

Apollo Lake Platform - Intel[®] Trusted Execution Engine (Intel[®] TXE) Firmware Bring-Up Guide

User Guide

August 2016

Revision 1.1

Intel Confidential

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. **No computer system can be absolutely secure.** Check with your system manufacturer or retailer or learn more at **intel.com**.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or retailer.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel[®] TXE, Intel[®] FIT, Intel[®] ISS, Intel[®] PTT, are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2016 Intel Corporation. All rights reserved.

Contents

1	Introdu	uction		7
	1.1	Terminolo	ogy	7
2	Image	Creation/F	Tashing Procedure	8
	2.1	Prerequis 2.1.1 2.1.2	ites IFWI Image Components, Tools and Drivers MEU Configurations	8 8 9
	2.2	Flashing t	the ROM Bypass	10
	2.3	Start FIT	····	10
	2.4	Creating	the Binary Image	10
		2.4.1	Configuring and Building the Image	10
			2.4.1.1 Flash Layout Configurations:	10
			2.4.1.2 Flash Settings Configurations:	12
			2.4.1.3 Platform SMIP Configurations	14
	2.5	Coinless I	Platform Configuration	17
	2.6	Voltage R	egulator Configurations	17
			 2.6.1.2 Platform Protection Configurations 2.6.1.3 Intel[®] Integrated Sensor Solution Configurations 2.6.1.4 DnX Configurations	18 20 21
		2.6.2	Configuring Intel [®] FIT build settings	22
		2.6.3	Save/Load Intel [®] FIT XML configuration	23
	27	IEW/L Eloc	2.0.3.1 Building the Firmware Flash Image	24
	2.1		Direcognisitos	24
	20	Z.7.1 Eloching [Precedure for an SPI Pased Diatform	24
	2.0	2 0 1	Elashing an Imago Using the EDT Tool	20
		2.0.1	Flashing the Image Using Dediprog	25
	2.9	Windows	Drivers Installation	23 27
3	Append	dix A: RON	1 Bypass	28
	3.1	Flashing t	the ROM bypass	28
4	Append	dix B: Phor	ne Flash Tool DnX Commands	31
5	Append 5.1	dix C: Enat Setting th	bling Quad Mode on SPI Part ne Quad Enabled Bit Using Dediprog	33 33

Figures

Figure 1 - MEU Configurations Example	. 9
Figure 2. Intel® TXE and BIOS Region Configurations Example	11
Figure 3 - SMIP Configurations Example	11
Figure 4 - iUnit, PMC, uCode Configuration Example	12
Figure 5. SPI flash setting configuration example	13

Intel Confidential

Figure 6 - APL RVP Flash Configuration Example	14
Figure 7 - Configuration example according to APL Intel (R) RVP VR	16
Figure 8 - Mod-Phy Lane Ownership FIT Configuration	16
Figure 9 - APL Intel® RVP Root Port Configuration example	18
Figure 11 - Platform Integrity and Boot Guard Configurations example	19
Figure 12 - TPM Configuration Example	20
Figure 13. ISS Configurations example	21
Figure 14 - USB Descriptor configuration example	21
Figure 15 - Build configuration settings example	23
Figure 16 - saving/loading Intel [®] FIT Configurations	23
Figure 17 - Selecting the SPI Component	25
Figure 18 - Set VCC Voltage	26
Figure 19 - Main Window after the Configurations	26
Figure 20 - Load File Settings	26
Figure 21 - Flashing Procedure Expected Result	27
Figure 22 - Selecting the SPI Component	28
Figure 23 - Set VCC Voltage	29
Figure 24 - Main Window after the Configurations	29
Figure 25 - Load File Settings	29
Figure 26 - Flashing Procedure Expected Result	30
Figure 27 - the Quad Enable information from the "MX25U6435FM2I-10G" SPI Spec	33
Figure 28 - Writing the Quad Enable bit to the Flash	33
Figure 29 - verifying the register new value	34

Revision History

Revision Number	Description	Revision Date
0.5	Initial release	September 2015
0.6	 Consolidated the two image creation procedure (SPI/eMMC) into one chapter. MEU configuration was moved to the prerequisites section. Update the DnX tool name to "dnxFwDownloader" and add the procedure to clear GPP4 prior to the image flashing. Added a procedure to flash IFWI image onto SPI based platform using FPT. Aligned to the latest FIT GUI. Added SMIP configurations for SPI based platforms. Added a section to set the platform SMIP according to the VR and Mod-Phy lanes. Added Boot Guard 2.0 and TPM related configurations. Added the IFP Emulation configurations. Added the procedure the manually edit the platform SMIP according to the board configurations. Added the phone flash tool DnX related command list in appendix C. 	November 2015
0.7	 Added the procedure to set the "Quad enable" bit for SPI based platform in appendix D. Updated the screenshot according to the latest tools UI. Updated the "Flash Layout" configurations. Added Platform SMIP default configurations for Intel[®] APL RVP. In the platform protection configuration section, a procedure was added to create the necessary files for each boot guard profile. 	December 2015
0.8	 Modified the SMIP configuration sections Updated the guide according to the latest tool UI. Updated the Boot Guard section, instructing the user to sign each of the components when choosing any profile. Updated the pre-requisite image components table, removing the Intel TXE and PMC SMIPs. Removed the appendixes for manually configuring the SMIP files, and boot guard legacy settings. 	February 2016
0.85	Add support for no-signing.UI fixes.	March 2016

	 Removed 'SPI Soft Strap Emulation' IFP emulation from debug tab. 	
0.9	 UI update. Add the configuration for flexible BIOS data size and extended OBB. 	May 2016
1.0	UI fixes.Remove BXT references.Remove eMMC based platform configurations.	June 2016
1.1	 Removed Data clear security policy configurations Added section 2.5 "Coinless Platform Configuration" Removed reference to SPI read/write frequency recommendation 	August 2016

§

1 Introduction

This document covers the Apollo Lake Platform Intel[®] Trusted Execution Engine (Intel[®] TXE) Firmware bring-up procedure.

Please notes that this guide only contains the SMIP configuration procedure for the critical boot settings, for the complete guide for the platform SMIP configurations please refer to "Broxton/Apollo Lake SoC SPI and SMIP programming guide (doc #559702).

1.1 Terminology

Term	Definition
APL	Apollo Lake. Braswell next generation platform
Intel [®] FIT	Intel [®] Flash Image Tool
MEU	Manifest Extension Utility
DnX	Download And Execute
SMIP	Signed Master Image Profile
ROT	Root Of Trust
ISS	Intel [®] Integrated Sensor Solution
GPIO	General Purpose Input/output
Intel [®] PTT	Intel [®] Platform Trusted Technology
IFWI	Integrated Firmware Image. The new Firmware image layout used in APL/BXT platforms
SPD	Storage Proxy Driver.
VR	Voltage Regulator.

§

2 Image Creation/Flashing Procedure

2.1 **Prerequisites**

2.1.1 IFWI Image Components, Tools and Drivers

In order to build the image the following image components are required:

Requirements	Require tool/component	Description
Tools	FIT	Flash image tool that is used to create the image.
	MEU	Manifest Extension Utility that is used to create manifests.
	OpenSSL	Freeware. Used to sign the manifests.
Image	IAFW (BIOS) SMIP Binary	Available in the BKC.
components (critical for platform boot)	PMC binary	Available in the PMC FW Kit.
	uCode patch 1	Available in the BKC.
	uCode patch 2	Available in the BKC.
	TXE FW binary	Available in TXE FW kit.
	ROT Key manifest	Available in TXE FW kit.
	OEM Key Manifest	Available in TXE FW kit or created using MEU
	Full IAFW(BIOS) binary	Generated by OEM/Available in the BKC.
Additional Image	iUnit binary	Available in the BKC.
components	ISS image	Available in ISS Kit.
	ISS PDT File	Available in ISS Kit.

Requirements	Require tool/component	Description
Signing keys	Private key for SMIP signing	OEM generated, for more details please refer to the
	Private key for DnX signing	"BXT and APL Signing and Manifesting Guide" which is part of the TXE FW Kit.
Drivers	TXEI, SPD	Available in TXE FW kit.

2.1.2 MEU Configurations

2.1.2.1 Configuring MEU Signing Settings

FIT will use MEU in order to create the SMIP and DnX manifests (as part of the image creation process). Therefore, the signing settings will have to be configure in MEU prior to building the image.

Generate the MEU configuration file:

1. Run: MEU -gen meu_config

Edit the MEU configuration xml (meu_config.xml) which was created in the previous step, and set the following:

- "SigningToolPath" path to the signing tool (the OpenSSL tool)
- "PrivatekeyPath" path to the private key that used to sign the SMIP/DnX.

Figure 1 - MEU Configurations Example

2.2 Flashing the ROM Bypass

For Broxton platform the ROM bypass needs to be flashed prior to the bring-up process, Please follow "Appendix A: ROM Bypass" to flash the ROM bypass image, before the image creation procedure.

2.3 Start FIT

Start the FIT tool by navigating to: \\Tools\FIT folder and running fit.exe

2.4 Creating the Binary Image

2.4.1 Configuring and Building the Image

Please follow the procedure below in order to configure and build the IFWI image.

2.4.1.1 Flash Layout Configurations:

In the flash layout section in FIT, the following regions will be defined: TXE, BIOS, SMIP, iUnit, PMC, uCode.

Please note that the first region that needs to be configured is the TXE region since loading it will reset the existing image configurations.

- 1. Configure Intel TXE region:
 - On the left panel select the Flash layout tab
 - In the "Intel ® TXE Sub-Partition" set the following:
 - "Intel ® TXE Binary file"
- 2. Configure the BIOS region:
 - in Flash Layout tab, IA/BIOS Sub-Partition, configure:
 - "BIOS Binary File"
 - "Enable Split OBB" enable this to extend the OBB into the LBP2 in order to accommodate for a larger OBB.
 - "BIOS Data Size" configure the BIOS data size, this can be configured to '0', '128KB', '256KB', '384KB', 512KB', this configuration will affect the maximum size of the OBB.

Figure 2. Inte	el® TXE and BIOS Region Configurations Example	
	 Intel(R) TXE Sub-Partition 	

Parameter	Value	
Intel(R) TXE Binary File	C:\FIT\TXE Region.bin	
Major Version	3	
Minor Version	0	
Hotfix Version	0	
Build Version	1083	
IAFW/BIOS Sub-Partit	1083 ion	
UIAFW/BIOS Sub-Partit Parameter	1083 ion Value	
 UII Version IAFW/BIOS Sub-Partit Parameter IAFW/BIOS Binary File 	1083 ion C:\FIT\BIOS Region.bin	
IAFW/BIOS Sub-Partit Parameter IAFW/BIOS Binary File Enable Split OBB	1083 ion C:\FIT\BIOS Region.bin Yes	

- 3. Configuring the SMIP region:
 - In the flash layout tab, SMIP Sub-partition, configure:
 IAFW SMIP binary file (the BIOS SMIP).

Figure 3 - SMIP Configurations Example

٠

· SMIP Sub Particion	
Parameter	Value
TAEW SMIP Binary File	SMIP\Smip_iafw.bin

- 4. Configuring the PMC and uCode regions:
 - in the Flash layout tab, PMC Sub-Partition, select:
 PMC Binary file.
 - In the Flash layout tab, uCode Sub-Partition, select:
 - uCode patch 1 Input file.
 - uCode patch 2 Input file.
- 5. Configuring the iUnit (optional)
 - In the Flash layout tab, iUnit Sub-Partition, select:
 - iUnit Binary File.

Figure 4 - iUnit, PMC, uCode Configuration Example

Parameter		Valu
IUnit Binary File	Tools\FIT\Windows\iunit\IUnit Region.bin	
		Mahar
Parameter		Value
PMC Binary File	Tools\FIT\Windows\pmcp\Silicon\PMC Region.bin	
 uCode Sub-Partition Parameter 		Value
uCode Sub-Partition Parameter uCode Patch 1 Input File	Tools\FIT\Windows\ucode\uCode Patch 1.bin	Value

2.4.1.2 Flash Settings Configurations:

In this section, the bootable device setting will be configured.

2.4.1.2.1 SPI Based Platform Configurations

Under "Flash Setting" tab, "flash component" section set the following:

- "Number of Flash Components": should be configured to "1".
- Flash Component 1 size: should be configured to "8MB".
- BIOS region overlap: should be configured to "False".

Under "Flash Setting" tab, "Boot Source Selection" section, set the following:

- "SPI Boot Source Enable/Disable": should be set to "Enabled".
- "UFS Boot Source Enable/Disable": should be set to "Disabled".
- "eMMc Boot Source Enable/Disable": should be set to "Disabled".

Figure 5. SPI flash setting configuration example

 Flash Components 	
Parameter	Value
Number of Flash Components	1
Flash component 1 Size	8MB
Flash component 2 Size	8MB
Bios Region Overlap	false
 Boot Source Selection 	1
Parameter	Value
SPI Boot Source Enable/Disable	Enabled
UFS Boot Source Enable/Disable	Disabled

Under "Flash Setting" tab, "Flash Configuration" section set the following according to the SPI flash part support:

- Boot Block Size Enable per Top Swap usage on platform.
- Dual I/O Read Enabled
- Dual Output Fast Read Support
- Dual Output Read Enabled
- Fast Read Clock Frequency
- Fast Read Supported
- Quad I/O Read Enabled please refer to the note below.
- Quad Output Read Enabled please refer to the note below.
- Read ID and Read Status Clock Frequency
- Write and Erase Clock Frequency

Note: when setting "Quad I/O Read Enabled" or "Quad Output Read Enabled" to "Yes", the "Quad Enabled" bit need to be set in the SPI, without it the platform will **NOT BOOT**, please refer to "Appendix C: Enabling Quad mode on SPI Part" for the procedure.

Note: for detailed description of each configuration please refer to the "Apollo Lake SoC SPI and SMIP programming guide (doc #559702).

Figure 6 - APL RVP Flash Configuration Example

Flash Configuration

Parameter	Value
Boot Block Size	64KB
Dual I/O Read Enabled	Yes
Dual Output Fast Read Supported	No
Dual Output Read Enabled	No
Fast Read clock frequency	40MHz
Fast Read supported	Yes
Invalid Instruction 0	0x0000021
Invalid Instruction 1	0x0000042
Invalid Instruction 2	0x0000060
Invalid Instruction 3	0x00000AD
Invalid Instruction 4	0x00000B7
Invalid Instruction 5	0x0000089
Invalid Instruction 6	0x00000C4
Invalid Instruction 7	0x000000C7
PrrTopSwapOverride	No
Quad I/O Read Enabled	Yes
Quad Output Read Enabled	No
Read ID and Read Status clock frequency	40MHz
SpiStopPrefetchonFlushPending	No
SpiHostSwSequencingEnableDefault	No
SpiEnableDevice1DeepPowerdown	No
SpiEnableDevice2DeepPowerdown	No
SpiDelayBeforeRPMCBusyPollEnable	No
SpiDelayBeforeEraseBusyPollEnable	No
SpiDelayBeforeWriteBusyPollEnable	No
SpiIdletoDeepPowerDownTimeoutDefault	0x0000005
Write and Erase clock frequency	40MHz
WriteProtectionEnable	No
Protected Range Limit	0x0000000
ReadProtectionEnable	No
Protected Range Base	0x0000000

2.4.1.3 Platform SMIP Configurations

2.4.1.3.1 Voltage Regulator Depended SMIP Configurations

The following configurations needs to be set according to the VR of the board, for more information please refer to the "Broxton/Apollo Lake SoC SPI and SMIP programming guide (doc #559702).

In the "CPU Straps" tab, under "PUNIT" configure the following according to the board VR:

- Rail 0 Alert polling enable: .
 - "Enabled" = SVID OR Whiskey Cove PMIC VR Type
 "Disabled" = I2C VR Type
- Rail 0 SVID ID:
 - o 0x0 = SVID OR I2C VR Type
 - \circ 0x5 = Whiskey Cove PMIC VR Type
- Rail 1 Alert polling enable: .
 - "Enabled" = SVID OR Whiskey Cove PMIC VR Type
 - "Disabled" = I2C VR Type
- . Rail 1 SVID ID:
 - \circ 0x0 = I2C VR Type
 - 0x1 = Whiskey Cove PMIC VR Type
 - \circ 0x2 = SVID VR Type
- Rail 2 Alert polling enable: .
 - "Enabled" = Whiskey Cove PMIC VR Type
 - "Disabled" = SVID OR I2C VR Type
- Rail 2 SVID ID:
 - 0x0 = SVID OR I2C VR Type
 - 0x2 = Whiskey Cove PMIC VR Type
- Rail 3 Alert polling enable:
 - "Enabled" = Whiskey Cove PMIC VR Type
 - "Disabled" = SVID OR I2C VR Type
- Rail 3 SVID ID:
 - \circ 0x0 = 12C VR Type
 - \circ 0x1 = SVID VR Type
 - 0x6 = Whiskey Cove PMIC VR Type

Note: Please refer to the example below for the APL Intel ® RVP configuration example.

Parameter	Value
Thermal Throttle Unlock	Locked
Extended Reliability Enable	Disabled
Soft SVID Disable	Enabled
Rail 0 Alert Polling Enable	Enabled
Rail 0 SVID ID	0x0
Rail 1 Alert Polling Enable	Enabled
Rail 1 SVID ID	0x2
Rail 2 Alert Polling Enable	Disabled
Rail 2 SVID ID	0x2
Rail 3 Alert Polling Enable	Disabled
Rail 3 SVID ID	0x6

Figure 7 - Configuration example according to APL Intel (R) RVP VR

▼ PUNIT

2.4.1.3.2 Mod-Phy lane Depended SMIP Configurations

The following configurations needs to be set according to the platform SMIP Mod-Phy lane configurations. Platform SMIP are fully configurable via FIT UI (XML or GUI). Refer to the relevant FIT tab/section for configuring SMIP. SPI and SMIP programming guide (part of TXE kit) has further details of each SMIP configuration.

Configure the Platform SMIP via FIT of the platform Mod-Phy configurations according to the screenshot below.

Figure 8 - Mod-Phy Lane Ownership FIT Configuration

			Intel ® Flash Image T
File Build Help			
🗅 🖨 🗟 📑	Intel(R) Apollo Lake 💌	Target Type SPI	•
Flash Layout	 ModPhyLaneConfigur 	ation	
Flash Settings			
CPU Straps	Parameter	Value	
Flex I/O	ModPhyLane2	PCIe	-
Platform Configuration	ModPhyLane3	PCIe	-
Intel(R) TXE Kernel	ModPhyLane4	USB3	-
Isolated Memory Ranges	ModPhyLane8	USB3	-

2.5 Coinless Platform Configuration

If your product design does not have Persistent RTC power (i.e. no coin battery), you may set the below configuration of "Persistent PRTC Backup Power" to "None" (Default is "Exists" = Coin Battery exists). Note that this configuration will be <u>permanently</u> set in FPF fuses and cannot be reversed. Setting this option, your system will lose some TXE features that depend on PRTC; like Anti-Replay Protection, PTT-Anti Hammering (PTT-AH), and DAL persistent time.

You may design your system in such a way to always guarantee power to RTC. See Apollo Lake Platform Design Guide (PDG) for more details.

Important: With "Persistent PRTC Backup Power = Exists", RTC power must not lose power 10 times in the lifetime of the product. PTT-AH feature uses RTC to detect physical attacks. PTT-AH counts RTC power loss in FPF to detect this. Once PTT-AH FPFs reach count 10, user will be locked out for 120 minutes when it boots. Every subsequent RTC power loss, user will also be locked out for 120 minutes. If you think your system, according to its design, will lose RTC power more than 10 times in its lifetime, then select "Persistent PRTC Backup Power = None" to avoid this lock out.

FT		Intel ® Flash Ima	ige Tool 🛛 🚽 🗖		ĸ
File Build Help					
	Intel(R) Apollo Lake	Target Type eMMC	•		
Flash Layout					-
Flash Settings	 Platform Configuratio 	n			
CPU Straps					
Flex I/O	Parameter PMIC/VR Configuration	Value SVID VR - Discrete SVID	Help Text These are the supported VR types for BXT-P SOC. Intel FW only	^	
Platform Configuration	Persistent PRTC Backup Power	None	FPF that indicates if the device is designed such that it may lose	Ŧ	
Intel(R) TXE Kernel		Exists			
Isolated Memory Ranges	 SMIP Version Config 		1		
Platform Protection	. <u> </u>				
GPIO Configuration	Parameter	Value	Help Text		

2.6 Voltage Regulator Configurations

When configuring customer platform with PMIC/VR setup (discrete SVIT/Rohm/RT/TI), please use the below dropdown to make the selection:

<u></u>		Intel 🛛 Flash In	nage Tool	- c	×
File Build Help					
	Intel(R) Apollo	Lake Target Type eMMC			
Flash Layout					
Flash Settings	Parameter	Value	_	Help Text	
CPU Straps	PMIC/VR Configuration	SVID VR - Discrete SVID	e are the supporter	VR types for BXT-P SOC. Intel FW only support	5
Flex I/O	 SMIP Version Cor 	I2C VR - TI TPS650941			
Platform Configuration		I2C VR - RT DS5074A I2C VR - Rohm BD2670MVW			_
Intel(R) TXE Kernel	Parame	eter	Value	Help Text	

2.6.1.1.1 PCIe SMIP Configurations

The Root Port Configurations needs to be set according to the platform schematics, for more information please refer to "Broxton/Apollo Lake SoC SPI and SMIP programming guide" (doc #559702).

In the "Flex I/O" tab under "PCIe (x2)" and PCIE (x4) sections set the "Root Port Configuration (RPCFG)" according to the platform schematics.

Figure 9 - APL Intel® RVP Root Port Configuration example

Parameter	Value
Root Port Configuration (RPCFG)	2x1
Lane Reversal (LNREV)	No
PCIe Port 0 Non-Common Clock	Disabled
PCIe Port 1 Non-Common Clock	Disabled
PCIe Port 2 Non-Common Clock	Disabled
PCIe Port 3 Non-Common Clock	Disabled

PCIe (x4)

- DCTo (v2)

Parameter	Value
Root Port Configuration (RPCFG)	1x22x1
Lane Reversal (LNREV)	No
PCIe Port 4 Non-Common Clock	Disabled
PCIe Port 5 Non-Common Clock	Disabled

2.6.1.2 Platform Protection Configurations

2.6.1.2.1 Platform Integrity and Boot Guard Configurations

In this section the configurations that are related to the boot guard authentication flow will be set, these settings need to be aligned with the OEM Key manifest settings.

There are 3 available Boot Guard profiles:

- Boot Guard Profile 0 Legacy: in this profile Boot Guard boot block verifications and measurement protection is off.
- Boot Guard Profile 1 V: Strict Verification Enforcement. Prevents unverified bios components from running.
- Boot Guard Profile 1 VM: Strict Verification and Measurement enforcement.

Prevents unverified Bios components from running.

When using the other Boot Guard profiles (Legacy/V/VM), and for complete information about signing and manifesting, please refer to the "BXT and APL Signing and Manifesting Guide" which is part of the FW Kit, please note that even when using "Boot Guard Profile 0 - Legacy" each component still needs to be manifested and signed.

Note: when building an image for Intel[®] RVP, the required files for each of the boot guard profiles can be found in the TXE FW kit.

Once the necessary files were created according to the Boot Guard profile, in the "platform protection" tab, under "Platform Integrity" set:

- "SMIP Signing Key" this will be the private key that will be used to sign the SMIP manifest, please note that as part of the OEM key manifest procedure, the SMIP public key (which is paired with this private key) will need to be configured for the SMIP manifest authentication.
- "OEM Public key Hash" the hash of the public key that is used to authenticate the OEM key manifest.
- "OEM Key Manifest Binary" the OEM Key manifest binary that was created using the MEU tool.
- "Key Manifest ID" needs to be set according to the KMID in the OEM Key Manifest.
- "Boot Profile" set to according to the boot guard profile.

When choosing not to sign the image, the above files does not need to be set, and 'Boot Profile' should be set to 'Boot Guard profile 0 - legacy'.

Figure 10 - Platform Integrity and Boot Guard Configurations example

Platform Integrity

Parameter	Value	
SMIP Signing Key		Т
OEM Public Key Hash	14 05 A8 A4 EB 1C 8A C2 51 19 7D 85 96 14 09 FF 15 FD CD 23 D3 25 CC DD 88 D2 17 5C DE 3B 27 36	Ra
OEM Key Manifest Binary	\oem.key.bin	Si

Boot Guard Configuration

Parameter	Value	
Key Manifest ID	0x1	0
Boot Profile	Boot Guard Profile 2 - VM	Bo
uCode Anti Rollback Enable	Yes	-
OEM Key Manifest Anti Rollback	Yes	-
Bios Metadata Anti Rollback En	Yes	-

2.6.1.2.2 Intel[®] PTT and TPM Configurations

This settings needs to be set according to the TPM devices that is used on the platform.

When using fTPM the following configurations needs to be set:

- In the platform protection tab, under Intel ® PTT configurations, set:
 - Intel PTT initial power-up state to "Enable".
 - Intel PTT Supported to "Yes".
 - o Intel PTT Supported [FPF] to "Yes".
- In the platform protection tab, under TPM Over SPI Bus Configurations, set:
 - o Discrete TPM Location to "None".

When using a dTPM the following configurations needs to be set:

- In the platform protection tab, under TPM Over SPI Bus Configurations, set:
 - Discrete TPM location according to board configurations to SPI/LPC.

Figure 11 - TPM Configuration Example

Intel (R) PTT Configuration

Parameter	Value
Intel(R) PTT initial power-up state	Enabled
Intel(R) PTT Supported	Yes
Intel(R) PTT Supported [FPF]	Yes

TPM Over SPI Bus Configuration

Parameter	Value
Discrete TPM Location	None
TPM Clock Frequency	17MHz

2.6.1.3 Intel[®] Integrated Sensor Solution Configurations

To enable Intel[®] Integrated Sensor Solution, the following configurations needs to be set in the "Integrated Sensor Hub" tab:

- Under "integrated Sensor Hub" section, set "Integrated Sensor Hub Supported" as "Yes".
- Under "ISH Image" section, select the ISH binary location in "InputFile" field.
- Under "ISH Data" section, select the PDT file location in "PDT Binary File" field.

Figuro	12	221	Config	urations	ovampla
rigui e	12.	133	COILING	u auons	example

i di difici	er	Value
Integrated Sensor Hub Supp	orted	Yes
Integrated Sensor Hub Initia	I Power Up State	Enabled
Parameter		Value
Deveneter		Mahaa
Lenath	0x40000	
-		
InputFile	\Decomp\IS	HC.bin
InputFile	\Decomp\IS	HC.bin
InputFile ISH Data	\Decomp\IS	HC.bin

2.6.1.4 DnX Configurations

In this section the DnX (Download and Execute) settings will be configured, DnX is used to push tokens to the platforms.

For SPI based platform set:

- Under the "USB Descriptor" section configure:
 - USB Enumeration Time-out Time-out in SECONDS Used by ROM DnX logic to wait for enumeration from host before timing out. Default value is "0x1E" (30 seconds time out), to disable cable detection set this field to "0".
 - USB Ping Time-out Time-out in SECONDS Used by ROM DnX logic to wait for ping from host before timing out. Default value is "0x1E" (30 seconds time out), to disable cable detection set this field to "0".

Figure 13 - USB Descriptor configuration example

USB Descriptor

Parameter	Value
USB String Descriptor 1	
USB String Descriptor 2	
USB Enumeration Timeout	0x1E
USB Ping Timeout	0x1E

2.6.2 Configuring Intel[®] FIT build settings

In the main menu select Build \rightarrow Build settings

AT N	
File Build Help	
Clear Console	
Build Settings	
Flash L 🛞 Build Image	Ctrl+B
Flash Settings	
SocStraps	- Cruin Boo
Intel (R) ME Kernel	Ship ke
	-

Edit your configuration as shown below.

I mage build setting:

- **<u>Output path</u>**: the location and name of the image that will be created.
- **<u>Target Type</u>**: the bootable device type SPI/eMMC/UFS.
- Manifest tool path: the path to the MEU tool.
- **Signing tool path:** the path to the signing tool.
- **<u>Signing tool:</u>** the signing tool that is going to be used.

Environment Variables: (optional)

- **<u>\$SourceDir</u>**: The location where FIT will look for binary images during the image creation process.
- **<u>\$DestDir</u>**: The location where FIT will save the binary image.

Figure 14 - Build configuration settings example

	Build S	Settings
 Image Build Settings 		
Parameter	Value	Help Text
Output Path	outimage_new_2.bin	-
Generate Intermediate Files	Yes	-
Enable Boot Guard warning messag	Yes	-
Enable Intel (R) Platform Trust Tech	Yes	-
TargetType	eMMC	-
IfwiBuildVersion	0x0	32-bit value to use as the IFWI build version number
Manifest tool path	C:\Users\ebenahar\Desktop\Pr.	
Signing tool path	C:\Users\ebenahar\Desktop\Pr.	
Signing tool	OpenSSL	-
Environment Variables Parameter	Value	Help Text
\$WorkingDir	Ρ	ath for environment variable \$WorkingDir
sworkingbi		
\$SourceDir .	P	ath for environment variable \$SourceDir
\$SourceDir . \$DestDir .	P	ath for environment variable \$SourceDir ath for environment variable \$DestDir
\$SourceDir . \$DestDir . \$UserVar1 .	P P P	ath for environment variable \$SourceDir ath for environment variable \$DestDir ath for environment variable \$UserVar1
\$SourceDir . \$DestDir . \$UserVar1 . \$UserVar2 .	P	ath for environment variable \$SourceDir ath for environment variable \$DestDir ath for environment variable \$UserVar1 ath for environment variable \$UserVar2

2.6.3 Save/Load Intel[®] FIT XML configuration

Once the IFWI setting have been configured, it's **highly** recommended to save these setting into a FIT xml, these settings can be loaded to simplify future image creations.

To save/load FIT configurations xml, from the FIT menu select: File \rightarrow "open"/"save"/"save as".

Figure 15 - saving/loading Intel® FIT Configurations

2.6.3.1 Building the Firmware Flash Image

Note: before building the FW image please make sure that the MEU setting are configured (procedure in the prerequisites section), without this the image creation, the process will **FAIL**.

After the IFWI configurations and the Build setting are set, build the image: FIT setting select build \rightarrow "Build image".

The output will be the two images, one for DnX flashing (on eMMC based platform), and the other for external programmer/FPT flashing.

Figure 9 - Saving/Loading FIT Configurations

FIT			
File Build	Help		
- Re C	Clear Console		
👩 B	Build Settings		
Flash L 🛞 E	Build Image	Ctrl+B	l
Flash Setting	<u>js</u>	Keylons	5

2.7 IFWI Flashing Procedure

2.7.1 **Prerequisites**

The following equipment and setup is required in order to complete IFWI flashing with DnX:

- Management console (a.k.a Recovery host). Can be any PC, running Windows 7/8.1 OS
- Recovery host should be connected to the target device (device being flashed) with a micro USB cable.
- Phone Flash Tool (PFT) should be installed on the recovery host. (Link to PFT location available in TXE kit Release Notes)
- DnX module (can be found in TXE kit) and the recovery image should be downloaded to the recovery host.
- eMMC needs to be selected as the boot source for the platform, on APL RVP set jumper J6E7 to 2-3.

2.8 Flashing Procedure for an SPI Based Platform

Please note that on APL Intel the boot source needs to be set as SPI, to do so set jumper J6E6 to 2-3.

2.8.1 Flashing an Image Using the FPT Tool

Flashing the SPI image can be done on the target platform from OS/EFI Shell using the Flash Programing Tool, the tool is located in the FW Kit under tools\Flash_Programming_tool.

To flash the image:

- Copy the FPT tool and the SPI image to the target platform
- From the FPT tool run: FPT -f "image_name.bin"

The expected output from the flashing procedure is "FPT Operation Passed".

2.8.2 Flashing the Image Using Dediprog

- Connect the Dediprog to the platform and run the Dediprog software.
- Click "Detect".
- Under "Manually Select Memory Type" window, select the SPI flash and click OK

Figure 16 - Selecting the SPI Component

		_			
Manufacturer		^	W25	SQ64DW	
<auto detected="" td="" type(s)<=""><td>></td><td></td><td></td><td></td><td></td></auto>	>				
<all></all>					
ALTERA					
AMIC					
Atmel					
ATO Solution					
cFeon/EON					
ESMT					
Fidelix					
Freescale					
Fudan Microelectronics					
GigaDevice					
Intel					
Macronix		U			
<	>				

 Click: Config → Miscellaneous Settings, under "Vcc Option", configure Vcc voltage to 1.8V.

Figure 17 - Set VCC Voltage

Advanced Settings		23
(1) Batch	Vpp Option: Apply Vpp for program and erase when the memory supports it.	
Operations Prmg	Vcc Option: ✓ Manual select Vcc	
Program Configuration	○ 2.5V ● 1.8V 1.8V 3.8V	
Eng. Engineering Mode	SPI Clock Setting Select Clock:	
S.R Modify Status	12 MHz V Toolbar Icon Configuration:	
Register	Blank: 🗹 Enable Blank Button Erase: 🗹 Enable Erase Button	
Miscellaneous Settings	Prog: Prog Button Verify: Proble Verify Button	

• Under DediProg main window, the VCC voltage will be set to 1.8V, and the SPI component will be selected.

Figure 18 - Main Window after the Configurations

(i) 2014-Feb-09 14:21:55:	Welcome to DediProg 6.0.3.22
(i) 2014-Feb-09 14:21:55:	Start logging
(i) 2014-Feb-09 14:21:55:	Checking USB connection
✓ 2014-Feb-09 14:21:55:	USB OK.
14:21:55:	VCC 1.8V is applied.
(i) 2014-Feb-09 14:21:56:	0.641s elapsed to identify chip.
(i) 2014-Feb-09 14:21:56:	Current Type: W25Q64DW

- Click "File", select the SPI image that was built in section 2.4, "Creating the Binary Imag".
- Under "Program as", set data format as "Raw binary".

Figure 19 - Load File Settings

	Load Fi	le	×
File Path: Production_1.2.1.1153 Program as Data Format:	BLAKCRB_X64_R	0156_41_FPFMirroring	bin V Find
Truncate file to fit in the target	area. OK		Cancel

• Click "Batch" to flash the file. When the procedure is over, click "Verify" to verify that the flashing was performed correctly.

Figure 20 - Flashing Procedure Expected Result

2	DediProg Software 6.0.3.22	×
File View Help		
Detect File Bl	nk Erase Prog Verify Batch Edit Config Load Prj Save Prj	
Currently working on: Currently working region:	Application Memory Chip 1 Application Memory Chip 2 Update Stand Alone Project Region 1 Region 2 Region 3 Region 4 Region 5	
 (i) 2014-Feb-09 15:07:37: 	Source File: FFRDimage.bin(0x800000 bytes) Target Memory Region: [0, 0x800000) Spare Memory Region: leave as being erased. Truncate-File:To-Fit-Memory Disabled.	Powered by
 ✓ 2014Feb-09 15:07:37: (i) 2014Feb-09 15:07:51: 	Identify Chip OK. Erasing a whole chip A whole chip erased Programming numerased Programming parameters: Source File: FFRDimage.bin(0x800000 bytes) Target Memory Region: [0, 0x800000]	Programmer Info Type: SF100 F/W Version: 5.1.9 VCC Status: 1.8V / ON VPP/Acc: Not Applicable SP1 Clock: 12 MHz Dual/Quad 10: Single 10
 i) 2014-Feb-09 15:07:51: i) 2014-Feb-09 15:07:51: 2014-Feb-09 15:08:25: i) 2014-Feb-09 15:08:25: i) 2014-Feb-09 15:08:26: i) 2014-Feb-09 15:08:28: ii) 2014-Feb-09 15:08:28: 	Spare Memory Region: leave as being erased. Truncate File-To-Fit-Memory Disabled. Programming OK. Operation completed. 47.847 seconds elapsed. Programming parameters: Spurce File-FEDImane bin(V0800000 butes)	Memory Info Type: W25Q64DW Manufact.: Winbond Electronics Corp Size(KB): 8192 Manu. ID: Oxef IEDEC ID: Oxe6017
2014Feb-09 15:08:28: 2014Feb-09 15:08:28: 2014Feb-09 15:08:28: 2014Feb-09 15:08:28: 2014Feb-09 15:08:28: 2014Feb-09 15:08:42:	Soard C Har Traching and Control of Status Target Memory Region: [b, 0x800000] Spare Memory Region: [b, 0x800000] Truncate-File-To-Fit-Memory Disabled. Reading From Address [0, 0x800000] Finished reading from memory.	File Info Name : FFRDimage.bin Size: 0x800000 Checksum(File size) : 0x699CD145 Checksum(Chin size) : 0x699CD145
 2014Feb-09 15:08:42: 1) 2014Feb-09 15:08:42: 1) 2014Feb-09 15:08:42: 1) 2014Feb-09 15:08:42: 1) 2014Feb-09 15:08:42: 11) 2014Feb-09 15:08:42: 11) 2014Feb-09 15:08:42: 	Crecksum Identical) Original File checksum(0x800000 bytes):699cd145 Downloaded bytes checksum(0x800000 bytes):699cd145 Chip checksum([0, 0x800000) of total 0x800000 bytes(chip size)): 699cd145 The downloaded checksum could be different from that of the original file if it's downloaded partially. Operation completed. 14.048 seconds elapsed.	Batch Config setting Full Chip update V Derital Indate and
No operation on-going.		NUM

2.9 Windows Drivers Installation

Once the platform boots up to OS, install the TXEI and SPD using the SetupTXE.exe file that can be located in the kit under the "Installers" folder.

Note: the TXEI and SPD standalone drivers can be found under the same folder.

§

3 Appendix A: ROM Bypass

For BXT based platform ROM bypass needs to be flashed to the platform prior to the bring-up procedure. The ROM bypass SPI image can be found in the TXE FW kit, under "Image_Components\TXE"

3.1 Flashing the ROM bypass

- Connect the Dediprog to the platform and run the Dediprog software.
- Click "Detect".
- In the "Manually Select Memory Type" window, select the SPI flash and click OK Note: on Intel RVP choose: "W25Q64FW"

4DW 4FW	^	cted Type(s)>	Manufacturer <auto b="" detecte<=""> <all> ACE</all></auto>
		cted Type(s)>	<auto detecte<br=""><all> ACE</all></auto>
			<all> ACE</all>
			ACE
			Adesto
			ALTERA
			AMIC
			Atmel
			ATO Solution
			BergMicro
			cFeon/EON
			ESMT
			Fidelix
			Freescale
		ectronics	Freescale Fudan Microelect
	~	lectronics	Freescale Fudan Microelect Generalplus
			ATO Solution BergMicro cFeon/EON ESMT Fidelix

Figure 21 - Selecting the SPI Component

• Click: Config → Miscellaneous Settings, under "Vcc Option" configure Vcc voltage to 1.8V.

Figure 22 - Set VCC Voltage

Advanced Setting	5			23	
Batch Batch	Vpp Option: Apply Vpp for program and erase when the memory supports it.				
	Manual select Vcc	Vez			
Prog Program Configuration	Using Fixed Vcc	 3.5V 2.5V 1.8V 	Manual adjust Vcc (For SF600 only) 1.8V 1.8V 3.8V		
Eng. Engineering Mode	SPI Clock Setting Select Clock: 12 MHz		v		
S.R Modify Status Register	Toolbar Icon Configura Blank: 🕑 Enable B Erase: 🕑 Enable E	ation: Ilank Button Frase Button			
Miscellaneous Settings	Prog: 🗹 Enable P Verify: 🗹 Enable V	rog Button Ierify Button			

• In the DediProg main window the VCC voltage will be set to 1.8V, and the SPI component will be selected.

Figure 23 - Main Window after the Configurations

(i) 2014-Feb-09 14:21:55:	Welcome to DediProg 6.0.3.22
(i) 2014-Feb-09 14:21:55:	Start logging
(i) 2014-Feb-09 14:21:55:	Checking USB connection
2014-Feb-09 14:21:55:	USB OK.
14:21:55:	VCC 1.8V is applied.
(i) 2014-Feb-09 14:21:56:	0.641s elapsed to identify chip.
(i) 2014-Feb-09 14:21:56:	Current Type: W25Q64DW

• Click "File", select the SPI image that was built in section 2.4, "Creating the Binary Imag". Under "Program as", set data format as "Raw binary".

Figure 24 - Load File Settings

Load File				
File Path: 3.0.0.1029_CCG\Image_Components\TXE Program as Data Format: Raw Binary Intel Hex	VA1\Silcon\SPI_mage.bir]		
Truncate file to fit in the target area.	Cancel			

• Click "Batch" to flash the file, when the procedure is over, click "Verify" to verify that the flashing was performed correctly.

Figure 25 - Flashing Procedure Expected Result

LediProg Software 6.0.3.22	- 🗆 🗙
File View Help	
Detect File Blank Erase Prog Verify Batch Edit Config Load Prj Save Prj	
Currently working on: • Application Memory Chip 1 Application Memory Chip 2 Update Stand Alone Project Currently working region: • Region 1 Region 3 Region 5	
① 2014-Feb-09 15:07:37: Source File: FFRDimage.bin(0x800000 bytes) ∧ ③ 2014-Feb-09 15:07:37: Target Memory Region: [0, 0x800000) ○ ③ 2014-Feb-09 15:07:37: Target Memory Region: [eave as being erased. ○ ③ 2014-Feb-09 15:07:37: Tuncate-File: T-0-Fit-Memory Disabled. ○ ✓ 2014-Feb-09 15:07:37: Tuncate-File: To-Fit-Memory Disabled. ○	Powered by Programmer Info
1 2014-Feb-09 15:07:57: Erasing a whole chp 2 2014-Feb-09 15:07:51: A whole chip erased 3 2014-Feb-09 15:07:51: Programming 1 2014-Feb-09 15:07:51: Programming parameters: 2 2014-Feb-09 15:07:51: Source File: FFRDimage.Bin(0x800000 bytes) 1 2014-Feb-09 15:07:51: Source File: FFRDimage.Bin(0x800000 bytes) 2 2014-Feb-09 15:07:51: Target Memory Region: [0, 0x800000]	Type: SF100 F/W Version: 5.1.9 VCC Status: 1.8/ / ON VPP/Acc: Not Applicable SPI Clock: 12 MHz Dual/Ouad 10: Shife 10
1 2014-Feb-09 15:07:51: Spare Memory Region: leave as being erased. 1 2014-Feb-09 15:07:51: Truncate-File-To-Fit-Memory Disabled. 2 2014-Feb-09 15:08:25: Programming OK- 1 2014-Feb-09 15:08:25: Operation completed. 1 2014-Feb-09 15:08:25: 47.847 seconds elapsed. 2 2014-Feb-09 15:08:25: Programming Dec. 1 2014-Feb-09 15:08:25: 97.947 seconds elapsed. 2 2014-Feb-09 15:08:28: Programming parameters: 1 2014-Feb-09 15:08:28: Source File: FRDImage.bin(0x800000 bytes)	Memory Info Type: W25Q64DW Manufact: Winbond Electronics Corp Size(KB): 8192 Manu, ID: Oxef JEDEC ID: Oxef6017
① 2014Feb-09 15:08:28: Target Memory Region: [0, 0x800000] ① 2014Feb-09 15:08:28: Spare Memory Region: [eave as being erased. ① 2014Feb-09 15:08:28: TruncateFelie To-Fit-Memory Disabled. ① 2014Feb-09 15:08:28: Reading From Address [0, 0x800000] ① 2014Feb-09 15:08:28: Reading from memory. ② 2014Feb-09 15:08:42: Finhed reading from memory. ② 2014Feb-09 15:08:42: Checksum Identical:	File Info Name : FFRDImage.bin Size : 0x80000 Checksum(File size) : 0x69902145 Checksum(Chip size) : 0x6992D145
2014Feb-09 15:08:42: Original File checksum(0x800000 bytes):699cd145 2014Feb-09 15:08:42: Original File checksum(0x800000 bytes):699cd145 2014Feb-09 15:08:42: Chip checksum((0, 0x800000) of total 0x800000 bytes):699cd145 2014Feb-09 15:08:42: The downloaded checksum culd be different from that of the original file if it's downloaded partially. 2014Feb-09 15:08:42: Operation completed. 2014Feb-09 15:08:42: 14:048 seconds elapsed. ✓	Batch Config setting Full Chip update Dartial I todate and
No operation on-going.	NUM

§

4 Appendix B: Phone Flash Tool DnX Commands

Please refer to the table below for the Phone Flash Tool DnX related commands, please note that this commands needs to be run from a CLI.

Description	CLI command
Flashing IFWI image	dnxFwDownloader.execommand downloadfwos fw_dnx DNXP_0x1.binfw_image <ifwi_dnx_image>flags 0</ifwi_dnx_image>
Clear GPP4/RPMB	dnxFwDownloader.execommand clearrpmb fw_dnx DNXP_0x1.bindevice 2idx 0
Configure the GPPs on an eMMC based platform	dnxFwDownloader .execommand configpart fw_dnx DNXP_0x1.binpath cfgpart.xmldevice 2 idx 0
Read token	dnxFwDownloader .execommand readtoken fw_dnx DNXP_0x1.binpath read.binslot 0
Write token	dnxFwDownloader .execommand writetoken fw_dnx DNXP_0x1.bintoken test_token.binslot 0
Erase token	dnxFwDownloader .execommand erasetoken fw_dnx DNXP_0x1.binslot 0
Read boot media contents - EMMC BP1	dnxFwDownloader .execommand readbootmedia - -fw_dnx DNXP_0x1.binpath boot1.bindevice 2 - -idx 0start 0blocks 4096part 0
Read boot media contents - EMMC BP2	dnxFwDownloader .execommand readbootmedia - -fw_dnx DNXP_0x1.binpath boot2.bindevice 2 - -idx 0start 0blocks 4096part 1

Read boot media contents - EMMC GPP4	dnxFwDownloader .execommand readbootmedia - -fw_dnx DNXP_0x1.binpath gpp4.bindevice 2 idx 0start 0blocks 4096part 35		
Read boot media contents - EMMC RPMB	dnxFwDownloader .execommand readbootmedia - -fw_dnx DNXP_0x1.binpath rpmb.bindevice 2 idx 0start 0blocks 4096part 16		
Read boot media contents - UFS BP1	dnxFwDownloader .execommand readbootmedia - -fw_dnx DNXP_0x1.binpath boot1.bindevice 3 - -idx 0start 0blocks 4096part 0		
Read boot media contents - UFS BP2	dnxFwDownloader .execommand readbootmedia - -fw_dnx DNXP_0x1.binpath boot2.bindevice 3 - -idx 0start 0blocks 4096part 1		
Read boot media contents - UFS GPP4	dnxFwDownloader .execommand readbootmedia - -fw_dnx DNXP_0x1.binpath gpp4.bindevice 3 idx 0start 0blocks 4096part 22		
Read boot media contents - UFS RPMB	dnxFwDownloader .execommand readbootmedia - -fw_dnx DNXP_0x1.binpath rpmb.bindevice 3 idx 0start 0blocks 4096part 48		

§

5 Appendix C: Enabling Quad Mode on SPI Part

When enabling quad operations in the soft steps the Quad enable bit needs to be set accordingly within the SPI part, if not the platform will not boot.

The Quad Enable bit location is different for each SPI vendor model, please refer to the SPI Spec in order to get the Quad Enabled bit location for your SPI device.

5.1 Setting the Quad Enabled Bit Using Dediprog

The following procedure uses the SPI part "MX25U6435FM2I-10G" as an example, please follow the procedure below with the settings that corresponds to the SPI device that is used on your platform.

Figure 26 - the Quad Enable information from the "MX25U6435FM2I-10G" SPI Spec

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
SRWD (status register write protect)	QE (Quad Enable)	BP3 (level of protected block)	BP2 (level of protected block)	BP1 (level of protected block)	BP0 (level of protected block)	WEL (write enable latch)	WIP (write in progress bit)
1=status register write disable	1=Quad Enable 0=not Quad Enable	(note 1)	(note 1)	(note 1)	(note 1)	1=write enable 0=not write enable	1=write operation 0=not in write operation
Non-volatile bit	Non-volatile bit	Non-volatile bit	Non-volatile bit	Non-volatile bit	Non-volatile bit	volatile bit	volatile bit

Status Register

To set the Quad enable bit:

- Attached Dediprog to SPI device & open Dediprog Software
- Go to Config \rightarrow S.R. Modify Status Register
- Under "Write Status register(s)", write "0x40" to "Register1 Value(Hex)" as shown below

Figure 27 - Writing the Quad Enable bit to the Flash

		Advanc	ed Settings	
Read status register(s)):			
atch Register1 Value(H	lex): 00	R	ead Again	
erations Register2 Value(H	lex) : 00	Re	ead Again	
Write status register(s): •gister:			
guration Register1 Valu	e(Hex):	40	Write to Flash	
Two status registr	er: <(Hey); 00	00	Write to Flash	
g. Register Value ering de * NOTE : Not Each Ch	in Have Two Eta		write to Flash	

• Verify Register 1 has the value "40" as shown below

Figure 28 - verifying the register new value

Advanced Set	tings		config control months of
Batch Batch Operations	Read status register(s) : Register1 Value(Hex) : Register2 Value(Hex) :	40	Read Again Read Again
Program Configuration	Write status register(s) : Only one status register: Register1 Value(Hex): For two status register: Register Values(Hex): * NOTE : Not Each Chip He	00 Byte 1 Byte 2 00 00 ave Two Status Reg	Write to Flash Write to Flash gister

§