinearity

c. dominant variable

d. auxiliary (or secondary) equation

e. variance inflation factor

f. redundant variable

2. A recent study of the salaries of elementary school teachers in a small

school district in Northern California came up with the following es-

timated equation (note: t-scores in parentheses!):

(21)

where: SALi � the salary of the ith teacher (in dollars)

EMPi � the years that the ith teacher has worked in this

school district

UNITSi � the units of graduate work completed by the ith

teacher

LANGi � a dummy variable equal to 1 if the ith teacher

speaks two languages

EXPi � the total years of teaching experience of the ith

teacher

 R
—

 
2

5 .866  N 5 25

 (20.98)  (2.39)  (2.08)  (4.97)

lnSALi 5 10.5 2  0.006EMPi 1  0.002UNITSi 1  0.079LANGi 1  0.020EXPi
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a. Make up and test appropriate hypotheses for the coefficients of this

equation at the 5-percent level.

b. What is the functional form of this equation? Does it seem appro-

priate? Explain.

c. What econometric problems (out of irrelevant variables, omitted

variables, and multicollinearity) does this equation appear to have?

Explain.

d. Suppose that you now are told that the simple correlation coeffi-

cient between EMP and EXP is .89 and that the VIFs for EMP and

EXP are both just barely over 5. Does this change your answer to

part c above? How?

e. What remedy for the problem you identify in part d do you recom-

mend? Explain.

f. If you drop EMP from the equation, the estimated equation be-

comes Equation 22. Use our four specification criteria to decide

whether you prefer Equation 21 or Equation 22. Which do you like

better? Why?

(22)

3. A researcher once attempted to estimate an asset demand equation

that included the following three explanatory variables: current

wealth Wt, wealth in the previous quarter and the change in

wealth What problem did this researcher en-

counter? What should have been done to solve this problem?

4. In each of the following situations, determine whether the variable in-

volved is a dominant variable:

a. games lost in year t in an equation for the number of games won in

year t by a baseball team that plays the same number of games each

year

b. number of Woody’s restaurants in a model of the total sales of the

entire Woody’s chain of restaurants

c. disposable income in an equation for aggregate consumption ex-

penditures

d. number of tires purchased in an annual model of the number of

automobiles produced by an automaker that does not make its

own tires

e. number of acres planted in an agricultural supply function

�Wt 5 Wt 2 Wt21.

Wt21,

 R
—

 
2

5 .871  N 5 25

   (2.47)   (2.09)   (8.65)

lnSALi 5 10.5 1  0.002UNITSi 1  0.081LANGi 1  0.015EXPi
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5. Beginning researchers quite often believe that they have multi-

collinearity when they’ve accidentally included in their equation two

or more explanatory variables that basically serve the same purpose or

are, in essence, measuring the same thing. Which of the following

pairs of variables are likely to include such a redundant variable?

a. GDP and NDP in a macroeconomic equation of some sort

b. the price of refrigerators and the price of washing machines in a

durable goods demand function

c. the number of acres harvested and the amount of seed used in an

agricultural supply function

d. long-term interest rates and the money supply in an investment

function

6. You’ve been hired by the Dean of Students Office to help reduce dam-

age done to dorms by rowdy students, and your first step is to build a

cross-sectional model of last term’s damage to each dorm as a func-

tion of the attributes of that dorm (standard errors in parentheses):

where: Di � the amount of damage (in dollars) done to the ith

dorm last term

Fi � the percentage of the ith dorm residents who are

frosh

Si � the number of students who live in the ith dorm

Ai � the number of incidents involving alcohol that were

reported to the Dean of Students Office from the ith

dorm last term (incidents involving alcohol may or

may not involve damage to the dorm)

a. Hypothesize signs, calculate t-scores, and test hypotheses for this

result (5-percent level).

b. What problems (omitted variables, irrelevant variables, or multi-

collinearity) appear to exist in this equation? Why?

c. Suppose you were now told that the simple correlation coefficient

between Si and Ai was .94; would that change your answer? How?

d. Is it possible that the unexpected sign of could have been caused

by multicollinearity? Why?

7. Suppose that your friend was modeling the impact of income on con-

sumption in a quarterly model and discovered that income’s impact

�̂s

N 5 33  R2 5 .84

 (253)  (0.752)  (12.4)

D̂i 5 210 1 733Fi 2  0.805Si 1  74.0Ai
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on consumption lasts at least a year. As a result, your friend estimated

the following model:

a. Would this equation be subject to perfect multicollinearity?

b. Would this equation be subject to imperfect multicollinearity?

c. What, if anything, could be done to rid this equation of any mul-

ticollinearity it might have? (One answer to this question, the

autoregressive approach to distributed lags, will be covered in

Chapter 12.)

8. In 1998, Mark McGwire hit 70 homers to break Roger Maris’s old

record of 61, and yet McGwire wasn’t voted the Most Valuable Player

(MVP) in his league. To try to understand how this happened, you

collect the following data on MVP votes, batting average (BA), home

runs (HR), and runs batted in (RBI) from the 1998 National League:

Name Votes (V) BA HR RBI

Sosa 438 .308 66 158

McGwire 272 .299 70 147

Alou 215 .312 38 124

Vaughn 185 .272 50 119

Biggio 163 .325 20 88

Galarraga 147 .305 44 121

Bonds 66 .303 37 122

Jones 56 .313 34 107

Datafile � MVP8

Just as you are about to run the regression, your friend (trying to get

back at you for your comments on Exercise 7) warns you that you

probably have multicollinearity.

a. What should you do about your friend’s warning before running

the regression?

b. Run the regression implied in this example: 

on the data given. What signs of multicollinearity are there?

c. What suggestions would you make for another run of this equa-

tion? In particular, what would you do about multicollinearity?

9. A full-scale regression model for the total annual gross sales in thou-

sands of dollars of J. C. Quarter’s durable goods for the last 26 years

V 5 f(BA
1

, HR
1

, RBI
1

) 1 �

Ct 5 �0 1 �1Ydt 1 �2Ydt21 1 �3Ydt22 1 �4Ydt23 1 �t
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produces the following result (all measurements are in real dollars—

or billions of real dollars; standard errors in parentheses):

where: SQt � sales of durable goods at J. C. Quarter’s in year t

PCt � average price of durables in year t at J. C. Quarter’s

main competition

PQt � the average price of durables at J. C. Quarter’s in 

year t

Yt � U.S. gross domestic product in year t

Ct � U.S. aggregate consumption in year t

Nt � the number of J. C. Quarter’s stores open in year t

a. Hypothesize signs, calculate t-scores, and test hypotheses for this

result (5-percent level).

b. What problems (out of omitted variables, irrelevant variables, and

multicollinearity) appear to exist in this equation? Explain.

c. Suppose you were now told that the was .821, that rY,C was .993,

and that rPC,PQ was .813. Would this change your answer to the

previous question? How?

d. What recommendation would you make for a rerun of this equa-

tion with different explanatory variables? Why?

10. A cross-sectional regression was run on a sample of 44 states in an ef-

fort to understand federal defense spending by state (standard errors

in parentheses):

where: Si � annual spending (millions of dollars) on defense in

the ith state

Ci � contracts (millions of dollars) awarded in the ith state

(contracts are often for many years of service) per year

Pi � annual payroll (millions of dollars) for workers in 

defense-oriented industries in the ith state

Ei � the number of civilians employed in defense-oriented

industries in the ith state

 (0.027)  (0.1664)  (0.0092)

 Ŝi 5 2 148.0 1 0.841Ci 2  0.0115Pi 2  0.0078Ei

R2

 (10.6)  (103.8)

 2 15.8Ct  1  201.1Nt

 (250.1)  (125.6)  (40.1)

 SQt 5 2 7.2 1 200.3PCt 2  150.6PQt 1  20.6Yt
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a. Hypothesize signs, calculate t-scores, and test hypotheses for this

result (5-percent level).

b. The VIFs for this equation are all above 20, and those for P and C are

above 30. What conclusion does this information allow you to draw?

c. What recommendation would you make for a rerun of this equa-

tion with a different specification? Explain your answer.

11. Consider the following regression result paraphrased from a study

conducted by the admissions office at the Stanford Business School

(standard errors in parentheses):

where: Gi � the Stanford Business School GPA of the ith student

(4 � high)

Mi � the score on the graduate management admission

test of the ith student (800 � high)

Bi � the number of years of business experience of the ith

student

Ai � the age of the ith student

Si � dummy equal to 1 if the ith student was an econom-

ics major, 0 otherwise

a. Theorize the expected signs of all the coefficients (try not to look at

the results) and test these expectations with appropriate hypothe-

ses (including choosing a significance level).

b. Do any problems appear to exist in this equation? Explain your

answer.

c. How would you react if someone suggested a polynomial func-

tional form for A? Why?

d. What suggestions (if any) would you have for another run of this

equation?

12. Calculating VIFs typically involves running sets of auxiliary regres-

sions, one regression for each independent variable in an equation.

To get practice with this procedure, calculate the following:

a. the VIFs for N, P, and I from the Woody’s data in Table 1 from

Chapter 3

b. the VIFs for PB, PC, and YD from the chicken demand data in

Table 2 from Chapter 6 (using Equation 8 from Chapter 6)

R2 5 0.20  N 5 1000

 (0.001)  (0.20)  (0.10)  (0.10)

 Ĝi 5 1.00 1 0.005Mi 1  0.20Bi 2  0.10Ai 1  0.25Si
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c. the VIF for X1 in an equation where X1 and X2 are the only inde-

pendent variables, given that the VIF for X2 is 3.8 and N � 28

d. the VIF for X1 in an equation where X1 and X2 are the only inde-

pendent variables, given that the simple correlation coefficient be-

tween X1 and X2 is 0.80 and N � 15

13. Let’s take a look at a classic example, a model of the demand for fish

in the United States from 1946 to 1970. This time period is interest-

ing because it includes the Pope’s 1966 decision to allow Catholics to

eat meat on non-Lent Fridays. Before the Pope’s decision, many

Catholics ate fish on Fridays (when they weren’t allowed to eat meat),

and the purpose of the research is to determine whether the Pope’s

decision decreased the demand for fish or simply changed the days of

the week when fish was eaten.

If you use the data in Table 1, you can estimate the following equa-

tion:

(23)

where: Ft � average pounds of fish consumed per capita in year t

PFt � price index for fish in year t

PBt � price index for beef in year t

Ydt � real per capita disposable income in year t (in billions of

dollars)

Pt � a dummy variable equal to 1 after the Pope’s 1966 decision

and 0 otherwise

a. Create and test appropriate hypotheses about the slope coefficients

of Equation 23 at the 5-percent level.

b. What’s going on here? How is it possible to have a reasonably high

and have t-scores of less than 1 for all the slope coefficients?

c. One possibility is an omitted variable, and a friend suggests adding

a variable (N) that measures the number of Catholics in the United

States in year t. Do you agree with this suggestion? Explain your

reasoning.

d. A second possibility is an irrelevant variable, and another friend

suggests dropping P. Do you agree with this suggestion? Explain

your reasoning.

R2

R2 5 .667  N 5 25

 t 5  0.98   0.24  0.31  2 0.48

   (0.03)  (0.019)  (1.15)  (0.26)

  F̂t 5 7.96 1  0.03PFt 1 0.0047PBt 1  0.36 ln Ydt 2  0.12 Pt
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e. A third possibility is multicollinearity, and the simple correlation

coefficient of .958 between PF and PB certainly is high! Are the two

price variables redundant? Should you drop one? If so, which one?

Explain your reasoning.

f. (optional)  Using the data in Table 1, calculate the VIFs for Equa-

tion 23. Do they support the possibility of multicollinearity? 

Explain.

g. You decide to replace the individual price variables with a relative

price variable:

RPt � PFt/PBt

Table 1 Data for the Fish/Pope Example

Year F PF PB N Yd

1946 12.8 56.0 50.1 24402 1606

1947 12.3 64.3 71.3 25268 1513

1948 13.1 74.1 81.0 26076 1567

1949 12.9 74.5 76.2 26718 1547

1950 13.8 73.1 80.3 27766 1646

1951 13.2 83.4 91.0 28635 1657

1952 13.3 81.3 90.2 29408 1678

1953 13.6 78.2 84.2 30425 1726

1954 13.5 78.7 83.7 31648 1714

1955 12.9 77.1 77.1 32576 1795

1956 12.9 77.0 74.5 33574 1839

1957 12.8 78.0 82.8 34564 1844

1958 13.3 83.4 92.2 36024 1831

1959 13.7 84.9 88.8 39505 1881

1960 13.2 85.0 87.2 40871 1883

1961 13.7 86.9 88.3 42105 1909

1962 13.6 90.5 90.1 42882 1969

1963 13.7 90.3 88.7 43847 2015

1964 13.5 88.2 87.3 44874 2126

1965 13.9 90.8 93.9 45640 2239

1966 13.9 96.7 102.6 46246 2335

1967 13.6 100.0 100.0 46864 2403

1968 14.0 101.6 102.3 47468 2486

1969 14.2 107.2 111.4 47873 2534

1970 14.8 118.0 117.6 47872 2610

Source: Historical Statistics of the U.S., Colonial Times to 1970 (Washington, D.C.: U.S. Bureau

of the Census, 1975).

Datafile � FISH8
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Such a variable would make sense if theory calls for keeping both

prices in the equation and if the two price coefficients are expected

to be close in absolute value with opposite signs. (Opposite ex-

pected signs are required because an increase in PF will increase RP

while an increase in PB will decrease it.) What is the expected sign

of the coefficient of RP?

h. You replace PF and PB with RP and estimate:

(24)

Which equation do you prefer, Equation 23 or Equation 24?  Ex-

plain your reasoning.

i. What’s your conclusion? Did the Pope’s decision reduce the overall

demand for fish?

14. Let’s assume that you were hired by the Department of Agriculture to

do a cross-sectional study of weekly expenditures for food consumed

at home by the ith household (Fi) and that you estimated the follow-

ing equation (standard errors in parentheses):

where: Yi � the weekly disposable income of the ith household

Hi � the number of people in the ith household

Ai � the number of children (under 19) in the ith household

a. Create and test appropriate hypotheses at the 10-percent level.

b. Isn’t the estimated coefficient for Y impossible? (There’s no way that

people can spend twice their income on food.) Explain your answer.

c. Which econometric problems (omitted variables, irrelevant vari-

ables, or multicollinearity) appear to exist in this equation? Ex-

plain your answer.

d. Suppose that you were now told that the VIFs for A and H were both

between 5 and 10. How does this change your answer to part c?

e. Would you suggest changing this specification for one final run of

this equation? How? Why? What are the possible econometric costs

of estimating another specification?

R2 5 .46  N 5 235

 (0.7)  (.05)  (2.0)  (2.0)

 F̂i 5 2 10.50 1 2.1Yi 2  .04Y2
i 1  13.0Hi 2  2.0Ai

R2 5 .588  N 5 25

 t 5 2 1.35  4.13  0.019

 (1.43)  (0.66)  (0.2801)

 F̂t 5 2 5.17 2 1.93RPt 1  2.71 ln Ydt 1  0.0052Pt
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15. Suppose you hear that because of the asymmetry of the human heart,

the heartbeat of any individual is a function of the difference between

the lengths of that individual’s legs rather than of the length of either

leg. You decide to collect data and build a regression model to test

this hypothesis, but you can’t decide which of the following two mod-

els to estimate7:

where: Hi � the heartbeat of the ith cardiac patient

Ri � the length of the ith patient’s right leg

Li � the length of the ith patient’s left leg

a. Model A seems more likely to encounter multicollinearity than

does Model B, at least as measured by the simple correlation coef-

ficient. Why? What remedy for this multicollinearity would you

recommend?

b. Suppose you estimate a set of coefficients for Model A. Can you

calculate estimates of the coefficients of Model B from this infor-

mation? If so, how? If not, why?

c. What does your answer to part b tell you about which of the two

models is more vulnerable to multicollinearity?

d. Suppose you had dropped Li from Model A because of the high

simple correlation coefficient between Li and Ri. What would this

deletion have done to your answers to parts b and c?

Appendix:The SAT Interactive Regression 
Learning Exercise

Econometrics is difficult to learn by reading examples, no matter how good

they are. Most econometricians, the author included, had trouble under-

standing how to use econometrics, particularly in the area of specification

choice, until they ran their own regression projects. This is because there’s an

element of econometric understanding that is better learned by doing than by

reading about what someone else is doing.

Unfortunately, mastering the art of econometrics by running your own re-

gression projects without any feedback is also difficult because it takes quite a

7

Model B: Hi 5 �0 1 �1Ri 1 �2(Li 2 Ri) 1 �i

Model A: Hi 5 �0 1 �1Ri 1 �2Li 1 �i

7. Potluri Rao and Roger Miller, Applied Econometrics (Belmont, CA: Wadsworth, 1971), p. 48.
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while to learn to avoid some fairly simple mistakes. Probably the best way to

learn is to work on your own regression project, analyzing your own prob-

lems and making your own decisions, but with a more experienced econo-

metrician nearby to give you one-on-one feedback on exactly which of your

decisions were inspired and which were flawed (and why).

This section is an attempt to give you an opportunity to make indepen-

dent specification decisions and to then get feedback on the advantages or

disadvantages of those decisions. Using the interactive learning exercise of

this section requires neither a computer nor a tutor, although either would

certainly be useful. Instead, we have designed an exercise that can be used on

its own to help to bridge the gap between the typical econometrics examples

(which require no decision making) and the typical econometrics projects

(which give little feedback).

STOP!

To get the most out of the exercise, it’s important to follow the instructions

carefully. Reading the pages in order as with any other example will waste

your time, because once you have seen even a few of the results, the benefits

to you of making specification decisions will diminish. In addition, you

shouldn’t look at any of the regression results until you have specified your

first equation.

Building a Model of Scholastic Aptitude Test Scores

The dependent variable for this interactive learning exercise is the combined

“two-test” SAT score, math plus verbal, earned by students in the senior class

at Arcadia High School. Arcadia is an upper-middle-class suburban commu-

nity located near Los Angeles, California. Out of a graduating class of about

640, a total of 65 students who had taken the SATs were randomly selected

for inclusion in the data set. In cases in which a student had taken the test

more than once, the highest score was recorded.

A review of the literature on the SAT shows many more psychological stud-

ies and popular press articles than econometric regressions. Many articles

have been authored by critics of the SAT, who maintain (among other things)

that it is biased against women and minorities. In support of this argument,

these critics have pointed to national average scores for women and some

minorities, which in recent years have been significantly lower than the na-

tional averages for white males. Any reader interested in reviewing a portion
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of the applicable literature should do so now before continuing on with the

section.8

If you were going to build a single-equation linear model of SAT scores,

what factors would you consider? First, you’d want to include some measures

of a student’s academic ability. Three such variables are cumulative high

school grade point average (GPA) and participation in advanced placement

math and English courses (APMATH and APENG). Advanced placement (AP)

classes are academically rigorous courses that may help a student do well on

the SAT. More important, students are invited to be in AP classes on the basis

of academic potential, and students who choose to take AP classes are reveal-

ing their interest in academic subjects, both of which bode well for SAT

scores. GPAs at Arcadia High School are weighted GPAs; each semester that a

student takes an AP class adds one extra point to his or her total grade points.

(For example, a semester grade of “A” in an AP math class counts for five

grade points as opposed to the conventional four points.)

A second set of important considerations includes qualitative factors that

may affect performance on the SAT. Available dummy variables in this cate-

gory include measures of a student’s gender (GEND), ethnicity (RACE), and

native language (ESL). All of the students in the sample are either Asian or

Caucasian, and RACE is assigned a value of one if a student is Asian. Asian

students are a substantial proportion of the student body at Arcadia High.

The ESL dummy is given a value of one if English is a student’s second lan-

guage. In addition, studying for the test may be relevant, so a dummy vari-

able indicating whether or not a student has attended an SAT preparation

class (PREP) is also included in the data.

To sum, the explanatory variables available for you to choose for your

model are:

GPAi � the weighted GPA of the ith student

APMATHi � a dummy variable equal to 1 if the ith student has taken AP

math, 0 otherwise

APENGi � a dummy variable equal to 1 if the ith student has taken AP

English, 0 otherwise

APi � a dummy variable equal to 1 if the ith student has taken AP

math and/or AP English, 0 if the ith student has taken neither

ESLi � a dummy variable equal to 1 if English is not the ith student’s

first language, 0 otherwise

8. See, for example, James Fallows, “The Tests and the ‘Brightest’: How Fair Are the College

Boards?” The Atlantic, Vol. 245, No. 2, pp. 37–48. We are grateful to former Occidental student

Bob Sego for his help in preparing this interactive exercise.
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RACEi � a dummy variable equal to 1 if the ith student is Asian, 0 if the

student is Caucasian

GENDi � a dummy variable equal to 1 if the ith student is male, 0 if the

student is female

PREPi � a dummy variable equal to 1 if the ith student has attended a

SAT preparation course, 0 otherwise

The data for these variables are presented in Table 2.

Table 2 Data for the SAT Interactive Learning Exercise

SAT GPA APMATH APENG AP ESL GEND PREP RACE

1060 3.74 0 1 1 0 0 0 0

740 2.71 0 0 0 0 0 1 0

1070 3.92 0 1 1 0 0 1 0

1070 3.43 0 1 1 0 0 1 0

1330 4.35 1 1 1 0 0 1 0

1220 3.02 0 1 1 0 1 1 0

1130 3.98 1 1 1 1 0 1 0

770 2.94 0 0 0 0 0 1 0

1050 3.49 0 1 1 0 0 1 0

1250 3.87 1 1 1 0 1 1 0

1000 3.49 0 0 0 0 0 1 0

1010 3.24 0 1 1 0 0 1 0

1320 4.22 1 1 1 1 1 0 1

1230 3.61 1 1 1 1 1 1 1

840 2.48 1 0 1 1 1 0 1

940 2.26 1 0 1 1 0 0 1

910 2.32 0 0 0 1 1 1 1

1240 3.89 1 1 1 0 1 1 0

1020 3.67 0 0 0 0 1 0 0

630 2.54 0 0 0 0 0 1 0

850 3.16 0 0 0 0 0 1 0

1300 4.16 1 1 1 1 1 1 0

950 2.94 0 0 0 0 1 1 0

1350 3.79 1 1 1 0 1 1 0

1070 2.56 0 0 0 0 1 0 0

1000 3.00 0 0 0 0 1 1 0

770 2.79 0 0 0 0 0 1 0

1280 3.70 1 0 1 1 0 1 1

590 3.23 0 0 0 1 0 1 1

1060 3.98 1 1 1 1 1 0 1

1050 2.64 1 0 1 0 0 0 0

1220 4.15 1 1 1 1 1 1 1

(continued )
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Table 2 (continued)

SAT GPA APMATH APENG AP ESL GEND PREP RACE

930 2.73 0 0 0 0 1 1 0

940 3.10 1 1 1 1 0 0 1

980 2.70 0 0 0 1 1 1 1

1280 3.73 1 1 1 0 1 1 0

700 1.64 0 0 0 1 0 1 1

1040 4.03 1 1 1 1 0 1 1

1070 3.24 0 1 1 0 1 1 0

900 3.42 0 0 0 0 1 1 0

1430 4.29 1 1 1 0 1 0 0

1290 3.33 0 0 0 0 1 0 0

1070 3.61 1 0 1 1 0 1 1

1100 3.58 1 1 1 0 0 1 0

1030 3.52 0 1 1 0 0 1 0

1070 2.94 0 0 0 0 1 1 0

1170 3.98 1 1 1 1 1 1 0

1300 3.89 1 1 1 0 1 0 0

1410 4.34 1 1 1 1 0 1 1

1160 3.43 1 1 1 0 1 1 0

1170 3.56 1 1 1 0 0 0 0

1280 4.11 1 1 1 0 0 1 0

1060 3.58 1 1 1 1 0 1 0

1250 3.47 1 1 1 0 1 1 0

1020 2.92 1 0 1 1 1 1 1

1000 4.05 0 1 1 1 0 0 1

1090 3.24 1 1 1 1 1 1 1

1430 4.38 1 1 1 1 0 0 1

860 2.62 1 0 1 1 0 0 1

1050 2.37 0 0 0 0 1 0 0

920 2.77 0 0 0 0 0 1 0

1100 2.54 0 0 0 0 1 1 0

1160 3.55 1 0 1 1 1 1 1

1360 2.98 0 1 1 1 0 1 0

970 3.64 1 1 1 0 0 1 0

Datafile � SAT8

Now:

1. Hypothesize expected signs for the coefficients of each of these variables

in an equation for the SAT score of the ith student. Examine each vari-

able carefully; what is the theoretical content of your hypothesis?

2. Choose carefully the best set of explanatory variables. Start off by in-

cluding GPA, APMATH, and APENG; what other variables do you think
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should be specified? Don’t simply include all the variables, intending

to drop the insignificant ones. Instead, think through the problem

carefully and find the best possible equation.

Once you’ve specified your equation, you’re ready to move on. Keep follow-

ing the instructions in the exercise until you have specified your equation com-

pletely. You may take some time to think over the questions or take a break,

but when you return to the interactive exercise make sure to go back to the

exact point from which you left rather than starting all over again. To the extent

you can do it, try to avoid looking at the hints until after you’ve completed the

entire project. The hints are there to help you if you get stuck, not to allow you

to check every decision you make.

One final bit of advice: each regression result is accompanied by a series of

questions. Take the time to answer all these questions, in writing if possible.

Rushing through this interactive exercise will lessen its effectiveness.

The SAT Score Interactive Regression Exercise

To start, choose the specification you’d like to estimate, find the regression

run number9 of that specification in the following list, and then turn to that

regression. Note that the simple correlation coefficient matrix for this data set

is in Table 3 just before the results begin.

All the equations include SAT as the dependent variable and GPA,

APMATH, and APENG as explanatory variables. Find the combination of ex-

planatory variables (from ESL, GEND, PREP, and RACE) that you wish to in-

clude and go to the indicated regression:

None of them, go to regression run 1

ESL only, go to regression run 2

GEND only, go to regression run 3

PREP only, go to regression run 4

RACE only, go to regression run 5

ESL and GEND, go to regression run 6

ESL and PREP, go to regression run 7

ESL and RACE, go to regression run 8

GEND and PREP, go to regression run 9

9. All the regression results appear exactly as they are produced by the EViews regression

package. Instructors who would prefer to use results produced by the Stata regression program

can find these results in the Instructor’s Manual on the book’s website at www.pearsonhighered

.com/studenmund.
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GEND and RACE, go to regression run 10

PREP and RACE, go to regression run 11

ESL, GEND, and PREP, go to regression run 12

ESL, GEND, and RACE, go to regression run 13

ESL, PREP, and RACE, go to regression run 14

GEND, PREP, and RACE, go to regression run 15

All four, go to regression run 16

Table 3 Means, Standard Deviations, and Simple Correlation Coefficients

for the SAT Interactive Regression Learning Exercise

Means, Standard Deviations, and Correlations
Sample Range: 1–65

Variable Mean Standard Deviation

SAT 1075.538 191.3605

GPA 3.362308 0.612739

APMATH 0.523077 0.503354

APENG 0.553846 0.500961

AP 0.676923 0.471291

ESL 0.400000 0.493710

GEND 0.492308 0.503831

PREP 0.738462 0.442893

RACE 0.323077 0.471291

Correlation Coeff Correlation Coeff

APMATH,GPA 0.497 GPA,SAT 0.678

APENG,SAT 0.608 APMATH,SAT 0.512

APENG,APMATH 0.444 APENG,GPA 0.709

AP,SAT 0.579 AP,GPA 0.585

AP,APMATH 0.723 AP,APENG 0.769

ESL,GPA 0.071 ESL,SAT 0.024

ESL,APENG 0.037 ESL,APMATH 0.402

GEND,GPA –0.008 ESL,AP 0.295

GEND,APENG –0.044 GEND,SAT 0.293

GEND,ESL –0.050 GEND,APMATH 0.077

PREP,SAT –0.100 GEND,AP –0.109

PREP,APMATH –0.147 PREP,GPA 0.001

PREP,AP –0.111 PREP,APENG 0.029

PREP,GEND –0.044 PREP,ESL –0.085

RACE,SAT –0.085 RACE,GPA –0.025

RACE,APMATH 0.330 RACE,APENG –0.107

RACE,AP 0.195 RACE,ESL 0.846

RACE,GEND –0.022 RACE,PREP –0.187
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Regression Run 1

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 2 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to add ESL to the equation (go to run 2).

iii. I would like to add GEND to the equation (go to run 3).

iv. I would like to add PREP to the equation (go to run 4).

v. I would like to add RACE to the equation (go to run 5).

If you need feedback on your answer, see hint 6 in the material at the end of

this chapter.
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Regression Run 2

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 3 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop ESL from the equation (go to run 1).

iii. I would like to add GEND to the equation (go to run 6).

iv. I would like to add RACE to the equation (go to run 8).

v. I would like to add PREP to the equation (go to run 7).

If you need feedback on your answer, see hint 6 in the material at the end of

this chapter.
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Regression Run 3

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 5 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to add ESL to the equation (go to run 6).

iii. I would like to add PREP to the equation (go to run 9).

iv. I would like to add RACE to the equation (go to run 10).

If you need feedback on your answer, see hint 19 in the material at the end of

this chapter.
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Regression Run 4

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 8 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop PREP from the equation (go to run 1).

iii. I would like to add ESL to the equation (go to run 7).

iv. I would like to add GEND to the equation (go to run 9).

v. I would like to replace APMATH and APENG with AP, a linear

combination of the two variables (go to run 17).

If you need feedback on your answer, see hint 12 in the material at the end of

this chapter.
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Regression Run 5

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 3 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop RACE from the equation (go to run 1).

iii. I would like to add ESL to the equation (go to run 8).

iv. I would like to add GEND to the equation (go to run 10).

v. I would like to add PREP to the equation (go to run 11).

If you need feedback on your answer, see hint 14 in the material at the end of

this chapter.
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Regression Run 6

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 7 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop ESL from the equation (go to run 3).

iii. I would like to add PREP to the equation (go to run 12).

iv. I would like to add RACE to the equation (go to run 13).

If you need feedback on your answer, see hint 4 in the material at the end of

this chapter.
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Regression Run 7

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 8 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop ESL from the equation (go to run 4).

iii. I would like to drop PREP from the equation (go to run 2).

iv. I would like to add GEND to the equation (go to run 12).

v. I would like to add RACE to the equation (go to run 14).

If you need feedback on your answer, see hint 18 in the material at the end of

this chapter.
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Regression Run 8

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 9 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop ESL from the equation (go to run 5).

iii. I would like to drop RACE from the equation (go to run 2).

iv. I would like to add GEND to the equation (go to run 13).

v. I would like to add PREP to the equation (go to run 14).

If you need feedback on your answer, see hint 15 in the material at the end of

this chapter.
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Regression Run 9

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 8 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop PREP from the equation (go to run 3).

iii. I would like to add ESL to the equation (go to run 12).

iv. I would like to add RACE to the equation (go to run 15).

If you need feedback on your answer, see hint 17 in the material at the end of

this chapter.
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Regression Run 10

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 10 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop RACE from the equation (go to run 3).

iii. I would like to add ESL to the equation (go to run 13).

iv. I would like to add PREP to the equation (go to run 15).

If you need feedback on your answer, see hint 4 in the material at the end

of this chapter.
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Regression Run 11

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 8 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop PREP from the equation (go to run 5).

iii. I would like to drop RACE from the equation (go to run 4).

iv. I would like to add GEND to the equation (go to run 15).

v. I would like to replace APMATH and APENG with AP, a linear

combination of the two variables (go to run 18).

If you need feedback on your answer, see hint 18 in the material at the end of

this chapter.
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Regression Run 12

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 8 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop ESL from the equation (go to run 9).

iii. I would like to drop PREP from the equation (go to run 6).

iv. I would like to add RACE to the equation (go to run 16).

If you need feedback on your answer, see hint 17 in the material at the end of

this chapter.

308



MULTICOLLINEARITY

Regression Run 13

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 9 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop ESL from the equation (go to run 10).

iii. I would like to drop RACE from the equation (go to run 6).

iv. I would like to add PREP to the equation (go to run 16).

If you need feedback on your answer, see hint 15 in the material at the end of

this chapter.
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Regression Run 14

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 9 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop ESL from the equation (go to run 11).

iii. I would like to drop PREP from the equation (go to run 8).

iv. I would like to add GEND to the equation (go to run 16).

v. I would like to replace APMATH and APENG with AP, a linear

combination of the two variables (go to run 19).

If you need feedback on your answer, see hint 15 in the material at the end of

this chapter.
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Regression Run 15

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 8 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop PREP from the equation (go to run 10).

iii. I would like to drop RACE from the equation (go to run 9).

iv. I would like to add ESL to the equation (go to run 16).

If you need feedback on your answer, see hint 17 in the material at the end of

this chapter.
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Regression Run 16

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 9 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop ESL from the equation (go to run 15).

iii. I would like to drop PREP from the equation (go to run 13).

iv. I would like to drop RACE from the equation (go to run 12).

If you need feedback on your answer, see hint 15 in the material at the end of

this chapter.

312



MULTICOLLINEARITY

Regression Run 17

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 11 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop PREP from the equation (go to run 20).

iii. I would like to add RACE to the equation (go to run 18).

iv. I would like to replace the AP combination variable with

APMATH and APENG (go to run 4).

If you need feedback on your answer, see hint 16 in the material at the end of

this chapter.
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Regression Run 18

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 11 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop RACE from the equation (go to run 17).

iii. I would like to add ESL to the equation (go to run 19).

iv. I would like to replace the AP combination variable with

APMATH and APENG (go to run 11).

If you need feedback on your answer, see hint 16 in the material at the end of

this chapter.
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Regression Run 19

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 11 in the material at the

end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to drop ESL from the equation (go to run 18).

iii. I would like to replace the AP combination variable with

APMATH and APENG (go to run 14).

If you need feedback on your answer, see hint 16 in the material at the end of

this chapter.
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Regression Run 20

Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall

fit, and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant

variables, or multicollinearity) does this regression have? Why? If

you need feedback on your answer, see hint 13 in the material at

the end of this chapter.

c. Which of the following statements comes closest to your recom-

mendation for further action to be taken in the estimation of this

equation?

i. No further specification changes are advisable (see the end of

the chapter).

ii. I would like to add PREP to the equation (go to run 17).

iii. I would like to replace the AP combination variable with

APMATH and APENG (go to run 1).

If you need feedback on your answer, see hint 13 in the material at the end of

this chapter.
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Evaluating the Results from Your Interactive Exercise

Congratulations! If you’ve reached this section, you must have found a speci-

fication that met your theoretical and econometric goals. Which one did you

pick? Our experience is that most beginning econometricians end up with ei-

ther regression run 3, 6, or 10, but only after looking at three or more regres-

sion results (or a hint or two) before settling on that choice.

In contrast, we’ve found that most experienced econometricians gravitate

to regression run 6, usually after inspecting, at most, one other specification.

What lessons can we learn from this difference?

1. Learn that a variable isn’t irrelevant simply because its t-score is low. In our

opinion, ESL belongs in the equation for strong theoretical reasons,

and a slightly insignificant t-score in the expected direction isn’t

enough evidence to get us to rethink the underlying theory.

2. Learn to spot redundant (multicollinear) variables. ESL and RACE wouldn’t

normally be redundant, but in this high school, with its particular eth-

nic diversity, they are. Once one is included in the equation, the other

shouldn’t even be considered.

3. Learn to spot false variables. At first glance, PREP is a tempting variable to

include because prep courses almost surely improve the SAT scores of the

students who choose to take them. The problem is that a student’s deci-

sion to take a prep course isn’t independent of his or her previous SAT

scores (or expected scores). We trust the judgment of students who feel a

need for a prep course, and we think that all the course will do is bring

them up to the level of their peers who didn’t feel they needed a course.

As a result, we wouldn’t expect a significant effect in either direction.

Answers

Exercise 2

a. EMPi UNITS LANGi EXPi

H0 �1 � 0 �2 � 0 �3 � 0 �4 � 0

HA �1 � 0 �2 � 0 �3 � 0 �4 � 0

tEM � �.098 tU � 2.39 tL � 2.08 tEX � 4.97

tc � 1.725 tc � 1.725 tc � 1.725 tc � 1.725
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For the first last three coefficients, we can reject H0, because the 

absolute value of tk is greater than tc and the sign of tk is that

specified in HA. For EMP, however, we cannot reject H0, because

the sign of the coefficient is unexpected and because the absolute

value of tEM is less than 1.725.

b. The functional form is semilog left (or semilog lnY). Semilog left

is an appropriate functional form for an equation with salary as the

dependent variable, because salaries often increase in percentage

terms when an independent variable (like experience) increases

by one unit.

c. There’s a chance that an omitted variable is pulling down the coeffi-

cient of EMP, but it’s more likely that EMP and EXP are redundant

(because in essence they measure the same thing) and are causing

multicollinearity.

d. This lends support to our opinion that EMPi and EXPi are redundant.

e. If we knew that this particular school district didn’t give credit for

teaching experience elsewhere, then it would make sense to drop

EXP. Without that specific knowledge, however, we’d drop EMP

because EXP includes EMP.

f. Theory: EMP clearly has a theoretically strong impact on salary,

but EMP and EXP are redundant, so we should keep only one.

t-Test: The variable’s estimated coefficient is insignificant in the

unexpected direction.

: The overall fit of the equation (adjusted for degrees of 

freedom) improves when the variable is dropped from the

equation.

Bias: The exercise gives t-scores only, but if you work backward,

you can calculate the SE( )s. If you do this, you’ll find that 

the coefficient of EXP does indeed change by more than a stan-

dard error when EMP is dropped from the equation. This is ex-

actly what you’d expect to happen when a redundant variable is

dropped from an equation; the coefficient of the remaining 

redundant variable will adjust to pick up the effect of both 

variables.

Thus even though it might appear that two of the specifica-

tion criteria support keeping EMP in the equation, in actuality all

four support the conclusion that they’re redundant and that EMP

should be removed. As a result, we have a strong preference for

Equation 22 over Equation 21.

�̂

R2

MULTICOLLINEARITY

318



Hints for the SAT Interactive Regression Learning Exercise

1. Severe multicollinearity between APMATH and APENG is the

only possible problem in this regression. You should switch to

the AP linear combination immediately.

2. An omitted variable is a distinct possibility, but be sure to choose

the one to add on the basis of theory.

3. Either an omitted or irrelevant variable is a possibility. In this

case, theory seems more important than any mild statistical

insignificance.

4. On balance, this is a reasonable regression. We see no reason to

worry about theoretically sound variables that have slightly in-

significant coefficients with expected signs. We’re concerned that

the coefficient of GEND seems larger in absolute size than those

reported in the literature, but none of the specification alterna-

tives seems remotely likely to remedy this problem.

5. An omitted variable is a possibility, but there are no signs of bias

and this is a fairly reasonable equation already.

6. We’d prefer not to add PREP (since many students take prep

courses because they did poorly on their first shots at the SAT) or

RACE (because of its redundancy with ESL and the lack of real di-

versity at Arcadia High). If you make a specification change, be

sure to evaluate the change with our four specification criteria.

7. Either an omitted or irrelevant variable is a possibility, although

GEND seems theoretically and statistically strong.

8. The unexpected sign makes us concerned with the possibility

that an omitted variable is causing bias or that PREP is irrelevant.

If PREP is relevant, what omission could have caused this result?

How strong is the theory behind PREP?

9. This is a case of imperfect multicollinearity. Even though the VIFs

are only between 3.8 and 4.0, the definitions of ESL and RACE

(and the high simple correlation coefficient between them) make

them seem like redundant variables. Remember to use theory

(and not statistical fit) to decide which one to drop.

10. An omitted variable or irrelevant variable is a possibility, but

there are no signs of bias and this is a fairly reasonable equation

already.

11. Despite the switch to the AP linear combination, we still have an

unexpected sign, so we’re still concerned with the possibility that

an omitted variable is causing bias or that PREP is irrelevant. If

PREP is relevant, what omission could have caused this result?

How strong is the theory behind PREP?

MULTICOLLINEARITY
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12. All of the choices would improve this equation except switching

to the AP linear combination. If you make a specification change,

be sure to evaluate the change with our four specification criteria.

13. To get to this result, you had to have made at least three suspect

specification decisions, and you’re running the risk of bias due to a

sequential specification search. Our advice is to stop, take a break,

and then try this interactive exercise again.

14. We’d prefer not to add PREP (since many students take prep

courses because they did poorly on their first shots at the SAT) or

ESL (because of its redundancy with RACE and the lack of real di-

versity at Arcadia High). If you make a specification change, be

sure to evaluate the change with our four specification criteria.

15. Unless you drop one of the redundant variables, you’re going to

continue to have severe multicollinearity.

16. From theory and from the results, it seems as if the decision to

switch to the AP linear combination was a waste of a regression

run. Even if there were severe collinearity between APMATH and

APENG (which there isn’t), the original coefficients are significant

enough in the expected direction to suggest taking no action to

offset any multicollinearity.

17. On reflection, PREP probably should not have been chosen in the

first place. Many students take prep courses only because they

did poorly on their first shots at the SAT or because they antici-

pate doing poorly. Thus, even if the PREP courses improve SAT

scores, which they probably do, the students who think they

need to take them were otherwise going to score worse than their

colleagues (holding the other variables in the equation con-

stant). The two effects seem likely to offset each other, making

PREP an irrelevant variable. If you make a specification change,

be sure to evaluate the change with our four specification criteria.

18. Either adding GEND or dropping PREP would be a good choice,

and it’s hard to choose between the two. If you make a specifica-

tion change, be sure to evaluate the change with our four specifi-

cation criteria.

19. On balance, this is a reasonable regression. We’d prefer not to add

PREP (since many students take prep courses because they did

poorly on their first shots at the SAT), but the theoretical case for

ESL (or RACE) seems strong. We’re concerned that the coefficient of

GEND seems larger in absolute size than those reported in the liter-

ature, but none of the specification alternatives seems remotely

likely to remedy this problem. If you make a specification change,

be sure to evaluate the change with our four specification criteria.

MULTICOLLINEARITY
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From Chapter 9 of Using Econometrics: A Practical Guide, 6/e. A. H. Studenmund. Copyright © 2011

by Pearson Education. Published by Addison-Wesley. All rights reserved.

Serial Correlation
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2 The Consequences of Serial Correlation

3 The Durbin–Watson d Test

4 Remedies for Serial Correlation

5 Summary and Exercises

Serial Correlation

We’ll investigate the final component of the specification of a regression

equation—choosing the correct form of the stochastic error term. Our first

topic, serial correlation, is the violation of Classical Assumption IV that dif-

ferent observations of the error term are uncorrelated with each other. Serial

correlation, also called autocorrelation, can exist in any research study in

which the order of the observations has some meaning. It therefore occurs

most frequently in time-series data sets. In essence, serial correlation implies

that the value of the error term from one time period depends in some sys-

tematic way on the value of the error term in other time periods. Since time-

series data are used in many applications of econometrics, it’s important to

understand serial correlation and its consequences for OLS estimators.

The approach of this chapter to the problem of serial correlation will be

presented here. We’ll attempt to answer the four questions:

1. What is the nature of the problem?

2. What are the consequences of the problem?

3. How is the problem diagnosed?

4. What remedies for the problem are available?
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Pure versus Impure Serial Correlation

Pure Serial Correlation

Pure serial correlation occurs when Classical Assumption IV, which assumes

uncorrelated observations of the error term, is violated in a correctly specified

equation. Assumption IV implies that:

If the expected value of the simple correlation coefficient between any two

observations of the error term is not equal to zero, then the error term is said

to be serially correlated. When econometricians use the term serial correla-

tion without any modifier, they are referring to pure serial correlation.

The most commonly assumed kind of serial correlation is first-order serial

correlation, in which the current value of the error term is a function of the

previous value of the error term:

E(r�i�j
) 5 0  (i 2 j)

1

SERIAL CORRELATION

(1)�t 5 ��t21 1 ut

where: � the error term of the equation in question

� the first-order autocorrelation coefficient

u � a classical (not serially correlated) error term

The functional form in Equation 1 is called a first-order Markov scheme. The

new symbol, (rho, pronounced “row”), called the first-order auto-

correlation coefficient, measures the functional relationship between the

value of an observation of the error term and the value of the previous obser-

vation of the error term.

The magnitude of indicates the strength of the serial correlation in an

equation. If is zero, then there is no serial correlation (because would

equal u, a classical error term). As approaches one in absolute value, the

value of the previous observation of the error term becomes more important

in determining the current value of and a high degree of serial correlation

exists. For to be greater than one in absolute value is unreasonable because

it implies that the error term has a tendency to continually increase in ab-

solute value over time (“explode”). As a result of this, we can state that:

�
�t,

�
��

�

�

�
�

(2)2 1 , � , 1 1
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SERIAL CORRELATION

The sign of indicates the nature of the serial correlation in an equation. A

positive value for implies that the error term tends to have the same sign

from one time period to the next; this is called positive serial correlation.

Such a tendency means that if happens by chance to take on a large value

in one time period, subsequent observations would tend to retain a portion

of this original large value and would have the same sign as the original. For

example, in time-series models, a large external shock to an economy (like an

earthquake) in one period may linger on for several time periods. The error

term will tend to be positive for a number of observations, then negative for

several more, and then back again.

Figure 1 shows two different examples of positive serial correlation. The

error term observations plotted in Figure 1 are arranged in chronological

order, with the first observation being the first period for which data are

available, the second being the second, and so on. To see the difference be-

tween error terms with and without positive serial correlation, compare 

the patterns in Figure 1 with the depiction of no serial correlation in

Figure 2.

A negative value of implies that the error term has a tendency to switch

signs from negative to positive and back again in consecutive observations;

this is called negative serial correlation. It implies that there is some sort

of cycle (like a pendulum) behind the drawing of stochastic disturbances.

Figure 3 shows two different examples of negative serial correlation. For in-

stance, negative serial correlation might exist in the error term of an equa-

tion that is in first differences because changes in a variable often follow a

cyclical pattern. In most time-series applications, however, negative pure se-

rial correlation is much less likely than positive pure serial correlation. As a

result, most econometricians analyzing pure serial correlation concern

themselves primarily with positive serial correlation.

Serial correlation can take on many forms other than first-order serial cor-

relation. For example, in a quarterly model, the current quarter’s error term

observation may be functionally related to the observation of the error term

from the same quarter in the previous year. This is called seasonally based se-

rial correlation:

Similarly, it is possible that the error term in an equation might be a function

of more than one previous observation of the error term:

Such a formulation is called second-order serial correlation. 

�t 5 �1�t21 1 �2�t22 1 ut

�t 5 ��t24 1 ut

�

(� 5 0)

�t

�
�
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SERIAL CORRELATION

Impure Serial Correlation

By impure serial correlation we mean serial correlation that is caused by a

specification error such as an omitted variable or an incorrect functional

form. While pure serial correlation is caused by the underlying distribution

of the error term of the true specification of an equation (which cannot be

�

�

0 Time

 �

�

�

0 Time

 �

Figure 1 Positive Serial Correlation

With positive first-order serial correlation, the current observation of the error term

tends to have the same sign as the previous observation of the error term. An example

of positive serial correlation would be external shocks to an economy that take more

than one time period to completely work through the system.
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�

�

0 Time

�

Figure 2 No Serial Correlation

With no serial correlation, different observations of the error term are completely 

uncorrelated with each other. Such error terms would conform to Classical 

Assumption IV.

changed by the researcher), impure serial correlation is caused by a specifica-

tion error that often can be corrected.

How is it possible for a specification error to cause serial correlation? Recall

that the error term can be thought of as the effect of omitted variables, non-

linearities, measurement errors, and pure stochastic disturbances on the de-

pendent variable. This means, for example, that if we omit a relevant variable

or use the wrong functional form, then the portion of that omitted effect that

cannot be represented by the included explanatory variables must be ab-

sorbed by the error term. The error term for an incorrectly specified equation

thus includes a portion of the effect of any omitted variables and/or a portion

of the effect of the difference between the proper functional form and the one

chosen by the researcher. This new error term might be serially correlated even

if the true one is not. If this is the case, the serial correlation has been caused

by the researcher’s choice of a specification and not by the pure error term as-

sociated with the correct specification.

As you’ll see in Section 4, the proper remedy for serial correlation 

depends on whether the serial correlation is likely to be pure or impure. Not

surprisingly, the best remedy for impure serial correlation is to attempt to find

the omitted variable (or at least a good proxy) or the correct functional form

for the equation. Both the bias and the impure serial correlation will disap-

pear if the specification error is corrected. As a result, most econometricians
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SERIAL CORRELATION

try to make sure they have the best specification possible before they spend

too much time worrying about pure serial correlation.

To see how an omitted variable can cause the error term to be serially cor-

related, suppose that the true equation is:

(3)Yt 5 �0 1 �1X1t 1 �2X2t 1 �t

�

�

0 Time

 �

�

�

0 Time

 �

Figure 3 Negative Serial Correlation

With negative first-order serial correlation, the current observation of the error term

tends to have the opposite sign from the previous observation of the error term. In

most time-series applications, negative serial correlation is much less likely than posi-

tive serial correlation.
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where is a classical error term. If X2 is accidentally omitted from the equa-

tion (or if data for X2 are unavailable), then:

(4)

Thus, the error term in the omitted variable case is not the classical error

term Instead, it’s also a function of one of the independent variables, X2.

As a result, the new error term, , can be serially correlated even if the true

error term is not. In particular, the new error term will tend to be serially

correlated when:

1. X2 itself is serially correlated (this is quite likely in a time series) and

2. the size of is small compared to the size1 of 

These tendencies hold even if there are a number of included and/or omitted

variables.

For example, suppose that X2 in Equation 3 is disposable income (Yd).

What would happen to this equation if Yd were omitted?

The most obvious effect would be that the estimated coefficient of X2

would be biased, depending on the correlation of X2 with Yd. A secondary ef-

fect would be that the error term would now include a large portion of the

omitted effect of disposable income. That is, would be a function of

It’s reasonable to expect that disposable income might follow a

fairly serially correlated pattern:

(5)

Why is this likely? Observe Figure 4, which plots U.S. disposable income over

time. Note that the continual rise of disposable income over time makes it

act in a serially correlated or autoregressive manner. But if disposable income

is serially correlated (and if its impact is not small relative to ), then is

likely to also be serially correlated, which can be expressed as:

(6)�t* 5 ��t*21 1 ut

�*�

Ydt 5 f(Ydt21) 1 ut

�t 1 �2 Ydt.

�t*

�2X2.�

�*�,

�*

�.

Yt 5 �0 1 �1X1t 1 �t*  where �t* 5 �2X2t 1 �t

�t

1. If typical values of are significantly larger in absolute size than then even a serially

correlated omitted variable (X2) will not change very much. In addition, recall that the omit-

ted variable, X2, will cause bias in the estimate of depending on the correlation between the

two Xs. If is biased because of the omission of X2, then a portion of the effect must

have been absorbed by and will not end up in the residuals. As a result, tests for serial corre-

lation based on those residuals may give incorrect readings. Just as important, such residuals

may leave misleading clues as to possible specification errors. This is only one of many reasons

why an analysis of the residuals should not be the only procedure used to determine the nature

of possible specification errors.

�̂1

�2X2�̂1

�1,

�*

�2X2,�
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SERIAL CORRELATION

where is the autocorrelation coefficient and u is a classical error term. This

example has shown that it is indeed possible for an omitted variable to intro-

duce “impure” serial correlation into an equation.

Another common kind of impure serial correlation is that caused by an in-

correct functional form. Here, the choice of the wrong functional form can

cause the error term to be serially correlated. Let’s suppose that the true equa-

tion is polynomial in nature:

(7)

but that instead a linear regression is run:

(8)

The new error term is now a function of the true error term and of the dif-

ferences between the linear and the polynomial functional forms. As can be

seen in Figure 5, these differences often follow fairly autoregressive patterns.

That is, positive differences tend to be followed by positive differences, and

negative differences tend to be followed by negative differences. As a result,

using a linear functional form when a nonlinear one is appropriate will

usually result in positive impure serial correlation. 

��*

Yt 5 �0 1 �1X1t 1 �t*

Yt 5 �0 1 �X1t 1 �2X2
1t 1 �t

�

0

Yd

Time

Figure 4 U.S. Disposable Income as a Function of Time

U.S. disposable income (and most other national aggregates) tends to increase steadily

over time. As a result, such variables are serially correlated (or autocorrelated), and the

omission of such a variable from an equation could potentially introduce impure serial

correlation into the error term of that equation.
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The Consequences of Serial Correlation

The consequences of serial correlation are quite different in nature from the

consequences of the problems discussed so far in this text. Omitted variables,

irrelevant variables, and multicollinearity all have fairly recognizable external

symptoms. Each problem changes the estimated coefficients and standard

2

0

Y

X1

Y = �0 + �1X1

0�

�

�

X1

Figure 5 Incorrect Functional Form as a Source of Impure 

Serial Correlation

The use of an incorrect functional form tends to group positive and negative residuals

together, causing positive impure serial correlation.
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errors in a particular way, and an examination of these changes (and the un-

derlying theory) often provides enough information for the problem to be

detected. As we shall see, serial correlation is more likely to have internal

symptoms; it affects the estimated equation in a way that is not easily observ-

able from an examination of just the results themselves.

The existence of serial correlation in the error term of an equation violates

Classical Assumption IV, and the estimation of the equation with OLS has at

least three consequences:2

2. If the regression includes a lagged dependent variable as an independent variable, then the

problems worsen significantly.

1. Pure serial correlation does not cause bias in the coefficient

estimates.

2. Serial correlation causes OLS to no longer be the minimum variance

estimator (of all the linear unbiased estimators).

3. Serial correlation causes the OLS estimates of the SE to be 

biased, leading to unreliable hypothesis testing.

(�̂)s

1. Pure serial correlation does not cause bias in the coefficient estimates. If the

error term is serially correlated, one of the assumptions of the Gauss–

Markov Theorem is violated, but this violation does not cause the coeffi-

cient estimates to be biased. If the serial correlation is impure, however,

bias may be introduced by the use of an incorrect specification.

This lack of bias does not necessarily mean that the OLS estimates

of the coefficients of a serially correlated equation will be close to the

true coefficient values; the single estimate observed in practice can

come from a wide range of possible values. In addition, the standard

errors of these estimates will typically be increased by the serial correla-

tion. This increase will raise the probability that a will differ signifi-

cantly from the true value. What unbiased means in this case is that

the distribution of the is still centered around the true 

2. Serial correlation causes OLS to no longer be the minimum variance estimator

(of all the linear unbiased estimators). Although the violation of Classical

Assumption IV causes no bias, it does affect the other main conclusion of

the Gauss–Markov Theorem, that of minimum variance. In particular, we

�.�̂s

�
�̂

331



SERIAL CORRELATION

cannot prove that the distribution of the OLS is minimum variance

(among the linear unbiased estimators) when Assumption IV is violated. 

The serially correlated error term causes the dependent variable to

fluctuate in a way that the OLS estimation procedure sometimes attrib-

utes to the independent variables. Thus, OLS is more likely to misesti-

mate the true in the face of serial correlation. On balance, the are

still unbiased because overestimates are just as likely as underestimates,

but these errors increase the variance of the distribution of the esti-

mates, increasing the amount that any given estimate is likely to differ

from the true 

3. Serial correlation causes the OLS estimates of the SE( )s to be biased, leading

to unreliable hypothesis testing. With serial correlation, the OLS formula

for the standard error produces biased estimates of the SE( )s. Because

the SE( ) is a prime component in the t-statistic, these biased SE( )s

cause biased t-scores and unreliable hypothesis testing in general. In

essence, serial correlation causes OLS to produce incorrect SE( )s and 

t-scores! Not surprisingly, most econometricians therefore are very hesi-

tant to put much faith in hypothesis tests that were conducted in the

face of pure serial correlation.3

What sort of bias does serial correlation tend to cause? Typically, the

bias in the estimate of SE( ) is negative, meaning that OLS underesti-

mates the size of the standard errors of the coefficients. This comes

about because serial correlation usually results in a pattern of observa-

tions that allows a better fit than the actual (not serially correlated)

observations would otherwise justify. This tendency of OLS to underes-

timate the SE( ) means that OLS typically overestimates the t-scores of

the estimated coefficients, since:

(9)

Thus the t-scores printed out by a typical software regression package in

the face of serial correlation are likely to be too high.

What will happen to hypothesis testing if OLS underestimates the 

SE( )s and therefore overestimates the t-scores? Well, the “too low” SE( ) �̂�̂

t 5
A�̂ 2 �H0

B

SEA�̂B

�̂

�̂

�̂

�̂�̂
�̂

�̂

�.

�̂s�

�̂s

3. While our discussion here involves the t-test, the same conclusion of unreliability in the face

of serial correlation applies to all other test statistics.
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will cause a “too high” t-score for a particular coefficient, and this will make

it more likely that we will reject a null hypothesis (for example H0: )

when it is in fact true. This increased chance of rejecting H0 means that we’re

more likely to make a Type I Error, and we’re more likely to make the mistake

of keeping an irrelevant variable in an equation because its coefficient’s t-

score has been overestimated. In other words, hypothesis testing becomes

both biased and unreliable when we have pure serial correlation.

The Durbin–Watson d Test

How can we detect serial correlation? While the first step in detecting serial

correlation often is observing a pattern in the residuals like that in Figure 1,

the test for serial correlation that is most widely used is the Durbin–Watson 

d test.

The Durbin–Watson d Statistic

The Durbin–Watson d statistic is used to determine if there is first-order

serial correlation in the error term of an equation by examining the

residuals of a particular estimation of that equation.4 It’s important to use

the Durbin–Watson d statistic only when the assumptions that underlie its

derivation are met:

1. The regression model includes an intercept term.

2. The serial correlation is first-order in nature:

where is the autocorrelation coefficient and u is a classical (normally

distributed) error term.

3. The regression model does not include a lagged dependent variable 

as an independent variable.5

�

�t 5 ��t21 1 ut

3

� # 0

4. J. Durbin and G. S. Watson, “Testing for Serial Correlation in Least-Squared Regression,”

Biometrika, 1951, pp. 159–177. The second most-used test, the Lagrange Multiplier test, is 

presented.

5. In such a circumstance, the Durbin–Watson d is biased toward 2, but other tests can be used

instead.
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The equation for the Durbin–Watson d statistic for T observations is:

(10)

where the ets are the OLS residuals. Note that the numerator has one fewer

observation than the denominator because an observation must be used to

calculate The Durbin–Watson d statistic equals 0 if there is extreme pos-

itive serial correlation, 2 if there is no serial correlation, and 4 if there is ex-

treme negative serial correlation. To see this, let’s put appropriate residual

values into Equation 10 for these three cases:

1. Extreme Positive Serial Correlation: d � 0

In this case, 

2. Extreme Negative Serial Correlation: 

In this case, Substituting into

Equation 10, we obtain and 

3. No Serial Correlation: 

When there is no serial correlation, the mean of the distribution of d

is equal to 2.6 That is, if there is no serial correlation, 

Using the Durbin–Watson d Test

The Durbin–Watson d test is unusual in two respects. First, econometricians

almost never test the one-sided null hypothesis that there is negative serial

correlation in the residuals because negative serial correlation, as mentioned

previously, is quite difficult to explain theoretically in economic or business

analysis. Its existence usually means that impure serial correlation has been

caused by some error of specification.

Second, the Durbin–Watson test is sometimes inconclusive. Whereas pre-

viously explained decision rules always have had only “acceptance” regions

and rejection regions, the Durbin–Watson test has a third possibility, called

d < 2.

d < 2

d < 4.d 5 g (2et)
2>g (et)

2
et 5 2et21, and (et 2 et21) 5 (2et).

d < 4

et 5 et21, so (et 2 et21) 5 0 and d 5 0.

et21.

d 5 g
T

2
 (et 2 et21)2^g

T

1
 e2

t

6. To see this, multiply out the numerator of Equation 10, obtaining

(11)

If there is no serial correlation, then and are not related, and, on average, g (etet21) 5 0.et21et

d 5 cg
T

2
e2

t 2 2g
T

2
(etet21) 1 g

T

2
e2

t21 d ^g
T

1
e2

t < cg
T

2
e2

t 1 g
T

2
e2

t21 d ^g
T

1
e2

t < 2
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the inconclusive region.7 For reasons outlined in Section 4, we do not recom-

mend the application of a remedy for serial correlation if the Durbin–

Watson test is inconclusive.

With these exceptions, the use of the Durbin–Watson d test is quite similar

to the use of the t-test. To test for positive serial correlation, the following

steps are required:

1. Obtain the OLS residuals from the equation to be tested and calculate

the d statistic by using Equation 10.

2. Determine the sample size and the number of explanatory variables and

then consult Statistical Tables B-4, B-5, or B-6 in Appendix B to find the

upper critical d value, dU, and the lower critical d value, dL, respectively.

Instructions for the use of these tables are also in that appendix.

3. Given the null hypothesis of no positive serial correlation and a one-

sided alternative hypothesis:

(12)

the appropriate decision rule is:

In rare circumstances, perhaps first differenced equations, a two-sided d

test might be appropriate. In such a case, steps 1 and 2 are still used,

but step 3 is now:

Given the null hypothesis of no serial correlation and a two-sided alter-

native hypothesis:

(13)

HA : � 2 0   (serial correlation)

H0 : � 5 0   (no serial correlation)

 if dL # d # dU   Inconclusive

 if d . dU   Do not reject H0

 if d , dL   Reject H0

HA : � . 0   (positive serial correlation)

H0 : � # 0   (no positive serial correlation)

7. This inconclusive region is troubling, but the development of exact Durbin–Watson tests

may eliminate this problem in the near future. Some computer programs allow the user the op-

tion of calculating an exact Durbin–Watson probability (of first-order serial correlation). Alter-

natively, it’s worth noting that there is a growing trend toward the use of dU as a sole critical

value. This trend runs counter to our view that if the Durbin–Watson test is inconclusive, then no

remedial action should be taken except to search for a possible cause of impure serial correlation.
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the appropriate decision rule is:

Examples of the Use of the Durbin–Watson d Statistic

Let’s work through some applications of the Durbin–Watson test. First, turn

to Statistical Tables B-4, B-5, and B-6. Note that the upper and lower critical

d values (dU and dL) depend on the number of explanatory variables (do

not count the constant term), the sample size, and the level of significance

of the test.

Now let’s set up a one-sided 5-percent test for a regression with three ex-

planatory variables and 25 observations. As can be seen from the 5-percent

table (B-4), the critical d values are dL � 1.12 and dU � 1.66. As a result, if

the hypotheses are:

(14)

the appropriate decision rule is:

A computed d statistic of 1.78, for example, would indicate that there is no

evidence of positive serial correlation, a value of 1.28 would be inconclusive,

and a value of 0.60 would imply positive serial correlation. Figure 6 

provides a graph of the “acceptance,” rejection, and inconclusive regions for

this example.

For a more familiar example, we return to the chicken demand model of

Equation 6.8. As can be confirmed with the data provided in Table 6.2, the

Durbin–Watson statistic from Equation 6.8 is 0.99. Is that cause to be con-

cerned about serial correlation? What would be the result of a one-sided 

5-percent test of the null hypothesis of no positive serial correlation? Our first

step would be to consult Statistical Table B-4. In that table, with K (the num-

ber of explanatory variables) equal to 3 and N (the number of observations)

equal to 29, we would find the critical d values dL � 1.20 and dU � 1.65.

if 1.12 # d # 1.66  Inconclusive

 if d . 1.66  Do not reject H0

 if d , 1.12  Reject H0

 HA: � . 0  (positive serial correlation)

 H0: � # 0  (no positive serial correlation)

 otherwise  Inconclusive

 if 4 2 dU . d . dU  Do not reject H0

 if d . 4 2 dL  Reject H0

 if d , dL  Reject H0

336



SERIAL CORRELATION

The decision rule would thus be:

Since 0.99 is less than the critical lower limit of the d statistic, we would reject

the null hypothesis of no positive serial correlation, and we would have to

decide how to cope with that serial correlation.

Remedies for Serial Correlation

Suppose that the Durbin–Watson d statistic detects serial correlation in the

residuals of your equation. Is there a remedy? Some students suggest reordering

the observations of Y and the Xs to avoid serial correlation. They think that if

this time’s error term appears to be affected by last time’s error term, why not 

reorder the data randomly to get rid of the problem? The answer is that the 

reordering of the data does not get rid of the serial correlation; it just makes the

problem harder to detect. If and we reorder the data, then the error

term observations are still related to each other, but they now no longer follow

each other, and it becomes almost impossible to discover the serial correlation.

�2 5 f(�1)

4

 if 1.20 # d # 1.65  Inconclusive

 if d . 1.65  Do not reject H0

 if d , 1.20  Reject H0

0 20.60

= 1.66
= 1.12

dU

dL 1.28 1.78
4

Inconclusive Region
dL < d < dU

Rejection Region
d < dL

“Acceptance” Region
dU < d

Positive Serial
Correlation

No Positive Serial
Correlation

Figure 6 An Example of a One-Sided Durbin–Watson d Test

In a one-sided Durbin–Watson test for positive serial correlation, only values of d sig-

nificantly below 2 cause the null hypothesis of no positive serial correlation to be re-

jected. In this example, a d of 1.78 would indicate no positive serial correlation, a d of

0.60 would indicate positive serial correlation, and a d of 1.28 would be inconclusive.
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Interestingly, reordering the data changes the Durbin–Watson d statistic but

does not change the estimates of the coefficients or their standard errors at all.8

The place to start in correcting a serial correlation problem is to look

carefully at the specification of the equation for possible errors that

might be causing impure serial correlation. Is the functional form cor-

rect? Are you sure that there are no omitted variables? Only after the

specification of the equation has been reviewed carefully should the

possibility of an adjustment for pure serial correlation be considered.

It’s worth noting that if an omitted variable increases or decreases over

time, as is often the case, or if the data set is logically reordered (say, accord-

ing to the magnitude of one of the variables), then the Durbin–Watson statis-

tic can help detect impure serial correlation. A significant Durbin–Watson

statistic can easily be caused by an omitted variable or an incorrect functional

form. In such circumstances, the Durbin–Watson test does not distinguish

between pure and impure serial correlation, but the detection of negative 

serial correlation is often a strong hint that the serial correlation is impure. 

If you conclude that you have pure serial correlation, then the appropriate

response is to consider the application of Generalized Least Squares or

Newey–West standard errors, as described in the following sections.

Generalized Least Squares

Generalized least squares (GLS) is a method of ridding an equation of pure

first-order serial correlation and in the process restoring the minimum vari-

ance property to its estimation. GLS starts with an equation that does not

meet the Classical Assumptions (due in this case to the pure serial correlation

in the error term) and transforms it into one (Equation 19) that does meet

those assumptions.

At this point, you could skip directly to Equation 19, but it’s easier to un-

derstand the GLS estimator if you examine the transformation from which it

comes. Start with an equation that has first-order serial correlation:

(15)Yt 5 �0 1 �1X1t 1 �t

8. This can be proven mathematically, but it is usually more instructive to estimate a regression

yourself, change the order of the observations, and then reestimate the regression. See Exercise 3

at the end of the chapter.
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which, if (due to pure serial correlation), also equals:

(16)

where is the serially correlated error term, is the autocorrelation coeffi-

cient, and u is a classical (not serially correlated) error term.

If we could get the term out of Equation 16, the serial correlation

would be gone, because the remaining portion of the error term (ut) has no

serial correlation in it. To rid from Equation 16, multiply Equation 15 by

and then lag the new equation by one time period, obtaining

(17)

Notice that we now have an equation with a term in it. If we now sub-

tract Equation 17 from Equation 16, the equivalent equation that 

remains no longer contains the serially correlated component of the error

term:

(18)

Equation 18 can be rewritten as:

(19)

where: (20)

Equation 19 is called a Generalized Least Squares (or “quasi-differenced”)

version of Equation 16. Notice that:

1. The error term is not serially correlated. As a result, OLS estimation of

Equation 19 will be minimum variance. (This is true if we know or if

we accurately estimate )

2. The slope coefficient is the same as the slope coefficient of the orig-

inal serially correlated equation, Equation 16. Thus coefficients esti-

mated with GLS have the same meaning as those estimated with OLS.

3. The dependent variable has changed compared to that in Equation 16.

This means that the GLS is not directly comparable to the OLS 

4. To forecast with GLS, adjustments like those discussed in Section 2

from Chapter 15 are required.

R2.R2

�1

�.

�

�0*  
5 �0 2 ��0

X1*t 5 X1t 2 �X1t21

Yt* 
5 Yt 2 �Yt21

Yt* 5 �0* 1 �1X1*t 1 ut

Yt 2 �Yt21 5 �0(1 2 �) 1 �1(X1t 2 �X1t21) 1 ut

��t21

�Yt21 5 ��0 1 ��1X1t21 1 ��t21

�
��t21

��t21

��

Yt 5 �0 1 �1X1t 1 ��t21 1 ut

�t 5 ��t21 1 ut
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Unfortunately we can’t use OLS to estimate a Generalized Least Squares

model because GLS equations are inherently nonlinear in the coefficients. To see

why, take a look at Equation 18. We need to estimate values not only for and

but also for and is multiplied by and (which you can see if you

multiply out the right-hand side of the equation). Since OLS requires that the

equation be linear in the coefficients, we need a different estimation procedure.

Luckily, there are a number of techniques that can be used to estimate GLS

equations. Perhaps the best known of these is the Cochrane–Orcutt method,

a two-step iterative technique9 that first produces an estimate of and then

estimates the GLS equation using that . The two steps are:

1. Estimate by running a regression based on the residuals of the equa-

tion suspected of having serial correlation:

(21)

where the ets are the OLS residuals from the equation suspected of

having pure serial correlation and ut is a classical error term.

2. Use this to estimate the GLS equation by substituting into Equation 18

and using OLS to estimate Equation 18 with the adjusted data.

These two steps are repeated (iterated) until further iteration results in little

change in . Once has converged (usually in just a few iterations), the last

estimate of step 2 is used as a final estimate of Equation 18.

As popular as Cochrane–Orcutt is, we suggest a different method, the

AR(1) method, for GLS models. The AR(1) method estimates a GLS equa-

tion like Equation 18 by estimating and simultaneously with itera-

tive nonlinear regression techniques that are well beyond the scope of this

chapter.10 The AR(1) method tends to produce the same coefficient estimates

as Cochrane–Orcutt but with superior estimates of the standard errors, so we

recommend the AR(1) approach as long as your software can support such

nonlinear regression.

Let’s apply Generalized Least Squares, using the AR(1) estimation method, to

the chicken demand example that was found to have positive serial correlation

��0, �1,

�̂�̂

�̂�̂

et 5 �et21 1 ut

�

�̂

�

�1�0��,�1

�0

9. D. Cochrane and G. H. Orcutt, “Application of Least Squares Regression to Relationships

Containing Autocorrelated Error Terms,” Journal of the American Statistical Association, 1949,

pp. 32–61.

10. To run GLS with EViews, simply add “AR(1)” to the equation as if it were an independent

variable. The resulting equation is a GLS estimate where will appear as the estimated coeffi-

cient of the variable AR(1). To run GLS with Stata, click on “linear regression with AR(1) distur-

bance” in the appropriate drop-down window.

�̂
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in the previous section. Recall that we estimated the per capita demand for

chicken as a function of the price of chicken, the price of beef, and disposable

income:

(6.8)

(0.03) (0.02) (0.01)

t � �3.38 � 1.86 � 15.7

DW d � 0.99

Note that we have added the Durbin–Watson d statistic to the documenta-

tion with the notation DW. All future time-series results will include the DW

statistic, but cross-sectional documentation of the DW is not required unless

the observations are ordered in some meaningful manner (like smallest to

largest or youngest to oldest).

If we reestimate Equation 6.8 with the AR(1) approach to GLS, we obtain:

(22)

Let’s compare Equations 6.8 and 22. Note that the used in Equation 22 is

0.56. This means that Y was actually run as PC as

etc. Second, replaces DW in the documentation

of GLS estimates in part because the DW of Equation 22 isn’t strictly compa-

rable to non-GLS DWs (it is biased toward 2). Finally, the sample size of the

GLS regression is 28 because the first observation has to be used to create

the lagged values for the calculation of the quasi-differenced variables in

Equation 20.

Generalized Least Squares estimates, no matter how produced, have at

least two problems. First, even though serial correlation causes no bias in

the estimates of the the GLS estimates usually are different from the

OLS ones. For example, note that all three slope coefficients change as we

move from OLS in Equation 6.8 to GLS in Equation 22. This isn’t surpris-

ing, since two different estimates can have different values even though

their expected values are the same. The second problem is more important,

however. It turns out that GLS works well if is close to the actual , but

the GLS is biased in small samples. If is biased, then the biased intro-

duces bias into the GLS estimates of the Luckily, there is a remedy for

serial correlation that avoids both of these problems: Newey–West stan-

dard errors.

�̂s.

�̂�̂�̂
��̂

�̂s,

�̂PC* 5 PCt 2 0.56PCt21,

Y* 5 Yt 2 0.56Yt21,

�̂

N 5 28   �̂ 5 0.56R2 5 .9921

t 5 2 1.70  1 0.76  1 12.06

 (0.05)  (0.02)  (0.02)

Ŷt 5 27.7 2 0.08PCt 1 0.02PBt 1 0.24YDt

R2 5 .9904 N 5 29 

 Ŷt 5 27.7 2  0.11PCt 1  0.03PBt 1  0.23YDt
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Newey–West Standard Errors

Not all corrections for pure serial correlation involve Generalized Least

Squares. Newey–West standard errors are SE( )s that take account of serial

correlation without changing the themselves in any way.11 The logic behind

Newey–West standard errors is powerful. If serial correlation does not cause

bias in the but does impact the standard errors, then it makes sense to

adjust the estimated equation in a way that changes the SE( )s but not the 

Thus Newey–West standard errors have been calculated specifically to avoid

the consequences of pure first-order serial correlation. The Newey–West proce-

dure yields an estimator of the standard errors that, while they are biased, is gen-

erally more accurate than uncorrected standard errors for large samples in the

face of serial correlation. As a result, Newey–West standard errors can be used for

t-tests and other hypothesis tests in most samples without the errors of inference

potentially caused by serial correlation. Typically, Newey–West SE( )s are larger

than OLS SE( )s, thus producing lower t-scores and decreasing the probability

that a given estimated coefficient will be significantly different from zero.

To see how Newey–West standard errors work, let’s apply them to the

same serially correlated chicken demand equation to which we applied GLS

in Equation 22. If we use Newey–West standard errors in the estimation of

Equation 8 from Chapter 6, we get:

(23)

(0.03) (0.02) (0.01)

Let’s compare Equations 8 from Chapter 6 and 23. First of all, the are

identical in Equations 8 from Chapter 6 and 23. This is because Newey–West

standard errors do not change the OLS Second, while we can’t observe

the change because of rounding, the Newey–West standard errors must be

different from the OLS standard errors because the t-scores have changed

even though the estimated coefficients are identical. However, the Newey-

West SE( )s are slightly lower than the OLS SE( )s, which is a surprise even

in a small sample like this one. Such a result indicates that there may well be

an omitted variable or nonstationarity in this equation.

�̂�̂

�̂s.

�̂s

N 5 29 R2 5 .9904

 t 5 2 3.51  1 1.92  1 19.4

Ŷt 5 27.7 2 0.11PCt 1 0.03PBt 1 0.23YDt

�̂
�̂

�̂s.�̂
�̂s

�̂s

�̂

11. W. K. Newey and K. D. West, “A Simple, Positive Semi-Definite Heteroskedasticity and Auto-

correlation Consistent Covariance Matrix,” Econometrica, 1987, pp. 703–708. Newey–West stan-

dard errors are similar to HC standard errors (or White standard errors), discussed in Section 10.4.
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Summary

1. Serial correlation, or autocorrelation, is the violation of Classical As-

sumption IV that the observations of the error term are uncorrelated

with each other. Usually, econometricians focus on first-order serial

correlation, in which the current observation of the error term is as-

sumed to be a function of the previous observation of the error term

and a not serially correlated error term (u):

where is “rho,” the autocorrelation coefficient.

2. Pure serial correlation is serial correlation that is a function of the

error term of the correctly specified regression equation. Impure se-

rial correlation is caused by specification errors such as an omitted

variable or an incorrect functional form. While impure serial correla-

tion can be positive pure se-

rial correlation in economics or business situations is almost always

positive.

3. The major consequence of serial correlation is bias in the OLS SE ( )s,

causing unreliable hypothesis testing. Pure serial correlation does not

cause bias in the estimates of the 

4. The most commonly used method of detecting first-order serial corre-

lation is the Durbin–Watson d test, which uses the residuals of an esti-

mated regression to test the possibility of serial correlation in the

error term. A d value of 0 indicates extreme positive serial correlation,

a d value of 2 indicates no serial correlation, and a d value of 4 indi-

cates extreme negative serial correlation.

5. The first step in ridding an equation of serial correlation is to check

for possible specification errors. Only once the possibility of impure

serial correlation has been reduced to a minimum should remedies

for pure serial correlation be considered.

6. Generalized Least Squares (GLS) is a method of transforming an

equation to rid it of pure first-order serial correlation. The use of GLS

requires the estimation of 

7. Newey–West standard errors are an alternative remedy for serial corre-

lation that adjusts the OLS estimates of the SE( )s to take account of

the serial correlation without changing the .�̂s

�̂

�.

�s.

�̂

(0 , � , 1) or negative (21 , � , 0),

�

�t 5 ��t21 1 ut  21 , � , 1

5
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EXERCISES

(The answer to Exercise 2 is at the end of the chapter.)

1. Write the meaning of each of the following terms without referring to

the book (or your notes), and compare your definition with the ver-

sion in the text for each:

a. impure serial correlation

b. first-order serial correlation

c. first-order autocorrelation coefficient

d. Durbin–Watson d statistic

e. Generalized Least Squares

f. positive serial correlation

g. Newey–West standard errors

2. Consider the following equation for U.S. per capita consumption of

beef:

(24)

(7.4) (0.13) (0.12) (4.1)

t � 6.6 �2.6 2.7 �3.7

where: Bt � the annual per capita pounds of beef consumed in the

United States in year t

� the log of real per capita disposable real income in the

U.S. in year t

PBt � average annualized real wholesale price of beef in year

t (in cents per pound)

PRPt � average annualized real wholesale price of pork in

year t (in cents per pound)

Dt � a dummy variable equal to 1 for years in which there

was a “health scare” about the dangers of red meat, 

0 otherwise

a. Develop and test your own hypotheses with respect to the individ-

ual estimated slope coefficients.

b. Test for serial correlation in Equation 24 using the Durbin–Watson d

test at the 5-percent level.

c. What econometric problem(s) (if any) does Equation 24 appear to

have? What remedy would you suggest?

ln Yt

R2 5 .700  N 5 28  DW 5 0.94

B̂ t 5 2330.3 1 49.1ln Yt 2  0.34PBt 1  0.33PRPt 2  15.4Dt
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d. You take your own advice, and apply GLS to Equation 24, obtaining:

(25)

Compare Equations 24 and 25. Which do you prefer? Why?

3. Recall from Section 4 that switching the order of a data set will not

change its coefficient estimates. A revised order will change the

Durbin–Watson statistic, however. To see both these points, run re-

gressions and compare the coefficient esti-

mates and DW d statistics for this data set:

Year Housing Starts Population

1 9090 2200

2 8942 2222

3 9755 2244

4 10327 2289

5 10513 2290

in the following three orders (in terms of year):

a. 1, 2, 3, 4, 5

b. 5, 4, 3, 2, 1

c. 2, 4, 3, 5, 1

4. Use Statistical Tables B-4, B-5, and B-6 to test for serial correlation

given the following Durbin–Watson d statistics for serial correlation.

a. 5-percent, one-sided positive test

b. 1-percent, one-sided positive test

c. 2.5-percent, one-sided positive test

d. 5-percent, two-sided test

e. 5-percent, one-sided positive test

f. 2-percent, two-sided test

g. 5-percent, one-sided positive test

5. Carefully distinguish between the following concepts:

a. positive and negative serial correlation

b. pure and impure serial correlation

d 5 1.03, K 5 6, N 5 26, 
d 5 0.91, K 5 2, N 5 28, 
d 5 1.75, K 5 1, N 5 45, 
d 5 2.84, K 5 4, N 5 35, 
d 5 1.56, K 5 5, N 5 30, 
d 5 3.48, K 5 2, N 5 15, 
d 5 0.81, K 5 3, N 5 21, 

(HS 5 �0 1 �1P 1 �)

R2 5 .857  N 5 28  �̂ 5 0.82

 t 5 2.5  2 3.7  1.1  2 1.5

 (14.1)  (0.10)  (0.09)  (3.9)

 B̂t 5 2 193.3 1 35.2ln Yt 2  0.38PBt 1  0.10PPt 2  5.7Dt
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c. serially correlated observations of the error term and serially corre-

lated residuals

d. the Cochrane–Orcutt method and the AR(1) method

e. GLS and Newey–West standard errors

6. In Statistical Table B-4, column is greater than 2 for the five

smallest sample sizes in the table. What does it mean if ?

7. A study by M. Hutchinson and D. Pyle12 found some evidence of a

link between short-term interest rates and the budget deficit in a sam-

ple that pools annual time-series and cross-sectional data from six

countries.

a. Suppose you were told that the Durbin–Watson d from their best

regression was 0.81. Test this DW for indications of serial correla-

tion 5-percent one-sided test for positive serial

correlation).

b. Based on this result, would you conclude that serial correlation ex-

isted in their study? Why or why not? (Hint: The six countries were

the United Kingdom, France, Japan, Canada, Italy, and the United

States; assume that the order of the data was United Kingdom, fol-

lowed by France, etc.)

c. How would you use GLS to correct for serial correlation in this case?

8. Suppose that the data in a time-series study were entered in reverse

chronological order. Would this change in any way the testing or ad-

justing for serial correlation? How? In particular:

a. What happens to the Durbin–Watson statistic’s ability to detect

serial correlation if the order is reversed?

b. What happens to the GLS method’s ability to adjust for serial corre-

lation if the order is reversed?

c. What is the intuitive economic explanation of reverse serial correlation?

9. Suppose that a plotting of the residuals of a regression with respect to

time indicates a significant outlier in the residuals. (Be careful here:

this is not an outlier in the original data but is an outlier in the

residuals of a regression.)

a. How could such an outlier occur? What does it mean?

b. Is the Durbin–Watson d statistic applicable in the presence of such

an outlier? Why or why not?

(N 5 60, K 5 4,

dU . 2

K 5 5, dU

12. M. M. Hutchinson and D. H. Pyle, “The Real Interest Rate/Budget Deficit Link: International

Evidence, 1973–82,” Federal Reserve Bank of San Francisco Economic Review, Vol. 4, pp. 26–35.
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10. After GLS has been run on an equation, the are still good estimates

of the original (nontransformed) equation except for the constant

term:

a. What must be done to the estimate of the constant term generated

by GLS to compare it with the one estimated by OLS?

b. Why is such an adjustment necessary?

c. Return to Equation 22 and calculate the that would be comparable

to the one in Equation 6.8. (Hint: Take a look at Equation 20.)

d. The two estimates are different. Why? Does such a difference con-

cern you?

11. Your friend is just finishing a study of attendance at Los Angeles Laker

regular-season home basketball games when she hears that you’ve

read a chapter on serial correlation and asks your advice. Before run-

ning the equation on last season’s data, she “reviewed the literature”

by interviewing a number of basketball fans. She found out that fans

like to watch winning teams. In addition, she learned that while some

fans like to watch games throughout the season, others are most inter-

ested in games played late in the season. Her estimated equation

(standard errors in parentheses) was:

where: At � the attendance at game t

Lt � the winning percentage (games won divided by games

played) of the Lakers before game t

Pt � the winning percentage before game t of the Lakers’ op-

ponent in that game

Wt � a dummy variable equal to one if game t was on Friday,

Saturday, or Sunday, 0 otherwise

a. Test for serial correlation using the Durbin–Watson d test at the 

5-percent level.

b. Make and test appropriate hypotheses about the slope coefficients

at the 1-percent level.

c. Compare the size and significance of the estimated coefficient of L

with that for P. Is this difference surprising? Is L an irrelevant vari-

able? Explain your answer.

d. If serial correlation exists, would you expect it to be pure or impure

serial correlation? Why?

DW 5 0.85  N 5 40  R2 5 .46

 (500)  (1000)  (300)

Â  t 5 14123 1 20L t 1  2600Pt 1  900Wt

�̂0

�̂s
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e. Your friend omitted the first game of the year from the sample be-

cause the first game is always a sellout and because neither team

had a winning percentage yet. Was this a good decision?

12. About two thirds of the way through the 2008 season, the Los Angeles

Dodgers baseball team traded for superstar Manny Ramirez, and the

result was a divisional pennant and dramatically increased atten-

dance. Suppose that you’ve been hired by Manny’s agent to help pre-

pare for his upcoming contract negotiations by determining how

much money Manny generated for the Dodgers. You decide to build a

model of the Dodgers’ attendance, and, after learning as much as you

can about such modeling, you collect data for 2008 (Table 1) and 

estimate the following equation:  

ATTi � 34857 � 4104MANNYi � 2282PMi � 5632WKNDi � 4029PROMi � 8081TEAMi

(1021)                 (1121)       (1096)        (1068)              (5819)

t � 4.02 2.04 5.14 3.77 1.39

N � 81               � .54                   DW � 1.30   

where: ATTi � the number of tickets sold for the ith Dodger

home game

MANNYi � 1 after the trade for Manny Ramirez, 0 other-

wise

PMi � 1 if the ith game was a night game, 0 otherwise

WKNDi � 1 if the ith game was on the weekend, 0 other-

wise

PROMi � 1 if the ith game included a major promotion

(for example, fireworks or a free bobble-head),

0 otherwise

TEAMi � the winning percentage of the Dodgers’ oppo-

nent before the ith game (set equal to the 2007

percentage for the first three games of 2008)

a. You expect each coefficient to be positive. Test these expectations at

the 5-percent level. 

b. Test for serial correlation in this equation by running a Durbin–

Watson test.

c. What potential econometric problems (out of omitted variables, ir-

relevant variables, incorrect functional form, multicollinearity, and

serial correlation) do you see in this equation?  Explain.

d. Assume that your answer to part c is that you’re concerned with se-

rial correlation. Use the data in Table 1 to estimate the equation

with generalized least squares.

R2
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Table 1 Data for the Dodger Attendance Exercise

OBS VS ATT PM WKND PROM TEAM MANNY RIVAL

1 SF 56000 0 0 1 0.438 0 1

2 SF 44054 1 0 0 0.438 0 1

3 SF 43217 1 0 0 0.438 0 1

4 SD 54052 1 1 1 0.546 0 1

5 SD 54955 1 1 1 0.546 0 1

6 SD 47357 0 1 0 0.546 0 1

7 PIT 37334 1 0 0 0.420 0 0

8 PIT 37896 1 0 1 0.420 0 0

9 PIT 53629 1 0 1 0.420 0 0

10 ARI 42590 1 0 0 0.750 0 0

11 ARI 38350 1 0 0 0.714 0 0

12 COL 53205 1 1 1 0.455 0 0

13 COL 50469 1 1 0 0.435 0 0

14 COL 50670 0 1 1 0.417 0 0

15 NYM 44181 1 0 0 0.552 0 0

16 NYM 43927 1 0 0 0.533 0 0

17 NYM 40696 0 0 0 0.516 0 0

18 HOU 52658 1 1 1 0.514 0 0

19 HOU 45212 1 1 0 0.528 0 0

20 HOU 40217 0 1 1 0.541 0 0

21 CIN 34669 1 0 0 0.477 0 0

22 CIN 34306 1 0 0 0.467 0 0

23 CIN 33224 1 0 0 0.547 0 0

24 STL 52281 1 1 1 0.571 0 0

25 STL 44785 1 1 0 0.580 0 0

26 STL 46566 0 1 0 0.588 0 0

27 COL 39098 1 0 0 0.351 0 0

28 COL 38548 1 0 0 0.345 0 0

29 COL 36393 0 0 0 0.356 0 0

30 CHC 44998 1 0 1 0.633 0 0

31 CHC 52484 1 1 1 0.639 0 0

32 CHC 50020 0 1 0 0.629 0 0

33 CHC 49994 1 1 0 0.619 0 0

34 CLE 50667 1 1 1 0.452 0 0

35 CLE 45036 0 1 1 0.495 0 0

36 CLE 39993 0 1 0 0.467 0 0

37 CWS 43900 1 0 0 0.547 0 0

38 CWS 40162 1 0 0 0.553 0 0

39 CWS 37956 0 0 0 0.545 0 0

40 LAA 50419 1 1 0 0.608 0 1

41 LAA 55784 1 1 0 0.600 0 1

42 LAA 48155 0 1 0 0.593 0 1

(continued)
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43 ATL 39896 1 0 0 0.472 0 0

44 ATL 39702 1 0 0 0.467 0 0

45 ATL 39815 1 0 0 0.473 0 0

46 FLA 40417 1 0 0 0.516 0 0

47 FLA 49545 1 1 0 0.522 0 0

48 FLA 55220 1 1 1 0.527 0 0

49 FLA 42213 0 1 1 0.532 0 0

50 WSH 47313 1 1 1 0.373 0 0

51 WSH 42122 1 1 0 0.369 0 0

52 WSH 38660 0 1 0 0.365 0 0

53 SF 37483 1 0 0 0.413 0 1

54 SF 40110 1 0 0 0.419 0 1

55 SF 41282 1 0 0 0.415 0 1

56 ARIZ 42440 1 0 0 0.514 0 0

57 ARIZ 55239 1 1 1 0.519 1 0

58 ARIZ 54544 1 1 0 0.523 1 0

59 ARIZ 52972 0 1 1 0.518 1 0

60 PHI 45547 1 0 0 0.547 1 0

61 PHI 47587 1 0 1 0.542 1 0

62 PHI 45786 1 0 0 0.538 1 0

63 PHI 51064 1 0 0 0.533 1 0

64 MIL 44546 1 1 1 0.574 1 0

65 MIL 52889 1 1 1 0.569 1 0

66 MIL 45267 0 1 0 0.573 1 0

67 COL 46687 1 0 0 0.452 1 0

68 COL 48183 1 0 0 0.457 1 0

69 COL 44885 0 0 0 0.461 1 0

70 SD 44085 1 0 1 0.390 1 1

71 SD 39330 1 0 0 0.387 1 1

72 SD 48822 1 0 1 0.384 1 1

73 ARIZ 52270 1 1 1 0.511 1 0

74 ARIZ 47543 0 1 0 0.507 1 0

75 ARIZ 54137 0 1 1 0.504 1 0

76 SF 55135 1 1 1 0.444 1 1

77 SF 55452 1 1 1 0.448 1 1

78 SF 54841 0 1 1 0.445 1 1

79 SD 48907 1 0 0 0.391 1 1

80 SD 46741 1 0 0 0.389 1 1

81 SD 51783 1 0 1 0.386 1 1

Datafile = DODGERS9

Source: www.dodgers.com
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e. Assume that your answer to part c is that you are more concerned

with an omitted variable than with serial correlation, especially

because an omitted variable can cause impure serial correlation.

Add RIVALi (a dummy variable equal to 1 if the opponent in the

ith game is an in-state rival of the Dodgers, 0 otherwise) to the

equation and estimate your new specification using the data in

Table 1.

f. Which do you prefer, using GLS or adding RIVAL? Explain.

g. Given your answer to part f, what’s your conclusion? How many

fans per game did Manny Ramirez attract to Dodger Stadium?

Was this result fairly robust (stable as the specification was

changed)?

13. You’re hired by Farmer Vin, a famous producer of bacon and ham, to

test the possibility that feeding pigs at night allows them to grow

faster than feeding them during the day. You take 200 pigs (from new-

born piglets to extremely old porkers) and randomly assign them to

feeding only during the day or feeding only at night and, after six

months, end up with the following (admittedly very hypothetical)

equation:

where: Wi � the percentage weight gain of the ith pig

Gi � a dummy variable equal to 1 if the ith pig is a male, 

0 otherwise

Di � a dummy variable equal to 1 if the ith pig was fed only

at night, 0 if only during the day

Fi � the amount of food (pounds) eaten per day by the ith

pig

a. Test for serial correlation at the 5-percent level in this equation.

b. What econometric problems appear to exist in this equation?

(Hint: Be sure to make and test appropriate hypotheses about the

slope coefficients.)

c. The goal of your experiment is to determine whether feeding at

night represents a significant improvement over feeding during the

day. What can you conclude?

R2 5 .70  N 5 200  DW 5 0.50

 t 5 3.5  7.0  2 2.5

 (1.0)  (1.0)  (0.10)

 Ŵi 5 12 1 3.5Gi 1  7.0Di 2  0.25Fi
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13. Josef C. Brada and Ronald L. Graves, “The Slowdown in Soviet Defense Expenditures,”

Southern Economic Journal, Vol. 54, No. 4, pp. 969–984. In addition to the variables used in this 

exercise, Brada and Graves also provide data for SFPt, the rate of Soviet factor productivity in

year t, which we include in Table 2 because we suggest exercises using SFP in the instructor’s

manual.

d. The observations are ordered from the youngest pig to the oldest

pig. Does this information change any of your answers to the previ-

ous parts of this question? Is this ordering a mistake? Explain your

answer.

14. In a 1988 article, Josef Brada and Ronald Graves built an interesting

model of defense spending in the Soviet Union just before the

breakup of that nation.13 The authors felt sure that Soviet defense

spending was a function of U.S. defense spending and Soviet GNP but

were less sure about whether defense spending also was a function of

the ratio of Soviet nuclear warheads to U.S. nuclear warheads. Using a

double-log functional form, the authors estimated a number of alter-

native specifications, including (standard errors in parentheses):

(26)

(27)

where: SDHt � the CIA’s “high” estimate of Soviet defense expendi-

tures in year t (billions of 1970 rubles)

USDt � U.S. defense expenditures in year t (billions of 1980

dollars)

SYt � Soviet GNP in year t (billions of 1970 rubles)

SPt � the ratio of the number of USSR nuclear warheads

(NRt) to the number of U.S. nuclear warheads (NUt)

in year t

N 5 25 (annual 1960–1984) R2 5 .977 DW 5 0.43

 t 5 1.44  28.09

 (0.073)  (0.038)

 ln SDHt 5 2 2.88 1 0.105lnUSDt 1  1.066lnSYt

N 5 25 (annual 1960–1984) R2 5 .979 DW 5 0.49

 t 5 0.76  14.98  1.80

 (0.074)  (0.065)  (0.032)

 ln SDHt 5 2 1.99 1 0.056lnUSDt 1  0.969lnSYt 1  0.057lnSPt
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a. The authors expected positive signs for all the slope coefficients of

both equations. Test these hypotheses at the 5-percent level.

b. Use our four specification criteria to determine whether SP is an irrel-

evant variable. Explain your reasoning.

c. Test both equations for positive first-order serial correlation. Does

the high probability of serial correlation cause you to reconsider

your answer to part b? Explain.

d. Someone might argue that because the DW statistic improved

when lnSP was added, that the serial correlation was impure and

Table 2 Data on Soviet Defense Spending

Year SDH SDL USD SY SFP NR NU

1960 31 23 200.54 232.3 7.03 415 1734

1961 34 26 204.12 245.3 6.07 445 1846

1962 38 29 207.72 254.5 3.90 485 1942

1963 39 31 206.98 251.7 2.97 531 2070

1964 42 34 207.41 279.4 1.40 580 2910

1965 43 35 185.42 296.8 1.87 598 4110

1966 44 36 203.19 311.9 4.10 674 4198

1967 47 39 241.27 326.3 4.90 1058 4338

1968 50 42 260.91 346.0 4.07 1270 4134

1969 52 43 254.62 355.9 2.87 1662 4026

1970 53 44 228.19 383.3 4.43 2047 5074

1971 54 45 203.80 398.2 3.77 3199 6282

1972 56 46 189.41 405.7 2.87 2298 7100

1973 58 48 169.27 435.2 3.87 2430 8164

1974 62 51 156.81 452.2 4.30 2534 8522

1975 65 53 155.59 459.8 6.33 2614 9170

1976 69 56 169.91 481.8 0.63 3219 9518

1977 70 56 170.94 497.4 2.23 4345 9806

1978 72 57 154.12 514.2 1.03 5097 9950

1979 75 59 156.80 516.1 0.17 6336 9945

1980 79 62 160.67 524.7 0.27 7451 9668

1981 83 63 169.55 536.1 0.47 7793 9628

1982 84 64 185.31 547.0 0.07 8031 10124

1983 88 66 201.83 567.5 1.50 8730 10201

1984 90 67 211.35 578.9 1.63 9146 10630

Source: Josef C. Brada and Ronald L. Graves, “The Slowdown in Soviet Defense Expenditures,”

Southern Economic Journal, Vol. 54, No. 4, p. 974.

Datafile = DEFEND9
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that GLS was not called for. Do you agree with this conclusion?

Why or why not?

e. If we run a GLS version of Equation 26, we get Equation 28.

Does this result cause you to reconsider your answer to part b?

Explain:

(28)

15. As an example of impure serial correlation caused by an incorrect

functional form, let’s return to the equation for the percentage of

putts made (Pi) as a function of the length of the putt in feet (Li) that

we discussed originally in Exercise 6 in Chapter 1. The complete doc-

umentation of that equation is

(29)

a. Test Equation 29 for serial correlation using the Durbin–Watson d

test at the 1-percent level.

b. Why might the linear functional form be inappropriate for this

study? Explain your answer.

c. If we now reestimate Equation 29 using a double-log functional

form, we obtain:

(30)

Test Equation 30 for serial correlation using the Durbin–Watson d

test at the 1-percent level.

d. Compare Equations 29 and 30. Which equation do you prefer?

Why?

N 5 19  R2 5 .903  DW 5 1.22

 t 5 2 13.0

 (0.07)

 lnPi 5 5.50 2 0.92 lnLi

N 5 19  R2 5 .861  DW 5 0.48

 t 5 2 10.6

 (0.4)

 P̂i 5 83.6 2 4.1Li

N 5 24 (annual 1960–1984) R2 5 .994 �̂ 5 0.96

 t 5 1.61  0.64  2 0.03

 (0.067)  (0.214)  (0.027)

 ln SDHt 5 3.55 1 0.108lnUSDt 1  0.137 lnSYt 2  0.0008 lnSPt
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Answers

Exercise 2

a. Yt PBt PRPt Dt

H0 �1 � 0 �2 � 0 �3 � 0 �4 � 0

HA �1 	 0 �2 
 0 �3 	 0 �4 
 0

tY � 6.6 tPB � �2.6 tPRP � 2.7 tD � �3.17

tc � 1.714 tc � 1.714 tc � 1.714 tc � 1.714

We can reject the null hypothesis for all four coefficients because

the t-scores all are in the expected direction with absolute values

greater than 1.714 (the 5-percent one-sided critical t-value for

23 degrees of freedom).

b. With a 5-percent, one-sided test and N � 28, K � 4, the critical

values are dL � 1.10 and du � 1.75. Since d � 0.94 
 1.10, we can

reject the null hypothesis of no positive serial correlation.

c. The probable positive serial correlation suggests GLS.

d. We prefer the GLS equation, because we’ve rid the equation of

much of the serial correlation while retaining estimated coeffi-

cients that make economic sense. Note that the dependent vari-

ables in the two equations are different, so an improved fit is not

evidence of a better equation.

SERIAL CORRELATION
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We believe that econometrics is best learned by doing, not by reading books,

listening to lectures, or taking tests. To us, learning the art of econometrics

has more in common with learning to fly a plane or learning to play golf

than it does with learning about history or literature. In fact, we developed

the interactive exercises of this chapter precisely because of our confidence in

learning by doing.

Although interactive exercises are a good bridge between textbook exam-

ples and running your own regressions, they don’t go far enough. You still

need to “get your hands dirty.” We think that you should run your own

regression project before you finish reading this text even if you’re not

required to do so. We’re not alone. Some professors substitute a research proj-

ect for the final exam as their class’s comprehensive learning experience.

Running your own regression project has three major components:

1. Choosing a topic

2. Applying the six steps in regression analysis to that topic

3. Writing your research report

The first and third of these components are the topics of Sections 1 and 5, re-

spectively. The rest of the chapter focuses on helping you carry out the six

steps in regression analysis.

1 Choosing Your Topic

2 Collecting Your Data

3 Advanced Data Sources

4 Practical Advice for Your Project

5 Writing Your Research Report

6 A Regression User’s Checklist and Guide

7 Summary

8 Appendix:The Housing Price Interactive Exercise

Running Your Own
Regression Project

From Chapter 11 of Using Econometrics: A Practical Guide, 6/e. A. H. Studenmund. Copyright © 2011

by Pearson Education. Published by Addison-Wesley. All rights reserved.
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Choosing Your Topic

The purpose of an econometric research project is to use regression analysis

to build the best explanatory equation for a particular dependent variable for

a particular sample. Often, though, the hardest part is getting started. How

can you choose a good topic?

There are at least three keys to choosing a topic. First, try to pick a field

that you find interesting and/or that you know something about. If you enjoy

working on your project, the hours involved will seem to fly by. In addition,

if you know something about your subject, you’ll be more likely to make cor-

rect specification choices and/or to notice subtle indications of data errors or

theoretical problems. A second key is to make sure that data are readily avail-

able with a reasonable sample (we suggest at least 25 observations). Nothing

is more frustrating than searching through data source after data source in

search of numbers for your dependent variable or one of your independent

variables, so before you lock yourself into a topic, see if the data are there.

The final key is to make sure that there is some substance to your topic. Try to

avoid topics that are purely descriptive or virtually tautological in nature. In-

stead, look for topics that address an inherently interesting economic or be-

havioral question or choice.

Perhaps the best place to look for ideas for topics is to review your text-

books and notes from previous economics classes or to look over the exam-

ples and exercises. Often, you can take an idea from a previous study and up-

date the data to see if the idea can be applied in a different context. Other

times, reading an example will spark an idea about a similar or related study

that you’d be interested in doing. Don’t feel that your topic has to contain an

original hypothesis or equation. On your first or second project, it’s more im-

portant to get used to the econometrics than it is to create a publishable mas-

terpiece.

Another way to find a topic is to read through issues of economics jour-

nals, looking for article topics that you find interesting and that might be

possible to model. For example, Table 1 contains a list of the journals cited

so far in this text (in order of the frequency of citation). These journals would

be a great place to start if you want to try to replicate or update a previous re-

search study. Although this is an excellent way to get ideas, it’s also frustrat-

ing, because most current articles use econometric techniques that go beyond

those that we’ve covered so far in this text. As a result, it’s often difficult to

compare your results to those in the article.

If you get stuck for a topic, go directly to the data sources themselves. That

is, instead of thinking of a topic and then seeing if the data are available, look

over what data are available and see if they help generate ideas for topics.

Quite often, a reference will have data not only for a dependent variable but

1
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also for most of the relevant independent variables all in one place, minimiz-

ing time spent collecting data.

Once you pick a topic, don’t rush out and run your first regression. Re-

member, the more time you spend reviewing the literature and analyzing

your expectations on a topic, the better the econometric analysis and, ulti-

mately, your research report will be.

Collecting Your Data

Before any quantitative analysis can be done, the data must be collected, orga-

nized, and entered into a computer. Usually, this is a time-consuming and frus-

trating task because of the difficulty of finding data, the existence of definitional

differences between theoretical variables and their empirical counterparts, and

2

Table 1 Sources of Potential Topic Ideas

American Economic Review

Econometrica

Journal of Applied Econometrics

Journal of Urban Economics

Southern Economic Journal

Economica

Economic Inquiry

Journal of the American Statistical Association

Journal of Econometrics

Journal of Economic Education

Journal of Money, Credit and Banking

Review of Economics and Statistics

World Development

Biometrica

The Annals of Statistics

American Psychologist

Annals of Mathematical Statistics

Applied Economics

Assessment and Evaluation of Higher Education

Journal of Business and Economic Statistics

Journal of Economic Literature

Journal of Economic Perspectives

Journal of Economic Surveys

Journal of Financial and Quantitative Studies

Journal of the Royal Statistical Society

National Tax Review

NBER (Working Papers)

Scandinavian Journal of Economics
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the high probability of data entry errors or data transmission errors. In general,

though, time spent thinking about and collecting the data is well spent, since a

researcher who knows the data sources and definitions is much less likely to

make mistakes using or interpreting regressions run on that data.

What Data to Look For

Before you settle on a research topic, it’s good advice to make sure that data

for your dependent variable and all relevant independent variables are avail-

able. However, checking for data availability means deciding what specific

variables you want to study. Half of the time that beginning researchers

spend collecting data is wasted by looking for the wrong variables in the

wrong places. A few minutes thinking about what data to look for will save

hours of frustration later.

For example, if the dependent variable is the quantity of television sets de-

manded per year, then most independent variables should be measured an-

nually as well. It would be inappropriate and possibly misleading to define

the price of TVs as the price from a particular month. An average of prices

over the year (usually weighted by the number of TVs sold per month) would

be more meaningful. If the dependent variable includes all TV sets sold re-

gardless of brand, then the price would appropriately be an aggregate based

on prices of all brands. Calculating such aggregate variables, however, is not

straightforward. Researchers typically make their best efforts to compute the

respective aggregate variables and then acknowledge that problems still re-

main. For example, if the price data for all the various brands are not avail-

able, a researcher may be forced to compromise and use the price of one or a

few of the major brands as a substitute for the proper aggregate price.

Another issue is suggested by the TV example. Over the years of the sample,

it’s likely that the market shares of particular kinds of TV sets have changed. For

example, flat-screen HD TV sets might have made up a majority of the market in

one decade, but black-and-white sets might have been the favorite 40 years be-

fore. In cases where the composition of the market share, the size, or the quality

of the various brands have changed over time, it would make little sense to mea-

sure the dependent variable as the number of TV sets because a “TV set” from

one year has little in common with a “TV set” from another. The approach usu-

ally taken to deal with this problem is to measure the variable in dollar terms,

under the assumption that value encompasses size and quality. Thus, we would

work with the dollar sales of TVs rather than the number of sets sold.

A third issue, whether to use nominal or real variables, usually depends on

the underlying theory of the research topic. Nominal (or money) variables are

measured in current dollars and thus include increases caused by inflation.

RUNNING YOUR OWN REGRESSION PROJECT
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If theory implies that inflation should be filtered out, then it’s best to state

the variables in real (constant-dollar) terms by selecting an appropriate price

deflator, such as the Consumer Price Index, and adjusting the money (or

nominal) value by it.

As an example, the appropriate price index for Gross Domestic Product is

called the GDP deflator. Real GDP is calculated by multiplying nominal GDP

by the ratio of the GDP deflator from the base year to the GDP deflator from

the current year:

In 2007, U.S. nominal GDP was $13,807.5 billion and the GDP deflator was

119.82 (for a base year of 2000 � 100), so real GDP was:1

That is, the goods and services produced in 2007 were worth $13,807.5 bil-

lion if 2007 dollars were used but were worth only $11,523.9 billion if 2000

prices were used.

Fourth, recall that all economic data are either time-series or cross-sectional

in nature. Since time-series data are for the same economic entity from differ-

ent time periods, whereas cross-sectional data are from the same time period

but for different economic entities, the appropriate definitions of the variables

depend on whether the sample is a time series or a cross-section.

To understand this, consider the TV set example once again. A time-series

model might study the sales of TV sets in the United States from 1967 to

2005, and a cross-sectional model might study the sales of TV sets by state for

2005. The time-series data set would have 39 observations, each of which

would refer to a particular year. In contrast, the cross-sectional model data set

would have 50 observations, each of which would refer to a particular state. A

variable that might be appropriate for the time-series model might be com-

pletely inappropriate for the cross-sectional model, and vice versa; at the very

least, it would have to be measured differently. National advertising in a par-

ticular year would be appropriate for the time-series model, for example,

while advertising in or near each particular state would make more sense for

the cross-sectional one.

Finally, learn to be a critical reader of the descriptions of variables in economet-

ric research. For instance, most readers breezed right through the equation on the

demand for beef without asking some vital questions. Are prices and

Real GDP 5 $13,807.5 (100>119.82) 5 $11,523.9 billion

Real GDP 5 nominal GDP 3 (base GDP deflator>current GDP deflator)

RUNNING YOUR OWN REGRESSION PROJECT

1. 2009 Economic Report of the President, pp. 282–285.
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income measured in nominal or real terms? Is the price of beef wholesale or

retail? Where did the data originate? A careful reader would want to know the

answers to these questions before analyzing the results of Equation 7 from

chapter 2. (For the record, Yd measures real income, P measures real whole-

sale prices, and the data come from various issues of Agricultural Statistics,

published in Washington, D.C., by the U.S. Department of Agriculture.)

Where to Look for Economic Data

Although some researchers generate their own data through surveys or other

techniques (and we’ll address this possibility in Section 3), the vast majority

of regressions are run on publicly available data. The best sources for such

data are government publications and machine-readable data files. In fact,

the U.S. government has been called the most thorough statistics-collecting

agency in history.

Excellent government publications include the annual Statistical Abstract of

the U.S., the annual Economic Report of the President, the Handbook of Labor

Statistics, and Historical Statistics of the U.S. (published in 1975). One of the

best places to start with U.S. data is the annual Census Catalog and Guide,

which provides overviews and abstracts of data sources and various statistical

products as well as details on how to obtain each item.2 Consistent interna-

tional data are harder to come by, but the United Nations publishes a number

of compilations of figures. The best of these are the U.N. Statistical Yearbook

and the U.N. Yearbook of National Account Statistics.

Most researchers use on-line computer databases to find data instead of

plowing through stacks of printed volumes. These on-line databases, avail-

able through most college and university libraries, contain complete series

on literally thousands of possible variables. A huge variety of data is available

directly on the Internet. The best guides to the data available in this rapidly

changing world are “Resources for Economists on the Internet,” Economagic,

and WebEC.3 Links to these sites and other good sources of data are on the

text’s Web site www.pearsonhighered.com/studenmund. Other good Internet

resources are EconLit (www.econlit.org), which is an on-line summary of the

Journal of Economic Literature, and “Dialog,” which provides on-line access to

a large number of data sets at a lower cost than many alternatives.

2. To obtain this guide, write the Superintendent of Documents, Government Printing Office,

Washington, D.C.

3. On the Web, the Resources for Economists location is http://www.rfe.org. The Economagic

location is www.economagic.com. The WebEC location is www.helsinki.fi/WebEc.
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Missing Data

Suppose the data aren’t there? What happens if you choose the perfect vari-

able and look in all the right sources and can’t find the data?

The answer to this question depends on how much data is missing. If a

few observations have incomplete data in a cross-sectional study, you usually

can afford to drop these observations from the sample. If the incomplete data

are from a time series, you can sometimes estimate the missing value by in-

terpolating (taking the mean of adjacent values). Similarly, if one variable is

available only annually in an otherwise quarterly model, you may want to

consider quarterly interpolations of that variable. In either case, interpolation

can be justified only if the variable moves in a slow and smooth manner. Ex-

treme caution should always be exercised when “creating” data in such a way

(and full documentation is required).

If no data at all exist for a theoretically relevant variable, then the problem

worsens significantly. Omitting a relevant variable runs the risk of biased co-

efficient estimates. After all, how can you hold a variable constant if it’s not

included in the equation? In such cases, most researchers resort to the use of

proxy variables.

Proxy variables can sometimes substitute for theoretically desired variables

for which data are missing. For example, the value of net investment is a vari-

able that is not measured directly in a number of countries. As a result, a re-

searcher might use the value of gross investment as a proxy, the assumption

being that the value of gross investment is directly proportional to the value of

net investment. This proportionality (which is similar to a change in units) is

required because the regression analyzes the relationship between changes

among variables, rather than the absolute levels of the variables.

In general, a proxy variable is a “good” proxy when its movements corre-

spond relatively well to movements in the theoretically correct variable. Since

the latter is unobservable whenever a proxy must be used, there is usually no

easy way to examine a proxy’s “goodness” directly. Instead, the researcher

must document as well as possible why the proxy is likely to be a good or

bad one. Poor proxies and variables with large measurement errors constitute

“bad” data, but the degree to which the data are bad is a matter of judgment

by the individual researcher.

Advanced Data Sources

So far, all the data sets in this text have been cross-sectional or time-series in

nature, and we have collected our data by observing the world around us, in-

stead of by creating the data ourselves. It turns out, however, that time-series

3
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and cross-sectional data can be pooled to form panel data, and that data can

be generated through surveys. The purpose of this short section is to introduce

you to these more advanced data sources and to explain why it probably

doesn’t make sense to use these data sources on your first regression project.

Surveys

Surveys are everywhere in our society. Marketing firms use surveys to learn

more about products and competition, political candidates use surveys to fine-

tune their campaign advertising or strategies, and governments use surveys for

all sorts of purposes, including keeping track of their citizens with instruments

like the U.S. Census. As a result, many beginning researchers (particularly those

who are having trouble obtaining data for their project) are tempted to run their

own surveys in the hope that it’ll be an easy way to generate the data they need.

However, running a survey is not as easy as it might seem. For example, the

topics to be covered in the survey need to be thought through carefully, be-

cause once a survey has been run, it’s virtually impossible to go back to the re-

spondents and add another question. In addition, the questions themselves

need to be worded precisely (and pretested) to avoid confusing the respondent

or “leading” the respondent to a particular answer. Perhaps most importantly,

it’s crucial for the sample to be random and to avoid the selection, survivor,

and nonresponse biases. In fact, running a survey properly is so difficult that

entire books and courses are devoted to the topic.

As a result, we don’t encourage beginning researchers to run their own sur-

veys, and we’re cautious when we analyze the results of surveys run by others.

As put by the American Statistical Association, “The quality of a survey is best

judged not by its size, scope, or prominence, but by how much attention is

given to preventing, measuring, and dealing with the many important prob-

lems that can arise.”4

Panel Data

As mentioned previously, panel data are formed when cross-sectional and

time-series data sets are pooled to create a single data set. Why would you

want to use panel data? In some cases, researchers use panel data to increase

4. As quoted in “Best Practices for Survey and Public Opinion Research,” on the web site of the

American Association for Public Opinion Research: www.aapor.org/bestpractices. The best prac-

tices outlined on this web site are a good place to start if you decide to create your own survey.
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their sample size, but the main reason for using panel data is to provide an

insight into an analytical question that can’t be obtained by using time-series

or cross-sectional data alone.

What’s an example of panel data? Suppose that we’re interested in the rela-

tionship between budget deficits and interest rates but that we have only

10 years’ worth of comparable annual data to study. Ten observations is too

small a sample for a reasonable regression, so it might seem as if we’re out

of luck. However, if we can find time-series data on the same economic

variables—interest rates and budget deficits—for the same ten years for six

different countries, we’ll end up with a sample of 10∗6 � 60 observations,

which is more than enough to use. The result is a pooled cross-section time-

series data set—a panel data set!

Unfortunately, panel data can’t be analyzed fully with the econometric

techniques you’ve learned to date in this text, so we don’t encourage be-

ginning researchers to attempt to run regressions on panel data. Instead,

we’ve devoted the majority of a chapter to panel data, and we urge you to

read that chapter if you’re interested.

Practical Advice for Your Project

“Econometrics is much easier without data.”5

The purpose of this section6 is to give the reader some practical advice

about actually doing applied econometric work. Such advice often is miss-

ing from econometrics textbooks and courses, but the advice is crucial be-

cause many of the skills of an applied econometrician are judgmental and

subjective in nature. No single text or course can teach these skills, and that’s

not our goal. Instead, we want to alert you to some technical suggestions

that a majority of experienced applied econometricians would be likely to

support.

4

5. M. Verbeek, A Guide to Modern Econometrics (New York: Wiley, 2000), p. 1.

6. This section was inspired by and heavily draws upon Chapter 22, “Applied Econometrics,” in

Peter Kennedy’s A Guide to Econometrics (Malden, MA: Blackwell, 2008), pp. 361–384. We are

extremely grateful to Prof. Kennedy, the MIT Press, and Blackwell Publishing for their kind per-

mission to reprint major portions of that chapter here.
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We start off with Peter Kennedy’s “10 commandments of applied econo-

metrics,” move on to discuss what to check if you get an unexpected sign, and

finish up by bringing together a dozen practical tips from other sections of

this text that are worth reiterating.

The 10 Commandments of Applied Econometrics

Rule 1: Use common sense and economic theory.

“Time and again I was thanked (and paid) for asking questions and

suggesting perspectives that seemed to me to be little more than common

sense. This common sense is an easily overlooked but extraordinarily

valuable commodity.”7

Common sense is not all that common. In fact, it sometimes seems as if

not much thought (let alone good thought) has gone into empirical work.

There are thousands of examples of common sense. For example, common

sense should cause researchers to match per capita variables with per capita

variables, to use real exchange rates to explain real imports or exports, to em-

ploy nominal interest rates to explain real money demand, and to never,

never infer causation from correlation.

Rule 2: Ask the right questions.

“Far better an approximate answer to the right question, which is often

vague, than an exact answer to the wrong question, which can always

be made precise.”8

Be sure that the question being asked is the relevant one. When a re-

searcher encounters a regression problem, the solution to that problem often

is quite simple. Asking simple questions about the context of the problem

can bring to light serious misunderstandings. For example, it may be that it is

the cumulative change in a variable that is relevant, not the most recent

change, or it may be that the null hypothesis should be that a coefficient is

equal to another coefficient, rather than equal to zero.

The main lesson here is a blunt one: Ask questions, especially seemingly

foolish questions, to ensure that you have a full understanding of the goal of

the research; it often turns out that the research question has not been for-

mulated appropriately.

7. M. W. Trosset, Comment, Statistical Science, 1998, p. 23.

8. J. W. Tukey, “The Future of Data Analysis,” Annals of Mathematical Statistics, Vol. 33, No. 1,

pp. 13–14.
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Rule 3: Know the context.

“Don’t try to model without understanding the non-statistical aspects

of the real-life system you are trying to subject to statistical analysis.

Statistical analysis done in ignorance of the subject matter is just that

—ignorant statistical analysis.”9

It’s crucial to become intimately familiar with the subject being investigated—

its history, institutions, operating constraints, measurement peculiarities,

cultural customs, and so on, going beyond a thorough literature review.

Questions must be asked: Exactly how were the data gathered? Did govern-

ment agencies impute the data using unknown formulas? What were the

rules governing the auction? How were the interviewees selected? What in-

structions were given to the participants? What accounting conventions

were followed? How were the variables defined? What is the precise word-

ing of the questionnaire? How closely do measured variables match their

theoretical counterparts? Another way of viewing this rule is to recognize

that you, the researcher, know more than the computer—you know, for ex-

ample, that water freezes at 0 degrees Celsius, that people tend to round

their incomes to the nearest five thousand, and that some weekends are

three-day weekends.

Rule 4: Inspect the data.

“Every number is guilty unless proved innocent.”10

Even if a researcher knows the subject, he or she needs to become inti-

mately familiar with the data. Economists are particularly prone to the com-

plaint that researchers do not know their data very well, a phenomenon

made worse by the computer revolution, which has allowed researchers to

obtain and work with data electronically by pushing buttons.

Inspecting the data involves summary statistics, graphs, and data cleaning,

to both check and “get a feel for” the data. Summary statistics tend to be very

simple, such as means, standard errors, maximums, minimums, and correla-

tion matrices, but they can help a researcher find data errors that otherwise

would have gone undetected. If in doubt, graph your data. The advantage of

graphing is that a picture can force us to notice what we never expected to

9. D. A. Belsley and R. E. Welch, “Modelling Energy Consumption—Using and Abusing Regres-

sion Diagnostics,” Journal of Business and Economic Statistics, Vol. 6, p. 47.

10. C. R. Rao, Statistics and Truth: Putting Chance to Work (Singapore: World Scientific, 1997), 

p. 152.
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see. Researchers should supplement their summary statistics with simple

graphs: histograms, residual plots, scatterplots of residualized data, and

graphs against time. Data cleaning looks for inconsistencies in the data—are

any observations impossible, unrealistic, or suspicious? Do you know how

missing data were coded? Are dummies all coded 0 or 1? Are all observations

consistent with applicable minimum or maximum values? Do all observa-

tions obey the logical constraints that they must satisfy?

Rule 5: Keep it sensibly simple.

“Do not choose an analytic method to impress your readers or to deflect

criticism. If the assumptions and strength of a simpler method are rea-

sonable for your data and research problem, use it.”11

Progress in economics results from beginning with simple models, seeing

how they work in applications, and then modifying them if necessary. Begin-

ning with a simple model is referred to as a bottom-up (or specific-to-general)

approach to developing an econometric specification. Its main drawback is

that testing is biased if the simple model omits one or more relevant variables.

The competing top-down (or general-to-specific) approach is unrealistic in

that it requires the researcher to be able to think of the “right” general model

from the start.

Over time, a compromise methodology has evolved. Practitioners begin with

simple models which are expanded whenever they fail. When they fail,  the gen-

eral-to-specific approach is used to create a new simple model that is subjected

to misspecification tests, and this process of discovery is repeated. In this way

simplicity is combined with the general-to-specific methodology, producing a

compromise process which, judging by its wide application, is viewed as an ac-

ceptable rule of behavior. Examples are the functional form  specifications of

some Nobel Laureates—Tinbergen’s social welfare functions; Arrow’s and

Solow’s work on the CES production function; Friedman’s, Becker’s, Tobin’s,

and Modigliani’s consumer models; and Lucas’s rational expectations model.

Rule 6: Look long and hard at your results.

“Apply the ‘laugh’ test—if the findings were explained to a layperson,

could that person avoid laughing?”12

11. Leland Wilkinson and the Task Force on Statistical Inference, “Statistical Methods in Psy-

chology Journals,” American Psychologist, Vol. 54, No. 8, p. 598.

12. Peter Kennedy, A Guide to Econometrics (Malden, MA: Blackwell, 2008), p. 393.
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Part of this rule is to check whether the results make sense. Are the signs

of coefficients as expected? Are important variables statistically significant?

Are coefficient magnitudes reasonable? Are the implications of the results

consistent with theory? Are there any anomalies? Are any obvious restric-

tions evident?

But another part of this rule is more subtle and subjective. By looking long

and hard at reams of computer output, researchers should eventually recog-

nize the message they are conveying and become comfortable with it. This

subjective procedure should be viewed as separate from and complementary

to formal statistical testing procedures.

Rule 7: Understand the costs and benefits of data mining.

“Any attempt to allow data to play a role in model specification . . .

amounted to data mining, which was the greatest sin any researcher

could commit.”13

“Data mining is misunderstood, and once it is properly understood, it is

seen to be no sin at all.”14

There are two variants of “data mining”: one classified as the greatest of

the basement sins, but the other viewed as an important ingredient in data

analysis. The undesirable version of data mining occurs when one tailors

one’s specification to the data, resulting in a specification that is misleading

because it embodies the peculiarities of the particular data at hand. Further-

more, traditional testing procedures used to “sanctify” the specification are

no longer legitimate, because these data, since they have been used to gener-

ate the specification, cannot be judged impartial if used to test that specifica-

tion. The desirable version of “data mining” refers to experimenting with the

data to discover empirical regularities that can inform economic theory and

be tested on a second data set.

Data mining is inevitable; the art of the applied econometrician is to allow

for data-driven theories while avoiding the considerable danger inherent in

testing those data-driven theories on the same datasets that were used to cre-

ate them.

13. C. Mukherjee, H. White, and M. Wuyts, Econometrics and Data Analysis for Developing Coun-

tries (London: Routledge, 1998), p. 30.

14. K. D. Hoover, “In Defense of Data Mining: Some Preliminary Thoughts,” in K. D. Hoover

and S. M. Sheffrin (eds.), Monetarism and the Methodology of Economics: Essays in Honor of Thomas

Mayer (Aldershot: Edward Elgar, 1995), p. 243.
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Rule 8: Be prepared to compromise.

“The three most important aspects of real data analysis are to compro-

mise, compromise, compromise.”15

In virtually every econometric analysis there is a gap—usually a vast gulf—

between the problem at hand and the closest scenario to which standard

econometric theory is applicable. Very seldom does one’s problem even come

close to satisfying the Classical Assumptions under which econometric the-

ory delivers an optimal solution. A consequence of this is that practitioners

are always forced to compromise and adopt suboptimal solutions, the char-

acteristics of which are unknown.

The issue here is that in their econometric theory courses students are

taught standard solutions to standard problems, but in practice there are no

standard problems. Applied econometricians are continually faced with awk-

ward compromises and must be willing to make ad hoc modifications to

standard solutions.

Rule 9: Do not confuse statistical significance with meaningful

magnitude.

“Few would deny that in the hands of the masters the methodologies

perform impressively, but in the hands of their disciples it is all much

less convincing.”16

Very large sample sizes, such as those that have become common in cross-

sectional data, can give rise to estimated coefficients with very small standard

errors. A consequence of this is that coefficients of trivial magnitude may test

significantly different from zero, creating a misleading impression of what is

important. Because of this, researchers must always look at the magnitude of

coefficient estimates as well as their significance.

An even more serious problem associated with significance testing is that

there is a tendency to conclude that finding significant coefficients “sancti-

fies” a theory, with a resulting tendency for researchers to stop looking for

further insights. Sanctification via significance testing should be replaced by

continual searches for additional evidence, both corroborating evidence and,

especially, disconfirming evidence. If your theory is correct, are there testable

15. Ed Leamer, “Revisiting Tobin’s 1950 Study of Food Expenditure,” Journal of Applied Econo-

metrics, Vol. 12, No. 5, p. 552.

16. A. R. Pagan, “Three Econometric Methodologies: A Critical Appraisal,” Journal of Economic

Surveys, Vol. 1, p. 20.
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implications? Can you explain a range of interconnected findings? Can you

find a bundle of evidence consistent with your hypothesis but inconsistent

with alternative hypotheses? Can your theory “encompass” its rivals in the

sense that it can explain other models’ results?

Rule 10: Report a sensitivity analysis.

“Sinners are not expected to avoid sins; they need only confess their

errors openly.”17

It’s important to check whether regression results are sensitive to the assump-

tions upon which the estimation has been based. This is the purpose of a sensi-

tivity analysis, indicating to what extent the substantive results of the research

are affected by adopting different specifications about which reasonable people

might disagree. For example, are the results sensitive to the sample period, the

functional form, the set of explanatory variables, or the choice of proxies? If

they are, then this sensitivity casts doubt on the conclusions of the research.

There’s a second dimension to sensitivity analyses. Published research pa-

pers are typically notoriously misleading accounts of how the research actu-

ally was conducted. Because of this, it’s very difficult for readers of research

papers to judge the extent to which data mining may have unduly influenced

the results. Indeed, results tainted by subjective specification decisions un-

dertaken during the heat of econometric battle should be considered the rule,

rather than the exception. When reporting a sensitivity analysis, researchers

should explain fully their specification search so that readers can judge for

themselves how the results may have been affected.

What to Check If You Get an Unexpected Sign

An all-too-familiar problem for a beginning econometrician is to run a re-

gression and find that the sign of one or more of the estimated coefficients is

the opposite of what was expected. While an unexpected sign certainly is

frustrating, it’s not entirely bad news. Rather than considering this a disaster,

a researcher should consider it a blessing—this result is a friendly message

that some detective work needs to be done—there is undoubtedly some

shortcoming in one’s theory, data, specification, or estimation procedure. If

the “correct” signs had been obtained, odds are that the analysis would not

be double-checked. What should be checked?

17. Ed Leamer, Specification Searches: Ad Hoc Inference with Nonexperimental Data (New York:

John Wiley, 1978), p. vi.
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1. Recheck the expected sign. Every once in a while, a variable that is defined

“upside down” will cause a researcher to expect the wrong sign. For ex-

ample, in an equation for student SATs, the variable “high school rank

in class” (where a rank of 1 means that the student was first in his or

her class) can sometimes lure a beginning researcher into expecting a

positive coefficient for rank.

2. Check your data for input errors and/or outliers. If you have data errors or

oddball observations, the chances of getting an unexpected sign—even

a significant unexpected sign—increase dramatically.

3. Check for an omitted variable. The most frequent source of a significant

unexpected sign for the coefficient of a relevant independent variable is

an omitted variable. Think hard about what might have been omitted,

and, in particular, remember to use our equation for expected bias.

4. Check for an irrelevant variable. A frequent source of insignificant unex-

pected signs is that the variable doesn’t actually belong in the equation

in the first place. If the true coefficient for an irrelevant variable is zero,

then you’re likely to get an unexpected sign half the time.

5. Check for multicollinearity. Multicollinearity increases the variances and

standard errors of the estimated coefficients, increasing the chance that

a coefficient could have an unexpected sign. The sampling distribu-

tions will be widely spread and may straddle zero, implying that it is

quite possible that a draw from this distribution will produce an unex-

pected sign. Indeed, one of the casual indicators of multicollinearity is

the presence of unexpected signs.

6. Check for sample selection bias. An unexpected sign sometimes can be due

to the fact that the observations included in the data were not obtained

randomly.

7. Check your sample size. Multicollinearity isn’t the only source of high

variances; they could result from a small sample size or minimal varia-

tion in the explanatory variables. In some cases, all it takes to fix an un-

expected sign is to increase the sample.

8. Check your theory. If you’ve exhausted every logical econometric expla-

nation for your unexpected sign, there are only two likely remaining

explanations. Either your theory is wrong, or you’ve got a bad data set.

If your theory is wrong, then you of course have to change your ex-

pected sign, but remember to test this new expectation on a different
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data set. However, be careful! It’s amazing how economists can conjure

up rationales for unexpected signs after the regression has been run!

One theoretical source of bias, and therefore unexpected signs, is if the

underlying model is simultaneous in nature.

A Dozen Practical Tips Worth Reiterating

Here are a number of practical tips for applied econometrics that are worth

emphasizing. They work!

1. Don’t attempt to maximize .

2. Always review the literature and hypothesize the signs of your coeffi-

cients before estimating a model.

3. Remember to inspect and clean your data before estimating a model.

Know that outliers should not be automatically omitted; instead,

they should be investigated to make sure that they belong in the 

sample.

4. Know the Classical Assumptions cold!

5. In general, use a one-sided t-test unless the expected sign of the coef-

ficient actually is in doubt.

6. Don’t automatically discard a variable with an insignificant t-score. In

general, be willing to live with a variable with a t-score lower than the

critical value in order to decrease the chance of omitting a relevant

variable.

7. Know how to analyze the size and direction of the bias caused by an

omitted variable.

8. Understand all the different functional form options and their com-

mon uses, and remember to choose your functional form primarily

on the basis of theory, not fit.

9. Remember that multicollinearity doesn’t create bias; the estimated

variances are large, but the estimated coefficients themselves are un-

biased. As a result, the most-used remedy for multicollinearity is to

do nothing.

10. If you get a significant Durbin–Watson, Park, or White test, remember

to consider the possibility that a specification error might be causing

impure serial correlation or heteroskedasticity. Don’t change your esti-

mation technique from OLS to GLS or use adjusted standard errors

until you have the best possible specification.

R2
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11. Remember that adjusted standard errors like Newey–West standard

errors or HC standard errors use the OLS coefficient estimates. It’s the

standard errors of the estimated coefficients that change, not the esti-

mated coefficients themselves.

12. Finally, and perhaps most importantly, if in doubt, rely on common

sense and economic theory, not on statistical tests.

The Ethical Econometrician

One conclusion that a casual reader of this text might draw from the large

number of specifications we include is that we encourage the estimation of

numerous regression results as a way of ensuring the discovery of these best

possible estimates.

Nothing could be further from the truth!

As every reader of this text should know by now, our opinion is that the

best models are those on which much care has been spent to develop the the-

oretical underpinnings and only a short time is spent pursuing alternative

estimations of that equation. Many econometricians, ourselves included,

would hope to be able to estimate only one specification of an equation for

each data set. Econometricians are fallible and our data are sometimes im-

perfect, however, so it is unusual for a first attempt at estimation to be totally

problem free. As a result, two or even more regressions are often necessary to

rid an estimation of fairly simple difficulties that perhaps could have been

avoided in a world of perfect foresight.

Unfortunately, a beginning researcher usually has little motivation to stop

running regressions until he or she likes the way the result looks. If running

another regression provides a result with a better fit, why shouldn’t one more

specification be tested?

The reason is a compelling one. Every time an extra regression is run and a

specification choice is made on the basis of fit or statistical significance, the

chances of making a mistake of inference increase dramatically. This can hap-

pen in at least two ways:

1. If you consistently drop a variable when its coefficient is insignificant

but keep it when it is significant, it can be shown that you bias your

estimates of the coefficients of the equation and of the t-scores.

2. If you choose to use a lag structure, or a functional form or an estima-

tion procedure other than OLS, on the basis of fit rather than on the

basis of previously theorized hypotheses, you run the risk that your
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equation will work poorly when it’s applied to data outside your 

sample. If you restructure your equation to work well on one data 

set, you might decrease the chance of it working well on another.

What might be thought of as ethical econometrics is also in reality good

econometrics. That is, the real reason to avoid running too many different

specifications is that the fewer regressions you run, the more reliable and

more consistently trustworthy are your results. The instance in which profes-

sional ethics come into play is when a number of changes are made (differ-

ent variables, lag structures, functional forms, estimation procedures, data

sets, dropped outliers, and so on), but the regression results are presented to

colleagues, clients, editors, or journals as if the final and best equation had

been the first and only one estimated. Our recommendation is that all esti-

mated equations be reported even if footnotes or an appendix have to be

added to the documentation.

We think that there are two reasonable goals for econometricians when es-

timating models:

1. Run as few different specifications as possible while still attempting 

to avoid the major econometric problems. The only exception to our

recommendation to run as few specifications as possible is sensitivity

analysis.

2. Report honestly the number and type of different specifications esti-

mated so that readers of the research can evaluate how much weight 

to give to your results.

Therefore, the art of econometrics boils down to attempting to find the best

possible equation in the fewest possible number of regression runs. Only care-

ful thinking and reading before estimating first regression can bring this about.

An ethical econometrician is honest and complete in reporting the different

specifications and/or data sets used.

Writing Your Research Report

Once you’ve finished your research, it’s important to write a report on your re-

sults so that others can benefit from what you found out (or didn’t find out)

or so that you can get feedback on your econometric techniques from some-

one else. Most good research reports have a number of elements in common:

● A brief introduction that defines the dependent variable and states the

goals of the research.
● A short review of relevant previous literature and research.

5
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● An explanation of the specification of the equation (model). This

should include explaining why particular independent variables and

functional forms were chosen as well as stating the expected signs of

(or other hypotheses about) the slope coefficients.
● A description of the data (including generated variables), data sources,

and any irregularities with the data.
● A presentation of each estimated specification, using our standard

documentation format. If you estimate more than one specification,

be sure to explain which one is best (and why).
● A careful analysis of the regression results that includes a discussion

of any econometric problems encountered and complete documen-

tation of all equations estimated and all tests run. (Beginning re-

searchers are well advised to test for every possible econometric

problem; with experience, you’ll learn to focus on the most likely

difficulties.)
● A short summary/conclusion that includes any policy recommendations

or suggestions for further research.
● A bibliography.
● An appendix that includes all data, all regression runs, and all relevant

computer output. Do this carefully; readers appreciate a well-organized

and labeled appendix.

We think that the easiest way to write such a research report is to keep a re-

search journal as you go along. In this journal, you can keep track of a priori

hypotheses, regression results, statistical tests, different specifications you

considered, and theoretical analyses of what you thought was going on in

your equation. You’ll find that when it comes time to write your research re-

port, this journal will almost write your paper for you! The alternative to

keeping a journal is to wait until you’ve finished all your econometric work

before starting to write your research report, but by doing this, you run the risk

of forgetting the thought process that led you to make a particular decision

(or some other important item).

A Regression User’s Checklist and Guide

Table 2 contains a list of the items that a researcher checks when reviewing

the output from a computer regression package. Not every item in the

checklist will be produced by your computer package, and not every item in

your computer output will be in the checklist, but the checklist can be a

very useful reference. In most cases, a quick glance at the checklist will

6
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remind you of the text sections that deal with the item, but if this is not the

case, the fairly minimal explanation in the checklist should not be relied on

to cover everything needed for complete analysis and judgment. Instead,

you should look up the item in the index. In addition, note that the actions

in the right-hand column are merely suggestions. The circumstances of each

individual research project are much more reliable guides than any dog-

matic list of actions.

There are two ways to use the checklist. First, you can refer to it as a “glos-

sary of packaged computer output terms” when you encounter something in

your regression result that you don’t understand. Second, you can work your

way through the checklist in order, finding the items in your computer out-

put and marking them. As with the Regression User’s Guide (Table 3), the use

of the Regression User’s Checklist will be most helpful for beginning re-

searchers, but we also find ourselves referring back to it once in a while even

after years of experience.

Be careful. All simplified tables, like the two in this chapter, must trade

completeness for ease of use. As a result, strict adherence to a set of rules is

not recommended even if the rules come from one of our tables. Someone

who understands the purpose of the research, the exact definitions of the

variables, and the problems in the data is much more likely to make a correct

judgment than is someone equipped with a set of rules created to apply to a

wide variety of possible applications. 

Table 3, the Regression User’s Guide, contains a brief summary of the

major econometric maladies discussed so far in this text. For each economet-

ric problem, we list:

1. Its nature.

2. Its consequences for OLS estimation.

3. How to detect it.

4. How to attempt to get rid of it.

How might you use the guide? If an estimated equation has a particular

problem, such as an insignificant coefficient estimate, a quick glance at the

guide can give some idea of the econometric problems that might be causing

the symptom. Both multicollinearity and irrelevant variables can cause re-

gression coefficients to have insignificant t-scores, for example, and someone

who remembered only one of these potential causes might take the wrong

correction action. After some practice, the use of this guide will decrease until

it eventually will seem fairly limiting and simplistic. Until then, however, our

experience is that those about to undertake their first econometric research

can benefit by referring to this guide.
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Table 2 Regression User’s Checklist

Symbol Checkpoint Reference Decision

X, Y Data observations Check for errors, espe-

cially outliers, in the

data. Spot-check

transformations of

variables. Check

means, maximums,

and minimums.

Correct any errors. If

the quality of the data

is poor, may want to

avoid regression

analysis or use just

OLS.

number of

observations 

number of explana-

tory variables

If 

equation cannot be

estimated, and if the

degrees of freedom

are low, precision is

low. In such a case,

try to include more

observations.

N 2 K 2 1 # 0,

K 5

N 5

N 2 K 2 1 . 0df Degrees of freedom

Compare signs and

magnitudes to ex-

pected values.

If they are unexpected,

respecify model if ap-

propriate or assess

other statistics for

possible correct 

procedures.

Estimated coefficient�̂

Two-sided test:

One-sided test:

, the hypothesized 

is supplied by the re-

searcher, and is often

zero.

�,�H0

HA: �k . �H0

H0: �k # �H0

HA: �k 2 �H0

H0: �k 5 �H0

t t-statistic

or

for computer-

supplied t-scores 

or whenever 

�H0
5 0

tk 5
�̂k

SE(�̂k)

tk 5
�̂k 2 �H0

SE(�̂k)

Measures the degree of

overall fit of the

model to the data.

A guide to the overall

fit.

R2 Coefficient of determi-

nation

Same as R2. Also at-

tempts to show the

contribution of an ad-

ditional explanatory

variable.

R2 adjusted for degrees 

of freedom

R2

Reject 

and if the estimate is

of the expected sign.

tc is the critical value of

level of significance

and de-

grees of freedom.

N 2 K 2 1

�

H0 if u tk u . tc

One indication that an

explanatory variable

is irrelevant is if the

falls when it is 

included.

R2
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TSS Total sum of squares

An estimate of Com-

pare with for a

measure of overall fit.

A guide to the overall

fit.Y

�.SEE Standard error of the 

equation

Check for transcription

errors.

Check for heteroskedas-

ticity by examining

the pattern of the

residuals.

Correct the data.

May take appropriate

corrective action, but

test first.

ei Residual

Tests:

For positive serial 

correlation.

Reject H0 if 

Inconclusive if

(dL

and dU are critical

DW values.)

dL # DW # dU.

DW , dL.

HA: p . 0

H0: p # 0DW Durbin–Watson d

statistic

To test 

HA: H0 not true 

Calculate special 

F-statistic to test joint

hypotheses.

Reject the

critical value for 

level of significance

and K numerator and

denomi-

nator d.f.

N 2 K 2 1

�
H0 if F $ Fc,

5 �k 5 0

H0: �1 5 �2 5 . . .

F F-statistic

Table 2 (continued)

Symbol Checkpoint Reference Decision

RSS Residual sum of 

squares

Used in t-statistic. A guide to statistical

significance.

Standard error of �̂kSE(�̂k)

Usually provided by 

an autoregressive

routine.

If negative, implies a

specification error.

Estimated first-order 

autocorrelation 

coefficient

�̂

Used to detect multi-

collinearity.

Suspect severe multi-

collinearity if 

r12 . .8.

r12 Simple correlation 

coefficient between

X1 and X2

Used to detect multi-

collinearity.

Suspect severe multi-

collinearity if

VIF . 5.

VIF Variance inflation 

factor

Used to compute F, R2,

and .R2

Same as above. Also

used in hypothesis

testing.

TSS 5 g
i
 (Yi 2 Y)2

RSS 5 g
i
 (Yi 2 Ŷi)

2
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Table 3 Regression User’s Guide

What Can Go What Are the How Can It Be How Can It Be
Wrong? Consequences? Detected? Corrected?

Omitted Variable

The omission of a

relevant indepen-

dent variable

Bias in the coeffi-

cient estimates

(the s) of the 

included Xs.

Theory, significant

unexpected signs,

or surprisingly

poor fits.

Include the omitted

variable or a

proxy.�̂

The inclusion of a

variable that

does not belong

in the equation

Decreased preci-

sion in the form

of higher stan-

dard errors and

lower t-scores.

1. Theory 

2. t-test on 

3.

4. Impact on other

coefficients if X is

dropped.

Delete the variable

if its inclusion is

not required by

the underlying

theory.

R2
�̂

Irrelevant Variable

Some of the inde-

pendent variables

are (imperfectly)

correlated

No universally ac-

cepted rule or

test is available.

Use high r12s or

the VIF test.

Drop redundant

variables, but to

drop others

might introduce

bias. Often doing

nothing is best.

Multicollinearity

The variance of the

error term is not

constant for all 

observations, 

as in:

Same as for serial

correlation.

Use the Park or

White tests.

If impure, add the

omitted variable.

Otherwise, use

HC standard 

errors or reformu-

late the variables.VAR(�i) 5 �2Z2
i

Heteroskedasticity

The functional form

is inappropriate

Biased estimates,

poor fit, and diffi-

cult interpretation.

Examine the theory

carefully; think

about the rela-

tionship between

X and Y.

Transform the vari-

able or the equa-

tion to a different

functional form.

Observations of the

error term are

correlated, as in:

Use Durbin–Watson

d test; if signifi-

cantly less than

2, positive serial

correlation

exists.

If impure, add the

omitted variable

or change the

functional form.

Otherwise, con-

sider Generalized

Least Squares or

Newey– West

standard errors.

�t5 ��t21 1 ut

Serial Correlation

Incorrect Functional Form

No biased but

OLS no longer is

minimum vari-

ance, and hy-

pothesis testing

is unreliable.

�̂s,

No biased but

estimates of the

separate effects

of the Xs are not

reliable, i.e., high

SEs (and low 

t-scores).

�̂s,
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Summary

1. Running your own regression project involves choosing your de-

pendent variable, applying the six steps in applied regression to

that dependent variable, and then writing a research report that sum-

marizes your work.

2. A great research topic is one that you know something about, one

that addresses an inherently interesting economic or behavioral

question or choice, and one for which data are available not only

for the dependent variable but also for the obvious independent

variables.

3. Don’t underestimate the difficulty and importance of collecting a

complete and accurate data set. It’s a lot of work, but it’s worth it!

4. The art of econometrics boils down to finding the best possible

equation in the fewest possible number of regression runs. The only

way to do this is to spend quite a bit of time thinking through the

underlying principles of your research project before you run your

first regression.

5. Before you complete your research project, be sure to review the prac-

tical hints and regression user’s guide and checklist in Sections 5 

and 6.

Appendix:The Housing Price 
Interactive Exercise

Our goal here is to bridge the gap between textbook and computer. As a re-

sult, this interactive exercise will provide you with a short literature review

and the data, but you’ll be asked to calculate your own estimates. Feedback

on your specification choices will once again be found in the hints in at the

end of the chapter.

8

7
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18. G. M. Grether and Peter Mieszkowski, “Determinants of Real Estate Values,” Journal of Urban

Economics, Vol. 1, pp. 127–146. Another classic article of the same era is J. Kain and J. Quigley,

“Measuring the Value of Housing Quality,” Journal of American Statistical Association, Vol. 45,

pp. 532–548.

Since the only difference between this interactive exercise and the first one

is that this one requires you to estimate your chosen specification(s) with the

computer, our guidelines for interactive exercises still apply:

1. Take the time to look over a portion of the reading list before choosing

a specification.

2. Try to estimate as few regression runs as possible.

3. Avoid looking at the hints until after you’ve reached what you think is

your best specification.

We believe that the benefits you get from an interactive exercise are di-

rectly proportional to the effort you put into it. If you have to delay this ex-

ercise until you have the time and energy to do your best, that’s probably a

good idea.

Building a Hedonic Model of Housing Prices

We’re going to ask you to specify the independent variables and functional

form for an equation whose dependent variable is the price of a house in

Southern California. Before making these choices, it’s vital to review the

housing price literature and to think through the theory behind such models.

Such a review is especially important in this case because the model we’ll be

building will be hedonic in nature.

What is a hedonic model? We estimated an equation for the price of a

house as a function of the size of that house. Such a model is called hedonic

because it uses measures of the quality of a product as independent variables

instead of measures of the market for that product (like quantity demanded,

income, etc.). Hedonic models are most useful when the product being ana-

lyzed is heterogeneous in nature because we need to analyze what causes

products to be different and therefore to have different prices. With a homo-

geneous product, hedonic models are virtually useless.

Perhaps the most-cited early hedonic housing price study is that of 

G. Grether and P. Mieszkowski.18 Grether and Mieszkowski collected a seven-

year data set and built a number of linear models of housing price using
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19. Peter Linneman, “Some Empirical Results on the Nature of the Hedonic Price Functions for

the Urban Housing Market,” Journal of Urban Economics, Vol. 8, No. 1, pp. 47–68.

20. Keith Ihlanfeldt and Jorge Martinez-Vasquez, “Alternate Value Estimates of Owner-Occu-

pied Housing: Evidence on Sample Selection Bias and Systematic Errors,” Journal of Urban Eco-

nomics, Vol. 20, No. 3, pp. 356–369. Also see Eric Cassel and Robert Mendelsohn, “The Choice

of Functional Forms for Hedonic Price Equations: Comment,” Journal of Urban Economics, Vol. 18,

No. 2, pp. 135–142.

21. Allen C. Goodman, “An Econometric Model of Housing Price, Permanent Income, Tenure

Choice, and Housing Demand,” Journal of Urban Economics, Vol. 23, pp. 327–353.

different combinations of variables. They included square feet of space, the

number of bathrooms, and the number of rooms, although the number of

rooms turned out to be insignificant. They also included lot size and the age

of the house as variables, specifying a quadratic function for the age variable.

Most innovatively, they used several slope dummies in order to capture the

interaction effects of various combinations of variables (like a hardwood-

floors dummy times the size of the house).

Peter Linneman19 estimated a housing price model on data from Los Angeles,

Chicago, and the entire United States. His goal was to create a model that

worked for the two individual cities and then to apply it to the nation to

test the hypothesis of a national housing market. Linneman did not in-

clude any lot characteristics, nor did he use any interaction variables. His

only measures of the size of the living space were the number of bath-

rooms and the number of nonbathrooms. Except for an age variable, the

rest of the independent variables were dummies describing quality charac-

teristics of the house and neighborhood. Although many of the dummy

variables were quite fickle, the coefficients of age, number of bathrooms,

and the number of nonbathrooms were relatively stable and significant.

Central air conditioning had a negative, insignificant coefficient for the

Los Angeles regression.

K. Ihlanfeldt and J. Martinez-Vasquez20 investigated sample bias in various

methods of obtaining house price data and concluded that the house’s sales

price is the least biased of all measures. Unfortunately, they went on to esti-

mate an equation by starting with a large number of variables and then drop-

ping all those that had t-scores below 1, almost surely introducing bias into

their equation.

Finally, Allen Goodman21 added some innovative variables to an estimate

on a national data set. He included measures of specific problems like rats,

cracks in the plaster, holes in the floors, plumbing breakdowns, and the level of

property taxes. Although the property tax variable showed the capitalization of
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low property taxes, as would be expected, the rats coefficient was insignificant,

and the cracks variable’s coefficient asserted that cracks significantly increase

the value of a house.

The Housing Price Interactive Exercise

Now that we’ve reviewed at least a portion of the literature, it’s time to build

your own model. Recall that in Chapter 1. We built a simple model of the

price of a house as a function of the size of that house, Equation of Chapter 1

where: Pi � the price (in thousands of dollars) of the ith house

Si � the size (in square feet) of the ith house

Equation of Chapter 1 was estimated on a sample of 43 houses that were

purchased in the same Southern California town (Monrovia) within a few

weeks of each other. It turns out that we have a number of additional inde-

pendent variables for the data set we used to estimate Equation of Chapter 1.

Also available are:

Ni � the quality of the neighborhood of the ith house (1 � best,

4 � worst) as rated by two local real estate agents

Ai � the age of the ith house in years

BEi � the number of bedrooms in the ith house

BAi � the number of bathrooms in the ith house

CAi � a dummy variable equal to 1 if the ith house has central air

conditioning, 0 otherwise

SPi � a dummy variable equal to 1 if the ith house has a pool, 0

otherwise

Yi � the size of the yard around the ith house (in square feet)

Read through the list of variables again, developing your own analyses of the

theory behind each variable. What are the expected signs of the coefficients?

Which variables seem potentially redundant? Which variables must you

include?

In addition, there are a number of functional form modifications that can

be made. For example, you might consider a quadratic polynomial for age, as

Grether and Mieszkowski did, or you might consider creating slope dummies

such as SP S or CA S. Finally, you might consider interactive variables that

involve the neighborhood proxy variable such as N S or N BA. What hy-

potheses would each of these imply?

??

??

P̂i 5 40.0 1 0.138Si
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Table 4 Data for the Housing Price Interactive Exercise

P S N A BE BA CA SP Y

107 736 4 39 2 1 0 0 3364

133 720 3 63 2 1 0 0 1780

141 768 2 66 2 1 0 0 6532

165 929 3 41 3 1 0 0 2747

170 1080 2 44 3 1 0 0 5520

173 942 2 65 2 1 0 0 6808

182 1000 2 40 3 1 0 0 6100

200 1472 1 66 3 2 0 0 5328

220 1200 1.5 69 3 1 0 0 5850

226 1302 2 49 3 2 0 0 5298

260 2109 2 37 3 2 1 0 3691

275 1528 1 41 2 2 0 0 5860

280 1421 1 41 3 2 0 1 6679

289 1753 1 1 3 2 1 0 2304

295 1528 1 32 3 2 0 0 6292

300 1643 1 29 3 2 0 1 7127

310 1675 1 63 3 2 0 0 9025

315 1714 1 38 3 2 1 0 6466

350 2150 2 75 4 2 0 0 14825

365 2206 1 28 4 2.5 1 0 8147

503 3269 1 5 4 2.5 1 0 10045

135 936 4 75 2 1 0 0 5054

147 728 3 40 2 1 0 0 1922

165 1014 3 26 2 1 0 0 6416

175 1661 3 27 3 2 1 0 4939

190 1248 2 42 3 1 0 0 7952

191 1834 3.5 40 3 2 0 1 6710

195 989 2 41 3 1 0 0 5911

205 1232 1 43 2 2 0 0 4618

210 1017 1 38 2 1 0 0 5083

215 1216 2 77 2 1 0 0 6834

Develop your specification carefully. Think through each variable and/or

functional form decision, and take the time to write out your expectations for

the sign and size of each coefficient. Don’t take the attitude that you should

include every possible variable and functional form modification and then

drop the insignificant ones. Instead, try to design the best possible hedonic

model of housing prices you can the first time around.

Once you’ve chosen a specification, estimate your equation, using the data

in Table 4 and analyze the result.

(continued)
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1. Test your hypotheses for each coefficient with the t-test. Pay special atten-

tion to any functional form modifications.

2. Decide what econometric problems exist in the equation, testing, if ap-

propriate, for multicollinearity, serial correlation, or heteroskedasticity.

3. Decide whether to accept your first specification as the best one or to

make a modification in your equation and estimate again. Make sure

you avoid the temptation to estimate an additional specification “just

to see what it looks like.”

Once you’ve decided to make no further changes, you’re finished—

congratulations! Now turn to the hints at the end of the chapter for feedback

on your choices.

RUNNING YOUR OWN REGRESSION PROJECT

Table 4 (continued)

P S N A BE BA CA SP Y

228 1447 2 44 2 2 0 0 4143

242 1974 1.5 65 4 2 0 1 5499

250 1600 1.5 63 3 2 1 0 4050

250 1168 1.5 63 3 1 0 1 5182

255 1478 1 50 3 2 0 0 4122

255 1756 2 36 3 2 0 1 6420

265 1542 2 38 3 2 0 0 6833

265 1633 1 32 4 2 0 1 7117

275 1500 1 42 2 2 1 0 7406

285 1734 1 62 3 2 0 1 8583

365 1900 1 42 3 2 1 0 19580

397 2468 1 10 4 2.5 1 0 6086

Datafile � HOUSE11
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Answers

Exercise 2

Hints for the Housing Price Interactive Exercise

The biggest problem most students have with this interactive exercise

is that they run far too many different specifications “just to see”

what the results look like. In our opinion, all but one or two of the

specification decisions involved in this exercise should be made be-

fore the first regression is estimated, so one measure of the quality

of your work is the number of different equations you estimated.

Typically, the fewer the better.

As to which specification to run, most of the decisions involved

are matters of personal choice and experience. Our favorite model

on theoretical grounds is:

We think that BE and BA are redundant with S. In addition, we can

justify both positive and negative coefficients for SP, giving it an

ambiguous expected sign, so we’d avoid including it. We would not

quibble with someone who preferred a linear functional form for A

to our quadratic. In addition, we recognize that CA is quite insignif-

icant for this sample, but we’d retain it, at least in part because it

gets quite hot in Monrovia in the summer.

As to interactive variables, the only one we can justify is between

S and N. Note, however, that the proper variable is not but

instead is or something similar, to account for the

different expected signs. This variable turns out to improve the fit

while being quite collinear (redundant) with N and S.

In none of our specifications did we find evidence of serial

correlation or heteroskedasticity, although the latter is certainly a

possibility in such cross-sectional data.

S ? (5 2 N),

S ? N

P 5 f( S
1

, N
2

, A
2

, A
1

2, Y
1

, CA
1

)
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1 Dynamic Models

2 Serial Correlation and Dynamic Models

3 Granger Causality

4 Spurious Correlation and Nonstationarity

5 Summary and Exercises

Time-Series Models

The purpose of this chapter is to provide an introduction to a number of in-

teresting models that have been designed to cope with and take advantage of

the special properties of time-series data. Working with time-series data often

causes complications that simply can’t happen with cross-sectional data.

Most of these complications involve the order of the observations because

order matters quite a bit in time-series data but doesn’t matter much (if at all)

in cross-sectional data.

The most important of the topics concerns a class of dynamic models in

which a lagged value of the dependent variable appears on the right-hand

side of the equation. As you will see, the presence of a lagged dependent vari-

able on the right-hand side of the equation implies that the impact of the in-

dependent variables can be spread out over a number of time periods.

Why would you want to distribute the impact of an independent variable

over a number of time periods? To see why, consider the impact of advertis-

ing on sales. Most analysts believe that people remember advertising for

more than one time period, so advertising affects sales in the future as well as

in the current time period. As a result, models of sales should include current

and lagged values of advertising, thus distributing the impact of advertising

over a number of different lags.

While this chapter focuses on such dynamic models, you’ll also learn about

models in which different numbers of lags appear and we’ll investigate how

the presence of these lags affects our estimators. The chapter concludes with a

brief introduction to a topic called nonstationarity. If variables have signifi-

cant changes in basic properties (like their mean or variance) over time, they

From Chapter 12 of Using Econometrics: A Practical Guide, 6/e. A. H. Studenmund. Copyright © 2011

by Pearson Education. Published by Addison-Wesley. All rights reserved.
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are said to be nonstationary, and it turns out that nonstationary variables have

the potential to inflate t-scores and measures of overall fit in an equation.

Dynamic Models

Distributed Lag Models

Lagged independent variables can be used whenever you expect X to affect Y

after a period of time. For example, if the underlying theory suggests that X1
affects Y with a one-time-period lag (but X2 has an instantaneous impact on

Y), we use equations like:

(1)

Such lags are called simple lags, and the estimation of �1 with OLS is no

more difficult than the estimation of the coefficients of nonlagged equations,

except for possible impure serial correlation if the lag is misspecified. Remem-

ber, however, that the coefficients of such equations should be interpreted

carefully. For example, �2 in Equation 1 measures the effect of a one-unit in-

crease in this time’s X2 on this time’s Y holding last time’s X1 constant.

A case that’s more complicated than this simple lag model occurs when

the impact of an independent variable is expected to be spread out over a

number of time periods. For example, suppose we’re interested in studying

the impact of a change in the money supply on GDP. Theoretical and empir-

ical studies have provided evidence that because of rigidities in the market-

place, it takes time for the economy to react completely to a change in the

money supply. Some of the effect on GDP will take place in the first quarter,

some more in the second quarter, and so on. In such a case, the appropriate

econometric model would be a distributed lag model:

(2)

A distributed lag model explains the current value of Y as a function of cur-

rent and past values of X, thus “distributing” the impact of X over a number

of time periods. Take a careful look at Equation 2. The coefficients �0, �1, and

�2 through �p measure the effects of the various lagged values of X on the

current value of Y. In most economic applications, including our money sup-

ply example, we’d expect the impact of X on Y to decrease as the length of the

lag (indicated by the subscript of the �) increases. That is, although �0 might

be larger or smaller than �1, we certainly would expect either �0 or �1 to be

larger in absolute value than �6 or �7.

Yt 5 �0 1 �0Xt 1 �1Xt21 1 �2Xt22 1 c 1 �pXt2p 1 �t

Yt 5 �0 1 �1X1t21 1 �2X2t 1 �t

1
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Unfortunately, the estimation of Equation 2 with OLS causes a number of

problems:

1. The various lagged values of X are likely to be severely multicollinear,

making coefficient estimates imprecise.

2. In large part because of this multicollinearity, there is no guarantee

that the estimated �s will follow the smoothly declining pattern that

economic theory would suggest. Instead, it’s quite typical for the esti-

mated coefficients of Equation 2 to follow a fairly irregular pattern, for

example:

3. The degrees of freedom tend to decrease, sometimes substantially, for

two reasons. First, we have to estimate a coefficient for each lagged X,

thus increasing K and lowering the degrees of freedom (N � K � 1).

Second, unless data for lagged Xs outside the sample are available, we

have to decrease the sample size by one for each lagged X we calculate,

thus lowering the number of observations, N, and therefore the degrees

of freedom.

As a result of these problems with OLS estimation of functions like Equa-

tion 2, called ad hoc distributed lag equations, it’s standard practice to use a

simplifying assumption in such situations. The most commonly used sim-

plification is to replace all the lagged independent variables with a lagged

value of the dependent variable, and we’ll call that kind of equation a

dynamic model.

What Is a Dynamic Model?

The simplest dynamic model is:

�̂0 5 0.26   �̂1 5 0.07   �̂2 5 0.17   �̂3 5 2 0.03   �̂4 5 0.08

Note that Y is on both sides of the equation! Luckily, the subscripts are differ-

ent in that the Y on the left-hand side is Yt, and the Y on the right-hand side

is Yt�1. It’s this difference in time period that makes the equation dynamic.

Thus, the simplest dynamic model is an equation in which the current value

of the dependent variable Y is a function of the current value of X and a

Yt � �0 � �0Xt � �Yt�1 � ut (3)
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lagged value of Y itself. Such a model with a lagged dependent variable is

often called an autoregressive equation.

Let’s take a look at Equation 3 to try to see why it can be used to represent

a distributed lag model or any model in which the impact of X on Y is 

distributed over a number of lags. Suppose that we lag Equation 3 one time

period:

(4)

If we now substitute Equation 4 into Equation 3, we get:

(5)

or

(6)

If we do this one more time (that is, if we lag Equation 3 two time periods,

substitute it into Equation 5 and rearrange), we get:

(7)

where is the new (combined) intercept and is the new (combined)

error term. In other words, Yt � f(Xt, Xt�1, Xt�2). We’ve shown that a dy-

namic model can indeed be used to represent a distributed lag model!

In addition, note that the coefficients of the lagged Xs follow a clear pat-

tern. To see this, let’s go back to Equation 2:

(2)

and compare the coefficients in Equation 2 to those in Equation 7, 

we get:

�1 � ��0 (8)

�2 � �2�0

�3 � �3�0

�p � �p�0

?

?

?

Yt 5 �0 1 �0Xt 1 �1Xt21 1 �2Xt22 1 c 1 �pXt2p 1 �t

ut*�0*

Yt 5 �0* 1 �0Xt 1 ��0Xt21 1 �2�0Xt22 1 �3Yt23 1 ut*

Yt 5 (�0 1 ��0) 1 �0Xt 1 ��0Xt21 1 �2Yt22 1 (�ut21 1 ut)

Yt 5 �0 1 �0Xt 1 �(�0 1 �0Xt21 1 �Yt22 1 ut21) 1 ut

Yt21 5 �0 1 �0Xt21 1 �Yt22 1 ut21
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Figure 1 Geometric Weighting Schemes for Various Dynamic Models

As long as � is between 0 and 1, a dynamic model has the impact of the independent

variable declining as the length of the lag increases.

1. This model sometimes is referred to as a Koyck distributed lag model because it was origi-

nally developed by L. M. Koyck in Distributed Lags and Investment Analysis (Amsterdam: North-

Holland Publishing, 1954).

As long as � is between 0 and 1, these coefficients will indeed smoothly de-

cline,1 as shown in Figure 1.

Dynamic models like Equation 3 avoid the three major problems with ad

hoc distributed lag equations that we outlined. The degrees of freedom have

increased dramatically, and the multicollinearity problem has disappeared. If

ut is well behaved, OLS estimation of Equation 3 can be shown to have desir-

able properties for large samples. How large is “large enough”? Our recom-

mendation, based more on experience than proof, is to aim for a sample of at

least 50 observations. The smaller the sample, the more likely you are to 

encounter bias. Samples below 25 in size should be avoided entirely, in part

because of the bias and in part because hypothesis testing becomes 

untrustworthy.
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In addition to this sample size issue, dynamic models face another serious

problem. They are much more likely to encounter serial correlation than are

equations without a lagged dependent variable as an independent variable.

To make things worse, serial correlation almost surely will cause bias in the

OLS estimates of dynamic models no matter how large the sample size is.

This problem will be discussed in Section 2.

An Example of a Dynamic Model

As an example of a dynamic model, let’s look at an aggregate consumption

function from a macroeconomic equilibrium GDP model. Many economists

argue that in such a model, consumption (COt) is not just an instantaneous

function of disposable income (YDt). Instead, they believe that current con-

sumption is also influenced by past levels of disposable income (YDt�1,

YDt�2, etc.):

(9)

Such an equation fits well with simple models of consumption, but it makes

sense only if the weights given past levels of income decrease as the length of

the lag increases. That is, the impact of lagged income on current consump-

tion should decrease as the lag gets bigger. Thus we’d expect the coefficient of

YDt�2 to be less than the coefficient of YDt�1, and so on.

As a result, most econometricians would model Equation 9 with a dy-

namic model:

(10)

To estimate Equation 10, where we will build a small macromodel of the

U.S. economy from 1976 through 2007. The OLS estimates of Equation 10

for this data set are (standard errors in parentheses):

(11)

(0.10)    (0.10)

4.70 5.66

R2 5 .999  N 5 32  (annual 1976–2007)

 COt 5 2 266.6 1 0.46YDt 1  0.56COt21

COt 5 �0 1 �0YDt 1 �COt21 1 ut

COt 5 f(YD
1

t, YD
1

t21, YD
1

t22, etc.) 1 �t
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2. Note that the constant term equals �0/(1 � �).

If we substitute into Equation 3 for i � 1, we obtain

If we continue this process, it turns out

that Equation 11 is equivalent to:2

(12)

As can be seen, the coefficients of YD in Equation 12 do indeed decline as

we’d expect in a dynamic model.

To compare this estimate with an OLS estimate of the same equation with-

out the dynamic model format, we’d need to estimate an ad hoc distributed

lag equation with the same number of lagged variables.

(13)

If we estimate Equation 13 using the same data set, we get:

(14)

How do the coefficients of Equation 14 look? As the lag increases, the coeffi-

cients of YD decrease sharply, actually going negative for t�3. Neither eco-

nomic theory nor common sense leads us to expect this pattern. Such a poor

result is due to the severe multicollinearity between the lagged Xs. Most

econometricians therefore estimate consumption functions with a lagged

dependent variable simplification scheme like the dynamic model in Equa-

tion 10.

An interesting interpretation of the results in Equation 11 concerns the

long-run multiplier implied by the model. The long-run multiplier measures

the total impact of a change in income on consumption after all the lagged

effects have been felt. One way to get this estimate would be to add up all the

s, but an easier alternative is to calculate 0[1/(1� )], which in this case �̂�̂�̂

COt 5 2 695.89 1 0.73YDt 1 0.38YDt21 1 0.006YDt22 2 0.08YDt23

COt 5 �0 1 �0YDt 1 �1YDt21 1 �2YDt22 1 �3YDt23 1 �t

 1 0.08YDt23 1 c

COt 5 2 605.91 1 0.46YDt 1 0.26YDt21 1 0.14YDt22

�̂1 5 �̂0�̂1 5 (0.46)(0.56)1 5 0.26.

�̂0 5 0.46 and �̂ 5 0.56

equals 0.46[1/(1�0.56)] or 1.05. A sample of this size is likely to encounter

small sample bias, however, so we shouldn’t overanalyze the results. For

more on testing and adjusting dynamic equations like Equation 11 for serial

correlation, let’s move on to the next section.
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Serial Correlation and Dynamic Models

The consequences of serial correlation depend crucially on the type of model

we’re talking about. For an ad hoc distributed lag model such as Equation 2, se-

rial correlation has the effects outlined: Serial correlation causes OLS to no

longer be the minimum variance unbiased estimator, serial correlation

causes the SE( )s to be biased, and serial correlation causes no bias in the

OLS s themselves.

For dynamic models such as Equation 3, however, all this changes, and se-

rial correlation does indeed cause bias in the s produced by OLS. Com-

pounding this is the fact that the consequences, detection, and remedies for

serial correlation are all either incorrect or need to be modified in the pres-

ence of a lagged dependent variable.

Serial Correlation Causes Bias in Dynamic Models

If an equation with a lagged dependent variable as an independent variable

has a serially correlated error term, then OLS estimates of the coefficients of

that equation will be biased, even in large samples. To see where this bias

comes from, let’s look at a dynamic model like Equation 3 (ignore the ar-

rows for a bit):

(3)

and assume that the error term ut is serially correlated: ut � �ut�1 � �t where

�t is a classical error term. If we substitute this serially correlated error term

into Equation 3, we get:

(15)

Let’s also look at Equation 3 lagged one time period:

(16)

What happens when the previous time period’s error term (ut�1) is posi-

tive? In Equation 16, the positive ut�1 causes Yt�1 to be larger than it

would have been otherwise (these changes are marked by upward-pointing

arrows for ut�1 in Equation 16 and for Yt�1 in Equations 3, 15, and 16). 

In addition, the positive ut�1 is quite likely to cause ut to be positive 

 Yt21 5 �0 1 �0Xt21 1 �Yt22 1 ut21

cc

 Yt 5 �0 1 �0Xt 1 �Yt21 1 �ut21 1 �t

cc

 Yt 5 �0 1 �0Xt 1 �Yt21 1 ut

cc

�̂

�̂
�̂

2
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3. The reason that pure serial correlation doesn’t cause bias in the coefficient estimates of equa-

tions that don’t include a lagged dependent variable is that the “omitted variable” ut�1 isn’t

correlated with any of the included independent variables.

4. The opposite is not a problem. A Durbin�Watson d test that indicates serial correlation in

the presence of a lagged dependent variable, despite the bias toward 2, is an even stronger affir-

mation of serial correlation.

in Equation 3 because ut � �ut�1 � �t and � usually is positive (these

changes are marked by upward-pointing arrows in Equation 15 and 

Equation 3).

Take a look at the arrows in Equation 3. Yt�1 and ut are correlated! Such a

correlation violates Classical Assumption III, which assumes that the error

term is not correlated with any of the explanatory variables.

The consequences of this correlation include biased estimates, in particu-

lar of the coefficient �, because OLS attributes to Yt�1 some of the change in

Yt actually caused by ut. In essence, the uncorrected serial correlation acts like

an omitted variable (ut�1). Since an omitted variable causes bias whenever it

is correlated with one of the included independent variables, and since ut�1
is correlated with Yt�1, the combination of a lagged dependent variable and

serial correlation causes bias in the coefficient estimates.3

Serial correlation in a dynamic model also causes estimates of the stan-

dard errors of the estimated coefficients and the residuals to be biased. The

former bias means that hypothesis testing is invalid, even for large samples.

The latter bias means that tests based on the residuals, like the Durbin�

Watson d test, are potentially invalid.

Testing for Serial Correlation in Dynamic Models

Until now, we’ve relied on the Durbin�Watson d test to test for serial correla-

tion, but, as mentioned above, the Durbin�Watson d statistic is potentially

invalid for an equation that contains a lagged dependent variable as an inde-

pendent variable. This is because the biased residuals described in the previ-

ous paragraph cause the DW d statistic to be biased toward 2. This bias to-

ward 2 means that the Durbin�Watson test sometimes fails to detect the

presence of serial correlation in a dynamic model.4

The widely used alternative is to use a special case of a general testing pro-

cedure called the Lagrange Multiplier Serial Correlation (LMSC) Test, which

is a method that can be used to test for serial correlation by analyzing how

well the lagged residuals explain the residuals of the original equation (in an

equation that includes all the explanatory variables of the original model).
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5. For example, some readers may remember that the White test of Section 10.3 is a Lagrange

Multiplier test. For a survey of the various uses to which Lagrange Multiplier tests can be put

and a discussion of the LM test’s relationship to the Wald and Likelihood Ratio tests, see Rob

Engle, “Wald, Likelihood Ratio, and Lagrange Multiplier Tests in Econometrics,” in Z. Griliches

and M. D. Intriligator (eds.), Handbook of Econometrics, Volume II (Amsterdam: Elsevier Science

Publishers, 1984).

If the lagged residuals are significant in explaining this time’s residuals (as

shown by the chi-square test), then we can reject the null hypothesis of no se-

rial correlation. Interestingly, although we suggest using the LMSC test for dy-

namic models, it also could have been used instead of the Durbin�Watson

test to test for serial correlation in equations without a lagged dependent

variable. Other applications of the general Lagrange Multiplier test approach

are as a specification test and as a test for heteroskedasticity and other econo-

metric problems.5

Using the Lagrange Multiplier to test for serial correlation for a typical dy-

namic model involves three steps:

1. Obtain the residuals from the estimated equation:

(17)

2. Use these residuals as the dependent variable in an auxiliary equation

that includes as independent variables all those on the right-hand side

of the original equation as well as the lagged residuals:

(18)

3. Estimate Equation 18 using OLS and then test the null hypothesis that

a3 � 0 with the following test statistic:

(19)

where N is the sample size and R2 is the unadjusted coefficient of de-

termination, both of the auxiliary equation, Equation 18. For large

samples, LM has a chi-square distribution with degrees of freedom

equal to the number of restrictions in the null hypothesis (in this case,

one). If LM is greater than the critical chi-square value from Statistical

Table B-8, then we reject the null hypothesis that a3 � 0 and conclude

that there is indeed serial correlation in the original equation.

To run an LMSC test for second-order or higher-order serial correlation,

add lagged residuals (et�2 for second order, et�2 and et�3 for third order) to

the auxiliary equation, Equation 18. This latter change makes the null

hypothesis a3 � a4 � a5 � 0. Such a null hypothesis raises the degrees of

LM 5 N* R2

et 5 a0 1 a1Xt 1 a2Yt21 1 a3et21 1 ut

 et 5 Yt 2 Ŷt 5 Yt 2 �̂0 2 �̂0X1t 2 �̂Yt21
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6. For more on these complications, see R. Betancourt and H. Kelejian, “Lagged Endogenous

Variables and Cochrane-Orcutt Procedure,” Econometrica, Vol. 49, No. 4, pp. 1073�1078.

freedom in the chi-square test to three because we have imposed three restric-

tions on the equation (three coefficients are jointly set equal to zero). To run

an LMSC test with more than one lagged dependent variable, add the lagged

variables (Yt�2, Yt�3, etc.) to the original equation. For practice with the LM

test, see Exercise 6; for practice with testing for higher-order serial correlation,

see Exercise 7.

Correcting for Serial Correlation in Dynamic Models

There are three strategies for attempting to rid a dynamic model of serial

correlation: improving the specification, instrumental variables, and modi-

fied GLS.

The first strategy is to consider the possibility that the serial correlation

could be impure, caused by either omitting a relevant variable or by failing to

capture the actual distributed lag pattern accurately. Unfortunately, finding

an omitted variable or an improved lag structure is easier said than done. Be-

cause of the dangers of sequential specification searches, this option should

be considered only if an alternative specification exists that has a theoreti-

cally sound justification.

The second strategy, called instrumental variables, consists of substituting

an “instrument” (a variable that is highly correlated with Yt�1 but is uncorre-

lated with ut) for Yt�1 in the original equation, thus eliminating the correla-

tion between Yt�1 and ut. Although using an instrument is a reasonable 

option that is straightforward in principle, it’s not always easy to find a proxy

that retains the distributed lag nature of the original equation.

The final solution to serial correlation in dynamic models (or in models

with lagged dependent variables and similar error term structures) is to use

an iterative maximum likelihood technique to estimate the components of

the serial correlation and then to transform the original equation so that the

serial correlation has been eliminated. This technique is not without its com-

plications. In particular, the sample needs to be large, the standard errors of

the estimated coefficients potentially need to be adjusted, and the estimation

techniques are flawed under some circumstances.6
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7. See C. W. J. Granger, “Investigating Causal Relations by Econometric Models and Cross-Spectral

Methods,” Econometrica, Vol. 37, No. 3, pp. 424�438.

8. In the fifth edition, we ended this paragraph by saying, “For example, Christmas cards typi-

cally arrive before Christmas, but it’s clear that Christmas wasn’t caused by the arrival of the

cards.” However, this isn’t a true example of Granger causality, because the date of Christmas is

fixed and therefore isn’t a “time-series variable.” See Erdal Atukeren, “Christmas cards, Easter

bunnies, and Granger-causality,” Quality & Quantity, Vol. 42, No. 6, Dec. 2008, pp. 835–844.

For an in-depth discussion of causality, see Kevin Hoover, Causality in Macroeconomics 

(Cambridge: Cambridge University Press, 2001).

In essence, serial correlation causes bias in dynamic models, but ridding

the equation of that serial correlation is not an easy task.

Granger Causality

One application of ad hoc distributed lag models is to provide evidence

about the direction of causality in economic relationships. Such a test is use-

ful when we know that two variables are related but we don’t know which

variable causes the other to move. For example, most economists believe that

increases in the money supply stimulate GDP, but others feel that increases

in GDP eventually lead the monetary authorities to increase the money sup-

ply. Who’s right?

One approach to such a question of indeterminate causality is to theorize

that the two variables are determined simultaneously. A second approach to

the problem is to test for what is called “Granger causality.”

How can we claim to be able to test for causality? After all, didn’t we say

in Chapter 1 that even though most economic relationships are causal in

nature, regression analysis can’t prove such causality? The answer is that

we don’t actually test for theoretical causality; instead, we test for Granger

causality.

Granger causality, or precedence, is a circumstance in which one time-

series variable consistently and predictably changes before another variable.7

Granger causality is important because it allows us to analyze which variable

precedes or “leads” the other, and, as we shall see, such leading variables are

extremely useful for forecasting purposes.

Despite the value of Granger causality, however, we shouldn’t let ourselves

be lured into thinking that it allows us to prove economic causality in any

rigorous way. If one variable precedes (“Granger causes”) another, we can’t be

sure that the first variable “causes” the other to change.8

3
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9. See John Geweke, R. Meese, and W. Dent, “Comparing Alternative Tests of Causality in Tem-

poral Systems,” Journal of Econometrics, Vol. 21, pp. 161�194, and Rodney Jacobs, Edward

Leamer, and Michael Ward, “Difficulties with Testing for Causation,” Economic Inquiry, Vol. 17,

No. 3, pp. 401�413.

As a result, even if we’re able to show that event A always happens before

event B, we have not shown that event A “causes” event B. 

There are a number of different tests for Granger causality, and all the vari-

ous methods involve distributed lag models in one way or another.9 Our

preference is to use an expanded version of a test originally developed by

Granger. Granger suggested that to see if A Granger-caused Y, we should run:

(20)

and test the null hypothesis that the coefficients of the lagged As (the �s)

jointly equal zero. If we can reject this null hypothesis using the F-test, then

we have evidence that A Granger-causes Y. Note that if p � 1, Equation 20 is

similar to the dynamic model, Equation 3.

Applications of this test involve running two Granger tests, one in each di-

rection. That is, run Equation 20 and also run:

(21)

testing for Granger causality in both directions by testing the null hypothesis

that the coefficients of the lagged Ys (again, the �s) jointly equal zero. If the

F-test is significant for Equation 20 but not for Equation 21, then we can con-

clude that A Granger-causes Y. For practice with this dual version of the

Granger test, see Exercise 8.

Spurious Correlation and Nonstationarity

One problem with time-series data is that independent variables can appear

to be more significant than they actually are if they have the same underlying

trend as the dependent variable. In a country with rampant inflation, for ex-

ample, almost any nominal variable will appear to be highly correlated with

4

 At 5 �0 1 �1At21 1 c 1 �pAt2p 1 �1Yt21 1 c 1 �pYt2p 1 �t

 Yt 5 �0 1 �1Yt21 1 c 1 �pYt2p 1 �1At21 1 c 1 �pAt2p 1 �t
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10. There are two different definitions of stationarity. The particular definition we use here is a

simplification of the most frequently cited definition, referred to by various authors as weak,

wide-sense, or covariance stationarity.

all other nominal variables. Why? Nominal variables are unadjusted for infla-

tion, so every nominal variable will have a powerful inflationary component.

This inflationary component will usually outweigh any real causal relation-

ship, making nominal variables appear to be correlated even if they aren’t.

Such a problem is an example of spurious correlation, a strong relation-

ship between two or more variables that is not caused by a real underlying

causal relationship. If you run a regression in which the dependent variable

and one or more independent variables are spuriously correlated, the result is

a spurious regression, and the t-scores and overall fit of such spurious regres-

sions are likely to be overstated and untrustworthy.

There are many causes of spurious correlation. In a cross-sectional data set,

for example, spurious correlation can be caused by dividing both the depen-

dent variable and one independent variable by a third variable that varies

considerably more than do the first two. The focus of this section, however,

will be on time-series data and in particular on spurious correlation caused

by nonstationary time series.

Stationary and Nonstationary Time Series

A stationary series is one whose basic properties, for example its mean and its

variance, do not change over time. In contrast, a nonstationary series has one

or more basic properties that do change over time. For instance, the real per

capita output of an economy typically increases over time, so it’s nonstation-

ary. By contrast, the growth rate of real per capita output often does not in-

crease over time, so this variable is stationary even though the variable it’s

based on, real per capita output, is nonstationary. A time series can be non-

stationary even with a constant mean if another property, such as the vari-

ance, changes over time.

More formally, a time-series variable, Xt, is stationary if:

1. the mean of Xt is constant over time,

2. the variance of Xt is constant over time, and

3. the simple correlation coefficient between Xt and Xt�k depends on the

length of the lag (k) but on no other variable (for all k).10

If one or more of these properties is not met, then Xt is nonstationary. If a

series is nonstationary, that problem is often referred to as nonstationarity.
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11. See, for example, C. R. Nelson and C. I. Plosser, “Trends and Random Walks in Macroeco-

nomics Time Series: Some Evidence and Implication,” Journal of Monetary Economics, Vol. 10,

pp. 169�182, and J. Campbell and N. G. Mankiw, “Permanent and Transitory Components in

Macroeconomic Fluctuations,” American Economic Review, Vol. 77, No. 2, pp. 111�117.

Although our definition of a stationary series focuses on stationary and

nonstationary variables, it’s important to note that error terms (and, therefore,

residuals) also can be nonstationary. In fact, we’ve already had experience

with a nonstationary error term. Many cases of heteroskedasticity in time-

series data involve an error term with a variance that tends to increase with

time. That kind of heteroskedastic error term is also nonstationary!

The major consequence of nonstationarity for regression analysis is spuri-

ous correlation that inflates R2 and the t-scores of the nonstationary inde-

pendent variables, which in turn leads to incorrect model specification. This

occurs because the regression estimation procedure attributes to the nonsta-

tionary Xt changes in Yt that were actually caused by some factor (trend, for

example) that also affects Xt. Thus, the variables move together because of

the nonstationarity, increasing R2 and the relevant t-scores. This is especially

important in macroeconometrics, and the macroeconomic literature is dom-

inated by articles that examine various series for signs of nonstationarity.11

Some variables are nonstationary mainly because they increase rapidly

over time. Spurious regression results involving these kinds of variables often

can be avoided by the addition of a simple time trend to

the equation as an independent variable.

Unfortunately, many economic time-series variables are nonstationary

even after the removal of a time trend. This nonstationarity typically takes the

form of the variable behaving as though it were a “random walk.” A random

walk is a time-series variable where next period’s value equals this period’s

value plus a stochastic error term. A random-walk variable is nonstationary

because it can wander up and down without an inherent equilibrium and

without approaching a long-term mean of any sort.

To get a better understanding of the relationship between nonstationarity

and a random walk, let’s suppose that Yt is generated by an equation that in-

cludes only past values of itself (an autoregressive equation):

Yt � �Yt�1 � vt (22)

where vt is a classical error term.

Take a look at Equation 22. Can you see that if u�u � 1, then the expected

value of Yt will eventually approach 0 (and therefore be stationary) as the sam-

ple size gets bigger and bigger? (Remember, since vt is a classical error term, its

(t 5 1, 2, 3, c , T)
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12. See C. W. J. Granger and P. Newbold, “Spurious Regression in Econometrics,” Journal of

Econometrics, Volume 2, pp. 111–120.

expected value � 0.) Similarly, can you see that if u�u � 1, then the expected

value of Yt will continuously increase, making Yt nonstationary? This is nonsta-

tionarity due to a trend, but it still can cause spurious regression results.

Most importantly, what about if u�u � 1? In this case,

Yt � Yt�1 � vt (23)

It’s a random walk! The expected value of Yt does not converge on any value,

meaning that it is nonstationary. This circumstance, where � � 1 in Equa-

tion 23 (or similar equations), is called a unit root. If a variable has a unit

root, then Equation 23 holds, and the variable follows a random walk and is

nonstationary. The relationship between unit roots and nonstationarity is so

strong that most econometricians use the words interchangeably, even though

they recognize that both trends and unit roots can cause nonstationarity.

Spurious Regression

As noted at the beginning of Section 4, if the dependent variable and at least

one independent variable in an equation are nonstationary, it’s possible for

the results of an OLS regression to be spurious.12

Consider the linear regression model

(24)

If both X and Y are nonstationary, then they can be highly correlated for non-

causal reasons, and our standard regression inference measures will almost

surely be very misleading in that they’ll overstate and the t-score for 0.

For example, take a look at the following estimated equation:

PRICEt � �27.8 � 0.070TUITIONt (25)

(0.006)

t � 11.4

� .94 T � 10 (annual)

The R2 of this equation and the t-score for the coefficient of TUITION are

clearly significant, but what are the definitions of the variables? Well, PRICE is

the price of a gallon of gasoline in Portland, Oregon, and TUITION is the tu-

ition for a semester of study at Occidental College (Oxy) in Los Angeles (both

measured in nominal dollars). Is it possible that an increase in the tuition at

R2

�̂R2

Yt 5 �0 1 �0Xt 1 ut
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13. D. A. Dickey and W. A. Fuller, “Distribution of the Estimators for Autoregressive Time-Series

with a Unit Root,” Journal of the American Statistical Association, Vol. 74, pp. 427–431. The

Dickey–Fuller test comes in a variety of forms, including an augmented test to use in cases of a

serially correlated error term.

14. For more on unit roots, see John Y. Campbell and Pierre Peron, “Pitfalls and Opportunities:

What Macroeconomists Should Know About Unit Roots,” NBER Macroeconomics Annual

(Cambridge, MA: MIT Press, 1991), pp. 141–219.

Oxy caused gas prices in Portland to go up? Not unless every Oxy student was

the child of a Portland gas station owner! What’s going on? Well, the 1970s

were a decade of inflation, so any nominally measured variables are likely to

result in an equation that fits as well as Equation 25. Both variables are non-

stationary, and this particular regression result clearly is spurious.

To avoid spurious regression results, it’s crucial to be sure that time-series

variables are stationary before running regressions.

The Dickey–Fuller Test

To ensure that the equations we estimate are not spurious, it’s important to

test for nonstationarity. If we can be reasonably sure that all the variables are

stationary, then we need not worry about spurious regressions. How can you

tell if a time series is nonstationary? The first step is to visually examine the

data. For many time series, a quick glance at the data (or a diagram of the

data) will tell you that the mean of a variable is increasing dramatically over

time and that the series is nonstationary.

After this trend has been removed, the standard method of testing for non-

stationarity is the Dickey–Fuller test,13 which examines the hypothesis that

the variable in question has a unit root14 and, as a result, is likely to benefit

from being expressed in first-difference form.

To best understand how the Dickey–Fuller test works, let’s return to the

discussion of the role that unit roots play in the distinction between station-

arity and nonstationarity. Recall that we looked at the value of � in Equation

22 to help us determine if Y was stationary or nonstationary:

Yt � � Yt�1 � vt (22)

We decided that if u�u � 1 then Y is stationary, and that if u�u � 1, then Yt is

nonstationary. However, if u�u � 1, then Yt is nonstationary due to a unit

root. Thus we concluded that the autoregressive model is stationary if u�u � 1

and nonstationary otherwise.
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From this discussion of stationarity and unit roots, it makes sense to esti-

mate Equation 22 and determine if u�u � 1 to see if Y is stationary, and that’s

almost exactly how the Dickey–Fuller test works. First, we subtract Yt�1 from

both sides of Equation 22, yielding:

(Yt � Yt�1) � (� � 1) Yt�1 � vt (26)

If we define �Yt � Yt � Yt�1 then we have the simplest form of the

Dickey–Fuller test:

where �1 � � � 1. The null hypothesis is that Yt contains a unit root and the

alternative hypothesis is that Yt is stationary. If Yt contains a unit root, � � 1

and �1 � 0. If Yt is stationary, u�u � 1 and �1 � 0. Hence we construct a one-

sided t-test on the hypothesis that �1 � 0:

H0: �1 � 0

HA: �1 � 0

Interestingly, the Dickey–Fuller test actually comes in three versions:

1. Equation 27,

2. Equation 27 with a constant term added (Equation 28), and

3. Equation 27 with a constant term and a trend term added 

(Equation 29).

The form of the Dickey–Fuller test in Equation 27 is correct if Yt follows

Equation 22, but the test must be changed if Yt doesn’t follow Equation

22. For example, if we believe that Equation 22 includes a constant, then the

appropriate Dickey–Fuller test equation is:

�Yt � �0 � �1Yt�1 � vt (28)

In a similar fashion, if we believe Yt contains a trend “t” 

then we’d add “t” to the equation as a variable with a coefficient, and the ap-

propriate Dickey–Fuller test equation is:

�Yt � �0 � �1Yt�1 � �2t � vt (29)

No matter what form of the Dickey–Fuller test we use, the decision rule is

based on the estimate of �1. If 1 is significantly less than 0, then we can�̂

(t 5 1, 2, 3, c , T)

�Yt � �1Yt�1 � vt (27)

406



TIME-SERIES MODELS

Table 1 Large-Sample Critical Values for the Dickey–Fuller Test

One-Sided Significance Level: .01 .025 .05 .10

tc 3.43 3.12 2.86 2.57

15. Most sources list negative critical values for the Dickey–Fuller test, because the unit root test

is one sided with a negative expected value. However, the t-test decision rule of this text is based

on the absolute value of the t-score, so negative critical values would cause every null hypothe-

sis to be rejected. As a result, the critical values in Table 1 are positive. For adjusted critical 

t-values for the Dickey–Fuller test, including those in Table 1, see J. G. MacKinnon, “Critical

Values of Cointegration Tests,” in Rob Engle and C. W. J. Granger, eds., Long-Run Economic

Relationships: Readings in Cointegration (New York: Oxford University Press, 1991). Most soft-

ware packages provide these critical values with the output from a Dickey–Fuller test.

reject the null hypothesis of nonstationarity. If 1 is not significantly less

than 0, then we cannot reject the null hypothesis of nonstationarity. 

Be careful, however. The standard t-table does not apply to Dickey–Fuller

tests. The critical values depend on the version of the Dickey–Fuller test that

is applicable. For the case of no constant and no trend (Equation 27) the

large-sample values for tc are listed in Table 1.15 Although not displayed in

Table 1, the critical t-values for smaller samples are about 60 percent larger in

magnitude than those in Statistical Table B-1. For example, a 2.5 percent one-

sided t-test of �1 from Equation 27 with 50 degrees of freedom has a critical

t-value of 3.22, compared to 2.01 for a standard t-test. For practice in running

Dickey–Fuller tests, see Exercises 10 and 11.

Note that the equation for the Dickey–Fuller test and the critical values

for each of the specifications are derived under the assumption that the error

term is serially uncorrelated. If the error term is serially correlated, then the

regression specification must be modified to take this serial correlation into

account. This adjustment takes the form of adding in several lagged first dif-

ferences as independent variables in the equation for the Dickey–Fuller test.

There are several good methods for choosing the number of lags to add, but

there currently is no universal agreement as to which of these methods is

optimal.

Cointegration

If the Dickey–Fuller test reveals nonstationarity, what should we do?

�̂
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The traditional approach has been to take the first differences (�Y � Yt �

Yt�1 and �X � Xt � Xt�1) and use them in place of Yt and Xt in the equa-

tion. With economic data, taking a first difference usually is enough to

convert a nonstationary series into a stationary one. Unfortunately, using

first differences to correct for nonstationarity throws away information

that economic theory can provide in the form of equilibrium relationships

between the variables when they are expressed in their original units (Xt and

Yt). As a result, first differences should not be used without carefully weigh-

ing the costs and benefits of that shift, and in particular first differences

should not be used until the residuals have been tested for cointegration.

Cointegration consists of matching the degree of nonstationarity of the

variables in an equation in a way that makes the error term (and residuals) of

the equation stationary and rids the equation of any spurious regression re-

sults. Even though individual variables might be nonstationary, it’s possible

for linear combinations of nonstationary variables to be stationary, or

cointegrated. If a long-run equilbrium relationship exists between a set of vari-

ables, those variables are said to be cointegrated. If the variables are cointe-

grated, then you can avoid spurious regressions even though the dependent

variable and at least one independent variable are nonstationary.

To see how this works, let’s return to Equation 24:

Yt � �0 � �0Xt � ut (24)

As we saw in the previous section, if Xt and Yt are nonstationary, it’s likely

that we’ll get spurious regression results. To understand how it’s possible to

get sensible results from Equation 24 if the nonstationary variables are coin-

tegrated, let’s focus on the case in which both Xt and Yt contain one unit root.

The key to cointegration is the behavior of ut.
If we solve Equation 24 for ut, we get:

ut � Yt � �0 � �0Xt (30)

In Equation 30, ut is a function of two nonstationary variables, so you’d cer-

tainly expect ut also to be nonstationary, but that’s not necessarily the case. In

particular, suppose that Xt and Yt are related? More specifically, if economic

theory supports Equation 24 as an equilibrium, then departures from that

equilibrium should not be arbitrarily large.

Hence, if Yt and Xt are related, then the error term ut may well be sta-

tionary even though Xt and Yt are nonstationary. If ut is stationary, then
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16. For more on cointegration, see Peter Kennedy, A Guide to Econometrics (Malden, MA: Black-

well, 2008),  pp. 309–313 and 327–330, and B. Bhaskara Rau, ed., Cointegration for the Applied

Economist (New York: St. Martin’s Press, 1994).

17. See J. G. MacKinnon, “Critical Values of Cointegration Tests,” in Rob Engle and C. W. J.

Granger, eds., Long-Run Economic Relationships: Readings in Cointegration (New York: Oxford Uni-

versity Press, 1991) and Rob Engle and C. W. J. Granger, “Co-integration and Error Correction:

Representation, Estimation and Testing,” Econometrica, Vol. 55, No. 2.

18. In this case, it’s common practice to use a version of the original equation called the Error

Correction Model (ECM). While the equation for the ECM is fairly complex, the model itself is

a logical extension of the cointegration concept. If two variables are cointegrated, then there is

an equilibrium relationship connecting them. A regression on these variables therefore is an es-

timate of this equilibrium relationship along with a residual, which is a measure of the extent

to which these variables are out of equilibrium. When formulating a dynamic relationship be-

tween the variables, economic theory suggests that the current change in the dependent vari-

able should be affected not only by the current change in the independent variable but also by

the extent to which these variables were out of equilibrium in the preceding period (the resid-

ual from the cointegrating process). The resulting equation is the ECM. For more on the ECM,

see Peter Kennedy, A Guide to Econometrics (Malden, MA: Blackwell, 2008), pp. 299–301 and

322–323.

the unit roots in Yt and Xt have “cancelled out” and Yt and Xt are said to be

cointegrated.16

We thus see that if Xt and Yt are cointegrated then OLS estimation of the

coefficients in Equation 24 can avoid spurious results. To determine if Xt and

Yt are cointegrated, we begin with OLS estimation of Equation 24 and calcu-

late the OLS residuals:

(31)

We then perform a Dickey–Fuller test on the residuals. Once again, the

standard t-values do not apply to this application, so adjusted critical 

t-values should be used.17 However, these adjusted critical values are only

slightly higher than standard critical t-values, so the numbers in Statistical

Table B-1 can be used as rough estimates of the more accurate figures. If we

are able to reject the null hypothesis of a unit root in the residuals, we can

conclude that Yt and Xt are cointegrated and our OLS estimates are not

spurious.

To sum, if the Dickey–Fuller test reveals that our variables have unit roots,

the first step is to test for cointegration in the residuals. If the nonstationary

variables are not cointegrated, then the equation should be estimated using

first differences (�Y and �X). However, if the nonstationary variables are

cointegrated, then the equation can be estimated in its original units.18

et 5 Yt 2 �̂0 2 �̂0Xt
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1. Specify the model. This model might be a time-series equation 

with no lagged variables, it might be a dynamic model in its 

simplest form (Equation 3), or it might be a dynamic model that

includes lags in both the dependent and the independent 

variables.

2. Test all variables for nonstationarity (technically unit roots) using 

the appropriate version of the Dickey–Fuller test.

3. If the variables don’t have unit roots, estimate the equation in its

original units (Y and X).

4. If the variables have unit roots, test the residuals of the equation 

for cointegration using the Dickey–Fuller test.

5. If the variables have unit roots but are not cointegrated, then

change the functional form of the model to first differences (�Y

and �X) and estimate the equation.

6. If the variables have unit roots and also are cointegrated, then 

estimate the equation in its original units

A Standard Sequence of Steps for Dealing 
with Nonstationary Time Series

This material is fairly complex, so let’s pause for a moment to summarize the

various steps suggested in Section 4. To deal with the possibility that nonsta-

tionary time series might be causing regression results to be spurious, most

empirical work in time series follows a standard sequence of steps:

Summary

1. A distributed lag explains the current value of Y as a function of cur-

rent and past values of X, thus “distributing” the impact of X over a

number of lagged time periods. OLS estimation of distributed lag

equations without any constraints (ad hoc distributed lags) encoun-

ters problems with multicollinearity, degrees of freedom, and a non-

continuous pattern of coefficients over time.

2. A dynamic model avoids these problems by assuming that the coeffi-

cients of the lagged independent variables decrease in a geometric

5
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fashion the longer the lag. Given this, the dynamic model is:

Yt � �0 � �0Xt � �Yt�1 � ut

where Yt�1 is a lagged dependent variable and 0 � � � 1.

3. In small samples, OLS estimates of a dynamic model are biased and

have unreliable hypothesis testing properties. Even in large samples,

OLS will produce biased estimates of the coefficients of a dynamic

model if the error term is serially correlated.

4. In a dynamic model, the Durbin–Watson d test sometimes can fail to

detect the presence of serial correlation because d is biased toward 2.

The most-used alternative is the Lagrange Multiplier test.

5. Granger causality, or precedence, is a circumstance in which one time-

series variable consistently and predictably changes before another

variable does. If one variable precedes (Granger-causes) another, we

still can’t be sure that the first variable “causes” the other to change.

6. A nonstationary series is one that exhibits significant changes (for ex-

ample, in its mean and variance) over time. If the dependent variable

and at least one independent variable are nonstationary, a regression

may encounter spurious correlation that inflates and the t-scores of

the nonstationary independent variable(s).

7. Nonstationarity can be detected using the Dickey–Fuller test. If the

variables are nonstationary (have unit roots) then the residuals of the

equation should be tested for cointegration using the Dickey–Fuller

test. If the variables are nonstationary but are not cointegrated, then

the equation should be estimated with first differences. If the vari-

ables are nonstationary and also are cointegrated, then the equation

can be estimated in its original units.

EXERCISES

(The answer to Exercise 2 is at the end of the chapter.)

1. Write the meaning of each of the following terms without referring to

the book (or your notes), and then compare your definition with the

version in the text for each:

a. dynamic model

b. ad hoc distributed lag model

R2
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c. Lagrange Multiplier Serial Correlation test

d. Granger causality

e. nonstationary series

f. Dickey–Fuller test

g. unit root

h. random walk

i. cointegration

2. Consider the following equation aimed at estimating the demand for

real cash balances in Mexico (standard errors in parentheses):

where: Mt � the money stock in year t (millions of pesos)

Rt � the long-term interest rate in year t (percent)

Yt � the real GNP in year t (millions of pesos)

a. What economic relationship between Y and M is implied by the

equation?

b. How are Y and R similar in terms of their relationship to M?

c. Does this equation seem likely to have serial correlation? Explain.

3. Calculate and graph the pattern of the impact of a lagged X on Y as

the lag increases for each of the following estimated dynamic models:

a.

b.

c.

d.

e. Look over your graphs for parts c and d. What restriction do they

combine to show the wisdom of?

4. Consider the following equation for the determination of wages in

the United Kingdom (standard error in parentheses):

where: Wt � wages and salaries per employee in year t

Pt � the price level in year t

Ut � the percent unemployment in year t

R2 5 .87  N 5 19

 (0.080)  (0.072)  (0.658)

 Wt 5 8.562 1 0.364Pt 1  0.004Pt21 2 2.56Ut

�
Yt 5 13.0 1 12.0Xt 2 0.4Yt21

Yt 5 13.0 1 12.0Xt 1 2.0Yt21

Yt 5 13.0 1 12.0Xt 1 0.08Yt21

Yt 5 13.0 1 12.0Xt 1 0.04Yt21

R2 5 .90  DW 5 1.80  N 5 26

 (0.10)  (0.35)  (0.10)

 lnMt 5 2.00 2 0.10lnRt 1  0.70lnYt 1  0.60lnMt21
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a. Develop and test your own hypotheses with respect to the individ-

ual slope coefficients at the 10-percent level.

b. Discuss the theoretical validity of and how your opinion 

of that validity has been changed by its statistical significance.

Should be dropped from the equation? Why or why not?

c. If is dropped from the equation, the general functional form

of the equation changes radically. Why?

5. You’ve been hired to determine the impact of advertising on gross

sales revenue for “Four Musketeers” candy bars. Four Musketeers has

the same price and more or less the same ingredients as competing

candy bars, so it seems likely that only advertising affects sales. You

decide to build a distributed lag model of sales as a function of adver-

tising, but you’re not sure whether an ad hoc or a dynamic model is

more appropriate.

Using data on Four Musketeers candy bars from Table 2, estimate

both of the following distributed lag equations from 1985–2009 and

compare the lag structures implied by the estimated coefficients. (Hint:

Be careful to use the correct sample.)

a. an ad hoc distributed lag model (4 lags)

b. a dynamic model

6. Test for serial correlation in the estimated dynamic model you got as

your answer to Exercise 5b.

7. Suppose you’re building a dynamic model and are concerned with

the possibility that serial correlation, instead of being first order, is

second order: 

a. What is the theoretical meaning of such second-order serial 

correlation?

b. Carefully write out the formula for the Lagrange Multiplier Serial

Correlation (LMSC) test auxiliary equation (similar to Equa-

tion 18) that you would have to estimate to test such a possibil-

ity. How many degrees of freedom would there be in such an

LMSC test?

c. Test for second-order serial correlation in the estimated dynamic

model you got as your answer to Exercise 5b.

8. Most economists consider investment and output to be jointly (simulta-

neously) determined. One test of this simultaneity would be to see

whether one of the variables could be shown to Granger-cause the other.

Take the data set from the small macroeconomic model in Table 1 from

Chapter 14 and test the possibility that investment (I) Granger-causes

ut 5 f(ut21, ut22).

Pt21

Pt21

Pt21
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GDP (Y) (or vice versa) with a two-sided Granger test with four

lagged Xs.

9. Some farmers were interested in predicting inches of growth of corn

as a function of rainfall on a monthly basis, so they collected data

from the growing season and estimated an equation of the following

form:

Gt 5 �0 1 �1Rt 1 �2Gt21 1 �t

Table 2 Data for the Four Musketeers Exercise

Year Sales Advertising

1981 * 30

1982 * 35

1983 * 36

1984 320 39

1985 360 40

1986 390 45

1987 400 50

1988 410 50

1989 400 50

1990 450 53

1991 470 55

1992 500 60

1993 500 60

1994 490 60

1995 580 65

1996 600 70

1997 700 70

1998 790 60

1999 730 60

2000 720 60

2001 800 70

2002 820 80

2003 830 80

2004 890 80

2005 900 80

2006 850 75

2007 840 75

2008 850 75

2009 850 75

Datafile � MOUSE12

414



TIME-SERIES MODELS

where: Gt � inches of growth of corn in month t

Rt � inches of rain in month t

� a normally distributed classical error term

The farmers expected a negative sign for (they felt that since corn

can only grow so much, if it grows a lot in one month, it won’t grow

much in the next month), but they got a positive estimate instead.

What suggestions would you have for this problem?

10. Run 2.5 percent Dickey–Fuller tests (of the form in Equation 27) for

the following variables using the data in Table 2 from Chapter 6

from the chicken demand equation and determine which variables,

if any, you think are nonstationary. (Hint: Use 3.12 as your critical 

t-value.)

a. Yt
b. PCt
c. PBt
d. YDt

11. Run 2.5 percent Dickey–Fuller tests (of the form in Equation 27) for

the following variables using the data from the small macroeco-

nomic model in Table 1 from Chapter 4 and determine which vari-

ables, if any, you think are nonstationary. (Hint: Use 3.12 as your

critical t-value.)

a. Y (GDP)

b. r (the interest rate)

c. CO (consumption)

d. I (investment)

12. In 2001, Heo and Tan published an article19 in which they used the

Granger causality model to test the relationship between economic

growth and democracy. For years, political scientists have noted a strong

positive relationship between economic growth and democracy, but the

authors of previous studies (which included Granger causality studies)

disagreed about the causality involved. Heo and Tan studied 32 devel-

oping countries and found that economic growth “Granger-caused”

democracy in 11 countries, while democracy “Granger-caused” economic

growth in 10 others.

�2

�t

19. Uk Heo and Alexander Tan, “Democracy and Economic Growth: a Causal Analysis,”

Comparative Politics, Vol. 33, No. 4 (July 2001), pp. 463–473.
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a. How is it possible to get significant Granger causality results in two

different directions in the same study? Is this evidence that the

study was done incorrectly? Is this evidence that Granger causality

tests cannot be applied to this topic?  

b. Based on the evidence presented, what’s your conclusion about the

relationship between economic growth and democracy? Explain.

c. If this were your research project, what would your next step be?

(Hint: In particular, is there anything to be gained by learning more

about the countries in the two different Granger causality groups?20)

TIME-SERIES MODELS

20. For the record, the 11 countries in which growth Granger caused democracy were Costa Rica,

Egypt, Guatemala, India, Israel, South Korea, Mexico, Nicaragua, Thailand, Uruguay, and

Venezuela, and the 10 countries in which democracy Granger caused growth were Bolivia, Burma,

Colombia, Ecuador, El Salvador, Indonesia, Iran, Paraguay, the Philippines, and South Africa.

Answers

Exercise 2

a. The double-log functional form doesn’t change the fact that this

is a dynamic model. As a result, Y and M almost surely are related

by a distributed lag.

b. In their relationship to M, both Y and R have the same distrib-

uted lag pattern over time, since the lambda of 0.60 applies to

both. (The equation is in double-log form, so technically the re-

lationships are between the logs of those variables.)

c. Serial correlation is always a concern in a dynamic model. Many

students will look at the Durbin–Watson statistic of 1.80 and

conclude that there is no evidence of positive serial correlation in

this equation, but the d-statistic is biased toward 2 in the pres-

ence of a lagged dependent variable. Ideally, we would use the

Lagrange Multiplier Serial Correlation Test, but we don’t have the

data to do so. Durbin’s h test, which is beyond the scope of this

text, provides evidence that there is indeed serial correlation in

the equation. For more, see Robert Raynor, “Testing for Serial

Correlation in the Presence of Lagged Dependent Variables,” The

Review of Economics and Statistics, Vol. 75, No. 4, pp. 716–721.
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Until now, our discussion of dummy variables has been restricted to dummy

independent variables. However, there are many important research topics

for which the dependent variable is appropriately treated as a dummy, equal

only to 0 or 1.

In particular, researchers analyzing consumer choice often must cope

with dummy dependent variables (also called qualitative dependent vari-

ables). For example, how do high school students decide whether to go to

college? What distinguishes Pepsi drinkers from Coke drinkers? How can we

convince people to use public transportation instead of driving? For an

econometric study of these topics, or of any topic that involves a discrete

choice of some sort, the dependent variable is typically a dummy variable.

In the first two sections of this chapter, we’ll present two frequently used

ways to estimate equations that have dummy dependent variables: the linear

probability model and the binomial logit model. In the last section, we’ll

briefly discuss two other useful dummy dependent variable techniques: the

binomial probit model and the multinomial logit model.

The Linear Probability Model

What Is a Linear Probability Model?

The most obvious way to estimate a model with a dummy dependent variable

is to run OLS on a typical linear econometric equation. A linear probability

1

Dummy Dependent 
Variable Techniques

1 The Linear Probability Model

2 The Binomial Logit Model

3 Other Dummy Dependent Variable Techniques

4 Summary and Exercises

From Chapter 13 of Using Econometrics: A Practical Guide, 6/e. A. H. Studenmund. Copyright © 2011

by Pearson Education. Published by Addison-Wesley. All rights reserved.
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model is just that, a linear-in-the-coefficients equation used to explain a

dummy dependent variable:

(1)

where Di is a dummy variable and the Xs, are typical independent

variables, regression coefficients, and an error term, respectively.

For example, suppose you’re interested in understanding why some states

have female governors and others don’t. In such a model, the appropriate de-

pendent variable would be a dummy, for example Di equal to one if the ith

state has a female governor and equal to zero otherwise. If we hypothesize

that states with a high percentage of females and a low percentage of social

conservatives would be likely to have a female governor, then a linear proba-

bility model would be:

(2)

where: Di 5 1 if the ith state has a female governor, 0 otherwise

Fi 5 females as a percent of the ith state’s population

Ri 5 conservatives as a percent of the ith state’s registered voters

The term linear probability model comes from the fact that the right side

of the equation is linear while the expected value of the left side measures

the probability that To understand this second statement, let’s as-

sume that we estimate Equation 2 and get a of 0.10 for a particular state.

What does that mean? Well, since if the governor is female and

if the governor is male, a state with a of 0.10 can perhaps best be

thought of as a state in which there is a 10-percent chance that the gover-

nor will be female, based on the state’s values for the independent vari-

ables. Thus measures the probability that for the ith observa-

tion, and:

(3)

where indicates the probability that for the ith observation.

How should we interpret the coefficients of Equation 3? Since meas-

ures the probability that then a coefficient in a linear probability

model tells us the percentage point change in the probability that Di 5 1

Di 5 1,

D̂i

Di 5 1Pr(Di 5 1)

D̂i 5 Pr(Di 5 1) 5 �̂0 1 �̂1Fi 1 �̂2Ri

Di 5 1D̂i

D̂iD 5 0

D 5 1

D̂i

Di 5 1.

Di 5 �0 1 �1Fi 1 �2Ri 1 �i

�s, and �

Di 5 �0 1 �1X1i 1 �2X2i 1 �i
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1. In addition, the error term of a linear probability model is neither homoskedastic nor nor-

mally distributed, mainly because D takes on just two values (0 and 1). In practice, however,

the impact of these problems on OLS estimation is minor, and many researchers ignore poten-

tial heteroskedasticity and nonnormality and apply OLS directly to the linear probability

model. See R. G. McGillvray, “Estimating the Linear Probability Function,” Econometrica, Vol. 38,

pp. 775–776.

caused by a one-unit increase in the independent variable in question, hold-

ing constant the other independent variables in the equation.

We can never observe the actual probability, however, because it reflects

the situation before a discrete decision is made. After the choice is made, we

can observe only the outcome of that choice, and so the dependent variable

Di can take on the values of only 0 or 1. Thus, even though the expected

value can be anywhere from 0 to 1, we can only observe the two extremes

(0 and 1) in our dependent variable (Di).

Problems with the Linear Probability Model

Unfortunately, the use of OLS to estimate the coefficients of an equation with

a dummy dependent variable encounters two major problems:1

1. is not an accurate measure of overall fit. For models with a dummy de-

pendent variable, tells us very little about how well the model ex-

plains the choices of the decision makers. To see why, take a look at

Figure 1. Di can equal only 1 or 0, but must move in a continuous

fashion from one extreme to the other. This means that is likely to

be quite different from Di for some range of Xi. Thus, is likely to be

much lower than 1 even if the model actually does an exceptional job

of explaining the choices involved. As a result, (or R2) should not be

relied on as a measure of the overall fit of a model with a dummy de-

pendent variable.

2. is not bounded by 0 and 1. Since Di is a dummy variable, we’d expect

to be limited to a range of 0 to 1. After all, the prediction that a

probability equals 2.6 (or for that matter) is almost meaningless.

However, take another look at Equation 3. Depending on the values of

the Xs and the the right-hand side might well be outside the mean-

ingful range. For instance, if all the Xs and s in Equation 3 equal 1.0,

then equals 3.0, substantially greater than 1.0.

The first of these two major problems isn’t impossible to deal with, because

there are a variety of alternatives to for equations with dummy-dependentR2

D̂i

�̂
�̂s,

22.6,

D̂i

D̂i

R2

R2
D̂i

D̂i

R2
R2
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Di

Di > 1

Di = 1

1 > Di > 0

Di = 0

Di = �0 + �1X1i + �2X2i

X1i

(Holding X2i Constant)
Di < 0

variables.2 Our preference is to create a measure based on the percentage 

of the observations in the sample that a particular estimated equation ex-

plains correctly. To use this approach, consider a to predict that

and a to predict that If we then compare these Di 5 0.D̂i , .5Di 5 1

D̂i . .5

Figure 1 A Linear Probability Model

In a linear probability model, all the observed Dis equal either 0 or 1 but moves 

linearly from one extreme to the other. As a result, is often quite low even if the model

does an excellent job of explaining the decision maker’s choice. In addition, exception-

ally large or small values of X1i (holding X2i constant), can produce values of outside

the meaningful range of 0 to 1.

D̂i

R2
D̂i

2. See M. R. Veal and K. F. Zimmerman, “Pseudo-R2 Measures for Some Common Limited 

Dependent Variables Models,” Journal of Economic Surveys, Vol. 10, No. 3, pp. 241–259 and C. S.

McIntosh and J. J. Dorfman, “Qualitative Forecast Evaluation: A Comparison of Two Perfor-

mance Measures,” American Journal of Agricultural Economics, Vol. 74, pp. 209–214.
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3. Although it’s standard to use as the value that distinguishes a prediction of 

from a prediction of , there’s no rule that requires that .5 be used. This is because it’s

possible to imagine circumstances in which .5 is too high or too low. For example, if the payoff

when you’re right if you classify is much lower than the payoff when you’re right if you

classify , then a value lower than .5 might make sense. We’re grateful to Peter Kennedy

for this observation.

Di 5 0

Di 5 1

Di 5 0

Di 5 1D̂i 5 .5

predictions3 with the actual Di, we can calculate the percentage of observa-

tions explained correctly.

Unfortunately, using the percentage explained correctly as a substitute

for for the entire sample has a flaw. Suppose that 85 percent of your ob-

servations are ones and 15 percent are zeroes. Explaining 85 percent of the

sample correctly sounds good, but your results are no better than naively

guessing that every observation is a one! A better way might be to calculate

the percentage of ones explained correctly, calculate the percentage of zeroes

explained correctly, and then report the average of these two percentages.

As a shorthand, we’ll call this average . That is, we’ll define to be the

average of the percentage of ones explained correctly and the percentage of

zeroes explained correctly. Since is a new statistic, we’ll calculate and

discuss both and throughout this chapter.

For most researchers, therefore, the major difficulty with the linear proba-

bility model is the unboundedness of the predicted . Take another look at

Figure 1 for a graphical interpretation of the situation. Because of the linear

relationship between the can fall well outside the relevant

range of 0 to 1. Using the linear probability model, despite this unbounded-

ness problem, may not cause insurmountable difficulties. In particular, the

signs and general significance levels of the estimated coefficients of the linear

probability model are often similar to those of the alternatives we will dis-

cuss later in this chapter.

One simplistic way to get around the unboundedness problem is to 

assign to all values of above 1 and to all negative val-

ues. This approach copes with the problem by ignoring it, since an obser-

vation for which the linear probability model predicts a probability of 

2.0 has been judged to be more likely to be equal to 1.0 than an observa-

tion for which the model predicts a 1.0, and yet they are lumped together.

Even isn’t very useful, because it implies that events will happen

with certainty, surely a foolish prediction to make. What is needed is a 

systematic method of forcing the to range from 0 to 1 in a smooth and

meaningful fashion. We’ll present such a method, the binomial logit, in

Section 2.

D̂is

D̂i 5 1

D̂i 5 0.0D̂iD̂i 5 1.0

Xis and D̂i, D̂i

Dis

R2R2
p

R2
p

R2
pR2

p

R2
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An Example of a Linear Probability Model

Before moving on to investigate the logit, however, let’s take a look at an exam-

ple of a linear probability model: a disaggregate study of the labor force par-

ticipation of women.

A person is defined as being in the labor force if she either has a job or is

actively looking for a job. Thus, a disaggregate (cross-sectional by person)

study of women’s labor force participation is appropriately modeled with a

dummy dependent variable:

Di � 1 if the ith woman has or is looking for a job,

0 otherwise (not in the labor force)

A review of the literature reveals that there are many potentially relevant

independent variables. Two of the most important are the marital status and

the number of years of schooling of the woman. The expected signs for the

coefficients of these variables are fairly straightforward, since a woman who

is unmarried and well educated is much more likely to be in the labor force

than her opposite:

(4)

where: Mi 5 1 if the ith woman is married and 0 otherwise

Si 5 the number of years of schooling of the ith woman

The data are presented in Table 1. The sample size is limited to 30 in order

to make it easier for readers to enter the dataset on their own. Unfortunately,

such a small sample will make hypothesis testing fairly unreliable. Table 1 also

includes the age of the ith woman for use in Exercises 8 and 9. Another typi-

cally used variable, Oi 5 other income available to the ith woman, is not avail-

able for this sample, introducing possible omitted variable bias.

If we choose a linear functional form for both independent variables,

we’ve got a linear probability model:

(5)

If we now estimate Equation 5 with the data on the labor force participation

of women from Table 1, we obtain (standard errors in parentheses):

(6)

  N 5 30   R2 5 .32   R2
p 5 .81

 (0.15)  (0.03) 

D̂i 5 2 0.28 2 0.38Mi 1 0.09Si

Di 5 �0 1 �1Mi 1 �2Si 1 �i

Di 5 f(M
2

i, S
1

i) 1 �i
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How do these results look? Despite the small sample and the possible bias

due to omitting Oi, both independent variables have estimated coefficients

that are significant in the expected direction. In addition, the 2 of .32 is fairly

high for a linear probability model (since Di equals only 0 or 1, it’s almost im-

possible to get an 2 much higher than .70). Further evidence of good fit is the

fairly high 2
p of .81, meaning that an average of 81 percent of the choices were

explained “correctly” by Equation 6.

R

R

R

Table 1 Data on the Labor Force Participation of Women

Observation # Di Mi Ai Si i

1 1.0 0.0 31.0 16.0 1.20

2 1.0 1.0 34.0 14.0 0.63

3 1.0 1.0 41.0 16.0 0.82

4 0.0 0.0 67.0 9.0 0.55

5 1.0 0.0 25.0 12.0 0.83

6 0.0 1.0 58.0 12.0 0.45

7 1.0 0.0 45.0 14.0 1.01

8 1.0 0.0 55.0 10.0 0.64

9 0.0 0.0 43.0 12.0 0.83

10 1.0 0.0 55.0 8.0 0.45

11 1.0 0.0 25.0 11.0 0.73

12 1.0 0.0 41.0 14.0 1.01

13 0.0 1.0 62.0 12.0 0.45

14 1.0 1.0 51.0 13.0 0.54

15 0.0 1.0 39.0 9.0 0.17

16 1.0 0.0 35.0 10.0 0.64

17 1.0 1.0 40.0 14.0 0.63

18 0.0 1.0 43.0 10.0 0.26

19 0.0 1.0 37.0 12.0 0.45

20 1.0 0.0 27.0 13.0 0.92

21 1.0 0.0 28.0 14.0 1.01

22 1.0 1.0 48.0 12.0 0.45

23 0.0 1.0 66.0 7.0 20.01

24 0.0 1.0 44.0 11.0 0.35

25 0.0 1.0 21.0 12.0 0.45

26 1.0 1.0 40.0 10.0 0.26

27 1.0 0.0 41.0 15.0 1.11

28 0.0 1.0 23.0 10.0 0.26

29 0.0 1.0 31.0 11.0 0.35

30 1.0 1.0 44.0 12.0 0.45

D̂

Datafile � WOMEN13
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We need to be careful when we interpret the estimated coefficients in

Equation 6, however. Remember that the slope coefficient in a linear proba-

bility model represents the change in the probability that Di equals one

caused by a one-unit increase in the independent variable (holding the other

independent variables constant). Viewed in this context, do the estimated

coefficients make economic sense? The answer is yes: the probability of a

woman participating in the labor force falls by 38 percent if she is married

(holding constant schooling). Each year of schooling increases the probability

of labor force participation by 9 percent (holding constant marital status).

The values for have been included in Table 1. Note that is indeed

often outside the meaningful range of 0 and 1, causing most of the problems

cited earlier. To attack this problem of the unboundedness of however, we

need a new estimation technique, so let’s take a look at one.

The Binomial Logit Model

What Is the Binomial Logit?

The binomial logit is an estimation technique for equations with dummy

dependent variables that avoids the unboundedness problem of the linear

probability model by using a variant of the cumulative logistic function:

(7)

Are the produced by a logit now limited by 0 and 1? The answer is yes,

but to see why we need to take a close look at Equation 7. What is the largest

that can be? Well, if equals infinity, then:

(8)

because e to the minus infinity equals zero. What’s the smallest that can

be? If equals minus infinity, then:

(9)

Thus, is bounded by 1 and 0. As can be seen in Figure 2, approaches 1

and 0 very slowly (asymptotically). The binomial logit model therefore

D̂iD̂i

D̂i 5
1

1 1 e
` 5

1

`
5 0

�̂0 1 �̂1X1i 1 �̂2X2i

D̂i

D̂i 5
1

1 1 e
2` 5

1

1
5 1

�̂0 1 �̂1X1i 1 �̂2X2iD̂i

D̂is

Di 5
1

1 1 e
2f�01�1X1i1�2X2i1�ig

2

D̂i,

D̂iD̂i
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Di

Di = 1

1 > Di > 0

Di = 0
X1

(Holding X2 Constant)

Logit

Linear Probability Model
(for comparison purposes)

Figure 2 i Is Bounded by 0 and 1 in a Binomial Logit Model

In a binomial logit model, is nonlinearly related to X1, so even exceptionally large 

or small values of X1i, holding X2i constant, will not produce values of outside the

meaningful range of 0 to 1.

D̂i

D̂i

D̂

avoids the major problem that the linear probability model encounters in

dealing with dummy dependent variables. In addition, the logit is quite sat-

isfying to most researchers because it turns out that real-world data often

are described well by S-shape patterns like that in Figure 2.

Logits cannot be estimated using OLS. Instead, we use maximum likeli-

hood (ML), an iterative estimation technique that is especially useful for

equations that are nonlinear in the coefficients. ML estimation is inher-

ently different from least squares in that it chooses coefficient estimates that
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4. Actually, the ML program chooses coefficient estimates that maximize the log of the proba-

bility (or likelihood) of observing the particular set of values of the dependent variable in the

sample (Y1, Y2, . . . , YN) for a given set of Xs. For more on maximum likelihood, see Robert S.

Pindyck and Daniel L. Rubinfeld, Economic Models and Economic Forecasts (New York: McGraw-Hill,

1998), pp. 51–53 and 329–330.

5. The constant term, however, needs to be adjusted. Multiply where

p1 is the proportion of the observations chosen if Di � 1 and

p2 is the proportion of the observations chosen if Di � 0. See G. S. Maddala, Limited-Dependent

and Qualitative Variables in Econometrics (Cambridge: Cambridge University Press, 1983), pp.

90–91.

�̂0 by fln(p1) 2 ln(p2)g,

maximize the likelihood of the sample data set being observed.4 Interestingly,

OLS and ML estimates are not necessarily different; for a linear equation that

meets the Classical Assumptions (including the normality assumption), ML

estimates are identical to the OLS ones.

One of the reasons that maximum likelihood is used is that ML has a

number of desirable large sample properties; ML is consistent and asymptoti-

cally efficient (unbiased and minimum variance for large samples). With very

large samples, ML has the added advantage of producing normally distrib-

uted coefficient estimates, allowing the use of typical hypothesis testing tech-

niques. As a result, sample sizes for logits should be substantially larger than

for linear regressions. Some researchers aim for samples of 500 or more.

It’s also important to make sure that a logit sample contains a reasonable

representation of both alternative choices. For instance, if 98 percent of a

sample chooses alternative A and 2 percent chooses B, a random sample of

500 would have only 10 observations that choose B. In such a situation, our

estimated coefficients would be overly reliant on the characteristics of those

10 observations. A better technique would be to disproportionately sample

from those who choose B. It turns out that using different sampling rates for

subgroups within the sample does not cause bias in the slope coefficients of

a logit model,5 even though it might do so in a linear regression.

When we estimate a logit, we apply the ML technique to Equation 7, but

that equation’s functional form is complex, so let’s try to simplify it a bit.

First, a few mathematical steps can allow us to rewrite Equation 7 so that the

right side of the equation looks identical to the linear probability model:

(10)

where is the dummy variable. If you’re interested in the math behind this

transformation, see Exercise 4.

Di

lna
Di

f1 2 Dig
b 5 �0 1 �1X1i 1 �2X2i 1 �i
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Even Equation 10 is a bit cumbersome, however, since the left side of the

equation contains the log of the ratio of to , sometimes called the

“log of the odds.” To make things simpler still, let’s adopt a shorthand for

the logit functional form on the left side of Equation 10. Let’s define:

(11)

The L indicates that the equation is a logit of the functional form in 

Equation 10 (derived from Equation 7), and the is a reminder

that the dependent variable is a dummy and that a produced by an esti-

mated logit equation is an estimate of the probability that . If we now

substitute Equation 11 into Equation 10, we get:

(12)

Equation 12 will be our standard documentation format for estimated logit

equations.

Interpreting Estimated Logit Coefficients

Once you’ve estimated a binomial logit, then hypothesis testing and the

analysis of potential econometric problems can be undertaken using the tech-

niques. The signs of the coefficients have the same meaning as they do in a

linear probability model, and the t-test can be used for tests of hypotheses

about logit coefficients.

When it comes to the economic interpretation of the estimated logit coef-

ficients, however, all this changes. In particular, the absolute sizes of esti-

mated logit coefficients tend to be quite different from the absolute sizes of

estimated linear probability model coefficients for the same specification

and the same data. What’s going on?

There are two powerful reasons for these differences. First, as you can see by

comparing Equations 1 and 10, the dependent variable in a logit equation isn’t

the same as the dependent variable in a linear probability model. Since the de-

pendent variable is different, it makes complete sense that the coefficients are

different. The second reason that logit coefficients are different is even more

dynamic. Take a look at Figure 2. The slope of the graph of the logit changes as

moves from 0 to 1! Thus the change in the probability that caused by

a one-unit increase in an independent variable (holding the other indepen-

dent variables constant) will vary as we move from to .D̂i 5 1D̂i 5 0

D̂i 5 1D̂i

L:Pr (Di 5 1) 5 �0 1 �1X1i 1 �2X2i 1 �i

Di 5 1

D̂i

“Pr(Di 5 1)”

L:Pr(Di 5 1) 5 lna
Di

f1 2 Dig
b

(1 2 Di)Di
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6. Ramu Ramanathan, Introductory Econometrics (Fort Worth: Harcourt Brace, 1998), p. 607.

7. See, for example, Jeff Wooldridge, Introductory Econometrics (Mason, OH: Southwestern,

2009), p. 584. Wooldridge also suggests a multiple of 0.40 for converting a probit coefficient

into a linear probability coefficient. We’ll briefly cover probits in Section 3.

Given all this, how can we interpret estimated logit coefficients? How can

we use them to measure the impact of an independent variable on the proba-

bility that ? It turns out that there are three reasonable ways of answer-

ing this question:

1. Change an average observation. Create an “average” observation by plug-

ging the means of all the independent variables into the estimated logit

equation and then calculating an “average” . Then increase the inde-

pendent variable of interest by one unit and recalculate the . The dif-

ference between the two tells you the impact of a one-unit increase

in that independent variable on the probability that (holding

constant the other independent variables) for an average observation.

This approach has the weakness of not being very meaningful when

one or more of the independent variables is a dummy variable (after

all, what is an average gender?), but it’s possible to work around this

weakness if you estimate the impact for an “average female” and an

“average male” by setting the dummy independent variable equal first

to zero and then to one.

2. Use a partial derivative. It turns out that if you take a derivative6 of the

logit, you’ll find that the change in the expected value of caused by a

one unit increase in holding constant the other independent vari-

ables in the equation equals . To use this formula, plug

in your estimates of and . As you can see, the marginal impact of

X does indeed depend on the value of .

3. Use a rough estimate of 0.25. The previous two methods are reasonably

accurate, but they’re hardly very handy. However, if you plug 

into the previous equation, you get the much more useful result that if

you multiply a logit coefficient by 0.25, you’ll get an equivalent linear

probability model coefficient.7

On balance, which approach do we recommend? For all situations except

those requiring precise accuracy, we find ourselves gravitating toward the third

approach. To get a rough approximation of the economic meaning of a logit co-

efficient, multiply by 0.25 (or, equivalently, divide by 4). Remember, however,

that the dependent variable in question still is the probability that .D̂i 5 1

D̂i 5 0.5

D̂i

Di�1

�̂1D̂i(1 2 D̂i)

X1i

D̂i

D̂i 5 1

D̂is

D̂i

D̂i

D̂i 5 1
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Measuring the overall fit also is not straightforward. Recall that since the

functional form of the dependent variable has been changed, should not

be used to compare the fit of a logit with an otherwise comparable linear

probability model. In addition, don’t forget the general faults 

inherent in using with equations with dummy dependent variables. Our

suggestion is to use the mean percentage of correct predictions, , from 

Section 1.

To get some practice interpreting logit estimates, let’s estimate a logit on

the same women’s labor force participation data that we used in the pre-

vious section. The OLS linear probability model estimate of that model,

Equation 6, was:

(6)

where: Di 5 1 if the ith woman is in the labor force, 0 otherwise

Mi 5 1 if the ith woman is married, 0 otherwise

Si 5 the number of years of schooling of the ith woman

If we estimate a logit on the same data (from Table 1) and the same indepen-

dent variables, we obtain:

(13)

Let’s compare Equations 6 and 13. As expected, the signs and general signifi-

cance of the slope coefficients are the same. Even if we divide the logit coeffi-

cients by 4, as suggested earlier, they still are larger than the linear probability

model coefficients. Despite these differences, the overall fits are roughly com-

parable, especially after taking account of the different dependent variables

and estimation techniques. In this example, then, the two estimation proce-

dures differ mainly in that the logit does not produce outside the range of

0 and 1.

However, if the size of the sample in this example is too small for a linear

probability model, it certainly is too small for a logit, making any in-depth

analysis of Equation 13 problematic. Instead, we’re better off finding an ex-

ample with a much larger sample.

D̂is

N 5 30  R2
p 5 .81        iterations 5 5

 t 5 2 2.19  2.19

 (1.18)  (0.31)

 L :Pr (Di 5 1) 5 2 5.89 2 2.59Mi 1 0.69Si

 N 5 30   R2 5 .32   R2
p 5 .81

 (0.15)  (0.03)

D̂i 5 2 0.28 2 0.38Mi 1 0.09Si

R2
p

R2

R2

429



DUMMY DEPENDENT VARIABLE TECHNIQUES

A More Complete Example of the Use of the Binomial Logit

For a more complete example of the binomial logit, let’s look at a model of

the probability of passing the California State Department of Motor Vehicles

drivers’ license test. To obtain a license, each driver must pass a written and a

behind-the-wheel test. Even though the tests are scored from 0 to 100, all that

matters is that you pass and get your license.

Since the test requires some boning up on traffic and safety laws, driving

students have to decide how much time to spend studying. If they don’t study

enough, they waste time because they have to retake the test. If they study too

much, however, they also waste time, because there’s no bonus for scoring

above the minimum, especially since there is no evidence that doing well on

the test has much to do with driving well after the test (this, of course, might

be worth its own econometric study).

Recently, two students decided to collect data on test takers in order to

build an equation explaining whether someone passed the Department of

Motor Vehicles test. They hoped that the model, and in particular the esti-

mated coefficient of study time, would help them decide how much time to

spend studying for the test. (Of course, it took more time to collect the data

and run the model than it would have taken to memorize the entire traffic

code, but that’s another story.)

After reviewing the literature, choosing variables, and hypothesizing signs,

the students realized that the appropriate functional form was a binomial

logit because their dependent variable was a dummy variable:

Their hypothesized equation was:

(14)

where: Ai 5 the age of the ith test taker

Hi 5 the number of hours the ith test taker studied (usually less

than one hour!)

Ei 5 a dummy variable equal to 1 if the ith test taker’s primary

language was English, 0 otherwise

Ci 5 a dummy variable equal to 1 if the ith test taker had any 

college experience, 0 otherwise

Di 5 f( A
1

i, H
1

i, E
1

i, C
1

i) 1 �i

Di 5 e
1 if the ith test taker passed the test on the first try

0 if the ith test taker failed the test on the first try
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8. For more, see G. S. Maddala, Limited Dependent Variables and Qualitative Variables in Econometrics

(Cambridge: Cambridge University Press, 1983) and T. Amemiya, “Qualitative Response Mod-

els: A Survey,” Journal of Economic Literature, Vol. 19, pp. 1483–1536. These surveys also cover

additional techniques, like the Tobit model, that are useful with bounded dependent variables

or other special situations.

After collecting data from 480 test takers, the students estimated the follow-

ing equation:

(15)

Note how similar these results look to a typical linear regression result. All the

estimated coefficients have the expected signs, and all but one are signifi-

cantly different from zero. Remember that the logit coefficients need to be

divided by 4 to get meaningful estimates of the impact of the independent

variables on the probability of passing the test. If we divide by 4, for exam-

ple, the impact of an hour’s studying turns out to be huge: according to our

estimates, the probability of passing the test would go up by 67.5 percent,

holding constant the other three independent variables. Note that

indicating that the equation correctly explained almost three quarters of the

sample based on nothing but the four variables in Equation 15.

And what about the two students? Did the equation help them? How much

did they end up deciding to study? They found that given their ages, their col-

lege experience, and their English-speaking backgrounds, the expected value

of for each of them was quite high, even if Hi was set equal to zero. So what

did they actually do? They studied for a half hour “just to be on the safe side”

and passed with flying colors, having devoted more time to passing the test

than anyone else in the history of the state.

Other Dummy Dependent Variable Techniques

Although the binomial logit is the most frequently used estimation technique

for equations with dummy dependent variables, it’s by no means the only one.

In this section, we’ll mention two alternatives, the binomial probit and the

multinomial logit, that are useful in particular circumstances. Our main goal is

to briefly describe these estimation techniques, not to cover them in any detail.8

3

D̂i

R2
p is .74,

�̂H

N 5 480  R2
p 5 .74  iterations 5 5

  t 5 1.23  4.97  4.65  4.00

  (0.009)  (0.54)  (0.34)  (0.99)

L:Pr(Di 5 1) 5 2 1.18 1 0.011Ai 1 2.70Hi 1 1.62Ei 1 3.97Ci
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The Binomial Probit Model

The binomial probit model is an estimation technique for equations with

dummy dependent variables that avoids the unboundedness problem of the lin-

ear probability model by using a variant of the cumulative normal distribution.

(16)

where: Pi 5 the probability that the dummy variable Di 5 1

Zi 5

s 5 a standardized normal variable

As different as this probit looks from the logit that we examined in the pre-

vious section, it can be rewritten to look quite familiar:

(17)

where is the inverse of the normal cumulative distribution function.

Probit models typically are estimated by applying maximum likelihood tech-

niques to the model in the form of Equation 16, but the results often are pre-

sented in the format of Equation 17.

The fact that both the logit and the probit are cumulative distributive func-

tions means that the two have similar properties. For example, a graph of the

probit looks almost exactly like the logit in Figure 2. In addition, the probit

has the same requirement of a fairly large sample before hypothesis testing

becomes meaningful. Finally, continues to be of questionable value as a

measure of overall fit.

From a researcher’s point of view, the probit is theoretically appealing be-

cause many economic variables are normally distributed. With extremely large

samples, this advantage falls away, since maximum likelihood procedures can

be shown to be asymptotically normal under fairly general conditions.

For an example of a probit, let’s estimate one on the same women’s labor

force participation data we used in the previous logit and linear probability

examples (standard errors in parentheses):

(18)

Compare this result with Equation 13 from the previous section. Note that

except for a slight difference in the scale of the coefficients, the logit and pro-

bit models provide virtually identical results in this example.

N 5 30  R2
p 5 .81  iterations 5 5

 (0.62)  (0.17)

Ẑi 5 �21(Pi) 5 2 3.44 2 1.44Mi 1 0.40Si

R2

�21

Zi 5 �21(Pi) 5 �0 1 �1X1i 1 �2X2i

�0 1 �1X1i 1 �2X2i

Pi 5
1

"2�
 3

Zi

2`

 e2s2>2 ds
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The Multinomial Logit Model

In many cases, there are more than two qualitative choices available. In some

cities, for instance, a commuter has a choice of car, bus, or subway for the trip

to work. How could we build and estimate a model of choosing from more

than two different alternatives?

One answer is to hypothesize that choices are made sequentially and to

model a multichoice decision as a series of binary decisions. For example,

we might hypothesize that the commuter would first decide whether to

drive to work, and we could build a binary model of car versus public trans-

portation. For those commuters who choose public transportation, the next

step would be to choose whether to take the bus or the subway, and we

could build a second binary model of that choice. This method, called a

sequential binary logit, is cumbersome and at times unrealistic, but it does

allow a researcher to use a binary technique to model an inherently multi-

choice decision.

If a decision between multiple alternatives is truly made simultaneously, a

better approach is to build a multinomial logit model of the decision. A

multinomial logit model is an extension of the binomial logit technique

that allows several discrete alternatives to be considered at the same time. 

If there are N different alternatives, we need dummy variables to 

describe the choice, with each dummy equalling 1 only when that particular

alternative is chosen. For example, D1i would equal 1 if the ith person chose

alternative number 1 and would equal 0 otherwise. As before, the probability

that D1i is equal to 1, P1i, cannot be observed.

In a multinomial logit, one alternative is selected as the “base” alternative,

and then each other possible choice is compared to this base alternative with

a logit equation. A key distinction is that the dependent variable of these

equations is the log of the odds of the ith alternative being chosen compared

to the base alternative:

(19)

where: P1i 5 the probability of the ith person choosing the first alternative

Pbi 5 the probability of the ith person choosing the base alternative

If there are N alternatives, there should be different logit equations in

the multinomial logit model system, because the coefficients of the last equa-

tion can be calculated from the coefficients of the first equations. (If

you know that then you can calculate that A>B 5 3.)A>C 5 6 and B>C 5 2,

N 2 1

N 2 1

lna
P

1i

Pbi
b

N 2 1
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For example, if N � 3, as in the commuter-work-trip example cited previ-

ously, and the base alternative is taking the bus, then a multinomial logit

model would have a system of two equations:

(20)

(21)

where s � subway, c � car, and b � bus.

Summary

1. A linear probability model is a linear-in-the-coefficients equation

used to explain a dummy dependent variable (Di). The expected value

of Di is the probability that Di equals 1.

2. The estimation of a linear probability model with OLS encounters

two major problems:

a. is not an accurate measure of overall fit.

b. The expected value of Di is not limited by 0 and 1.

3. When measuring the overall fit of equations with dummy dependent

variables, an alternative to the average percentage of the 

observations in the sample that a particular estimated equation

would have explained correctly.

4. The binomial logit is an estimation technique for equations with

dummy dependent variables that avoids the unboundedness problem

of the linear probability model by using a variant of the cumulative

logistic function:

5. The binomial logit is best estimated using the maximum likelihood

technique and a large sample. A slope coefficient from a logit mea-

sures the impact of a one-unit increase of the independent variable in

question (holding the other explanatory variables constant) on the

log of the odds of a given choice.

L:Pr (Di 5 1) 5 lna
D

i

f1 2 Dig
b 5 �0 1 �1X1i 1 �2X2i 1 �i

R2 is R2
p,

R2

4

lna
P

ci

Pbi
b 5 �0 1 �1X1i 1 �2X3i

lna
P

si

Pbi
b 5 �0 1 �1X1i 1 �2X2i
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6. The binomial probit model is an estimation technique for equations

with dummy dependent variables that uses the cumulative normal

distribution function. The binomial probit has properties quite simi-

lar to the binomial logit.

7. The multinomial logit model is an extension of the binomial logit that al-

lows more than two discrete alternatives to be considered simultaneously.

EXERCISES

(The answer to Exercise 2 is at the end of the chapter.)

1. Write the meaning of each of the following terms without referring to

the book (or your notes), and compare your definition with the ver-

sion in the text for each:

a. linear probability model

b.

c. binomial logit model

d. The interpretation of an estimated logit coefficient

e. binomial probit model

f. sequential binary model

g. multinomial logit model

2. R. Amatya9 estimated the following logit model of birth control for

1,145 continuously married women aged 35 to 44 in Nepal:

where: Di 5 1 if the ith woman has ever used a recognized form

of birth control, 0 otherwise

WNi 5 1 if the ith woman wants no more children, 

0 otherwise

MEi 5 number of methods of birth control known to the

ith woman

 t 5 5.64  10.36

 (0.36)  (0.14)

L:Pr(Di 5 1) 5 2 4.47 1 2.03WNi 1 1.45MEi

R2
p

9. Ramesh Amatya, “Supply-Demand Analysis of Differences in Contraceptive Use in Seven

Asian Nations” (paper presented at the Annual Meetings of the Western Economic Association,

1988, Los Angeles).
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a. Explain the theoretical meaning of the coefficients for WN and ME.

How would your answer differ if this were a linear probability model?

b. Do the signs, sizes, and significance of the estimated slope coeffi-

cients meet your expectations? Why or why not?

c. What is the theoretical significance of the constant term in this

equation?

d. If you could make one change in the specification of this equation,

what would it be? Explain your reasoning.

3. Bond ratings are letter ratings (Aaa 5 best) assigned to firms that issue

debt. These ratings measure the quality of the firm from the point of

view of the likelihood of repayment of the bond. Suppose you’ve been

hired by an arbitrage house that wants to predict Moody’s Bond Ratings

before they’re published in order to buy bonds whose ratings are going

to improve. In particular, suppose your firm wants to distinguish be-

tween A-rated bonds (high quality) and B-rated bonds (medium qual-

ity) and has collected a data set of 200 bonds with which to estimate a

model. As you arrive on the job, your boss is about to buy bonds based

on the results of the following model (standard errors in parentheses):

where: Yi 5 1 if the rating of the ith bond 5 A, 0 otherwise

Pi 5 the profit rate of the firm that issued the ith bond

PVi 5 the standard deviation of Pi over the last five years

Di 5 the ratio of debt to total capitalization of the firm

that issued the ith bond

a. What econometric problems, if any, exist in this equation?

b. What suggestions would you have for a rerun of this equation with

a different specification?

c. Suppose that your boss rejects your suggestions, saying, “This is the

real world, and I’m sure that my model will forecast bond ratings

just as well as yours will.” How would you respond? (Hint: Saying

“Okay, boss, you win,” is sure to keep your job for you, but it won’t

get much credit on this question.)

4. Show that the logistic function, is indeed equiva-

lent to the binomial logit model, , where

Z 5 �0 1 �1X1 1 �2X2 1 �.

lnfD>(1 2 D)g 5 Z

D 5 1>(1 1 e2Z),

R2 5 .69  DW 5 0.50  N 5 200

 (0.05)  (0.02)  (0.002)

Ŷi 5 0.70 1 0.05Pi 1 0.05PVi 2 0.020Di
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5. On graph paper, plot each of the following models. For what range of

Xi is 

a.

b.

c.

d.

e.

f.

6. Because their college had just upgraded its residence halls, two seniors

decided to build a model of the decision to live on campus. They col-

lected data from 533 upper-class students (first-year students were

required to live on campus) and estimated the following equation:

L:Pr(Di � 1) � 3.26 � 0.03UNITi � 0.13ALCOi � 0.99YEARi � 0.39GREKi
(0.04) (0.08) (0.12) (0.21)

t � � 0.84 �1.55 � 8.25 �1.38

N � 533 R2
p � .668 iterations � 4

where: Di � 1 if the ith student lived on campus, 0 otherwise

UNITi � the number of academic units the ith student was

taking

ALCOi � the nights per week that the ith student consumed

alcohol

YEARi � 2 if the ith student was a sophomore, 3 if a junior,

and 4 if a senior 

GREKi � 1 if the ith student was a member of a fraternity/

sorority, 0 otherwise

a. The two seniors expected UNIT to have a positive coefficient and

the other variables to have negative coefficients. Test these hypothe-

ses at the 10-percent level.

b. What problem do you see with the definition of the YEAR vari-

able? What constraint does this definition place on the estimated

coefficients?

c. Carefully state the meaning of the coefficient of ALCO and analyze

the size of the coefficient. (Hint: Be sure to discuss how the size of

the coefficient compares with your expectations.)

d. If you could add one variable to this equation, what would it be?

Explain.

7. What happens if we define a dummy dependent variable over a range

other than 0 to 1? For example, suppose that in the research cited in

lnfDi>(1 2 Di)g 5 2 1.0 1 0.3Xi

lnfDi>(1 2 Di)g 5 3.0 2 0.2Xi

lnfDi>(1 2 Di)g 5 0.3 1 0.1Xi

D̂i 5 21.0 1 0.3Xi

D̂i 5 3.0 2 0.2Xi

D̂i 5 0.3 1 0.1Xi

1 , D̂i? How about D̂i , 0?
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Exercise 2, Amatya had defined Di as being equal to 2 if the ith

woman had ever used birth control, 0 otherwise.

a. What would happen to the size and theoretical meaning of the esti-

mated logit coefficients? Would they stay the same? Would they

change? (If so, how?)

b. How would your answers to part a change if Amatya had estimated

a linear probability model instead of a binomial logit?

8. Return to our data on women’s labor force participation and consider

the possibility of adding Ai, the age of the ith woman, to the equation.

Be careful when you develop your expected sign and functional form

because the expected impact of age on labor force participation is diffi-

cult to pin down. For instance, some women drop out of the labor force

when they get married, but others continue working even while they’re

raising their children. Still others work until they get married, stay at

home to have children, and then return to the workforce once the chil-

dren reach school age. Malcolm Cohen et al., for example, found the

age of a woman to be relatively unimportant in determining labor force

participation, except for women who were 65 and older and were likely

to have retired.10 The net result for our model is that age appears to be a

theoretically irrelevant variable. A possible exception, however, is a

dummy variable equal to 1 if the ith woman is 65 or over, 0 otherwise.

a. Look over the data set in Table 1. What problems do you see with

adding an independent variable equal to 1 if the ith woman is 65

or older and 0 otherwise?

b. If you go ahead and add the dummy implied to Equation 13 

and reestimate the model, you obtain Equation 22. Which 

equation do you prefer, Equation 13 or Equation 22? Explain your

answer.

(22)

where: ADi 5 1 if the age of the ith woman is 0 otherwise

9. To get practice in actually estimating your own linear probability,

logit, and probit equations, test the possibility that age (Ai) is actually

.65,

N 5 30  R2
p 5 .82  iterations 5 5

 t 5 2 2.19  2.19  2 0.01

 (1.18)  (0.31)  (0.30)

L:Pr(Di 5 1) 5 2 5.89 2 2.59Mi 1 0.69Si 2 0.03ADi

10. Malcolm Cohen, Samuel A. Rea, Jr., and Robert I. Lerman, A Micro Model of Labor Supply

(Washington, D.C.: U.S. Bureau of Labor Statistics, 1970), p. 212.
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a relevant variable in our women’s labor force participation model.

That is, take the data from Table 1 and estimate each of the following

equations. Then use our specification criteria to compare your equa-

tion with the parallel version in the text (without Ai). Explain why you

do or do not think that age is a relevant variable. (Hint: Be sure to cal-

culate .)

a. the linear probability model D 5 f(M,A,S)

b. the logit D 5 f(M,A,S)

c. the probit D 5 f(M,A,S)

10. An article published in a book edited by A. Kouskoulaf and B. Lytle11

presents coefficients from an estimated logit model of the choice be-

tween the car and public transportation for the trip to work in Boston.

All three public transportation modes in Boston (bus, subway, and

train, of which train is the most preferred) were lumped together as a

single alternative to the car in a binomial logit model. The dependent

variable was the log of the odds of taking public transportation for

the trip to work, so the first coefficient implies that as income rises,

the log of the odds of taking public transportation falls, and so on.

Independent Variable Coefficient

Family income (9 categories with 20.12

1 5 low and 9 5 high)

Number employed in the family 21.09

Out-of-pocket costs (cents) 23.16

Wait time (tenths of minutes) 0.18

Walk time (tenths of minutes) 20.03

In-vehicle travel time (tenths of minutes) 20.01

The last four variables are defined as the difference between the value

of the variable for taking public transportation and its value for taking

the car.

a. Do the signs of the estimated coefficients agree with your prior ex-

pectations? Which one(s) differ?

b. The transportation literature hypothesizes that people would rather

spend time traveling in a vehicle than waiting for or walking to that

vehicle. Do the sizes of the estimated coefficients of time support

this hypothesis?

R2
p

11. “The Use of the Multinomial Logit in Transportation Analysis,” in A. Kouskoulaf and B. Lytle,

eds. Urban Housing and Transportation (Detroit: Wayne State University, 1975), pp. 87–90.
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c. Since trains run relatively infrequently, the researchers set wait time

for train riders fairly high. Most trains run on known schedules,

however, so the average commuter learns that schedule and attempts

to hold down wait time. Does this fact explain any of the unusual

results indicated in your answers to parts a and b?

11. Suppose that you want to build a multinomial logit model of how

students choose which college to attend. For the sake of simplicity,

let’s assume that there are only four colleges to choose from: your col-

lege (c), the state university (u), the local junior college (j), and the

nearby private liberal arts college (a). Further assume that everyone

agrees that the important variables in such a model are the family

income (Y) of each student, the average SAT scores of each college

(SAT), and the tuition (T) of each college.

a. How many equations should there be in such a multinomial logit

system?

b. If your college is the base, write out the definition of the dependent

variable for each equation.

12. In 2008, Goldman and Romley12 studied hospital demand by analyzing

how 8,721 Medicare-covered pneumonia patients chose from among

117 hospitals in the greater Los Angeles area. The authors concluded that

clinical quality (as measured by a low pneumonia mortality rate) played

a smaller role in hospital choice than did a variety of other factors.

Let’s focus on a subset of the Goldman–Romley sample: the 499

patients who chose either the UCLA Medical Center or the nearby

Cedars Sinai Medical Center. Typically, economists would expect

price to have a major influence on such a choice, but Medicare patients

pay roughly the same price no matter what hospital they choose. 

Instead, factors like the distance the patient lives from the hospital

and the age and income of the patient become potentially important

factors:

L:Pr(Di � 1) � 4.41 � 0.38DISTANCEi � 0.072INCOMEi � 0.29OLDi (23)

(0.05) (0.036) (0.31)

t � � 8.12 � 2.00 � 0.94

N � 499 R2
p � .66 iterations � 8

12. Dana Goldman and John Romley, “Hospitals as Hotels: The Role of Patient Amenities in

Hospital Demand,” NBER Working Paper 14619, December 2008. We appreciate the permission

of the authors to use a portion of their data set.
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where: Di � 1 if the ith patient chose Cedars Sinai, 0 if they

chose UCLA 

DISTANCEi � the distance from the ith patient’s (according

to zip code) to Cedars Sinai minus the distance

from that point to the UCLA Medical Center

(in miles)

INCOMEi � the income of the ith patient (as measured 

by the average income of their zip code in

thousands of dollars)

OLDi � 1 if the ith patient was older than 75, 0 

otherwise

a. Create and test appropriate hypotheses about the coefficient of

DISTANCE at the 5-percent level.

b. Carefully state the meaning of the estimated coefficient of DISTANCE

in terms of the “per mile” impact on the probability of choosing

Cedars Sinai Medical Center.

c. Think about the definition of DISTANCE. Why do you think we de-

fined DISTANCE as the difference between the distances as op-

posed to entering the distance to Cedars and the distance to UCLA

as two different independent variables?

d. This data set is available on our Web site (www.pearsonhighered.

com/studenmund) and data disc as datafile � HOSPITAL13. Load

the data into your computer and use EViews, Stata, or your com-

puter’s regression program to estimate the linear probability model

and probit versions of this equation. What is the coefficient of DIS-

TANCE in your two estimates? Which model do you prefer? Ex-

plain. (Hint: It also makes sense to estimate a logit, just to make

sure that you’re using the same sample.)

e. (optional) Now create a slope dummy by adding OLD∗DISTANCE

to Equation 23 and estimating a new logit equation. Why do you

think we’re suggesting this particular slope dummy? Create and test

the appropriate hypotheses about the slope dummy at the 

5-percent level. Which equation do you prefer, Equation 23 or the

new slope dummy logit? Explain.
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Answers

Exercise 2

a. WN: The log of the odds that a woman has used a recognized

form of birth control is 2.03 higher if she doesn’t want any

more children than it is if she wants more children, holding ME

constant.

ME: A one-unit increase in the number of methods of birth con-

trol known to a woman increases the log of the odds that she has

used a form of birth control by 1.45, holding WN constant.

LPM: If the model were a linear probability model, then each in-

dividual slope coefficient would represent the impact of a one-

unit increase in the independent variable on the probability that

the ith woman had ever used a recognized form of birth control,

holding the other independent variable constant.

b. Yes, but we didn’t expect ME to be more significant than WN.

c. As we’ve said before, �0 has virtually no theoretical signifi-

cance. See Section 7.1.

d. We’d add one of a number of potentially relevant variables; for

instance, the educational level of the ith woman, whether the ith

woman lives in a rural area, and so on.

�̂�̂
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Simultaneous Equations
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1 Structural and Reduced-Form Equations

2 The Bias of Ordinary Least Squares (OLS)

3 Two-Stage Least Squares (2SLS)

4 The Identification Problem

5 Summary and Exercises

6 Appendix: Errors in the Variables

Simultaneous Equations

The most important models in economics and business are simultaneous in

nature. Supply and demand, for example, is obviously simultaneous. To

study the demand for chicken without also looking at the supply of chicken

is to take a chance on missing important linkages and thus making signifi-

cant mistakes. Virtually all the major approaches to macroeconomics, from

Keynesian aggregate demand models to rational expectations schemes, are

inherently simultaneous. Even models that appear to be inherently single-

equation in nature often turn out to be much more simultaneous than you

might think. The price of housing, for instance, is dramatically affected by the

level of economic activity, the prevailing rate of interest in alternative assets,

and a number of other simultaneously determined variables.

All this wouldn’t mean much to econometricians if it weren’t for the fact

that the estimation of simultaneous equations systems with OLS causes a

number of difficulties that aren’t encountered with single equations. Most

important, Classical Assumption III, which states that all explanatory vari-

ables should be uncorrelated with the error term, is violated in simultaneous

models. Mainly because of this, OLS coefficient estimates are biased in si-

multaneous models. As a result, an alternative estimation procedure called

Two-Stage Least Squares usually is employed in such models instead of OLS.

You’re probably wondering why we’ve waited until now to discuss simulta-

neous equations if they’re so important in economics and if OLS encounters

bias when estimating them. The answer is that the simultaneous estimation
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1. This also depends on how hungry you are, which is a function of how hard you’re working,

which depends on how many chickens you have to take care of. (Although this chicken/egg ex-

ample is simultaneous in an annual model, it would not be truly simultaneous in a quarterly or

monthly model because of the time lags involved.)

of an equation changes every time the specification of any equation in the

entire system is changed, so a researcher must be well equipped to deal with

specification problems. As a result, it does not make sense to learn how to es-

timate a simultaneous system until you are fairly adept at estimating a single

equation.

Structural and Reduced-Form Equations

Before we can study the problems encountered in the estimation of simulta-

neous equations, we need to introduce a few concepts.

The Nature of Simultaneous Equations Systems

Which came first, the chicken or the egg? This question is impossible to an-

swer satisfactorily because chickens and eggs are jointly determined; there is

a two-way causal relationship between the variables. The more eggs you have,

the more chickens you’ll get, but the more chickens you have, the more eggs

you’ll get.1 More realistically, the economic world is full of the kind of

feedback effects and dual causality that require the application of simultaneous

equations. Besides the supply and demand and simple macroeconomic

model examples mentioned previously, we could talk about the dual causal-

ity of population size and food supply, the joint determination of wages and

prices, or the interaction between foreign exchange rates and international

trade and capital flows. In a typical econometric equation:

(1)

a simultaneous system is one in which Y clearly has an effect on at least one

of the Xs in addition to the effect that the Xs have on Y.

Such topics are usually modeled by distinguishing between variables that

are simultaneously determined (the Ys, called endogenous variables) and

those that are not (the Xs, called exogenous variables):

(2)

(3)Y2t 5 �0 1 �1Y1t 1 �2X3t 1 �3X2t 1 �2t

Y1t 5 �0 1 �1Y2t 1 �2X1t 1 �3X2t 1 �1t

Yt 5 �0 1 �1X1t 1 �2X2t 1 �t

1
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For example, Y1 and Y2 might be the quantity and price of chicken (respec-

tively), X1 the income of the consumers, X2 the price of beef (beef is a sub-

stitute for chicken in both consumption and production), and X3 the price

of chicken feed. With these definitions, Equation 2 would characterize the

behavior of consumers of chickens and Equation 3 the behavior of suppli-

ers of chickens. These behavioral equations are also called structural equa-

tions. Structural equations characterize the underlying economic theory

behind each endogenous variable by expressing it in terms of both endoge-

nous and exogenous variables. Researchers must view them as an entire sys-

tem in order to see all the feedback loops involved. For example, the Ys are

jointly determined, so a change in Y1 will cause a change in Y2, which will

in turn cause Y1 to change again. Contrast this feedback with a change in

X1, which will not eventually loop back and cause X1 to change again. The

and the in the equation are structural coefficients, and hypotheses

should be made about their signs just as we did with the regression coeffi-

cients of single equations.

Note that a variable is endogenous because it is jointly determined, not

just because it appears in both equations. That is, X2, which is the price of

beef but could be another factor beyond our control, is in both equations

but is still exogenous in nature because it is not simultaneously determined

within the chicken market. In a large general equilibrium model of the entire

economy, however, such a price variable would also likely be endogenous.

How do you decide whether a particular variable should be endogenous or

exogenous? Some variables are almost always exogenous (the weather, for

example), but most others can be considered either endogenous or exoge-

nous, depending on the number and characteristics of the other equations

in the system. Thus, the distinction between endogenous and exogenous

variables usually depends on how the researcher defines the scope of the

research project.

Sometimes, lagged endogenous variables appear in simultaneous sys-

tems, usually when the equations involved are distributed lag equations.

Be careful! Such lagged endogenous variables are not simultaneously de-

termined in the current time period. They thus have more in common

with exogenous variables than with nonlagged endogenous variables. To

avoid problems, we’ll define the term predetermined variable to include

all exogenous variables and lagged endogenous variables. “Predeter-

mined” implies that exogenous and lagged endogenous variables are de-

termined outside the system of specified equations or prior to the current

period. Endogenous variables that are not lagged are not predetermined,

because they are jointly determined by the system in the current time 

period. Therefore, econometricians tend to speak in terms of endogenous

�s�s
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and predetermined variables when discussing simultaneous equations 

systems.

Let’s look at the specification of a simple supply and demand model, say

for the “cola” soft-drink industry:

(4)

(5)

where: QDt 5 the quantity of cola demanded in time period t

QSt 5 the quantity of cola supplied in time period t

Pt 5 the price of cola in time period t

X1t 5 dollars of advertising for cola in time period t

X2t 5 another “demand-side” exogenous variable (e.g., income

or the prices or advertising of other drinks)

X3t 5 a “supply-side” exogenous variable (e.g., the price of artifi-

cial flavors or other factors of production)

5 classical error terms (each equation has its own error term,

subscripted “D” and “S” for demand and supply)

In this case, price and quantity are simultaneously determined, but price,

one of the endogenous variables, is not on the left side of any of the equa-

tions. It’s incorrect to assume automatically that the endogenous variables

are those that appear on the left side of at least one equation; in this case, we

could have just as easily written Equation 5 with price on the left side and

quantity supplied on the right side, as we did in the chicken example in

Equations 2 and 3. Although the estimated coefficients would be different,

the underlying relations would not. Note also that there must be as many

equations as there are endogenous variables. In this case, the three endoge-

nous variables are QD, QS, and P.

What would be the expected signs for the coefficients of the price vari-

ables in Equations 4 and 5? We’d expect price to enter negatively in the

demand equation but to enter positively in the supply equation. The

higher the price, after all, the less quantity will be demanded, but the

more quantity will be supplied. These signs would result in the typical

supply and demand diagram (Figure 1) that we’re all used to. Look at Equa-

tions 4 and 5 again, however, and note that they would be identical but for

the different predetermined variables. What would happen if we accidentally

�t

QSt  5 QDt (equilibrium condition)

QSt  5 �0 1 �1Pt 1 �2X3t 1 �St

QDt 5 �0 1 �1Pt 1 �2X1t 1 �3X2t 1 �Dt
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0 QQD = QS

S = Equation 14.5
�1 > 0

D = Equation 14.4
α1 < 0

P

Pe

put a supply-side predetermined variable in the demand equation or vice

versa? We’d have a very difficult time identifying which equation was which,

and the expected signs for the coefficients of the endogenous variable P

would become ambiguous. As a result, we must take care when specifying

the structural equations in a system.

Simultaneous Systems Violate Classical Assumption III

Recall that Classical Assumption III states that the error term and each ex-

planatory variable must be uncorrelated with each other. If there is such a

correlation, then the OLS regression estimation program is likely to attribute

to the particular explanatory variable variations in the dependent variable

that are actually being caused by variations in the error term. The result will

be biased estimates.

To see why simultaneous equations violate the assumption of indepen-

dence between the error term and the explanatory variables, look again 

Figure 1 Supply and Demand Simultaneous Equations

An example of simultaneous equations that jointly determine two endogenous variables is

the supply and demand for a product. In this case, Equation 4, the downward-sloping de-

mand function, and Equation 5, the upward-sloping supply function, intersect at the equi-

librium price and quantity for this market.
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2. This assumes that is negative, Y2 will decrease and there will be a negative

correlation between and Y2, but this negative correlation will still violate Classical Assump-

tion III. Also note that both Equations 2 and 3 could have Y1t on the left side; if two variables

are jointly determined, it doesn’t matter which variable is considered dependent and which ex-

planatory, because they are actually mutually dependent. We used this kind of simultaneous

system in the cola model portrayed in Equations 4 and 5.

�1

�1 is positive. If �1

at a simultaneous system, Equations 2 and 3 (repeated with directional

errors):

(2)

(3)

Let’s work through the system and see what happens when one of the error

terms increases, holding everything else in the equations constant:

1. If increases in a particular time period, Y1 will also increase due to

Equation 2.

2. If Y1 increases, Y2 will also rise2 due to Equation 3.

3. But if Y2 increases in Equation 3, it also increases in Equation 2 where

it is an explanatory variable.

Thus, an increase in the error term of an equation causes an increase in an

explanatory variable in the same equation: If increases, Y1 increases, and

then Y2 increases, violating the assumption of independence between the

error term and the explanatory variables.

This is not an isolated result that depends on the particular equations in-

volved. Indeed, as you’ll find in Exercise 3, this result works for other error

terms, equations, and simultaneous systems. All that is required for the viola-

tion of Classical Assumption III is that there be endogenous variables that are

jointly determined in a system of simultaneous equations.

Reduced-Form Equations

An alternative way of expressing a simultaneous equations system is

through the use of reduced-form equations, equations that express a par-

ticular endogenous variable solely in terms of an error term and all the

predetermined (exogenous plus lagged endogenous) variables in the si-

multaneous system.

�1

�1

Y2t 5 �0 1 �1Y1t 1 �2X3t 1 �3X2t 1 �2t

 c  c

Y1t 5 �0 1 �1Y2t 1 �2X1t 1 �3X2t 1 �1t

 c  c  c
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The reduced-form equations for the structural Equations 2 and 3 would

thus be:

(6)

(7)

where the vs are stochastic error terms and the are called reduced-form

coefficients because they are the coefficients of the predetermined variables

in the reduced-form equations. Note that each equation includes only one

endogenous variable, the dependent variable, and that each equation has ex-

actly the same set of predetermined variables. The reduced-form coefficients,

such as are known as impact multipliers because they measure

the impact on the endogenous variable of a one-unit increase in the value of

the predetermined variable, after allowing for the feedback effects from the

entire simultaneous system.

There are at least three reasons for using reduced-form equations:

1. Since the reduced-form equations have no inherent simultaneity, they do

not violate Classical Assumption III. Therefore, they can be estimated

with OLS without encountering the problems discussed in this chapter.

2. The interpretation of the reduced-form coefficients as impact multipli-

ers means that they have economic meaning and useful applications of

their own. For example, if you wanted to compare a government spend-

ing increase with a tax cut in terms of the per-dollar impact in the first

year, estimates of the impact multipliers (reduced-form coefficients or

) would allow such a comparison.

3. Perhaps most importantly, reduced-form equations play a crucial role

in the estimation technique most frequently used for simultaneous

equations. This technique, Two-Stage Least Squares, will be explained

in Section 3.

To conclude, let’s return to the cola supply and demand model and specify

the reduced-form equations for that model. (To test yourself, flip back to

Equations 4 and 5 and see if you can get the right answer before going on.)

Since the equilibrium condition forces QD to be equal to QS, we need only

two reduced-form equations:

(8)

(9)Pt 5 �4 1 �5X1t 1 �6X2t 1 �7X3t 1 v2t

Qt 5 �0 1 �1X1t 1 �2X2t 1 �3X3t 1 v1t

�s

�1 and �5,

�s

Y2t 5 �4 1 �5X1t 1 �6X2t 1 �7X3t 1 v2t

Y1t 5 �0 1 �1X1t 1 �2X2t 1 �3X3t 1 v1t

450



SIMULTANEOUS EQUATIONS

Even though P never appears on the left side of a structural equation, it’s an

endogenous variable and should be treated as such.

The Bias of Ordinary Least Squares (OLS)

All the Classical Assumptions must be met for OLS estimates to be BLUE;

when an assumption is violated, we must determine which of the proper-

ties no longer holds. It turns out that applying OLS directly to the struc-

tural equations of a simultaneous system produces biased estimates of the

coefficients. Such bias is called simultaneous equations bias or simultane-

ity bias.

Understanding Simultaneity Bias

Simultaneity bias refers to the fact that in a simultaneous system, the ex-

pected values of the OLS-estimated structural coefficients are not equal

to the true We are therefore faced with the problem that in a simultane-

ous system:

(10)

Why does this simultaneity bias exist? Recall from Section 1 that in simulta-

neous equations systems, the error terms (the tend to be correlated with

the endogenous variables (the Ys) whenever the Ys appear as explanatory

variables. Let’s follow through what this correlation means (assuming posi-

tive coefficients for simplicity) in typical structural equations like 11 and 12:

(11)

(12)

Since we cannot observe the error term and don’t know when is above

average, it will appear as if every time Y1 is above average, so too is Y2. As a re-

sult, the OLS estimation program will tend to attribute increases in Y1 caused

by the error term to Y2, thus typically overestimating This overestimation

is simultaneity bias. If the error term is abnormally negative, Y1t is less than it

would have been otherwise, causing Y2t to be less than it would have been oth-

erwise, and the computer program will attribute the decrease in Y1 to Y2, once

again causing us to overestimate (that is, induce upward bias).�1

�1.�1

�1t(�1)

Y2t 5 �0 1 �1Y1t 1 �2Zt 1 �2t

Y1t 5 �0 1 �1Y2t 1 �2Xt 1 �1t

�s)

E(�̂) 2 �

�s.

(�̂s)

2
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3. Monte Carlo experiments are computer-generated simulations that typically follow seven

steps: 1. Assume a “true” model with specific coefficient values and an error term distribution.

2. Select values for the independent variables. 3. Select an estimating technique (usually OLS).

4. Create various samples of the dependent variable, using the assumed model, by randomly

generating error terms from the assumed distribution; often, the number of samples created

runs into the thousands. 5. Compute the estimates of the s from the various samples using the

estimating technique. 6. Summarize and evaluate the results. 7. Consider sensitivity analyses

using different values, distributions, or estimating techniques.

�

Recall that the causation between Y1 and Y2 runs in both directions be-

cause the two variables are interdependent. As a result, when estimated

by OLS, can no longer be interpreted as the impact of Y2 on Y1, holding X

constant. Instead, now measures some mix of the effects of the two en-

dogenous variables on each other! In addition, consider It’s supposed to

be the effect of X on Y1 holding Y2 constant, but how can we expect Y2 to be

held constant when a change in Y1 takes place? As a result, there is potential

bias in all the estimated coefficients in a simultaneous system.

What does this bias look like? It’s possible to derive an equation for the

expected value of the regression coefficients in a simultaneous system that is

estimated by OLS. This equation shows that as long as the error term and

any of the explanatory variables in the equation are correlated, then the co-

efficient estimates will be biased. In addition, it also shows that the bias will

have the same sign as the correlation between the error term and the en-

dogenous variable that appears as an explanatory variable in that error

term’s equation. Since that correlation is usually positive in economic and

business examples, the bias usually will be positive, although the direction

of the bias in any given situation will depend on the specific details of the

structural equations and the model’s underlying theory.

This does not mean that every coefficient from a simultaneous system

estimated with OLS will be a bad approximation of the true population

coefficient. However, it’s vital to consider an alternative to OLS whenever si-

multaneous equations systems are being estimated. Before we investigate the

alternative estimation technique most frequently used (Two-Stage Least

Squares), let’s look at an example of simultaneity bias.

An Example of Simultaneity Bias

To show how the application of OLS to simultaneous equations estima-

tion causes bias, we used a Monte Carlo experiment3 to generate an exam-

ple of such biased estimates. Since it’s impossible to know whether any

bias exists unless you also know the true we arbitrarily picked a set of�s,

�2.

�̂1

�1,
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4. Other assumptions included a normal distribution for the error term, , ,

, , and In addition, we assumed that the error terms of the

two equations were not correlated.

N 5 20.�2
D 5 2, r2

xz 5 0.4�2
S 5 3

�0 5 0�0 5 0

coefficients to be considered “true.” We then stochastically generated data

sets based on these “true” coefficients, and obtained repeated OLS esti-

mates of these coefficients from the generated data sets. The expected

value of these estimates turned out to be quite different from the true coef-

ficient values, thus exemplifying the bias in OLS estimates of coefficients

in simultaneous systems.

We used a supply and demand model as the basis for our example:

(13)

(14)

where: Qt 5 the quantity demanded and supplied in time period t

Pt 5 the price in time period t

Xt 5 a “demand-side” exogenous variable, such as income

Zt 5 a “supply-side” exogenous variable, such as weather

5 classical error terms (different for each equation)

The first step was to choose a set of true coefficient values that corre-

sponded to our expectations for this model:

In other words, we have a negative relationship between price and quantity

demanded, a positive relationship between price and quantity supplied, and

positive relationships between the exogenous variables and their respective

dependent variables.

The next step was to randomly generate a number of data sets based on the

true values. This also meant specifying some other characteristics of the data4

before generating the different data sets (5,000 in this case).

The final step was to apply OLS to the generated data sets and to calculate

the estimated coefficients of the demand equation (13). (Similar results were

obtained for the supply equation.) The arithmetic means of the results for

the 5,000 regressions were:

(15)Q̂Dt 5 �̂0 2 0.37Pt 1 1.84Xt

�1 5 21  �2 5 11  �1 5 11  �2 5 11

�t

Qt 5 �0 1 �1Pt 1 �2Zt 1 �St

Qt 5 �0 1 �1Pt 1 �2Xt 1 �Dt
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�3 �2 �1

True

�1

True

�2

E(�2) = 1.84

E(�1) = – 0.37

Sampling Distribution

of �2

0 1 2 3

Sampling Distribution

of �1

Figure 2 Sampling Distributions Showing Simultaneity Bias 

of OLS Estimates

In the experiment in Section 2, simultaneity bias is evident in the distribution 

of the estimates of which had a mean value of compared with a true value 

of , and in the estimates of which had a mean value of 1.84 compared with 

a true value of 1.00.

�2,21.00

20.37�1,

In other words, the expected value of should have been , but instead

it was the expected value of should have been but instead it

was 1.84:

This is simultaneity bias! As the diagram of the sampling distributions of 

the in Figure 2 shows, the OLS estimates of were almost never very

close to and the OLS estimates of were distributed over a wide

range of values.

Two-Stage Least Squares (2SLS)

How can we get rid of (or at least reduce) simultaneity bias? There are a num-

ber of estimation techniques that help mitigate simultaneity bias, but the most

frequently used alternative to OLS is called Two-Stage Least Squares (2SLS).

3

�221.00,

�1�̂s

 E(�̂2) 5 1.84 2 1.00

 E(�̂1) 5 20.37 2 21.00

11.00,�̂220.37;

21.00�̂1
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What Is Two-Stage Least Squares?

OLS encounters bias in the estimation of simultaneous equations mainly be-

cause such equations violate Classical Assumption III, so one solution to the

problem is to explore ways to avoid violating that assumption. We could do

this if we could find a variable that is:

1. a good proxy for the endogenous variable, and

2. uncorrelated with the error term.

If we then substitute this new variable for the endogenous variable where

it appears as an explanatory variable, our new explanatory variable will be

uncorrelated with the error term, and Classical Assumption III will be met.

That is, consider Equation 16 in the following system:

(16)

(17)

If we could find a variable that was highly correlated with Y2 but that was

uncorrelated with then we could substitute this new variable for Y2 on

the right side of Equation 16, and we’d conform to Classical Assumption III.

This new variable is called an instrumental variable. An instrumental 

variable replaces an endogenous variable (when it is an explanatory vari-

able); it is a good substitute for the endogenous variable and is independent

of the error term.

Since there is no joint causality between the instrumental variable and any

endogenous variable, the use of the instrumental variable avoids the viola-

tion of Classical Assumption III. The job of finding such a variable is another

story, though. How do we go about finding variables with these qualifica-

tions? For simultaneous equations systems, it turns out that finding instru-

mental variables is straightforward. We use 2SLS.

Two-Stage Least Squares (2SLS) is a method of systematically creating

instrumental variables to replace the endogenous variables where they ap-

pear as explanatory variables in simultaneous equations systems. 2SLS does

this by running a regression on the reduced form of the right-side endoge-

nous variables in need of replacement and then using the (or fitted val-

ues) from those reduced-form regressions as the instrumental variables.

Why do we do this? Every predetermined variable in the simultaneous sys-

tem is a candidate to be an instrumental variable for every endogenous vari-

able, but if we choose only one, we’re throwing away information. To avoid

this, we use a linear combination of all the predetermined variables. We

form this linear combination by running a regression for a given endogenous

Ŷs

�1,

Y2t 5 �0 1 �1Y1t 1 �2X2t 1 �2t

Y1t 5 �0 1 �1Y2t 1 �2X1t 1 �1t
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variable as a function of all the predetermined variables—the predicted

value of the endogenous variable is the instrument we want. Thus, the 2SLS

two-step procedure is:

Since the predetermined (exogenous plus lagged endogenous) variables

are uncorrelated with the reduced-form error term, the OLS estimates of the

reduced-form coefficients (the can then be used

to calculate estimates of the endogenous variables:

(18)

(19)

These then are used as instruments in the structural equations.Ŷs

Ŷ2t 5 �̂3 1 �̂4X1t 1 �̂5X2t

Ŷ1t 5 �̂0 1 �̂1X1t 1 �̂2X2t

�̂s) are unbiased. These �̂s

STAGE ONE: Run OLS on the reduced-form equations for each of the endoge-

nous variables that appear as explanatory variables in the structural equations

in the system.

STAGE TWO: Substitute the reduced form for the Ys that appear on the right

side (only) of the structural equations, and then estimate these revised structural

equations with OLS.

Ŷs

That is, stage two consists of estimating the following equations with OLS:

(20)

(21)

Note that the dependent variables are still the original endogenous variables

and that the substitutions are only for the endogenous variables where they

appear on the right-hand side of the structural equations. This procedure

produces consistent (for large samples), but biased (for small samples), esti-

mates of the coefficients of the structural equations.

Y2t 5 �0 1 �1Ŷ1t 1 �2X2t 1 u2t

Y1t 5 �0 1 �1Ŷ2t 1 �2X1t 1 u1t
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5. Most econometric software packages, including EViews and Stata, offer such a 2SLS option.

For more on this issue, see Exercise 9 and footnote 9 of this chapter.

6. This bias is caused by remaining correlation between the produced by the first-stage 

reduced-form regressions and the . The effect of the correlation tends to decrease as the sam-

ple size increases. Even for small samples, though, it’s worth noting that the expected bias due

to 2SLS usually is smaller than the expected bias due to OLS.

�s

Ŷs

If second-stage equations such as Equations 20 and 21 are estimated with

OLS, the will be incorrect, so be sure to use your computer’s 2SLS es-

timation procedure.5

This description of 2SLS can be generalized to m different simultaneous

structural equations. Each reduced-form equation has as explanatory 

variables every predetermined variable in the entire system of equations.

The OLS estimates of the reduced-form equations are used to compute the

estimated values of all the endogenous variables that appear as ex-

planatory variables in the m structural equations. After substituting these

fitted values for the original values of the endogenous independent vari-

ables, OLS is applied to each stochastic equation in the set of structural

equations.

The Properties of Two-Stage Least Squares

1. 2SLS estimates are still biased in small samples. For small samples, the ex-

pected value of a produced by 2SLS is still not equal to the true ,6

but as the sample size gets larger, the expected value of the ap-

proaches the true As the sample size gets bigger, the variances of

both the OLS and the 2SLS estimates decrease. OLS estimates become

very precise estimates of the wrong number, and 2SLS estimates be-

come very precise estimates of the correct number. As a result, the

larger the sample size, the better a technique 2SLS is.

To illustrate, let’s look again at the example of Section 2. The 2SLS es-

timate of was . This estimate is biased, but it’s much closer to

the truth than is the OLS estimate of . We then re-

turned to that example and expanded the data set from 5,000 different

samples of size 20 each to 5,000 different samples of 50 observations

each. As expected, the average for 2SLS moved from 

compared to the true value of By contrast, the OLS average esti-

mate went from Such results are typical; large sample20.37 to 20.44.

21.00.

21.25 to 21.06�̂1

2 0.37(�1 5 21.00)

2 1.25�1

�.

�̂
��̂

SE(�̂)s
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sizes will allow 2SLS to produce unbiased estimates, but OLS still will

produce biased estimates.

2. The bias in 2SLS for small samples typically is of the opposite sign of the bias

in OLS. Recall that the bias in OLS typically was positive, indicating

that a produced by OLS for a simultaneous system is likely to be

greater than the true For 2SLS, the expected bias is negative, and thus

a produced by 2SLS is likely to be less than the true For any given

set of data, the 2SLS estimate can be larger than the OLS estimate, but it

can be shown that the majority of 2SLS estimates are likely to be less

than the corresponding OLS estimates. For large samples, there is little

bias in 2SLS.

Return to the example of Section 2. Compared to the true value of

the small sample 2SLS average estimate was as

mentioned earlier. This means that the 2SLS estimates showed negative

bias. The OLS estimates, on the other hand, averaged ; since

is more positive than the OLS estimates exhibited posi-

tive bias. Thus, the observed bias due to OLS was opposite the observed

bias due to 2SLS, as is generally the case.

3. If the fit of the reduced-form equation is quite poor, then 2SLS will not rid the

equation of bias even in a large sample. Recall that the instrumental vari-

able is supposed to be a good substitute for the endogenous variable.

To the extent that the fit (as measured by of the reduced-form

equation is poor, then the instrumental variable isn’t highly correlated

with the original endogenous variable, and there is no reason to expect

2SLS to be effective. As the of the reduced-form equation increases,

the usefulness of 2SLS will increase.

4. 2SLS estimates have increased variances and SE( )s. While 2SLS does an

excellent job of reducing the amount of bias in the s, there’s a price

to pay for this reduced bias. This price is that 2SLS estimates tend to

have higher variances and SE( )s than do OLS estimates of the same

equations.

On balance, then, 2SLS will almost always be a better estimator of the co-

efficients of a simultaneous system than OLS will be. The major exception to

this general rule is when the fit of the reduced-form equation in question is

quite poor for a small sample.

�̂

�̂
�̂

R2

R2)

21.00,20.37

20.37

21.25,21.00 for �1,

�.�̂
�.

�̂
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An Example of Two-Stage Least Squares

Let’s work through an example of 2SLS, a naive linear Keynesian macroeco-

nomic model of the U.S. economy. We’ll specify the following system:

(22)

(23)

(24)

(25)

where: Yt 5 Gross Domestic Product (GDP) in year t

COt 5 total personal consumption in year t

It 5 total gross private domestic investment in year t

Gt 5 government purchases of goods and services in year t

NXt 5 net exports of goods and services (exports minus imports)

in year t

Tt 5 taxes (actually equal to taxes, depreciation, corporate prof-

its, government transfers, and other adjustments necessary

to convert GDP to disposable income) in year t

rt 5 the interest rate in year t

YDt 5 disposable income in year t

All variables are in real terms (measured in billions of 2000 dollars) except

the interest rate variable, which is measured in nominal percent. The data for

this example are from 1976 through 2007 and are presented in Table 1.

Equations 22 through 25 are the structural equations of the system, but

only Equations 23 and 25 are stochastic (behavioral) and need to be esti-

mated. The other two are identities, as can be determined by the lack of coef-

ficients.

Stop for a second and look at the system; which variables are endogenous?

Which are predetermined? The endogenous variables are those that are

jointly determined by the system, namely, Yt, COt, YDt, and It. To see why

these four variables are simultaneously determined, note that if you change

one of them and follow this change through the system, the change will get

back to the original causal variable. For instance, if It goes up for some rea-

son, that will cause Yt to go up, which will feed right back into It again.

They’re simultaneously determined.

 It 5 �3 1 �4Yt 1 �5rt21 1 �2t

 YDt 5 Yt 2 Tt

 COt 5 �0 1 �1YDt 1 �2COt21 1 �1t

 Yt 5 COt 1 It 1 Gt 1 NXt
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Table 1 Data for the Small Macromodel

YEAR Y CO I G YD r

1975 NA 2876.9 NA NA NA 8.83

1976 4540.9 3035.5 544.7 1031.9 3432.2 8.43

1977 4750.5 3164.1 627.0 1043.3 3552.9 8.02

1978 5015.0 3303.1 702.6 1074.0 3718.8 8.73

1979 5173.4 3383.4 725.0 1094.1 3811.2 9.63

1980 5161.7 3374.1 645.3 1115.4 3857.7 11.94

1981 5291.7 3422.2 704.9 1125.6 3960.0 14.17

1982 5189.3 3470.3 606.0 1145.4 4044.9 13.79

1983 5423.8 3668.6 662.5 1187.3 4177.7 12.04

1984 5813.6 3863.3 857.7 1227.0 4494.1 12.71

1985 6053.7 4064.0 849.7 1312.5 4645.2 11.37

1986 6263.6 4228.9 843.9 1392.5 4791.0 9.02

1987 6475.1 4369.8 870.0 1426.7 4874.5 9.38

1988 6742.7 4546.9 890.5 1445.1 5082.6 9.71

1989 6981.4 4675.0 926.2 1482.5 5224.8 9.26

1990 7112.5 4770.3 895.1 1530.0 5324.2 9.32

1991 7100.5 4778.4 822.2 1547.2 5351.7 8.77

1992 7336.6 4934.8 889.0 1555.3 5536.3 8.14

1993 7532.7 5099.8 968.3 1541.1 5594.2 7.22

1994 7835.5 5290.7 1099.6 1541.3 5746.4 7.96

1995 8031.7 5433.5 1134.0 1549.7 5905.7 7.59

1996 8328.9 5619.4 1234.3 1564.9 6080.9 7.37

1997 8703.5 5831.8 1387.7 1594.0 6295.8 7.26

1998 9066.9 6125.8 1524.1 1624.4 6663.9 6.53

1999 9470.3 6438.6 1642.6 1686.9 6861.3 7.04

2000 9817.0 6739.4 1735.5 1721.6 7194.0 7.62

2001 9890.7 6910.4 1598.4 1780.3 7333.3 7.08

2002 10048.8 7099.3 1557.1 1858.8 7562.2 6.49

2003 10301.0 7295.3 1613.1 1904.8 7729.9 5.67

2004 10675.8 7561.4 1770.2 1931.8 8008.9 5.63

2005 10989.5 7791.7 1873.5 1939.0 8121.4 5.24

2006 11294.8 8029.0 1912.5 1971.2 8407.0 5.59

2007 11523.9 8252.8 1809.7 2012.1 8644.0 5.56

Source: The Economic Report of the President, 2009. Note that T and NX can be calculated using

Equations 22 and 24.

Datafile = MACRO14
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7. Although this sentence is technically correct, it overstates the case. In particular, there are a

couple of circumstances in which an econometrician might want to consider to be part of

the simultaneous system for theoretical reasons. For our naive Keynesian model with a lagged

interest rate effect, however, the equation is not in the simultaneous system.

8. This investment equation is a simplified mix of the accelerator and the neoclassical theo-

ries of the investment function. The former emphasizes that changes in the level of output are

the key determinant of investment, and the latter emphasizes that user cost of capital (the

opportunity cost that the firm incurs as a consequence of owning an asset) is the key. For an

introduction to the determinants of consumption and investment, see any intermediate

macroeconomics textbook.

rt21

What about interest rates? Is rt an endogenous variable? The surprising an-

swer is that, strictly speaking, rt is not endogenous in this system because 

(not rt) appears in the investment equation. Thus, there is no simultaneous

feedback through the interest rate in this simple model.7

Given this answer, which are the predetermined variables? The predeter-

mined variables are . To sum, the simultaneous

system has four structural equations, four endogenous variables, and five pre-

determined variables.

What is the economic content of the stochastic structural equations? The

consumption function, Equation 23, is a dynamic model distributed lag con-

sumption function.

The investment function, Equation 25, includes simplified multiplier and

cost of capital components. The multiplier term measures the stimulus to

investment that is generated by an increase in GDP. In a Keynesian model,

thus would be expected to be positive. On the other hand, the higher the

cost of capital, the less investment we’d expect to be undertaken (holding

multiplier effects constant), mainly because the expected rate of return on

marginal capital investments is no longer sufficient to cover the higher cost

of capital. Thus is expected to be negative. It takes time to plan and start

up investment projects, though, so the interest rate is lagged one year.8

Stage One: Even though there are four endogenous variables, only two of them

appear on the right-hand side of stochastic equations, so only two reduced-

form equations need to be estimated to apply 2SLS. These reduced-form 

�5

�4

�4

Gt, NXt, Tt, COt21, and rt21

rt21
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9. A few notes about 2SLS estimation and this model are in order. The 2SLS estimates in 

Equations 28 and 29 are correct, but if you were to estimate those equations with OLS (using 

as instruments generated as in Equation 26) you would obtain the same coefficient

estimates but a different set of estimates of the standard errors (and t-scores). This difference

comes about because running OLS on the second stage alone ignores the fact that the first stage

was run at all. To get accurate estimated standard errors and t-scores, the estimation should be

done with a 2SLS program.

Ŷs and YDs

equations are estimated automatically by all 2SLS computer estimation pro-

grams, but it’s instructive to take a look at one anyway:

(26)

This reduced form has an excellent overall fit but is almost surely suffering

from severe multicollinearity. Note that we don’t test any hypotheses on

reduced forms, nor do we consider dropping a variable that is statistically

and theoretically irrelevant. The whole purpose of stage one of 2SLS is not to

generate meaningful reduced-form estimated equations but rather to gener-

ate useful instruments to use as substitutes for endogenous variables in

the second stage. To do that, we calculate the for all 32 observa-

tions by plugging the actual values of all 5 predetermined variables into 

reduced-form equations like Equation 26.

Stage Two: We then substitute these and for the endogenous vari-

ables where they appear on the right sides of Equations 23 and 25. For ex-

ample, the from Equation 26 would be substituted into Equation 23, re-

sulting in:

(27)

If we estimate Equation 27 and the other second-stage equation given the

data in Table 1, we obtain the following 2SLS9 results:

(28)

N 5 32   R2 5 .999  DW 5 0.83

 2.73  4.84

 (0.13)  (0.14)

COt 5 2 209.06 1 0.37YDt 1 0.66COt21

COt 5 �0 1 �1YDt 1 �2COt21 1 �1t

YDt

YDts,Ŷts,

Ŷts and YDts

(Ŷs)

DW 5 2.21R2 5 .998N 5 32

t 5   3.49  2 2.30  3.68  7.60  4.12

  (0.22)  (0.16)  (0.14)  (0.09)  (9.14)  

YDt 5 2288.55 1 0.78Gt 2 0.37NXt 1 0.52Tt 1 0.67COt21 1 37.63rt21
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(29)

If we had estimated these equations with OLS alone instead of with 2SLS,

we would have obtained:

(30)

(31)

Let’s compare the OLS and 2SLS results. First, there doesn’t seem to be much

difference between them. If OLS is biased, how could this occur? When the

fit of the stage-one reduced-form equations is excellent, as in Equation 26,

then Y and are virtually identical, and the second stage of 2SLS is quite sim-

ilar to the OLS estimate. Second, we’d expect positive bias in the OLS estima-

tion and smaller negative bias in the 2SLS estimation, but the differences be-

tween OLS and 2SLS appear to be in the expected direction only about half

the time. This might have been caused by the extreme multicollinearity in the

2SLS estimations as well as by the superb fit of the reduced forms mentioned

previously.

Also, take a look at the Durbin–Watson statistics. DW is well below the dL
of 1.31 (one-sided 5-percent significance, N 5 32, in all the equa-

tions despite DW’s bias toward 2 in the consumption equation (because it’s a

dynamic model). Consequently, positive serial correlation is likely to exist in

the residuals of both equations. Applying GLS to the two 2SLS-estimated

equations is tricky, however, especially because, as mentioned, serial correla-

tion causes bias in an equation with a lagged dependent variable, as in the

consumption function. One solution to this problem, running GLS and 2SLS,

is discussed in Exercise 12.

Finally, what about nonstationarity? Time-series models like these have the

potential to be spurious in the face of nonstationarity. Are any of these regres-

sions spurious? Well, as you can guess from looking at the data, quite a few 

K 5 2)

Ŷ

N 5 32  R2 5 .956  DW 5 0.47

 15.87  2 0.83

 (0.01)  (11.19)

Ît 5 2267.16 1 0.19Yt 2 9.26rt21

N 5 32 (annual 1976–2007)  R2 5 .999  DW 5 0.77

 4.70  5.66

 (0.10)  (0.10)

COt 5 2 266.65 1 0.46YDt 1 0.56COt21

N 5 32  R2 5 .956  DW 5 0.47

 15.82  2 0.85

 (0.01)  (11.20)

Ît 5 2 261.48 1 0.19Ŷt 2 9.55rt21

463



SIMULTANEOUS EQUATIONS

of the series in this model are, indeed, nonstationary. Luckily, the interest rate

is stationary. In addition, it turns out that the consumption function is reason-

ably cointegrated (see Exercise 15 of this chapter), so Equations 28 and 30

probably can stand as estimated. Unfortunately, the investment equation suf-

fers from nonstationarity that almost surely results in an inflated t-score for

GDP and a low t-score for (because is stationary when all the other

variables in the equation are nonstationary). In fact, most macromodels en-

counter similar problems with the significance (and sometimes the sign) of

the interest rate variable in investment equations, at least partially because of

the nonstationarity of the other variables in the equation. Given the tools 

covered so far in this text, however, there is little we can do to improve the 

situation.

These caveats aside, this model has provided us with a complete example

of the use of 2SLS to estimate a simultaneous system. However, the applica-

tion of 2SLS requires that the equation being estimated be “identified,” so

before we can conclude our study of simultaneous equations, we need to ad-

dress the problem of identification.

The Identification Problem

Two-Stage Least Squares cannot be applied to an equation unless that equa-

tion is identified. Before estimating any equation in a simultaneous system,

you therefore must address the identification problem. Once an equation is

found to be identified, then it can be estimated with 2SLS, but if an equation

is not identified (underidentified), then 2SLS cannot be used no matter how

large the sample. Such underidentified equations can be estimated with OLS,

but OLS estimates of underidentified equations are difficult to interpret be-

cause the estimates don’t necessarily match the coefficients we want to esti-

mate. It’s important to point out that an equation being identified (and

therefore capable of being estimated with 2SLS) does not ensure that the re-

sulting 2SLS estimates will be good ones. The question being asked is not

how good the 2SLS estimates will be but whether the 2SLS estimates can be

obtained at all.

What Is the Identification Problem?

Identification is a precondition for the application of 2SLS to equations in

simultaneous systems; a structural equation is identified only when enough

of the system’s predetermined variables are omitted from the equation in

question to allow that equation to be distinguished from all the others in the

4

rt21rt21

464



SIMULTANEOUS EQUATIONS

system. Note that one equation in a simultaneous system might be identified

and another might not.

How could we have equations that we could not identify? To see how, let’s

consider a supply and demand simultaneous system in which only price and

quantity are specified:

(32)

(33)

where:

Although we’ve labeled one equation as the demand equation and the other

as the supply equation, the computer will not be able to identify them from

the data because the right-side and the left-side variables are exactly the same

in both equations; without some predetermined variables included to distin-

guish between these two equations, it would be impossible to distinguish

supply from demand.

What if we added a predetermined variable like weather (W) to the supply

equation for an agricultural product? Then, Equation 33 would become:

(34)

In such a circumstance, every time W changed, the supply curve would shift,

but the demand curve would not, so that eventually we would be able to col-

lect a good picture of what the demand curve looked like.

Figure 3 demonstrates this. Given four different values of W, we get four

different supply curves, each of which intersects with the constant demand

curve at a different equilibrium price and quantity (intersections 1–4). These

equilibria are the data that we would be able to observe in the real world and

are all that we could feed into the computer. As a result, we would be able to

identify the demand curve because we left out at least one predetermined

variable; when this predetermined variable changed, but the demand curve

didn’t, the supply curve shifted so that quantity demanded moved along the

demand curve and we gathered enough information to estimate the coeffi-

cients of the demand curve. The supply curve, on the other hand, remains as

much a mystery as ever because its shifts give us no clue whatsoever about its

shape. In essence, the demand curve was identified by the predetermined

variable that was included in the system but excluded from the demand

equation. The supply curve is not identified because there is no such ex-

cluded predetermined variable for it.

QSt 5 �0 1 �1Pt 1 �2Wt 1 �St

QDt 5 QSt

QSt  5 �0 1 �1Pt 1 �St (supply)

QDt 5 �0 1 �1Pt 1 �Dt (demand)
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Even if we added W to the demand curve as well, that would not identify

the supply curve. In fact, if we had W in both equations, the two would be

identical again, and although both would shift when W changed, those shifts

would give us no information about either curve! As illustrated in Figure 4,

the observed equilibrium prices and quantities would be almost random in-

tersections describing neither the demand nor the supply curve. That is, the

shifts in the supply curve are the same as before, but now the demand curve

also shifts with W. In this case, it’s not possible to identify either the demand

curve or the supply curve.10

The way to identify both curves is to have at least one predetermined vari-

able in each equation that is not in the other, as in:

(35)

(36)

Now when W changes, the supply curve shifts, and we can identify the demand

curves from the data on equilibrium prices and quantities. When X changes,

the demand curve shifts, and we can identify the supply curve from the data. 

To sum, identification is a precondition for the application of 2SLS to

equations in simultaneous systems. A structural equation is identified only

QSt 5 �0 1 �1Pt 1 �2Wt 1 �St

QDt 5 �0 1 �1Pt 1 �2Xt 1 �Dt

10. An exception would be if you knew the relative magnitudes of the true coefficients of W in

the two equations, but such knowledge is unlikely.

0
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Figure 3 A Shifting Supply Curve Allows the Identification 

of the Demand Curve

If the supply curve shifts but the demand curve does not, then we move along the demand

curve, allowing us to identify and estimate the demand curve (but not the supply curve).
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Figure 4 If Both the Supply Curve and the Demand Curve Shift, Neither Curve

Is Identified

If both the supply curve and the demand curve shift in response to the same variable,

then we move from one equilibrium to another, and the resulting data points identify

neither curve. To allow such an identification, at least one exogenous factor must cause

one curve to shift while allowing the other to remain constant.

when the predetermined variables are arranged within the system so as to

allow us to use the observed equilibrium points to distinguish the shape of

the equation in question. Most systems are quite a bit more complicated

than the previous ones, however, so econometricians need a general method

by which to determine whether equations are identified. The method typi-

cally used is the order condition of identification.

The Order Condition of Identification

The order condition is a systematic method of determining whether a partic-

ular equation in a simultaneous system has the potential to be identified. If

an equation can meet the order condition, then it is identified in all but a

very small number of cases. We thus say that the order condition is a neces-

sary but not sufficient condition of identification.11

11. A sufficient condition for an equation to be identified is called the rank condition, but most

researchers examine just the order condition before estimating an equation with 2SLS. These re-

searchers let the computer estimation procedure tell them whether the rank condition has been

met (by its ability to apply 2SLS to the equation). Those interested in the rank condition are en-

couraged to consult an advanced econometrics text.
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What is the order condition? Recall that we have used the phrases endoge-

nous and predetermined to refer to the two kinds of variables in a simultane-

ous system. Endogenous variables are those that are jointly determined in the

system in the current time period. Predetermined variables are exogenous

variables plus any lagged endogenous variables that might be in the model.

For each equation in the system, we need to determine:

1. The number of predetermined (exogenous plus lagged endogenous)

variables in the entire simultaneous system.

2. The number of slope coefficients estimated in the equation in question.

In equation form, a structural equation meets the order condition if:

The number of predetermined variables The number of slope coefficients

(in the simultaneous system) (in the equation)

Two Examples of the Application of the Order Condition

Let’s apply the order condition to some of the simultaneous equations sys-

tems encountered in this chapter. For example, consider once again the cola

supply and demand model of Section 1:

(37)

(38)

(39)

Equation 37 is identified by the order condition because the number of pre-

determined variables in the system (three, X1, X2, and X3) is equal to the

number of slope coefficients in the equation (three: This

particular result (equality) implies that Equation 37 is exactly identified by 

the order condition. Equation 38 is also identified by the order condition 

because there still are three predetermined variables in the system, but there

�1, �2, and �3).

QSt  5 QDt

QSt  5 �0 1 �1Pt 1 �2X3t 1 �St

QDt 5 �0 1 �1Pt 1 �2X1t 1 �3X2t 1 �Dt

$

THE ORDER CONDITION: A necessary condition for an equation to be

identified is that the number of predetermined (exogenous plus lagged endoge-

nous) variables in the system be greater than or equal to the number of slope

coefficients in the equation of interest.
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are only two slope coefficients in the equation; this condition implies that

Equation 38 is overidentified. 2SLS can be applied to equations that are identi-

fied (which includes exactly identified and overidentified), but not to equa-

tions that are underidentified.

A more complicated example is the small macroeconomic model of 

Section 3:

(22)

(23)

(24)

(25)

As we’ve noted, there are five predetermined variables (exogenous plus lagged

endogenous) in this system Equation 23 has

two slope coefficients so this equation is overidentified 

and meets the order condition of identification. As the reader can verify, Equa-

tion 25 also turns out to be overidentified. Since the 2SLS computer program

did indeed come up with estimates of the in the model, we knew this al-

ready. Note that Equations 22 and 24 are identities and are not estimated, so

we’re not concerned with their identification properties.

Summary

1. Most economic and business models are inherently simultaneous be-

cause of the dual causality, feedback loops, or joint determination of

particular variables. These simultaneously determined variables are

called endogenous, and nonsimultaneously determined variables are

called exogenous.

2. A structural equation characterizes the theory underlying a particular

variable and is the kind of equation we have used to date in this text.

A reduced-form equation expresses a particular endogenous variable

solely in terms of an error term and all the predetermined (exogenous

and lagged endogenous) variables in the simultaneous system.

3. Simultaneous equations models violate the Classical Assumption of in-

dependence between the error term and the explanatory variables be-

cause of the feedback effects of the endogenous variables. For example,

an unusually high observation of an equation’s error term works

5

�s

(5 . 2)(�1 and �2),

(Gt, NXt, Tt, COt21, and rt21).

 It 5 �3 1 �4Yt 1 �5rt21 1 �2t

 YDt 5 Yt 2 Tt

 COt 5 �0 1 �1YDt 1 �2COt21 1 �1t

 Yt 5 COt 1 It 1 Gt 1 NXt
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through the simultaneous system and eventually causes a high value

for the endogenous variables that appear as explanatory variables in

the equation in question, thus violating the assumption of no correla-

tion (Classical Assumption III).

4. If OLS is applied to the coefficients of a simultaneous system, the re-

sulting estimates are biased and inconsistent. This occurs mainly be-

cause of the violation of Classical Assumption III; the OLS regression

package attributes to explanatory variables changes in the dependent

variable actually caused by the error term (with which the explanatory

variables are correlated).

5. Two-Stage Least Squares is a method of decreasing the amount of bias in

the estimation of simultaneous equations systems. It works by systemat-

ically using the reduced-form equations of the system to create substi-

tutes for the endogenous variables that are independent of the error

terms (called instrumental variables). It then runs OLS on the structural

equations of the system with the instrumental variables replacing the

endogenous variables where they appear as explanatory variables.

6. Two-Stage Least Squares estimates are biased (with a sign opposite

that of the OLS bias) but consistent (becoming more unbiased with

closer to zero variance as the sample size gets larger). If the fit of the

reduced-form equations is poor, then 2SLS will not work very well.

The larger the sample size, the better it is to use 2SLS.

7. 2SLS cannot be applied to an equation that’s not identified. A neces-

sary (but not sufficient) requirement for identification is the order

condition, which requires that the number of predetermined vari-

ables in the system be greater than or equal to the number of slope

coefficients in the equation of interest. Sufficiency is usually deter-

mined by the ability of 2SLS to estimate the coefficients.

EXERCISES

(The answer to Exercise 2 is at the end of the chapter.)

1. Write the meaning of each of the following terms without referring to

the book (or your notes), and compare your definition with the ver-

sion in the text for each:

a. endogenous variable

b. predetermined variable
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c. structural equation

d. reduced-form equation

e. simultaneity bias

f. Two-Stage Least Squares

g. identification

h. order condition for identification

2. Damodar Gujarati12 estimated the following two money supply

equations on U.S. annual data. The first was estimated with OLS, and

the second was estimated with 2SLS (with Investment and Govern-

ment Expenditure as predetermined variables in the reduced form

equation).

OLS:

2SLS:

where: M2t � the M2 money stock in year t, in billions of

dollars

GDPt � Gross Domestic Product in year t, in billions of

dollars

a. What, exactly, does the caret (hat) over in the 2SLS equation

mean?

b. Which equation makes more sense on theoretical grounds? Ex-

plain.

c. Which equation is more likely to have biased coefficients? Explain.

d. If you had to choose one equation, which would you prefer? Why?

(Hint: Assume that the residuals are cointegrated.)

e. If your friend claims that “it doesn’t matter which equation you use

because they’re virtually identical,” how would you respond?

3. Section 1 works through Equations 2 and 3 to show the violation of

Classical Assumption III by an unexpected increase in �1.

GDP

R2 5 .987t 5 41.24

 (0.013)

M2t 5 146.8 1 0.551GDPt

R2 5 .986 t 5 40.97

 (0.013)

M2t 5 115.0 1 0.561GDPt

12. Damodar Gujarati, Essentials of Econometrics (Boston: Irwin McGraw-Hill, 1999), p. 492,

with special thanks to Bill Wood.
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Show the violation of Classical Assumption III by working through

the following examples:

a. a decrease in in Equation 3

b. an increase in in Equation 4

c. an increase in in Equation 23

4. The word recursive is used to describe an equation that has an impact

on a simultaneous system without any feedback from the system to

the equation. Which of the equations in the following systems are si-

multaneous, and which are recursive? Be sure to specify which vari-

ables are endogenous and which are predetermined:

a.

b.

c.

5. Section 2 makes the statement that the correlation between the and

the Ys (where they appear as explanatory variables) usually is positive

in economics. To see if this is true, investigate the sign of the error

term/explanatory variable correlation in the following cases:

a. the three examples in Exercise 3

b. the more general case of all the equations in a typical supply and

demand model (for instance, the model for cola in Section 1)

c. the more general case of all the equations in a simple macroeco-

nomic model (for instance, the small macroeconomic model in

Section 3)

6. Determine the identification properties of the following equations. In

particular, be sure to note the number of predetermined variables in

the system, the number of slope coefficients in the equation, and

whether the equation is underidentified, overidentified, or exactly

identified.

a. Equations 2–3

b. Equations 13–14

c. part a of Exercise 4 (assume all equations are stochastic)

d. part b of Exercise 4 (assume all equations are stochastic)

�s

Y2t 5 f(Y3t, X5t)

Yt 5 f(Y2t, X1t, X2t)

Ht 5 g(Zt, Bt, CSt, Dt)

Xt 5 g(Zt, Pt21)

Zt 5 g(Xt, Yt, Ht)

Y3t 5 f(X2t, X1t21, X4t21)

Y2t 5 f(Y3t, Y1t, X4t)

Y1t 5 f(Y2t, X1t, X2t21)

�1

�D

�2
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7. Determine the identification properties of the following equations. In

particular, be sure to note the number of predetermined variables in the

system, the number of slope coefficients in the equation, and whether

the equation is underidentified, overidentified, or exactly identified.

(Assume that all equations are stochastic unless specified otherwise.)

a. At 5 f(Bt, Ct, Dt)

Bt 5 f(At, Ct)

b. Y1t 5 f(Y2t, X1t, X2t, X3t)

Y2t 5 f(X2t)

X2t 5 f(Y1t, X4t, X3t)

c. Ct 5 f(Yt)

It 5 f(Yt, Rt, Et, Dt)

Rt 5

Yt 5 Ct � It � Gt (nonstochastic)

8. Return to the supply and demand example for cola in Section 1 and

explain exactly how 2SLS would estimate the of Equations

4 and 5. Write out the equations to be estimated in both stages, and

indicate precisely what, if any, substitutions would be made in the

second stage.

9. As an exercise to gain familiarity with the 2SLS program on your com-

puter, take the data provided for the simple Keynesian model in Sec-

tion 3, and:

a. Estimate the investment function with OLS.

b. Estimate the reduced form for Y with OLS.

c. Substitute the from your reduced form into the investment func-

tion and run the second stage yourself with OLS.

d. Estimate the investment function with your computer’s 2SLS pro-

gram (if there is one) and compare the results with those obtained

in part c.

10. Suppose that one of your friends recently estimated a simultaneous

equation research project and found the OLS results to be virtually iden-

tical to the 2SLS results. How would you respond if he or she said “What

a waste of time! I shouldn’t have bothered with 2SLS in the first place!

Besides, this proves that there wasn’t any bias in my model anyway.”

a. What is the value of 2SLS in such a case?

b. Does the similarity between the 2SLS and OLS estimates indicate a

lack of bias?

Ŷ

�s and �s

f(Mt, Rt21, Yt 2 Yt21)
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11. Think over the problem of building a model for the supply of and de-

mand for labor (measured in hours worked) as a function of the wage

and other variables.

a. Completely specify labor supply and labor demand equations and

hypothesize the expected signs of the coefficients of your variables.

b. Is this system simultaneous? That is, is there likely to be feedback

between the wage and hours demanded and supplied? Why or why

not?

c. Is your system likely to encounter biased estimates? Why?

d. What sort of estimation procedure would you use to obtain your

coefficient estimates? (Hint: Be sure to determine the identification

properties of your equations.)

12. Let’s analyze the problem of serial correlation in simultaneous mod-

els. For instance, recall that in our small macroeconomic model, the

2SLS version of the consumption function, Equation 28, was:

(28)

where CO is consumption and YD is disposable income.

a. Test Equation 28 to confirm that we do indeed have a serial correla-

tion problem. (Hint: This should seem familiar.)

b. Equation 28 will encounter both simultaneity bias and bias due to

serial correlation with a lagged endogenous variable. If you could

solve only one of these two problems, which would you choose?

Why? (Hint: Compare Equation 28 with the OLS version of the

consumption function, Equation 30.)

c. Suppose you wanted to solve both problems? Can you think of a

way to adjust for both serial correlation and simultaneity bias at

the same time? Would it make more sense to run GLS first and

then 2SLS, or would you rather run 2SLS first and then GLS? Could

they be run simultaneously?

13. Suppose that a fad for oats (resulting from the announcement of the

health benefits of oat bran) has made you toy with the idea of becom-

ing a broker in the oat market. Before spending your money, you de-

cide to build a simple model of supply and demand (identical to

those in Sections 1 and 2) of the market for oats:

QDt 5 QSt

QSt  5 �0 1 �1Pt 1 �2Wt 1 �St

QDt 5 �0 1 �1Pt 1 �2YDt 1 �Dt

N 5 32  R2 5 .999  DW 5 0.83

 2.73  4.84

 (0.13)  (0.14)

COt 5 2 209.06 1 0.37YDt 1 0.66COt21
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13. These data are from the excellent course materials that Professors Bruce Gensemer and

James Keeler prepared to supplement the use of this text at Kenyon College.

where: QDt 5 the quantity of oats demanded in time period t

QSt 5 the quantity of oats supplied in time period t

Pt 5 the price of oats in time period t

Wt 5 average oat-farmer wages in time period t

YDt 5 disposable income in time period t

a. You notice that no left-hand-side variable appears on the right side

of either of your stochastic simultaneous equations. Does this

mean that OLS estimation will encounter no simultaneity bias?

Why or why not?

b. You expect that when Pt goes up, QDt will fall. Does this mean

that if you encounter simultaneity bias in the demand equation,

it will be negative instead of the positive bias we typically associ-

ate with OLS estimation of simultaneous equations? Explain your

answer.

c. Carefully outline how you would apply 2SLS to this system. How

many equations (including reduced forms) would you have to

estimate? Specify precisely which variables would be in each

equation.

d. Given the following hypothetical data,13 estimate OLS and 2SLS

versions of your oat supply and demand equations.

e. Compare your OLS and 2SLS estimates. How do they compare

with your prior expectations? Which equation do you prefer?

Why?

Year Q P W YD

1 50 10 100 15

2 54 12 102 12

3 65 9 105 11

4 84 15 107 17

5 75 14 110 19

6 85 15 111 30

7 90 16 111 28

8 60 14 113 25

9 40 17 117 23

10 70 19 120 35

Datafile � OATS14
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14. James F. Ragan, Jr., “The Voluntary Leaver Provisions of Unemployment Insurance and

Their Effect on Quit and Unemployment Rates,” Southern Economic Journal, Vol. 15, No. 1,

pp. 135–146.

14. Simultaneous equations make sense in cross-sectional as well as time-

series applications. For example, James Ragan14 examined the effects

of unemployment insurance (hereafter UI) eligibility standards on

unemployment rates and the rate at which workers quit their jobs.

Ragan used a pooled data set that contained observations from a

number of different states from four different years (requirements for

UI eligibility differ by state). His results are as follows (t-scores in

parentheses):

where: QUi 5 the quit rate (quits per 100 employees) in the ith

state

URi 5 the unemployment rate in the ith state

UNi 5 union membership as a percentage of nonagricul-

tural employment in the ith state

REi 5 average hourly earnings in the ith state relative to

the average hourly earnings for the United States

ILi 5 dummy variable equal to 1 if workers in the ith

state are eligible for UI if they are forced to quit a

job because of illness, 0 otherwise

QMi 5 dummy variable equal to 1 if the ith state main-

tains full UI benefits for the quitter (rather than

lowering benefits), 0 otherwise

MXi 5 maximum weekly UI benefits relative to average

hourly earnings in the ith state

a. Hypothesize the expected signs for the coefficients of each of the

explanatory variables in the system. Use economic theory to justify

 (2.03)  (2.05)   

 1 0.56ILi  1 0.63QMi 1  c

 (1.01)  (3.29)  (1.71)

 URi 5 2 0.54 1 0.44QUi 1  0.13UNi 1  0.049MXi

 (0.01)  (2 0.52)     

1 0.003ILi 2  0.25QMi 1  
c

  

 (0.10)  (2 0.63)  (2 1.98)  (2 0.73)

 QUi 5 7.00 1 0.089URi 2 0.063UNi 2 2.83REi 2 0.032MXi
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your answers. Which estimated coefficients are different from your

expectations?

b. Ragan felt that these two equations would encounter simultaneity

bias if they were estimated with OLS. Do you agree? Explain your

answer. (Hint: Start by deciding which variables are endogenous

and why.)

c. The actual equations included a number of variables not docu-

mented earlier, but the only predetermined variable in the system

that was included in the QU equation but not the UR equation was

RE. What does this information tell you about the identification

properties of the QU equation? The UR equation?

d. What are the implications of the lack of significance of the endoge-

nous variables where they appear on the right-hand side of the

equations?

e. What, if any, policy recommendations do these results suggest?

15. Return to the consumption function of the small macromodel of Sec-

tion 3 and consider again the issue of cointegration as a possible solu-

tion to the problem of nonstationarity.

a. Which of the variables in the equation are nonstationary? (Hint:

See Exercises 10 and 11 in Chapter 12.)

b. Test the possibility that Equation 30 is cointegrated. That is, test the

hypothesis that the residuals of Equation 30 are stationary. (Hint:

Use the Dickey–Fuller test.)

c. Equation 30 is a dynamic model distributed lag equation. Do you

think that this makes it more or less likely that the equation is

cointegrated?

d. Equation 30 is the OLS estimate of the consumption function.

Would your approach be any different if you were going to test the

2SLS estimate for cointegration? How? Why?

Appendix: Errors in the Variables

Until now, we have implicitly assumed that our data were measured accu-

rately. That is, although the stochastic error term was defined as including

measurement error, we never explicitly discussed what the existence of

such measurement error did to the coefficient estimates. Unfortunately, in

the real world, errors of measurement are common. Mismeasurement

might result from the data being based on a sample, as are almost all na-

tional aggregate statistics, or simply because the data were reported incor-

rectly. Whatever the cause, these errors in the variables are mistakes in the

6

477



SIMULTANEOUS EQUATIONS

measurement of the dependent and/or one or more of the independent

variables that are large enough to have potential impacts on the estimation

of the coefficients. Such errors in the variables might be better called

“measurement errors in the data.” We will tackle this subject by first exam-

ining errors in the dependent variable and then moving on to look at the

more serious problem of errors in an independent variable. We assume a

single equation model. The reason we have included this topic here is that

errors in explanatory variables give rise to biased OLS estimates very simi-

lar to simultaneity bias.

Measurement Errors in the Data for the Dependent Variable

Suppose that the true regression model is

(40)

and further suppose that the dependent variable, Yi, is measured incorrectly,

so that is observed instead of Yi, where

(41)

and where vi is an error of measurement that has all the properties of a classi-

cal error term. What does this mismeasurement do to the estimation of Equa-

tion 40?

To see what happens when let’s add vi to both sides of

Equation 40, obtaining

(42)

which is the same as

(43)

where That is, we estimate Equation 43 when in reality we

want to estimate Equation 40. Take another look at Equation 43. When vi
changes, both the dependent variable and the error term move together.

This is no cause for alarm, however, since the dependent variable is always

correlated with the error term. Although the extra movement will increase the

variability of Y and therefore be likely to decrease the overall statistical fit of

the equation, an error of measurement in the dependent variable does not

cause any bias in the estimates of the �s.

�i*

�i* 5 (�i 1 vi).

Yi* 5 �0 1 �1Xi 1 �i*

Yi 1 vi 5 �0 1 �1Xi 1 �i 1 vi

Yi* 5 Yi 1 vi,

Yi* 5 Yi 1 vi

Yi*

Yi 5 �0 1 �1Xi 1 �i
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Measurement Errors in the Data for an Independent Variable

This is not the case when the mismeasurement is in the data for one or more

of the independent variables. Unfortunately, such errors in the independent

variables cause bias that is quite similar in nature (and in remedy) to simul-

taneity bias. To see this, once again suppose that the true regression model is

Equation 40:

(40)

But now suppose that the independent variable, Xi, is measured incorrectly,

so that is observed instead of Xi, where

(44)

but where ui is an error of measurement like vi in Equation 41. To see what

this mismeasurement does to the estimation of Equation 40, let’s add the

term to Equation 40, obtaining

(45)

which can be rewritten as

(46)

or

(47)

where In this case, we estimate Equation 47 when we

should be trying to estimate Equation 40. Notice what happens to 

Equation 47 when ui changes, however. When ui changes, the stochastic error

term and the independent variable move in opposite directions; they

are correlated! Such a correlation is a direct violation of Classical Assumption

III in a way that is remarkably similar to the violation (described in Section 1)

of the same assumption in simultaneous equations. Not surprisingly, this vio-

lation causes the same problem, bias, for errors-in-the-variables models that it

causes for simultaneous equations. That is, because of the measurement error

in the independent variable, the OLS estimates of the coefficients of Equation

47 are biased.

A frequently used technique to rid an equation of the bias caused by mea-

surement errors in the data for one or more of the independent variables is to

Xi*�i**

�i** 5 (�i 2 �1ui).

Yi 5 �0 1 �1Xi* 1 �i**

Yi 5 �0 1 �1(Xi 1 ui) 1 (�i 2 �1ui)

Yi 5 �0 1 �1Xi 1 �i 1 (�1ui 2 �1ui)

0 5 (�1ui 2 �1ui)

Xi* 5 Xi 1 ui

Xi*

Yi 5 �0 1 �1Xi 1 �i
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15. If errors exist in the data for the dependent variable and one or more of the independent

variables, then both decreased overall statistical fit and bias in the estimated coefficients will re-

sult. Indeed, a famous econometrician, Zvi Griliches, warned that errors in the data coming

from their measurement, usually computed from samples or estimates, imply that the fancier

estimating techniques should be avoided because they are more sensitive to data errors than is

OLS. See Zvi Griliches, “Data and Econometricians—the Uneasy Alliance,” American Economic

Review, Vol. 75, No. 2, p. 199. See also, B. D. McCullough and H. D. Vinod, “The Numerical Re-

liability of Econometric Software,” Journal of Economic Literature, Vol. 37, pp. 633–665.

use an instrumental variable, the same technique used to alleviate simultaneity

bias. A substitute for X is chosen that is highly correlated with X but is uncor-

related with Recall that 2SLS is an instrumental variables technique. Such

techniques are applied only rarely to errors in the variables problems, how-

ever, because although we may suspect that there are errors in the variables,

it’s unusual to know positively that they exist, and it’s difficult to find an in-

strumental variable that satisfies both conditions. As a result, is about as

good a proxy for X as we usually can find, and no action is taken. If the mis-

measurement in X were known to be large, however, some remedy would be

required.

To sum, an error of measurement in one or more of the independent vari-

ables will cause the error term of Equation 47 to be correlated with the inde-

pendent variable, causing bias analogous to simultaneity bias.15

X*

�.
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Answers

Exercise 2

a. The caret over GDP is an indication that two-stage least squares

was used. A reduced-form equation was run with GDP as a func-

tion of investment and government expenditure. The estimated

GDPs from the reduced form were then substituted for GDP where

it appears on the right-hand side of the money supply equation in

order to act as a proxy (an instrumental variable) for GDP.

b. The 2SLS equation makes significantly more sense from a theo-

retical point of view. Most economists agree that GDP has an im-

pact on the money supply and that the money supply also has an

impact on GDP, leading to a simultaneous model being the model

of choice.

c. The OLS equation is more likely to have biased coefficients, but

the 2SLS model also will face potential bias in small samples. The

bias in the OLS model is likely to be positive, while the bias in the

2SLS model is likely be negative (and smaller in absolute value).

d. We prefer the 2SLS model by a wide margin, because it is theoret-

ically more compelling, and because it has less expected bias.

e. It’s true that in this case the 2SLS and OLS estimates are virtually

identical, but that doesn’t change the fact that 2SLS is preferable

from both a theoretical and econometric point of view.

SIMULTANEOUS EQUATIONS

481



Accurate forecasting is vital to successful planning, so it’s the primary goal of

many business and governmental uses of econometrics. For example, manu-

facturing firms need sales forecasts, banks need interest rate forecasts, and

governments need unemployment and inflation rate forecasts.

To many business and government leaders, the words econometrics and

forecasting mean the same thing. Such a simplification gives econometrics a bad

name because many econometricians overestimate their ability to produce ac-

curate forecasts, resulting in unrealistic claims and unhappy clients. Some of

their clients would probably applaud the nineteenth century New York law

(luckily unenforced but apparently also unrepealed) that provides that persons

“pretending to forecast the future” shall be liable to a $250 fine and/or six

months in prison.1 Although many econometricians might wish that such con-

sultants would call themselves “futurists” or “soothsayers,” it’s impossible to

ignore the importance of econometrics in forecasting in today’s world.

The ways in which the prediction of future events is accomplished are

quite varied. At one extreme, some forecasters use models with hundreds of

equations.2 At the other extreme, quite accurate forecasts can be created with

nothing more than a good imagination and a healthy dose of self-confidence.

1. Section 899 of the N.Y. State Criminal Code: the law does not apply to “ecclesiastical bodies

acting in good faith and without personal fees.”

2. For an interesting comparison of such models, see Ray C. Fair and Robert J. Shiller, “Comparing

Information in Forecasts from Econometric Models,” American Economic Review, Vol. 80, No. 3,

pp. 375–389.

1 What Is Forecasting?

2 More Complex Forecasting Problems

3 ARIMA Models

4 Summary and Exercises

Forecasting

From Chapter 15 of Using Econometrics: A Practical Guide, 6/e. A. H. Studenmund. Copyright © 2011

by Pearson Education. Published by Addison-Wesley. All rights reserved.
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3. See, for example, G. Elliott, C. W. J. Granger, and A. G. Timmermann, Handbook of Economic

Forecasting (Oxford, UK: North-Holland Elsevier, 2006), and N. Carnot, V. Koen, and B. Tissot,

Economic Forecasting (Basingstoke, UK: Palgrave MacMillan, 2005).

Unfortunately, it’s unrealistic to think we can cover even a small portion of

the topic of forecasting in one short chapter. Indeed, there are a number of

excellent books and journals on this subject alone.3 Instead, this chapter is

meant to be a brief introduction to the use of econometrics in forecasting.

We will begin by using simple linear equations and then move on to investi-

gate a few more complex forecasting situations. The chapter concludes with

an introduction to a technique, called ARIMA, that calculates forecasts en-

tirely from past movements of the dependent variable without the use of any

independent variables at all. ARIMA is almost universally used as a bench-

mark forecast, so it’s important to understand even though it’s not based on

economic theory.

What Is Forecasting?

In general, forecasting is the act of predicting the future; in econometrics,

forecasting is the estimation of the expected value of a dependent variable

for observations that are not part of the same data set. In most forecasts, the

values being predicted are for time periods in the future, but cross-sectional

predictions of values for countries or people not in the sample are also com-

mon. To simplify terminology, the words prediction and forecast will be used

interchangeably in this chapter. (Some authors limit the use of the word fore-

cast to out-of-sample prediction for a time series.)

We’ve already encountered an example of a forecasting equation. Think

back to the weight/height example of Section 4 from Chapter 1 and recall

that the purpose of that model was to guess the weight of a male customer

based on his height. In that example, the first step in building a forecast was

to estimate Equation 21 from Chapter 1:

(A)

That is, we estimated that a customer’s weight on average equaled a base of

103.4 pounds plus 6.38 pounds for each inch over 5 feet. To actually make

the prediction, all we had to do was to substitute the height of the individual

whose weight we were trying to predict into the estimated equation. For a

male who is tall, for example, we’d calculate:

(1)Predicted weight 5 103.4 1 6.38 ? (13 inches over five feet)

6r1s

 (inches over five feet)5 103.4 1 6.38 ? HeightiEstimated weighti

1
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or

The weight-guessing equation is a specific example of using a single linear

equation to predict or forecast. Our use of such an equation to make a fore-

cast can be summarized into two steps:

1. Specify and estimate an equation that has as its dependent variable the item

that we wish to forecast. We obtain a forecasting equation by specifying

and estimating an equation for the variable we want to predict:

(2)

The use of to denote the sample size is fairly stan-

dard for time-series forecasts (t stands for “time”).

2. Obtain values for each of the independent variables for the observations for

which we want a forecast and substitute them into our forecasting equation.

To calculate a forecast with Equation 2, this would mean finding values

for period for and and substituting them into the 

equation:

(3)

What is the meaning of this It is a prediction of the value that Y

will take in observation (outside the sample) based upon our

values of and based upon the particular specification

and estimation that produced Equation 2.

To understand these steps more clearly, let’s look at two applications of

this forecasting approach:

Forecasting Chicken Consumption: Let’s return to the chicken demand model,

Equation 8 from Chapter 6, to see how well that equation forecasts aggregate

per capita chicken consumption:

(B)

(0.03) (0.02) (0.01)

t � � 3.38 � 1.86 � 15.7

R2 5 .9904  N 5 29 (annual 197422002)  DW d 5 0.99

Ŷt 5 27.7 2 0.11PCt 1 0.03PBt 1 0.23YDt

X1T11 and X2T11

T 1 1

ŶT11?

ŶT11 5 �̂0 1 �̂1X1T11 1 �̂2X2T11

X2X1T 1 1

(t 5  1, 2, . . . , T)

Ŷt 5 �̂0 1 �̂1X1t 1 �̂2X2t  (t 5 1, 2, . . . , T)

103.4 1  82.9 5  186.3 pounds
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4. The rest of the actual values are PC: 2004 � 24.8, 2005 � 26.8; PB: 2004 � 406.5, 2005 � 409.1;

YD: 2004 � 295.17, 2005 � 306.16. Many software packages, including EViews and Stata, have

forecasting modules that will allow you to calculate forecasts using equations like Equation 4

automatically. If you use that module, you’ll note that the forecasts differ slightly because we

rounded the coefficient estimates.

5. For a summary of seven different methods of measuring forecasting accuracy, see Peter Kennedy,

A Guide to Econometrics (Malden, MA: Blackwell, 2008), pp. 334–335.

where: Y � pounds of chicken consumption per capita

PC and PB � the prices of chicken and beef, respectively, per

pound

YD � per capita U.S. disposable income

To make these forecasts as realistic as possible, we held out the last three

available years from the data set used to estimate Equation 8 from Chapter 6.

We’ll thus be able to compare the equation’s forecasts with what actually

happened. To forecast with the model, we first obtain values for the three in-

dependent variables and then substitute them into Equation 8 from 

Chapter 6. For 2003, PB � 374.6, and YD � 280.2 giving us:

(4)

Continuing on through 2005, we end up with4:

Year Forecast Actual Percent Error

2003 99.63 95.63 4.2

2004 105.06 98.58 6.6

2005 107.44 100.60 6.8

How does the model do? Well, forecasting accuracy, like beauty, is in the eye

of the beholder, and there are many ways to answer the question.5 The sim-

plest method is to take the mean of the percentage errors (in absolute value),

an approach called, not surprisingly, the mean absolute percentage error

(MAPE) method. The MAPE for our forecast is 6.2 percent.

The most popular alternative method of evaluating forecast accuracy is the

root mean square error criterion (RMSE), which is calculated by squaring

the forecasting error for each time period, averaging these squared amounts,

and then taking the square root of this average. One advantage of the RMSE

is that it penalizes large errors because the errors are squared before they’re

added together. For the chicken demand forecasts, the RMSE of our forecast

is 5.97 pounds (or 6 percent).

Ŷ2003 5 27.7 2 0.11(34.1) 1 0.03(374.6) 1 0.23(280.2) 5 99.63

PC 5 34.1,
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As you can see in Figure 1, it really doesn’t matter which method you use,

because the unconditional forecasts generated by Equation 8 from 

Chapter 6 track quite well with reality. We missed by around 6 percent.

Forecasting Stock Prices: Some students react to the previous example by

wanting to build a model to forecast stock prices and make a killing on the

stock market. “If we could predict the price of a stock three years from now to
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Figure 1 Forecasting Examples

In the chicken consumption example, the equation’s forecast errors averaged around

6 percent. For the stock price model, even actual values for the independent variables

and an excellent fit within the sample could not produce an accurate forecast.
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stock based on our forecast, we’d have lost money! Since other attempts to

forecast stock prices have also encountered difficulties, this doesn’t seem

like a reasonable use for econometric forecasting. Individual stock prices

(and many other items) are simply too variable and depend on too many

nonquantifiable items to consistently forecast accurately, even if the fore-

casting equation has an excellent fit! The reason for this apparent contra-

diction is that equations that worked well in the past may or may not work

well in the future.

More Complex Forecasting Problems

The forecasts generated in the previous section are quite simple, however, and

most actual forecasting involves one or more additional questions. For example:

1. Unknown Xs: It’s unrealistic to expect to know the values for the inde-

pendent variables outside the sample. For instance, we’ll almost never

know what the Dow-Jones industrial average will be in the future when

we are making forecasts of the price of a given stock, and yet we as-

sumed that knowledge when making our Kellogg price forecasts. What

happens when we don’t know the values of the independent variables

for the forecast period?

2. Serial Correlation: If there is serial correlation involved, the forecasting

equation may be estimated with GLS. How should predictions be ad-

justed when forecasting equations are estimated with GLS?

3. Confidence Intervals: All the previous forecasts were single values, but

such single values are almost never exactly right. Wouldn’t it be more

helpful if we forecasted an interval within which we were confident

that the actual value would fall a certain percentage of the time? How

can we develop these confidence intervals?

4. Simultaneous Equations Models: Many economic and business equations

are part of simultaneous models. How can we use an independent vari-

able to forecast a dependent variable when we know that a change in

value of the dependent variable will change, in turn, the value of the in-

dependent variable that we used to make the forecast?

Even a few questions like these should be enough to convince you that

forecasting is more complex than is implied by Section 1.

2
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within six percent,” they reason, “we’d know which stocks to buy.” To see

how such a forecast might work, let’s look at a simplified model of the quar-

terly price of a particular individual stock, that of the Kellogg Company

(maker of breakfast cereals and other products):

(5)

where: � the dollar price of Kellogg’s stock in quarter t

� the Dow-Jones industrial average in quarter t

� Kellogg’s earnings growth (percent change in annual

earnings over the previous five years)

� Kellogg’s declared dividends (in dollars) that quarter

� per-share book value of the Kellogg corporation that

quarter

The signs of the estimated coefficients all agree with those hypothe-

sized before the regression was run, indicates a good overall fit, and 

the Durbin–Watson d statistic indicates that the hypothesis of no positive

serial correlation cannot be rejected. The low t-scores for KEG and DIV 

are caused by multicollinearity but both variables are left in

the equation because of their theoretical importance. Note also that most

of the variables in the equation are nonstationary, surely causing some of

the good fit.

To forecast with Equation 5, we collected actual values for all of the inde-

pendent variables for the next four quarters and substituted them into the

right side of the equation, obtaining:

Quarter Forecast Actual Percent Error

1 $26.32 $24.38 8.0

2 27.37 22.38 22.3

3 27.19 23.00 18.2

4 27.13 21.88 24.0

How did our forecasting model do? Even though the within the sample

was .95, even though we used actual values for the independent variables,

and even though we forecasted only four quarters beyond our sample, the

model was something like 20 percent off. If we had decided to buy Kellogg’s

R2

(r 5 .985), 

R2

BVPSt

DIVt

KEGt

DJAt

PKt

R2 5 .95  N 5 35  DW 5 1.88

 t 5 3.91  0.95  0.71  3.29

 (0.0024)  (2.83)  (22.70)  (1.47)

PKt 5 2 7.80 1 0.0096DJAt 1 2.68KEGt 1 16.18DIVt 1 4.84BVPSt
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Conditional Forecasting (Unknown X Values 
for the Forecast Period)

A forecast in which all values of the independent variables are known with

certainty can be called an unconditional forecast, but, as mentioned previ-

ously, the situations in which one can make such unconditional forecasts are

rare. More likely, we will have to make a conditional forecast, for which ac-

tual values of one or more of the independent variables are not known. We

are forced to obtain forecasts for the independent variables before we can use

our equation to forecast the dependent variable, making our forecast of Y

conditional on our forecast of the Xs.

One key to an accurate conditional forecast is accurate forecasting of the in-

dependent variables. If the forecasts of the independent variables are unbiased,

using a conditional forecast will not introduce bias into the forecast of the

dependent variable. Anything but a perfect forecast of the independent vari-

ables will contain some amount of forecast error, however, and so the ex-

pected error variance associated with conditional forecasting will be larger

than that associated with unconditional forecasting. Thus, one should try to

find unbiased, minimum variance forecasts of the independent variables

when using conditional forecasting.

To get good forecasts of the independent variables, take the forecastability

of potential independent variables into consideration when making specifi-

cation choices. For instance, when you choose which of two redundant vari-

ables to include in an equation to be used for forecasting, you should choose

the one that is easier to forecast accurately. When you can, you should choose

an independent variable that is regularly forecasted by someone else (an

econometric forecasting firm, for example) so that you don’t have to forecast

X yourself.

The careful selection of independent variables can sometimes help you

avoid the need for conditional forecasting in the first place. This opportunity

can arise when the dependent variable can be expressed as a function of lead-

ing indicators. A leading indicator is an independent variable the move-

ments of which anticipate movements in the dependent variable. The best

known leading indicator, the Index of Leading Economic Indicators, is pro-

duced each month.

For instance, the impact of interest rates on investment typically is not felt

until two or three quarters after interest rates have changed. To see this, let’s

look at the investment function of a small macroeconomic model:

(6)It 5 �0 1 �1Yt 1 �2rt21 1 �t
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where I equals gross investment, Y equals GDP, and r equals the interest

rate. In this equation, actual values of r can be used to help forecast 

Note, however, that to predict we need to forecast Thus, lead-

ing indicators like r help avoid conditional forecasting for only a time

period or two. For long-range predictions, a conditional forecast is usually

necessary.

Forecasting with Serially Correlated Error Terms

Recall that pure first-order serial correlation implies that the current observa-

tion of the error term is affected by the previous error term and an autocor-

relation coefficient, 

where is a non–serially correlated error term. Also recall that when serial

correlation is severe, one remedy is to run Generalized Least Squares (GLS) as

noted in Equation C:

(C)

Unfortunately, whenever the use of GLS is required to rid an equation of pure

first-order serial correlation, the procedures used to forecast with that equa-

tion become a bit more complex. To see why this is necessary, note that if

Equation 9.18 is estimated, the dependent variable will be:

(7)

Thus, if a GLS equation is used for forecasting, it will produce predictions of

rather than of Such predictions thus will be of the wrong variable.

If forecasts are to be made with a GLS equation, Equation C should first be

solved for before forecasting is attempted:

(8)

We now can forecast with Equation 8 as we would with any other. If we sub-

stitute for t (to forecast time period ) and insert estimates for the

coefficients, and Xs into the right side of the equation, we obtain:

(9)ŶT11 5 �̂YT 1 �̂0(1 2 �̂) 1 �̂1(X̂T11 2 �̂XT)

�s

T 1 1T 1 1

Yt 5 �Yt21 1 �0(1 2 �) 1 �1(Xt 2 �Xt21) 1 ut

Yt

YT11.Y*T11

Y*t 5 Yt 2 �̂Yt21

Yt 2 �Yt21 5 �0(1 2 �) 1 �1(Xt 2 �Xt21) 1 ut

ut

�t 5 ��t21 1 ut

�:

�t

rT11.IT12,

IT11.
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6. If is less than 0.3, many researchers prefer to use the OLS forecast plus times the lagged

residual as their forecast instead of the GLS forecast from Equation 9.

�̂�̂

Equation 9 thus should be used for forecasting when an equation has been

estimated with GLS to correct for serial correlation.6

We now turn to an example of such forecasting with serially correlated error

terms. In particular, that the Durbin–Watson statistic of the chicken demand

equation used as an example in Section 1 was 0.99, indicating significant posi-

tive first-order serial correlation. As a result, we estimated the chicken demand

equation with GLS, obtaining Equation 22 from Chapter 9.

(D)

(0.05) (0.02) (0.02)

t � � 1.70 � 0.76 � 12.06

Since Equation 22 from Chapter 9 was estimated with GLS, Y is actually ,

which equals , is actually , which equals and so on.

Thus, to forecast with Equation 22 from Chapter 9, we have to convert it to

the form of Equation 9, or:

(10)

Substituting the actual values for the independent variables into Equation 10, we

obtain:

Year Forecast Actual Percent Error

2003 97.54 95.63 2.0

2004 101.02 98.58 2.5

2005 102.38 100.60 1.8

The MAPE of the GLS forecasts is 2.1 percent, far better than that of the

OLS forecasts. In general, GLS usually will provide superior forecasting per-

formance to OLS in the presence of serial correlation.

Forecasting Confidence Intervals

Until now, the emphasis in this text has been on obtaining point (or single-

value) estimates. This has been true whether we have been estimating coefficient

1 0.02(PBT11 2 0.56PBT) 1 0.23(YDT11 2 0.56YDT)

ŶT11 5 0.56YT 1 27.70(1 2 0.56) 2 0.08(PC T11 2 0.56PC T)

PC*tPCt(Yt 2 �̂Yt21)

Y*t

R2 5 .9921 N 5 28 �̂ 5 0.56

Ŷt 5 27.7 2 0.08PCt 1 0.02PBt 1 0.24YDt
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values or estimating forecasts. Recall, though, that a point estimate is only

one of a whole range of such estimates that could have been obtained from

different samples (for coefficient estimates) or different independent variable

values or coefficients (for forecasts). The usefulness of such point estimates is

improved if we can also generate some idea of the variability of our forecasts.

The measure of variability typically used is the confidence interval, defined as

the range of values that contains the actual value of the item being estimated

a specified percentage of the time (called the level of confidence). This is the

easiest way to warn forecast users that a sampling distribution exists.

Suppose you are trying to decide how many hot dogs to order for your

city’s Fourth of July fireworks show and that the best point forecast is that

you’ll sell 24,000 hot dogs. How many hot dogs should you order? If you

order 24,000, you’re likely to run out about half the time! This is because a

point forecast is usually an estimate of the mean of the distribution of possi-

ble sales figures; you will sell more than 24,000 about as frequently as less

than 24,000. It would be easier to decide how many dogs to order if you

also had a confidence interval that told you the range within which hot dog

sales would fall 95 percent of the time. This is because the usefulness of the

24,000 hot dog forecast changes dramatically depending on the confidence

interval; an interval of 22,000 to 26,000 would pin down the likely sales,

but an interval of 4,000 to 44,000 would leave you virtually in the dark

about what to do.

The decision as to how many hot dogs to order would also depend on

the costs of having the wrong number. These may not be the same per hot

dog for overestimates as they are for underestimates. For example, if you

don’t order enough, then you lose the entire retail price of the hot dog

minus the wholesale price of the dog (and bun) because your other costs,

like hiring employees and building hot dog stands, are essentially fixed. On

the other hand, if you order too many, you lose the wholesale cost of the

dog and bun minus whatever salvage price you might be able to get for day-

old buns, etc. As a result, the right number to order would depend on your

profit margin and the importance of nonreturnable inputs in your total

cost picture.

The same techniques we use to test hypotheses can also be adapted to cre-

ate confidence intervals. Given a point forecast, all we need to gener-

ate a confidence interval around that forecast are , the critical t-value (for

the desired level of confidence), and , the estimated standard error of the

forecast:

(11)Confidence interval 5 ŶT11 6 SFtc

SF

tc

ŶT11,
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7. Equation 13 is valid whether is in the sample period or outside the sample period, but it

applies only to point forecasts of individual s. If a confidence interval for the expected value

of Y, E( ), is desired, then the correct equation to use is:

SF 5 "s2f1>T 1 (X̂T11 2 X)2>g (Xt 2 X)2g

Yt

Yt

Yt

or, equivalently,

(12)

The critical t-value, , can be found in Statistical Table B-1 (for a two-tailed

test with degrees of freedom). The standard error of the forecast,

, for an equation with just one independent variable, equals the square

root of the forecast error variance:

(13)

where � the estimated variance of the error term

� the number of observations in the sample

� the forecasted value of the single independent variable

� the arithmetic mean of the observed Xs in the sample7

Note that Equation 13 implies that the forecast error variance decreases

the larger the sample, the more X varies within the sample, and the closer is

to its within-sample mean. An important implication is that the farther the X

used to forecast Y is from the within-sample mean of the Xs, the wider the

confidence interval around the is going to be. This can be seen in Figure 2, in

which the confidence interval actually gets wider as is farther from 

Since forecasting outside the sample range is common, researchers should be

aware of this phenomenon. Also note that Equation 13 is for unconditional

forecasting. If there is any forecast error in , then the confidence interval

is larger and more complicated to calculate.

As mentioned, Equation 13 assumes that there is only one independent

variable; the equation to be used with more than one variable is similar but

more complicated.

Let’s look at an example of building a forecast confidence interval by re-

turning to the weight/height example. In particular, let’s create a 95 percent

confidence interval around the forecast for a male calculated in 

Equation 1 (repeated for convenience):

(1)Predicted weight 5 103.4 1 6.38 ? (13 inches over five feet)

6r1s

X̂T11

X.X̂T11

Ŷ

X̂

X

X̂T11

T

s2

SF 5
Å

s2c1 1 1>T 1 (X̂T11 2 X)2^ g
T

t51
 (Xt 2 X)2d d

SF

T 2 K 2 1

tc

ŶT11 2 SFtc 
#

 
YT11 #  ŶT11 1 SFtc
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Figure 2 A Confidence Interval for 

A 95 percent confidence interval for includes the range of values within which the

actual will fall 95 percent of the time. Note that the confidence interval widens as

differs more from its within-sample mean, X.XT11

YT11

ŶT11

ŶT11

for a predicted weight of pounds. To calculate a 95

percent confidence interval around this prediction, we substitute 

Equation 13 into Equation 11, obtaining a confidence interval of:

(14)

We then substitute the actual figures into Equation 14. From the data set for

the example, we find that , the mean , the summed square

deviations of X around its mean is 92.50, and . From Statistical

Table B-1, we obtain the 5-percent, two-tailed critical t-value for 18 degrees of

freedom of 2.101. If we now combine this with the information that our is

13, we obtain:

(15)

(16)186.3 6 8.558(2.101) 5 186.3 6 18.0

186.3 6 a"65.05f1 1 1>20 1 (13.0 2 10.35)2>92.50gbtc

X̂

 s2 5  65.05

X 5 10.35 T 5 20

186.3 6 a
Å

s2 c1 1 1>T 1 (X̂T11 2 X)2>g
T

t51
(Xt 2 X)2d btc

103.4 1 82.9 or 186.3
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In other words, our 95 percent confidence interval for a college-age male

is from 168.3 to 204.3 pounds.

Forecasting with Simultaneous Equations Systems

Most economic and business models are actually simultaneous in nature;

for example, the investment equation used in Section 2 was estimated with

2SLS as a part of our simultaneous macromodel. Since GDP is one of the in-

dependent variables in the investment equation, when investment rises, so

will GDP, causing a feedback effect that is not captured if we just forecast

with a single equation. How should forecasting be done in the context of a si-

multaneous model? There are two approaches to answering this question, de-

pending on whether there are lagged endogenous variables on the right side

of any of the equations in the system.

If there are no lagged endogenous variables in the system, then the reduced-

form equation for the particular endogenous variable can be used for forecast-

ing because it represents the simultaneous solution of the system for the

endogenous variable being forecasted. Since the reduced-form equation is the

endogenous variable expressed entirely in terms of the predetermined vari-

ables in the system, it allows the forecasting of the endogenous variable with-

out any feedback or simultaneity impacts. This result explains why some

researchers forecast potentially simultaneous dependent variables with single

equations that appear to combine supply-side and demand-side predeter-

mined variables; they are actually using modified reduced-form equations to

make their forecasts.

If there are lagged endogenous variables in the system, then the approach

must be altered to take into account the dynamic interaction caused by the

lagged endogenous variables. For simple models, this sometimes can be

done by substituting for the lagged endogenous variables where they appear

in the reduced-form equations. If such a manipulation is difficult, however,

then a technique called simulation analysis can be used. Simulation involves

forecasting for the first postsample period by using the reduced-form equa-

tions to forecast all endogenous variables where they appear in the reduced-

form equations. The forecast for the second postsample period, however,

uses the endogenous variable forecasts from the last period as lagged values

for any endogenous variables that have one-period lags while continuing to

use sample values for endogenous variables that have lags of two or more pe-

riods. This process continues until all forecasting is done with reduced-form

equations that use as data for lagged endogenous variables the forecasts from

previous time periods. Although such dynamic analyses are beyond the scope

6r1s
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8. For more on this topic, see Chapters 12–14 in Robert S. Pindyck and Daniel L. Rubinfeld,

Econometric Models and Economic Forecasts (New York: McGraw-Hill, 1998).

9. See, for example, Chapters 15–19 in Robert S. Pindyck and Daniel L. Rubinfeld, Econometric

Models and Economic Forecasts (New York: McGraw-Hill, 1998).

of this chapter, they’re important to remember when considering forecasting

with a simultaneous system.8

ARIMA Models

The forecasting techniques of the previous two sections are applications of fa-

miliar regression models. We use linear regression equations to forecast the

dependent variable by plugging likely values of the independent variables

into the estimated equations and calculating a predicted value of Y; this bases

the prediction of the dependent variable on the independent variables (and

on their estimated coefficients).

ARIMA (the name will be explained shortly) is an increasingly popular

forecasting technique that completely ignores independent variables in mak-

ing forecasts. ARIMA is a highly refined curve-fitting device that uses current

and past values of the dependent variable to produce often accurate short-

term forecasts of that variable. Examples of such forecasts are stock market

price predictions created by brokerage analysts (called “chartists” or “techni-

cians”) based entirely on past patterns of movement of the stock prices.

Any forecasting technique that ignores independent variables also essen-

tially ignores all potential underlying theories except those that hypothesize

repeating patterns in the variable under study. Since we have emphasized the

advantages of developing the theoretical underpinnings of particular equa-

tions before estimating them, why would we advocate using ARIMA? The

answer is that the use of ARIMA is appropriate when little or nothing is

known about the dependent variable being forecasted, when the indepen-

dent variables known to be important really cannot be forecasted effectively,

or when all that is needed is a one or two-period forecast. In these cases,

ARIMA has the potential to provide short-term forecasts that are superior to

more theoretically satisfying regression models. In addition, ARIMA can

sometimes produce better explanations of the residuals from an existing re-

gression equation (in particular, one with known omitted variables or other

problems). In other circumstances, the use of ARIMA is not recommended.

This introduction to ARIMA is intentionally brief; a more complete coverage

of the topic can be obtained from a number of other sources.9

The ARIMA approach combines two different specifications (called processes)

into one equation. The first specification is an autoregressive process (hence

3
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the AR in ARIMA), and the second specification is a moving average (hence

the MA).

An autoregressive process expresses a dependent variable as a function

of past values of the dependent variable. This is similar to the serial correlation

error term function and to the dynamic model. If we have p different lagged

values of Y, the equation is often referred to as a “pth-order” autoregressive

process.

A moving-average process expresses a dependent variable as a function

of past values of the error term. Such a function is a moving average of past

error term observations that can be added to the mean of Y to obtain a mov-

ing average of past values of Y. If we used q past values of , we’d call it a qth-

order moving-average process.

To create an ARIMA model, we begin with an econometric equation with

no independent variables and add to it both the autoregres-

sive and moving-average processes:

autoregressive process

(17)

moving-average process

where the are the coefficients of the autoregressive and moving-

average processes, respectively, and p and q are the number of past values used

of Y and , respectively.

Before this equation can be applied to a time series, however, it must be

ensured that the time series is stationary. If a series is nonstationary, then

steps must be taken to convert the series into a stationary one before the

ARIMA technique can be applied. For example, a nonstationary series can

often be converted into a stationary one by taking the first difference of the

variable in question:

(18)

If the first differences do not produce a stationary series, then first differences

of this first-differenced series can be taken.10 The resulting series is a second-

difference transformation:

(19)Yt** 5 (�Y*t) 5 Y*t 2 Y*t21 5 �Yt 2 �Yt21

Y*t 5 �Yt 5 Yt 2 Yt21

�

�s and the �s

 1 �1�t21 1 �2�t22 1 . . . 1 �q�t2q

 Yt 5 �0 1 �1Yt21 1 �2Yt22 1 . . . 1 �pYt2p 1 �t

(Yt 5 �0 1 �t)

�

Yt

Yt

10. For variables that are growing in percentage terms rather than absolute amounts, it often

makes sense to take logs before taking first differences.

766666686666669

766666686666669
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11. If Y in Equation 17 is Y*, then represents the coefficient of the linear trend in the original

series, and if Y is Y**, then represents the coefficient of the second-difference trend in the

original series. In such cases—for example, Equation 21–it’s not always necessary that be in

the model.

�0

�0

�0

In general, successive differences are taken until the series is stationary. The

number of differences required to be taken before a series becomes stationary

is denoted with the letter d. For example, suppose that GDP is increasing by a

fairly consistent amount each year. A plot of GDP with respect to time would

depict a nonstationary series, but a plot of the first differences of GDP might

depict a fairly stationary series. In such a case, d would be equal to one because

one first difference was necessary to convert the nonstationary series into a

stationary one.

The dependent variable in Equation 17 must be stationary, so the Y in that

equation may be Y, Y*, or even Y**, depending on the variable in question.11

If a forecast of Y* or Y** is made, then it must be converted back into Y terms

before its use; for example, if , then

(20)

This conversion process is similar to integration in mathematics, so the “I” in

ARIMA stands for “integrated.” ARIMA thus stands for AutoRegressive Inte-

grated Moving Average. (If the original series is stationary and d therefore

equals 0, this is sometimes shortened to ARMA.)

As a shorthand, an ARIMA model with p, d, and q specified is usually de-

noted as ARIMA (p,d,q) with the specific integers chosen inserted for p, d,

and q, as in ARIMA (2,1,1). ARIMA (2,1,1) would indicate a model with two

autoregressive terms, one first difference, and one moving-average term:

(21)

where 

It’s remarkable how very small values of p and q can model extremely rich

dynamics.

Summary

1. Forecasting is the estimation of the expected value of a dependent

variable for observations that are not part of the sample data set. Fore-

casts are generated (via regressions) by estimating an equation for the

4

Y*t 5 Yt 2 Yt21.

ARIMA(2,1,1): Y*t 5 �0 1 �1Y*t21 1 �2Y*t22 1 �t 1 �1�t21

ŶT11 5 YT 1 Ŷ*T11

 d 5  1
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dependent variable to be forecasted, and substituting values for each

of the independent variables (for the observations to be forecasted)

into the equation.

2. An excellent fit within the sample period for a forecasting equation

does not guarantee that the equation will forecast well outside the

sample period.

3. A forecast in which all the values of the independent variables are

known with certainty is called an unconditional forecast, but if one

or more of the independent variables have to be forecasted, it is a

conditional forecast. Conditional forecasting introduces no bias

into the prediction of Y (as long as the X forecasts are unbiased), but

increased forecast error variance is unavoidable with conditional

forecasting.

4. If the coefficients of an equation have been estimated with GLS (to

correct for pure first-order serial correlation), then the forecasting

equation is:

where is the autocorrelation coefficient rho.

5. Forecasts are often more useful if they are accompanied by a confi-

dence interval, which is a range within which the actual value of the

dependent variable should fall a given percentage of the time (the

level of confidence). This is:

where is the estimated standard error of the forecast and is the

critical two-tailed t-value for the desired level of confidence.

6. ARIMA is a highly refined curve-fitting technique that uses current

and past values of the dependent variable (and only the dependent

variable) to produce often accurate short-term forecasts of that vari-

able. The first step in using ARIMA is to make the dependent

variable series stationary by taking d first differences until the re-

sulting transformed variable has a constant mean and variance. The

ARIMA(p,d,q) approach then combines an autoregressive process

(with terms) of order p with a moving-average process (with

terms) of order q to explain the dth differenced dependent

variable.

�1�t21

�1Yt21

tcSF

ŶT11 6 SFtc

�

ŶT11 5 �̂YT 1 �̂0(1 2 �̂) 1 �̂1(X̂T11 2 �̂XT)
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EXERCISES

(The answer to Exercise 2 is at the end of the chapter.)

1. Write the meaning of each of the following terms without referring to

the book (or your notes), and compare your definition with the ver-

sion in the text for each:

a. conditional forecast

b. leading indicator

c. confidence interval

d. MAPE

e. RMSE

f. autoregressive process

g. moving-average process

h. ARIMA(p,d,q)

2. Calculate the following unconditional forecasts:

a. the median price of a new single-family house in 2008, given the

simplified equation in Exercise 10 in Chapter 1 and the fact that

the U.S. GDP in 2008 was $14,288.6 billion.

b. the expected level of check volume at three possible future sites for

new Woody’s restaurants, given Equation 5 from Chapter 3 and the

following data. If you could only build one new eatery, in which of

these three sites would you build (all else equal)?

Site Competition Population Income

Richburgh 6 58,000 38,000

Nowheresville 1 14,000 27,000

Slick City 9 190,000 15,000

c. Per capita consumption of fish in the United States for 1971–1974

given Equation 23 from Chapter 8 and the following data:

Year PF PB Yd

1971 130.2 116.7 2679

1972 141.9 129.2 2767

1973 162.8 161.1 2934

1974 187.7 164.1 2871

501



FORECASTING

3. To understand the difficulty of conditional forecasting, use 

Equation 21 from Chapter 1 to forecast the weights of the next three

males you see, using your estimates of their heights. (Ask for actual val-

ues after finishing.)

4. Calculate 95 percent confidence interval forecasts for the following:

a. the weight of a male who is tall. (Hint: Modify Equation 15.)

b. next month’s sales of ice cream cones at the Campus Cooler given

an expected price of 60 cents per cone and:

where: � the number of ice cream cones sold in month t

� the price of the Cooler’s ice cream

cones (in cents) in month t

� 25,000 and 

5. Some of the most interesting applications of econometric forecasting

are in the political arena. Examples of regression analysis in politics

range from part-time marketing consultants who help local candi-

dates decide how best to use their advertising dollars to a fairly rich

professional literature on U.S. presidential elections.12

In 2008, Haynes and Stone13 added to this literature with an article

that specified (among others) the following equation:

VOTEi � β0 � β1Pi � β2(DUR∗P)i � β3(DOW∗P)i � β4(GROWTH∗P)i

� β5(INFLATION∗P)i � β6(ARMY∗P)i � β7(SPEND∗P)i � εi (22)

where: VOTEi � the Democratic share of the popular two-

party presidential vote

Pi � 1 if the incumbent is a Democrat and �1 if

the incumbent is a Republican

g (Pt 2 P)2 5 1000s2

Pt

Ct

P 5 50 t 5 2 4.0 

T 5 30 (5.0) 

Ĉt 5 2,000 2 20.0Pt  R2 5 .80

5r9s

12. See, particularly, the work of Ray Fair: “The Effect of Economic Events on Votes for President,”

Review of Economics and Statistics, Vol. 60, pp. 159–173, and “Econometrics and Presidential Elec-

tions,” Journal of Economic Perspectives, Vol. 10, pp. 89–102.

13. Stephen Haynes and Joe Stone, “A Disaggregate Approach to Economic Models of Voting in

U.S. Presidential Elections: Forecasts of the 2008 Election,” Economics Bulletin, Vol. 4, No. 28

(2008), pp. 1–11.
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DURi � the number of consecutive terms the in-

cumbent party has held the presidency

DOWi � the annual rate of change in the Dow Jones

Industrial Average between January and

October of the election year

GROWTHi � the annual percent growth of real per capita

GDP in the second and third quarters of

the election year

INFLATIONi � the absolute value of the annualized infla-

tion rate in the two-year period prior to the

election

ARMYi � the annualized percent change of the pro-

portion of the population in the armed

forces in the two-year period prior to the

election

SPENDi � the annualized percentage change in the

proportion of government spending de-

voted to national security in the two-year

period prior to the election

a. What kind of variable is P? Is it a dummy variable? If not, what

is it?

b. The authors specified their equation as a series of interaction vari-

ables between P and the other variables of interest. Look at the

equation carefully. Why do you think that these interaction vari-

ables were required?

c. Using the data14 in Table 1 (datafile � ELECTION15) estimate

Equation 22 for the years 1916–1996.

d. Create and test appropriate hypotheses on the coefficients of your

estimated equation at the 5-percent level. Do any of the coefficients

have unexpected signs? Which ones?

e. Create unconditional forecasts for the years 2000 and 2004 and

compare your forecasts with the actual figures in Table 1. How did

you do?

f. The authors wrote their article before the 2008 election. Create an

unconditional forecast for that election using the data in Table 1.

Who did the model predict would win?

14. These data are from Haynes and Stone, ibid., p. 10, but similar tables are available from a vari-

ety of sources, including: fairmodel.econ.yale.edu/vote2008/pres.txt.
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Table 1 Data for the Presidential Election Exercise

YEAR VOTE P DUR DOW GROWTH INFLATION ARMY SPEND

1916 51.682 1 1 12.00 6.38 7.73 2.33 4.04

1920 36.119 1 2 –23.50 –6.14 8.01 –107.60 11.24

1924 41.756 –1 1 6.00 –2.16 0.62 –3.38 –23.05

1928 41.240 –1 2 31.30 –0.63 0.81 –0.48 10.15

1932 59.140 –1 3 –25.00 –13.98 10.01 –2.97 –37.56

1936 62.458 1 1 24.90 13.41 1.36 7.60 28.86

1940 54.999 1 2 –12.90 6.97 0.53 16.79 8.33

1944 53.774 1 3 9.00 6.88 1.98 53.10 17.16

1948 52.370 1 4 6.30 3.77 10.39 –38.82 –86.56

1952 44.595 1 5 –1.80 –0.34 2.66 43.89 71.59

1956 42.240 –1 1 2.40 –0.69 3.59 –9.93 –14.34

1960 50.090 –1 2 –13.90 –1.92 2.16 –4.10 –8.44

1964 61.344 1 1 15.80 2.38 1.73 –3.68 –5.88

1968 49.596 1 2 10.00 4.00 3.94 0.06 6.28

1972 38.210 –1 1 5.40 5.05 5.17 –11.91 –19.71

1976 51.050 –1 2 3.00 0.78 7.64 –2.56 –20.15

1980 44.697 1 1 12.40 –5.69 8.99 –1.37 –0.44

1984 40.830 –1 1 –6.90 2.69 3.68 –0.22 7.38

1988 46.070 –1 2 12.60 2.43 3.30 –1.58 –1.09

1992 53.455 –1 3 –0.90 1.34 3.15 –7.33 –10.11

1996 54.736 1 1 24.54 3.08 1.95 –5.62 –12.67

2000 50.265 1 2 –5.02 2.95 1.80 –2.00 1.83

2004 48.586 –1 1 –8.01 3.49 2.50 –0.51 14.91

2008 ? –1 2 30.70 2.10 3.70 –0.87 0.41

Source: Stephen Haynes and Joe Stone, “A Disaggregate Approach to Economic Models of Voting in U.S.

Presidential Elections: Forecasts of the 2008 Election,” Economics Bulletin, Vol. 4, No. 8 (2008), p. 10.

Datafile � ELECTION15

6. For each of the following series, calculate and plot , , and

describe the stationarity properties of the series, and

choose an appropriate value for d.

a. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

b. 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 19, 24

c. 2, 3, 6, 3, 4, 2, 3, 5, 1, 4, 4, 6

7. Take the three series you calculated as part of your answer to Exer-

cise 6 and check to see whether they are correct by calculating back-

ward from one of the endpoints and seeing if you can derive the orig-

inal three series from your three series. (Hint: Equation 20 can

be adapted for this “integration” purpose.)

Y*tYt

Y*t

Y*t* 5 �Y*t ,

Y*t 5 �YtYt
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8. Suppose you have been given two different ARIMA(1,0,0) fitted time-

series models of the variable :

where is a normally distributed error term with mean zero and

standard deviation equal to one.

a. The final observation in the sample (time period 06) is .

Determine forecasts for periods 07, 08, and 09 for both models.

b. Suppose you now find out that the actual was equal to 33.

Revise your forecasts for periods 08 and 09 to take the new infor-

mation into account.

c. Based on the fitted time series and your two forecasts, which model

(model A or model T) do you expect to exhibit smoother behavior?

Explain your reasoning.

9. Suppose you have been given an ARIMA(1,0,1) fitted time-series model:

where is a normally distributed error term with mean zero and

standard deviation equal to one and where , and

where 

a. Calculate .

b. Calculate forecasts for , , and . (Hint: Use your answer to

part a.)

10. You’ve been hired to forecast Sports Illustrated subscriptions (S) using

the following function of GDP (Y) and a classical error term 

Explain how you would forecast (out two time periods) with this equa-

tion in the following cases:

a. If future values of Y are known. (Hint: Be sure to comment on the

functional form of this relationship.)

b. If future values of Y are unknown and Sports Illustrated subscrip-

tions are small in comparison to GDP.

c. If Sports Illustrated subscriptions are about half of GDP (obviously a

sports-lover’s heaven!) and all other components of GDP are known

to be stochastic functions of time.

St 5 �0 1 �1Yt 1 �2St21 1 �t

(�):

Y12Y11Y10

e09

Ŷ09 5 27.5.

T 5 09, Y09 5 27

�t

Yt 5 0.0 1 1.0Yt21 1 �t 2 0.5�t21

Y07

Y06 5 31

�t

 Model T: Yt 5 45.0 2 0.5Yt21 1 �t

 Model A: Yt 5 15.0 1 0.5Yt21 1 �t

Yt
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Answers

Exercise 2

a. $256,977.28

b. 117,276; 132,863; 107,287; Nowheresville

c. 15.13; 15.56; 16.35; 17.11

FORECASTING
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This chapter∗ reviews the basic statistical principles that underlie the specifi-

cation and estimation of econometric models. The first two sections discuss

how our interpretation of data should recognize that data are usually sam-

ples and that different samples will yield somewhat different data. The third

section explains how a sample can be used to draw inferences about the pop-

ulation that it came from.

To make the discussion very concrete, we will focus on the data shown in

Table 1 (page 555) on the 2004 market prices and square footage of 22 homes

in Diamond Bar, California, a suburb of Los Angeles. What can we infer from

these data about the average price of Diamond Bar homes and the relationship

(if any) between price and size? Is the average price of all Diamond Bar homes

about $400,000? This chapter will answer those questions.

Probability Distributions

In order to draw valid statistical inferences from a data set, we need to think

about where the data come from—the sample of households used in a study

of consumer borrowing, the sample of businesses used in a study of invest-

ment spending, the sample of stocks used in a study of the stock market, and

the sample of houses used in a study of a housing market. In this section, we

1

∗ Written by Gary Smith of Pomona College. Gary is also the author of Introduction to Statistical

Reasoning (New York, McGraw-Hill, 1998).

Statistical Principles

1 Probability Distributions

2 Sampling

3 Estimation

4 Summary and Exercises

From Chapter 17 of Using Econometrics: A Practical Guide, 6/e. A. H. Studenmund. Copyright © 2011

by Pearson Education. Published by Addison-Wesley. All rights reserved.
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will see how probabilities can be used to quantify uncertainty and to help us

explain and interpret empirical data by considering the probability of obtain-

ing samples with various characteristics.

Probability

When we say that a flipped coin has a 0.5 probability of landing with its

heads side up, we mean that if this coin were to be flipped an interminable

number of times (the “long run”), we anticipate that it will come up heads

about half the time. More generally, if an event has a probability P of occur-

ring, then the fraction of the times that it occurs in the long run will be very

close to P. Obviously, a probability cannot be negative or larger than one.

A random variable X is a variable whose numerical value is determined by

chance, the outcome of a random phenomenon.1 A discrete random variable

has a countable number of possible values, such as 0, 1, and 2; in the next

section, we will consider continuous random variables, such as time and dis-

tance, which can take on any value in an interval. All of the discrete random

variables that we will examine have a finite number of outcomes, though

there are other discrete variables that have an infinite number of countable

values. For example, if X is equal to the number of times that a coin will be

flipped before heads is obtained, there is no upper limit on the value of X;

nonetheless, X is a discrete variable because its values are obtained by count-

ing. Measures of time and distance, in contrast, are continuous variables; be-

tween any two possible values, such as 4.7 and 4.8, there are other possible

values, such as 4.75 and 4.76.

A probability distribution P[Xi] for a discrete random variable X assigns

probabilities to the possible values X1, X2, and so on. For example, when a

fair six-sided die is rolled, there are six equally likely outcomes, each with a

1/6 probability of occurring. Figure 1 shows this probability distribution.

Probability distributions are scaled so that the total area inside the rectangles

is equal to 1.

For housing data, the random variable might be market price and the

probability distribution would state the probability that we select a house

with a specified market price. For example, if there are 100,000 houses in

STATISTICAL PRINCIPLES

1. To be mathematically precise, statisticians often use uppercase and lowercase notation to

distinguish between a random variable, which can take on different values, and the actual

values that happen to occur. Uppercase notation is used throughout this text for simplicity and

convenience.
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the geographic area that we are studying and 2,000 of these houses have mar-

ket prices of $400,000, then there is a 0.02 probability of picking a $400,000

house: 

Mean, Variance, and Standard Deviation

Sometimes, a few simple numbers can summarize effectively the important

characteristics of a probability distribution. The expected value (or mean) of

a discrete random variable X is a weighted average of all possible values of X,

using the probability of each X value as weights:

(1)

The Greek symbol � (pronounced “mew”) and the notation E[X] denote the

expected value of the random variable X. The Greek letter � (uppercase

“sigma”) indicates that the values of should be added up. In this case, that

means that we multiply each possible value of the random variable by its as-

sociated probability and then add up these products: 

Suppose, for example, that X is equal to the number obtained when a sin-

gle six-sided die is rolled and we want to find the expected value of X.

Xi PfXig.

Xi

� 5 EfXg 5 g
i

XiPfXig

Pf$400,000g 5 2,000>100,000 5 0.02.

Number Rolled

D
en

si
ty

1/6

1 2 3 4 5 6

Figure 1 Probability Distribution for a Six-Sided Die
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1. Determine the possible outcomes (the possible values of X). Here, there

are six possible values: 1, 2, 3, 4, 5, 6.

2. Determine the probability of each possible outcome. Here, each of the

six possible outcomes has a 1/6 probability.

3. As shown in Equation 1, the expected value is an average of the possi-

ble outcomes weighted by their respective probabilities:

The expected value is not the most likely value of X: the expected value of a

dice roll is 3.5, but you will never roll a 3.5. The expected value should be in-

terpreted as the anticipated long-run average value of X if this die is rolled

over and over and over. If, in accord with their probabilities, the six sides

come up equally often, the average value of X will be 3.5.

Pascal and other early probability theorists used probabilities to calculate

the expected value of various games of chance and determine which were the

most profitable. They assumed that a rational person would choose the

course of action with the highest expected value. This expected-value crite-

rion is appealing for gambles that are repeated over and over. It makes good

sense to look at the long-run average when there is a long run to average over.

Casinos, state lotteries, and insurance companies are very interested in the

expected values on the repetitive gambles they offer, because anything with a

negative expected value will almost certainly be unprofitable in the long run.

However, an expected-value criterion is often inappropriate. State lotteries

have a positive expected value for the state and, because their gain is our loss,

a negative expected value for people who buy lottery tickets. Those who buy

lottery tickets are not maximizing expected value. Insurance policies give in-

surance companies a positive expected value and insurance buyers a negative

expected value. People who buy insurance are not maximizing expected value

either. Diversified investments provide yet another example. An expected-

value maximizer should invest everything in the single asset with the highest

expected value. Individuals and financial institutions that hold dozens or

thousands of assets must not be maximizing expected value.

The primary inadequacy of expected-value maximization is that it neglects

risk—how certain or uncertain a situation is. An expected value maximizer

considers a sure $1 million and a 1-percent chance at $100 million equally

attractive because each has an expected value of $1 million. If these alterna-

tives were offered over and over, there would be little difference in the long

run because the payoffs from each would almost certainly average close to 

 5 3.5

 � 5 1a1
6b 1 2a1

6b 1 3a1
6b 1 4a1

6b 1 5a1
6b 1 6a1

6b

510



STATISTICAL PRINCIPLES

$1 million per play. But if you get only one chance at this game, the outcome

may differ considerably from its expected value, a difference ignored by an

expected-value calculation. Much of the uncertainty we face is unique, not

repetitive, and the possible divergence between the actual outcome and its

expected value is properly described as risk.

To measure the extent to which the outcomes may differ from the expected

value, we can use the variance of a discrete random variable X, which is 

a weighted average, for all possible values of X, of the squared difference

between X and its expected value, using the probability of each X value 

as weights:

(2)

The standard deviation � is the square root of the variance.

The interpretation of the variance is best understood by dissecting Equa-

tion 2. The variance is the expected value of that is, the anticipated

long-run average value of the squared deviations of the possible values of X

from its expected value �.

The variance and standard deviation are probability-weighted measures 

of the dispersion of the possible outcomes about their expected value. The

standard deviation is usually easier to interpret than the variance because it

has the same units (for example, dollars) as X and �, while the units for the

variance are squared (for example, dollars squared). A compact probability

distribution has a low standard deviation; a spread-out probability distribu-

tion has a high standard deviation.

Consider again a random variable X equal to the number obtained when a

six-sided die is rolled:

1. Determine the expected value �, here 3.5.

2. For each possible value of X, determine the size of the squared devia-

tion from the expected value �:

Die Outcome Deviation Squared Deviation 

(

1 6.25

2 2.25

3 0.25

4 0.25

5 2.25

6 6.252.5

1.5

0.5

20.5

21.5

22.5

Xi 2 �)2Xi 2 �Xi

(X 2 �)2,

�2 5 Ef(X 2 �)2g 5 g
i

(Xi 2 �)2PfXig
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3. As shown in Equation 2, the variance is equal to the sum of the squared

deviations of from �, multiplied by their respective probabilities:

4. The standard deviation is equal to the square root of the variance; here,

Continuous Random Variables

Our examples to this point have involved discrete random variables, for

which we can count the number of possible outcomes. The coin can be heads

or tails; the die can be 1, 2, 3, 4, 5, or 6. Other random variables can take on

a continuum of values. For these continuous random variables, the outcome

can be any value in a given interval.

For example, Figure 2 shows a spinner for randomly selecting a point on a

circle. We can imagine that this is a clean, well-balanced device in which each

point on the circle is equally likely to be picked. How many possible out-

comes are there? How many points are there on the circle? In theory, there

are an uncountable infinity of points in that between any two points on 

the circle, there are still more points.

� 5 "2.9167 5 1.71

 5 2.9167

 �2 5 6.25a1
6b 1 2.25a1

6b 1 c1 6.25a1
6b

Xi

0.50

0.00

0.75 0.25

Figure 2 Pick a Number, Any Number
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Weight, height, and time are other examples of continuous variables.

Many variables are essentially continuous even though they might in practice

be measured only in whole units, such as dollars, miles, or years. Even

though we might say that Sarah Cunningham is 19 years old, a person’s age

can, in theory, be specified with infinite precision. Instead of saying that she

is 19 or 20, we could say that she is 19 and a half, or 19 years and 7 months,

or 19 years, 220 days, and 10 hours. With continuous variables, we can spec-

ify finer and finer gradations within any interval. Many economic variables

(such as GDP, interest rates, and prices) are continuous, but some (such as

the number of bedrooms in a house, number of people in a family, and

number of stocks in a portfolio) are discrete.

How can we specify probabilities when there are an uncountable number

of possible outcomes? In Figure 2, each point on the circle is equally likely

and a point surely will be selected, but if we give each point a positive proba-

bility, the sum of this uncountable number of probabilities will be infinity,

not one. Mathematicians handle this vexing situation of an uncountable

number of possible outcomes by assigning probabilities to intervals of out-

comes, rather than to individual outcomes. For example, the probability that

the spinner will stop between 0.25 and 0.50 is 1/4.

We can display these interval probabilities by using a continuous prob-

ability density curve, as in Figure 3, in which the probability that the 

0

D
en
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ty

0.25

1.0

This area is (0.25)(1.0) � 0.25

0.50 0.75 1.00

X

Figure 3 A Continuous Probability Distribution for the Spinner
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outcome is in a specified interval is given by the corresponding area under the

curve. The shaded area shows the probability that the spinner will stop between

0.25 and 0.50. This rectangular area is (base)(height) � (0.25)(1.0) � 1/4.

What is the probability that the spinner will stop between 0 and 1? This proba-

bility is the entire area under the curve: (base)(height) � (1)(1.0) � 1. In fact,

the height of the probability density curve, 1.0, was derived from the require-

ment that the total probability must be 1. If the numbers on our spinner went

from 0 to 12, like a clock, the height of the probability density curve would

have to be 1/12 for the total area to be 1: (base)(height) � (12)(1/12) � 1.

The density curve for a continuous random variable is analogous to the

probability distribution for a discrete random variable, and the population

mean and the standard deviation have the same interpretation. The popula-

tion mean is the anticipated long-run average value of the outcomes if the ex-

periment is repeated a great many times; the standard deviation measures the

extent to which the outcomes are likely to differ from the mean. With a sym-

metrical density function, the mean is in the center—at 0.50 in Figure 3, for

example. More generally, however, the formulas for the mean and standard

deviation of a continuous random variable involve integrals and can be diffi-

cult to calculate.

Standardized Variables

Many random variables are the cumulative result of a sequence of random

events. For instance, a random variable giving the sum of the numbers when

eight dice are rolled can be viewed as the cumulative result of eight separate

random events—the eight dice rolls. The percentage change in a stock’s price

over a 12-month period is the cumulative result of a large number of random

events during that interval. A person’s height at 11 years of age is the cumula-

tive result of a great many random events, some hereditary and some having

to do with diet, health, and exercise.

These three different examples—dice rolls, stock price changes, and

height—involve very different units of measurement: number, percent, and

inches. However, in the eighteenth and nineteenth centuries, researchers dis-

covered that when variables are standardized, in a particular way that will

soon be explained, their probability distributions are often virtually identi-

cal! This remarkable similarity is perhaps the most important discovery in

the long history of probability and statistics.

We have seen that the mean and standard deviation are two important

tools for describing probability distributions. One appealing way to stan-

dardize variables is to transform them so that they have the same mean and

the same standard deviation. This reshaping is easily done in the statistical
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beauty parlor. To standardize a random variable X, we subtract its mean �
and then divide by its standard deviation �:

(3)

No matter what the initial units of X, the standardized random variable Z

has a mean of 0 and a standard deviation of 1.

The standardized variable Z measures how many standard deviations X is

above or below its mean. If X is equal to its mean, Z is equal to 0. If X is one

standard deviation above its mean, Z is equal to 1. If X is two standard devia-

tions below its mean, Z is equal to 

For example, if we look at the height of a randomly selected U.S. woman

between the ages of 25 and 34, we can consider this height to be a random

variable X drawn from a population with a mean of 66 inches and a standard

deviation of 2.5 inches. Here are the standardized Z-values corresponding to

five different values of X:

X

(inches) (standard deviations)

61.0

63.5

66.0 0

68.5

71.0

Instead of saying that a woman is 71 inches tall (which is useful for some

purposes, such as clothing sizes), we can say that her height is two standard

deviations above the mean (which is useful for other purposes, such as com-

paring her height with the heights of other women).

Another reason for standardizing variables is that it is difficult to compare

the shapes of distributions when they have different means and/or standard

deviations. Figure 1 showed the probability distribution for a single six-sided

die. Now suppose that we want to compare the three probability distribu-

tions for random variables equal to the sum of the numbers obtained when

rolling 2, 10, and 100 standard six-sided dice. If we work with the

nonstandardized variable X, each probability distribution has a different

mean and standard deviation. With one dice roll, the mean is 3.5 and the

standard deviation is 1.7; with 100 dice rolls, the mean is 350 and the stan-

dard deviation is  By converting these variables to standardized Z values that

have the same mean (0) and the same standard deviation (1), we 

12

11

21

22

Z 5 (X 2 66)>2.5

22.

Z 5
X 2 �

�
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can focus our attention on the shapes of these probability distributions

without being distracted by their location and spread. The results of this

standardization are given in Figure 4, which shows that as the number of

dice increases, the probability distribution becomes increasingly shaped

like a bell.

0.4

0.3

0.2

0.1

�3 �2 �1 0 1 2 3

Z

2 rolls

10 rolls

100 rolls

0.4

0.3

0.2

0.1

�3 �2 �1 0 1 2 3

Z

0.4

0.3

0.2

0.1

�3 �2 �1 0 1 2 3

Z

Figure 4 Probability Distribution for Six-Sided Dice, Using Standardized Z
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Figure 5 shows the same pattern with 10, 100, and 1,000 coin flips: the

probability distribution becomes increasingly bell-shaped as the number 

of coins increases. (Because the number of equally likely outcomes is 

larger with a die than with a coin, fewer trials are needed for dice rolls to be-

come bell-shaped.) Comparing Figures 4 and 5, the standardized probability 

0.4

0.3

0.2

0.1

�3 �2 �1 0 1 2 3

Z

0.4

0.3

0.2

0.1

�3 �2 �1 0 1 2 3

Z

0.4

0.3

0.2

0.1

�3 �2 �1 0 1 2 3

Z

10 flips

100 flips

1,000 flips

Figure 5 Probability Distribution for Fair Coin Flips, Using Standardized Z
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distributions for 100 dice rolls and 1,000 coin flips are virtually indistin-

guishable. When we cumulate a large number of independent uncertain

events, either dice rolls or coin flips, the same bell-shaped probability distri-

bution emerges! You can imagine the excitement that mathematicians must

have felt when they first discovered this remarkable regularity. They were ana-

lyzing situations that were not only governed by unpredictable chance but

were also very dissimilar (a six-sided die and a two-sided coin), and yet a reg-

ular pattern emerged. No wonder Sir Francis Galton called this phenomenon

a “wonderful form of cosmic order.”

The Normal Distribution

Karl Gauss (1777–1855) applied the normal distribution to measurements

of the shape of the earth and the movements of planets. His work was so ex-

tensive and influential that the normal distribution is often called the

Gaussian distribution. Others, following in his footsteps, applied the normal

distribution to all sorts of physical and social data. They found that empirical

data often conform to a normal distribution, and they proved that many spe-

cific probability distributions converge to a normal distribution when they

are cumulated. In the 1930s, mathematicians proved that this convergence is

true for a very broad range of probability distributions. This theorem is one

of the most famous mathematical theorems: the central limit theorem states

that if Z is a standardized sum of N independent, identically distributed

(discrete or continuous) random variables with a finite, nonzero standard

deviation, then the probability distribution of Z approaches the normal dis-

tribution as N increases.

As remarkable as it is, the central limit theorem would be of little practical

value if the normal curve emerged only when the sample size N is extremely

large. The normal distribution is important because it so often appears even

when N is quite small. Look again at the case of dice rolls in Figure 4

and coin flips in Figure 5; for most purposes, a normal curve would be

a satisfactory approximation to these probability distributions. If the underly-

ing distribution is reasonably smooth and symmetrical (as with dice rolls and

coin flips) the approach to a normal curve is very rapid and values of 

N larger than 20 or 30 are sufficient for the normal distribution to provide

an acceptable approximation. A very asymmetrical distribution, such as a

0.99 probability of success and 0.01 probability of failure, requires a much

larger number of trials.

The central limit theorem is remarkably robust in that even if its assump-

tions aren’t exactly true, the normal distribution is still a pretty good approx-

imation. A normal distribution appears when we examine the weights of

N 5 10

N 5 2
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humans, dogs, and tomatoes. The lengths of thumbs, widths of shoulders,

and breadths of skulls are all normally distributed. Scores on IQ, SAT, and

GRE tests are normally distributed. So are the number of kernels on ears of

corn, ridges on scallop shells, hairs on cats, and leaves on trees. If some

phenomenon is the cumulative result of a great many separate influences,

then the normal distribution may be a very useful approximation.

This is why the normal distribution is so popular and the central limit

theorem so celebrated. However, don’t be lulled into thinking that prob-

abilities always follow the normal curve. These examples are approximately,

but not perfectly, normal and there are many phenomena whose probability

distributions are not normal at all. Our purpose is not to persuade you that

there is only one probability distribution, but to explain why many phenom-

ena are well described by the normal distribution.

The density curve for the normal distribution is graphed in Figure 6. The

probability that the value of Z will be in a specified interval is given 

by the corresponding area under this curve. However, there is no simple for-

mula for computing areas under a normal curve. These areas can be deter-

mined from complex numerical procedures, but nobody wants to do these

computations every time a normal probability is needed. Instead, they con-

sult statistical software or a table that shows the normal probabilities for

hundreds of values of Z.
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Figure 6 The Normal Distribution
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The following three rules of thumb can help us estimate probabilities for

normally distributed random variables without consulting Table B-7:

A normally distributed random variable has about a 68 percent (roughly

two-thirds) chance of being within one standard deviation of its mean, a 

95 percent chance of being within two standard deviations of its mean, and

better than a 99.7 percent chance of being within three standard deviations.

Turning these around, a normally distributed random variable has less than a

0.3 percent chance of being more than three standard deviations from its

mean, roughly a 5 percent chance of being more than two standard devia-

tions from its mean, and a 32 percent chance of being more than one stan-

dard deviation from its mean.

For example, there are a number of tests designed to measure a person’s IQ

(intelligence quotient), reflecting an accurate memory and the ability to rea-

son logically and clearly. Because an individual’s score on an IQ test depends

on a very large number of hereditary and environmental factors, the central

limit theorem explains why IQ scores are approximately normally distrib-

uted. One of the most widely used tests today is the Wechsler Adult Intelli-

gence Scale, which has a mean IQ of 100 and a standard deviation of 15.

About half the people tested score above 100; half score below 100. Our

one-standard-deviation rule of thumb implies that about 32 percent of the

population will score more than 15 points away from 100; 16 percent above

115 and 16 percent below 85. Our two-standard-deviations rule implies that

about 5 percent of the population will score more than 30 points away from

100: 2.5 percent above 130 and 2.5 percent below 70.

Sampling

Our intention is to study the real estate market in Diamond Bar, a southern

California city with approximately 20,000 single-family homes. Unlike

stocks, houses are not valued daily on national exchanges. And, unlike some

states, the California property tax system does not appraise houses. We don’t

have data on the market prices of every home in Diamond Bar.

To think clearly about the data we do have, it is helpful to distinguish 

between a population, which is the entire group of items that interests us,

and a sample, which is the part of this population that we actually observe.

2

 Pf23 , Z , 3g 5 0.9973

 Pf22 , Z , 2g 5 0.9544

 Pf21 , Z , 1g 5 0.6826
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Statistical inference involves using the sample to draw conclusions about the

characteristics of the population from which the sample came. In a medical

experiment, for example, the population consists of all persons who might

use this medication; the sample is the group of people used to test the

medication; a possible statistical inference is that people who take the med-

ication tend, on average, to live longer than people who don’t. In our hous-

ing study, the population is all single-family homes in Diamond Bar; the

sample is the 22 houses in Table 1; a possible statistical inference is that

housing prices depend on the size of the house.

We use samples to draw inferences about a population because it is often

impractical to scrutinize the entire population. If we burn every lightbulb

that a manufacturer produces to see how long each bulb lasts, all we will

have is a large electricity bill and a lot of burned-out lightbulbs. Many tests

Table 1 A Sample of 22 Single-Family Homes in Diamond Bar, California,
Summer 2004

Price ($) Square Feet

425,000 1349

451,500 1807

508,560 1651

448,050 1293

500,580 1745

524,160 1900

500,580 1759

399,330 1740

442,020 1950

537,660 1771

515,100 2078

589,000 2268

696,000 2400

540,750 2050

659,200 2267

492,450 1986

567,047 2950

684,950 2712

668,470 2799

733,360 2933

775,590 3203

788,888 2988

Datafile � STATS17
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are not this destructive, but are simply too expensive to apply to the entire

population. Instead, we sample. A lightbulb manufacturer tests a sample of

its bulbs. Housing studies examine a sample of houses because it is too ex-

pensive to collect data on every house.

Selection Bias

Any sample that differs systematically from the population that it is intended

to represent is called a biased sample. Because a biased sample is unrepresen-

tative of the population, it gives a distorted picture of the population and

may lead to unwarranted conclusions. One of the most common causes of

biased samples is selection bias, which occurs when the selection of the sam-

ple systematically excludes or underrepresents certain groups. Selection bias

often happens when we use a convenience sample consisting of data that are

readily available.

If we are trying to estimate how often people get colds and have a friend

who can give us medical records from an elementary school, this is a conve-

nience sample with selection bias. If our intended population is people of all

ages, we should not use samples that systematically exclude certain ages. Sim-

ilarly, the medical records from a prison, military base, or nursing home are

convenience samples with selection bias. Military personnel are in better

physical health than those living in nursing homes, and both differ systemat-

ically from the population as a whole.

Self-selection bias can occur when we examine data for a group of people

who have chosen to be in that group. For example, the accident records of peo-

ple who buy collision insurance may be unrepresentative of the population as

a whole; they might buy insurance because they know that they are accident-

prone. The physical fitness of joggers may provide biased estimates of the

benefits of jogging; most of those who choose to run regularly may be more

physically fit than the general population, even before they began running.

In a study of housing prices, a convenience sample of houses that 

were sold recently might be unrepresentative of all the houses in the area.

Perhaps a new housing development was just completed and most sales 

involved these new homes, which differ systematically in size and amenities

from other houses in the area, which may have been built many years ago.

Suppose, for example, that we are estimating the profit that homeowners

have made from their houses and our data are dominated by the prices of

new homes. Thus we are interested in comparing the 1980 and 2000 prices

of homes purchased in 1980, but our data would primarily compare the

1980 prices of homes built in 1980 with the 2000 prices of homes built 

in 2000.
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Survivor Bias

Retrospective studies look at past data for a contemporaneously selected sample;

for example, an examination of the lifetime medical records of 65-year-olds. A

prospective study, in contrast, selects a sample and then tracks the members over

time. Retrospective studies are notoriously unreliable, and not just because of

faulty memories and lost data. When we choose a sample from a current popu-

lation in order to draw inferences about a past population, we necessarily 

exclude members of the past population who are no longer around—an exclu-

sion that causes survivor bias, in that we look only at the survivors. If we ex-

amine the medical records of 65-year-olds in order to identify the causes of

health problems, we overlook those who died before reaching 65 years of age

and consequently omit data on some fatal health problems. Survivor bias is a

form of selection bias in that the use of retrospective data excludes part of the

relevant population.

Here is another example. Stock market studies sometimes examine histori-

cal data for companies that have been selected randomly from the New York

Stock Exchange (NYSE). If we restrict our analysis to companies currently

listed on the NYSE, our data will be subject to survivor bias, because we will

ignore companies that were listed in the past but have subsequently gone

bankrupt. If we want to estimate the average return for an investment in

NYSE stocks over the past 50 years, and do not consider the stock of any com-

pany that went bankrupt, we will overestimate the average return.

Nonresponse Bias

The systematic refusal of some groups to participate in an experiment or to re-

spond to a poll is called nonresponse bias. A study is naturally more suspect

the fewer the people who bother to respond. In the 1940s, the makers of Ipana

Tooth Paste boasted that a national survey had found that “Twice as many den-

tists personally use Ipana Tooth Paste as any other dentifrice preparation. In a

recent nationwide survey, more dentists said they recommended Ipana for their

patients’ daily use than the next two dentifrices combined.”2 The Federal Trade

Commission banned this ad after it learned that less than 1 percent of the den-

tists surveyed had named the brand of toothpaste they used and that even

fewer had named a brand recommended for their patients.3

2. Earl W. Kintner, A Primer on the Law of Deceptive Practices (New York: Macmillan, 1971), 

p. 153.

3. Ibid.
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The Power of Random Selection

If we want to put together a representative sample of Diamond Bar houses, it

might seem logical to wander around the city and carefully select houses that

appear to be “typical.” If we did, however, we’d probably slight the very largest

and the very smallest houses and end up with a sample that has far less varia-

tion than does the population. Our sample probably would be biased, because

the houses we exclude for being “above average” and those we exclude for

being “below average” are extremely unlikely to balance each other out per-

fectly. Worst of all, these biases would depend, in unknowable ways, on our

undoubtedly mistaken perception of the “typical” house. We might also be 

influenced by the results we hope to obtain. If we intend to show that houses

in Diamond Bar are, on average, more expensive than the houses in another

town, this intention may well influence our choice of houses.

To avoid being influenced by subjective biases, statisticians advise that,

paradoxically, the researcher should not hand-pick the sample! A fair hand in

a card game is not one in which the dealer turns the deck face up and care-

fully selects representative cards. A fair hand is whatever results from a blind

deal from a well-shuffled deck. What card players call a fair deal, statisticians

call a random sample. In a simple random sample of size N from a given

population, each member of the population is equally likely to be included

in the sample, and every possible sample of size N from this population has

an equal chance of being selected. For a random sample of five cards, each of

the 52 cards in the deck is equally likely to be included in the sample and

every possible five-card hand is equally likely to be dealt.

How do we actually make random selections? Returning to our housing

study, we would like a procedure that is equivalent to the following: put each

house’s address on a slip of paper, drop these slips into a box, mix thor-

oughly, and pick houses out randomly, just as cards are dealt from a well-

shuffled deck. Each house, whether expensive, inexpensive, or somewhere in

between, has an equal chance of inclusion in our sample. In practice, instead

of putting pieces of paper into a box, random sampling is usually done

through some sort of numerical identification combined with a computer-

ized random selection of numbers.

In our housing study, we would ideally select a random sample of Diamond

Bar houses and pay a professional appraiser to estimate the market value of

the houses in our sample. However, we don’t want to spend thousands of

dollars on this study and, in any case, many homeowners wouldn’t welcome

the appraiser into their homes to obtain the information needed to make an

informed estimate of market value. So, for pedagogic purposes, we will assume

the houses in Table 1 are a random sample. This assumption is probably 
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OK because there aren’t any new houses in our data and there doesn’t seem

to be any compelling reason why the houses that went on the market in the

summer of 2004 differed systematically from the houses that didn’t.

Estimation

Sampling provides an economical way to estimate the characteristics of a

large population. Samples are used to estimate the amount of cholesterol in

a person’s body, the average acidity of a farmer’s soil, and the number of fish

in a lake. Production samples are used to estimate the fraction of a com-

pany’s products that is defective and marketing samples to estimate how

many people will buy a new product. The federal government uses samples

to estimate the unemployment rate and the rate of inflation. Public opinion

polls are used to predict the winners of elections and to estimate the fraction

of the population that agrees with certain positions.

In each case, sample data are used to estimate a population value. But ex-

actly how should the data be used to make these estimates? And how much

confidence can we have in estimates that are based on a small sample from a

large population? In this section we will answer these questions. First, some

terminology. A characteristic of the population whose value is unknown, but

can be estimated, is called a parameter. A sample statistic that will be used to

estimate the value of the population parameter is called an estimator. The spe-

cific value of the estimator that is obtained in one particular sample is an

estimate. Here, the average price of all single-family homes in Diamond Bar is

a parameter; the average price of the homes in a random sample is an estima-

tor; and the average price of the 22 homes in Table 1 is an estimate.

How seriously can we take an estimate of the average price of 20,000 

Diamond Bar homes when our estimate is based on just 22 houses? We

know that if we were to take another random sample, we would almost cer-

tainly not select the same 22 houses. Because samples are chosen randomly,

sampling variation will cause the sample average to vary from sample to sam-

ple, sometimes being larger than the population mean and sometimes

lower. How much faith can we place in the average of one small sample?

Let’s find out.

Sampling Distributions

It is said that the three most important factors in real estate are location, loca-

tion, location. The three most important concepts in statistics are sampling

distributions, sampling distributions, sampling distributions. Consider, for

3
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example, the average price of the houses in our sample. The sample average

(also called the sample mean) is the simple arithmetic average of N observa-

tions :

(4)

The sample average is often written as , or X with a bar over it (which can be

pronounced “X-bar”), and we can use the shorthand notation

For the 22 homes in Table 1, we add up the 22 prices and divide by 22:

It is tempting to regard a sample average as definitive. That temptation

should be resisted. Our particular sample is just one of many samples that

might have been selected; other samples would yield somewhat different

sample averages. We cannot say whether a particular sample average is

above or below the population mean because we don’t know the value 

of the population mean. But we can use probabilities to deduce how

likely it is that a sample will be selected whose mean is close to the popu-

lation mean.

The sampling distribution of a statistic, such as , is the probability dis-

tribution or density curve that describes the population of all possible val-

ues of this statistic. It can be shown mathematically that if the individual

observations are drawn from a normal distribution, then the sampling dis-

tribution for is also normal. Even if the population does not have a nor-

mal distribution, the sampling distribution of will approach a normal

distribution as the sample size increases. Here’s why. Each observation in a

random sample is an independent random variable drawn from the same

population. The sample average is the sum of these N outcomes, divided by

N. Except for the unimportant division by N, these are the same assump-

tions in the central limit theorem! Therefore the sampling distribution for

the mean of a random sample from any population approaches a normal

distribution as N increases.

X

X

X

 5 $565,829

 X 5
$425,000 1 $451,500 1 . . . 1 $788,888

22

X 5
gXi

N

X

Sample average 5
X1 1 X2 1 . . . 1 XN

N
5 X

X1, X2, c, XN
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Thus the sampling distribution for the mean of a reasonably sized random

sample is bell-shaped. The only caution is that the sample be large enough

for the central limit theorem to work its magic. With data that are themselves

approximately normally distributed, a sample of 10 observations is large

enough. If the underlying distribution is not normal, but roughly symmetri-

cal, a sample of size 20 or 30 is generally sufficient for the normal distribution

to be appropriate.

In addition to its general shape, we need to know the mean and standard

deviation of the sampling distribution. It can be shown mathematically that

the sampling distribution of has a mean equal to � and a standard devia-

tion equal to � divided by the square root of the sample size N:

(5)

The Mean of the Sampling Distribution

Thus the sampling distribution of , which describes the probability of ob-

taining various values for , is approximately normally distributed with a

mean equal to �. Although we can never know with certainty exactly how

close a particular sample average is to the unknown population mean �,

we can use the mean and standard deviation of the sampling distribution to

gauge the reliability of as an estimator of �.

A sample statistic is an unbiased estimator of a population parameter if

the mean of the sampling distribution of this statistic is equal to the value of

the population parameter. Because the mean of the sampling distribution of

is �, is an unbiased estimator of �.

Unbiased estimators have considerable appeal. It would be discomforting

to use an estimator that one knows to be systematically too high or too low.

A statistician who uses unbiased estimators can anticipate estimation errors

that, over a lifetime, average close to zero. Of course, average performance

is not the only thing that counts. A British Lord Justice once summarized his

career by saying that “When I was a young man practicing at the bar, I lost a

great many cases I should have won. As I got along, I won a great many cases

I ought to have lost; so on the whole justice was done.” The conscientious

statistician should be concerned not only with the average value of the esti-

mates, but also with how accurate they are in individual cases. Estimates that

are almost always within 1 percent of the correct answer are better than esti-

mates that are usually off by 10 percent or more.

XX

X

X

X

X

 Standard deviation of  X 5 �

"N

 Mean of  X 5 �

X
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The Standard Deviation of the Sampling Distribution

One way of gauging the accuracy of an estimator is with its standard deviation.

If an estimator has a large standard deviation, there is a substantial probability

that an estimate will be far from its mean. If an estimator has a small standard

deviation, there is a high probability that an estimate will be close to its mean.

Equation 5 states that the standard deviation of the sampling distribution

for is equal to � divided by the square root of the sample size, N. As the

number of observations increases, the standard deviation of the sampling

distribution declines. To understand this phenomenon, remember that the

standard deviation is a measure of the uncertainty of the outcome. With a

large sample, it is extremely unlikely that all of the observations will be far

above �, and equally improbable that all of the observations will be far

below �. Instead, it is almost certain that some of the observations will 

be above � and some below, and that the average will be close to �.

The t-Distribution

The standard deviation of the sampling distribution depends on the value of

population standard deviation �, a parameter that is unknown but can be es-

timated. The most natural estimator of �, the standard deviation of the pop-

ulation is s, the standard deviation of the sample data. The sample variance of

N observations is the average squared deviation of these ob-

servations about the sample average :

(6)

The sample standard deviation s is the square root of the variance,

.

Notice that the variance of a set of data is calculated by dividing the sum of

the squared deviations by rather than N. It can be shown mathemati-

cally that if the variance in a random sample is used to estimate the variance of

the population from which these data came, this estimate will, on average, be

too low if we divide by N, but will, on average, be correct if we divide by 

When the standard deviation of an estimator, such as , is itself estimated

from the data, this estimated standard deviation is called the estimator’s

standard error. The standard error of is calculated by replacing the unknown

parameter � with its estimate s:

Standard error of  X 5 s

"N

X

X

N 2 1.

N 2 1,

s 5 #sample variance

Sample variance 5
(X1 2 X)2 1 (X2 2 X)2 1 . . . 1 (XN 2 X)2

N 2 1

X

X1, X2, c, XN

X
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The need to estimate the standard deviation creates another source of uncer-

tainty in gauging the reliability of as an estimator of the population mean.

In 1908, W. S. Gosset figured out how to handle this increased uncertainty.

Gosset was a statistician employed by the Irish brewery Guinness, which en-

couraged statistical research but not publication. Because of the importance of

his findings, he was able to persuade Guinness to allow his work to be pub-

lished under the pseudonym “Student” and his calculations became known

as the Student’s t-distribution. When the mean of a sample from a normal

distribution is standardized by subtracting the mean � of its sampling distri-

bution and dividing by the standard deviation of its sampling distribu-

tion, the resulting Z variable

has a normal distribution. Gosset determined the sampling distribution of

the variable that is created when the mean of a sample from a normal distri-

bution is standardized by subtracting � and dividing by its standard error:

(7)

The exact distribution of t depends on the sample size, because as the sample

size increases, we are increasingly confident of the accuracy of the estimated

standard deviation. For an infinite sample, the estimate s will equal the ac-

tual value �, and the distributions of t and Z coincide. With a small sample, s

may be either larger or smaller than s and the distribution of t is conse-

quently more dispersed than the distribution of Z.

Table B-1 at the end of this text shows some probabilities for various 

t-distributions that are identified by the number of degrees of freedom:

Here, we calculate s by using N observations and one estimated parameter

; therefore, there are degrees of freedom.

There is another way to think about degrees of freedom that is more

closely related to the name itself. We calculate s from N squared deviations

about . However, the sum of the deviations about the sample average is al-

ways zero. Thus if we know the values of of these deviations, we know

the value of the last deviation, too. Only deviations are freely deter-

mined by the sample.

N 2 1

N 2 1

X

N 2 1(X)

degrees of

freedom
   5    

number of

observations
   2    

number of parameters that

must be estimated

t 5
X 2 �

sN"N

Z 5
X 2 �

�N"N

�>#N

X
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Confidence Intervals

Now we are ready to use the t-distribution and the standard error of to mea-

sure the reliability of our estimate of the population mean price of homes in

Diamond Bar. If we specify a probability, such as we can use 

Table B-1 to find the t-value such that there is a probability that the value

of t will exceed , a probability that the value of t will be less than , and

a probability that the value of t will be in the interval to :

Using Equation 7 and rearranging,

We can rephrase this probability computation to show the confidence that we

have in using the sample average to estimate the population mean. If there is a

probability that will turn out to be within standard errors of the

population mean �, then there is a probability that the interval from

will include the value of �. Such an interval is called a confidence interval

and the probability is the interval’s confidence level. The shorthand

formula for a percent confidence interval for the population mean � is

(8)

There is a 0.95 probability that the sample average will be between

(standard error of ) and (standard error of ), in which case

the interval (standard error of ) to (standard error of ) will

encompass �. There is a 0.05 probability that the sample average will, by the

luck of the draw, turn out to be more than (standard error of ) from the

population mean �, and that the confidence interval will consequently not

include �.

Gosset derived the t-distribution by assuming that the sample data are

taken from a normal distribution. Subsequent research has shown that 

because of the power of the central limit theorem, confidence intervals based

on the t-distribution are remarkably accurate even if the underlying data are

not normally distributed, as long as we have at least 15 observations from a

Xt*

XX 1 t*XX 2 t*

X� 1 t*X� 2 t*

X

1 2 � confidence interval for �: X 6 t* s

"N

1 2 �
1 2 �

X 2 t* s

"N
 to X 1 t* s

"N

1 2 �
t*X1 2 �

1 2 � 5 P c� 2 t* s

"N
, X , � 1 t* s

"N
d

1 2 � 5 Pf2t* , t , t*g

t*2t*1 2 �
2t*�>2t*

�>2t*

� 5 0.05,

X
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roughly symmetrical distribution or at least 30 observations from a clearly

asymmetrical distribution.4 A histogram can be used for a rough symmetry

check. Ninety-five percent confidence levels are standard, but there is no

compelling reason why we can’t use others.

Let’s use the housing prices in Table 1 to construct a 95 percent confidence

interval and a 99 percent confidence interval for the average price of all single-

family homes in Diamond Bar. The sample average is $565,829 and the stan-

dard deviation is $116,596. The sample size is 22 and we’ve estimated one

parameter, so consequently there are degrees of freedom. Table

B-1 shows that there is a 0.05 probability that the absolute value of t will ex-

ceed and a 0.01 probability that it will exceed Thus,

95 percent confidence interval for �:

$565,829

99 percent confidence interval for �:

$565,829

Notice that it is the sample average that varies from sample to sample,

not the population mean �. A 95 percent confidence interval for � is inter-

preted as follows: “There is a 0.95 probability that the sample average will

turn out to be sufficiently close to � so that my confidence interval includes

�. There is a 0.05 probability that the sample average will happen to be so far

from � that my confidence interval does not include �.” The 0.95 probability

refers to the chances that random sampling will result in an interval that

encompasses the fixed parameter �, not the probability that random sam-

pling will give a value of � that is inside a fixed confidence interval.

The general procedure for determining a confidence interval for a popula-

tion mean is summarized here:

1. Calculate the sample average .

2. Calculate the standard error of by dividing the sample standard

deviation s by the square root of the sample size N.

X

X

X

 6 2.831a
$116,596

"22
b 5 $565,829 6 $70,366

 6 2.080a
$116,596

"22
b 5 $565,829 6 $51,697

t* 5 2.831.t* 5 2.080

22 2 1 5 21

4. E. S. Pearson and N. W. Please, “Relation Between the Shape of Population Distribution and the

Robustness of Four Simple Tests Statistics,” Biometrika, 1975, 62, pp. 223–241; Harry O. Poston,

“The Robustness of the One-Sample t-test Over the Pearson System,” Journal of Statistical Com-

putation and Simulation, Vol. 9, pp. 133–149.
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3. Select a confidence level (such as 95 percent) and look in Table B-1

with degrees of freedom to determine the t-value that corre-

sponds to this probability.

4. A confidence interval for the population mean is equal to the sample

average plus or minus standard errors of :

Sampling from Finite Populations

A very interesting characteristic of a confidence interval is that it does not de-

pend on the size of the population. At first glance, this conclusion may seem

surprising. If we are trying to estimate a characteristic of a large population,

then there is a natural tendency to believe that a large sample is needed. If

there are 25 million items in the population, a sample of 25 includes only

one out of every million. How can we possibly obtain a reliable estimate

with a sample that looks at only one out of every million items?

A moment’s reflection reveals why a confidence interval doesn’t depend

on whether the population consists of one thousand or one billion items.

The chances that the luck of the draw will yield a sample whose mean differs

substantially from the population mean depends on the size of the sample

and the chances of selecting items that are far from the population mean, not

on how many items there are in the population.

Summary

1. The probability that the value of a continuous random variable will

be in a specified interval is shown by the area under a probability

density curve. The expected value of a random variable is the antici-

pated long-run average value of the outcomes. The standard deviation

measures the extent to which the outcomes may differ from the ex-

pected value; a large standard deviation indicates a great deal of un-

certainty, as the outcomes are likely to be far from the expected value.

2. A (discrete or continuous) random variable X is standardized by sub-

tracting its mean � and then dividing by the standard deviation �:

which has a mean of 0 and a standard deviation of 1. The central limit

theorem explains why so many random variables are approximately

normally distributed.

Z 5
X 2 �

�

4

confidence interval for �: X 6 t*(standard error of X) 5 X 6 t* s

"N

Xt*X

t*N 2 1
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3. A population is the entire group of items that interests us; a sample is

the part of the population that we actually observe and use to make

inferences about the population from which the sample came. Delib-

erate attempts to construct representative samples are unwise; instead,

statisticians recommend that observational data be based on a ran-

dom sample. A selection bias occurs when some members of the pop-

ulation are systematically excluded or underrepresented in the group

from which the sample is taken.

4. If a random variable X is normally distributed with a mean � and

standard deviation �, then the sampling distribution for the average 

of a random sample is a normal distribution with a mean � and a

standard deviation equal to � divided by the square root of the sam-

ple size N. Even if the underlying distribution is not normal, a suffi-

ciently large sample will ensure that the sampling distribution of is

approximately normal.

5. The sample average is an unbiased estimator of �, and a confidence

interval can be used to gauge the reliability of our estimate:

where s is the sample standard deviation, N is the sample size, and 

is given by a t-distribution with degrees of freedom.

EXERCISES

(The answer to Exercise 2 is at the end of the chapter.)

1. Write the meaning of each of the following terms without referring to

the book (or your notes), and compare your definition with the ver-

sion in the text for each.

a. probability distribution

b. random variable

c. standardized random variable

d. sample

e. sampling distribution

f. population mean

N 2 1

t*

 5 X 6 t* s

"N

 Confidence interval for � 5 X 6 t*(standard error of X)

X

X

X
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g. sample average

h. population standard deviation

i. sample standard deviation

j. degrees of freedom

k. confidence interval

2. The heights of U.S. females between the age of 25 and 34 are approxi-

mately normally distributed with a mean of 66 inches and a standard

deviation of 2.5 inches. What fraction of the U.S. female population

in this age bracket is taller than 70 inches, the height of the average

adult U.S. male of this age?

3. A stock’s price-earnings (P/E) ratio is the per-share price of its stock

divided by the company’s annual profit per share. The P/E ratio for

the stock market as a whole is used by some analysts as a measure of

whether stocks are cheap or expensive, in comparison with other his-

torical periods. Here are some annual P/E ratios for the S&P 500:

Year P/E

1980 7.90

1981 8.36

1982 8.62

1983 12.45

1984 9.98

1985 12.32

1986 16.42

1987 18.25

1988 12.48

1989 13.48

1990 15.46

1991 20.88

1992 23.70

1993 22.42

1994 17.15

1995 16.42

1996 19.08

1997 21.88

1998 28.90

1999 31.55

Calculate the mean and standard deviation. Was the 1999 price-

earnings ratio of 31.55 more than one standard deviation above the
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mean P/E for 1980–1999? Was it more than two standard deviations

above the mean?

4. Which has a higher mean and which has a higher standard deviation:

a standard six-sided die or a four-sided die with the numbers 1

through 4 printed on the sides? Explain your reasoning, without doing

any calculations.

5. A nationwide test has a mean of 75 and a standard deviation of 10.

Convert the following raw scores to standardized Z values: 

and 67. What raw score corresponds to ?

6. A woman wrote to Dear Abby, saying that she had been pregnant for

310 days before giving birth.5 Completed pregnancies are normally

distributed with a mean of 266 days and a standard deviation of 16

days. Use Table B-7 to determine the probability that a completed

pregnancy lasts at least 310 days.

7. Calculate the mean and standard deviation of this probability distribu-

tion for housing prices:

Price X (dollars) Number of Houses Probability P[X]

400,000 15,000 0.30

500,000 20,000 0.40

600,000 15,000 0.30

8. Explain why you think that high-school seniors who take the Scholas-

tic Aptitude Test (SAT) are not a random sample of all high-school

seniors. If we were to compare the 50 states, do you think that a state’s

average SAT score tends to increase or decrease as the fraction of the

state’s seniors who take the SAT increases?

9. American Express and the French tourist office sponsored a survey

that found that most visitors to France do not consider the French to

be especially unfriendly.6 The sample consisted of “1,000 Americans

who have visited France more than once for pleasure over the past

two years.” Why is this survey biased?

Z 5 1.5

X 5 94, 75,

5. Harold Jacobs, Mathematics: A Human Endeavor (San Francisco: W. H. Freeman), 1982, 

p. 570.

6. Cynthia Cross, “Studies Galore Support Products and Positions, But Are They Reliable?,” The

Wall Street Journal, November 14, 1991. 
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10. The first American to win the Nobel prize in physics was Albert

Michelson (1852–1931), who was given the award in 1907 for develop-

ing and using optical precision instruments. His October 12–November

14, 1882 measurements of the speed of light in air (in kilometers per

second) were as follows:7

299,883 299,796 299,611 299,781 299,774 299,696 299,748 299,809

299,816 299,682 299,599 299,578 299,820 299,573 299,797 299,723

299,778 299,711 300,051 299,796 299,772 299,748 299,851

Assuming that these measurements were a random sample from a

normal distribution, does a 99 percent confidence interval include

the value 299,710.5 that is now accepted as the speed of light?

11. A Wall Street Journal (July 6, 1987) poll asked 35 economic forecasters

to predict the interest rate on three-month Treasury bills in June 1988.

These 35 forecasts had a mean of 6.19 and a variance of 0.47. Assum-

ing these to be a random sample, give a 95 percent confidence inter-

val for the mean prediction of all economic forecasters and then

explain why each of these interpretations is or is not correct:

a. There is a 0.95 probability that the actual Treasury bill rate on June

1988 will be in this interval.

b. Approximately 95 percent of the predictions of all economic fore-

casters are in this interval.

12. The earlobe test was introduced in a letter to the prestigious New En-

gland Journal of Medicine, in which Dr. Sanders Frank reported that 20

of his male patients with creases in their earlobes had many of the

risk factors (such as high cholesterol levels, high blood pressure, and

heavy cigarette usage) associated with heart disease. For instance, the

average cholesterol level for his patients with noticeable earlobe

creases was 257 (mg per 100 ml), compared to an average of 215 with

a standard deviation of 10 for healthy middle-aged men. If these 20

patients were a random sample from a population with a mean of

215 and a standard deviation of 10, what is the probability their aver-

age cholesterol level would be 257 or higher? Explain why these 20

patients may, in fact, not be a random sample.

7. S. M. Stigler, “Do Robust Estimators Work with Real Data?,” Annals of Statistics, Vol. 5, No. 6,

pp. 1055–1078. 

536



Answers

Exercise 2

Z � (70�66)2.5 � 1.60. P[Z �1.60] � 0.0548.
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The following tables present the critical values of various statistics used pri-

marily for hypothesis testing. The primary applications of each statistic are

explained and illustrated. The tables are:

1 Critical Values of the t-Distribution

2 Critical Values of the F-Statistic: 5-Percent Level of Significance

3 Critical Values of the F-Statistic: 1-Percent Level of Significance

4 Critical Values of the Durbin–Watson Test Statistics and :

5-Percent Level of Significance

5 Critical Values of the Durbin–Watson Test Statistics and :

2.5-Percent Level of Significance

6 Critical Values of the Durbin–Watson Test Statistics and :

1-Percent Level of Significance

7 The Normal Distribution

8 The Chi-Square Distribution

dUdL

dUdL

dUdL

APPENDIX Statistical Tables

From Appendix of Using Econometrics: A Practical Guide, 6/e. A. H. Studenmund. Copyright © 2011

by Pearson Education. Published by Addison-Wesley. All rights reserved.
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Table 1:The t-Distribution

The t-distribution is used in regression analysis to test whether an estimated

slope coefficient (say, is significantly different from a hypothesized value

(such as The t-statistic is computed as:

where is the estimated slope coefficient and is the estimated stan-

dard error of To test the one-sided hypothesis:

the computed t-value is compared with a critical t-value , found in the 

t-table on the opposite page in the column with the desired level of signifi-

cance for a one-sided test (usually 5 percent) and the row with 

degrees of freedom, where N is the number of observations and K is the

number of explanatory variables. If has the sign implied by

the alternative hypothesis, then reject ; otherwise, do not reject . In

most econometric applications, is zero and most computer regression

programs will calculate For example, for a 5-percent one-

sided test with 15 degrees of freedom, , so any positive larger

than 1.753 would lead us to reject and declare that is statistically sig-

nificant in the hypothesized direction at the 5-percent level.

For a two-sided test, and the procedure is

identical except that the column corresponding to the two-sided level of sig-

nificance is used. For example, for a 5-percent two-sided test with 15 degrees

of freedom, , so any larger in absolute value than 2.131 would

lead us to reject and declare that is significantly different from at

the 5-percent level of significance. For more on the t-test.

�H0
�̂kH0

tktc 5 2.131

HA: �k 2 �H0
,H0: �k 5 �H0

�̂kH0

tktc 5 1.753

tk for �H0
5 0.

�H0

H0H0

u tk u . tc and if tk

N 2 K 2 1

tc

 HA: �k . �H0

 H0: �k # �H0

�̂k.

SE(�̂k)�̂k

tk 5 (�̂k 2 �H0
)>SE(�̂k)

�H0
).

�̂k)
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Table 1 Critical Values of the t-Distribution

Level of Significance

Degrees of One-Sided: 10% 5% 2.5% 1% 0.5%
Freedom Two-Sided: 20% 10% 5% 2% 1%

1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921

17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831

22 1.321 1.717 2.074 2.508 2.819

23 1.319 1.714 2.069 2.500 2.807

24 1.318 1.711 2.064 2.492 2.797

25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779

27 1.314 1.703 2.052 2.473 2.771

28 1.313 1.701 2.048 2.467 2.763

29 1.311 1.699 2.045 2.462 2.756

30 1.310 1.697 2.042 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704

60 1.296 1.671 2.000 2.390 2.660

120 1.289 1.658 1.980 2.358 2.617

(Normal)

� 1.282 1.645 1.960 2.326 2.576

Source: Reprinted from Table IV in Sir Ronald A. Fisher, Statistical Methods for Research Workers,

14th ed. (copyright © 1970, University of Adelaide) with permission of Hafner, a division of the

Macmillan Publishing Company, Inc.
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Table 2:The F-Distribution

The F-distribution is used in regression analysis to deal with a null hypothe-

sis that contains multiple hypotheses or a single hypothesis about a group of

coefficients. To test the most typical joint hypothesis (a test of the overall sig-

nificance of the regression):

the computed F-value is compared with a critical F-value, found in one of the

two tables that follow. The F-statistic has two types of degrees of freedom,

one for the numerator (columns) and one for the denominator (rows). For

the null and alternative hypotheses above, there are K numerator (the num-

ber of restrictions implied by the null hypothesis) and denomi-

nator degrees of freedom, where N is the number of observations and K is the

number of explanatory variables in the equation. This particular F-statistic is

printed out by most computer regression programs. For example, if 

and , there are 5 numerator and 24 denominator degrees of freedom,

and the critical F-value for a 5-percent level of significance (Table 2) is 2.62. A

computed F-value greater than 2.62 would lead us to reject the null hypothe-

sis and declare that the equation is statistically significant at the 5-percent

level.

N 5 30

K 5 5

N 2 K 2 1

 HA: H0 is not true

 H0: �1 5 �2 5 c5 �K 5 0
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Table 2 Critical Values of the F-Statistic: 5-Percent Level of Significance

v1 � Degrees of Freedom for Numerator

1 2 3 4 5 6 7 8 10 12 20 �

1 161 200 216 225 230 234 237 239 242 244 248 254

2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.5

3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.79 8.74 8.66 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5.96 5.91 5.80 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.74 4.68 4.56 4.36

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.06 4.00 3.87 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.64 3.57 3.44 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.35 3.28 3.15 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.14 3.07 2.94 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 2.98 2.91 2.77 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.85 2.79 2.65 2.40

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.75 2.69 2.54 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.67 2.60 2.46 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.60 2.53 2.39 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.54 2.48 2.33 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.49 2.42 2.28 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.45 2.38 2.23 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.41 2.34 2.19 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.38 2.31 2.16 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.35 2.28 2.12 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.32 2.25 2.10 1.81

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.30 2.23 2.07 1.78

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.27 2.20 2.05 1.76

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.25 2.18 2.03 1.73

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.24 2.16 2.01 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.16 2.09 1.93 1.62

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.08 2.00 1.84 1.51

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 1.99 1.92 1.75 1.39

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.91 1.83 1.66 1.25

� 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.83 1.75 1.57 1.00

Source: Abridged from M. Merrington and C. M. Thompson, “Tables of percentage points of the

inverted beta (F) distribution,” Biometrika, Vol. 33, 1943, p. 73, by permission of the Biometrika

trustees.
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Table 3:The F-Distribution

The F-distribution is used in regression analysis to deal with a null hypothe-

sis that contains multiple hypotheses or a single hypothesis about a group of

coefficients. To test the most typical joint hypothesis (a test of the overall sig-

nificance of the regression):

the computed F-value is compared with a critical F-value, found in Tables 2

and 3. The F-statistic has two types of degrees of freedom, one for the numera-

tor (columns) and one for the denominator (rows). For the null and alterna-

tive hypotheses above, there are K numerator (the number of restrictions im-

plied by the null hypothesis) and denominator degrees of

freedom, where N is the number of observations and K is the number of 

explanatory variables in the equation. This particular F-statistic is printed out

by most computer regression programs. For example, if and ,

there are 5 numerator and 24 denominator degrees of freedom, and the criti-

cal F-value for a 1-percent level of significance (Table 3) is 3.90. A computed

F-value greater than 3.90 would lead us to reject the null hypothesis and de-

clare that the equation is statistically significant at the 1-percent level.

N 5 30K 5 5

N 2 K 2 1

 HA: H0 is not true

 H0: �1 5 �2 5 c5 �K 5 0
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Tables 4, 5, and 6:The Durbin–Watson d Statistic

The Durbin–Watson d statistic is used to test for first-order serial correlation

in the residuals. First-order serial correlation is characterized by 

, where is the error term found in the regression equation and

is a classical (not serially correlated) error term. Since implies no

serial correlation, and since most economic and business models imply posi-

tive serial correlation if any pure serial correlation exists, the typical hypothe-

ses are:

To test the null hypothesis of no positive serial correlation, the Durbin–

Watson d statistic must be compared to two different critical d-values, and

found in Tables 4, 5, and 6, depending on the level of significance, the

number of explanatory variables (K) and the number of observations (N). For

example, with 2 explanatory variables and 30 observations, the 1-percent one-

tailed critical values are and , so any computed

Durbin–Watson statistic less than 1.07 would lead to the rejection of the null hy-

pothesis. For computed DW d-values between 1.07 and 1.34, the test is incon-

clusive, and for values greater than 1.34, we can say that there is no evidence of

positive serial correlation at the 1-percent level. These ranges are illustrated in

the following diagram:

dU 5 1.34dL 5 1.07

dU

dL

 HA: � . 0

 H0: � # 0

� 5 0ut

�t,��t21 1 ut

�t 5
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0 2 4dL

1.07  

dU

  1.34

Reject H0

Test

Inconclusive

1-Percent One-Sided Test of H0 :  � # 0 vs. HA :  � . 0

Do Not Reject H0

Two-sided tests are done similarly, with being the crit-

ical DW d-values between 2 and 4. Tables 5 and 6 (for 2.5- and 1-percent lev-

els of significance in a one-sided test) go only up to five explanatory vari-

ables, so extrapolation for more variables (and interpolation for observations

between listed points) is often in order.

4 2 dU and 4 2 dL
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Table 3 Critical Values of the F-Statistic: 1-Percent Level of Significance

v1 � Degrees of Freedom for Numerator

1 2 3 4 5 6 7 8 10 12 20 �

1 4052 5000 5403 5625 5764 5859 5928 5982 6056 6106 6209 6366

2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.5

3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.2 27.1 26.7 26.1

4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.5 14.4 14.0 13.5

5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.1 9.89 9.55 9.02

6 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.87 7.72 7.40 6.88

7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.62 6.47 6.16 5.65

8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.81 5.67 5.36 4.86

9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.26 5.11 4.81 4.31

10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.85 4.71 4.41 3.91

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.54 4.40 4.10 3.60

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.30 4.16 3.86 3.36

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.10 3.96 3.66 3.17

14 8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 3.94 3.80 3.51 3.00

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.80 3.67 3.37 2.87

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.69 3.55 3.26 2.75

17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.59 3.46 3.16 2.65

18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.51 3.37 3.08 2.57

19 8.19 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.43 3.30 3.00 2.49

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.37 3.23 2.94 2.42

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.31 3.17 2.88 2.36

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.26 3.12 2.83 2.31

23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.21 3.07 2.78 2.26

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.17 3.03 2.74 2.21

25 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.13 2.99 2.70 2.17

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 2.98 2.84 2.55 2.01

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.80 2.66 2.37 1.80

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.63 2.50 2.20 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.47 2.34 2.03 1.38

� 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.32 2.18 1.88 1.00

Source: Abridged from M. Merrington and C. M. Thompson, “Tables of percentage points of the

inverted beta (F) distribution,” Biometrika, Vol. 3, 1943, p. 73, by permission of the Biometrika

trustees.
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Table 4 Critical Values of the Durbin–Watson Test Statistics dL and dU:
5-Percent One-Sided Level of Significance 
(10-Percent Two-Sided Level of Significance)

K � 1 K � 2 K � 3 K � 4 K � 5 K � 6 K � 7
N

dL dU dL dU dL dU dL dU dL dU dL dU dL dU

15 1.08 1.36 0.95 1.54 0.81 1.75 0.69 1.97 0.56 2.21 0.45 2.47 0.34 2.73

16 1.11 1.37 0.98 1.54 0.86 1.73 0.73 1.93 0.62 2.15 0.50 2.39 0.40 2.62

17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.66 2.10 0.55 2.32 0.45 2.54

18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06 0.60 2.26 0.50 2.46

19 1.18 1.40 1.07 1.53 0.97 1.68 0.86 1.85 0.75 2.02 0.65 2.21 0.55 2.40

20 1.20 1.41 1.10 1.54 1.00 1.68 0.89 1.83 0.79 1.99 0.69 2.16 0.60 2.34

21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96 0.73 2.12 0.64 2.29

22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94 0.77 2.09 0.68 2.25

23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92 0.80 2.06 0.72 2.21

24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90 0.84 2.04 0.75 2.17

25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89 0.87 2.01 0.78 2.14

26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88 0.90 1.99 0.82 2.12

27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.00 1.86 0.93 1.97 0.85 2.09

28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85 0.95 1.96 0.87 2.07

29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84 0.98 1.94 0.90 2.05

30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83 1.00 1.93 0.93 2.03

31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83 1.02 1.92 0.95 2.02

32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82 1.04 1.91 0.97 2.00

33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81 1.06 1.90 0.99 1.99

34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.14 1.81 1.08 1.89 1.02 1.98

35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80 1.10 1.88 1.03 1.97

36 1.41 1.52 1.35 1.59 1.30 1.65 1.24 1.73 1.18 1.80 1.11 1.88 1.05 1.96

37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80 1.13 1.87 1.07 1.95

38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.20 1.79 1.15 1.86 1.09 1.94

39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79 1.16 1.86 1.10 1.93

40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79 1.18 1.85 1.12 1.93

45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78 1.24 1.84 1.19 1.90

50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77 1.29 1.82 1.25 1.88

55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.37 1.77 1.33 1.81 1.29 1.86

60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77 1.37 1.81 1.34 1.85

65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77 1.40 1.81 1.37 1.84

70 1.58 1.64 1.55 1.67 1.53 1.70 1.49 1.74 1.46 1.77 1.43 1.80 1.40 1.84

75 1.60 1.65 1.57 1.68 1.54 1.71 1.52 1.74 1.49 1.77 1.46 1.80 1.43 1.83

80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77 1.48 1.80 1.45 1.83

85 1.62 1.67 1.60 1.70 1.58 1.72 1.55 1.75 1.53 1.77 1.50 1.80 1.47 1.83

90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78 1.52 1.80 1.49 1.83

95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78 1.54 1.80 1.51 1.83

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78 1.55 1.80 1.53 1.83

Source: N. E. Savin and Kenneth J. White, “The Durbin–Watson Test for Serial Correlation with

Extreme Sample Sizes or Many Regressors,” Econometrica, November 1977, p. 1994. Reprinted

with permission.

Note: N � number of observations, K � number of explanatory variables excluding the constant

term. We assume that the equation contains a constant term and no lagged dependent variables.
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Table 5 Critical Values of the Durbin–Watson Test Statistics of dL and dU: 2.5-
Percent One-Sided Level of Significance 
(5-Percent Two-Sided Level of Significance)

K � 1 K � 2 K � 3 K � 4 K � 5
N

dL dU dL dU dL dU dL dU dL dU

15 0.95 1.23 0.83 1.40 0.71 1.61 0.59 1.84 0.48 2.09

16 0.98 1.24 0.86 1.40 0.75 1.59 0.64 1.80 0.53 2.03

17 1.01 1.25 0.90 1.40 0.79 1.58 0.68 1.77 0.57 1.98

18 1.03 1.26 0.93 1.40 0.82 1.56 0.72 1.74 0.62 1.93

19 1.06 1.28 0.96 1.41 0.86 1.55 0.76 1.72 0.66 1.90

20 1.08 1.28 0.99 1.41 0.89 1.55 0.79 1.70 0.70 1.87

21 1.10 1.30 1.01 1.41 0.92 1.54 0.83 1.69 0.73 1.84

22 1.12 1.31 1.04 1.42 0.95 1.54 0.86 1.68 0.77 1.82

23 1.14 1.32 1.06 1.42 0.97 1.54 0.89 1.67 0.80 1.80

24 1.16 1.33 1.08 1.43 1.00 1.54 0.91 1.66 0.83 1.79

25 1.18 1.34 1.10 1.43 1.02 1.54 0.94 1.65 0.86 1.77

26 1.19 1.35 1.12 1.44 1.04 1.54 0.96 1.65 0.88 1.76

27 1.21 1.36 1.13 1.44 1.06 1.54 0.99 1.64 0.91 1.75

28 1.22 1.37 1.15 1.45 1.08 1.54 1.01 1.64 0.93 1.74

29 1.24 1.38 1.17 1.45 1.10 1.54 1.03 1.63 0.96 1.73

30 1.25 1.38 1.18 1.46 1.12 1.54 1.05 1.63 0.98 1.73

31 1.26 1.39 1.20 1.47 1.13 1.55 1.07 1.63 1.00 1.72

32 1.27 1.40 1.21 1.47 1.15 1.55 1.08 1.63 1.02 1.71

33 1.28 1.41 1.22 1.48 1.16 1.55 1.10 1.63 1.04 1.71

34 1.29 1.41 1.24 1.48 1.17 1.55 1.12 1.63 1.06 1.70

35 1.30 1.42 1.25 1.48 1.19 1.55 1.13 1.63 1.07 1.70

36 1.31 1.43 1.26 1.49 1.20 1.56 1.15 1.63 1.09 1.70

37 1.32 1.43 1.27 1.49 1.21 1.56 1.16 1.62 1.10 1.70

38 1.33 1.44 1.28 1.50 1.23 1.56 1.17 1.62 1.12 1.70

39 1.34 1.44 1.29 1.50 1.24 1.56 1.19 1.63 1.13 1.69

40 1.35 1.45 1.30 1.51 1.25 1.57 1.20 1.63 1.15 1.69

45 1.39 1.48 1.34 1.53 1.30 1.58 1.25 1.63 1.21 1.69

50 1.42 1.50 1.38 1.54 1.34 1.59 1.30 1.64 1.26 1.69

55 1.45 1.52 1.41 1.56 1.37 1.60 1.33 1.64 1.30 1.69

60 1.47 1.54 1.44 1.57 1.40 1.61 1.37 1.65 1.33 1.69

65 1.49 1.55 1.46 1.59 1.43 1.62 1.40 1.66 1.36 1.69

70 1.51 1.57 1.48 1.60 1.45 1.63 1.42 1.66 1.39 1.70

75 1.53 1.58 1.50 1.61 1.47 1.64 1.45 1.67 1.42 1.70

80 1.54 1.59 1.52 1.62 1.49 1.65 1.47 1.67 1.44 1.70

85 1.56 1.60 1.53 1.63 1.51 1.65 1.49 1.68 1.46 1.71

90 1.57 1.61 1.55 1.64 1.53 1.66 1.50 1.69 1.48 1.71

95 1.58 1.62 1.56 1.65 1.54 1.67 1.52 1.69 1.50 1.71

100 1.59 1.63 1.57 1.65 1.55 1.67 1.53 1.70 1.51 1.72

Source: J. Durbin and G. S. Watson, “Testing for Serial Correlation in Least Squares Regression,”

Biometrika, Vol. 38, 1951, pp. 159–171. Reprinted with permission of the Biometrika trustees.

Note: N � number of observations, K� number of explanatory variables excluding the constant

term. It is assumed that the equation contains a constant term and no lagged dependent variables.
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Table 6 Critical Values of the Durbin–Watson Test Statistics dL and dU:
1-Percent One-Sided Level of Significance 
(2-Percent Two-Sided Level of Significance)

K � 1 K � 2 K � 3 K � 4 K � 5
N

dL dU dL dU dL dU dL dU dL dU

15 0.81 1.07 0.70 1.25 0.59 1.46 0.49 1.70 0.39 1.96

16 0.84 1.09 0.74 1.25 0.63 1.44 0.53 1.66 0.44 1.90

17 0.87 1.10 0.77 1.25 0.67 1.43 0.57 1.63 0.48 1.85

18 0.90 1.12 0.80 1.26 0.71 1.42 0.61 1.60 0.52 1.80

19 0.93 1.13 0.83 1.26 0.74 1.41 0.65 1.58 0.56 1.77

20 0.95 1.15 0.86 1.27 0.77 1.41 0.68 1.57 0.60 1.74

21 0.97 1.16 0.89 1.27 0.80 1.41 0.72 1.55 0.63 1.71

22 1.00 1.17 0.91 1.28 0.83 1.40 0.75 1.54 0.66 1.69

23 1.02 1.19 0.94 1.29 0.86 1.40 0.77 1.53 0.70 1.67

24 1.04 1.20 0.96 1.30 0.88 1.41 0.80 1.53 0.72 1.66

25 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65

26 1.07 1.22 1.00 1.31 0.93 1.41 0.85 1.52 0.78 1.64

27 1.09 1.23 1.02 1.32 0.95 1.41 0.88 1.51 0.81 1.63

28 1.10 1.24 1.04 1.32 0.97 1.41 0.90 1.51 0.83 1.62

29 1.12 1.25 1.05 1.33 0.99 1.42 0.92 1.51 0.85 1.61

30 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61

31 1.15 1.27 1.08 1.34 1.02 1.42 0.96 1.51 0.90 1.60

32 1.16 1.28 1.10 1.35 1.04 1.43 0.98 1.51 0.92 1.60

33 1.17 1.29 1.11 1.36 1.05 1.43 1.00 1.51 0.94 1.59

34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 0.95 1.59

35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 0.97 1.59

36 1.21 1.32 1.15 1.38 1.10 1.44 1.04 1.51 0.99 1.59

37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59

38 1.23 1.33 1.18 1.39 1.12 1.45 1.07 1.52 1.02 1.58

39 1.24 1.34 1.19 1.39 1.14 1.45 1.09 1.52 1.03 1.58

40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58

45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58

50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59

55 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59

60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60

65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61

70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61

75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62

80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62

85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63

90 1.50 1.54 1.47 1.56 1.45 1.59 1.43 1.61 1.41 1.64

95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64

100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65

Source: J. Durbin and G. S. Watson, “Testing for Serial Correlation in Least Squares Regression,”

Biometrika, Vol. 38, 1951, pp. 159–171. Reprinted with permission of the Biometrika trustees.

Note: N� number of observations, K� number of explanatory variables excluding the constant

term. It is assumed that the equation contains a constant term and no lagged dependent variables.
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Table 7:The Normal Distribution

The normal distribution is usually assumed for the error term in a regression

equation. Table 7 indicates the probability that a randomly drawn number

from the standardized normal distribution 

will be greater than or equal to the number identified in the side tabs, called

Z. For a normally distributed variable with mean and variance ,

The row tab gives Z to the first decimal place, and the col-

umn tab adds the second decimal place of Z.

Z 5 (� 2 �)>�.

�2��

(mean 5 0 and variance 5 1)
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STATISTICAL TABLES 

Table 7 The Normal Distribution

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247

0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859

0.3 .3821 .3873 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483

0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451

0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2217 .2148

0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867

0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611

1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170

1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985

1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823

1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681

1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455

1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367

1.8 .0359 .0351 .0344 .0366 .0329 .0322 .0314 .0307 .0301 .0294

1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143

2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110

2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084

2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064

2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036

2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026

2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0020 .0020 .0019

2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014

3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0011 .0010

Source: Based on Biometrika Tables for Statisticians, Vol. 1, 3rd ed., 1966, with the permission 

of the Biometrika trustees.

Note: The table plots the cumulative probability Z . z.
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Table 8:The Chi-Square Distribution

The chi-square distribution describes the distribution of the estimate of the

variance of the error term. It is useful in a number of tests, including the

White test and the Lagrange Multiplier Serial Correlation Test. The rows rep-

resent degrees of freedom, and the columns denote the probability that a

number drawn randomly from the chi-square distribution will be greater

than or equal to the number shown in the body of the table. For example, the

probability is 10 percent that a number drawn randomly from any chi-square

distribution will be greater than or equal to 22.3 for 15 degrees of freedom.

To run a White test for heteroskedasticity, calculate , where N is the

sample size and is the coefficient of determination (unadjusted ) from

Equation 9 of Chapter 10. (This equation has as its dependent variable the

squared residual of the equation to be tested and has as its independent vari-

ables the independent variables of the equation to be tested plus the squares

and cross-products of these independent variables.)

The test statistic has a chi-square distribution with degrees of freedom

equal to the number of slope coefficients in Equation 9 of Chapter 10. If 

is larger than the critical chi-square value found in Statistical Table 8, then we

reject the null hypothesis and conclude that it’s likely that we have het-

eroskedasticity. If is less than the critical chi-square value, then we can-

not reject the null hypothesis of homoskedasticity.

NR2

NR2
NR2

R2R2
NR2
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Table 8 The Chi-Square Distribution

Level of SignificanceDegrees
(Probability of a Value of at Least as Large as the Table Entry)of

Freedom 10% 5% 2.5% 1%

1 2.71 3.84 5.02 6.63

2 4.61 5.99 7.38 9.21

3 6.25 7.81 9.35 11.34

4 7.78 9.49 11.14 13.28

5 9.24 11.07 12.83 15.09

6 10.64 12.59 14.45 16.81

7 12.02 14.07 16.01 18.48

8 13.36 15.51 17.53 20.1

9 14.68 16.92 19.02 21.7

10 15.99 18.31 20.5 23.2

11 17.28 19.68 21.9 24.7

12 18.55 21.0 23.3 26.2

13 19.81 22.4 24.7 27.7

14 21.1 23.7 26.1 29.1

15 22.3 25.0 27.5 30.6

16 23.5 26.3 28.8 32.0

17 24.8 27.6 30.2 33.4

18 26.0 28.9 31.5 34.8

19 27.2 30.1 32.9 36.2

20 28.4 31.4 34.2 37.6

Source: Based on Biometrika Tables for Statisticians, Vol. 1, 3rd ed., 1966, with the permission 

of the Biometrika trustees.

Note: The table plots the cumulative probability Z . z.
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Index

Index
Page references followed by "f" indicate illustrated
figures or photographs; followed by "t" indicates a
table.

A
Abstract, 2, 14-15, 30, 204, 362
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