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Robots must plan and execute tasks in the presence of uncertainty. Uncer-
tainty arises from sensing errors, control errors, and uncertainty in the geometry
of the environment. The last, which is called model error, has received little pre-
vious attention. We present a framework for computing motion strategies that are
guaranteed to succeed in the presence of all three kinds of uncertainty. The mo-
tion strategies comprise sensor-based gross motions, compliant motions, and simple
pushing motions.

It is not always possible to find plans that are guaranteed to succeed. For ex-
ample, if tolerancing errors render an assembly infeasible, the plan executor should
stop and signal failure. In such cases the insistence on guaranteed success is too
restrictive. For this reason we investigate Error Detection and Recovery (EDR)
strategies. EDR plans will succeed or fail recognizably: in these more general
strategies, there is no possibility that the plan will fail without the executor realiz-
ing it. The EDR framework fills a gap when guaranteed plans cannot be found or
do not exist: it provides a technology for constructing plans that might work, but
fail in a “reasonable” way when they cannot.

While EDR is largely motivated by the problems of uncertainty and model er-
ror, its applicability may be quite broad. EDR has been a persistent but ill-defined
theme in both Al and robotics research. We give a constructive, geometric definition
for EDR strategies and show how they can be computed. This theory represents
what is perhaps the first systematic attack on the problem of error detection and
recovery based on geometric and physical reasoning. We also describe an imple-
mented planner in a restricted domain, and discuss the applicability of traditional
computational geometry in algorithms for EDR planning.
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I. Introduction




1. Description of Problem and the Planner

Robots must plan and execute tasks in the presence of uncertainty. Uncertainty
arises from sensing errors, control errors, and uncertainty in the geometric models
of the environment and of the robot. The last, which is called model error, has
received little previous attention. In this thesis we present a formal framework for
computing motion strategies which are guaranteed to succeed in the presence of
all three kinds of uncertainty. We show that it is effectively computable for some
simple cases. The motion strategies we consider include sensor-based gross motions,
compliant motions, and simple pushing motions.

We show that model error can be represented by position uncertainty in a
generalized configuration space. We describe the structure of this space, and how
motion strategies may be planned in it.

It is not always possible to find plans that are guaranteed to succeed. In
the presence of model error, such plans may not even exist. For this reason we
investigate Error Detection and Recovery (EDR) strategies. We characterize such
strategies geometrically, and propose a formal framework for constructing them.

This thesis offers two contributions to the theory of manipulation. The first
is a framework for planning motion strategies with model error. Model error is
a fundamental problem in robotics, and we have tried to provide a principled,
precise approach. The framework can be described very compactly, although many
algorithmic and implementational questions remain.

The second contribution is a formal, geometric approach to EDR. While EDR is
largely motivated by the problems of uncertainty and model error, its applicability
may be quite broad. EDR has been a persistent but ill-defined theme in both
Al and robotics research. Typically, it is viewed as a kind of source-to-source
transformation on robot programs: for example, as a method for robustifying them
by introducing sensing steps and conditionals. We take the view that if one can
actually plan to sense an anomalous event, and to recover from it, then it is not
an error at all. When such plans can be guaranteed, they can be generated by the
[LMT] method. In our view of EDR, an “error” occurs when the goal cannot be
recognizably achieved given the resources of the executive and the state of the world.
The EDR framework fills a gap when guaranteed plans cannot be found or do not
exist: it provides a technology for constructing plans that might work, but fail in
a “reasonable” way when they cannot. This theory attempts a systematic attack
on the problem of error detection and recovery based on geometric and physical
reasoning.

1.1. Application and Motivation




1.1.1 A Simple Example

Consider fig. 1, which depicts a peg in hole insertion task. One could imagine
a manipulation strategy derived as follows: The initial plan is to move the peg
straight down towards the bottom of the hole. However, due to uncertainty in the
initial position of the peg, the insertion may fail because the peg contacts to the left
or right of the hole. Either event might be regarded as an “error.” The “recovery”
action is to move to the right (if the peg contacted to the left) and to move to the
left (if the peg contacted to the right). Thus a plan can be obtained by introducing
sensing steps and conditional branches.

Suppose that this conditional plan can be guaranteed—that is, it is a complete
manipulation strategy for this simple task. In this case, it seems strange to view
the contact conditions as “errors.” We do not regard these events as “errors.” Our
reasoning is that if they can be detected and planned for, then they are simply
events in a guaranteed plan.

We are interested in a different class of “errors.” Now suppose that there is

uncertainty in the width of the hole. If the hole is too small, we will consider this an
error, since it causes all plans to fail. Similarly, if some object blocks the hole, and
cannot be pushed aside, this is also an error, since it makes the goal unreachable.
If either error is possible, there exists no guaranteed plan, for there is no assurance
that the task can be accomplished. Since no guaranteed plan can be found, we are
left with the choice of giving up, or of considering a broader class of manipulation
strategies: plans that might work, but fail in an “reasonable” way when they cannot.
Specifically, we propose that EDR strategies should achieve the goal when it exists
and is recognizably reachable, and should signal failure when it is not. For example,
an EDR strategy for the peg-in-hole problem with model error might attempt to
achieve the insertion using compliant motion, but be prepared to recognize failure
in case the hole is too small. Below, we describe how an implemented planner,
called LIMITED, synthesizes such strategies. LIMITED is an implementation of the
EDR theory in a restricted domain.

1.1.2 Application: Planning Gear Meshing

We must stress that EDR is not limited to problems with model error. There
are many applications in which the geometry of the environment is precisely known,
but in which guaranteed plans cannot be found, or are very difficult to generate.
We now describe such a situation.

An interesting application domain for EDR is gear meshing. It is an example
where EDR is applicable even though the shape of the manipulated parts is precisely
known. Let us consider a simplified instance of this problem. In fig. 2 there are
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Fig. 1. The goal is to insert the peg in the hole. No rotation of the peg is
allowed. One can imagine a strategy which attempts to move straight down, but
detects contact on the top surfaces of the hole if they occur. If the peg sticks
on the top surfaces, the manipulator tries to move to the left or right to achieve
the hole. Are these contact conditions “errors”? We maintain that they are not,
since they can be planned for and verified.

two planar gear-like objects, A and B. The task is to plan a manipulation strategy
which will mesh the gears. The state in which the gears are meshed is called the
goal.

We will consider two variants of this problem. In the first, we assume that the
manipulator has grasped A, and that neither A nor B can rotate. However, A can
slide along the surfaces of B. In the second, B is free to rotate about its center,
but this rotation can only be effected by pushing it with A. In both cases, the
initial orientation of B is unknown. We regard A as the moving object and B as
the environment; hence even though the shape of B is precisely known, we choose
to view the uncertainty in B’s orientation as a form of model error. In the first
case, the system has only two degrees of motion freedom. In the second, there are

10




Fig. 2. Geometric models of two gear-like planar objects A and B. A is grasped
and can translate but not rotate. B can rotate about its center if pushed. The
orientation of B is unknown. The task is to generate a motion strategy to mesh
the gears.

three degrees of motion freedom, one of which is rotational, since B can be pushed.
We distinguish between the rotation and non-rotation variants of the problem in
order to highlight the additional techniques our planner employs when rotations are
introduced.

In both variations, there is uncertainty in control, so when a motion direction is
commanded, the actual trajectory followed is only approximately in that direction.
There is also uncertainty in position sensing and force sensing, so that the true
position and reaction forces are only known approximately. The magnitude of these
uncertainties are represented by error balls.

In general, a commanded motion of A may cause A to move through free space,
and contact B, possibly causing B to rotate. Our EDR theory is a technique for
analyzing these outcomes geometrically to generate strategies that achieve the goal
when it is recognizably reachable, and signal failure when it is not.

11




In an experiment, the EDR theory in the gear domain was applied using the
planner, LIMITED, as follows. Consider the problem of meshing two planar gears,
under uncertainty as above. Suppose that gear B can rotate passively but has
unknown initial orientation, as above. Suppose that A has been gripped by a
robot. The initial position of A is uncertain. The robot can impart either pure
forces (translations), or pure torques (rotations) to A. The planner can choose
the direction of translation or rotation. Can a multi-step strategy of commanded
translations and rotations be found to mesh the gears?

LIMITED was able to generate an EDR strategy for this problem. The charac-
teristics of the experiment are:

o There are three degrees of motion freedom (two translational and one rota-

tional) for A.

o  There is one degree of rotational model error freedom (the orientation of B).

e It is possible to push B to change its orientation.

o  There is sensing and control uncertainty.

o The geometry of the gears is complicated—they have many edges.

¢  Quasi-static analysis [Mason] is used to model the physics of interaction be-
tween the gears.

Thus we have a kind of four-degree of freedom planning problem with uncer-
tainty and pushing. To generate multi-step EDR strategies under pushing, LIMITED
employed the EDR theory together with a technique called failure mode analysis.

Now, there may exist a guaranteed strategy to mesh the gears. For example,
experimental evidence suggests that for involute teeth gears, almost any meshing
strategy will succeed. For other gear shapes perhaps some complicated translation
while spinning A will always succeed. I don’t know if there is such a guaranteed
strategy for this case. It seems difficult for a planner to synthesize such guaranteed
strategies, or even to verify them, if they exist at all.

A person might try to solve this problem with the following motion strategy:
o Ram the gears together. See if they mesh.

Or, somewhat more precisely,
e Ram A into B. If they mesh, stop. If they jam, signal failure and try again.

Probabilistically, this is a rather good strategy. It is certainly very simple, and
probably easier to generate than a guaranteed strategy. If vision can be used to
sense whether A and B are meshed, then it is an EDR strategy with just one step.

Suppose, however, that vision is poor, or that the gears are accessible to the
robot gripper, but not to the camera. This means that position sensing will be
very inaccurate, and hence may be of no use in determining whether the gears are
successfully meshed. This will often be the case in practice. In this case, force
sensing must be used to disambiguate the success of the motion (meshing) from

12




failure (jamming in an unmeshed state). If the robot has force sensing, then it
might use the following two-step EDR strategy:

e  Ram the gears together. Spin them to see whether they meshed.
Or, again more precisely,

¢ Ram A into B. Nezt, spin A. If A and B break contact, or if the gears stick
(don’t rotate), then signal failure. Otherwise, signal success.

This strategy is essentially the one that LIMITED generates. The plan is

Motion 1: Command a pure translation of A into B.!
Terminate the motion based on force-sensing when sticking occurs (when there
i3 no motion).

Motion 2: Command a pure rotation of A.
If breaking contact or sticking occurs, signal failure. Otherwise, signal success.

In this plan, motion (1) does not terminate distinguishably in success (meshed)
or failure (jammed). That is, after motion (1) terminates, the plan executive can-
not necessarily recognize whether or not the gears are meshed. LIMITED predicts
this, and generates motion (2), which disambiguates the result of motion (1). The
generation of the second, disambiguating motion involves the use of failure mode
analysis. Breaking contact and sticking are examples of failure modes. The second
motion is generated so that from any unmeshed state resulting from motion (1), all
possible paths will terminate distinguishably in a failure mode. Failure mode analy-
sis is a robust subtheory of EDR by which LIMITED generates multi-step strategies
under pushing.

1.1.3 Experiment: Peg-in-Hole with Model Error

This section describes a plan that was generated by LIMITED for a peg-in-hole
problem with model error. It gives the flavor of how EDR strategies work. Since
pushing motions are not involved here, LIMITED does not use failure mode analysis
to solve this problem.

Another peg-in-hole problem is depicted in fig. 3. Again, as in fig. 1, there is
uncertainty in the width of the hole; that is, the width is known to lie within some
given interval. In addition, there are chamfers on the sides of the hole. The depth
of the chamfers is also unknown, but we are given bounds on the depth. Finally,
the exact orientation of the hole is uncertain. The geometry of the hole is input
to the planner as a set of parametrically defined polygons. They are dcfined by a

L IMITED generates the actual force vector.
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three parameter family, for width of the hole, depth of the chamfers, and orientation
of the hole. An associated bounding interval is also input for each parameter. The
geometry of the peg is input as a polygon.

In this problem, the width of the hole may be smaller than the width of the
peg. Thus there can exist no strategy that is guaranteed to succeed for all geomet-
ric uncertainty values. However, assume that the assembly—the hole geometry—
is inaccessible to robust vision or position-measuring devices. In particular, the
measurement error will typically determine the model error bounds, which in this
example are large for the purpose of illustration. Thus it is not a prior: possible
to measure the dimensions ahead of time to determine whether or not the assembly
is feasible. Instead, the best we can hope for is an EDR strategy: a strategy that
takes some action in the world to attempt the assembly, but whose outcome can be
recognizably diagnosed as success or failure by the run-time robot executor.

The peg is allowed to translate in the plane. Its motion is modeled using
generalized damper dynamics. This permits sliding on surfaces about the hole.
Friction is modeled using Coulomb’s law. With these dynamics and perfect control,
the peg would exhibit straight-line motions in free space, followed by sliding motions
in contact, where friction permits. Here, however, there is control uncertainty, which
is represented by a cone of velocities. Motions in free space fan out in a kind of
“spray.” Again, sliding is possible on surfaces, but so is sticking, depending on
the effective commanded velocity at a given instant. (In this case, we say sliding
is non-deterministic). The size of the control uncertainty cone of velocities is an
input to the planner. Whether sticking may occur on an edge may be computed by
intersecting the friction cone with the negative control uncertainty cone.

It is possible to sense the position of the peg and the forces acting on it. This
information is only approximate. The error bound on the position sensor readings
is input to the planner as the radius of a disc.

LIMITED generates plans using a configuration space representation of the con-
straints [Lozano-Pérez|. In the plane, one imagines shrinking the moving object to
a point, and correspondingly “growing” the obstacles. The point must be navigated
through free-space, sliding on surfaces, and so forth, into the hole. Fig. 4 shows
configuration spaces for different parametric variations of model error. Notice that
when the “real” hole is too small for the peg to fit, then there is simply no hole at
all in the corresponding configuration space. Each frame in fig. 4 is called a “slice;”
a slice represents a cross-section where the model error parameters are constant. To
synthesize an EDR strategy, LIMITED must in some sense consider all such slices.
In practice LIMITED works by constructing a finite, although typically large number
of slices. We will show how in many cases, only a low polynomial number need be
considered. LIMITED begins by considering a small number of slices, and generates
a tentative motion strategy. This strategy must pass a test—which we call the EDR
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test—to be recognized as an EDR strategy. One of the chief goals of this thesis is

to derive this test, and to make it formal and algorithmic. Next, LIMITED attempts

to “generalize” the strategy by considering successively more slices. The strategy is
modified so that it passes the EDR test in all slices. The number of slices considered
is the resolution of the planning. This approach is called multi-resolution planning,.

Let’s consider an EDR plan that LIMITED computed for this problem. Figs.
5-13 show the plan graphically. Qualitatively, the plan may be described as follows:
o (1) First, move left and slightly down. The motion will terminate on the left

side of the hole, on the left chamfers, or overshoot the hole entirely. Where the

motion terminates depends both on the trajectory evolution within the control
uncertainty, and on the actual geometry of the hole. The motion may, how-
ever, slide down the left edge of the hole all the way into the goal. However,
this sliding i3 non-deterministic, and the motion may stick anywhere along that
edge. Since the first motion may terminate arbitrarily close to the goal region,

LIMITED predicts that the run-ttme ezecutive system cannot necessarily distin-

guish whether or not the first motion failed to achieve the goal.

e (2) The termination regions from motion (1) are taken as the start regions for
a new motion. Nezxt, try to recover by commanding a motion straight down and
slightly to the right. This motion may achieve the goal, or may undershoot it,
or may overshoot 1t. The second motion terminates when the peg sticks on a
surface. If such a termination surface is outside the goal, it i3 called a failure
region. LIMITED calculates that after the second motion, the failure regions
are distinguishable from the goal regions. Hence after the second motion, the
run-time ezecutive can recognize whether or not the plan has failed.

Finally, since LIMITED is a forward-chaining planner, it is possible to take the
failure regions from motion (2) and plan a third recovery motion. Thus, roughly
speaking, in the EDR framework, recovery actions are planned by forward-chaining
from the failure regions of the previous motion. When the failure regions are poten-
tially indistinguishable from the goal (using sensors), then the recovery action must
satisfy the formal EDR test when executed from the union of the goal and the pre-
vious failure regions. For example, when we view motion strategies as “mappings”
between subsets of configuration space, then typical “robust” recovery actions are
EDR plans in which the goal is a “fixed point.”? Motion (2) is an example of such
a one-step EDR plan.

Figs. 5-13 show the plan in just four different slices, to give a flavor for the
plan. The rest of the slices may be found later in the thesis. Fig. 5 shows the
configuration spaces of the four slices. The goal region here is shaded black. Note
that in one slice, the goal disappears. The initial uncertainty in the position of the

2That is, when motion (2) originates in the goal, it also terminates recognizably in the
goal.
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peg is represented by constraining the reference point (the point to which the peg
has been shrunk) to lie in one of the start regions in fig. 6.

Figs. 7-8 represents the forward projection of the first motion. This region is
the outer envelope of all possible trajectories evolving from the start regions. It
is the set of all configurations that are reachable from the start regions, given the
commanded velocity and control uncertainty cone.

Fig. 9 shows the termination regions for motion (1). The termination regions
outside the goal are not necessarily distinguishable from the goal.

Figs. 10-11 show the forward projection of the second motion.

Fig. 12 shows the termination regions for the second motion.

Fig. 13 shows the size of the position sensing uncertainty ball. The goal and
the failure regions in fig. 12 are distinguishable using sensors.

16




Fig. 3. A peg-in-hole environment with model error. The width of the hole
(a1), depth of chamfer (a3), and orientation of the hole (a3) are the model
parameters. The hole is allowed to close up.
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Fig. 4a. The configuration space slices for many different parametric model error
values. These configuration spaces were generated for the peg-in-hole problem
with model error depicted in fig. 3. Fig. 4a shows a few slices taken at constant
orientation, whereas in fig. 4b, more slices are shown at various orientations.
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Fig. 5. 4 configuration space slices for the peg-in-hole with model error problem.
The goal region is shaded black. In one slice, the goal vanishes.
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Fig. 7. The forward projection of the first motion. This region is the outer
envelope of all possible trajectories evolving from the start regions. It is the
set of all configurations that are reachable from the start regions, given the
commanded velocity and control uncertainty cone.
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1.2. Research Issues

The gross motion planning problem with no uncertainty has received a great
deal of attention recently. In this problem, the state of the robot may be represented
as a point in a configuration space. Thus moving from a start to a goal point may be
viewed as finding an arc in free space connecting the two points. Since the robot is
assumed to have perfect control and sensing, any such arc may be reliably executed
once it is found. In particular, given a candidate arc, it may be tested. That
is, motion along the arc may be simulated to see whether it is collision free. For
example, an algebraic curve may be intersected with semi-algebraic sets defining the
configuration space obstacles. In the presence of uncertainty, however, we cannot
simply simulate a motion strategy to verify it. Instead, we need some technique for
simulating all possible orbits, or evolutions of the robot system, under any possible
choice of the uncertain parameters. With sensing and control uncertainty, the state
of the robot must be viewed as a subset of the configuration space. Motions, then,
can be viewed as mappings between these subsets. Of course there are many such
subsets! From this perspective, it is clear that a chief contribution of [LMT] has been
to identify and give a constructive definition for a privileged class of subsets, called
preimages, and show that it is necessary and sufficient to search among this class.
This framework appears very promising for planning guaranteed motion strategies
under sensing and control uncertainty. The [LMT] framework assumes no model
error. In this thesis, we reduce the problem of planning guaranteed strategies with
sensing, control, and geometric model uncertainty to the problem of computing
preimages in a (higher dimensional) generalized configuration space. 2

This is an interesting and useful result; previously, there was really no system-
atic theory of planning in an environment whose geometry is not precisely known.
However, I do not think that it is the main point of this thesis. This is because there
are certain inadequacies with the planning model. The insistence that strategies
be guaranteed to succeed is too restrictive in practice. To see this, observe that
guaranteed strategies do not always exist. In the peg-in-hole problem with model
error (figs. 3-13) there is no guaranteed strategy for achieving the goal, since the
hole may be too small for some model error values. For these values the goal in
configuration space does not exist. Because tolerances may cause gross topological
changes in configuration space, this problem is particularly prevalent in the pres-
ence of model error. More generally, there may be model error values for which the
goal may still exist, but it may not be reachable. For example, in a variant of the
problem in fig. 3, an obstacle could block the channel to the goal. Then the goal is
non-empty, but also not reachable. Finally, and most generally, there may be model
error values for which the goal is reachable but not recognizably reachable. In this
case we still cannot guarantee plans, since a planner cannot know when they have

3We use the terms model error and model uncertainty interchangeably.
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succeeded.

These problems may occur even in the absence of model error. However, with-
out model error a guaranteed plan is often obtainable by back-chaining and adding
more steps to the plan. In the presence of model error this technique frequently
fails: in the peg-in-hole problem with model error, this technique will not work since
no plan of any length can succeed when the hole closes up.

This is why we investigate EDR strategies, and, in particular, attempt to for-
malize EDR planning. The key theoretical issue is: How can we relax the restriction
that plans must be guaranteed to succeed, and still retain a theory of planning that
is not completely ad hoc? We attempt to answer this by giving a constructive def-
inition of EDR strategies. In particular, this approach provides a formal test for
verifying whether a given strategy is an EDR strategy. The test is formulated as a
decision problem about projection sets in a generalized configuration space which
also encodes model error. Roughly speaking, the projection sets represent all pos-
sible outcomes of a motion (the forward projection), and weakest preconditions for
attaining a subgoal (the preimage).

Given the formal test for “recognizing” an EDR strategy, I then tested the
definition by building a generate-and-test planner. The generator is trivial; the
recognizer is an algorithmic embodiment of the formal test. It lies at the heart
of this research. A second key component of the planner is a set of techniques
for chaining together motions to synthesize multi-step strategies. The planner is a
forward-chaining, multi-resolution planner, called LIMITED. LIMITED operates in a
restricted domain. Plans found by LIMITED in experiments are described above,
and in chapters IT and III.

Finally, let me suggest that a new framework—the EDR framework— for
planning with uncertainty may be justified not only by the restrictiveness of the
guaranteed-success model, but also by the hardness of the problem. The gross mo-
tion planning problem without uncertainty may be viewed, under some very general
assumptions, as a decision problem within the theory of real closed fields. This gives
a theoretical decision procedure with polynomial running time once the degrees of
freedom of the robot system are fixed [SS]. However, no such theoretical algorithm
is known for the general compliant motion planning problem with uncertainty. Fur-
thermore, the lower bounds for computing guaranteed strategies even in 3D are
dismal: the problem is known to be hard for exponential time [CR]. At this point
it is unknown whether EDR planning is more efficient than guaranteed planning.
However, there is some experimental evidence leading one to conjecture that cer-
tain problems requiring very complicated, exponential-sized guaranteed plans may
admit very short EDR plans.

However, the motivation for this thesis is not complexity-theoretic. Instead,
the chief thrust is to show how to compute motion strategies under model error

30




(and sensing and control uncertainty), using a formal and constructive definition
of EDR strategies. The first goal was a precise geometric characterization of EDR
planning—when one thinks about it, it is in fact somewhat surprising that such
a thing should exist at alll But in fact it does, as we shall see. The second goal
was to test this characterization by building a planner. Thus it was necessary to
devise implementable algorithms to construct the geometric projection sets and
decide questions about them. Therefore, this thesis and LIMITED contain a mixture
of precise combinatorial algorithms and of approximation algorithms. We indicate
which algorithms are exact and give combinatorial bounds. We also identify the
approximation algorithms, and indicate the goodness of the approximation and
whether it is conservative. Much work, or course, remains in developing better
algorithms for EDR planning, and in testing out the plans using real robots.

1.3. Review of Previous Work

Broadly speaking, previous work falls the following categories: Algorithmic
motion planning, Compliant motion planning with uncertainty, Model Error, and
Error detection and recovery.

1.3.1 Algorithmic Motion Planning

In algorithmic motion planning, (also called the piano movers’ problem, or the
find-path problem) the problem is to find a continuous, collision-free path for a
moving object (the robot) amidst completely known polyhedral or semi-algebraic
obstacles. It is assumed than once such a path is found, it can be reliably executed
by a robot with perfect control and sensing. Many algorithms employ configuration
space, [Lozano-Pérez, Arnold, Abraham and Marsden, Udupa). [Lozano-Pérez and
Wesley] proposed the first algorithms for polygonal and polyhedral robots and ob-
stacles without rotations. These results were later extended by [Lozano-Pérez 81,
83] to polyhedral robots which could translate and rotate. [Brooks 83] designed a
find-path algorithm based on a generalized-cone representation of free-space. Brooks
later extended this method for a revolute-joint robot. [Donald 84,85,87] developed
a motion-planning algorithm for a rigid body that could translate and rotate with
six degrees of freedom amidst polyhedral obstacles (the so-called “classical” movers’
problem). [Lozano-Pérez 85] reported another 6DOF algorithm for 6-link revolute
manipulators. [Canny 85] developed an algebraic formulation of the configuration-
space constraints, which led to a very clean collision-detection algorithm. All of
these algorithms have been implemented.

There are many theoretical results on upper and lower bounds for the find-path
problem, see [Yap)] for a good survey article. These results begin with [Lozano-Pérez
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and Wesley], who give the first upper bounds: they give efficient algorithms for plan-
ning in 2D and 3D in the absence of rotations. [Reif 79] obtained the first lower
bounds, demonstrating the problem to be PSPACE-hard when the number of de-
grees of freedom are encoded in the input specification of the problem. [Hopcroft,
Joseph, and Whitesides] and [Hopcroft, Schwartz, and Sharir] have also given in-
tersesting lower bounds for motion planning. [Schwartz and Sharir] gave a very
general theoretical algorithm for motion planning via a reduction to the theory of
real closed fields. The algorithm is doubly-exponential in the degrees of freedom,
but polynomial in the algebraic and geometric complexity of the input. Over the
next five years, there were many papers reporting more efficient special-purpose
motion planning algorithms for certain specific cases; see [Yap] for a survey. To
date the fastest general algorithm is due to [Canny, 87], who gives a generic motion
planning algorithm which is merely singly-exponential in the degrees of freedom.
For a motion planning problem of algebraic complexity d, geometric complexity
n, and with r degrees of freedom, Canny’s algorithm runs in time (do("z)n" logn)
which is within a log factor of optimal. While none of these theoretical algorithms
have been implemented, Canny’s is conjectured to be efficient in practice as well.

One might ask whether exact algorithms for motion plannning can ever be
utilized after uncertainty in sensing and control are introduced. The answer is a
qualified “yes.” In particular, the Voronoi diagram has proved to be useful for mo-
tion planning among a set of obstacles in configuration space (see [0’Diénlaing and
Yap 82; O’Dt’mlaing, Sharir, and Yap 84; Yap 84)], and the textbook of [Schwartz
and Yap 86| for an introduction and review of the use of Voronoi diagrams in mo-
tion planning). The Voronoi diagram, as usually defined, is a strong deformation
retract of free space so that free space can be continuously deformed onto the dia-
gram. This means that the diagram is complete for path planning, i.e. Searching
the original space for paths can be reduced to a search on the diagram. Reducing
the dimension of the set to be searched usually reduces the time complexity of the
search. Secondly, the diagram leads to robust paths, i.e. paths that are maximally
clear of obstacles. Hence Voronoi-based motion planning algorithms are relevant to
motion planning with uncertainty. [Canny and Donald] define a “Simplified Voronoi
Diagram” which is still complete for motion planning, yet has lower algebraic com-
plexity than the usual Voronoi diagram, which is a considerable advantage in motion
planning problems with many degrees of freedom. Furthermore, the Simplified di-
agram is defined for the 6D configuration space of the “classical” movers’ problem.
For the 6DOF “classical” polyhedral case, [Canny and Donald] show that motion
planning using the Simplified diagram can be done it time O(n" logn).

Many additional robotics issues are discussed in [Paul; Brady et al.].
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1.3.2 Compliant Motion Planning with Uncertainty

This section reviews previous work on planning compliant motions which are
guaranteed to succeed even when the robot system is subject to sensing and control
uncertainty. All of this work assumes perfect geometric models of the robot and
obstacles.

Work on compliant motion can be traced to [Inoue, Whitney, Raibert and
Craig, Salisbury]. This work in force control attempted to use the geometric con-
straints to guide the motion. By cleverly exploiting the task geometry, placements
far exceeding the accuracy of pure position control can be achieved. [Mason 83]
develops spring and damper compliance models, and gives an extensive review of re-
search in compliant motion. [Simunovic, Whitney, Ohwovoriole and Roth, Ohwovo-
riole, Hill and Roth] have all considered frictional constraints, as well as jamming
and wedging conditions. [Erdmann], [Burridge, Rajan and Schwartz] have consid-
ered algorithmic techniques for predicting reaction forces in the presence of friction.
[Caine] has considered manual techniques for synthesizing compliant motion strate-
gies, generalizing the methods of [Simunovic, Whitney]. [Mason, 82] has developed
a way to model pushing and grasping operations in the presence of frictional con-
tact. [Peshkin] has extended this work. [Brost] has further developed techniques
for predicting pushing and sliding of manipulated objects to plan squeeze-grasp
operations. In addition, Brost is currently investigating the application of EDR
techniques to the squeeze-grasp domain.

Early work on planning in the presence of uncertainty investigated using skele-
ton strategies. [Lozano-Pérez 76] proposed a task-level planner called LAMA which
used geometric simulation to predict the outcomes of plans, and is one of the earliest
systems to address EDR planning. [Taylor] used symbolic reasoning to restrict the
values of variables in skeleton plans to guarantee success. [Brooks 82] later extended
this technique using a symbolic algebra system. [Dufay and Latombe] implemented
a system which addresses learning in the domain of robot motion planning with
uncertainty.

[LMT] proposed a formal framework for automatically synthesizing fine-motion
strategies in the presence of sensing and control uncertainty. Their method is called
the preimage framework. [Mason, 83] further developed the preimage termination
predicates, addressing completeness and correctness of the resulting plans. [Erd-
mann| continued work on the preimage framework, and demonstrated how to sep-
arate the problem into questions of reachability and recognizability. He also showed
how to compute preimages using backprojections, which address reachability alone,
and designed and implemented the first algorithms for computing backprojections.
[Erdmann and Mason| developed a planner which could perform sensorless ma-
nipulation of polygonal objects in a tray. Their planner makes extensive use of a
representation of friction in configuration space [Erdmann]. [Buckley] implemented
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a multi-step planner for planning compliant motions with uncertainty in 3D with-
out rotations. He also developed a variety of new theoretical tools, including a
combined spring-damper dynamic model, 3D backprojection and forward projec-
tion algorithms, and a finitization technique which makes searching the space of
commanded motions more tractable.

[Hopcroft and Wilfong] addressed the problem of planning motions in contact,
and proved important structural theorems about the connectivity of the 1-edges of
configuration space obstacle manifolds. [Koutsou] has suggested a planning algo-
rithm which plans along 1-edges. Other planning systems for compliant motion have
been developed by [Turk], who used backprojections, [Laugier and Theveneau], who
use an expert system for geometric reasoning about compliant motion, and [Valade].

Recently, there has been some theoretical work on the complexity of robot
motion planning with uncertainty. [Erdmann] showed the problem to be undecidable
when the obstacles are encoded as a recursive function on the plane. [Natarajan]
has shown the problem to be PSP.ACE-hard in 3D for finite polyhedral obstacles.
[Canny and Reif] have demonstrated that in 3D the problem of synthesizing a multi-
step strategy is hard for non-deterministic exponential time; in addition, they proved
that verifying a 1-step strategy is A'P-hard.

1.3.3 Model Error

There is relatively little previous work on planning in the presence of model
uncertainty. [Requicha] and [Shapiro] address representational questions of how to
model part tolerances, and mathematical models for variational families of parts.
[Buckley] considers some extensions of his planner to domains with model uncer-
tainty. [Brooks 82] developed a symbolic algebra system which can constrain the
variable values in skeleton plans, and introduce sensing and motion steps to reduce
these values until the error ranges are small enough for the plan to be guaranteed.
Some of the variables in these plans can represent model error—particularly, the po-
sition of objects in the workspace—and hence his planner can reason about motion
planning in the presence of model uncertainty.

Work on manipulator pushing and sliding [Mason, Peshkin] and squeeze-grasping
[Brost] may be viewed as addressing model error where the error parameters are the
position and orientation of the manipulated part. The operation space of [Brost]
is a clever example how to model actions with uncertain effects, and objects with
uncertain orientation, in the same space. [Durrant-Whyte] considers how to model
geometric uncertainty probabilistically, and how to propagate such information in
applications related to motion planning.

[Lumelsky] considers the following problem: suppose that a robot has a 2D
configuration space, perfect control and sensing, the obstacles are finite in number,
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and each obstacle boundary is a homeomorphic image of the circle. Then a collision
free-path may be found by tracing around the boundary of any obstacles encoun-
tered when moving in a straight line from the start to the goal. At each obstacle
boundary encountered, there is a binary choice of which way to go, and the move
may be executed with perfect accuracy. Lumelsky also demonstrates complexity
bounds under these assumptions, and has considered configuration spaces such as
the plane, the sphere, the cylinder, and the 2-torus. While it is not clear how
this technique can extend to higher-dimensional configuration spaces, it is useful to
compare Lumelsky’s approach as an example of how to exploit a useful geometric
primitive (wall-following). See also [Koditschek] for extensions to this approach
using potential fields. The potential-field approach to collision avoidance, as formu-
lated by [Khatib], also can deal with uncertain obstacles, and gross motions around
these obstacles can often be synthesized in real time. [Brooks 85] has described a
map-making approach for a mobile robot in a highly unstructured environment—
i.e., amidst unknown obstacles. His approach allows the robot to aquire information
about the position and shape of these obstacles as the robot explores the environ-
ment. [Davis| has addressed the mobile robot navigation problem amidst partially
unknown obstacles using an approximate map.

There is almost no work on planning compliant motions or assemblies in the
presence of model error.

1.3.4 Error Detection and Recovery

There has been almost no formal analysis of the EDR problem. STRIPS [Fikes
and Nilsson] has a run-time executive (PLANEX) which embodied one of the first
systems addressing EDR. STRIPS’ triangle tables may be viewed as a kind of for-
ward projection. [Ward and McCalla; Hayes| have presented research agendas for
error diagnosis and recovery in domain-independent planning. [McDermott] has
stressed the importance of EDR in plan execution and sketched an approach based
on possible worlds. [Srinivas] described a robot planning system for a Mars rover
which could detect certain manipulation errors and recover. [Gini and Gini] have
described a view of EDR based on a predetermined list of high-level error types.
The domain-independent planning literature [Chapman] is relevant to the history of
EDR; for example, the planner of [Wilkins| has an error recovery module in which
the executor can detect inconsistencies in the set of logical propositions representing
the world state. At this point, an operator can intervene and type in new proposi-
tions to disambiguate the state and aid recovery. The robots described by [Brooks
85] have an EDR flavor—they are not required to achieve a particular goal, but
merely to attempt it until some other goal takes a higher priority.

Portions of the material in this thesis have been presented in [Donald 86a,b].
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[Brost] is employing these EDR techniques in his research on planning squeeze-grasp
operations.

1.4. Map of Thesis

Here is an outline of the remainder of the thesis. The thesis is divided into
six roman-numeral chapters. A parallel arabic section-numbering scheme permits
finer-grain cross-references. Starred (*) sections subsections may be skipped at first
reading if desired.

Chapter II presents the basic issues in EDR. It begins with a discussion of
planning with model error. We introduce a generalized configuration space with
non-holonomic constraints as a key tool. EDR is defined, and given a geometrical
characterization. Experiments, implementation, and computational complexity are
discussed. Chapter II intends to provide a slice of all the most interesting aspects
of this work, while striving for a somewhat informal style of presentation. The end
of the chapter hints at the theoretical issues to come.

The chapters III—V, can be read independently if desired.

Chapter III describes the construction of multi-step strategies in some detail.
Here, we discuss planning using preimages, “push-forward” algorithms, and failure-
mode analysis. These techniques are then unified by introducing the “weak” EDR
theory. Weak EDR is a theory which defines certain laws of composition on motion
strategies. It provides a new framework for studying multi-step strategies; we use
it to derive properties of multi-step EDR plans.

In chapter IV, the EDR theory is applied to the problem of planning sensing
and motion for a mobile robot navigating amidst partially unknown obstacles. We
show how the EDR theory, and generalized configuration space in particular, can
be used to generate strategies in the mobile robot domain.

Chapter V describes implementational and complexity-theoretic issues. We
discuss methods for limiting search in an EDR planner. To this end, we introduce
a combinatorial object call the non-directional backprojection, and analyze its com-
plexity. Our analysis leads to efficient algorithms for certain subproblems in EDR
planning. In particular, we give an efficient algorithm for planning one-step (guar-
anteed) strategies in the plane. By using results from computational algebra, we
show that planning a guaranteed planar multi-step strategy with sticking termina-
tion can be decided in time polynomial in the geometric complexity, and roughly
singly-exponential in the number of steps in the plan.

Chapter VI contains conclusions and suggestions for future work.

All readers should be able to read through chapter II. At that point the re-
maining topics can be selected as the reader’s taste and preference dictate. I feel the
most interesting and important subsequent material is on the weak EDR theory (in
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the multi-step strategy chapter III). However, readers interested in computational
complexity might prefer chapter V, while moboticists might skip to chapter IV.

The thesis contains three thematic lines of development. The first is theoretical

robotics, by which we mean the theory of manipulation and geometrical planning.
This line is strong in chapters II and III. Readers who have seen some of this thesis
material at conferences [D] will find altogether new material in sections 7-15. This
line of development contains the following topics:

Model error is discussed in detail in sections 2, 6, 9, 11, and 13.
The basic EDR theory is discussed in sections 3-5, and 7-10.
Failure-Mode Analysis comes up in section 11.

The Weak EDR Theory makes its debut in section 12.

The second theme is complezity and algorithmic issues. These are stressed in

sections 6 and 14.

The third theme is applications, implementation, and ezperiments. These are

described in sections 6, 7, 10, 11, 13, and 14.1.
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II. Basic Issues in Error Detection and Recovery

This chapter presents an overview of our theory and experiments in EDR. It
attempts to deliver a slice of all the most interesting aspects of the work, while
striving for a non-demanding style of presentation.

We begin by showing how to represent model error, and explore the physics
of generalized configuration space. Using this representation, we next present the
basic theory behind constructing both guaranteed strategies and EDR plans in the
presence of sensing, control, and model uncertainty.

The implementation of LIMITED is then discussed, along with experiments in
EDR planning.

The chapter closes by proving complexity bounds for EDR planning, and with
an introductory discussion of deeper EDR-theoretic issues. For interested readers,
these discussions are continued and elaborated in considerable detail in chapters V
and III, respectively.
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2. Basic Issues in Error Detection and Recovery

2.1. Simple Example of Model Error

We will begin developing the EDR theory by examining some very simple
planning problems with model error. Of course, this does not mean that EDR is
limited to situations with model error.

Ezample (1). Consider fig. 14. There is position sensing uncertainty, so that
the start position of the robot is only known to lie within some ball in the plane.
The goal is to bring the robot in contact with the right vertical surface of A.

We will simplify the problem so that the computational task is in configuration
space. This transformation reduces the planning task for a complicated moving
object to navigating a point in configuration space. Consider fig. 15. The config-
uration point starts out in the region R, which is the position sensing uncertainty
ball about some initial sensed position. To model sliding behavior, we will assume
Coulomb friction and generalized damper dynamics, which allows an identification
of forces and velocities. Thus the commanded velocity vg is related to the effective
velocity v by f = B(v — vg) where f is the effective force on the robot and B is a
scalar. Given a nominal commanded velocity v, the control uncertainty is repre-
sented by a cone of velocities (B, in the figure). The actual commanded velocity
vo must lie within this cone.!

The goal in fig. 15 is to move to the region G. Now, with Coulomb friction,
sticking occurs on a surface when the (actual) commanded velocity points into the
friction cone. We assume the friction cones are such that sliding occurs (for all
possible commanded velocities in B,.) on all surfaces save G, where all velocities
stick. We will assume that the planner can monitor position and velocity sensors to
determine whether a motion has reached the goal. Velocity sensing is also subject
to uncertainty: for an actual velocity v, the sensed velocity lies in some cone B,
of velocities about v.

Now we introduce simple model error. The shape of A and B are known
precisely, and the position of A is fixed. However, the position of B, relative to A
is not known. B’s position is characterized by the distance a. If @ > 0 the goal
is reachable. But if & = 0, then the goal vanishes. No plan can be guaranteed to
succeed if a = 0 is possible. Suppose we allow a to be negative. In this case the
blocks meet and fuse. Eventually, for sufficiently negative a, B will emerge on the
other side of A. In this case, the goal “reappears,” and may be reachable again.?
Let us assume that « is bounded, and lies in the interval [—dp, do].

1Gee [Mason 81] for a detailed description of generalized damper dynamics.
2This model is adopted for the purposes of exposition, not for physical plausibility. It is
not hard to model the case where the blocks meet but do not fuse.
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Our task is to find a plan that can attain G in the cases where it is recognizably
reachable. Such a plan is called a guaranteed strategy in the presence of model error.
But the plan cannot be guaranteed for the a where the goal vanishes. In these
cases we want the plan to signal failure. Loosely speaking, a motion strategy which
achieves the goal when it is recognizably reachable and signals failure when it is
not is called an Error Detection and Recovery (EDR) strategy. Such strategies are
more general than guaranteed strategies, in that they allow plans to fail.

Before we attack the problem of constructing guaranteed strategies and EDR
strategies (both in the presence of model error) let us consider the examples we
have seen so far. Although in these examples model error has been represented by
a kind of parametric “tolerancing”, the planning framework can represent arbitrary
model error. For example, we could represent CAD surfaces with real coefficients,
and allow the coefficients to vary. Discrete and discontinuous model error may
also be represented. Finally, note that we permit gross topological changes in the
environment—for example, the goal can vanish.

2.2. Representing Model Error

To represent model error, we will choose a parameterization of the possible
variation in the environment. The degrees of freedom of this parameterization are
considered as additional degrees of freedom in the system. For example, in fig. 15,
we have the z and y degrees of freedom of the configuration space. In addition, we
have the model error parameter . A coordinate in this space has the form (z,y, a).
The space itself is the cartesian product R2 x [—do, dy]. Each a-slice of the space
for a particular « is a configuration space with the obstacles A and B instantiated
at distance a apart. Fig. 15 is such a slice.

More generally, suppose we have a configuration space C for the degrees of
freedom of the moving object. Let J be an arbitrary index set which parameterizes
the model error. (Above, J was [—dp, dy]). Then the generalized configuration space
with model error is C' x J. One way to think of this construction is to imagine a
collection of possible “universes”, { Cy } for @ in J. Each Cy is a configuration space,
containing configuration space obstacles. The ambient space for each C, is some
canonical C. C x J is simply the natural product representing the ambient space of
their disjoint union. There is no constraint that J be finite or even countable. In fig.
3, C is again the cartesian plane, and J is a three-dimensional product space. One
of the J dimensions is circular, to parameterize the angular variation represented
by aj.

In fig. 16 we show the generalized configuration space for example (1). Note
that the goal in generalized configuration space becomes a 2-dimensional surface,
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Control uncertainty

Start Position lies in this circle

O

Robot

A D Goal lies on this surface of A B

Fig. 14. The goal is to bring the robot into contact with the right vertical
surface of A. (For example, the “robot” could be a gripper finger). There is
position sensing uncertainty, so in the start position the robot is only known
to lie within some uncertainty ball. There is also control uncertainty in the
commanded velocity to the robot. It is represented as a cone, as shown.

and the obstacles are 3-dimensional polyhedra. Note that the goal surface vanishes
where A and B meet.

Given a configuration space corresponding to a physical situation, it is well
known how to represent motions, forces, velocities, and so forth in it (eg., see
[Arnold]). The representations for classical mechanics exploit the geometry of dif-
ferentiable manifolds. We must develop a similar representation to plan motions,
forces, and velocities in generalized configuration space . Henceforth, we will denote
the generalized configuration space C' x J by §. We develop the following “axioms”
for “physics” in G.

(1) At execution time, the robot finds itself in a particular slice of G, (although it
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Fig. 15. The equivalent problem in configuration space. The blocks 4 and B,
the distance between the blocks a, and the commanded velocity vg = vy with
control error cone Bc(vg). The position of A is fixed.

(2)

may not know which). Thus we say there is only one “real” universe, ap in®

J. This ay is fixed. However, ag is not known a priors. Thus all motions are
confined to a particular (unknown) ag-slice, such as fig. 15. This is because
motions cannot move between universes. In fig. 16, any legal motion in G is
everywhere orthogonal to the J-axis and parallel to the z-y plane.

Suppose in any a-slice the position sensing uncertainty ball about a given
sensed position is some set B.,. The set R in fig. 15 is such a ball. We cannot
sense across J: position sensing uncertainty is infinite in the J dimensions.*
Thus the position sensing uncertainty in G is the cylinder B., x J. In figs.
15,16, this simply says that z and y are known to some precision, while « is
unknown. The initial position in fig. 15 is given by R x [—dy, do]. This cylinder

3

ap is a point in the multi-dimensional space J.

40One generalization of the framework would permit and plan for sensing in J. In this
case one would employ a bounded sensing uncertainty ball in the J dimensions.
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Fig. 16. The generalized configuration space obstacles for example (1). The
generalized configuration space is three dimensional, having z and y degrees of
motion freedom, and an a degree of model error freedom. Legal motions are
parallel to the z-y plane, and orthogonal to the J axis.

(3)

is a 3-dimensional solid, orthogonal to the z-y plane and parallel to the J-axis
in fig. 16.

Suppose in the configuration space C, the velocity control uncertainty about a
given nominal commanded velocity is a cone of velocities B,.. Such a cone is
shown in fig. 15. This cone lies in the phase-space for C, denoted TC. (Phase
space is simply Position-space x Velocity-space. A point in phase space has
the form (z,v), and denotes an instantaneous velocity of v at configuration
z). Phase space represents all possible velocities at all points in C. The phase
space for § is obtained by indexing T'C' by J to obtain TC x J. All velocities
in generalized configuration space lie in TC x J. For Ex. (1) TC x J is
R* x [—do, do]. The generalized velocity uncertainty cones are two-dimensional,
parallel to the z-y plane, and orthogonal to the J axis.
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(4) Generalized damper dynamics extend straight-forwardly to G, so motions sat-
isfy f = B(v — vo) where f, v, and v lie in TC x J. Thus friction cones from
configuration space (see [Erdmann]|) naturally embed like generalized velocity
cones in TC x J.

These axioms give an intuitive description of the physics of G. A formal axiom-
atization is given in an appendix. We have captured the physics of G using a set of
generalized uncertainties, friction, and control characteristics (1-4). These axioms
completely characterize the behavior of motions in G.

2.3. Representing Pushing Operations in Generalized Configuration
Space

By relaxing axiom (1), above, we can consider a generalization of the model
error framework, in which pushing motions are permitted, as well as compliant
and gross motions. We relax the assumption that motion between universes is
impossible, and permit certain motions across J. Consider example (1). Observe
that a displacement in J corresponds to a displacement in the position of the block
B. Thus a motion in J should correspond to a motion of B. Suppose the robot can
change the position of B by pushing on it, that is, by exerting a force on the surface
of B. The key point is that pushing operations may be modeled by observing that
commanded forces to the robot may result in changes in the environment. That
is, a commanded force to the robot can result in motion in C (sliding) as well as
motion in J (pushing the block). Let us develop this notion further.

Our previous discussion assumed that motion across J was impossible. That is,
all motion is confined to one a-slice of generalized configuration space. In example
(1), this is equivalent to the axiom that B does not move or deform under an applied
force. Such an axiom makes sense for applications where B is indeed immovable,
for example, if A and B are machined tabs of a connected metal part. However,
suppose that B is a block that can slide on the table. See fig. 17. Then an applied
force on the surface of the block can cause the block to slide. This corresponds to
motion in J. In general, the effect of an applied force will be a motion which slides
or sticks on the surface of B, and which causes B to slide or stick on the table. This
corresponds to a coupled motion in both C' and J. When the motion maintains
contact, it is tangent to a surface S in generalized configuration space.

Our goal is to generalize the description of the physics of G to permit a rigorous
account of such motions. This model can then be employed by an automated
planner. Such a planner could construct motion strategies whose primitives are
gross motions, compliant motions, and pushing motions.’

50ur model of pushing is less general than [Mason, 82], since it requires knowledge of
the center of friction. See an appendix for details.
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Fig. 17. A force fg applied to the top surface of B can cause sliding (or sticking)
on the top of B, coupled with motion of B on the table. This corresponds to a
pushing motion in G. By giving the right geometric structure to the surface §,
we can predict the resulting cone of motions in ¢, given a commanded velocity
fo subject to control uncertainty. A planner could generate a motion along S in
order to plan pushing operations.

The description of the physics should embrace the following observations:

The phase space for C corresponds to forces exerted at the center of mass of
the robot. The phase space for J corresponds to forces acting at the center of mass
of B. When pushing is allowed, the phase space for generalized configuration space
is not TC x J but TC x TJ. In the pushing application, all forces are exerted
in C, but may be “transferred” to J via the contact. In other words, the applied
forces we consider will have zero component along J. However, they may result in
a motion in J, via the transferred pushing force.

In free space, or on surfaces generated by immovable objects, all differential
motions lie within one a-slice. This is because objects can only be pushed when
the robot is in contact with them.
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Fig. 18. Pushing on the side of B can cause B to slide, even in the absence
of friction. This behavior can be modeled by giving the surface S a normal
which points across J. The surface can exert reaction forces along this normal.
Thus, applying a force in C results in a reaction force with a J component. The
resulting motion moves across J, tangent to S. That it, it pushes the block.
Friction can also be introduced on S. A picture of the friction cone developed
in an appendix is shown. It represents the range of reaction forces the surface S
can exert.

Along surfaces generated by objects that can be pushed, the differential motions
are tangent to the surface in §, and may move along J as well as C. See fig. 17.

A motion in free space corresponds to a gross motion. A motion on a surface
staying within one a-slice corresponds to a compliant motion. A motion on a surface
which moves across J corresponds to a pushing motion.

Configuration space surfaces share many properties with real space surfaces.
When pushed on, they push back. In particular, they have a normal. In the abscnce
of friction, they can exert reaction forces only along this normal direction. We
must define what the normals to generalized configuration space surfaces are. For
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example, see fig. 18. The normal is transverse to J, so that even when the applied
force lies exclusively in C, the surface exerts a reaction force with a J component.
Thus the resultant force can cause a motion across J, tangent to S. In fig. 18 this
implies that pushing on the side of B results in a transferred force to J, causing
B to slide. In generalized configuration space, this is simply viewed as applying a
force to a surface S, which exerts a reaction force across J. Since the resultant force
is across J, the motion in G will be in that direction (under damper dynamics).

The physics is complicated by the introduction of friction. Given an applied
force, one of four qualitative outcomes are possible. (1) The motion may slide in
C and J. This corresponds to pushing while sliding® at the point of contact. (2)
The motion may stick in C' and slide in J.” This corresponds to pushing with no
relative motion. (3) The motion may slide in C and stick in J. This corresponds
to compliant motion in one a-slice. (4) The motion may break contact. This
corresponds to the initiation of gross motion in one a-slice.

In order to generalize physical reasoning to generalized configuration space, we
must provide a generalization of the configuration space friction cone [Erdmann| for
generalized configuration space. The friction cone represents the range of reaction
forces that a surface in generalized configuration space can exert. A picture of this
generalized cone is shown in fig. 18. Using the friction cone, it is possible to specify
a geometrical computation of reaction forces. Such an algorithm is necessary for
a planner to predict the possible resulting motions from an uncertainty cone of
commanded applied forces. For example, see fig. 17.

By characterizing the physics of pushing and sliding via geometrical constraints
in generalized configuration space, it appears that a unified planning framework for
gross-, compliant-, and pushing motions emerges. However, certain aspects of the
physics require elaboration and simplification before a practical planner for pushing

~operations can be implemented; see an appendix for details.

x2.3.1 Example: The Sticking Cone

This starred subsection may be skipped at first reading.

As an example of how a planner could reason about friction in generalized
configuration space, see fig. 19. Here we take the configuration spaces of the robot
and of B to be cartesian planes. (See fig. 14 to recall the definition of the robot
and B). Assume that we can apply a two dimensional force f. on the robot, and
a two dimensional force f; at the center of mass of B. (This assumption is for the
sake of discussion; in pushing applications, f; would be zero). The friction cone

60r rotating.
"This outcome is not possible in the example with block B, since if B moves, this causes
motion in C' and in J.
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Fig. 19. Assume a fixed, negative normal force at the center of mass of B.
The 3D force space at T represents the product of the 2D forces f. that can be
exerted by the robot on the surface of B, with the 1D tangential forces f; that
can be exerted at the center of mass of B. An applied force (fc, f;) in the cone
represents a combination of forces that causes no motion in G, that is, neither
sliding on the surface of B, nor of B on the table. Note that the cone in G is
skewed out of the embedded tangent space to C' at z. This is because when
a force f. is applied in the friction cone on the top surface of B, the block B
can slide unless an opposing force is exerted tangentially at the center of mass
of B. By intersecting the sticking cone with the negative velocity cone, we can
determine whether sticking is possible on S.

in generalized configuration space will then be four-dimensional. This is hard to
draw; we have selected a fixed, negative normal component for f;. The 3D force
space at the point of contact T represents the product of the 2D forces that can be
exerted by the robot on the surface of B, with the 1D tangential forces that can be
applied at the center of mass of B. An applied force ( f., f;) in the negative of the
cone in fig. 19 represents a combination of forces that causes no motion in G, that
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is, neither sliding on the surface of B, nor of B on the table. Note that the cone
in G is skewed out of the embedded tangent space to C at = (denoted T,C in the
figure). This is because when a force f. is applied in the friction cone on the top
surface of B, the block B can slide unless an opposing force is exerted tangentially
at the center of mass of B.

Let us call the cone in fig. 19 the sticking cone K. Using the sticking cone, we
can now specify a geometrical computation to determine when sticking occurs at
7, assuming generalized damper dynamics: Simply intersect the negative velocity
control uncertainty cone —B,.(v3) with K. If the intersection is trivial, then sticking
cannot occur. If the intersection is non-trivial, then sticking can occur. If the
negative velocity cone lies inside K, then sticking must occur.

This shows that the computation to determine whether sticking is possible at
a point reduces to simple geometric cone intersection.

Now we return to the pushing application, by restricting the applied force f;
in J to be zero. See fig. 19. Assume it is impossible to apply force at the center
of mass of B. Therefore, the velocity cone is two dimensional and lies entirely in
the tangent space to C' at z; it has no J component. This two-dimensional cone is
intersected with the 3D cone K to determine whether sticking is possible at 7.

Let us emphasize that by insisting that the force f; applied in J be zero, we
obtain a two-dimensional control uncertainty cone, even though generalized config-
uration space has four degrees of freedom. Thus, in the model error framework, the
generalized control uncertainty can be viewed as a non-holonomic constraint. Holo-
nomic constraints are constraints on the degrees of freedom of the moving object(s);
non-holonomic constraints are constraints on their differential motions. Holonomic
constraints can be captured by surfaces in (generalized) configuration space. To
capture non-holonomic constraints geometrically, we must introduce constraints in
the phase space. This viewpoint is developed in an appendix, where we provide a
more rigorous account of the construction of normals, friction cones, sticking cones,
and the computation of reaction forces in generalized configuration space.

2.4. Guaranteed Plans in Generalized Configuration Space

A motion strategy [LMT] is a commanded velocity (such as v§ in fig. 15)
together with a termination predicate which monitors the sensors and decides when
the motion has achieved the goal. Given a goal G in configuration space, we can
form its preimage [LMT]. The preimage of G is the region in configuration space
from which all motions are guaranteed to move into G in such a way that the entry

" is recognizable. That is, the preimage is the set of all positions from which all

possible trajectories consistent with the control uncertainty are guaranteed to reach
G recognizably. For example, see fig. 20. The entry is recognized by monitoring
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Fig. 20. The goal is the region G. Sliding occurs on vertical surfaces, and sticking
on horizontal ones. The commanded velocity is vg, and the control uncertainty
is Bec(vg). The preimage of the G with respect to 8 is the region P.

the position and velocity sensors until the goal is attained. Fig. 20 is a directional
preimage: only one commanded velocity vj is considered. Here all preimage points
reach the goal recognizably under this particular vj. The non-directional preimage
is the union of all directional preimages.

We envision a back-chaining planner which recursively computes pre-images
of a goal region. Successive subgoals are attained by motion strategies. Each
motion terminates when all sensor interpretations indicate that the robot must be
within the subgoal. [LMT,E] provide a formal framework for computing preimages
where there is sensing and control uncertainty, but no model error. In particular,
([Erdmann] shows how backprojections may be used to approximate preimages. The
backprojection of a goal G (with respect to a commanded velocity v}) consists of
those positions guaranteed to enter the goal (under v}). Recognizability of the
entry plays no role. Fig. 21 illustrates the difference between backprojections and
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Fig. 21. Here, the radius of the position sensing uncertainty ball is twice the
width of the hole. Sliding occurs on all surfaces under the control velocities
shown. The preimage of the goal under commanded velocity vy is Pg(G). The
backprojection By(G) strictly contains this preimage: while all points in the
backprojection are guaranteed to reach G, the sensing inaccuracy is so large
that the termination predicate cannot tell whether the goal or the left hori-
zontal surface has been reached. Only from the preimage can entry into G be
recognized.

preimages. Here the radius of position sensing uncertainty is greater than twice the
diameter of the hole. Sliding occurs on all surfaces. Furthermore, we assume that
the robot has no sense of time (i.e., no clock)—for example, it might be equipped
with a contact sensor that only fires once. The back projection By(G) strictly
contains the preimage Py(G): while all points in the backprojection are guaranteed
to reach G, the sensing inaccuracy is so large that the termination predicate cannot
tell whether the goal or the left horizontal surface has been reached. Only from the
preimage can entry into G be recognized.

Preimages provide a way to construct guaranteed plans for the situation with
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Fig. 22. The backprojection of the goal surface G in generalized configuration
space for commanded velocity vy is denoted Bg(G). Here is the backprojection
for o positive. A typical a-slice of the backprojection is shown below.

no model error. Can preimages and backprojections be generalized to situations
with model error? The answer is yes. Consider fig. 15,16. The goal in generalized
configuration space is the surface G (which has two components). The start region
is the cylinder R x J (where J is [—dp, do]). The generalized control and sensing
uncertainties in G are given by the physics axioms above. These uncertainties
completely determine how motions in generalized configuration space must behave.
We form the backprojection of G under these uncertainties. The backprojection has
two components, shown in fig. 22,23. It is a three-dimensional region in G of all
triples (z,y, ) that are guaranteed to reach G under the control uncertainty shown
in fig. 15. Equivalently, we can view it as all points in G guaranteed to reach G under
the generalized uncertainties that specify G’s physics. Note that backprojections do
not “converge to a point” along the J axis (compare fig. 20). This is because there
is perfect control along J, and the commanded velocity along J is zero. This is why
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Fig. 23. The backprojection of the other component of G. A typical a-slice for
a negative is shown below. The backprojection in G of the entire goal surface is
the union of the backprojections shown in figs. 22,23.

in this particular G there are two disjoint backprojection regions, one from each
component of G. Furthermore, recursively-computed backprojections can never
cover—or even intersect—any slice of ¢ in which the goal vanishes.

The trick here was to view the motion planning problem with n degrees of
motion freedom and k degrees of model error freedom as a planning problem in
an (n + k)-dimensional generalized configuration space, endowed with the special
physics described above. The physics is characterized precisely by axioms defining
certain special sensing and control uncertainties in G. The definitions and results for
pre-images and backprojections [LMT,E] in configuration space generalize mutatis
mutandis to G endowed with this physics; this is proved in an appendix(A.3). Thus
our framework reduces the problem of constructing guaranteed motion strategies
with model error to computing preimages in a somewhat more complicated. and
higher-dimensional configuration space.
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In this example, because the position of B varies linearly with «a, the surfaces
in G are planar and the generalized configuration space obstacles are polyhedral.
Below, in sec. 6, we give polynomial-time algorithms for computing these backpro-
jections. While they have been computed by hand here, note that this reduction
gives us an efficient planning algorithm for an important special case.
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3. Error Detection and Recovery

If we were exclusively interested in constructing guaranteed motion strategies
in the presence of model error, we would be done defining the framework: having
reduced the problem to computing preimages in G, we could now turn to the im-
portant and difficult problems of computing and constructing G, and further extend
the work of [LMT,E] on computing preimages in general configuration spaces.

However, guaranteed strategies do not always exist. In example (1), (figs. 14—
16) there is no guaranteed strategy for achieving the goal, since the goal may vanish
for some values of a. Because tolerances may cause gross topological changes in
configuration space, this problem is particularly prevalent in the presence of model
error. In the peg-in-hole problem with model error (figs. 3-13) the goal may also
vanish (the hole may close up) for certain regions in J. More generally, there may
be values of a for which the goal may still exist, but it may not be reachable.
For example, in a variant of the problem in fig. 3, an obstacle could block the
channel to the goal. Then G is non-empty, but also not reachable. Finally, and
most generally, there may be values of o for which the goal is reachable but not
recognizably reachable. In this case we still cannot guarantee plans, since a planner
cannot know when they have succeeded.

These problems may occur even in the absence of model error. However, with-
out model error a guaranteed plan is often obtainable by back-chaining and adding
more steps to the plan. In the presence of model error this technique frequently fails:
in example (1), no chain of recursively-computed preimages can ever cover the start
region R x J. The failure is due to the peculiar sensing and control characteristics
(1-4) in generalized configuration space .

In response, we will develop Error Detection and Recovery (EDR) strategies.
These are characterized as follows:

e An EDR strategy should attain the goal when it is recognizably reachable, and
signal failure when it is not.

o It should also permit serendipitous achievement of the goal.

e Furthermore, no motion guaranteed to terminate recognizably in the goal
should ever be prematurely terminated as a failure.

¢ Finally, no motion should be terminated as a failure while there is any chance
that it might serendipitously achieve the goal due to fortuitous sensing and
control events.

These are called the “EDR Axioms”, they will be our guiding principles. Can
we construct such strategies? The answer is, basically, yes. Let us construct one for

55




Fig. 24. A typical a-slice of the forward projection of the “bad” region. The
forward projection is the region F'. « is negative and almost zero. H is an EDR
region in the forward projection.

a variant of example (1). We first restrict our attention to the environments where
a lies in the interval [d;, do] where d; is small and negative.!

Call the start region U = RxJ. The strategy of example (1) commands velocity
vy (fig 15). It tries to terminate the motion in G by detecting sticking. Call this
strategy 8. We will use 8 as a starting point, and try to build an EDR strategy
from it. Now, U is divided into a “good” region, from which 8 is guaranteed, and a
“bad” region, from which it is not. The goal vanishes for the bad region. We wish
to eztend 6 to an EDR strategy from all of U.

Let us investigate the result of executing 6 from the “bad” region. We employ
the forward projection [Erdmann]. The forward projection of a set V under 0 is all

1Gee fig. 15. Formally, if w is the width of A and B, and ¢ is the position sensing
. uncertainty, then |d;| < min(w, §). Otherwise, if a can be arbitrary, no strategy can
always distinguish the right edge of A from the right edge of B!
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configurations? which are possibly reachable from V under v§ (subject to control
uncertainty). It is denoted Fy(V'). Forward projections only address reachability:
the termination predicate is ignored and only the control uncertainty bound and
commanded velocity v are needed to specify the forward projection.

Fig. 24 shows a typical a-slice of the forward projection of the “bad” region.
The goal vanishes in this slice; the dashed line indicates where the goal would
be in other slices. We can now define an EDR strategy as follows. Consider the
region H in fig. 24. The termination predicate can distinguish between G and
H based on position sensing, velocity sensing, or elapsed time.> Consider H as a
two-dimensional region in §; just a slice of it is shown in fig. 24. Note that in
this example, H only exists in the slices in which G vanishes. Thus the motion is
guaranteed to terminate recognizably in G iff the motion originated in the “good”
region of U. Otherwise the motion terminates recognizably in H. In the first case,
the termination predicate signals success, in the latter, failure.

Clearly this EDR strategy satisfies the “EDR axioms” above. The problem
of constructing EDR strategies may be attacked as follows: We take a strategy 6
as data. Next, an EDR region H is found. H is introduced as a “bad goal”, and
a strategy is found which achieves either G or H (subject to the EDR axioms).
Finally, we must not only recognize that G or H has been attained, but also know
which goal has been reached.

Now, think of  as indexing the “angular direction” of the commanded veloc-
ity. By quantifying over all 6, we can in principle define “non-directional” EDR
strategies. This problem is similar to constructing non-directional preimages. For
now, we restrict our attention to one-step plans. Later, we consider n-step plans.

3.1. Generalizing the Construction

We now present an informal account of how the construction of EDR regions
and strategies may be generalized. Do not be alarmed if some of our examples
are without model error. Since we have reduced the planning problem with model
error to planning in a (different) configuration space, it suffices to consider general
configuration spaces in this discussion.

So far the preimages we have considered are strong preimages, in that all possi-
ble motions are guaranteed to terminate recognizably in the goal. The weak preim-
age [LMT] (with respect to a commanded velocity) is the set of points which could
possibly enter the goal recognizably, given fortuitous sensing and control events. See
fig. 25. We will use the weak preimage to capture the notion of serendipity in the

2 Actually, forward projections are in phase-space, so this is the position component of
the forward projection.

3Given the sensing uncertainties of example (1).
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Fig. 25. The weak preimage of the goal G under v;. Compare fig. 20.

EDR axioms. The idea is that a motion may be terminated in failure as soon as
egress from the weak preimage is recognized.

Now consider fig. 26. Assume sliding occurs on the vertical edges, and sticking
on the horizontal ones. The (strong) preimage of the goal G is denoted P. A
motion strategy § with commanded velocity v} is guaranteed for the region R', but
the starting region is the larger* R. The weak preimage of G is denoted P. The
forward projection of the “bad” region R — R’ is Fy(R — R'). In fig. 26, it is in
fact equal to Fy(R). Using 0 as data, how can we construct an EDR strategy that
is applicable for all of R? Let us first try taking the EDR region H = H,, where
Hp is the set difference of the forward projection of the “bad” region and the weak
preimage:

Hy = Fy(R-R')-P. (1)

4Note that in general, R and R’ need not be cylinders, but can be arbitrary subsets of

Gg.
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Fig. 26. R is the start region. P is the strong preimage of G. R’ is the region in
R from which the strategy is guaranteed to reach G recognizably. P is the weak
preimage. H is the forward projection of R outside the weak preimage. It is the
EDR region.

If we can distinguish between G and H, then H is a good EDR region, and we have
constructed an EDR strategy.

Taking H = H, as above is not sufficiently general. Consider fig. 27. It is
possible for a motion from R to stick forever in the region H,, which is within the
weak preimage. However, a motion through H, is not guaranteed to stick in H,:
it may eventually slide into the goal. We want sliding motions to pass through H,
unmolested, while the termination predicate should halt sticking motions in H,.

The EDR region H region should include Hy. But it should also include H,,
when sticking occurs. In other words, H should include Hy for all velocities, but
should only include H, for sticking velocities (that is, zero velocities). To handle
this idea we introduce simple velocity goals, as well as position goals. The position
and velocity goals are regions in phase space.
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Fig. 27. Hy in eq. (1) is not the entire EDR region. Sticking may occur within
the weak preimage in H,. The EDR region must include Hy for all possible
velocities, and H, for “sticking velocities.”

A goal in phase space is a region in Position-space x Velocity-space. A phase
space goal is attained when the actual position and velocity can be guaranteed to
lie in the region. Let us construct the phase-space EDR region H. If z is in Ho,
then for any velocity v at z, (z,v) must be in H. Let #~1(H,) denote all such (z,v)
in phase-space.

Now, H, is the set of all points z in the weak but not strong preimage, such
that sticking can occur at .5 We wish to distinguish the sticking velocities in H,.
Under generalized damper dynamics, these are essentially the zero velocities. Let
Z(H,) denote the zero velocities over H,, that is, the set of pairs (z,0) for z in H,.
This set is in phase space. Then we see that Z(H,) is also in the phase space EDR
region H. Thus H is the union of the sticking velocities over H,, and all velocities
over the forward projection outside the weak preimage:

[Erdmann] shows how to decide whether z € H, using configuration space friction cones.
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Fig. 28. The weak but not strong preimage P — P, from fig. 27. Can a motion
from R remain in P — P forever? One way this may happen is by sticking in
H,. In general, however, there are other ways.

H=Z(H,) U= (H,). (2)

To use H as an EDR region, we must now ensure that H and the cylinder over
G are distinguishable goals. In an appendix, we show that if the strong preimage is
known, the definition of (phase space) EDR regions is constructive up to reachability.
By this we mean that when backprojections, set intersections and differences, and
friction cones can be computed, then so can H. With H in hand, we add the
recognizability constraint to obtain an EDR strategy.

The structure of the “weak but not strong preimage,” P — P suggests a number
of implementation issues. Consider figs. 27,28 once more. Suppose we have a
trajectory originating in R, subject to the control uncertainty shown. We do not
wish to terminate the motion while it remains in the weak preimage, since fortuitous
sensing and control events could still force recognizable termination in G. Howeve1.
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we can terminate the motion as soon as we recognize egress from the weak preimage.
This is why the forward projection outside the weak preimage is contained in the
EDR region.

As we have seen, however, it is possible for a trajectory to remain within the
weak but not strong preimage forever. For example, it can stick in H, forever. To
handle this case, we introduced phase space EDR goals.

There are other conditions under which a trajectory could stay in P— P forever:
{a) if the environment is infinite, or P — P is unbounded. (b) The trajectory “loops”
in P — P forever. (a) and (b) are qualitatively different from the case of sticking
forever in H,, because they require motion for infinitely long. In practice this may
be handled by terminating the motion in P — P after a certain elapsed time. We
can model this case by constructing termination predicates which “time-out.” In
fact, this “solution” works for sticking in H, also.

An alternative is to extend our earlier zero-velocity analysis to all of P — P.
That is, we terminate the motion in the weak but not strong preimage when the
actual velocity is (close to) zero. It seems that time-out termination predicates
and/or velocity thresholding must be used to solve the looping problem. Both
solutions seem inelegant; the issue is subtle and is addressed further in a later
section.
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Fig. 29. There are two possible universes; the goal G exists in the first but
not the second. The start region is R; U R;. Motion @ is guaranteed to move
from R; into S). Motion 1 is guaranteed to move from Sy into f. There is an
8-step plan achieving G from R;. The forward projections of R; and R; are
indistinguishable. There exists no one-step EDR strategy from the motion 4.

4. Generalization to n-Step EDR Strategies

4.1. The “Twin Universe” Example

Ezample (3). So far we have only considered one-step EDR strategies. We
now generalize the construction to n-step strategies. Consider fig. 29. Here there
are two possible universes, both in the plane, so J is the two element discrete set,
{1,2}. The start region is the union of R, in universe 1, and R; in universe 2. The
goal exists in universe 1 but not in universe 2. There is no one-step EDR strategy
which, from the start region, can guarantee to achieve G or recognize that we are in
universe 2. In particular, there is no one-step EDR strategy which can be derived
from the motion vy.
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There is an 8-step plan in universe 1 which recognizably achieves G from start
region R;. It is obtained by back-chaining preimages in universe 1. The plan moves
from R; to the region S; under v;. Then it slides along the top surface to vertex f,
and then to the successive vertex subgoals e through a, and finally into G. We can
construct a 2-step EDR strategy, from this plan. First, we execute motion 6 from
the union of R; and R,. This achieves a motion into .S, in universe 1, or into S3 in
universe 2. The termination predicate cannot distinguish which has been attained.
Suppose the second motion in the 8-step plan is v}, (see fig. 29), and is guaranteed
to achieve the vertex subgoal f from start region S;. We will try to construct an
EDR strategy out of this second motion. Take as data: the subgoal f, the start
region S; U S, the “southwest” motion ¢, and the preimage of f under %. The
EDR region for these data is the forward projection of S; under ¢ (see fig. 30).
Presumably this EDR region is distinguishable from f, and so we have constructed
an EDR strategy at the second step. After executing the second step, we either
terminate the plan as a failure, or proceed to vertex e, and eventually to the goal.

There is a subtle issue of where to terminate the motion within the forward pro-
jection of Ry URjy; this “where” is S;US; here, and is called the push-forward. Since
they address termination, push-forwards are to forward projections as preimages are
to backprojections. In chapter III and an appendix, they are defined formally and
the n-step EDR construction is given in detail.
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Fig. 30. The forward projection under v of S;.

5. What is “Recovery”?

So far, we have taken a “radical” view with respect to “Recovery.” We assume
that in planning for error and recovery, one essentially specifies the maximum length
plan one is willing to contemplate. The EDR planner considers the class of n-step
strategies and tries to formulate a plan that will achieve the goal given the sensing,
control, and model uncertainty.! Perhaps such a plan can be guaranteed. If not,
then termination in an EDR region would signal failure. This means that there was
no guaranteed n-step plan. (A third possibility is that G and H are never distin-
guishable at any of the n steps. This means that there is no EDR plan). If there
is no guaranteed n-step plan, and some EDR region H is recognizably achieved,
the recovery action might then be “give up,” or “try again, using up the remaining

10f course, one could in principle search for strategies of increasing length by quantifying
over n. At any one time, however, one would reduce to the case described here and
iterate.

85




number of steps in the plan,” if we are serious in refusing to contemplate plans
longer than n steps. As a corollary, the only “Error,” then, is “being in the wrong
universe,” or more accurately, “being in the wrong start region.” This viewpoint
is a consequence of trying to address EDR and completeness simultaneously. More
concretely, suppose we consider some sensory-control-geometric event to be an “er-
ror,” make a plan to detect it, and a recovery plan in case it is detected. If the
plan can be guaranteed, then it can be found using [LMT]. In this case the “error”
is no longer an error, but simply an “event” which triggers a conditional branch
of the plan.? If the plan cannot be guaranteed, then we have proposed the EDR
framework, which allows us to try it anyway. If it fails, however, the only obvious
recovery action entails the recursive construction of EDR sub-plans (see below). It
is not clear what other kinds of recovery could be attempted without exploiting
additional knowledge: the recovery branches have already been tried. The issue is
subtle, and deserves further attention.

We give one example which highlights the complexity of the recovery problem.
Suppose that we consider the class of 4-step plans. Given a 4-step plan as data,
suppose we construct a multi-step EDR strategy which pushes forward on the first
motion, and executes an EDR strategy on the the second. After executing the
second motion, we have recognizably either achieved the second subgoal, or some
EDR region H. If H is achieved, what is the correct recovery action? We could
do nothing, and signal failure. Alternatively, we could try to construct a plan (of
length less than or equal to two) to achieve the goal. Now, if such a plan exists
and can be guaranteed, then the entire EDR analysis was unnecessary, since the
[LMT] framework can (formally) find such plans. However, there might exist a
2-step EDR strategy to (try to) achieve the goal from H. While such a plan could
not be guaranteed, it might be worth a try. This suggests that the failure recovery
action in an n-step EDR strategy should be to recursively construct another EDR
strategy to achieve the goal from the EDR region, using no more than the remaining
number of steps. If n is 1, the planner should simply signal failure and stop.

EDR is ripe for probabilistic analysis. In our plans, the recovery action is
often, “in case of failure, try it again.” Probabilistic analysis would permit one to
address the likelihood of success for such a plan. In particular, notice that after a
failure, it is frequently the case that the run-time executive has learned something
about the structure of the environment. This knowledge is embodied in the subset
of J known to contain the world state. Even after achieving an EDR region and
signalling failure, it is generally the case that the position in J is more precisely
known than at the start of the plan execution. Hence we can quite precisely define
our view of “Error Diagnosis” —it is simply the position in generalized configuration
space, and, in particular, the position in J.

2Unless, of course, the error recovery action is not a motion.
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One can envision different sorts of recovery actions. One type of recovery would
be to set up to do the task with different parts. Extending EDR to the kind of cyclic
activity found in certain applications would be very useful. While in principle it
would be modeled within our framework, in practice, the dimensionality of the
generalized configuration space would be prohibitive.
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6. Implementation and Experiments: One-Step EDR
Strategies

In this section we describe experiments with a implemented EDR planner,
called LIMITED which is based on [LMT,E,D]. The discussion here focuses on how
to use the EDR theory in a planner to generate one-step EDR strategies. Later in
the thesis we discuss the implementation of multi-step EDR strategies generation.

6.1. Experiment: Computing EDR Regions

In order to synthesize EDR strategies, we must be able to compute EDR
regions. To compute EDR regions, we must have tools for computing forward-
projections and preimages in generalized configuration space. We now discuss these
tools and experiments using them.

We approximate preimages using backprojections (see [Erdmann]). At present,
the implementation can compute slice approximations to EDR regions for one-step
plans where the generalized configuration space is three-dimensional. The particular
generalized configuration space we consider is that of the gear example described
in section 1.1. (See fig. 2). In this case, C is the cartesian plane, representing
translations of gear A, and J is the 2D rotation group (i.e., a circle), representing
orientations of the gear B. The implementation uses slices: by a slice we mean
an a-slice of generalized configuration space for some a in J. a is the model error
parameter, and represents the orientation of B. We have implemented an algorithm
which computes slices of the three dimensional EDR regions for both variants of
the gear example. In the first, B cannot rotate, so no motion across J is possible.
In the second, B can rotate when pushed, so motion across J is possible. In the
latter case, backprojections and forward projections must be computed across J,
since it is possible to achieve the goal by moving across J (rotating B by pushing
and possibly sliding on its surface).

Given a 2D slice of generalized configuration space, LIMITED employs a plane-
sweep algorithm for computing unions, intersections, and projections. (By projec-
tions we mean forward projections, backprojections, and weak-backprojections in
that slice). The algorithm uses exact (rational) arithmetic, and computes unions
in O((n + ¢)logn) time, and projections in O(nlogn) time.! The design and im-
plementation of the 2D plane-sweep module is joint work with John Canny; the
algorithm is based on [Neivergelt and Preparata] (who give a union algorithm) and
related to [Erdmann] (who implemented an O(n?) backprojection algorithm, and
suggested an improved O(n logn) version).

1Where n is the number of vertices in the slice, and ¢ is the number of intersections.
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F,(R) ¢ L

Fig. 31. Dlustration of how forward projections are propagated across slices. In
slice a, the forward projection of R, Fy(R) is computed. e is an obstacle edge
in Fy(R). Configurations on e correspond to contact configurations between the
gears. Quasi-static analysis indicates that commanding velocity vy from e can
result in motion in the +a direction. As a varies in this direction, e rotates,
sweeping out an algebraic surface V. V is followed into a nearby slice, o', and
the intersection of V and this slice is e’. In slice a', the forward projection Fy(e')
is computed. This is the propagated forward projection.

To compute projections in the 3D generalized configuration space, LIMITED
propagates projections acroes slices. For example, given a forward projection in a
slice, the algorithm finds all obstacle edges and vertices from which it is possible
to exert a positive torque on the obstacle (which is gear B in the figures). See
fig. 40. Thus by pushing on these edges it is possible to move across slices in the
+a direction. Each such edge is a slice of an algebraic ruled surface in generalized
configuration space. The vertices are slices of algebraic (partial) helicoids. Sliding
along the surface of B while causing B to rotate corresponds to following the surface
(or helicoid). The surface is traced into the next a-slice, and taken as a start
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region from which to forward-project in that slice. For example, see figs. 41-42.
The propagated forward projection must then be unioned with propagated forward
projections from other slices, and with the forward projection of any start regions
in that slice. See fig. 45. Weak backprojections are computed analogously.

In order to compute weak backprojections and forward projections, we assume
that there can be stiction at the rotation center of B. Thus the ratio of sliding
to turning is indeterminate. In general, the computation of strong backprojections
under rotation due to pushing will be a second order problem, since it depends on
the derivatives of this ratio. We employ a conservative approximation to the strong
backprojection (namely, the backprojection in free space alone) to construct the
EDR regions. This suffices, since EDR strategies require only the weak backpro-
jection and forward projection (which depend only on the possibility, and not the
velocity, of sliding and turning). Thus there is a deep sense in which EDR strate-
gies with model error seem easier to compute than guaranteed strategies, because
EDR strategies are “first order.” This is consistent with the intuition that weak
backprojections should be easier to compute than strong backprojections.

Figs. 32-39 show the EDR regions for the gear example (sec. 1.1) when no
rotation of B is permitted. Only one slice of G is shown. In all the figures, the com-
manded velocity is “towards the center of B”, up and to the right. The magnitude
of the control error can be seen from the “fan-out” in the forward projection (fig.
35).

Next, we allow B to rotate. Figs. 43-48 show the EDR regions at four a-slices
of the 3D generalized configuration space. In this case motion across J is possible
by pushing B, when B rotates. The projections have been propagated across slices
and unioned. The results are slices of the 3D EDR regions across J.

6.2. Experiment: Planning One-Step EDR

The computation of the EDR regions is at the heart of EDR planning. To
generate one step EDR strategies LIMITED performs a search by discretizing the
space of possible commanded velocities. The discretization generates a set of com-
manded velocities to try. The following loop is executed to search for an EDR
strategy. Below, we use the phrase “the strategy recognizably terminates in G or
H” to mean that the run-time executor can always distinguish which of G or H has
been achieved, when the motion terminates.

Algorithm 1EDR

1.  Generate a commanded velocity vg.
2. Compute the EDR region H for vj,
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3. Determine whether the EDR region H and the goal G are distinguishable using
sensors. If so, then v} yields a one-step EDR strategy which recognizably terminates
in G or H by monitoring position and force sensors.

4. Let OG and OH denote the set of obstacle edges within G and H, resp. Deter-
mine whether the regions OH and OG are distinguishable using sensors. If so, then
vy yields a one-step EDR strategy which recognizably terminates on an obstacle edge
in G or H. The termination condition is contact with? or sticking on a surface in
G or H.

5. Let pushy(G) and pushy(H) denote the sticking push-forwards. They are the
set of obstacle edges within G and H, resp., on which sticking can occur under
vy. Determine whether these regions are distinguishable using sensors. If so, then
vy yields a one-step EDR strategy which recognizably terminates when sticking is
detected.

Here is how LIMITED decides the question, “Are G and H distinguishable using
sensors?”

H and G are distinguishable using position sensing alone if their convolutions
(Minkowski sums) by the position sensing error ball B, do not intersect.

Each obstacle edge of H and G has an associated configuration space friction
cone. Two edges are distinguishable using force sensing if the convolutions of their
friction cones by the force sensing uncertainty B., have a trivial intersection.?

Similarly, the set of possible sensed reaction forces at an obstacle vertex w of
G or H may be found by taking the direct sum of the friction cones of the edges
cobounding w, and convolving by B.,. Again, a vertex of H and a vertex (or
edge) of G are distinguishable using force sensing if their associated cones of sensed
reaction forces have a trivial intersection.

LIMITED decides that G and H are distinguishable using position sensing and
force sensing if all edges and vertices of G and H are pairwise distinguishable using
the position and force sensing criteria above. The procedure works equally well
for determining the distinguishability of 0G and JH, and on the push-forwards
pushy(-).

Note that the procedure is correct for linear edges, where position and force-
sensing are separable because the set of possible reaction forces is constant along an
edge. In general, the sets which must be distinct are of the following form. Let N(z)
be the convolution of the friction cone at z with the velocity sensing uncertainty
Bey. Let B, ,(z) denote the position sensing uncertainty ball translated to z. Then
the set I(G) of possible sensor interpretations from points in G is defined to be

2However, see section 7 for a technical point on recognizing whether the contact is within

GUH.

3 An intersection containing only the zero-vector.
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I(G) = | N(z) x Bey(a).
z€CG

For general goals and EDR regions, we must have that I(G) and I(H) are distinct.

A final comment is required with regard to sticking as a termination condition.
EDR plans generated with this termination predicate only make sense if sticking is
possible in the goal. That is, if sticking is impossible in the goal, then all motions
will terminate in H. It is better still if sticking is in fact necessary in the goal. If this
is the case, then all motions entering the goal will terminate in the goal, whereas
all motions entering H will terminate there. For example, recall the peg-in-hole
strategy in figs. 3-13, chapter 1. In this example, sticking is necessary in the goal
under both the first and the second motions. For a motion 6, the formal criterion
that necessary sticking satisfies is

Fy(G) =G.

That is, if we view 6 as a “mapping” then G is a fixed point. Of course, it is a
simple matter to verify this criterion given our plane-sweep algorithms for forward
projection. Note also that there are other termination conditions that satisfy the
fixed-point equation—one example is the “stationary subgoals” in the tray-tilting
planner of [Erdmann and Mason)].

Further details of the one-step planning algorithms in LIMITED can be found
in section 7. At this point, however, we digress to discuss the complexity of EDR
planning.

6.3. Complexity Bounds

We now give some complexity bounds for subproblems in EDR planning. All
our bounds are upper bounds. The first question is, what is the complexity of EDR
planning in one slice?

Suppose we are given a motion direction v}, and a planar polygonal envi-
ronment containing n edges. The environment represents the configuration space
obstacles in a planar slice. The configuration space obstacle polygons may be non-
convex, but may not intersect. The start region and goal are polygons of constant
size. Suppose that the termination condition to be employed is sticking. What is
the complexity of verifying that € yields an EDR strategy in this slice?

Theorem: There ezists an O(n3) algorithm for deciding the validity of a one-step
EDR strategy with sticking termination in a planar slice.

Proof: Unions and set-differences can be computed in time O((n + ¢) logn), where
¢ is the number of intersections. ¢ is between 1 and n? [Neivergelt and Preparata].
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Forward projections, backprojections, and weak backprojections can be computed
in time O(nlogn). All projections have size O(n). Determining the sticking edges
and vertices of a polygon is O(n). Hence computing the EDR region H requires
time O((n + ¢)logn) and the output has size O(n + ¢).

While the goal G has constant size, the algorithm only needs to distinguish H
from the closure of the free-space goal. The free-space goal is the set difference of
G and the configuration space obstacles, CO. G — CO has size O(n).

Determining whether H and G — CO are distinguishable can require a pairwise
test of their edges and vertices. This takes time O((n 4+ ¢)n). O

Now, in LIMITED, the input is given as a set of convex, possibly overlapping
real-space polygons. Suppose the input is given as real space polygonal obstacles
of size O(m). That is, the total number of edges is m. The configuration space
obstacles must first be computed. This can take time O(m?), since the input could
consist of two sets of Z+ convex (in fact, triangular) polygons which must be pairwise
convolved. The output—a set of overlapping convex configuration space obstacle
polygons—has size O(m). The union of the configuration space obstacles must be
computed. This requires time O((m + ¢')logn) and the output has size O(c'). ¢/,
the number of intersections, is between 1 and m2. Taking n to be ¢/, we find that
the complexity of EDR verification in a planar slice is < ((-'3)2)3, or O(m?®), when
measured in the size of the real space input.

These bounds are not for an idealized form of the one-step EDR algorithm,
but rather for a full, exact-arithmetic implementation. In practice—by which we
mean for the experiments in this thesis—we found that while ¢', the complexity of
the configuration space obstacles, can indeed approach m?, the complexity of the
EDR regions is roughly linear in n, (and therefore merely quadratic in m). This
is probably due to the structure of the projection regions. Each projection region
contains free-space edges and obstacle edges. Because the free-space edges of any
projection region are in at most two orientations, it is difficult to get n% crossings
of edges in free-space. This difficulty is exacerbated by the fact that the obstacle
edges in two intersecting projection regions will be identical. Thus the only source
of quadratic intersection complexity can be free-space crossings of projection edges.
While superlinear intersection complexity seems unlikely for projection regions, it
remains open to prove a linear bound.

6.4. Critical Slices: An Introduction

While upper bounds for the complexity of planning in a single slice are estab-
lished, the complexity of planning with many EDR slices is less well understood.
Two questions remain:
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¢ How many slices are necessary for EDR planning?
e  What is the complexity of propagating the projection regions across slices?

The key to answering the first question may be addressed using critical slices.
The idea is as follows. Consider the gear experiment, where gear A can translate
and B has unknown orientation. Initially, assume that the orientation of B is fized,
so it cannot rotate when pushed by A. Let a denote the orientation of B. Then
consider the three-dimensional backprojection of G in G. By taking z-y slices of
the backprojection at different values of a, it is clear that generically, as a varies,
the topology of the backprojection remains unchanged. Similarly for the forward
projection or weak backprojection: The topology of two backprojection slices are
the same if no edges or vertices appear or disappear at a values between them.
At singular values of a, however, a small change in a will result in a change in
the topology of the backprojection slice. Such a change is called a “catastrophe.”
These singular values are called critical a, and the generic values of a are called non-
critical. Two critical values are called adjacent if there is no critical value between
them.

The idea is that the planning algorithm can compute a backprojection slice at
each critical value of . In addition, between each adjacent pair of critical values,
the algorithm computes a slice at a non-critical a. This slice of the backprojection
at that value is representative of a continuum of intermediate non-critical slices.
Between critical slices, in addition, it is clear how the surfaces of the backprojection
change. The obstacle vertices of the backprojection, for example, move along curved
edges that are algebraic helicoids. The obstacle edges are developable algebraic
surfaces. The equations of the surfaces are found in [Brooks and Lozano-Pérez].
The equations of the edges, as parameterized by orientation, are found in [D1]. No
additional vertices may be introduced except at critical values. The free-space edges
of the backprojection remain fixed across a between critical values. What we obtain
is a complete combinatorial characterization of the 3D backprojection in G. It can
be used to derive precise, combinatorial algorithms for decision problems about the
backprojection.

For example, suppose we wish to decide whether a start region R is contained in
the 3D backprojection. (That is, to decide whether the goal is guaranteed reachable
from the start region). This problem has the following application. By deciding
the containment question, guaranteed strategies can be planned. This is because
backprojections approximate preimages. Thus by deriving upper bounds on the
containment problem in the backprojection, we obtain bounds for the planning of
guaranteed strategies. In turn, by obtaining bounds on the guaranteed planning
problem, we can gain insight into the complexity of EDR planning.

Suppose R has the form U x J for U a polygon in the plane. Then U must
be tested for containment in each critical and non-critical slice as defined above. In
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addition, we must ensure that U lies inside the backprojection as the boundaries
of the backprojection move with a. Since the equations of these surfaces are alge-
braically defined, we simply test them for intersection with the boundary edges of
U.

The next question is: how many critical values of a are there? In the following
lemma, when we speak of edges of the backprojection, or convex configuration space
obstacle (CO) vertices, we mean edges of the backprojection in a slice, or a vertex
which is convex in a slice. Of course these edges and vertices sweep out surfaces
and curves (resp.) as a changes.

Lemma: Let C be R?, J be the circle S*. Suppose m is size of the input in real-
space edges so that n = O(m?) is the number of generalized configuration space
constraints. Let G have constant size, and Bg(G) be the backprojection of G in
C x J as above. Then there are O(n®) critical values of a € J for Be(G).

Proof: We enumerate the various types of critical values:

A. First, an « value is (potentially) critical when a new edge or vertex is intro-
duced into, or disappears from, the union of the configuration space obstacles.
This can introduce a topological change in the obstacle boundary of the back-
projection. If A and B are convex, then as a varies, there are potentially m?
topological changes in the configuration space obstacles. These generate O(m?)
critical values of a, which we call obstacle-critical. However, when A and B are
non-convex, there can be O(m®) obstacle-critical values. This bound arises as
the number of critical values for an arrangement of m? surfaces in dimension
d=3.

B. Inaddition, an a value can be critical if the determination of sliding vs. sticking
on an edge can change there. A change in sliding can result in the introduction
or deletion of a free-space constraint, and hence change the free-space boundary
of the backprojection. This occurs when an edge of the friction cone on some
edge becomes parallel to an edge of the velocity cone of control uncertainty.
Now, as a configuration space edge rotates with «, its friction cone rotates with
it. Thus as «a changes, a friction cone edge can be parallel to a velocity cone
edge at most 4 times. Hence there can be at most 4n values of a at which the
sliding determination changes. These values are called sliding-critical.

C. Next, the topology of a slice of By(G) can change when a convex vertex of a
rotating configuration space obstacle edge touches a free-space edge of the back-
projection. These a-values are called vertez-critical. Now, each free-space edge
of a backprojection slice is anchored at a convex configuration-space obstacle
(CO) vertex. Vertex-criticality occurs when a free-space edge of a backprojec-
tion slice joins two CO vertices in that slice. The edge then lies in the visibility
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graph of the generalized configuration space obstacles in that slice. Now, we
can obtain a bound of O(m®) on the number of vertex-critical values as fol-
lows. Introduce an additional O(m?) constraints, each anchored at a convex
CO vertex and parallel to the left or right edge of the velocity cone. These,
together with the O(m?) obstacle surface constraints form an arrangement of
O(m?) surfaces in 3 dimensions, yielding a total of O(m?®) critical values. This
bound may be improved to O(m*), by observing that each vertex-critical value
is generated by a pair of convex CO vertices, and that there exist O(m?) such
vertices.

D. Finally, an edge-critical value occurs when a configuration space edge, rotating
with a, touches a free-space backprojection vertex. Free-space backprojection
vertices are formed by the intersection of two free-space edges of the backpro-
jection. Each free-space edge of the backprojection is anchored at a convex CO
vertex. The number of edge-critical values is O(m?®), because each is generated
by a CO edge, and two convex CO vertices (one per free-space backprojection
edge).

Finally, we observe that these bounds are additive, and that n is O(m?). 0O

Comments: We conjecture that the bounds on edge-critical values (D) can be
improved to O(m*). One approach to proving the improved bound is to identify
each free-space vertex v of the backprojection, with the right generating CO vertex.
Follow the locus of v as a varies. It remains to show that the locus is piecewise-
smooth, and touches each CO edge at most a fixed number of times.

We can now address the complexity of deciding containment in the backpro-
jection. In this discussion we address only the combinatorial complexity, and not
the algebraic complexity, of the decision procedure. Here is what this means. We
have obtained a combinatorial upper bound on the number of critical values of a.
Once rotations are algebraically parameterized, these critical values are, in fact, all
algebraic; that is, in general, a critical value of a will be an algebraic, but not nec-
essarily rational number. However, the plane sweep algorithm (which is discussed
in more detail in chap. VI) operates on rational numbers. Hence to obtain a deci-
sion procedure one must first approximate a by a “nearby” rational number q. By
“nearby”, we mean that the approximation must be known to be sufficiently close
so that the decision procedure will give the correct answer for containment. As the
approximation gets closer, the rational numbers will become more “larger” (i.e., as
a quotient of two integers, the integers will become larger), and the plane sweep
algorithm will run correspondingly slower. To choose ¢ algorithmically, one might
make use of a “gap” theorem, such as in [Canny].
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Theorem: Let U be a polygon of constant size, C be R2, J be S, By(G) be the
backprojection of G in C x J as above. Suppose G 13 of constant size. Then there
ezists an algorithm deciding the containment of R =U x J in Bg(G) in time

O(n*logn).

Proof. O(n?) slices of the backprojection can be computed in time O(n*logn). Now,
to test for containment of U in the 3D backprojection region between two adjacent
critical slices will take time O(n), since the backprojection has size O(n). The cost
of deciding the containment of U between successive adjacent pairs of n?® slices,
each of size n, is O(n?). Since the time for computation of the slices dominates,
this yields total complexity O(n*logn). O

Some comments are in order. First, our algorithm is naive, in that each back-
projection slice is recomputed from scratch. In fact, this extra work is unnecessary.
At a critical value of a, very few aspects of the topology of the backprojection will
change. That is, typically, only one or two edges will be introduced or disappear
at any critical value. We can make this notion precise as follows. If « is a generic
singularity, then exactly one edge or vertex will appear or disappear there. Hence,
for example, we can ensure that all critical values are generic singularities with
probability one by subjecting the input to small rational perturbations.

Suppose that a backprojection has been computed in a critical slice at a. Then
to compute a backprojection in a nearby non-critical slice at a + €, we merely need
to update the portion of the backprojection boundary that was critical at . This
requires only constant work: only one edge or vertex must be changed to derive a
backprojection in the new slice! It seems reasonable to conjecture that this tech-
nique would yield an algorithm of complexity O(n® logn) for deciding containment
in a backprojection.

Finally, it appears that there are many problems in which the number of critical
values fails to achieve the theoretically possible n® bound. This is because charac-
teristically, there are orientation restrictions; typically, even with model error, B is
not allowed to rotate freely. In other cases, there are symmetries. For example, in
the gear case, even though B is allowed to rotate freely, it is unnecessary to consider
n? slices since due to symmetry the configuration spaces “repeat” periodically.

6.4.1 Comparison with Lower Bounds

From a theoretical point of view, this result has the following interest. Con-
sider the one-step compliant motion planning problem in 3D amidst precisely known
polyhedral obstacles. This problem may be addressed via 3D backprojections in R2.
[CR] have shown that deciding containment in such a 3D backprojection is NP-hard.

77




In particular, such backprojections can have an exponential number of faces. How-
ever, in the previous theorem we demonstrated a special class of 3D backprojections
that have only O(n*) faces, along with an efficient algorithm for deciding contain-
ment. This special class of backprojections arises in the presence of model error.
Specifically, they arise when C is &2, J is one-dimensional, and no motion is per-
mitted across J. In this case, the non-holonomic constraints that keep the robot
within one slice essentially disallow the kind of fanning out and branching that
[CR] discovered in ®3. Thus, our polynomial-time algorithm identifies a tractable
subclass of the 3D motion planning problem with uncertainty. This subclass is also
interesting in that it arises naturally in planning with model uncertainty.

6.4.2 Issues in the Critical Slice Method

The critical slice method represents a theoretical algorithm. It has not been
implemented in LIMITED. It was described here to give some characterization for
bounds on planning with model error. In particular, it gives a precise, combina-
torial description for the 3D backprojection in ®? x S!, and an exact algorithm
for deciding containment. The containment algorithm directly addresses the ques-
tion of planning guaranteed strategies, since a backchaining preimage planner can
be constructed by approximating preimages using backprojections. The termina-
tion condition for such a planner is when the start region is contained within a
backprojection.

Most important, the critical slice method attempts to put the slice techniques
used in LIMITED on a firm mathematical footing.* It provides a principled way—a
specific method—for choosing which slices to consider, a bound on how many slices
are required, and a conservative algorithm for deciding containment.

Much work remains however:

e We have only addressed deciding the containment problem in a precise com-
binatorial fashion. Generalize to computing set-differences and to deciding
their distinguishability—that is, deciding G vs. H distinguishability—using
the critical slice approach.

e J is one dimensional in our discussion. Generalize the critical slice method to
multi-dimensional model error.

e This analysis addresses the complexity of verifying an EDR strategy, but does
not speak to the complexity of the search. What is the complexity of finding
a strategy or determining that none exists? This issue will be attacked in a
later section, by developing a combinatorial description of the non-directional
backprojection.

4Note that slice methods have been studied in other domains. See, for example, [Lozano-
Pérez, Schwartz and Yap, Erdmann].
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N

e Derive bounds on deciding containment after relaxing the no-pushing restric-

tion and allowing motion across J.

Let us say a few words about the last point. Suppose now that B can rotate
passively when pushed. Hence motion across J is possible, and projection regions
must be propagated across slices. For example, a forward projection can begin in
free-space in one slice, contact an obstacle edge generated by B, rotate across J
into another slice, and fly off the edge into free-space in that slice. Hence forward
projections must be propagated across slices. This process was described above
in sec. 6.1. The obvious question is: What is the complexity of propagating the
projection regions across slices? The complexity of one step of the propagation is
not difficult to derive. For example, consider the forward projection. There are
O(n) obstacle edges in the forward projection in a planar slice. For each edge,
a constant time quasi-static analysis is performed to determine whether pushing
against that edge can cause rotation of B, that is, motion across J. See fig. 38.
If so the forward projection must be propagated along that algebraic surface into
an adjacent slice. This can result in a propagated start region of size O(n) in the
adjacent slice. This start region is used to compute a new forward projection in that
planar slice. See figs. 39 and 40. This propagated forward projection must then
be unioned with any other forward projections within that slice. See fig. 43, which
is a detail of fig. 42. When does the propagation process terminate? A correct
termination condition is: Terminate propagation when any propagated start region
lies within an existing forward projection.

Now while the complexity of each of these steps is known, it is not clear how
long it takes for the propagation process to terminate. In particular, results of [CR]
suggest that 3D forward projections may even have exponential size.> Experimental
evidence—the backprojector of [Erdmann]—concurs. Furthermore, when propaga-
tion is permitted, more slices may be required. For example, it is conceivable that a
path within the forward projection may break contact and fly off into a slice which
is between the chosen critical values. In other words, propagation may increase the
number of critical values. The additional critical values can occur as follows. The
plane sweep algorithm is only correct when the velocity cone is smaller than the
friction cone on any edge (see chapter VI). Hence we will assume it is convex. Then
contact can be broken when the inner product of an extremal vector in the velocity
cone by an outward-facing edge normal is positive. Hence the zero-crossings of this
dot-product are potentially critical values; there are O(n) such values. While this
is a start, the complexity of computing projections when pushing can cause motion
across J requires further study.

5[CR] provide an exponential lower bound for the size of the forward projection in 3
amidst polyhedral obstacles. It remains to determine the applicability of their proof in
the non-holonomic (model error) case.
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This completes the informal discussion of the one-step EDR planner in LIMITED.
Later in the thesis we will discuss the details of the plane-sweep algorithm and how
LIMITED implements the EDR theory to compute multi-step strategies. In the
next section, we will discuss a number of theoretical and practical issues relating to

the construction and implementation of the one-step EDR planning algorithms in
LIMITED.
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Fig. 32. The configuration space for the gear example (fig. 2) at one a-slice
(a =0) of G. The goal region is the “valleys” of the cspace obstacle. The start
region is the diamond to the lower left. For figs. 32-39, B is not allowed to
rotate, so no motion across J is possible.
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Strong backpre fection

Fig. 33. The strong backprojection in slice a = 0 of the goals in fig. 32, assuming
that B cannot rotate. In all these experiments, the coefficient of friction is taken

to be .25.
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Fig. 34. The weak backprojection of the goals in slice a = 0.
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Fig. 35. The forward projection of the start region in slice a = 0.
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Fig. 36. The forward projection of the start region in slice @ = 0. Note the
degenerate edges due to sliding.
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Fig. 37. The weak minus the strong backprojection.
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Fig. 38. The Ho region (the forward projection minus the weak backprojection).
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Fig. 39. The H, region (sticking within the weak but not strong backprojection).
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Fig. 40. Now assume that B can rotate when pushed (for figs. 40—48). Here we
show the region within the forward projection (fig. 35) from which it it possible

to exert positive torque on B. This region is called the differential forward
projection across J in the +a direction.
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Fig. 41. The differential forward projection is propagated to the next slice in
the +oa direction. Here we take its forward projection in the next slice.

90




Fig. 42. Another view of fig. 41.
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Fig. 43. In the next figures, B is permitted to rotate when pushed. The pro-
jection regions are computed across J by the propagation and union algorithm.
We show four slices of generalized configuration space, at a = 0°,6°,12°, and
18°. The projections take into account possible rotation of B under pushing.
Here the weak backprojections across slices are shown. The “spikes” represent
regions from which jamming of the gears must occur.




1
,’i‘
Pt
|
|
® ®
@ 2
s .
i
L
e o
sil3>
° o ia‘
] " !g
L] c'l‘
i —{i}

Fig. 44. The forward projections of the start region, propagated and unioned
across slices.
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| Shaded region shows propagetion of forward projection from slice alpha = 18

Fig. 45. Detail of the forward projection for a = 12°. Note the effect of propaga-
tion in the clockwise-most region of the forward projection. This region can only
be reached when rotated to from neighboring slice. The shaded region shows the
portion of the forward projection which has been propagated by pushing from
slice a = 18°.
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Fig. 46. The weak minus strong backprojections, propagated and unioned across
slices.
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Fig. 47. The Ho region (forward projection minus weak backprojection) across
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Fig. 48. The H, region (sticking regions within the weak but not strong back-
projection) across slices.
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7. Implementing One-Step EDR Planning in LiMITED

In this section, we discuss a number of theoretical and practical issues relating
to the construction and implementation of the one-step EDR planning algorithms
in LIMITED. This discussion is the sequel to the informal description of one-step
EDR planning in section 6. While these issues arise in implementing an EDR
planner, they illustrate several interesting theoretical and practical points. They
also introduce a series of more advanced concepts that are required to make the
EDR theory rigorous.

7.1. The Search for a Strategy

Some comments are in order about the search for a commanded motion in
LIMITED. First of all, the commanded motion generator is obviously trivial. The
initial commanded motion LIMITED tries is obtained by subtracting the centroids
of the start and goal regions. LIMITED then searches outwards on either side of this
direction. Obviously, such a search strategy is not complete. Later, we will discuss
precise, combinatorial algorithms for a complete search strategy using critical slices
of the non-directional backprojection.

Second, since the search is relatively blind, it may take a while to converge. A
better technique for generating commanded motions to try might involve using a
path-planner with no uncertainty to suggest an initial path. However, the focus of
this research is not on optimizing the search algorithm in the planner, but rather
on testing the geometric characterization of EDR.

It is often possible to generate planning strategies that satisfy the EDR axioms
trivially by always failing. For example, consider a strategy that moves directly away
from the goal. While such a motion may be useful in multi-step EDR strategies
(see below), we wish to disallow them for one-step EDR. This is done as follows:
on one-step planning LIMITED discards all strategies whose forward projection does
not intersect the goal. This heuristic ensures that the strategy has at least some
chance of succeeding.

A better approach might be to consider the size of the intersection of the goal
and the forward projection. Such a technique might be used to generate probabilisti-
cally optimal strategies. In particular, it would give a criterion for choosing between
two EDR strategies. For example, it might be possible to place some probability
distribution over the forward projection. Then the intersection could be integrated
with respect to this distribution to determine the probability of reaching the goal.
In addition, different sized velocity cones could be employed to generate forward
projections of varying likelihood. To be more than a mathematical abstraction, such
a technique requires a better understanding of the probabilistic characteristics of
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generalized damper control than are currently available; it is a promising direction
for future research.

7.2. Termination using Contact and the Role of Time

In polyhedral environments with a bounding box, sticking termination is suf-
ficient to ensure that all pure translations eventually terminate [Buckley]. Let us
assume the sufficiency of sticking termination for the discussion below.

Recall step (4) of algorithm IEDR in sec. 6.2:

4. Let 0G and OH denote the set of obstacle edges within G and H, resp. De-
termine whether the regions OH and OG are distinguishable using sensors. If
30, then vy yields one-step EDR strategy which recognizably terminates on an
obstacle edge in G or H. The termination condition is contact with or sticking
on a surface in G or H.

If the termination condition can be “contact” as computed in step 4 then unless
G U H can be recognized using position and force sensing alone, a termination
predicate with time-out must be employed. This is because it is insufficient to
terminate on first contact; we must first know that the contact lies within G U H.
Ensuring that this will be the case requires indexing the forward projection by time.
(See [Erdmann] for a discussion of time-indexed forward projections). However if
the contact regions of G and H are distinguishable, then so are the possible sticking
regions, since these are contained in the contact regions. So if G and OH are
distinguishable using sensors, then so are pushy(G) and pushy(H). Hence v} yields
a one-step EDR strategy which recognizably terminates by sticking in pushy(G) or
pushy(H).

Thus if the distinguishability condition in step (4) is met, then the motion can
be terminated either based on contact, once enough time has elapsed to ensure that
G U H has been entered, or using sticking, if the run-time executor does not have a
clock. In fact, this is something of a relief, because time-indexed forward-projections
appear hard to compute.

If sticking is not sufficient to terminate all motions, then termination predicates
with time-out can be employed to ensure that all motions terminate somewhere.
This is discussed further in sec. 8.3.

7.3. Employing History in EDR Planning

The forward projection was introduced by [Erdmann] to formalize the role of
history in [LMT] guaranteed plans. He formalized the notion that by knowing where
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a motion began, a planner can obtain constraint on where the motion can terminate.
This constraint can be very useful both in planning guaranteed and EDR strategies.
We now describe two techniques where LIMITED uses history to constrain planning
and aid distinguishability.

Throughout the rest of section 7, the goal G, the EDR region H = Ho U H,,
and the forward projection Fy(R) are all taken to lie in phase space. That is, they
are position and velocity sets.

7.3.3 The Role of History in Constructing H,

In general, LIMITED approximates preimages using backprojections. There
are a few interesting points about computing this approximation. Recall that H,
denotes sticking regions within the weak minus strong preimage. To see that H,
is contained within Fy(R), we must use the fact that preimages in fact depend on
the start region R (see [LMT]), and that weak and strong preimages are contained
within Fp(R) [Erdmann]. We postpone further discussion of this point until sec.
8.1.

Now let K, denote sticking regions within the weak minus strong backprojection.
Now we ask: can H, intersect the strong backprojection of G, Bg(G)? The answer is
no. If z is in H,, then sticking is possible there. Hence z cannot be in By(G), since
motions from z can stick there instead of reaching G. Thus, in particular, H, does
not intersect the set difference formed by the strong backprojection minus the strong
preimage. Thus H, C K, since backprojections are “upper bounds” on preimages.®
Thus K, is a conservative approximation to H,. (By conservative, we mean that
while the approximation may be larger than H,, an algorithm approximating H,
by K, will generate correct plans). However, we also have the inclusion

H, C F43(R)N K,,
where R denotes the start region. This inclusion derives from the fact that, given
that the motion must start in R, a strong preimage of G is contained within the
intersection of the forward projection Fy(R) and the strong backprojection By(G).
A similar containment holds for the weak preimage with respect to the forward
projection and the weak backprojection Wy(G). Hence, to construct an upper
bound on H,, we are simply required to compute all sticking regions within

Fo(R) N (Wy(G) — By(G)).
The advantage of using this tighter approximation is that H, must be distin-
guishable from G in order for 8 to yield an EDR strategy. Tighter approxima-

6By “upper bound” we mean that the backprojection (under @) contains the preimage
(under 8), for any goal.
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tions heuristically result in a greater likelihood of distinguishability. Furthermore,
the approximation is fully algorithmic, since projections and set differences can be
computed by the exact plane-sweep algorithm described in sec. 6 .

The dependence of the preimage on R was noted first in [LMT] and later
developed by [Erdmann], who also determined the inclusion of the preimage within
the intersection of the forward and backprojections. This dependence is discussed
in some detail in chapter III.

7.3.4 The Role of History in Distinguishing H from G

There is another case where intersection with the forward projection yields an
advantage in distinguishability. In the development of EDR theory, we found that in
an EDR strategy, it was necessary that H and G be distinguishable. This condition
is supplanted by a tighter one in LIMITED, requiring only that H and

Fo(R)NG
be distinguishable. The justification is that it is unnecessary to be able to distinguish
between arbitrary points of G and H. Instead, it suffices merely to distinguish
between the reachable points. Again, this technique shrinks the size of the goal
regions that must be distinguishable from H, which heuristically makes it easier
for a strategy to meet the EDR criteria. Note that H does not need to be shrunk
further, because it already lies within the forward projection.

7.4. A Priori Push-Forwards Based on Sticking

The push-forward operator pushy(-) is a restricted implementation of the gen-
eral push-forward described in sections 4 and 10. It is called the a prior: push-
forward based on sticking. The difference is as follows. The theoretical general
push-forward “decides” where the motion should terminate so that the motion
strategy will terminate recognizably, the @ priori push-forward computes where
the motion will terminate given that a prior: the termination condition is sticking.

7.5. Sticking as a Robust Subtheory of EDR

In the abstract EDR theory, one envisions the run-time termination predicate
performing whatever computations are necessary to terminate a motion recogniz-
ably in G or H. That is, in principle, the planner decides what termination con-
ditions are appropriate for a successful EDR strategy, and encodes them into the
motion strategy. Of course, it is also the responsibility of the planner to verify
that this encoding will always result in a distinguishable termination. In short, the
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abstract EDR theory can employ the full power of the [LMT] preimage framework
to generate motion strategies.

However, LIMITED employs only certain restricted termination conditions, as
we saw above. In particular, sticking is used in most experiments. This restricts the
class of strategies LIMITED can generate. The restriction requires some justification,
and that is the purpose of this section.

First, recall that in polyhedral environments with a bounding box, sticking
termination is sufficient to ensure that all pure translations eventually terminate
[Buckley]. In general, in this thesis we have made the heuristic assumption that
motions can eventually be terminated via sticking. Failing this, we also entertain
the weaker assumption that if sticking is insufficient, then time can be employed to
wait until G U H has been achieved before termination; see sec. 8.3.

To analyze the structure of sticking termination, let us introduce the following
notation. If the robot recognizably achieves G U H, this means that the run-time
executor can determine that G or H has been achieved, but cannot necessarily tell
which of G or H has been entered. If the robot recognizably achieves { G, H }, then
it can further distinguish which of G or H it has reached. GU H is called the union
while the set notation is called the distinguishable union.

Throughout this section we assume without loss of generality that the goal G
is contained within the forward projection (see sec. 7.3 for justification). If this is
not the case, then intersect them to obtain a new goal.

LIMITED tries to decompose this problem—of ensuring that all trajectories
terminate recognizably in { G, H }—into two subproblems. The first is to ensure
that the motion in fact terminates in G U H. That is, the problem is to determine
that at least one of G or H has been achieved, although the robot may not know
which. The second problem is to distinguish between G and H, once G U H has
been achieved.

Note that the first problem requires distinguishing between G U H and its
complement. Here is the key point:

e The construction of H guarantees tautologously that with sticking termination,
G U H will be recognizably achieved when the motion terminates. That is, with
sticking termination, no motion can terminate outside of G U H.

This resolves the first subproblem. Thus
o  With sticking termination, all candidate one-step EDR strategies eventually

terminate recognizably in GU H (but not necessarily in { G,H }). Of these, all

valid EDR strategies can distinguish between G and H after termination, and
hence recognizably terminate in { G, H }.

The second subproblem is how to distinguish between G and H once G U H
has been achieved. In developing the [LMT] framework for planning guaranteed
strategies, [Erdmann| developed an elegant formalization of the question, “Using
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sensors and history, when can the termination predicate decide that a motion has
recognizably entered a goal G3?” The answer was as follows. Let R be the start
region. The forward projection, Fy(R) captures the notion of history: it is all
positions and velocities that can be reached given that the motion started in R. At
a particular instant ¢ in time, let B,,(t) and B.,(t) be the sets of possible positions
and velocities. These are the sensing uncertainty balls about a sensed position and
velocity in phase space at time ¢. Thus sensing provides the information that the
actual position and velocity must lie within the set By(t) X Bey(t). The forward
projection further constrains the actual position and velocity to lie within Fy(R).

Thus the termination predicate can terminate the motion as having recognizably
reached G when

Fo(R) N (Bep(t) x Beo(t)) C Gg. (%)
Now, when is it the case that the termination predicate can distinguish which
of G or H has been reached? Exactly when (x) is true for Gg in { G, H }. However,
in our case, sticking termination guarantees that the actual position and velocity
lie within G U H. Furthermore, G U H is a subset of the forward projection, and
G and H are disjoint by construction. The forward projection provided no further
constraint in distinguishing between G and H. Thus history plays no role in the
run-time distinguishing actions of the robot executive; history has been pre-encoded
into the structure of H. Hence, we can predict that the run-time executor can
distinguish which of G or H has been achieved when the planner can predict that G
and H are distinguishable using sensors alone. A procedure—albeit not completely
general—for deciding this question was described in sec. 6.2.

7.5.5 Generalizations

There are several possible generalizations of these termination techniques. First,
it may be possible for the run-time executor to use time to ensure that the motion
terminates in G U H. That is, forward projections may, in principle, be indexed by
time. Hence in (*), Fy(R) is replaced by Fy(R,t), which is typically much smaller.
Fy(R,t) denotes the set of positions and velocities that are possibly achievable at
elapsed time ¢, under motion 8, given that the motion started in R. The termination
predicate in this case monitors a clock, in addition to position and velocity sensors.
However, in this case, history (by which we mean Fy(R,t)) could be employed
to distinguish G from H, even though the motion had terminated recognizably in
GUH. The reason for this is that the time-indexed forward projection has not been
pre-encoded into the structure of H. That is, H was constructed using the timeless
forward projection, which the union of all time-indexed forward projections. Hence,
we can summarize these observations as follows:

103




o If a termination predicate without time uses sticking to terminate the motion,
then distinguishing G from H is a history-free decision. However, for a termi-
nation predicate with a sense of time, the decision 13 not history-free.

Thus sticking subtheory does not preclude more general termination techniques
based on position, force, and time sensing. However, two computational issues be-
come more difficult. First, sticking termination is a robust method for ensuring
termination in G U H. With time termination, or more general position/force ter-
mination criteria, it is more difficult to ensure termination in G U H—although
admittedly these criteria are more powerful. Second, after sticking termination, de-
ciding between G and H is history-free. With more general termination predicates,
history can provide extra constraint in distinguishing between G and H.

Finally, note that [Buckley] recognized the value of sticking termination when
implementing an [LMT] planner for guaranteed strategies in ®3. His planner used
sticking termination. In particular, he provided certain criteria for guaranteeing
that a strategy eventually terminates in sticking. Buckley’s criteria amount to
ensuring that the environment is finite polyhedral, within a bounding polyhedral
box.

7.5.6 Forward vs. Backward Chaining

One obvious disadvantage of sticking termination is that it is not complete. For
example, a planner employing sticking termination exclusively will not be able to
find strategies that require “stopping in mid-air”, even when such strategies would
be feasible given the position sensing accuracy of the robot. Sticking termination
requires all strategies to “run aground”, that is, to be in contact (and in fact,
sticking) at termination time.

With more general position/force/time termination criteria, the requirement
that motions must terminate in contact is relaxed. However, a forward-chaining
planner (such as LIMITED) is still left with the problem of deciding where a motion
should terminate in a multi-step strategy. That is, the decision problem involves
existential quantification not only over the commanded directions, but also over
all subsets of the forward projection corresponding to possible push-forwards. Put
simply, a forward-chaining planner must not only guess the direction to command a
motion, but must also guess where it terminates, before chaining ahead to the next
motion. While the space of commanded motions may be realistically quantized and
searched, the space of push-forwards may not be searched in this manner.

While LIMITED is a forward-chaining planner, the problem of existential quan-
tification over the push-forward is finessed by restricting LIMITED to a few very
simple termination conditions (there are only three; see sec. 6.2), one of which is
sticking. Given these termination types, it is possible to generate the corresponding
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a prior: push-forwards, and test them to see whether they yield an EDR strategy.
For example, the push-forward for contact termination is simply the obstacle edges
in the forward projection. The push-forward for sticking termination is the a prior:
push-forward based on sticking, which was discussed above.

More generally, it may be possible to define a parameterized family of termina-
tion predicates, each with an associated a priori push-forward. Each push-forward
could then be tested for distinguishability. For example, consider the class of ter-
mination conditions

{ “Terminate after t seconds.” |t > 0}

An associated family of push-forwards might be the time-indexed forward projec-
tions

{FO(R’t)ltZO}

However, the existential quantification over the push-forward in the decision
problem for EDR planning is, in fact, an artifact of forward-chaining. We can see
this by comparing and contrasting backchaining vs. forward-chaining in preim-
age planners for guaranteed strategies. In a backward-chaining planner, this extra
computation is eliminated. The difference is as follows. Consider how a guaranteed-
strategy preimage planner would construct a motion strategy 6,,...,8, to achieve
a goal G. 6, is the first motion in the plan, 8, is the last. Consider the difference in
how a forward-chaining planner and a backchaining planner would compute steps
9,’ and 9,‘+1:

e A forward-chaining planner must calculate where motion 8; will terminate,
since this termination region is the start region for the next motion, 6;4;.
Since this calculation involves some choice, it amounts to a formulation of
the decision problem with existential quantification over the push-forward of
motion ;. In a back-chaining planner, where the motion §; must terminate has
already been computed: it is the next preimage with respect to 6,1, namely
P9i+1 (P0i+2(' o (Pon (G)) e ))

Thus we have seen why a back-chaining planner can (in principle) be complete
for guaranteed strategies, while a forward-chaining planner cannot, unless it guesses
push-forwards.

This suggests the following approach to EDR planning:

e Use a back-chaining planner to find a guaranteed strategy for part of the start
region. Then extend it to an EDR strategy using forward-chaining verification.
This appears to be a reasonable heuristic approach. However, for EDR plan-

ning, it is still merely a halfway measure. While it removes from the EDR planner’s
responsibility the decision of where to terminate a motion within a subgoal, the

105




problem remains of deciding where within the EDR region H a motion should ter-
minate. This is one of the key theoretical questions in EDR; it is addressed at
some length later. The computational solution seems to involve quantifying over
push-forwards even when a combination backward- and forward-chaining planner
is envisioned. LIMITED uses only forward-chaining for this reason. However, the
combination back- and forward-chaining approach deserves more exploration. In
particular, the backchaining first stage could be used to suggest and guide the
search for good candidate EDR strategies. Randy Brost has reported” a backchain-
ing planning algorithm which can generate multi-step plans in which each motion
is a one-step EDR strategy.

"[Personal Communication]. See also Brost’s forthcoming Ph.D. thesis.
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8. The Preimage Structure of EDR Regions

Our characterization of the EDR regions—and of EDR strategies in general—
has been somewhat informal up to now. This is because we have not employed the
full power of the preimage framework [LMT] in developing the model. In particular,
we have not yet tied together the role of history and the definition of the EDR
region H. This section remedies this deficiency. Recall our characterization of H
as Ho U H,. Our definition of phase-space, and of the sticking region H, must be
be made more precise. That is the second goal of this section: to link the preimage
concepts for representing strategies, with the phase-space concepts for representing
error detection in generalized configuration space.

First, we briefly introduce some preimage notation. A formal review of [LMT,E]
preimages can be found in an appendix. A key notion deals with recognizable termi-
nation in a collection of goals. We can illustrate this notion using a familiar example:
for a goal G and an EDR region H, { G, H } is a natural collection of goals to con-
sider. We know that an EDR strategy recognizably terminates in some member
of the collection. Below, we give a formal notation for this concept. However, the
question of distinguishable collections of goals also arises in planning guaranteed
strategies, as we shall see.

8.1. On the Recognizability of EDR regions

In section 7, we elaborated on the role of history, time, position-sensing, and
force-sensing in motion termination and in distinguishing G from H. The role of
history must be formalized further using the preimage framework. To this end; we
now formalize the distinguishability requirements for G and H using preimages.

In section 2.1 it was observed that if the termination predicate can distinguish
between the goal G and the EDR region H, then H is a good EDR region and an
EDR strategy was in hand. Formally, we write this recognizability constraint as®

Por({G,H})=R. (3)

We say that the preimage (3) is taken with respect to R. (3) means that the
(strong) preimage of the set of goals { G, H }, with respect to commanded velocity
vg, is all of R. When we have a set of goals, the termination predicate must return
which goal (G or H) has been achieved. This is different from Py r(G U H), which
means the termination predicate will halt saying “we’ve terminated in G or H, but I
don’t know which.” The region R appears on both sides of (3) because the preimage
depends on knowing where the motion started. This is a subtle point, see [LMT,E].

8 We view Py r as a map. In the informal development we denoted the image of this
preimage map by P.
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Thus solving preimage equations like (3) for R is like finding the fixed point of a
recursive equation. Here, however, we know R, H, and G, so (3) is a constraint
which must be true, rather than an equation to solve. Presumably (3) is easier to

check than to solve for R; see [LMT,E].

With this understood, we can now characterize P and R' precisely (see fig. 26).
This requires specifying the start regions :

R' = Ps,r(G) (4)
P = Py 5, (r)(G). (5)
P is analogously defined by adding “hats” to the P’s in (5).

8.1.1 The Most General Preimage Equation

We now introduce the most general form of the preimage equation. Suppose
{Gs } denotes a collection of goals, and { R, } is a collection of start regions. Recall
# denotes the direction of the commanded motion. Most generally, the preimage
equation is

Py (r.3({Gs}) ={Ra}.

This says that if the run-time executor knows that the robot is in some particular but
arbitrary start region R in the collection { R, }, then if velocity v} is commanded,
then the termination predicate is guaranteed to achieve some goal G in { G4 }, and,
furthermore, it can recognize which goal has been achieved.

In chapter III, a detailed example using preimages is worked out. There, we
solve a particular motion planning problem—grasp centering— with model error
by solving the preimage equations. This example provides an illustration of plan-
ning using preimages. Both guaranteed and EDR strategies for this problem are
developed.

8.2. The Structure of Goals in Phase Space

In this section, we examine the structure of phase space goals in some detail,
using the general form of the preimage equations described above.

A goal in phase space is a region in Position-space x Velocity-space. A phase
space goal is attained when the actual position and velocity can be guaranteed to
lie in the region. We have actually been using phase space goals all along, since the
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Fig. 49. Position-space is one dimensional. Therefore phase space, which is
Position-space x Velocity-space, is 2-dimensional. The velocity “axis” is shown
vertically. m projects a position and velocity to the position. We lift the strong
preimage P to a cylinder 1[’1(P). We also obtain the cylinders over the weak

but not strong preimage P — P, and over the forward projection outside the
weak preimage, F' — P.

velocity sensors are used to recognize goals. The introduction of arbitrary phase-
space goals is problematic, see [Erdmann]. Here the goals are sufficiently simple
that these dangers are avoided. '

We begin with the simpler example. In fig. 26 we proposed a partition of the
forward projection F' of R into three regions:

Strong preimage, P
Weak but not strong preimage, P — P
Forward projection outside the weak preimage, F' — P.
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Here, the partition was “good” for the purposes of EDR for all velocities, and
we could let H be the forward projection outside the weak preimage. We can
extend this partition into phase space as shown in fig. 49. There is a natural
projection 7 of Position-space x Velocity-space onto Position-space which sends a
pair (z, velocity-at-z) to its position z. Given a region U in position space, we can
lift it to phase space to obtain 7~ (U), the cylinder of all velocities over U. A point
in 771(U) is (z,v) where z is in U, and v is any velocity at z.°

We lift the partition by applying the inverse projection map to obtain a parti-
tion of phase space:

Cylinder over strong preimage, 7~ !(P)
Cylinder over weak but not strong preimage, 7~(P — P)

Cylinder over forward projection outside the weak preimage, 7~ (F — 13)

See fig. 49. Now, the cylinder over G and the cylinder over F' — P are the new goals
in phase space. The latter cylinder is the phase space EDR region for fig. 26. Both
are simply cylinders: all velocities are legal. 1°

Now we must deal with the tricky sticking region H, in fig. 27. We begin by
lifting the partition to phase space again (see fig. 50). Next, we “mark off” regions
in the lifted partition to form a phase space EDR region, which we denote H. The
entire cylinder over F' — P is clearly in H, since its projection (under 7) is outside
the weak preimage. But the cylinder over H, is not entirely within H: only sticking
velocities over H, are.

Formally, H, is the set of all points z in the weak but not strong preimage,
such that sticking can occur at z. We wish to distinguish the sticking velocities in
H,. Under generalized damper dynamics, these are essentially the zero velocities.
Let Z(H,) denote the zero velocities over H,, that is, the set of pairs (z,0) for z
in H,. This set is in phase space.!’ Then we see that Z(H,) is also in the phase
space EDR region H. Thus H is the union of the sticking velocities over H,, and
all velocities over the forward projection outside the weak preimage:

H=2ZH)ur(F - P). (6)

9The cylinders may then be intersected with the forward projection of R (in phase space)
to obtain more constraint. This may be done by first restricting the domain of 7 to the
forward projection.

10The weak and strong preimage, and the forward projection are drawn Venn-diagrammatically

in one-dimension.
1'We could also let Z(Hs) be the set of velocities over Hy which are smaller than some
threshold.
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Fig. 50. Compare fig. 49. We have indicated the sticking region H, in the weak
preimage. The zero-velocities Z(H,) over H, are in the cylinder over H,. The
EDR region H is the union of Z (H,) and the shaded cylinders over the forward
projection outside the weak preimage F — P.

To use H as an EDR region, we must now ensure that H and the cylinder over
G are distinguishable goals. This amounts to allowing goals in phase space—that
is, allowing the preimage operator to take simple phase space goals as arguments,
and rewriting (3) as

Pyr({*"}(G),H})=R. (3a)

The impact of (3a) is discussed in more detail in an appendix. One point is
worthy of comment. If the strong preimage is known, the definition of (phase space)
EDR regions is constructive up to reachability. By this we mean that when backpro-
jections, set intersections and differences, and friction cones can be computed, then
so can H. With H is hand, we add the recognizability constraint (3a) to obtain an
EDR strategy.
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8.3. More on Weak Preimages

Armed both with the general form of the preimage equation, and with our
new grasp of the structure of phase-space goals, we now examine the structure of
the “weak but not strong preimage,” P — P in more detail. It suggests a number
of implementation issues. Consider figs. 27,28 once more. Suppose we have a
trajectory originating in R, subject to the control uncertainty shown. We do not
wish to terminate the motion while it remains in the weak preimage, since fortuitous
sensing and control events could still force recognizable termination in G. However,
we can terminate the motion as soon as we recognize egress from the weak preimage.

This is why the forward projection outside the weak preimage is contained in the
EDR region.

As we have seen, however, it is possible for a trajectory to remain within the
weak but not strong preimage forever. For example, it can stick in H, forever. To
handle this case, we introduced phase space EDR goals.

There are other conditions under which a trajectory could stay in P— P forever:
(a) if the environment is infinite, or P — P is unbounded. (b) The trajectory “loops”
in P — P forever. (a) and (b) are qualitatively different from the case of sticking
forever in Hy, because they require motion for infinitely long. In practice this may
be handled by terminating the motion in P — P after a certain elapsed time. This is
called “constructing termination predicates which time-out.” In fact, this “solution”
works for sticking in H, also.

An alternative is to extend our earlier zero-velocity analysis to all of P — P.
That is, we terminate the motion in the weak but not strong preimage when the
actual velocity is (close to) zero. Formally this rewrites (6) as

H=2P-P)ur~Y(F - P). (6a)

Both this and our formal handling of phase space goals for H, (6) are subject to the
“Rolles theorem bug.” That is, a trajectory which “reverses direction” will have
zero velocity at some point. Hence by (6, 6a) it will be judged to have stuck. This
is undesirable. In practice this can be fixed by again requiring the trajectory to
stick for some elapsed time. Time-out termination predicates have the following
practical justification. We imagine some low-level control mechanism which detects
sticking, and after a certain time interval freezes the robot at that configuration and
signals termination. Presumably such a mechanism is designed to avoid damage to
the robot from burning out its joint motors. It also avoids plans with long delays
while the planner waits for the motion to slide again.

The role of time in constructing EDR regions can be formalized by explicitly
introducing time into the goal specification. Thus, goals become regions in phase
space-time; points in goals have the form (z, v, t), where z is a position, v a velocity,
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and t a time. Suppose given a goal G in generalized configuration space, we form a
phase space-time goal which is the product of 7~1(G) with a compact time interval.
It seems that the EDR axioms are satisfiable by EDR regions which have the form
of a product of (6) with a compact time interval. More study is required.

One also can conceive of alternative models for sticking behavior. H, is all
points in the weak but not strong preimage such that sticking might occur there.
Note that we cannot guarantee that sticking will occur, since then the point would
not be in the weak preimage. We could assume a probabilistic distribution of control
velocities in Be.. In this case we could infer that eventually, given an unbounded
amount of time, a motion will be commanded which will cause sliding away from
any point in H, at which a trajectory originating in R sticks. In this case, the
trajectory cannot stick forever in H,. I don’t think robot controllers reliably en-
force probabilistic distributions of commanded velocities, even if “dithering” control
strategies are employed. Even if they could, this model of sticking makes life easier,
since it essentially eliminates the possibility of sticking forever in P — P. We will
not make this assumption here. It does not address with the problem of “looping
forever” within P — P in finite environments. It seems that time-out termination
predicates and/or velocity thresholding must be used to solve the looping problem.
Both solutions seem inelegant; the issue is subtle and should be addressed further
in future research (see chapter VI).

8.3.1 Summary

When the goal is specified in phase space-time as the product of a cylinder over
a generalized configuration space goal with a compact time interval, our geometrical
characterization of EDR satisfies the EDR axioms. Without time, or with goals of
the form 7~1(G) x [t, 00), the definition of H does not completely fulfill the EDR
axioms. This is because it is possible for motions sticking in H, to eventually slide
into the goal, violating the principle that no motion should be terminated as a
failure while serendipitous goal achievement is still possible.
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III. Multi-Step Strategies

In this chapter we explore multi-step strategy construction. Now, in principle,
having reduced both model error and EDR to essentially “preimage-theoretic” equa-
tions, multi-step strategies could be synthesized by solving these preimage equa-
tions. While this is proved or at least implicit in previous work [LMT,Mason,E,D],
it is far from obvious; furthermore, there are almost no published examples of such
strategies. For this reason we begin by presenting a worked-out example of a motion
plan using preimages. The motion problem is grasp-centering for a robot gripper
in the presence of model error. Both guaranteed and EDR strategies are found by
solving the preimage equations.

Preimages are a key underlying tool for the geometric EDR theory, and the
[LMT] framework is in some sense a “universal” method for synthesizing multi-step
strategies. However, the technique of solving the preimage equations is not com-
putational. For this reason, we introduce a construction called the push-forward.
Roughly speaking, the push-forward is that subset of the forward projection where
the motion can terminate. Since push-forwards address termination whereas for-
ward projections do not, we may regard them as “dual” to preimages. That is,
push-forwards are to forward projections as preimages are to backprojections. Sec-
ond, the push-forward permits us to develop rather simple algorithms for planning
multi-step strategies. These algorithms have been implemented in LIMITED. While
the push-forward method for multi-step strategy synthesis is algorithmic, it is less
general than the full preimage method (solving the preimage equations). We char-
acterize the loss of power in push-forward algorithms.

In chapter I we presented two EDR plans generated by LIMITED. These were
the peg-in-hole insertion strategy with model error, and the gear-meshing plan.
Both were two-step plans. We will go into more detail in describing how these
plans were generated. The peg-in-hole plan used push-forward techniques. The
gear plan used a seemingly unrelated technique called failure mode analysis. We
describe failure mode analysis and algorithms for computing it.

Next, we will present a view of multi-step strategies which essentially unifies all
these techniques. This is called the “weak” EDR theory. The motivation behind this
theory is that when a motion terminates ambiguously, a subsequent motion may be
synthesized which disambiguates the success or failure of the first. Oddly enough, it
is not necessary for either motion individually to satisfy the EDR axioms. However,
when taken together, the two-motion plan can often be considered “equivalent” to
a one-step EDR strategy.

The weak EDR theory effectively defines some laws of “composition” that per-
mit two single-step plans to be concatenated into a two-step plan satisfying the
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EDR axioms. Hence it is often possible to construct multi-step plans that are EDR
plans “globally” although not “locally”. That is, considered as entire plans, they
satisfy the EDR axioms; this is the “global” condition. However, “locally” they
are not EDR plans, in that no single step is an EDR strategy. The key to pasting
together non-EDR plans to make a global EDR strategy lies in defining certain
local “niceness” conditions for how plans must mesh. These are called the linking
conditions.

When we cross-reference figures in another chapter, we denote this by I11.29 for

figure 29 in chapter II, for example.
We remind the reader that starred sections may be skipped if desired.
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9. Planning using Preimages: A Detailed Example

In this section we show how the [LMT] framework can be used to synthesize
multi-step strategies. Here are the key points of this section:

e In principle, multi-step plans may be found by solving a family of preimage
equations.

e  While this was proved by [LMT,Mason,E], it is not obvious how to effect the
solution. This example intends to elucidate the process.

e The technique is general enough to plan EDR strategies under model error,
once we have cast both the problem of planning with model error and the EDR
problem in an essentially “preimage-theoretic” form, as in [D] and chapter II.

e However, the technique of solving the preimage equations is not algorithmic.

Furthermore, preimages are a key underlying tool for the geometric EDR the-
ory. It is necessary to make further acquaintance with preimages in order to con-
tinue our development of the EDR framework. To that end, this section presents
a worked-out example of a motion plan using preimages. The motion problem is
grasp-centering for a robot gripper in the presence of model error. The example
illustrates the use of the preimage framework to derive a multi-step motion strategy
in the presence of model error. The strategy employs time-sensing and force-sensing.
This discussion is designed both as a tutorial in solving preimage equations for a
motion plan, and as an introduction to the planning of multi-step strategies.

9.1. Example: Planning Grasp-Centering using Preimages

The remainder of this thesis builds on the preimage framework to develop the
EDR theory. To make the framework more accessible, we provide here a fairly
detailed description of a motion planning problem using preimages.’

We are now ready to work an example. We solve a particular motion planning
problem with model error by solving the preimage equations. This example provides
an illustration of planning using preimages. For simplicity, we initially address only
the problem of finding a guaranteed strategy. Finding EDR strategies in this domain
is discussed afterwards.

Consider the grasp-centering problem shown in fig. 1. The task is to center
the robot gripper over the block D. The gripper can translate but not rotate in the
plane. In its start position, the gripper is somewhere over D, such that the bottom

1This problem arose in discussions with Tomés Lozano-Pérez, John Canny, and Mike
Erdmann.
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of the fingers FA and F B are below the top of D. The width of D is unknown,
but must be less than the distance between F'A and FB. We assume D is fixed (it
cannot be accidentally pushed).

Hence we can regard this as a planning problem with model error. C is taken
to be the cartesian plane, and J is a bounded interval of the positive reals. Our
first question is, what does the generalized configuration space look like? This is
easily answered by considering the motion planning problem in fig. 2. The problem
is to find a motion strategy for a point robot so that it can achieve a goal exactly
halfway between the blocks A and B. The distance a between A and B is unknown
and positive. The point robot is known to start between A and B. Again, the point
can translate in the plane. The distance « is the model error parameter. It is easy
to see that the problems in figs. 1 and 2 are equivalent.

However, we already know what the generalized configuration space for fig. 2
looks like. It was discussed at length in chapter II, and is shown in fig. II.14. Hence
our example is a planning problem in a familiar generalized configuration space.

Next, we assume that the robot has perfect control, perfect velocity sensing,
and a perfectly accurate sense of time. However, it has infinite position sensing
error. 2

Now, since the gripper starts over D with the bottom of the fingers below the
top of D, and since the robot has perfect control, it suffices to consider the r axis
of C. Since the y axis can be ignored, we develop our example in the plane, that
is, in the generalized configuration space where C and J are both one-dimensional.
This 2D generalized configuration space is shown in fig. 3, which is essentially an
z-J cross-section of fig. I1.16, holding y constant with a constrained to be positive.
In fig. 3, L and R are left and right obstacle edge boundaries generated by A and
B. The goal is the line in free-space bisecting L and R. The start region T is the
triangular region in free-space between L and R. (T is the convex hull of L and R).

Now, since motion across J is not permitted, all motions are parallel to the z
axis, that is to say, horizontal in fig. 3. There are only two kinds of motions the
planner can command. Let + denote a motion to the right, and — a motion to the
left. We assume the robot has perfect control over the magnitude as well as the
direction of the commanded velocity.

See fig. 3. Now, if o is a point on the J axis, let E, be the point on the
left obstacle edge L with J coordinate a. We will denote the collection of all such
points on L by { E, }. Let S, denote the maximal line segment within T containing
E, and parallel to G. Formally, if F, has coordinates (z,a), then S, is the line
segment extending from E, to (z,d) where d is an upper bound on the distance
between A and B. We denote the collection of all lines Sq by { Sq }.

2This example is easily generalized to non-zero control, time-sensing, and force-sensing
error, and finite position-sensing error. This requires giving the goal non-empty interior,
however.
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Fig. 1. The grasp centering problem. The width of the block D on the table,
and the position of the gripper are only known approximately.

At this point we are prepared to derive a motion strategy for centering the
grasp, that is, for attaining G from T'. The strategy has three steps. The termination
conditions for the motions involve time- and force-sensing. Here is the motion
strategy in qualitative terms:

Strategy Guarantee-Center

1. Command a motion to the right. Terminate on the right edge R based on force
sensing.

2. Command a velocity of known magnitude to the left. Terminate when in contact
with the left edge L, using force sensing. Measure the elapsed time of the motion.
Compute the dsstance traversed. This gives ezact knowledge of where the motion
terminated on L. The effect of this step is to measure the distance o between the
blocks.

3. Move distance § to the right, terminating in G based on time sensing.
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Fig. 2. An equivalent problem. A point robot must be navigated halfway between
the blocks A and B. The distance between A and B is not known. The robot
has force sensing, and a clock. However, it has poor position sensing. We regard
C as R? and J as the bounded interval (0,d] for d positive. The generalized
configuration space for this problem is the same as in fig. I11.16, for the positive
values in J.

We now derive this strategy by solving the preimage equations for the motion
planning problem.

First, note that if the run-time executive knows that the robot is inside a
particular S,, then G can be reliably achieved by commanding a motion to the
right. Since the robot has perfect control and time sensing, the motion can be
terminated after moving distance §, that is, exactly when the line G is achieved.

Using the preimage notation, we write this as

Py 5. }(G)={Sa}. (1)
Next, we take the collection { S, } as a set of subgoals, and try to find a motion
that can recognizably attain this collection, and, furthermore, can distinguish which
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Fig. 3. Assuming that the gripper fingers are initially lower than the top of the
block D, the y dimension can effectively be ignored. This allows us to examine a
cross-section of fig. II.16. We treat C' as the z axis of motion freedom, yielding
a 2D C x J planning space. L and R are obstacle boundaries in generalized
configuration space . The goal is the bisector G between L and R in free-space.
The start region T is the triangular region between L and R. E4 is a point on
L. S« is a line in T parallel to G and containing Sa.

So the motion achieves. Consider a leftward motion starting from anywhere on the
right edge R. The robot does not know where on R the motion starts, however. To
recognizably achieve some S, such a motion should move leftward, and terminate
when force-sensing indicates that L has been reached. If the termination predicate
measures the elapsed time of the motion, and knows the magnitude of the com-
manded velocity, then it can recognize which point E, has been reached, and hence
which subgoal S, has been achieved. Writing this down in preimage equations,

P_r({Ss})=P-r({Es}) = R. (2)
Finally, the right edge R may be achieved from anywhere within the start region
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T by moving rightward, and terminating when force sensing indicates contact. This
is simply

P.r(R)=T. (3)

It is instructive to examine the termination conditions for motions (1)-(3).
In motion (1), only the time-indexed forward projection Fy(Sa,t) is relevant to
deciding termination. The motion terminates when Fy(S4,t) C G. Motion (3) can
be terminated using pure force sensing. It could also be terminated using time,
since there exists some t for which Ft(T,t) = R. In motion (2), both force sensing
and time are required to terminate within a distinguishable E,. The general form
of the termination condition for all three cases is as follows. Recall that in general,
the termination predicate has the form

Fy(U,t)N (Bep(t) X Bev(t)) C Gg

for a goal G5 and a start region U. (Assume that all subgoals have been lifted into
phase space; see sec. 8.2). In our case, position sensing error is infinite, so Bep(t) is
C x J. Let us denote (C x J) x Bey(t) by the simpler expression By(t). Then the
termination conditions for motions (1)—(3) are as follows. For the first motion (3),
to terminate, we must have

F.(T,t)N B,(t) C R. (4)

For the second motion (2) to terminate, we must have

F_(R,t)N By(t) C Sa (5)

for some S,. We think of the termination predicate as “returning” this S,. Finally,
for termination of the last motion (1), we must have

F+(Sa) n Bv(t) CG, (6)

where the S, in (6) is the same as the one returned by the termination predicate
after the second motion as the satisfying assignment for (5).

Finally, note that time is the source of some complexity in this example. This
complexity might be removed by employing a distance sensor instead. The output
of such a sensor could be modeled as position sensing in J. The sensing action in J
would entail measuring the distance between A and B. This relaxes the assumption
of no position sensing in the J dimensions, but such modification to the generalized
configuration space framework is trivial. With this modification, Bep is simply
regarded as a product of a position sensing ball in C' and a position sensing set in

J.
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This concludes the example. We have shown how to derive a multi-step guar-
anteed motion strategy in the presence of model error. The strategy was derived
by solving the preimage equations in generalized configuration space for the motion
plan. These preimage equations made the role of time- and force-sensing explicit
in deriving conditions for distinguishable termination in a collection of subgoals.
With this example in mind, the reader should be well-equipped to wade into the
remainder of this thesis.

9.1.1 An EDR Strategy for Grasp-Centering

We now generalize the grasp-center example and show how to develop an EDR
strategy for this problem.

Assume that the radius of position sensing uncertainty is larger than the
diameter of T, but not infinite.® Furthermore, assume that «, the distance between
A and B, can be zero (but not negative) in the above example. That is, D can be
too big to grasp. Hence the hole between A and B can close up, as in fig. II.16.
Assume that the gripper starts above the height of the block D, in the circular
region R in fig. II.15. Generalize the discussion of preimages above to describe an
EDR strategy using preimages. We will need to consider the y dimension of motion
freedom as well, in the 3D generalized configuration space shown in fig. 11.16, but
only the non-negative a in J. Note that EDR is “required” here, since if a can be
zero, there exists no guaranteed strategy.

Let us rename the circular start region in fig. II.15 to be U, and continue
to use R for the right edge in fig. 3. Assume that the z-J slice of generalized
configuration space in fig. 3 is taken at y = 0, i.e., at the level of the table, and
that under the commanded motion vy, shown in fig. II.15, sliding occurs on all
horizontal and vertical surfaces. However, clearly sticking will occur under v} on
the concave left edge L between A and the table.

Now, let H be as in fig. I11.24. Here is the EDR strategy in qualitative terms:

Strategy EDR-Center

El. From U, command the motion v;. Terminate on the left edge L based on
sticking, or in H based on time.

E2. If H is attained, signal failure. Otherwise, go to step (1) of strategy Guarantee-
Center.

3This assumption is not necessary, but it simplifies our discussion somewhat.
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Now, since H, = 0, the preimage equation? (II.3a) for step (E1) simply reduces
to

Pou({L,H})=U. (7)
At this point, the remainder of the strategy may be developed in the z-J slice
shown in fig. 3. To finish the preimage characterization of the EDR strategy, we

must replace eq. (3), which characterizes the first step (1) of strategy Guarantee-
Center, by

Py 1(R) = L. (8)
Note that (8) is actually a logical consequence of (3), since L is a subset of

T. Analogously, (4) must be changed by replacing T by L. The remainder of the
preimage equations (1)-(2) and (5)—(6) remain unchanged.

9.2. Solving the Preimage Equations is General but Not Computational

This example shows how multi-step EDR strategies under model error can be
generated by solving a family of preimage equations. However, the technique is not
an algorithm. We do not claim that such an algorithm could not be developed, but
merely that as described above and in [LMT,Mason,E], the method is not (yet) com-
putationally effective.® The first reason it is non-computational is that the number
of subgoals { E, } and { S } is infinite. The second, and more important reason is
that solving the preimage equation is, as stated, a decision problem in second-order
set theory. Even if the sets are, say, algebraic, this theory is undecidable. However,
there may exist a reformulation of the problem rendering it decidable. Below we
describe one such reformulation, using push-forwards, which can be used in effect to

solve certain “simple” preimage equations and hence to generate a restricted class
of EDR plans.

4Gee sec. 8.2.

SHowever, note that Erdmann’s techniques of approximating preimages by backprojec-
tions may lead toward a fully-algorithmic method.
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10. Push-Forwards: A Simple Generalization to n-Step EDR
Strategies

The generalized preimage framework [LMT,Mason,E,D] gives a kind of “uni-
versal” method for generating multi-step EDR strategies. However, the technique
of solving the preimage equations is not algorithmic—it is more like doing a proof
by hand. For this reason, we introduce the push-forward technique for synthesizing
multi-step strategies. While considerably less general than solving the full preimage
equations, it leads to rather simple multi-step strategy-generation algorithms, which
were implemented in LIMITED. The push-forward technique is powerful enough to
generate an EDR plan for the peg-in-hole insertion strategy with model error de-
scribed in chapter I. However, it is not general enough to solve all steps of the
grasp-centering example discussed above. This gives us a measure of the relative
power of push-forward vs. preimage equation techniques.

This section first discusses the push-forward technique for synthesizing n-step
EDR strategies in some detail. When we cross-reference figures in another chapter,
we denote this by I1.29 for figure 29 in chapter II, for example.

We first review the “T'win Universe” example (3) (figs. 11.29,11.30), highlighting
a subtle recognizability issue not emphasized in the prelude. However, this review
may be skipped at first reading if you already have example (3) firmly in mind.

A Review of the “Twin Universe” Example (3)

Consider fig. I11.29. Here there are two possible universes, both in the plane, so J is
the two element discrete set, { 1,2 }. The start region is the union of R; in universe
1, and R, in universe 2. The goal exists in universe 1 but not in universe 2. There
is no one-step EDR strategy which, from the start region, can guarantee to achieve
G or recognize that we are in universe 2. In particular, there is no one-step EDR
strategy which can be derived from the motion v}.

However, there clearly exist multi-step EDR strategies. We will construct one
as follows. Recall that to construct one-step EDR strategies, we took as data a
goal, a start region R, a commanded motion 6, and the preimage of the goal under
8. Given this data we constructed an EDR region. From the EDR region, we
attempted to construct an EDR strategy that achieved the distinguishable union of
the goal or the EDR region. Now, why does this fail in fig. I1.29?7 To answer this
question, let us consider what the motion 6 was supposed to achieve in universe
1. There is an 8-step plan in universe 1 which recognizably achieves G' from start
region R;. It is obtained by back-chaining preimages in universe 1. The plan moves
from R; to the region S; under v;. Then it slides along the top surface to vertex
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f. Next it slides to vertex e. It slides to the successive vertex subgoals d through
a, and then a horizontal sliding motion achieves the goal G.

The strategy 6 is guaranteed to achieve the surface S from start region R;.
Suppose we try to extend it to an EDR strategy with start region the union of R,
and R;. The EDR region is then simply the (cylinder over the) forward projection
of the “bad” region, Fy(R;). (See fig. II.29). There is no way that the termination
predicate can distinguish between the forward projection of R; and the forward
projection of R;, hence no EDR strategy from 6 exists.

We can easily construct a 2-step EDR strategy, however. First, we execute
motion 8 from the union of R; and R,. This achieves a motion into .S; in universe
1, or into S, in universe 2. The termination predicate cannot distinguish which has
been attained. Suppose the second motion in the 8-step plan is v}, (see fig. I1.29),
and is guaranteed to achieve the vertex subgoal f from start region S;. We will try
to construct an EDR strategy out of this second motion. Take as data: the subgoal
f, the start region S; U S, the “southwest” motion ¢, and the preimage of f under
1.1 The EDR region for these data is the forward projection of S, under ¥ (see
fig. 11.30). Presumably this EDR region is (eventually) distinguishable from f, and
so we have constructed an EDR strategy at the second step. After executing the
second step, we either terminate the motion as a failure, or proceed to vertex e, and
eventually to the goal.

10.1. Generalization: Push-Forwards

Now, let us attempt to capture the salient aspects of the n-step EDR strategy
construction. We take as data an n-step plan, with start region R;. The actual
start region is some larger region, say, R. Above, we had R as the union of R; and
R,. The first motion in the plan is guaranteed to achieve some subgoal S; from R;.
Using this first motion from start region R, we try to construct an EDR region Hy,
and a one-step EDR strategy that either achieves S; or signals failure by achieving
H,. If this succeeds, we are, of course, done.

Suppose we cannot distinguish between H; and S;. In this case, we want to
execute the first motion “anyway,” and terminate “somewhere” in the union of $;
and H;. The termination predicate cannot be guaranteed to distinguish which goal
has been entered.

This “somewhere” is called the push-forward of the first motion from R. The
push-forward is a function of the commanded motion 6, the actual start region

1While S; is the preimage of f under ¢ with respect to start region S;, the preimage
with respect to the entire forward projection of 51 U S; includes the top edge between
S1 and f. See sec. 8.
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R, the region R; from which € is guaranteed, and the subgoal S;.2 A particular
type of push-forward is defined formally in an appendix; we describe it informally
below. In example (3), the push-forward (under 6) of R, is S;. The push-forward
of Ry U R, is S; U S3. The push-forward is similar to a forward projection, except
that it addresses the issue of termination. In example (3), informally speaking, the
push-forward from the region R (under some commanded motion 8) is the result of
executing 6 from R and seeing what happens. It is defined even when the strategy
6 is only guaranteed from some subset (R;) of R.

Having terminated in the push-forward of R (the union of S; and S; above),
we next try to construct a one-step EDR strategy at the second motion of the n-
step plan. The data are: the next subgoal T} after S; in the plan, the actual start
region S1 U Sy, the second commanded motion in the plan, and the preimage of T}
under this motion.> This defines a formal procedure for constructing n-step EDR
strategies. At each stage we attempt to construct a one-step EDR strategy; if this
fails, we push-forward and try again.

Actually, this description of the procedure is not quite complete. At each step
we construct the EDR region as described. However, the one-step strategy we seek
must achieve the distinguishable union of the EDR region and all unattained subgoals
in the plan. That is, the EDR motion must distinguishably terminate in the EDR
region, or the next subgoal, or any subsequent subgoal. This allows serendipitous
skipping of steps in the plan.

By considering different data, that is, quantifying over all motions at each
branch point of the n-step strategy, we can in principle consider all n-step strategies
and define non-directional EDR strategies. This is at least as difficult as computing
n-step non-directional preimages. If we wish to consider plans of different lengths,
we must also quantify over all n. Needless to say, the branching factor in the
back-chaining search would be quite large.

10.2. More on the Push-Forward

The problem of defining the push-forward may be stated informally as follows:
“Where should the motion be terminated so that later, after some additional number
of push-forwards, a one-step EDR strategy may be executed.”

Many different push-forwards can be defined. Using the notation above, note
the motion is not even guaranteed to terminate when executed from R: it is only
guaranteed from R;. This means that velocity-thresholding and time may be neces-
sary in the termination predicate. There are other difficulties: for example, a prior:

20f course, it also depends on the termination predicate, sensing and control character-
istics, etc.

3The preimage is with respect to the forward projection of the actual start region S; US5.

126




it is not even necessary that entry into the union of the subgoal S; and the EDR
region H; be recognizable. Thus defining the push-forward is equivalent to defining
where in S; U H; the motion can and should be terminated. (However, see note (1)
in the appendix ).

Depending on that push-forward is employed, we may or may not obtain an n-
step EDR strategy. It is possible to define constraints on the push-forward that must
be satisfied to ensure that a strategy will be found if one exists. These constraints
are given in an appendix. While in the appendix we can give equations that the
push-forward must satisfy, at this time a constructive definition is not known. This
situation is similar to, and possibly harder than the problem of solving the general
pre-image equation.

10.3. An Approximation to the Push-Forward

We may have to approximate the desired push-forward. We give such an ap-
proximation here. In general, it does not satisfy the constraints given in the ap-
pendix. We provide it to show what the push-forwards alluded to above are like.
Such approximate push-forwards may prove useful in approximating the desired
push-forward. The issue deserves more study. Since this approximate push-forward
is incomplete, the reader should consider its description here as illustrative of the
research problem, and not as an endorsement.

The push-forward employed in example (3) was formed by “executing the strat-
egy anyway, and seeing where it terminated.” How do we formalize this idea?
Consider the termination predicate as a function of the starting region, the initial
sensed position, the commanded velocity, the goal(s), and the sensor values. The
sensor values are changing; the predicate monitors them to determine when the goal
has been reached. Now, if the termination predicate “knew” that in example (3)
the start region was the union of R; and R;, then the first motion strategy 6 could
never be terminated: the predicate could never ensure that the subgoal S; had been
reached. This is simply because S; and S; are indistinguishable. But if we “lie” to
the termination predicate and tell it that the motion really started in R;, then the
predicate will happily terminate the motion in S; U S, thinking that S; has been
achieved. Viewing the termination predicate as a function, this reduces to calling
it with the “wrong” arguments, that is, applying it to R; instead of R; U R;. The
push-forward we obtain is “where the termination predicate will halt the motion
from all of Ry U Ry, thinking that the motion originated in R;.” S2 is obtained as
the set of places outside of S; where the lied-to termination predicate can halt.

Even formalizing the construction of this simple push-forward is subtle; de-
tails are given in an appendix. While this approximate push-forward is incomplete,
it does suffice for a wide variety of EDR tasks. The approximate push-forward
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captures the intuitive notion of “trying the strategy anyway, even if we’re not guar-
anteed to be in the right initial region.” It is incomplete because it fails to exploit
sufficiently the geometry of the forward projection of the “bad” region. Better
push-forwards must be found; this one is merely illustrative of the problems.

10.4. Example: Multi-step EDR Plan for Peg-in-Hole with Model
Error

The advantage of the push-forward technique is that it can be made computa-
tional. We now give LIMITED’s algorithm for generating multi-step strategies using
push-forwards, and describe an experiment which used this method.

Recall chapter I, figs. 6-16, which described a two-step EDR plan for a peg-
in-hole plan with 3 DOF model error. Here is how this multi-step strategy was
generated:

Algorithm Mult:

1. First, try to generate a one-step EDR strategy using the algorithm in sec. 6.93.
Suppose this fails. Then:

2.  Generate a commanded velocity v}, such that the forward projection of the start
region intersects the goal in some slice.

3. Compute the EDR region H for vj.

4. Compute the sticking push-forward of the motion, R; = pushy(G U H).

5. Using Ry as the start region, generate a one-step EDR strategy using the algo-
rithm in sec. 6.9.

Of course, in LIMITED the computation is memoized so that the projection
and EDR regions computed in step (1) are not recalculated in steps (2) and (3).
Obviously, we can extend this algorithm to generate longer strategies which push-
forward several times and finally terminate in a single-step EDR strategy.

Now, LIMITED is a multi-resolution planner. The algorithm outlined above
generates a multi-step strategy at a single resolution. The resolution of planning is
simply the set of a values in which slices are taken. A resolution S; is finer than
S, if it contains more slices. The multi-resolution outer loop works like this:

M1. At a coarse resolution, generate a multi-step EDR strategy 64,...,6, using the
forward-chaining single-resolution algorithm above.

M2. Select a finer resolution. Use the directions 6y,...,0, as a suggested strategy
and attempt to verify that it 1s an EDR strategy at the finer resolution.
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MS3. If 6,,...,6, is not an EDR strategy at the finer resolution, try to modify it
so that it s, by using 0;,...,8, as suggested directions, and searching nearby
directions at all levels.

The process terminates when the resolution is finer than some predetermined
level.* The critical slice method described in chapter II may be one way to obtain
such an e prior: bound and know that it is sufficient. In LIMITED, however, the
bound is a user input because otherwise the number of slices required would be
prohibitive.

In the peg-in-hole example there were 3DOF of model error: the width of the
hole, the depth of the chamfers, and the orientation of the hole. The resolutions
used in planning the two-step strategy were as follows:

R1. Holding orientation fixed, 4 slices of the depth x width axes.
R2. Holding orientation fixed, 16 slices of the depth x width axes.
R3. Holding orientation fixed, 72 slices of the depth x width axes.
R4. 100 slices of the depth x width x orientation axes.

The figures show details of the slices and the plan.

10.5. The Loss of Power with Push-Forward Techniques

While push-forwards permit us to develop simple algorithms for generating
multi-step strategies, clearly these algorithms are theoretically less powerful than
solving the preimage equations in full generality. We now attempt to give an intu-
itive characterization of the loss of power. In particular, push-forwards are general
enough for the peg-in-hole EDR strategy with model error. However, they are not
general enough to generate the grasp-centering plan. We now discuss where in
the grasp-centering example the push-forward techniques are inadequate. The key
point is this: if each commanded motion and termination condition could be non-
deterministically “guessed,” and a push-forward for each motion and termination
condition could be computed, then in the grasp-center example this would suffice
to generate a strategy. However, the push-forward algorithms we have developed
are not powerful enough to do this.

First, let us derive the push-forwards of each motion in strategies EDR-Center
and Guarantee-Center. Recall that E! is the first step of the EDR plan, and motions
1, 2, and 3 are steps in the (subsequent) guaranteed plan. In the third column we
note whether or not the push-forward technique is computationally effective for this
motion.

40r, when at some level, no EDR strategy can be found.
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Motion Push — Forward Computational?

E1 {L,H} yes
1 R yes
2 {Ey} no
3 G no

The push-forwards for motions EI and I can be computed using the algorithms
of sec. 6.2 and algorithm Mult: above. In motion EFI, L may be found using
sticking termination. H may be found using time, or position and force sensing
termination. In motion I, R may be found using contact, or sticking termination.
However, our algorithms cannot compute the push-forward { E, }, which contains
an infinite number of components. Furthermore, we have not developed algorithms
for computing push-forwards based on time-termination (except for elapsed time
termination, of the form “terminate anytime after ¢ seconds”). Thus the push-
forward G for the last motion cannot be computed by our algorithms either.

10.5.1 Discussion

Let us pause to review. We first described a fully-general, but non-computational
technique for generating multi-step strategies. This method—solving the preimage
equations—was applied to the grasp-centering example. Next the push-forward
techniques were introduced as a computational, although less powerful approach
to the synthesis of multi-step strategies. Push-forward algorithms were described,
and we saw how LIMITED used these techniques to generate a two-step plan for
the peg-in-hole problem with model error. Finally, we discussed the limitations of
the push-forward techniques. We saw that they were not powerful enough to solve
the grasp-center problem in its entirety. By describing an experiment where push-
forwards suffice, and showing an example where they are insufficiently general, we
have tried to give an intuitive but fairly precise characterization for the relative
power of push-forwards.
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Strong and weak goals.

Fig. 6. Goal region in each slice. (At resolution R3).
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Fig. 15. Ho EDR region for 6, (shown without fill to illustrate degenerate edges
sliding into goal). (At resolution R3).
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Fig. 16. Hy EDR region for 6;, shown amidst obstacles. (At resolution R3).
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Start region and propagated start region.

Hardcopy? (Y or M) Yes.

Fig. 19. The push-forward of 6; is the start region for #;. Here is the push-
forward/start region in each slice. (At resolution R3).
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Fig. 21. Weak backprojection of goal under motion 6;. Obstacles not shown.
(At resolution R3).
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Fig. 22. Weak backprojection of the goal under motion 6. (At resolution R3).
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Fig. 23. Forward projection of start region under motion f3. Obstacles not
shown. (At resolution R3).
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Ueak ninus strong backprojection

Heardcopy? (Y or N) Yes.

Fig. 25. Weak minus strong backprojection for 62. (At resolution R3).
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(At resolution R3).
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Fig. 28. Hy EDR region for 2 (shown without fill to illustrate degenerate edges).
(At resolution R3).
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Start region and propagated start regions

Proceed? (¥ or N) B

Fig. 32. In figs. 32-40 we examine the commanded motion 6; in detail for one
slice. The slice occurs at resolution R3, for a & (.9, .34). Fig. 32 shows the start
region in this slice, which is the push-forward of motion 8;. (Actually, this start
region should include the entire left edge of the bounding box. A portion of the
edge was not found due to a numerical error).
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\

Fig. 33. Strong backprojection of the goal under ;. (Detail of motion 8; in slice
a =~ (.9,.34)).
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Fig. 34. Weak backprojection of the goal under motion 83. (Detail of motion 6,
in slice a ~ (.9, .34)).
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Fig. 35. Forward projection under 8 of the push-forward of 6;. (Detail of
motion 87 in slice a = (.9, .34)).
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Fig. 36. Forward projection under 0; of the push-forward of 61. The obstacles
are shown as well. (Detail of motion 6; in slice & = (.9,.34)).
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Fig. 37. Weak minus strong backprojection under 62. (Detail of motion 8, in
slice a x (.9, .34)).
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HO region: Forward Projection minus Ueak Backprojection
. draw obstacles? (¥ or N) B

Fig. 38. Hy region for motion 82. (Forward projection minus the weak backpro-
jection). (Detail of motion 2 in slice a ~ (.9,.34)).
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Fig. 39. Hy region for motion ;. Shown amidst obstacles. (Detail of motion 6,
in slice a = (.9, .34)).
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Fig. 40. Sticking region in the weak minus strong backprojection, shown by
arrow. (H, region). (Detail of motion 8; in slice a & (.9,.34)).
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Fig. 41. Configuration space slices at resolution R4: 100 slices of the depth x
width X orientation axes. After finding an EDR strategy that succeeds at reso-
lutions R1-R3, and using it as a suggested strategy at resolution R4, LIMITED
found this two-step EDR plan at resolution R4 in 888 minutes.
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Fig. 52. All vertices of the Hy EDR region. (At resolution R4).
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Fig. 53. Hy EDR region for 6,, sho
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Fig. 54. The EDR region H is not distinguishable from the goal. (At resolution
R4).
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Fig. 55. The push-forward of #; is the start region for ;.

forward/start region in each slice. (At resolution R4).
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11. Failure Mode Analysis

Push-forward techniques require a precise geometrical characterization of the
forward-projection, and algorithms for computing it. The gear-meshing example of
chapter I is a problem in a four-dimensional generalized configuration space with
pushing. Two of the dimensions are rotational: one of these can be commanded, and
the other cannot, but the position along this dimension may be changed via pushing,.
It is difficult to develop good forward projection algorithms in this generalized
configuration space, although our critical-slice methods are a start. For this reason,
a different technique was developed for planning multi-step strategies in this domain.
It is applicable for any generalized configuration space with the same degrees of
freedom and pushing characteristics (that is, any polygonal shapes in place of the
gears). The new technique is called failure mode analysis; we describe it in this
section.

Failure-mode analysis is a method for synthesizing multi-step strategies using
a kind of “approximate” or “a priori” forward projection. At first glance, it may
appear unrelated to push-forward or preimage techniques. However, in the next
section, on the weak EDR theory, we present a viewpoint which essentially “unifies”
the three approaches.

11.1. Example: Multi-Step Strategy for Gear Meshing

Recall the gear-meshing plan LIMITED generated in chapter I, fig. 4. Consider
the problem of meshing two planar gears, under uncertainty as in chapters I and
II. Suppose that gear B can rotate passively but has unknown initial orientation,
as above. Suppose that A has been gripped by a robot. The initial position of A is
uncertain. The robot can impart either pure forces (translations), or pure torques
(rotations) to A. The planner can choose the direction of translation or rotation.
Can a multi-step strategy of commanded translations and rotations be found to
mesh the gears?

LIMITED was able to generate an EDR strategy for this problem. The charac-
teristics of the experiment are:

1. There are three degrees of motion freedom (two translational and one rota-
tional) for A.

2. There is one degree of rotational model error freedom (the orientation of B).
3. Pushing is possible to change the orientation of B.

4. There is sensing and control uncertainty.

5. The geometry of the gears is complicated.
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6. Quasi-static analysis is used to model the physics of interaction between the
gears.

7. We suppose that vision is poor, or that the gears are accessible to the robot
gripper, but not to the camera. This means that position sensing will be very
inaccurate, and hence may be of no use to determine whether the gears are suc-
cessfully meshed. This will often be the case in practice. In this case, force sensing
must be used to disambiguate the success of the first motion (meshing) from failure
(jamming in an unmeshed state).

8. Hence, a multi-step strategy is required.

Thus we have a kind of four-degree of freedom planning problem with uncer-
tainty and pushing. To generate multi-step EDR strategies under pushing, LIMITED
uses the EDR theory together with failure mode analysis. Here is the plan LIMITED
generates:

6,. Command a pure translation of A into B.}
Terminate the motion based on force-sensing when sticking occurs (when there
i3 no motion).

8,. Command a pure rotation of A.
If breaking contact or sticking occurs, signal failure. Otherwise, signal success.

In this plan, motion 6; does not terminate distinguishably in success (meshed)
or failure (jammed). That is, after motion 6, terminates, the plan executive cannot
necessarily recognize whether or not the gears are meshed. LIMITED predicts this,
and generates motion 6;, which disambiguates the result of motion ;. The genera-
tion of the second, disambiguating motion involves the use of failure mode analysis.
Breaking contact and sticking are examples of failure modes. The second motion is
generated so that from any unmeshed state resulting from motion 6;, all possible
paths will terminate distinguishably in a failure mode. Failure mode analysis is a
robust subtheory of EDR by which LIMITED generates multi-step strategies under
pushing.

11.2. Introduction to Failure Mode Analysis

In the gear-meshing plan, motion 8; is used to disambiguate the result of motion
8;. The technique used is failure mode analysis. LIMITED is given a repertory of
qualitative failure modes, which comprise sticking and breaking contact. Motion
6, can end in a “good” region (meshed) or a “bad” region (jam). LIMITED tried
to generate a disambiguating motion as a second step. This motion is required to
terminate in a failure mode from all “bad” regions.

1LIMITED generates the actual force vector vy, -
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Here is how LIMITED generates motion 6;. Let H be the EDR region for
motion §;. The planner determines all configurations where motion 6; can terminate
outside of G. Call this region pushy, (H). pushy (H) then forms the start region for
motion f;. LIMITED then uses quasi-static analysis to “prove” that when A is at any
configuration in push, (H), and a pure rotation of 4 is commanded, that all possible
motions of A result in sticking or breaking contact. Sticking and breaking contact
are called failure modes; there is a class of EDR plans which can be terminated in
failure when sticking or breaking contact are detected. EDR planning with failure
modes constitutes a robust subtheory of EDR. It is a subtheory because assuming
this kind of failure mode is a restrictive assumption to make planning tractable.
It is robust because sticking and breaking contact are easy to recognize, relatively
speaking, as failure modes by a run-time robot executor.

From the preimage point of view, failure modes are implemented simply as
different classes of termination predicates.

11.3. Specifying the Goal: Functional Descriptions

Recall our discussion of sticking as a termination condition in chapter II. Stick-
ing had the advantage of ensuring “good” behavior in the EDR region H. In
particular, it could be guaranteed that all motions would eventually terminate in
G UH, rendering the distinguishability of G vs. H a history-free decision. However,
in order for a sticking termination predicate to generate good EDR plans, it was in
fact necessary to ensure that the motion strategy has “good” behavior at the goal
as well. In particular, the commanded motion should stick at the goal.

In failure mode analysis, we have a similar situation. The purpose of motion 6,
is to force all motions starting from push, (H) to terminate in sticking or breaking
contact. Clearly this is only useful if no motion from pushy, (G) can even possibly
terminate in sticking or breaking contact. This is the required “good” behavior at
the goal. Thus, in an EDR plan generated by failure mode analysis,

F1. Under motion 6, all motions starting from pushy (H) must terminate in a
failure mode.

F2. No motion from pushy (G) can possibly terminate in a failure mode.

F3. The goal is a fized-point under motion 6,.

LIMITED decides whether or not (F1) is true. However, (F2) is given as input
to LIMITED. We will now discuss how (F2) is specified. In the next section we
will describe algorithms for computing (F1). (F3) may be decided using forward
projections; the actual condition we require is

Fo,(pushy, (G)) C G,
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which is implied by the fixed-point equation

Fo,(G) =G, (F3)

since of course pushy (G) is contained in G.

The goal state for gear meshing may be viewed purely geometrically. That is,
it may be viewed as a set in generalized configuration space. This view is useful
for computing the EDR regions. Alternatively, the goal may be specified through
a functional description. For example, we might specify the goal as a difference
equation (DE). The intuition behind this difference equation formulation of the goal
is, “In the goal, any finite rotation of A results in an equal and opposite rotation of
B.” More precisely, the difference equation specifies:

DE. Command any non-zero finite rotation Aay to A. In the goal, this results in a
finite rotation of A by Aa; and of B by —Aa;.?

This difference equation captures the functional aspects of the gears in their
meshed state. Now, it is clear that this equation may be “differentialized.” That
is, we consider it to be true for all non-zero displacements, no matter how small.
If this is the case, then it is clear that breaking contact is in direct contradiction
to the truth of the difference equation (DE). This is because if contact is broken,
then there exists some finite rotation of A that will not affect the orientation of B.
Similarly, sticking contradicts the truth of the difference equation, for if the gears
stick, then they are not properly meshed, i.e., we do not obtain equal and opposite
rotations.

In LIMITED failure mode analysis, we view the goal state as a combined ge-
ometrical and functional specification. Here are the three ways of specifying the
functional aspects of the goal. The last, which decides questions about goal predi-
cates via the theory of real closed fields, is only of theoretical interest. The second
is a heuristic approximation to such an inference engine. The first is a more robust
solution with an engineering flavor. It places on the user the burden of ensuring
well-behaved qualitative behavior at the goal.

11.3.1 Specifying the Functional Aspects of the Goal

Method 1. User input. In this method, it is the responsibility of the user to
ensure that (F2) is true. That is, the user must guarantee that failure modes cannot
occur at the goal. This, of course, is the easiest method. If the user guarantees that
(F2) holds, then it remains only for LIMITED to show (F1).

2 A and B are the same size. Clearly, this may be generalized to different pitch gears.
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*11.3.2 Computational Methods for Functional Goal Specification

Method 2. Inference. If the user cannot guarantee that (F2) holds, it is possible
for LIMITED to make certain kinds of deductions to infer that (F2) is true.

How can such an inference mechanism work? We can view the difference equa-
tion as a kind of predicate on paths. This is similar to the termination predicate
with continuous history studied by [Mason]. In this model, when the predicate is
true, the path has been recognized as a member of a particular class—say, the goal
class, or the failure class. Similarly, sticking and breaking contact can be repre-
sented as path predicates. If p is a path in generalized configuration space, we wish
to prove that if the difference equation predicate (DE) is true of p, then

stick(p) V break(p)

is false. It is possible to write a semi-decision procedure for this question using
resolution refutation. I wrote a front-end to LIMITED which can decide this question
in special cases. goal, stick and break can be defined as predicates on paths. To
do this, we must view paths as lying in phase space, that is,

p:[0,00). = TG.
hence p(t) is a pair representing the actual position of the robot and the actual net
force on (equivalently, velocity of) the robot at time ¢. stick(p) is defined to be true
if sticking occurs along p. break(p) is true if p ever breaks contact.
The inference system tries to find a contradiction among the set of formulas

{ goal(p), stick(p) V break(p) }.

If a contradiction is found, the system assumes that sticking or breaking contact
cannot occur in the goal, and (F2) has been established.

The quantified difference equation inference mechanism was implemented to
explore the feasibility of the approach. It is ad hoc, special-case, and incomplete. It
should not be viewed as a focus of this research, but more as an heuristic experiment
on the interaction of geometrical and functional goal specifications. While it is
possible to write a more complete inference engine, that is not the point of this

work. From a practical standpoint, the user input method for ensuring the validity
of (F2) is probably preferable.

Method 8. Second Order Theory of Real Closed Fields. Method 2 described a
heuristic implementation of a mechanism for inferring (F2) from a goal predicate.
We must now mention a complete, albeit strictly theoretical mechanism for this
inference. In particular, we describe a semi-decision procedure for deriving (F2)
from a goal predicate on semi-algebraic paths. First, we define an extension to the
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theory of real closed fields. Next, we show it is semi-decidable. Finally, we note
that the specification of the goal predicate, above, may be encoded in this language.

Definition. A semi-algebraic (s.a.) function is a univariate piecewise-polynomial
function.
Definition. The Second Order Theory of Real Closed Fields (2RCF) is the first
order language with the following augmentations:

quantification over s.a. functions,

s.a. function application,

differentiation of s.a. functions.

While the first order theory can quantify only over variables, sentences in 2RCF
can universally and existentially quantify over functions, such as s.a. paths.

Definition. The Ezistential Second Order Theory of Real Closed Fields (X2RCF)
consists of all 2RCF sentences of the form (3p,...,pr € R[t])F(p) where F(-) is a
2RCF predicate containing no quantified functions.

Theorem. X2RCF 1is recursively enumerable.
Proof Given a formula (3pF(p)) where p € R[z1,...,z,], enumerate s.a. multino-
mials p by degree. Test whether F(p) is true using the first order theory. [

Our paths lie in real d-space where d is the dimension of TG.3
Now, the questions we wish to decide are

(Vp € (R[t])4)goal(p) = immopC0CO

or

(Vp € (R[t)?)goal(p) = -stick(p).

The negations of both formulae are semi-decidable in X2RCF. If either negation
is true, then failure mode analysis will not work for this goal predicate. This gives
a theoretical means to decide when failure mode analysis is inapplicable. It is
interesting only as an in-principle approach. It can be shown that X2RCF is at
least non-elementary. It is probably undecidable.

Some of the greatest and most interesting unsolved problems in geometrical
robotics lie in the interaction of functional and geometrical descriptions of goals. In
particular, we would like to devise algorithms for computing a geometrical goal re-
gion given a functional description—for example, a quantified difference equation—
for the desired behavior in the goal state. Conversely, we would like to be able to

3 Actually, d is the dimension of a real space in which the manifold TG embeds.
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infer a functional description of the goal from its geometrical aspects. The latter
would be useful in automatically generating termination predicates to recognize the
goal.

11.4. Approximate Algorithms for Failure Mode Analysis

We now describe algorithms for deciding whether

F1. Under motion 63, all motions starting from pushy (H) must terminate in a
failure mode.

Let us denote push, (H) by H;. These algorithms use time-indexed forward
projections to prove that under 6;, all paths starting in H; eventually stick or break
contact. The algorithms are approximate, although conservative. That is, if they
terminate then (F1) is true. However, they may not terminate if (F1) is false, and
they may miss cases where (F1) is true. The accuracy of the algorithm increases
as the time steps for the time-indexed forward projections are taken to be finer. In
the 4D generalized configuration space for the gears, which is 2 x S! x S1, these
time-steps correspond to the fineness of the slice resolution across the rotational
dimensions.

We will first describe a quite general algorithm for deciding (F1). It is ap-
plicable wherever we can obtain a computational characterization of time-indexed
forward projections. Later, we will give a specialized algorithm in the generalized
configuration space for the gears, and show that it is in fact a special case of the
general algorithm.

11.4.1 A General Algorithm

The basic idea is to step along in time, simulating the motion, and determine
whether or not it breaks contact or sticks. Of course, we must simulate all possible
motions, using forward projections.

First we must develop some notation. Recall that for a planar set Hy, 0H;
denotes its obstacle edges. Here, we will use it to more generally to denote the
obstacle surfaces (as opposed to the free-space surfaces) bounding a set H, in gen-
eralized configuration space. (In our case H;, the input to the algorithm, is the
push-forward of motion 6,).

Let z be a point in generalized configuration space. Then stickg(z) is true if
sticking is necessary at z under all control velocities B,.(v;) consistent with the

nominal commanded velocity vj. Let stickg(H;) denote all points x in H; where
stickg(z) holds.

200




Now, assume some positive minimum modulus bound on the commanded ve-
locity. We use Fyg a¢(-) as the time-indexed forward projection operator (see [Erd-
mann]). So Fy a¢(H;) denotes the set of possible positions the robot can be at at
time At, having started in H; at time ¢ = 0.

Now, we are ready to give the general algorithm for deciding (F1):
Algorithm Gen

1. Let F Fo,At(Hl)-
Let Hy « OF — stickg,(OF) .

3. When Hy = 0, we have proven that all paths from H; must eventually stick or
break contact. Halt.

4. Else, Hy «— H;. Goto (1).

Note that H; is permitted to be in free-space, although given the sticking push-
forward it will, in fact, always be on a generalized configuration space boundary.
Note that Gen is a semi-decision procedure. Clearly, if the algorithm halts, then
all paths originating in H; eventually break contact or stick. Fig. 67 illustrates the
algorithm. Suppose the H; region is the edge e. Its forward projection after At
is the region U U g. The obstacle edges of the forward projection are €', f, and g.
Sticking must occur on f. Hence, H; is e’ Ug.

We now mention a basic property of forward projections that this algorithm
exploits. It is the property that forward projection commutes with union. In
particular, if we have

boundary free—space
~= ~=
Hi= Hp + Hp
then

Fy(H )= Fy(HgUHp)= Fy(Hp)U Fy(Hp).
This key property permits the algorithm to decompose the failure mode analysis

into essentially independent decision problems about the forward projections of the
free-space, sliding, and sticking regions in the push-forward.

11.4.2 A Specialized Algorithm

For failure-mode analysis, LIMITED employs an algorithm that is a specinl case
of the general algorithm above. The idea is that when commanding a purc 11 tation
of A, the time-indexed forward projection across slices can be well approxiiuated by
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Fig. 67. IDllustration of the general algorithm. The start region H; is the edge
e. Its forward projection after At is the region U U g. The obstacle edges of
the forward projection are €', f, and g. Sticking must occur on f. Hence, H is
eug.

the differential forward projection of sec. 6. The differential forward projection is a
technique for propagating the forward projection across slices, when rotations of A
and B are permitted. Recall our notation for motions §; and 6;. 6; is a commanded
pure translation of 4, and may be viewed as unit vector vy in the plane. 6; is a
commanded pure rotation of A, and may be viewed as a member of { +da;, —da; },
for positive and negative commanded rotations.

Differential and Propagated Forward Projections

Pure Translations. Forward projections must be propagated between slices
even when a pure translation is commanded, since a pure translation 6, can alter
the orientation of B, and hence the slice-value, through pushing. Recall Liow the
differential forward projection is constructed for a pure translation 8, (scc. 6).
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Let (z,y, a1, a2) denote a configuration in the generalized configuration space for
the gears, 2 x S* x S'. (z,y,01) denotes a configuration of A. a; denotes the
configuration of B. Hence, we regard the orientation of B (the “last” S! in the
product) as J. Now, H; is a set in generalized configuration space. Let H,
denote a particular z-y slice of H; for orientation a; of A and a; of B.

Motion 6; commands a pure translation of A. Now, for each edge in H, lory s
LIMITED performs a quasi-static analysis to determine the possible impending mo-
tions of A and B. That is, it determines which way(s) A and B can rotate. These
directions may be viewed as tangent vectors to the pure rotational dimensions of
generalized configuration space. The set of possible directions may be identified
with a set of pairs

lecs ez

{ —dal, 0, +da1 } X { —dag, 0, +da2 } (9)
in the tangent space to (S! x S'). By performing this analysis for all edges, we
obtain a set of directions,

dFy, (H, lat,az)s

which is called the differential forward projection of Hy |y, o, under 8;. It is assumed
that commanding 6, from region H|q, 4, can result in any motion direction in this
set.

Suppose (o, aj) is a slice taken in the direction of some tangent vector v in the
differential forward projection. For example, if v = (+da;, —day), then al = aj+e

and af = ay — €; for some small positive scalars ¢; and e,.

‘ Now, the forward projection may be propagated to the adjacent slice (o}, o)
as follows. An edge €; in Hy|q,,a, corresponds to the intersection of an algebraic
surface V in generalized configuration space with the “plane” ®? x { (a;,a;)}. V is
followed into (aj, a4 ), and the forward projection of e; is taken to be the intersection
of V with the “plane” ®2 x {(a},a})}. In this manner, we obtain a set of edges
{e;} in the new slice. The pure translational forward projection of these edges
under 6, is then computed within this slice, so the propagated forward projection is
Fg,({ei}). This propagated forward projection is computed at a fixed orientation
of A and B. Ideally, the planner should decide whether the sliding characteristics
change along V while moving through rotation space. The rotational values which
are sliding-critical are discussed in the critical slice section, 6.3.* The propagated
forward projection increases in accuracy as the slices are taken closer together.

Pure Rotations. Consider the problem of computing forward projections across
slices for a commanded pure rotation 6; € { +da;, —da; }. For simplicity, we first

4Detecting sliding critical orientation parameters along the algebraic surface V has not
been implemented in LIMITED. Thus the propagated forward projection may be larger
than it need be.
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consider the case where H; consists of a single point. Let x be a point in the
plane, and (x, a1, az) be a configuration where A and B are in contact. Then the
differential forward projection of x under 6; will consist of vectors in the set of
eq. (9). The differential forward projection has the same structure as in the pure
translational case. It may be computed using quasi-static analysis. (see the next
subsection below).

Suppose for the sake of development that the differential forward projection
consists of ezactly one direction v, and that (&, a}) is an adjacent slice in that
direction, as above. Now we ask, what is the propagated forward projection of x
into the adjacent slice, (a, a})? Well, it can be one of two things: either it is x,
or it is empty. The reason is that z-y position is invariant® under 6,. Thus, an
upper bound on the propagated forward projection of Hla, a, into an adjacent
slice (a}, a}) is found by simply “copying”® Hila,,qa, into slice (a}, ab).

Now, consider the propagated forward projection of (x, a;j,a;), under motion
6,, into slice aj,a). It is simply the point (x,a),a}). There are three possible
qualitative outcomes:

1. xis inside a generalized configuration space obstacle in slice (a], a5).
.. o .
X is in free space in slice (a}, a}).
3. x is on the boundary of a generalized configuration space obstacle in slice

(a1, 05).

Obviously, (2) implies that contact has been broken. (1) corresponds to a
physically impossible situation. Since the configuration (x,a},a}) is physically
unattainable, this means that the commanded motion #; must result in sticking
(no actual motion) before (a, a}) can be reached. Now, if we have either outcome
(1) or (2) then we have proven that, under 6, any path for the robot starting at
(x, a1, a2) must stick (1) or break contact (2).

Suppose, however, we have outcome (3). This outcome is not inconsistent
with the negation of (F1). That is, it has not yet been shown that any path from
(x,a1,az) will stick or break contact. In this case, in the new slice (a}, a}) we
again perform the quasi-static analysis and forward project again into yet another
slice. This process continues until either outcomes (1) or (2) are obtained.

More generally, the differential forward projection of (x, a1, az) could consist
of more than one vector. In this case, each must be taken as a forward projection
direction, and in each direction we must show that outcomes (1) or (2) eventually
occur. That is, the computation above must performed for each direction predicted

5See below for more on this assumption.
6We use the awkward term “copying” instead of “translating”, since while the latter is
precise mathematically it is confusing robotically.
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by the quasi-static analysis, and all directions must terminate in sticking or breaking
contact.

We have described how the failure mode analysis proceeds when the push-
forward H; of the first motion 6; is simply a point. It remains to generalize the
discussion to the case where H; is a region in generalized configuration space, rep-
resented by slices. We first introduce some notation. If CO denotes the generalized
configuration space obstacle for A due to B, then let CO|q,,q, denote the z-y slice
of CO at orientations (aj,az). As usual, let 0 denote the obstacle edges of a set.
¢ is the slice resolution parameter. The input to this procedure is a stack Q of
z-y-slices of H;. An entry in Q is a triple, consisting of an z-y slice Hy|a,,a,, and
(a1, az2), the orientations at which the slice was computed.

Algorithm Spec

Do until Q = 0:
Pop the triple (H1|ay,0q, 01, a2) off Q. Let Hy «— Hilay as-
Let dF « dFy,(H,).
For each v in dF do:
Let (af,a}) «— ev + (ai,az).
Compute COIO/UO,I’.
Let H3 — H2 N aCOla’l,a;-
If Hy # 0, push the triple (Hs,al,ab) onto Q.

© N oo N

Note that this is a semi-decision procedure. This is the algorithm that is
actually implemented in LIMITED. The key step is of course the iteration step (7),
which we think of as

“Hp « Hz N9COlay ay”

which is repeated “until H; is null.” CO|q41,q; is computed using the plane sweep
union algorithm, as is the intersection.

11.4.3 On the Invariance Assumption

We have assumed that z-y position of A is invariant under a commanded pure
rotation ;. That is, commanding a pure rotation cannot result in an induced
translation. On the other hand, we allow a commanded pure translation of A to
induce a rotation of B (but not of A). These assumptions are realistic if, for example,
the robot has gripped A by its center shaft, and the manipulator is very stiff in the
z-y directions when commanding a pure rotation. In future work, relaxing this
asymmetry should be explored. See chapter VI for suggestions.
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11.4.4 Quasi-Static Analysis

We now show how the quasi-static analysis is computed. It is quite simple.
We view the commanded velocity to A as w = (0,0,41). When the gears are in
contact, this defines a moving constraint in the configuration space of B, which is a
one-dimensional space. Given a contact configuration, we compute the moment arm
in order to determine the direction of the constraint. The moment arm on B (resp.,
A) is simply the vector from B’s (resp. A’s) center of mass to the contact point in
real space. The contact point in real space can be recovered from the contact point
in configuration space.

Let r, and rp denote the moment arms on A and B, resp. Then the instan-
taneous velocity v, of the contact point on A4, given w, is w X r,. B’s direction of
impending motion is given by the sign of the expression

Ty X WV, = Tp X mo(w X 14),
where 7, denotes the projection of R onto 2.

We now discuss recovery of the moment arms from the contact configuration.
Let COM4 and COMp denote the centers of mass of A and B. In these exper-
iments, they are simply the centers of the gears. Suppose (x,a;,a;) is a contact
configuration. Then it lies on an algebraic surface in the generalized configuration
space R2 x S x S1. This surface is one of two types [Lozano-Pérez]. Let —A denote
the reflection of A about its reference point. A type (A) surface is generated by an
edge e, of —A and a vertex bj of B. A type (B) surface is generated by a vertex
a; of —A and an edge e; of B. Each edge-vertex or vertex-edge pair is called the
generator pair of the constraint surface [Donald]. The edges and vertices of —A
(resp. B) rotate with o (resp., a2). An (a;,as)-slice of the surface is found by
rotating its generators by (a1, a2), and taking their Minkowski sum. Hence the sur-
face may be viewed as a parameterized line-equation, by (a;, az). The table below
gives the details for recovering the moment arms from the contact configuration,
contact surface in generalized configuration space, and centers of mass. We employ
the following notation. For an edge e or a vertex v, e(a) and v(a) respectively
denote e and v rotated to orientation a. @ denotes convolution (sometimes known
as the Minkowski sum). For twosets U and V., UV ={v+u|uelU, veV}

Type BSurface Moment arm on B Moment arm on A
Th Ta
A ea(al) & bj(ag) b]‘(ag) - COMB b_,-(ag) - X - COAIA
B ai(ay) @ ep(az) x —ai(a;)— COMp —ai(a1) — COM4
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11.4.5 Stiction

What the Spec algorithm does is this: it tries to show that from any slice of
H,, all paths that could possibly evolve from commanding a rotation of A either (1)
remain in the first slice, or (2) in some subsequent slice, stick or break contact. We
have described how (2) is detected. (1) is a form of stiction; the gears do not turn.
Note that (1) is a form of sticking behavior, since no motion occurs. Staying in
the same slice means that (a;, a;) are fixed, and z and y are fixed a priori. Hence
events (1) or (2) satisfy (F1). That is, (1) is also a form of sticking, and can be
detected at run-time by the termination predicate.

Now, suppose B sticks but A continues to turn? This type of stiction is also
no problem, since it corresponds to a differential motion (+da;,0), which can be
predicted by the differential forward projection.

11.4.6 Failures Outside the EDR Framework

We will momentarily digress to a practical question. It would appear that
for failure mode analysis to work, non-uniform stiction would be required in our
physical model of the gears. That is, it would seem that stiction would have to be
impossible in the goal, but possible in H;. This is not the assumption made in the
geometrical EDR analysis and implementation. We now show that uniform stiction
is in fact not an impediment to failure mode analysis, either.

It is the responsibility of the user, or of some external inference system, to
ensure that (F2) holds. Suppose, however, that this inference is incorrect, and that
at run-time stiction does, in fact, occur in the goal, and that the gears jam. In
this case the run-time executive will signal failure, even though the geometrical goal
has been achieved. At first glance it appears that this is incorrect. However, when
we regard the goal as a combined geometrical and functional specification, it is
clear that this is actually the correct termination diagnosis. That is, even though
the geometrical goal has been achieved, stiction prevents the quantified difference
equation (DE) on paths, goal(-), from being satisfied. Since something (specifically,
stiction) has prevented achievement of the functional goal, it is completely correct
for the run-time executive to signal failure in this case. However, note that we regard
this as serendipitous failure detection, and not as inherent in the EDR framework.

11.4.7 Generalizations

The specialized algorithm Spec may be generalized. The properties it exploits
are (1) that certain degrees of freedom in C' and J can be held fixed, while others
may be commanded, (2) that “slices” of CO can be computed, (3) set intersections
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can be computed, and (4) differential motion across the non-fixed degrees of freedom
can be predicted using quasi-static analysis.

More precisely, the specialized algorithm generalizes to cases where we fix cer-
tain degrees of freedom Cy¢ and Js, command C,, and permit J. to vary (through
pushing). Hence G is decomposed into

Cs xCe x Je. x Jy,
Bec(vp,) lies in the tangent space to C'¢, and all motion lies in the subspace C¢ x J..
Using quasi-static analysis, we predict the impending motion direction, v which lies
in the tangent space to C. X J.. If a is in C; x J., let H;|a denote a slice of H; at
(). Thus Cy¢ x Jy are the dimensions of the slice (like z, y in the gear example).
Then we let @’ — a + ev. Finally, the iteration step is

H3 — H]la N BCOIQI.

The rest of the algorithm goes through mutatis mutandis. This generalization is
somewhat theoretical, in that in practice the CO-slices, set intersections, and quasi-
static analysis may be difficult to compute for higher-dimensional problems.

*11.4.8 Discussion: General vs. Specialized Algorithm for
Failure-Mode Analysis

This starred subsection may be skipped at first reading. It contains a detailed proof.

The problem with implementing algorithm Gen directly is that arbitrary time-
indexed forward projections are difficult to compute. For this reason we introduced
a specialized algorithm for the gear planning. While algorithms Spec and Gen
appear quite different, in fact, Spec is simply a special case of Gen. The motivation
behind this viewpoint is to find a uniform framework for characterizing algorithms
for failure mode analysis. That is, algorithm Gen can be viewed as a high-level
computational approach to failure mode analysis, while Spec is an implementation
of Gen in a restricted domain. We now discuss this view of the algorithms.

Recall the definition of stickg,(-). We now define stickj, (R) to be all points
z in R such that any feasible path from z consistent with the control uncertainty
Bec(vg,), eventually sticks.

We employ the following topological notions. U denotes the closure of a set U.
U¢ denotes its complement. i(U) denotes its interior. U~ denotes the complement
of the closure.

Now, consider the following step of the Spec algorithm,

7. H3 — .H2 ﬂBCOla;,alz,

where Hy = Hila,,a,- This step is equivalent to
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H; «— Hy — i(co‘a’l,a’,) - CO!a’l,a; ’ (10)

where the set difference operator — associates to the left. Now, the set

H, N i(COIa’l,a'z)

corresponds to all configurations (x, a1, a2) in the planar slice (a1, a2) such that
under 6,, any path from (x, oy, az) will stick before reaching (a}, a}) if x is kept
fixed. That is, it is configurations such that sticking will occur from (x,aq, as)
between (a1, az) and (ai, a}).
Below, we argue that the set H Ni(CO|q; o) in algorithm Spec corresponds
in a quite precise fashion to stickg,(OF) in algorithm Gen. We see this as follows:
The following step of the Gen algorithm,’

2. Hj « OF — sticky,(OF) .
is equivalent to

Hy « F —CO° — stickg,(0F). (11)

Now, it is possible to modify Gen as follows. Let

Fg = Fog,At(Hl - 3t20k32(H1))
Then we can replace the assignment (11) by eq. (12) and still have Gen be correct:

H3 (—Fz —-C'_Oc, (12)

We wish to compare the step (12) of the thus modified Gen with the step of
Spec given in eq. (10). In essence, we wish to show that eq. (10) is in some sense a
“conservative” approximation to eq. (12), and hence conclude that algorithm Spec
is simply a special case of algorithm Gen.

We must introduce some notation to compare egs. (10) and (12). For a set V
in R2, we denote the set

V x{(a1,02)}
by

V x (a1, az).

"We have lexicographically substituted Hj for H, throughout algorithm Gen to facilitate
the comparison with Spec.
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Now, H; is a subset of . A slice of it H|q, o, lies in the “plane” R2 x (a1, az).
Let us denote its projection into R? by m H |4, «,. Finally, for an arbitrary set U
in generalized configuration space, let Ul,, o, denote an (a1, az)-slice of it, that is,

Ulal,az =UnN (§R2 X (011,02)).

Claim: Eq. (10) is a conservative approzimation to eq. (12) in each slice.
Proof. First, we obviously have

C'OI,,,'I,C,I2 c CO. (13)

Next, we need only show that

C 7"2(Hlla1,a2) X (0'1,0'2) (14)

/ ’
O’l ,0’2

(F92,At (Hl !0'1 ,02))

and

H1|01,02 N e (Z(Cola'l,a’z)) X (al’a2) - StiCk;Q(Hllal)az). (15)

Egs. (14) and (15) are definitional. Now, suppose that configuration z €
i(COlay,as)- Then clearly z ¢ FIO'I,CY;' Hence we have

H3,Gen = (Faz,At(Hl - Stzc’C;z(Hl))) - Colalna'z
0;,0'2 N a’l,agl
N n [
H3,Spec = (7"2H2 X (a;’a;)) - i(COIa;,a;) - CO|0!'p0!'2 .

a

Note that as a consequence, we may expect that Spec is less likely than Gen
to terminate.
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12. Weak EDR Theory, Strategy Equivalence, and the
Linking Condition

12.1. Reachability and Recognizability Diagrams

We now introduce a type of diagram which permits notation of reachability
and recognizability. These diagrams are a powerful tool for compactly expressing
motion strategies. They greatly aid the development of concise and readable proofs.

Suppose we are given a start region R, a goal G, and a motion §. We construct
the EDR region H. Then under sticking termination, all motions from R will

terminate in G or H. That is, the push-forward of the motion 8 from R is contained
in GUH:

pushy(Fy(R)) C GUH. (16)
Whenever (16) is true, we write this by the following reachability diagram,
s G
/
R 17)
N\
° H.

Suppose that G and H are distinguishable using sensors. Then 8 is an EDR
strategy from R, and we have

R=Pyr({G,H}). (18)
Whenever (18) holds, we write this by the following recognizability diagram,
G
6
%
R (19)
N
¢ H.

The reachability diagram (17) is an equivalent notation for the reachability
termination condition (16). The recognizability diagram (19) is equivalent nota-
tion for the recognizability termination condition (18). Single arrows (—) denote
reachability whereas double arrows (=) denote recognizability. If and only if (16)
is true, we say that the correspondingly reachability diagram (17) holds. If and
only if (18) is true, we say that the correspondingly recognizability diagram (19)
holds. A diagram is said to hold tautologously when it is true without additional
conditions or suppositions.
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The nice thing about sticking termination, as discussed in chapter II, is the
following property:

Theorem: Let R be a start region, 8§ a motion, and G a goal. Construct the EDR
region H for R, 8, and G. Then with sticking termination the reachability diagram
(17) holds tautologously.

Now, in diagrams (17) and (19) we have labeled all the arrows. In the future,
when this would clutter the diagrams, we will label only the top arrow and adopt
the convention that all arrows aligned below it have the same label.

12.2. More General Push-Forwards

Hence the chief advantage with sticking termination is that (17) is always
true. In this chapter, we will generally assume that either sticking termination is
employed, or, if more general termination predicates are allowed, then the truth of
the reachability diagram (17) can be determined through restrictions on time and
history, as described in chap. II. We now digress briefly, however, to describe how
this discussion generalizes for more general termination predicates.

In an appendix, we define a more general push-forward, Fi,y(R), which de-
notes all configurations at which the motion 6 can terminate given more general
termination predicates. When more general termination predicates than sticking
are considered, then the condition (16) must be replaced by

, F.¢(R)CGUH. (20)
When (20) holds, we may then write the equivalent reachability diagram (17).

However, with more general termination conditions, (17) does not hold tau-
tologously. For example, with time-termination and the approximate push-forward
described in sec. 10.3, a motion could (a priori) terminate without sticking yet
within the weak preimage. In such cases, it must be the responsibility of the plan-
ner to verify that all motions terminate in G U H.

The first difference between the sticking push-forward push(-) and the general
push-forward F,(-) is that Fi(-) depends on the start region for the motion, while
push(-) does not. That is, F,(-) depends on history (and possibly time) whereas
push(-) does not.

Now, a motion sequence is a reachability or recognizability diagram of the form:

en—l

R.2R, 2o 2R R =G (21)
The second chief difference between the a priori sticking push-forward push(-)
and the general push-forward F(-) is that the action of push(-) on a motion sequence
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(21) is functorial, while Fy(-) is not. The non-functoriality of F(-) is a consequence
of its history dependence.

12.3. Weak EDR Theory

We now make the following natural refinement of our termination predicate.
Suppose the termination predicate is given some finite collection of goals { Gg } in
a distinguishable union. Then the goals { G3 } are of course partially ordered by
containment. We assume that the termination predicate returns the smallest goal
(with respect to containment) if at termination time the actual configuration of the
robot is known to lie within two or more goals. (A technical point: if two or more
goals overlap, we augment the collection with a new goal which is their intersection).

Now, whenever the reachability diagram (17) holds (which it always does with
sticking termination), then we have the following:

R=P9,R({G,H7GUH})’ (22)
This is trivial to show; on termination, the termination predicate will return G or
H if it can, otherwise it will return G U H. In particular, it will return G or H in
preference to G U H.

Thus we can write the following recognizability diagram, which is equivalent
to (22):

” G

R = H (23)
N
6 GUH.

(23) is called the Weak EDR Recognizability Diagram for G, H, and 6. (19)
is called the Strong EDR Recognizability Diagram. (17) is called the Reachability
Diagram.

Theorem: Let R be a start region, 8 a motion, and G a goal. Construct the EDR
region H for R, 8, and G. Then with sticking termination the weak EDR diagram
(23) holds tautologously.

Up to now, in previous chapters, we have described the strong EDR theory.
This section has introduced the weak EDR theory. It may not appear useful at
first glance. However, in the next section we will see that these one-step weak EDR
strategies—which are in effect always available—may under certain conditions be
chained together to make a multi-step plan very like a strong EDR strategy.
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The key idea behind the weak EDR theory is: given a collection of goals { G }
(possibly including H), we consider all unions of the subcollections to get some
measure of weakest recognizability.

12.4. Strategy Equivalence

A one-step weak EDR strategy is not very interesting. In particular, we can
always obtain one! Surprisingly, it is possible to define a way of coupling two weak,
one-step EDR strategies together to make a two step strategy which has many of
the characteristics of strong EDR. In particular, we will develop a way of making
precise the idea that the two weak EDR steps can be combined to make a two-step
strategy that is “equivalent” to a one-step strong EDR strategy.

Suppose the commanded motions of the two weak EDR steps are 6, and 4,.
The essence of this “equivalence” lies in disambiguating a previous motion’s (6,’s)
result without destroying the goal state.

Now, let R be the start region, and G the goal as usual. Assume without loss
of generality that G is contained within the forward projection of R under 6, (see
sec. 7.3 for justification). Let

Ry = RN Py, 5, (r)(G). (24)
Now, we have the recognizability diagrams

R & G . G
/ 7
R-R, = H  pushy(GUH) = H'
N N (25)
HUG H'UG

- 7 -
~

recog 6, rec:g 82
where H' is the EDR region for motion 8,.

The question is, how can we link together motions 6, and 6; into a two-step
EDR strategy? The first condition we require of such a two-step strategy is as fol-
lows: once 6, has reached G, 6, should preserve this state and “add” recognizability.
That is, G is a “fixed-point” under ;. This is given by the following diagram:

Definition: The fixed-point diagram s
pushy (G) = G. (26)

When the fixed-point diagram (26) holds, (25) admits the following reachability
and recognizability diagram:
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s, DPushy (G) 2 ¢

/
R (27)
N
pushy (H).

It remains to ensure that good EDR behavior occurs when 6, is executed from
pushy (H). Now, think of §; * 8; as the composite strategy formed by executing
motion 8; followed by 6,. We wish to find additional conditions which, together
with (25), will admit both the fixed-point diagram (26) and a strong EDR diagram,

G
61 %8
7

R (28)

91 *92 H"’

for some H'" (see below). Together with the weak EDR diagram (25) (which is
tautologously true for sticking termination), the additional conditions below, which
we will call the linking conditions, are necessary and sufficient for defining an equiv-
alence between two “linked” weak EDR strategies and a single-step strong EDR
strategy, whose recognizability diagram is given by (19), (substituting 6, for 6).
Henceforth, let 8 = 6.

Definition: If the fized-point diagram (26) holds and if (25) admits a strong EDR
diagram (28) in which

H"={H'}, (29)
then the motion strategy 6; * 6, is said to be strongly equivalent to a strong EDR
strategy with recognizability diagram (19).

An example of such a strategy is the two-step peg-in-hole insertion plan with
model error, figs. 4-66.

Definition: If the fized-point diagram (26) holds and if (25) admits a strong EDR
diagram (28) in which

H'={H' H UG}, (30)

then the motion strategy 6, * 0, 13 said to be weakly equivalent to a strong EDR
strategy with recognizability diagram (19).
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Note that we define (strong or weak) equivalence using (19) with § = 6,
not with 8 = 6; * 8,. The reason for this is as follows. If 8; * 8, satisfies the weak
equivalence condition (30) and the fixed-point diagram (26), then after termination,
we are assured that the outcome of §; has been completely diagnosed. That is,
the run-time executor knows whether or not #; terminated in success or failure.
However, it is not necessarily true that the outcome of 65 is completely diagnosed.
This occurs in the worst case, if H' U G is recognizably attained. We discuss this
point in some detail below.

The following gives an implicit definition of linking conditions:

Definition: Let H" be chosen for either strong or weak equivalence, as in (29)
or (80). The linking conditions are necessary and sufficient conditions for (25) to
admit a fized-point diagram (26) and a strong EDR diagram (28).

It remains to show, of course, that linking conditions exist for strong or weak
equivalence. We will momentarily postpone the derivation of the linking conditions
in order to describe what the linking should effect.

Once “linked,” two one-step weak EDR plans should admit the strong EDR
diagram (28). The claim is that (28) is in some sense “equivalent” to the strong
EDR diagram (19). How is this possible?

(19) indicates that the run-time executor can disambiguate the success or failure
of motion §;. The same is true of strategy 6; * 62 in (28). Here are the possible
results of executing 6; * §; when the steps 6; and 6, are properly “linked:”

1. G is achieved and recognized at termination. In this case, either (i) 6; achieved
G and the run-time executive may not have recognized it, but 8, disambiguated
the result while still terminating within G. Alternatively, (ii) 8, failed, reaching
H, and 6, subsequently achieved G from H.

2. H'is achieved and recognized at termination. In this case, 6, is known to have
failed, and the robot is known to be outside G.

(1) and (2) are the only outcomes given strong equivalence. With weak equivalence,
a third outcome in also possible:

3. G U H' is achieved and recognized at termination. In this case, 8; is known to
have failed.

Thus the key is that 6, does not corrupt the goal state; that is, G is a fixed
point under #;. The desirability of outcomes (1) and (2) are clear. One might ask,
what good is weak equivalence? Why would anyone want outcome (3)? The answer
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is: in one-step strong EDR (19), the run-time executor can (a) disambiguate the
result of motion 6;, and (b) in case of failure, know that the robot is not in the
goal. In weak equivalence, we have (a) but not (b). That is, in outcome (3), we
have completely diagnosed the result of motion 6;, although in the process, we may
have accidentally moved into the goal. That is, we may indicate failure when we
have, in fact, succeeded. However, we will never indicate success unless it is certain.
In short, when linked, 6, * 8, is “conservative” about declaring success.

12.5. The Linking Conditions

We now derive the linking conditions. Let

Fy, = Fy,(R)
Ry =RnN Pet,Fel(G)
pushy, = pushy (G U H)
Fy, = Fy, (pu5h91)
Ry = pushy, N Py, F,, (G).
The overloading notation for push,, is symmetric with that for preimages and
forward projections: both the map and its image are denoted by the same symbol.

The discussion of linking conditions assumes sticking termination. However, the

derivation goes through mutatis mutandis for more general termination conditions,
if we let!

puSh01 = Lxg, (R)
It remains, however, to extend the linking-conditions for time-indexed forward pro-
jections.

We now demonstrate our claim that linking conditions exist.

Definition: The condition (LO) i3

G Npushy C Ry. (LO)

Here is the motivation behind (L0). (LO) says that whenever motion 6, ter-
minates in the goal G, then the state is inside the preimage of G under the next
motion #;. The intent of (LO) is to admit the fixed-point diagram (26).

Claim: (L0) implies the fized-point diagram (26).
Proof: The preimage equation for (26) is

1 F, is defined in the appendix. See also sec. 12.2.
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P, push, (6)(G) = pushy, (G).
This preimage is taken with respect to a smaller start region than R,. 0O

Note however that the converse is false. (L0) is stronger than the fixed-point
diagram (26), since the preimage R, is taken with respect to the entire forward
projection under 6,.

Claim: Linking conditions ezist, and, in particular, (L0) i3 a linking condition.
Proof: Suppose (L0) holds. This yields the following reachability and recognizability

diagram:

linking condition (LO0)

N

b6 > 'an'U.Shgl C R = R, 22 G

Ve Va

R-Ry, — H D Hnpush, C push, DO pushy —R, = H'

Ry

H UG

reach:bility recogn;;a.bility
(31)

To see that diagram (31) demonstrates weak equivalence, we use a technique
like “diagram chasing” (see, eg., [Hungerford]). Assume (L0) holds. Starting from
Ry, 6, effects a motion reaching G. This motion in fact terminates in G' N pushy, .
Since by (LO) G N pushy, is within R;, 6; then effects recognizable termination in
G.

On the other hand, if the motion begins in R — Ry, then 6; effects a motion
reaching either G or H. If G is reached, then 6, will eventually effect recognizable
termination in G, by the argument immediately above. If H has been reached, then
the motion 6; will in fact terminate at some point z in H N push, . Then there are
two cases. Case (i): z € R,. Since the preimage R; is constructed with respect
to the entire forward projection of push, , motion 8, will next effect recognizable
termination in G. Case (ii): z € R;. In this case, motion 8; will effect recognizable
termination in one of { G, H,H' UG }.

We conclude the process by “forgetting” all the intermediate steps, and renam-
ing them to 6, *6,. First, observe that the fixed-point diagram (26) holds. Next, to
see that (31) admits an EDR diagram (28) in which (30) holds, we remember only
the start region R and the “results” G, H', and H' U G. Diagram chasing shows
that these may be joined with recognizability arrows as in (28).

Thus the diagram (31) demonstrates weak equivalence. For strong equivalence,
we remove H' U G as an outcome of 6. Note that the linking condition is not a
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tautology. However, note that all the other subset relations and the equality in (31)
are tautologous. U

In the future, we will leave similar diagram-chasing arguments to the reader.
We may thus conclude that

Theorem: The linking condition (L0) is a necessary and sufficient condition for
weak equivalence of 6, *x 8, to a one-step strong EDR strategy.

Proof: The claims above have demonstrated sufficiency. It remains to show (L0) is
necessary. Suppose (L0) is false, but (26) still holds. (This is the interesting case,
for if (26) does not hold, then equivalence cannot possibly follow). (26) says that
when the motion is known to start within pushy, (G), then it can be guaranteed to
terminate recognizably in G. The antecedent is a precondition for success of the
motion. After 8;, however, this precondition may be false: even if §; reaches G,
it is only known to have reached pushy . In particular, (26) says nothing about
what happens when 6, is executed from H. (LO0), on the other hand, says that
termination in G' can be recognized no matter where 6, originates in pushy . [

Now, we can derive some equivalent linking conditions that are somewhat sim-
pler in form. Let

R} =R, NG.
Definition: The linking conditions (L1) and (L2) are
G Npushy, = R; (L1)
HNpushy = pushy — R} (L2)
These linking conditions admit the reachability and recognizability diagram
linking conditions (L1), (L2)
R 2 @ > ‘Gnpush, = R, = G
/ 7
R-R, — H D> Hnpush, = pushy -R3 = H (32)
HUG
~ — - S ——
reachability recognizability
Comments: Let
o~

Py, = Py, F,, (push,, (6))(G);
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so Ry = pushy N Py,. Note that (L2) is not tautologous, for we can have z € G,
z & Py, if (L1) is false. Therefore z € pushy — R} and z ¢ push, N H.

Lemma. The linking conditions (L1) and (L2) are equivalent.
Proof.  (L1) implies (L2). Suppose (L1). Let z € H N pushy . z € R; implies
z € G. Therefore z ¢ H is a contradiction. Therefore z € pushy, — Rj.

Now let z € pushy — R3. Therefore ¢ € G N pushy, N Py,. Therefore z ¢ G
or z & Pg,. In the former case, 2 € H. In the latter, suppose that = € push,, and
z € G and = € Py,. But by (L1), z € G N push,, implies z € Py,, a contradiction.

(L1) if (L2). Let + € G N pushy,. Show z € R;. We need only show that
z € Py,. Now, z € Py, implies € H N pushy , a contradiction. Now let = € Rj.
Therefore, € G N pushy,. U

Lemma: The linking conditions (L0) and (L1) are equivalent.
Proof. (L0) implies (L1). Suppose (L0), i.e., G N pushy C R;. Show G Npush, =
R; = GNR,.

Let £ € G N pushy,. Now, (LO) implies that z € R;. Therefore ¢ € G and
z € R;. Hence z € R}.

Let ¢ € R;. Therefore z € G N R;. Hence z € G N pushy, N Py,, ie, z €
G N pushy, .

(L0) if (L1)is trivial. O

Theorem: The following linking conditions are equivalent:

G Npushy C R, (L0)
G Npushy, = R; (L1)
HNpushy, = pushy — R} (L2)

*x12.6. Beyond the Fixed-Point Restriction

In the discussion above, we have required that the goal was a fixed point under
motion §;. We now discuss how to relax this restriction. In particular, it is possible
to extend the notions of strategy equivalence, and the linking conditions, to the
case where a subgoal G; is in fact the preimage of the actual, or final goal, Gy,
under #;. Thus G, is no longer the fixed point of 8;, but rather the preimage of
Go. This section is somewhat technical and may be skipped at first reading. We
regard relaxing the fixed-point restriction as a digression. The subsequent material
may be understood even if this section is omitted, however, the reader may wish to
bear in mind that such a generalization does, in fact, exist.
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We consider the situation where from R, §; may attain Gg or G, where “G; =
Py,(Gy).” However, G; may not be distinguishable from G¢ under 8. Thus the
three reachability results of 8, are Gy, G1, or H;, where H; is the EDR region for
f; when we view the goal as Gy U G;.

To define sﬁrategy equivalence in the non-fixed-point case, we first generalize
the fixed-point diagram (26) as follows.

Definition: The generalized fixed-point diagram s

push, (GoUGy) = Go. (33)

Next, we modify the definitions of strategy equivalence and the linking con-
ditions to require that the generalized fixed-point diagram (33) hold in place of
the old fixed-point diagram (26). To avoid confusion, we will call (26) the simple
fixed-point condition.

Now, we let

Ry = RN Py, p, (Go UGh)
pushy, = F,y, (R)
Fy, = Foz(pushel)
Py, = Py, F,,(Go)
Ry = pushy, N Py,
Next, define

R} = G;N Ry, (j=0,1)

It is possible to generalize the definition of R% and the linking conditions to more
than two subgoals { Gj}. We would do this by writing (Vy) in place of (j =0, 1).

We already know one linking condition:

Py, D GoUG. (L3)

In addition, we can derive the following linking conditions. Recall H; is the
EDR region for motion 8;, viewing the goal of §; as Gy U G;.

pushy, N G; = R}, (vj) (L1
pushy, N H; = pushy —J; R (L2"
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Comments: Clearly we have (L1') implies (L2'). However I have not been able
to prove the converse true. I suspect it is false, since Gy may intersect G, and H,,
the EDR region for §,, may intersect G, etc.

Finally, note that all three linking conditions, (L1', L2’ L3) are required for
the composition 8; * 82 to admit an equivalent strong EDR diagram. This points
out the chief theoretical advantage of strategy equivalence with the simple fixed-
point condition (26). With the simple fixed-point condition, the linking conditions
(LO), (L1) and (L2) were found to be equivalent. With the generalized fixed point
condition (33), not only do the corresponding linking conditions (L1') and (L2')
appear to be inequivalent, but we also require the additional independent condi-
“tion (L3). While it is gratifying that our key concept—composing two weak EDR
strategies via linking conditions to admit strategy equivalence—in fact generalized
to the non-fixed-point case, the generalization, unfortunately, is correspondingly
more complicated.

12.7. What Good is Weak Equivalence?

We now pose the following question. Why is

R 2 ¢
7
R-R = H' (34)
X
GUH'
any better than
R & ¢
7
R-R = H (35)
N
GUH
?

(35) is simply the weak EDR diagram for motion §;. It always holds (given the
reachability diagram). (34) is the equivalent recognizability diagram for 6; 6, when
a linking condition is satisfied. That is, (34) is obtained through weak equivalence.
Why is (34) stronger than (35), and would one prefer (34) to (35)?

Here is our answer. push, (G) is a fixed-point of 8;. Therefore, nothing is
“lost” by 6. 6, serves to disambiguate the result of 6;, without polluting the state.
Second, note that #; * 6, is “conservative” about declaring success. It is as if we
used 6, to convert the reachability diagram

222




61

R1 — G
/ (36)
R - R1 — H
into the recognizability diagram
R, g G “Win”

7 (37)
R—R; = “Lose, but knowing 6; did not achieve G.”
More precisely, the “lose” states are
H' = 6, did not achieve G, and now the robot is outside of G.

GUH' = 6, did not achieve G, and now we might be in H', but can’t guarantee
that we’re outside of G.

On the other hand (35), achieving G U H after §; only tells us that we started
in R — R;, and does not tell us the result of motion 6;.

12.8. Application: Failure Mode Analysis in the Gear Experiment

We now discuss how the failure mode analysis used to generate motion 8, in
the gear domain may be viewed using the weak EDR theory.

In the gear meshing plan, 6, is a pure translation, and 6, is a pure rotation.
The goal is a fixed point under 6;. Consider (32). In the gear plan, the reachability
arc

/ (38)

is present, but the arc

8
Vi (39)
PUShe1 - R}

is not. That is, it is possible to serendipitously achieve the goal under translation
but not rotation. The linking conditions are satisfied. Now, is the outcome G U H'
possible? Failure mode analysis yields the answer: No. In this case, 6; * 6, is
strongly equivalent to a one-step strong EDR strategy

R - R1 =0 H ’.
The full reachability and recognizability diagram for the gear plan is given by

R, G
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linking conditions (L1), (L2)

R, 2, 6 > Gn push, = R} S22 ¢
/
R-R — H D> Hnpush, = pushy —R} = H' (40)
~ ~~ o e
reachability recognizability

12.9. Discussion and Review

We now discuss the relationship between push-forward algorithms, failure-mode
analysis, and the weak EDR theory. Recall the diagram (32):

linking conditions (L1), (L2)

R 2 G o ‘Gnpush, = R = G
/ %
R-R — H D> Hnpush, = pushy, —R} = H' (41)
d HUG
~ — — (S —
reachability recognizability 8,

(41) is the full reachability and recognizability diagram for weak equivalence.
The arrows (a)-(d) all correspond to motion 3; we have labeled them so as to be
able to refer to them in the discussion.

Failure Mode Analysis. The reachability and recognizability diagram for
failure mode analysis (40) is found by deleting arcs (b) and (d) from (41). In
LIMITED, arc (a) is essentially a user input? (see sec. 11.3). The failure mode
analysis algorithms Spec and Gen decide arc (c¢). Thus, in sec. 11.3, (c) corresponds
to (F1). Failure mode analysis links a weak EDR strategy 6; followed by a strong
EDR strategy 6;. (a) warrants that G is a fixed-point under 8,. (b) ensures that
failure is preserved under 82: no serendipitous goal achievement from H is possible.
Thus such plans are pure disambiguation strategies.

Push-Forward Algorithms. Plans found by push-forward algorithms such as
Multi admit a diagram from (41) containing arcs (a), (b), and (¢), but not containing

2 Although we have discussed methods for inferring (a) computationally, this is really a
direction for future work rather than a focus of this research.
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(d). The arc (b) (which is shown in detail in eq. (39)) permits serendipitous goal
achievement from H under 6;. The absence of arc (d) yields strong equivalence.
Again, push-forward algorithms link a weak EDR strategy followed by a strong one.
They differ from failure mode analysis plans in that the arc (b) is permissible, and
(a) is not a user input. The peg-in-hole plan with model error (figs. 4-66) is an
example of such a plan.

2-Step Weak EDR. A plan admitting the diagram (41) with all four arcs
(a)—(d) demonstrates weak equivalence. It is formed by linking together two weak
EDR strategies into a 2-Step plan. We have discussed the semantics of such plans
above. The key differences between 2-step weak EDR plans and push-forward or
failure-mode plans are (1) the existence of arc (d), and (2) the linking of 2 weak (as
opposed to a weak and a strong) EDR strategies.

In all cases, note that the linking conditions are required. Thus the linking con-
ditions have somewhat surprisingly turned out to be the underlying characterization
for multi-step EDR strategies. That is, since they are necessary and sufficient con-
ditions for constructing multi-step EDR plans, the linking conditions may, in fact,
be taken as the definition of multi-step EDR strategies.

Hence in considering LIMITED’s techniques for multi-step strategy generation,
we find that both failure model analysis and push-forward algorithms are essentially
special cases of the Weak EDR theory. This is summarized in the table below:

Method Arcs in (41) Strategy Type Comments
Failure Mode Analysis a,c weakxstrong Pure Disambiguation.
(a) is user input, (c) is computed.
Push-Forwards a,b,c weak*strong (b) permits serendipitous goal achievement.
Weak EDR a,b,c,d weak*weak 2-Step Weak EDR.
12.9.1 Algebraic Considerations
Let us pause and review the key points in this development. Weak EDR the-
ory, strategy equivalence, and the linking conditions were introduced as a unifying
framework for planning multi-step strategies.
1. The linking conditions are necessary and sufficient criteria for admitting the

composition of two weak EDR strategies 6;" and 6;" into a two-step strategy which
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is weakly equivalent to a one-step strong EDR strategy from ;. We may write this
as

01“’ * 92w ’g’ 618 (42)
2. The linking conditions are necessary and sufficient criteria for admitting the
composition of a weak EDR strategy 6;" and a strong EDR strategy 6,° into a

two-step strategy which is strongly equivalent to a one-step strong EDR strategy
from 6;. We may write this as '

0" x6,° ~ 6,° (43)
3. The gear plan is a special case of (2). In particular:
4. Failure mode analysis is a special case of satisfying the linking conditions to
render a two-step EDR strategy strongly equivalent to a one-step strong EDR strat-
egy.
5. Multi-step strategies may also be planned, by repeatedly pushing forward. This
was the gist of algorithm Multi in the beginning of this chapter. Multi may be viewed
as chaining together weak EDR strategies followed by a strong EDR strategy. Mult:
is also essentially a special case of (2), with the goal fixed-point condition relaxed.®

We can view the set all strategies ® as a monoid under the composition oper-
ation *. The generators of the monoid are {6} } U {87 }. Strategy equivalence is a
way of defining certain relations between products of these generators. When the
linking conditions are satisfied, then these relations take the form of (42) for weak
equivalence or (43) for strong equivalence.

However, we cannot directly define a new monoid by taking the quotient of ®
by these relations. This is because the relations are not always true, that is, they
only hold when the linking conditions are satisfied. We can remedy this by viewing
® as “a groupoid without inverses.” We call such a structure a monoidoid. That is,
the operation * turns out to satisfy properties that look very much like the axioms
for a monoid. These are called the monoidoid properties of *. The only difference
from the properties of a monoid is that 6, 8, is not defined for every pair of classes,
but only for those pairs 8, 6, for which the linking conditions hold.

3Relaxing this restriction was discussed in the section “Beyond the Fixed Point Restric-
tion,” above.
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~
~°IV. Planning Sensing and Motion for a Mobile Robot

We now consider an application of the EDR theory to planning sensing and
motion for a mobile robot amidst partially-known obstacles. A partial “map” of
the environment is represented using generalized configuration space. We assume
that the robot has a depth sensor which it can use to interrogate the environment.
We call this process active sensing.

Applying EDR to the mobile robot domain yields certain insights into the struc-
ture of the EDR theory. Conversely, this chapter obtains a technique for planning
motions and active sensing for a mobile robot in a partially known environment.
This technique provides a principled approach to motion planning with active sens-
ing. It shows how to incorporate a more fine-grained model of sensing into the EDR
planning framework.

Much work remains to be done. In particular, the EDR framework for ac-
tive sensing is still fairly theoretical. Mobile robot environments are often highly
unstructured [Brooks, 85|, and representing this geometric uncertainty using gener-
alized configuration space presents a non-trivial problem. Furthermore, it may be
impractical to model more general vision or sonar sensors without further enhance-
ments to the EDR theory. More study is required; hopefully this theory of EDR
planning with active sensing can provide a starting point.
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13. Planning Sensing and Motion for a Mobile Robot

Model error is a key theme in this thesis. One important domain in which there
is uncertainty in the geometry of the environment arises in planning motions for a
mobile robot. Typically, such a robot must plan motions amidst partially known
obstacles. Since this partial knowledge can be represented as model error in our
generalized configuration space framework, it is natural to consider EDR planning
in this domain.

The use of sensing in [LMT] plans might be characterized as “passive.” In each
step of the plan, a nominal applied force is commanded, and the position and force
sensors are monitored until some termination conditions are satisfied. At this time
a new motion is selected, and so forth. This model of sensing and action arises quite
naturally in developing compliant motion plans for assemblies.

A mobile robot plan, however, is typically not limited to motion commands.
The vision or sonar sensors on a mobile robot may be pointed in a direction and
information gathered about the environment. This is a more fine-grained model
of sensing than is currently available within the EDR planning framework. In this
chapter, our goal is to extend the EDR framework to planning both motion and
sensing actions. We develop the extension in the mobile robot domain, although
it is applicable to any domain where the robot has a choice of sensing modalities
and directions to interrogate. The basic difference is that in the [LMT] framework,
motion and sensing are inextricable. In the active sensing framework described
here, we assume it is possible to sense without moving. In particular, we assume
the following model of sensing and motion:

Motions of the mobile robot are modeled in the standard way, using generalized
configuration space with sensing and control error:

o The mobile robot is represented by a polygon moving with three degrees of
freedom z, y, @ in the plane. There are partially known obstacles in the plane,
and they are represented using the space of geometric variations J. G is of
course the product of the Euclidean group acting on the plane, and J. Pushing
of the obstacles across J can also be represented. The mobile robot has a
priori position sensing of accuracy €.p, control accuracy of €., and force-sensing
accuracy of €.,. We assume that the robot can slide on surfaces as subject to
the coefficient of friction .

Next, we assume the following additional sensing capability:

e The robot has a sensor similar to a laser range-finder. It can be pointed in
any direction ¢ to ascertain, approximately, the distance to an obstacle in
that direction. The sensor also gives the approximate surface normal of the
obstacle patch. The aim of the sensor is inaccurate; however, it is bounded
by a cone. The aiming inaccuracy cone is defined by €4;m. The error in the
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distance measurement by the sensor is bounded by €4;5¢. The error in normal

measurement is bounded by e,.

The sensor can be pointed and aimed to ascertain the distance and orientation
of a partially-known obstacle surface. The idea is that by choosing where and when
to point the sensor, the robot can gather information about the geometry of the
environment. This information, in turn, can be used to infer both the position
of robot and bounds on the possible geometries of the environment. That is, the
action of pointing the sensor and taking a “view” provides constraint on the current
position both in C' and in J.

Of course, it is possible to model such a sensor naively within the [LMT] preim-
age framework. For example, one could assume that the sensor continuously takes
views of the environment, in all directions at once. Then one could, in principle,
obtain upper bounds on the position sensing accuracy that can be inferred from
these views. These upper bounds could then be incorporated into €.,, the position
sensing accuracy of the robot.

We refine this model as follows. We assume that it is not feasible to take
continuous views in all directions at once. In particular, we assume that only a
discrete number of views may be taken, and that the robot must choose where
(in the plan) to take them, and in what (relative) direction. Thus the primitive
operations available to the robot are of two types:
¢ Motion Commands, of the form “Move in heading (z,y, §) until (termination

condition).” These are the standard kinds of motion commands discussed in

the development of the [LMT] and EDR framework. The termination condition
is the usual termination predicate.

e Sensing Commands, of the form “Point the sensor in direction ¢ and take a
view.” This returns an approximate distance and surface normal reading.

Sensing commands are always executed at rest. We define a motion plan with
active sensing to be a sequence of motion commands interspersed with sensing
commands. As usual, conditional branches are possible. An EDR plan with active
sensing is a motion plan with active sensing that is an EDR plan. The question
is: how can active sensing be incorporated into the EDR framework? We will
answer this question by showing how to generate EDR plans with active sensing,.
As a corollary, we obtain a technique for generating guaranteed plans with active
sensing.

The key idea is to define a kind of “equivalence” between sensing and motion.
Informally speaking, active sensing is like moving up to an obstacle, measuring the
distance traversed and the normal there, and then moving back to one’s original
position. At that point, by consulting an approximate “map” of the environment
and using dead reckoning, a better estimate both of one’s position and a revised
“map” can be obtained. Using this “equivalence” between sensing and motion, we
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then can represent both motion and active sensing in a single generalized configu-

ration space. In this space, both motion and active sensing are represented as kinds

of “generalized motions.” This representation permits the planner to treat sensing
and motion uniformly. More precisely:

o We describe a reduction of the problem of EDR planning with active sensing
to (ordinary) EDR planning in a larger generalized configuration space, that
represents both motion commands and sensing commands as “generalized mo-
tions.”

This reduction is computational; it is similar in flavor to the reduction of plan-

ning with model error to computing preimages in a higher-dimensional generalized

configuration space.

It is now our task to make precise this notion of the “equivalence” between
sensing and motion. To develop this notion without clutter, we will initially simplify
the problem as follows. Assume that the robot is a point robot, and that rotations
need not be considered. Furthermore, we prohibit pushing across J, the space of
model uncertainty. Hence the robot’s configuration space C is simply the plane.
The reduction of the robot to a point is of course justified by existing configuration
space formalisms. We will reintroduce rotations later after describing the basic idea.

First, we introduce the definition of a generalized configuration space planning
universe. A planning universe is a tuple

(g, 0, €p, €y, €cy U, tp>
consisting of
a generalized configuration space G = C x J,
a set of generalized configuration space obstacles O = { Og },
the position sensing, velocity sensing, and control uncertainties, €, €y, €.
the coefficient of friction y,
and the termination predicate ¢p.

The planner can plan motions in this universe using the EDR framework described
earlier. tp represents the termination predicate available to the run-time executive.
For example, we might have the [LMT] termination predicate, which uses position-
and force- sensing, as well as time and history. Other termination predicates include
that of [Mason]|, which remembers a continuous history of sensed positions and
velocities, and stick, which terminates based on sticking.

Now, we assume that our initial planning problem is given by the tuple

Um = <g,o3 €eps €evs €e0a#atp> (1)

where G is simply £2 x J as described above to define the space of motions for the
mobile robot. This may be thought of as the “motion universe.” We wish to extend
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Fig. 1. Schematic illustration of the framework for EDR planning with active
sensing.

this universe to incorporate active sensing. We can do this by “adjoining” a “sensing
universe.” Motions planned in the motion universe Uy, correspond to physical
motions of the robot, like “Move in heading (z,y).” “Generalized motions” in the
sensing universe correspond to active sensing commands, like “Look in direction ¢
and take a view.” In addition, the planner needs some special actions that move
between the sensing and motion universes. While these actions have no real physical
significance, they may be thought of as “preparing to move” or “preparing to sense.”
We must now define the “sensing universe.”

The sensing universe, which we call Ug, contains the same obstacles as the
motion universe (1). The sensor can be aimed in this universe. Once the sensor
is aimed, we imagine that a “line of sight” motion M ove(¢) is commanded. This
motion terminates on the first surface it hits.! Here is the idea: this line of sight
motion can be modeled as a generalized damper motion with control error €aim, the

1Assuming no mirrors!
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aiming accuracy of the sensor. That is, if the nominal sensor aiming direction is ¢,
then the effective line of sight motion is actually in some direction in the angular
interval (¢ — €4im, @ + €2im ). Once the motion terminates, the distance traversed
can be measured with accuracy €g4is¢. The normal on the surface at the point of
“contact” can be measured with accuracy €,. The uncertainty bounds €4;5: and
€, will be taken to be the position- and force- sensing uncertainties, resp., in the
sensing universe.

Thus we construct a sensing universe whose uncertainties are given by the error
characteristics of the sensor. We next provide the planner with the primitive com-
mand Move(S), which moves from the motion universe into the sensing universe,
retaining the same position (in G) relative to the obstacles O. Once in the sensing
universe, it is then possible for the planner to command the generalized motion
Move(¢).

We have said that active sensing was like “moving to an obstacle, measuring
its distance and normal, and then moving back to the original position.” So far
we have sketched how the sensing universe models the motion up to the obstacle.
Now we must describe a “return universe” which models the motion back to the
original position. The return universe is perfect: there is no control error. However,
the only termination predicate available is pure position-sensing associated with
the command Moveto(zo,yo), where (z9,yo) indicates the actual position of the
robot before the Move(S) command. That is, in the return universe, there is
perfect position control, but the only position that can be commanded is the original
position.

Thus we can define the following commands which are available to the planner
to use in its motion strategies.

List of Generalized Motions Commands

1. Physical Motion Commands. Same as “Motion Commands” above. Ap-
plicable at any time in universe Uyy.

2. Move(S). Applicable at any time in universe Ups. First, record the actual
position of the robot in the variable (z9,yp). Next, move from the motion
universe into the sensing universe, retaining the same position (zg, yo) relative
to the obstacles O.

3. Move(¢). This commands a straight line motion in relative direction ¢, subject
to aiming inaccuracy €,;,. When the motion terminates on the first surface
struck, the sensing uncertainty bounds €45+ and e, provide a characterization
of how accurately the distance to the obstacle and its normal may be measured.
Note that the line of sight motion effected by Move(¢) does not move across
J. It moves in C and retains the same position in J. Applicable only after a
Move(S) command.

232




4. Move(R). Move from the sensing universe into the return universe, retaining
the same position relative to the obstacles O. Applicable only after a Move(o)
command.

5. Moveto(zo,y0). Move with perfect accuracy from wherever the robot is to
(20, Yo ), where (zg,yo) is the value stored by the last Move(S) command. That
is, (zo,yo) is a literal here, and may not be chosen by the planner. Applicable
only after a Move($) command.

6. Move(M). Move from the return universe into the motion universe, retaining
the same position (g, yo) relative to the obstacles O. Applicable only after a
Moveto(zg,yo) command.

We now make the construction somewhat more formal.

The sensing universe Ug is defined to have the same obstacles as Ups. How-
ever, the uncertainties in Ug correspond to the error bounds in aiming the sensor,
and in measuring the distance and normal to an obstacle. To construct Ug, first
assume that €4;,; = 0 and €, = 0 that is, assume a perfect sensor which is aimed
inaccurately. Then we could construct Ug as

US,perfect = (Q,O, 0’ 0’ €aim, OO0, stick).

In the sensing universe, the coefficient of friction is infinite. Hence the line of sight
motions which terminate on the first obstacle they strike are exactly modeled by
damper motions which stick on any surface. The termination predicate halts such
motions as soon as they stick, that it, as soon as they make contact.

The point is that with a perfect sensor, the motion Move(#) terminates exactly
on the surface W it strikes. However, for an imperfect sensor, this motion must be
modeled as terminating within €4, of this surface. That is, the motion terminates
within the set W @ Bg;s¢, where By, is a ball of radius €4;,;. We can model this
termination via a “jerky” termination predicate which stops on the first surface it
hits (using sticking), and then “jerks” away some distance no greater than eg;s¢
before halting. We denote this termination predicate as stick + €q4i5¢. Hence, in
general,

US = <g1 Oa €disty €ny €aim, OO, stick + edist)- (2)

Recall that pushy(-) denotes the a priori push-forward based on sticking. Sup-
pose that the initial position of the robot is known to lie in some start region R.
Then with a perfect sensor, Move(¢) simply terminates within push,(R). push,(R)
is identical to the obstacle edges of the forward projection of R under ¢ subject to
control uncertainty €,im and g = co. With an imperfect sensor, Move(¢) termi-
nates within the set
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pUSth(R) @ Bdist-

The return universe Ur also has the same obstacles. In it we have perfect
control and sensing;:

Ur =(G,0,0,—,0, —, pure position control). (3)

Of course, in Ur we are only permitted to command one motion; the motion re-
turning to (zo,%o). In both the sensing and the return universes, G is again £2 x J.

EDR planning with active sensing may be regarded as a planning problem in
the larger generalized configuration space

Uy UUs U Ug. (4)

We regard this generalized configuration space as endowed with a special “physics”
that governs motions in the three universes it comprises, and how the robot can
in fact move between universes. In addition, of course, the planner must satisfy
certain compositional constraints in constructing plans. That is, certain steps are
only applicable, or valid, when preceded by other steps. This is a constraint on the
type of operators available to the planner when it chooses commanded generalized
motions. For example, in the physical motion universe Uy, there is a choice between
a physical motion command (in Ups) and a Move(S) command to enter the sensing
universe. But once the sensing universe has been entered, there are no choices in
the type of operator to apply, but merely in their parameterization (specifically, the
choice of ¢).

For this reason, any implementation of EDR planning with active sensing
should combine operators (2-6) into a single operator

(2-6). Sensor(¢). Command the sequence of generalized motions: Move(S),
Move(9), Move(R), Moveto(zg, yo), Move(M).

The operator Sensor(¢) is the formal model for Sensing Commands (as defined
above in boldface). The reason we decomposed this operator into steps (2-6) was
to illustrate the structure of the problem, and to show how active sensing could be
integrated into motion planning with uncertainty, using familiar tools in the EDR
framework.

This completes the reduction for the special case of point robots in the plane.
We will now provide an example, and then return to generalize the reduction to
non-point robots with rotational degrees of freedom.
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Fig. 2. Detail of the generalized motion Move(¢) in Us. The start region is R.
The forward projection is the outer envelope of all possible lines of sight, given
the aiming error of the sensor. The push-forward is the wall of O3 the sensor
can see.

13.1. Using Information Provided by Active Sensing

In this section we clarify how the additional information provided by active
sensing is used by the planner to further constrain the position of the robot in gen-
eralized configuration space. While the incorporation of this constraint is implicit
in the reduction above, it helps to see an explicit construction in an example. This
example builds on fig. 1. The development here is somewhat informal.

Suppose that the robot is known to lie in some region R in generalized con-
figuration space. For example, in fig. 2, R is the same size as the position sensing
uncertainty ball B,.,. We wish to calculate explicitly how taking a view in direction
¢ can further constrain the possible positions of the robot. For example, by point-
ing the sensor at a wall of obstacle O3 in fig. 2, the robot may be able to further
localize its position, given some information about the distance and oricutation of
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R Trans

&

Fig. 3. After the generalized motion Move(¢) terminates, the robot is known
to lie within distance €4;,¢ of the sticking push-forward. This defines a tube in
generalized configuration space. The information effect of the perfect “return”
motion Moveto(zg,yo) is to translate this tube back to the original position.
The run-time executive now has better localized the position of the robot.

the wall.

A line of sight in direction ¢ is considered to be like a straight line motion. We
must consider all lines of sight that are possible, given the aiming inaccuracy of the
sensor. We view all possible lines of sight as a region in generalized configuration
space. This region is the forward projection Fy4(R). No sliding is possible in the
forward projection, since the coefficient of friction is infinite. The push-forward
(based on sticking) of the generalized motion Move(¢) is part of the wall of obstacle
Os. This region is denoted push,(R) in fig. 2.

An upper bound on the run-time executor’s knowledge of the wall’s position is
found as follows. Let By;,¢ denote the size of the position sensing uncertainty ball
in Us. This ball is an upper bound on the sensor’s ability to localize distances. The
knowledge of the wall’s position will lie within the convolution of the push-forward
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of the generalized motion Move(¢) by Byise, that is,

. PUSh¢(R) @ Bgist. (5)
Hence, after executing motion ¢, the virtual robot is guaranteed to lie within dis-
tance €4;4¢ of the wall O;.

Now suppose the actual position of the physical robot is (z¢,y0), as in fig. 2.
Then the information effect of the command M oveto(zg,yo) is to translate the set
(5) back to the original position. We denote this operation by? trans(,,,y.)(-). Thus
after the sensing operation Sensor(¢), the position of the robot is known to lie
within the set

RN trans(,, y,)(pushy(R) @ Baist)- (6)

*13.1.1 Using Normal-Sensing Information

The detailed starred sections below may be skipped at first reading.

The sensor’s ability to detect surface normal orientation provides additional
constraint. That is, by sensing the normal, the sensor can further localize the point
of contact within eq. (5). Recall that 7 denotes the canonical projection of phase
space onto position space. Then the localization provided with combined distance-
sensing and normal-sensing is found as follows. Let B,, denote the normal-sensing
error ball of radius €, in phase space. Now, let F, »(+) denote the forward projection
in phase space. From the phase-space forward projection, we derive the a prior:
phase-space push-forward based on sticking, pgh¢(-). We can view an element of

p’—u\s/hd,(R) as a pair, consisting of a point and a tangent vector. Suppose that n*

denotes the normal as sensed by the sensor at execution time, and let n** be its
orthogonal complement. Thus B, @ n** represents the set of all possible actual
tangent vectors consistent with n*. Then after termination, the motion M ove(¢)
is known to be within the set?

Biist ® 7r<p’u§h¢(R) N (G x (B, ® n*"')))). (7

Eq. (7) replaces (5) when normal sensing is available to the sensor.

*13.2. Generalizations

We now relax some of the initial simplifying assumptions adopted above. In
particular, we generalize the framework for EDR planning with active scusing to

2The definition of trans is informal.
3Formally, the notation in eq. (7) assumes that G is parallelizable.
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the case of a polygonal robot moving with three degrees of freedom in the plane,
amidst partially-known obstacles. Some of the obstacles may be pushed by the
robot, which may change their position and orientation.

% 13.2.2 Pushing

First, we incorporate pushing in the model, as follows. Physical motion com-
mands (in the physical universe Ups) are permitted to cause pushing of movable
obstacles, resulting in cross-coupled motions in C' and J. However, the operator
Move() can of course cause no motion in J, since it corresponds to vision sensing,
Hence we must simply restrict the effect of the straight-line motion Move(¢) to
motion exclusively in C. '

*13.2.3 Non-Point Robots

Next, we wish to consider robots which are not points, for example, polygonal
robots in the plane. Assume without loss of generality that the sensor is mounted
on the robot at the reference point. Then we must simply replace the general-
ized configuration space obstacles in the construction of Ug and Ug by the set of
generalized real space obstacles, B. B represents a variational family of real-space
obstacles. Intuitively, O represents the B “grown” by the shape of the robot. That
is, O is constructed by convolving each generalized real-space obstacle with the
robot geometry.

More precisely, let Bg(a) denote a particular shape of an obstacle in the envi-
ronment for a in J. B indexes the set of all such obstacles. Then

5= {{(Bﬁ(a),a)}aej}ﬂ-

Now, assume for simplicity that the shape A of the robot is exactly known. If ©
denotes convolution with the reflection as in [Lozano-P érez], then

o= {{(Bg(oz) o A,a)}aej}ﬂ.

Thus of course, for point robots, O and B are identical.

*13.2.4 Rotations

We now incorporate rotations into the planning framework for active sensing.
First, in the construction of the physical motion universe Ups (1), we construct G
as R2 x §! x J, using the Euclidean group on the plane for C. The generalized
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configuration space obstacles O are constructed in the usual way for rotations and
translations. Next, we will leave G as ®2 x J in constructing the sensing and return
universes, (2) and (3). The obstacles in the sensing and return universes are the
generalized real-space obstacles B as described above. Again, the generalized motion
Move(¢) moves only in C, without changing the position in J. However, note that
Move(¢) is restricted to be a pure translation in Ug, terminating on some real space
obstacle in B. This is an important difference. The physical motion commands can
move with three degrees of freedom in C' within Ujs; however, the sensing command
moves as a pure translation in Us. Furthermore, it moves in generalized real-space,
amidst generalized real-space obstacles, whereas the physical motion commands in
Ups move in generalized configuration space amidst generalized configuration space
obstacles.

Some technical changes are required in the Move(S) and M ove(R) operators.
When Move(S) is executed from actual configuration (z,y,8) in the physical mo-
tion universe Uyy, the forward projection consists of the point (z,y) in the sensing
universe Ug. The original actual position is stored in a variable (zg, yo,80). This
variable is used by the pure position control command Moveto in the perfect return
universe Ugr. This is easy to formalize by representing the generalized configuration
space in (4) as G x 3, where Uy, Us, and Ug are identified with the subspaces
Gx{0},Gx{1}, etc. We then view the motions between universes as a combined
projection and shift. For example,

Move(S): Uy - UsC G x3

((z,y,6),0) = ((z,y),1).
Move(R) may be formalized similarly as a combined lifting and shift.
This completes the reduction of EDR planning with active sensing to EDR
planning in a three-fold generalized configuration space.

13.3. Discussion

In this chapter, we described a reduction of EDR planning with active sensing to
(ordinary) EDR planning in a larger generalized configuration space that represents
both motion commands and sensing commands as “generalized motions.” The re-
duction involves defining a kind of “equivalence” between sensing and motion, which
permits an EDR planner to treat sensing and motion commands “uniformly.” These
generalized motions can be represented in a “threefold cover” of generalized con-
figuration space. The equivalence defined relies on the similarity between visibility
analysis and generalized damper motions.* With our tools for planning with model
error—specifically, the generalized configuration space formalism—it was possible to

4This similarity was exploited extensively by [Buckley].
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give a precise characterization of what it means to plan with active sensing, and to
derive a formal method for constructing these plans. The generalized configuration
space representation was critical not only in representing the uncertain environ-
ment, but also in defining a planning model for active sensing. It is interesting to
note that while generalized configuration space was originally envisioned exclusively
as a framework for representing geometric model uncertainty [D], it appears to have
broader applicability in planning pushing operations and active sensing. In EDR
planning with active sensing, generalized configuration space is particularly useful
in developing a systematic model of the error in absolute position vs. the error in
the map of the world: the first is position error in C, the second is position error
in J. Both may be reduced through an appropriate choice of physical motions or
active sensing. However, error in C can grow with physical motion, while error
in J cannot.> Furthermore, active sensing can only reduce the error in C and J;
it can never increase it. When viewed in this manner, it is not at all clear that
there should be any unifying concept for physical motion and active sensing! It is
even more surprising that the unifying tool should emerge as our familiar friend,
generalized configuration space.

This reduction yields an effective technique for planning motions and active
sensing for a mobile robot in a partially known environment. This technique pro-
vides a principled approach to motion planning with active sensing. It shows how to
incorporate a more fine-grained model of sensing into the EDR planning framework.
As a corollary, of course, we obtain a method for planning guaranteed strategies
with active sensing,.

Much work remains to be done. In particular, the EDR framework for ac-
tive sensing is still fairly theoretical. Mobile robot environments are often highly
unstructured [Brooks, 85], and representing this geometric uncertainty using gener-
alized configuration space presents a non-trivial problem. Furthermore, it may be
impractical to model more general vision or sonar sensors without further enhance-
ments to the EDR theory. More study is required; hopefully this theory of EDR
planning with active sensing can provide a starting point.

Sunless pushing is allowed.
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V. Implementation, Computational Issues

In this chapter, we describe the LIMITED plane-sweep algorithm. We then
turn to the problem of generating motion strategies. LIMITED has a crisp algo-
rithm for verifying EDR strategies, but to generate a strategy, it must quantize
the space of commanded motions and enumerate motion strategies exhaustively.
How can motion plans be generated without exhaustive quantization of the space
of commanded directions? To this end we introduce the non-directional backpro-
jection. It allows us to devise exact algorithms for planning guaranteed strategies,
given certain restrictions. We also address generalizing such algorithms to planning
multi-step strategies, and to generating EDR strategies. While the motion planning
with uncertainty is known to be hard for exponential time [Canny and Reif], we are
able to identify certain interesting subclasses of planning problems which are easier
(polynomial or single-exponential time). These techniques for generating multi-step
strategies will hopefully be useful in EDR planning as well.
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14. Implementation, Computational Issues

14.1. Comments on the Plane Sweep Algorithm

Given a 2D slice of generalized configuration space, LIMITED employs a plane-
sweep algorithm for computing unions, intersections, and projections. (By projec-
tions we mean forward projections, backprojections, and weak-backprojections in
that slice). The algorithm uses exact (rational) arithmetic, and computes unions
in O((n + ¢) logn) time, and projections in O(nlogn) time.! The design and im-
plementation of the 2D plane-sweep module is joint work with John Canny; the
algorithm is based on [Neivergelt and Preparata] (who give a union algorithm) and
related to [Erdmann] (who implemented an O(n?) backprojection algorithm, and
suggested an improved O(n logn) version). In this section we briefly discuss some
details of the algorithm. A full listing of the ZetalLisp code for the plane-sweep
algorithm running on a Symbolics 3600 is provided in an appendix. In LIMITED
there are, of course, many software layers built on top of the sweep algorithm for
quasi-static analysis, EDR planning, propagation across slices, distinguishability,
and so on. In EDR planning, we essentially reduce the problem of EDR verification
to deciding certain set-relations. The basic sets are projection regions. Both the
projections and the set operations are computed by calls to the sweep algorithm.
The design and implementation of a robust geometric engine is a formidable task.
In this section we share some of our experiences.

We do not go on at great length about the details of the algorithm because, first
of all, it is fairly complicated, and second, from a complexity-theoretic viewpoint,
the result does not improve known bounds by much. Readers interested in the
details of the algorithm will find them in the appendix.

14.1.1 The Basic Idea

We now sketch the classical plane sweep approach at a high level. In plane
sweep algorithms, the vertices of the input edges are sorted on planar lexicographic
z-y order, eg., lower left to upper right. This is accomplished using an AVL tree.
A line is swept across the plane in this order. The algorithm keeps track of the
polygonal regions swept across by maintaining an ordered queue of intervals on
the sweep line. This queue is also maintained using a (different) AVL tree. Each
interval along the sweep line has an associated “color.” The color is an integer; 0 for
free space, 1 for a region inside one input polygon, 2 for a region inside two input
polygons, etc. The boundaries of the intervals grow or shrink with the sweep in a

1 Where n is the number of vertices in the slice, and ¢ is the number of intersections.
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known way: their change is given by the line equation of their endpoints. These
line equations are taken from the line equations of the input edges.

An “event” occurs when a new vertex is encountered in the sweep. Such an
event affects one or more of the intervals in the interval queue on the sweep line.
For example, in a “closing” event, the “end” of a polygon has been encountered (it
has closed up), so all of the polygon lies to the left of the sweep line. In this case,
the interval associated with the polygon is deleted, the two surrounding intervals
are merged, and the polygon loop is placed on the output queue. Other events
include “start” (start a new polygon) and “crossing”, when the line equations of
three adjacent intervals intersect. In a crossing event, two line segments intersect
and their associated interval boundaries must be merged.

In developing a sweep algorithm for projections, we proceed as follows. Con-
sider the forward projection. We introduce two new colors, the projection color
and the start region color. The sweep proceeds in the direction of the commanded
motion. When the sweep encounters the start region, then intervals of color start
region are inserted into the interval queue along the sweep line. When these inter-
vals close, then intervals of color projection must be queued. The line equations of
the free-space endpoints of these projection intervals are parallel to the sides of the
commanded velocity uncertainty cone. This occurs when the projection intervals
border free-space intervals.

When an interval of type projection crosses an interval of type obstacle (color
> 1), then either (1) it may be closed off, (2) the obstacle edge boundary may be
taken as the projection region boundary by updating the line equation of the projec-
tion interval’s endpoints, or (3) depending on sliding behavior, a new “degenerate”
interval, with no width, sliding along the edge may be queued. Whether the mo-
tion can slide on an edge e is determined by intersecting the reflected (“negative”)
velocity cone with the friction cone on edge e. In case (3), the line equations of
degenerate interval’s endpoints are copied from e.

When the sweep is complete, the output is an arrangement of polygons with
different colors, including the projection and the start region colors. The forward
projection is simply all polygons with color projection or start region. This algo-
rithm is correct given the following assumption:

Correctness Criterion: The plane sweep algorithm is correct when (a) the friction
cone 8 larger than the commanded velocity uncertainty cone and (b) there is a
bounding box around the input environment.

This criterion is necessary, because the sweep algorithm is monotonic; hence
to be correct, we must ensure that motions are also monotonic and cannot back up
on surfaces.
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By introducing a goal color, backprojections and weak backprojections are com-
puted analogously, sweeping in the opposite direction to the commanded motion.
The weak backprojection is actually a conservative (under)-approximation, since
it does not take into account weak backsliding [Buckley]. This is because weak
backsliding is non-monotonic and so a sweep algorithm will not suffice. Actually,
our plane sweep algorithm can only sweep in one fixed direction; hence we rotate
the environment first so that the sweep axis coincides with the commanded motion
direction, and then rotate the projections back to the canonical orientation.

For details of the sweep algorithm, please see the appendix.

14.1.2 Contrast with Previous Algorithms

We now compare our algorithm, which we call Sweep, with previous work.

1. Sweep combines the ability to compute set operations and projections in one
sweep.

2. The plane sweep algorithm of [Neivergelt and Preparata] for computing set
operations on polygonal regions assumes general position. Sweep does not.

3. Note that [Erdmann] described the first backprojection algorithm in the plane.
He also described slice algorithms for 2D with rotations. [Buckley] described non-
slice backprojection and forward projection algorithms in 3D with no rotations. All
these algorithms have been implemented.

4. The algorithm of [Erdmann] can compute the backprojection of a single edge in
time O(nlogn). In Sweep, the goal region can be an arbitrary polygon. Similarly,
in Sweep, the start region for forward projections can be an arbitrary polygon.

5. Sweep is implemented using exact (rational) arithmetic.

6. Sweep can compute forward and weak backprojections as well as strong back-
projections.

14.2. Non-Directional Backprojections

14.2.1 Intuition

LIMITED is a generate-and-test planner. We have elaborated the “test” portion—
verification of EDR strategies as decision problems about projection sets. Now it
is time to take a more sophisticated look at the “generation” problem. How can
motion strategies be generated without exhaustive quantization and search?
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A significant weakness of LIMITED is its method for generating commanded
motions. It simply quantizes the space of all motions. Thus to generate two-
step plans 6; * §; LIMITED must quantize the space of motions 6, to generate the
first motion, and then quantize the space of motions for ;. Essentially, LIMITED
implements an existential theory; the planner can verify a strategy but the strategy
must be “guessed” by some oracle, or by exhaustive search. This is theoretically
unsatisfying, as well as impractical. We now address this problem. In particular, we
provide a method for generating two-step plans 8, x6; which only requires “guessing”
6;. That is, once 8, is provided, 6; can be generated.

To this end we define a combinatorial object called the non-directional backpro-
jection, and give a critical slice algorithm for constructing it. The non-directional
backprojection may be used to represent, in a sense, “all possible backprojections”
of a fixed goal. We intend to use it to generate motion strategies.

[LMT)] first defined non-directional preimages. [Erdmann] defined the non-
directional backprojection as the union of all backprojections in the plane:

| Be(6).
8

We will use a different definition. However, it is in the same spirit as [LMT,E],
and so we will employ the same name. We must point out, however, that both
M. Erdmann and R. Brost have considered? a similar construction for generating
commanded velocities, and also thought about a critical slice approach to computing
it.

Our definition exploits generalized configuration space. Consider the following
argument.

1. Suppose we have a planar polygonal environment with no model error. In
generating motion strategies, we do not know which way to point the robot—
that is, we do not know which way to command the motion. Thus in some sense,
there is “uncertainty” in “which way to go.” This “uncertainty” is the variable
6. Thus we have a kind of three-dimensional planning problem, with degrees of
freedom z, y, 6. As the reader may expect, we intend to map this uncertainty
in “which way to go” into our familiar friend, generalized configuration space.

2. Now, consider a problem which is in some sense dual to generating motion
strategies. In this problem, we only consider one commanded motion in a fixed
direction v§. However, there is total uncertainty in the orientation of the entire
environment. We may represent this uncertainty by a variable 8 also.

Clearly, both problems (1) and (2) can be represented in an generalized con-
figuration space where z and y are the degrees of motion freedom, and 4 is “<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>