
Technical Report 982

� I- - � - � - I � � -- 1--l- - � - I - -- - I � _6 I I I I I I 1, MWA� �

"N"

mt� 0

-.4
I �

0 0

0 0

IV, I I W� f 0
a/

T) va, -% nk D ri *,,% A r, 1 1 TN r, 1 A
I �Dluk.�C/ IsLalluall 1..;UllulLfl

�41T Artificial Intelligence Laboratory

Error Detection and Recovery for
Ro-bot 1\4otion Planning with Uncertainty

Bruce Randall Donald

B.A.,Yale

S..\I., Electrical Eligilieerilig aii(I Computer Scielice. MIT

1984

Subluitted to te

Department of Electrical Engineering ad Computer Science

ill partial fulfillinelit, of te requirelilelits for te egree of

Doctor of Philosophy

at t lie
Massachusetts Institute of Technology

JIiIV. 198 7

.'c'�.Iassacliusetts histitute of Tecluiology. 1987

icrilature of A utlior'.e

Departnielit of Electrical Eiigilieerilig alid Coli1puter Scieuce

July, 1987

I-le

C ertifi ed by

Toina's Lozailo rez

Tliesis S11 visor

A ccep ted b''V ..

Artliur C Suiltli

Chairinall. Departlueiltal oininittee ou ra(lwite Stu(Iclits

Error Detection and Recovery
for Robot Motion Planning with Uncertainty

by
Bruce Randall Donald

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Robots must plan and execute tasks 'in the presence of uncertainty. Uncer-
tainty arises from sensing errors, control errors, and uncertainty in the geometry
of the environment. The last, which is called model error, has received little pre-
vious attention. We present a framework for computing motion strategies that are
guaranteed to succeed in the presence of all three kinds of uncertainty. The mo-
tion strategies comprise sensor-based gross motions, compliant motions, and simple
pushing motions.

It is not always possible to find plans that are guaranteed to succeed. For ex-
ample, 'if tolerancing errors render an assembly infeasible, the plan executor should
stop and signal failure. In such cases the insistence on guaranteed success is too
restrictive. For this reason we investigate Error Detection and Recovery (EDR)
strategies. EDR plans will succeed or fail recognizably: in these more general
strategies, there is no possibility that the plan will fail without the executor realiz-
ing it. The EDR framework fills a gap when guaranteed plans cannot be found or
do not exist: it provides a technology for constructing plans that ight work, but
faid in a "reasonable" way when they cannot.

While EDR is largely motivated by the problems of uncertainty and model er-
ror, its applicability may be quite broad. EDR has been a persistent but ill-defined
theme in both AI and robotics research. We give a constructive, geometric definition
for EDR strategies and show how they can be computed. This theory represents
what is perhaps the first systematic attack on the problem of error detection and
recovery based on geometric and physical reasoning. We also describe an imple-
mented planner in a restricted domain, and discuss the applicability of traditional
computational geometry in algorithms for EDR planning.

Thesis Supervisor: Toma's Lozano-Pe'rez
Title -.� Associate Professor of Computer Science

1

This report is a revised version of a thesis submitted on June 30 187 to the
Department of Electrical Engineering and Computer Science at the Massachusetts
Institute of Technology, in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.
This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the Laboratory's Artificial In-
telligence research is provided in part by the Office of Naval Research under Office of
Naval Research contract N00014-81-K-0494 and in part by the Advanced Research
Projects Agency under Office of Naval Research contracts N00014-85-K-0124 and
N00014-82-K-0334. The author is funded in part by a NASA fellowship adminis-
tered by the Jet Propulsion Laboratory.

2

Acknowledgmients

I suspect that paradise is very much like te MIT Al Lab. Thanks to all the friends and
scientists there who made this work possible. While tradition requires me to take responsibility
for any remaining flaws, honesty compels me to share credit with them for whatever insight and
clarity this thesis manifests.

I am deeply indebted to my supervisor, Toma's Lozano-Pe'rez, for his guidance, support and
encouragement. Many of the key ideas in this thesis arose in conversations with Toma's, and this
work would have been impossible without his help. Thanks for giving so much.

Rod Brooks and Eric Grimson were ideal thesis readers. Thanks for many useful comments
and suggestions, and for your help and taste over my years at MIT.

Thanks to Patrick Winston for providing generous support and the unique environment of
the Al Lab. Thanks for believing in me.

Mike Erdmann was always willing to talk about my work, and contributed many deep insights
to the theory. Mike introduced me to the field of ultra-low energy computational physics, and
provided valuable and insightful comments on a draft of this thesis. Thanks especially for your
friendship, and for always being there for me.

Thanks to John Canny for collaborating on the plane-sweep algorithm, for helping with the
complexity bounds, and for many discussions on robotics and computational geometry. John
was extremely generous with his time and ideas, and I count myself lucky to have such a stellar
mathematician as friend and collaborator.

Thanks to Steve Buckley for his friendship and for many discussions on robotics. Conver-
sations with Steve, Russ Taylor, and Matt Mason helped me to formulate the EDR problem and
focus my research. Steve, Randy Brost, and Margaret Fleck made many helpful suggestions on
early drafts of this thesis. Thanks to Randy who believed in the EDR theory from day one. Thanks
to John Reif, for his encouragement on this and stimulating collaboration on other work.

Many other scientists, machines, and friends have helped me over the last few years. Thanks
to Sundar Narasimhan, Mike Caine, and Steve Gordon for talking so much about robotics with
me. I am grateful to all the rest of the Girl Scouts for their friendship and uncritical support.
Thanks to Jimi Hendrix for months of faithful and devoted crunching. I am grateful to Ms. Laura
Nugent for pointing out the relevance of Tong's vector-bundle-valued cohomology (Gor] to this
research. Thanks to Laura Radin for her friendship, and for feeding Mike and me more than we
deserved.

A generous fellowship from NASA's Jet Propulsion Laboratory facilitated my research.
Thanks to Carl Ruoff of JPL for his enthusiastic support of basic science, to Rich Mooney of
Caltech for his enthusiastic support of Bruce Donald, and to Claudia Smith of MIT for waging
many administrative battles on my behalf

I thank the late Rick Jevon, my first scientist friend, for all he taught me about computers
and life.

Thanks to my parents, for incalculable help over many years, and for your unconditional
support.

Finally, thanks to Andrea, for so much more than words can tell.

3

Table of Contents

1. Introduction 7
1. Description of Problem and the Planner 8

1.1 Application and Motivation 8

1.1. A Simple Example 9
1.1.2 Application: Planning Gear Meshing 9

1.1.3 Experiment: Peg-in-Hole wth Model Error . 13
1.2 Research Issues . . * . . . 29
1.3 Review of Previous Work 31

1.4 Map of Thesis . 36

II. Basic Issues 'in Error Detection and Recovery . 38

2. Basic Issues . 39
2.1 Simple Example of Model Error . 39

2.2 Representing Model Error . 40
2.3 Pushing Strategies in Generalized Configuration Space . 44

2.3.1 Example.- The Sticking Cone . . 0 0 . . . 0 . 47

2.4 Guaranteed Plans in Generalized Configuration Space . 49
3. Error Detection and Recovery . 55

3.1 Generalizing the Construction . . 57

4. Generalization to n-Step Strategies . 63

4.1 The "Twin Universe" Example - - 63
5. What is "Recovery"? . 65
6. Implementation and Experiments: One-Step EDR Strategies . 68

6.1 Experiment.- Computing EDR Regions . 68
6.2 Experiment: Planning One-Step EDR . 70
6.3 Complexity Bounds - 72
6.4 Critical Slices: An Introduction . 73

6.4.1 Comparison with Lower Bounds . 77

6.4.2 Issues in the Critical Slice Method . 78
7. Implement-Ing One-Step EDR Planning in LIMITED . 98

7.1 The Search for a Strategy . 98

7.2 Termination using Contact and the Role of Time . 99
7.3 Employing History 'in EDR Planning . 99

7.3.1 The Role of History 'in Constructing H, 100
7.3.2 The Role of History in Distinguishing H from G 101

7.4 A Priori Push-Forwards Based on Sticking 101

7.5 Sticking as a Robust Subtheory of EDR 101

7.5.1 Generalizations 0 . . 0 103
7.5.2 Forward vs. Backward Chaining . 104

4

8. The Preimage Structure of EDR Regions 107
8.1 The Recognizability Requirements for EDR regions 107
8.2 The structure of phase space goals 108

8.3 The structure of the weak preimage 112
8.3.1 Summary 113

III. Mult'-Step Strategies 114

9. Planning Using Pre-images: A Detailed Example 116
9.1 Example: Planning Grasp-Centering Using Preimages 116

9.1.1 An EDR Strategy for Grasp-Centering . 0 122

9.2 Solving the Preimage Equations is General but Not Computational 123
10. Push-Forwards: A Simple Generalization to n-Step Strategies 124

10.1 Generalization: Push-Forwards 125

10.2 More on the Push-Forward 126
10.3 An Approximation to the Push-Forward 127

10.4 Example: Multi-step EDR plan for Peg-in-Hole with Model Error 128
10.5 The Loss of Power with Push-Forward Techniques 129

11. Failure Mode Analysis 194

11.1 Example: Multi-Step Strategy for Gear Meshing 194

11.2 Introduction to Failure Mode Analysis 195
11.3 Specifying the Goal: Functional Descriptions 196

11.3.1 Specifying the Functional Aspects of the Goal 197
11.3.2 Computational Methods for Functional Goal Specification 198

11.4 Approximate Algorithms for Failure Mode Analysis 200

11.4.1 A General Algorithm 200

11.4.2 A Specialized Algorithm 201
11.4.3 On the Invanance Assumption 205

11.4.4 Quasi-Static Analysis 206

11.4.5 Stiction * . . . 207

11.4.6 Failures Outside the EDR Framework 207

11.4.7 Generalizations 207

11.4.8 Discussion: Generalized vs. Specialized Algorithm 208

12. Weak EDR Theory, Strategy EqUivalence, and the Linking Condition 211

12.1 Reachability and Recognizability Diagrams 211

12.2 More General Push-Forwards 212

12.3 Weak EDR Theory . . . 213

12.4 Strategy Equivalence . . . 214

12.5 The Linking Conditions . 217

12.6 Beyond the Fixed-Point Restriction 220

12.7 What Good is Weak Equivalence? 222

12.8 Application: Failure Mode Analysis in the Gear Experiment 223

5

12.9 Review . 224

IV. Planning Sensing and Motion for a Mobile Robot
13. Sensing and Motion EDR for a Mobile Robot

13.1 Using Information Provided by Ative Sensing . .
13.2 Generalizations

13.2.1 Pushing * . . . 0 .
13.2.2 Non-Point Robots
13.2.3 Rotations * . . .

227

227

235

237

238

238

238

V. Implementation, Computational Issues . . .
14.1 Comments on the Plane Sweep Algorithm

14. 1.1 The Basic Idea
14.1.2 Contrast with Previous Algorithms

14.2 Non-Directional Backp 'ections . . .
14.2.1 Intuition
14.2.2 Computing Non-Directional Backprojections

241

242

242

244

244

244

246

14.3 Multi-Step Strategies using Non-Directional Backprojections,

14.4 Comments and Issues 0 . . ' 0 ' ' * ' ' ' ' ' ' '
14.5 Complexity and Theoretical Results

VI. Conclusions . . o a . . 0 0 . 0 . *
15.1 Summary o . . o
15.2 Future Work . . 0 # * * . . . * 0

251

252

254

258

259

260

Appendices
§A.1 A Note on Geometry
§A.2 A Formal Review of Preimages
§A.3. On the Geometry and Physics of Generalized Configuration Space
§A.4. Derivation of the Non-Holonomic Constraints for Pushing
§A.5 A More Formal Summary of the Construction of H
§A.6. Definition of an Approximate Push-Forward
§A.7. The Formal Requirements for Push-Forwards

References

Code for the Plane Sweep Algorithm

264

264

264

266

267

279

280

281

284

291

6

I. Introduction

7

Robots must plan and execute tasks in the presence of uncertainty. Uncertainty
arises from sensing errors, control errors, and uncertainty in the geometric models
of the environment and of the robot. The last, which is called model error, has
received little previous attention. In this thesis we present a formal framework for
computing motion strategies which are guaranteed to succeed in the presence of
all three knds of uncertainty. We show that it is effectively computable for some
simple cases. The motion strategies we consider include sensor-based gross motions,
compliant motions, and simple pushing motions.

We show that model error can be represented by position uncertainty in a
generalized configuration space. We describe the structure of this space, and how
motion strategies may be planned in it.

It 'is not always possible to find plans that are guaranteed to succeed. In
the presence of model error, such plans may not even exist. For this reason we
investigate Error Detection and Recovery (EDR) strategies. We characterize such
strategies geometrically, and propose a formal framework for constructing them.

This thesis offers two contributions to the theory of manipulation. The first
is a framework for planning motion strategies wth model error. Model error 'is
a fundamental problem in robotics, and we have tried to provide a pncipled,
precise approach. The framework can be described very compactly, although many
algorithmic and implementational questions remain.

The second contribution is a formal, geometric approach to EDR. While EDR is'
largely motivated by the problems of uncertainty and model error, its applicability
may be quite broad. EDR has been a persistent but ill-defined theme in both
AI and robotics research. Typically, it 'is vewed as a knd of source-to-source
transformation on robot programs: for example, as a method for robustifying them
by introducing sensing steps and conditionals. We take the view that if one can
actually plan to sense an anomalous event, and to recover from it, then it is not
an error at all. When such plans can be guaranteed, they can be generated by the
[LMT] method. In our vew of EDR, an "error" occurs when the goal cannot be
recognizably achieved given the resources of the executive and the state of the world.
The EDR framework fills a gap when guaranteed plans cannot be found or do not
exist: it provides a technology for constructing plans that might work, but fail in
a 44 reasonable" way when they cannot. This theory attempts a systematic attack
on the problem of error detection and recovery based on geometric and physical
reasoning.

1.1. Application and Motivation

8

1. Description of Problem and the Planner

1.1. A Simple Example

Consider fig. 1, which depicts a peg in hole insertion task. One could imagine
a manipulation strategy derived as follows: The initial plan is to move the peg
straight down towards the bottom of the hole. However, due to uncertainty 'in the
initial position of the peg, the nsertion may fail because the peg contacts to the left
or right of the hole. Either event might be regarded as an "error." The "recovery"
action 'is to move to the rght (if the peg contacted to the left) and to move to the
left (if the peg contacted to the right). Thus a plan can be obtained by ntroducing
sensing steps and conditional branches.

Suppose that this conditional plan can be guaranteed-that is, it 'is a complete
manipulation strategy for this simple task. In this case, 'it seems strange to view
the contact conditions as "errors." We do not regard these events as "errors." Our
reasoning is that if they can be detected and planned for, then they are simply
events in a guaranteed plan.

We are interested in a different class of "errors." Now suppose that there 'is
uncertainty 'in the width of the hole. If the hole is too small, we will consider this an
error since it causes all plans to fail. Similarly, 'if some ob'ect blocks the hole, and
cannot be pushed aside, this is also an error since it makes the goal unreachable.
If ether error is possible, there exists no guaranteed plan, for there is no assurance
that the task can be accomplished. Since no guaranteed plan can be found, we are
left with the choice of giving up, or of considering a broader class of manipulation
strategies: plans that might work, but fail in an "reasonable" way when they cannot.
Specifically, we propose that EDR strategies should achieve the goal when it exists
and 'is recognizably reachable, and should signal failure when it 'is not. For example,
an EDR strategy for the peg-in-hole problem with model error ight attempt to
achieve the insertion using compliant motion, but be prepared to recognize failure
in case the hole is too small. Below we describe how an implemented planner,
called LIMITED, synthesizes such strategies. LIMITED is an implementation of the
EDR theory in a restricted domain.

1.1.2 Application: Planning Gear Meshing

We must stress that EDR is not limited to problems with model error. There
are many applications in which the geometry of the environment is precisely known,
but in which guaranteed plans cannot be found, or are very difficult to generate.
We now describe such a situation.

An interesting application domain for EDR 'is gear meshing. It is an example
where EDR is applicable even though the shape of the manipulated parts is precisely
known. Let us consider a simplified instance of this problem. In fig. 2 there are

9

Fig. 1. The goal is to insert the peg in the hole. No rotation of the peg is
allowed. One can imagine a strategy which attempts to move straight down, but
detects contact on the top surfaces of the hole 'if they occur. If the peg sticks
on the top surfaces, the manipulator tries to move to the left or right to achieve
the hole. Are these contact conditions errors We maintain that they are not�,
since they can be planned for and verified.

two planar gear-like objects, A and B. The task is to p a manipulation strategy

which will mesh the gears. The state 'in which the gears are meshed is called the
goal.

We will consider two variants of this problem. In the first, we assume that the
Manipulator grasped A, and that neither A nor B can rotate. However, A can

slide along the surfaces of B. In the second, B is free to rotate about its center,
but this rotation can only be effected by pushing it with A. In both cases, the

initial orientation of B is unknown. We regard A as the moving object and B as

the environment; hence even though the hape of B "' precisely known, we choose

to view the uncertainty in B orientation a a form of model or. In the first

case, the system has only two degrees of motion freedom. In the second, there are

10

Fig. 2 Geometric models of two gear-like planar objects A and B. A is grasped
and can translate but not rotate. B can rotate about its center if pushed. The
orientation of B 'is unknown. The task is to generate a motion strategy to mesh
the gears.

three degrees of motion freedom, one of which is rotatio since B can be pushed.

We distinguish between the rotation and non-rotation variants of the problem in

order to hghlight the additional tec ques our planner employs when rotations are

introduced.

In both variations, there is uncertainty in control, so when a motion direction is

commanded, the act trajectory followed is only approximately in that direction.

There is also uncert ty in position sensing and force sensing, so that the true

position and reaction forces are only known approximately. The magnitude of these

uncertainties are represented by error balls.

In general, a commanded motion of A may cause A to move through free space,

and contact B, possibly causing B to rotate. Our EDR theory is a tec q ue for
analyzing these outcomes geometrically to generate strategies that achieve the goal

when it 'is recognizably reachable, and signal failure when it is not.

11

-.0"Imm

In an experiment, the EDR theory in the gear domain was applied using the
planner, LIMITED, as follows. Consider the problem of meshing two planar gears,

under uncertainty as above. Suppose that gear can rotate passively but has

unknown initial orientation, as above. Suppose that A has been gripped by a

robot. The initial position of A is uncertain. The robot can 'impart either pure

forces (translations), or pure torques (rotations) to A. The planner can choose

the direction of translation or rotation. Can a multi-step strategy of commanded

translations and rotations be found to mesh the gears?

LIMITED was able to generate an EDR strategy for this problem. The charac-

teristics of the experiment are.-

There are three degrees of motion freedom (two translational and one rota-

tional) for A.

0 There is one degree of rotational model error freedom (the orientation of B).

0 It is possible to push to change its orientation.

0 There is sensing and control uncertainty.

0 The geometry of the gears 'is complicated-they have many edges.

0 Quasi-static analysis [Mason] is used to model the physics of interaction be-

tween the gears.

Thus we have a kind of four-degree of freedom planning problem with uncer-

tainty and pushing. To generate multi-step EDR strategies under pushing, LIMITED

employed the EDR theory together with a technique called failure mode analysis.

Now, there may exist a guaranteed strategy to mesh the gears. For example,

experimental evidence suggests that for involute teeth gears, almost any meshing

strategy will succeed. For other gear shapes perhaps some complicated translation

while spinning A will always succeed. I don't know if there is such a guaranteed

strategy for this case. It seems difficult for a planner to synthesize such guaranteed

strategies, or even to verify them, if they exist at all.

A person ight try to solve this problem with the following motion strategy.-

Ram the gears together. See if they mesh.

Or, somewhat more precisely,

0 Ram A into B. If they mesh, top. If they jam, signal failure and try again.

Probabilistically, this is a rather good strategy. It is certainly very simple, and

probably easier to generate than a guaranteed strategy. If vision can be used to

sense whether A and B are meshed, then it is an EDR strategy with just one step.

Suppose, however, that vision is poor, or that the gears are accessible to the

robot gripper, but not to the camera. This means that position sensing will be

very inaccurate, and hence may be of no use in determining whether the gears are

successfully meshed. This wll often be the case in practice. In this case, force

sensing must be used to disambiguate the success of the motion (meshing) from

12

failure (jamming in an unmeshed state). If the robot has force sensing, then it
might use the following two-step EDR strate.av-J .

0 Ram the gears together. Spin them to sce whether they meshed.
Or again more precisely.,

0 Ram A into B. Next, spin A. If A and break contact, or if the gears stick
(don't rotate), then signal failure. Otherwise, signal success.

This strategy 'is essentially the one that LIMITED generates. The plan is

Motion 1: Command a pure translation of A into B.'
Terminate the motion based on force-sensing when sticking occurs (when there
is no motion).

Motion 2 Command a pure rotation of A.
if breaking contact or sticking occurs, signal failure. Otherwise, signal success.

In this plan, motion (1) does not terminate distinguishably in success (meshed)
or failure (jammed). That is, after motion (1) terminates, the plan executive can-
not necessarily recognize whether or not the gears are meshed. LIMITED predicts
this, and generates motion 2), which disambiguates. the result of motion (1). The
generation of the second, disambiguating motion 'Involves the use of failure mode
analysis. Breaking contact and sticking are examples of failure modes. The second
motion is generated so that from any unmeshed state resulting from motion (1), all
possible paths will terminate distinguishably in a failure mode. Failure mode analy-
sis is a robust subtheory of EDR by which LIMITED generates multi-step strategies
under pushing.

1.1.3 Experiment: Peg-in-Hole with Model Error

This section describes a plan that was generated by LIMITED for a peg-in-hole
problem with model error. It gives the flavor of how EDR strategies work. Since
pushing motions are not involved here, LIMITED does not use failure mode analysis
to solve this problem.

Another peg-in-hole problem is depicted in fig. 3 Again, as in fig. 1, there 'is
uncertainty in the width of the hole; that is, the wdth is known to lie within some
given interval. In addition, there are chamfers on the sides of the hole. The depth
of the chamfers 'is also unknown, but we are given bounds on the depth. Finally,
the exact orientation of the hole i's uncertain. The geometry of the holo is input
to the planner as a set of parametrically defined polygons. They are dfined by a

1 LIMITED generates the actual force vector.

13

--- -- I .. . I

three parameter family, for width of the hole, depth of the chamfers, and orientation
of the hole. An associated bounding interval is also input for each parameter. The
geometry of the peg is input as a polygon.

In this problem, the wdth of the hole may be smaller than the width of the
peg. Thus there can exist no strategy that is guaranteed to succeed for all geomet-
ric uncertainty values. However, assume that the assembly-the hole geometry
is inaccessible to robust vsion or position-measuring devices. In particular, the
measurement error will typically determine the model error bounds, which in this
example are large for the purpose of illustration. Thus it is not a priori possible
to measure the dimensions ahead of time to determine whether or not the assembly
is feasible. Itead, the best we can hope for is an EDR strategy: a strategy that
takes some action in the world to attempt the assembly, but whose outcome can be
recognizably diagnosed as success or failure by the run-time robot executor.

The peg 'is allowed to translate in the plane. Its motion is modeled using
generalized damper dynamics. This permits sliding on surfaces about the hole.
Friction is modeled using Coulomb's law. With these dynamics and perfect control,
the peg would exhibit straight-line motions n free space, followed by sliding motions
in contact, where friction permits. Here, however, there is control uncertainty, which
is represented by a cone of velocities. Motions in free space fan out in a kind of
C4 spray." Again, sliding is possible on surfaces, but so is sticking, depending on
the effective commanded velocity at a given instant. (In this case, we say sliding
is non-deterministic). The size of the control uncertainty cone of velocities is an
input to the planner. Whether sticking may occur on an edge may be computed by
intersecting the friction cone with the negative control uncertainty cone.

It is possible to sense the osition of the peg and the forces acting on it. This
information is only approximate. The error bound on the position sensor readings
is input to the planner as the radius of a disc.

LIMITED generates plans using a configuration space representation of the con-
straints [Lozano-Pe'rez]. In the plane, one imagines shrinking the moving object to
a point, and correspondingly "growing" the obstacles. The point must be navigated
through free-space, sliding on surfaces, and so forth, into the hole. Fg. 4 shows
configuration spaces for different parametric variations of model error. Notice that
when the "real" hole is too small for the peg to fit, then there is simply no hole at
all in the corresponding configuration space. Each frame in fig. 4 is called a "slice;"
a slice represents a cross-section where the model error parameters are constant. To
synthesize an EDR strategy, LIMITED must in some sense consider all such slices.
In practice LIMITED works by constructing a finite, although typically large number
of slices. We will show how in many cases, only a low polynomial number need be
considered. LIMITED begins by considering a small number of slices, and generates
a tentative motion strategy. This strategy must pass a test-which we call the EDR

14

test-to be recognized as an EDR strategy. One of the chief goals of this thesis 'is
to derive this test, and to make 'it formal and algorithmic. Next, LIMITED attempts

to "generalize" the strategy by considering successively more slices. The strategy is

modified so that it passes the EDR test in all slices. The number of slices considered

is the resolution of the planning. This approach is called multi-resolution planning.

Let's consider an EDR plan that LIMITED computed for this problem. Fgs.

5-13 show the plan graphically. Qualitatively, the plan may be described as follows:

(1) First, move left and slightly down. The motion will terminate on the left

side of the hole, on the left chamfers, or overshoot the hole entirely. Where the

motion terminates depends both on the trajectory evolution within the control

uncertainty, and on the actual geometry of the hole. The motion may, how-

ever, slide down the left edge of the hole all the way into the goal. However,

this sliding is non-deterministic, and the motion may stick anywhere along that

edge. Since the first motion may terminate arbitrarily close to the goal region,

LIMITED predicts that the run-time executive system cannot necessarily distin-

guish whether or not the first motion failed to achieve the goal.

0 (2) The termination regions from motion (1) are taken as the start regions for

a new motion. Next, try to recover by commanding a motion straight down and

slightly to the right. This motion may achieve the goal, or may undershoot it,

or may overshoot it. The second motion terminates when the peg sticks on a

surface. If such a termination surface is outside the goal, it s called a failure

region. LIMITED calculates that after the second motion, the failure regions

are distinguishable from the goal regions. Hence after the second motion, the

run-time executive can recognize whether or not the plan has failed.

Finally, since LIMITED is a forward-chaining planner, it 'is possible to take the

failure regions from motion 2) and plan a third recovery motion. Thus, roughly

speaking, in the EDR framework, recovery actions are planned by forward-chaining

from the failure regions of the previous motion. When the failure regions are poten-

tially 'indistinguishable from the goal (using sensors), then the recovery action must

satisfy the formal EDR test when executed from the union of the goal and the pre-

vious failure regions. For example, when we view motion strategies as "mappingsil

between subsets of configuration space, then typical "robust" recovery actions are

EDR plans in which the goal is a "fixed point."2Motion 2) is an example of such

a one-step EDR plan.

Figs. 513 show the plan in just four dfferent slices, to give a flavor for the

plan. The rest of the slices may be found later in the thesis. Fg. shows the

configuration spaces of the four slices. The goal region here is shaded black. Note

that in one slice, the goal disappears. The 'Initial uncertainty in the position of the

2That 'is, when motion 2) originates in the goal, it also terminates recognizably in the

goal.

15

peg is represented by constraining the reference point (the point to which the peg
has been shrunk) to lie in one of the start regions in fig. 6.

Figs. 78 represents the forward projection of the first motion. This re 'on is
the outer envelope of all possible trajectories evolving from the start regions it
is the set of all configurations that are reachable from the start regions, given the
commanded velocity and control uncertainty cone.

Fig. 9 shows the termination regions for motion (1). The termination regions
outside the goal are not necessarily dstinguishable from the goal.

Figs. 10-11 show the forward projection of the second motion.
Fig. 12 shows the termination regions for the second motion.
Fig. 13 shows the size of the position sensing uncertainty ball. The goal and

the failure regions in fig. 12 are distinguishable using sensors.

16

I - - m . m I - - I I 1� �

Fig. I A peg-in-hole environment with model error. The width of the hole
(al), depth of chamfer (a2), and orientation of the hole (a3) are the model
parameters. The hole is allowed to close up.

fr
0

r-
I
I

- - -2

I

I

\11 I

fl,
N >

0

17

---- --- -- --

Fig. 4a. The configuration space slices for many dfferent parametric model error
values. These configuration spaces were generated for the peg-in-hole problem
w'th model error depicted in fig. 3 Fig. 4a shows a few sces taken at constant
orientation, whereas in fig. 4b, more slices are shown at various orientations.

is

Fig. 4b.

19

i i I

i

I
-4

-

Fig. 5. 4 configuration space slices for the peg-in-hole with model error problem.
The goal region is shaded black. In one slice, the goal vanishes.

20

I 'El

4

LI 11

a
m
6

40

Q
-I
Ift

li
4d

Q
Co .

10 Ina a .
6
CL,..

IC
13
c ;.
9 0

c 3%.
%O

C-
& N

a

0
4 Q
6 O

6
�w

i
4

i

Fig. 6. The start region n the four
known to start within this region.

slices. The reference point of the peg is

21

V-4

qb

Fig. 7 The forward projection of the first motion. This region is the outer
envelope of all possible trajectories evolving from the start regions. It is the
set of all configurations that are reachable from the start regions, given the
commanded velocity and control uncertainty cone.

22

i

i

Z I

I

"I

aI

lo
3.

C..-.
a C

-I-
Ai
u a
6
"It .
a,--
6
CL C-

lk

lo L
i a
4 4a
1 6
0 4

I -:1

Fig. 8. The forward projection of the first motion, shown without the obstacles.

23

I

Fig 9 The termination regions from the first motion. These regions are config-
urations where the motion finishes.

- I - I p"NowalwAlm

I

9

I

I

i

I

a
0to
1.

40
6
4
A

In

la
4)
w
4
0 .

IA
CL V
a 3.
L.
CLO-.
c

v
c 6
4 0

0-
0 -.0

Im Cl-
AO
6 06

0
4 Q
S. la

�4 6
AO a

II
i

I;
i,
6

1:

li

24

i .- . - i

C4
qb

Fig. 10. The forward projection of the second motion.

25

.4 - 0, .- -, ---- -

w

0
0

0
I :r

I I

I
I

I

I

i

1�

I

I
i

4

40
3-

C -%
*

:
0 0
V
'n 30-

.w
1.
CL N

�k
It L

a

3 I
1.
a

16
I --- I-- . - -- - I a b

Fig. 11. The forward pro'ection of the second motion, shown without the obsta-
cles.

26

i

--Ill

...FkV0 cou �
. f
311 �

a

a
0

4
4

a

I
('I

a. (A

I
a

id
v

:i
a

a

.--

Fig. 12. The termination regions
configuration space where stacking

for the second motion. These
can occur.

27

are edges in

I

Fig. 13. The failure relp'ons and the goal are distinguishable, even given the
sensing uncertainty. The disc indicates the magnitude of the position sensing
uncertainty.

0
010u

I to

I

.1

0

--- -- "

4!

a
0

IAW

6j

co

.1

.11 1.
f

I

'. 0

4 I

28

>1
4.j

C c
0 -14

00 m

" a 4i
- -.0 - W

0 0 W --4
0 c Q --4

-) M. w c m
(A = go

la

0 0
u

1.2. Research Issues

The gross motion planning problem with no uncertainty has received a great
deal of attention recently. In this problem, the state of the robot may be represented
as a point 'in a configuration space. Thus moving from a start to a goal point may be
viewed as finding an are 'in free space connecting the two points. Since the robot is
assumed to have perfect control and sensing, any such arc may be reliably executed
once it 'is found. In particular, given a candidate arc, it may be tested. That
is motion along the arc may be simulated to see whether it is collision free. For
example, an algebraic curve may be 'Intersected wth semi-algebraic sets defining the
configuration space obstacles. In the presence of uncertainty, however, we cannot
simply smulate a motion strategy to verify it. Instead, we need some technique for
simulating all possible orbits, or evolutions of the robot system, under any possible
choice of the uncertain parameters. With sensing and control ucertainty, the state
of the robot must be viewed as a subset of the configuration space. Motions, then,
can be viewed as mappings between these subsets. Of course there are many such
subsets! From this perspective, it is clear that a chief contribution of [LMT] has been
to identify and give a constructive definition for a privileged class of subsets aed
preimages, and show that it is necessary and sufficient to search among this class.
This framework appears very promising for planning guaranteed motion strategies
under sensing and control uncertainty. The [LMT] framework assumes no model
error. In this thesis, we reduce the problem of planning guaranteed strategies wth
sensing, control, and geometric model uncertainty to the problem of computing
preimages in a (higher dmensional) generalized configuration space. 3

This 'is an interesting and useful result- previously, there was really no system-
atic theory of planning in an environment whose geometry is not precisely known.
However, I do not think that it is the main point of this thesis. This is because there
are certain inadequacies wth the planning model. The insistence that strategies
be guaranteed to succeed is too restrictive in practice. To see this, observe that
guaranteed strate 'es do not always exist. In the peg-in-hole problem wth model
error (figs. 313) there is no guaranteed strategy for achieving the goal, snce the
hole may be too small for some model error values. For these values the goal in
configuration space does not exist. Because tolerances may cause gross topological
changes in configuration space, this problem is particularly prevalent in the pres-
ence of model error. More generally, there may be model error values for which the
goal may still exist, but it may not be reachable. For example, in a variant of the
problem n fig. 3 an obstacle could block the channel to the goal. Then the goal is
non-empty, but also not reachable. Fnally, and most generally, there may be model
error values for wich the goal is reachable but not recognizably reachable. In this
case we still cannot guarantee plans, since a planner cannot know when they have

3We use the terms model error and model uncertainty 'Interchangeably.

29

succeeded.

These problems may occur even 'in the absence of model error. However, with-
out model error a guaranteed plan is often obtainable by back-chaining and adding
more steps to the plan. In the presence of model error this technique frequently
fails: in the peg-in-hole problem with model error, this technique will not work since
no plan of any length can succeed when the hole closes up.

This is why we 'Investigate EDR strategies, and, in particular, attempt to for-
malize EDR planning. The key theoretical issue 'is: How can we relax the restriction
that plans must be guaranteed to succeed, and still retain a theory of planning that
is not completely ad hoe? We attempt to answer this by giving a constructive def-
inition of EDR strategies. In particular, this approach provides a formal test for
verifying whether a given strategy is an EDR strategy. The test is formulated as a
decision problem about projection sets 'in a generalized configuration space which
also encodes model error. Roughly speaking, the projection sets represent all pos-
s'ble outcomes of a motion (the forward projection), and weakest preconditions for-
attaining a subgoal (the preimage).

Given the formal test for "recognizing" an EDR strategy, I then tested the
definition by building a generate-and-test planner. The generator is trivial; the
recognizer is an algorithmic embodiment of the formal test. It lies at the heart
of this research. A second key component of the planner is a set of techniques
for chaining together motions to synthesize multi-step strategies. The planner 'is a
forward-chaining, multi-resolution planner, called LIMITED. LIMITED operates in a

restricted domain. Plans found by LIMITED in experiments are described above,

and in chapters II and III.

Finally, let me suggest that a new framework-the EDR framework- for

planning with uncertainty may be justified not only by the restrictiveness of the

guaranteed-success model, but also by the hardness of the problem. The gross mo-

tion planning problem without uncertainty may be viewed, under some very general

assumptions, as a decision problem within the theory of real closed fields. This gives

a theoretical decision procedure with polynomial running time once the degrees of

freedom of the robot system are fixed [SS]. However, no such theoretical algorithm

is known for the general compliant motion planning problem with uncertainty. Fur-

thermore the lower bounds for computing guaranteed strategies even in 3D are

dismal: the problem is known to be hard for exponential tme [CR]. At this point

it is unknown whether EDR planning 'is more efficient than guaranteed planning.

However, there is some experimental evidence leading one to conjecture that cer-

tain problems requiring very complicated, exponential-sized guaranteed plans may

admit very short EDR plans.

However, the motivation for this thesis is not complexity-theoretic. Instead,

the chief thrust is to show how to compute motion strategies under model error

30

(and sensing and control uncertainty), using a formal and constructive defir'tion
of EDR strategies. The first goal was a precise geometric characterization of EDR
planning-when one thinks about it, it is in fact somewhat surprising that such
a thing should exist at all! But in fact 'it does, as we shall see. The second goal
was to test tis characterization by building a planner. Thus it was necessary to
devise implementable algorithms to construct the geometric projection sets and
decide questions about them. Therefore, this thesis and LIMITED contain a mixture
of precise combinatorial algorithms and of approximation algorithms. We indicate
which algorithms are exact and give combinatorial bounds. We also identify the
approximation algorithms, and indicate the goodness of the approximation and
whether it is conservative. Much work, or course, remains in developing better

algorithms for EDR planning, and in testing out the plans using real robots.

1.3. Review of Previous Work

Broadly speaking, previous work falls the following categories: Algorithmic

motion planning, Compliant motion planning with uncertainty, Model Error, and

Error detection and recovery.

1.3.1 Algorithmic Motion Planning

In algorithmic motion planning, (also called the piano movers' problem, or the

find-path problem) the problem is to find a continuous, collision-free path for a

moving ob'ect (the robot) amidst completely known polyhedral or semi-algebraic

obstacles. It is assumed than once such a path is found, it can be reliably executed

by a robot with perfect control and sensing. Many algorithms employ configuration

space, [Lozano-Pe'rez, Arnold, Abraham and Marsden, Udupa). [Lozano-Pe'rez and

Wesley] proposed the first algorithms for polygonal and polyhedral robots and ob-

stacles without rotations. These results were later extended by [Lozano-Pe'rez. 81,

83] to polyhedral robots which could translate and rotate. [Brooks 83] designed a

find-path algorithm based on a generalized-cone representation of free-space. Brooks

later extended this method for a revolute-'oint robot. [Donald 84,85,87] developed

a motion-planning algorithm for a rgid body that could translate and rotate with

six degrees of freedom amidst polyhedral obstacles (the so-called classical" movers'

problem). [Lozano-Pe'rez 85] reported another 6DOF algorithm for 6-1ink revolute

manipulators. [Canny 85] developed an algebraic formulation of the configuration-

space constraints, which led to a very clean collision-detection algorithm. All of

these algorithms have been implemented.

There are many theoretical results on upper and lower bounds for the find-path

problem, see [Yap] for a good survey article. These results begin with [Lozano-Pe'rez

31

--- --l - - I I- - IN w"Oo. NO I

and Wesley], who give the first upper bounds: they give efficient algorithms for plan-
ning in 2D and 3D in the absence of rotations. Reif 79] obtained the first lower
bounds, demonstrating the problem to be PSPACE-hard when the number of de-
grees of freedom are encoded in the 'input specification of the problem. [Hopcroft,
Joseph, and Whitesides] and [Hopcroft, Schwartz, and Sharir] have also given in-
tersesting lower bounds for motion planning. [Schwartz and Shan'r] gave a very
general theoretical algorithm for motion planning via a reduction to the theory of
real closed fields. The algorithm is doubly-exponential in the degrees of freedom,
but polynomial in the algebraic and geometric complexity of the input. Over the
next five years, there were many papers reporting more efficient special-purpose
motion planning algorithms for certain specific cases; see [Yap] for a survey. To
date the fastest general algorithm is due to [Canny, 871, who gives a generic motion
planning algorithm which is merely singly-exponential in the degrees of freedom.
For a motion planning problem of algebraic complexity d, geometric complexity
n and with r degrees of freedom, Canny's algorithm runs in time (do(r 2)nr log n)
which is within a log factor of optimal. While none of these theoretical algorithms
have been 'Implemented, Canny's is conjectured to be efficient in practice as well.

One ight ask whether exact algorithms for motion plannning can ever be
utilized after uncertainty in sensing and control are introduced. The answer is a
qualified "yes." In particular, the Vorono' diagram has proved to be useful for mo-
tion planning among a set of obstacles in configuration space (see [0Du'nlaing and
Yap 82- O'Du'nlaing, Sharir, and Yap 84; Yap 84], and the textbook of [Schwartz
and Yap 86] for an introduction and review of the use of Voronoi diagrams in mo-
tion planning). The Voronoi diagram, as usually defined, is a strong deformation
retract of free space so that free space can be continuously deformed onto the dia-
gram. This means that the diagram is complete for path planning, i.e. Searching
the original space for paths can be reduced to a search on the diagram. Reducing
the dimension of the set to be searched usually reduces the time complexity of the
search. Secondly, the diagram leads to robust paths, 'i.e. paths that are maximally
clear of obstacles. Hence Voronoi-based motion planning algorithms are relevant to
motion planning with uncertainty. [Canny and Donald] define a "Simplified Voronoi
Diagram" which is still complete for motion planning, yet has lower algebraic com-
plexity than the usual Voronoi diagram, which is a considerable advantage in motion
planning problems with many degrees of freedom. Furthermore, the Simplified di-
agram is defined for the 6D configuration space of the "classical" movers' problem.
For the 6DOF "classical" polyhedral case, [Canny and Donald] show that motion
planning using the Simplified dagram can be done it tme 0(nT log n).

Many additional robotics issues are dscussed in Paul- Brady et al.].

32

1.3.2 Compliant Motion Planning with Uncertainty

This section reviews previous work on planning compliant motions which are
guaranteed to succeed even when the robot system is subject to sensing and control
uncertainty. All of this work assumes perfect geometric models of the robot and
obstacles.

Work on compliant motion can be traced to [Inoue, Whitney, Raibert and
Craig, Salisbur]. This work in force control attempted to use the geometric con-
straints to guide the motion. By cleverly exploiting the task geometry, placements
far exceeding the accuracy of pure position control can be achieved. [Mason 831
develops spring and damper compliance models, and gives an extensive review of re-
search in compliant motion. [Simunovic, Whitney, Ohwovoriole and Roth, Ohwovo-
riole, Hll and Roth] have all considered fctional constraints, as well as jamming
and wedging conditions. [Erdmann], [Burridge, Rajan and Schwartz] have consid-
ered algorithmic techniques for predicting reaction forces in the presence of friction.
[Caine] has considered manual techniques for synthesizing compliant motion strate-
gies, generalizing the methods of [Simunovic Whitney]. [Mason, 82] has developed
a way to model pushing and grasping operations 'in the presence of frictional con-
tact. [Peshkin] has extended this work. [Brost] has further developed techniques
for predicting pushing and sliding of manipulated objects to plan squeeze-grasp
operations. In addition, Brost 'is currently investigating the application of EDR
techniques to the squeeze-grasp domain.

Early work on planning in the presence of uncertainty investigated using skele-
ton strategies. [Lozano-Pe'rez 76] proposed a task-level planner called LAMA which
used geometric simulation to predict the outcomes of plans, and is one of the earliest
systems to address EDR planning. [Taylor] used symbolic reasoning to restrict the
values of variables in skeleton plans to guarantee success. [Brooks 82] later extended
this technique using a symbolic algebra system. [Dufay and Latombe] implemented
a system which addresses learning in the domain of robot motion planning with
uncertainty.

[LMT] proposed a formal framework for automatically synthesizing fine-motion
strategies in the presence of sensing and control uncertainty. Their method is called
the preimage framework. [Mason, 83] further developed the preimage termination
predicates, addressing completeness and correctness of the resulting plans. Erd-
mann] continued work on the preimage framework, and demonstrated how to sep-
arate the problem into questions of reachability and recognizability. He also showed
how to compute preimages using backprojections, which address reachability alone,
and designed and implemented the first algorithms for computing backprojections.
[Erdmann and Mason] developed a planner which could perform sensorless ma-
nipulation of polygonal objects in a tray. Their planner makes extensive use of a
representation of fiction 'in configuration space [Erdmann]. [Buckley] implemented

33

a multi-step planner for planning compliant motions with uncertainty in 3D with-

out rotations. He also developed a variety of new theoretical tools, including a

combined spring-damper dynamic model, 3D backprojection and forward projec-

tion algorithms, and a nitization technique which makes searching the space of

commanded motions more tractable.

[Hopcroft and Wilfong] addressed the problem of planning motions 'in contact,

and proved important structural theorems about the connectivity of the 1-edges of

configuration space obstacle manifolds. outsou] has suggested a planning algo-

rithm which plans along 1-edges. Other planning systems for compliant motion have

been developed by [Turk], who used backprojections, [Laugier and Theveneau], who

use an expert system for geometric reasoning about compliant motion, and [Valade].

Recently, there has been some theoretical work on the complexity of robot

motion planning with uncertainty. [Erdmann] showed the problem to be undecidable

when the obstacles are encoded as a recursive function on the plane. [Natarajan]

has shown the problem to be PSPACE-hard in 3D for finite polyhedral obstacles.

[Canny and Reif] have demonstrated that in 3D the problem of synthesizing a multi-

step strategy is hard for non-deterministic exponential time; 'in addition, they proved

that verifying a 1-step strategy is A�P-hard.

1.3.3 Model Error

There 'is relatively little previous work on planning in the presence of model

uncertainty. [Requicha] and [Shapiro] address representational questions of how to

model part tolerances, and mathematical models for variational families of parts.

[Buckley] considers some extensions of his planner to domains with model uncer-

tainty. [Brooks 82] developed a symbolic algebra system which can constrain the

variable values in skeleton plans, and introduce sensing and motion steps to reduce

these values until the error ranges are small enough for the plan to be guaranteed.

Some of the variables in these plans can represent model error-particularly, the po-

sition of objects in the workspace and hence his planner can reason about motion

planning 'in the presence of model uncertainty.

Work on manipulator pushing and sliding [Mason, Peshkin] and squeeze-grasping

[Brost] may be vewed as addressing model error where the error parameters are the

position and orientation of the manipulated part. The operation space of [Brost]

is a clever example how to model actions with uncertain effects and objects with

uncertain orientation, in the same space. [Durrant-Whyte] considers how to model

geometric uncertainty probabilistically, and how to propagate such information in

applications related to motion planning.

[Lumelsky] considers the following problem: suppose that a robot has a D

configuration space, perfect control and sensing, the obstacles are finite in number,

34

and each obstacle boundary is a homeomorphic image of the crcle. Then a collision
free-path may be found by tracing around the boundary of any obstacles encoun-
tered when moving in a straight line from the start to the goal. At each obstacle
boundary encountered, there is a binary choice of which way to go, and the move
may be executed wth perfect accuracy. Lumelsky also demonstrates complexity
bounds under these assumptions, and has considered configuration spaces such as
the plane, the sphere, the cylinder, and the 2-torus. While it is not clear how
this technique can extend to higher-dimensional configuration spaces, it 'is useful to
compare Lumelsky's approach as an example of how to exploit a useful geometric
primitive (wall-following). See also [Koditschek] for extensions to this approach
using potential -fields. The potential-field approach to collision avoidance, as formu-
lated by [Khatib], also can deal wth uncertain obstacles, and gross motions around
these obstacles can often be synthesized in real time. [Brooks 85] has described a
map-making approach for a mobile robot in a highly unstructured environment
i.e., amidst unknown obstacles. His approach allows the robot to aquire information
about the position and shape of these obstacles as the robot explores the environ-
ment. Davis] has addressed the mobile robot navigation problem amidst partially
unknown obstacles using an approximate map.

There is almost no work on planning compliant motions or assemblies in the
presence of model error.

1.3.4 Error Detection and Recovery

There has been almost no formal analysis of the EDR problem. STRIPS [Fikes
and Nilsson] has a run-time executive (PLANEX) which embodied one of the first
systems addressing EDR. STRIPS' tangle tables may be viewed as a kind of for-
ward projection. [Ward and MCalla; Hayes] have presented research agendas for
error diagnosis and recovery in domain-independent planning. [McDermott] has
stressed the importance of EDR in plan execution and sketched an approach based
on possible worlds. [Srinivas] described a robot planning system for a Mars rover
which could detect certain manipulation errors and recover. [Gini and Gini) have
described a view of EDR based on a predetermined list of high-level error types.
The domain-independent planning literature [Chapman] is relevant to the history of
EDR; for example, the planner of Wilkins] has an error recovery module in which
the executor can detect inconsistencies 'in the set of logical propositions representing
the world state. At this point, an operator can intervene and type 'in new proposi-
tions to disambiguate the state and aid recovery. The robots described by [Brooks
85] have an EDR flavor-they are not required to achieve a particular goal, but
merely to attempt it until some other goal takes a higher priority.

Portions of the material in this thesis have been presented in [Donald 86ab].

35

[Brost] is employing these EDR techniques 'in his research o planning squeeze-grasp
operations.

1.4. Map of Thesis

Here is an outline of the remainder of the thesis. The thesis is divided into
six roman-numeral chapters. A parallel arabic section-numbe ring scheme permits
finer-grain cross-references. Starred (*) sections subsections may be skipped at first
reading if desired.

Chapter II presents the basic issues in EDR. It begins with a dscussion of
planning with model error. We introduce a generalized configuration space with
non-holonomic. constraints as a keytool. EDR is defined, and given a geometrical
characterization. Experiments, implementation, and computational complexity are
discussed. Chapter II intends to provide a slice of all the most interesting aspects
of this work, while striving for a somewhat 'informal style of presentation. The end
of the chapter hints at the theoretical issues to come.

The chapters III-V, can be read 'independently 'if desired.
Chapter III describes the construction of multi-step strategies in some detail.

Here, we discuss planning using preimages, "push-forward" algorithms, and failure-
mode analysis. These techniques are then unified by introducing the "weak" EDR
theory. Weak EDR is a theory which defines certain laws of composition on motion
strategies. It provides a new framework for studying multi-step strategies; we use
'it to derive properties of multi-step EDR plans.

In chapter IV, the EDR theory is applied to the problem of planning sensing
and motion for a mobile robot navigating aidst partially unknown obstacles. We

0show how the EDR theory, and generalized configuration space in particular, can
be used to generate strategies 'in the mobile robot domain.

Chapter V describes implementational and complexity-theoretic issues. We
discuss methods for limiting search in an EDR planner. To this end, we introduce
a combinatorial object call the non-directional backprojection, and analyze 'its com-
plexity. Our analysis leads to efficient algorithms for certain subproblems 'in EDR
planning. In particular, we give an efficient algorithm for planning one-step (guar-
anteed) strategies in the plane. By using results from computational algebra, we
show that planning a guaranteed planar multi-step strategy wth sticking termina-
tion can be decided in time polynomial 'in the geometric complexity, and roughly
singly-exponential in the number of steps in the plan.

Chapter VI contains conclusions and suggestions for future work.

All readers should be able to read through chapter IL At that point the re-
maining topics can be selected as the reader's taste and preference dictate. I feel the
most interesting and important subsequent material 'is on the weak EDR theory (in

36

the multi-step strateizv chapter III) However, readers interested in computational
complexity might prefer chapter V, while moboticists might skip to chapter IV.

The thesis contains three thematic lines of development. The first is theoretical
robotics by which we mean the theory of manipulation and geometrical planning.

This line 'is strong 'in chapters II and III. Readers who have seen some of this thesis

material at conferences [D] will find altogether new material in sections 7-15. This
line of development contains the following topics:

0 Model error is discussed in detail in sections 2 6 9 1, and 13.

0 The basic EDR theory is discussed in sections 35, and 710.

0 Failure-Mode Analysis comes up in section 11.

0 The Weak EDR Theory makes its debut in section 12.

The second theme is complexity and algorithmic issues. These are stressed in

sections 6 and 14.

The third theme is applications, implementation, and experiments. These are

described in sections 6 7 0, 11, 13, and 14. 1.

37

IL Basic Issues in Error Detection and Recovery

This chapter presents an overview of our theory and experiments in EDR It
attempts to deliver a slice of all the most interesting aspects of the work, while
striving for a non-demanding style of presentation.

We begin by showing how to represent model error, and explore the physics
of generalized configuration space. Using this representation, we next present the
basic theory behind constructing both guaranteed strategies and EDR plans 'in the
presence of sensing, control, and model uncertainty.

The implementation of LIMITED is then discussed, along with experiments 'in
EDR planning.

The chapter closes by proving complexity bounds for EDR planning, and with
an introductory dcussion of deeper EDR-theoretic issues. For 'interested readersI
these discussions are continued and elaborated in considerable detail 'in chapters V
and III, respectively.

38

2. Basic Issues in Error Detection and Recovery

2.1. Simple Example of Model Error

We wll begin developing the EDR theory by examining some very simple
planning problems with model error. Of course, this does not mean that EDR 'is
limited to situations with model error.

Example (1). Consider fig. 14. There is position sensing uncertainty, so that
the start position of the robot 'is only known to lie within some ball in the plane.
The goal is to bring the robot in contact with the right vertical surface of A.

We will simplify the problem so that the computational task 'is in configuration
space. This transformation reduces the planning task for a complicated moving
object to navigating a point in configuration space. Consider fig. 15. The config-
uration point starts out in the region R, which is the position sensing uncertainty
ball about some initial sensed position. To model sding behavior, we will assume
Coulomb friction and generalized damper dynamics, which allows an identification
of forces and velocities. Thus the commanded velocity vo is related to the effective
velocity v by f = B(v - vo) where f is the effective force on the robot and is a
scalar. Given a nominal commanded velocity v the control uncertainty is repre-
sented by a cone of velocities (Bc in the figure). The actual commanded velocity
vo must lie within this cone.1

The goal 'in fig. 15 'is to move to the region G. Now, with Coulomb friction,
sticking occurs on a surface when the (actual) commanded velocity points into the
friction cone. We assume the friction cones are such that sliding occurs (for all
possible commanded velocities in B,,) on all surfaces save G, where all velocities
stick. We will assume that the planner can monitor position and velocity sensors to
determine whether a motion has reached the goal. Velocity sensing is also subject
to uncertainty: for an actual velocity v the sensed velocity lies in some cone ,
of velocities about v.

Now we introduce smple model error. The shape of A and are known
precisely, and the position of A is fixed. However, the position of B, relative to A
is not known. B's position is characterized by the distance a. If a > the goal
is reachable. But if a = , then the goal vanishes. No plan can be guaranteed to
succeed if a = is possible. Suppose we allow a to be negative. In this case the
blocks meet and fuse. Eventually, for sufficiently negative a, win emerge on the
other side of A. In this case the goal "reappears," and may be reachable again. 2
Let us assume hat a is bounded, and lies 'in the interval [-do, do].

'See [Mason 81] for a detailed description of generalized damper dynamics.
2This model is adopted for the purposes of exposition, not for physical plausibility. It is
not hard to model the case where the blocks meet but do not fuse.

39

Our task is to find a plan that can attain G in the cases where 'it is recognizably
reachable. Such a plan 'is called a guaranteed strategy in the presence of model error.
But the plan cannot be guaranteed for the a where the goal vanishes. In these
cases we want the plan to signal failure. Loosely speaking, a motion strategy which
achieves the goal when it is recognizably reachable and sgnals failure when 'it is
not is called an Error Detection and Recovery (EDR) strategy. Such strategies are
more general than guaranteed strategies, in that they allow plans to fail.

Before we attack the problem of constructing guaranteed strategies and EDR
strategies (both 'in the presence of model error) let us consider the examples we
have seen so far. Although in these examples model error has been represented by
a kind of parametric "tolerancing", the planning framework can represent arbitrary
model error. For example, we could represent CAD surfaces with real coefficients,
and allow the coefficients to vary. Discrete and discontinuous model error may
also be represented. Finally, note that we permit gross topological changes in the
environment-for example, the goal can vanish.

2.2. Representing Model Error

To represent model error, we will choose a parameterization of the possible
variation in the environment. The degrees of freedom of this parameterization are
considered as additional degrees of freedom in the system. For example, in fig. 15,
we have the x and y degrees of freedom of the configuration space. In addition, we
have the model error parameter a. A coordinate 'in this space has the form (x, y, a).

The space itself is the artesian product 'W 2x [-do, do]. Each a-slice of the space
for a particular a 'is a configuration space with the obstacles A and instantiated
at distance a apart. Fig. 15 is such a slice.

More generally, suppose we have a configuration space C for the degrees of
freedom of the moving object. Let J be an arbitrar index set which parameterizes
the model error. (Above, J was [-do, do]). Then the generalized configuration space

with model error is C x J. One way to think of this construction is to imagine a
collection of possible "universes", C for a in J. Each C,,, is a configuration space,

containing configuration space obstacles. The ambient space for each C is some

canonical C. C x J is simply the natural product representing the ambient space of

their disjoint union. There is no constraint that J be finite or even countable. In fig.

3, C is again the artesian plane, and J is a three-dimensional product space. One

of the J dimensions is circular, to parameterize the angular variation represented

by a3-

In fig. 16 we show the generalized configuration space for example (1). Note

that the goal in generalized configuration space becomes a 2-dimensional surface,

40

B cc a

v0 z

,n c e rt2 inty

Start Position lies in this circle

Goal lies on this surface ofA B

a

Fig. 14. The goal is to bring the robot into contact wth the right vertical
surface of A. (For example, the 'robot" could be a gripper finger). There is
position sensing uncertainty, so in the start position the robot is only known
to lie within some uncertainty ball. There 'is also control uncertainty in the
commanded velocity to the robot. It is represented as a cone, as shown.

and the obstacles are 3-dimensional polyhedra. Note that the goal surface vanishes
where A and meet.

Given a configuration space corresponding to a physical situation, 'it is well
known how to represent motions, forces, velocities ad so forth 'in it (eg., see
[Arnold]). The representations for classical mechanics exploit the geometry of dif-
ferentiable anifolds. We must develop a similar representation to plan motions,
forces, and velocities 'in generalized configuration space. Henceforth, we will denote
the generalized configuration space C x J by . We develop the following "axioms"
for "physics" in 19.

(1) At execution time, the robot finds 'Itself in a particular slice of , (although it

41

.

Bw (o)

y0 s V #

G

A B

Fig. 15. The equivalent problem in configuration space. The blocks A and ,
the distance between the blocks a, and the commanded velocity ve = v* with
control error cone Bec(v*). The position of A is fixed.

may not know which). Thus we say there is only one "real" verse, ao in3
J. This ao is fixed. However, ao is not known a prsori. Thus a motions are
co ed to a particular own) ao-slice, such as fig. 15. This is because
motions cannot move between verses. In fig. 16, any legal motion 'in is
everywhere orthogonal to the J-axis and parallel to the x-y plane.

(2) Suppose in any a-slice the position sensing uncert ty ball about a given
sensed position is some set Bp. The set R in fig. 15 is such a ball. We cannot

4sense across J: position sensing uncertainty 'is i te in the J dimensions.
Thus the position sensing ncertainty in 'is the cylinder B, x J. In figs.
15,16, this simply says that x and y are known to some precision, while a is
unknown. The itial position in fig. 15 is given by R x [-do, do]. This cylinder

3 ao is a point in the multi-dimensional space J.
4One generalization of the framework would permit and plan for sensing in J. In this

case one would employ a bounded sensing uncertainty ball in the J dimensions.

42

a 0

Of so

a 0

i

Ao"Not"

Fig. 16. The generalized configuration space obstacles for example (1). The
generalized configuration space 'is three dimensional, having x and y degrees of
motion freedom, and an a degree of model error freedom. Legal motions are
parallel to the r-y plane, and orthogonal to the J axis.

is a 3-dimensional solid, orthogonal to the x-y plane and parallel to the J-axis
in fig. 16.

(3) Suppose in the configuration space C the velocity control uncertainty about a
given nomi commanded velocity 'is a cone of velocities B, Such a cone is
shown in fig. 15. This cone lies 'in the pha-se-space for C denoted TC. (P e
space is simply Position-space x Velocity-space. A point in p e space
the form (x, v), and denotes an instantaneous velocity of v at configuration
x). Phase space represents a possible velocities at all points 'in C. The phase
space for is obtained by indexing TC by J to obtain TC x J. All velocities
in gener ed configuration space lie in TC x J. For Ex. (1) TC x J is
R' x [-do, do]. The generalized velocity uncertainty cones are two-dimensional,
parallel to the x-y plane, and orthogonal to the J as.

43

(4) Generalized damper dynamics extend straight-forwardly to , so motions sat-
isfy f = B(v - vo) where f, v, and vo e in TC x J. Thus friction cones from
configuration space (see [Erdmann]) naturally embed lke generalized velocity
cones in TC x J.

These axioms give an intuitive description of the physics of . A formal axiom-
atization is given in an appendix. We have captured the physics of using a set of
generalized uncertainties, friction, and control characteristics 1-4). These axioms
completely characterize the behavior of motions 'in .

2.3. Representing Pushing Operations 'in Generalized Configuration
Space

By relaxing axiom (1), above, we can consider a generalization of the model
error framework, in which pushing motions are permitted, as well as compliant
and gross motions. We relax the assumption that motion between universes is
impossible and permit certain motions across J. Consider example (1). Observe
that a displacement in J corresponds to a displacement 'in the position of the block
B. Thus a motion in J should correspond to a motion of B. Suppose the robot can
change the position of B by pushing on it, that 'is, by exerting a force on the surface
of B. The key point is that pushing operations may be modeled by observing that
commanded forces to the robot may result in changes in the environment. That
is, a commanded force to the robot can result in motion in C (sliding) as well as
motion in J (pushing the block). Let us develop this notion further.

Our previous discussion assumed that motion across J was impossible. That 'is,
all motion is confined to one aslice of generalized configuration space. In example
(1), this is equivalent to the axiom that B does not move or deform under an applied
force. Such an axiom makes sense for applications where B is indeed immovable,
for example, if A and B are machined tabs of a connected metal part. However,
suppose that B is a block that can slide on the table. See fig. 17. Then an applied
force on the surface of the block can cause the block to slide. Tis corresponds to
motion in J. In general, the effect of an applied force will be a motion which slides
or sticks on the surface of B, and which causes B to slide or stick on the table. This
corresponds to a coupled motion in both C and J. When the motion maintains
contact, it is tangent to a surface in generalized configuration space.

Our goal is to generalize the description of the physics of 9 to permit a rigorous
account of such motions. This model can then be employed by an automated
planner. Such a planner could construct motion strategies whose primitives are
gross motions, compliant motions, and pushing motions, 5

50ur model of pushing 'is less general than [Mason, 82] snce it requires knowledge of

the center of friction. See an appendix for details.

44

P fo)

Jff

Fig. 17. A force fe applied to the top surface of B can cause sliding (or sticking)
on the top of B, coupled with motion of on the table. This corresponds to a
pushing motion in 19. By giving the right geometric structure to the surface ,
we can predict the resulting cone of motions in G, given a commanded velocity
fq sub'ect to control uncertainty. A planner could generate a motion along in
order to plan pushing operations.

The description of the physics should embrace the following observations:
The phase space for C corresponds to forces exerted at the center of m s of

the robot. The phase space for J corresponds to forces acting at the center of m s
of B. When pushing is allowed, the phase space for generalized configuration space
is not TC x J but TC x TJ. In the pushing application, all forces are exerted
in C, but m y be "transferred" to J via the contact. In other words, the applied
forces we consider will have zero component along J. However, they m y result
a motion in J, via the tansferred pushing force.

In free space, or on surfaces generated by immovable objects, all differential
motions lie within one a-slice. This is because objects can only be pushed when
the robot is in contact with them.

45

fs 8, (t)

4 -11

Fig. 18. Pushing on the side of can cause to slide, even in the absence
of friction. This behavior can be modeled by giving the surface a normal
which points across J The surface can exert reaction forces along this normal.
Thus, applying a force in C results in a reaction force with a J component. The
resulting motion moves across J, tangent to S. That it, it pushes the block.
Friction can also be introduced on S. A picture of the friction cone developed
in an appendix is shown. It represents the range of reaction forces the surface S
can exert.

Along surfaces generated by objects that can be pushed, the differential motions

are tangent to the surface in , and may move along J as well as C. See fig. 17.

A motion in free space corresponds to a gross motion. A motion on a surface

staying wthin one a-slice corresponds to a compliant motion A motion on a surface
which moves across J corresponds to a pushing motion.

Configuration space surfaces share many properties with real space surfaces.
When pushed on, they push back. In particular, they have a no . In the abscnce

of friction, they can exert reaction forces only along this normal direction. �Ve

must define what the normals to generalized configuration space surfaces are. For

kpoied kw" io uuqm %act to at x

46

example, see fig. 18. The normal is transverse to J so that even when the applied
force lies exclusively in C, the surface exerts a reaction force with a J component.
Thus the resultant force can cause a motion across J, tangent to S. In fig. 18 this
implies that pushing on the side of results in a transferred force to J causing
B to slide. In generalized configuration space, this is smply viewed as applying a
force to a surface S, which exerts a reaction force across J. Since the resultant force
is acros J the motion in will be in that drection (under damper dynamics).

The physics is complicated by the introduction of friction. Given an applied
force, one of four qualitative outcomes are possible. (1) The motion may slide 'in
C and J. This corresponds to pushing while sliding 6 at the point of contact. 2)
The motion may stick in C and slide in J.' This corresponds to pushing with no
relative motion 3 The motion may slide in C and stick 'in J. This corresponds
to compliant motion in one aslice. 4 The motion may break contact. This
corresponds to the iitiation of gross motion in one a-slice.

In order to generalize physical reasoning to generalized configuration space, we
must provide a generalization of the configuration space friction cone [Erdmann] for
generalized configuration space. The friction cone represents the range of reaction
forces that a surface in generalized configuration space can exert. A picture of this
generalized cone is shown 'in fig. 18. Using the friction cone, it is possible to specify
• geometrical computation of reaction forces. Such an algorithm is necessary for
• planner to predict the possible resulting motions from an uncertainty cone of
commanded applied forces. For example, see fig. 17.

By characterizing the physics of pushing and sliding via geometrical constraints
in generalized configuration space, it appears that a unified planning framework for
gross-, compliant-, and pushing motions emerges. However, certain aspects of the
physics require elaboration and simplification before a practical planner for pushing
operations can be implemented; see an appendix for details.

2.3.1 Example: The Sticking Cone

This starred subsection may be skipped at first reading.
As an example of how a planner could reason about friction in generalized

configuration space, see fig. 19. Here we take the configuration spaces of the robot
and of to be artesian planes. (See fig. 14 to recall the definition of the robot
and B). Assume that we can apply a two dmensional force fc on the robot, and
a two dimensional force f at the center of mass of B. (This assumption 'is for the
sake of discussion- in pushing applications, fj would be zero). The friction cone

6Or rotating.
7This outcome 'is not possible in the example wth block B, snce if B moves, this causes
motion in C and 'in J.

47

Fig. 19. Assume a fixed, negative normal force at the center of mass of B.
The 3D force space at -7 represents the product of the 2D forces f that can be
exerted by the robot on the surface of B, with the 1D tangential forces f that
can be exerted at the center of mass of B. An applied force (fc, f) in the cone
represents a combination of forces that causes no motion 'in , that is, neither
sliding on the surface of B, nor of B on the table. Note that the cone in is
skewed out of the embedded tangent space to C at x. This is because when
a force f is applied in the friction cone on the top surface of B, the block B
can slide unless an opposing force is exerted tangentially at the center of mass
of B. By intersecting the sticking cone with the negative velocity cone, we can
determine whether sticking is possible on S.

in generalized configuration space will then be four-dimensional. This is hard to
draw; we have selected a fixed, negative normal component for fi. The 3D force

space at the point of contact represents the product of the 2D forces that can be

exerted by the robot on the surface of B, with the 1D tangential forces that can be

applied at the center of mass of B. An applied force (f, fi) in the negative of the

cone in fig. 19 represents a combination of forces that causes no motion in !9, that

48

is, neither sliding on the surface of B, nor of on the table. Note that the cone
in 6; is skewed out of the embedded tangent space to C at x (denoted TxC in the
figure). This is because when a force f, is applied 'in the friction cone on the top
surface of B, the block can slide unless an opposing force is exerted tangentially
at the center of mass of B.

Let us call the cone in fig. 19 the sticking cone IC. Using the sticking cone, we
can now specify a geometrical computation to determine when sticking occurs at
7, assuming generalized damper dynamics: Simply 'intersect the negative velocity
control uncertainty cone -Bc(v*) withC. If the intersection 'is trivial, then sticking
cannot occur. If the intersection is non-trivial, then sticking can occur. If the
negative velocity cone lies inside IC, then sticking must occur.

This shows that the computation to determine whether sticking is possible at
a point reduces to simple geometric cone intersection.

Now we return to the pushing application, by restricting the applied force fj
in J to be zero. See fig. 19. Assume it 'is 'impossible to apply force at the center
of mass of B. Therefore the velocity cone is two dimensional and lies entirely in
the tangent space to C at x; 'it has no J component. This two-dimensional cone is
intersected with the 3D cone IC to determine whether sticking is possible at .

Let us emphasize that by insisting that the force fj applied in J be zero, we
obtain a two-dimensional control uncertainty cone, even though generalized config-
uration space has four degrees of freedom. Thus, in the model error framework, the
generalized control uncertainty can be viewed as a non-holonomic constraint. Holo-
nomic constraints are constraints on the degrees of freedom of the moving object(s);
non-holonomic constraints are constraints on their differential motions. Holonomic
constraints can be captured by surfaces in (generalized) configuration space. To
capture non-holonomic constraints geometrically, we must introduce constraints 'in
the phase space. This vewpoint 'is developed in an appendix, where we provide a
more rigorous account of the construction of normals, friction cones, sticking cones,
and the computation of reaction forces in generalized configuration space.

2.4. Guaranteed Plans 'in Generalized Conflguration Space

motion strategy [LMT] is a commanded velocity (such as v* in fig. 15)
together with a termination predicate which monitors the sensors and decides when
the motion has achieved the goal. Given a goal G in configuration space, we can
form its preimage [LMT]. The preimage of G is the region in configuration space
from which all motions are guaranteed to move into G in such a way that the entry
is recognizable. That is, the preimage is the set of all positions from which an
possible trajectories consistent wth the control uncertainty are guaranteed to reach
G recognizably. For example, see fig. 20. The entry is recognized by monitoring

49

P

G

Fig. 20. The goal is the region G. Sliding occurs on vertical surfaces, and sticking
on horizontal ones. The commanded velocity is v*, and the control uncertainty
is Bc(v*). The preimage of the G with respect to is the region P.

the position and velocity sensors until the goal is attained. Fig. 20 I's a directional
preirnage: only one manded velocity v is considered. Here a preimage points0
reach the goal recognizably under this particular v*. The non-directional preimage
is t he on of all directional preimages.

We envision a back-chaining planner which recursively computes pre-images
of a goal region. Successive subgoals are attained by motion strategies. Each
motion terminates when all sensor interpretations indicate that the robot must be
within the subgoal. [LMTE] provide a formal framework for computing preimages
where there is sensing and control uncertainty, but no model error. In particular,
[Erd shows how backprojections ay be used to approxim te preim ges. The
backprojection of a goal G (with respect to a commanded velocity v*) consists of
those positions guaranteed to enter the goal (under v*). Recognizabilitv of the
entry plays no role. Fig. 21 iustrates the difference between backprojection- and

50

0
BM(PO

Be (G)

P*Q

G

Fig. 21. Here, the radius of the position sensing uncertainty ball 'is twice the
width of the hole. Sliding occurs on all surfaces under the control velocities

shown. The preimage of the goal under commanded velocity e* Is fp(G). The

backprojection B#(G) strictly contains this preimage. while all points in the

backprojection are guaranteed to reach G, the sensing Pnaccuracy 'is so large

that the termination predicate cannot tell whether the goal or the left hori-

zontal surface has been reached. Only from the preimage can entry 'Into G be

recognized.

'images Here the radius of position sensing uncert ty is greater than t ce the

pre aln WI

diameter of the hole. Sliding occurs on a surfaces. Furthermore, we assume that

the robot has no sense of tme (i.e., no clock)-for example, 'it might be equipped

with a contact sensor that only flxes once. The back projection Be(G) strictly

contains the preimage *(G): while a points in the backpr 'ection, are guaranteed

to reach G, the sensing inaccuracy is Bo large that the termination predicate cannot

tell whether the goal or the left horizontal surface been reached. Only from the

preimage can entry into G be recognized.

Preimages. provide a way to construct guaranteed plan for the situation with

51

I ('>

Fig. 22. The backprojection of the goal surface G 'in generalized configuration
space for commanded velocity v* is denoted BO(G). Here is the backprojection
for a positive. A typical a-slice of the backprojection 'is shown below.

no model error. Can preimages and backprojections be generalized to situations

with model error? The an wer is ys. Consider fig. 15,16. The goal in generalized

configuration space is the surface G (which has two components). The start region

is the cylinder R x J (where J is [-do, do]). The generalized control and sensing

uncertainties in are 'ven by the physics axioms above. These uncertainties
completely determine how motions in generalized configuration space must behave.

We form the backprojection of G under these uncertainties. The backprojection has

two components, shown in fig. 22,23. It 'is a three-dimensional region in of all
triples (x, y, a) that are guaranteed to reach G under the control uncertainty shown

in fig. 15 Euivalently, we can view it as all points 'in guaranteed to reach G under

the generalized uncert ties that specify 9's physics. Note that backprojection do

not "converge to a point" along the J axis (compare fig. 20). This is because there

is perfect control along J, and the commanded velocity along J is zero. This is why

52

(a<)

Fig. 23. The backprojection of the other component of G. A typical a-slice for
negative is shown below. The backpr 'ction in 1; of the entire goal surface is

the union of the backprojections shown in figs. 22,23.

in this particular there are two disjoint backprojection regions, one fom each
component of G Further 'Ore, recursively_computed backprojections can never

cover--or even intersect-any slice of in which the goal vanishes.

The trick here was to view the motion p nnin problem with n degrees of
motion freedom and k degrees of model error freedom as a planning problem in
an (n + k)-dimensional generalized configuration space, endowed with the special
physics described above. The physics is characterized precisely by axioms defining
certain special sensing and control uncertainties in . The definitions and results for
pre-im ges and backprojections [LMTE) in configuration space generalize mutatis
mutandii to endowed with this physics; this is proved in an appendix(A-3). Thus
our framework reduces the problem of constructing guaranteed motion strategies
with model error to computing preim ges in a somewhat more complicated. send
higher-dimensional configuration space.

53

In this example, because the position of varies linearly with a, the surfaces
in are planar and the generalized configuration space obstacles are polyhedral.
Below, in sec. 6 we give polynomial-time algorithms for computing these backpro-

3ections. While they have been computed by hand here, note that this reduction
gives us an efficient planning algorithm for an important special case.

54

3. Error Detection and Recovery

If we were exclusively interested 'in constructing guaranteed motion strategies
in the presence of model error, we would be done defining the framework: having
reduced the problem to computing preimages in , we could now turn to the im-
portant and dfficult problems of computing and constructing , and further extend
the work of [LMTE] on computing preimages in general configuration spaces.

However, guaranteed strategies do not always exist. In example (1), (figs. 14-
16) there 'is no guaranteed strategy for achieving the goal, since the goal may vanish
for some values of a. Because tolerances may cause gross topological changes in
configuration space, this problem is particularly prevalent in the presence of model
error. In the peg-in-hole problem with model error (figs. 313) the goal may also
vanish (the hole may close up) for certain regions in J. More generally, there may
be values of a for which the goal may still exist, but it may not be reachable.
For example, in a variant of the problem in fig. 3 an obstacle could block the
channel to the goal. Then G is non-empty, but also not reachable. Finally, and
most generally, there may be values of a for which the goal is reachable but not
recognizably reachable. In this case we still cannot guarantee plans, since a planner
cannot know when they have succeeded.

These problems may occur even in the absence of model error. However, wth-
out model error a guaranteed plan is often obtainable by back-chaining and adding
more steps to the plan. In the presence of model error this technique frequently fails:
in example (1), no chain of recursively-computed preimages can ever cover the start
region R x J. The failure is due to the peculiar sensing and control characteristics
(1-4) in generalized configuration space

In response, we wll develop Error Detection and Recovery (EDR) strategies.
These are characterized as follows:

0 An EDR strategy should attain the goal when it is recognizably reachable, and
signal failure when it is not.

0 It should also permit serendipitous achievement of the goal.

0 Furthermore, no motion guaranteed to terminate recognizably in the goal
should ever be prematurely terminated as a failure.

0 Finally, no motion should be terminated as a failure while there is any chance
that it mght serendipitously achieve the goal due to fortuitous sensing and
control events.

These are called the "EDR Axioms", they wll be our guiding principles. Can
we construct such strategies? The answer 'is, basically, yes. Let us construct one for

55

F

F
%we

v

H

Fig. 24. A typical a-slice of the forward projection of the "bad" region. The
forward projection is the region F. a is negative and almost zero. H is an EDR
region in the forward projection.

a variant of example (1). We first restrict our attention to the environments where
a lies in the interval [dl, do] where d, is small and negative. I

Call the start region U = R x J. The strategy of example (1) commands velocity
V* (fig 15). It tries to te 10 te the motion in G by detecting sticking. Call this0
strategy . We will use as a starting point, and try to build an EDR strategy
from it. Now, U 'is divided into a "good" region, from which is guaranteed, a
"bad" region, from which it is not. The goal vanishes for the bad region. We wish
to extend to an EDR strategy from a of U.

Let us investigate the result of executing from the "bad" region. We employ
the forward projection [Er mann]. The forward projection of a set V under is al

See fig. 15. Formally, if w is the width of A and B, and is the position sensing
uncertainty, then Id I < min(w, Otherwise, if a can be arbitrary, no strategy can
always distinguish the right edge of A from the right edge of B1.

56

configurations2 which are possibly reachable from V under v* (sub'ect to control

uncertainty). It 'is denoted F,9(V). Forward projections only address reachability:

the termination predicate is ignored and only the control uncertainty bound and

commanded velocity v* are needed to specify the forward projection.0
Fig. 24 shows a typical a-slice of the forward projection of the "bad" region.

The goal vanishes in this slice; the dashed line indicates where the goal would

be in other slices. We can now define an EDR strategy a follows. Consider the

region H in fig. 24. The termination predicate can distinguish between G and

H based on position sensing, velocity sensing, or elapsed time.' Consider H as a

two-dimensional region in ; just a slice of it is shown in fig. 24. Note that in

this example, H only exists in the slices 'in which G vanishes. Thus the motion 'is

guaranteed to terminate recognizably 'in G iff the motion oginated in the 44 good"

region of U. Otherwise the motion terminates recognizably in H. In the first case,

the termination predicate signals success, in the latter, failure.

Clearly this EDR strategy satisfies the "EDR axioms" above. The problem

of constructing EDR strategies may be attacked as follows: We take a strategy

as data. Next, an EDR region H 'is found. H is introduced as a "bad goal", and

a strategy is found which achieves either G or H (subject to the EDR axioms).

Finally, we must not only recognize that G or H has been attained, but also know

which goal has been reached.

Now, think of as indexing the "angular drection" of the commanded veloc-

ity. By quantifying over all 0, we can in principle define "non-directional" EDR

strategies. This problem is similar to constructing non-directional preimages. For

now, we restrict our attention to one-step plans. Later, we consider n-step, plans.

3.1. Generalizing the Construction

We now present an informal account of how the construction of EDR regions

and strategies may be generalized. Do not be alarmed 'if some of our examples

are without model error. Since we have reduced the planning problem with model

error to planning in a different) configuration space, it suffices to consider general

configuration spaces in this discussion.

So far the preimages we have considered are strong preimages, in that all possi-

ble motions are guaranteed to terminate recognizably in the goal. The weak preim-

age [LMT] (with respect to a commanded velocity) is the set of points which could

possibly enter the goal recognizably, given fortuitous sensing and control events. See

fig. 25. We will use the weak preimage to capture the notion of serendipity 'in the

2Actually, forward projections are in phase-space, so this is the position component of

the forward projection.

3Given the sensing uncertainties of example (1).

57

II

G

Fig. 25. The weak preimage of the goal G under v*. Compare fig. 20.0

4Note that in general, R and R' need not be cylinders, but can be arbitrary subsets of
9.

.'IN

p

Z

EDR axioms. The idea is that a motion m y be terminated failure as soon as
egress from the weak preimage 'is rec zed.

Now consider fig. 26. Assume sliding occurs on the vertical edges, and sticking
on the horizontal ones. The (strong) preimage of the goal G is denoted P. A
motion strategy with c , asked velocity v* is guaranteed for the region R' but
the starting re 'on is the larger4 R. The weak prei * ge of G is denoted 'P"'. The
forward pr 'ction of the "bad" region R - R' is F#(R - R). In fig. 26, it is in
fact equal to e(R). Using as data, how can we construct an EDR strategy that
is applicable for a of R? Let us first try taking the EDR region H = Ho, where
Ho is the set difference of the forward projection of the "bad" region and the weak
preimage:

Ho = Fe (R - R - . (1)

58

Bw Vs

Po

Fig. 26. R is the start rgion. P is the strong preimage of G. R' is the region in
R from which the strategy is guaranteed to reach G recognizably. is the weak
preimage. H is the forward pro'ection of R outside the weak preimage. It is the
EDR region.

0
Bm(vo)

+ ;

p
00%

p

A \ FIR)
k 7

/ H \

p

G

If we can distinguish between G and H, then H is a good EDR region, and we have
constructed an EDR strategy.

Taking H - Ho as above 'LS not s ciently general. Consider fig. 27. It is
possible for a motion from R to stick forever 'in the region H which is within the
weak preimage. However, a motion through H 'is not guaranteed to stick 'in H:
it may event y slide into the goal. We want sliding motions to pass through H,

.0 9
unmolested, while the termination predicate should halt sticking motions in H,.

The EDR re 'on H region should include Ho. But it should also include H,,
when sticking occurs. In other words, H should include Ho for all velocities, but
should only include H, for sticking velocities (that is, zero velocities). To handle
this idea we introduce smple velocity goals, as well as position goals. The position
and velocity goals are regions in e space.

59

8 (o)

I

T V;

"*�
p /101, p

\NJ R IL

A

0/

R. \I/ \ F,,(R)
144 -1�

He \ ill�/

., I \ I I-
I- I

He
II

, , A

p

G

Fig. 27. Ho in eq. (1) is not the entire EDR region. Sticking may occur within
the weak preimage in H. The EDR region. must include Ho for all possible
velocities, and Hq for 'sticking velocities."

A goal in phase space is a region in Position-space x Velocity-space. A phase

space goal is attained when the actual position and velocity can be guaranteed to

lie in the region. Let us construct the p e-space EDR region H. If x is in Ho,
then for any velocity v at x, (, v) must be in H. Let r (Ho) denote a such (x, v)

in phase-space.

Now, H. is the set of all points x in the weak but not strong preimage, such

that sticking can occur at x.5 We wish to distin 'sh the sticking velocities in H,

Under generalized damper dynamics, these are essentially the zero velocities. Let

Z(H.) denote the zero velocities over H, that is, the set of pairs (x, 0) for x in H.

This set is in phase space. Then we see that Z(H.) is also 'in the p e space EDR

region H. Thus H is the on of the sticking velocities over H., and all velocities

over the forward projection outside the weak preimage:

5 [Erdmann] shows how to decide whether x E H. using configuration space friction cones.

60

G

Fig. 28. The weak but not strong preimage P - P, from fig. 27. Can a motion
from R remain in - P forever? One way this may happen is by sticking in
H.. In general, however, there are other ways.

H = Z(Ho U 7r-'(Ho). (2)

To use H as an EDR region, we must now ensure that H and the cylinder over

G are distinguishable goals. In an appendix, we show that if the strong preimage is

known, the de tion of (phase space) EDR regions is constructive up to reachability.

By this we mean that when backprojections, set intersections and differences, and

friction cones can be computed, then so can H. With H in hand, we add the

recognizability constraint to obtain an EDR strategy.

The structure of the "weak but not strong preimage," P - P suggests a number

of implementation issues. Consider figs. 27,28 once more. Suppose we have a

trajectory originating in R, subject to the control uncertainty shown. We do not

wish to terminate the motion while it remains in the weak preimage, since fortuitous
sensing and control events could still force recognizable termination in G. Howevct.

61

we can terminate the motion as soon as we recognize egress from the weak preimage.

This 'is why the forward projection outside the weak preimage is contained 'in the

EDR region.

As we have seen, however I it is possible for a trajectory to remain within the

weak but not strong preimage forever. For example, it can stick in H forever. To

handle this case, we 'Introduced phase space EDR goals.

There are other conditions under which a trajectory could stay in P - P forever:

a) if theenvironment 'is infinite, or P - P is unbounded. (b) The trajectory "loops"

in P - P forever. (a) and (b) are qualitatively different from the case of sticking

forever in H., beca use they require motion for infinitely long. In practice this may

be handled by terminating the motion, in P - P after a certain elapsed time. We

can model this case by constructing termination predicates which time-out. In

fac t t his " solution" works for sticking in H, also.

An alternative is to extend our earlier zero-velocity analysis to all of P.

That 'is, we terminate the motion in the weak but not strong preimage when the

actual velocity 'is (close to) zero. It seems that time-out termination predicates

and/or velocity thresholding must be used to solve the loo ing problem. Both

solutions seem inelegant; the issue is subtle and is addressed further in a later

section.

62

0 #)
B" V)

& 0
,f

F, (PI

I

Fig. 29. There are two possible universes; the goal G exists 'in the first but
not the second. The start region is R U R2. Motion is guaranteed to move
from R into SI. Motion is guaranteed to move from 'Into f. There is an
8-step plan achieving G from R The forward projections of R and R2 are
indistinguishable. There exists no one-step EDR strategy from the motion .

4. Generalization to n-Step EDR Strategies

4.1. The "TWI'n Universe" Example

Example (). So far we have only considered one-step EDR strategies We

now generalize the construction to n-step strategies. Consider fig. 29. Here there
are two possible verses, both in the p e, so J 'is the two element discrete set,

1 2 } The start region is the nion of RI in verse 1, and R2 in verse 2 The

goal eyists in verse but not in verse 2 There 'is no one-step EDR strategy

which, from the start region, can guarantee to achieve G or recognize that we are in

universe 2 In particular, there 'is no one-step EDR strategy which can be derived

from the motion v*el

63

There 'is an 8-step plan 'in universe which recognizably achieves G from start
region R1. It is obtained by back-chaining preimages in universe 1. The plan moves
from R, to the region Si under v*. Then 'it slides along the top surface to vertex f
and then to the successive vertex subgoals through a, and finally 'into G. We can
construct a 2-step EDR strategy, from this plan. First, we execute motion from
the union of R, and R2. This achieves a motion 'Into in universe 1 , or into S in
universe 2 The termination predicate cannot distinguish which has been attained.
Suppose the second motion 'in the 8-step plan i's v* (see fig. 29), and is guaranteed
to achieve the vertex subgoal f from start region SI. We will try to construct an
EDR strategy out of this second motion. Take as data: the subgoal f, the start
region U S2, the "southwest" motion ?P, and the preimage of f under . The
EDR region for these data is the forward pojection of S2 under (see fig. 30).
Presumably this EDR region 'is distinguishable from f , and so we have constructed
an EDR strategy at the second step. After executing the second step, we ether
terminate the plan as a failure, or proceed to vertex e, and eventually to the goal.

There is a subtle issue of where to terminate the motion within the forward pro-
jection of R, U R2; this "where" i SI U S2 here, and is called the push-forward. Since
they address termination, push-forwards are to forward projections as preimages are
to backprojections. In chapter III and an appendix, they are defined formally and
the n-step EDR construction is given in detail.

64

B#c +)

v * N

0

Universe 2

Fig. 30. The forward projection under of S2.

5. NVhat 'I's "Recovery"

So far, we have taken a "radical" view with respect to 'Recovery." We assume
that in pla 9 for error and recovery, one essentially specifies the mammiim length
plan one is willing to contemplate. The EDR planner considers the class of n-step
strategies and tries to form te a plan that wiH achieve the goal 'ven the sensing,g1
control, and model uncertainty.' Perhaps such a plan can be guaranteed. If not,
then te nation an EDR region would signal failure. This means that there was
no guaranteed n-step p (A third possibility is that G and H are never distin-
guishable at any of the n steps. This means that there is no EDR p). If there
is no guaranteed n-step p and some EDR region H 'is recognizably achieved,
the recovery action might then be "give up," or "try again, using up the remai . 9

'Of course, one could in principle search for strategies of increasing length by quantifying
over n. At any one time, however, one would reduce to the case described here and
iterate.

65

number of steps in the plan," if we are serious in refusing to contemplate plans
longer than n steps. As a corollary, the only "Error," then, is "being in the wrong

niverse 11 " This viewpoint
u , or more accurately, "being in the wrong start region.
is a consequence of trying to address EDR and completeness simultaneously. More
concretely, suppose we consider some sensory-control-geometric event to be an "er-
ror make a plan to detect it, and a recovery plan in case 'it is detected. If the

plan can be guaranteed, then it can be found using [LMT]. In this case the "error"

is no longer an error, but smply an "event" which triggers a conditional branch

of the plan.2 If the plan cannot be guaranteed, then we have proposed the EDR

framework, which allows us to try it anyway. If it fails, however, the only obvious

recovery action entails the recursive construction of EDR sub-plans (see below). It

is not clear what other kinds of recovery could be attempted without exploiting

additional knowledge: the recovery branches have already been tried. The issue is

subtle, and deserves further attention.

We give one example which highlights the complexity of the recovery problem.

Suppose that we consider the class of 4-step plans. Given a 4-step plan as data,

suppose we construct a multi-step EDR strateav which pushes forward on the first

motion, and executes an EDR strategy on the the second. After executing the

second motion, we have recognizably ether achieved the second subgoal, or some

EDR region H. If H is achieved, what is the correct recovery action? We could

do nothing, and signal failure. Alternatively, we could try to construct a plan (of

length less than or equal to two) to achieve the goal. Now, if such a plan exists

and can be guaranteed, then the entire EDR analysis was unnecessary, since the

[LMT] framework can (formally) find such plans. However, there ight exist a

2-step EDR strategy to (try to) achieve the goal from H. While such a plan could

not be guaranteed, it ight be worth a try- This suggests that the failure recovery

action in an n-step EDR strategy should be to recursively construct another EDR

strategy to achieve the goal from the EDR region, using no more than the remaining

number of steps. If n is 1, the planner should simply signal failure and stop.

EDR is ripe for probabilistic analysis. In our plans, the recovery action is

often, "in case of failure, try 'it again." Probabilistic analysis would permit one to

address the lkelihood of success for such a plan. In particular, notice that after a
1 4 -time executive has learned somethingfadure7 it is frequently the case that the run

about the structure of the environment. This knowledge is embodied in the subset

of J known to contain the world state. Even after achieving an EDR region and

signalling failure, it is generally the case that the position in J is more precisely

known than at the start of the plan execution. Hence we can quite precisely define

our view of "Error Diagnosis"-i't is simply the position in generalized configuration

space, and, in particular, the position 'in J.

2Unless, of course, the error recovery action 'is not a motion.

66

One can envision dfferent sorts of recovery actions. One type of recovery would

be to set up to do the task with dfferent parts. Extending EDR to the kind of cyclic

activity found in certain applications would be very useful. While 'in pnciple it

would be modeled within our framework, in practice, the dimensionality of the

generalized configuration space would be prohibitive.

67

6. Implementation and Experiments: One-Step EDR
Strategies

In this section we describe experiments with a mplemented EDR planner,
called LIMITED which is based on [LMTED]. The discussion here focuses on how
to use the EDR theory in a planner to generate one-step EDR strategies. Later in
the thesis we discuss the 'implementation of multi-step EDR strategies generation.

6.1. Experiment: Computing EDR Regions

In order to synthesize EDR strategies, we must be able to compute EDR
regions. To compute EDR regions, we must have tools for computing forward-
projections and preimages in generalized configuration space. We now discuss these
tools and experiments using them.

We approximate preimages using backprojections (see [Erdmann]). At present,
the implementation can compute slice approximations to EDR regions for one-step
plans where the generalized configuration space is three-dimensional. The particular
generalized configuration space we consider is that of the gear example described
in section 1.1. (See fig. 2 In this case, C is the artesian plane, representing
translations of gear A, and J is the 2D rotation group (i.e., a circle), representing
orientations of the gear B. The implementation uses slices: by a slice we mean
an a-slice of generalized configuration space for some a 'in J. a is the model error
parameter, and represents the orientation of B. We have implemented an algorithm
which computes slices of the three dimensional EDR regions for both variants of
the gear example. In the first, B cannot rotate, so no motion across J is possible.
In the second, B can rotate when pushed, so motion across J is possible. In the
latter case, backprojections and forward projections must be computed across J,
since it 'is possible to achieve the goal by moving across J (rotating B by pushing
and possibly sliding on 'its surface).

Given a D slice of generalized configuration space, LIMITED employs a plane-
sweep algorithm for computing unions, intersections, and projections. (By projec-
tions we mean forward projections, backpro'ections, and weak-backprojections in
that slice). The algorithm uses exact (rational) arithmetic, and computes unions
in 0n +) log n) time, and projections 'in 0(n log n) time. The design and im-
plementation of the 2D plane-sweep module 'is joint work with John Canny; the
algorithm is based on [Neivergelt and Preparatal (who give a uion algorithm) and
related to [Erdmann] (who implemented an 0(n 2) backprojection algorithm, and
suggested an improved 0(n log n) version).

'Where n is the number of vertices 'in the slice, and c is the number of 'Intersections.

68

z - -I

a

/10)
(XL

Fig. 31. Illustration of how forward projections are propagated across slices. In
slice a, the forward projection of R, F#(R) is computed. e is an obstacle edge
in O(R). Configurations on e correspond to contact configurations between the
gears. uasi-static analysis indicates that commanding velocity v* from e can
result in motion in the + direction. As a varies in this direction, e rotates,
sweeping out an algebraic surface V. V is followed into a nearby slice, a and
the ntersection of V and this slice 'is e'. In slice a', the forward projection O(e')
is computed. This is the propagated forward projection.

To compute projections in the 3D generalized configuration space, LIMITED

propagates projections across slices. For example, given a forward projection in a
slice the algo't fmds all obstacle edges and vertices from which it is possible

to exert a positive torque on the obstacle (which is gear in the figures). See

fag. 40. Thus by pushing on these edges 'it 'is possible to move across slices in the
+a irection. Each such edge is a slice of an algebraic ruled surface in generalized
configuration space. The vertices are slices of algebraic (partial) helicoids. Sliding

along the surface of wle causing B to rotate corresponds to following te surface

(or helicoid). The surface 'is traced into the next tslice, and taken as a start

69

region from which to forward-project 'in that slice. For example, see figs. 41-42.
The propagated forward projection must then be unioned wth propagated forward
pro'ections from other slices, and with the forward projection of any start regions
in that slice. See fig. 45. Weak back-projections are computed analogously.

In order to compute weak backpro'ections and forward projections, we assume
that there can be stiction at the rotation center of B. Thus the ratio of sliding
to turning is indeterminate. In general, the computation of strong backprojections
under rotation due to pushing will be a second order problem, since it depends on
the derivatives of this ratio. We employ a conservative approximation to the strong
backprojection (namely, the backprojection 'in free space alone) to construct the
EDR regions. This suffices, since EDR strategies require only the weak backpro-
jection and forward projection (which depend only on the possibility, and not the
velocity, of sliding and turning). Thus there is a deep sense in which EDR strate-
gies with model error seem easier to compute than guaranteed strategies, because
EDR strategies are "first order." This 'is consistent with the intuition that weak
backprojections should be easier to compute than strong backprojections.

Figs. 32-39 show the EDR regions for the gear example (sec. 1.1) when no
rotation of B is permitted. Only one slice of i; is shown. In all the figures, the com-
manded velocity is "towards the center of B", up and to the right. The magnitude
of the control error can be seen from the "fan-out" in the forward projection (fig.
35).

Next, we allow B to rotate. Figs. 43-48 show the EDR regions at four a-slices
of the 3D generalized configuration space. In this case motion across J is possible
by pushing B, when B rotates. The projections have been propagated across slices
and unioned. The results are sces of the 3D EDR regions across J.

6.2. Experiment: Planning One-Step EDR

The computation of the EDR regions is at the heart of EDR planning. To
generate one step EDR strategies LIMITED performs a search by discretizing the
space of possible commanded velocities. The discretization generates a set of com-
manded velocities to try. The following loop is executed to search for an EDR
strategy. Below, we use the phrase "the stratequ recognizably terminates in G or
H" to mean that the run-time executor can always distinguish which of G or H has
been achieved, when the motion terminates.

Algorithm 1EDR

1. Generate a commanded velocity v*

2. Compute the EDR region H for v*)

70

3. Determine whether the EDR region H and the goal G are distinguishable using
sensors. If so, then v* yields a one-step EDR strategy which recognizably terminates
in G or H by monitoring position and force sensors.
4. Let aG and clH denote the set of obstacle edges within G and H, resp. Deter-
mine whether the regions o9H and 9G are distinguishable using sensors. If so, then
V* yields a one-step EDR strategy which recognizably terminates on an obstacle edge
in G or H. The termination condition is contact with 2 or sticking on a surface in
G or H.
5. Let pushg(G) and pushg(H) denote the sticking push-forwards. They are the
set of obstacle edges within G and H, resp., on which sticking can occur under
V*. Determine whether these regions are distinguishable using sensors. If so, then0
V* yields a one-step EDR strategy which recognizably terminates when sticking is0
detected.

Here is how LIMITED decides the question, "Are G and H distinguishable using
sensors?"

H and G are distinguishable using position sensing alone if their convolutions
urns do not intersect.

(Minkowsk') by the position sensing error ball B,,
Each obstacle edge of H and G has an associated configuration space friction

cone. Two edges are distinguishable using force sensing 'if the convolutions of their
friction cones by the force sensing uncertainty B,,, have a trivial intersection. 3

SiMI'larly, the set of possible sensed reaction forces at an obstacle vertex w of
G or H may be found by taking the direct sum of the friction cones of the edges
cobounding w, and convolving by B,,,. Again a vertex of H and a vertex (or
edge) of G are distinguishable using force sensing if their associated cones of sensed
reaction forces have a trivial intersection.

LIMITED decides that G and H are distinguishable using position sensing and
force sensing if all edges and vertices of G and H are pairwise distinguishable using
the position and force sensing criteria above. The procedure works equally well
for determining the distinguishability of 9G and aH, and on the push-forwards
pushg(.).

Note that the procedure is correct for linear edges, where position and force-
sensing are separable because the set of possible reaction forces is constant along an
edge. In general, the sets which must be distinct are of the following form. Let N(x)
be the convolution of the friction cone at x with the velocity sensing uncertainty
Be_ I Let Bp(x) denote the position sensing uncertainty ball translated to x. Then
the set I(G) of possible sensor interpretations from points in G is defined to be

2However see section 7 for a technical point on recognizing whether the contact is within
G u H.

3An intersection containing only the zero-vector.

71

I(G = N(x) x B(X).
xEG

For general goals and EDR regions, we must have that I(G) and I(H) are distinct.
A final comment is required with regard to sticking as a termination condition.

EDR plans generated with this termination predicate only make sense if sticking is
'ble in the goal. That 'is, 'if sticking s 'ble in the goal, then all motions

possi 1 1 impossi
will terminate in H. It is better still if sticking is 'in fact necessaryin the goal. If this
is the case, then all motions entering the goal will terminate in the goal, whereas
all motions entering H will terminate there. For example, recall the peg-in-hole
strategy in figs. 313, chapter I. In this example, sticking is necessary in the goal
under both the first and the second motions. For a motion 0, the formal criterion
that necessary sticking satisfies is

Fe G = G.

That is, if we view as a "mapping" then G is a fixed point. Of course, it is a
simple matter to verify this cterion given our plane-sweep algorithms for forward
projection. Note also that there are other termination conditions that satisfy the
fixed-point equation--one example is the "stationary subgoals" 'in the tray-tilting
planner of [Erdmann and Mason].

Further details of the one-step planning algorithms in LIMITED can be found

in section 7 At this point, however, we digress to discuss the complexity of EDR

planning.

6.3. Complexity Bounds

We now give some complexity bounds for subproblems in EDR planning. All

our bounds are upper bounds. The first question is, what is the complexity of EDR

planning in one slice?

Suppose we axe given a motion direction v*, and a planar olygonal envl'-0 p
ronment containing n edges. The environment represents the configuration space

obstacles in a planar slice. The configuration space obstacle polygons may be non-

convex, but may not intersect. The start region and goal are polygons of constant

size. Suppose that the termination condition to be employed is sticking. What is

the complexity of verifying that yields an EDR strategy in this slice?

Theorem: There exists an 0(n 3) algorithm for deciding the validity of a one-step

EDR trategy with sticking termination in a planar slice.

Proof Unions and set-differences can be computed in time 0(n + c) log n, where

c is the number of intersections. c is between and n 2 [Neivergelt and Preparata].

72

- -- ---- � I

Forward projections, backprojections, and weak backprojections can be computed
in time O(n log n). All projections have sze O(n). Determining the sticking edges
and vertices of a polygon is O(n). Hence computing the EDR region H requires
time 0(n + c) log n) and the output has size O(n + c).

While the goal G has constant sze, the algorithm only needs to distinguish H
from the closure of the free-space goal. The free-space goal 'is the set dfference of
G and the configuration space obstacles, CO. G - CO has size O(n).

Determining whether H and G - CO are distinguishable can require a pairwise
test of their edges and vertices. This takes time 0(n + c)n). 0

Now, in LimITED, the input is given as a set of convex, possibly overlapping
real-space polygons. Suppose the 'input is given as real space polygonal obstacles
of size O(m). That is, the total number of edges is m. The configuration space
obstacles must first be computed. This can take tme O(m'), since the input could
consist of two sets of convex (in fact, triangular) polygons which must be pairwise6

convolved. The output-a set of overlapping convex configuration space obstacle
polygons-has size 0(m). The union of the configuration space obstacles must be
computed. This requires time 0m + c') log n) and the output has size O(c'). c',
the number of 'intersections, is between and m'. Taking n to be c', we find that
the complexity of EDR verification in a planar slice is < M 2 3 or O(m 6), when

6

measured 'in the sze of the real space input.

These bounds are not for an 'Idealized form of the one-step EDR algorithm,
but rather for a full, exact-arithmetic implementation. In practice by which we
mean for the experiments in this thesis-we found that while c', the complexity of
the configuration space obstacles can indeed approach m 2 the complexity of the
EDR regions is roughly linear in n, (and therefore merely quadratic in m). This
is probably due to the structure of the projection regions. Each projection region
contains free-space edges and obstacle edges. Because the free-space edges of any

projection region are in at most two orientations, it 'is difficult to get n2 crossings

of edges in free-space. This difficulty 'is exacerbated by the fact that the obstacle

edges 'in two intersecting projection regions will be 'identical. Thus the only source

of quadratic intersection complexity can be free-space crossings of projection edges.

While superlinear intersection complexity seems unlikely for projection regions, it

remains open to prove a lnear bound.

6.4. Critical SUces: An Introduction

While upper bounds for the complexity of planning in a single slice are estab-

lished, the complexity of planning with many EDR slices is less well understood.

Two questions remain:

73

0 How many slices are necessary for EDR planning?

0 What is the complexity of propagating the projection regions across slices?

The key to answering the first question may be addressed using critical slices.
The idea is as follows. Consider the gear experiment, where gear A can translate
and has unknown orientation. Initially, assume that the orientation of B is fixed,
so it cannot rotate when pushed by A. Let a denote the orientation of B. Then
consider the three-dimensional backprojection of G 'in 9. By taking x-y slices of
the backprojection at dfferent values of a, it is clear that generically, as a varies,
the topology of the backprojection remains unchanged. Similarly for the forward
projection or weak backpro'ection: The topology of two backprojection slices are
the same if no edges or vertices appear or disappear at a values between them.
At singular values of a, however, a small change in a wll result in a change in
the topology of the backprojection slice. Such a change is called a "catastrophe."
These singular values are called critical a, and the generic values of a are called non-
cr'tical. Two critical values are called adjacent if there is no critical value between
them.

The idea is that the planning algorithm can compute a backprojection slice at
each critical value of a. In addition between each adjacent pair of critical values
the algorithm computes a slice at a non-critical a. This slice of the backprojection
at that value is representative of a continuum of intermediate non-critical slices.
Between critical slices, in addition, it is clear how the surfaces of the backprojection
change. The obstacle vertices of the backprojection, for example, move along curved
edges that are algebraic helicoids. The obstacle edges are developable algebraic
surfaces. The equations of the surfaces are found in [Brooks and Lozano-Pe'rez].
The equations of the edges, as parameterized by orientation, are found in [Dl] No
additional vertices may be introduced except at critical values. The free-space edges
of the backprojection remain fixed across a between critical values. What we obtain
is a complete combinatorial characterization of the 3D backprojection in . It can
be used to derive precise, combinatorial algorithms for decision problems about the
backprojection.

For example, suppose we wish to decide whether a start region R is contained in
the 3D backprojection. (That is, to decide whether the goal is guaranteed reachable
from the start region). This problem has the following application. By deciding
the containment question, guaranteed strategies can be planned. This is because
backprojections approximate preimages. Thus by deriving upper bounds on the
containment problem in the backpr 'ection, we obtain bounds for the planning of
guaranteed strategies. In turn, by obtaining bounds on the guaranteed planning
problem, we can gain insight into the complexity of EDR planning.

Suppose R has the form U x J for U a polygon 'in the plane. Then U must
be tested for containment in each critical and non-critical slice as defined above. In

T4

addition, we must ensure that U lies nside the backprojection as the boundaries
of the backprojection move with a. Snce the equations of these surfaces are alge-
braically defined, we simply test them for 'intersection with the boundary edges of
U.

The next question is: how many critical values of a are there? In the following
lemma when we speak of edges of the backpr 'ection or convex configuration space

I 0J
obstacle (CO) vertices, we mean edges of the backpro'ection 'in a slice, or a vertex
which 'is convex in a slice. Of course these edges and vertices sweep out surfaces
and curves (resp.) as a changes.

Lemma: Let C be W, J be the circle . Suppose m is size of the input in real-
space edges so that n = 0(m 2 is the number of generalized configuration space
constraints. Let G have constant size, and Bo(G) be the backprojection of G in
C x J as above. Then there are 0(n') critical values of a E J for Bo(G).

Proof: We enumerate the various types of critical values:

A. First an a value is (potentially) ritical when a new edge or vertex is intro-
duced into, or disappears from, the union of the configuration space obstacles.
This can introduce a topological change in the obstacle boundary of the back-

2projection. If A and are convex, then as a varies, there are potentially m
topological changes in the configuration space obstacles. These generate 0(m 2
critical values of a, which we call obstacle-critical. However, when A and are
non-convex, there can be 0(m6) obstacle-critical values. This bound arises as
the number of critical values for an arrangement of m 2 surfaces in dimension
d = 3.

B. In addition, an a value can be critical if the determination of sliding vs. sticking
on an edge can change there. A change in sliding can result in the introduction
or deletion of a free-space constraint, and hence change the free-space boundary
of the backprojection. This occurs when an edge of the friction cone on some
edge becomes parallel to an edge of the velocity cone of control uncertainty.
Now, as a configuration space edge rotates with a, its friction cone rotates with
'it. Thus as a changes, a friction cone edge can be parallel to a velocity cone
edge at most 4 times. Hence there can be at most 4n values of a at which the
sliding determination changes. These values are called sliding-critical.

C. Next, the topology of a slice of B9(G) can change when a convex vertex of a
rotating configuration space obstacle edge touches a free-space edge of the back-
projection. These a-values are called vertex-critical. Now, each free-space edge
of a backprojection slice is anchored at a convex configuration-space obstacle
(CO) vertex. Vertex-criticality occurs when a free-space edge of a backprojec-
tion slice joins two CO vertices in that slice. The edge then lies in the visibility

75

graph of the generalized configuration space obstacles in that slice. Now, we
can obtain a bound of 0(m') on the number of vertex-critical values as fol-
lows. Introduce an additional 0(m 2) constraints, each anchored at a convex
CO vertex and parallel to the left or rght edge of the velocity cone. These,
together with the 0(m2) obstacle surface constraints form an arrangement of
O(M2) surfaces 'in 3 dimensions, yielding a total of 0(m6) critical values. This
bound may be improved to 0(m4), by observing that each vertex-critical value
is generated by a pair of convex CO vertices, and that there exist 0(m2) such
vertices.

D. Finally, an edge-critical value occurs when a configuration space edge, rotating
with a, touches a free-space backprojection vertex. Free-space backprojection
vertices are formed by the intersection of two free-space edges of the backpro-
jection. Each free-space edge of the backprojection i's anchored at a convex CO
vertex. The number of edge-critical values 'is 0(m'), because each is generated
by a CO edge, and two convex CO vertices (one per free-space backprojection
edge).

Finally, we observe that these bounds are additive, and that n is 0(m 2 0

Comments: We conjecture that the bounds on edge-critical values (D) can be
improved to 0(m'). One approach to proving the 'improved bound is to identify
each free-space vertex v of the backprojection, with the right generating CO vertex.
Follow the locus of v as a varies. It remains to show that the locus is piecewise-
smooth, and touches each CO edge at most a fixed number of times.

We can now address the complexity of deciding containment in the backpro-
jection. In this discussion we address only the combinatorial complexity, and not
the algebraic complexity, of the decision procedure. Here is what this means. We
have obtained a combinatorial upper bound on the number of critical values of a.
Once rotations are algebraically parameterized, these critical values are, in fact, all
algebraic; that is, in general, a ctical value of a will be an algebraic, but not nec-
essarily rational number. However, the plane sweep algorithm (which is discussed
in more detail in chap. VI) operates on rational numbers. Hence to obtain a deci-
sion procedure one must first approximate a by a "nearby" rational number By
C4 nearby", we mean that the approximation must be known to be sufficiently close
so that the decision procedure will give the correct answer for containment. As the
approximation gets closer, the rational numbers wll become more "larger" (i.e., as
a quotient of two integers, the integers will become larger), and the plane sweep
algorithm will run'correspondingly slower. To choose q algorithmically, one mght
make use of a ccgap" theorem, such as in Canny].

T6

Theorem: Let U be a polygon of constant size, C be R', J be S', B(G) be the
backprojection of G in C x J as above. Suppose G is of constant size. Then there
exists an algorithm deciding the containment of R = U x J in B9(G) in time

O(n' log).

Proof. 0(n') slices of the backpr 'ection can be computed in time O(n 4log n). Now,
to test for containment of U in the 3D backpro'ection region between two adjacent
critical slices wl take time O(n), since the backprojection has size O(n). The cost
of deciding the containment of U between successive adjacent pairs of n scesI
each of size n, is O(n'). Since the time for computation of the slices dominates,
this yields total complexity O(n 4log n). 0

Some comments are 'in order. First, our algorithm is naive, in that each back-
projection slice is recomputed from scratch. In fact, this extra work is unnecessary.
At a critical value of a very few aspects of the topology of the backpr 'ection will

I Oi
change. That is, typically, only one or two edges will be introduced or disappear
at any critical value. We can make this notion precise as follows. If a is a generic
singularity, then exactly one edge or vertex will appear or disappear there. Hence,
for example, we can ensure that all critical values are eneric singtilarities, with
probability one by subjecting the input to small rational perturbations.

Suppose that a backprojection has been computed in a critical sce at a. Then
to compute a backprojection in a nearby non-critical slice at a , we merely need
to update the portion of the backprojection boundary that was critical at a. This
requires only constant work: only one edge or vertex must be changed to derive a
backprojection in the new slice! It seen-is reasonable to conjecture that this tech-
nique would yield an algorithm of complexity 0(n3 log n) for deciding containment
in a backprojection.

Finally, it appears that there are many problems 'in which the number of critical
values fails to achieve the theoretically possible bound. This is because charac-
teristically, there are orientation restrictions; typically, even with model error, is
not allowed to rotate freely. In other cases, there are symmetries. For example, 'in
the gear case, even though is allowed to rotate freely, it is unnecessary to consider
n 3 slices since due to symmetry the configuration spaces "repeat" periodically.

6.4.1 Comparison with Lower Bounds

From a theoretical point of view, this result has the following interest. Con-
sider the one-step compliant motion planning problem in 3D amidst precisely known

3polyhedral obstacles. This problem may be addressed via 3D backprojections in
[CR] have shown that deciding containment in such a D backpro'ection is NP-hard.

77

A
i

In particular, such backprojections can have an exponential number of faces. How-
ever, in the previous theorem we demonstrated a special class of 3D backprojections
that have only O(n 4) faces, along with an efficient algorithm for deciding contain-
ment. This special class of backprojections arises in the presence of model error.
Specifically, they arise when C is R2, J is one-dimensional, and no motion 'is per-
mitted across J. In this case, the non-holonomic constraints that keep the robot

ithin one slice ess ent'ally disallow the kind of fanning out and branching that
[CR] discovered in R3. Thus, our polynomial-time algorithm identifies a tractable
subclass of the 3D motion planning problem with uncertainty. This subclass is also
interesting in that it arises naturally 'in planning with model uncertainty.

6.4.2 1[ssues in the Critical Slice Method

The critical slice method represents a theoretical algorithm. It has not been

implemented in LIMITED. It was described here to give some characterization for

bounds on planning with model error. In particular, it gives a precise, ombina-

torial description for the 3D backprojection in R2 x S, and an exact algorithm

for deciding containment. The containment algorithm drectly addresses the ques-

tion of planning guaranteed strategies since a backchaining preimage planner can

be constructed by approximating preimages using backprojections. The termina-

tion condition for such a planner 'is when the start re 'on is contained within a

backprojection.

Most 'important, the ctical slice method attempts to put the slice techniques

used 'in LIMITED on a firm mathematical footing. 4 It provides a principled way-a

specific method-for choosing wich slices to consider, a bound on how many slices

are required, and a conservative algorithm for deciding containment.

Much work remains however:

0 We have only addressed deciding the containment problem in a precise com-

binatorial fashion. Generalize to computing set-differences and to deciding

their distinguishability-that is, deciding G vs. H distinguishability-using

the critical slice approach.

0 J is one dimensional 'in our discussion. Generalize the critical slice method to

multidimensional model error.

0 This analysis addresses the complexity of verifying an EDR strategy, but does

not speak to the complexity of the search. What 'is the complexity of finding

a strategy or determining that none exists? This issue will be attacked in a

later section, by developing a combinatorial description of the non-directional

backpro'ection.

4Note that slice methods have been studied 'in other domains. See, for example, Lozano-

Perez, Schwartz and Yap, Erdmann].

78

Derive bounds on deciding containment after relaxing the no-pushing restric-
tion and allowing motion across J.
Let us say a few words about the last point. Suppose now that can rotate

passively when pushed. Hence motion across J is possible, and projection regions
must be propagated across slices. For example, a forward projection can begin in
free-space in one slice, contact an obstacle edge generated by B, rotate across J
into another slice, and fly off the edge into free-space in that slice. Hence forward
projections must be propagated across slices. This process was described above
in sec. 61. The obvious question is: What 'is the complexity of propagating the
projection regions across slices? The complexity of one step of the propagation is
not difficult to derive. For example, consider the forward projection. There are
O(n) obstacle edges in the forward projection 'in a planar slice. For each edge,
a constant tme quasi-static analysis is performed to determine whether pushing
against that edge can cause rotation of B, that is, motion across J. See fig. 38.
If so the forward pr 'ection must be propagated along that algebraic surface into
an adjacent slice. This can result in a propagated tart region of size O(n) in the
ad'acent slice. This start region is used to compute a new forward projection 'in that
planar slice. See figs. 39 and 40. This propagated forward projection must then
be unioned with any other forward projections within that slice. See fig. 43, which
is a detail of fig. 42. When does the propagation process terminate? A correct
termination condition is: Terminate propagation when any propagated start region
lies within an existing forward projection.

Now while the complexity of each of these steps is known, it 'is not clear how
long it takes for the propagation process to terminate. In particular, results of [CR]
suggest that 3D forward projections may even have exponential size.' Experimental
evidence the backprojector of [Erdmann]-concurs. Furthermore, when propaga-
tion is permitted, more slices may be required. For example, it is conceivable that a
path within the forward projection may break contact and fly off into a slice which
is between the chosen critical values. In other words, propagation may increase the
number of critical values. The additional critical values can occur as follows. The
plane sweep algorithm 'is only correct when the velocity cone is smaller than the
friction cone on any edge (see chapter VI). Hence we will assume it 'is convex. Then
contact can be broken when the inner product of an extremal vector 'in the velocity
cone by an outward-facing edge normal 'is positive. Hence the zero-crossings of this
dot-product are potentially critical values; there are O(n) such values. While this
is a start the complexity of computing projections when pushing can cause motion

I J
across J requires further study.

5 [CR] provide an exponential lower bound for the size of the forward projection in 3

am'dst polyhedral obstacles. It remains to determine the applicability of their proof in

the non-holonomic (model error) case.

79

This completes theinformal dscussion of the one-step EDR planner in LIMITED.

Later in the thesis we will dscuss the details of the plane-sweep algorithm and how

LIMITED implements the EDR theory to compute multi-step strategies. In the

next section, we will discuss a number of theoretical and practical 'issues relating to

the construction and implementation of the one-step EDR planning algorithms in
LIMITED.

80

I- ------

I

----- -- ---

i �
I
t

Ii 'r T VP .-

'o --�I j� "

I
I L�lI I

II pp--I
! 4-

i!
1i

ii
II
!i &_
I

I II
I A-

1 3, .4II
.4.I

lr-�
,r)

V--lI
V-./

) & A -, "

i

I

I
I

I
I

I

I
I

I
i

I
i
I
I

I
I

9
4-�
c
40
9

17

CL
x
60

i..
a

4.

4
0
m

la
c
4

c
a

p

6
4
40
#A

Fig. 32. The configuration space for the gear example (fig. 2 at one a-slice
(a 0) of G. The goal region is the "valleys" of the cspace obstacle. The start
region is the diamond to the lower left. For figs. 32-39, is not allowed to
rotate, so no motion across J is possible.

I"D
40

1
I

i

I
I
I I

Ia
16

1
16
40
a

Fig. 33. The strong backprojection in slice a = of the goals in fig. 32, assuming
that cannot rotate. In all these experiments, the coefficient of friction is taken
to be 25.

82

.........

I
do
Q
I
a
1.
a
A

I
a

I

I

Fig. 34. The weak backprojection of the goals in slice a = .

83

i

I

I I,\ ",

I.-

I
i
t

i

I

I

i

Fig. 35. The forward projection of the start region in slice a = .

1
4#

A
0
lb
a

It
16
4
8
6

9I

84

r 171

oft

00

CY
k
0
w
Cy
V

4

1

v
Oka
oft

A
at

I

0
1
16

0 #0
�w

1 I

a
6

it
L, .0

Fig. 36. The forward pr 'ection of the start region in slice a = . Note the
degenerate edges due to sliding.

85

I
I

I
�q-

40
u

A
a
6
CL
A

0

i
6
AO
a

0

1

9

A

I

Fig. 37. The weak minus the strong backprojection.

86

i
I

.,-IV
I4

4-

I
I

I I

I
61
w
Aa1.a
At

I

a

I

I

0

1

9

I

40

W

A

a
6

IL

I"f

I

I

I

I

196
4
3
6
a

i .

0
6 1
6

1

Fig. 38. The Ho re 'on (the forward projection minus the weak backprojection).

8T

c
0
40

w

to

0

6
CL
.9
(i
4-a
mca
6.
�w
V7

A

c

9

ji
4
16
3

c

it
16ti

1�

2�

la
c
4

et

m
10
40

m
c

.9
(i

61
0

LM

c
to
c

6

a
9

I

I

in
I- ----

1
4

I

i

I

; 4

I II
I
I

L

III

I
I
I

II

III
k

II
I
I

I

I

II -
I

II -

I

I

II i

I
I

i

. j

: I
L :
I. I
j I
I

c

i

vI

2

c
CIL
vk

.j

- -01

Ai

I

m

Fig. 39. The H. region (sticking within the weak but not strong backpro'ection).i

88

I

I
I
I

I

I
i
II

-j

-1

I I-j

�W� i

ol-�
I 9 I

iI

Ae i
ii

I

I

Aft

4
Al

9

I

lb

.
%W

Fig. 40. Now assume that can rotate when pushed (for figs. 40-48). Here we
show the region within the forward projection (fig. 35) from which it 'it possible

0
to exert positive torque on B. This region is called the differential forward
projection across J in the + direction.

89

-11

<1

.4
I

T
T iIv II.

k-11,
, 13

I

iI iI fl� II-It. '.1, f", --,
; %- --l
I

i

i

I
I

I
I

I

I;

iII
i

.i

I

I

oft

11

m

N

- Aa
.

31-

Fig. 41. The differential forward projection is propagated to the next slice in
the + direction. Here we take 'Its forward pr 'ection in the next slice.Oi

90

I'I
A

N-"'

Fig. 42. Another view of fig. 41.

91

Fig. 43. In the next figures, 'is permitted to rotate when pushed. The pro-
jection regions are computed across J by the propagation and union algorithm.
We show four slices of generalized configuration space, at a = 60,120, and
180. The projections take into account possible rotation of under pushing.
Here the weak backprojections across slices are shown. The "spikes' represent
regions from which jamming of the gears must occur.

92

I

Fig. 44. The forward pr 'ections of the start region, propagated and unioned
across slices.

I
I!

ro"-111*11

93

-4- -- w i R --

II'e".

I
II

W-11

i
i
I

a

11

4

1

0

0
Q

1;

a
a
6

U.

c
a

do

U

.C�

U

CL

la
6
Q
31
6
a
b..

b.
a

1

4i

ic

05
a

9
6
CL

ift
3
13
v.C
In

I

a
6

v

i

I

am

Fig. 45. Detail of the forward projection for a 12'. Note the effect of propaga-
tion in the clockwise-most region of the forward projection. This region can only
be reached when rotated to from neighboring slice. The shaded region shows the
portion of the forward projection which has been propagated by pushing from

slice a = 80.

94

Fig. 46.
slices.

The weak minus strong backprojections, propagated and unioned across

95

Fig. 47. The Ho region (forward projection minus weak backprojection) across
slices.

96

----Ti i

I
40
0
A
a
6
CL
ji
(i
4
A

2
9
a
6
4i

(A

0
0
so

Om
z

1 6
A

30.
I 1.0

th.

a N

t
� -W

is

.210al
fA - o iIL --

II

i

I

I

I

I

I

ti
4Ic
.1

iI

I
I

I
4

w

i
A

I

II

JI
I a

; .1

a

I
0

I

0
a;
00
11

0
1�
It
4

a

ti

4
A
a

at

I

0
_ff

"o;

at'

Fig. 48. The He region (sticking regions within the weak but not
projection) across slices.

strong back-

97

7. Implementing One-Step EDR Planning 'in LIMITED

In this section, we discuss a number of theoretical and practical issues relating
to the construction and implementation of the one-step EDR planning algorithms
in LimITED. This discussion 'is the sequel to the informal description of one-step
EDR planning 'in section 6 While these 'issues arise in implementing an EDR
planner, they ustrate several interesting theoretical and practical points. They
also introduce a series of more advanced concepts that are required to make the
EDR theory rigorous.

7.1. The Search for a Strategy

Some comments are in order about the search for a commanded motion in
LIMITED. First of all, the commanded motion generator is obviously trivial. The

initial commanded motion LIMITED tries is obtained by subtracting the centroids

of the start and goal re 'ons. LIMITED then searches outwards on either side of this

direction. Obviously, such a search strategy is not complete. Later, we will discuss

precise, combinatorial algorithms for a complete search strategy using critical slices

of the non-directional backprojection.

Second, since the search is relatively blind, it may take a while to converge. A

better technique for generating commanded motions to ty might involve using a

path-planner with no uncertainty to suggest an initial path. However, the focus of

this research 'is not on optimizing the search algorithm in the planner, but rather

on testing the geometric characterization of EDR.

It 'is often possible to generate planning strategies that satisfy the EDR axioms

trivially by always failing. For example, consider a strategy that moves directly away

from the goal. While such a motion may be useful in multi-step EDR strategies

(see below), we wish to disallow them for one-step EDR. This is done as follows:

on one-step planning LIMITED discards all strategies whose forward projection does

not intersect the goal. This heuristic ensures that the strategy has at least some

chance of succeeding.

A better approach might be to consider the size of the intersection of the goal

and the forward projection. Such a technique might be used to generate probabilisti-

cally optimal strategies. In particular, it would give a Criterion for choosing between

two EDR strategies. For example, it might be possible to place some probability

distribution over the forward projection. Then the intersection could be integrated

with respect to this dstribution to determine the probability of reaching the goal.

In addition, different sized velocity cones could be employed to generate forward

projections of varying likelihood. To be more than a mathematical abstraction, such

a technique requires a better understanding of the probabilistic characteristics of

98

generalized damper control than are currently available- it is a promising direction
for future research.

7.2. Termination using Contact and the Role of Time

In polyhedral environments With a bounding box, sticking termination is suf-
ficient to ensure that all pure translations eventually terminate [Buckley]. Let us
assume the sufficiency of sticking termination for the discussion below.

Recall step 4) of algorithm IEDR 'in sec. 62:

4. Let aG and aH denote the set of obstacle edges within G and H resp. De-
termine whether the regions aH and 9G are distinguishable uing sensors. If
so then v* yields one-step EDR strate y which recognizably terminates on an

Y 0 9
obstacle edge in G or H. The termination condition is contact with or sticking
on a surface in G or H.

If the termination condition can be "contact" as computed in step 4 then unless
G U H can be recognized using position and force sensing alone, a termination
predicate with time-out must be employed. This is because it is insufficient to
terminate on first contact; we must first know that the contact lies within G U H.
Ensuring that this will be the case requires 'Indexing the forward projection by time.
(See [Erdmann] for a discussion of time-'indexed forward projections). However if
the contact regions of G and H are distinguishable, then so are the possible sticking
regions, since these are contained in the contact regions. So if 9G and aH are
distinguishable using sensors then so are pushg(G) and pushg(H). Hence v* yields
a one-step EDR strategy which recognizably terminates by sticking in pushg(G or
pushg(H).

Thus if the distinguishability condition in step 4) is met, then the motion can
be terminated either based on contact, once enough time has elapsed to ensure that
G U H has been entered, or using sticking, 'if the run-time executor does not have a
clock. In fact, tis is something of a relief, because time-indexed forward-projections
appear hard to compute.

If sticking is not sufficient to terminate all motions, then termination predicates

w'th time-out can be employed to ensure that all motions terminate somewhere.
This is discussed further in sec. 83.

7.3. Employing History in EDR Planning

The forward projection was introduced by [Erdmann] to formalize the role of

history in [LMT] guaranteed plans. He formalized the notion that by knowing where

99

a motion began, a planner can obtain constraint on where the motion can terminate.
This constraint can be very useful both in planning guaranteed and EDR strategies.
We now describe two techniques where LIMITED uses history to constrain planning
and aid distinguishability.

Throughout the rest of section 7 the goal G the EDR region H = Ho U H,
and the forward projection F9(R) are all taken to lie in phase space. That is, they
are position and velocity sets.

7.3.3 The Role of History 'in Constructing H.

In general, LIMITED approximates preimages using backprojections. There
are a few interesting points about computing this approximation. Recall that H,
denotes sticking regions within the weak minus strong preimage. To see'that H,
is contained within Fq(R), we must use the fact that preimages in fact depend on
the start region R (see [LMT]), and that weak and strong preimages are contained
w'thin F9(R) [Erdmann]. We postpone further discussion of this point until sec.
8.1.

Now let K, denote sticking regions within the weak minus strong backprojection.
Now we ask.- can H, intersect the strong backprojection of G, Be G)? The answer is
no. If x is in H, then sticking is possible there. Hence x cannot be in B(G), since
motions from x can stick there 'Instead of reaching G. Thus, 'in particular, H, does
not intersect the set difference formed by the strong backpro'ection minus the strong
preimage. Thus H, C K,, since backprojections are "upper bounds" on preimages. 6
Thus K, is a conservative approximation to H, (By conservative, we mean that
while the approximation may be larger than H, an algorithm approximating H,
by K, will generate correct plans). However, we also have the inclusion

H9 Fo (R) n K, I

where R denotes the start region. This inclusion derives from the fact that, given
that the motion must start in R a strong preimage of G 'is contained within the
intersection of the forward projection F9(R) and the strong backpro'ection B(G).
A similar containment holds for the weak preimage with respect to the forward
projection and the weak backprojection W9(G). Hence, to construct an upper
bound on H, we are smply required to compute all sticking regions within

F9 (R) n (We (G) - Be (G)).

The advantage of using this tighter approximation is that H, must be distin-
guishable from G 'in order for to yield an EDR strategy. Tighter approxima-

6By "upper bound" we mean that the backpro'ection (under 0) contains the preimage
(under 0), for any goal.

100

tions heuristically result in a greater likelihood of distinguishability. Furthermore,
the approximation is fully algorithmic, since projections and set dfferences can be
computed by the exact plane-sweep algorithm described in see. 6

The dependence of the preimage on R was noted first in [LMT] and later
developed by [Erdmann], who also determined the 'inclusion of the preimage wthin
the intersection of the forward and backpr 'ections. This dependence is discussed
in some detail 'in chapter III.

7.3.4 The Role of History 'in Distinguishing H from G

There is another case where intersection with the forward projection yields an
advantage in distinguishability. In the development of EDR theory, we found that in
an EDR strategy, it was necessary that H and G be distinguishable. This condition
is supplanted by a tghter one in LIMITED, requiring only that H and

Fe R nG

be distinguishable. The justification is that it is unnecessary to be able to distinguish
between arbitrary points of G and H. Instead, it suffices merely to distinguish
between the reachable points. Again, this technique shrinks the size of the goal
regions that must be distinguishable from H which heuristically makes it easier
for a strategy to meet the EDR criteria. Note that H does not need to be shrunk
further, because it already lies within the forward projection.

7.4 A Priori Push-Forwards Based on Sticking

The push-forward operator pushg(.) 'is a restricted implementation of the gen-
eral push-forward described in sections 4 and 10. It 'is called the a priori push-
forward based on sticking. The difference 'is as follows. The theoretical general
push-forward "decides" where the motion should terminate so that the motion
strategy will terminate recognizably, the a priori push-forward computes where
the motion will terminate given that a priori the termination condition is sticking.

7.5. Sticking as a Robust Subtheory of EDR

In the abstract EDR theory, one envisions the run-time termination predicate
performing whatever computations are necessary to terminate a motion recogniz-
ably in G or H. That is, in principle, the planner decides what termination con-
ditions are appropriate for a successful EDR strategy, and encodes them into the
motion strategy. Of course, it is also the responsibility of the planner to verify
that this encoding will always result 'in a dstinguishable termination. In short, the

101

abstract EDR theory can employ the full power of the [LMT] preimage framework
to generate motion strategies.

However, LIMITED employs only certain restricted termination conditions, as
we saw above. In particular, sticking is used in most experiments. This restricts the
class of strategies LIMITED can generate. The restriction requires some justification,
and that is the purpose of this section.

First, recall that in polyhedral environments wth a bounding box, sticking
termination 'is sufficient to ensure that all pure translations eventually terminate
[Buckley]. In general, in this thesis we have made the heuristic assumption that
motions can eventually be terminated via sticking. Failing this, we also entertain
the weaker assumption that if sticking is insufficient, then time can be employed to
wait until G U H has been achieved before termination; see sec. 83.

To analyze the structure of sticking termination, let us introduce the following
notation. If the robot recognizably achieves G U H, this means that the run-time
executor can determine that G or H has been achieved, but cannot necessarily tell
which of G or H has been entered. If the robot recognizably achieves I G, H , then
it can further distinguish which of G or H it has reached. G U H is called the union
while the set notation is called the distinguishable union.

Throughout this section we assume without loss of generality that the goal G
is contained within the forward projection (see sec. 73 for justification). If this is
not the case, then intersect them to obtain a new goal.

LimITED tries to decompose this problem-of ensuring that all trajectories
terminate recognizably in I G, H }-into two subproblems. The first is to eure
that the motion in fact terminates in G U H. That is, the problem is to determine
that at least one of G or H has been achieved, although the robot may not know
which. The second problem is to dstinguish between G and H, once G U H has
been achieved.

Note that the first problem requires distinguishing between G U H and its
complement. Here is the key point:
0 The construction of H guarantees tautologously that with sticking termination,

GU H will be recognizably achieved when the motion terminates. That is, with
sticking termination, no motion can terminate outside of G U H.

This resolves the first subproblem. Thus
0 With sticking termination, all candidate one-step EDR strategies eventually

terminate recognizably in G U H (but not ncessarily in I G, H } Of these, all
valid EDR strategies can distinguish between G and H after termination, and
hence recognizably terminate in I G, H .
The second subproblem is how to dstinguish between G and H once G U H

has been achieved. In developing the [LMT] framework for planning guaranteed
strategies, [Erdmann] developed an elegant formalization of the question, "Using

102

sensors and hstory, when can the termination predicate decide that a motion has
recognizably entered a goal Go?" The answer was as follows. Let R be the start
region. The forward projection, Fo(R) captures the notion of history: it is all
positions and velocities that can be reached given that the motion started in R. At
a particular instant t 'in time, let Bp(t) and B,,(t) be the sets of possible positions
and velocities. These are the sensing uncertainty balls about a sensed position and
velocity in phase space at time t. Thus sensing provides the information that the
actual position and velocity must lie within the set Bp(t) x Bev(t). The forward
projection further constrains the actual position and velocity to lie within F,9(R).
Thus the termination predicate can terminate the motion as having recognizably
reached G when

Fa(R) n Bp(t) x Bev(t)) C G#.

Now, when is it the case that the termination predicate can distinguish which
of G or H has been reached.? Exactly when (*) 'is true for G3 in I G, H } However,
in our case sticking termination guarantees that the actual position and velocity
lie within G U H. Furthermore, G U H is a subset of the forward projection, and
G and H are disjoint by construction. The forward projection provided no further
constraint in dstinguishing between G and H. Thus history plays no role in the
run-time distinguishing actions of the robot executive; history has been pre-encoded
into the structure of H. Hence, we can predict that the run-time executor can
distinguish which of G or H has been achieved when the planner can predict that G
and H are dstinguishable using sensors alone. A procedure-albeit not completely
general-for deciding this question was described in sec. 62.

7.5.5 Generalizations

There are several possible generalizations of these termination techniques. First,
it may be possible for the run-time executor to use time to ensure that the motion
terminates in G U H. That is, forward projections may, 'in principle, be indexed by
time. Hence in (*), e(R) is replaced by F,9(R, t), which is typically much smaller.
F9(R, t) denotes the set of positions and velocities that are possibly achievable at
elapsed time t, under motion 0, given that the motion started in R. The termination
predicate in this case monitors a clock, 'in addition to position and velocity sensors.
However, in this case, history (by which we mean F,9(R, t)) could be employed
to distinguish G from H, even though the motion had terminated recognizably in
GU H. The reason for this is that the time-'indexed forward projection has not been
pre-encoded into the structure of H. That 'is, H was constructed using the timeless
forward projection, which the union of all time-indexed forward projections. Hence,
we can summarize these observations as follows:

103

If a ermination predicate without time uses sticking to terminate he motion,
then distinguishing G from H is a history-free decision. However, for a termi-
nation predicate with a sense of time, he decision is not history-free.

Thus sticking subtheory does not preclude more general termination techniques
based on position, force, and tme sensing. However two computational issues be-
come more dfficult. First, sticking termination 'is a robust method for ensuring
termination in G U H. With time termination, or more general position/force ter-

i -although
mination criteria I t is more difficult to ensure termination in G U H
admittedly these criteria are more powerful. Second, after sticking termination, de-
ciding between G and H is history-free. Wth more general termination predicates,
history can provide extra constraint 'in distinguishing between G and H.

Finally, note that [Buckley] recognized the value of sticking termination when
implementing an [LMT] planner for guaranteed strategies in R'. His planner used
sticking termination. In particular, he provided certain criteria for guaranteeing
that a strategy eventually terminates in sticking. Buckley's criteria amount to
ensuring that the environment is finite polyhedral, within a bounding polyhedral
box.

7.5.6 Forward vs. Backward Chaining

One obvious dsadvantage of sticking termination is that it is not complete. For
example, a planner employing sticking termination exclusively will not be able to
find strategies that require stopping in mid-air" even when such strategies would
be feasible given the position sensing accuracy of the robot. Sticking termination
requires all strategies to "run aground", that 'is, to be in contact (and in fact,
.sticking) at termination time.

With more general position/force/time termination criteria, the requirement
that motions must terminate in contact 'is relaxed. However, a forward-chaining
planner (such as LIMITED) is still left with the problem of deciding where a motion
should terminate in a multi-step strategy. That is, the decision problem involves
existential quantification not only over the commanded directions, but also over
all subsets of the forward projection corresponding to possible push-forwards. Put
simply, a forward-chaining planner must not only guess the direction to command a
motion, but must also guess where it terminates before chaining ahead to the next
motion. While the space of commanded motions may be realistically quantized and
searched, the space of push-forwards may not be searched in this manner.

While LIMITED is a forward-chaining planner, the problem of existential quan-
tification over the push-forward is finessed by restricting LIMITED to a few very
simple termination conditions (there are only three; see sec. 62), one of which is
sticking. Given these termination types, it 'is possible to generate the corresponding

104

a priori push-forwards, and test them to see whether they yield an EDR strategy.

For example, the push-forward for contact termination 'is simply the obstacle edges

in the forward projection. The push-forward for sticking termination 'is the a priori

push-forward based on sticking, which was dscussed above.

More generally, it may be possible to define a parameterized family of termina-

tion predicates, each with an associated a priori push-forward. Each push-forward

could then be tested for distinguishability. For example, consider the class of ter-

mination conditions

I "Terminate after t seconds." I t >

An associated family of push-forwards ight be the time-'indexed forward projec-

tions

Fo(R�t) I t > 0.

However, the existential quantification over the push-forward in the decision

problem for EDR planning is, in fact, an artifact of forward-chaining. We can see

this by comparing and contrasting backchaining vs. forward-chaining in preim-

age planners for guaranteed strategies. In a backward-chaining planner, this extra

computation is eliminated. The difference is as follows. Consider how a guaranteed-

strategy preimage planner would construct a motion strategy 91, - , On to achieve

a goal G. 01 'is the first motion in the plan, On is the last. Consider the difference in

how a forward-chaining planner and a backchaining planner would compute steps

Oi and Oi+,.-

0 A forward-chaining planner must calculate where. motion Oi will terminate,

since this termination region is the start region for the next motion, Oi+,.

Since this calculation involves some choice I it amounts to a formulation of

the decision problem with existential quantification over the push-forward of

motion Oi. In a back-chai'ng planner, where the motion must terminate has

already been computed: it is the next preimage with respect to Oi+,, namely

p8i+1 p8i+2 ... P8n(G)) - - .)) -

Thus we have seen why a back-chaining planner can (in pnciple) be complete

for guaranteed strategies, while a forward-chaining planner cannot, unless it guesses

push-forwards.

This suggests the following approach to EDR planning:

0 Use a back-chaining planner to find a guaranteed strategy for part of the start

region. Then extend it to an EDR strategy using forward-chaining verification.

This appears to be a reasonable heuristic approach. However, for EDR plan-

ning, it 'is still merely a halfway measure. While 'it removes from the EDR planner's

responsibility the decision of where to terminate a motion within a subgoal, the

105

problem remains of deciding where wthin the EDR region H a motion should ter-
minate. This is one of the key theoretical questions in EDR- 'it 'is addressed at
some length later. The computational solution seems to involve quantifying over
push-forwards even when a combination backward- and forward-chaining planner
is envisioned. LIMITED uses only forward-chaining for this reason. However, the

combination back- and forward-chaining approach deserves more exploration. In

particular, the backchaining first stage could be used to suggest and guide the

search for good candidate EDR strategies. Randy Brost has reported' a backchain-

ing planning algorithm which can generate multi-step plans in which each motion

is a one-step EDR strategy.

7 [Personal Communication]. See also Brost's forthcoming Ph.D. thesis.

106

8. The Preimage Structure of EDR Regions

Our characterization of the EDR regions-and of EDR strategies in general-
has been somewhat iformal up to now. This 'is because we have not employed the
full power of the preimage framework [LMT] in developing the model. In particular,
we have not yet ted together the role of history and the definition of the EDR
region H. This section remedies this deficiency. Recall our characterization of H
as Ho U H,. Our definition of phase-space, and of the sticking region H, must be
be made more precise. That is the second goal of this section: to link the preimage
concepts for representing strategies, with the phase-space concepts for representing
error detection in generalized configuration space.

First, we briefly introduce some preimage notation. A formal review of [LMTE]
preimages can be found 'in an appendix. A ke' notion deals with recognizable termi'_
nation in a collection of goals. We can 'illustrate this notion using a familiar example:
for a goal G and an EDR region H, I G, H } is a natural ollection of goals to con-
s'der. We know that an EDR strategy recognizably terminates in some member
of the collection. Below, we give a formal notation for this concept. However, the
question of distinguishable collections of goals also arises in planning guaranteed
strategies, as we shall see.

8.1. On the Recognizability of EDR regions

In section 7 we elaborated on the role of history, time, position-sensing, and
force-sensing in motion termination and in dstinguishing G from H. The role of
history must be formalized further using the preimage framework. To this end, we
now formalize the distinguishability requirements for G and H using preimages.

In section 21 it was observed that 'if the termination predicate can distinguish
between the goal G and the EDR region H, then H 'is a good EDR region and an
EDR strategy was in hand. Formally, we write this recognizability constraint as8

P8,R(j G, H } = R. (3)
We say that the preimage 3) is taken with respect to R. 3 means that the

(strong) preimage of the set of goals G, H }, with respect to commanded velocity
Vo Is all of R. When we have a set of goals, the termination predicate must return
which goal (G or H) has been achieved. This 'is dfferent from P,9,R(G U H), which
means the termination predicate will halt saying "we've terminated in G or H, but I
don't know which." The region R appears on both sdes of 3) because the preimage
depends on knowing where the, motion started. This is a subtle point, see [LMTEl.

Dole 8We view P9,R as a map. In the 'Informal development we denoted the image of this

preimage map by P.

107

Thus solving preimage equations like 3) for R is like finding the fixed point of a
recursive equation. Here, however, we know R H, and G, so 3) 'is a constraint
which must be true, rather than an equation to solve. Presumably 3) is easier to
check than to solve for R see [LMTE].

With this understood, we can now characterize P and R precisely (see fig. 26).
This requires specifying the start regions

RI = PO, RI G) (4)

P = PO, F.- (R) (G) (5)

P 'is analogously defined by adding "hats" to the P's in (5).

8.1.1 The Most General Preimage Equation

We now introduce the most general form of the preimage equation. Suppose
G, I denotes a collection of goals, and R,, } is a collection of start regions. Recall

0 denotes the drection of the commanded motion. Most generally, the preimage
equation is

Pej R. }(I Gg f Ra

This says that if the run-time executor knows that the robot is in some particular but
arbitrary start region R in the collection R,,, } then 'if velocity v* is commanded,
then the termination predicate is guaranteed to achieve some goal G 'in G , and,
furthermore, it can recognize which goal has been achieved.

In chapter III, a detailed example using preimages is worked out. There, we
solve a particular motion planning problem-grasp centering- with model error
by solving the preimage equations. This example provides an illustration of plan-
ning using preimages. Both guaranteed and EDR strategies for this problem are
developed.

8.2. The Structure of Goals 'in Phase Space

In this section, we examine the structure of phase space goals in some detail,
using the general form of the preimage equations described above.

A goal in phase space is a region 'in Position-space x Velocity-space A phase
space goal is attained when the actual position and velocity can be guaranteed to
lie in the region. We have actually been using phase space goals all along snce the

108

'I
v (P-P)

I .1 I .1

W, (F-P) v (P) Ir (P-P) v (-P)

I , - I i I

v 9
'IN

p

v

F

p

Fig. 49. Position-space is one dimensional. Therefore phase space, which is
Position-space x Velocity-space, is 2-dimensional. The velocity 'axis" is shown
vertically. r pr 'ects a position and velocity to the position. We lift the strong
preimage P to a cylinder '(P). We also obtain the cylinders over the weak
but not strong preimage P - P and over the forward projection outside the
weak preimage, F - P.

v
e
I
0
c
I
t
y

s
0
a
e
e

F

Phan spin

v

i
Poskift Spwa

velocity sensors are used to recognize goals. The 'Introduction of arbitrary phase-
space goals 'is problematic, see Erdmann]. Here the goals are s ciently simple
that these dangers are avoided.

We begin With the simpler example. In fig. 26 we proposed a partition of the
forward projection F of R into three regions:

Strong preimage P

Weak but not strong preimage,

Forward projection outside the weak preimage, F - P.

109

Here, the partition was "good" for the purposes of EDR for all velocities, and
we could let H be the forward projection outside the weak preimage. We can
extend this partition 'into phase space as shown in fig. 49. There is a natural
projection of Position-space x Velocity-space onto Position-space which sends a
pair (x, velocity-at-x) to its osition x. Given a region U 'in position space, we can
lift it to phase space to obtainr-'(U), the cylinder of all velocities over U. A point
in ir- '(U) is (x, v) where x 'is in U, and v is any velocity at x 9

We lift the partition by applying the inverse projection map to obtain a parti-

tion of phase space:

Cylinder over strong preimage, 7 I P)
1(^

Cylinder over weak but not strong preimage, 7r- P P)

Cylinder over forward projection outside the weak prei'mage, 7r-'(F - .

See fig. 49. Now, the cylinder over G and the cylinder over F - P are the new goals

in phase space. The latter cylinder is the phase space EDR region for fig. 26. Both

are simply cylinders: all velocities are legal.

Now we must deal with the tcky sticking region H in fig. 27. We begin by

lifting the partition to phase space again (see fig. 50). Next, we "mark off" regions

in the lfted partition to form a phase space EDR region, which we denote H. The

entire cylinder over F - P is clearly in H, snce its projection (under 7r) is outside

the weak preimage. But the cylinder over H, is not entirely within H: only sticking

velocities over H are.

Formally, H, is the set of all points x in the weak but not strong preimage,

such that sticking can occur at x. We wsh to distinguish the sticking velocities in

H, Under generalized damper dynamics, these are essentially the zero velocities.

Let Z(H,) denote the zero velocities over H, that is, the set of pairs (x, 0) for x

in H. Tis set is in phase space." Then we see that Z(H.) is also in the phase

space EDR region H. Thus H 'is the union of the sticking velocities over H, and

all velocities over the forward projection outside the weak preimage:

H = Z(Hs U r_'(F - P. (6)

9 The cylinders may then be intersected wth the forward projection of R (in phase space)

to obtain more constraint. This may be done by first restricting the domain of r to the

forward projection.

1OThe weak and strong preimage and the forward projection are drawn Venn-d'agrammatically

in one-dimension.

"We could also let Z(H,) be the set of velocities over H, which are smaller than some

threshold.

110

i
A ^ ir .1 (P) ff -'(F-

,ff F-P) ir "(j-P) P)

Z(H.)

I .- - I I

v v
^1
p

F

"I-
p Hi

Fig. 50. Compare fig. 49. We have 'Indicated the sticking region HP in the weak
preimage. The zero-velocities Z(Hs) over H. are in the cylinder over H, The
EDR region H 'is the union of Z(Hs) and the shaded cylinders over the forward
projection outside the weak preimage F - P.

,I A
ir (P-P)

v
e
I
0
c
i
t

0 y

s
0
a
c
e

F

0

Phase Spm

v

I F

Positim Sm

To use H as an EDR region, we must now ensure that H and the cylinder over
G are dtinguishable goals. This amounts to allowing goals in p e space that

Iis allowing the preimage operator to take sianple phase space goals as arguments,
and rewriting 3 as

POR(f T'(G)j H } = R. (3a)

The impact of (3a) is discussed in more detall in an appendix. One point 'is
worthy of comment. If the strong preimage is known, the definition of (phase space)
EDR regions is constructive up to reachability. By this we mean that when backpro-
.ections set intersections and differences, and friction cones can be computed, then
so can H. With H 'is hand, we add the recognizability constraint (3a) to obtain an
EDR strategy.

ill

8.3. More on Weak Preimages

Armed both with the general form of the preimage equation, and wth our
new gra sp of the structure of phase-space goals, we now examine the structure of

A

the "weak but not strong preimage, 11 P - P in more detail. It suggests a number
of 'Implementation issues. Consider figs. 27,28 once more. Suppose we have a
trajectory originating in R, subject to the control uncertainty shown. We do not
wish to terminate the motion while 'it remains 'in the weak preimage, since fortuitous
sensing and control events could still force recognizable termination 'in G. However,
we can terminate the motion as soon as we recognize egress from the weak preimage.
This is why the forward projection outside the weak preimage is contained in the
EDR region.

As we have seen, however I it 'is possible for a trajectory to remain within the
weak but not strong preimage forever. For example, 'it can stick in H forever. To
handle this case, we introduced phase space EDR goals.

There are other conditions under which a trajectory could stay in P - P forever:
(a) if the environment is infinite, or P - P is unbounded. (b) The trajectory 44 loops"

in P - P forever. (a) and (b) are qualitatively different from the case of sticking
forever in H, because they require motion for 'Infinitely long. In practice this may
be handled by terminating the motion in P - P after a certain elapsed time. This is
called "constructing termination predicates which time-out." In fact, this "solution"

works for sticking in H also.
A

An alternative is to extend our earlier zero-velocity analysis to all of P.

That is, we terminate the motion in the weak but not strong preimage when the

actual velocity is (close to) zero. Formally this rewrites 6 as

H = Z(P - P) U 7r-'(F - P). (6a)

Both this and our formal handling of phase space goals for H. 6) are subject to the

"Rolles theorem bug." That is, a trajectory which "reverses direction" will have

zero velocity at somepoint. Hence by 6, 6a) it will be judged to have stuck. This

is undesirable. In practice this can be fixed by again requiring the trajectory to

stick for some elapsed time. Tme-out termination predicates have the following

practical justification. We imagine some low-level control mechanism which detects

sticking, and after a certain time interval freezes the robot at that configuration and

signals termination. Presumably such a mechanism is designed to avoid damage to

the robot from burning out its joint motors. It also avoids plans with long delays

while the planner waits for the motion to slide again.

The role of time 'in constructing EDR regions can be formalized by explicitly

introducing time into the goal specification. Thus, goals become regions in phase

space-time; points in goals have the form (x, v, t), where x is a position, v a velocity,

112

and t a tme. Suppose given a goal G in generalized configuration space, we form a
phase space-time goal which 'is the product of r-'(G) with a compact time interval.
It seems that the EDR axioms are satisfiable by EDR regions which have the form
of a product of 6) with a compact time interval. More study is required.

One also can conceive of alternative models for sticking behavior. H is all
points in the weak but not strong preimage such that sticking might occur there.
Note that we cannot guarantee that sticking will occur, since then the point would
not be in the weak preimage. We could assume a probabilistic distribution of control
velocities 'in B, In this case we could 'infer that eventually, given an unbounded
amount of time, a motion will be commanded which will cause sliding away from
any point in H, at which a trajectory originating in R sticks. In this case, the
trajectory cannot stick forever in H, I don't think robot controllers reliably en-
force probabilistic distributions of commanded velocities, even if "dithering" control
strategies are employed. Even if they could, this model of sticking makes life easier,

A

since it essentially eliminates the possibility of sticking forever 'in P - P. We will
not make this assumption here. It does not address with the problem of looping
forever" within P - P in finite environments. It seems that time-out termination
predicates and/or velocity thresholding must be used to solve the looping problem.
Both solutions seem inelegant; the 'issue is subtle and should be addressed further
in future research (see chapter VI).

8.3.1 S ummary

When the goal 'is specified in phase space-time as the product of a cylinder over
a generalized configuration space goal with a compact time interval, our geometrical
characterization of EDR satisfies the EDR axioms. Without tme, or with goals of
the form '(G) x [t, oo), the definition of H does not completely fulfill the EDR
axioms. This is because it 'is possible for motions sticking 'in H, to eventually slide
into the goal, volating the principle that no motion should be terminated as a
failure while serendipitous goal achievement is still possible.

113

III. 1\4ulti-Step Strategies

In this chapter we explore multi-step strategy construction. Now, in principle,
having reduced both model error and EDR to essentially "preimage-theoretic" equa-
tions, multi-step strategies could be synthesized by solving these preimage equa-
tions. While this 'is proved or at least implicit in previous work [LMTMasonED],
it is far from obvious; furthermore, there are amost no published examples of such
strategies. For this reason we begin by presenting a worked-out example of a motion
plan using preimages. The motion problem 'is grasp-centering for a robot gripper
in the presence of model error. Both guaranteed and EDR strategies are found by
solving the preimage equations.

Preimages are a key underlying tool for the geometric EDR theory, and the
[LMT] framework is in some sense a "universal" method for synthesizing multi-step
strategies. However, the technique of solving the preimage equations is not com-
putational. For this reason, we introduce a construction called the push-forward.
Roughly speaking, the push-forward 'is that subset of the forward projection where
the motion can terminate. Since push-forwards address ternunation whereas for-
ward projections do not, we may regard them as "dual" to preimages. That is,
push-forwards are to forward projections as preimages are to backprojections. Sec-
ond, the push-forward permits us to develop rather simple algorithms for planning
multistep strategies. These algorithms have been implemented in LIMITED. While
the push-forward method for multi-step strategy synthesis is algorithmic, 'it is less
general than the full preimage method solving the preimage equations). We char-
actenze the loss of power in push-forward algorithms.

In chapter I we presented two EDR plans generated by LIMITED. These were
the peg-in-hole insertion strategy with model error, and the gear-meshing plan.
Both were two-step plans. We will go into more detail in describing how these
plans were generated. The peg-in-hole plan used push-forward techniques. The
gear plan used a seemingly unrelated technique called failure mode analy.3i3 We
describe failure mode analysis and algorithms for computing it.

Next, we will present a vew of multi-step strategies which essentially uifies all
these techniques. This 'is called the "weak" EDR theory. The motivation behind this
theory is that when a motion terminates ambiguously, a subsequent motion may be
synthesized which disambiguates the success or failure of the first. Oddly enough, it
is not necessary for either motion individually to satisfy the EDR axioms. However,
when taken together, the two-motion plan can often be considered "equivalent" to
a one-step EDR strategy.

The weak EDR theory effectively defines some laws of "composition" that per-
mit two single-step plans to be concatenated into a two-step plan satisfying the

114

EDR axioms. Hence it is often possible to construct multistep plans that are EDR
plans "globally" although not "locally". That is, considered as entire plans, they
satisfy the EDR axioms; this is the "global" condition. However, "locally" they
are not EDR plans, 'in that no single step 'is an EDR strate y. The ke to pasting
together non-EDR plans to make a global EDR strategy lies in defining certain
local "niceness" conditions for how plans must mesh. These are called the linking
conditions.

When we cross-reference figures in another chapter, we denote this by II.29 for
figure 29 in chapter II, for example.

We remind the reader that starred sections may be skipped if desired.

115

9. Planning using Preimages A Detailed Example

In this section we show how the [LMT] framework can be used to synthesize
multi-step strategies. Here are the key points of this section:

0 In principle, multistep plans may be found by solving a family of preimage
equations.

0 While this was proved by [LMTMasonE], 'it 'is not obvious how to effect the
solution. This example intends to elucidate the process.

0 The technique is general enough to plan EDR strategies under model error,
once we have cast both the problem of planning with model error and the EDR
problem in an essentially "preimage-theoretic" form, as 'in D) and chapter IL

0 However, the technique of solving the preimage equations is not algorithmic.

Furthermore, preimages are a key underlying tool for the geometric EDR the-
ory. It is necessary to make further acquaintance with preimages. in order to con-
tinue our development of the EDR framework. To that end, this section presents
a worked-out example of a motion plan using preimages. The motion problem is
grasp-centering for a robot gripper in the presence of model error. The example
illustrates the use of the preimage framework to derive a multi-step motion strategy
in the presence of model error. The strategy employs time-sensing and force-sensing.
This discussion is designed both as a tutorial in solvin preimage equations for a
motion plan, and as an ntroduction to the planning of multistep strategies.

09.1. Example: Planning Grasp-Centering using Preimages

The remainder of this thesis builds on the preimage framework to develop the
EDR theory. To make the framework more accessible, we provide here a fairly
detailed description of a motion planning problem using preimages.1

We are now ready to work an example. We solve a particular motion planning
problem with model error by solving the preimage equations. This example provides
an illustration of planning using preimages. For simplicity, we nitially address only
the problem of finding a guaranteed strategy. Finding EDR strategies 'in this domain
is discussed afterwards.

Consider the grasp-centering problem shown in fig. 1. The task is to center
the robot gpper over the block D. The gripper can translate but not rotate in the
plane. In its start position, the gripper is somewhere over D, such that the bottom

'This problem arose in discussions wth Toma's Lozano-Pe'rez, John Canny, and Mike
Erdmann.

116

of the fingers FA and FB are below the top of D. The width of D is unknown,
but must be less than the dstance between FA and FB. We assume D is fixed (it
cannot be accidentally pushed).

Hence we can regard this as a planning problem wth model error. C is taken
to be the artesian plane, and J is a bounded interval of the positive reals. Our
first question is, what does the generalized configuration space look lke? This is
easily answered by considering the motion planning problem in fig. 2 The problem
is to find a motion strategy for a point robot so that it can achieve a goal exactly
halfway between the blocks A and B. The distance a between A and B is unknown
and positive. The point robot is known to start between A and B. Again, the point
can translate in the plane. The dstance a is the model error parameter. It is easy
to see that the problems in figs. and 2 are equivalent.

However, we already know what the generalized configuration space for fig. 2
looks like. It was discussed at length in chapter II, and 'is shown 'in fig. II. 14. Hence
our example 'is a planning problem in a familiar generalized configuration space.

Next, we assume that the robot has perfect control, perfect velocity sensing,
and a perfectly accurate sense of time. However, it has ifinite position sensing
error. 2

Now, snce the gripper starts over D wth the bottom of the fingers below the
top of D, and since the robot has perfect control, it suffices to consider the x axis
of C. Since the y axis can be ignored, we develop our example 'in the plane, that
is in the generalized configuration space where C and J are both one-dimensional.
This 2D generalized configuration space is shown in fig 3 which is essentially an
x-J cross-section of fig. II.16, holding y constant wth a constrained to be positive.
In fig. 3 L and R are left and right obstacle edge boundaries generated by A and
B. The goal is the line in free-space bsecting L and R. The start region T 'is the
triangular region in free-space between L and R. (T is the convex hull of L and R).

Now, since motion across J 'is not permitted, a motions are parallel to the x
axis, that 'is to say, horizontal in fig. 3 There are oly two kinds of motions the
planner can command. Let denote a motion to the right, and - a motion to the
left. We assume the robot has perfect control over the magnitude as well as the
direction of the commanded velocity.

See fig. 3 Now, if a is a point on the J axis, let Ec, be the point on the
left obstacle edge L wth J coordinate a. We wll denote the collection of all such
points on L by E, } Let S,, denote the maximal lne segment within T containing
E,,,, and parallel to G. Formally, if E has coordinates (x, a), then is the line
segment extending from E to (x, d) where d 'is an upper bound on the distance
between A and B. We denote the collection of a lines by I ,,,, .

2This example is easily generalized to non-zero control, time-sensing, and force-sensing
error and finite position-sensing error. This requires giving the goal non-empty interior,
however.

117

Fig. 1. The grasp centering problem. The width of the block D on the table,
and the position of the gripper are only known approximately.

At this point we are prepared to derive a motion strategy for centering the
grasp, that is, for attaining G from T. The strategy has three steps. The te nation
conditions for the motions involve time- and force-sensing. Here is the motion
strategy in qualitative terms:

Strategy Guarantee- Center

1 Command a motion to the right. Terminate on the right edge R baqed on force
sensing.
2. Command a velocity of known magnitude to the left. Terminate when in contact
with the left edge L using force ensing. Measure the eapsed time of the motion.
Compute the distance traversed. This gives exact knowledge of where the motion
terminated on L. The effect of this -step i to measure the di'-stance et between the
block.q.
I Move dtance to the right, terminating in G based on time senjing.

2

118

r.

Fig. 2 An equivalent problem. A point robot must be navigated halfway between
the blocks A and B. The distance between A and B is not known. The robot
ha.s force sensing, and a clock. However, it has poor position sensing. We regard
C as 2 and J as the bounded interval (0, d] for d positive. The generalized
configuration space for this problem is the same as in fig. II-16, for the positive
values in J.

We now derive this strategy by solving the preim ge equations for the motion
PI .ng problem.

First, note that 'if the run-time executive knows that the robot is inside a

particular S,,, then G can be reliably achieved by c ding a motion to the

right. Since the robot has perfect control and time sensing, the motion can be

terminated after moving dstance S, that is, exactly when the line G is achieved.2

Using the preim ge notation, we write this as

P+j s. (G - f Sce

Next, we take the collection f S } as a set of subgoals, and try to find a motion

that can recognizably attain this collection, and, furthermore, can dtinguish which

119

A
I A

i

a

I

Iq I

i
I

I

C

Fig. 3 Assuming that the gripper fingers are initially lower than the top of the
block D, the y dimension can effectively be 'ignored. This allows us to examine a
cross-section of fig. H.16. We treat C as the x axis of motion freedom, yelding
a 2D C x J planning space. L and R are obstacle boundaries in generalized
configuration space The goal 'is the bisector G between L and R in free-space.
The start region T is the triangular region between L and R. E is a point on
L. So, is a line in T parallel to G and containing Sa.

S,,,, the motion achieves. Consider a leftward motion starting from anywhere on the

right edge R. The robot does not know where on R the motion starts, however. To

recognizably achieve some S,,, such a motion should move leftward, and te te

when force-sensing indicates that L has been reached. If the temunation predicate

measures the elapsed time of the motion, and knows the m gnitude of the com-
manded velocity, then it can recognize which point E has been reached, and hence

which subgoal S has been achieved. Writing this down in preimage equations,

P_,R(j S } = P-,R(I Ea } = R (2)

FinaIly, the right edge R may be achieved from anywhere within the start region

120

T by moving rightward, and terminating when force sensing indicates contact. This

is simply

P+,T(R = T. (3)

It 'is instructive to examine the termination conditions for motions (1)-(3).
In motion (1), only the time-indexed forward projection F(S,,,, t) is relevant to
deciding termination. The motion terminates when F(S,,,,, t) C G. Motion 3) can
be terminated using pure force sensing. It could also be terminated using time,
since there exists some t for which F+(T, t = R. In motion 2), both force sensing
and time are req'red to terminate wthin a distinguishable E,,,,. The general form
of the termination condition for all three cases 'is as follows. Recall that in general,
the termination predicate has the form

Fq(Ul t) n (B,,p(t) x Bev(t)) c G,3

for a goal G# and a start region U. (Assume that all subgoals have been lfted into
phase space; see sec. 82). In our case, position sensing error is infinite so BP(t is
C x J. Let us denote (C x J) x Bv(t) by the simpler expression B,(t). Then the
termination conditions for motions (l)-(3) are as follows. For the first motion 3),
to terminate, we must have

F+ (T, t) n Bv (t) C R. (4)

For the second motion 2) to terminate, we must have

F_ (R, t) nBv(t) C Sce

for some S,,,. We think of the termination predicate as returning tis S, Finally,
for termination of the last motion (1), we must have

F+(Scv) n Bv(t) C G, (6)

where the S,,,, in 6) is the same as the one returned by the termination predicate
after the second motion as the satisfying assignment for (5).

Finally, note that time is the source of some complexity in this example. This
complexity might be removed by employing a distance sensor instead. The output
of such a sensor could be modeled as position sensing in J. The sensing action in J
would entail measuring the distance between A and B. This relaxes the assumption
of no position sensing in the J dimensions, but such modification to the generalized
configuration space framework 'is trivial. Wth this modification, Bp is simply
regarded as a product of a position sensing ball 'in C and a position sensing set in

J.

121

This concludes the example. We have shown how to derive a multi-step guar-
anteed motion strategy in the presence of model error. The strategy was derived
by solving the preimage equations in generalized configuration space for the motion
plan. These preimage equations made the role of tme- and force-sensing explicit
in deriving conditions for distinguishable termination in a collection of subgoals.
With this example in mnd, the reader should be well-equipped to wade 'Into the
remainder of this thesis.

9.1.1 An EDR Strategy for Grasp-Centering

We now generalize the grasp-center example and show how to develop an EDR
strategy for this problem.

Assume that the radius of position sensing uncertainty is larger than the
diameter of T, but not infinite.' Furthermore, assume that a, the distance between
A and B, can be zero (but not negative) in the above example. That is, D can be
too bg to grasp. Hence the hole between A and can close up, as 'in fig. II.16.
Assume that the gripper starts above the height of the block D, in the circular
region R in fig. II-15. Generalize the discussion of preimages above to describe an
EDR strategy using preimages. We will need to consider the y dimension of motion
freedom as well Iin the 3D generalized configuration space shown in fig. II.16, but
only the non-negative a in J. Note that EDR 'is "required" here, since if a can be
zero, there exists no guaranteed strategy.

Let us rename the circular start region in fig. II-15 to be U, and continue
to use R for the right edge 'in fig. 3 Assume that the x-J slice of generalized
configuration space in fig. 3 is taken at y = , 'i.e., at the level of the table, and
that under the commanded motion v* shown in fig. II.15, sliding occurs on all
horizontal and vertical surfaces. However clearly sticking wll occur under v on
the concave left edge L between A and the table.

Now let H be as in fig. II.24. Here 'is the EDR strategy in qualitative terms:

Strategy EDR- Center

El. From U, command the motion v*. Terminate on the left edge L based on
sticking, or in H based on time.

E2. If H is attained, signal failure. Otherwise, go to tep (1) of strategy Guarantee-
Center.

3This assumption is not necessary, but it smplifies our discussion somewhat.

122

Now, since H = 0, the Preimage equation' (II.3a) for step (El) simply reduces
to

P9,u(L H U. (7)

At this point, the remainder of the strategy may be developed in the x-J slice
shown in fig. 3 To finish the preimage characterization of the EDR strategy, we
must replace eq. 3 which characterizes the first step (1) of strategy Guarantee-
Center, by

P+, L R = L.

Note that (8) is actually a logical consequence of 3), snce L is a subset of
T. Analogously, 4) must be changed by replacing T by L. The remainder of the
preimage equations (l)-(2) and 5)-(6) remain unchanged.

9.2. Solving the Preimage Equations 'is General but Not Computational

This example shows how multi-step EDR strategies under model error can be
generated by solving a family of preimage equations. However, the technique is not
an algorithm. We do not claim that such an algorithm could not be developed, but
merely that as described above and in [LMTMasonE], the method is not (yet) com-
putationally effective.' The first reason it is non-computational is that the number
of subgoals, I E and I ,,, } is infinite. The second, and more important reason is
that solving the preimage equation is, as stated, a decision problem in second-order
set theory. Even if the sets are, say, algebraic, this theory is undecidable. However,
there may exist a reformulation of the problem rendering it decidable. Below we
describe one such reformulation, using push-forwards, which can be used in effect to
solve certain "simple" preimage equations and hence to generate a restricted class
of EDR plans.

4See see. 82.
'5However note that Erdmann's techniques of approximating preimages by backprojec-

tions may lead toward a fully-algorithmic method.

123

10. Push-Forwards: A Simple Generalization to n-Step EDR
Strategies

The generalized preimage framework [LMTMasonED] gives a kind of "uni-
versal" method for generating multistep EDR strategies. However, the technique

M1 -it is more hke doing a proof
of solving the preimage equations is not algorith 'c 1
by hand. For this reason, we 'introduce the push-forward technique for synthesizing
multi-step strategies. While considerably less general than solving the full preimage
equations, it leads to rather smple multi-step strategy-generation algorithms, which
were implemented in LIMITED. The push-forward technique is powerful enough to
generate an EDR plan for the peg-in-hole insertion stratearv with model error de-
scribed in chapter I. However, it is not general enough to solve all steps of the
grasp-centering example discussed above. This gives us a measure of the relative
power of push-forward vs. preimage equation techniques.

This section first dscusses the push-forward technique for synthesizing n-step
EDR strategies 'in some detail. When we cross-reference figures in another chapter,
we denote this by II.29 for figure 29 in chapter 11, for example.

We first review the "Twin Universe" example 3) (figs. II-29,II.30), highlighting
subtle recognizability issue not emphasized in the prelude. However this review

may be skipped at first reading if you already have example 3) firmly in mnd.

A Review of the "Twin Universe" Example 3)

Consider fig. II.29. Here there are two possible universes, both 'in the plane, so J is
the two element discrete set, I 1 2 }. The start region 'is the union of R, in uiverse
1, and R2 in universe 2 The goal exists in universe but not in universe 2 There
is no one-step EDR strategy which, from the start region, can guarantee to achieve
G or recognize that we are in universe 2 In particular, there is no one-step EDR
strategy which can be derived from the motion v*el

However there clearly exist multi-step EDR strategies. We will construct one
as follows. Recall that to construct one-step EDR strategies, we took as data a
goal, a start region R a commanded motion , and the preimage of the goal under
9. Given this data we constructed an EDR region. From the EDR region, we
attempted to construct an EDR strategy that achieved the distinguishable union of
the goal or the EDR region. Now, why does this fail in fig. II.29? To answer this
question, let us consider what the motion was supposed to achieve 'in universe
1. There 'is an 8-step plan 'in universe which recognizably achieves G from start

Ilk region R1. It is obtained by back-chaining preimages in universe 1. The plan moves
from R, to the region under v*. Then it slides along the top surface to vertex

124

f. Next it slides to vertex e. It slides to the successive vertex subgoals d through
a, and then a horizontal sliding motion achieves the goal G.

The strategy is guaranteed to achieve the surface from start region R,.
Suppose we try to extend it to an EDR strateizv with start region the union of R,
and R2. The EDR region is then simply the (cylinder over the) forward projection
of the "bad" region, F9(R2)- (See fig. II.29). There 'is no way that the termination
predicate can distinguish between the forward projection of R and the forward
projection of R2, hence no EDR strategy from exists.

We can easily construct a 2-step EDR strategy, however. First, we execute
motion from the union of R, and R2- This achieves a motion 'Into in universe
1, or into S2 in universe 2 The termination predicate cannot dstinguish which has
been attained. Suppose the second motion 'in the 8-step plan is v* (see fig. II.29),
and is guaranteed to achieve the vertex subgoal f from start region SI. We will try
to construct an EDR strategy out of this second motion. Take as data: the subgoal
f, the start region U S2, the southwest" motion , and the preimage of f under
O.' The EDR region for these data is the forward projection of S2 under (see
fig. II.30). Presumably this EDR region is (eventually) distinguishable from f, and
so we have constructed an EDR strategy at the second step. After executing the
second step, we either terminate the motion as a failure, or proceed to vertex e, and
eventually to the goal.

10.1. Generalization: Push-Forwards

Now let us attempt to capture the salient aspects of the n-step EDR strateav
construction. We take as data an n-step plan, with start region R,. The actual
start region is some larger region, say, R. Above, we had R as the union of R, and
R2. The first motion in the plan is guaranteed to achieve some subgoal S from R,.
Using this first motion from start region R, we try to construct an EDR region HI,
and a one-step EDR strategy that either achieves or signals failure by achieving
HI. If this succeeds, we are, of course, done.

Suppose we cannot distinguish between H and S. In this case, we want to
execute the first motion "anyway," and terminate "somewhere" in the union of I

and HI. The termination predicate cannot be guaranteed to distinguish which goal
has been entered.

This "somewhere" is called the push-forward of the first motion from R. The
push-forward is a function of the commanded motion 0, the actual start region

'While is the preimage of f under with respect to start region SI, the preimage
with respect to the entire forward projection of Si U S2 includes the top edge between
SI and f. See sec 8.

125

R, the region R from which 'is guaranteed, and the subgoal S1.2 A particular
type of push-forward is defined formally in an appendix; we describe it informally
below. In example 3), the push-forward (under) of R2 is S2. The push-forward
of R UR2 is SI U S2. The push-forward is similar to a forward projection, except
that 'it addresses the 'issue of termination. In example 3), 'informally speaking, the
push-forward from the region R (under some commanded motion) is the result of
executing from R and seeing what happens. It is defined even when the strategy
0 is only guaranteed from some subset R,) of R.

Having terminated 'in the push-forward of R (the union of Si and S2 above),
we next try to construct a one-step EDR strategy at the second motion of the n-
step plan. The data are: the next subgoal T after in the plan, the actual start
region U S2, the second commanded motion in the plan, and the preimage of T,
under this motion. 3 This defines a formal procedure for constructing n-step EDR
strategies. At each stage we attempt to construct a one-step EDR strategy; if this
fails, we push-forward and try again.

Actually, tis description of the procedure is not quite complete. At each step
we construct the EDR region as described. However, the one-step strategy we seek
must achieve the distinguishable uion of the EDR region and all unattained subgoals
in the plan. That is, the EDR motion must distinguishably terminate in the EDR
region, or the next subgoal, or any subsequent subgoal. This allows serendipitous
skipping of steps 'in the plan.

By considering different data, that is, quantifying over all motions at each
branch point of the n-step strategy, we can 'in principle consider all n-step strategies
and define non-directional EDR strategies. This is at least as difficult as computing
n-step non-directional preimages. If we wish to consider plans of different lengths,
we must also quantify over a n. Needless to say, the branching factor in the
back-chaining search would be quite large.

10.2. More on the Push-Forward

The problem of defining the push-forward may be stated 'Informally as follows:
"Where should the motion be terminated so that later, after some additional number
of push-forwards, a one-step EDR strategy may be executed."

Many different push-forwards can be defined. Using the notation above, note
the motion is not even guaranteed to terminate when executed from R: it is only
guaranteed from R,. This means that velocity-thresholding and time may be neces-
sary in the termination predicate. There are other difficulties: for example, a priori

20f course it also depends on the termination predicate sensing and control character-
I I

istics etc.
3The preimage is wth respect to the forward projection of the actual start region S1 U S2 .

126

it is not even necessary that entry 'into the union of the subgoal S and the EDR
region HI be recognizable. Thus defining the push-forward 'is equivalent to defining
where in U Hi the motion can and should be terminated. (However, see note (1)
in the appendix .

Depending on that push-forward 'is employed, we may or may not obtain an n-
step EDR strategy. It is possible to define constraints on the push-forward that must
be satisfied to ensure that a strategy will be found if one exists. These constraints
are given 'in an appendix. While 'in the appendix we can give equations that the
push-forward must satisfy, at this time a constructive definition is not known. This
s'tuation is similar to and possibly harder than the problem of solving the general
pre-image equation.

10.3. An Approxi'mation to the Push-Forward

We may have to approximate the desired push-forward. We give such an ap-
proximation here. In general, it does not satisfy the constraints given in the ap-
pendix. We provide it to show what the push-forwards alluded to above are like.
Such approximate push-forwards may prove useful in approximating the desired
push-forward. The issue deserves more study. Snce this approximate push-forward
is incomplete, the reader should consider its description here as 'illustrative of the
research problem, and not as an endorsement.

The push-forward employed in example 3) was formed by "executing the strat-
egy anyway, and seeing where it terminated." How do we formalize this idea?
Consider the termination predicate as a function of the starting region, the initial
sensed position, the commanded velocity, the goal(s), and the sensor values. The
sensor values are changing; the predicate monitors them to determine when the goal
has been reached. Now, if the termination predicate "knew" that in example 3)
the start region was the union of R, and R2 then the first motion strategy could
never be terminated the predicate could never ensure that the subgoal S had been
reached. This is simply because and S2 are indistinguishable. But if we "lie" to
the termination predicate and tell it that the motion really started in R1, then the
predicate will happily terminate the motion in U S2, thinking that has been
achieved. Viewing the termination predicate as a function, this reduces to calling
'it with the "wrong" arguments, that 'is, applying it to R, instead of R, U R2. The
push-forward we obtain is "where the termination predicate wll halt the motion
from all of R, U R2 thinking that the mtion originated in R" S2 is obtained as
the set of places outside of SI where the lied-to termination predicate can halt.

Even formalizing the construction of this simple push-forward is subtle; de-
tails are given 'in an appendix. While this approximate push-forward 'is incomplete,
it does suffice for a wide variety of EDR tasks. The approximate push-forward

127

captures the intuitive notion of "trying the strategy anyway, even if we're not guar-
anteed to be in the right initial region." It is incomplete because t falls to exploit
sufficiently the geometry of the forward projection of the "bad" region. Better
push-forwards must be found; this one is merely 'illustrative of the problems.

10.4. Example. Multi-step EDR Plan for Peg-in-Hole wth Model
Error

The advantage of the push-forward technique is that 'it can be made computa-
tional. We now give LIMITED's algorithm for generating multistep strategies using
push-forwards, and describe an experiment which used this method.

Recall chapter I, figs. 616, which described a two-step EDR plan for a peg-
in-hole plan wth 3 DOF model error. Here 'is how this multi-step strategy was
generated:

Algorithm Multi

1. First, try to generate a one-step EDR strategy uzng the algorithm in see. 6.

Suppose this fails. Then:

2. Generate a commanded velocity v*, such that the forward projection of the start
region intersects the goal in some slice.

3. Compute the EDR region H for v*el
4. Compute the sticking push-forward of the motion, R, = pushg(G U H).

5. Using R, as he start region, generate a one-step EDR strategy using the algo-
rithm in sec. 63.

Of course, in LIMITED the computation is memoized so that the projection
and EDR regions computed in step (1) are not recalculated in steps 2) and 3).
Obviously, we can extend this algorithm to generate longer strategies which push-
forward several times and finall terminate in a single-step EDR stratea"r

y C)WT
Now, LIMITED is a multi-resolution planner. The algorithm outlined above

generates a multistep strategy at a single resolution. The resolution of planning is
simply the set of a values in which slices are taken. A resolution SI is finer than
S2 'if 'it contains more slices. The multi-resolution outer loop works like this.-

Ml. At a coarse resolution, generate a multi-step EDR strategy 01, On using the
forward-chaining single-resolution algorithm above.

M2. Select a finer resolution. Use the directions 1, - , On as a suggested strategy
and attempt to verify that it is an EDR trategy at the finer resolution.

128

M-3. If is not an EDR strategy at the finer resolution, try to modify it
so that it is� by wing 1,. . ., 0, as suggested directions and searching nearby
directions at all levels.

The process terminates when the resolution is finer than some predetermined
level.' The critical slice method described 'in chapter II may be one way to obtain
such an a riort bound and know that it is sufficient. In LIMITED, however, the

bound is a user input because otherwise the number of slices required would be

prohibitive.

In the peg-in-hole example there were 3DOF of model error: the width of the

hole, the depth of the chamfers, and the orientation of the hole. The resolutions

used in planning the two-step strategy were as follows:

R1. Holding orientation fixed, 4 slices of the depth x width axes.

R2. Holding orientation fixed, 16 slices of the depth x width axes.

R3. Holding orientation fixed, 72 slices of the depth x wdth axes.

R4. 100 slices of the depth x width x orientation axes.

The figures show details of the slices and the plan.

10.5. The Loss of Power wth Push-Forward Techniques

While push-forwards permit us to develop simple algorithms for generating

multi-step strategies, clearly these algorithms are theoretically less powerful than

solving the preimage equations in full generality. We now attempt to give an intu-

itive characterization of the loss of power. In particular, push-forwards are general

enough for the peg-in-hole EDR strategy with model error. However, they are not

general enough to generate the grasp-centering plan. We now discuss where in

the grasp-centering example the push-forward techniques are inadequate. The key

point is this: if each commanded motion and termination condition could be non-

deterministically "guessed," and a push-forward for each motion and termination

condition could be computed, then in the grasp-center example this would suffice

to generate a strategy. However, the push-forward algorithms we have developed

are not powerful enough to do this.

First, let us derive the push-forwards of each motion 'in strategies EDR- Center

and Guarantee- Center. Recall that El is the first step of the EDR plan, and motions

1 2 and 3 are steps in the (subsequent) guaranteed plan. In the third column we

note whether or not the push-forward technique is computationally effective for this

motion.

4Or when at some level no EDR strategy can be found.I I

129

Motion Push - Forward Computational.?

El LjH} yes
1 R yes
2 Ea no
3 G no

The push-forwards for motions El and can be computed using the algorithms
of sec. 62 and algorithm Multi above. In motion El, L may be found using
sticking termination. H may be found using tme, or position and force sensing
termination. In motion 1, R may be found using contact, or sticking termination.
However, our algorithms cannot compute the push-forward f E, }, which contains
an infinite number of components. Furthermore, we have not developed algorithms
for computing push-forwards based on time-termination (except for elapsed time
termination, of the form "terminate anytime after t seconds"). Thus the push-
forward G for the last motion cannot be computed by our algorithms either.

10.5.1 Discussion

Let us pause to review. We first described a fully-general, but non-computational
technique for generating multi-step strategies. This method-solving the preimage
equations-was applied to the grasp-centering example. Next the push-forward
techniques were introduced as a computational, although less powerful approach
to the synthesis of multi-step strategies. Push-forward algorithms were described,
and we saw how LIMITED used these techniques to generate a two-step plan for
the peg-in-hole problem with model error. Fnally, we dscussed the limitations of
the push-forward techniques. We saw that they were not powerful enough to solve
the grasp-center problem 'in its entirety. By describing an experiment where push-
forwards suffice, and showing an example where they are nsufficiently general, we
have tried to give an intuitive but fairly precise characterization for the relative
power of push-forwards.

130

i r

1.

f

1 41

i 10
I
Z.,
ol
4

I

1 1

i

0

1

r7 -

I

I

I

---j

I

i r
0
0"M
0

I

-1

I

0

Im

I
I 0
1 r

0
0

I

r

9

f

0 I

I

-- I i

0

I

1�1 -

I

T
---- r-=

� L---

0

I

d
I r

T
I

I

I

I

I

I

i I

I

I

I

I I

I rI

0

1 __j
f

r2 -

I

I

M-j

--- L

I

I

--- 7-

t

---- T-

I

I

I

0-

I

0 --

--- -- L

I

------ T -------I

I

-1

-1

I

e

I
I

I

0-

I

---- I

C,

--- I

I

I r

� r-j

�j ?

-- I

i r

� r�

I-1 ?
f

-i
--- A--r

;�J- !I

i
- d

- t r

:r�
'A ,

I
0
0

a
D a

I
a

0 a

-1

I

0 r

� -j i A
i 0

1.

L�-

0

Z� A

----- T.

I r

0

A

I r

0

D 9

I

-- -- L

4.I
0
.1

- I
I

0

0

1
1 A

0
el

a

I--- -T-i

I

t

V
t

11

:7V.kW

P.*aW.

7

I"v.
-------=

I

I

I

------ ;___j 2- AMIL.

Fig. 4 Configuration space sces at resolution R: holding orientation fixed, 72
slices of the depth x wdth axes.

la
140

t

131

I

�2 0

- I I

i
4

1 M

0

1

I

- -- I a

1 14

-- 1

--- 7 1

I -M
A�
fq
I!

a

I II- ----- 7 d

L m

i
I

--- L -- M

a
I I

I a

I I
4

41

1

I

I

I

4

O 4
I

I
4

1
O aa

i
I

I
aa a

I

O 00

i

?I

a 0a

1
46

0

A

0 ,

I

0
ll�
ei

*I

I

0

0i

r
a

O n
0

i
I

0

a a

i

- 9

0

0

i
9

r
0

0 2

i
9
,a

a 3

4�
0 3

0
I

� a I

I

a

0
I

r
0

0 9

r

C2 I

a I

r

c 3

0

0

a

14

0 3

T

Q 0

r

c 0

r
0

c 00

r
0

a 0

a

a

a

0
0

0

0

a

a

a

C2

7-

C7

c

r
0

c ilk

r
0

c

c

0

0

I

a

c

4�
I

.1

I
-- --- I
r��

7

O 0

I

T
0

0

0

� a

7��

a

a

a t

4�

.1

I
A
14
4.

0 a

I

--- - -- A
r�-

r
Z.

C2
I

I

-- I
r

0 4

i

0
0

L- ----

0

0

c

I

11
.I

fe

0

C
14

I

-- -- -- i

a

0 i

i

z

10

C, -

P.I"

o - I

I-

0 -
I.4

0 -
.1

-7
0 -

waI"

0 1
i.w

Cl -
0V.

I ua ---- A L---------5 L��j I %.*LL=.

Fig. 5. Start region in each slice. (At resolution R).

a
a
6

4i
t.

11
0

13
0
44
4
Im
I
CL
a
6
CL

v

I

c
a
-W
a
6
6

4A
6
4
�w
44

Ia

I
I

a 1
4

I

I

a
a

i
I

a 11

a
IA

4

a v

1
4

I

I

0
I
I
1
4

1

I
0

I
i
I

la

10 -

1I0

132

I

0 -

I
0
0

0 ?

i

0

0

0 ,

a

a
0 -

P.

9

A

0

0

0

1

J�
.1

o --"I
I.i

ri.
0.
I

0 I

.. I., I .

a
0 ?

--- I
0 ?

i
A
0

a !

a

0

0

I

r
C�

8

0 !

E
i

0
I

0 !

I
e
0
1

0 i

I
i
r
a

9

0 !

I

a

I

40
0

I

i

Po
a

8

4�

0

I

I

i

0

1

o "i

a

I

---- --- ---- -9

fq

0

1

0 !

i

I

F

t

0

I
r

0 ?

I

r
0

0
0
0

0 -

I

0

i

0

a

0

9

I

7
0
i

0?

0

0

9

0

9

0

0

r
0

0

I

9

0

0 ?

T

0 ?

a

0

0

I

I
'm

0 'i

I
I

r��

r
3.

0 ?

i

I

0 ?

I

0

0

0

I
a

9 C�

i
-A

a

0 ?

i

r
0

4
0 ?

0

------- -

0

0

0

4�
4
a

a

I

a
a

9 !

i
9
Im
a

0 !

I

I

C.

z
t

0 -

z

t

0 -

7

0 -

C
"I

. 0,

0

0 -

01

0

v.

I i

r��

I
i
I
I
I

0-
4
0
0

4
0
3

la

I

a

I

w 9�____j a---------i h.

Fig. 6. Goal region in each slice. (At resolution R).

I

I

I

f4

a

3

I
9

F
4

1

I

I

IA

M
a

I

a

i
9

40

i

I

I

I
4

i

I

9 I

I
I

0 0 0 0 0 0 9 0

9

133

I I 1.1 I]on I Ism I lad L-

X=w --- M
I I ,-- ,

i

Ins
m .

-4 --- I
a NM is

-T- aor- I ww- - - -- W�w

=9 i9L Mal--- i lit" i i 4M. i

Fig. 7 Strong backprojection of goal under motion 01 (At resolution R3).

I

i
ft
01.1

c
a

40
0

Aa
6
a.
J I

I
A

I.
6
at

0

134

.1.

Fig. 8. Weak backprojection of the goal under motion 1. (At resolution R).

135

I
Iis I

m I

I

I

r

0

I

I

A

r

0

a

0

I

r

0

I

i
11
4,

0

i
-- --- --9

9
,0i

4w

ol

I

I

r
0

1
I C,

I U ?

I

d
I r

0

2
i m 0

9
r
a
I

u 0

I- --- -

a

u

u
L

0

r
0
3

u

I

u

u

I

v

u

u

m

Ar

a

fl

0

i

0,0

I

---- -- -9

Oi
km

1�.
in

.i

101

Ii

I
In 40

i

.1

r
0

1

m a
V

I

-- - 0
a0.

a�w
1�1

I
- I

a
0
a

i
I
a

i
I
'IA

i
I

ri
0

in

a ;
A
r�
10

I
in

41

r
0

a

%m !

i
i

aa

a

i
d

a

a

i
I

i

--- -- -- A

Is

I

r
a

4

U

r
0

4

la

%W

I
I

i
41

0 -

0 -

a

I-

to

0

pq

10

.0

0 . P"

V.

I',

0

P".

I.I*'.1

0

7
01
I

O .

IVI-wo

0

11
---- Aid

9I a I - 9 I,*

c
a
40
ri

.9
0
16
a
J9

I
a

I

I

1�

I
a

I

a

1
4

0
4

i

I

I

I

I
I

t,

A

i
I

0

I

Fig. 9. Weak backprojection. of the goal under motion 1.
(At resolution R).

Obstacles not shown.

136

T

IL

AO'*

0

Fig. 10. Forward pr 'ction of start region under motion Obstacles not
shown. The arrow shows an edge of the forward projection that reached the
goal. (At resolution R).

137

Fig. 11. Forward projection of the start region under motion 01. (At resolution
R3).

138

I 7,

0

0

I

I

0

0

I

I

M

r
0
a

i
I

Q�

0

I
-- - 9

il.
FM
0
0

1!

I t

a

Im
4�

I
4

4.
0

.1

iI

it
,I

I.1

21.

I

7

0

3

a
I

a

--- I
r

11

r

11

r
0

a

r
0

1

r

r
0

I I

r
0

r
0

r
a

t
0

I
I

I0.

a
I!

i
I

I

r
Ol

I

I

0

0

7

M
C�

IN

6�
,i

0
0

a

i

- --- - - i
a

0

i

I

a

i

- -� ----- ---4

T
0

71

I
13

I
0

t
a

1I

0
0

.4

i

a

i

a

i

9

a

1I

I

4

i
I
I i

I

I

. II
I

I

Ae

7

10

z
I-
%W

aI"
I-

ofti
v.
0.

I"
O.

------- r.

I"
I'll

t

m
"IF-��

I aR mL wL---------a L-

Fig. 12. Weak minus strong backprojection for . (At resolution R).

c
a

Q4�-n
a
6
CL
.9
u
4
A

a

I

#A
0

a

I
mm
9

I

I

I
a

4(4

1

I

A

'm

I

i
I

4r

i

I

I

I

I

139

i
7.

'.1

fI
i
I

:1

0

I

IL

i

r
00

E41
t
r
0

9
el
A

0

1 ?

0

I

8

1411
00

0

i

0

I

0
0

I

0

19

I

IV

i
46

0

11
0

r
0

1 9
I

f

N- - 9

r
I

I
I ?

T

r
I 0

I
I ?

- ------ -- -

I

L--- -

i

i

r

0

I
'iQ�

i
a

I

1!

i
I

r��

I

I

i

I
9

i
0

1
m�

I

---- --- I
.m

I

- -

I

01
t
.1

f
IL

9

I

-- - i

a

i

--- N -r

-1

I

IL

1*1

2

i

0,

i

I

a

4

I

I

ZI

I

I
A" I

I

I

z

0

"I

7
I-

I

fl I
1-

0-t

N
"If

F"

I.

O.
.---- J9

m

--------- x L- -- ma m L=

Fig. 13. Sticking in the weak minus strong backprojection for 01. (Hs region).
(At resolution R).

I

C
a
4i
0
9
In
a
u
CL
J9
(i
0
A

a
C
a
6
40
W

a
2
C

I I

X
4
a
2

C.

a
C

0

to

I

a

i

A

404

3

I

I

I

0
A

I
a

4

I
q

I

I

4

I

i

i
I

I

I 0A
0
Ali

140

IL

Fig. 14. Ho EDR region for 1. (Forward projection minus weak backprojection).
(At resolution R).

141

I1�
c

F-

4
2

c

�11 c
c

I

I

a

4

i

0

a

I

PI
ON

a

1�
0

*1

-1

r
0

0

I

0

.1

i.1
0a

0

-- ---. I

r
0
11

I
t

r

i I

.1

121
.m

iO

.j

41

FA
4�

14.0
4�

.i

-W

0

I

am

I
4

i

r
0

\I
I
I

\ I

d
r
0

I

r
0

I

--- i
r
C.

i

r
0

r
0

i

T
I

4

k

--.A-

0

4
11 0

T
a

r
a

141

0

1

I

4

I

0 -

z0
*d

CO -

z

16

0 -

I"

"I

0 -

I"

I-

0 -

0 -

I"

W.

"Wi

0

7
"I

0 -

ZI-40

I

I

I

Ii

I

i

I
I

f.

mmm�� L----------= L.JLz--

11

��Nk

0%

3

611
la

611

;a

a
.C

I

MP

a

.-k

u

Ir

0

In

0

fj

p-

0

6
la
4
w
%W

U

u
I

I

A

0

I

9. 0

i
A

0

I
A

I

II
I

m
0
a

i
-1

11
4

i

a

0

1411
ft
1.

Fig. 15. Ho EDR region for (shown without fill
sliding 'Into goal). (At resolution R3).

to illustrate degenerate edges

142

Fig. 16. Ho EDR region for 01, shown amidst obstacles. (At resolution R).
- I

143

a

0

I

I

I
-1 0

0

0
I

A

0
0a

f.

A a

0

1
a

I

44.

Ii

ml

r
0

1�
1, 0

I

t

0

r
0

2

I

0

f4
4
tI

0
11

I

r
a

I

r
0

3

I
O

1

lil

i
0

1

i

M

a

I

i

IL

Ar

0 -

z
0

0 -

I"

0.
06

-�.w

0

7
V.
40

0 -

I"

I.

01

0

O"

0
0.

0 .

0
I-

0

01

. 0 -

I.11
0

c
0
�w
u
0
"9
a
6
CL
ji
u
4
.2

a

I
6
a
La

0
a
c

a

I
0
2

R�� %La- -==�Wl =2�411 I=:=�Iw

Fig. 17. All vertices of the Ho EDR region. (At resolution R).

i

c

a

c

.9
u
-W
&P
W

3

a

06

c

0 c

:30-

(A 4

a C

4
li
10.

i
Ad

11

I

i
A

I
i

I
I

1!

0

144

--- ---

Fig. 18. The EDR region H is not distinguishable from the goal. (At resolution
R3).

145

I
�z

4

F-
I

- I
Ia
10

7
I- 4
In

0
a
0

f-

I
- I

11
a

0

F- Al

t-
o

F- :

F-

r-

I

I
I

I

1 I

1

I I
- ---A

4

I
II

I 1.

r
I- I
I
a

r I- I
aInI

I
009
I- I

i 0

I

- I

i

1�

i 0

21

I

C�

r .1

I ri.

I

r

I

r

r

r

I

4I

I

T
0

0

f
- i

*1

I

al

I

I

r
O

14

0

f

1�
14
I

I

4

r

L

-- -- 9

C�

i

W

t

i

44

a,

- I

co

f4

r
0

4

I - I
9

0
eq
C�

I
---- i

I

pi
I

vi

---- I

0�

i

I0
#1

I I 1

a

a .

0

- I

- 9

a

4

I

- d

7

i
I

v

0

t

i

0.

W.

---- - �.o

i

I

00

0

.I

i

i
i

.m

0

fl%

--- - *Ol

I"

IV

I'll

O"

ft

V.

- - � %W

I

I

I.

II

II

m ---------- m r.�� 1.� MM-

Xs,"* �,�
ia
a

a

1.

a
6
4
4
a

la
a
10
4
a
4 0

0
131.
6
CL.-%

c

L
I a

c 1.
a W

a 9-
a 314
1 I

0 4
6
4 6
all
W

I
0

3

i
-1

I
-M

0

I

i
a
fq

i
A

(I
A

i
I

44

I

I

I

I

i

140
0.

0Fig. 19. The push-forward of 01 is the start region for
forward/start region in each slice. (At resolution R3).

192. Here is the push-

146

qb

Fig. 20. Strong backprojection of goal under motion 02- (At resolution R3).

/11"�
t,

14T

L- --- -

i

I

r iIII

r "III
I i�lr .

I
4

9 IIIp
44

07 .I--- - -I
1
4

4

07 .
I.-- ---- -1

F- ,
I- - - I
011

i- --A

r
0
0

r
r
0

2

r .I

I

I

r
r

I

F- -

r

ii

In

In

0

1�
40

1

1�1

I

9

i

11

i

---- - I
r��

11
al

I I

i

- -- - I

II

0
4�

1

4

I

i

r
0

to

I

i

a

d

i

4

i
I
oIn

i
I

4

i
- - I

-- i

0
0

In 0-1

r
0

0

0

r
.2

"M

a

I

A

i

� I

7
a

OR

- - to

I"

.I"
W.

OftL WAP.

ii
0.0I"*0

1PRv.- .. I -W

v.mI".1-1-11 N

w -M6----------AL----------a a---------m

0soc
-W
40
u
.%

a 0
1. ftv
a
49 -

4
AU i

if

440.

I

li

I
A

f
4

i

A

I

I

i
I

i
-A

0
4

0.

i

I

A

I
I
I
-1

1411
V.

Fig. 21. Wmk backprojection
(At resolution R).

of goal under motion 02 Obstacles not shown.

148

I

Fig. 22. Weak backprojection of the goal under motion 02- (At resolution R).

149

I .m.- mi.-

i I I I I .-
I - i

- 4k.i 14 al

. a %WI-.. T�I

---ICL- - .w i

__q__

-A-

a

-AIL

-.4-

XA.- - M. mI- � -- - = at- - --=-- --

r
0

9

I

r
I

I

r
0

3
0

I

I
a
r
0
a

a

1311

i

r
0
i

I

11
a

r
0

r
0

I

9

r i

a

I

r
a

I

r

f

r
0

I
0
0
0

0
0
a

r
0

3

a

..I"

7I-Wm

It I
O" e

c
0-M
a

I- ut" 0
In
a
6
CL

v
6
4
31

oft 1.
14 a

= 6.

Fig. 23. Forward projection of start region under motion
shown. (At resolution R3).

02 Obstacles not

150

0 rr
1>
0 0
0 0

I I
IL

FI'g- 24. Forward projection of the start region under motion 02- Obstacles are
shown. (At resolution R). -

151

10

0 t
- - t

r18

0 .1

I
--- -- 9

I
0
0,0

0

0 i

0

0 4

0

0
3

0

r
0

3
0

0

r
0

ol

0r

2

ol

ol

"I

Po a

00,

PI

r

I

a

PI I

r
I 0

I

ol

r
a

I
I

ol

PI

I

PI I

,l

op

.-Ol

0

I

00
L �- --- -

ol

OP

0

0

ol

11.1VP

a

ol

op

op

or

Po

4

0

11-1

.1

I

I

I

0

I

0

I

i

0

-i1
i

ol

I

-1
I

ol I

VI

I

I

0 i

I

r
0

0

a

0 a

f
- --- I

a
0

PI I

I
- -- --il

I

i

--- A

4

I
I

r
0

PI

r
a

op

r
0

op

ol

op

ol

pp

I
I

ol

cm

ol

OF

10

O."
0
I--
"O

O",
0
F^,
w

f

wdf

I

Ill.

�- - ---- �w

I
I

I
I

I 00"
0.

I-- -- - lw

I

i

7P.

O"
W.--- - *a

a

Fig. 25. Weak minus strong backprojection for 02- (At resolution R).

to

c
a

u9
In
a
t.
Q
J9
t a
4 3.
a

a

1 6
6 0
0
0 31-
%W

ON.
i

a a

14

A

0

I
A

I
0

1

0,

I

v

i

i
-A

I
I

(4

i

A

152

I- - 001

I

I

r
0

I

I

I

4

0

I

I

0

0

0

1

I

I

P-i

a

0

a

a

I

I

i

A

0
1

a

I

I .i

1

4

Im

I

I .1

7

I

r
Z,

I

r

0

I

0

I

0

I

I

I

I a

I

I
L - - ----

t

I

r
a

I

I

t

I

I

I

r

04

I

a
f

I 9

I

I a

I

4

r
0

I

C.

I

r
a

I

I

I

I

I

I

r
0

I

I

0

I

I

a

I

r
0

I

I

I

I I

- .1
i

i
C.M

a

i

--- I
I

r

I
t

-- --- t

0

0

t

I

--- -- I

0
4

I

I
---- A

I

117--�I

I
t

pi
0

I
I
I
0
9

I
I

-- - - I

II

i
I

� I

7
t

"M

a

I-

7

t

z
t

i

I"
11

OR10v.

V.

P.
I

I
i
I
I

i
I

L=L-�-- 9I m L--------A I AL-------A L��%w L

Fig. 26. Sticking in the weak minus strong backprojection for 02- (H. region).

(At resolution R).

-11-1- go Pool M � M

L:

I
1
-4

4

I

i

1
4i
9
Q
"I
a
6
a� ji

u
a
.0

m
c
a
6
Ai
V7
01 aI

2 4
c 3.

C -,.
IC

6

1 a
3..

c I-,
-W

e-
lm N

t

.9 49
- 6
40 0
(A 2

A

0

i
9

a

I

i
4

f
4

1

i

I

I
A�
0

1

m
0
0

i4

f

i

Ia 110

153

i

.00 I

r
..4 :

a

I
=-- WW- - I

1I
*4 4

i
I
0

"O 0
0

a

I

J

i
I
I

. i
I
I
I

c

I�� la
I
411

I
I

I
IL

9

0

a

0

.1

I

.00

.00

14

I
I

i
i

i

4

I

II

I

I

I

a

I

i

i

I

a

1111

4i

Im

40

II
i

I

I

iI
II

I
11
I
c

I
A

a

I94

IM
0
a

I

i

11
I

r

I.

I
C

9

7��
1

r
C.

o I

Ll=�- -a

�l

i

i
I

I
I

11

aI"
f^

I

;I
ti

v.
"I

Z �
I-
Ud -

O"

on :

44

%W.

7

11

-4

0.

r4

I

I

I

I

11

J

i

- - m- - a a 0- � mOW-Am AOP-40 aPF-A a La- ME

I

.c
0

CD

611

1
w

2

0

3

0

m
0

4

i 4I'*
v.

Fig. 27. Ho ED R region for 2
(At resolution R).

(Forward pro'ection minus weak backprojection).

154

,a

I
id

Ia

0.
4

L--�
I
0

i01�
.17

�: t
0
0
"I0
.i

fl�

0
0'I

[:� I
i
A

4�

I�L 0
0a
iL,: 9
1410

i
I

r

r
0

0

c:i___
0

-1
T
0
1
2

C�j

40

I

.0 4i

i

--A

i
-- I

7
0
1

I::�

I
I
*I
v

[::� f,
:r
0
1

[::� i
i
a
a
I

[::] i

L: i
a

L- i
t,

1-1
I

I 2.

4

1111

ILII
II

--A
r
0

0

0

0

[:� I

_--A

L-

'I,- --
48I

r
O.

.fC--� I
0

C: -- I

,:� -

C:�

L,: I"IaiI

IL,: -1
,40

I ?

i
9

r��

T
0

,:�j___-
r
a

lm

C�

L:�
4�NoG�
II0

iIl 4

i

1-11->

I I

r

I
0

::: i-d

a

a

L,:
____j

i
4

I
A.�� i

0

4

:::�i

a

I

1:: i

___j
a

4

I4

i

I

i

II

7
t

0

04
ob

I-

.d

0

2

0

;7�

0

7fl%

0

6"
I Wm

0 �

"I

0 �

.111
11

a
O'..

3
4
6
v

. 60

- ;l

a
x, I
0

. u

. 1;

1 u. a
II a

0%
u

q,

I0
in
ID

I I-

6
. 4

1w

9
I 4

m3 %&Jol-2u- - IEL,ELIb.-AW_ a

Fig. 28. Ho EDR region for 02 (shown wthout fill to illustrate degenerate edges).
(At resolution R).

I

3

0I"

9

i
I

I
I

I
I
I
I
I

I

I

1.

p

mI
D

6,
0
i
.0

00

i

a
WP

4

i

II
iI

f I
I

II
0

155

t�

41

I
I

---A
i

� -- -- - -4

i

I
I

i

I
I
I

Fig. 29. Ho EDR region for 02, shown amidst obstacles. (At resolution R).

156

16

WW

6

X
U

a 9 C
C

6

C 3. a

IS
C

0 60 0
6 0C

C C

Fig. 30. All vertices of the Ho EDR region. (At resolution R).

15T

A
0
0.

,:) I !

I Abml* J�

�wn ;

0
-2�

O

0 1 '*

$I

0

1

a

�j r.

a
0

� a !

III

III

I

r
12

3
I ?

I � ;

IF%

la

2
0 1 ?

i
I

I ?

I
I

0
3

0 1 !

i
9
0%
0

2
* aCM

.I

I
i

fo

00 .

--- I

Oft

r
a

I
0 1 ?

I
L

low i

I

a

I

0 1 !

10 IA

a

I

o I ?

II I
I

r
0

3

0 1 !

t

I PM,=%I

j 0
r I

lb !

I
I
a
0
1

4b !

I
d
I
q
I

ft - -i
01

I
i

i0
1

a!

I I

10

0100 1 ?

I

10

0

0
a

t

r a 11

r
0
2

0 1 ?

I
101 k

9

0

0 1 ?

101 .

o

0

0

0

fl� e

a

45 -

I

r
0.

�D I ?

104 .

0

0 I ?

1

10

0

0 1

*

0

I I

r

0 1 ?

-Inm* i

In &

r
0

I ?

i

1

0

0

0 0

0

r
0

i
C I ?

I

0

0

0

� o

0

0i

I

------- Z---m - m - 0

c
4

4

CL

0
z
44

6
4)
2�

0.
p-
4

I.:
16

z
-W ;

C

c
a c

6

6 3w

0

3
I
I

'M$4

a

a

- - -- 4

0

1411
lb
to

Fig. 31. The EDR region H = Ho H. for 02
(At resolution R).

0is distinguishable from the goal.

158

i
I

I

A

I

-- -- --- I

I

I

i
I

I w

a
c
a

a
� 0
L.

a
16
4

a

v
a
40
4
0
4
a
a
6w
CL

v

I L.
a

c
0 31-
" %W
a
a t%
v
0

40 0
a

4 0
* L.
44 46

Fig. 32. In figs. 32-40 we examine the commanded motion82 in detail for one
slice. The slice occurs at resolution R3, for a %ts (.9,.34). Fig. 32 shows the start
region in this slice, which 'is the push-forward of motion 01. (Actually, this start
re 'on should include the entire left edge of the bounding box. A portion of the91
edge was not found due to a numerical error).

159

Qb

I
I

I I

r---I I
I

Fig. 33. Strong backprojection of the goal under 02- (Detail of motion 92 in slice
a ;:�� (. 9,.3 4)).

160

Fig. 34. Weak backprojection of the goal under motion 02- (Detail of motion 2

in slice a z� (.9,34)).

161

L-

-- ------ ----

Fig. 35. Forward projection under 02 of the push-forward of 01. (Detail of
motion 02 in slice a �� (.9,34)).

162

i

Fig. 36. Forward projection under 02 of the push-forward of 01. The obstacles
I' ice a ^zsare shown as well. (Detail of mot'on 02 sh (.91.34)).

163

- -

F'g- 37. Weak minus strong backprojection under 02- (Detail of motion 02 in
Slice a � (.91 34)).

164

i

i
1

ft-

-.4

i

c
a-W
4i

0
0

0
6
CL
.9
0
4
Im

F- it4
0
2

z
C

9a

C

C.-%
" C
61
Q
a
,on
a 0
1. ---

CL
e-

la
6 0
410-
3u
64
a*)

1.6"-a.. a
Ca3

4
06

la
6

'm
5e.

I
,46.

I

Fig. 38. Ho re 'on for motion 02. (Forward pro'ection minus the weak backpro-v i
jection). (Detail of motion 02 in slice a �e (.9,34)).

165

I-. I I
I I

I

I

I
I

I

i

Fig. 39. Ho region for motion 02- Shown amidst obstacles. (Detail of motion 2

in slice a zzi .91 34)). ---

166

L-a-

Fig. 40. Sticking region in the weak minus strong backprojection, shown by
arrow. (Hp region). (Detail of motion 02 in slice a ze (.9,34)).

16T

I i
I . :

4

"-I

I I

I-

c

c

I

z

4

c

4

a 'T

a

a

3 - Id.

0

a

i

-1

3

0

3

A
ai

a

1!

-4

4�

3 O

I

i

I

I _

I
I

-- Ire

I

--- -L----

-- L

I-

I

I

I

I

I--
I

la

0

j
I I

I
m

I

I

r-

I

t

t

I

I

ri

0
i

19

�q

I

ZZZM!

I

19

r

I
0

fo
r
0

r-
0

0

r14

0

1 I-j0t I
I

la
P,
4N

I

a

ZP.

0

0

4--
A

I

f.
4,

- I --

'A

r--

I

- I

i

.1

-- I

i

0

4�

. Pe

-1

mr-,

I
L-

ww"--

I
07�

�i
-f-

- L-
I

C3 -

I

13

A- -

0

7---=
- I

I

i

I

I
11- ;

;-,j
,3 ,
" 0

II I
i

r*4

L-1 "'

I
0.

2 0-

0,A

I a

I'.3 , I

0

0 1

- f 0
1

113 I

I

i
I

3

t

a -

a

. a
1.
6
0

0-
9

-10

Q ;3 -I.-

Fig. 41. Configuration space slices at resolution R4: 100 slices of the depth x
width x orientation axes. After finding an EDR strategy that succeeds at reso-
lutions R1-R3, and using it as a suggested strategy at resolution R4, LIMITED
found this two-step EDR plan at resolution R4 in 888 minutes.

I

I

- .- 0

I

aI

4

I II

I
I

I

I
I

I ;

I

I
4
4

I I-T- .

I-
4

1

111

4

1
1 L-1 I

II

I

I

168

C2 C2 Cy

tj i C2

el i a

ej

C2

I
0

0

1.

4i
LI
4
42
in

la
Q

IAi
4
M
9
CL

Ia
6
a.

,I

I

0
.L

40
L
4

!40

0Fig. 42. Start region in each slice. (At resolution R4).

169

E

A

0 -
0

c

t.

g ;

4

19

0 ;

c

A
I

0 ;

a

t11

U ;

a

Id

I m

'oa

0

9 A

a

a 10,

a

i

m
m

9 r

0

0 I
0

I

'IO

ft
0 r

I1

u 1r
0

f.5 0%

I.9 .

0
a I,

4
114,

i

m

9 ",

I

0

a m
0

1

I
A-0

a 4

I

u

4

"I

9

a

I'aA

I

9 I
4.

I

I
I 0

a 00

I

I 0
1 a

i 4.,

a al

I

0

Ia

P�

'M

u 401

9

0

.4

1 "

I

4�

a

i
9 "

I

0

0

a

Is
I

I

m

10
9 0

-- I

.a

a 0

I

r
a a

---- -- --I

I
I

6 a

I

I

9

a

4

I

9

0

I

a

u

5

9

a

4

I'.

'R
A
0
I

46 r

A

0 114
0

u

10

1 1

0
4�

0.
9 a

0

11
a I.a

4
114,

10

9

a

a

u

9

0

u r6

I I
u

9

a

t

a

u

9

a

la

I0

19

9'Z.

a

Q.
4

a

u

I

I

9

a

I

U A 9 8 6 a,
I

u I
I
4�

0

I

040 11
,3

0
1

0 .
a

a

I

u ;

0 0
16

u 0 I
4

a
a

8

Fig. 43. Goal region 'in each slice. (At resolution R4).

0
I

ra aa
I

a A

0
a

4
I

0 :

a

I

a I

I

Ia
M

a 1

II

a ,
10

a -,
4

I

4

I

a

II,

1TO

ri

I I r t-- -- i o-

I .9 -,.o

� f-

4 N
a
a

144 laI 4 I(a

Fig. 44. Strong backprojection of goal under motion 1. (At resolution R4).

I

I

i
I

I

L

I

I

I

I

i I

�w
9

i

a
1.

c 0a -

(i

A
a a
1.

171

I I WNW-

--. - - . CD -I- -, - I I Em I I gi I - A

Fig. 45. Weak backprojection of the goal under motion 01. (At resolution R4).

I

I

I

2 .
p
r -
DI

:1

-0 -
I

I
I

1.I-

I

00I-I.
-W c
61
0 16

A a

0 31.
L %W
a

A ch.

i

I I

I A

172

i

NW

Fig. 46. Weak backpr 'ection of the goal under motion 01. Obstacles not shown.
(At resolution R4).

173

Fig. 47. Forward pr 'ectio'n of start region under motion 01. Obstacles not
shown. (At resolution R4).

174

'C'

V-4

qb

Fig. 48. Forward projection of the start region under motion 01 (At resolution
R4).

1T5

FINI'g. 49. Weak minus strong backprojection for 01. (At resolution R4).

i

lT6

I -

I

4
4

c

I

I

I
0

a
4

A

a

a

A

4�

A

0

0

I 10
'r

Z�

i

M

1,19

0
1 0

0

00

ON
r

,I
I
t
a

0

I1

0
T

4
f-
og

F.
0

a

P.

I

4

r11

d

I

a

A

I-

a

I

0

4I-

0

1

I

PI

0

9

0

Ila

rl
14

0

9

4

a

0

1

0

4�

.0
a

4�

I

a

I
I 0

0
1 ri

I C.

-4

a

I

r11
0

I

I

-

A

4

I -- I

mco

-4
r
VA

-o

ai

44

I.4

O

a

i I

0
P.
1�

� - - -.. !

,I
:1

I I

11

I

0

11

- I

I-

I

I 0I
a

'a

10

1%

0

r
0

I

10

2a

0

0

I0

10
a

I

I c

a
I

1 40
u
a
In
a
16
CL

I x

0
A

. a

a
6
Ai
CA

0

-1L -1I -t

I
i

0

-0

1�
0

1

0
I -4I

I
F.e
4

I

I

I

I

c Z;
V-

!IA u-W L
4i
(A

Fig. 50. Sticking in the weak minus strong backprojection for 1. (H. region).
(At resolution R4).

I

0.
0,I,.

X,ak,

I:

6

I

I

I

I
I
.3..

I z

I L
I a
I
so

I

I

A

I

tIt

A

0

1I40

a
0

I

I
0

I
f

I

I

I

a
I

AI
a

I
I

1TT

30-

16

Fig. 51. Ho EDR region for 01. (Forward projection minus weak backprojection).
(At resolution R4).

178

I

1

z

v

I c

10

a

a

I

0

a

I

0

0

0

44

A

Q�

ei

44-1

I

no d

11
I t

4
II .1

0

A

0
r
0
0

00

09
� 4� r

0

0

0

0
1 r

0
a

I
I

do
0

I

I

0
IA

01
I.

i � -

0
0m
0

-1

I

L� 4

I a

k

t,
9-

k

k

k

I

11 4-

I

i

II

0

9

4

a

I-0

00
r
0

r

0

0

M

4

I

0

I

.0 ?.

I 0 !

0
r

0 0

0 0

,4Is

r

; i

a

m

I

9

00'
I

a

i

0

AI i

I

I

;=SW ---x r�-� r- � UP-- - -LA

Fig. 52. All vertices of the Ho EDR region. (At resolution R4).

I

0
I

r
0

11

I

34

4; c

la

C

la
6 -W

49

t

179

I

1
4

4

I
0

4

I

II
4
4

a
I

4

I

ft

I

I
a
I

A

an

GFig. 53. Ho EDR region for 1, shown amidst obstacles. (At resolution R4).

180

44

.C

c A M
a

6 C

Fig. 54. The EDR region H is not dstinguishable from the goal. (At resolution
R4).

181

I

0
14
0
0

I

I 0

0

F- ,

I

I

I

I
I
I4

z

I
7

1 1

c

- 2

a
Ar- aa

f - r00a
0rr 00

I'l

I IaI 00- a
4�

N

r- col0- - I

I
laI
10,

I 0

9

I - ?

0

m

14100
II C�

0

A
0

I
igm--- I

r

I

I

r-

4
f,

I 11- I

m
% PI

0- I

a
a
I-

i

Q.

14

I

0

A

I

I

I

I 0- I

r11

r 0- I

0
0

10

1

I

r

Ila

r11

r - 0

- ---- I

I

I

f

I

I

I

4
I

A

f 0

- 0

t

I

I

I

I

0

4

r

I 0

I 'd
I.

I a

I

I
4�
-W

I A

f
to

-i

Oi

I

r

0

1

0�
-- -- 1

44

404
a

a
0r

f a

a
i 11I

a

a
10
a

Ila

a
P.

i

I

j

a

di
a

a

I aa

q

7.
a..

-I-

t
I.

a

I

I-

a
4.

t a
9
6

a
6.6

4

I61

#1

la
a
10
4
a
a

I

-1
Ii

I

f r -

I ----

r- r

a

I

i

-1

I
AI
4

4

1

4

-. %O

.SO.

. 0
6

40
6
4
60 I
$A

Fig. 55. The push-forward of 1 is the start region for 02. Here is the push-
forward/start region in each slice. (At resolution R4).

w
a
6
A

It
c
4

f

71

j

i
60

i01
11110 .I 0
t 0

L -
c

I
: 16
9 0

i .

4!
1�1

� f I

I0
I

I I

182

II"

I0

4
-i
I
0

7

0

Ia

11

r - I

I1
pa0.

44

4

4

1

4

I

0
Ia

r

- 4
f a,I

t I

- 0

---r==� -) J--F=fm7 FM=F=9-

17

,-711,
M=MwIr-tjr=�l

L L-7 -- f LNOMMIl"113pnow";
6ill- 61M L

� CFI-7
I

Ila

A

A

0

1

1

1

1

I

I

I
4

4

01

I

4

0

I

I

I

4

I

ommmmm."-.q

I0

I

I

It -

4

I -�o

0

I f

i

I
i

L---L-j I
431-
.9 -.0
0

c-
a N

CL
0 0

1141 6 6
40 1
(A

I I
Fig. 56. Strong backprojection of goal under mot'on 02- (At resolution R4).

i

I

i

I

I
I

I

.,a

t i
. 6

5

I

I

183

I c 4)
0-

4i A%

w

4)
104 6
a a
6

Fig. 57. Weak backprojection of the goal under motion 02- (At resolution R4).

184

L��

or 4

or- ,c

07 ,
I

A
I - - ;p 4a

I
ol'-- ,4

4

1

9

a

4

A

9

a

4

a

9

I

9

0 ft

0�
F- Oi

I

F0iF 04

I

I

a
FMW

0

p

Is
1110
0

I

z

X
c

r

4
-1
0

IF I

P�
F 09

0P.
a,

� - --- A0
I

0 ma
I
0
I4
0

1L --

0"-

r
I

Ir0

9

I

ii

v ;z

9

Ila

r ;

FA

4
4�.

.4

0
0

A
0

i

a
M
0

rL -

I A

Ia0
F

- ---I

Aorlo P,

I

1�

A
0
a

I

A
0

I
I

i

i

I

ft

I4
i
10r I

III
4

I

I

--

P.A
a

f,
m

0

1

AIL

F a

4�

a

a
i

a

4

11

i

r��

0

10

0
IA

I

0
IIs
II"aI

9L

F I
Q�
a

ola I
v 11
I
r��

a
30.

c

-W
60

6
a

"I
a 0
6 w
CL

J9 C-
u 36
4 06

A a

41 6

I

Fig. 58. WMk backprojection of goal under motion 02- Obstacles not shown.
(At resolution R4).

-m"10.00"Pt" '.. .

OPW t
I

t

I

II

I

II

I

I

I

I

I
4
a

I
#IA
a
a
a

I

a "I

0
1

F - :
I

0
1

op* I

I

I

185

I i

I

i
I

I
I
14

1:

I

4

I

a

I

a

I

0
r

0

1

0

I

I

*1

I

I
i

I

II

0
4

I

I

4

I

I

I

a

I

A

'm

------- 7

---- 4r,

I I
I

I

I

I

I

0

11

4

4

41

I

1:

IA

44

I

4

IId

I
a

4
f.
a
0

4q
N
0

i..m41�

0

-1

I
I
vI
i

10

0

a

A
0

0
10

A

6

I
0

1
0

0

I

4
I
r

a
F,

m

C.

IIO

--.- .0

131

P.

a

11

0

a

I1

PI
14

a

I

I a
I 'I

0
1 a

- - -1

0,44

r
0

------ .- I

0
r
0

a

I

0
r
a

I

0

II�

I
0

-- -I

r
a

I
� 40

u

A

0

--- - !!]L- -- .2- - -f- - :j MP-am a ml�w� P- 3
a

L�b.

T

A

0

0

L--

I

AO,

m
qb

c
a

v
6

1

0

Fig. 59. Forward projection
shown. (At resolution R4).

of start region under motion 02- Obstacles not

186

0
i

I

1
4

4

i

I
p

I

I

I

4
I

I

4

, ft- I 41 1 I I .

0Fig. 60. Forward projection of the start region under motion 02- Obstacles are
shown. (At resolution R4).

18T

4

0

0

0

0

m

0

a

.01

op

IId

ol

ol

4
r

0 0

19

r

0 0

-1

0

r

0 00
0

Po

IIs

OF

0

0

0

.-I

op

0
01 InI 14

I

A

I

0

A
0

8

0

I1

4
0�

I

CM

Ia
I
1�

a

0 0
0i

i

0

0

0
t

v0

I., m4.
ol 9

-9

f.

01

op

f,

0

0

a

I

P-

10

a

I

P-

00,

0
4

I

0

or -- I

I

0

I

0

I

0

m

0
r
0

- --- ----- I

0

1

0

a

r

10

.0-1 9

VP C�
-.0

1-1 4

ciol

IGo
04.

all 4

0

i.i01

011.1
0 a

-0

t

I

0 4�

Id

I A

a

A

0

a

A

I

1111

4
r

op 0

A

t

PI a

a

I

Po a

IM

r

Po a

I

0

i
Po

L--�
1000ol

Iaop a

tI-
0 a
I

II

I

I

r
0

0 .
.1 -

F 0.
I1

r
0

I

ol

op

P.M

OF

,I
fA

0 14
0
0
IId

,If,

0

OP

4

.�Il

ol 4

M

4

OF

4

11-1

0 c

4

11

11-11

op

I

,Is

0

OF

0.

PI

,

I

00

0

I

0

OP i

........ - .

a

0

�00

L - -- --

0 .

rl
'a,

op

0
0

'q6

I

0

f r4. II

I
f,

I

'I

II,

II

0

0
1

I
op I

0 0
IIs' I (-

-Wgi
ft 14
fli

C
a
40
u
A
a
1.
CL .
4 In

� 31 --a
cc
I f a#AS.-W

Fig. 61. Weak minus strong backprojection for 02- (At resolution R4).

iss

CL

it

Fig. 62. Sticking in the weak minus strong backprojection for 2. Ho region).
(At resolution R4).

I

I

I

I

I

II
I

I
I
II

I

189

-- m! - -------- I I --- --I- - - - -

Fig. 63. Ho EDR region for 02 (Forward projection minus weak backpr 'ection).
(At resolution R4).

190

I � - ..- -

I
I -- I I

4 ?

f PW p- r pir- r Nomr- f bomr- r i.

I

A

II
r---j 0

I
0

i

I
I
I
0

i

r- r - ar- -, - f

r,
I I-
I

c--- :
7
0

I

m

--- - I

a

30-

.ft
c

1.
a

31-
.1%W

- _mmmmmmff-- � � IR- - MIR I:s t

Fig. 64. Ho EDR region for 02, shown amidst obstacles. (At resolution R4).

I

.4

I

I

I

I

f1b.

24

f

464

191

.. FPW-R-- � -

f 0 n R4).Fig. 65. All vertices of the Ho EDR region. (At resolutio

192

Fig. 66. The EDR region H = Ho U H# for 2 is distinguishable from the goal.
(At resolution R4).

I

193

11. Failure Mode Analysis

Push-forward techniques require a precise geometrical characterization of the
forward-projection, and algorithms for computing it. The gear-meshing example of
chapter I is a problem in a four-dimensional generalized configuration space wth
pushing. Two of the dimensions are rotational: one of these can be commanded, and
the other cannot, but the position along this dimension may be changed via pushing.
It is difficult to develop good forward projection algorithms in this generalized
configuration space, although our critical-slice methods are a start. For tis reason,
a different technique was developed for planning multi-step strategies 'in this domain.
It is applicable for any generalized configuration space with the same degrees of
freedom and pushing characteristics (that is, any polygonal shapes in place of the
gears). The new technique is called failure mode analysis; we describe it in this
section.

Failure-mode analysis is a method for synthesizing multi-step strategies using
a kind of "approximate" or "a priori" forward projection. At first glance, it may
appear unrelated to push-forward or preimage techniques. However, in the next
section, on the weak EDR theory, we present a viewpoint which essentially "unifies"
the three approaches.

11.1. Example: Multi-Step Strategy for Gear Meshing

Recall the gear-meshing plan LIMITED generated in chapter I, fig. 4 Consider
the problem of meshing two planar gears, under uncertainty a's in chapters I and
IL Suppose that gear can rotate passively but has unknown initial orientation,
as above. Suppose that A has been gripped by a robot. The initial position of A is
uncertain. The robot can impart either pure forces (translations), or pure torques
(rotations) to A. The planner can choose the direction of translation or rotation.
Can a multi-step strategy of commanded translations and rotations be found to
mesh the gears?

LIMITED was able to generate an EDR strategy for this problem. The charac-
teristics of the experiment are:

1. There are three degrees of motion freedom (two translational and one rota-
tional) for A.

2. There is one degree of rotational model error freedom (the orientation of B).

3. Pushing is possible to change the orientation of B.

4. There 'is sensing and control uncertainty.

5. The geometry of the gears is complicated.

194

6. Quasi-static analysis is used to model the physics of interaction between the
gears.

7. We suppose that vision 'is poor, or that the gears are accessible to the robot
gripper, but not to the camera. This means that position sensing wll be very
inaccurate, and hence may be of no use to determine whether the gears are suc-

cessfully meshed. This will often be the case in practice. In this case, force sensing
must be used to disambiguate the success of the first motion (meshing) from failure

(jamming 'in an unmeshed state).

8. Hence a multi-step strategy is required.

Thus we have a kind of four-degree of freedom planning problem with uncer-
tainty and pushing. To generate multi-step EDR strategies under pushing, LIMITED
uses the EDR theory together wth failure mode analysis. Here is the plan LIMITED

generates:

01. Command a pure translation of A into B.'

Terminate the motion based on force-sensing when sticking occurs (when there

is no motion).

02 Command a pure rotation of A.

If breaking contact or sticking occurs, signal failure. Otherwzse� stgnalsuccess.

In this plan, motion 1 does not terminate distinguishably 'in success (meshed)
or failure (jammed). That 'is, after motion 01 terminates, the plan executive cannot
necessarily recognize whether or not the gears are meshed. LIMITED predicts this,
and generates motion92,which disambiguates the result of motion 1. The genera-
tion of the second, disambiguating motion 'Involves the use of failure mode analysis.
Breaking contact and sticking are examples of failure modes. The second motion is
generated so that from any unmeshed state resulting from motion 1, all possible
paths will terminate distinguishably in a failure mode. Failure mode analysis 'is a
robust subtheory of EDR by which LMITED generates multi-step strategies under
pushing.

11.2. Introduction to Failure Mode Analysis

In the gear-meshing plan, motion 2 is used to disambiguate the result of motion
01. The technique used is failure mode analysis. LIMITED is given a repertory of

qualitative failure modes, which comprise sticking and breaking contact. Motion
01 can end n a "good" region (meshed) or a "bad" region (jam). LITED tried

to generate a disambiguating motion as a second step. This motion is reqwred to
terminate in a failure mode from all "bad" regions.

LIMITED generates the actual force vector v*01

195

Here is how LIMITED generates Mtion 02 Let H be the EDR region for

motion 01. The planner determines all configurations where motion 01 can terminate

outside of G. Call this region pushg, (H). push,9 (H) then forms the start region for

motion 02. LIMITED then uses quasi-static analysis to "prove" that when A is at any

configuration in push,91 (H), and a pure rotation of A 'is commanded, that all possible

motions of A result in sticking or breaking contact. Sticking and breaking contact

are called failure modes; there 'is a class of EDR plans which can be terminated in

failure when sticking or breaking contact are detected. EDR planning with failure

modes constitutes a robust subtheory of EDR. It is a subtheory because assuming

this kind of failure mode is a restrictive assumption to make planning tractable.

It is robust because sticking and breaking contact are easy to recognize, relatively

speaking, as failure modes by a run-time robot executor.

From the preimage point of view, failure modes are implemented simply as

different classes of termination predicates.

11.3. Specifying the Goal: Functional Descriptions

Recall our discussion of sticking as a termination condition in chapter IL Stick-

ing had the advantage of ensuring "good" behavior in the EDR region H. In

particular, it could be guaranteed that all motions would eventually terminate in

G u H, rendering the distinguishability of G vs. H a history-free decision. However,

in order for a sticking termination predicate to generate good EDR plans, it was in

fact necessary to ensure that the motion strategy has "good" behavior at the goal

as well. In particular, the commanded motion should stick at the goal.

In failure mode analysis, we have a similar situation. The purpose Of Mtion 92

is to force all motions starting from push,91 (H) to terminate in sticking or breaking

contact. Clearly this 'is only useful if no motion from push,9 (G) can even possibly

terminate in sticking or breaking contact. This is the required "good" behavior at

the goal. Thus, 'in an EDR plan generated by failure mode analysis,

Fl. Under motion 2 all motions starting from push,9 (H) must terminate in a

failure mode.

F2. No motion from push,9 (G) can possibly terminate in a failure mode.

F3. The goal is a fixed-point under motion 02-

LIMITED decides whether or not (Fl) is true. However, (F2) is given as input

to LIMITED. We will now dcuss how (F2) is specified. In the next section we

w'll describe algorithms for computing (Fl). (F3) may be decided using forward

projections- the actual condition we require is

F02 (push,9 (G)) C G)

196

which 'is implied by the fixed-point equation

F02(G = GI (F3)

since of course push,9, (G) is contained in G.

The goal state for gear meshing may be viewed purely geometrically. That is,
'it may be viewed as a set in generalized configuration space. This view 'is useful
for computing the EDR regions. Alternatively, the goal may be specified through
a functional description. For example, we might specify the goal as a difference
equation (DE). The intuition behind this difference equation formulation of the goal
is, "In the goal, any finite rotation of A results in an equal and opposite rotation of
B. More precisely, the difference equation specifies:

DE. Command any non-zero finite rotation Aal to A. In the goal, this results in a
finite rotation of A by Aal and of B by -Aal. 2

This difference equation captures the functional aspects of the gears 'in their
meshed state. Now, it is clear that this equation may be "differentialized." That
is, we consider it to be true for a non-zero displacements, no matter how small.
If this is the case, then it is clear that breaking contact 'is in direct contradiction
to the truth of the difference equation (DE). This 'is because if contact 'is broken,
then there exists some finite rotation of A that wl not affect the orientation of B.
Similarly, sticking contradicts the truth of the dfference equation, for 'if the gears

we in equa
stick, then they are not properly meshed, 'i.e., do not obtai 1 and opposite
rotations.

In LIMITED failure mode analysis, we view the goal state as a combined ge-
ometrical and functional specification. Here are the three ways of specifying the
functional aspects of the goal. The last, which decides questions about goal predi-
cates via the theory of real closed fields, is only of theoretical interest. The second
is a heuristic approximation to such an 'inference engine. The first is a more robust
solution with an engineering flavor. It places on the user the burden of ensuring
well-behaved qualitative behavior at the goal.

11.3.1 Specifying the Functional Aspects of the Goal

Method 1. User input. In this method, it 'is the responsibility of the user to
ensure that (F2) 'is true. That is, the user must guarantee that failure modes cannot
occur at the goal. This, of course, is the easiest method. If the user guarantees that
(F2) holds, then it remains only for LIMITED to show (Fl).

2A and B are the same size. Clearly, this may be generalized to different pitch gears.

197

* 11.3.2 Computational Methods for unctional Goal Specification

Method 2 Inference. If the user cannot guarantee that (F2) holds, it is possible
for LMITED to make certain kinds of deductions to infer that (F2) is true.

How can such an 'Inference mechanism work? We can vew the difference equa-

tion as a kind of predicate on paths. This is similar to the termination predicate

with continuous history studied by [Mason]. In this model, when the predicate is

true, the path has been recognized as a member of a particular class-say, the goal

class, or the failure class. Smilarly, sticking and breaking contact can be repre-

sented as path predicates. If p is a path 'in generalized configuration space, we wish

to prove that if the difference equation predicate (DE) is true of p, then

stick(p) V break(p)

is false. It 'is possible to write a semi-decision procedure for this question using

resolution refutation. I wrote a front-end to LIMITED which can decide this question

in special cases. goal, stick and break can be defined as predicates on paths. To

do this we must view paths as lying in phase space, that is,

P [0, oo). --+ T9

hence p(t) is a pair representing the actual position of the robot and the actual net

force on (equivalently, velocity of) the robot at tme t. stick(p) is defined to be true

if sticking occurs along p. break(p) is true if p ever breaks contact.

The inference system tries to find a contradiction among the set of formulas

I goal(p), stick(p) V break(p }.

If a contradiction 'is found, the system assumes that sticking or breaking contact

cannot occur in the goal, and (F2) has been established.

The quantified difference equation nference mechanism was implemented to

explore the feasibility of the approach. It is ad hoe, special-case, and incomplete. It

should not be viewed as a focus of this research, but more as an heuristic experiment

on the 'Interaction of geometrical and functional goal specifications. While it is

'ble to write a more complete nference engine that 'is not the point of this

work. From a practical standpoint, the user 'Input method for ensuring the validity

of (F2) 'is probably preferable.

Method S. Second Order Theory of Real Closed Fields. Method 2 described a

heuristic implementation of a mechanism for inferring (F2) from a goal predicate.

We must now mention a complete, albeit strictly theoretical mechanism for this

inference. In particular, we describe a semi-decision procedure for deriving (F2)

from a goal predicate on semi-algebraic paths. Fst, we define an extension to the

198

theolry of real closed fields. Next, we show 'it is semi-decidable. Finally, we note
that the specification of the goal predicate, above, may be encoded in this language.

Definition. A semi-algebraic (s.a.) function is a univanate piecewise-polynorr'al
function.
Definition. The Second Order Theory of Real Closed Fields (2RCF) is the first
order language with the following augmentations:

quantification over s.a. functions,
s.a. function application,
differentiation of s.a. functions.

While the first order theory can quantify only over variables, sentences in 2RCF
can universally and existentially quantify over functions, such as s.a. paths.

Definition. The Existential Second Order Theory of Real Closed Fields X2RCF)
consists of all 2RCF sentences of the form (3pj, Pk E R[t])F(p) where F) is a
2RCF predicate containing no quantified functions.

Theorem. X2RCF is recursively enumerable.
Proof. Given a formula (3pF(p)) where p E R[Xi, Xn], enumerate s.a. multino-
mials p by degree. Test whether F(p) 'is true using the first order theory.

Our paths lie in real d-space where d is the dimension of Tg.3
Now, the questions we wish to decide are

(VP E ,R[t])d)goal(p) =�. im r o p c DCO

or

(V E _R[t])d)goa1(p) -nstick(p).

The negations of both formulae are semi-decidable in X2RCF. If either negation
is true, then failure mode analysis wll not work for this goal predicate. This gives
a theoretical means to decide when failure mode analysis is inapplicable. It is
interesting only as an in-principle approach. It can be shown that X2RCF is at
least non-elementary. It is probably undecidable.

Some of the greatest and most interesting unsolved problems in geometrical
robotics lie in the 'Interaction of functional and geometrical descriptions of goals. In
particular, we would like to devise algorithms for computing a geometrical goal re-
gion given a functional description-for example, a quantified difference equation-
for the desired behavior 'in the goal state. Conversely, we would like to be able to

3Actually, d 'is the dimension of a real space n which the manifold T9 embeds.

199

infer a functional description of the goal from its geometrical aspects. The latter
would be useful in automatically generat ing termination predicates to recognize the
goal.

11.4. Approximate Algorithms for Failure Mode Analysis

We now describe algorithms for deciding whether

Fl. Under motion 02, all motions tarting from push,9,(H) must terminate in a
failure mode.

Let us denote push,91(H) by H These algorithms use time-indexed forward
projections to prove that underO2, all paths starting in HI eventually stick or break
contact. The algorithms are approximate, although conservative. That is, if they
terminate then (Fl) is true. However, they may not terminate if (Fl) is false, and
they may miss cases where (Fl) is true. The accuracy of the algorithm increases
as the time steps for the time-'indexed forward projections are taken to be finer. In
the 4D generalized configuration space for the gears, which is R2 X S1 x S1, these
time-steps correspond to the fineness of the slice resolution across the rotational
dimensions.

We wll first describe a quite general algorithm for deciding (Fl). It is ap-
plicable wherever we can obtain a computational characterization of time-indexed
forward projections. Later, we will give a specialized algorithm in the generalized
configuration space for the gears, and show that it is in fact a special case of the
general algorithm.

11.4.1 A General Algorithm

The basic idea is to step along 'in tme smulating the motion, and determine
whether or not it breaks contact or sticks. Of course, we must simulate all possible
motions, using forward projections.

First we must develop some notation. Recall that for a planar set HI, 49H,
denotes its obstacle edges. Here, we will use 'it to more generally to denote the
obstacle surfaces (as opposed to the free-space surfaces) bounding a set HI in gen-
eralized configuration space. (In our case HI, the input to the algorithill, is the
push-forward of motion 01).

Let x be a pint in generalized configuration space. Then sticka(x) is true if
sticking 'is necessary at x under all control velocities B,,(v*) consistent with the0
nominal commanded velocity v*. Let sticko(Hl) denote all points x in H where
stickq(x) holds.

200

Now, assume some positive minimum modulus bound on the commanded ve-
locity. We use F9,At(.) as the time-indexed forward projection operator (see [Erd-

mann]). So F9,At(Hl) denotes the set of possible positions the robot can be at at

time t, having started in H at time t = .

Now, we are ready to give the general algorithm for deciding (Fl):

Algorithm Gen

1. Let F +- OAt(Hi).

2. Let H2 +- aF - tick92 (aF) .

3. When H = 0, we have proven that all paths from HI must eventually stick or

break contact. Halt.

4. Els e, Hi +- H2. Goto (1).

Note that H is permitted to be in free-space, although given the sticking push-

forward it will, in fact, always be on a generalized configuration space boundary.

Note that Gen is a semi-decision procedure. Clearly, if the algorithm halts, then

all paths oginating in HI eventually break contact or stick. Fig. 67 illustrates the

algorithm. Suppose the H region is the edge e. Its forward projection after At

is the region U U g. The obstacle edges of the forward projection are e', f, and g.

Sticking must occur on f . Hence, H2 is e' U g.

We now mention a basic property of forward projections that this algorithm

exploits. It is the property that forward projection commutes with union. In

particular, if we have

boundary free-space

HI HB + HF

then

Fe (Hi) = Fe HB U HF = Fe HB) U Fe HF)

This key property permits the algorithm to decompose the failure mode analysis

into essentially independent decision problems about the forward projections of the

free-space, sliding, and sticking regions 'in the push-forward.

11.4.2 A Specialized Algorithm

For failure-mode analysis, LIMITED employs an algorithm that is a sperinl case

of the general algorithm above. The idea is that when commanding a purc i t ation

of A, the time-indexed forward projection across slices can be well approxim it cd by

201

Fig. 67. Illustration of the general algorithm. The start region H 'is the edge
e. Its forward pr 'ection after At is the re ion U U g. The obstacle edges of
the forward projection are e', f, and g. Sticking must occur on f. Hence, H is
el g.

Ff 4t

Hi

9

9

jr

'A 11

A

Ile

i

I

. stick,(-)

I
_.f

t.
L - - - - -

'A

H 2

0the differential forward projection of sec. 6. The differential forward projection is a
technique for propagating the forward projection across slices, when rotations of A
and B are pe tted. Recall our notation for motions 1 d92 1 is a commanded
pure translation of A, and may be viewed as unit vector v* in the plane. 2 is a
commanded pure rotation of A, and may be vewed as a member of I dal, -dal
for positive and negative commanded rotations.

Differential and Propagated Forward Projections

Pure Translations. Forward projections must be propagated between slices
even when a pure tran lation is commanded, since a pure translation el can alter
the orientation of B, and hence the slice-value, through pushing. Recall li(,w the
differential forward projection is constructed for a pure tnslation 1 6).

202

1 ion spaLet (XI y , a, a2) denote a configuration in the generalized configurat' ce for
the gears, x S x S. (x, y, a,) denotes a configuration of A a2 denotes the

configuration of B. Hence, we regard the orientation of B (the "last" in the

product) as J. Now, H, is a set in generalized configuration space. Let H,

denote a particular x-y slice of H, for orientation a, of A and a2 of B.

Motion 01 commands a pure translation of A. Now, for each edge 'in H,

LIMITED performs a quasi-static analysis to determine the possible 'impending mo-

tions of A and B. That is, it determines which way(s A and B can rotate. These

directions may be viewed as tangent vectors to the pure rotational dimensions of

generalized configuration space. The set of possible directions may be identified

w'th a set of pairs

-dal I dal } x I -da2, 0, da2 (9)

in the tangent space to (S x Sl). By performing this analysis for a edges, we

obtain a set of directions,

dF I (Hi I lCV2

which is called the differential forward projection of HI 111111 11112 under 01. It 'is assumed

that commanding 01 from region H, 1111,11112 can result in any motion direction in this
set.

Suppose (at a') is a slice taken in the direction of some tangent vector v in the

differential forward projection. For example, if v = +dal, -&2),then a' = a,+ El
and a' el and 2

2 = a - 2 for some small positive scalars
Now, the forward projection may be propagated to the adjacent slice (a', a')

J 1 2

as follows. An edge ei in Hi corresponds to the intersection of an algebraic

surface V in generalized configuration space with the "plane" 2 x (a,, a2) } V is

followed into (a', a'), and the forward projection of ei is taken to be the intersection

of V with the "plane" R2 x (a', a') } In this manner, we obtain a set of edges

e } in the new slice. The pure translational forward projection of these edges

under 01 is then computed within this slice, so the propagated forward projection is

Fol Q e_� }). This propagated forward projection is computed at a fixed orientation

of A and B. Ideally, the planner should decide whether the sliding characteristics

change along V while moving through rotation space. The rotational values which

are sliding-critical are discussed in the critical slice section, 6V The propagated

forward projection increases in accuracy as the slices are taken closer together.

Pure Rotations. Consider the problem of computing forward projections across

slices for a commanded pure rotation 02 E I dal, -dal } For simplicity, we first

4Detecting sliding critical orientation parameters along the algebraic surface V has not

.seen implemented in LIMITED. Thus the propagated forward projection may be larger
than it need be.

203

consider the case where H consists of a single point. Let x be a point in the
plane, and (xala2) be a configuration where A and are 'in contact. Then the
differential forward projection of x under 2 wll consist of vectors in the set of
eq. 9 The differential forward projection has the same structure as in the pure
translational case. It may be computed using quasi-static analysis. (see the next
subsection below).

Suppose for the sake of development that the differential forward projection
consists of exactly one direction v, and that (/ ') is an adjacent slice in that
direction, as above. Now we ask, what is the propagated forward projection of x
into the adjacent slice, (', ')? Well, it can be one of two things: either it is x,
or it is empty. The reason is that x-y position is invariant' under 2. Thus, an
upper bound on the propagated forward projection of into an adjacent
slice (', ') is found by simply "copying"' HI into slice (', ').

1 2 1 2

Now, consider the propagated forward projection Of (X, al, a2), under motion
02, into slice a',a'. It is simply the point al a'). There are three possible1 2 1 2

qualitative outcomes:

1. x is inside a generalized configuration space obstacle in slice (', ').
2. x is 'in free space in slice (', ').
I x is on the boundary of a generalized configuration space obstacle in slice

(a/ a/).1 2

Obviously, 2 implies that contact has been broken. (1) corresponds to a
physically impossible situation. Snce the configuration (x, a', ') is physically
unattainable, this means that the commanded motion 02 must result in sticking
(no actual motion) before (', ') can be reached. Now, if we have either outcome
(1) or 2) then we have proven that, under 2, any path for the robot starting at
(X, a, a2) must stick (1) or break contact 2).

Suppose, however, we have outcome 3). This outcome is not inconsistent
with the negation of (Fl). That is, it has not yet been shown that any path from
(x, a,, a2) will stick or break contact. In this case, in the new slice (a', a') we
again perform the quasi-static analysis and forward project again into yet another
slice. This process continues until either outcomes (1) or 2) are obtained.

More generally, the differential forward projection of (x, al, a2) could consist
of more than one vector. In this case, each must be taken as a forward projection
direction, and in each drection we must show that outcomes (1) or 2) eventually
occur. That is, the computation above must performed for each direction predicted

'5See below for more on this assumption.
6We use the awkward term "copying" instead of "translating', snce while te latter 'is
precise mathematically it 'is confusing robotically.

204

by the quasi-static analysis, and all drections must terminate in sticking or breaking
contact.

We have described how the failure mode analysis proceeds when the push-
forward H of the first motion 01 is simply a point. It remains to generalize the
discussion to the case where H, is a region in generalized configuration space, rep-
resented by slices. We first introduce some notation. If CO denotes the generalized
configuration space obstacle for A due to B, then let CI,,,,,,,,,, denote the x-y slice
of CO at orientations (a,, a2). As usual, let a denote the obstacle edges of a set.
e is the slice resolution parameter. The input to this procedure 'is a stack Q of
x-y-slices of Hi. An entry in Q is a triple, consisting of an x-y slice Hi and
(a, a2), the orientations at which the slice was computed.

Algorithm Spec

1. Do until Q = :

2. Pop the triple (Hi I V1 CV2 I a, I a2) off Let H2 HI 111111 11112

3. Let dF - d02 (H2
4. For each v in dF do:
5. Let (a', a') - ev (a,, a2)-

6. Compute C01c,,,cl1 2

7. Let H3 +-H2n 9cojc,,,,.1 2

8. If H3 :� 0, push the triple (H3, a', a') onto

Note that this is a serni-decision procedure. This is the algorithm that is
actually implemented in LIMITED. The key step is of course the iteration step 7),
which we think of as

11H2 - H2n aC01., IIII)a2

which is repeated "until H2 is null." CIC.1'al IS computed using the plane sweep1 2

union algorithm, as is the intersection.

11.4.3 On the Invariance Assumption

We have assumed that x-y position of A is 'invariant under a commanded pure
rotation 2. That is, commanding a pure rotation cannot result in an induced
translation. On the other hand, we allow a commanded pure translation of A to
induce a rotation of B (but not of A) These assumptions are realistic 'if, for example,
the robot has gripped A by its center shaft, and the manipulator is very stiff in the
x-y directions when commanding a pure rotation. In future work, relaxing this
asymmetry should be explored. See chapter VI for suggestions.

205

Type Surface Moment arm on Moment arm on A
rb ra

A ea(al) e bj(a2) bj(a2 - COMB bj(a2 - X - COAIA

B ai(al) ED eb(a2) -- 1 x ai(al - CiWB -ai(ai - COMA

11.4.4 Quas'-Static Analysis

We now show how the quasi-static analysis 'is computed. It is quite simple.
We view the commanded velocity to A as = 0, 1). When the gears are in
contact, this defines a moving constraint in the configuration space of B, which is a
one-dimensional space. Given a contact configuration, we compute the moment arm
in order to determine the drection of the constraint. The moment arm on B (resp.,
A) 'is simply the vector from B's (resp. A's) center of mass to the contact point 'in
real space. The contact point in real space can be recovered from the contact point
in configuration space.

Let ra and rb denote the moment arms on A and B, resp. Then the instan-
taneous velocity v, of the contact point on A, given w, 'is ra- B's direction of
impending motion is gven by the sgn of the expression

rb X 72va = rb X 72(w x ra),

where 7r2 denotes the projection of V onto R2.

We now discuss recovery of the moment arms from the contact configuration.

Let COMA and COMB denote the centers of mass of A and B. In these exper-

iments, they are simply the centers of the gears. Suppose (x, ,, a2) is a contact

configuration. Then it lies on an algebraic surface in the generalized configuration

space R2 X S1 x S'. This surface is one of two types [Lozano-Pe'rez]. Let -A denote

the reflection of A about its reference point. A type (A) surface is generated by an

edge ea of -A and a vertex bj of B. A type (B) surface is generated by a vertex

ai of -A and an edge eb of B. Each edge-vertex or vertex-edge pair is called the

generator pair of the constraint surface [Donald]. The edges and vertices of -A

(resp. B) rotate with a, (resp., a2). An (al, a2)-shce of the surface is found by

rotating its generators by (,, a2), and taking their Minkowski sum. Hence the sur-

face may be viewed as a parameterized line-equation, by (al, a2). The table below

gives the details for recovering the moment arms from the contact configuration,

contact surface 'in generalized configuration space, and centers of mass. We employ

the following notation. For an edge or a vertex v, e(a) and v(a) respectively

denote e and v rotated to orientation a. denotes convolution (sometimes known

as the Minkowski sum). For two sets U and V, U D V = I v + u I u E U, v E V

206

11.4.5 Stiction

What the Spec algorithm does is this: it tries to show that from any sc of
HI, all paths that could possibly evolve from commanding a rotation of A either (1)
remain in the first slice, or 2) in some subsequent slice, stick or break contact. We
have described how 2) is detected. (1) is a form of stiction- the gears do not turn.
Note that (1) is a form of sticking behavior since no motion occurs. Staying in
the same slice means that (a,, a2) are fixed, and x and y are fixed a priori. Hence
events (1) or 2) satisfy (FI). That is, (1) is also a form of sticking, and can be
detected at run-time by the termination predicate.

Now, suppose sticks but A continues to turn? This type of stiction is also
no problem, since it corresponds to a differential motion (±dal, 0), which can be
predicted by the differential forward projection.

11.4.6 Failures Outside the EDR Framework

We will momentarily digress to a practical question. It would appear that
for failure mode analysis to work, nonuniform stiction would be required in our
physical model of the gears. That is, 'it would seem that stiction would have to be
impossible in the goal, but possible in H This 'is not the assumption made in the
geometrical EDR analysis and mplementation. We now show that uniform stiction
is in fact not an impediment to failure mode analysis, either.

It is the responsibility of the user, or of some external inference system, to
ensure that (F2) holds. Suppose, however, that this inference is incorrect, and that
at run-time stiction does, in fact, occur in the goal, and that the gears jam. In
this case the run-time executive will signal failure, even though the geometrical goal
has been achieved. At first glance it appears that this 'is incorrect. However, when
we regard the goal as a combined geometrical and functional specification, it is
clear that this is actually the correct termination diagnosis. That is, even though
the geometrical goal has been achieved, stiction prevents the quantified derence
equation (DE) on paths, goal(.), from being satisfied. Since something (specifically,
stiction) has prevented achievement of the functional goal, it is completely correct
for the run-time executive to signal failure in this case. However, note that we regard
this as serendipitous failure detection, and not as inherent 'in the EDR framework.

11.4.7 Generalizations

The specialized algorithm Spec may be generalized. The properties it exploits
are (1) that certain degrees of freedom 'in C and J can be held fixed, while others
may be commanded, 2) that slices" of CO can be computed, 3) set ntersections

207

can be computed, and 4) differential motion across the non-fixed degrees of freedom
can be predicted using quasi-static analysis.

More precisely, the specialized algorithm generalizes to cases where we fix cer-
tain degrees of freedom Cf and Jf, command C and permit J, to vary (through
pushing). Hence !9 is decomposed 'into

Cf X Cc X JC X f,

Bec(v*,) lies in the tangent space to Cc, and all motion les in the subspace Cc x J.
Using quasi-static analysis, we predict the impending motion direction, v which lies
in the tangent space to C x J. If a 'is in Cc x J, let HI Io, denote a slice of H at
(a). Thus Cf x Jf are the dimensions of the slice (like x y in the gear example).
Then we let a' a ev. Finally, the teration step is

H3 +-Hi n COJ,,.

The rest of the algorithm goes through mutatis mutandis. This generalization is
somewhat theoretical, in that in practice the CO-slices, set ntersections, and quasi-
static analysis may be difficult to compute for higher-dimensional problems.

* 11.4.8 Discussion: General vs. Specialized Algorithm for
Faflure-Mode Analysis

This starred subsection may be skipped at first reading. It contains a detailed proof.

The problem with implementing algorithm Gen directly is that arbitrary tme-
indexed forward projections are dfficult to compute. For this reason we introduced
a specialized algorithm for the gear planning. While algorithms Spec and Gen
appear quite different, in fact, Spec is smply a special case of Gen. The motivation
behind this viewpoint is to find a uniform framework for characterizing algorithms
for failure mode analysis. That is, algorithm Gen can be viewed as a high-level
computational approach to failure mode analysis, while Spec 'is an 'Implementation
of Gen in a restricted domain. We now discuss this view of the algorithms.

Recall the definition of sticks,(-). We now define stick*,(R) to be a points
x in R such that any feasible path from x consistent with the control uncertainty
Bec(V 2), eventually sticks.

We employ the following topological notions. denotes the closure of a set U.
Uc denotes its complement. i(U) denotes its interior. denotes the complement
of the closure.

Now, consider the following step of the Spec algorithm,

7. H3 - H2n o9C I l, a/ I
1 2

where H2= HI IC11, 1112 . This step 'is equivalent to

208

-- c

H3 - H2- i(CO10(l CT/ COICY11a (10)it 2 2

where the set difference operator - associates to the left. Now, the set

H2n ico 1 2

corresponds to all configurations x, a, a2) in the planar slice (a,, a2) such that
under 2, any path from (X, al, a2) wll stick before reaching (a', a') if x is kept1 2

fixed. That is, it is configurations such that sticking will occur from (x, a,, a2)

between (a,, a2) and (a', a').

Below, we argue that the set H2n i(CO I in algorithm Spec corresponds1 2

in a quite precise fashion to stick'92(cF) in algorithm Gen. We see this as follows:

The following step of the Gen algorithm, 7

2. H3 +- aF - ticko,((9F)

is equivalent to

H3 F - CO - stick,9,(c9F).

sell, Now, it is possible to modify Gen as follows. Let

F2= o,,At(Hl - stick* Hi)).
02

Then we can replace the assignment (11) by eq. 12) and still have Gen be correct:

H3 +- 2- CO (12)

We wish to compare the step 12) of the thus modified Gen with the step of
Spec given in eq. (10). In essence, we wish to show that eq. (10) is in some sense a
4C conservative" approximation to eq. 12), and hence conclude that algorithm Spec
is simply a special case of algorithm Gen.

We must introduce some notation to compare eqs. (10) and 12). For a set V
in 2 we denote the set

V x (a,, 2

by

V x (a,, a2)-

7We have lexicographically substituted H3 for H2 throughout algorithm Gen to facilitate

the comparison with Spec.

209

Fo2,At(Hj - stick*, (Hi))
I Cff a/

%- 1 2

n
I,- "MM"N

I
7r2H2 (a at) - (colci II 2 1 , ct 2

Now, Hi is a subset of . A slice of 'it H I l .2 les 'in the "Plane" R2 x (a,, a2)-

Let us denote its projection 'into R' by 72H, I Cel Ct2 Finally, for an arbitrary set U
in generalized configuration space, let U.1,112 denote an (al, a2)-slice of it, that isl

UJCQ �CY2 = U n3Z2 x (a,, a2))-

Clai'm: Eq. (10) is a conservative approximation to eq. 12) in each slice.
Proof. First, we obviously have

colal'a c CO.1 2

Next we need only show that
(13)

(14)C r (Hi I 01,02) x a', aI 1 2

and

Hi n7r2 i(COI,,ICt) x (a,, a2)c tick* (Hilalia2 1 2 82 I alCt2 ' (15)

Eqs. 14) and (15) are definitional. Now, suppose that configuration z E
i(Colat at). Then clearly z Hence we have1 2 1 2

colctI, ceI
1 2

H3,spec - colct I'al .
1 2

0

Note that as a consequence, we may expect that Spec 'is less likely than Gen
to terminate.

210

Fe2 At(Hi lCel CY2

a/ a/
1 2

H3,Gen
ofl,at1 2

n

12. Weak EDR Theory, Strategy Equivalence, and the
Linking Condition

12.1. Reachability and Recognizability Diagrams

We now introduce a type of diagram which permits notation of reachability
and recognizability. These diagrams are a powerful tool for compactly expressing
motion strategies. They greatly aid the development of concise and readable proofs.

Suppose we are given a start region oal G, and a motion . We construct
the EDR region H. Then under sticking termination, all motions from R will
terminate in G or H. That is, the push-forward of the motion from R is contained
in GU H:

pushg(F9(R)) C G U H. (16)

Whenever 16) is true, we write this by the following reachability diagram,

G

R (17)

H.

Suppose that G and H are distinguishable using sensors. Then is an EDR
strategy from R, and we have

R = POR(j GI H (18)

Whenever (18) holds, we write this by the following recognizability diagram,

G

R (19)

H.

The reachabi'lity diagram 17) is an equivalent notation for the reachability
termination condition 16). The recognizability diagram 19) is equivalent nota-
tion for the recognizabi'lity.termination condition (18). Single arrows)) denote
reachability whereas double arrows) denote recognizability. If and only if 16)
is true, we say that the correspondingly reachability diagram 17) holds. If and
only if (18) is true, we say that the correspondingly recognizability diagram 19)
holds. A diagram is said to hold tautologously when it is true without additional
conditions or suppositions.

211

The nice thing about sticking termination as discussed in chapter II, is the
following property:

Theorem: Let R be a tart region, a motion and G a goal. Construct the EDR
region H for R, 0, and G. Then with sticking termination the eachability diagram
(17) holds tautologously.

Now, in diagrams 17) and 19) we have labeled all the arrows. In the future,
when this would clutter the diagrams, we wll label only the top arrow and adopt
the convention that all arrows aligned below it have the same label.

12.2. More General Push-Forwards

Hence the chief advantage with sticking termination is that 17) is always
true. In this chapter, we will generally assume that either sticking termination 'is
employed, or, if more general termination predicates are allowed, then the truth of
the reachability diagram 17) can be determined through restrictions on time and
history, as described 'in chap. II. We now digress briefly, however, to describe how
this discussion generalizes for more general termination predicates.

In an appendix, we define a more general push-forward, F,9(R), which de-
notes all configurations at which the motion 9 can terminate given more general
termination predicates. When more general termination predicates than sticking
are considered, then the condition 16) must be replaced by

F*9(R) c G u H (20)

When 20) holds, we may then write the equivalent reachability diagram 17).
However, wth more general termination conditions, 17) does not hold tau-

tologously. For example, with time-termination and the approximate push-forward
described 'in sec. 10.3 a motion could (a priori) terminate without sticking yet
within the weak preimage. In such cases it must be the responsibility of the plan-
ner to verify that all motions terminate in G U H.

The first difference between the sticking push-forward push(.) and the general
push-forward F,,(.) is that F.) depends on the start region for the motion, while
push(.) does not. That is, F*(.) depends on history (and possibly time) whereas
push(.) does not.

Now, a motion sequence is a reachability or recognizability diagram of the form:

On On-1 02
Rn IRn-1)R, Ro =G. (21)

The second chief difference between the a priori sticking push-forward push(-)
and the general push-forward F*(-) 'is that the action of push(.) on a motion sequence

212

(21) is junctorial, while F.(.) is not. The non-functoriality of F&) is a consequence
of its hstory dependence.

12.3. Weak EDR Theory

We now make the following natural refinement of our termination predicate.
Suppose the termination predicate is given some finite collection of goals I G, in
a distinguishable union. Then the goals G are of course partially ordered by
containment. We assume that the termination predicate returns the smallest goal
(with respect to containment) if at termination tme the actual configuration of the
robot is known to lie within two or more goals. (A technical point: if two or more
goals overlap, we augment the collection with a new goal which is their intersection).

Now, whenever the reachability diagram 17) holds (which it always does with
sticking termination), then we have the following:

R = OR(f GI HI G U H (22)

This is trivial to show- on termination the termination predicate will return G or
H if it can, otherwise it wll return G U H. In particular, it will return G or H in
preference to G U H.

Thus we can write the following recognizability diagram, which is equivalent
to 22):

G

R H (23)

\\-U
0 GUH.

(23) is called the Weak EDR Recognizability Diagram for G H, and 0. 19)
is called the Strong EDR Recognizability Diagram. 17) is called the Reachability
Diagram.

Theorem: Let R be a start region, a motion, and G a goal. Construct the EDR
region H for R, 0, and G. Then with sticking termination the weak EDR diagram
(23) holds tautologously.

Up to now, in previous chapters, we have described the strong EDR theory.
This section has introduced the weak EDR theory. It may not appear useful at
first glance. However, in the next section we wll see that these one-step weak EDR
strategies-which are in effect always available-may under certain conditions be
chained together to make a multi-step plan very lke a strong EDR strategy.

213

The key idea behind the weak EDR theory is: given a collection of goals I G, I
(possibly including H), we consider all unions of the subcollections to get some
measure of weakest recognizability.

12.4. Strategy Equivalence

A one-step weak EDR strategy is not very interesting. In particular, we can
always obtain one! Surprisingly, 'it 'is possible to define a way of coupling two weak,
one-step EDR strategies together to make a two step stratezv which has many of
the characteristics of strong EDR. In particular, we wll develop a way of making
precise the 'Idea that the two weak EDR steps can be combined to make a two-step
strategy that is "equivalent" to a one-step strong EDR strategy.

Suppose the commanded motions of the two weak EDR steps are 1 and 02-
The essence of this "equivalence" lies in disambiguating a previous motion's 1 is)
result without destroying the goal state.

Now, let R be the start region, and G the goal as usual. Assume without loss
of generality that G is contained within the forward projection of R under 01 (see
sec. 73 for justification). Let

R = R n P81,F.1 (R) (G). (24)
Now, we have the recognizability diagrams

R, G 19 G

R - R, H push,91 (G U H) H1 (25)

HUG H'U G

recog 1 recog 2

where H' is the EDR region for motionO2-
The question 'is, how can we lnk together motions 01 andO2 into a two-step

EDR strategy? The first condition we require of such a two-step strategy is as fol-
lows: once 1 has reached G, 2 should preserve this state and "add" recognizability.
That is, G is a "fixed-point" under 2. This is given by the following diagram:

Definition: The fixed-point diagram is

pus h,9, (G) G. (26)

When the fixed-point diagram 26) holds, 25) admits the following reachability
and recognizability diagram:

214

C12,pushol (G) G

R (27)

pusho, (H).

It remains to ensure that good EDR behavior occurs when82 is executed from
push,9, (H). Now, think of 1 * 02 as the composite strategy formed by executing
motion 01 followed byO2- We wish to find additional conditions which, together

'th 25), w11 admit both the fixed-point diagram 26) and a strong EDR diagram,

el G

R (28)

01 *2 H111

for some H" (see below). Together with the weak EDR diagram 25) (which is
tautologously true for sticking termination), the additional conditions below, which
we will call the linking conditions, are necessary and sufficient for defining an equiv-
alence between two "linked" weak EDR strategies and a sin le-step strong EDR
strategy, whose recognizability diagram is given by 19), substituting 1 for 0).
Henceforth, let = .

Definition: If the fixed-point diagram 26) holds and if 25) admits a strong EDR
diagram 28) in which

H11 H1 (29)

then the motion strategy 1 * 2 is said to be strongly equivalent to a strong EDR
strategy with recognizability diagram 19).

An example of such a strategy is the two-step peg-in-hole insertion plan with
model error, figs. 4-66.

Definition: If the fixed-point diagram 26) holds and if 25) admits a strong EDR
diagram 28) in which

H" H11 H1 U G}j (30)

then the motion strategy 01 * 02 is said to be weakly equivalent to a strong EDR
strategy with recognizability diagram 19).

215

Note that we define (strong or weak) equivalence using 19) with = ,
not with = 2. The reason for this 'is as follows. If 1 * 2 satisfies the weak
equivalence condition 30) and the fixed-point diagram 26), then after termination,
we are assured that the outcome of 91 has been completely diagnosed. That is,
the run-time executor knows whether or not 1 terminated in success or failure.
However, it 'is not necessarily true that the outcome Of 02 is completely diagnosed.
This occurs in the worst case if H' U G is recognizably attained. We discuss this
point in some detail below.

The following gives an implicit definition of lnking conditions:

Definition, Let H be chosen for either strong or weak equivalence, as in 29)
or 30). The linking conditions are necessary and sufficient conditions for 25 to
admit a fixed-point diagram 26) and a strong EDR diagram 28).

It remains to show, of course, that lnking conditions exist for strong or weak
equivalence. We will momentarily postpone the derivation of the linking conditions
in order to describe what the linking should effect.

Once "linked," two one-step weak EDR plans should admit the strong EDR
diagram 28). The claim is that 28) is in some sense "equivalent" to the strong
EDR diagram 19). How 'is this possible.?

(19) 'indicates that the run-time executor can disambiguate the success or failure
of motion 1. The same 's true of strategy 01 02 in 28). Here are the possible
results of executing 01 * 02when the steps 01 and92 are properly "linked:"

1. G is achieved and recognized at termination. In this case, either (i) 01 achieved
G and the run-time executive may not have recognized 'it, but92disambiguated
the result while still terminating within G. Alternatively, (ii) 01 failed, reaching
H, and92 subsequently achieved G from H.

2. H' is achieved and recognized at termination. In this case, 01 is known to have
failed, and the robot is known to be outside G.

(1) and 2) are the only outcomes given strong equivalence. With weak equivalence,
a third outcome in also possible:

3. G U H' is achieved and recognized at termination. In this case, 01 is known to
have failed.

Thus the key is that 2 does not corrupt the goal state; that is, G is a fixed
point underO2. The desirability of outcomes (1) and 2) are clear. One might ask,
what good is weak equivalence? Why would anyone want outcome 3)? The answer

216

is: in one-step strong EDR 19), the run-time executor can (a) disambiguate the
result of motion 01, and (b) 'in case of failure, know that the robot is not in the
goal. In weak equivalence, we have (a) but not (b). That is, in outcome 3) we
have completely diagnosed the result of motion 1, although 'in the process, we may
have accidentally moved into the goal. That is, we may indicate failure when we
have, in fact, succeeded. However, we will never 'indicate success unless 'it is certain.
In short, when linked, 1 * 2 is "conservative" about declaring success.

12.5. The Linking Conditions

We now derive the linking onditions. Let

F91 = Fe� (R)

R, = RnP9, F, I G)

Pushol = pushq, (G U H)

Fe 2 =FO2 (pushq,)

R2= push6,, nP92 I F 2(G).

The overloading notation for push,91 is symmetric with that for preimages and
forward projections: both the map and its image are denoted by the same symbol.
The discussion of linking conditions assumes sticking termination. However, the
derivation goes through mutatis mutandis for more general termination conditions,
if we let'

pushq = F,(R).

It remains, however, to extend the linking-conditions for time-indexed forward pro-
jections.

We now demonstrate our claim that lnking conditions exist.

Definition: The condition (LO) is

G n push,9, C R2- (LO)

Here 'is the motivation behind (LO). (LO) says that whenever motion 1 ter-
minates in the goal G, then the state is inside the preimage of G under the next
motionO2. The intent of (LO) 'is to admit the fixed-point diagram 26).

Claim: (LO) implies the fixed-point diagram 26).
Proof- The preimage equation for 26 is

'F. is defined in the appendix. See also sec. 12.2.

217

P02, pushe 1 (G)(G = push,9, (G).

This preimage is taken with respect to a smaller start region than R2- 0

Note however that the converse is false. (LO) is stronger than the fixed-point
diagram 26), since the preimage R2 'is taken with respect to the entire forward
projection underO2

Claim: Linking conditions exist, and, in particular, (LO) i a nking condition.

Proof- Suppose (LO) holds. This yields the following reachability and recognizability
diagram:

linking condition (LO)

R, G D 'Gnpusho, C R2 R2 G

R - R H D Hnpush#l C push,91 D push,9 - R2 H'

H'U G

reachability recognizability

(31)
To see that diagram 31) demonstrates weak equivalence, we use a technique

like "diagram chasing" (see, eg., [Hungerfordl). Assume (LO) holds. Starting from
R1, 01 effects a motion reaching G This motion 'in fact terminates in G n push,,.
Since by (LO) G n push,9, 'is within R2, 02 then effects recognizable termination 'in
G.

On the other hand, if the motion begins 'in R - R1, then 1 effects a motion
reaching either G or H. If G is reached, thenO2will eventually effect recognizable
termination in G, by the argument 'Immediately above. If H has been reached, then
the motion 01 will in fact terminate at some point z in H n push,,, Then there are
two cases. Case (i): z E R2- Since the preimage R2 is constructed with respect
to the entire forward projection of push,9,, motion82 wll next effect recognizable
termination in G. Case (ii): z R2- In this case, motl'on82will effect recognizable
termination 'in one of I G, H, H' U G

We conclude the process by "forgetting" all the intermediate steps, and renam-
ing them to 01 * 2. First, observe that the fixed-point diagram 26) holds. Next, to
see that 31) admits an EDR diagram 28) in which 30) holds, we remember only
the start region R and the "results" G, H', and H' U G Diagram chasing shows
that these may be joined with recognizability arrows as 'in 28).

Thus the diagram 31) demonstrates weak equivalence. For strong equivalence,
we remove H' U G as an outcomeOf 02. Note that the linking condition is not a

218

tautology. However, note that all the other subset relations and the equality in 31)
are tautologous.

In the future, we will leave similar diagram-chasing arguments to the reader.
We may thus conclude that

Theorem: The linking condition (LO) is a necessary and sufficient condition for
weak equivalence Of 1 * 2 to a one-step srong EDR stratequ.
Proof.. The claims above have demonstrated sufficiency. It remains to show (LO) is
necessary. Suppose (LO) is false, but (26) still holds. (This is the interesting case,
for 'if 26) does not hold, then equivalence cannot possibly follow). 26) says that
when the motion is known to start within pushol (G), then it can be guaranteed to
terminate recognizably in G. The antecedent 'is a precondition for success of the
motion. After 1, however, this precondition may be false: even if 01 reaches G,
it is only known to have reached push,9,. In particular, 26) says nothing about
what happens when 02 is executed from H. (LO), on the other hand, says that
termination 'in G can be recognized no matter whereO2 originates in pushg, 0

Now, we can derive some equivalent linking conditions that are somewhat sim-
pler in form. Let

Fe,

R = R2 G.2

Definifion: The linking conditions (Ll) and (L2) are

pushe, - R* (Ll)
H n pushol push,91 - R (L2)

These linking conditions admit the reachability and recognizability diagram

linking conditions (Li), (L2)
W^

RI G D G n push,91 - R* G2

R - RI H D H n push9 - push,, - R; H' (32)1

HluG

reachability recognizability

Comments: Let

P02 82, F0 (p ush 6 (G))(G)l

219

so R = push,9, n P9,. Note that (L.2) is not tautologous, for we can have x E G,
x P9, if (LI) is false. Therefore E pushq - R and x push,9 n H.

Lemma. The linking conditions LI) and (L2) are equivalent.
Proof. L implies (L2). Suppose (LI). Let x E H n pushg,. x E R implies
x E G. Therefore x H is a contradiction. Therefore E push,,, - ?;.

Now let x E pusho - R Therefore x G n push,9 n P,. Therefore x G
or x 92 In the former case, x E H. In the latter, suppose that x E push,9, and

E G and x � PO 2. But by LI), E G n push,9, implies E , a contradiction.

(LI) if 2). Let E G n pushg,. Show E R*. We need only show that
E P,. Now, x P, implies E H n pushg, a contradiction. Now let E R*2

Therefore, x E G n push,9,

Lemma: The linking conditions (LO) and LI) are equivalent.

Proof. (LO) implies LI). Suppose (LO), i.e., G n push,9, C R2 Show G n pushe,
R = GnR22

Let x E G n pushol. Now, (LO) implies that E R2 Therefore E G and
x E R2. Hence E R*2

Let x E R*. Therefore E G n R2. Hence E G n push,9. n i. e., E2 P921

G n pushg,.
(LO) if LI) is trivial.

Theorem: The following linking conditions are equivalent:

G n push,9, C R2 (LO)
G n push,9, R*2
H n push,91 pushq - R; (L2)

12.6. Beyond the Fixed-Point Restriction

In the discussion above, we have required that the goal was a fixed point under
motionO2- We now discuss how to relax this restriction. In particular, it is possible
to extend the notions of strategy equivalence, and the linking conditions, to the
case where a subgoal G, is in fact the preimage of the actual, or final goal, Go,
under 2. Thus G, is no longer the fixed point Of 2, but rather the preimage of
Go. This section is somewhat technical and may be skipped at first reading. We
regard relaxing the fixed-point restriction as a digression. The subsequent material
may be understood even if this section is oitted, however, the reader may Vv'is to
bear in mind that such a generalization does, 'in fact, exist.

220

We consider the stuation where from R, 01 may attain Go or G1, where "G =
P9,(Go)." However, G, may not be distinguishable from Go under 1. Thus the
three reachability results of 1 are Go, G1, or H1, where H, is the EDR region for
01 when we view the goal as Go U G1.

To define strategy equivalence in the non-fixed-point case, we first generalize
the fixed-point diagram 26) as follows.

Definition: The generalized fixed-point diagram s

push,9 (Go U G) 02, Go. (33)

Next, we modify the definitions of strategy equivalence and the linking cn-
ditions to require that the generalized fixed-point diagram 33) hold in place of
the old fixed-point diagram 26). To avoid confusion, we will call 26) the simple
fixed-point condition.

Now, we let

R, R n 91,F9 (Go U G)

push,91 F.,9, (R)

Fe 2 Fe, pushel

P92 P02�FO2 (Go)

R2= push,9 n P02

Next, define

R = G n R2, (j 01 1)

It is possible to generalize the definition of RI and the lnking conditions to more
than two subgoals I G } We would do this by writing (Vj) in place of (j = , 1).

We already know one lnking condition:

P82 Go u Gi. (L3)

In addition, we can derive the following lnking conditions. Recall H, is the
EDR region for motion 01, viewing the goal of 01 as Go u Gi.

push,91 n G R-1 (Vj) (L 1')2

Push,,1 n HI pushe, - Uj (L21)

221

Comments: Clearly we have LI') 'implies (L2'). However I have not been able
to prove the converse true. I suspect it is false, since Go may 'intersect G1, and H2 ,

the EDR region for02,may intersect G1, etc.
Finally, note that all three linking conditions, (LI', L2', L3) are required for

the composition 01 02 to admit an equivalent strong EDR diagram. This points
out the chief theoretical advantage of strategy equivalence with the simple fixed-
point condition 26). With the simple fixed-point condition, the linking conditions
(LO), LI) and (L2) were found to be equivalent. With the generalized fixed point
condition 33), not only do the corresponding lnking conditions LI') and (L2')
appear to be inequivalent but we also require the additional independent condi-
tion (L3). While 'it is gratifying that our key concept--composing two weak EDR
strategies va linking conditions to admit strategy equivalence n fact generalized
to the non-fixed-point case, the generalization, unfortunately, is correspondingly
more complicated.

12.7. What Good is Weak Equivalence?

We now pose the following question. Why 'is

RI G

R - R H1 (34)

GuHl
any better than

RI G

R - RI H (35)

GUH

(35) is simply the weak EDR diagram for motion 01. It alwavs holds (given the
reachability diagram). 34) is the equivalent recognizability diagram for 1 *02when
a linking condition 'is satisfied. That 'is, 34) 'is obtained through weak equivalence.
Why is 34) stronger than 35), and would one prefer 34) to 35)?

Here is our answer. pushg,(G) is a fixed-point Of 02. Therefore, nothing is
"lost" byO2- 02 serves to disambiguate the result of 1, without polluting the state.
Second, note that 1 02 is conservative" about declaring success. It is as if we
usedO2 to convert the reachability diagram

222

R, G
(36)

R-R, H

into the recognizability diagram

R, G win

(37)
R - R "Lose, but knowing 1 did not achieve G."

More precisely, the "lose" states are
H' ;:z� 0 did not achieve G, and now the robot is outside of G.
G U H' ;:� 0 did not achieve G, and now we mght be in H', but can't guarantee

that we're outside of G.
On the other hand 35), achieving G U H after 1 only tells us that we started

in R - R1, and does not tell us the result of motion 1.

12.8. Application: Failure Mode Analysis 'in the Gear Experiment

We now dcuss how the failure mode analysis used to generate motion9 in
the gear domain may be vewed using the weak EDR theory.

In the gear meshing plan, 01 is a pure translation ad92 is a pure rotation.
The goal 'is a fixed point under02- Consider (32). In the gear plan, the reachability
are

e G
(38)

R - Ri

is present, but the are

G
(39)

pushe - R*2
is not. That is, it is possible to serendipitously achieve the goal under translation
but not rotation. The linking conditions are satisfied. Now, is the outcome G U H'
possible? Failure mode analysis yelds the answer: No. In this case, 01 02 is

strongly equivalent to a one-step strong EDR strategy

R, �Lw G

R - R, H'.

The full reachability and recognizability diagram for the gear plan is given by

223

linking conditions (Ll), (L2)

02
R, G D G n push6,1 R2 G

R-R, H D H n push,9, pusho, -,R* H1 (40)

Ne
reachability recognizability

12.9. Discussion and Review

We now discuss the relationship between push-forward algorithms, failure-mode
analysis, and the weak EDR theory. Recall the diagram 32):

linking conditions (LI), (L2)

a
R, G D G n push,9 R; G

R - R, H D Hnpush,91 push,9 - R; H' (41)

d HU G

reachability recognizability 2

(41) is the full reachability and recognizability diagram for weak equivalence.
The arrows (a)-(d) all correspond to motionO2; we have labeled them so as to be
able to refer to them in the discussion.

Failure Mode Analysis. The reachability and recognizability diagram for
failure mode analysis 40) is found by deleting arcs (b) and (d) from 41) In
LIMITED, are (a) is essentially a user 'nput2 (see sec. 11.3). The failure mode
analysis algorithms Spec and Gen decide arc (c). Thus, 'in sec. 11.3, (c) corresponds
to (Fl). Failure mode analysis links a weak EDR strategy 1 followed by a strong

I (b) ensures that
EDR strategy02- (a) warrants that G 's a fixed-point underO2-
failure is preserved under92: no serendipitous goal achievement from H is possible.
Thus such plans are pure disambiguation strategies.

� Push-Forward Algorithms. Plans found by push-forward algorithms such as
Multi admit a diagram from 41) containing arcs (a), (b), and (c), but not containing

2Although we have discussed methods for inferring (a) computationally, this is really a
direction for future work rather than a focus of th'is research.

224

.�,,4ethod Arcs in 41) Strategy Type Comments

Failure Mode Analysis ac weak*strong Pure Disambiguation.

(a) is user input, (c) is computed.

Push-Forwards abc weak*strong (b) permits serendipitous goal achievement.
!e -Step

W'ak EDR abcd weak*weak 2 Weak EDR.
I

(d). The arc (b) (which is shown in detail 'in eq. 39)) permits serendipitous goal
achievement from H under 2. The absence of arc (d) yields strong equivalence.
Again, push-forward algorithms link a weak EDR strateey followed by a strong one.
They differ from failure mode analysis plans 'in that the arc (b) is permissible, and
(a) 'is not a user input. The peg-in-hole plan wth model error (figs. 46) is an
example of such a plan.

2-Step Weak EDR A plan admitting the diagram 41) with all four arcs
(a)-(d) demonstrates weak equivalence. It 'is formed by linking together two weak
EDR strategies into a 2-Step plan. We have discussed the semantics of such plans
above. The key differences between 2-step weak EDR plans and push-forward or
failure-mode plans are (1) the existence of arc (d), and 2) the linking of 2 weak (as
opposed to a weak and a strong) EDR strategies.

In all cases, note that the linking conditions are required. Thus the lnking con-
ditions have somewhat surprisingly turned out to be the underlying characterization
for multi-step EDR strategies. That is, since they are necessary and sufficient con-
ditions for constructin multi-ste EDR plans, the linking conditions may, in fact
be taken as the definition of multi-step EDR strategies.

Hence in considering DmITED's techniques for multi-step strategy generation,
we find that both failure model analysis and push-forward algorithms are essentially
special cases of the Weak EDR theory. This is summarized in the table below:

12.9.1 Mgebraic Considerations

Let us pause and review the key points 'in this development. Weak EDR the-
ory, strategy equivalence, and the linking conditions were introduced as a unifying
framework for planning multi-step strategies.

1. The linking conditions are necessary and sufficient criteria for admitting the
composition of two weak EDR strategies 01 ' andO2'into a two-step strategy which

225

is weakly equivalent to a one-step strong EDR strategy from 1. We may wte this
as

91 * 2 W r111 91 (42)

2. The linking conditions are necessary and sufficient criteria for admitting the
composition of a weak EDR strategy 1 and a strong EDR strategy92' into a
two-step strategy which is strongly equivalent to a one-step strong EDR strategy
from 01. We may write this as

S Ois
01 W * 2 S�_ (43)

I The gear plan is a special case of 2). In particular:
4. Failure mode analysis is a special case of satisfying the linking conditions to
render a two-step EDR strategy strongly equivalent to a one-step strong EDR strat-
egy.
5. Multi-step strategies may also be planned, by repeatedly pushing forward. This
was the gist of algorithm Multiin the beginning of this chapter. Multi may be viewed
as chaining together weak EDR strategies followed by a strong EDR strategy. Multi

3is also essentially a special case of 2), with the goal fixed-point condition relaxed.

We can view the set all strategies as a monoid under the composition oper-
ation *. The generators of the monoid are I yv } U I P . Strategy equivalence is a
way of defining certain relations between products of these generators. When the
linking conditions are satisfied, then these relations take the form of 42) for weak
equivalence or 43) for strong equivalence.

However, we cannot drectly define a new monoid by taking the quotient of �
by these relations. This is because the relations are not always true, that is, they
only hold when the linking conditions are satis.fied. We can remedy this by viewing
4� as "a groupoid. without inverses." We call such a structure a monoidoid. That is,
the operation turns out to satisfy properties that look very much like the axioms
for a monoid. These are called the monoidoid properties of *. The only difference
from the properties of a monoid is thatOl *02 is not defined for every pair of classes,
but oly for those pairs 1 ing con

1, 02 for which the lnk' ditions hold.

3Relaxing this restriction was discussed 'in the section "Beyond the Fixed Point Restric-
tion above.

226

IV. Planning Sensing and 1\4otion for a \4obile Robot

We now consider an application of the EDR theory to planning sensing and
motion for a mobile robot amidst partially-known obstacles. A partial "map" of
the environment is represented using generalized configuration space. We assume
that the robot has a depth sensor which it can use to interrogate the environment.
We call this process active sensing.

Applying EDR to the mobile robot domain yields certain insights into the struc-
ture of the EDR theory. Conversely, this chapter obtains a technique for planning
motions and active sensing for a mobile robot in a partially known environment.
This technique provides a principled approach to motion planning with active sens-
ing. It shows how to incorporate a more fine-grained model of sensing into the EDR
planning framework.

Much work remains to be done. In particular, the EDR framework for ac-
tive sensing is still fairly theoretical. Mobile robot environments are often highly
unstructured [Brooks, 85], and representing this geometric uncertainty using gener-
alized configuration space presents a non-trivial problem. Furthermore, it may be
impractical to model more general vsion or sonar sensors without further ehance-
ments to the EDR theory. More study is required- hopefully this theory of EDR

planning with active sensing can provide a starting point.

227

Model error is a key theme 'in this thesis. One important domain in which there
is uncertainty 'in the geometry of the environment ases in planning motions for a
mobile robot. Typically, such a robot must plan motions amidst partially known
obstacles. Since this partial knowledge can be represented as model error in our
generalized configuration space framework, it is natural to consider EDR planning
in this domain.

The use of sensing in [LMT] plans might be characterized as "passive." In each
step of the plan, a nominal applied force is commanded, and the position and force
sensors are monitored until some termination conditions are satisfied. At this time
a new motion is selected, and so forth. This model of sensing and action arises quite
naturally in developing compliant motion plans for assemblies.

A mobile robot plan, however, is typically not lmited to motion commands.
The vsion or sonar sensors on a mobile robot may be pointed in a direction and
information gathered about the environment. This 'is a more fine-grained model
of sensing than is currently available within the EDR planning framework. In this
chapter, our goal is to extend the EDR framework to planning both motion and
sensing actions. We develop the extension in the mobile robot domain, although
it is applicable to any domain where the robot has a choice of sensing modalities
and directions to 'Interrogate. The basic difference is that in the [LMT] framework,
motion and sensing are 'Inextricable. In the active sensing framework described
here, we assume it is possible to sense without moving. In particular, we assume
the following model of sensing and motion:

Motions of the mobile robot are modeled in the standard way, using generalized
configuration space with sensing and control error:
0 The mobile robot 'is represented by a polygon moving with three degrees of

freedom y, 0 n the plane. There are partially known obstacles in the plane,
and they are represented using the space of geometric variations J. 'is of
course the product of the Euclidean group acting on the plane, and J. Pushing
of the obstacles across J can also be represented. The mobile robot has a
priori position sensing of accuracy p, control accuracy of , and force-sensing
accuracy of e,,. We assume that the robot can slide on surfaces as subject to
the coefficient of friction .
Next we assume the following additional sensing capability:

0 The robot has a sensor similar to a laser range-finder. It can be pointed in
any direction to ascertain, approximately, the distance to an obstacle in
that drection. The sensor also gves the approximate surface nornial of the
obstacle patch. The aim of the sensor is 'inaccurate; however, it is bounded
by a cone. The aiming inaccuracy cone is defined b faim. The error in the

228

13. Planning Sensing and Motion for a Mobile Robot

distance measurement by the sensor 'is bounded by Edit- The errorin normal
measurement is bounded byfn-

The sensor can be pointed and aimed to ascertain the distance and orientation
of a partially-known obstacle surface. The idea is that by choosing where and when
to point the sensor, the robot can gather information about the geometry of the
environment. This 'information, in turn, can be used to 'infer both the position
of robot and bounds on the possible geometries of the environment. That is, the
action of pointing the sensor and taking a "view" provides constraint on the current
position both 'in C and in J.

i 1 -
Of courseI t is possible to model such a sensor na'vely within the [LMT] preim

age framework. For example, one could assume that the sensor continuously takes
views of the environment, in all directions at once. Then one could, in principle,
obtain upper bounds on the position sensing accuracy that can be inferred from
these vews. These upper bounds could then be incorporated into 6,p, the position
sensing accuracy of the robot.

We refine this model as follows. We assume that 'it is not feasible to take
continuous views in all directions at once. In particular, we assume that only a
discrete number of vews may be taken, and that the robot must choose where
(in the plan) to take them, and in what (relative) drection. Thus the primitive
operations available to the robot are of two types:

Motion Commands, of the form "Move in heading (x, y,) until (termination
condition)." These are the standard kinds of motion commands discussed in
the development of the [LMT] and EDR framework. The termination condition
is the usual termination predicate.

0 Sensing Commands, of the form "Point the sensor in direction and take a
view." This returns an approximate distance and surface normal reading.

Sensing commands are always executed at rest. We define a motion plan with
active sensing to be a sequence of motion commands interspersed with sensing
commands. As usual, conditional branches are possible. An EDR plan with active
sensing is a motion plan with active sensing that 'is an EDR plan. The question
is: how can active sensing be incorporated 'into the EDR framework? We will
answer this question by showing how to generate EDR plans with active sensing.
As a corollary, we obtain a technique for generating guaranteed plans with active
sensing.

The key idea is to define a kind of "equivalence" between sensing and motion.
Informally speaking, active sensing is like moving up to an obstacle, measuring the
distance traversed and the normal there, and then moving back to one's oginal
position. At that point, by consulting an approximate "map" of the environment
and using dead reckoning, a better estimate both of one's position and a revised
44 map" can be obtained. Using this equivalence" between sensing and motion, we

229

then can represent both motion and active sensing in a single generalized configu-
ration space. In this space, both motion and active sensing are represented as kinds
of "generalized motions." This representation permits the planner to treat sensing
and motion uniformly. More precisely.-

We describe a reduction of the problem of EDR planning with active sensing
to (ordinary) EDR planning in a laroer eneralized configuration space, that
represents both motion commands and senszng commands as "generalized mo-
tions.

This reduction is computational; it is similar in flavor to the reduction of plan-
ning with model error to computing preimages in a higher-dimensional generalized
configuration space.

It is now our task to make precise this notion of the "equivalence" between
sensing and motion. To develop this notion without clutter, we will initially simplify
the problem as follows. Assume that the robot is a point robot, and that rotations
need not be considered. Furthermore, we prohibit pushing across J, the space of
model uncertainty. Hence the robot's configuration space C is simply the plane.
The reduction of the robot to a point is of course 'ustified by existing configuration
space formalisms. We will reintroduce rotations later after describing the basic idea.

First, we introduce the definition of a generalized configuration space planning
universe. A planning universe is a tuple

(9, 0 6I V) 6I P) tp)

consisting of

• generalized configuration space C x J,

• set of generalized configuration space obstacles 0,8 }I
V an

the position sensing, elocity sensing, d control uncertainties, ep, V, e-

the coefficient of friction ,
and the termination predicate tp.

The planner can plan motions 'in tis universe using the EDR framework described
earlier. tp represents the termination predicate available to the run-time executive.
For example, we might have the [LMT] termination predicate, which uses position-
and force- sensing, as well as time and history. Other termination predicates include
that of [Mason], which remembers a continuous history of sensed positions and
velocities, and stick, which terminates based on sticking.

Now, we assume that our initial planning problem is given by the tuple

U = G, 0, ceP, eev, eec, Pi tp)
where 'is smply V x J as described above to define the space of motions for the
mobile robot. This may be thought of as the "motion universe." We wish to extend

230

1 .6. -

F --- - --- -1

la�
I B.

,� �V

I ----UIW (XW Ye I

I 11

I I

N::N

0
Us (J�r)

Fig. 1. Schematic illustration of the framework for EDR planning with active
sensing.

this universe to incorporate active sensing. We can do this by "adjoi e a "sensing
verse." Motions in the motion verse Um correspond to physical

motions of the robot, like "Move in heading (x, y)." "Generalized motions" in the
sensing niverse correspond to active sensing commands,, like 'Look in direct*on
and take a view." In adition, the planner needs some special actions that move
between the semng and motion verses. While these actions have no real physical
significance, they may be thought of as "preparing to move' or "preparing to sense."
We must now define the "sensing verse. 19

The sensing verse, which we call Us, contains the same obstacles as the
motion verse (1). The sensor can be aimed in this niverse. Once the sensor
is aimed, we imagine that a "line of sight" motion Move(O) is c manded. This
motion te notes on the first surface it hits. I Here is the idea: this line of sight
motion can be modeled as a generalized damper motion with control error eaim7 the

'Assuming no mirrors!

(p
f sevok" 1 -6
0

it costr4d sf"'W

A

I

movo(s)

I

i f *At

ta

farm

, = 0

i

I

A&PPO(a)

231

aiming accuracy of the sensor. That 'is, 'if the nominal sensor aiming direction i's
then the effective line of sight motion is actually 'in some direction 'in the angular
interval e,, + E, Once the modon terminates, the distance traversed
can be measured wth accuracy Edist- The normal on the surface at the point of
44 contact" can be measured with accuracy En. The uncertainty bounds f-dit and
En Will be taken to be the position- and force- sensing uncertainties, resp., in the
sensing universe.

Thus we construct a sensing universe whose uncertainties are given by the error
characteristics of the sensor. We next provide the planner with the pmitive com-
mand Move(S), which moves from the motion universe into the sensing universe
retaining the same position (in) relative to the obstacles 0. Once in the sensing
universe, it is then possible for the planner to command the generalized motion
move(o).

We have said that active sensing was like moving to an obstacle, measuring
its distance and normal, and then moving back to the original position." So far
we have sketched how the sensing universe models the motion up to the obstacle.
Now we must describe a "return universe" which models the motion back to the
original position. The return universe is perfect: there is no control error. However,
the only termination predicate available is pure position-sensing associated with
the command Moveto(xo, yo), where (xo, yo) ndicates the actual position of the
robot before the Move(S) command. That 'is, in the return universe, there 'is
perfect position control, but the only position that can be commanded is the original
position.

Thus we can define the following commands which are available to the planner
to use in its motion strategies.

List of Generalized Motions Commands

1. Physical Motion Commands. Same as "Motion ommands" above. Ap-
plicable at any time in universe U.

2. Move(S). Applicable at any tme in universe U. First, record the actual
position of the robot in the variable (xo I yo). Next, move from the motion
universe into the sensing universe, retaining the same position (xo, yo) relative
to the obstacles .

3. Move(o). This commands a straight line motionin relative drection , subject
to aiming inaccuracy caim- When the motion terminates on the first surface
struck, the sensing uncertainty bounds Edist and En provide a characterization
of how accurately the distance to the obstacle and its normal may be measured.
Note that the line of sght motion effected by Move(o) does not move across
J. It moves in C and retains the same position 'in J. Applicable only after a
Move(S) command.

232

4. Move(R). Move from the sensing universe into the return universe, retaining
the same position relative to the obstacles 0. Applicable only after a Move(o)
command.

5. Moveto(xo, yo). Move with perfect accuracy from wherever the robot is to
(XO I YO) , where O I YO) 'is the value stored by the last Move(S) command. That
is, xo, yo) is a literal here, and may not be chosen by the planner. Applicable
only after a Move(o) command.

6. Move(M). Move from the return universe into the motion universe, retaining
the same position (xo, yo) relative to the obstacles 0. Applicable only after a
Mov eto(x o, yo) command.

We now make the construction somewhat more formal.

The sensing universe Us is defined to have the same obstacles as U. How-
ever, the uncertainties in Us correspond to the error bounds in aiming the sensor,
and in measuring the distance and normal to an obstacle. To construct Us, first
assume that Cdit = and 6n = that is, assume a perfect sensor which 'is aimed
inaccurately. Then we could construct Us as

USperf ect = (9i Oi 1 0 eaim i oo, stick).

In the sensing universe, the coefficient of fiction is infinite. Hence the line of sight
motions which terminate on the first obstacle they strike are exactly modeled by
damper motions which stick on any surface. The termination predicate halts such
motions as soon as they stick, that it, as soon as they make contact.

The point 'is that with a perfect sensor, the motion Move(o) terminates exactly
on the surface W it strikes. However, for an 'imperfect sensor, this motion must be
modeled as terminating within Edis of this surface. That is the motion terminates
within the set W D Bdit, where Bdi.t is a ball of radius Cdit- We can model this

termination va a "jerky" termination predicate which stops on the first surface it

hits (using sticking), and then "jerks" away some distance no greater than Cdit

before halting. We denote this termination predicate as stick ± dit. Hence, 'in

general,

US = g, Oi fdist7 m faimi 07 stick ± dit)- (2)

Recall that pushq(-) denotes the a priori push-forward based on sticking. Sup-

pose that the initial position of the robot is known to lie in some start region R.

Then with a perfect sensor, Move(o) simply terminates within pusho(R). pushO(R)

is identical to the obstacle edges of the forward projection of R under subject to

control uncertainty Caim and = With an imperfect sensor, Move(o) terrni-

nates wthin the set

233

pusho(R) (1) Bdist

The return uiverse UR also has the same obstacles. In 'it we have perfect
control and sensing:

UR (0 0 - 0 -, pure position control). (3)

Of course, in Rwe are only permitted to command one motion; the motion re-
turning to 0 Yo). In both the sensing and the return universes, is againR2 X j.

EDR planning with active sensing may be regarded as a planning problem in
the larger generalized configuration space

UM U US U R- (4)

We regard this generalized configuration space as endowed with a special "physics"
that governs motions 'in the three universes 'it comprises, and how the robot can
in fact move between universes. In addition, of course, the planner must satisfy
certain compositional constraints in constructing plans. That is, certain steps are
only applicable, or valid, when preceded by other steps. This is a constraint on the
type of operators available to the planner when it chooses commanded generalized
motions. For example, in the physical motion universe UM, there is a choice between
a physical motion command (in m) and a Move(S) command to enter the sensing
universe. But once the sensing universe has been entered, there are no choices in
the type of operator to apply, but merely 'in their parameterization (specifically, the
choice of

For this reason any implementation of EDR planning wth active sensing
should combine operators 2-6) 'into a single operator

(2-6). Sensor(o). Command the sequence of generalized motions: Move(S),
Move(o), Move(R), Moveto(xo, yo), Move(M).

The operator Sensor(O) is the formal model for Sensing Commands (as defined
above in boldface). The reason we decomposed this operator into steps 2-6) was
to 'Illustrate the structure of the problem, and to show how active sensing could be
integrated into motion planning with uncertainty, using familiar tools in the EDR
framework.

This completes the reduction for the special case of point robots in the plane.
We will now provide an example, and then return to generalize the reduction to
non-point robots wth rotational degrees of freedom.

234

-

u s

Beim

Fig. 2 Detail of the generalized motion Move(o) in Us. The start region is R.
The forward projection is the outer envelope of all possible'lines of sight, given
the aiming error of the sensor. The push-forward is the wall Of 03 the sensor
can see.

I� 03

I

L-

13.1. Using Information Provided by Active Sensing

In this section we clarify how the additio information provided by active
sensing is used by the p anner to further constrain the position of the robot in gen-
eralized configuration space. While the incorporation of this constraint is 'nplicit
in the reduction above, it helps to see an explicit construction in an example. This
example builds on fig. 1. The development here is somewhat informal.

Suppose that the robot is known to he in some region R in gener ed con-
figuration space. For example, 'in fig. 2 R is the same size as the position sensing
uncertainty ball B,,,. We wish to calculate explicitly how taking a vew in direction

can further constrain the possible positions of the robot. For example, by point-
ing the sensor at a wall of obstacleO3 in fig. 2 the robot may be able to further
loc e its position, given some information about the distance and orientation of

235

Fig I After the generalized motion Move(O) terminates, the robot is known
to lie within dtance edi.t of the sticking push-forward. This defines a tube in
generalized configuration space. The information effect of the perfect 'return"

Vmotion Moveto(woyo) is to translate this tube back to the oriVnal position.
The run-time executive now has better localized the position of the robot.

the wall.

A line of sight in direction is considered to be like a straight line motion. We

must consider all lines of sight that are possible, given the ain3ing inaccuracy of the

sensor. We View all pssible lines of sight as a region in generalized configuration

space. This region is the forward projection O(R). No sliding is possible in the

forward projection, since the coefficient of friction is te. The push-forward

(based on sticking) of the generalized motion Move(o) is part of the wall of obstacle
03. This region is denoted pushO(R) in fig. 2.

An upper bound on the run-time executor's knowledge of the wall's position is

found as follows. Let Bi.t denote the size of the position sensing uncertainty ball

in Us. This ball 'is an upper bound on the sensor's ability to localize distances. The
knowledge of the wall's position will lie within the convolution of the push-forward

236

of the generalized motion Move(O) by Bdit, that 'is,

pusho(R) e Bdis t (5)
Hence, after executing motion , the virtual robot 'is guaranteed to lie wthin dis-
tance F-dit of the wall 03

Now suppose the actual position of the physical robot is (xo, yo), as 'in fig. 2.
Then the information effect of the command Alloveto(xo, yo) is to translate the set
(5) back to the original position. We denote this operaflon by2

1 1 trans(x.,y,,,) (). Thus

after the sensing operation Sensor(O), the position of the robot is known to le

within the set

Rntrans(x.,yo)(pusho(R) ED Bdigt)- (6)

13.1.1 Using Normal-Sensing Information

The detailed starred sections below may be skipped at first reading.

The sensor's ability to detect surface normal orientation provides additional

constraint. That is, by sensing the normal, the sensor can further localize the point

of contact within eq. (5). Recall that -x denotes the canonical projection of phase

space onto position space. Then the localization provided with combined distance-

sensing and normal-sensing is found as follows. Let Bn denote the normal-sensing

error ball of radius En in phase space. Now, let O(.) denote the forward projection

in phase space. From the phase-space forward projection, we derive the a priori

phase-space push-forward based on sticking, push,&). We can view an element of

pusho(R) as a pair, consisting of a point and a tangent vector. Suppose that n*

denotes the normal as sensed by the sensor at execution time, and let n* 1 be its

orthogonal complement. Thus Bn ED n*j- represents the set of all possible actual

tangent vectors consistent wth n*. Then after termination, the motion Move(O)

is known to be within the set3

Bdist ED r pushO(R) n (9 x (Bn D n*, (7)

Eq. 7 replaces (5) when normal sensing is available to the sensor.

13.2. Generalizations

We now relax some of the 'initial simplifying assumptions adopted above. In

particular, we generalize the framework for EDR planning with active zciising to

2The definition of trans is 'Informal.

3Formally, the notation in eq. 7) assumes that G is parallelizable.

237

the case of a polygonal robot moving wth three degrees of freedom in the plane,
amidst partially-known obstacles. Some of the obstacles may be pushed by the
robot which may change their position and orientation.

13.2.2 Pushing

First, we 'incorporate pushing in the model, as follows. Physical motion com-
mands (in the physical universe Um) are permitted to cause pushing of movable
obstacles, resulting 'in cross-coupled motions in C and J. However, the operator
Move(o) can of course cause no motion in J, since it corresponds to vision sensing.
Hence we must simply restrict the effect of the straight-line motion Move(o to
motion exclusively in C.

13.2.3 Non-Point Robots

Next, we wish to consider robots which are not points, for example, polygonal
robots in the plane. Assume without loss of generality that the sensor is mounted
on the robot at the reference point. Then we must smply replace the general-
ized configuration space obstacles in the construction of Us and URby the set of
generalized real space obstacles, B. B represents a variational family of real-space
obstacles. Intuitively, 0 represents the "grown" by the shape of the robot. That
is, is constructed by convolving each generalized real-space obstacle with the
robot geometry.

More precisely, let B8(a) denote a particular shape of an obstacle in the envi-
ronment for a in J. indexes the set of all such obstacles. Then

8 (B (a), a) IaEJ

Now, assume for simplicity that the shape A of the robot is exactly known. if e
denotes convolution with the reflection as in (Lozano-Pe'rez], then

0 (B, (a) eA, a) IaEJ

Thus of course, for point robots, and are identical.

13.2.4 Rotations

We now incorporate rotations 'Into the planning framework for active sensing.

First in the construction of the physical motion universe Um (1), we construct

as R' x S' x J, using the Euclidean group on the plane for C. The generalized

238

configuration space obstacles are constructed 'in the usual way for rotations and
translations. Next, we will leave as R2 x J in constructing the sensing and return
universes, 2) and 3). The obstacles in the sensing and return universes are the
generalized real-space obstacles as described above. Again, the generalized motion
Move(O) moves only in C, without changing the position in J. However, note that
Move(o) is restricted to be a pure translation in Us, terminating on some real space
obstacle in B. This is an 'important difference. The physical motion connnands can
move with three degrees of freedom in C wthin U; however, the sensing command
moves as a pure translation in Us. Furthermore, it moves in generalized real-space,

'dst generalized real-space obstacles, whereas the physical motion commands in
UM move in generalized configuration space amidst generalized configuration space
obstacles.

Some technical changes are required 'in the Alove(S) and Move(R) operators.
When Move(S) is executed from actual configuration (x, y,) in the physical mo-
tion universe U, the forward projection consists of the point 1

7) n the sensing
universe Us. The original actual position 'is stored in a variable xO, yo, 00). This
variable is used by the pure position control command Moveto 'in the perfect return
universe UR. This is easy to formalize by representing the generalized configuration
space in 4) as x 3 where U, Us, and UR are identified wth the subspaces
9 x I } x I 1 etc. We then view the motions between universes as a combined
projection and shift. For example,

Move(S): U Us C g x 3

((I I), 0) ((X,) 1)
Move(R) may be formalized similarly as a combined lfting and shift.

This completes the reduction of EDR planning with active sensing to EDR
planning in a three-fold generalized configuration space.

13.3. Discussion

In this chapter, we described a reduction of EDR planning with active sensing to
(ordinary) EDR planning in a larger generalized configuration space that represents
both motion commands and sensing commands as generalized motions." The re-
ductioninvolves defining a kind of "equivalence" between sensing and motion, which
permits an EDR planner to treat sensing and motion commands uniformly." These
generalized motions can be represented in a "threefold cover" of generalized con-
figuration space. The equivalence defined relies on the similarity between visibility
analysis and generalized damper motions.4 With our tools for planning with model
error pacifically, the generalized configuration space formalism 'it was possible to

4This similarity was exploited extensively by [Buckley].

239

5 unless pushing 'is allowed.

A#""NI

give a precise characterization of what it means to plan wth active sensing, and to
derive a formal method for constructing these plans. The generalized configuration
space representation was critical not only in representing the uncertain environ-
ment, but also in defining a planning model for active sensing. It is interesting to
note that while generalized configuration space was originally envisioned exclusively
as a framework for representing geometric model uncertainty [D] it appears to have
broader applicability in planning pushing operations and active sensing. In EDR
planning wth active sensing, generalized configuration space is particularly useful
in developing a systematic model of the error 'in absolute position vs. the error in
the map of the world: the first is position error 'in C, the second is position error
in J. Both may be reduced through an appropriate choice of physical motions or
active sensing. However, error in C can grow with physical motion, while error
in J cannot.' Furthermore active sensing can only reduce the error in C and J;
'it can never 'increase it. When viewed 'in this manner, it is not at all clear that
there should be any unifying concept for physical motion and active sensing! It is
even more surprising that the unifying tool should emerge as our familiar friend,
generalized configuration space.

This reduction yields an effective technique for planning motions and active
sensing for a mobile robot 'in a partially known environment. This tchnique pro-
vides a principled approach to motion planning with active sensing. It shows how to
incorporate a more fine-grained model of sensing into the EDR planning framework.
As a corollary, of course, we obtain a method for planning guaranteed strategies
with active sensing.

Much work remains to be done. In particular, the EDR framework for ac-
tive sensing is still fairly theoretical. Mobile robot environments are often highly
unstructured [Brooks, 851, and representing this geometric uncertainty using geher-
alized configuration space presents a non-trivial problem. Furthermore, it may be
impractical to model more general vision or sonar sensors without further enhance-
ments to the EDR theory. More study is required; hopefully this theory of EDR
planning with active sensing can provide a starting point.

240

V. Iaplernentation, Coniputational Issues

In this chapter, we describe the LIMITED plane-sweep algorithm. We then
turn to the problem of generating motion strategies. LIMITED has a crisp algo-
rithm for verifying EDR strategies, but to generate a strategy, it must quantize
the space of commanded motions and enumerate motion strategies exhaustively.
How can motion plans be generated wthout exhaustive quantization of the space
of commanded directions? To this end we introduce the non-directional backpro-
jection. It allows us to devise exact algorithms for planning guaranteed strategies,
given certain restrictions. We also address generalizing such algorithms to planning
multi-step strategies, and to generating EDR strategies. While the motion planning

'th uncertainty's known to be hard for exponential time [Canny and Reif], we axe
able to identify certain interesting subclasses of planning problems which are easier
(polynomial or single-exponential tme). These techniques for generating mltistep
strategies will hopefully be useful 'in EDR planning as well.

241

-- ---- -- --. -- -------- --

14. Implementation, Coniputational Issues

14.1. Comments on the Plane Sweep AlgorithmI

Given a D slice of generalized configuration space, LIMITED employs a plane-
sweep algorithm for computing unions, 'Intersections, and projections. (By projec-
tions we mean forward projections, backprojections, and weak-backprojections in
that slice). The algorithm uses exact (rational) arithmetic, and computes unions
in 0n + c) log n) time, and projections 'in O(n log n) time.' The design and im-
plementation of the 2D plane-sweep module 'is joint work with John Canny; the
algorithm is based on [Neivergelt and Preparata] (who give a union algorithm) and
related to [Erdmann] (who implemented an O(n 2) backprojection algorithm, and
suggested an 'improved O(n log n) version). In this section we briefly discuss some
details of the algorithm. A full lsting of the ZetaLisp code for the plane-sweep
algorithm running on a Symbolics 3600 is provided in an appendix. In LIMITED
there are, of course, many software layers built on top of the sweep algorithm for
quasi-static analysis, EDR planning, propagation across slices, distinguishability,
and so on. In EDR planning, we essentially reduce the problem of EDR verification
to deciding certain set-relations. The basic sets are projection regions. Both the
projections and the set operations are computed by calls to the sweep algorithm.
The design and implementation of a robust geometric engine is a formidable task.
In this section we share some of our experiences.

We do not go on at great length about the details of the algorithm because, first
of all, it is fairly complicated, and second, from a complexity-theoretic viewpoint,
the result does not improve known bounds by much. Readers interested in the
details of the algorithm wll find them in the appendix.

14.1.1 The Basic Idea

We now sketch the classical plane sweep approach at a high level. In plane
sweep algorithms, the vertices of the input edges are sorted on planar lexicographic
x-y order, eg., lower left to upper rght. This is accomplished using an AVL tree.
A line is swept across the plane in this order. The algorithm keeps track of the
polygonal regions swept across by maintaining an ordered queue of intervals on
the sweep line. This queue is also maintained using a (different) AVL tree. Each
interval along the sweep line has an associated "color." The color is an integer; for
free space, for a region 'Inside one input polygon, 2 for a region inside two 'input
polygons, etc. The boundaries of the intervals grow or shrink with the sweep in a

'Where n is the number of vertices in the slice and c is the number of 'Intersections.

242

known way-. their change is given by the line equation of their endpoints. These
line equations are taken from the line equations of the input edges.

An "event" occurs when a new vertex is encountered in the sweep. Such an
event affects one or more of the 'intervals in the interval queue on the sweep line.
For example, in a "closing" event, the "end" of a polygon has been encountered (it
has closed up), so all of the polygon les to the left of the sweep line. In this case,
the interval associated with the polygon is deleted, the two surrounding intervals
are merged, and the polygon loop is placed on the output queue. Other events
include "start" (start a new polygon) and "crossing", when the line equations of
three adjacent intervals intersect. In a crossing event, two line segments intersect
and their associated interval boundaries must be merged.

In developing a sweep algorithm for projections, we proceed as follows. Con-
sider the forward projection. We introduce two new colors, the pojection color
and the start region color. The sweep proceeds in the direction of the commanded
motion. When the sweep encounters the start region, then intervals of color start
region are inserted 'into the 'Interval queue along the sweep line. When these inter-
vals close, then 'Intervals of color projection must be queued. The line equations of
the free-space endpoints of these projection intervals are parallel to the sides of the
commanded velocity uncertainty cone. This occurs when the projection intervals
border free-space intervals.

When an interval of type projection crosses an interval of type obstacle (color
1), then either (1) it may be closed off, 2) the obstacle edge boundary may be

taken as the projection region boundary by updating the line equation of the projec-
tion interval's endpoints, or 3) depending on sliding behavior, a new "degenerate"
interval, wth no width, sliding along the edge may be queued. Whether the mo-
tion can slide on an edge is determined by intersecting the reflected ("negative")
velocity cone with the fction cone on edge e. In case 3), the line equations of
degenerate interval's endpoints are copied from .

When the sweep is complete, the output is an arrangement of polygons with
different colors including the projection and the start region colors. The forward
projection is simply all polygons with color projection or start region. This algo-
r'thm is correct given the following assumption:

Correctness Criterion: The plane sweep algorithm is correct when (a) the friction
cone is larger than he commanded velocity uncertainty cone and (b) there is a
bounding box around the input environment.

This criterion is necessary, because the sweep algorithm is monotonic- hence
to be correct, we must ensure that motions are also monotonic and cannot back up
on surfaces.

243

By introducing a goal color, back-projections and weak backprojections are com-
puted analogously, sweeping in the opposite direction to the commanded motion.
The weak backprojection is actually a conservative (under)-approximation, since
it does not take into account weak backsliding [Buckley]. This is because weak
backsliding is non-monotonic and so a sweep algorithm will not suffice. Actually,
our plane sweep algorithm can only sweep in one fixed drection; hence we rotate
the environment first so that the sweep axis coincides with the commanded motion
direction, and then rotate the projections back to the canonical orientation.

For details of the sweep algorithm, please see the appendix.

14.1.2 Contrast wth Previous Algorithms

We now compare our algorithm, which we call Sweep, with previous work.

1. Sweep combines the ability to compute set operations and projections in one
sweep.

2. The plane sweep algorithm of [Nei'vergelt and Preparata] for computing set
operations on polygonal regions assumes general position. Sweep does not.

3. Note that [Erdmann] described the first backprojection algorithm in the plane.
He also described slice algorithms for 2D with rotations. [Buckley] described non-
slice backprojection and forward projection algorithms in 3D with no rotations All
these algorithms have been implemented.

4. The algorithm of [Erdmann] can compute the backpro'ection of a sngle edge in
time O(n log n). In Sweep, the goal region can be an arbitrary polygon. Similarly,
in Sweep, the start region for forward projections can be an arbitrary polygon.

5. Sweep is implemented using exact (rational) arithmetic.

6. Sweep can compute forward and weak backprojections as well as strong back-
projections.

14.2. Non-Directional Backprojections

14.2.1 Intuition

LIMITED is a generate-and-test planner. We have elaborated the "test" portion-
'fication of EDR strategies as decision problems about projection sets. Now 't

verl 1
is time to take a more sophisticated look at the generation" problem. How can
motion strategies be generated without exhaustive quantization and search?

244

A significant weakness of LIMITED is 'its ethod for generating commanded

motions. It simply quantizes the space of all motions. Thus to generate two-

step plans 01 * 2 LIMITED must quantize the space of motions 1 to generate the

first motion, and then quantize the space of motions for 2. Essentially, LIMITED

implements an existential theory; the planner can verify a strategy but the strategy

must be "guessed" by some oracle, or by exhaustive search. This is theoretically

unsatisfying, as well as impractical. We now address this problem. In particular, we

provide a method for generating two-step plans 01 *02 which only requires "guessing"

01. That is, once 1 is provided, 2 can be generated.

To this end we define a combinatorial object called the non-directional backpro-

jection, and give a critical slice algorithm for constructing it. The non-directional

backprojection may be used to represent, in a sense, "all possible backprojections"

of a fixed goal. We intend to use it to generate motion strategies.

[LMT] first defined non-directional preimages. [Erdmann] defined the non-

directional backprojection as the union of all backprojections in the plane:

Be(G).

We will use a different definition. However, it is in the same spirit as [LMTEl,

and so we will employ the same name. We must point out, however, that both

M. Erdmann and R. Brost have considered 2 a similar construction for generating

commanded velocities, and also thought about a critical slice approach to computing

it.

Our definition exploits generalized configuration space. Consider the following

argument.

1. Suppose we have a planar polygonal environment with no model error. In

generating motion strategies, we do not know which way to point the robot

that is, we do not know which way to command the motion. Thus in some sense,

there is "uncertainty" in "which way to go." This "uncertainty" is the variable

0. Thus we have a kind of three-dimensional planning problem, with degrees of

freedom x, y, . As the reader may expect, we intend to map this uncertainty

in which way to go" into our familiar friend, generalized configuration space.

2. Now, consider a problem which 'is 'in some sense dual to generating motion

strategies. In this problem, we only consider one commanded motion in a fixed

direction v*. However there 'is total uncertaint in the orientation of the entire0 y
environment. We may represent this uncertainty by a variable also.

Clearly, both problems (1) and 2) can be represented in an generalized con-

figuration space where x and y are the degrees of motion freedom, and is "model

2[Personal communication]. I am grateful to M. Erdmann for pointing out the similarity

of the construction.

245

error." Here is the difference, however. In 2), is universally quantified: that is,
we are required to ensure that a motion strategy succeeds for all . In (1), however,
0 is existentially quantified. We merely need one to find a commanded motion.

The precise analogue of (1) 'is a problem like 2) in wch we get to choose
the orientation of the environment such that the v* the fixed commanded motion
under consideration w guarantee reachin G.

14.2.2 Computing the Non-Directional Backprojection

We now make the intuitive argument more precise. Let J be the space of all
commanded motions, so that J is exactly the circle, S'. We write E J for a
commanded motion drection.

Definition: Let G be a goal amidst polygonal obstacles in the plane. The Non-
Directional Backpro'ection B(G) of G is a set in R' x J,

B(G) Bo(G) x IO}

Now, recall the critical slice algorithms of see. 64. These algorithms com-
puted 3D directional backpro'ections 'in a three dimensional generalized configura-
tion space, R2 x S. They operate by determining critical orientations at which the
topology of backpro'ection slices change.

B(G) is also a 3D backprojection-like region. We can develop critical slice
algorithms for cmputing B(G) also. They wll work by finding all values of at
which the topology of Be(G) can change. Then the algorithm takes slices at these
critical O's and at an intermediate non-critical O's between each pair of adjacent
cr'tical values.

Now, B(G) is bounded by developable algebraic surfaces. These surfaces are
of two types, obstacle surfaces, and free-space surfaces. The obstacle surfaces are
liftings into 2 x J of the obstacle edges in 'R 2. The free-space surfaces are swept
out by free-space edges of B9(G) as they rotate with . The manner in which the
bounding algebraic surfaces of B(G) sweep between slices is completely known
the obstacle edges stay fixed, while the free-space edges rotate wth 0, remaining
parallel wth edges of the velocity cone. Now, each free-space edge is anchored at an
obstacle vertex cobounding a possible sticking edge. As varies, the free-space edge
rotates about that vertex. Clearly, as varies, the topology of B9(G) can change
if the free space edge contacts an obstacle vertex. When this happens, there is an
edge connecting two obstacle vertices which is parallel to an edge of the commanded
velocity cone. Next, we note that any such edge lies in the visibility graph of the

246

planar input environment. The visibility gaph may be computed in tme 0(n 2).

This gives us the following lemma, which gives an upper bound on the number of
critical values of . Here 'is the intuition behind the lemma:

Consider a free-space edge e(0) of Bq(G). e(g) lies in the infinite half-ray
ri(O) which extends from e(O)'s anchor vertex. We call r(O a constraint ray;
it is parallel to an edge of Bc(v*). There are 0(n) constraint rays in each
backprojection slice Bo(G). r(9) rotates wth , and it can intersect 0(n)
obstacle edges as'9 sweeps along. Now, how many other constraint rays of
the form rj(O) can r(O) 'intersect as 'it rotates? Note that all constraint rays
I ej(9 } move "with" r(O), and are either parallel to it, or else intersect it
always. Therefore how r(O) can 'intersect these other constraint rays as
sweeps is also 0(n).

We assume that the input polygons represent configuration space obstacles. 3
We use the boundary operator 9 to denote the topological boundary.

Lemma. Given a goal G of constant size and an arrangement of input polygons of
size 0(n), there are 0(n 2) critical values of in the non-directional backprojection
B(G)
Proof. Let Bc(v*) denote the control velocity uncertainty cone about a commanded
velocity v*. We think of Bc(v*) as rotating wth . The topology of B(G) can
change when any of the following occur:

A. An edge of Bc(v*) becomes parallel to an edge in the visibility graph of 'P.
Such values of are called vgraph-critical.

B. 0 is a sliding-critical value (see sec. 64), where the determination of sliding
vs. sticking behavior on an edge can change. Sliding-critical values occur when
an edge of Bc(v*) becomes parallel to the edge of a friction cone on some
configuration space edge.

C. Let e(0) and eO) be free-space edges of B(G). They rotate with about
their anchor vertices. Let pij(O) denote their intersection; it is a free-space
vertex of the backprojection. Then is vertex-critical when Pjj(0 E B,9(G)
and pij(8) intersects some obstacle edge.

Now there are 0(n 2) edges in the visibility graph of 'P. In sec. 64 we showed
that there are 0(n) sliding-critical values. Only sliding-critical values can introduce
additional constraint rays.

Now, since there are 0(n) constraint rays 'in each slice, it would appear a
priori that there could be potentially 0(n 2) pij(O)'s. Note, however, that each

3See sec. 64 for the complexity where the 'Input is gven 'in real space obstacles.

247

free-space vertex pij(9) of the backprojection can be identified with exactly one
constraint ray, say the "left" one, r(9). Hence we see that there are merely 0(n)
pij(0)'s. Each moves in a circle. Observe that in effect, each free-space vertex of
the backprojection moves with in a piecewise-circular ibly disconnected locus.
Consider the discontinuities in the locus caused by type (A) or (B) critical values.
In between discontinuities, each circular arc 'in the locus can intersect only a fixed
number of obstacle edges. In particular, the arc cannot intersect n obstacle edges

'thout "using up" more type (A) or (B) critical values. Hence, there are 0(n2
vertex-critical values of .

Next we observe that the bounds for (A) (B) and (C) are additive. In particular:
the bounds on vertex-critical and vgraph-crit'cal values apply to all possible free-
space edges; hence the vgraph-critical and vertex-critical values do not interact and
their complexities do not multiply. Similarly, the sliding-cn'tical bounds cover all
possible ways that a constraint ray can be added or deleted from the backprojection
boundary as changes. Hence this bound 'is also additive. Thus we obtain the 0(n2
upper bound.

Corollary: There exists a representation of sze 0(n') for the non-directional back-
projection B(G).

Proof: Take 0(n 2 slices at critical values. Compute a backprojection slice B(G)
of size 0(n) at each of the critical values of 0. 0

2) S1,Comments: This upper bound means that 0(n ices are required for a critical
slice representation of B(G). However as in sec. 64 it seems that this upper bound
will almost never be attained in practice. In practice we will consider only small
ranges of 0. For example, for a peg-in-hole strategy, we would probably only consider
directions 'in the lower (downward) half-plane. While these arguments do not affect
the worst-case complexity, they do suggest that 'in practice the number of critical
values may be smaller than 0(n2).

We can now address the complexity of computing B(G). By this we mean,

what is the complexity of computing a precise, ombinatorial description of B(G).

The output representation 'is a finite ordered set of alternating ritical and non-

critical slices B9, (G), BOncl(G),... }I along with an algebraic description of how

the free-space edges of the backprojection change between slices. (For a free-space

edge, this is completely specified by the anchor vertex and an interval of for which

the surface bounds B(G)).

As above, let P be an arrangement of 'Input polygons representing configuration

space obstacles.

248

Theorem: Given a goal G of constant size and an arran ement of input polygons
P of size O(n), a representation of size 0(n4) for the non-directional backprojection
B(G) can be computed in time 0(n4 log n).

Proof. First, we compute the critical values of . Sliding-critical values can be com-
puted in lnear tme. Vgraph-critical values can be computed 'in tme O(n 2log n).
While it may be possible to compute the vertex-critical values 'in quadratic time,
we give the following simple O(n 3) algorithm-. Intersect all constraint rays to ob-
tain O(n 2) points pij(9). Each of these points is a possible free-space vertex of the
backprojection, and each moves in a crcle with 9. Intersect these circles with the ob-
stacle edges to obtain O(n 3) possible critical values of 0. The actual vertex-critical
values will be contained in this set.

Compute O(n 3 slices B9(G), at each the possibly-critical value 0, using Sweep.
Sweep computes a 2D backpr 'ection slice 'in time O(n log n), and the output has
size 0(n) 0

Some comments are in order. First our algorithm 'is naive in that each back-
projection slice is recomputed from scratch. In fact, this extra work is unnecessary.
At a critical value of 0, very few aspects of the topology of the backprojection will
change. That is, typically, only one or two free-space edges will be 'Introduced,
or disappear, or change at any critical value. We can make this notion precise as
follows. If is a generic singularity, then exactly one edge or vertex of B9(G) will
appear or disappear there. Hence, for example, we can ensure that all critical val-
ues are generic singularities with probability one b subjecting the input to small
rational perturbations.

Suppose that a backprojection has been computed in a critical slice at 0. Then
to compute a backprojection in a nearby noncritical slice at + e, we merely need
to update the portion of the backprojection boundary which was critical at . This
requires only constant work: only one edge or vertex must be changed to derive
a backprojection in the new slice! The new slice, furthermore, need not be copied
in entirety. Instead, the representation for the new slice can simply indicate how
it has changed from the old slice. It 'is reasonable to speculate that this technique
would yield an algorithm of time and space complexity O(n2 log n) for computing
B(G). (The log factor arises from the necessity of sorting the critical values).

14.2.3 The Non-Directional Forward Pro'ection

The "dual" to the non-directional backprojection is the non-directional forward
projection:

249

Definitl'on: Let R be a start region amidst polygonal obstacles in the plane. The
Non-Directional Forward Pro'ection F(R) of R i a set in V x J,

F(R) Fo(R) x IO

As a corollary to our bounds on the complexity of the non-directional backpro-
jection, we obtain the following theorem which may be derived mutatis mutandis:

Theorem: Given a start region R of constant ize and an arrangement of input
obstacle polygons of size O(n), let F(R) be the non-directional forward-projection
of R. Then
a. there are O(n 2 critical values for F(R)
b. there exists a representation of size O(n 3 for F(R);
C. a representation of size O(n 4) for F(R) can be computed in time O(n 4 log n).
11

We wll need the following corollary later:

Corollary: For a constant-sized start region R and goal region G, amidst an ar-
rangement of input obstacle polygons of sze O(n), the non-directional forward
projection F(R) and non-directional backprojection B(G) have representations as
polynomial-sized formulae in the language of semi-algebraic (s.a.) sets. Further-
more, these formulae are quantifier-free.
Proof: We can represent the non-directional forward projection (resp., backprojec-
tion) at a polynomial (in n) number of critical values I 1, . . . , 0 } via the formula

I
A (= i (XI) E e (R))

i=1
Let two adjacent critical values be OTin and OT". In between adjacent criti-

cal values of the non-directional projection 'is bounded by a fixed 4 set of O(n)
developable algebraic surfaces. That is, when is between O!nin and OT", the non-
directional projection is the 'intersection of some fixed set of O(n) algebraic half-
spaces. These half spaces are represented by algebraic 'inequalities, I gij(x, y 6

} where each gij 'is a polynomial. The form of the gij is dscussed in 14.2.2 We
define the predicate

Mi
Ci (gij(x, Y,) :5 0),

j=1

fixed between OTin and OT".

250

where mi 'is O(n). We construct the non-directional projection as a s.a. set in a
case statement,

AA (O E OTinIOTax) C-).

14-3. Generating MuIti-Step Strategies using the Non-Directional
Backpro'ection

We now describe how to employ the non-directional backprojection B G to
generate two-step strategies with "less quantization." More precisely.- while LIMITED

is required to hypothesize both the first motion 1 and the second motion82,we can
show how, gven 01, 02 may be computed. Hence only 1 need be guessed through

exhaustive quantization, and 02 can be computed deterministically.

Let C be the configuration space R2, and J the space of commanded motions

S1 as above. Define the projection map

IrJ : J J

(X 7 Y, 0) 0.

Now, algorithm Semi-Plan, below, takes a first motion 1, the goal G the

start region R and the set of input polygons representing the arrangement of

configuration space obstacles. It computes the set T of all commanded motions 02

such that 1 02 reaches G.

Algorithm Semi-Plan

1. push,9, F*,g, (R).

2. R, - push,91 x J.

3. T +- J - i R - B(G)

4. Return any 2 E T.

To see that Semi-Plan is correct, we simply observe that J is the set of all

commanded motions 2, and that

7rJ R - B(G) (2)

is simply the pro'ection onto J of where the push-forward of 91 hes outside the

non-directional backprojection. Choosing any 92 in the complement of 2) results

in a two step motion that is guaranteed to reach G.

251

Algorithm Semi-Plan has several advantages over exhaustive quantization of
both 01 andO2 spaces of directions. First, 'it requires less quantization. Second, it
provides a102 such that 01 02 reached G, instead of 'ust one. Third, the algorithm
is crisper, in that 'it exploits the structure of the non-directional backprojection; the
algorithm is not blind. Finally, it 'is possible to give precise analyses of Semi-Plan's
combinatorial complexity, as above. Clearly, the complexity of computing B(G)

'II dominate.

14.4. Comments and Issues

Semi-Plan represents a theoretical algorithm. It has not been implemented in
LIMITED. It was described here to give some characterization for bounds on comput-
ing multistep strate ies. In particular, it gives a precise combinatorial description

9 I
for the 3D non-directional backprojection B(G) for a planar polygonal configuration
space environment. Semi-Plan directly addresses the question of planning two-step
strategies. The critical slice method attempts to put the directional backprojection
techniques used in LIMITED on a firm mathematical footing. It gives a principled
way to choose motionO2 given 1 a bound on how many slices are required, and
an algorithm which does not have to exhaustively enumerate the possible second

,ANN--, motions 02

Note that 'if we were merely interested in one-step strategies, then a variation on
Semi-Plan provides a way to compute the set of all one-step motions guaranteed to
reach the goal without quantization. Consider algorithm One-Step which computes
the set T of all motions guaranteed to reach G from a start region R:

Algorithm One-Step

1. R, - R x J.

2. T +- J - 7ri R - B(G)

3. Return any E T.

In a sense, Semi-Plan and One-Step employ the non-directional backprojection
to effect "quantifier elimination." That is, the decision problem for guaranteed
one-step strategies 'is

:�o R c Bo(G). (3)

One-Step provides a way to eliminate the quantifier and in fact to generate all
satisfying 3). For two step strategies, we have the decision problem

flood

302, 30, F*01(R) C B92(G). (4)

252

Semi-Plan is an algorithm for eliminating the outer quantifier, and 'in fact, given
an 01, to generate all 2 satisfying 4). Taking this vew, we can characterize One-
Step as an exact algorithm for planning guaranteed strategies in a planar polygonal
environment. By exact," we mean that 'it does not rely on quantizations or approx-

imations, and that precise bounds are known. Similarly, we can view Semi-Plan as
a 44 semi-exact" algorithm for two-step strategy generation.

This is just a start, however, much work remains:

1. The combinatorial. bounds on B(G) can probably be improved. It remains to
prove or disprove the following conjecture:

Conjecture--, Given a goal G of constant size and an arrangement of input polygons
P of size 0(n), B(G) can be computed in time 0(n 2log n) and space 0(n 2).

2. An exact version of Semi-Plan could lead to an exact algorithm for planning
multi-step guaranteed strategies. Semi-Plan is merely semi-exact. We would like
to eliminate the "inner quantifier" in 4), and thus avoid the task of quantizing

01-space. This would yield an exact algorithm for planning two-step guaranteed

strategies. One approach would be to introduce a new axis to generalized configu-
ration space, J1, which represented the space of al possible first motions, I 1 We
then might lift B(G) to B(G) x Ji, and construct its backprojection B(B(G) x JI)

in the space C x J x J1. In this case, however, instead of a discrete set of critical

02 values, we obtain a set of critical curves 'in the01-02 plane. The critical slice
algorithm will be correspondingly more complicated, and remains to be general-
ized to this case. This approach would also require incrementing the dimension

of generalized configuration space (by 1) at each backchaining step. Tis increase

in dimensionality 'is consistent with known ower bounds on the motion planning

problem with uncertainty [Canny and Reif].

3. The non-directional backpro'ection is our key tool in developing an exact algo-
rithm for computing guaranteed strategies. Similarly, we would like to obtain exact
algorithms for computing EDR strategies. The key theoretical tools here would
be the non-directional weak backprojection and non-directional forward-projection.
The same combinatorial bounds hold for these non-directional objects. It remains

to develop exact algorithms for their set dfference, for determining non-directional

sticking, and for distinguishability. One approach to an exact algorithm for multi-

step EDR planning ight be as follows. Above, we suggested how an exact algo-

rithm for multi-step guaranteed strategy generation might be devised. [Brost] has

suggested a backchaining EDR planning algorithm which can generate multi-step

plans, each step of which is a strong EDR strategy. (See chap. III). By using

253

the non-directional weak backprojection (in place of the directional weak backpro-
jection) in such a backchaining planner, an exact algorithm for multi-step EDR
planning might be constructed.

4. The exact algorithms should be extended to more general configuration spaces.
Model error should be permitted. As above, the topology of the non-directional
backprojection will now become critical along hypersurfaces in the resulting gener-
alized configuration space.

Despite the apparent difficulties 'in these extensions, I feel that using the non-
directional backprojection is a promising approach to the strategy generation prob-
lem. In particular, it is a principled, exact algorithm for generating compliant
motion strategies. All previous theoretical and implemented fine-motion planners
[LMTEMasonDBuckley]-including LIMITED ssentially employed or suggested
an exhaustive search which quantized or enumerated the set of possible commanded
motions. In order for fine-motion planners to be practical, more study of the gen-
eration problem is required.

14.5. Complexity and Theoretical Results

Above, we described a polynomial time exact algorithm for generating one-step
guaranteed compliant motion strategies amidst planar polygonal, obstacles. We now
briefly address the general case of generating guaranteed r-step compliant motion
strategies. Assume sticking termination, so that for all and all R,

F*,g(R = push,9(Fo(R))_

By analogy with the non-directional backprojection, we can define the non-

directional forward projection. Now, we observe that all directional projection sets

-algebraic (s.a.). Then b the lemma on critical values of B(G), so are the

non-directional projection sets. Furthermore, when R has constant size, the lemma

shows that the non-directional pro'ection sets have descriptions (as s.a. sets) that

are polynomial in the size of the input arrangement 'P.

In the following definition, we assume that the control uncertainty cone B,, 'is

encoded by an angular error bound ±e,.

Definition: The planar compliant motion planning problem with sticking termi-

nation is defined as follows. Given a polygonal tart region R of constant size, an
integer r, a polygonal environment 'P of ize n, control uncertainty ec, coefficient

of friction y, and a polygonal goal G of constant ize, find a sequence of r mo-

tions 1 ... Or such that each motion terminates in sticking, and the final motion

Or terminates in the goal. Or, if no such r-step strategy exists, then say so.

254

Theorem: The planar compliant motion planning problem with sticking termina-
tion is decidable in time n' 0(i).

Proof. Let Po, pn E R' We define the predicates

fO (Pi, P2) P2 E Fo (pi) (5)

and

fo (Pi, P2) P2 E F*O(Pl)- (6)

Clearly, definition 6) is equivalent to

f,9*(P1,P2) f,9(PlP2 A stick,9(P2)- (7)

We have shown how in polynomial time to compute a quantifier-free polynomial-
sized formula (in n) for the s.a. set F(pi)-the non-directional forward projection

of pi. It remains to show that (5), and consequently 6) are polynomial-sized pred-

icates. Now, E Si, pi E R2, and P2 E R2. Consider fg(., -) as a predicate on

a 5D space X R2 X R2, that is, as fOP1,P2)- We can obtain a bound on the

complexity of f by enumerating all possible edges of FO(pl) as and pi vary. These

edges then sweep out developable algebraic surfaces in the domain of the predicate.

There are four types of edges that can bound F,9(pi):

a. An edge ei of a generalized configuration space obstacle. These edges sweep

out n surfaces of the form X R2 X e.

b. A free-space edge anchored at a vertex vj of a generalized configuration space

obstacle and parallel to the left or right edge of the velocity cone. Let rvj, 0)

denote the infinite ray anchored at vj at orientation . Then type (b) edges

sweep out 2n surfaces of the form U,9 (f 0 } X 3Z2 x r(vj ±)).

C. A free-space edge anchored at p and parallel to the left or right edge of the

velocity cone. These edges sweep out 2 surfaces of the form

f x pi I x r(pi, ± c)

pi

d. A partial edge of a generalized configuration space obstacle. Let V1, V2 be the

vertices of a generalized configuration space obstacle edge. A partial generalized

configuration space edge can start at v or V2 and extend to v, where 'is a

vertex of a type (b) or (c) free-space edge. Clearly v simply arises as the

intersection of a type (a) surface with a type (b) or (c) surface.

By enumeration, we clearly obtain a linear (O(n) bound on the number of

surfaces in the 5D domain of f. The arrangement of these surfaces has polynomial

size; in particular, it has 0(n') critical values. Hence we may conclude that f is a

predicate of polynomial size 'in n.

255

Now, define

"'C'(PO PM 1 I OM) (po, pl A fo, (Pi, P2 A - A fg,,,, (pm-1, M).

(8)

Since 6) has polynomial size in n, clearly the predicate (8) has polynomial size
i -free.

in n as well. Furthermore I t is quantifier

Now, we let the points pi serve as va points (sometimes known as switch-
points)-for the strategy. We quantify over all possible via points achievable by the
motion strategy 1, . Or, By letting m be r, this is sufficient.

We can formulate the question of the existence of an r-step. strategy as a deci-
sion problem within the theory of real closed fields:

(3011._A)

VP0 I .)Pr (PoER)AJF(PO,---9Pri0ii-10r) =*(PrEG) (9)

Now, deciding sentences in the theory of real closed fields is known be doubly-
exponential only in the number of quantifier alternations. More specifically, the
truth of a Tarski sentence for k polynomials of degree < d in r variables, where
a < r is the number of quantifier alternations in the prenex form of the formula,
can be decided in time

(kd)o(04a 2
1

O(r)'s(see [Grigoryev]). We have a = 2 and hence 9) can be decided in time n

This theoretical result 'is of 'interest for the following reasons. First of all, the

general compliant motion planning problem with uncertainty (in 3D) 'is known to

be hard for non-deterministic exponential time [Canny and Reif]. This means that

any algorithm for the problem takes at least doubly-exponential time in the worst

case. In this section, we have introduced restrictions on the problem which make it

more tractable. These restrictions are.-

The configuration space 'is the plane, where drectional forward projections

have linear size. (In 3D they can have exponential size). A key step in our

construction was then to show that the non-directional backprojection B(G)

has polynomial size.

0 Sticking termination 'is used.

0 The maximum number of steps in the strategy is given as 'input to the algo-

r'thm.

256

With these restrictions, the problem becomes decidable in tme exponential in
r. In fact, we conjecture that for a great number of planning problems, r is 'in fact a
small constant. When r may be so regarded, we effectively obtain a polynomi'al-time
algorithm for this restricted planar motion planning problem with uncertainty.

It mght have been possible to devise these restrictions a priori, from a strictly
complexity-theoretic viewpoint. However, I believe that only after reading the pre-
vious chapters does it become clear that these restrictions are physically meaningful,
and in fact define a useful and interesting subclass of planning problems. In a way,
this thesis has been an exploration of problems solvable within these restrictions.
From this perspective I believe 'it 'is reasonable to conjecture that a large class of
planning problems do fall under this rubric.

Of course, this 'is only a start. From the standpoint of developing theoreti-
cal, "exact" algorithms, we have only addressed the problem of planning ertain
restricted classes of guaranteed strategies in the plane. It remains to consider exact
algorithms in higher-dimensional configuration spaces, model error, EDR, and more
sophisticated termination conditions.

257

VI. Conclusions

258

15. Conclusions

15.1. Summary

This thesis offers two main contributions to the theory of manipulation. The

first 'is a technique for planning compliant motion strategies in the presence of
model error. The second 'is a precise geometrical charaterization of error detection
and recovery (EDR). These led to a constructive definition of EDR plans in the

presence of sensing, control, and model error. These more general strategies are
applicable in assembly planning where guaranteed plans do not exist, or are difficult
to find. We tested the EDR theory by implementing a planner, LIMITED, and
running experiments to have LIMITED automatically synthesize EDR strategies.

A number of mathematical tools were developed for the EDR theory. First, we
considered compliant motion planning problems with n degrees of motion freedom,
and k dimensions of variational geometric model uncertainty. We reduced this
planning problem to the problem of computing preimages in an (n + k)-dimensional
generalized configuration space, which encompasses both the motion and the model

degrees of freedom, and encodes the control uncertainty as a kind of non-holonon-lic
constraint. We also showed how pushing motions could be planned using generalized

configuration space. In addition to the assembly domain, generalized configuration
space was shown to serve as a "map" for planning sensing and motion strategies for
a mobile robot amidst partially known obstacles.

Next, we characterized EDR strategies geometrically via the EDR region H.

Determining whether a strategy satisfied the EDR axioms was reduced to a deci-
sion problem about forward projections and preimages in generalized configuration

space. Making this process formal and algorithmic required a detailed investiga-
tion of the geometric and preimage structure of the EDR regions. The Weak EDR
theory introduced new mathematical tools for studying multi-step strategies

reachability and recognizability diagrams, strong and weak strategy equivalence,

linking conditions, and strategy composition. A variety of techniques for planning

multistep EDR strategies were investigated and unveiled a special cases of the
Weak EDR theory.

Finally, we explored the complexity of EDR planning. We derived bounds both
for the implemented planner LMITED, and for theoretical extensions. While in

general it 'is known that compliant motion planning with uncertainty is intractable,
we were able to demonstrate a number of special cases where there exist efficient
theoretical algorithms. In particular, we showed a ca-se where n = 2 k = I and

containment 'in the backprojection could be computed in polynomial time (n(lfe for

n = 3 k = 0, this 'is false [CR]). We also investigated the structure of trip on-

directional backprojection in the plane. It led to a polynomial-time algorithin for

259

computing one-step (guaranteed) strategies, and a singly-exponential algorithm for
multistep strategies.

15.2. Future Work

A number of research directions deserve further attention:

15.2.1 Probabilistic Strategies

The EDR framework should be extended to 'Include probabilistic strategies.
At the moment the EDR theory essentially provides a binary test for recognizing
an EDR strategy. It would be useful to have a method for deciding which of two
strategies was "better." We sketched a way of formalizing this generalization in sec.
7.

15.2.2 Goals and EDR Re 'ons 'in Phase Space-Time

When the goal is specified in phase space-time as the product of a cylinder over
a generalized configuration space goal with a compact time interval, our geometrical
characterization of EDR satisfies the EDR axioms. Without time, or with goals of
the form r-1 (G) x [t, oo), the definition of H does not completely fulfill the EDR
axioms. This is because it is possible for motions sticking 'in H, to eventually slide
into the goal, violating the pnciple that no motion should be terminated as a
failure when serendipitous goal achievement is still possible.

This area deserves further research. Future drections include: Relaxations of
the EDR axioms, probabilistic control strategies, 'Implementation of termination-
predicates with time, computation of time-indexed forward projections, and study
of the structure of phase space-time goals.

15.2.3 Algorithmic Improvements-, Search and Efficiency

LIMITED currently employs a great deal of exhaustive search. The space of
model error and the space of commanded directions are exhaustively quantized. We
have demonstrated certain theoretical results using critical slices of the projection
regions (sec. 6 and the non-directional backprojection (sec. 14) to show how
exhaustive search may be avoided by examining only irrelevant" constraints. This
direction should be explored more extensively.

On a related note, LIMITED is slow. We have demonstrated efficient theoretical
algorithms for subproblems in the EDR theory. These algorithms should be reduced

260

to practice. EDR planning in higher-dimensional generalized configuration spaces
may be prohibitive unless faster algorithms are found.

15.2.4 How Often 'is Planning Hard?

While compliant motion planning with uncertainty is known to be very hard
in general, this does not mean that all such problem are hard. We desire some way
of talking about the "space" of geometrical planning problems, and defining a knd
of measure on that space. Then perhaps one could determine whether the problems
which are hard for exponential time are of "measure zero?', for example.

15.2.5 Provably Good pproximate Algorithms

Concomitant with our conjecture about the distribution of geometrical prob-
lems is the observation that the intractability of exact solution does not preclude
the existence of fast approximate algorithms. It would be very useful to develop
such algorithms and show that they are provably good approximations.

15.2.6 Different Complexity Measures

In developing good average-time algorithms for EDR planning, it would be
useful to measure the complexity in the size of the output. For example, while it
is true that the forward projection in 3D can have exponential size 'it seems that

J I
there are many problems in which it is much smaller. Thus it would seem natural
to measure the complexity of planning in 3D by the complexity of the forward
projection.

15.2.7 Hardness of EDR vs. Guaranteed Planning

Since the EDR theory contains [LMT] as a subtheory, it appears a priori at least
as hard to decide. However, consider the following "'intuitionist" argument: many
"hard' problems, requiring exponential-length guaranteed plans that take doubly-
exponential time to generate, may admit "short" EDR plans that can be generated
easily. For example, the peg-in-hole 'insertion strategy with model error, or the
gear-meshing plan, may require very long plans 'if the plans must be guaranteed.
However, we can find 2-step EDR plans for these problems. This intuition-wLich
is a heuristic claim so the reader 'is advised to proceed with caution-shoid be
verified or disproven.

261

15.2.8 Weak EDR Theory

The weak EDR theory, while still in its infancy, has already yielded some
interesting results and a fairly clean mathematical framework for studying multi-
step strategies. The key idea behind the weak EDR theory 'is: given a collection
of goals G (possibly including H), we consider all unions of the subcollections
to get some measure of weakest recognizability. This is perhaps the most exciting
theoretical area for future work.

As an immediate goal, the lnking conditions should be extended for time-
indexed forward projections.

15.2.9 Dynamic Model

The dynamic model in the EDR theory should be tested, by trying out the
EDR plans using actual robots. The dynamic model should also be extended, to
incorporate second-order dynamics, impact, and deformation.

15.2.10 Computing Pro'ection Sets

When rotations and compliant motion are allowed, we do not know of exact
algorithms, even 'in principle, for computing projection sets. For example, the
computation of forward projections is not immediately decidable within the theory
of real closed fields. This is because the physics of motion are essentially specified
"differentially," that is, by a mapping that sends a configuration x E and a
commanded motion E Sn (where n + 'is the dimension of C), to a cone B,(x,)
in the tangent space:1

Sn --+ cones in T9
(X7 i-4 Bc (x , 0).

Thus we have a dfferential specification of the possible motions Bc(x,) at each
point x. The cones at each point specify a parametric family of vector fields-a field
of cones to be precise. The 'integral curves for this family, however, may not be al-
gebraic in general. Good approximate algorithms are needed to construct bounding
algebraic envelopes about the image of this family of curves. For example, assuming
that an integral curve has a power series it is possible to construct a recurrence
relation for the coefficients of the series. They can be generated deterministically
to the accuracy desired. Randy Brost' has investigated other numerical techniques
for constructing 'integral curves corresponsing to trajectories in the forward pro-
jection. This is an nteresting area for future research. In particular, it could be

'The space of "cones in T9" can be formalized as an appropriate tensor bundle over G.
2[Personal Communication].

262

pplied to the "full" 4-dimensional gear meshing problem where a commanded pure
rotation of the gripped gear could induce translations or rotations of ether gear.
Such algorithms might also be applied to compute projection sets under different
dynamics.

15.2.11 Higher-Level Primitives

The primitives" in the EDR and [LMTE] theories are somewhat low-level-
they consist of commanded generalized damper motions. While it is easy to describe
such motions, their effects can be complex. It would be useful to develop a theory
of planning with higher-level primitives that was still geometrical in character.

15.2.12 Planning Paradigms

Different planning paradigms for EDR planning should be explored. LIMITED
is a forward-chaining planner. [Brost] 'is developing a backchaining EDR planner.
It would be interesting to integrate and compare these techniques.

15.2.13 Functional vs. Geometrical Descriptions of Goals

Some of the greatest and most interesting unsolved problem in geometrical
robotics lie in the interaction of functional and geometrical descriptions of goals. In
particular, we would like to devise algorithms for computing a geometrical goal re-
gion given a functional description-for example, a quantified dfference equation-
for the desired behavior 'in the goal state. Conversely, we would like to be able to
infer a functional description of the goal from its geometrical aspects. The latter
would be useful in automatically generating termination predicates to recognize the
goal.

I believe that EDR is an exciting and fruitful area for future research. Many
of the directions above could be taken as criticisms of the theory-for example,
that it 'is too slow, or may require exhaustive search. However, I would rather view
these as criticisms not of the EDR theory, but rather of the state of the art in EDR
implementation, that is LIMITED. In particular, if five years ago one had surveyed
researchers n robotics and asked them what to do about model error and EDR,
I believe that the general response would have been "I don't know; it's a good
problem." Now at least we have a systematic theory of model error and EDR, and
are faced with the test of reducing 'it to practice.

263

APPENDICES

§A.1. A Note On Geometry

Our definitions of phase space, and phase-space goals have been primarily set-
theoretic. These sets have considerable additional structure, which is a good thing,
for otherwise there would be no hope of computing them. The geometry of these
regions is accessible by viewing phase space as the tangent bundle to (generalized)
configuration space. This gves it structure both as a differentiable manifold and
a vector bundle; 'is the canonical covering map. The mving object's moment of
inertia tensor defines a field of inner products on the tangent bundle, providing a
natural choice for a Riemannian metric. For example, to see that Z(H,) is well-
behaved", observe that it is the 'image of a zero-section (see below) of the tangent
bundle, and so it is an embedding of H, This geometric point of vew is crucial
to a computational analysis; it 'is developed in more detail here, and earlier 'in
[Erdmann].

Notation:

Some readers may still wish to continue thinking of the tangent bundle to
configuration space as "Position-space x Velocity-space." This is set-theoretically
correct, although it ignores its topological, algebraic, differential, and geometric
structure. Set theoretically, the tangent space T ion x

, at a configurat' may be
thought of as the collection of all velocities (or forces) "at" a configuration x. That
is, the tangent space at x is the cylinder 7-'(x) endowed wth a vector space
structure. It has the same dimension as the (generalized) configuration space. The
tangent bundle is set-theoretically the disjoint union of all tangent spaces. It has
twice the dimension of the configuration space. If C is a configuration space and
TC its tangent bundle, a ection of the tangent bundle is a map s C --+ TC such
that x o s is the identity on C. Of particular interest is the zero section, which sends
a configuration to the distinguished zero-velocity in its cylinder.

§A.2 A Formal Review of Pre-Images

A motion strategy is a commanded velocity together with a termination predi-
cate which monitors the sensors and decades when the motion has achieved the goal.
The actual path followed depends on the control uncertainty, but we require that it
satisfy generalized damper dynamics (see 4), below). Gven a measured position

PO in configuration space, a set R, and a collection of goals I G } [LMT] define
S(p* R I Go } to be the set of all commanded velocities v* such that the termina-0 0

264

tion predicate, knowing the ntial measured position p* corresponds to an actual
position p 'in R, is guaranteed to signal success. We denote the position sensing
error ball about p by Bp(p) A pre-image of a collection of goals G,3} relative to
a set R is the set

PR(J Gg I p E R I p* E Bep(p), Spo*, R I Go 0
that is, the set of all positions such that for all measured positions p* consistent

I 0
with p, there 'is some commanded control velocity v* such that the termination
predicate is guaranteed to sgnal success.

Analogously, define the directional pre-image with respect to a nominal com-
manded velocity v by0

PR q(J Gg I p E R I PO E Bep(p) v* E Spo I R I Gg

The directional pre-image is the set of points which are guaranteed to recogniz-
ably enter the goal under a particular commanded velocity v*. The weak preimage
is the set of points which could possibly enter the goal recognizably, given fortuitous
sensing and control events.

The backprojection of a goal with respect to a commanded velocity v*) consists
of those points guaranteed to enter the goal. Recognizability of the entry plays no
role.

The forward projection of a region R (with respect to v*) is the set of ositions0
and velocities (considered as ordered pairs) which are possibly reachable from R
under v*

For a comprehensive account, see [LMTE]. For convenience, we summarize
the notation here. While historically the subscript has been used to indicate the
4C angular direction" of a commanded motion, we will employ it as an arbitrary index
for motion strategies, commanded velocities, and termination predicates.

Symbol Table:

0V* nominal commanded velocity.
vo actual commanded velocity.
v actual velocity.

V* sensed velocity.

p actual position.

p* sensed position.
B,,(v*) control uncertainty.

B,,(v) velocity sensing uncertainty.

B.P(p) position sensing uncertainty.

Fq(R) forward projection of R for v* vo.

265

F9(R) natural projection F into C-space

Bq(G) directional backprojection of G under v* vq.

PR(J Go) non-directional pre-image.

PRI,9(1 G# }) directional pre-'image.

PR(f G# }) non-directional weak pre-image.

PRo(f Go } drectional weak pre-image.

For notational elicity, we will define B(f GI H = Bo(G u H).

§A.3. On the Geometry and Physics of Generahzed Conflgurati'on
Space

We now discuss the geometry and physics of generalized configuration space
somewhat more formally. Generalized Configuration Space is a smooth manifold.

Intrinsically it is not different from the configuration spaces considered in, for ex-
ample, [LMT, E, D C. We must define a system of dynamics for generalized config-

uration space in order to define motions. Furthermore, we must define how sensing

generalizes.

Let C be a smooth configuration space. Let J be an arbitrary set which will

index the possible configuration space environments. Generalized Configuration
Space is C x J and a particular "world" is smply C x a} for Ce E J. Thus

we let I C },,,,Ej be a set of configuration spaces, each containing configuration
space obstacles. The ambient space for each is some canonical C which is the

configuration space for the degrees of freedom of the moving object. is simply
the natural product representing the ambient space of the dis .oint union of the C.
There 'is no constraint that J be finite or even countable. Now, assume that J is also
a smooth manifold (with boundary), although as we shall see, this is not a serious

restriction. We wish to define a "physics" on , that 'is, a set of laws that motions

in generalized configuration space must obey. This physics will be expressed as a
set of constraints on uncertainties and trajectories in the tangent bundle T9. Write

: = , a) E ; A particular tangent space will be written T = T,,, = Tx,,,,,g We

will use the convention that the analogs of mathematical objects in the pre-image

framework will be written with a bar in the model error framework. Thus a velocity
in Tx a will be written = (V dc,) where v E T C.

(1) There is infinite position sensing uncertainty in J. This means that we wll

define the generalized position uncertainty as Bp(Y = B,p(x) x J.

(2) Motions are possible in g, but any motion must stay within one slice of
9, say C x f ao }. (We call this an ao-slice of g). ao is the actual position in

J. If E Tao J denotes the zero velocit in the tangent space to J at ao, then

we can define the generalized velocity sensing uncertainty B, v (F = B, (V) f

Analogously, the generalized control uncertainty is ffec(V*0 = Bec(v*) x f 0). These

266

definitions ensure that all sensed and commanded velocities are tangent to C and
have zero component along J.

(3) Define a generalized trajectory �b : [0, oo) --+ TG b
J y TM = (TPM� DV(t))

(41)p(t), a(t), Pv(t), d,(t)), where (a(t), d,,(t)) E TJ.
(4) Let f E T9 be a force tangent to generalized configuration space. Then

f must satisfy the damper equation f = B(- V-). In truth, this is a generalized
generalized damper constraint. must vary smoothly, that 'is, is a smooth tensor
field on . In practice, we constrain to be diagonal on each tangent space so that
it cannot cross-couple TC and TJ.

(5) Let (DP and = . j5 and must be related via the integrability
constraint

t
PM =) + V(t)dt.

(6) Vo E ec(Vo*). That is, the generalized actual commanded velocity must be
consistent with the error bounds on the generalized nominal commanded velocity.

If 4) obeys these constraints 1-6) we say it is a trajectory satisfying the damper
equation with uncertainty relative to a commanded velocity v*. Such a trajectory
is constrained to have a(t = ao and d(t = for all t. The latter implies that the
image of any 4D lies 'in the submanifold TC x J x f } TC x J. This is why
we can think of TG, the phase space of !9, as being TC x J instead of TC x TP
It also suggests that we may relax the constraint that J be smooth.

[Erdmann] generalizes Euclidean friction cones to arbitrary smooth C. The
generalized friction cones embed in TC. Thus friction cones embed naturally in
generalized configuration space. Of course, they have no non-zero component in
TJ.

In this thesis, when there is no possibility of confusion we have dropped the
bar notation and assume that in generalized configuration space all quantities, un-
certainty balls, trajectories, etc., are barred, 'i.e., generalized. We have referred to
generalized configuration space as!9.

The definitions and results for pre-images and backprojections [LMTE] in C-
space generalize mutatis mutandis too endowed with this physics. Thus this frame-
work reduces the guaranteed motion strategy planning problem with model error
to computing pre-images in a somewhat more complicated, and higher-dimensional
configuration space.

§A.4. Derivation of the Non-Holonornic Constraints for Pushing

The previous discussion assumed that motion across J was impossible. That is,

3This is only acceptable when no motion across J is possible! See §A.4.

267

all motion is confined to one aslice of generalized configuration space. In example

(1), this 'is equivalent to the axiom that does not move or deform under an applied

force. Such an axiom makes sense for applications where is indeed immovable,

for example, if A and are machined tabs of a connected metal part. However,

suppose that is a block that can slide on the table. See fig. IL 17. Then an applied

force on the surface of the block can cause the block to slide. This corresponds to

motion in J. In general, the effect of an applied force wll be a motion which slides

or sticks on the surface of B, and which causes to slide or stick on the table. This

corresponds to a coupled motion in both C and J. When the motion maintains

contact, it is tangent to a surface 'in generalized configuration space.

Our goal is to generalize the description of the physics of to permit a rigorous

account of such motions. Ts model can then be employed by an automated

planner. Such a planner could construct either Guaranteed or EDR strategies whose

primitives were gross otions, compliant motions, and pushing motions.

First, we must determine what reaction forces are in generalized configuration

space. By this we mean the following. Surfaces in configuration space share many

properties with real-space surfaces. When pushed on, they push back. They have a

normal in configuration space, and 'in the absence of friction can exert forces only 'in

that normal direction. In general the configuration space normal is different from

the real-space normal; see [E]. Furthermore, [E] developed a configuration space

analogue of the classical Coulomb friction cone of Cartesian space. It defines the

range of reaction forces the surface can exert, and may be employed to predict

reaction forces, given a applied force. In addition gven ether Newtonian or gener-

alized damper dynamics, the configuration space friction cone can be used to predict

whether sticking wll occur on a surface, given a cone of control velocity uncertainty.

Under damper dynamics, the computation at a point is especially simple: sticking

can occur when the intersection of the negative velocity cone and the friction cone

is non-trivial.

We wish to extend these methods to generalized configuration space. Then,

given a cone of applied forces as in fig. II.17, we can predict the cone of resulting

motions in . That is, we can predict the motion along the surface of B, and

the motion of on the table. In particular, given a control uncertainty cone, we

can compute whether sticking occurs on the surface in generalized configuration

space.

In this analysis, we will consider a force exerted by the robot on an object

B. This corresponds to an application of force on a surface in 6;. The analysis

will apply to arbitrary smooth C, J, and S, for an arbitrary rigid object B whose

configuration space is J. The reader may imagine B and as usual in example (1).

In example (1), however, the configuration space of B 'is one-dimensional. To make

the example more interesting, let us suppose that B is free to translate and rotate

268

A 3Z2 j S 2 X SI.on a planar table. So C is as before, but 1

We must determine:

0 What is the normal to a surface in generalized configuration space?

0 What is the analogue of the friction cone in generalized configuration space?

0 What are the applied forces which cause sticking at a point on S? What is
their geometric interpretation and computation?

How may reaction forces be computed geometrically, using the generalized fric-
tion cone in generalized configuration space?

Our analysis is applicable under the following assumption: We must have per-
fect knowledge of the centers of friction of and the robot. To satisfy this as-
sumption, it 'is sufficient to assume that all (real-space) contacts consist of a finite
number of points. For example, we might model the contact of B on a planar table
by the intersection of four one-point contacts. Alternatively, the centers of friction
are known when the pressure distributions are known precisely. In the more general
case where the pressure dstribution 'is not known precisely, then the more gen-
eral theory of pushing described by Mason, 82] must be employed. More research
is needed to extend this more restricted theory of pushing to the case where the
centers of friction are not known precisely. One possible solution is to introduce
uncertainty 'in the center of friction as a model error parameter in J.

This discussion represents work in progress. In particular, the method de-
scribed for the computation of reaction forces is meant to be iustrative of the
techniques that an EDR planner would require, if it were to competently plan
pushing motions. I hope that a simpler algorithm can be found before a practical
planner 'is constructed.

Normals to Surfaces in Generalized Configuration Space

Let C and J be the configuration spaces of the robot and of the block B, respectively.
Assume that the reference points are chosen to lie at the centers of mass. Typical
configuration spaces we will consider are the two and three dimensional groups of
Euclidean motions, R2 x S and RI x SO(3). The definition of normals in the
tangent spaces to these configuration spaces depends on the inner product. There
is a natural choice for the Riemannian metric- see [Arnold, Abraham and Marsden
E].

The moment of inertia tensor of the robot defines a field of inner products
on C. On a tangent space T,C, write the inner product as (-, -).,. This choice
of inner product is "natural" in the following sense: The Riemannian metric i a
quadratic form which computes the correct kinetic energy of the robot moving with
generalized velocity v at configuration x:

269

1
E = (VV),, v E TxC.

A Riemannian metric (., on the tangent space TJ 'is defined in the same
way. The inner products may be combined by direct sum to define an inner product
on TxC x TJ. We can vsualize this as follows. Snce the moment of inertia
operators are symmetric 2-tensors, we can view them as square matrices dix and
T,,,. In principal axis coordinates, for example, both will be diagonal matrices with
unit entries for the Cartesian dimensions, and the squares of the radi' of gyration
in the rotational coordinates. The operation of 4�x on two velocity vectors VI u in
Tx C is defined by

(VI U) = 4�xu.

Write = XI a) as usual. Let wl, W2 be in T-x-9. So the inner product on Ty-g
is defined by

(W1 W2)7 = Wi 44�x 0

0 IF Ct W2-

Thus the direct sum of the inner products defines a field of inner products on
Since the reference points are at the centers of mass, the kinetic energies of the

robot and of B simply add without cross-coupling. Therefore (*) defines the natural
Riemannian metric on generalized configuration space, since it describes the kinetic
energy of the system.

Now, a tangent vector (VC, j) in T7g corresponds to a (generalized) velocity
of vc of the robot and v of the ob .ect B. Generalized damper dynamics permitsi J
an identification of forces and velocities. Thus the pair (f, fj) wth

f E TrC

f E TvJ

corresponds to a generalized force of f applied at the center of mass of the robot,
and a generalized force of fj applied at the center of mass of B.

Note that the inner product (*) defines the normal space to the surface in
generalized configuration space.4 See fig. II.18. The normal, in general, can be
transverse to J. Hence can exert reaction forces across J even when the applied
force lies exclusively in T.,C. In the figure, this implies that pushing on the side of B
results in a reaction force across J, causing B to slide. In generalized configuration
space this is simply vewed as applying a force to the surface S wich exerts a
reaction force across J. Since the resultant force i's across J, the motion in G will
be in that direction, tangent to S.

4This is independent of the choice of generalized damper or Newtonian dynamics.

270

Construction of the Sticking Cone

We now derive a geometrical object called the sticking cone. It represents the cone
of forces (f, fj) that can cause sticking on a surface in . Under generalized damper
dynamics, the sticking cone represents the commanded velocities that can result 'in
sticking.

Henceforth, all forces are generalized forces unless otherwiseindicated. Keeping
the notation above, suppose the generalized force (f, fj) is applied at configuration

= x, a), which lies on surface in generalized configuration space. Now, it is
clear that f acts on as well as on the robot.5 Assume for discussion that fc
contains no torque components. Then the effect of f, on is both f acting at
the center of mass of B, plus the torque induced on by f. Let rx be the radius
vector from the center of mass of to the point of application of f, in real space.
Then the effect of f on can be written 6

f = f + r x f E T, J.

The torque component of f* must also be normalized relative to the inner product
on TJ; this is not indicated above.

Now, of course it is also true that fj 'induces an force on the robot. For example,
if in example (1) the block is pushed at 'its center of mass, then a force can be
exerted on the robot when the robot 'is in contact with B. The induced force
contributes to the reaction force of B on the robot.

Let frc denote the reaction force of B on the robot- it lies in TxC. Let frj
denote the reaction force of the table on B; it lies 'in TJ. The force balance
equations for static euilibrium are

f + fr =

f + f + fj = .

Now, let Kx be the configuration space fction cone [E] in TxC, and K be the
configuration space friction cone in T J.' The conditions for static euilibrium are
then expressible as

-f E Kx

- f - f* E 1-�a

50f course, this 'is only true when the robot and B are 'in contact, e, E S.
6Under quasi-static assumptions.
7We do not assume that the center of friction is at the center of mass. If tis is not
the case, however, the friction cone must be placed at the center of friction, and then
resloved relative to the center of mass by adding the resultant torques.

271

Thus it is clear that the range of reaction forces that the surface can exert
is exactly the direct sum of the two fction cones,

K, Ka
which 'is a cone in TFg.

We are now prepared to construct the sticking cone. Informally, the idea in-
volves twisting and tilting the fction cone in T,,J as a function of fc. The amount
of the twist and tilt is determined by the force f*. The tilted friction cone takes
into account the "'nternal" force f*, and admits a geometrical calculation of sticking
that considers only the applied force (f, fj).

We can rewrite the sticking conditions under static equilibrium (**) as:

-f E Kx

- fj E K + I f * }I
where the translation operation is defined by V + I w v + w I v E V

(t) defines a cone of forces in the tangent space to generalized configuration
space at . We may write it as8

I -f } D (Kc + I f*
-fcEKx

For example, in the case with no torque, fc = f.
The cone of all forces (f, fj) satisfying (t) has the following geometrical in-

terpretation. The force f* causes a translation of the friction cone in TJ It
parameterizes a family of cones in the tangent space to J. The union of this fan-lily
defines a range of applied forces (f, fj) that can cause sticking at F. For example,
consider fig. II.19. Here we take the configuration spaces of the robot and of to
be artesian planes (V). The friction cone 'in generalized configuration space wll
then be four-dimensional. This is hard to draw; we have selected a fixed, negative
normal component for fj. The 3D force space at Yx represents the product of the D
forces that can be exerted by the robot on the surface of B, with the 1D tangential
forces that can be applied at the center of mass of B. An applied force (f, fj in
the cone in fig. II.19 represents a combination of forces that causes no motion in
9, that is, neither sliding on the surface of B, nor of B on the table. Note that the
cone in is skewed out of the embedded tangent space to C at x. This is because
when a force is applied in the friction cone K, the block B can slide unless an
opposing force is exerted tangentially at the center of mass of B.

There are several points of interest. Note that the new cone defined by
which we wll denote C, changes from point to point when torques are permitted.
This 'is because the radius vector changes from point to point. Therefore the torque

8(1) denotes the direct sum.

272

components of the generalized force f* will translate the friction cone in TJ bY
different amounts as the vector r,, to the center of mass of B varies. This effect 'is

'lar to the way that the Erdmann'an friction cone changes as the contact moves
in rotation space [E]. However, 'in generalized configuration space it changes even
under pure translation.

We can now specify a geometrical computation to determine when sticking
occurs at T, assuming generalized damper dynamics-. Simply 'intersect the negative
velocity control uncertainty cone 17,,(v* wth k. If the intersection is trivial, then

sticking cannot occur. If the intersection is non-trivial, then sticking can occur. If

the negative velocity cone lies inside IC, then sticking must occur. See fig. II.19.
Assume it is impossible to apply force at the center of mass of B. Therefore, the
velocity cone is two dimensional and les entirely in the tangent space to C at x it
has no J component. This two-dimensional cone is intersected with the 3D cone IC

to determine whether sticking 'is possible at Y.

This shows that the computation to determine whether sticking is possible at
a point reduces to simple geometric cone itersection.

Computation of Reaction Forces

We now provide a geometrical method for the computation of reaction forces in
9. That is, given an applied force (f, fj), we show how to compute the reaction

forces and hence the resulting motion. Such an algorithm 'is required by a planner
since it 'is necessary to predict the effect of a commanded force on the motion of the
robot and B. We will assume Newtonian mechanics in this section for the following

reasons:

0 It is not clear that the interaction of B on the table9 surface can be modeled

accurately by a damper.
0 Under generalized damper dynamics, it is not clear whether the robot velocity

induced by a force f, should be relative to the object B on which it slides, or

relative to some global coordinate frame.

0 In second-order systems, accelerating reference frames can 'introduce fictitious
forces. Correspondingly, under generalized damper dynamics, it seems that
reference frames moving at constant velocity should also introduce fictitious

forces.

It remains to give a principled account of these issues; this is a fruitful area for

future research.
The prediction of reaction forces under general dynamic conditions is compli-

cated by the fact that the object B and the robot may accelerate under the resultant

9We wll use the "table" as the name for the surface B is in contact with, wit he
understanding that the surface is arbitrary.

--

273

I- i.1. , -� � I I - - - -

force. This means that the computation of reaction forces cannot be reduced to a
simple projection onto the friction cone. The reason for this 'is that the projection
must be done in an inertial frame, fixed on the object which exerts the reaction
force. That is, the applied force must be expressed in a frame of reference which is
non-accelerating relative to the "bottom" object which is being slid upon."

For example, consider the case where the normal accelerations are zero. That is,
assume that contact of the robot on B, and of on the table are both maintained.
We fix a reference frame L on B. Then the reaction force of B on the robot
may be found by protecting the effective applied force in L onto the Erdmanru'an
friction cone [E]. However, the effective applied force is not known a priori: the
fictitious force due to the acceleration of B contributes to 'it; this aceleration is
also an unknown. The projection relation however, still holds. In general, it adds
a quadric constraint into the equations of motion. The simultaneous solution of
these equations yields the reaction force and resultant acceleration. (The global
coordinate system is a non-inertial frame for the table).

To summarize, we can compute the reaction forces by writing down the equa-
tions of motion of the robot and B. Then we add the constraints from the projection
relations expressed in inertial frames. Their simultaneous satisfaction yields the re-
action forces.

Let us derive the reaction forces for the case where C and J are both R2 X S1.

The analysis follows [E], and is a generalization thereof. We will assume one-point
contacts between the robot and B, and between B and the table. Furthermore, we
assume that neither contact is broken. Centripital accelerations and coriolis forces
are not considered. This is a reasonable assumption under quasi-static conditions,
or when the robot and B are only rotating slowly.

We will use the following notation:
The radii of gyration of the robot and B, respectively, are pc and pj.
The masses of the robot and B, respectively, are mc and mj.
The generalized applied force in C is f = ff, ly, fq). That is, the applied

force 'is (fc4, fl) and the applied torque is 7c pcfc.

The generalized applied force in J is fj = fjx f If q). That is, the applied

force is (f F, f) and the applied torque is j Pjfq

The configuration space normal in C is n (nx, ny, nfl. The unit real space
normal 'is no = nx, ny).

C C C
The configuration space normal in J is nj (n-�, n, 0). The unit real space

normal 'is n = n n

The magnitude of the normal reaction force at the contact point between the

robot and B is f,,.

The magnitude of the normal reaction force at the contact point between B

and the table is f,j.

274

I i M p"I M., .1 ! I ..0 . � - -,

rc is the vector from the point of contact of the robot on to the reference
point of the robot.

rj is the vector from the point of contact of on the table to the reference
point of B.

In the absence of friction, the equations of motion are therefore

+ f �
+ f Cy
+ rc

fncnxc
cnyfn c

qfncn c

- ma'c
mcayc

= 2ccpc

x
.fncnc + f + fnjnx mja-�

cny + fy + fnjn� mjOfn C I 3 3
01 q 2fn,,Irj x n. + 'Tj + fnjni MjPjai.

In the presence of friction, there also exist tangential reaction forces. Let their
magnitudes be f, and f . The are sub'ect to the restrictions3 i

0 -�� I fc I
< fl

tangents in

Pcfnc

/Zjfnj-

space are (ny n') and (0, -n-�).I C 3 irealObserve that the sliding
As in [E], let

v = nr + nyryc c c c c
and

V = nr'� + Or�I j j j J,
Then 'in the presence of friction, the equations of motion are

fr, c

el %

fncn + tnyc f C, c
fncny - tnxc f C, c
fncn q + tVq

c f C, c

fe

+ fc"r

+ f Cy

+ 7c

-McAc

mca xc
mcayc

= mcp2cecc

(Rl)

fc"
r -N
-fncn - tny

c f C,
-fncny + tnz

c fc,
lrj x f*01

c

fi,
1-^-%,

f i"Ify+ . i
+ 7i

fr, i

I-

+ fnjn� + f n�i i .1
+ f,jn - f n-�i .7 i
+ fnjnq + f y

i i .7

MjAj

mja�i
mjO

= mjp�aj,.7
where

+ ftnyTc
tnxfc c

,cnxfn c

fncny

275

*0fc

In eq. (Rl), we have indicated wth braces which terms correspond to which
generalized applied forces and accelerations. They must be normalized relative to
the inner product; this 'is accomplished by dviding the torque equations by p, and
pj, respectively. For example, the torque component of f, is of course actually

= r, M and M. are generalized mass matrices, combining the mass and theP J

moment of inertia of the moving objects.
We will consider the case where contact 'is not broken. That is, the normal

accelerations are zero. Henceforth, we wll adopt the standard dot notation for the
inner product on the tangent space. Wting this out,

Ac, n = (R2)

Aj nj = .
Now, attach an 'Inertial reference frame L to at the reference point. L

accelerates by Aj. The robot accelerates at Ac; therefore in L 'it accelerates at "the
SUM10 Of" Ac and -Aj. The acceleration of L generates a fictitious force h; we can
write the effective applied force in C relative to L by adding the ficticious force h
arising from the acceleration of L:

f = fc + h (R3a)

In general, h will be complicated, snce L is a rotating coordinate system. It is
conceptually simple, however. For example, in the case of no rotations, we smply
have h = -McAj.

The reaction force f,c may be found by projecting the effective applied force
fc, onto the Erdmannian friction cone K.,. The global reference fame serves as a
non-inertial frame for the table; hence the effective applied force on is simply

J JI + fc*. (R3b)
The reaction force f - may be found by projecting the effective applied force

V onto the Erdmannian friction cone K,,,.
[E] derives two canonical tangent vectors t, and t t, is the tangent in the

direction of pure rotation about the point of contact. It is normal to the plane of
the Erdmannian friction cone. The reaction force may be found by projecting the
effective applied force along tr onto the plane of the friction cone. If the projection
lies inside the friction cone then the projection 'is the reaction force. If not then we
must project perpendicularly along t, in the plane, onto the edge of the friction
cone. The second projection, then, 'is the reaction force.

Now, let t, and t2 be two orthogonal vectors in the plane of K, such that
t = -t-L. Then the projection onto the plane of K,, is given by

"Before adding the generalized forces, the angular accelerations must be resolved relative
to the dfferent rotating coordinate systems.

276

f = -(fc - tl)tl - t2)t2- (R4)
This yields two cases. In the first, the projection lies 'in the friction cone, so

fr, C Cf (R5)
S t _In the second we must project again. That 'is, f,, is the projection of alon,I r

onto the boundary of K.,. In the latter case, we can express the second projection 'in
local (tl, t2) coordinates as follows. Write f = -(fl, f2) in local coordinates. Call
the projection p = (pi, p2). Let e = (el, e2) be a ut vector along the edge of the
friction cone K, expressed in local coordinates. We obtain a quadric constraint,

P = 2

2 (R6)
Pi e- 1 + P2 62 = Pi P2

Analogously, we have that f, is related to by a projection in T,, onto the
plane of K,,,,. Thus it is possible to derive three more constraints (R41), (R51), and
(R6') in precisely the same manner.

The (R) equations may then be solved simultaneously to predict the reaction

forces and resulting motion.11 In considering this analysis, note the crucial role
played by the geometrical projections onto the fction cone. It remains to gener-
alize the analysis to consider multiple points of contact, breaking contact, coriolis
forces, and centripetal accelerations. I expect that, given the tools developed above,

the generalization should follow [E] straightforwardly. However, I also expect the

resulting system of constraint equations to remain fairly complicated, as illustrated

above. Since the planner must solve this system, a smpler method for computing

reaction forces would be desirable. The techniques above require algebraic manip-

ulation as well as geometrical computation. There may be simplifying assumptions

which facilitate the computation. This drection must be explored in order to build

a practical planning system.

Quasi-Static Analysis

One simplifying approach is quasi-static analysis. Such an analysis would proceed

as follows. First, all accelerations 'in equations (Rl) could be set to zero. The

reaction force f,c can be in one of three states: on the "left" edge of K, inside K,

or on the "right" edge of K,,. The magnitude of f,,- can be determined from the

normal component of f,., since the accelerations are zero. Each state corresponds

to different impending motions in the direction of the force imballance. (It could

also correspond to sticking on the surface of B). Similarly, there are three possible

"Of course motion ambiguities, as 'in E], are still possible.

277

states for fj, yielding six qualitative states altogether. One envisions an algorithm
as follows. The algorithm hypothesizes a state, say, that f,,,, lies on the left edge of
K.,. This means that it can be found from f, via the one or two step Erdmannian
projection given in (R4-R6). Note that there are no fictitious forces, since the
accelerations are zero; hence, for example, in the easy case we simply have

fr = -(fc tl)tl - fc t2)t2- (H4)
Next the algorithm makes a hypothesis about the state of the reaction force frj.
This results in one or more hypothesis equations lke (H4). If equations (R1) and
the hypothesis equations are consistent, then the hypothesized reaction forces are
possible under quasi-static assumptions. Furthermore, associated with the hypoth-
esized reaction forces, there is a (set of) impending motions, corresponding to the
resultant of the force imballance. These impending motions may be used to predict
the effects of applied forces under quasi-static assumptions.

The advantage of this method may lie not only in its smplicity, but in the fact
that it gives a partition of force space into impending motion regions. Forces applied
in a given motion region will result 'in motions in a particular (set of) direction(s).
Such a technique could be very useful in a planner for pushing operations. The
investigation of simplifying assumptions such as quasi-static analysis is a fruitful
direction for further research.

Application to Planning

Suppose that it is impossible to exert forces at the center of mass of B. Thus
the control velocity uncertainty cones lies entirely in the tangent spaces to C and
contain no component across J. Any motion of B must be effected by the transferred
pushing force. Under generalized damper dynamics, the tools above are sufficient
to characterize all possible resulting motions from a cone of applied forces. Thus we
can define forward projections, backprojections, and preimages in 6; when motion
across J due to pushing is possible. Motion across J is only posible on certain
surfaces; it is impossible to move across J in free-space.

Imagine a backchaining planner in a generalized configuration space endowed
with this physics. Such a planner could compute motion strategies which may be
characterized as follows:

0 In free space, or on surfaces generated by 'immovable objects, all differential
motions lie within one a-slice.

Along surfaces generated by ob'ects that can be pushed, the differential motions
are tangent to the surface in , and may move across J as well as C.
The resulting motion strategy consists of a sequence of gross motions, compliant

motions, and pushing motions.

278

Generalized Control Uncertainty as a Non-holonomic Constraint

Suppose, as above, it is impossible to exert forces at the center of mass of B so
the generalized control uncertainty in has no component in the tangent space to
J. (See fig. II. 19.) Consider example (1) when has three degrees of freedom and
the robot has two. While the tangent space to 'is five dimensional, note that in
general, the forward projection of a point will be of lower dmension. For example,
from a point in free space, the forward projection will lie 'in a 2D slice of 6;. From
a point on a surface in!9, the forward projection will typically lie on the surface.

This is a subtle and deep point. The constraints in most motion planning
problems [Lozano-Perez, SS, D, E, C] are constraints on the degrees of freedom of
the moving objects. Such constraints are called holonomic constraints; they can
be expressed as constraint surfaces in the configuration space. However, the gen-
eralized control uncertainty and the characterization of friction express constraints
not on the degrees of freedom of the ob'ect, but on 'its differential motions. Infor-
mally, this 'is clear since 'in fig. II.19, 7T,,(vo*) 'Is 2D, while the tangent space is 5D.
Such constraints are called non-holonomic constraints; they can not in general be
expressed as constraint surfaces in the configuration space. They can be character-
ized as constraints in the tangent bundle, as in the sticking computation employing
K. Computing backprojections under non-holonon-lic constraints requires enforc-
ing the differential motion constraints as well as the usual holonomic constraints
imposed by surfaces in generalized configuration space.

§A.5. A More Formal Summary of the Constructl'on of H

We now summarize the construction of phase space EDR regions somewhat
more formally. We construct H as follows. Given a motion strategy 0 a goal
region G, and a start region R in generalized configuration space we construct:

F = Fo(R)

P = P9(G)

P = Po(G)

H, = x E P - P I sticking can occur at x

Z(H. = (x, v) E 7r-'(Hs I v =

H = - (F - P) U Z(Hs).

The forward projection F 'is 'in position space, not phase space. The map Z is
the zero section of generalized configuration space

Now, given a collection of goals f G we denote their backprojection under
a commanded velocity v* by B1 G }. Note this is equal to Bo(U,3 G), since0

279

..." -.. v. .

backprojections do not address recognizability. From the construction of H we
have

B9(J GI H }) D R (7)

(7) is a reachability consequence only. To form an EDR strategy using H, we must
add a recognizability constraint analogous to eq. 3 We allow simple goals in
phase space; that 'is, we permit izoals in phase space as arguments to PR, 9. The
recognizability constraint 'is then

PRO(f 7_'(G)I H R. (3a)

As wtten, (3a) is a reachability and recognizability constraint. But since
reachabi'lity 7) follows from the construction of H, (3a) adds exactly recognizability
to the construction.

More generally, we could replace G throughout by a collection of goals G,8
(3a) then becomes the obvious

PRO(f 71 (G�3) } I H- R.

§A.6. Definiflon of an Approx'mate Push-Forward

Here is the formal definition of one kind of push-forward. (There are other
kinds). This push-forward is obtained bv lving" to the termination predicate about
where the motion started. It captures the intuitive notion of "trying the strategy
anyway, even if we're not guaranteed to be in the right iitial region."

Suppose we have a motion from a region R which achieves some set of goals
G } That 'is,

PR,9(1 G# R.

Let U be an arbitrary region 'in generalized configuration space For example, we
might not be guaranteed to have the initial position within R; it might lie within
some region S. We let U = S - R, and 'Investigate the effect of executing the
strategy from U while lying to the termination predicate: we tell 'it we were really

'thin R when the modon started.

We define a push-forward of from U with respect to R and f G3}, denoted
F, (0, U, R, G }, as follows:

We assume a termination predicate with no local history and without time;
see [Erdmann]. The formulation for variations of this predicate are very similar.
Forward projections in phase space are denoted with tildes. Recall is the canonical
projection of phase space onto configuration space. Given an actual position and

280

velocity v) a corresponding sensed position and velocity 'is denoted (x*,v*).

(X* *) 'is said to be consistent with (x, v) iff (x*, v*) E Bp(x) x Bev(v).

F*(01 U RI G } is the set of pairs (x, v) E P&(U) such that there is an initial

position po E U and a corresponding sensed position p* E B, (po n Rnp0 P Fe R),,9 (G)
and some G E Go }, such that for all (x*, v*) consistent wth (x, v),

BP(X* x B,,(v*) n o(R) C x- G).

Note, however, that it is possible for the motion not to terminate. For the sake

of discussion, however, assume 'it does terminate, either by using velocity thresh-

olding or time. This requires 'indexing the forward projection in (*) by time. These

assumptions allow us to prove some lemmas that provide some intuition about this

push forward.

Now, suppose further that R C S. Abbreviate F = F* (0, S, R, G } The

following lemmas help characterize the push forward F*. Let H be the EDR region

as given in 6), and let H = H. F* says exactly where the strategy will terminate

when executed from S, 'if we lie to the termination predicate and tell it we really

started from R.

Lemma: Bo(F* DR.

Lemma-0 PRo(F* = R.

Now, in general, maximal preimages do not exist [Mason, E]. If R is not a

maximal preimage, then the equation

F* c H u G,3)
13

need not hold. It would be useful to prove or disprove the following:

Conjecture: (**) holds when R 'is maximal.

In particular, if there is 'ust one goal G then this would imply F* C H U G.

§A.T. The Formal Requirements for Push-Forwards

We now characterize the formal requirements for push-forwards. Note that the

approximate push-forward, above, need not satisfy these constraints.

For notational purposes, we regard motion strategies as mappings and so we

write

R = PRi,9i(Ri_1)

as

Ri Ri-1.

281

If the Ri are successive subgoals, in a plan whose motions are the O, then (*) is a
necessary and sufficient condition for the subgoals to be suitable for back-chaining
[LMT.]

Given as data strategy Oi a goal Ri-1, an actual start region R, and a region Ri
from which is guaranteed, we can always construct an EDR region Hi-,. (Hi-,
i 7Hi-1, see 6)). Of course we may not be able to construct an EDR trategy from
Hi-,. Denote the dependence of H on 'its data by

Hi-, = H(Rj 9),

so we imagine examining the "domain" and "range" of to obtain Ri and Ri-1.
If there exists an EDR strategy for the EDR region Hi-,, we denote this by

Ri-i

R

H(R 00.
More generally, we could replace Ri-1 with the distinguishable union of some set
of goals. As suggested in the informal exposition, we will in fact replace it with
the set of unattained subgoals in an n-step plan. The motion 8i must then achieve
el'ther some unattained subgoal, or the EDR region.

Now, suppose we axe given a guaranteed n-step plan, ,

On On-1 el
Rn Rn-1 RI I Ro = G.

Define 1j Rj, Rj-,,..., RI, R } to be the distinguishable union of all
unattained subgoals (after R The one step EDR strateev we seek may achieve any
one of these subgoals. Suppose the start region R contains Rn- We can construct an
n-step EDR strategy with start region R, (using E) as data) if there exist termination
regions F*n ... *n-ii for some i between and n such that

O I

On-1 On-1+1

F* n F*n-1 F*n-i

n n
On-i

R Rn-1 U Hn-1 ... Rn-i U Hn-i Hn-i-1

where

Hj_ = H(F*jl Oj).

282

In other words,

F*n = R

F*n-1 C Rn-1 U H(RjOn)

F*n-2C Rn-2U H(F*n-1iOn-1)

F*n-ic Rn-iu H(F*n-i+l i On-i+01

such that

F*j = PjOi(F*j-,) for all j,
and such that there exists a one-step EDR stratecrv

n

F*n-i

On-i H (F*n-ii On-0.

These termination regions I F*j } characterize the requirements for push-forwards.
The push-forward should be a function satisfying these constraints, by which we
mean that the push-forward is a set-valued map whose values are these termination
regions. We hope that the termination regions may be approximated by push-
forwards such as the example 'in the last section. Computing exact push-forwards
appears to be at least as hard as solving n-step pre-image equations.
Note (1): When maximal preimages do not exist, for completeness it may be nec-
essary to employ a weaker constraint on termination regions. For example, the
weakest constraint would be

H (F* j I Oj = ej (F* j).

See the previous section for more details.
Note 2): As the notation suggests, it is possible to formalize the view of "mo-
tions as mappings"-this notion is implicit in the term "preimage." To develop this
viewpoint, one considers motions as a certain class of morphisms between distin-
guishable unions in the powerset of the tangent bundle to generalized configuration
space An EDR theory, then, is a covariant functor associated wth a fan-lily of
quotient maps of the form

7r : TC x J P, P - PI F - P

While it is possible to push such a functorial viewpoint, any category-theoretic
formulation of this flavor wll almost certainly be exclusively descriptive.

283

- I

References

Certain frequently cited references have been gven shorter mnemonics, eg., [LMT].

Abraham, R. and Marsden, J. Foundations of Mechanics, Benjaiiiin/Cum-
mings, London 1978).

Arnold, V. I. Mathematical Methods of Classical Mechanics, Springer-Verlag, New
York 1978).

Ben-Or M., ozen D., and Reff J., "The Complexity of Elementary Algebra
and Geometry", J. Comp. and Sys. Sciences, Vol. 32, 1986), pp. 251-264.

Boyse J. W., "Interference Detection Among Solids and Surfaces", Comm ACM,
vol 22, No 1 1979) pp 39.

Brady, M. et. al. (eds). Robot Motion: Planning and Control., Cambridge,
Mass.: MIT Press. 1982).

Brooks, R. A. Symbolic Error Analysis and Robot Panning, International Journal
of Robotics Research, Vol 1, no 4 Dec., 29-68 (1982).

Brooks, R. A A Robust Layered Control System for a Mobile Robot, IEEE Journal
of Robotics and Automation RA-2 (1): 14-23. Also MIT A.I. Lab Memo 864
(1985).

Brooks, R., "Solving the Find-Path Problem by Good Representation of Free
Space", IEEE Transactions on Systems, Man, and Cyberbetics, Vol. 13 183.

Brooks, R., and T Lozano-Pe'rez, "A Subdivision Algorithm in Configuration
Space for Findpath with Rotation", Eighth International Joint Conference on
Artificial Intelligence, Karlsruhe, Germany, August, 1983.

Brost, R. C. Plannng Robot Grasping Motions in the Presence of Uncertainty,
Computer Science Department and the Robotics Institute, Carnegie-Mellon
University CMU-RI-TR-85-12 (1985).

Brost, R., "Automatic Grasp Planning in the Presence of Uncertainty", IEEE
International Conference on Robotics and Automation, San Francisco, April,
1986.

Brost, R. A State/Action Space Approach to Planning Robot Actions, Forthcoming
Ph.D. Thesis, Computer Science Dept., CMU (to appear).

Buckley, S. J. Planning and Teaching Compliant Motion Strategies, Ph.D. Thesis.
Massachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science, 1987. Also MIT-AI-TR-936 1987).

Burridge, R., Rajan, V. T., and Schwartz, J. T. The Peg-In-Hole Prob-
lem: Statics and Dynamics of Nearly Rigid Bodies in Frictional Contact, IEEE
ICRA, Raleigh, NC (1983).

284

Caine, M., "Chamferless Assembly of Rectangular Parts in Two and Three Dimen-
sions S.M. dissertation, MIT Department of Machanical Engineering, June
1985.

Cameron S., "A Study of the Clash Detection Problem in Robotics", proc. IEEE
conf. on Robotics and Automation, 1985, pp 488-493.

Canny, J.F A New Algebraic method for Robot Motion Planning and Real Geom-
etry, FOCS (1987).

[C] Canny, J. P. Collision Detection for Moving Polyhedra, PAMI-8(2) 1986).
Canny, J.F. The Complexity of Robot Motion Planning, Ph.D. Thesis, MIT De-

partment of Electrical Engineering and Computer Science 1987).
Canny, J.F. Computing Roadmaps of Compact Semi-Algebraic Sets, Intl. Work-

shop on Geometric Reasoning, Oxford, England, June 1986).
Canny, J.F. and Donald, B. R. Simplified Voronoi Diagrams, Proc. ACM

Symposium on Computational Geometry, Waterloo, June 1987).
Canny, J.F. and Donald, B. R. Simplified Voronoi Diagrams, Discrete and

Computational Geometry (to appear).
[CR] Canny, J., and J. Reif, "New Lower Bound Techniques for Robot Motion

Planning Problems", FOCS 1987).
Chapman, D. Planning for Conjunctive Goals, MIT AI-TR 802 1985).
Chistov A. L. and Grigoryev D. Y., "Complexity of quantifier elimination in

the theory of algebraically closed fields", Lect. Notes Comp. Sci. 176, Springer
Verlag, (1 984).

Collins G. E. "Quantifier Elimination for Real Closed Fields by Cylindrical Alge-
braic Decomposition" Lecture Notes in Computer Science, No. 33, Springer-
Verlag, New York, 1975), pp. 135-183.

Cutkosky, M., "Grasping and Fine Manipulation for Automated Manufacturing",
Ph.D. dissertation, Carnegie-Mellon Uu'versity, January, 1985.

Davis, E. and McDermott, D. Planning and Executing Routes through Uncer-
tain Territory, Yale University, Dept. of Computer Science 1982).

[D1] Donald, B. R. Motion Planning with Six Degrees of Freedom, MIT AI-TR
791, Artificial Intelligence Lab. 1984).

Donald, B. R. On Motion Planning with Six Degrees of Freedom: Solving the
Intersection Problems in Configuration Space, IEEE International Conference
on Robotics and Automation, St. Louis, MO 1985).

Donald, B. R. A Search Algorithm for Motion Planning with Six Degrees of Free-
dom, Artificial Intelligence, 31 3) 1987).

[D] Donald, B. R. Robot Motion Planning with Uncertainty in the Geometric Mod-
el.5 of the Robot and Environment. A Formal Framework for Error Detection
and Recovery, IEEE International Conference on Robotics and Automation,
San Francisco, April (1986a).

285

�-A. -wo ---

[D] Donald, B. R. A Theory of Error Detection and Recovery for Robot Motion
Planning with Uncertainty, Intl. orkshop on Geometric Reasoning, Oxford,
England, June (1986b).

Draper Laboratories, Fourth Annual Seminar on Robotics and Advanced As-
sembly Systems, Cambridge, Massachusetts, November, 1983.

Dufay, B., and J. Latombe, "An Approach to Automatic Robot Programming
Based on Inductive Learning", 'in Brady, M., and R. Paul, Robotics Research.-
The First International Symposium, MIT Press, 1984.

Durrant-Whyte, H. Concerning Uncertain Geometry in Robotics, Intl. Workshop
on Geometric Reasoning, Oxford, England, June 1986).

[E] Erdmann, M. Using Backprojections for Fine Motion Planning with Uncer-
tainty, IJRR Vol. no. 1 1986).

Erdmann, M. On Motion Planning With Uncertainty, MIT AI Lab, MIT-AI-TR
810 1984).

Erdmann, M., and M. Mason, "An Exploration of Sensorless Manipulation",
IEEE International Conference on Robotics and Automation, San Francisco,
April, 1986.

Faverjon, B. Obstacle Avoidance Using an Octree in the Configuration Space of a
Manipulator, Proc. IEEE Intl. Conf. Robotics, Atlanta (March 1984).

[STRIEPS] Fikes, R. and Nilsson N STRIPS. A New Approach to the Appli-
cation of Theorem Proving to Problem Solving, Artificial Intelligence vol 2
(1971).

Fortune, S., Wilfong, G., and Yap, C. 1986 (April 710, San Francisco, Cal-
ifornia). Coordinated Motion of Two Robot Arms. Proceedings of the 1986
IEEE International Conference on Robotics and Automation, pp. 1216-1223.

Gini, M. and Gini, G. Towards Automatic Error Recovery in Robot Programs,
IJCAI-83 1983).

Grigoryev D. Y., "Complexity of Deciding Tarski Algebra" Jour. Symbolic Com-
putation, special issue on decision algorithms for the theory of real closed fields,
to appear 1987).

Grossman, D., and R. Taylor, "Interactive Generation of Object Models with
a Manipulator", IEEE Transactions on Systems, Man, and Cybernetics, Vol.
8, No. 9 September, 1978.

[Gor] Gordon, B. B. Intersections of Higher-Weight Cycles over Quaternionic
Modular Surfaces and Modular Forms of Nebentypus, Bull. AMS 14 2), pp.
293-8 (1986).

Hayes, P A Representation for Robot Plans, 4th IJCAI 1976).

Hopcroft, J. E., Schwartz, J. T., and Sharir, M. 1984 On the Complexity
of Motion Planning for Multiple Independent Objects; PSPACE-Hardness of

286

ol I I

the "Warehouseman's Problem." International Journal of Robotics Research.
3(4):76-88.

Hopcroft J., and Wilfong G., "Motion of Objects in Contact," It. Jour.
Robotics Res. vol 4 no. 4 (1986).

Hungerford, T. W. Algebra, Springer-Verlag, New York GTM 73 1974).
Hogan, N., "Impedance Control of Industrial Robots", Robotics and Computer-

Integrated Manufacturing, Vol. 1, No. 1, 1984.
Inoue, H., "Force Feedback in Precise Assembly Tasks", MIT Artificial Intelligence

Laboratory, AIM-308, August, 1974.
Khatib, 0. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,

Int. Jour. Rob. Res. vol. 5, No. 1, pp. 90-99 1986).
Koditschek, D., "Exact Robot Navigation b Means of Potential Functions.- Some

Topological Considerations", Proc. IEEE Intl. Conf. Robotics, Raleigh, March
1987.

Koutsou, A., "A Geometric Reasoning System for Moving an Object While Main-
taining Contact with Others", A CM Symposium on Computational Geometry,
Yorktown Heights, N.Y., 1985.

Kozen D., and Yap C. "Algebraic Cell Decomposition in NC", Proc IEEE symp.
FOCS, 1985), pp. 515-521.

Laugier, C., "A Program for Automatic Grasping of Objects with a Robot Arm",
Eleventh Symposium of Industrial Robots, Japan Society of Biomechanisms. and
Japan Industrial Robot Association, 1981.

Lee, D. T., and Drysdale, R. L., "Generalization of Voronoi dagrams in the
plane," SIAM J. Comp. (10) 1981) pp. 73-87.

Lieberman, L., and M. Wesley, "AUTOPASS: An Automatic Programming
System for Computer Controlled Mechanical Assembly", IBM Journal of Re-
search Development, Vol. 21, No. 4 1977, pp. 321-333.

Lozano-Pe'rez, T., "The Design of a Mechanical Assembly System", S.M. disser-
tation, MIT Department of Electrical Engineering and Computer Science, also
AI-TR-397, MIT Artificial Intelligence Laboratory, 1976.

Lozano-Pe'rez, T. Automatic Planning of Manipulator Transfer Movements, IEEE
Trans. on Systems, Man and Cybernetics (SMC-11):681-698 1981).

Lozano-Pe'rez, T. Spatial Planning: A Configuration Space Approach, IEEE
Trans. on Computers (C-32):108-120 (1983a).

Lozano-Pe'rez, T., "Robot Programming", IEEE Proceedings, 1983b.
Lozano-Pe'rez, T., "Motion Planning For Simple Robot Manipulators", Third

International Symposium on Robotics Research, Paris, October, 1985.
Lozano-Pe'rez, "A Simple Motion Planmng Algorithm for General Robot Manip-

ulators," in Proceedings of Fifth National Conference for the American Asso-
ciation of Artificial Intelligence, Philadelphia, 1986, pp. 626--631.

287

[LMT] Lozano-Pe'rez, T., Mason, M. T., and Taylor, R. H. Automatic
Synthesis of Fine-Motion Strategies for Robots, Int J of Robotics Research,
Vol 3 no. 1 1984).

Lozano-Pe'rez, T., and Wesley, M. A. An algorithm for planning collision-free
paths among polyhedral obstacles, Communications of the ACM 22):560-570

(1979).

Lumelsky, V. J. Continuous Motion Planning in Unknown Environment for a D

Cartesian Robot Arm. Proceedings of the 1986 IEEE International Conference
on Robotics and Automation, pp. 1569-1574. (April 710, San Francisco,

Cal-if.) (1986).

Mason, M.T. Compliance and force control for computer controlled manipulators,
IEEE Trans. on Systems, Man and Cybernetics (SMC-11):418-432 1981).

Mason, M.T. Manipulator Graspzng and Pushing Operations, MIT AI Lab, MIT

AI-TR-690 1982).

Mason, M. T. 1986. Mechanics and Planning of Manipulator Pushing Operations.
International Journal of Robotics Research 53).

Mason, M. T. Automatic Planning of Fine Motions: Correctness and Complete-
ness, 1984 IEEE International Conference on Robotics, Atlanta Ga. 1984).

Mason, M. T. 1985 (March 25-28, St. Louis, Missouri). The Mechanics of Manip-

ulation. Proceedings of the 1985 IEEE Int. Conf. on Robotics and Automation,

pp. 544-548.

McDermott, D. A Temporal Loaic for Reasonin about Processes and Plans, Cog.

Sci 6 pp. 101-55 1982).

Natarajan, B. K. 1986 (Oct. 27-29, Toronto, Ontario). An Algorithmic Approach
to the Automated Design of Parts On'enters. Proceedings of the 27th Annual
IEEE Symposium on Foundations of Computer Science, pp. 132-142.

Natarajan, B. K 1986. On Moving and Orienting Objects. Ph.D. Thesis. Ithaca,

N.Y..- Cornell University Department of Computer Science.

Neivergelt, J., and Preparata, F. P. Plane-Sweep Algorithms for Intersecting
Geometric Figures, CACM Vol. 25, no. 10 1982).

A
OID'nlaing, C., Sharir, A4., and Yap C., "Generalized Voronoi diagrams for

moving a ladder: I Topological Analysis," NYU-Courant Institute, Robotics
Lab. Tech. report No. 32 1984)

O'D'nlaing, C., Sharir, M., and Yap C., "Generalized Voronoi diagrams for
moving a ladder: II Efficient construction of the diagram," NYU-Courant In-

stitute, Robotics Lab. Tech. report No. 33 1984)
A

O'D'nlaing C., and Yap C., "A retraction method for planning the motion of

a disc," J Algorithms 6) 1985) pp. 104-111

288

---- ------ --- -- - I I ---- - wool! I .' i -- w --- -,.- --,- ---

0hwovoriole, M., and B. Roth, "A Theory of Parts Mating For Assembly Au-
tomation", Proceedings of the Robot and Man Symposium 1, Warsaw, Poland,
September 1981.

Paul, R., Robot Manipulators, MIT Press, Cambridge, Massachusetts, 1981.

Peshkin, M., "Planning Robotic Manipulation Strategies for Sliding Objects",
Ph.D. dissertation, Department of Physics, Carnegie-Mellon University, 1986.

Peshkin, M., and A. Sanderson, "Reachable Grasps on a Polygon: The Con-
vex Rope Algorithm", IEEE Journal of Robotics and Automation, Volume 2,
Number March, 1986.

Raibert, M., and J. Craig, Hybrid Position/Force Control of Manipulators",
Journal of Dynamic Systems, Measurement, and Control, No. 102, June, 1981,
pp. 126-133.

Reif J., "Complexity of the Mover's Problem and Generalizations," Proc. 20th
IEEE Symp. FOCS, 1979). Also in Planning, Geometry and Complexity
of Robot Motion", ed. by J. Schwartz, J. Hopcroft and M. Sharir, , Ablex
publishing corp. New Jersey, 1987), Ch. 11, pp. 267-281.

Requicha, A. A. Representation of Tolerances in Solid Modeling: Issues and
Alternative Approaches, Solid Modeling by Computers: From Theory to Ap-
plications; Plenum, N. Y. (1984).

Salisbury, J.K., "Active Stiffness Control of a Manipulator in Cartesian Coordi-
nates" IEEE Conference on Decision and Control, Albuquerque, New Mexico,
November, 1980.

Salisbury, J.K., "Kinematic and Force Analysis of Articulated Hands", Ph.D.
dissertation, Stanford University, Department of Mechanical Engineering, 1982.

Segre, A. M., and G. DeJong, "Explanation-Based Manipulator Learning: Ac-
quisition of Planning Ability Through Observation", IEEE International Con-
ference on Robotics and Automation, St. Louis, March, 1985.

Schwartz J., Hopcroft J., and Sharir M., "Planning, Geometry and Complex-
ity of Robot Motion Planning", Albex Publishing Co., New Jersey, 1987).

Schwartz J. and Sharir M., "On the.'Piano Movers' Problem, L General Tech-
niques for Computing Topological Properties of Real Algebraic Manifolds,"
Comp. Si. Dept., New York University report 41, 1982). Also in "Planning,
Geometry and Complexity of Robot Motion", ed. by J Schwartz, J. Hopcroft
and M. Sharir, Ablex publishing corp. New Jersey, 1987), Ch. 5, pp. 154-186.

Schwartz J. and Yap C. K., "Advances in Robotics," Lawrence Erlbaum asso-
clates, Hillside New Jersey, (1986).

Simunovic, S. N., "An Information Approach to Parts Mating", Ph.D. disserta-
tion Department of Electrical Engineering, Massachusetts Institute of Tech-
nology, 1979.

289

Simunovic, S. N. 1975 (Sept. 22-24, Chicago, Illinois). Force Information 'in
Assembly Processes. Proceedings 5th International Symposium on Industrial
Robots. Bedford, U.K.-. IFS Publications, pp. 415-431.

Shapiro, V. Parametric Modeling and Analysis of Tolerances, GM Research Lab.

Rept. CS-460 (1985).

Srinivas, Sankaran Error Recovery in Robot Systems, Cal. Tech. Ph.D. Thesis,
Computer Science 1977).

Taylor, R. H. The Synthesis of Manipulator Control Programs from Task-level

Specifications, Stanford Artificial Intelligence Laboratory, AIM-282, July (1976).

Tarski A., "A Decision Method for Elementary Algebra and Geometry" Univ of
Calif. Press, Berkeley, 1948), second ed. 1951.

Turk, M., "A Fine-Motion Planning Algorithm", SPIE Conference on Intelligent
Robots and Computer Vision, Cambridge, Massachusetts, September, 1985.

Udupa, S., "Collision Detection and Avoidance in Computer Controlled Manip-
ulators" , Ph.D. dissertation, Department of Electrical Engineering, California

Institute of Technology, 1977.

Udupa S., "Collision Detection and Avoidance in Computer Controlled Manipu-

lators", Proc. 5th Int. Joint. Conf. on Art. Intell., Mass. Inst. Tech. 1977)

pp 737-748.

Valade, J., "Automatic Generation of Trajectories for Assembly Tasks", Sixth

European Conference on Artificial Intelligence, Pisa, Italy, September, 1984.

Ward, B. and McCalla, G. Error Detection and Recovery in a Dynamic Planning
Environment, AAAI 1983).

Whitney, D., "Force Feedback Control of Manipulator Fine Motions", Journal of

Dynamic Systems, Measurement, and Control, June, 1977, pp. 91-97.

Whitney, D., "Quasi-Static Assembly of Compliantly Supported Rigid Parts",
Journal of Dynamic Systems, Measurement, and Control, Vol. 104, March

1982.

Whitney, D., "Historical Perspective and State of the Art in Robot Force Control",

IEEE International Conference on Robotics and Automation, St. Louis, March,

1985.

Wilkins, D. E. Domain-Independent Planning: Representation and Plan Genera-

tion, Artificial Intelligence, Vol. 22 No 3 1984).

Yap, C., "Coordinating the motion of several discs," NYU-Courant Institute,

Robotics Lab. No. 16 1984)

Yap, C., "Algorithmic Motion Planning", in Advances in Robotics: Volume

edited by J. Schwartz and C. Yap, Lawrence Erlbaum Associates, 1986.

290

-mmw�ol- I -- -- --- - - I M. I.. 1. ---- �4 -, ,

Appendix,,* Code for the Sweep Algor'thin

291

mode:lisp; package:(3woep)

Plane sweep algorithm for computing Forward Projections,

;;P Backprojections, and Weak backprojections in O(n log n tme,

and set differences, intersections, and unions in 0(n+c) log n)

time. Implemented in rational arithmetic in ZetaLi3p,

by John Canny and Bruce Donald, MIT Artificial Intelligence Laboratoryl
545 Technology Square, Cambridge, MA 02139

(c) Copyright Massachusetts Institute of Technology, 1986

(DEFMACRO REST

'(CDR X)

(DEFCONST BACKPROJECTION 0)

(DEFCONST EPS 1E-4)

(DEFSTRUCT (POLYGON :NAMED :PREDICATE)

LOOP-LIST

LOOP-END

COLOR)

(DEFSTRUCT (POINT TYPE :LIST) :NAMED :PREDICATE)
x

Y)

(DEFSTRUCT (EDGE (:TYPE :LIST) :NAMED :PREDICATE)
TAIL

HEAD

EON

EDGE-PROPERTIES)

(DEFSTRUCT (EON TYPE :LIST) :NAMED :PREDICATE)
x

Y

D

PROPERTIES)

(DEFSTRUCT (EVENT (.-TYPE :LIST) :NAMED PEDICATE)
POINT

COLOR-CHANGE

EQN)

(DEFSTRUCT (INTERVAL TYPE :ARRAY)
TOP
BOTTOM
EVENT
OUTPUT-STRUCTURE)

:NAMED :PREDICATEI

(DEFSTRUCT (OUTPUT-STRUCTURE 0TYPt :ARRAY) :NAMED PREDICATE)
TOP
BOTTOM
TOP-END
BOTTOM-END
POLYGON)

(DEFSTRUCT (QUERY-NODE :NAMED PEDICATE)
X-MIN
X-MAX
INTERVALS)

(def3truct. (CO-vertex :named type :li3t) :predicate)
X
y
edge-generator
vertex-generator
C3ur ace-type)

(DEFUN NEG-EQN (EON)
(IF (X EON)

(MAKE-EON X (- (X EN)) Y (- (Y EN)) D (- (D EN)) PROPERTIES (PROPERTIES EON))

292

EQN))

(DEFUN FAST-FLOAT (A)
(// (FLOAT (NUMERATOR A)) (FLOAT (DENOMINATOR A)

(DEFUN EVENT-> (EVENT-1 EVENT-2)
(LET ((DIF (- (FAST-FLOAT (X (POINT EVENT-1)))

(FAST-FLOAT (X (POINT EVENT-2))))))

(COND ((> DIF EPS) 1)

(< DIF (- EPS) -1)

(T (LET ((TEST (X (POINT EVENT-!)) (X (POINT EVENT-2)))))

(IF (ZEROP TEST)

(LET ((NEXT-TEST (- (Y (POINT EVENT-1)) (Y (POINT EVENT-2)))))

(IF (ZEROP NEXT-TEST)

(SLOPE-> (EON EVENT-1) (EQN EVENT-2))

NEXT-TEST))

TESTMM

(DEFUN SLOPE-> (EQN-1 EON-2)

(IF EQN-1

(IF EN-2

(IF (ZEROP (Y EON-1))

(IF (ZEROP (Y EON-2))

0

1)

(IF (ZEROP (Y EON-2))

-1

(CL:// (X EON-2) (Y EON-2))

(CL:// (X EON-1) (Y EN-1)))))

(IF EQN-2 - OM

(DEFUN INTERSECTION-POINT (TOP BOTTOM)

(IF (MINUSP (SLOPE-> TOP BOTTOM))

(LET ((DET (- (* (X BOTTOM) (Y TOP)) (* (X TOP) (Y BOTTOMM))

(MAKE-POINT X ML:// (- (* (Y BOTTOM) (D TOP)) (Y TOP) (D BTTOMM

DET)

Y (CL:// (- (* (X TOP) (D BOTTOM)) (X BOTTOM) (D TOPM

DETM))

(DEFMACRO, E> (A)

A B) EPS))

(DEFUN IN-INTZRVAL? (POINT INTERVAL FPOINT)

(COND

((E> (Y FPOINT) (Y-AT-X (TOP INTERVAL) FPOINT)) 1)

((E> (Y-AT-X (BOTTOM INTERVAL) FPOINT) (Y FPOINT)) -1)

((> (Y POINT) (Y-AT-X (TOP INTERVAL) POINT))

((< (Y POINT) (Y-AT-X (BOTTOM INTERVAL) POINT)) -1)

(T 0)))

(DEFUN INTERVAL-> (INT-1 INT-2 POINT FPOINT PM)

(IF (EQ INT-1 INT-2)

0

(LET ((FTD (- (Y-AT-X (TOP INT-1) FPOINT)

(Y-AT-X (TOP INT-2) FPOINTM)

(COND ((> FTD EPS) 1)

((< FTD (- EPS)) -1)

(T (LET ((TD (- (Y-AT-X (TOP INT-1) POINT)

(Y-AT-X (TOP INT-2) POINTM)

(IF (ZEROP TD)

(LET ((BD (Y-AT-X (BOTTOM INT-1) POINT)

(Y-AT-X (BOTTOM NT-2) POINTM)

(IF (ZEROP BD)

(LET ((TS (S-> (SLOPE (TOP INT-1) PM)

(SLOPE (TOP INT-2) PMM)

(IF (ZEROP TS)

(S-> (SLOPE (BOTTOM INT-1) PM)

(SLOPE (BOTTOM INT-2) PM))

TS))

BD))

TDMM)

(DEFUN DOT (EQN-1 EON-2)
I* rnaor IV WfW-'t I nllr /if VeNW-11 I

293

(* (FLOAT (Y EQN-1)) (FLOAT (Y EQN-2)

(DEFUN Y-AT-X (EQN-POINT)

(IF (ZEROP (Y EQN)

(Y POINT)

NN (CL: (+ (D EN) (* (X EON) X POINT))
(- (Y EN)))))

(DEFUN SLOPE (EON PM)

(IF (ZEROP (Y EN))
1+00

(* PM (CL:// (X EON) (- (Y EN))))))

(DEFUN S-> (A)

(IF (EQ A I+**)

(IF (EQ B, '+00) 0 1)

(IF (EQ '+Oa) -1 (A)

(DEFUN ALWAYS-> (ignore ignore)

1)

(DEFUN IN-RANGE? (X QUERY-NODE)

(COND ((AND (X-MAX QUERY-NODE) > X (X-MAX QUERY-NODE)))
((AND (X-MIN QUERY-NODE) < X (X-MIN UERY-NODE))) -1)

(T 0)))

(DEFUN ENCODE (COLOR NUMBER)

(SELECTO COLOR

(OBSTACLE (LOAD-BYTE NUMBER 9)

(START (DEPOSIT-BYTE 9 9 UMBER))

(PROJECTION (DEPOSIT-BYTE 18 9 NUMBER))))

(DEFCONST PROJ-COLOR (ENCODE 'PROJECTION)

(DEFCONST FREE-COLOR)

(DEFCONST CARRY-1 (ASH 9)

(DEFCONST CARRY-2 (ASH 18.))

(DEFUN ADD-COLORS (A)

(LET ((SUM (- A) (LOGAND CARRY-1 (LOGXOR A A)

SUM (LOGAND CARRY-2 (LOGXOR A SUM)))))

(DEFUN ADD-COLORS-CAREFULLY (A)

(LET ((SUM (ADD-COLORS A B)))

(IF (PLUSP (COLOR-FIELD SUM))

(COLOR-FIELD SUM)

SUMM

(DEFUN SUB-COLORS (A)

(LET HDIF ((A B) (LOGAND CARRY-1 (LOGXOR A A B))))))

(+ DIF (LOGAND CARRY-2 (LOGXOR A B DIF)))))

(DEFUN NEG-COLOR (A)

(SUB-COLORS A))

(DEFUN FREE? (A)

(ZEROP A))

(DEFUN FP? (A)

(PLUSP (LOAD-BYTE A 18 9)

(DEFUN COLOR-FIELD (A)

(LOAD-BYTE A 0 18.))

(DEFUN OBST? (A)

(PLUSP (LOAD-BYTE A 9)

(DEFUN START? (A)

(PLUSP (LOAD-BYTE A 9 9)

(DEFUN EVENT-ADD (EVENT TREE 4PTIONAL NO-MUTATION)

(LET ((CURRENT-EVENT (AVL-ACCESS EVENT TREE VEVENT->)))

(COND (CURRENT-EVENT

(SETF (COLOR-CHANGE CURRENT-EVENT) (ADD-COLORS (COLOR-CHANGE EVENT)

294

W -

(IF (FREE? (COLOR-CHANGE CURRENT-EVENT))

(AVL-DELETE CURRENT-EVENT REE #,EVENT-> NO-MUTATION)

TREE))

(T (AVL-INSERT EVENT TREE #'EVENT-> NO-MUTATION)))))

(DEFUN EVENT-SUB (EVENT TREE &OPTIONAL NO-MUTATION)

(EVENT-ADD (MAKE-EVENT POINT (POINT EVENT) EON (EON EVENT)

COLOR-CHANGE (NEG-COLOR (COLOR-CHANGE EVENTM
TREE NO-MUTATION))

(DEFUN OLD-MERGE-EVENTS (A)

(DO* HSTART (NCONS NIL))

(PTR START))

HNOT (AND A))

(SETF (REST PTR) (OR A)

(REST START))

(LET HSIGN (SLOPE-> EN (kIRST A)) (EON (FIRST B)))))

(COND ((PLUSP SIGN)

(SETF (REST PTR) (NCONS (FIRST M

(SETO PTR (REST PTR)

(SETO B (REST M

((MINUSP SIGN)

(SETF EST PTR) (NCONS (FIRST AM

(SETO PTR (REST PTR))

(SETO A (REST AM

(T (LET HNEW-COLOR (ADD-COLORS (COLOR-CHANGE (FIRST A))

(COLOR-CHANGE (FIRST B)))))
(COND ((NOT (FREE? NEW-COLOR))

(SETF (REST PTR) (NCONS (MAKE-EVENT POINT (POINT (FIRST A))

EON (EON (FIRST A)

COLOR-CHANGE NW-COLORM
(SETO PTR (REST PTRM)

(SETO A (REST A) (REST B))))))))

(defun merge-events (a

(do* ((start (ncons nil))
(ptr trt))

((not (and a)

(aetf (rest ptr) (or a

(rest trt))

(let ign (slope-> (eqn first a)) (eqn first)))))
(cond ((plusp in)

(set f (rest pt r) (ncons (f i rst)

(30tq ptr (rest ptr))
(setq b rt)))

((minu3p ign)

(3etf (rest ptr) (ncons first a)))

(3etq ptr (rest ptr))

(3et a rt a)))

(t (lot ((new-color (add-color3 (color-change first))

(color-change first b)))))
(cond ((not free nw-color))

(3etf (rest ptr) (ncon3 (make-event point (point first a))

eqn (merge-equations

(eqn first A))

(eqn (f ir3t B)))

color-change new-color)))

(30tq tr (rest ptr))))

(set a rt a) (rest))))))))

Merge the generators of two events. sume that Eqnl and n2 are equal.

They must both have obstacle tags.

(defun merge-equations (Eqn1 En2)

(cond ((and (generators properties En1))

(generators properties En2))

(not qual (generators propertie En1))

(generators (properties En2)))))

(make-eqn X (x En1) Y (Y Enl) D (D Eqnl)

Properties (make-edge-de3cription Tag tag (properties En1))

Generators

(merge-generators

(generators propertie En1))

(generators propertie En2))))))
(T Enl)))

295

� -N �--! ON-

(defun merge-generator3 (Gl G2)

(append (if C-vertex-p Gl) (list Gl) Gl)

(if (CO-vertex-p G2) (list G2) G2)))

(DEFUN AVL-HEAD-ALL (EVENT-OUEUE)

(LET (FIRST-EVENT)

(MULTIPLE-VALUE (FIRST-EVENT EVENT-QUEUE)

(AVL-HEAD EVENT-QUEUE))

(IF FIRST-EVENT

(DO* ((EVENTS (NCONS FIRST-EVENT))

(PTR EVENTS (REST PTR)))

((NULL PTR) (VALUES EVENTS EVENT-QUEUE))

(LET ((NEXT-EVENT (LEFT-MOST EVENT-QUEUE)))

(COND ((AND NEXT-EVENT EAL (POINT NEXT-EVENT) (POINT FIRST-EVENT)))

(MULTIPLE-VALUE (NEXT-EVENT EVENT-QUEUE)

(AVL-HEAD EVENT-QUEUE))

(SETF (REST PTR) (NCONS NEXT-EVENTM)))

(VALUES NIL NIL))))

(DEFUN FILTER (LIST PREDICATE)

(LET ((OUTPUT NIL))

(DOLIST (EL LIST)

(IF (FUNCALL PREDICATE (COLOR EL))

(SETO OUTPUT (CONS EL OUTPUTM)

OUTPUT))

;(DEFUN SWEEP-UNION (POLYS) ;rovers* my loops, soon!

(FILTER (PROJECT POLYS () 0 0) #'FREE?))

(DEFUN LOCATE-POINT (POINT QUERY-TREE)

(LET ((F-POINT (MAKE-POINT X (FLOAT (X POINT)) Y (FLOAT (Y POINTM))

(AVL-ACCESS POINT

(INTERVALS (AVL-ACCESS (X POINT) UERY-TREE IN-RANGE?))

#'(LAMBDA (A B) (IN-INTERVAL? A B FPOINT)))))

(DEFUN LOCATE-X-Y (X Y QUERY-TREE)

(LOCATE-POINT (MAKE-POINT X X Y Y) QUERY-TREE))

(defun SWEEP (polys optional query)

(project poly3 nil 1\2 1\2 0.0 query))

;;; u3age: (OUTER-UNION (SWEEP INPUT)) etc

(defun outer-union (poly3)

(mapcar #'complement-poly (filter poly3 free?)))

TANGENT the slope of the vc. edge.

for backprojection, the top and bottom tangents are of the form

(minus lope , po3itive slope)

call with args like: (backprojection onvironmentl 3tart-regionl 1\10 26)

(defun forward-projection

(obstacles 3tart-region tangent mu optional query)
(let ((top-tangent b tngent))

(bottom-tangent - (&b tngent))))
(project obstacles start-region top-tangont bottom-tangent mu query)))

(defun weak-backprojection
(ob3tacle3 start-region tngent mu optional query)

(let ((backprojection? 'weak)
(top-tangent (&b tngent))
(bottom-tangent (- (abe tangent))))

(let ((*mu* mu)
(*neg-vl* (li3t (float dnominator bottom-tangent))

(float (numerator bottom-tangont))))
(*neg-v2* ist (float (denominator top-tangent))

(float (numerator top-tangent)))))
(project ob3tacle3 3tart-region top-tangont bottom-tangent mu uery))))

(defvar *mu*)
(defvar *neg-vl*)
(defvar *neg-v2*)

296

(defun backprojection (OBSTACLES START-REGION TANGENT MU &OPTIONAL QUERY)
(let ((backprojection?"3trong)

(top-tangent - (abs tangent)))

(bottom-tangent (ab3 tangent)))
(let ((*MU* MU)

(*neg-vl* list (float (denominator top-tangent))

(float (numerator top-tangent))))
(*neg-v2* list (float (denominator bottom-tangent))

(float (numerator bottom-tangent)))))

(project OBSTACLES START-REGION TOP-TANGENT BOTTOM-TANGENT MU QUERYM)

(defmacro backprojection 0

lbackprojection?)

(defmacro strong-backprojection?

" (eq (backprojection?) I strong)

(defmacro weak-backprojection? ()

1(eq (backprojection?) 'weak))

(DEFUN POJECT (OBSTACLES START-REGION TOP-TANGENT BOTTOM-TANGENt MU &OPTIONAL QUERY)
(LET* ((SA (WHEN MU (// MU (SORT (* MU MU))))))

(EVENTS NIL)

(STRUCT (MAKE-OUTPUT-STRUCTURE POLYGON (MAKE-POLYGON COLOR 0)))
(FREE-INTERVAL (MAKE-INTERVAL TOP (MAKE-EON X 0 Y 1)

BOTTOM (MAKE-EON X 0 Y 1)

OUTPUT-STRUCTURE STRUM)
(SWEEP-LINE (AVL-INSERT FREE-INTERVAL NIL NIL))

(EVENT-QUEUE (UEUE-INITIAL-EVENTS OBSTACLES 'OBSTACLE FREE-INTERVAL

(QUEUE-INITIAL-EVENTS, START-REGION SRT FREE-INtERVAL NIL)))
(OLD-STRUCTS NIL)

(QUERY-TREE NIL)

(SETF (TOP-END STRUCT) STRUCT)

(SETF (BOTTOM-END STRUCT) STRUCT)

(MULTIPLE-VALUE (EVENTS EVENT-(UEUE) (AVL-HEAD-ALL EVENT-QUEUE))
(DO ((POLYS NIL)

(OLD-X NIL))

((NULL EVENTS)

(COND (QUERY

(SETO QUERY-TREE

(AVL-INSERT (MAIKE-QUERY-NODE X-MIN OLD-X INTERVALS SWEEP-LINE)
QUERY-TREE ALWAYS->))

(FIX-OLD-STRUCTS OLD-STRUCTS)))

(VALUES (CONS (POLYGON (OUTPUT-STRUCTURE (VALUE SWEEP-LINE))) POLYS)
QUERY-TREE))

(LET* ((POINT (POINT (FIRST EVENTS)))

(F-POINT (MAKE-POINT X (FLOAT (X POINT)) Y (FLOAT (Y POINT))))

(RELEVANT-INTERVALS (AVL-ACCESS-ALL POINT SWEEP-LINE

#'(LAMBDA (A

(IN-INTERVAL? A POINT))))
(INT->- #'(LAMBDA (A B) (INTERVAL-> A POINT FPOINT 1)))

(INT->+ #'(LAMBDA (A B) (INTERVAL-> A POINT FPOINT 1M)

(COND ((AND QUERY (OR (NULL OLD-X) * OLD-X (X POINTM)

(SETO QUERY-TREE (AVL-INSERT (MAKE-QUERY-NODE X-MIN OLD-X X-MAX (X POINT)

INTERVALS SWEEP-LINE)
QUERY-TREE ALWAYS->))

(SETO OLD-X (X POINT))))

(IF (NULL (EON (FIRST EVENTS))) (SETO EVENTS (CDR EVENTS)))

(SETO EVENTS (MERGE-EVENTS EVENTS (CROSSING-EVENTS .ELEVANT-I`NttRVALS)))
(MULTIPLE-VALUE (POLYS OLD-STRUCTS)

(CLOSE-INTERVALS RELEVANT-INTERVALS POINT POLYS OLD-STRUCTS QUERY))
(MULTIPLE-VALUE (RELEVANT-INTERVALS SWEEP-LINE)

(DELETE-INTERVALS RELEVANT-INTZRVALS INT->- SWEEP-LINE QUERY))

(MULTIPLE-VALUE (SWEEP-LINE EVENT-QUEUE EVENTS POLYS OLD-STRUCTS)

(UPDATE-INTERVALS RELEVANT-INTERVALS EVENTS TOP-TANGENT BOTTOM-TANGENT SA

POINT INT->- INT->+ SWEEP-LINE EVENT-OUEUE POLYS
OLD-STRUCTS QUERY))

(SETO SWEEP-LINE (NEW-INTERVALS RELEVANT-INTERVALS EVENTS

POINT INT->+ SWEEP-LINE QUERY)))
(MULTIPLE-VALUE (EVENTS EVENT-QUEUE) (AVL-HEAD-ALL EVENT-QUEUE)M)

(DEFUN UEUE-INITIAL-EVENTS (POLYS TYPE FREE-INTERVAL EVENT-QUEUE)

(DO ((POLYS POLYS, (REST POLYS)))

((NULL POLYS) EVENT-QUEUE)
I 0 I" If I ^r% I I

297

(DOLIST (EDGE LOOP)
(LET ((Y (Y (HEAD EDGE)

(EON (IF (OR (MINUSP (Y (EON EDGE)))

(AND (ZEROP (Y (EON EDGE)))

(PLUSP (X (EON EDGE)))))

(NEG-EQN (EON EDGE)

(EON EDGE))))

(IF (OR (NULL (D (TOP FREE-INTERVAL)

(< (- -1 Y) (D (TOP FREE-INTERVAL))))

(SETF (D (TOP FREE-INTERVAL)) (- -1 Y)))

(IF (OR (NULL (D (BOTTOM FREE-INTERVAL)))

(> (I Y) (D (BOTTOM FREE-INTERVAL))))

(SETF (D (BOTTOM FREE-INTERVAL)) (- YM

(SETO EVENT-QUEUE (EVENT-ADD (MAKE-EVENT POINT (TAIL EDGE)

EON EON

COLOR-CHANGE (ENCODE TYPE 1))

EVENT-QUEUE #'EVENT->))

(SETO EVENT-QUEUE (EVENT-ADD (MAKE-EVENT POINT (HEAD EDGE)

EON EON

COLOR-CHANGE (ENCODE TYPE -1))

EVENT-OUEUE #'EV`ENT->)))))))

(DEFUN CLOSE-INTERVALS (INTERVALS POINT POLY$ OLD-STRUCTS QUERY)

(DO (PTR (REST INTERVALS) (REST PTR)))

((NULL (REST PTR)) (VALUES POLYS OLD-STRUCTS))

(UNLESS (FP? (COLOR (POLYGON (OUTPUT-STRUCTURE (FIRST PTR)))))

(MULTIPLE-VALUE (POLYS OLD-STRUCTS)

(CLOSE-INTERVAL (FIRST PTR) POINT POLYS OLD-STRUCTS UERY)))))

(DEFUN CLOSE-INTERVAL (INTERVAL POINT POLYS OLD-STRUCTS QUERY)

(LET ((STRUCT (OUTPUT-STRUCTURE INTERVALM

(SETF (TAIL (FIRST (TOP STRUCTM POINT)

(SETF (HEAD (FIRST (BOTTOM STRUCTM POINT)

(COND ((EQ (BOTTOM-END STRUM STRUCT)

(SETF (LOOP-LIST (POLYGON STRUM)

(CONS (TOP STRUCT) (LOOP-LIST (POLYGON STRUCTM)

(IF (NULL (LOOP-END (POLYGON STRUCTM

(SETF (LOOP-END (POLYGON STRUM) (LOOP-LIST (POLYGON STRUCTM)

(SETO POLYS (CONS (POLYGON STRUCT) POLYSM

(T (SETF (REST (BOTTOM STRUM) (TOP STRUCT))

(SETF (BOTTOM-END (TOP-END STRUM)

(BOTTOM-END STRUCT))

(SETF (TOP-END (BOTTOM-END STRUM)

(TOP-END STRUM)

(COND (QUERY

(SETF (POLYGON STRUCT) 'DISCARDED)

(SETO OLD-STRUCTS (CONS STRUCT OLD-STRUCTS)MM

(VALUES POLYS OLD-STRUCTS))

(DEFUN CROSSING-EVENTS (INTERVALS)

(DO ((THIS (REST INTERVALS) (REST THIS))

(PREV INTERVALS THIS)

(EVENTS NIL))

((NULL THIS) EVENTS)

(LET ((COLOR1 (COLOR (POLYGON (OUTPUT-STRUCTURE (FIRST THIS)))))

(COLOR2 (COLOR (POLYGON (OUTPUT-STRUCTURt. (FIRST PREV))))))

(IF (NOT (OR (AND (FP? COLOR1) (RU? COLOR2))

(AND (FP? CL0Jk2) (FIkEE? COLORl))))

(SETO EVENTS

(CONS (MAKE-EVENT EON (TOP (FIRST PREV))

COLOR-CHANGE (COLOR-FIELD (SUB-COLORS LOR1 CLOR2)))

EVENTS))))))

(DEFUN DELETE-INTERVALS INTERVALS rNT->- SWEEP-LINE QUERY)

(DO ((PTR (REST INTERVALS) (REST PTR))

(PREV INTERVALS)

((NULL (REST PTR)) (VALUES INTERVALS SWEEP-LINE))

(COND ((OR (EQ 'DISCARDED (POLYGON (OUTPUT-STRUCTURE (FIRST PTRM)

(NOT (FP? (COLOR (POLYGON (OUTPUT-STRUCTURE (FIRST PTR)))))))

(SETO SWEEP-LINE (AVL-DELETE (FIRST PTR) SWEEP-LINE INT->- UERY))

(SETF (REST PREV) (REST PTRM
- I _ F"10% V% 7% VI* IF 1% fnv% 11 11 11 1 .

298

�DEFUN UPDATE-INTERVALS (INTERVALS EVENTS TOP-TANGENT BOTTOM-TANGENT SA

POINT INT->- INT->+ SWEEP-LINE EVENT-QUEUE POLYS OLD-STRUCTS QUERY)

(LET* ((TOP-INTERVAL (FIRST (LAST INTERVALSM

(MIDDLE-INTERVAL (SECOND INTERVALS))

(BOTTOM-INTERVAL (FIRST INTERVALSH

(TOP-TANGENT-EQN (MAKE-EON X TOP-TANGENT) Y 1

D (X POINT) TOP-TANGENT) (Y POINTM)

(BOTTOM-TANGENT-EQN (MAKE-EON X BOTTOM-TANGENT) Y 1

D (* (X POINT) BOTTOM-TANGENT) (Y POINT)))))

(SETO EVENTS (PROJECTION-EVENTS (COLOR (POLYGON (OUTPUT-STRUCTUAE t0P-INTElkVAL)))

(COLOR (POLYGON (OUTPUT-STRUCTURE BOTTOM-INTERVAL)))

TOP-TANGENT-EQN BOTTOM-TANGENT-EQN EVENTS SA))

(LET ((TEMP-EVENTS EVENTS))

(COND ((REST2 INTERVALS)

(MULTIPLE-VALUE (SWEEP-LINE EVENT-QUEUE TEMP-EVENTS POLYS OLD-STRUCTS)

(UPDATE-MIDDLE-INTERVAL TOP-INTERVAL MIDDLE-INTERVAL BTtOM-INTERVAL

EVENTS TOP-TANGENT-EQN BOTTOM-TANCENT-EON SA

POINT INT->- INT->+ EVENT-QUEUE SWEEP-LINE

POLYS OLD-STRUCTS QUERY))))

(IF (REST INTERVALS)

(COND (TEMP-EVENTS

(MULTIPLE-VALUE (SWEEP-LINE EVENT-QUEUE)

(CHANGE-INTERVAL TOP-INTERVAL (TOP TOP-INTERVAL)

(EON (FIRST (LAST TEMP-EVENTS)))

POINT INT->- INT->+ SWEEP-LINE EVENT-QUEUE QUERY))

(MULTIPLE-VALUE (SWEEP-LINE EVENT-QUEUE)

(CHANGE-INTERVAL BOTTOM-INTERVAL (EON (FIRST TEMP-EVENTS))

(BOTTOM BOTTOM-INTERVAL)

POINT INT->- INT->+ SWEEP-LINE EVENT-QUEUE QUERYM

(T (MULTIPLE-VALUE (SWEEP-LINE EVENT-QUEUE OLD-STRUCTS)

(JOIN-INTERVALS TOP-INTERVAL BOTTOM-INTERVAL POINT INT->- INT->+

SWEEP-LINE EVENT-QUEUE OLD-STRUCTS QUERYM)

(IF TEMP-EVENTS (MULTIPLE-VALUE (SWEEP-LINE EVENT-QUEUE)

(SPLIT-INTERVAL BOTTOM-INTERVAL (EON (FIRST (LAST TEMP-EVENTS)))

(EON (FIRST TEMP-EVENTS)) POINT

INT->- INT->+ SWEEP-LINE EVENT-QUEUE QUERYM)))

(VALUES SWEEP-LINE EVENT-QUEUE EVENTS OLYS OLD-STRUCTS))

(DEFUN IN-BETWEEN (BOTTOM-EVENT MIDDLE TOP-EVENT)

(AND (OR (NULL TOP-EVENT)

(PLUSP (SLOPE-> (EON TOP-EVENT) MIDDLEM

(OR (NULL BOTTOM-EVENT)

(PLUSP (SLOPE-> MIDDLE (EON BOTTOM-EVENTMM

modified for Backprojection and Weak backprojection

(DEFUN PROJECTION-EVENTS (TOP-COLOR BOTTOM-COLOR TOP-TANGENT-EON BOTTOM-TANGENT-EQN EVENTS SA)

(DO* ((NEW-EVENTS (CONS NIL EVENTS))

(PTR NEW-EVENTS (REST PTR))

(COLOR BOTTOM-COLOR)

(OLD-COLOR BOTTOM-COLOR))

((NULL PTR) RST NEW-EVENTS))

(LET* ((PREV-EVENT (FIRST PTR))

(THIS-EVENT (SECOND PTR))

(NEW-COLOR (IF THIS-EVENT

(ADD-COLORS-CAREFULLY COLOR (COLOR-CHANGE THIS-EVENT))

TOP-COLOR))

(NEXT-COLOR (IF THIS-E17ENT

(COND ((AND (FREE? COLOR) (START? NEW-COLOR)) PROJ-COLOR)

((AND (FP? COLOR) (OBST? NEW-COLOR)) FREE-COLOR)

(T COLOR))

TOP-COLOR))

(PREV-COLOR (IF (AND (FREE? COLOR) (START? OLD-COLOR)) PROJ-COLOR COLOR)))

(COND ((AND PREV-EVENT

(OR (AND ? NUT-COLOR)

(PLUSP (SLOPE-> (EON PREV-EVENT) BOTTOM-TANGENT-EQN)))

(AND (P? PREV-COLOR)

(PLUSP (SLOPE-> TOP-TANGENT-EON (EON PREV-EVENT))))))

(SETF (COLOR-CHANGE PREV-EVENT) (ADD-COLORS (COLOR-CHANGE PREV-EVENT)

PROJ-COLORM)

(COND ((AND (FREE? PREV-COLOR)

(FP? NEXT-COLOR)

(IN-BETWEEN PREV-EVENT BOTTOM-TANGENT-EON THIS-EVENT))

(cond ((conpute-backprojection-sliding prov-ovont top-tangent-eqn

299

bottom-tangent-eqn SA 'bottom)
(SETF (REST PTR)

(CONS (MAKE-EVENT EQN BOTTOM-TANGENT-EQN COLOR-CHANGE PROJ-COLOR)
(REST PTR)))

(SETQ PTR (REST PTR)

(prev-event

(setf (color-change prev-event) (add-color3 (color-change prev-event)

proj-color))))))
(COND ((AND (FREE? NEXT-COLOR)

(FP? PREV-COLOR)

(IN-BETWEEN PREV-EVENT TOP-TANGENT-EQN THIS-EVENT)

(compute-backprojection-31iding thi3-evant top-tangent-eqn

bottom-tangent-eqn SA
(SETF (REST PTR) (CONS (MAKE-EVENT EON TOP-TANGENT-EQN

COLOR-CHANGE (NEG-COLOR PROJ-COLOR))
(REST PTRM

(SETQ PTR (REST PTR))))

(SETQ OLD-COLOR COLOR)

(SETO COLOR NEW-COLOR))))

should return T if we should erect a velocity constraint

(defun compute-backprojection-31iding (event top-tangent-eqn. bottom-tangent-eqn SA bottom?)
(cond ((Not (backprojection?)) T)

((null event) T)

(T (let ((edge-eqn (eqn event)))

(cond ;;; ((start? (color-change vnt)) nil)
(T

(nelectq (backprojection?)
(Weak

(not (weak-can-slide? (orient-edge-equation edge-eqn bottom?))))
(Strong

(not (mu3t-31ide? (orient-edge-equation edge-eqn bottom?))))
(old-weak (not (old-weak-can-31idS? edgo-eqn

top-tangent-eqn

bottom-tangent-eqn SA))))))))))

11-;; event norma13 are oriented upwards, always. Expect for vertical events,

where th norma.13 point to the left.

(defun orient-edge-equation (eqn bottom?)
(when en.

(if (or (and (zerop (y en)

(minusp (x eqn)))

(and bottom? (minusp (y en)))

(and (not bottom?) (plusp (y eqn))))

(neg-eqn eqn)

eqn)))

DOCid,83 if, Uing the OPPOSITE velocity cone, we can slide on the
edge with eqn EDGE-EON.

(defun old-weak-can-31ide? (edgo-eqn top-tangent-eqn bottom-tangent-eqn sa)

(and edge-eqn (can-slid*? edge-eqn top-tangent-eqn bottom-tangent-eqn SA)))

does not handle the case where mu - and there's no velocity uncertainty

(defun weak-can-slide? (eqn optional (neg-vl *nag-vl*) (neg-v2 *neg-v2*) (mu *mu*))
(and en

(let* ((normal list (float (x en)) (float (y en))))
(tangent (list (* mu (cadr normal)) (* (minus mu) (car normal)))))

(let ((el (vc2add normal tangent))

(e2 (vc-sub normal tngent)))

(or (- mu 0.0)

(not (In-2D-cone-p neg-vl el e2))

(not (In-2D-cone-p neg-v2 el e2)))))))

(DEFUN MUST-SLIDE? (EON)

(and eqn

(31ide-p eqn)))

300

;; modified to close in case of backprojection

(DEFUN UPDATE-MIDDLE-INTERVAL (TOP-INTERVAL MIDDLE-INTERVAL BOTTOM-INTERVAL

EVENTS TOP-TANGENT-EQN BOTTOM-TANGENT-EQN SA POINT

INT->- INT->+ EVENT-QUEUE SWEEP-LINE POLYS OLD-STRUCTS QUERY)

(COND ((AND (not (backprojection?))

(FREE? (COLOR (POLYGON (OUTPUT-STRUCTURE BOTTOM-INTERVALM)

(NOT (START? (COLOR (POLYGON (OUTPUT-STRUCTURE TP-INTERVAL))))))

(MULTIPLE-VALUE (MIDDLE-INTERVAL SWEEP-LINE EVENT-QUEUE EVENTS POLYS OLD-STRUCTS)

(CONTINUE-MIDDLE MIDDLE-INTERVAL

(IF EVENTS (EON (FIRST EVENTS)) TOP-TANGENT-EQN)

(IF (AND EVENTS (PLUSP (SLOPE-> BOTTOM-TANGENT-EQN

(EON (FIRST EVENTS)))))

(EON (FIRST EVENTS)

BOTTOM-TANGENT-EQN)

TOP-TANGENT-EQN BOTTOM-TANGENT-EQN SA POINT NT->- INT->+

SWEEP-LINE EVENT-QUEUE EVENTS POLYS OLD-STRUCTS QUERY)))

((AND (not (backprojection?))

(FREE? (COLOR (POLYGON (OUTPUT-STRUCTURE TOP-INTERVAL))))

(NOT (START? (COLOR (POLYGON (OUTPUT-STRUCTURE BOTTOM-INTERVALM)))

(MULTIPLE-VALUE (MIDDLE-INTERVAL SWEEP-LINE EVENT-QUEUE EVENTS POLYS OLD-STRUCTS)

(CONTINUE-MIDDLE MIDDLE-INTERVAL

(IF (AND EVENTS (PLUSP (SLOPE-> (EON (FIRST (LAST EVENTS)))

TOP-TANGENT-EQN)))

(EON (FIRST (LAST EVENTS)))

TOP-TANGENT-EQN)

(IF EVENTS (EON (FIRST (LAST EVENTS))) BOTTOM-TANGENT-EONI

TOP-TANGENT-EQN BOTTOM-TANGENT-EQN SA POINT INT->- INT->+

SWEEP-LINE EVENT-QUEUE EVENTS POLYS OLD-STRUCTS QUERY)))

(T (MULTIPLE-VALUE (POLYS OLD-STRUCTS)

(CLOSE-INTERVAL MIDDLE-INTERVAL POINT POLYS OLD-STRUCTS QUERY))

(SETO SWEEP-LINE (AVL-DELETE MIDDLE-INTERVAL SWEEP-LINE INT->- QUERY))

(SETO MIDDLE-INTERVAL NIL)))

(COND ((AND MIDDLE-INTERVAL (FP? (COLOR (POLYGON (OUTPUT-STRUCTURE OTTOM-INTERVAL)))))

(MULTIPLE-VALUE (SWEEP-LINE EVENT-OUEUE OLD-STRUCTS)

(JOIN-INTERVALS MIDDLE-INTERVAL BOTTOM-INTERVAL

POINT INT->- INT->+ SWEEP-LINE EVENT-QUEUE OLD-STRUCTS QUERY)))

((AND MIDDLE-INTERVAL (FP? (COLOR (POLYGON (OUTPUT-STRUCTURE t0-INTERVAL)))))

(MULTIPLE-VALUE (SWEEP-LINE EVENT-QUEUE OLD-STRUCTS)

(JOIN-INTERVALS TOP-INTERVAL MIDDLE-INTERVAL

POINT INT INT->+ SWEEP-LINE EVENT-QUEUE OLD-STRUCtS QUERY))))

(VALUES SWEEP-LINE EVENT-QUEUE EVENTS POLYS OLD-STRUCTS))

(DEFUN CONTINUE-MIDDLE (MIDDLE-INTERVAL MIDDLE-TOP MIDDLE-BOTTOM TOP-TANGENT-EQN

BOTTOM-TANGENT-EQN SA POINT INT->- INT->+

SWEEP-LINE EVENT-OUEUE EVENTS POLYS OLD-STRUCTS QUERY)

(COND ((AND (EQUAL MIDDLE-TOP MIDDLE-BOTTOM)

(NOT (CAN-SLIDE? MIDDLE-TOP TOP-TANGENT-EQN BOTTOM-TANGENT-EQN SA)))

(MULTIPLE-VALUE (POLYS OLD-STRUCTS)

(CLOSE-INTERVAL MIDDLE-INTERVAL POINT POLYS OLD-STRUCTS QUERY))

(SETO SWEEP-LINE (AVL-DELETE MIDDLE-INTERVAL SEtP-LINE INT->- QUERY))

(SETO MIDDLE-INTERVAL NIL))

(T (SETO EVENTS (MERGE-EVENTS EVENTS (LIST (MAKE-EVENT EON MIDDLE-BOTTOM

COLOR-CHANGE PROJ-COLOR)

(MAKE-EVENT EON MIDDLE-TOP

COLOR-CHANGE

(NEG-COLOR PROJ-COLOR)))))

(UNLESS (EQUAL MIDDLE-TOP MIDDLE-BOTTOM)

(COND ((PLUSP (SLOPE-> MIDDLE-TOP TOP-TANGENT-90N))

(SETO SWEEP-LINE (CREATE-INTERVAL MIDDLE-TOP TOP-TANGENT-EQN FREE-COLOR

POINT INT->+ SWEEP-LINE QUERY))

(SETO MIDDLE-TOP TOP-TANGENT-EQN)))

(COND ((PLUSP (SLOPE-> BOTTOM-TANGENT-EON MIDDLE-BOTTOM))

(SETO SWEEP-LINE

(CREATE-INTERVAL BOTTOM-TANGENT-EQN MIDDLE-BOTTOM FREE-COLOR

POINT INT->+ SWEEP-LINE QUERY))

(SETO MIDDLE-BOTTOM BOTTOM-TANGENT-EQN))))

(MULTIPLE-VALUE (SWEEP-LIKE EVENT-QUEUE)

(CHANGE-INTERVAL MIDDLE-INTERVAL MIDDLE-TOP MIDDLE-BOTTOM

POINT INT->- INT->+ SWEEP-LINE EVENT-QUEUE QUERYM)

(VALUES MIDDLE-INTERVAL SWEEP-LINE EVENT-QUEUE EVENTS POLYS OLD-STROCTS))

(DEFUN CAN-SLIDE? (EON TOP-TANGENT-EQN BOTTOM-TANGENT-EGN SA)

(> (MAX (ABS (// (DOT EON TOP-TANGENT-EQN)

301

(SORT (* (DOT EON EON) (DOT TOP-TANGENT-EQN TOP-TANGENT-EQN)))))
(ABS (// (DOT EON BOTTOM-TANGENT-EQN)

(SORT (* (DOT EON EON) (DOT BOTTOM-TANGENT-EQN BOTTOM-TANGENT-EQN))))))
SAH

(DEFUN CHANGE-INTERVAL (INTERVAL TOP BOTTOM POINT INT->- INT->+ SWEEP-LINE EVENT-QUEUE QUERY)
(LET ((STRUCT (OUTPUT-STRUCTURE INTERVAL)))

(COND ((NOT (AND (EQUAL (TOP INTERVAL) TOP)

(EQUAL (BOTTOM INTERVAL) BOTTOM)))

(COND ((NOT (EQUAL (TOP INTERVAL) TOP))

(SETF (TAIL (FIRST (TOP STRUM)) POINT)

(SETF (TOP STRUCT) (CONS (MAKE-EDGE HEAD POINT EON TOP) (TOP STRUCT)M)
(COND ((NOT (EQUAL (BOTTOM INTERVAL) BOTTOM))

(SETF (HEAD (FIRST (BOTTOM STRUCT))) POINT)

(SETF (REST (BOTTOM STRUCT))

(NCONS (MAKE-EDGE TAIL POINT EON (NEG-EGN BOTTOM))))

(SETF (BOTTOM STRUCT) (REST (BOTTOM STRUCTM))

(LET ((NEW-INTERVAL (MAKE-INTERVAL TOP TOP BOTTOM BOTTOM

OUTPUT-STRUCTURE STRUCT)))

(SETO SWEEP-LINE (AVL-DELETE INTERVAL SWEEP-LINE INT->- QUERY))

(SETO SWEEP-LINE (AVL-INSERT NEW-INTERVAL SWEEP-LINE INT->+ QUERY))
(IF (EVENT INTERVAL)

(SETO EVENT-QUEUE (EVENT-SUB (EVENT INTERVAL) EVENT-QUEUE)))

(SETO EVENT-QUEUE (CLOSURE-EVENT? NEW-INTERVAL EVENT-QUEUE))))))
(VALUES SWEEP-LINE EVENT-QUEUE)

(DEFUN SPLIT-INTERVAL (INTERVAL TOP BOTTOM POINT INT->- INT->+ SWEEP-LINE EVENT-QUEUE QUERY)
(LET* HBOTTOM-STRUCT (OUTPUT-STRUCTURE INTERVAL))

(TOP-STRUCT (MAKE-OUTPUT-STRUCTURE POLYGON (POLYGON BOTTOM-STROCT)

TOP (TOP OTTOM-STRUCT)

TOP-END (TOP-END BOTTOM-STRUCT)

BOTTOM-END BOTTOM-STRUCTM
(SETF (BOTTOM-END (TOP-END BOTTOM-STRUCT)) TOP-STRUCT)

(SETF (TOP-END BOTTOM-STRUCT) TOP-StRUCT)

(SETF (TOP BOTTOM-STRUCT) (LIST (MAKE-EDGE HAD POINT EON BTTOM)

(MAKE-EDGE TAIL POINT EON (NEG-EQN TOP))))
(SETF (BOTTOM TOP-STRUCT) (REST (TOP BOTTOM-STRUCTM

(SETO SWEEP-LINE (AVL-DELETE INTERVAL SWEEP-LINE INT->- QUERY))
�IF (EVENT INTERVAL)

(SETO EVENT-QUEUE (EVENT-SUB (EVENT INTERVAL) VENT-QUEUE)))

(LET ((TOP-INTERVAL (MAKE-INTERVAL TOP (TOP INTERVAL) BOTTOM TOP

OUTPUT-STRUCTURE TOP-STRUCT))

(BOTTOM-INTERVAL (MAKE-INTERVAL TOP BOTTOM BOTTOM (BOTTOM INTERVAL)

OUTPUT-STRUCTURE BOTTOM-STRUCTM
(SETO SWEEP-LINE (AVL-INSERT BOTTOM-INTERVAL

(AVL-INSERT TOP-INTERVAL SWEEP-LINE INT->+ QUERY)

INT->+ QUERY)

(SETO EVENT-QUEUE (CLOSURE-EVENT? BOTTOM-INTERVAL

(CLOSURE-EVENT? TOP-INTERVAL EVENT-QUEUE)))))
(VALUES SWEEP-LINE EVENT-QUEUE))

(DEFUN JOIN-INTERVALS (TOP-INTERVAL BOTTOM-INTERVAL

POINT INT->- INT->+ WEEP-LINE EVENT-QUEUE OLD-STRUCTS QUERY)
(LET* ((TOP-STRUCT (OUTPUT-STRUCTURE TP-INTERVAL))

(BOTTOM-STRUCT (OUTPUT-STRUCTURE BOTTOM-INTERVAL))

(TOP-POLY (POLYGON TOP-STRUCT))

(BOTTOM-POLY (POLYGON BOTTOM-STRUCTM

(SETF (HEAD (FIRST (BOTTOM TOP-STRUCT))) POINT)

(SETF (TAIL (FIRST (TOP OTTOM-STRUCt))) POINT)

(COND ((EQ (TOP-END BOTTON-STRUCT) TOP-STRUCT)

(SETF (LOOP-LIST TOP-POLY)

(CONS (TOP BOTTOM-STRUCT) (LOOP-LIST TOP-POLYM

(IF (NULL (LOOIP-END TOP-POLY))

(SETF (LOOP-END TOP-POLY) (LOOP-LIST TOP-POLYM

(SETF (LOOP-LIST BOTTOM-POLY)

(LOOP-LIST TOP-POLY))

(SETF (LOOP-END BOTTOM-POLY) (LOOP-END TOP-POLYM

(T (SETF (REST (BOTTOM TOP-STRUCT)) (TOP OTTOM-STRUCT))

(SETF (TOP-END (BOTTOM-END TOP-STRUCT)) (TOP-ENO BOTTOM-STRUCT))

(SETF (BOTTOM-END (TOP-END BOTTOM-STRUCT)) (BOTTOM-END TOP-STRUMM

(SETF (BOTTOM-END (TOP-END TOP-STRUCT)) BOTTOM-STRUCT)

(SETF (TOP BOTTOM-STRUCT) (TOP TOP-STRUCT))
IS7Tr TnP-rwn nn-rrmm_4r.,rutte%,r% vno-run ore-to-co"tie-P,

302

(COND (QUERY

(SETF (BOTTOM-END TOP-STRUCT) BOTTOM-STRUCT)

(SETF (POLYGON TOP-STRUCT) DISCARDED)

(SETO OLD-STRUCTS (CONS TOP-STRUCT OLD-STRUCTS))))
(COND ((NOT E (LOOP-LIST TOP-POLY)

(LOOP-LIST BOTTOM-POLY)))
(IF (LOOP-LIST BOTTOM-POLY)

(SETF (REST (LOOP-END BOTTOM-POLY))

(LOOP-LIST TOP-POLY))

(SETF (LOOP-LIST BOTTOM-POLY) (LOOP-LIST TOP-POLY)))
(IF (LOOP-END TOP-POLY)

(SETF (LOOP-END BOTTOM-POLY) (LOOP-END TOP-POLY)))

(SETF (LOOP-LIST TOP-POLY) (LOOP-LIST BOTTOM-POLY))

(SETF (LOOP-END TOP-POLY) (LOOP-END BOTTOM-POLY))))

(SETO SWEEP-LINE (AVL-DELETE TOP-INTERVAL

(AVL-DELETE BOTTOM-INTERVAL SWEEP-LINE INT->- QUERY)
INT->- QUERY))

(IF (EVENT TOP-INTERVAL)

(SETO EVENT-QUEUE (EVENT-SUB (EVENT TOP-INTERVAL) EVENT-QUEUE)))
(IF (EVENT BOTTOM-INTERVAL)

(SETO EVENT-QUEUE (EVENT-SUB (EVENT BOTTOM-INTERVAL) EVENT-QUEUE)))

(LET HINTERVAL (MAKE-INTERVAL TOP (TOP TOP-INTERVAL) BOTTOM BOM BOTTOM-INTERVAL)

OUTPUT-STRUCTURE BOTTOM-STRUCT)))
(SETO SWEEP-LINE (AVL-INSERT INTERVAL SWEEP-LINE INT->+ UERY))

(SETO EVENT-QUEUE (CLOSURE-EVENT? INTERVAL EVENT-QUEUE))))

(VALUES SWEEP-LINE EVENT-QUEUE OLD-STRUCTS))

(DEFUN CLOSURE-EVENT? (INTERVAL EENT-QUEUE)

(LET ((NEW-POINT (INTERSECTION-porNT (TOP INTERVAL) (BOTTOM INTERVALM)
(COND (NEW-POINT

(SETF (EVENT INTERVAL)

(MAKE-EVENT POINT NEW-POINT COLOR-CHANGE 1))

(SETO EVENT-QUEUE (EVENT-ADD (EVENT INTERVAL) EVENT-OUEUEM))
EVENT-QUEUE)

(DEFUN NEW-INTERVALS (INTERVALS EVENTS POINT XNT->+ SWEEP-LINE QUERY)
(DO ((PTR EVENTS (REST PTR))

(COLOR (COLOR (POLYGON (OUTPUT-STRUCTURE (FIRST INTERVALS))))))
((NULL (REST PTR)) SWEEP-LINE)

(LET ((TOP-EVENT (SECOND PTR))

(BOTTOM-EVENT (FIRST PTRM

(SETO COLOR (ADD-COLORS-CAREFULLY COLOR (COLOR-CHANGE OTTOM-EVENT)))

(SETO SWEEP-LINE (CREATE-INTERVAL (EON TOP-EVENT) (EON BOTTOM-EVENT) COLOR POINT

INT->+ SWEEP-LINE UERY)))))

(DEFUN CREATE-INTERVAL (TOP BOTTOM COLOR POINT INT->+ SWEEP-LINE QUERY)
(LET ((STRUCT (MAKE-OUTPUT-STRUCTURE

POLYGON (MAKE-POLYGON COLOR COLOR)

TOP (LIST (MAKE-EDGE HEAD PINT EON TOP)

(MAKE-EDGE TAIL POINT EON (NEG-EQN BOTTOM)))))
(SETF (BOTTOM STRUCT) (REST (TOP STRUCTM

(SETF (BOTTOM-END STRUCT) STRUCt)

(SETF (TOP-END STRUCT) STRUCT)

(AVL-INSERT (MAKE-INTERVAL TOP TOP BOTTOM BOTTOM OUTPUT-STRUCTURE STRUCT)

SWEEP-LINE INT->+ QUERY)))

(DEFUN FIX-OLD-STRUCTS (OLD-STRUCTS)

(DOLIST (STRUCT OLD-STRUCTS)

(LET ((POLY (DO ((PTR STRUCT (BOTTOM-END PTR)))

((NOT (EQ 'DISCARDED (POLYGON PTRM (POLYGON PTR)))))
(DO ((PTR STRUCT (BOTTOM-END PTR)))

((NOT (EQ 'DISCARDED (POLYGON PTRM)

(SETF (POLYGON PTR) POLYM))

(DEFUN PROBLEM-SIZE (PROBLEM)

(LET ((SIZE 0))

(COND ((EDGE-P PROBLEM)

(POLYGON-P PROBLEM)

(DOLIST (LOOP (LOOP-LIST PROBLEM))

(SETO SIZE SIZE (PROBLEM-SIZE LOOPM)
SIZE)

MISTP PROBLEM)
lne)T.TQlV 100MU 00^1MTtU%

303

(SETO SIZE (+ SIZE (PROBLEM-SIZE pROB))))

SIZEM)

Sliding predicate from Mike Erdmann.

;This function decide3 whether none of the velocity vectors in the range

;vl through v2 cause ticking on an Od10 3e-ified by 'normal".

(defun slide-p (eqn optional (neg-vl *neg-vl*) (neg-v2 *neg-v2*) (mu *mu*))

(let* normal list (float x en)) (float (y eqn))))

(tangent (list (* mu (adr normal)) (* minus mu) (car normal)))))

(let ((el (vc2add normal tangent))

(e2 (vc-sub normal tangent)))

(print-line list tangent el e2))

(let ((Il (not (In-2D-cone-p normal neg-vl nag-v2M

(I2 (not (In-2D-cone-p neg-vl el e2)))

(I3 (not Un-2D-cone-p neg-v2 el e2))))

(print-line (list Il I2 13)

(and (not (In-2D-cone-p normal nag-vl nag-v2))

(or (- mu)

(and (not (In-2D-cone-p neg-vl el e2))

(not (In-2D-cona-p nog-v2 el e2))))))))

; Given that the two 2-D vctors el and e2 are independent,

; this function decides whether a third 2-D vector, v,

; lies in the cone formed by the positive span of I and 2.

(defun Old-In-2D-cone-p (v el 2)

(let ((perp (2D-cross-product I e2))

(el-x-v (2D-crose-product el v))

(v-x-e2 (2D-crose-product v e2)))

(and (>- el-x-v porp) 0)
v-x-.o2 pr) 0))))

this because the multiplication can overflow.

(defun In-2D-cone-p (v el e2)

(let ((perp (2D-crO3a-product el e2))

(el-x-v =-crO38-product el v))

(v-x-e2 (2D-cross-product v 2)))

(let ((3igperp (eignum prp)))

(and (3ignum el-x-v) sigperp) 0)

(3ignum v-x-e2) 3igporp) 0)))))

This function computes the cross-product of its two 2-D vector arguments.

P'

(defun 2D-crO33-product (vl v2)

(let ((xl (car v1))

(yl (cadr v1))

(x2 (car v2))

(Y2 cadr v2M

xl 2) (* x2 yl)

This function expect to lists, representing vector.

It putes their vector 3UM.

(defun vc2add (vl v2)

(cond ((or (atom v1)

304

(atom v2)) (ferror "vector may not be an atom in vc2add"))
(t (mapcar (function) vl v2))))

This function eXPOCt3 tWO lists, rpresenting vector.
It computes their vector difference.

(defun VC-3ub (vl v2)
(cond ((or (atom vl)

(atom v2)) (ferror "vector may not be an atom in vc-3ub"))
(t (mapcar (function -) vl v2))))

305

#I base:10,- package:3weep; rnode:li3p

Code to build and maintain AVL trees, (c) 1986 Roger-the-AVL-3hrubber, (a shrubber).

(DEFSTRUCT (AVL-NODE :NAMED

:PREDICATE

VALUE OPRINT <-3 -a -s>- (LEFT AVL-NODE) (VALUE AVL-NODE) (RIGHT AVL-NQDE)))

LEFT

RIGHT

BALANCE)

(DEFUN AVL-COPY (TREE)

(IF (NULL TREE)

NIL

(MAKE-AVL-NODE BALANCE (BALANCE TREE) VALUE (VALUE TREE)

LEFT (AVL-COPY (LEFT TREE))

RIGHT (AVL-COPY (RIGHT TREEM))

(DEFUN AVL-SIZE (TREE)

(IF (NULL TREE)

0
(1 ((AVL-SIZE (LEFT TREE))

(AVL-SIZE (RIGHT TREE)M))

This determines the height of an AVL tree and also checks if your tre is

out of balance or Koyaani3quat3i' in Hopi Indian. A'ctual height difference

should be the ame as the balance value, and should be in the range (-1,0,1).

(DEFUN AVL-HEIGHT (TREE)

(COND ((NULL TREE)

(T (LET ((HL (AVL-HEIGHT (LEFT TREE)))

(HR (AVL-HEIGHT (RIGHT TREEM)

(COND ((* (- HR HL) (BALANCE TREE))

(FORMAT T

The actual height difference -s does not agree with the balance ntry -a for node -a"

(- HR HL) (BALANCE TREE) TREE))

(ABS (BALANCE TREE))

(FORMAT T

Node -s is Koyaanisquatai, it3 balance value is -a" TREE (BALANCE TREE))))

(1+ (MAX HL HR))))))

Function to find an entry in an AVL tree. PREDICATE should return if KEY and

the node value are the same, +1 if KEY i greater than the node value, -1 otherwise.

(DEFUN AVL-ACCESS (KEY TREE PREDICATE)

(AND TREE

(LET ((DIF (FUNCALL PREDICATE KEY (VALUE TREE))))

(COND,((PLUSP DIF) (AVL-ACCESS KEY (RIGHT-TREE) PREDICATE))

((MINUSP DIF) (AVL-ACCESS KEY EFT TREE) PREDICATE))

(T (VALUE TREE)

Function to find all the ntries in an AVL tree that are equal to KEY according to

PREDICATE. PREDICATE should return if KEY and the node value are the same,

+1 if KEY greater than the node value, -1 otherwise.

(DEFUN AVL-ACCESS-ALL (KEY TREE PREDICATE)

(AND TREE

(LET ((DIF (FUNCALL PREDICATE KEY (VALUE TREE))))

(COND ((PLUSP DIF) (AVL-ACCESS-ALL KEY (RIGHT TREE) PREDICATE))

((MINUSP DIF) (AVL-ACCESS-ALL KEY (LEFT TREE) PEDICATE))

(T (NCONC (AVL-ACCESS-ALL KEY (LEFT TEE) REDICATE)

(NCONS (VALUE TREE))

(AVL-ACCESS-ALL KEY (RIGHT TREE) PREDICATE)))))))

306

;; Return the left-most value in an AVL tree.

(DEFUN LEFT-MOST (TREE)

(COND ((NULL TREE) NIL)

er ((NULL (LEFT TREE)) (VALUE TREE))
(T (EFT-MOST (LEFT TREE)))))

Return the right-most value in an AVL tree.

(IL"JEFUN RIGHT-MOST (TREE)

(COND ((NULL TREE) NIL)

((NULL (RIGHT TREE)) (VALUE TREE))

(T (RIGHT-MOST (RIGHT TREE)))))

Return the successor of a given node in an AVL tree. This rturns the left-most

node in the tree whose value is greater than the value of KEY.

(DEFUN AVL-NEXT (KEY TREE PREDICATE)

(AND TREE

(COND ((MINUSP (FUNCALL PEDICATE KEY (VALUE TREE)))

(OR (AVL-NEXT KEY (LEFT REE) PREDICATE)

(VALUE TREE)))

(T (AVL-NEXT KEY (RIGHT TREE) PREDICATE)))))

(DEFUN AVL-PREV (KEY TREE PREDICATE)

(AND TREE

(COND ((PLUSP (FUNCALL PREDICATE KEY (VALUE TREE)))

(OR (AVL-PREV KEY (RIGHT TREE) PREDICATE)

(VALUE TREE)))

(T (AVL-PREV KEY (LEFT TREE) PREDICATE)))))

;I-' The first interesting operation on AVL trees. This inserts THING into tho tree
and returns a now tree and an integer which is the change iL hight of the tree.

If NO-MUTATION is T, the old tree is not changed, but a nw tree in returned

1; containing the inserted element. This adds only about (AVL-HEIGHT TREE) xtra node*,

i.e. log(tree-size) extra space.

(DEFUN AVL-INSERT (THING TREE PREDICATE &OPTIONAL NO-MUTATION)

(IF (NULL TREE)

(VALUES (MAKE-AVL-NODE BALANCE VALUE THING)

(LET ((DIF (FUNCALL PREDICATE THING (VALUE TEE))))

(COND ((ZEROP DIF)

(VALUES (UPDATE-NODE TREE (BALANCE TREE) THING

(LEFT TREE) (RIGHT TREE) NO-MUTATION)

0))
((PLUSP DIF)

(MULTIPLE-VALUE-BIND (SUBTREE HEIGHT-CHANGE)
(AVL-INSERT THING (RIGHT TE) PREDICATE NO-MUTATION)

(SETO TREE (UPDATE-NODE TREE (BALANCE TREE) HEIOH't-CHANGE)

(VALUE TREE) (LEFT TREE) SUBTREE NO-MUTATION))

(IF > (BALANCE TREE)

(BALANCE-RIGHT TREE I NO-MUTATION)

(VALUES TREE (IT (PLUSP (BALANCE TREE)) HEIGHT-CHANGE 0)))))

(T (ULTIPLE-VALUE-SIND (SUBTREE HEIGHT-CHANGE)

(AVL-INSERT THING (LEFT TREE) PEDICATE N-MUTATION)

(SETO TREE (UPDATE-NODE TREE (- (BALANCE TREE) HEIGHT-CHANGt)

(VALUE TREE) SUBTREE (RIGHT TREE) NO-MUTATION))

(IF < (BALANCE TREE) -1)

(BALANCE-LEFT TREE NO-MUTATION)

(VALUES TREE (IF (MINUSP ALANCE TREE)) HEIGHT-tHANGE 0)))))))))

This deletes an entry from an AVL tree.

This also has a non-mutating mods for producing coherent tructures.

(DEFUN AVL-DELETE (THING TREE PREDICATE &OPTIONAL NO-KUTATION)

(IF (NULL TREE)

307

(VALUES NIL

(LET ((DIF (FUNCALL PEDICATE THING (VALUE TEE))))

(COND ((ZEROP DIF)

(ERASE-NODE TREE NO-MUTATION))

((PLUSP DIF)

(MULTIPLE-VALUE-BIND (SUBTREE HEIGHT-CHANGE)

(AVL-DELETE THING (RIGHT TREE) PREDICATE NO-MUTATION)

(SETO TEE (UPDATE-NODE TREE (+ (BALANCE TEE) HEIGHT-CHANGE)

(VALUE TEE) (LEFT TREE) SUBTREE N-MUTATION))

(IF < (BALANCE TREE) -1)

(BALANCE-LEFT TREE NO-MUTATION)

(VALUES TREE (IF (ZEROP (BALANCE TEE)) HEIGHT-CHANGE OM))

(T (MULTIPLE-VALUE-BIND (SUBTREE HtIGHT-CHANGE)

(AVL-DELETE THING (LEFT TEE) PREDICATE NO-MUTATION)

(SETO TREE (UPDATE-NODE TREE (- (BALANCE TREE) HEIGHT-CHANGE)

(VALUE TREE) SUBTREE (RIGHT TREE) N-MUTATION))

(IF > (BALANCE TREE) 1)

(BALANCE-RIGHT TREE NO-MUTATION)

(VALUES TREE (IF (ZEROP (BALANCE TEE)) HEIGHT-CHANGE 0)))))))))

This gets rid of a value that has boon found in the tree. NODE is the nod* containing

the value. If the right subtree of NODE is higher than its left, replace the value

of NODE with the value of the left-most leaf of the right subtree, and remove this

leaf from the right subtree. Otherwise rplace NODE's value with the value of the

right-most leaf of the left subtree of NODE, and rmove this loaf from the left subtree.

(DEFUN ERASE-NODE (NODE NO-MUTATION)

(COND ((AND (NULL (LEFT NODE)) (NULL (RIGHT NODE)))

(VALUES NIL -1))

((PLUSP (BALANCE NODE))

(MULTIPLE-VALUE-BIND (VAL SUSTREE HEIGHT-CHANGE)

(AVL-HEAD (RIGHT NODE) NO-MUTATION)

(SETO NODE (UPDATE-NODE NODE (+ (BALANCE NODE) HEIGHT-CHANGE)

VAL (LEFT NODE) SUBTREE NO-MUTATION))

(VALUES NODE HEIGHT-CHANGE)))

(T (MULTIPLE-VALUE-BIND (VAL SUBTREE HEIGHT-CHANGE)

(AVL-TAIL (LEFT NODE) NO-MUTATION)

(SETO NODE (UPDATE-NODE NODE (- (BALANCE NODE) HEIGHT-CHANGE)

VAL SUBTREE (RIGHT NODE) NO-MUTATION))

(VALUES NODE (IF (ZEROP (BALANCE NODE)) HEIGHT-cHANGE 0))))))

This returns the head (leftmo3t element) in the tree, and removes it from the tree.

Useful for implementing priority queues as AV1 trees.

Values returned are the value of the leftmost element, the modified tree, and the

change in height of the tree.

(DEFUN AVL-HEAD (TREE &OPTIONAL NO-MUTATION)

(COND ((NULL TREE) NIL)

((NULL (LEFT TE))

(VALUES (VALUE TREE) (RIGHT TREE) -1))

(T (MULTIPLE-VALUE-SIND (HEAD-VALUE SUBTREE HEIGHT-CHANGE)

(AVL-HEAD (LEFT TREE) NO-MUTATION)

(SETO TREE (UPDATE-NODE TREE (-' (BALANCE TREE) HEIGHT-CHANGE)

(VALUE TREE) SUBTREE (RIGHT TREE) N-MUTATION))

(IF > (BALANCE TE 1)

(MULTIPLE-VALUE (TREE HEIGHT-CHANGE)

(BALANCE-RIGHT TREE NO-MUTATION))
(IF (NOT (EROP ALANCE TREE))) (SETO HEIGHT-CHANOE 0)))

(VALUES HEAD-VALUE TREE HEIGHT-CHANGEM))

This returns the tail (rightmost element) in the tree, and rmoves it from the tree.

Values returned are the value of the rightmost lement, the modified tree, and the

change in height of the tree.

(DEFUN AVL-TAIL (TREE &OPTIONAL NO-MUTATION)

(COND ((NULL TREE) NIL)

((NULL (RIGHT TREE))

(VALUES (VALUE TREE) (LEFT TREE) -1))

(T (MULTIPLE-VALUE-BIND (TAIL-VALUE SUBTREE HEIGHT-CHANGE)

(AVL-TAIL (RIGHT TREE) NO-MUTATION)
I-

308

(SETO TREE (UPDATE-NODE TREE (+ (BALANCE TREE) HEIGHT-CHANGE)
(VALUE TREE) (LEFT TREE) SUBTREE N-MUTATION))

(IF < (BALANCE TREE) -1)
(MULTIPLE-VALUE TREE HEIGHT-CHANGE)

(BALANCE-LEFT TEE NO-MUTATION))
(IF (NOT (ZEROP (BALANCE TREEM (SETO HEIGHT-CHANGE OM

(VALUES TAIL-VALUE TREE HEIGHT-CHANGE)))))

Balance a TREE that is right-KoyaaniSqU&t3i, i.e. the right subtree is 2 levels
higher than the left subtr*e. HEIGHT-CHANGE is the height of TREE relative to its
value before the delete/insert operation. Balance-right return a node and the height
of that node relative to the original height of TREE.

(DEFUN BALANCE-RIGHT (TREE HEIGHT-CHANGE NO-MUT)
(LET ((R (RIGHT TREE)))

(COND ((PLUSP (BALANCE R))
(SETO TREE (UPDATE-NODE TREE (VALUE TREE) (LEFT TREE) EFT R) NO-MUT))
(SETO R (UPDATE-NODE R 0 (VALUE R) TREE (RIGHT R) NO-MUT))
(VALUES R (1- HEIGHT-CHANGE)))

((ZEROP (BALANCE R))
(SETO TEE (UPDATE-NODE TREE (VALUE TREE) (LEFT TREE) (LEFT R) NO-MUT))
(SETO R (UPDATE-NODE R -1 (VALUE R) TEE (RIGHT R) NO-MUT))
(VALUES R HEIGHT-CHANGE))

(T (LET ((LR (LEFT R)))
(SETO R (UPDATE-NODE R (IF (MINUSP (BALANCE LR)) 1 0)

(VALUE R) (RIGHT R) (RIGHT R) NO-MUT))
(SETO TREE (UPDATE-NODE TREE (IF (PLUSP (BALANCE R)) - 0)

(VALUE TREE) (LEFT TREE) (LEFT R) N-14UT))
(SETO LR (UPDATE-NODE L 0 (VALUE R) TREE R NO-MUT))
(VALUES R (1- HEIGHT-CHANGEMM)

Balance a TREE that in 1*ft-Koyaanisquatai, i.e. the left subtr** is 2 vels
higher than the right subtree. HEIGHT-CHANGE is the hight of TREE relative to its
value before the delete/insert operation. Balance-left returns a node and the height
of that node relative to the original height of TREE.

(DEFUN BALANCE-LEFT (TR= HEIGHT-CHANGE NO-MUT)
(LET ((L (LEFT TREEM

(COND ((MINUSP (BALANCE L))
(SETO TREE (UPDATE-NODE TREE (VALUE TREE) (RIGHT L) (RIGHT TREE) NO-MUT))
(SETO L (UPDATE-NODE L 0 VUE L) (LEFT L TE -MUT))
(VALUES L (I- HEIGHT-CHANGE)))

((ZEROP (BALANCE L))
(SETO TREE (UPDATE-NODE TREE -1 (VALUE TREE) (RIGHT L) (RIGHT TREE) N-KUT))
(SETO L (UPDATE-NODE L 1 (VALUE L) (LEFT L) TREE NO-MUT))
(VALUES L HEIGHT-CHANGE))

(T (LET ((RL (RIGHT L)))
(SETO L (UPDATE-NODE L (IF (PLUSP (BALANCE RL)) -1 0)

(VALUE L) (LEFT L) (LEFT RL) NO-HUT))
(SETO TREE (UPDATE-NODE TREE (IF (MINUSP BALANCE L)) I

(VALUE TREE) (RIGHT L) (RIGHT TEE) NO-MUT))
(SETO RL (UPDATE-NODE RL 0 (VALUE L) L TREE NO-MUT))
(VALUES RL (1- HEIGHT-CHANGEMM)

modify an existing AVL node or create a now one, dpending on the value of NO-HUTATION.

(DEFUN UPDATE-NODE (NODE BALANCE VALUE LEFT RIGHT N-M`UTATION)
(IF NO-MUTATION

(MAKE-AVL-NODE BALANCE BALANCE VALUE VALUE LEFT LEFT RIGHT RIGHT)
(PROGN (SETF (BALANCE NODE) AIANCE)

(SETF (VALUE NODE) VALUE)
(SETF (LEFT NODE) LEFT)
(SETF (RIGHT NODE) RIGHT)

NODE)))

309

