ADVANCED SYSTEM CONTROLLER ASC/2S
 MAINTENANCE MANUAL

P/N 37539-05

WARRANTY

Econolite Control Products, Inc. warrants, for a period as shown below, from date of shipment, all control equipment listed below to be free from defects in material or workmanship and to be of the kind and quality designated or specified in the contract. This warranty does not extend to products not manufactured or sold by Econolite. Econolite has the sole right to determine whether or not an item is covered under our warranty policy.

Controller

ASC/2S Series Controller

Warranty Period
2 years

Econolite is not responsible for damage caused by negligence, acts of God, or use of equipment in a manner not originally intended. Econolite's liability under this warranty shall not exceed the cost of correcting defects in the equipment. Upon the expiration of the warranty period, all such liability shall terminate.

To obtain service under this warranty, deliver the product to the factory at the address listed below. When returning products to Econolite, the following must be done:

Pack in original (or equivalent) shipping container
Insure it (or assume the risk of loss/damage during shipment)
Obtain Return Authorization number from your sales representative
Pay all shipping charges to factory. Econolite will pay the return shipping charges

List on packing sheet inside carton the return Authorization No., Econolite's Sales Order No., your Purchase Order No., equipment serial No., description of problem with equipment, and date of installation.

Ship to the nearest Econolite Service Department:
Econolite Control Products, Inc. or Econolite Control Products, Inc.
Attn: Service Department
3360 E. La Palma
Anaheim, California 92806
Neptune Beach, Florida 32266

Table of Contents

SECTION 1 1-1
INTRODUCTION 1-1
ASC/2S FAMILY 1-1
MANUALS 1-3
Programming Manuals 1-3
Maintenance Manual 1-3
SECTION 2 2-1
THEORY OF OPERATION 2-1
FUNCTIONAL DESCRIPTION 2-1
Processor Module 2-3
I/O Interface Modules 2-4
Power Supply Module 2-4
Telemetry Module 2-5
Transceiver Operation 2-5
Processor Module (Schematic document number 34251, pages 1-20) 2-10
Microprocessor 2-10
Clocks 2-10
System Control Pins 2-10
System Busses 2-11
Decode And Control 2-12
External Interrupt Sources 2-15
Internal Interrupt Sources 2-15
Memory 2-16
Voltage Monitor Control 2-17
Down Time Accumulator 2-18
Local Voltage Regulators 2-18
Back-Up Power Supply 2-19
Display 2-19
Keyboard 2-20
Buzzer 2-20
Parallel I/O Section 2-21
Address Bus 2-22
Data Bus 2-22
Logic Level Translators 2-22
Input Multiplexers 2-23
Input Buffers 2-23
Overlap Program Inputs 2-23
Output Latches 2-24
SDLC (EIA-485) Interface 2-25
Terminal (EIA-232) Interface 2-25
Telemetry Interface 2-26
AC Power Input 2-27
Line Reference Circuits 2-27
Processor-I/O DC input circuit 2-27
FSK Telemetry Module 2-28
Modulator-Transmitter Circuit 2-28
Receive Filter And Demodulator Circuit 2-29

Table of Contents (continued)

SECTION 3 3-1
MAINTENANCE 3-1
UNPACKING 3-2
INSTALLATION PROCEDURE 3-2
CONNECTOR CABLE ASSIGNMENT 3-3
ENVIRONMENTAL REQUIREMENTS 3-4
TEST EQUIPMENT 3-5
DISASSEMBLY 3-6
Processor Module 3-6
Power Supply 3-6
CLEANING AND INSPECTION 3-7
Cleaning 3-7
Inspection 3-8
Lithium Battery 3-9
IMPORTANT SAFETY INFORMATION 3-9
ADJUSTMENTS AND TESTS 3-10
MODEM Check Out Procedure 3-10
Crystal Adjustment Procedure 3-12
Diagnostics Menu 3-13
Outputs (2) 3-15
Display (3) 3-16
Keyboard (4) 3-17
Overlap (5). 3-17
Telemetry (6) 3-18
Loopback (7) 3-19
Memory Tests 3-20
SECTION 4 4-1
TROUBLESHOOTING 4-1
PRECAUTIONS 4-2
HARDWARE FAULT ISOLATION 4-3
SECTION 5 5-1
PARTS LISTS 5-1
SECTION 6 5-30
SCHEMATICS AND ASSEMBLY DRAWINGS 5-30

LIST OF FIGURES

Figure 1-1. ASC/2S Family 1-2
Figure 2-1. ASC/2S System Block Diagram 2-2
Figure 2-2. Processor Section Block Diagram 2-7
Figure 2-3. I/O Section Block Diagram 2-8
Figure 2-4. Processor-I/O Module Component Placement 2-9

SECTION 1 INTRODUCTION

ASC/2S FAMILY

The ASC/2S family of actuated controllers consists of three models. Each provides the same control functions but uses a different type of input/output (I/O) structure to interface with other components of the traffic control cabinet.

The first model, the ASC/2S-1000, provides an I/O interface conforming to NEMA TS2 standard requirements for Type 1 controllers. This interface controls all cabinet I/O over a serial communications channel (Port 1). This serial communications channel is used for data exchange with a Malfunction Management Unit (MMU), to retrieve vehicle detector data from detector racks and interface to Terminals and Facilities within the traffic control cabinet. All I/O functions are handled by one or more Bus Interface Units (BIUs). Each BIU controls up to 15 outputs, 24 input/outputs, 8 inputs and four optically coupled inputs. Type 1 I/O also includes EIA-232 compatible terminal (Port 2) and telemetry (Port 3) interfaces.

The second model of the ASC/2S family, the ASC/2S-2000, has an I/O interface that conforms to both NEMA TS1 and TS2 Type 2 controller requirements. This interface controls I/O functions through industry standard circular connectors ($\mathrm{A}, \mathrm{B}, \& \mathrm{C}$) and includes the serial communications, terminal, and telemetry interfaces of the Type 1 interface. TS1 operation allows the ASC/2-2000 to be used in existing traffic control cabinets without any cabinet changes. The Type 2 I/O operates in one of eight I/O modes. Each mode assigns specific functions to 24 input and output connections. The first I/O mode (Mode 0) provides compatibility with the I/O requirements of the NEMA TS1 standard. This TS1 operational mode is selected by setting the Type $2 \mathrm{I} / \mathrm{O}$ mode to Mode 0 (default) and disabling the serial communications channel.

The serial communications channel of the Type 2 interface is used to communicate with a Malfunction Management Unit and detector racks as with the Type 1 interface. However, a minimum of 20 vehicle detectors can optionally be connected directly to the controller using one of the Type 2 I/O modes. The ASC/2S-2000 can also be programmed to operate as a Type 1 controller. In this mode external I/O interface is disabled and all I/O functions are handled over the serial communications channel. This allows the ASC/2S-2000 to duplicate the operation of the ASC/2S-1000.

The ASC/2S-2100 is the third model of the ASC/2S actuated controller family. The ASC/2S2100 Processor-I/O module includes components that add additional I/O to the ASC/2S-2000 capabilities described above. The expansion I/O components include the "D" connector, 25-pin telemetry connector, and optionally, the NEMA overlap card connector interfaces matching those of the ASC-8000. This allows the ASC/2S-2100 to be used as a replacement for an ASC8000 or ASC/2-2100 in existing traffic control cabinets without any cabinet changes.

INTRODUCTION

 ASC/2 FAMILYThe ASC/2S family of actuated controllers are made of a formed aluminum enclosure. Controller fronts consist of the User Interface panel and the Connector Interface panel. The User Interface panel consists of a custom, weather and dust-proof conductive rubber keyboard with numeric, function and cursor keys, and a high-contrast 16 line by 40 character liquid crystal display with LED back lighting. The Connector Interface panel contains two fuses (115 VAC/1 Amp and $+24 \mathrm{VDC} / 0.75 \mathrm{Amp}$) and various interface connectors. The type of connectors depends on the controller model.

The ASC/2S controller unit contains two main electronic modules and a power supply. The first main module is the Processor-I/O module which is installed directly in the enclosure. This module contains the MC68302 microprocessor which controls all ASC/2S operations and circuitry that transfers input and output signals between the I/O connectors and the processor. Also located on the Processor-l/O module is a connector for installing a telemetry module. The second main module is the User Interface assembly mounted to the hinged front panel. All versions of the ASC/2S controller use the same modules. The model type is defined by the components installed on the Processor-l/O module. The Processor-l/O and User Interface modules are interconnected by a ribbon cable located across the front panel hinge. The Processor-I/O module together with the connector interface panel, is held in place by two quarter turn fasteners and a card guide. The User Interface panel is held in place by 3 nuts. Both modules may be easily removed.

The ASC/2S power supply furnishes +24VDC for controller unit operation. It is mounted internally on the back panel of the enclosure. The power supply is held in place four screws and is connected to the processor-I/O module by two wire harnesses.

Figure 1-1. ASC/2S Family

MANUALS

Programming Manuals

Programming of the ASC/2S controller unit is covered in the ASC/2S programming manual. However, maintenance information is provided for all ASC/2S family members in this manual.

Maintenance Manual

This manual contains the information needed to understand the hardware functions of the ASC/2S controller family. Information about the circuitry, general maintenance requirements, installation and disassembly is included. Fault isolation charts are provided to help the technician isolate problems or to at least provide a good starting point for troubleshooting. Schematics and comprehensive parts lists are included as well as several appendices to supplement the hardware descriptions.

Section II contains the ASC/2S theory of operation beginning with a functional description of each module followed by a detailed description of circuit operation.

Section III is a collection of procedures and check lists that should be used as part of regular maintenance. Included are procedures for installation, disassembly, visual inspection, cleaning, battery check, and various adjustments. Test equipment and connector-cable assignment lists are included. ASC/2S diagnostic tests, the primary method for hardware verification and fault isolation, are explained.

Section IV is a troubleshooting chart. The chart outlines a series of possible hardware, software, and programming problems with associated possible causes and suggested solutions.

Section V contains controller assembly parts lists. It lists components, cables and assemblies with both Econolite and manufacturer's part numbers.

Section VI contains schematics and assembly drawings.
Appendix A contains cable diagrams to be used when interfacing the ASC/2S to a printer or personal computer or for data transfer.

Appendix B contains pin lists for all connectors A-D, SDLC, Terminal and Telemetry.
Appendix C describes standard system interconnection using Econolite telemetry interface boards and transient suppressors.

Appendix D is a guide to lease-line installation used in Econolite system communication.
Appendix E lists and identifies loopback diagnostic error codes.

FUNCTIONAL DESCRIPTION

This section begins with a functional description of the ASC/2S modules. Each module is then described in detail. The circuit and signal descriptions are best understood when studied together with the block diagrams and system schematics. The block diagrams are included in this section and schematics are located in Section VI.

As an aid to finding circuitry described in the detail text, schematic zone references, which contain the schematic coordinates of the circuitry, are included in the text where pertinent. A schematic zone reference has the format $[(D), N, X, Y]$ where (D) is the optional document number, N is the schematic page, X is the horizontal coordinate and Y is the vertical coordinate of the page. The document number is normally referenced at the beginning of each new section. Also, all part numbers, pin, and signal names are printed in bold type.

Figure 2-1. ASC/2S System Block Diagram

THEORY OF OPERATION FUNCTIONAL DESCRIPTION

Processor Module

The Processor-I/O module contains the microprocessor chip, memory chips and support circuitry required to operate and control all ASC/2S functions. This module also includes all I/O circuitry and controls the User Interface module keyboard and display operations. Ribbon connector J3 connects this module to the User Interface module.

The system busses include the address bus that identifies the device or memory location targeted for information exchange, the data bus, which carries the information, and the control bus which synchronizes the data transfers. The communications busses include the Telemetry bus, SDLC bus and Terminal bus which transfer serial data between the microprocessor and the dual asynchronous receiver transmitter (DUART) chips and their associated interface chips.

The Processor-l/O module is connected to the power supply module via connectors J18 and J19. The power supply provides +24VDC.

Auxiliary processor functions include a watchdog timer which checks for proper program operation, the voltage monitor which checks for power fail conditions, and the battery-backed clock circuit which keeps accurate time when power is removed from the unit. System RAM is powered by the rechargeable, backup battery circuit so that data integrity is maintained during power fail conditions.

Also included on the module are the AC line transient protection circuit and line referenced, 120 Hz interrupt generator.

The I/O interface section connects external inputs and outputs, with the microprocessor system address, data and serial communications busses. This allows the microprocessor to perform all input and output functions.

I/O Interface Modules

The I/O section of the Processor-I/O module consists of input multiplexers, logic level translators, output latches, output drivers, serial communications interface circuits, the telemetry module interface connector J4 and expansion I/O connector J1 (unused).

External parallel inputs are applied through front panel connectors A, B and C. The input voltage levels are translated to logic levels to be used by the system. The TRUE/FALSE (LOW/HIGH) states are then applied to input multiplexers. The processor reads the input status by addressing the input and enabling the multiplexer, thus transferring the input status onto the system data bus.

The processor uses output latches to control the external parallel signals. It addresses a specific output and latches that output status from the data bus by enabling the latch. The signal is then sent to external connectors A, B or \mathbf{C}. In the event of a long power failure, the latches are cleared to prepare for an orderly controller re-start.

The Terminal bus signals interface with external equipment through Terminal connector J13 (PORT 2). It is used to communicate with printers, computer terminals or other controllers in the ASC family.

The SDLC bus signals interface with optional Bus Interface Units and/or a Malfunction Management Unit via SDLC connector J15(PORT 1).

The Telemetry bus signals attach to connector J4 and supply the signals required for FSK and EIA-232/fiber optic telemetry interconnects. Once translated by the Modem module, the signals interface with external signals via connectors J17(PORT 3) and J14 on the model ASC/2S2100.

VOLTAGE MONITOR CONTROL is generated by monitoring the power supply and battery voltages and Processor signals. It is output to external equipment as VOLTAGE MONITOR.

When the processor-1/O module is configured as an ASC/2S-2100 it includes type D and 25-pin Telemetry connectors and associated input multiplexers, logic level translators, output latches and output drivers. External parallel inputs and outputs are processed as mentioned above. A plug-in NEMA overlap programming card (optional) is connected to the input multiplexers by connector J6. When programmed, the overlap inputs are read by the processor in the same way as external inputs.

Power Supply Module

The Power Supply module is a 40 watt, 24 volt off-line switching supply set for 120VAC operation. When configured as an ASC/2S-2000 or ASC/2S-2100 controller, input power is applied through the A-connector on the controller front panel and then routed, via the AC line transient protection circuit, to J19 on the I/O module. A wire harness connects between J19 and the power supply module. When used in the ASC/2S-1000 controller, input power is applied through MS connector J16 on the front panel and then routed to the power supply module as mentioned above. The +24VDC output from the supply is routed back to the Processor-l/O module via a wire harness connected to J18.

Telemetry Module

The Telemetry module operates as a transceiver providing communication between the ASC/2S-1000, ASC/2S-2000 or ASC/2S-2100 and an ASC/2M-1000 or KMC-10000 master controller. The module is controlled by the Processor module and interfaces with to the Telemetry bus via connector J4. Transmit, and receive signals are interfaced through the Telemetry connector(s) on the front panel.

Transceiver Operation

Communication between the local and master controllers is achieved over voice grade four-wire (two data channels) type 3002 leased telephone lines, or customer owned cable. The telemetry data channel is made up of command (master to local) and readback (local to master) lines. Additional lease-line information is found in Appendix D. Each local transceiver is assigned a unique telemetry address used by the master to identify the transceiver. The address is assigned by either direct keyboard entry (refer to the ASC/2S Programming Manual) or by activating External Address Enable (J14-15) and assigning the desired bit pattern to the appropriate Dconnector system inputs (refer to Appendix E). Devices connected to the local transceiver are identified by subaddresses assigned and used by the master.

The master generates command messages containing local telemetry address, message type, subaddress, data, and a horizontal parity word. Command messages are transmitted to the local transceiver in a predefined sequence. The sequence begins with a zero address command which simultaneously transmits, to all local controllers, the system traffic program and four special functions. Local controllers do not respond to the zero address command. Subsequent messages request the status of the devices (listed above) connected to the local transceiver. The addressed local controller sends an appropriate response to the master on the readback line. Transmission of commands and readbacks occurs simultaneously. An error status is generated if a readback is not received by the master within a predefined period. For more information on master controller operation using telemetry, refer to the ASC/2M-1000 or KMC 10,000 Master Programming and Maintenance Manuals.

At the local transceiver, modulated command message signals are transformer coupled to the receiver where they are filtered and demodulated to a serial-bit pattern. The serial-bit pattern is converted by an SCC receive channel on the microprocessor into a parallel pattern, four-word command message which is read by the microprocessor. If the message address corresponds to that of the local transceiver and if the message is valid, the microprocessor performs the operation specified by the message type. Where readbacks are required, the local transceiver generates a three-word readback message containing the requested data and horizontal parity word. The three data words from the microprocessor are converted to a serial bit pattern by a transmit channel on the DUART. The serial bit pattern is then sent to the MODEM which provides frequency shift key (FSK) modulation for transmission. Valid data, transmit, and received carrier LEDs are ON or flash during normal data transmission.

THEORY OF OPERATION DETAILED DESCRIPTION

This section contains detailed descriptions of the various ASC/2S modules. Each module is described in detail with references to schematics in the format $[(D), N, X, Y]$ where (D) is the document number, N is the schematic page, X is the horizontal coordinate and Y is the vertical coordinate of the page. The document number (D) is not always provided in this format but it is normally referenced at the beginning of each new section. Part numbers are identified in parenthesis (\#\#\#) immediately before references to schematic coordinates. Example: U24 (74HCT244) [4,2,C]. Pin and signal names are also printed in bold type.

The schematics are found in Section VI of this manual. Also, a module block diagram is shown before the discussion of each module. These block diagrams illustrate general functional operation.

Figure 2-2. Processor Section Block Diagram

Figure 2-3. I/O Section Block Diagram

Figure 2-4. Processor-I/O Module Component Placement

Processor Module (Schematic document number 34251, pages 1-20)

Microprocessor

The ASC/2S family of controllers uses the Motorola MC68302 integrated multiprotocol processor. This is a Very Large Scale Integration (VLSI), CMOS device which includes a 16-bit, 68000 core processor, a system integration block and a (RISC) communications processor.

Features of the system integration block that are used by the ASC/2 include: the independent DMA controller, a 19-level interrupt controller, the dual port RAM area, three programmable timers, the four programmable chip select lines, sixteen parallel I/O lines, the on-chip clock generator and several other "glue logic" functions.

The communications processor provides the following functions: the main controller (RISC Processor), three independent full-duplex serial communications controllers (SCC), six serial DMA channels for the three SCCs and an SCP channel for synchronous peripheral communications.

The following is the microprocessor signal description. All relevant information about the microprocessor signals and their associated control circuits is discussed.

Clocks

The system clock synchronizes the internal operations of the microprocessor and all external devices on the system busses. Microprocessor timing is controlled by a 14.7456 MHz crystal attached to the on chip clock generator circuit through pins EXTAL and XTAL [2,2,B]. The system clock rate is 14.7456 MHz . This system clock is output by the processor on the CLKO pin [2,2,B]. The CLKO signal is divided by four by U21 (GAL16V8) [4,4,D], to provide a 3.6864 Mhz clock to DUART U20 (SCN2681)[4,5,A]. U20 divides the 3.6864 MHz clock by 96 and outputs a $19,200 \mathrm{~Hz}$ clock (16×1200 baud) on OP3 [4,5,A] for the external transmit clock inputs of SCC1 (TCLK1) and SCC2 (TCLK2) on processor chip U12 [2,5,C]. This signal is also used to trigger the processors data request line /DREQ $[2,5, \mathrm{~B}]$ of the independent DMA controller which transfers data to the LCD module.

System Control Pins

/RESET is a bi-directional pin, acting as an input and when asserted along with the /HALT pin [$2,3, B]$, it causes a total system reset. The /RESET and /HALT signals are generated by a combination of U11 (74LS09), U5 (14538b) [8,2-4,B-C] and U4 (LM2598-5.0) [3,5,B]. U4 holds the PWRGOOD signal low anytime VCC is out of tolerance. If the program running in the processor fails to toggle the /WDOG signal [8,5,B], the U5 watchdog timer circuit will time out and generate a reset pulse. The /RESET pin can also act as an output which allows the program to output a /RESET signal to peripheral devices.
/BERR, BUSW, DISCPU and /FRZ pins are not used.

System Busses

Data Bus (D0-D16)

This 16-bit, bi-directional, three-state bus is the general-purpose path for exchanging data with memory and other system devices. It can transmit and accept data in either byte or word widths. For all 16 -bit accesses, byte 0 , the high-order byte of a word, is available on D8-D15 and the low-order byte is available on D0-D7 [2,3,C]. The low order data lines are buffered by the system data buffers before being routed to the various I/O circuits. Buffering to the parallel I/O section is performed by U25 (74HCT245) [4,4,D]. Unbuffered data signals are labeled D(n) and buffered signals are labeled $\mathbf{B D}(\mathbf{n})$. Buffering to the User Interface panel is performed by U38 (74HCT245) [10,5,C]. Unbuffered data signals are labeled $\mathbf{D}(\mathrm{n})$ and buffered signals are labeled FPD(n).

Address Bus (A1-A23)
Pins A1-A23 [2,3,D] form a 24-bit address bus when combined with the /LDS and IUDS pins [2,3,B]. The address bus is a bi-directional, three-state bus capable of addressing 16M bytes of data. On the ASC/2S, address lines A21-A23 are not used. All address lines are buffered before being routed to the various I/O circuits. Buffering to the parallel I/O section is performed by U24 (74HCT244) [4,2,C]. Unbuffered address signals are labeled A(n) and buffered signals are labeled BA(n). Buffering for the User Interface panel is performed by U39 (74HCT244) [10,5,B]. Buffered address signals are labeled FPA(n).

Control Bus

This is a multipurpose bus that includes all the Processor-l/O modules chip select, write enable and output enable signals. These signals are used to control communications with the various RAM and EPROM devices, parallel I/O devices, the data module and the User Interface module. The control bus signals are generated by the decode and control section. These signals will be explained when their associated circuitry is discussed.

Telemetry Bus

This bus contains the serial data and hand shaking signals which are routed to the Telemetry module connector. Signals included in this bus are: the receive data line RXD1 [2,5,D] which inputs serial data into SCC1 on the processor, the transmit data line TXDA [4,5,B] which transmits data out of U20 and /CTSA, /RTSA/, ICDA, MDCTL1 and MDCTL2, generated by U20 [4,5,B], which control communications handshaking and provide modem control.

Terminal Bus

This bus contains the serial data and hand shaking signals which are routed to the Terminal Port (PORT2) RS-232 interface chip U80 (MAX214) [7,2,C]. Signals included in this bus are: the receive data line RXD2 which inputs serial data into SCC2 on the processor, the transmit data line TXD2 which transmits data out of SCC2, /CTS2, /RTS2, and /CD2 generated by SCC2 [4,6,C] and /DTRT generated by U20 [4,5,A] which control communications handshaking and provide modem control.

SDLC Bus

This bus contains the serial data and clock signals which are routed to the SDLC Port (PORT1) RS-485 interface chips U81 and U82 (LT490) [7,D,6]. Signals included in this bus are: the receive data line RXD3, which inputs serial data into SCC3 on the processor, TXD3 which outputs serial data from SCC3 and transmit and receive clocks TCLK3 and RCLK3 [2,5,C] which are required to synchronize communications over the SDLC channel.

SPI Bus

This bus contains the serial data, clock and handshake signals which are used for communications with U3 (68HC68T) [8,4,D], the battery-backed clock. Signals included in this bus are: serial transmit data line SPTXD, serial receive data line SPRXD, synchronizing clock line SPCLK and slave select line SS [2,5,C].

Decode And Control

This section takes the microprocessors address, data strobe, address strobe, read/write, chip select and clock signals and combines them in various ways to generate the control bus signals required for proper interaction between devices on the Processor-l/O module and the User Interface panel. These signals will be discussed below. All signals starting with a slash character i.e. /xxx are low only when active otherwise they are normally high.

CLKO [2,2,D] outputs the 14.7456 MHz system clock.
IAS $[2,3, \mathrm{~B}]$ indicates when there is a valid address on the address bus (IAS is not used outside the processor chip in this design.).

R/W [2,3,B] defines the data bus transfer as a read or write cycle. It is HIGH during a read and LOW only during a write cycle.
/UDS $[2,3, \mathrm{~B}]$ is the upper data strobe signal. It controls the flow of data on data bus lines D8D15 by specifying when valid data should be on the bus.
/LDS $[2,3, B]$ is the lower data strobe signal. It controls the flow of data on data bus lines D0-D7 by specifying when valid data should be on the bus.
/CS0-/CS3 [2,3,A] are the four system chip select signals. ICS0 is the primary chip select for all EPROM accesses. /CS1 selects the RAM bank. /CS2 is the chip select signal for the data module /CS3 is the primary chip select for all I/O accesses. Address decoding and DTACK and Wait-State generation for these signals is performed onboard the processor chip.

RESETB $[2,5, B]$ is an active high reset signal for the DUART (SCN2681) U20 [4,5,A].
/WEO [4,5,D] is the write enable signal for the odd addressed RAM chip. This signal is generated by U14B (74ALS32) [4,6,D] by ORing the lower data strobe /LDS from the processor and the gated read/write signal GR/W from U21 (GAL16V8) [4,4,D]. GR/W is held inactive when VCC fails which write protects the RAM when power is removed.
/OEO $[4,5, \mathrm{D}]$ is the output enable signal for the odd addressed RAM and EPROM chips and the data module. This signal gates the data from the device onto the data bus allowing the processor to read the data. This signal is generated by U14A (74ALS32) [4,6,D] by ORing the lower data strobe /LDS with the inverted read/write line /RW. IRW is generated by U15A (74ACT04) [4,5,C] by inverting the R/W signal from the processor.
/WEE [4,5, D] is the write enable signal for the even addressed RAM chip. This signal allows the processor to write data from the data bus into the device if the devices chip select line is active. This signal is generated by U14D (74ALS32) [4,6,C] by ORing the upper data strobe /UDS from the processor and the gated read/write signal GR/W from U21 (GAL16V8) [4,4,D]. GR/W is held inactive when VCC fails which write protects the RAM when power is removed.
/OEE $[4,5, \mathrm{D}]$ is the output enable signal for the even addressed RAM and EPROM chips. This signal gates the data from the device onto the data bus allowing the processor to read the data. This signal is generated by U14C (74ALS32) [4,6,D] by ORing the upper data strobe /UDS with the inverted read/write line /RW. /RW is generated by U15A by inverting the R/W signal from the processor.
/CSOL [4,3,C] is the chip select signal for the onboard flash EPROM chip. This signal is generated by U13 (GAL16V8) [4,4,C] by combining the main EPROM chip select line /CS0 from the processor with A20. ICSOL is active for the address range $\$ 000000$ - $\$ 0$ FFFFF
/CSOH [4,3,C] is the chip select signal for the off board flash EPROM memory space. This signal is generated by U13 (GAL16V8) [4,4,C] by combining the main EPROM chip select line /CS0 from the processor with A20. ICS0H is active for the address range $\$ 100000-\$ 1$ FFFFF

ICS1L $[4,3, C]$ is the chip select signal for the onboard RAM chips. This signal is generated by U13 (GAL16V8) [4,4,C] by combining the RAM chip select signal from the processor /CS1 and A16. This signal utilizes the fact that GAL16V8 outputs float when power is removed. This eliminates a current path out of the RAM chips during battery backup operation thus extending battery life.
/CS1L [4,3,C] is the chip select signal for the off board RAM memory space. This signal is generated by U13 (GAL16V8) [4,4,C] by combining the RAM chip select signal from the processor /CS1 and A16. This signal utilizes the fact that GAL16V8 outputs float when power is removed. This eliminates a current path out of the RAM chips during battery backup operation thus extending battery life.
/CSWE [4,3,C] is the write enable signal for the data module. This signal allows the processor to write data from the data bus into the device if the devices chip select line is active. This signal is generated by U13 (GAL16V8) [4,4,C] by combining input signals GR/W, A9-A13 and the input from the EEPROM write protect jumper JP3 [4,4,B]. A9-A13 are used to differentiate between the write-protected and non write-protected areas of the module.
/SWAPCS0 $[4,4, \mathrm{C}]$ is used during flash EPROM download module.
3.6864 [4,3,D] provides a 3.6864 Mhz clock signal to the DUART U20 (SCN2681) [4,6,A]. This signal is generated by U21 (GAL16V8) [4,4,D] by dividing the system clock CLKO by four. STOP HERE
/DWEO $[4,3, D]$ is the write enable signal for DUART U20 (SCN2681) [4,6,A]. This signal allows the processor to write data from the data bus into the device if the devices chip select line is active. This signal is buffered version of /WEO and is generated by U21 (GAL16V8) [4,4,D].
/DOEO [4,3,D] is the output enable signal for DUART U20 (SCN2681) [4,6,A]. This signal gates the data from the device onto the data bus allowing the processor to read the data. This signal is buffered version of /OEO and is generated by U21 (GAL16V8) [4,4,D].
/DUART [4,3,D] is the DUART chip enable line. This signal is generated by U21 (GAL16V8) [4,4, D] by combining the system I/O enable signal /CS3 from the processor and address lines A17-A19. It is routed to U20 (SCN2681) [4,5,A]. /DUART is active for the address range \$E00000-\$E1FFFF.
/PIOSL $[4,3, D]$ is the parallel I/O device enable line. It is generated by U21 (GAL16V8) [4,4,D] by combining the system I/O enable signal /CS3 from the processor and address lines A17A19. This signal enables the I/O data buffer U25 (74HCT245) [4,2,D] and bank selector U23 [13,6,D]. /PIOSL is active for the address range \$E20000-\$E3FFFF.

GR/W [4,3,C] is the R/W line from the processor combined with the PWRGOOD signal. A write to a memory device can not be accomplished until PWRGOOD is asserted high.
/FPSEL [10,5,D] is the User Interface buffer U38 (74HCT245) [10,5,C] enable line. This signal is generated by $\mathbf{U 2 2}$ (GAL16V8) [10,5,D] by combining the system I/O enable signal /CS3 from the processor and address lines A17-A19.
/KEYSEL $[10,5, \mathrm{D}]$ is the keyboard input buffer enable line that is routed to the User Interface module connector J3 [10,5,A]. This signal is generated by U22 (GAL16V8) [10,5,D] by combining the system I/O enable signal /CS3 from the processor and address lines A17-A19.
/KEYSEL is active for the address range \$EC0000-\$EDFFFF.
/LCDSEL [10,5, D] is the LCD module select line. This signal is generated by U22 (GAL16V8) [10,5,D] by combining the system I/O enable signal /CS3 from the processor and address lines A17-A19. /LCDSEL is routed to the User Interface module connector J3 [10,5,A]. /LCDSEL is active for the address range $\$$ E80000-\$E9FFFF.

LCDEN is the LCD module enable line. This signal is generated by U22 (GAL16V8) [10,5,D] by stretching /LCDSEL by one system clock period and then ANDing this signal with /LDS.
LCDEN is routed to the User Interface module connector J3 [10,5,A].

External Interrupt Sources

An interrupt signal causes the processor to stop normal program execution and go to an address that is the beginning of an interrupt service routine. Executing the routine provides whatever action is necessary to service the device generating the interrupt.
/IRQ41 $[2,5, \mathrm{~B}]$ is a signal which requests service by the real-time clock interrupt routine. This $A C$ line referenced, 120 Hz square wave signal is generated by U1B (14538) [8,5,A] in conjunction with optoisolator U91 [20,2,C]. This routine controls timing of all controller software activity and provides real-time clock updates.
/IRQ6 [2,3,A] is an active LOW open drain signal generated by U20 (SCN2681) [4,5,B] during telemetry transmissions.
/IRQ4F [2,5,B] interrupt is used to shut down the controller in the event of a power failure.
/IRQ4F is one of the highest priority interrupts thus causing the processor to take immediate action for an orderly controller shut-down. /IRQ4F is generated by the missing pulse detector circuit U1A (14538) [8,4,A]. The missing pulse detector is used to detect a loss of 120 Hz pulses. It is a re-triggerable one shot with a period of approximately 22 milliseconds. Positive transitions of OPTO1, from U91 [20,2,C], are cleaned up by U1B then fed to U1A. This signal retriggers the one shot every 8.33 milliseconds and also produces the /IRQ41 signal. During a power failure the one shot will not be retriggered and will time out, causing an /IRQ4F interrupt. Also, if the power supply output voltage is out of tolerance, VM24 will go LOW, thus forcing an IIRQ4F interrupt.

Internal Interrupt Sources

The 68302 processor contains 16 on-board sources which can generate interrupts. The ASC/2 controller family uses the following interrupts: SCC1-SCC3 and Timers 1-2. The receive channel of SCC1 which is used for the telemetry channel, is set up to generate an interrupt when: 1. The controllers' address is recognized on the telemetry line, 2. After the block of data has been received and 3. When the checksum has been received.

The receive channel of SCC2 which is used for the terminal interface, generates an interrupt when: 1. An XON or XOFF character is recognized while the port is used for printing, 2. Blocks of data of various predefined lengths are received from another device during the direct connect process.

The receive channel of SCC3 which is used for the SDLC interface, generates an interrupt after a complete frame is received from a BIU or MMU.

Timer 1 is used for the telemetry channel and generates an interrupt when: 1. It is time to turn on the carrier signal, 2. It is time to transmit the data packet and 3. It is time to turn off the carrier.

Timer 2 is used for the SDLC channel and generates interrupts that set the proper timing of the transmission of SDLC frames to the BIUs and MMU.

Memory

Flash EPROM Program Memory
The software program that controls processor operation is written into U2 (29F800AB-90) [$5,4, \mathrm{D}]$. This is a 90 -nanosecond rewritable flash EPROM that provides 1 Megabyte of program address space configured as $512 \mathrm{~K} \times 16$ words. The EPROM is accessed using zero wait states. The number of wait states are set using the processors internal wait state generator associated with the master EPROM chip select signal /CS0. U2 is enabled by chip enable line /CSOL. U2 puts its data on the data bus (D0-D15) when the chip enable line is low and either or both output enable lines /OEE or /OEO $[5,6, C]$ are low. A write operation to $\mathbf{U} 2$ requires that /CSOL is low and /WEO is low.

RAM
All variable data is stored in Random Access Memory (RAM) pair U6 and U7 (628128-) [5,3,D]. The standard ASC/2S configuration uses $128 \mathrm{~K} \times 8,70$ nanosecond devices. This provides 256K bytes of data memory. The RAM is accessed using zero wait states. This is set using the processors internal wait state generator associated with the master RAM chip select signal ICS1. RAM is powered by voltage BAT $[5,4, B]$ so that data is not lost during power outages. The RAM read/write operations function as follows:

When the RAM chip select signal /CS1L and the odd write enable signal /WEO are LOW, and the odd output enable signal /OEO is HIGH, the RAM stores the data on the odd data bus (D0D7) in the location specified by the address bus (A1-A15).

When the RAM chip select signal /CS1L and the even write enable signal /WEE are LOW, and the even output enable signal /OEE is HIGH, the RAM stores the data on the even data bus (D8-D15) in the location specified by the address bus (A1-A15).

When the RAM chip select signal /CS1L is low and the odd write enable signal /WEO are high, and the odd output enable signal /OEO is low, the RAM supplies the odd data bus (D0-D7) with the data stored in the location specified by the address bus (A1-A15).

When the RAM chip select signal /CS1L is low and the even write enable signal /WEE are high, and the even output enable signal /OEE is low, the RAM supplies the even data bus (D8-D15) with the data stored in the location specified by the address bus (A1-A15).

When the processor does a word read or write access, both odd and even chips within the bank are enabled simultaneously

Data Module

The Data module is mounted on the Processor-I/O module. The module is connected by J5 [6,5,C].

```
    **CAUTION**
Do not remove or insert data module with power applied to controller.
```


EEPROM Memory

All user entered data is stored on the data module. The ASC/2S comes standard with a $32 \mathrm{~K} \times 8$, 250 nanosecond Electrically Erasable Programmable Read Only Memory (EEPROM) installed on its data module. During a write cycle, the address and data are latched internally and the cycle is automatically completed by the EEPROM. The write cycle takes a maximum of 10 milliseconds during which the chip cannot be accessed. The EEPROM is accessed using three wait states. This is set using the processors internal wait state generator associated with the master EEPROM chip select signal /CS2.

The processor writes to EEPROM when the EEPROM chip enable signal ICS2 is low, the odd output enable signal /OEO is HIGH, and the write enable signal /CSWE is LOW. When the EEPROM chip enable signal /CS2 and the odd output enable signal /OEO are LOW, and the write enable signal /CSWE is HIGH, the EEPROM supplies the data bus (D0-D7) with the data stored in the location specified by address bus (A1-A14). The processor then reads the data from the data bus. EEPROM retains all user data when power is not applied to the controller.

Memory Expansion Connector

Connector J2 [9, 2-6,A-D] allows for several functions including memory system expansion, Flash EPROM programming and system debugging. The Flash EPROM download module can be inserted into this connector for rapid programming of the on board Flash EPROM. All 68000 bus signals used by the ASC/2S are present on this connector.

Voltage Monitor Control

The voltage monitor control circuit is used to force the Voltage Monitor output FALSE, thus setting the intersection to flash and turning on LED1 [8,2,C]. The circuit consists of U11C and U11D (74LS09) [8,1,C]. These two gates AND the VM24 and /CPUVM signals. VM24 is an open collector output from comparator U10A (LM393) [3,4,B] that uses as its pull up voltage, the output of the watchdog timer /DOG. If VM24, /CPUVM or /DOG goes low, VMC will go low (FALSE). VM24 is the output from the power supply voltage monitor circuit. This signal is set low if the +24 VDC supply voltage goes out of tolerance. /CPUVM is an output from the processor chip. This line is set low when a flash condition is detected by the processor. /DOG is the output from the system watchdog timer circuit U5 (14538) [8,4,B]. The watchdog input is toggled by the processor approximately once every 100 milliseconds. /DOG is set low if, due to erratic program behavior, the processor fails to toggle the watchdog input. Under normal conditions all three inputs are high thus maintaining Voltage Monitor Control VMC HIGH. A flash condition is indicated by a VMC LOW. The LOW VMC signal is inverted again at the I/O Interface and output as Voltage Monitor. This signal can be used in conjunction with a conflict monitor to set the intersection in flash.

Down Time Accumulator

The Down Time Accumulator (DTA) is used to detect missing 120 Hz interrupts and to time the length of power outages. The DTA consists of battery-backed real time clock chip U3 (68 HC 68 T) $[8,4, \mathrm{D}]$ and the processor chips' internal Timer 3.

```
**CAUTION**
Do not attempt to adjust the crystal oscillator C19 in the field. This is a precision adjustment. See maintenance section for proper adjustment procedure.
```

Timer 3 is used to determine whether the length of a power failure is less than or greater than 0.75 seconds. This time was selected as the limit, within NEMA range, in determining the action to take after a short (<0.75) or long (>0.75) power failure. If the power failure is less than 0.75 seconds the controller continues to operate. If the power failure is greater than $0.75 \mathrm{sec}-$ onds the controller reverts to its start-up sequence. If power fails altogether, the processor writes its internal RTC time out to U3 to keep accurate time until power is reapplied. U3 uses a combination of VCC and battery B1 [8,5,C] voltage to operate. The processor communicates with U3 over the SPI bus. When power is reapplied, the processor reads the time from U3 and updates its internal RTC time.

Local Voltage Regulators

Switching regulator U4 (LM2598-5.0) [3,5,B] converts the incoming +24VDC into the +5VDC VCC signal used throughout the module. U4 also generates the PWRGOOD signal used by the reset circuit and GR/W generation. Diode CR11 protects other circuits in the event of a short between U4-2 (+24VDC) and U4-3. Transient voltage suppressor CR1 (P6KE27A) [3,6,B] protects the input from any transients greater than about +30 VDC .

Linear regulator U79 (LM7812) [7,3,D] provides a high current, short circuit protected +12VDC source for use by the telemetry module and external fiber optic modems.

Back-Up Power Supply

The back-up power supply provides power to the RAM and the battery-backed clock during a power failure. With power applied, the VCC power supply provides power to the battery-backed real time clock U3 (68HC68T) [8,5,D] and the RAM chips via transistor Q1 (MMBT3904ALT1) [$8,5, \mathrm{~B}]$. As long as VCC is greater than 4.74 VDC, PWRGOOD will be high and Q1 will turn on.

When power is removed, Q1 turns off and diode CR3 conducts, thus supplying power from the lithium battery B1 [8,5,C]. Jumper JP2 disconnects the battery during troubling shooting or periods of extended storage. B1 is a rechargeable lithium battery and uses resistors R36, R38 and diode CR13 as the charging circuit.

Battery voltage is monitored by comparator circuit U10B (LM393) [3,4,A]. When battery voltage drops below 2.2 VDC, the comparator triggers causing output signal /LOBAT to go low thus signaling the processor that the battery is not recharging properly and replacement is required.

Display

The User Interface module contains a Liquid Crystal Display (LCD) formatted as 16 lines of 40 characters, the display contrast control, the display backlight circuit, the display heater circuit, the keyboard matrix and the system buzzer. The display contains its own control and drive electronics and appears as two registers to the processor. The display is connected to the processor module via User Interface connector J3. Please note: The User interface panel should be sent to Econolite for repair.

Display Interface

The processor uses its Independent Direct Memory Access (IDMA) channel to write to the display. When a screen update is required, the program fills a RAM buffer with screen data. The program then initializes and activates the IDMA channel. The IDMA transfers one byte at a time from the buffer to transceiver U38 (74HCT245) [10,5,C] via D00-D07. When /FPSEL [10,6,C] is low and R/W is low, the data is transferred to the User Interface module data bus and routed to the LCD modules data lines. The LCD module uses a combination of signals LCDEN, /LCDSEL, A01 buffered by U39A (74HCT244) [106,B] and R/W buffered by U39B on its inputs to transfer the data to its internal circuitry. The IDMA uses the signal TCLK1 [4,3,A] to generate its data request signal /DREQ $[2,5, B]$. Thus one byte is transferred for each cycle of TCLK1. The LCD module has a cycle time of 1 microsecond. The processor has a cycle time of 271 nanoseconds. The master I/O chip select signal /CS3 is generated using 6 wait states and signal LCDEN is stretched by U22 (GAL16V8) [10,5,D] to accommodate this discrepancy.

Display LED Backlight
The LCD module contains a matrix of yellow/green LEDs used to backlight the display. The backlight is enabled from the front panel.

The processor uses its PB2 output signal LCD-B $[2,5, B]$ to activate the backlight. The processor turns the backlight ON by setting PB2 HIGH. LCD-B is buffered before going to the User Interface module by U39B (74HCT244) [10,5,B].

Keyboard

The User Interface module keyboard consists of a matrix of conductive rubber switches. The processor scans the matrix via J3 by reading specific addresses. The lower nibble of the address bus (A01-A04), which generates the row strobes, is buffered by U39A (74HCT244) [10,5,B]. The column data is input by buffer U38 (74HCT245) [10,5,C]. Scan circuitry on the User Interface module is enabled by signal /KEYSEL. The processor then decodes the four column status bytes to determine which key is pressed.

Buzzer

The processor uses its PB1 output signal BUZ $[2,5, \mathrm{~B}]$ to activate the User Interface module buzzer. The processor turns the buzzer ON by setting PB1 HIGH. BUZ is buffered before going to the User Interface module by U39B (74HCT244) [10,5,B].

Parallel I/O Section

The three members of the ASC/2S family use the same Processor-l/O module. The model type is differentiated by which components are installed in the parallel I/O section. The following discussion will address the board generically. Any circuits associated with a particular model type will be addressed separately.

All processor access to the parallel I/O section is done through buffers U25 (74HCT245) [4,2,D] and U24 (74HCT244) [4,2,C]. These chips buffer the D00-D07 data lines, A01-A06 address lines, /LDS and /RESET.

The I/O DECODER U23 (74HCT138) [12,6,D] divides the I/O block defined by parallel I/O chip select signal /PIOSL into 8 sections, /LE0, /LE1, I/O0, I/O1, /Y4, /Y5, /Y6 and /Y7. These signals are generated by combining the block select signal /PIOSL with the buffered lower data strobe /BLDS and the addresses appearing on BA4-BA6 and BA17. The following signals are generated:
/LEO is the latch enable for the bank of outputs containing the following phase 1-8 functions: PHASE ON, PHASE NEXT, PHASE CHECK, GREEN, YELLOW and RED DRIVERS, WALK DRIVER and PED CLEAR DRIVER. It is selected by address \$E20001.
/LE1 is the latch enable for the bank of outputs containing the following functions: Phase 1-8 DON'T WALK DRIVERS, RING 1 AND 2 STATUS BIT DRIVERS and OVERLAP DRIVERS. /LE1 is also routed to the expansion I/O connector I/O2P1. It is selected by address (\$E20011)

I/OO selects the input multiplexer bank containing the following functions: Phase 1-8 HOLD, PHASE OMIT, PED OMIT, VEH CALL DET, PED CALL DET, RING 1 and 2 INH MAX TERM, MAX II SELECT, OMIT ALL RED CLEAR, RED REST MODE, PED RECYCLE, FORCE OFF and STOP TIME along with CALL TO NON-ACT, WALK REST MODIFIER, MIN RECALL, INTERVAL ADVANCE, MANUAL CONTROL ENABLE, INDICATOR LAMP CONTROL AND EXTERNAL START. It is selected by address \$E20021.

I//O1 selects the input multiplexer bank for the expanded I/O function of the ASC/2S-2100. It is selected by address \$E20031.
/Y4 selects the input buffer containing the following functions: MODE BIT A-C, PREEMPT DET 2,4,5,6 and the COORD FREE INPUT. It is selected by address \$E20041.
/Y5 selects the input buffer containing the following functions: TEST C, SPARES 1-6 and the signal that tells the controller that an expansion I/O module is present ASCIO. It is selected by address \$E20051.
/Y6 and /Y7 select the expanded I/O input buffers. They are selected by addresses \$E20061 and $\$$ E20071, respectively.

Address Bus

This bus carries the address information used by the input multiplexers and output latches to select a particular I/O line. It is a buffered subset of the processors address bus and includes BA1-BA3.

Data Bus

This bus carries the data that is sent to the output latches or received from the input multiplexers. It contains the buffered lower (ODD) data bus which includes BD0-BD7.

Logic Level Translators
Each logic level translator consists of a three resistor network (10K, 75 K , and 18 K) which converts the 24 V (FALSE), 0 V (TRUE) logic levels of control signals from external equipment to the HCMOS logic levels required by the input multiplexers.

A 10K pull-up resistor biases the input to the FALSE state when the external control input is not connected. The voltage divider (75 K and 18 K) establishes the input level to the input multiplexer. An external input of 0 V to 8 V is detected as TRUE and an input of 16 V to 24 V is detected as FALSE (inputs are inverted internal to the processor). The combination of the 75K resistor, acting as a current limiter, and the internal protection circuit of the input multiplexer protects against transient input voltages exceeding 24 V .

Input Multiplexers

Input multiplexers interface external control inputs (from connectors A, B, C and D) with the system data bus. The processor controls the multiplexer functions by enabling the multiplexer, addressing the inputs, and reading the input status. In this way, it controls the 16 HCMOS tristate, 8-bit multiplexers U51, U52, U53, U54, U55, U56, U58 and U60 (74HC251) [14-15,1-6,AD] on the ASC/2S-2000 plus U40, U41, U42, U43, U47, U48, U49, U50 on the ASC/2S-2100. Each multiplexer receives eight external control inputs from a corresponding logic level translator. Each control input has a unique address associated with it. When the input is addressed and the multiplexer is enabled, the input status (ON/OFF) is routed to a single data bit at the multiplexer output pin (W) connected to the data bus.

The processor reads the input data by addressing it through the I/O Interface address bus BA1BA3. The selected input is gated onto the I/O data bus by the LOW state of signal I/O0 or I/O1. The processor simultaneously reads eight I/O data bits from 8 different multiplexors onto BDOBD7.

Typical input operation is described below.
The signal from input pin A1-/h (PHASE 1 HOLD) [15,4,D] is applied, via logic level translator $\mathbf{R P 2 2}[15,4, \mathrm{D}]$ to input DO (pin 4), of input multiplexer U58. Coded address bits BA1-BA3 from the address bus are applied to address select inputs $\mathbf{S 0}, \mathbf{S} 1$, and $\mathbf{S} 2$ (pins 11, 10, and 9) of input multiplexer U29. When address lines BA1-BA3 are all LOW, input D0, pin 4 of input multiplexer U29 is selected. The LOW state of signal I/OO enables the multiplexer and causes the selected input to be inverted and output from /Y (pin 6) as I/O module data bit BD0.

Input Buffers

Input buffers U19A and U59 (74HCT244) [12,6,B-C] transfer local and external data to the data bus. U59 receives its inputs from logic level translator RP23. U19A inputs a combination of external and local status inputs. On an ASC/2S-2100, input buffer U30B (74HCT244) [12,3,B-C] and U57 get their inputs from the 25-pin telemetry connector via logic level translators RP36 and RP35 respectively. The buffers output their data onto the data bus when the proper chip select line /Y4-/Y8 goes low. Among other signals, U19A inputs the signal that tells the processor, when low, that the board is configured as an ASC/2S-2100.

Overlap Program Inputs

On the ASC/2S-2100, a NEMA overlap program card is optionally available for programming overlaps A-D. This plug-in card is connected to optional connector J6 [11,1,D]. Phase combinations of the four programmable overlap phases A, B, C and D are programmed by installing jumpers on the card. When the overlap card is installed, the jumpers ground the 10 K pull-up resistors, RP5-RP8 [17-18,3,B-D] at the (74HC251) multiplexer inputs. A ground at these inputs indicates that the associated phase is assigned to the overlap while an open circuit indicates that it is not. Program data for each overlap phase (A-D) is output by the multiplexers as eight bits representing the eight controller phases N1-N8. The overlap inputs are read by the processor at the multiplexer output pins as described above.

Output Latches

Output latches are used to interface data from the system data bus with external control output lines. The processor controls the data transfer by enabling the latches and addressing the output, thus latching the data from the data bus to be sent to external equipment. In this way, it controls twelve addressable 8-bit output latches, U31, U32, U33, U34, U35, U36, U37, U44, U45, U46, U61 and U62 (74HC259) [13-14,1-6,A-D] with associated output drivers, U67, U68, U69, U70, U71, U72, U73, U74, U75, U76, U77 and U78 (ULN2803A) on an ASC/2S-2000. In addition the ASC/2S-2100 also includes latches U26-U29 [19,1-6, A-D] and associated output drivers U63-U66. All output drivers are biased to the 24 V (FALSE) state, when not asserted, through a 10 K pull-up resistor.

Latches are addressed by bits A1-A3 and enabled by the /LE0 and /LE1 signals from the I/O device selector U23 [12,6,D]. At the same time, data bits DB0-DB7 are input to the addressed latches.

Data is latched on the rising edges of the enable signals and remains latched until changed during a data update from the processor, which occurs every 100 ms . The buffered /RESET signal, /IORESET $[4,2, B]$, clears all data from the latches at power on.

The Q outputs of each latch are applied to a high-current, high-voltage, Darlington transistor output driver (ULN2803A). Logic level transition to +24 V (FALSE) and 0 V (TRUE) occurs at the driver outputs. Output lines are connected to interface connectors A, B C and D.

The ULN2803 output drivers are protected from transients on their output pins by Transient Voltage Suppressors CR16 and CR19 (P6KE33A) [13,3,C] [19,3,C]. These provide the output devices with a low impedance path to ground for voltages greater than 33VDC. This prevents damage to a driver by the reverse voltage generated when a relay coil connected to the output is de-energized or other transient occurs.

The FLASH LOGIC OUT output on A1-X [14,3,A] is derived from the Q4 output of latch U62 (74HC259) [14,6,B]. When this output is active, output driver U78 (ULN2803A), sinks current from A1-X through diode CR15. When U78 is off, Q2 (MMBT2222ALT1) [14,4,A], is turned on and current is sourced to A1-X through the current sourcing circuit consisting of transistor Q2 diodes CR17-CR20 and current limit resistors R57-R58. This output can source 50 mA maximum and can sink 200mA maximum. Diode CR20 shunts any negative voltages on the output to ground. CR17 shunts any voltage greater than 33VDC to ground.

On the ASC/2S-2100 the PREEMPT CMU INTERLOCK output associated with U27 (pin 5) [19,5,B] is active only if there is a preemption requirement. The circuit consists of Q3 (MMBT2222ALT) [19,3,C] R62, CR16 and CR21. If a preemption sequence is not programmed, this output is forced LOW. This output can be connected to the conflict monitor 24 V monitor input to set the intersection to flash if a required preempt sequence is not programmed.

The voltage monitor VMC and fault monitor /FLTMN signals, generated by U11 [8,1,C], detect out of tolerance voltage levels and processor failures and send control signals to the I/O section to be output as VOLTAGE MONITOR and FAULT MONITOR. The VMC signal is inverted and buffered by U78 (ULN2803A) [14,5,B] and routed to A1-C. The /FLTMN signal is inverted and buffered by U74A (ULN2803A) [14,3,C] and routed to J16-F.

SDLC (EIA-485) Interface

The SDLC interface circuit sends and receives its signals on the SDLC bus. All TTL to EIA-485 signal level translation is provided by U81 and U82 (LT690) [7,6,C]. These contain one EIA-485 driver and one EIA-485 receiver each. After the signals are translated to EIA-485, they are routed to the outside world via connector $\mathbf{J 1 5}$ (DA15S) [7,4,D] The interface includes the following signals:

TXD+ and TXD- are the differential transmit data pair. The processor transmits this serial data signal as TXD3 from SCC3 [2,5,C]. This signal is converted to a differential pair by U81. It is then output on connector J15 pins 1 and 9.

TXC+ and TXC- are the differential transmit clock pair. The processor transmits this serial data signal as TCLK3 from SCC3 [2,5,C]. The signal is converted to a differential pair by U82. It is then output on connector J15 pins 3 and 11.

RXD+ and RXD- are the differential receive data pair. These signals appear on pins 5 and 13 of connector I/O2P5. After conversion by U81, the single ended TTL signal is routed to SCC3 on the processor as RXD3 [2,5,C].

RXC+ and RXC- are the differential receive clock pair. These signals appear on pins 7 and 15 of connector I/O2P5. After translation by U82, the single ended TTL signal is routed to SCC3 on the processor as RCLK3 [2,5,C].

Terminal (EIA-232) Interface

The terminal interface circuit sends and receives its signals on the terminal bus. All TTL to EIA232 signal level translation is provided by U80 (MAX214) [7,2,C] which contains three EIA-232 drivers and three EIA-232 receivers. U80 uses capacitors C66, C67, C71 and C72 for its onboard positive and negative voltage generation circuits. U80 also has an internal DCE/DTE switch that is controlled by TERMCTRL1 [7,3,B]. Terminal signals are routed to the outside world via connector J13 (DB25) [7,1,C]. The EIA-232 level signals are protected against over voltage transients by transient voltage suppressors (MMBZ15VDLT1) [7,1,B]. The interface contains the following signals:

TXD is the transmit data signal. The processor outputs this serial signal from SCC2 as TXD2 [2,5,C]. After translation, it appears on pin 2 of J13.

RXD is the receive data signal. This serial input signal appears on pin 3 of J13. It is translated and routed to SCC2 of the processor as RXD2 [2,5,C]. This signal is also routed to the DUART $\mathbf{U 2 0}[4,5, \mathrm{~B}]$ as RXDB.

CD is the Data Carrier Detect handshaking signal. This input signal appears on pin 8 of J13. It is translated and routed to SCC2 of the processor as /CD2 [2,5,C].

CTS is the Clear To Send handshaking signal. This input signal appears on pin 5 of J13. It is translated and routed to SCC2 of the processor as /CTS2 [2,5,C].

RTS is the Request To Send handshaking signal. The processor outputs this serial signal from SCC2 as /RTS2 [2,5,C]. After translation, it appears on pin 4 of J13.

SDLC Interface/Telemetry Interface

Parallel I/O Interface

DTR is the Data Terminal Ready handshaking signal. DUART U2 [4,5,A] outputs this serial signal from OP2 as /DTRT. After translation, it appears on pin 20 of J13.

Signals RTS, CTS, CD and DTR are handled under program control and are implemented only as required. Communications with a printer utilize the XON / XOFF software handshake protocol.

Telemetry Interface

The Telemetry interface sends and receives its signals on the Telemetry bus. The signals are routed to the telemetry module connector $\mathrm{J} 4[7,5, \mathrm{~B}]$, translated by the telemetry module and then routed to the outside world via connectors $\mathbf{J 1 7}$ (DE9P) [7,3,B] and J14 (DB25P) [7,4,A]. All TTL to FSK, EIA-232 or EIA-485 signal level translation is provided by the telemetry module attached to connector J4. The interface contains the following signals:

TXD is the transmit data signal. The DUART U20 [4,5,B] outputs this serial signal to the telemetry module as TXDA. After translation, it is routed to J17, pins 1 and 2, and expansion I/O connector J14 as signal pair XMIT+ and XMIT-.

RXD is the receive data signal. This serial input signal appears on pins 4 and 5 of $\mathbf{J 1 7}$ and expansion I/O connector $\mathbf{J 1 4}$ as RECV+ and RECV- then routed to J4. It is translated by the Telemetry module and routed to SCC1 of the processor as RXD1 [2,5,D].

CD is the Data Carrier Detect handshaking signal. This signal is generated by the FSK telemetry module and appears on pin 9 of J4. It is routed to the DUART as /CDA [4,5,B]. EIA-232 telemetry modules input this signal form J17 pin 1.

CTS is the Clear To Send handshaking signal. This input signal, generated by the telemetry module, appears on pin 7 of J4. It is routed to the DUART as /CTSA [32806,5,3,A]. This signal also serves as the MODEM PRESENT signal used by the processor to determine if a Telemetry module is present. The Telemetry module will pull this signal low if present. EIA-232 telemetry module input this signal from J17 pin 1.

RTS is the Request To Send handshaking signal. The DUART outputs this signal as /RTSA [4,5,B]. It is routed to pin 8 of J4. EIA-232 telemetry modules output this signal on J17 pin 7.

MDCTL1 and MDCTL2 are used to control various functions on the Telemetry module. They are generated under program control by using two of the DUARTs parallel I/O lines [4,5,A]. MDCTL2 is also routed to inverter/driver U64 (ULN2803A) [19,5,B] It is used on J14 as the KEY signal required by the radio interconnect.
/IORESET is used to reset the telemetry module circuitry. It is a buffered version of system /RESET.

Signals RTS, CTS and CD are handled under program control and are implemented only as required.

AC Power Input

The AC line transient protection circuit consists of resistors R65 and R67, and varistors RV1, RV2 and RV3. The circuit receives a three-wire, 120 VAC, 60 Hz input from the A connector $\mathbf{J 1 2}$ or J16 on the ASC/2S-1000. The three inputs are AC line, AC neutral, and earth ground. AC line is over current protected by fuse F2. AC line and AC neutral are then routed to currentlimiting resistors R67 and R65 respectively. Varistor RV1, RV2, and RV3 provide both common and differential mode transient protection. This is accomplished by clamping transients occurring between AC line and AC neutral with varistor RV2. Transients occurring between AC line or AC neutral and earth ground are clamped by RV1 and RV3, respectively. The output of the transient protection circuit is then applied to the power supply via connector J19 [20,2,D]. Additional transient protection and noise filtering circuits are present on the power supply module.

Line Reference Circuits

Signal OPTO1 is the 120 Hz line frequency reference used by the controller program as the input to the real time clock. It is generated by full wave rectifier CR25 (VM88) [20,3,C] which rectifies the 120 VAC 60 Hz line voltage, to produce a 120 Hz signal which is presented to dual opto-isolator U91 (MCT6). Zener diode CR24 (1N4763A) prevents output of the OPTO1 signal when the line voltage is below 82 VAC. The OPTO1 signal is routed to U1B (14538) [8,6,A]

Signal OPTO2 is the 60 Hz line frequency reference used by the controller program during dimming operations. It is generated by opto-isolator U91 which only turns on during the positive half cycle of the waveform thus, producing a 60 Hz signal. The OPTO2 signal is routed to an input on DUART U20 (SCN2681) [4,5,A]

Processor-I/O DC input circuit

+24VDC enters the Processor-I/O module on connector J18. Diode CR4 (MBRS340T3) [20,4,B] provides reverse polarity protection. CR7, CR8 and CR10 provide current steering for the proper charging and discharging of the hold-up capacitor C76. R31 limits inrush current while charging C76. $\mathbf{+ 2 4 V E}$ is the primary onboard +24 VDC voltage source for I/O devices. $\mathbf{+ 2 4 V I}$ supplies +24 VDC to the +5 VDC voltage regulator in the processor section. The +24VEXT external output is applied to connector pin A-B. This output is rated at 500 mA and provides sufficient current for most traffic applications. The 24 VDC has been fused with a $3 / 4 \mathrm{Amp}$ SLO-BLO fuse, F1, to allow the controller to supply sufficient current for a controller test fixture using LED displays (20 mA per LED). This higher current capability should only be used during testing. Note that the 24 VDC load in the traffic control cabinet should never exceed 500 mA . Inductor L2 [20,4, A] filters out noise induced on the logic ground (FGND) when it is run outside the controller.

FSK Telemetry Module

The MODEM provides Frequency Shift Keying (FSK) modulation of data from TXDA to make the data compatible for transmission over telephone lines or twisted pair cable. It also receives FSK signals and demodulates them to provide the RXD1 signal.

All signals going to or from the telemetry module are routed through connector J1 [2,6,A-D and others]. This connector interfaces with connector J4 on the Processor-I/O module.

Transmit Data (TXDA)
The TXDA $[3,6, B]$ line carries TTL level serial data from the DUART on the processor module [34251,4,5,B] to the analog multiplexer U2 (74HC4051) [3,3,C] which is then routed to the FSK modulator. The data rate is 1200 bits per second.

Receive Data (RXD1)
The RXD1 [4,1,D] line sends TTL level serial data, that originates at the FSK demodulator, from output buffer U10 [4,5,D] to the SCC1 receive channel on the processor chip [34251,2,5,D]. The data rate is 1200 baud.

Data Carrier Detect (/CDA)

This signal originates at the FSK demodulator and is routed via U10 [4,5,D] to the DUART. It indicates the status of the MODEM carrier signal. The line is HIGH if the carrier is lost, usually because of an abnormal condition. Under normal conditions the line is LOW, indicating that the carrier is present.

Modem Control 1 (MDCTL1)
This signal which originates on the DUART is used by the program to turn on the VALID DATA LED DS2 [2,5,C].

Modem Control 2 (MDCTL2)
This signal which originates on the DUART is used by the program to turn on the transmit interface circuit. When MDCTL2 is LOW the LEDs inside opto-isolators U4 and U5 (MCT6) turn on thus, turning on the transmitter output.

Modulator-Transmitter Circuit

U7C [3,4,A] in conjunction with U2 [3,3,C] set the voltages used by U3 [3,1,D], the FSK modulator. U3 is a voltage to frequency converter. One of three voltages are generated by $\mathbf{U} 2$ to select 1200 Hz (Mark), 2200Hz (Space) or 900 Hz (Soft Carrier Turn Off) generation by U3. During standard four-wire operation, the TXDA signal selects between Mark and Space generation. When Soft Carrier Turn Off operation is selected during two wire operation, it operates as follows: /RTSA [3,6,A] goes low at the start of a message. During this time, the pull up resistor R14 [3,4,A], at the output of U7C has no pull up voltage thus, the output of U7C is low. Because of this, the level of the TXDA line is used by $\mathbf{U} 2$ to select between Mark and Space voltages. At the end of the message, /RTSA goes high turning on the soft carrier voltage. During this time, C20 charges through R26 (an 8 mS time constant). After 8 mS , the threshold voltage of the comparator is exceeded and its output goes low thus, turning off the softcarrier voltage. R24 [3,2,C] sets the 1200 Hz voltage, $\mathbf{R} 23$ [3,2,B] sets the 2200 Hz voltage and $\mathbf{R} 6$ sets the 900 Hz SCTO voltage. When the input voltage to U3 pin 8 changes, the frequency output by U3 pin 2 varies. $\mathbf{R 2 5}[3,2, \mathrm{D}]$ is the transmitter output level adjust.

Opto couplers U4A and U4B gate the analog signal from the FSK modulator according to the level on MDCTL2. U6 acts as a temperature compensated output buffer with gain. Opto couplers U5A and U5B allow the output stage to be permanently enabled with a 600 ohm load or gated by MDCTL2. U7, Q1, DS3 and associated components are the output level comparator circuit that is used for measurement of the output level and transmit level indication. When U5 is ON, the FSK output signal is coupled through transformer T1 (T2104) [4,5,A] to transmitter terminations XMIT+ and XMIT-. Transformer T1, R28, R29 RV2 CR3 and CR4 provide a balanced, isolated, transient protected output.

Receive Filter And Demodulator Circuit

Transformer T2, R1, R3, RV1, CR1 and CR2 [2,5,B] provide a balanced, isolated input with transient protection. C24 and R43 are the initial high pass filter. This filter provides $-6 \mathrm{~dB} /$ octave attenuation of frequencies below 480 Hz . U9A (LM324) [2,4,C] is the input preamplifier with adjustable gain. U9B-U9D are the band pass filter that remove out-of-band high and low frequency noise signals. Jumper JP3 [2,5,C] allows routing of the signal from the secondary of the output transformer to the input circuit (in two wire mode, the output transformer T1 is also the input transformer.). JP7 [2,1,B] provides a way to bypass the input filter. The output from JP7 is then sent to the FSK demodulator as RC [3,6,D]. U8 (XR-2211) [3,5,D] is the FSK demodulator. It outputs the received data RD signal, carrier detect /CD and drives the carrier detect LED DS4 via Q2 [2,6,C]. $\mathbf{R 2 2}[2,4, D]$ sets the receiver center frequency (1700 Hz).

Several procedures, guides and lists are provided for general maintenance of the ASC/2S family. This section contains unpacking and installation procedures, useful for the first ASC/2S installation and for later reference. A disassembly procedure instructs on removing each module and major components. Basic procedures include printed circuit board cleaning, voltage checking and down time accumulator crystal adjustment. A list of test equipment recommended for maintenance is also included. The circuit components used in the ASC/2S require care in handling, installing, storing, and operating both unmounted and mounted on printed circuit boards. Modules and their components should only be handled at a static-free workstation. Personnel and equipment MUST be properly grounded. Please refer to the Motorola CMOS LOGIC data book or any other MOS manufacturer's procedures for more information.

MAINTENANCE

UNPACKING AND INSTALLATION

UNPACKING

The ASC/2S controller is packed in a specially designed protective shipping carton. All necessary precautions have been taken to ensure that the equipment is received intact and in proper working order. However, the following steps should be taken when unpacking the controller to verify that there is no shipping damage.

1. Carefully inspect the shipping container for damage before opening. If the container is damaged, unpack the controller in the presence of the carrier.
2. Do not discard the packing materials (foam endcaps and box) as they have been specially made for the ASC/2S and must be used should it be necessary to ship the controller again.
3. Once unpacked, carefully inspect the controller for damage. Check for broken wires, connectors, loose components, bent panels, and dents or scratches on the enclosure.
4. If any physical damage is discovered, notify the carrier immediately.

INSTALLATION PROCEDURE

The ASC/2S should be installed in a location where the front panel is easily accessible. Adequate room should be left around the controller to allow easy removal if necessary. Care should be taken to install the controller so that vents on the back side are not blocked. Before applying AC power, perform the following pre-installation checks:

1. Open the front panel door, remove the plug-in data module and verify that the number on the EEPROM label matches the program number on the controller label located on the top surface of the unit. Reseat the data module.
2. Verify that all modules are properly secured and that all connector ribbon cables are in place.

Once these preliminary steps have been taken the controller is ready for operation. Required cable connector part numbers are listed below. Refer to Appendix B for the connector pin lists.

CONNECTOR CABLE ASSIGNMENT

CONNECTOR CABLE CONNECTOR
A
B
C

D

CRIMP SOCKET
SDLC (PORT1)
TERMINAL (PORT2)
TELEMETRY (PORT3)
TELEMETRY (EXPIO)

MS-3116-22-55S
MS-3116-22-55P
MS-3116-24-61P
AMP \#205842-1

DAU-15P
CANNON \#DBC25P
DEU-9S
CANNON \#DBC25S

ECONOLITE PART NUMBER
44143P1
44143P2
44143P3
31163P2
31163P4
54665P4
54665P7
54647P9
54647P6

ENVIRONMENTAL REQUIREMENTS

The ASC/2S meets or exceeds the NEMA environmental standards for traffic control equipment summarized below:

ENVIRONMENTAL OPERATION SPECIFICATIONS
(NEMA TS 2 SECTION 2)

CATEGORY	REQUIREMENT
Input Power	Line Voltage: 89 to 135 VAC
Power Consumption	ASC/2S-1000 20 Watts ASC/2S-2100 25 Watts
Ambient Temperature	Operating Range: -34EC to +74EC Storage Range: -45EC to +85EC
Humidity	Relative humidity is not to exceed 95\% over the temperature range of +4.4EC to +43.4EC
Vibration	The major units of the controller assembly maintain their programmed functions and physical integrity when subjected to a vibration of up to 0.5g at 5 to 30 cycles per second, applied in each of the three mutually perpendicular planes.
Shock	The major units of the controller assembly do not suffer either permanent mechanical deformation or any damage that renders the unit inoperable, when subjected to a shock of 10G applied in each of the three mutually perpendicular planes.

TEST EQUIPMENT

The following is a list of suggested test equipment to be used for fault isolation, basic check-out, and general maintenance.

1. 100 Mhz , digital, dual-trace oscilloscope. Used for observing signals and checking of time relationships of two waveforms where necessary.
2. Digital Multimeter (DMM). Used for continuity testing, diode and transistor checks, and general voltage measurements.

The DMM should meet the following specifications:

PARAMETER	RANGE	ACCURACY	INPUT IMPEDANCE
DC VOLTS	$200 \mathrm{mV}-1000 \mathrm{~V}$	$" 0.25 \%$ of Input	10 MS
AC VOLTS	$200 \mathrm{mV}-750 \mathrm{~V}$		10 MS , Capacitance < 100 pF
RESISTANCE (OHMS)	$200 \mathrm{~S}-20 \mathrm{MS}$	-	-

3. Frequency counter. Used for Down Time Accumulator crystal adjustment. Note that the DTA crystal adjustment is a high precision adjustment, therefore an accurate frequency counter is required.

DISASSEMBLY

When disassembling the controller always disconnect input power before attempting to disassemble any part of the controller. Below is a disassembly description for each module.

> | ${ }^{* *}$ CAUTION ** |
| :--- |
| Disconnect Input Power before attempt- |
| ing to disassemble the controller |

Processor Module

The Processor-l/O module is attached to the enclosure by two $1 / 4$ turn fasteners. To remove the module:

1. Disconnect the interface cable to the front panel.
2. Turn the fasteners $1 / 4$ turn to the left.
3. Hold onto the assembly by the connector plate and pull the module out from the bottom until it slides out of the card guide on the inside top of the enclosure.
4. Pull the module out far enough to disconnect the two power supply harnesses attached to the rear of the module.

Power Supply

The power supply is mounted on the inside rear panel of the enclosure on standoffs. The supply is held in place by four screws and washers. To remove the Power Supply module:

1. Remove the Processor-l/O module.
2. Remove the two wire harnesses from the power supply module.
3. Remove the four screws and washers.
4. Remove the supply from the enclosure.

MAINTENANCE
 CLEANING AND INSPECTION

CLEANING AND INSPECTION

General controller maintenance includes regular cleaning and inspection of the controller printed circuit boards (PCB's), electronic components, connectors, cables, and plastic and metal parts of the enclosure.

Use the following cleaning and inspection procedure to prolong equipment life and to minimize the risk of failure.

Cleaning

1. The power source must be disconnected before attempting to clean any of the controller components.
2. When boards are repaired, clean flux residue from solder connections with or an environmentally safe flux remover. Free air dry.
3. Clean keys and front panels with a soft, lint free, damp cloth. Free air dry. Do not allow excessive amounts of water to collect around or enter keyboard and display areas.
** CAUTION **
Do not apply any cleaning solvents to keyboards, front panel, display, or any other plastic parts.
4. Clean PCBs with a non-abrasive, moisture and residue free aerosol duster.

MAINTENANCE

CLEANING AND INSPECTION

Inspection

The following inspection guide is provided as a quick reference when inspecting the controller and its components.

Table 3-1. Visual Inspection Guide

Item	Defect
Capacitors, general	Burned spots, damaged leads.
Capacitors, ceramic or tantalum	Broken or cracked bodies.
Capacitors, electrolytic	Ruptured bodies, leaking electrolyte.
Connectors	Broken, loose, bent, corroded, or missing pins; cracked insulation; incorrect polarization.
Equipment, general	Dented or bent. Dust, dirt, lint, grease, oil; excess resin, spattered solder, metal chips, flings, or other foreign matter in equipment. Worn spots or deep scratches on surfaces, marred protective finish exposing bare metal, evidence of arcing, loosening screw thread assemblies.
Hardware	Incorrect screw length. Missing screws, nuts, bolts, rivets, lockwashers, and nutplates; screws, nuts, or bolts with stripped threads.
Integrated circuits	Broken or cracked bodies, corrosion, shorted contacts.
Markings, decals, and designators	reference
Missing, incorrect, illegible, or obliterated.	
Printed circuit boards	Broken, cracked, or burned parts; broken or missing rivets; broken circuitry; chipped contacts; copper showing on contacts; copper showing on circuitry; cracks, holes, or burns in cards; defective soldering joints; cracks; flat surfaces; bubbles or holes; lifted pads; broken or missing eyelets.
Resistors	Discolored body, loose connections.
Solder connections	No solder, insufficient solder, excess solder, cold or crystallized joints.
Transformers	Melted insulation compound, frayed insulation
Terminal strips and boards	Cracked, burned, or damaged terminal pins
Wiring	Cut, burned, or abraded insulation exposing bare conductor, abrupt V bends which weaken conductor; points of abrasion not insulated; pinched or damaged wires; broken or loose lacing; loose clamps.

Lithium Battery

The lithium-cell battery, mounted in the upper left side of the Processor-I/O module, supplies power to the CMOS RAM and the Battery Backed Clock during a power failure. This battery is rechargeable and should not require replacement during the life of the controller. However, if a battery requires replacement, please observe the following precautions:

IMPORTANT SAFETY INFORMATION

Lithium cells or batteries are very high energy power sources and therefore must be handled with care. Please observe the following precautions.

Do not short battery terminals. Cells and batteries contain high energy. If they are short circuited or heat up, immediately disconnect from load using JP2 [8,5,C].

Do not open, puncture, or crush batteries. Cells and batteries contain sulphur dioxide and flammable material.

Dispose of properly. Do not incinerate. Cells and batteries can be disposed of in sanitary land fills. Discharged lithium cells and batteries may contain significant amounts of unused energy and should be handled carefully. They should be packed for disposal and electrically isolated. Do not compact for disposal.

ADJUSTMENTS AND TESTS

MODEM Check Out Procedure

Required Test Equipment:
Test Loopback Cable 33279G6
Oscilloscope

1. Install jumpers as follows:

A. JP1	4 W
B. JP2	4 W
C. JP3	4 W
D. JP6	4 W
E. JP4	$2 \mathrm{~W} / \mathrm{O}$
F. JP5	ESC
G. JP7	FE
H. JP8	INSTALLED
I. JP9	OPEN

2. Turn off controller power. Install module in controller. Reapply power.
3. Attach 600 ohm load loop back cable (33279G6) to telemetry connector.
4. Set oscilloscope to 5 Volts/Division and $.1 \mathrm{mSec} /$ Division.
5. Adjust R22 to produce a $1,700(\pm 15) \mathrm{Hz}$ square wave on JP9 pin 2. This corresponds to approximately 5.8 horizontal divisions on the oscilloscope screen (. 58 mS).
6. Remove jumper on JP8 and install it on JP9.
7. Attach scope or frequency counter probe across R28 and R29.
8. Go to the controllers telemetry diagnostic display (Main Menu, 9, 6). Select \#1, Mark.
9. Turn R25 all the way counter clockwise (35 turns max.). Then, turn R25 clockwise until DS3 (TD/TLEV) just turns fully on.
10. Set oscilloscope to 5 Volts/Division and $.2 \mathrm{mSec} /$ Division.
11. Adjust R24 to produce a $1200(\pm 15) \mathrm{Hz}$ sine wave. This corresponds to approximately 4.2 horizontal divisions on the oscilloscope screen (.83mS).
12. Go to the controllers telemetry diagnostic display (Main Menu, 9, 6). Select \#2, Space.
13. Set oscilloscope 5 Volts/Division and $.1 \mathrm{mSec} /$ Division.
14. Adjust R23 to produce a $2200(\pm 15) \mathrm{Hz}$ sine wave. This corresponds to approximately 4.5 horizontal divisions on the oscilloscope screen (. 454 mS).
15. Verify that the output is 2.2 (+. $6-.2$) volts peak-to-peak when DS3 is on. Adjust R25 as necessary.
16. Turn R20 all the way counter-clockwise (35 turns max.). Then turn R20 8 turns clockwise. (This sets receiver gain to unity. For field adjustment, turn R20 clockwise to increase the receiver gain.)
17. Verify that DS4 (CD) and DS1 (RDATA) turn on when mark or space are selected on the controller menu.
18. Go to the controllers telemetry diagnostic display (Main Menu, 9, 6). Select \#3, Modem.
19. Verify that DS2 (VDATA) blinks briefly at start of test. Verify that "Telemetry Data Test Passed" message is displayed at end of test.

MAINTENANCE

1. Install module in test controller. Attach telemetry Master cable to Port 3.
2. Set proper telemetry channel.
3. If controller is attached to an ASC/2M, set telemetry response delay on controller to 8800 . (Set ASC/2M "TELEMETRY WINDOW to 80.) If controller is attached to a KMC 10,000, set telemetry response delay to 10,000.
4. Verify that controller communicates with master.
5. Set jumper JP5 to the DSC position.
6. Verify that controller communicates with master.

Page 1 of 2
7. Verify that jumpers are set according to the following table before shipment:
A. $\mathrm{JP} 1=4 \mathrm{~W}$
B. $\mathrm{JP} 2=4 \mathrm{~W}$
C. $\mathrm{JP} 3=4 \mathrm{~W}$
D. $\mathrm{JP} 4=2 \mathrm{~W} / \mathrm{O}$
E. JP5 = DSC
F. $\mathrm{JP} 6=4 \mathrm{~W}$
G. $\mathrm{JP} 7=\mathrm{FE}$
H. JP8 = NOT INSTALLED
I. JP9 = INSTALLED
27. Remove test equipment.
28. If the controller is to be stored, set the battery jumper to the OFF position.

Crystal Adjustment Procedure

Replacement of any Battery Backed Clock oscillator circuit components (U3, R12, C5, C12, Y1)
[$8,4, \mathrm{D}]$ requires a crystal adjustment. Before the controller is put back in service, the following adjustment procedure should be completed.

CAUTION ${ }^{* *}$
Setting the Battery Backed Clock oscillator
requires careful adjustment. This MUST be
done in the lab NOT in the field

Required Test Equipment:
Frequency counter, oscilloscope

1. Verify that the battery jumper is in the ON (top)position.
2. Allow controller and test equipment to warm up for approximately 10 minutes. This is an important step in achieving an accurate adjustment.
3. Connect the oscilloscope/frequency counter to the top terminal of Y1.
4. Monitor the oscilloscope and set waveform for maximum amplitude by adjusting capacitor C5. Adjust the clock using a non-metallic adjustment tool.
5. Verify frequency is set to $32.768 \mathrm{kHz} \pm 2 \mathrm{~Hz}$ and remove test equipment.

Diagnostics Menu

Several diagnostic functions are included in the standard release controller software. These functions are accessed by selecting the DIAGNOSTICS (9) menu item from the MAIN MENU. The DIAGNOSTICS menu includes functions for testing INPUTS (1), OUTPUTS (2), DISPLAY (3), KEYBOARD (4), OVERLAP PROGRAM (5), TELEMETRY (6) and LOOPBACK (7). Following is a description of each test function and how to perform the test.

Inputs (1)
This test displays the state of each input from connectors A, B and C when the controller is connected to a suitcase tester. Perform the following steps:

1. Attach controller to a suitcase tester.
2. Select INPUTS (1) from the DIAGNOSTICS SUBMENU. When this is selected, the controller beeps and displays a message saying that it will go into flash when this test is started.
3. When the INPUT DIAGNOSTIC screen is displayed, push VEH DETECTOR \#1 input on the suitcase tester. An X will be displayed on the screen in the VEH DETECTOR \#1 position. Activate the other switches on the suitcase tester to verify proper operation of all inputs.
4. Press the NEXT PAGE (F6) key to view and activate inputs on the remaining screens. Push SUB MENU (F3) to exit this test.

If this test uncovers an input failure, use the detailed description of the I/O section of the Processor-I/O and the schematic included in the document to pinpoint the problem.

INPUT DIAGNOSTIC CONNECTORS A, B \& C								
PHASE	1	2	3	4	5	6	7	8
VEH DETECTOR..								
PED DETECTOR								
HOLD								
PHASE OMIT.								
PED OMIT								

INPUT DIAGNOSTIC CONNECTORS A, B \& C

RING 1
RING 2
MAX RED STP FRC
INH RST TIM OFF
MAX RED STP FRC INH RST TIM OFF

PED MAX OMT
REC 2 AR
PED MAX OMT
REC 2 AR
INPUT DIAGNOSTIC CONNECTORS A, B \& C

MIN WRST CNA CNA TEST TEST TEST
REC MOD 1 2 A B C

INT NCON LAMP EXT I/O MODE
ADV EN OFF STRT A B C

INPUT DIAGNOSTIC CONNECTOR D							
CYC	CYC	CYC	CORD	OFT	OFT	OFT	REM
1	2	3	FREE	1	2	3	FLSH
X	X			X	X		
SPLT	SPLT	DUAL	SPLT	PMT	PMT	TIME	
1	2	CORD	DMD	1	2	RESET	
PMT	PMT	PMT	PMT				
3	4	5	6				

PMT	PMT	PMT	PMT	CORD
2	4	5	6	FREE

$\begin{aligned} & \text { LOC } \\ & \text { FLSH } \end{aligned}$	INPUT DIAGNOSTIC TELEMETRY CONNECTOR						
	MAIN	ALRM	ALRM	CMU	EXTD	TLM	TLM
	REQD	1	2	FLSH	ADDR	SP1	SP2
SYSTEM DETECTORS							
1	2	3	4	5	6	7	8

Outputs (2)

This test allows for manual activation of each output to connectors A, B and C when the controller is connected to a suitcase tester. Perform the following steps:

1. Attach controller to a suitcase tester.
2. Select OUTPUTS (2) from the DIAGNOSTICS SUBMENU. When this is selected, the controller beeps and displays a message saying that it will go into flash when this test is started.
3. When the OUTPUT DIAGNOSTIC screen is displayed, the cursor will be in the PHASE \#1 RED position. Push the TOGGLE (0) key several times. Notice that the PHASE \#1 RED LED on the suitcase tester is turned on and off. Use the cursor keys to position the cursor over the other output locations. Verify proper operation of all the outputs.
4. Press the NEXT PAGE (F6) key to view and activate outputs on the remaining screens. Push SUB MENU (F3) to exit this test.

If this test uncovers an output failure, use the detailed description of the I/O section of the Processor-I/O and the schematic included in the document to pinpoint the problem.

OUTPUT DIAGNOSTIC CONNECTOR D								
CYC	CYC	CYC	SYNC	OFT	OFT	OFT	XSTR	
1	2	3	OUT	1	2	3	SYNC	
SPLT	SPLT	NIC	NIC	PMT	PMT	CMU	CORD	
1	2	SF1	SF2	1	2	INLK	STAT	

OUTPUT DIAGNOSTIC CONNECTORS A, B \& C					
RING 1 STATUS			RING 2 STATUS		
A	B	C	A	B	C
OVERLAP	A	B	c	D	
RED					
YELLOW					
GREEN					
FLASHING LOGIC					
PRESS TOGGLE TO CHANGE					

Display (3)

This menu provides a comprehensive set of functions for testing all aspects of the LCD module. Perform the following steps:

1. Select DISPLAY (3) from the DIAGNOSTICS SUBMENU. When this is selected, the controller beeps and displays a message saying that it will go into flash when this test is started.
2. When the DISPLAY SUBMENU is displayed, select CURSOR ADDRESS (1). This will perform a test which causes the cursor to address every character location on the display. Verify all positions are addressed. Push SUB MENU (F3) to exit this test.
3. Select CHARACTER FONT (2). This test will display complete ASCII character set supported by the module. Verify all characters are properly formed. Push SUB MENU (F3) to exit this test.
4. DISPLAY ADJUST (3). The display adjust test does not work on the ASC/2S controller.
5. Select BACKLIGHTING (4). This test will continuously turn the display backlight on and the off. Verify this operation. Push SUB MENU (F3) to exit this test.
6. Select FULL SCREEN (5). This test fills the display with dark characters. This should give the appearance of forty black columns each separated by a one white pixel. Verify this operation. Push SUB MENU (F3) to exit this test. If this test produces a screen with missing pixels, LCD module replacement may be required.
7. ALL TESTS (6) automatically performs tests 1-5 above. Push SUB MENU (F3) to exit this test.

Please note: There are no user serviceable parts on the User Interface module. If it has been determined that a display problem is caused by the module, please return it to Econolite.

DISPLAY SUBMENU
1. CURSOR ADDRESS
2. CHARACTER FONT
3. DISPLAY ADJUST
4. BACKLIGHTING
5. FULL SCREEN
6. ALL TESTS
PRESS KEYS 1..6 TO SELECT

Keyboard (4)

This function tests all front panel keys. Perform the following steps:
Select KEYBOARD (4) from the DIAGNOSTICS SUBMENU. When this is selected, the controller beeps and displays a message saying that it will go into flash when this test is started.

1. When the KEYBOARD DIAGNOSTICS screen is first displayed, the user is prompted to push the " 0 " key. Push this key and verify that the number " 0 " is displayed in the proper position on the keyboard diagram shown on the LCD. The user is then prompted to push the next key. Continue for all twenty five keys. If a key is not pressed within twenty seconds or a key is pressed out of sequence, the test will fail. Push SUB MENU (F3) to exit this test

Please note: There are no user serviceable parts on the User Interface module. If it has been determined that a display problem is caused by the module, please return it to Econolite.

Overlap (5)
This test is used to verify proper reading of the optional overlap card which can be installed on the optional Expansion I/O module. Perform the following steps.

1. Select OVERLAP (5) from the DIAGNOSTICS SUBMENU.
2. Verify that the displayed X's correspond to the jumpers inserted on the overlap card. Push SUB MENU (F3) to exit this test.

If this test uncovers an Overlap card failure, use the detailed description of the I/O section of the Processor-I/O and the schematic included in the document to pinpoint the problem.

OVERLAP PROGRAM CARD DATA								
PHASE	1	2	3	4	5	6	7	8
OVERLAP A								
OVERLAP B								
OVERLAP C								
OVERLAP D								

Telemetry (6)

This menu provides a set of functions for testing all aspects of the Telemetry module and the PORT3 and 25-pin Telemetry ports. Test loop back cable 33279G6 is required for testing the PORT3 Telemetry port. Loop back cable 33279G5 is required for testing the 25-pin Telemetry port. Perform the following steps:

1. Select MARK (1) or SPACE (2). This generates a Mark frequency of 1200 Hz or SPACE frequency of 2200 Hz . This signal can be viewed with an oscilloscope across resistors R28 and R29 on the telemetry module [34091, 4,6,A]. This signal should also be present across pins 1 and 2 of J 17 [34251,7,3,B] the PORT3 telemetry connector and across pins 12 and 13 of connector J 14 [34251,7,4,A] the 25-pin Telemetry connector, if installed. These signals can be used for line attenuation testing in the field. Push SUB MENU (F3) to exit either test.
2. Attach the appropriate loop back cable for the port to be tested. Select MODEM (3). This starts a test that transmits ASCII characters modulated by the modem transmitter. The modulated signal is routed back to the modem chips receiver via the loop back cable. The display will reflect the pass or fail condition. If test fails, replace Telemetry module. Check receiver/transmitter circuits. Refer to the detailed description of the Telemetry module and document 34091.
3. Attach the 33279 G5 loop back cable to 25 -pin Telemetry connector J14 [34251,7,4,B]. Select TELEMETRY I/O LOOP BACK (4). This tests the parallel I/O lines on the 25 -pin Telemetry connector. Input and output circuitry including input multiplexers, logic level translators, output latches, and output drivers are exercised. The display will output a hexadecimal code corresponding to any I/O loop failure. Use this code in conjunction with Appendix F, document 34251, and the detailed description of the I/O section of the Processor-I/O module to determine the cause of failure.

Loopback (7)

This menu provides a set of functions for performing loop back tests on the A, B, C, D, TERMINAL (PORT2) and SDLC (PORT1) connectors. Proceed as follows:

1. Attach the 33279G1, 33279G2 and 33279G3 loop back cables to the A, B and C connectors. Select STANDARD I/O (1). This tests the parallel I/O lines on the Type2 I/O module connectors. Input and output circuitry including input multiplexers, logic level translators, output latches, and output drivers are exercised. The display will output a hexadecimal code corresponding to any I/O loop failure. Use this code in conjunction with APPENDIX F, document 34251 and the detailed description of the I/O section to determine the cause of failure.
2. Attach the 33279G4 loop back cable to the D connector. Select EXPANDED I/O (2). This tests the parallel I/O lines on the Expansion I/O module D connector. Input and output circuitry including input multiplexers, logic level translators, output latches, and output drivers are exercised. The display will output a hexadecimal code corresponding to any I/O loop failure. Use this code in conjunction with Appendix F, document 34251 and the detailed description of the I/O section to determine the cause of failure.
3. Attach the 33279 G 8 loop back cable to the Terminal port (PORT 2). Select TERMINAL (3).This starts a test that transmits ASCII characters through the RS-232 level translator chip and exercises the RS-232 hand shake lines. The signal is routed back to the translator chips receiver via the loop back cable. The display will reflect the pass or fail condition. If test fails, check signals at RS-232 transceiver chip U80 in the I/O section and DUART U20 in the processor section. Refer to the detailed descriptions of the Processor-l/O module, and document 34251.
4. Attach the $33279 G 7$ loop back cable to the SDLC port (PORT 2). Select SDLC (3). This starts a test that transmits SDLC frames of ASCII characters through the RS485 level translator chips. The signal is routed back to the translator receivers via the loop back cable. The display will reflect the pass or fail condition. If test fails, check signals at RS-485 transceiver chips U81 and 82 in the I/O section. Refer to detailed descriptions of Processor-1/O module and document 34251.

Memory Tests

The ASC/2S does not require keyboard entered memory testing. All memory tests are performed automatically as follows:

During power on, the controller does a preliminary check of all memory components. All system RAM chips are completely checked for read/write integrity. A check sum test is performed on each EPROM pair and program compatibility checks are performed. A cyclic redundancy check (CRC) is performed on the data module EEPROM. If any of these tests fail, an appropriate message is displayed and the program goes into a continuous loop with the voltage monitor ON which forces the intersection into flash.

After start up checks are performed, the controller enters the main program. While the main program is running, a CRC is continuously run, in background, on both the EPROMS and EEPROM. If either of these tests fail, an appropriate message is displayed and the program goes into a continuous loop with the voltage monitor ON which forces the intersection into flash.

The fault isolation tables in this section list malfunctions and their possible causes. The list is by no means complete but careful study of the symptoms may provide a starting point for troubleshooting.

Because of the modular design of the ASC/2S, repair at the cabinet level should be limited to removal and replacement of bad modules and fuses. Any in-depth fault isolation should be done in a shop with the proper test equipment. Personnel and equipment should be properly grounded to prevent damage due to static electricity. Exercise caution so that the programming integrity within the controller is maintained, as intended for the particular intersection, during removal and replacement of modules. Therefore, modules containing unique programming for a specific intersection (Processor module, overlap program board, Data module) must not be used operationally anywhere other than at that intersection.

If a problem is found, on the Processor-l/O module, the customer has the option to either repair the equipment or return it to Econolite for service. The User Interface and Power Supply modules should always be returned to Econolite for service. In any case, all information, relevant to the failure, must be recorded. If a defective module or the complete controller is returned for service, please send as much information as possible about the failure. Note the nature of the malfunction and details about the conditions affecting the controller at the time of failure. Try to reproduce the failure in a lab to determine the pattern, if any. Use these guidelines when documenting a failure.

Record:
a) All controller settings. Print all data if possible.
b) Mode of operation (coordination, preemption, NIC,.
c) All external conditions (temperature, humidity, lightning,
d) Time of failure.
e) Interconnect type.

Record details of a failure condition:
f) Controller hangs-up.
g) Record: The interval, how often hang-up occurs (every cycle, during a certain function,...).
h) Controller skips intervals.
i) Record: The interval, under what conditions (every cycle, only when external command is applied,...).

Use descriptive statements:
j) Local not responding.
k) Incorrect data in a readback.
i) Incorrect output at a local.
j) Abnormal LCD indications.
k) Improper signal indications on the same phase (conflicting conditions).

The fault isolation tables are preceded by some precautions. It is imperative that these be read and understood before attempting to work on the ASC/2S controller.

PRECAUTIONS

CAUTION:
Before doing any troubleshooting please note that much of the ASC/2S operation is determined by the program contained in the configuration EEPROM.

1. Make sure that the program number on top of the controller matches the label number on EEPROM U1 located on the Data module.
2. If necessary, and if PROM programming equipment is available, use Appendix G to check EEPROM against required intersection configuration.
3. DO NOT unplug Data module while power is applied to the controller.

Before working on any module ALWAYS take the following precautionary steps:
4. Disconnect primary power from the controller before removing or installing modules.
5. Allow at least 15 seconds for the filter capacitors to discharge before working on any module in the controller.
6. Do not use low resistance VOM or continuity tester for continuity checks. These may damage CMOS circuits.
7. Remember to handle the Processor module with care to ensure that the on-card battery is not inadvertently shorted (such as by laying the module on a metal surface) or bent.
8. Be careful not to flex the Processor-l/O module excessively. When bench testing, the module should be supported by a fixture so that it lays flat and does not rest on the capacitor mounted on the read of the module.

WARNING

Line voltages are present on the Processor-l/O and Power Supply modules. Extreme care should be taken when working in these areas.

HARDWARE FAULT ISOLATION

$$
A=\text { Cabinet-level fault isolation. } \quad B=\text { Bench-level fault isolation. }
$$

PROBLEM	POSSIBLE CAUSE	ACTION
Controller is inoperative. Processor Monitor LED LED1 is OFF.	1. 115 VAC fuse blown. 2. Controller not supplied with 115 VAC. 2 Loose power supply harnesses 4. Power supply module failure	A) Check fuse F2 replace if necessary. 2. A) Verify that power is applied. 3. B) Check construction and seating of harnesses. 4. B) Verify +24 VDC output. Return supply to Econolite for repair.
Time is lost when power removed. Timing incorrect or inconsistent or controller hangs up.	1. Battery jumper JP2 not on. 1. 120 Hz reference circuit. 2. OPTO1 circuit.	1. A) Remove/replace Processor-l/O module. B) Check AC power monitor circuit interrupt operation (U1)[8,4-6,A]. 2. A) Remove/replace Processor-I/O module. B) Check OPTO1 circuit [20,2-3,C]. (CAUTION: LETHAL VOLTAGES PRESENT IN THIS CIRCUIT).
Voltage monitor/ Fault monitor output FALSE	1. Power supply out of tolerance, voltage or voltage monitor control circuit failed. 2. a) Preemptor phases programmed not IN USE when preemptor becomes active. b) Preemption active during power outage.	1. A) Remove/replace power supply. B) Check +24 VDC and voltage monitor circuits [3,4,B]. 2. a) Program preemption phases IN USE (Recall data page PREEMPTOR Submenu).
One phase has no outputs.	1. I/O secton failure. Output circuitry for phase in I/O Interface section failed. 2. Phase omitted in configuration PROM programming.	1. A) Remove/replace Processor-I/O Interface module. B) Check output circuit operation for the particular output. 2. A) Replace EEPROM with correct program. B) Reprogram EEPROM in order to correct phase omitted.
Controller appears to be operating but all outputs are OFF.	1. 24 V EXT fuse (F 1) is blown. 2. Processor section failure. /PIOSL decode circuits failed. 3. I/O Interface module failure.	1. Check fuse F1. 2. A) Remove/replace Processor-1/O module. B) Check /PIOSL decode circuit operation U21 [4,4,C]. Check I/O module buffers U24 and U25 [4,2,B-D] 3.. Check output latch chip select decoder operation U22 [10,6,D].
All outputs from one phase or one output does not turn ON.	1. I/O section failure. Output driver failed.	1. A) Remove/replace Processor-//O module. B) Check output latch and output driver for that phase.
All inputs inoperative.	1. I/O Interface section failure. 2. Processor section failed.	1. A) Remove/replace Processor-l/O module. B) Check I/O decoder U23 [12,6,D]. 2. A) Remove/replace Processor-I/O module. B) Check /PIOSL decode circuit operation U21 [4,4,B]. Check I/O buffers U24 and U25 [4,3,B-D].

PROBLEM	POSSIBLE CAUSE	ACTION
All inputs to one phase or one input inoperative.	1. I/O Interface section failure. Input multiplexer failed. 2. Phase not IN USE.	1.A) Remove/replace Processor-I/O module. B) Check input multiplexer operation for that particular phase. 2. Program phase IN USE on Recall data page Controller Submenu.
No inputs or outputs from a phase	1. Phase not IN USE.	1. Check Recall data page Controller Submenu.
Controller beeps repetitively. Does not accept any keyboard inputs.	1. A key is stuck ON or the keyboard control circuit failed.	1. A) Check User Interface control circuits [10,4-6,A-D]].
A key is inoperative or intermittently inoperative.	1. Keyboard failed.	1. Remove User Interface panel and return to Econolite for repair.
Phase sequencing problem.	1. Incorrect configuration EEPROM installed.	1. A) Remove/replace Data Module. B) Check configuration EEPROM programming if programming equipment available otherwise contact Econolite for another configuration EEPROM.
Controller hangs up after a certain condition occurs.	1. Program memory failed. Watch dog timer timed out.	1. A) Remove/replace Processor module. B) Use displayed message to localize problem. Check program memory and program memory circuit operation.
Controller hangs up and PROCESSOR MONITOR LED LED1 is ON.	1. Processor failed. 2. Power supply failed.	1. A) Remove/replace Processor module. B) Check processor operation. 1. A) Remove/replace power supply B)Check power supply for low voltage output.
Characters are lost while printing.	1. XON / XOFF handshake protocol not recognized.	1. Program printer to recognize XON / XOFF protocol.

The parts list is divided into tables as shown. Parts are listed with both Econolite and manufacturer's part numbers and primary and secondary descriptions. All components of the ASC/2S controller are listed including software. Only one supplier part number is given; however, qualified equivalent parts, as determined by Econolite, may be used.

When ordering controller software always specify the latest software version and part number.

** CAUTION **

HC and HCT CMOS parts are NOT interchangeable. When changing parts, be careful to replace with the same type of part.

Table

5-1
Controller Assembly ASC/2S-1000 (34240G1) [E]
5-2
Controller Assembly ASC/2S-2000 (34240G2)[E]
5-3
Controller Assembly ASC/2S-2100 (34240G3)[F]
5-4
5-5
5.6

5-7 Processor I/O PCB Subassembly ASC/2S-2100 (34250G3)[K]
5-8 Processor I/O PCB Subassembly ASC/2S-2100 Exp W/Olap (34250G4)[A]
5-9 Telemetry PCB Assembly (34090G1)[G]
5-10 RS-232 Telemetry PCB Assembly (33525G1)[F]
5-11 Data Module PCB Assembly (32845G2)[A]

Table 5-1. Controller Assembly ASC/2S-1000 (34240G1) (Page 1 of 1)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR/PART\#
34240	ASSY DWG ASC/2S		
34285G2	C/C ASSY P/S DC OUTPUT	INTERNAL CABLE ASC/2S	
34250G1	PCA PROCESSOR I/O INTF	CONTROLLER TYPE 1	
32845 G 2	PCA DATA MODULE ASC/2	W/EPROM 32K X 8	
$34280 \mathrm{P1}$	POWER SUPPLY	$110 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$	POWER ONE MAP42-S204
N695P9008C	SCRW SEMS \# 4 X 1/2	PH PHIL	
N695P9006C	SCRW SEMS \#4 X 3/8	PH PHIL	
N44P9005C	SCRW \#4 X 5/16 FIL SLT	STL CD MACH	
N695P13004C	SCRW SEMS \#6 X 1/4	PH PHIL	
31348P51	BLOCK LATCHING 2 PC PKG		$\begin{aligned} & \text { AMP } \\ & 745286-2 \end{aligned}$
$34269 \mathrm{P1}$	RESTRAINT, CABLE	ASC/2S A/MD	
32542P1	STUD SNAP IN .345L	SLOTTED HD 1/4 TURN	$\begin{aligned} & \text { SOUTHCO } \\ & 82-11-200-16-1 \end{aligned}$
31144 P 1	IDENT PLATE CNTLR	ECONOLITE	SEE ENG DWG
34255G1	CHASSIS SUB ASSY		
34259P1	PLATE CONN, TYPE 1		
$34260 \mathrm{G1}$	DISPLAY PANEL ASC/2S		DENSITRON
34285G1	C/C ASSY PS AC INPUT		HC4129BGHNGO345
N138P9008C	SCRW SEMS \# 4 X $1 / 2$ PH SLT		
N238P9B	HEX NUT/LK WSHR \#4 STL/CAD		
32542 P 20	FSTNR BAIL RING		$\begin{aligned} & \text { SOUTHCO } \\ & 82-15-200-16 \end{aligned}$
32542 P 103	WSHR WEAR CUP	NYLON BLACK	$\begin{aligned} & \text { SOUTHCO } \\ & 82-46-101-41 \end{aligned}$
32542P106	SPRING RETAINER	1/4 TURN	$\begin{aligned} & \text { SOUTHCO } \\ & 43-13-1-24 \end{aligned}$
32542 P 100	RETAINER LOCK RING	S/STL NO. 82	$\begin{aligned} & \text { SOUTHCO } \\ & 82-32-201-20 \end{aligned}$
53048 P 15	TIE CABLE 4" DIA ST	BLACK	$\begin{aligned} & \text { DENNISON } \\ & 10-408 \end{aligned}$
55399P1	GROMMET STRIP	. $062-.099$ THK	$\begin{aligned} & \text { PANDUIT } \\ & \text { GES99F-A-C } \end{aligned}$
53048 P 12	TIE CABLE . $75^{\prime \prime}$ DIA ST	BLACK	$\begin{aligned} & \text { DENNI SON } \\ & 08-404 \end{aligned}$

Table 5-2. Controller Assembly ASC/2S-2000 (34240G2) (Page 1 of 1)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR / PART\#
34240	ASSY DWG ASC/2S		
$34255 \mathrm{G1}$	CHASSIS SUB ASSY	ASC/2S	
34259 P 2	ASSY, PLATE CONN	$\begin{aligned} & \text { TYPE } 2 \text { ASC/2S } \\ & \text { D/AD } \end{aligned}$	
$34260 \mathrm{G1}$	DISPLAY PANEL ASC/2S		DENSITRON HC4129BGHNG0345
		ASC/2S 34251S 34253AW 256K RAM	
34250 G 2	PCA PROCESSOR I/O INTERFACE	TYPE 2	
32845 G 2	PCA DATA MODULE ASC/2	W/EPROM 32K X 8	
34280 Pl	POWER SUPPLY	110VAC 50/60Hz	POWER ONE MAP42-S204
N695P9006C	SCRW SEMS \#4 X 3/8	PH PHIL	
N44P9005C	SCRW \#4 X 5/16 FIL SLT	STL CD MACH	
N695P13004C	SCRW SEMS \#6 X 1/4	PH PHIL	
31348 P 51	BLOCK LATCHING 2 PC PKG		$\begin{aligned} & \text { AMP } \\ & 745286-2 \end{aligned}$
34269 Pl	RESTRAINT, CABLE	ASC/2S A/MD	
32542 Pl	STUD SNAP IN .345L	SLOTTED HD 1/4 TURN	$\begin{aligned} & \text { SOUTHCO } \\ & 82-11-200-16-1 \end{aligned}$
$31144 \mathrm{P1}$	IDENT PLATE CNTLR	ECONOLITE	
			SEE ENG DWG
34285 GI	C/C ASSY PS AC INPUT		
N138P9008C	SCRW SEMS \#4 X 1/2 PH SLT		
N238P9B	HEX NUT/LK WSHR \#4 STL/CAD		
32542 P 20	FSTNR BAIL RING		$\begin{aligned} & \text { SOUTHCO } \\ & 82-15-200-16 \end{aligned}$
32542 P 103	WSHR WEAR CUP	NYLON BLACK	$\begin{aligned} & \text { SOUTHCO } \\ & 82-46-101-41 \end{aligned}$
32542 P 106	SPRING RETAINER	1/4 TURN	$\begin{aligned} & \text { SOUTHCO } \\ & 43-13-1-24 \end{aligned}$
32542 P 100	RETAINER LOCK RING	S/STL NO. 82	$\begin{aligned} & \text { SOUTHCO } \\ & 82-32-201-20 \end{aligned}$
53048 P15	TIE CABLE 4" DIA ST	BLACK	DENNISON 10-408
55399 Pl	GROMMET STRIP	.062-. 099 THK	PANDUIT GES99F-A-C
53048 P12	TIE CABLE . 75' DIA ST	BLACK	DENNISON $08-404$

Table 5-3. Controller Assembly ASC/2S-2100 (34240G3) (Page 1 of 1)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY D ESCRIPTION	MFGR/PART\#
34240	ASSY DWG ASC/2S		
34255G1	CHASSIS SUB ASSY	ASC/2S	
34259P3	ASSY, PLATE CONN	TYPE 2 EXP ASC/2S D/AD	
$34260 \mathrm{G1}$	DISPLAY PANEL ASC/2S		DENSITRON HC4129BGHNG0345
34285G1	C/C ASSY PS AC INPUT	INTERNAL CABLE ASC/2S	
34285G2	C/C ASSY P/S DC OUTPUT	INTERNAL CABLE ASC/2S	
34250G3	PCA PROCESSOR I/O INTF	$\begin{aligned} & \text { CONTROLLER TYPE } 2 \text { EXP } \\ & \text { ASC/2S } \end{aligned}$	
32845G2	PCA DATA MODULE ASC/2	W/EPROM 32K X 8	
34280P1	POWER SUPPLY	110VAC 50/60Hz	POWER ONE MAP42-S204
N695P9006C	SCRW SEMS \# 4 X 3/8	PH PHIL	
N695P13008C	SCRW SEMS \#6 X 1/2	PH PHIL	
N44P9005C	SCRW \#4 X 5/16 FIL SLT	STL CD MACH	
N695P13004C	SCRW SEMS \#6 X 1/4	PH PHIL	
31348P51	BLOCK LATCHING 2 PC PKG		$\begin{aligned} & \text { AMP } \\ & 745286-2 \end{aligned}$
31348 P 12	LATCH SPRING	1 SET PER PKG	$\begin{aligned} & \text { CANNON } \\ & \text { D110277 } \end{aligned}$
34269P1	RESTRAINT, CABLE	ASC/2S A/MD	
32542 P 1	STUD SNAP IN .345L	SLOTTED HD 1/4 TURN	$\begin{aligned} & \text { SOUTHCO } \\ & 82-11-200-16-1 \end{aligned}$
31144 P 1	IDENT PLATE CNTLR	ECONOLITE	
			SEE ENG DWG
N138P9008C	SCRW SEMS \# 4 X $1 / 2$ PH SLT		
N238P9B	HEX NUT/LK WSHR \#4 STL/CAD		
32542 P 20	FSTNR BAIL RING		SOUTHCO $82-15-200-16$
32542 P 103	WSHR WEAR CUP	NYLON BLACK	$\begin{aligned} & \text { SOUTHCO } \\ & 82-46-101-41 \end{aligned}$
32542 P106	SPRING RETAINER	1/4 TURN	$\begin{aligned} & \text { SOUTHCO } \\ & 43-13-1-24 \end{aligned}$
32542 P 100	RETAINER LOCK RING	S/STL NO. 82	$\begin{aligned} & \text { SOUTHCO } \\ & 82-32-201-20 \end{aligned}$
53048 P 15	TIE CABLE 4" DIA ST	BLACK	$\begin{aligned} & \text { DENNISON } \\ & 10-408 \end{aligned}$
55399P1	GROMMET STRIP	.062-. 099 THK	PANDUIT GES99F-A-C
53048 P 12	TIE CABLE . $75^{\prime \prime}$ DIA ST	BLACK	$\begin{aligned} & \text { DENNISON } \\ & 08-404 \end{aligned}$

Table 5-4. Controller Assembly ASC/2S-2100 with OLAP (34240G4) (Page 1 of 1)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR/PART\#
34240	ASSY DWG ASC/2S		
$34255 G 1$	CHASSIS SUB ASSY	ASC/2S	
$34259 P 3$	ASSY, PLATE CONN	TYPE 2 EXP ASC/2S	
$34260 G 1$	DISPLAY PANEL ASC/2S		
$34285 G 1$	C/C ASSY PS AC INPUT		INTERNAL CABLE ASC/2S

Table 5-5. Processor-l/O PCB Subassembly ASC/2S-1000 (34250G1)* (Page 1 of 5)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR/PART\#
34250	ASSEMBLY DRAWING	PROCESSOR I/O	
34251	SCHEMATIC PROCESSOR I/O		
34253	MASTER ARTWORK	PROCESSOR I/O	
34254	TEST SPEC	PROCESSOR I/O	
34252P1	PCB PROCESSOR I/O INTF	ASC/2S	
32911P21	BTRY 3V PC MTG	LITHIUM	PANASONIC
	B1		VL2330-1VC
33748 P5103	CAPAC .01MF 50V	0603 10\% X7R CERM	$\begin{aligned} & \text { AVX } \\ & 06035 \mathrm{C} 103 \mathrm{KAT2A} \end{aligned}$
	C1 C3 C4 C8		
	C13 C14 C15 C16		
	C17 C18 C19 C20		
	C21 C22 C23 C24		
	C26 C27 C28 C32		
	C33 C34 C35 C36		
	C37 C38 C45 C46		
	C47 C48 C75		
33740 P 220	CAPAC 22 PF 50 V	SMT 0805 COG CERAM	MURATA
			GRM40COG220J050BD
33741 P 5104	CAPAC . 1 MF 50 V	\% X7R CERM	KEMET
	C2 C11 C68		C1206C104K5RAC
33877 P105	CAPAC 1MF 35V TANT	SMT 3528	SPRAGUE
	C29		293D105X9035B2T
33878 P10	CAPAC 10MF 35v ELECT	SMT NEMCO CASE B	NICHICON
	C31		UWX1V100MCR1GB
33740 P5270		SMT 0805 COG CERAM	MURATA
	CAPAC 33 PF 50 V		GRM40COG270J050BD
33740 P5330		SMT 0805 COG CERAM	MURATA
	C44		GRM40COG330J050BD
31884P4	CAP VARIABLE 7-50PF	SMT A-TYPE	MURATA
	C5		TZBX4R500BA110
32895P7	CAPAC 120MF 50V ELECT		NICHICON
	C6 C7		UPL1H121MPH
33878 P047	CAPAC 4.7MF 25V ELECT	SMT NEMCO CASE B	NICHICON
	C66 C67 C71 C72		UWX1E4R7MCR1GB
	C73		
$32169 P 19$	CAPAC ELECT 18000MF 35V	AL SNAP MTG	NICHICON
	C76		LLK1V183MHSC
31769861	TRANSORB P6KE27A	25.7-28.4V	GEN INST
	CR1		P6KE27A
$33870 \mathrm{P1}$	DIODE FDLL4148	SMT D035	NATIONAL
	CR2 CR12 CR13		FDLL4148
*For Parts lists 34250G1, 34250G2, and 34250G3 the following note applies.			
One 8 MB of flash PROM (U2) can be replaced by installing two 4 MB flash PROMs in location			
U2 and U92. The following parts must also be installed: C78, C79, C80, R82, R83 and U93.			
33748 P5103	CAPAC .01 MF 50 V$\mathrm{C} 78 * \mathrm{C} 79$		AVX*
			$06035 \mathrm{Cl} 103 \mathrm{KAT2A}$
33748 P 471	CAPAC 470PF 50V		MURATA ERIE
	C80		GRM39X7R47K050B
33872 P122	RES 1.2K 5\% 1/16W		DALE
	R82*R83		CRCW0603122J
33901 P1	IC 29F400BB FLASH 4 MB		AMD
	U2*U92		AM29F400BB-90EC
33902P32	IC 74VHC32 SMT S014U93		FAIRCHILD
			74VHC32MTC

Table 5-5. Processor-I/O PCB Subassembly ASC/2S-1000 (34250G1) (Page 2 of 5)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR / PART\#
58064 P 12	DIODE 1N4763A	1W ZENER	MOTOROLA
	CR2 4		1N4763A
32416 P 6	DIODE BRIDGE 1A 800V	4 PIN DIP	DIODES INC
	CR25		DB106 OR DF08
33831 P 4	DIODE MBR0520 20V 1/2A	SCHOTTKY SMT CASE 403	MOTOROLA
	CR3 CR5 CR11		MBR0520LT1
33831 P 3	DIODE MRB34 34V	SCHOTTKY SMT CASE 403	MOTOROLA
	CR4 CR6 CR7 CR8		MBRS340TS
	CR10		
58873 P 29	DIODE 1N5232B 5.6V 5\%	500MW ZENER	MOTOROLA
	CR9	REPLACES 58052P6	1N5232B
55205 P 17	FUSE 3/4A 250V 3AG S/B	1.25 X . 25	LITTELFUSE
	F1		313.750
55205 P 19	FUSE 1A 250V 3AG S/B 3	1.25X. 25	LITTELFUSE
	F2		313001
32183 P 4	FUSE HLDR W/CARRIER	SOLDER TERM	SCHURTER
	XF1 XF2		FEU031.1659
31912 Pl	SPCR NYL . 501 D X.760D	. 18 THK 3 AG F/HLDR	SEASTROM
	XF1 XF2		5606-44-177
57255 P 700	WIRE 22AWG BLK 19 STRD	TYPE B/N 600V	
	XF1 XF2		SEE ENG SPEC
32758 Pl	INDUCTOR FERRITE BEAD		TDK
	FB1 FB2 FB3 FB4		BF45-4002
33857 P 10	CONN 10P PCMT	CIRCULAR	ITT CANNON
	J16		CA24252-2599
31369 P 27	CONN D SUB 25S W/W	METAL SHELL	CINCH
	J13		DBKL-25SUT
31369 P 26	CONN D SUB 15S W/W	METAL SHELL	CINCH
	J15		DAKL-15SUT
31369 P 25	CONN D SUB 9P	METAL SHELL	CINCH
	J17		DEKL-09PUTI
58751P32	HDR 3 CKT LKG STRGHT	. 156 CTRS W/LOCK GOLD	MOLEX
	J18		26-61-4030
58751 P 14	WAFER POLARIZING 5 CKT	. 156 CTRS W/LOCK	AMP
	J19		640388-5
33852 P 68	CONN 68 PIN STRAIGHT	. 050 PITCH	MOLEX
	J2		15-92-1468
32158 P 113	HDR 13/26 CTR POL STR	. 100 CTRS W/SHORT LATCH	HIROSE
	J3		HIF3BAG-26PA-2.54DSA
32219 Pl	CONN DIN 32P R/A	W/W.512L	PANDUIT
	J4		100-632-051
32219 P 8	CONN DIN 32S STR	A/SD	PANDUIT
	J5		100-632-432
31535 P 1	WAFER 2 CKT	. 100 CTRS	MOLEX
	J7 J8 TP1 TP2		22-03-2021
	TP3		
31535 P 2	WAFER 3 CKT	.100 CTRS	MOLEX
	JP2 JP3 JP4 JP5		22-03-2031
33879 Pl	INDUCTOR POWER SMT	D03316	COILCRAFT
	L1		DO3316P-104
56668 P 3	CHOKE HASH 250MH		JW MILLER
	L2		5254
37129 P 2	DIODE LED BRIGHT RED		GEN INST
	LED1		MV5 752
33730 P 2	XSTR 2N3904 NPN	SMT SOT23	ZETEX
	Q1	GENERAL PURPOSE	FMMT3904-NDA
33872 P103	RES 10K 5\% 1/16W SMT	0603	DALE
	R1 R6 R8 R26		CRCW0603103J
	R27 R32 R40 R44		
	R55		

Table 5-5. Processor-I/O PCB Subassembly ASC/2S-1000 (34250G1) (Page 3 of 5)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR / PART\#
33872 P681	RES 680 5\% 1/16W SMT	0603	DALE
	R10		CRCW0603681J
33872 P 000	RESOOHM 5\% 1/6W	SMT0603	DALE
	R81		CRCW0603000J
33872 P331	RES 330 5\% 1/16W SMT	0603	DALE
	R11 R16 R20 R45		CRCW0603331J
	R46 R48 R51 R52		
54719 P 153	RES 22 MEG 1/4W 5\%	MIL-R-11F FIXED COMP	
	R12		RC07GF226J
33873 P5491	RES 5.49K 1\% 1/16W SMT	0603	DALE
	R14		CRCW06035491F
$33873 \mathrm{P1302}$	RES 13K 1\% 1/16W SMT	0603	DALE
	R17		CRCW06031302F
33872 P 472	RES 4.7K 1/16W SMT	0603	DALE
	R19 R30		CRCW0603472J
33873 P 2212	RES 22.1K 1\% 1/16W SMT	0603	DALE
	R2		CRCW0602212F
33873 P 1002	RES 10K 1\% 1/16W SMT	0603	DALE
	R22, R76, R77, R78, R79		CRCW06031002F
33872 P105	RES 1M 5\% 1/16W SMT	0603	DALE
	R23 R25		CRCW0603105J
33872 P102	RES 1K 5\% 1/16W SMT	0603	DALE
	R24		CRCW0603102J
33872 P221	RES 220 5\% 1/16W SMT	0603	DALE
	R28		CRCW0603221J
33872 P 473	RES 47K 5\% 1/16W SMT	0603	DALE
	R29 R34		CRCW0603473J
$33873 \mathrm{P9} 992$	RES 90.9K 1\% 1/16W SMT	0603	DALE
	R3		CRCW06039092F
54582 P 5	RES 15 OHMS 1/2W 5\%	FIXED COMP	A/BRADLEY
	R31		EB1505
33825 P 000	RES ZERO OHM JUMPER	THICK FILM 0805	DALE
	R35		CRCW080500J
33872 P271	RES 270 5\% 1/16W SMT	0603	DALE
	R36		CRCW063271J
33872 P 101	RES 100 5\% 1/16W SMT	0603	DALE
	R37 R42 R47		CRCW0603101J
33872 P112	RES 1.1K 5\% 1/16W SMT	0603	DALE
	R38		CRCW0603112J
33872 P122	RES 1.2K 5\% 1/16W SMT	0603	DALE
	R39 R41 R82 R83		CRCW0603122J
33873 P 5112	RES 51.1K 1\% 1/16W SMT	0603	DALE
	R4 R5		CRCW06035112F
33711 P 000	RES ZERO OHM JUMPER SMT	THICK FILM 1206	KOA SPEER
	R43 R50 R60		RM73Z2BT
33873 P 6813	RES 681K 1\% 1/16W SMT	0603	DALE
	R49		CRCW06036813F
33713 P 222	RES 2.2K 5\% 1/2W SMT	THICK FILM 2010	DALE
	R56		CRCW2010222J
33872 P 183	RES 18K 5\% 1/16W SMT	0603	DALE
	R64		CRCW0603183J
43654 P 2	RES 2.2 OHMS 5W	WIRE WOUND	OHMITE
	R65 R67		95J2R2
33872 P152	RES 1.5K 5\% 1/16W SMT	0603	DALE
	R68 R70 R71 R73		CRCW0603152J
33872 P121	RES 120 5\% 1/16W SMT	0603	DALE
	R69 R72		CRCW0603121J
33873 P4 493	RES 449K 1\% 1/16W SMT	0603	DALE
	R7		CRCW06034493F

Table 5-5. Processor-l/O PCB Subassembly ASC/2S-1000 (34250G1) (Page 4 of 5)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR / PART\#
31263 P97	RES 10K 3W 5\% W/W	REPLACES 0500-0039	DALE
	R74 R75		CW2C-14-10K 5\%
33873 P 1003	RES 100K 1\% 1/16W SMT	0603	DALE
	R9 R15 R18		CRCW06031003F
43577 P 3	RES NTWK 10K COM PIN	10 PIN SIP 9 RES 1W 2\%	BOURNS
	RP1 RP2 RP10 RP34	REPLACES 0500-0213	4610X-101-103
43577 P2 6	RES NTWK 10K COM PIN	10 PIN 9 RES MOLDED	BOURNS
	RP3 RP4		4310R-101-103
$31770 \mathrm{P1}$	VARISTOR 55 JOULES	212V-255V METAL OXIDE	HARRIS
	RV1 RV2 RV3	UL/CSA RECOGNIZED	V150LA20B
33859 Pl	IC 14538B DUAL MONOSTBL	PRECISION SMT SO16-. 150	MOTOROLA
	U1 U5		MC14538BDW
33772 P 2	IC LM393	DUAL COMPARATOR	NATIONAL
	U10	SMT S08-. 150	LM393M
33864 P 09	IC TTL LPS 74LS09	QUAD 2 INPUT POS ANGATE	MOTOROLA
	U11	SMT SO14-.150	SN74LS09D
$32878 \mathrm{P1}$	IC 68302	SMT PQFP-132	MOTOROLA
	U12		MC68302FC16C
34245 P 13	IC PRGMD PER 34245	GAL16V8B M/F 34290P1	
	U13		SEE ENG DWG
33854 P32	IC ALSMOS 74ALS32	QUAD 2-INPUT POS-ORGATE	NATIONAL
	U14	SMT SO14-. 150	DM74ALS 32 M
33703 P 04	IC ACTMOS 74ACT04	HEX INVERTER	NATIONAL
	U15	SMT SO14-.150	74ACT04SC
33854 P 08	IC ALSMOS 74ALS08	QUAD 2-INPUT AND-GATE	NATIONAL
	U16	SMT SO14-. 150	DM7 4ALS 08 M
33863 P2 44	IC HCTMOS 74 HCT 244	OCTAL BUFFER/LINE DRVR	MOTOROLA
	U17 U18 U19 U24	SMT SO20-. 300	MC74HCT244AD
	U39		
33860 P 1 *	IC 29F800BB	SMT TSOP48	AMD
	U2		AM29F800BB-90EC
33865 Pl	IC 88C681	SMT PLCC44	PHILLIPS
	U20		SCN2681TC1A44
34247 P 21	IC PRGMD PER 34247	GAL16V8D M/F 33866P1	
	U21		SEE ENG DWG
34248 P 22	IC PRGMD PER 34248	GAL16V8D M/F 33866P1	
	U22		SEE ENG DWG
33863 P 138	IC HCTMOS 74 HCT 138	3 TO 8 LINE DECODE/DMUX	MOTOROLA
	U23	SMT SO16-. 150	MC74HCT138AD
33863 P 245	IC HCTMOS 74 HCT 245	OCTAL BUS TRANSCVR	MOTOROLA
	U25 U38	SMT SO20-. 300	MC74HCT245AD
33861 P1	IC 68HC68T	SMT SOIC16-. 300	MOTOROLA
	U3		MC68HC68T1DW
33868 P 1	IC 2598 VOLTAGE REG	SMT	NATIONAL
	U4		LM2598-5.0
33858 P 1	IC 128 K X 8 STATIC RAM	100 NS	HITACHI
	U6 U7	SMT SOL32-. 500	HM628128BLFP-10
31414 P 3	XSTR NTWK ULN-2803A	18P DIP DARLINGTON	SPRAGUE
	U64 U69 U74	TESTED REPLD 0900-0132	ULN2803A
40029 P 4	VOLT REG +12V	TO-220 1 AMP	MOTOROLA
	U79		MC7812CP
33764 P 4	IC MAX214	QUAD RS-232 XMTR/RCVR	MAXIM
	U80	SMT SO28-. 300	MAX214CWI

Table 5-5. Processor-I/O PCB Subassembly ASC/2S-1000 (34250G1) (Page 5 of 5)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR/PART\#
33853P1	IC 490 RS-485 XMTR U81 U82	SMT SO8-. 150	LINEAR TECH LTC490CS8
33851 P1	$\begin{array}{llll}\text { IC } & \text { MMBZ15VDLT1 } \\ \text { U83 } & \text { U84 } & \text { U85 } & \text { U86 }\end{array}$	SMT SOT23	MOTOROLA MMBZ15VDLT1
43730 P2	IC MCT6 DUAL OPTO ISOL U91	8P DIP	MONSANTO MCT6
33737 P3	XTAL 32.768 KHz Y1	SMT MC-405	$\begin{aligned} & \text { EPSON } \\ & \text { MC-405-32.768K-A2 } \end{aligned}$
33737 P4	XTAL 14.7456MHZ Y2	SMT MA-505	$\begin{aligned} & \text { EPSON } \\ & \text { MA-505-14.745M-C2 } \end{aligned}$
33245 P 8	HEATSINK PLUG-IN TO-220 XU79		$\begin{aligned} & \text { AAVID } \\ & 576802 \mathrm{B0} 03100 \end{aligned}$
32289P1	JUMPER SHORTING XJP2 XJP3 XJP4 XJP5 XJ7 XJ8		AMP $531220-2$
56671 P 41	$\begin{aligned} & \text { STNDF SWAGE \#4 X . } 125 \\ & \text { M2 M3 } \end{aligned}$. 25 DIA BRS/NI	$\begin{aligned} & \text { UNICORP } \\ & \text { SS240-1-D-7 } \end{aligned}$
56671 P4	STNDF SWAGE \#4 X.469L XJ16	. 25 DIA BRS/NI	$\begin{aligned} & \text { UNICORP } \\ & \text { SS251-1-D-7 } \end{aligned}$
56671 P 42	$\begin{aligned} & \text { STNDF SWAGE \#4 X . } 250 \\ & \text { XJ13 XJ15 XJ17 } \end{aligned}$. 25 DIA BRS/NI	$\begin{aligned} & \text { UNICORP } \\ & \text { SS244-1-D-7 } \end{aligned}$
56671 P25	STNDF SWAGE \#2 X .38L XJ4	. 16 DIA BRS/NIC	UNICORP SS130-1-D-7
N57P5006C	SCRW \#2 X 3/8 PH SLT XJ4	STL CD MACH	
N404P8C	WSHR LK INT \#2 STL XJ4	CAD PLATED	
33395P3	SPCR PCB LKING .38L	1/4 TURN PLASTIC	HARTWELL HNST4-375-1
53048 P 12	TIE CABLE . 75 " DIA ST	BLACK	$\begin{aligned} & \text { DENNISON } \\ & 08-404 \end{aligned}$

Table 5.6. Processor I/O PCB Subassembly ASC/2S-2000 (34250G2)* (Page 1 of 6)

Table 5.6. Processor I/O PCB Subassembly ASC/2S-2000 (34250G2) (Page 2 of 6)

ECONOLITE	PRIMARY DESC/REF DESGN
$31769 \mathrm{P61}$	TRANSORB P6KE27A
	CR1 CR22 CR23
31769P59	TRANSORB P6KE6.8A
	CR14
31769 P 60	TRANSORB P6KE33A
	CR18 CR19
33870 P 1	DIODE FDLL4148
	CR2 CR12 CR13 CR15
	CR17 CR20
58064 P 12	DIODE 1N4763A
	CR2 4
32416 P 6	DIODE BRIDGE 1A 800V
	CR25
33831 P4	DIODE MBR0520 20V 1/2A
	CR3 CR5 CR11
33831 P3	DIODE MRB340 34V
	CR4 CR6 CR7 CR8
	CR10
58873P29	DIODE 1N5232B 5.6V 5\%
	CR9
55205P17	FUSE 3/4A 250V 3AG S/B
	F1
55205P19	FUSE 1A 250V 3AG S/B 3
	F2
32183P4	FUSE HLDR W/CARRIER
	XF1 XF2
$31912 \mathrm{P1}$	SPCR NYL . 50 ID X.760D
	XF1 XF2
57255P700	WIRE 22AWG BLK 19 STRD
	XF1 XF2
$32758 \mathrm{P1}$	INDUCTOR FERRITE BEAD
	FB1 FB2 FB3 FB4
31058P4	Conn CIRC 61S BOX MTG
	J10
31058P3	CONN CIRC 55S BoX MTG
	J11
31058 P 2	CONN CIRC 55P BoX MTG
	J12
31369 P 27	CONN D SUB 25S W/w
	J13
31369P26	CONN D SUB 15S W/W
	J15
31369P25	CONN D SUB 9P
	J17
58751P32	HDR 3 CKT LKG STRGHT
	J18
58751P14	WAFER POLARIZING 5 CKT
	J19
33852 P 68	CONN 68 PIN STRAIGHT
	J2
32158 P 113	HDR 13/26 CTR POL STR
	J3
32219P1	CONN DIN 32P R/A
	J4
32219P8	CONN DIN 32S STR
	J5
31535P1	WAFER 2 CKT
	J7 J8 TP1 TP2
	TP3

SECONDARY DESCRIPTION	MFGR/PART\#
25.7-28.4V	GEN INST
	P6KE27A
600W UNIDIRECTIONAL	MOTOROLA
6.45-7.14V	P6KE6.8A
600W UNIDIRECTIONAL	MOTOROLA
31.4-34.7V	P6KE33A
SMT D035	NATIONAL
	FDLL4148
1W ZENER	MOTOROLA
	1N4763A
4 PIN DIP	DIODES INC
	DB106 OR DF08
SCHOTTKY SMT CASE 403	MOTOROLA
	MBR0520LT1
SCHOTTKY SMT CASE 403	MOTOROLA
	MBRS340TS
500MW ZENER	MOTOROLA
REPLACES 58052P6	1N5232B
$1.25 \times .25$	LITTELFUSE
	313.750
1.25X. 25	LITTELFUSE
	313001
SOLDER TERM	SCHURTER
	FEU031.1659
. 18 THK 3 AG F/HLDR	SEASTROM
	5606-44-177
TYPE B/N 600V	
	SEE ENG SPEC
	TDK
	BF45-4002
D/SLDR CONT MIL-C-26482	CANNON
	KPT02E24-61S SPCL
D/SLDR CONT MIL-C-26482	CANNON
	KPT02E2255S SPCL
D/SLDR CONT MIL-C-26482	CANNON
	KPT02E22-55PDV
METAL SHELL	CINCH
	DBKL-25SUT
METAL SHELL	CINCH
	DAKL-15SUT
METAL SHELL	CINCH
	DEKL-09PUTI
. 156 CTRS W/LOCK GOLD	MOLEX
	26-61-4030
. 156 CTRS W/LOCK	AMP
	640388-5
. 050 PITCH	MOLEX
	15-92-1468
. 100 CTRS W/SHORT LATCH	HIROSE
	HIF3BAG-26PA-2.54DSA
W/W . 512 L	PANDUIT
	100-632-051
A/SD	PANDUIT
	100-632-432
. 100 CTRS	MOLEX
	22-03-2021

Table 5.6. Processor I/O PCB Subassembly ASC/2S-2000 (34250G2) (Page 3 of 6)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR / PART\#
31535 P 2	WAFER 3 CKT JP2 JP3 JP4 JP5	. 100 CTRS	MOLEX $22-03-2031$
33879 P 1	INDUCTOR POWER SMT L1	D03316	COILCRAFT D03316P-104
56668 P 3	CHOKE HASH 250MH L2		JW MILLER 5254
37129 P 2	DIODE LED BRIGHT RED LED1		GEN INST MV5752
33730 P 2	XSTR 2N3904 NPN Q1	SMT SOT23 GENERAL PURPOSE	ZETEX FMMT3904-NDA
33730 P 1	XSTR NPN 2222A Q2	SMT SOT23	MOTOROLA MMBT2222A
33872 P 103	RES 10 K 5% $1 / 16 \mathrm{~W}$ SMT R1 R6 R8 R26 R27 R32 R40 R44 R54 R55	0603	DALE CRCW0603103J
33872 P681	$\begin{aligned} & \text { RES } 6805 \% 1 / 16 \mathrm{~W} \text { SMT } \\ & \text { R10 } \end{aligned}$	0603	DALE CRCW0603681J
33872 P331	RES 330 5% $1 / 16 \mathrm{~W}$ SMT R11 R16 R20 R45 R46 R48 R51 R52	0603	DALE CRCW0603331J
54719 P 153	RES 22 MEG 1/4W 5\% R12	MIL-R-11F FIXED COMP	RC07GF226J
33873 P5491	RES 5.49K 1\% 1/16W SMT R14	0603	DALE CRCW06035491F
33873 P 1302	RES 13K 1\% 1/16W SMT R17	0603	DALE CRCW06031302F
33872 P 472	$\begin{array}{ll} \text { RES } & 4.7 \mathrm{~K} \quad 1 / 16 \mathrm{~W} \\ \text { R19 } & \text { R30 } \end{array}$	0603	DALE CRCW0603472J
33873 P 2212	$\begin{aligned} & \text { RES } 22.1 \mathrm{~K} \text { 1\% } 1 / 16 \mathrm{~W} \text { SMT } \\ & \mathrm{R} 2 \end{aligned}$	0603	DALE CRCW06032212F
33873 P 1002	$\begin{array}{cccc} \text { RES } & 10 \mathrm{~K} & 1 \% & 1 / 16 \mathrm{~W} \\ \text { R22 } & \text { R76 } & \text { R77 } & \text { R78 } \end{array}$	R79 0603	DALE CRCW06031002F
33872 P 105	$\begin{array}{ll} \text { RES } & 1 \mathrm{M} 5 \% \\ \text { R23 } & \text { R25 } \end{array}$	0603	DALE CRCW0603105J
33872 P 102	$\begin{aligned} & \text { RES 1K 5\% 1/16W SMT } \\ & \text { R24 } \end{aligned}$	0603	DALE CRCW0603102J
33872 P 221	RES $2205 \% 1 / 16 \mathrm{~W}$ SMT R28	0603	DALE CRCW0603221J
33872 P 473	$\begin{aligned} & \text { RES } 47 \mathrm{~K} 5 \% \text { 1/16W SMT } \\ & \text { R29 R34 } \end{aligned}$	0603	DALE CRCW0603473J
$33873 \mathrm{P9} 092$	$\begin{aligned} & \text { RES } 90.9 \mathrm{~K} 1 \% 1 / 16 \mathrm{~W} \text { SMT } \\ & \text { R3 } \end{aligned}$	0603	DALE CRCW06039092F
54582 P 5		FIXED COMP	A/BRADLEY EB1505
33825 P 000	RES ZERO OHM JUMPER R35	THICK FILM 0805	DALE CRCW080500J
33872 P 271	$\begin{aligned} & \text { RES } 2705 \% 1 / 16 \mathrm{~W} \text { SMT } \\ & \text { R36 } \end{aligned}$	0603	DALE CRCW063271J
33872 P 101	$\begin{array}{ccccc} \text { RES } & 100 & 5 \% & 1 / 16 \mathrm{~W} & \text { SMT } \\ \text { R37 } & \text { R42 } & \text { R47 } & \end{array}$	0603	DALE CRCW0603101J
33872 P 112	$\begin{aligned} & \text { RES } 1.1 \mathrm{~K} 5 \% 1 / 16 \mathrm{~W} \text { SMT } \\ & \text { R38 } \end{aligned}$	0603	DALE CRCW0603112J
33872 P 122	$\begin{array}{ll} \text { RES } & 1.2 \mathrm{~K} 5 \% \\ \text { R39 } & \text { R41 } \end{array}$	0603	DALE CRCW0603122J
33873 P 5112	$\begin{array}{llll} \text { RES } & 51.1 \mathrm{~K} & 1 \% & 1 / 16 \mathrm{~W} \\ \mathrm{R} 4 & \mathrm{R} 5 \end{array}$	0603	DALE CRCW06035112F
33872 P 000	$\begin{aligned} & \text { RES } 0 \text { OHM 5\% } 1 / 16 \mathrm{~W} \\ & \text { R81 } \end{aligned}$	SMT 0603	DALE CRCW0603000J

Table 5.6. Processor I/O PCB Subassembly ASC/2S-2000 (34250G2) (Page 4 of 6)

ECONOLITE P/N	PRIMARY DESC/REF DESGN
33711 P000	RES ZERO OHM JUMPER SMT
	R43 R60
33873 P 6813	RES 681K 1\% 1/16W SMT
	R49
33713P222	RES 2.2K 5\% 1/2W SMT
	R56
33875P241	RES 240 5\% 1W SMT
	R57 R58
33872 P753	RES 75K 5\% 1/16W SMT
	R63
33872 P 183	RES 18K 5\% 1/16W SMT
	R64
43654 P 2	RES 2.2 OHMS 5W
	R65 R67
33872 P152	RES 1.5K 5\% 1/16W SMT
	R68 R70 R71 R73
33872 P 121	RES 120 5\% 1/16W SMT
	R69 R72
33873P4493	RES 499K 1\% 1/16W SMT
	R7
31263P97	RES 10K 3W 5\% W/W
	R74 R75
33873P1003	RES 100K 1\% 1/16W SMT
	R9 R15 R18
43577 P3	RES NTWK 10K COM PIN
	RP1 RP2 RP25 RP26
	RP27 RP29 RP30 RP31
	RP32 RP33 RP34
32876P1	LOGIC LEVEL TRANS
	RP12 RP13 RP14 RP15
	RP16 RP17 RP18 RP19
	RP20 RP21 RP22 RP23
	RP2 4
43577P26	RES NTWK 10K COM PIN
	$\begin{array}{lllll}\text { RP3 RP4 } & \text { RP37 }\end{array}$
	RP39
31770 P 1	VARISTOR 55 JOULES
	RV1 RV2 RV3
33859 P 1	IC 14538B DUAL MONOSTBL
	U1 U5
33772 P 2	IC LM393
	U10
33864 P 09	IC TTL LPS 74LS09
	U11
32878P1	IC 68302
	U12
34245 P 13	IC PRGMD PER 34245
	U13
33854 P 32	IC ALSMOS 74ALS32
	U14
33703P04	IC ACTMOS 74ACT04
	U15
33854 P 08	IC ALSMOS 74ALS08
	U16

SECONDARY DESCRIPTION	MFGR/PART\#
THICK FILM 1206	KOA SPEER RM73Z2BT
0603	DALE
	CRCW06036813F
THICK FILM 2010	DALE
	CRCW2010222J
2512	DALE
	CRCW2512241J
0603	DALE
	CRCW0603753J
0603	DALE
	CRCW0603183J
WIRE WOUND	OHMITE
	95J2R2
0603	DALE
	CRCW0603152J
0603	DALE
	CRCW0603121J
0603	DALE
	CRCW0604993F
REPLACES 0500-0039	DALE
	CW2C-14-10K 5\%
0603	DALE
	CRCW0 6031003F
10 PIN SIP 9 RES 1W 2\%	BOURNS
REPLACES 0500-0213	4610X-101-103
SURFACE MTG CUSTOM	SPRAGUE
SO20-. 300	820C110N187
10 PIN 9 RES MOLDED	BOURNS
	4310R-101-103
$212 \mathrm{~V}-255 \mathrm{~V}$ METAL OXIDE	HARRIS
UL/CSA RECOGNIZED	V150LA20B
PRECISION SMT SO16-. 150	MOTOROLA
	MC14538BDW
DUAL COMPARATOR	NATIONAL
SMT S08-. 150	LM393M
QUAD 2 InPut pos AngAte	MOTOROLA
SMT SO14-.150	SN74LS09D
SMT PQFP-132	MOTOROLA
	MC68302FC16C
GAL16V8B M/F 34290P1	
	SEE ENG DWG
QUAD 2-INPUT POS-ORGATE	NATIONAL
SMT SO14-.150	DM74ALS32M
HEX INVERTER	NATIONAL
SMT SO14-. 150	74ACT04SC
QUAD 2-INPUT AND-GATE	NATIONAL
SMT SO14-.150	DM74ALS 08 M

Table 5.6. Processor I/O PCB Subassembly ASC/2S-2000 (34250G2) (Page 5 of 6)

ECONOLITE P/N	PRIMARY DESC/REF DESGN
33863P244	IC HCTMOS 74 HCT 244
	U17 U18 U19 U24
	U39 U59
33860 P1*	IC 29F800BB FLASH 8 MB
	U2
$33865 \mathrm{P1}$	IC 88C681
	U20
34247 P21	IC PRGMD PER 34247
	U21
34248 P22	IC PRGMD PER 34248
	U22
33863 P 138	IC HCTMOS $74 \mathrm{HCT138}$
	U23
33863P245	IC HCTMOS 74 HCT 245
	U25 U38
33862 P259	IC HCMOS $74 \mathrm{HC259}$
	U31 U32 U33 U34
	U35 U36 U37 U44
	U45 U46 U61 U62
33861 P1	IC 68HC68T
	U3
33868 P 1	IC 2598 VOLTAGE REG
	U4
33862 P251	IC HCMOS $74 \mathrm{HC251}$
	U51 U52 U53 U54
	U55 U56 U58 U60
33858 P 1	IC 128 K X 8 STATIC RAM
	U6 U7
31414 P 3	XSTR NTWK ULN-2803A
	U64 U67 U68 U69
	U70 U71 U72 U73
	U74 U75 U76 U77
	U78
40029P4	VOLT REG +12V
	U79
33764 P 4	IC MAX214
	U80
33853P1	IC 490 RS-485 XMTR
	U81 U82
33851 P1	IC MMBZ15VDLT1
	U83 U84 U85 U86
	U87 U88 U89 U90
43730P2	IC MCT6 DUAL OPTO ISOL
	U91
33737 P 3	XTAL 32.768 KHz
	Y1
33737 P 4	XTAL 14.7456 MHZ
	Y2
33245 P 8	HEATSINK PLUG-IN TO-220
	XU79
32289P1	JUMPER SHORTING
	XJP2 XJP3 XJP4 XJP5
	XJ7 XJ8

SECONDARY DESCRIPTION	MFGR / PART\#
OCTAL BUFFER/LINE DRVR	MOTOROLA
SMT SO20-. 300	MC74HCT244AD
SMT TSOP48	AMD
	AM29F800BB-90EC
SMT PLCC44	PHILLIPS
	SCN2681TC1A44
GAL16V8D M/F 33866P1	
	SEE ENG DWG
GAL16V8D M/F 33866P1	
	SEE ENG DWG
3 TO 8 LINE DECODE/DMUX	MOTOROLA
SMT SO16-. 150	MC74HCT138AD
OCTAL BUS TRANSCVR	MOTOROLA
SMT SO20-. 300	MC74HCT245AD
8 BIT ADDRESSABLE LATCH	MOTOROLA
SMT SO16-. 150	MC74HC259D
SMT SOIC16-. 300	MOTOROLA
	MC68HC68T1DW
SMT	NATIONAL
	LM2598-5.0
1 OF 8 DATA SEL/MPLEX	MOTOROLA
SMT SO16-. 150	MC74HC251D
100 NS	HITACHI
SMT SOL32-. 500	HM628128BLFP-10
18P DIP DARLINGTON	SPRAGUE
TESTED REPLD 0900-0132	ULN2803A
TO-220 1 AMP	MOTOROLA
	MC7812CP
QUAD RS-232 XMTR/RCVR	MAXIM
SMT SO28-. 300	MAX214CWI
SMT SO8-. 150	LINEAR TECH
	LTC490CS8
SMT SOT23	MOTOROLA
	MMBZ15VDLT1
8 P DIP	MONSANTO
	MCT6
SMT MC-405	EPSON
	MC-405-32.768K-A2
SMT MA-505	EPSON
	MA-505-14.745M-C2
	AAVID
	576802B03100
	AMP
	531220-2

Table 5.6. Processor I/O PCB Subassembly ASC/2S-2000 (34250G2) (Page 6 of 6)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR / PART\#
56671 P41	StNDF SWAGE \#4 X . 125	. 25 DIA BRS/NI	UNICORP
	M2 M3		SS240-1-D-7
56671P4	STNDF SWAGE \#4 X.469L	. 25 DIA BRS/NI	UNICORP
	XJ10 XJ11 XJ12		SS251-1-D-7
56671P42	STNDF SWAGE \# 4 X . 250	. 25 DIA BRS/NI	UNICORP
	XJ13 XJ15 XJ17		SS244-1-D-7
56671 P25	STNDF SWAGE \#2 X .38L	. 16 DIA BRS/NIC	UNICORP
	XJ4		SS130-1-D-7
N57P5006C	SCRW \#2 X 3/8 PH SLT	STL CD MACH	
	XJ4		
N404P8C	WSHR LK INT \#2 STL	CAD PLATED	
	XJ4		
33395P3	SPCR PCB LKING .38L	1/4 TURN PLASTIC	HARTWELL
			HNST4-375-1
53048 P 12	TIE CABLE . $75^{\prime \prime}$ DIA STD	BLACK	DENNISON
			08-404

Table 5-7. Processor I/O PCB Subassembly ASC/2S-2100 (34250G3)* (Page 1 of 6)

Table 5-7. Processor I/O PCB Subassembly ASC/2S-2100 (34250G3) (Page 2 of 6)

ECONOLITE P/N	PRIMARY DESC/REF DESGN
58064 P 12	DIODE 1N4763A
	CR2 4
32416P6	DIODE BRIDGE 1A 800V
	CR25
33831P4	DIODE MBR0520 20V 1/2A
	CR3 CR5 CR11
33831 P 3	DIODE MRB340 34V
	CR4 CR6 CR7 CR8
	CR10
58873P29	DIODE 1N5232B 5.6V 5\%
	CR9
55205P17	FUSE 3/4A 250V 3AG S/B
	F1
55205P19	FUSE 1A 250V 3AG S/B 3
	F2
32183P4	FUSE HLDR W/CARRIER
	XF1 XF2
31912 P 1	SPCR NYL . 50 ID X.760D
	XF1 XF2
57255P700	WIRE 22AWG BLK 19 STRD
	XF1 XF2
32758P1	INDUCTOR FERRITE BEAD
	FB1 FB2 FB3 FB4
31058P4	CONN CIRC 61S BOX MTG
	J10
31058P3	CONN CIRC 55S BoX MTG
	J11
31058 P 2	CONN CIRC 55P BoX MTG
	J12
31369 P 27	CONN D SUB 25S W/W
	J13
31369P28	CONN D SUB 25P W/W
	J14
31369P26	CONN D SUB 15S W/W
	J15
31369P25	CONN D SUB 9P
	J17
58751P32	HDR 3 CKT LKg StRght
	J18
58751P14	WAFER POLARIZING 5 CKT
	J19
33852 P 68	CONN 68 PIN STRAIGHT
	J2
32158 P 113	HDR 13/26 CTR POL STR
	J3
32219P1	CONN DIN 32P R/A
	J4
32219P8	CONN DIN 32S STR
	J5
33745 P 2105	CAPAC 1MF 16V
	C9 C10 C25
31769P61	TRANSORB P6KE27A
	CR1 CR22 CR23
31769 P 59	TRANSORB P6KE6.8A
	CR14
31769 P 60	TRANSORB P6KE33A
	CR18 CR19

SECONDARY DESCRIPTION	MFGR/PART\#
1w zener	MOTOROLA
	1N4763A
4 PIN DIP	DIODES INC
	DB106 OR DF08
SCHOTTKY SMT CASE 403	MOTOROLA
	MBR0520LT1
SCHOTTKY SMT CASE 403	MOTOROLA
	MBRS340TS
500MW ZENER	MOTOROLA
REPLACES 58052P6	1N5232B
1.25 X . 25	LITTELFUSE
	313.750
1.25X. 25	LITTELFUSE
	313001
SOLDER TERM	SCHURTER
	FEU031.1659
. 18 THK 3 AG F/HLDR	SEASTROM
	5606-44-177
TYPE B/N 600V	
	SEE ENG SPEC
	TDK
	BF45-4002
D/SLDR CONT MIL-C-26482	CANNON
	KPT02E24-61S SPCL
D/SLDR CONT MIL-C-26482	CANNON
	KPT02E2255S SPCL
D/SLDR CONT MIL-C-26482	CANNON
	KPT02E22-55PDV
METAL SHELL	CINCH
	DBKL-25SUT
METAL SHELL	CINCH
	DBKL-25PUTI
METAL SHELL	CINCH
	DAKL-15SUT
METAL SHELL	CINCH
	DEKL-09PUTI
. 156 CTRS W/LOCK GOLD	MOLEX
	26-61-4030
. 156 CTRS W/LOCK	AMP
	640388-5
. 050 PITCH	MOLEX
	15-92-1468
. 100 CTRS W/SHORT LATCH	HIROSE
	HIF3BAG-26PA-2.54DSA
W/W.512L	PANDUIT
	100-632-051
A/SD	PANDUIT
	100-632-432
SMT 3216 20\% TANT	KEMET
	T491A105M016AS
25.7-28.4V	GEN INST
	P6KE27A
600W UNIDIRECTIONAL	MOTOROLA
6.45-7.14V	P6KE6.8A
600W UNIDIRECTIONAL	MOTOROLA
31.4-34.7V	P6KE33A

Table 5-7. Processor I/O PCB Subassembly ASC/2S-2100 (34250G3) (Page 3 of 6)

Table 5-7. Processor I/O PCB Subassembly ASC/2S-2100 (34250G3) (Page 4 of 6)

SECONDARY DESCRIPTION 0603	MFGR/PART\#
	DALE
	CRCW063271J
0603	DALE
	CRCW0603101J
0603	DALE
	CRCW0603112J
0603	DALE
	CRCW0603122J
0603	DALE
	CRCW06035112F
THICK FILM 1206	KOA SPEER
	RM73Z2BT
0603	DALE
	CRCW06036813F
THICK FILM 2010	DALE
	CRCW2010222J
2512	DALE
	CRCW2512241J
0603	DALE
	CRCW0603222J
2512	DALE
	CRCW2512102J
0603	DALE
	CRCW0603753J
0603	DALE
	CRCW0603183J
WIRE WOUND	OHMITE
	95J2R2
0603	DALE
	CRCW0603152J
0603	DALE
	CRCW0603121J
0603	DALE
	CRCW06034993F
REPLACES 0500-0039	DALE
	CW2C-14-10K 5\%
0603	DALE
	CRCW06031003F
10 PIN SIP 9 RES 1W 2\% REPLACES 0500-0213	BOURNS
	4610X-101-103
SURFACE MTG CUSTOM$\text { SO20-. } 300$	SPRAGUE
	820C110N187
10 PIN 9 RES MOLDED	BOURNS
	4310R-101-103
$212 \mathrm{~V}-255 \mathrm{~V}$ METAL OXIDE	HARRIS
UL/CSA RECOGNIZED	V150LA20B

Table 5-7. Processor I/O PCB Subassembly ASC/2S-2100 (34250G3) (Page 5 of 6)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR / PART\#
33859P1	IC $14538 B$ DUAL MONOSTBL U1 U5	PRECISION SMT SO16-. 150	MOTOROLA MC14538BDW
33772 P 2	$\begin{aligned} & \text { IC LM393 } \\ & \text { U10 } \end{aligned}$	DUAL COMPARATOR SMT S08-. 150	NATIONAL LM393M
33864 P 09	IC TTL LPS 74LS09 U11	QUAD 2 INPUT POS ANGATE SMT SO14-. 150	MOTOROLA SN74LS09D
32878P1	$\begin{aligned} & \text { IC } 68302 \\ & \text { U12 } \end{aligned}$	SMT PQFP-132	MOTOROLA MC68302FC16C
34245 P13	IC PRGMD PER 34245 U13	GAL16V8B M/F 34290P1	SEE ENG DWG
33854 P32	IC ALSMOS 74ALS32 U14	QUAD 2-INPUT POS-ORGATE SMT SO14-. 150	NATIONAL DM74ALS32M
33703P04	IC ACTMOS 74ACT04 U15	HEX INVERTER SMT SO14-. 150	NATIONAL 74ACT04SC
33854 P 08	IC ALSMOS 74ALS08 U16	QUAD 2-INPUT AND-GATE SMT SO14-. 150	NATIONAL DM74ALS08M
33863P244	IC HCTMOS 74HCT244 U17 U18 U19 U24 U30 U39 U57 U59	OCTAL BUFFER/LINE DRVR SMT SO20-. 300	MOTOROLA MC74HCT244AD
33860 P1*	IC 29F800BB FLASH 8 MB U2	SMT TSOP48	```AMD AM29F800BB-90EC```
33865 P 1	$\begin{aligned} & \text { IC } 88 \mathrm{C} 681 \\ & \text { U20 } \end{aligned}$	SMT PLCC44	PHILLIPS SCN2681TC1A44
34247 P 21	IC PRGMD PER 34247 U21	GAL16V8D M/F 33866P1	SEE ENG DWG
34248 P 22	IC PRGMD PER 34248 U22	GAL16V8D M/F 33866P1	SEE ENG DWG
33863P138	IC HCTMOS 74 HCT138 U23	3 TO 8 LINE DECODE/DMUX SMT SO16-. 150	MOTOROLA MC74HCT138AD
33863P245	$\begin{aligned} & \text { IC HCTMOS } 74 \text { HCT245 } \\ & \text { U25 U38 } \end{aligned}$	OCTAL BUS TRANSCVR SMT SO20-. 300	MOTOROLA MC74HCT245AD
33862P259	IC HCMOS 74HC259 U26 U27 U28 U29 U31 U32 U33 U34 U35 U36 U37 U44 U45 U46 U61 U62	8 BIT ADDRESSABLE LATCH SMT SO16-. 150	MOTOROLA MC74HC259D
33861 P1	$\begin{aligned} & \text { IC } 68 \mathrm{HC} 68 \mathrm{~T} \\ & \text { U3 } \end{aligned}$	SMT SOIC16-. 300	MOTOROLA MC68HC68T1DW
33868 P 1	IC 2598 VOLTAGE REG U4	SMT	NATIONAL LM2598-5.0
33862 P 251	IC HCMOS $74 \mathrm{HC251}$ U40 U41 U42 U43 U47 U48 U49 U50 U51 U52 U53 U54 U55 U56 U58 U60	1 OF 8 DATA SEL/MPLEX SMT SO16-. 150	MOTOROLA MC74HC251D
33858P1	IC 128 K X 8 STATIC RAM U6 U7	$\begin{aligned} & 100 \text { NS } \\ & \text { SMT SOL32-. } 500 \end{aligned}$	HITACHI HM628128BLFP-10
31414 P 3	XSTR NTWK ULN-2803A U63 U64 U65 U66 U67 U68 U69 U70 U71 U72 U73 U74 U75 U76 U77 U78	18P DIP DARLINGTON TESTED REPLD 0900-0132	$\begin{aligned} & \text { SPRAGUE } \\ & \text { ULN2803A } \end{aligned}$
40029P4	$\begin{aligned} & \text { VOLT REG +12V } \\ & \text { U79 } \end{aligned}$	TO-220 1 AMP	MOTOROLA MC7812CP

Table 5-7. Processor I/O PCB Subassembly ASC/2S-2100 (34250G3) (Page 6 of 6)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR / PART\#
33764 P 4	IC MAX214	QUAD RS-232 XMTR/RCVR	MAXIM
	U80	SMT SO28-. 300	MAX214CWI
33853 Pl	IC 490 RS-485 XMTR	SMT SO8-. 150	LINEAR TECH
	U81 U82		LTC490CS8
33851 P 1	IC MMBZ15VDLT1	SMT SOT23	MOTOROLA
	U83 U84 U85 U86		MMBZ15VDLT1
	U87 U88 U89 U90		
43730 P 2	IC MCT6 DUAL OPTO ISOL	8 P DIP	MONSANTO
	U91		MCT6
33737 P 3	XTAL 32.768 KHZ	SMT MC-405	EPSON
	Y1		MC-405-32.768K-A2
33737 P 4	XTAL 14.7456MHZ	SMT MA-505	EPSON
	Y2		MA-505-14.745M-C2
33245 P 8	HEATSINK PLUG-IN TO-220		AAVID
	XU79		576802B03100
32289 Pl	JUMPER SHORTING		AMP
	XJP2 XJP3 XJP4 XJP5		531220-2
	XJ7 XJ8		
56671 P41	STNDF SWAGE \# 4 X . 125	. 25 DIA BRS/NI	UNICORP
	M2 M3		SS240-1-D-7
56671 P4	STNDF SWAGE \# 4 X.469L	. 25 DIA BRS/NI	UNICORP
	XJ10 XJ11 XJ12		SS251-1-D-7
56671 P42	STNDF SWAGE \# 4 X . 250	. 25 DIA BRS/NI	UNICORP
	XJ13 XJ14 XJ15 XJ17		SS244-1-D-7
56671 P25	STNDF SWAGE \#2 X .38L	. 16 DIA BRS/NIC	UNICORP
	XJ4		SS130-1-D-7
56671 P37	STNDF SWAGE \# 6 X . 406	. 25 DIA BRS/NI	UNICORP
	XJ9		SS359-1-D-7
N57P5006C	SCRW \#2 X 3/8 PH SLT	STL CD MACH	
	XJ4		
N404P8C	WSHR LK INT \#2 STL	CAD PLATED	
	XJ4		
33395 P 3	SPCR PCB LKING . 38L	1/4 TURN PLASTIC	HARTWELL
			HNST4-375-1
53048 P 12	TIE CABLE . 75" DIA STD	BLACK	DENNISON
			08-404

Table 5-8. Processor I/O PCB Subassembly ASC/2S-2100 Exp W/Olap (34250G4)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR / PART\#
34250G3	PCA PROCESSOR I/O	CONTROLLER TYPE 2 EXP	
56157 P 6	```CONN E/CARD 22/44 J6```	. 156 CTR R/ANGLE	MICROPLASTICS MP0156-22-DW8R (.375)
56157 P 101	$\begin{aligned} & \text { KEY } \\ & \text { XJ6 } \end{aligned}$	USE W/56157P5, P6	MICROPLASTICS $04-0004-000$
N57P9012C	SCREW \#4 X 3/4 PH S XJ6	STL CD MACH	
58229 P 3	$\begin{aligned} & \text { SPCR .25D X . 25L } \\ & \text { XJ6 } \end{aligned}$. 140 DIA THRU AL	AMATOM $9224-A 140-10$
N238P9B	HEX NUT/LK WSHR \#4 XJ6		

Table 5-9. Telemetry PCB Assembly (34090G1) (page 1 of 4)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR / PART\#
34092 P 1	PCB TELEM 2 \& 4 WIRE	ASC / 2	
56829 P 4	HNDLE PCB 1.25L HDW MTG		$\begin{aligned} & \text { BIVAR } \\ & \text { CP-3 } \end{aligned}$
54552 P 5	RIVET 3/32 X .34L O/HD	AL POP	CHERRY AAP-34
N402P3C	WSHR FL \#2 NAR STL	CAD PLATED	
56182 P 25	$\begin{array}{lcr} \text { RES } 10 \text { OHM } 2 \mathrm{~W} & 5 \% & \mathrm{~W} / \mathrm{W} \\ \text { R1 } & \text { R3 } & \text { R28 } \\ \text { R29 } \end{array}$		IRC
			SPH-10-5\%
54719 P37	RES 330 OHM 1/4W 5\%	MIL-R-11F FIXED COMP	
	R9 R31		RC07GF331J
54719 P 41	RES 470 OHM 1/4W 5\%	MIL-R-11F FIXED COMP	
	R60 R61 R62 R63		RC07GF471J
54719 P 49	RES 1K 1/4W 5\%	MIL-R-11F FIXED COMP	
	R10		RC07GF102J
54719 P59	RES 2.7K 1/4W 5\%	MIL-R-11F FIXED COMP	
	R32 R33		RC07GF272J
54719 P 65	RES 4.7K 1/4W 5\%	MIL-R-11F FIXED COMP	
	R27		RC07GF472J
54719 P 73	RES 10K 1/4W 5\%	MIL-R-11F FIXED COMP	
	R8 R12 R14 R15		RC07GF103J
	R37 R45 R46		
54719 P 82	RES 24K 1/4W 5\%	MIL-R-11F FIXED COMP	
	R59		RC07GF243J
31489 P 126	RES 200 OHM 1/8W 1\%R7		
			MF55C2000F
31489 P 163	RES 487 OHM 1/8W 1\%R18		
			MF55C4870F
57250 P16	WIRE 22AWG SOLID	BUS TINNED MIL-W-3861/1TYPE S, QQ-W-343, ASTM-B3	
	XR58		SEE ENG SPEC
31489 P 209	RES 1.47K 1/8W 1\%		
	R48		MF55C1471F
31489 P 213	RES $1.62 \mathrm{KOHM} \mathrm{1/8W} 1 \%$R36		
			MF55C1621F
31489 P 222	RESR47		
			MF55C2001F
31489 P 234	RES $2.67 \mathrm{KOHM} \mathrm{1/8W} 1 \%$R39		
			MF55C2671F
31489 P261	RES 5.11K OHM 1/8W 1\%		
	R19 R30		MF55C5111F
31489 P 265	RES 5.62K OHM 1/8W 1\%		
	R67		MF55C5621F
31489 P 274	RES 6.98K OHM 1/8W 1\%		
	R65		MF55C6981F
31489 P 331	RES 27.4K OHM 1/8W 1\%		
	R21		MF55C2742F
31489 P 307	RES 15.4K OHM 1/8W 1\%		
	R68		MF55C1542F
31489 P 289	RES 10K OHM 1/8W 1\%		
	R38		MF55C1002F
31489 P 296	RES 11.8K OHM 1/8W 1\%		
	R64		MF55C1182F
31489 P 302	RES 13.7K OHM 1/8W 1\%		
	R55		MF55C1372F

Table 5-9. Telemetry PCB Assembly (34090G1) (page 2 of 4)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR / PART\#
31489 P 306	RES 15K OHM 1/8W 1\%		
	R2 R5 R11 R43		MF55C1502F
31489 P 311	RES 16.9K OHM 1/8W 1\%		
	R56		MF55C1692F
31489 P 316	RES 19.1K OHM 1/8W 1\%		
	R50		MF55C1912F
31489 P 321	RES 21.5K OHM 1/8W 1\%		
	R41		MF55C2152F
31489 P336	RES 30.9K 1/8W 1\%		
	R49		MF55C3092F
31489 P 337	RES 31.6K 1/8W 1\%		
	R4 R17		MF55C3162F
31489 P 361	RES 56.2 K OHM 1/8W 1\%		
	R16		MF55C5622F
31489 P 364	RES 60.4K OHM 1/8W 1\%		
	R34		MF55C6042F
31489 P373	RES 75K OHM 1/8W 1\%		
	R42		MF55C7502F
31489 P 385	RES 100K OHM 1/8W 1\%		
	R51		MF55C1003F
31489 P 389	RES 110K 1/8W 1\%		
	R13		MF55C1103F
31489 P 400	RES 143K OHM 1/8W 1\%		
	R66		MF55C1433F
$31489 P 405$	RES 162K 1/8W 1\%		
	R6		MF55C1623F
31489 P 434	RES 475K OHM 1/8W 1\%		
	R44		MF55C4753F
31489 P 435	RES 511K 1/8W 1\%		
	R57		MF55C5113F
31489 P 454	RES 806K OHMS 1/8W 1\%		
	R26		MF55C8063F
31489 P353	RES 46.4K 1/8W 1\%		
	R40		MF55C4642F
31489 P 258	RES 4.75K OHM 1/8W 1\%		
	R52 R53		MF55C4751F
31489 P 275	RES 7.15K OHM 1/8W 1\%		
	R54		MF55C7151F
58454 P 34	CAPAC CERM . 015 MF 50 V	5\% COG	MURATA
	C27		RPE113COG153J50V
58454 P 35	CAPAC CERM . 0022 MF 50 V	5\% COG	MURATA
	C31		RPE121COG222J50V
58454 P36	CAPAC CERM . 022 MF 50 V	5\% COG	MURATA
	C21 C24		RPE114COG223J50V
58454 P 37	CAPAC CERM . 0068 MF 50 V	5\% COG	MURATA
	C11		RPE113COG68250V
58454 P 38	CAPAC CERM . 1MF 50V	10\% X7R	MURATA
	C23		RPE122X7R104K50V
58454 P 39	CAPAC CERM . 22 MF 50 V	10\% XR7	MURATA
	C16 C30		RPE113X7R224K50V
58454 P 40	CAPAC CERM . 047 MF 50 V	10\% X7R	MURATA
	C13		RPE122X7R473K50V
58454 Pl	CAPAC CERM . 1MF 50V	20\%	MURATA ERIE
			RPE122Z54104M50V

Table 5-9 Telemetry PCB Assembly (34090G1) (page 3 of 4)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR / PART\#
32082P2	CAPAC TANT 2.2MF 20V	10\%	SPRAGUE
	C1 C2 C3 C4	REPLACES 0400-0097	199D225X9025AE3
	C12		
58873P1	DIODE 1N5233B 6V 5\%	500MW ZENER	MOTOROLA
	CR1 CR2 CR3 CR4		1N5233B
33214 P 1	DIODE LED RED	DIFFUSED T-1 3/4	HP
	DS1 DS2 DS3 DS4	HIGH EFFICIENCY	HLMP-3301
58053P2	DIODE 1N4148		NATL
	CR6 CR7		1N4148
31626P2	DIODE 1N5817 20V	RECT SCHOTTKY PWR	MOTOROLA
	CR5		1N5817
32219P16	CONN DIN 32S RA	W/BOARD LOCKS	PANDUIT
	J1		130-632-533B
31535P1	WAFER 2 CKT	. 100 CTRS	MOLEX
	JP8 JP9 TP1		22-03-2021
31535P2	WAFER 3 CKT	. 100 CTRS	MOLEX
	JP1 JP2 JP3 JP4		22-03-2031
	JP5 JP6 JP7		
32099P1	XSTR NPN 2N2222		MOTOROLA
	Q1 Q2		2N2222
31872 P 1	THERMISTOR NTC 10K		KETEMA
	RT1		1DC103H-EC-24
40057 P 10	VARISTOR 3 JOULES	14CV-18V METAL OXIDE	PANASONIC
	RV1 RV2		ERZ-C14DK180
$58874 \mathrm{P9}$	POTEN 50K . 5W 10\% CRMT	25 TRN PC MTG	BOURNS
	R20 R22 R23 R24		3299W-1-503
$58874 \mathrm{P16}$	POTEN 10K . 5W 10\% CRMT	25 TRN PC MTG	BOURNS
	R25		3299W-1-103
58583P2	XFMR TELE COUPLING		PREMIER MAGNETICS
	T1		TSD-544
58583P3	XFMR ISOLATION		PREMIER MAG
	T2		TSD-545
31397 Pl	IC LM339 VOLT COMP QUAD		MOTOROLA
	U7		LM339P
31495P1	IC XR2206 MONO FUNC GEN		EXAR
	U3		XR2206CP
31495P2	IC XR2211 FSK DEMOD		EXAR
	U8		XR2211P
31938P3	IC OP-AMP-QUAD 324	LOW POWER	MOTOROLA
	U9		LM324N
$31938 \mathrm{P1}$	IC OP AMP 741	8P DIP	MOTOROLA
	U6		MC1741CP1
32529P125	IC HCMOS 74 HCl 25	QUAD BUS BUFFER	TEXAS INST
	U1	W/ 3 State outputs	SN74HC125N
32529P4051	IC HCMOS $74 \mathrm{HC4051}$	8-CHANNEL ANALOG MULTI-	MOTOROLA
	U2	PLEXER/DEMULTIPLEXER	MC74HC4051AN
43730 P 2	IC MCT6 DUAL OPTO ISOL	8P DIP	MONSANTO
	U4 U5		MCT6
58454 P 33	CAPAC CERM . 01 MF 50V	5\% COG	MURATA
	C18 C19 C20 C22		RPE113COG103J50V
	C28 C29 C32 C33		
58454 P 3	CAPAC CERM . 01 MF 50 V	20\%	SPRAGUE
	C5 C6 C7 C8		1C10ZU103M050B
	C9 C14 C17		

Table 5-9 Telemetry PCB Assembly (34090G1) (page 4 of 4)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR/PART\#
$31913 P 2$	VOLT REG +9V	T0-92	NATIONAL
$32289 P 1$	U11		LM78L09ACZ
	JUMPER SHORTING	AMP	

Table 5-10. RS-232 Telemetry PCB Assembly (33525G1) (Page 1 of 1)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR / PART\#
33527 Pl	PWB CAB RS232 TEL INTF	ASC / 2	
			SEE ENG SPEC
32082 P 18	CAPAC TANT 10MF 35V	10\% DIPPED RADIAL	SPRAGUE
	C 1 C 2 C 3		199D106X9035BE2
58454 P 3	CAPAC CERM . 01 MF 50 V	20\%	SPRAGUE
	C4 C5 C6		1C10ZU103M050B
44076 P 12	CAPAC CERM 47PF 200V	10\%	
	$\mathrm{C7}$ C9 C10 C11		CK05BX470K
	C12 C13		
58053 P 2	DIODE 1N4148	REPLACES 0600-0026	NATL
	CR1 CR2 CR3 CR5		1N4148
33214 PI	DIODE LED RED	DIFFUSED T-1 3/4	HP
	DS1 DS2 DS3	HIGH EFFICIENCY	HLMP-3301
32099 P 1	XSTR NPN 2N2222		MOTOROLA
	Q1		2N2222
54719 P 41	RES 470 OHM 1/4W 5\%	MIL-R-11F FIXED COMP	
	R2 R3 R4 R5		RC07GF471J
31283 P 105	IC TTL 1488	QUAD LINE DRVR	NATIONAL
	U1		DS1488N
31283 P 106	IC TTL 1489	QUAD LINE RCVR	NATIONAL
	U2		DS1489N
32219 P 16	CONN DIN 32S R/A	W/BD LK	PANDUIT
	J1	2 PER	100-632-533B
32740 P 1	SWITCH 6PDT	PC DIP	ALCO
	SW1		ASF62
31535 P 2	WAFER 3 CKT	.100 CTRS	MOLEX
	JP1 JP2 JP3 JP4		22-03-2031
56829 P 4	HNDLE PCB 1.25L HDW MTG		BIVAR
			CP-3
54552 P 5	RIVET 3/32 X .34L O/HD	AL POP	CHERRY
		REPLACES 40418 P 100	AAP-34
N402P3C	WSHR FL \#2 NAR STL	CAD PLATED	
32289 P 1	JUMPER SHORTING		AMP
			390088-2
$54719 \mathrm{P9} 0$	RES 51K 1/4W 5\%	MIL-R-11F FIXED COMP	
	R1 R7 R8		RC07GF513J
54719 P 57	RES 2.2K 1/4W 5\%	MIL-R-11F FIXED COMP	
	R6		RC07GF222J

Table 5-11. Data Module PCB Assembly (32845G2) (Page 1 of 1)

ECONOLITE P/N	PRIMARY DESC/REF DESGN	SECONDARY DESCRIPTION	MFGR/PART\#
32847 P 1	PCB DATA MOD ASC/2	C/SD C32846S 32848AW	
			SEE ENG SPEC
32082P1	CAPAC TANT 1MF 35V	10\% DIPPED RADIAL	SPRAGUE
	C1		199D105X9035AE3
58454P3	CAPAC CERM .01MF 50V	20\%	SPRAGUE
	C2		1C10ZU103M050B
32219 P 7	CONN DIN 32P STR	A/SD	PANDUIT
	DMP 6		100-632-133
32849 P 1	IC EEPROM 28 C 256	256K X 8 BIT ELECTRIC	ATMEL
	U1	ERASABLE PROM 90-200NS	AT28C256-20PC
31260 P 5	SOCKET 28P IC MACH CONT	AUTO INSERT	ROB NUGENT
	XU1		ICE-286-SD2-TG

SCHEMATICS AND ASSEMBLY DRAWINGS

Schematics and assembly drawings for the controller are listed below in the order that they appear in this section. These are subject to revision due to design changes made after the revision date of this manual. Contact Econolite if revised drawings are required.

Schematic Number

34251
34091
33526
32846
Drawing Number
34240
34250
34280
34090
33525
32845

Description

Processor I/O Module
Telemetry Module
RS-232 Telemetry
Data Module

Description

ASC/2S Controller
Processor I/O Interface
Power Supply
Telemetry Module
RS-232 Telemetry Interface
Data Module

The ASC/2S has the capability to switch between Data Communication Equipment (DCE) and Data Terminal Equipment (DTE) operation. To talk directly to a Personal Computer with a standard cable, the controller should be set into the DCE mode. This makes the controller appear to the PC as a modem. When attaching a serial printer or modem to the controller, set the controller to the DTE mode. When connecting two controllers together for data transfer, set one controller to DTE and the other to DCE.

The controller is switched between mode via either jumper JP4 [34251,7,2,B] or through the user interface on the PORT 2 configuration screen. Set JP4 to the left hand position for DCE mode and the right hand position for DTE mode.

The Terminal port uses the XON / XOFF protocol for device to device handshaking. In addition to correct cable and jumper connections, the TERMINAL PORT page of the CONFIGURATION submenu must be correctly programmed before data transfer occurs.

The following NULL MODEM cable diagrams are provided for reference only. The cables are constructed to mate with the terminal interface on the I/O Interface modules.

Figures $\mathrm{A}-1$ and $\mathrm{A}-2$ represent configurations for $\mathrm{ASC} / 2$ to $\mathrm{ASC} / 2$ communication. Figure $\mathrm{A}-2$ illustrates the minimum cable for both controller to controller and controller to printer communication. Figure A-3 illustrates the minimum cable to attach an ASC/2 to a laptop with a DB-9 connector.

CONTROLLER TO CONTROLLER	
CABLE DIAGRAM	
DB25P CONNECTOR DB25P PORT2 CONNECTOR	PORT2

CONTROLLER TO CONTROLLER CABLE DIAGRAM (MINIMUM CABLE)

DB25P

CONNECTOR PORT2

() ()!)!)!)!)!)!)!)!) 5

FIGURE A-1
FIGURE A-2

PIN LISTS/INTERFACE CONNECTORS

CONNECTOR A			CONNECTOR B			CONNECTOR C	
55 Pin (Plug) Type \#22-55P			55 Pin (Socket) Type \#22-55S			61 Pin (Socket) Type \#24-61S	
PIN	FUNCTION	1/O	PIN	FUNCTION	$\underline{1 / \mathrm{O}}$	PIN	FUNCTION
A	Fault Monitor	[O]	A	N1 Phase Next	[O]	A	Status Bit A (Ring 2)
B	+24 VDC External	[O]	B	Preempt 2 Detector	[I]	B	Status Bit B (Ring 2)
C	Voltage Monitor	[O]	C	N2 Phase Next	[O]	C	N8 Don't Walk
D	N1 Red	[0]	D	N3 Green	[O]	D	N8 Red
E	N1 Don't Walk	[O]	E	N3 Yellow	[O]	E	N7 Yellow
F	N2 Red	[O]	F	N3 Red	[O]	F	N7 Red
G	N2 Don't Walk	[O]	G	N4 Red	[O]	G	N6 Red
H	N2 Ped Clear	[O]	H	N4 Ped Clear	[O]	H	N5 Red
J	N2 Walk	[O]	J	N4 Don't Walk	[O]	J	N5 Yellow
K	Vehicle Detector 2	[I]	K	N4 Check	[O]	K	N5 Ped Clear
L	Ped Detector 2	[1]	L	Vehicle Detector 4	[1]	L	N5 Don't Walk
M	N2 Hold	[I]	M	Ped Detector 4	[I]	M	N5 Phase Next
N	Stop Time (Ring 1)	[1]	N	Vehicle Detector 3	[1]	N	N5 Phase On
P	Inhibit Max Term (Ring 1)	[I]	P	Ped Detector 3	[I]	P	Vehicle Detector 5
R	External Start	[I]	R	N3 Phase Omit	[I]	R	Ped Detector 5
S	Interval Advance	[I]	S	N2 Phase Omit	[I]	S	Vehicle Detector 6
T	Indicator Lamp Control	[I]	T	N5 Ped Omit	[1]	T	Ped Detector 6
U	AC-Common	[I]	U	N1 Phase Omit	[I]	U	Ped Detector 7
V	Chassis Ground	[1]	V	Ped Recycle (Ring 2)	[I]	V	Vehicle Detector 7
W	Logic Ground	[0]	W	Preempt 4 Detector	[I]	W	Ped Detector 8
X	Flashing Logic Out	[0]	X	Preempt 5 Detector	[I]	X	N8 Hold Off
Y	Status Bit C (Ring1)	[0]	Y	N3 Walk	[O]	Y	Force-Off (Ring 2)
Z	N1 Yellow	[0]	Z	N3 Ped Clear	[0]	Z	Stop Time (Ring 2)
a	N1 Ped Clear	[0]	a	N3 Don't Walk	[O]	a	Inhibit Max Term (Ring 2)
b	N2 Yellow	[0]	b	N4 Green	[O]	b	Test C
c	N2 Green	[0]	c	N4 Yellow	[O]	c	Status Bit C (Ring 2)
d	N2 Check	[0]	d	N4 Walk	[O]	d	N8 Walk
e	N2 Phase On	[0]	e	N4 Phase On	[O]	e	N8 Yellow
f	Vehicle Detector 1	[1]	f	N4 Phase Next	[O]	f	N7 Green
g	Ped Detector 1	[I]	g	N4 Phase Omit	[1]	g	N6 Green
h	N1 Hold	[I]	h	N4 Hold	[I]	h	N6 Yellow
i	Force-Off (Ring 1)	[1]	h	N3 Hold	[I]	i	N5 Green
k	Ext Min Recall Manual Control Enable	[1] [1]	j	N3 Ped Omit	[I]	j	N5 Walk
m	Manual Control Enable Call To Non Actuated I	[I] [1]	k	N6 Ped Omit	[I]	k	N5 Check
n	Test A	[1]	m	N7 Ped Omit	[1]	m	N5 Hold
p	AC+ (Control)	[1]	n	N8 Ped Omit	$[1]$	n	N5 Phase Omit N6 Hold
q	I/O Mode Bit A	[I]	p	Overlap A Yellow	[0]	p	N6 Phase Omit
r	Status Bit B (Ring 1)	[0]	q	Overlap A Red	[0]	q	N7 Phase Omit
s	N1 Green	[0]	r	N3 Check	[O]	s	N8 Phase Omit
t	N1 Walk	[0]	S	N3 Phase On	[O]	t	Vehicle Detector 8
u	N1 Check	[0]	t	N3 Phase Next	[O]	u	
v	N2 Ped Omit	[1]	v	Overlap D Red	${ }_{[1]}$	u	Omit Red Clear (Ring 2)
w	Omit All Red Clear (Ring1)	[1]	w	Preempt 6 Detector Overlap D Green	${ }_{[1]}^{[0]}$	w	N8 Ped Clear
x	Red Rest (Ring 1)	[1]	w	Overlap D Green N4 Ped Omit	[I]	x	N8 Green
y	I/O Mode Bit B	[1]	y	Free (No Coord)	[1]	y	N7 Don't Walk
z	Call To Non Actuated II	[I]	y	Free (No Coord) Max II Selection (Ring 2)	[1]	y	N6 Don't Walk
AA	Test B	[I]	Z	Max Il Selection (Ring 2)	[1]	z	N6 Don't Walk
BB	Walk Rest Modifier	[1]	AA	Overlap A Green	[O]	AA	N6 Ped Clear
CC	Status Bit A (Ring 1)	[0]	BB	Overlap B Yellow	[0]	BB	N6 Check
DD	N1 Phase On	[0]	CC	Overlap B Red	[0]	CC	N6 Phase On
EE	N1 Ped Omit	[I]	DD	Overlap C Red	[O]	DD	N6 Phase Next
FF	Ped Recycle (Ring 1)	[1]	EE	Overlap D Yellow	[O]	EE	N7 Hold
GG	Max II Selection (Ring 1)	[l]	FF	Overlap C Green		[9\%F	N8 Check
HH	I/O Mode Bit C	[1]	GG	Overlap B Green	[0]	GG	N8 Phase On
			HH	Overlap C Yellow	[O]	HH	N8 Phase Next
						JJ	N7 Walk
						KK	N7 Ped Clear
						LL	N6 Walk
						MM	N7 Check
						NN	N7 Phase On
						PP	N7 Phase Next

CONNECTOR D	
$\frac{\text { PIN }}{}$	FUNCTION
25	SYSTEM COMMAND CYCLE BIT 1 INPUT
35	SYSTEM COMMAND CYCLE BIT 2 INPUT
6	SYSTEM COMMAND CYCLE BIT 3 INPUT
12	SYSTEM COMMAND OFFSET BIT 1 INPUT/
	EXTERNAL ADDRESS BIT 0
10	SYSTEM COMMAND OFFSET BIT 2 INPUT/
	EXTERNAL ADDRESS BIT 1
36	SYSTEM COMMAND OFFSET BIT 3 INPUT/
	EXTERNAL ADDRESS BIT 2
16	SYSTEM COMMAND SPLIT BIT 1 INPUT/
	EXTERNAL ADDRESS BIT 3
9	SYSTEM COMMAND SPLIT BIT 2 INPUT/
4	EXTERNAL ADDRESS BIT 4
	SYSTEM COMMAND COORD SYNC INPUT
26	COORD FREE
60	REMOTE FLASH
3	SPLIT DEMAND
38	DUAL COORD
14	TIME RESET
20	TEST INPUT C
37	TEST INPUT D
19	TEST INPUT E
57	PREEMPTOR CALL \#1
49	PREEMPTOR CALL \#2
50	PREEMPTOR CALL \#3/BUS PREEMPTOR \#1
55	PREEMPTOR CALL \#4/BUS PREEMPTOR \#2
56	PREEMPTOR CALL \#5/BUS PREEMPTOR \#3
61	PREEMPTOR CALL \#6/BUS PREEMPTOR \#4
58	CMU STOP TIME (CONFLICT FLASH)
17	EXPANDED DETECTOR \#1
47	EXPANDED DETECTOR \#2
31	EXPANDED DETECTOR \#3
18	EXPANDED DETECTOR \#4
30	EXPANDED DETECTOR \#5
39	EXPANDED DETECTOR \#6
40	EXPANDED DETECTOR \#7
13	EXPANDED DETECTOR \#8

NOTE
Priority preemptors $1 \& 2$ will respond to any NEMA defined input that is applied to Preemptor Call input $1 \& 2$, respectively.
Priority preemptors $3-6$ will respond to any NEMA defined input that is applied for at least 0.8 seconds to Preemptor Call inputs 3-6, respectively.
Bus Preemptors $1-4$ will respond to a pulsing (1 pps at 50% duty cycle) NEMA defined input that is applied to Preemptor Call input 3-6, respectively.

FUNCTION
SYSTEM COMMAND CYCLE BIT 1 OUTPUT SYSTEM COMMAND CYCLE BIT 2 OUTPUT SYSTEM COMMAND CYCLE BIT 3 OUTPUT SYSTEM COMMAND OFFSET BIT 1 OUTPUT SYSTEM COMMAND OFFSET BIT 2 OUTPUT SYSTEM COMMAND OFFSET BIT 3 OUTPUT SYSTEM COMMAND SPLIT BIT 1 OUTPUT SYSTEM COMMAND SPLIT BIT 2 OUTPUT SYSTEM COMMAND SYNC OUT
PREEMPTOR \#1 ACTIVE
PREEMPTOR \#2 ACTIVE
PREEMPTOR \#3 ACTIVE PREEMPTOR \#4 ACTIVE
PREEMPTOR \#5 ACTIVE
PREEMPTOR \#6 ACTIVE
PREEMPT CMU INTERLOCK
(1K PULL UP)
COORD STATUS
CROSS STREET SYNC
NIC SPECIAL FUNCTION 1
NIC SPECIAL FUNCTION 2 NIC SPECIAL FUNCTION 3/ SPARE OUTPUT 1
NIC SPECIAL FUNCTION $4 /$ SPARE OUTPUT 2 PREEMPTOR FLASH CONTROL SPARE OUTPUT 4 SPARE OUTPUT 5
SPARE OUTPUT 6
SPARE OUTPUT 7 SPARE OUTPUT 8

PORT 1 SDLC			PORT 3 FSK TELEMETRY		
PIN	FUNCTION		PIN	FUNCTION	I/O
1	Tx Data +		1	Transmit 1	[O]
2	Logic Ground		2	Transmit 2	[O]
3	Tx Clock +		3	Reserved	
4	Logic Ground		4	Receive 1	[1]
5	Rx Data +		5	Receive 2	[I]
6	Logic Ground		6	Chassis Ground	[-]
7	Rx Clock +		7	Reserved	
8	Logic Ground		8	Reserved	
9	Tx Data -		9	Chassis Ground	[-]
10	Port 1 Disable (0VDC=disable)				
11	Tx Clock -				
12	Chassis Ground PORT 3 EIA-232 TELEMETRY				
13	Rx Data -		PIN	FUNCTION	I/O
14	Reserved		1	DCD	
15	Rx Clock -		2	RXD	
			3	TXD	
			4	DTR	
PORT 2 TERMINAL			5	GND	
PIN	FUNCTION	I/O	6	DSR	
1	Chassis Ground	[-]	7	RTS	
2	Transmit Data	[0]	8	NC	
3	Receive Data	[1]	9	NC	
4	Request To Send	[O]			
5	Clear To Send	[I]			
6	Not Used				
7	Logic Ground	[-]			
8	Data Carrier Detect	[I]			
9-19	Not Used				
20	Data Terminal Ready	[O]			
21-25	Not Used				

CONNECTOR A

	n (Plug) Type \#22-55P	
PIN	FUNCTION	I/O
A	Fault Monitor	[O]
B	+24 VDC External	[0]
C	Voltage Monitor	[O]
D	N1 Red	[O]
E	N1 Don't Walk	[0]
F	N2 Red	[O]
G	N2 Don't Walk	[0]
H	N2 Ped Clear	[O]
J	N2 Walk	[O]
K	Vehicle Detector 2	[I]
L	Ped Detector 2	[1]
M	Mode* Input 2	[1]
N	Stop Time (Ring 1)	[1]
P	Inhibit Max Term (Ring 1)	[1]
R	External Start	[I]
S	Interval Advance	[1]
T	Indicator Lamp Control	[1]
U	AC-Common	[1]
V	Chassis Ground	[I]
W	Logic Ground	[0]
X	Flashing Logic Out	[O]
Y	Status Bit C (Ring1)	[O]
Z	N1 Yellow	[O]
a	N1 Ped Clear	[O]
b	N2 Yellow	[O]
c	N2 Green	[0]
d	Mode* Output 18	[O]
e	Mode* Output 2	[O]
f	Vehicle Detector 1	[1]
g	Ped Detector 1	[I]
h	Mode* Input 1	[1]
i	Force-Off (Ring 1)	[I]
j	Ext Min Recall	[1]
k	Manual Control Enable	[1]
m	Call To Non Actuated I	[1]
n	Test A	[1]
p	AC+ (Control)	[1]
q	I/O Mode Bit A	[1]
r	Status Bit B (Ring 1)	[0]
s	N1 Green	[O]
t	N1 Walk	[0]
u	Mode** Output 17	[O]
v	Mode ${ }^{*}$ Input 18	[1]
w	Omit All Red Clear (Ring1)	[I]
x	Red Rest (Ring 1)	[1]
y	I/O Mode Bit B	[1]
z	Call To Non Actuated II	[1]
AA	Test B	[1]
BB	Walk Rest Modifier	[1]
CC	Status Bit A (Ring 1)	[0]
DD	Mode* Output 1	[O]
EE	Mode ${ }^{*}$ Input 17	[1]
FF	Ped Recycle (Ring 1)	[1]
GG	Max II Selection (Ring 1)	[I]
HH	I/O Mode Bit C	[1]

CONNECTOR B

55 Pin (Socket) Type \#22-55S

PIN	FUNCTION	I/O
A	Mode Output 9	[O]
B	Preempt 2 Detector	[I]
C	Mode* Output 10	[O]
D	N3 Green	[O]
E	N3 Yellow	[O]
F	N3 Red	[O]
G	N4 Red	[O]
H	N4 Ped Clear	[0]
J	N4 Don't Walk	[O]
K	Mode* Output 20	[O]
L	Vehicle Detector 4	[I]
M	Ped Detector 4	[I]
N	Vehicle Detector 3	[I]
P	Ped Detector 3	[I]
R	Mode* Input 11	[I]
S	Mode* ${ }_{\text {* }}$ Input 10	[1]
T	Mode* Input 21	[I]
U	Mode* Input 9	[1]
V	Ped Recycle (Ring 2)	[I]
W	Preempt 4 Detector	[I]
X	Preempt 5 Detector	[1]
Y	N3 Walk	[O]
a	N3 Don't Walk	[O]
b	N4 Green	[O]
c	N4 Yellow	[0]
d	N4 Walk	[O]
e	Mode** Output 4	[0]
f	Mode** Output 12	[O]
g	Mode** Input 12	[I]
h	Mode** Input 4	[I]
i	Mode** Input 3	[I]
j	Mode* Input 19	[1]
k	Mode* ${ }^{*}$ Input 22	[1]
m	Mode* Input 23	[1]
n	Mode* Input 24	[1]
p	Overlap A Yellow	[O]
q	Overlap A Red	[O]
r	Mode** Output 19	[O]
s	Mode** Output 3	[O]
t	Mode* Output 11	[O]
u	Overlap D Red	[O]
v	Preempt 6 Detector	[I]
w	Overlap D Green	[O]
x	Mode * Input 20	[1]
y	Free (No Coord)	[1]
z	Max II Selection (Ring 2)	[I]
AA	Overlap A Green	[O]
BB	Overlap B Yellow	[O]
CC	Overlap B Red	[O]
DD	Overlap C Red	[O]
EE	Overlap D Yellow	[O]
FF	Overlap C Green	
GG	Overlap B Green	[O]
HH	Overlap C Yellow	[O]

CONNECTOR C
61 Pin (Socket) Type \#24-61S
PIN FUNCTION
Status Bit A (Ring 2)
Status Bit B (Ring 2)
N8 Don't Walk
N8 Red
N7 Yellow
N7 Red
N6 Red
N5 Red
N5 Yellow
N5 Ped Clear
N5 Don't Walk
Mode** Output 13
Mode* Output 5
Vehicle Detector 5
Ped Detector 5
Vehicle Detector 6
Ped Detector 6
Ped Detector 7
Vehicle Detector 7
Ped Detector 8
Mode ${ }^{\text {Input }} 8$
Force-Off (Ring 2)
Stop Time (Ring 2)
Inhibit Max Term (Ring 2)
Test C
Status Bit C (Ring 2)
N8 Walk
N8 Yellow
N7 Green
N6 Green
N6 Yellow
N5 Green
N5 Walk
Mode* Output 21
Mode* ${ }^{*}$ Input 5
Mode** Input 13
Mode Input 6
Mode* Input 14
Mode* ${ }^{*}$ Input 15
Mode Input 16
Vehicle Detector 8
Red Rest Mode (Ring 2)
Omit Red Clear (Ring 2)
N8 Ped Clear
N8 Green
N7 Don't Walk
N6 Don't Walk
AA N6 Ped Clear
BB Mode Output 22
CC Mode* Output 6
ODE Mode* Output 14
[TE Mode* Input 7
FF Mode* Output 24
GG Mode* Output 8
HH Mode* Output 16
JJ N7 Walk
KK N7 Ped Clear
LL N6 Walk
MM Mode Output 23
NN Mode* Output 7
PP Mode* Output 15

ADDRESS BITS EXTERNAL ADDRESS

4	$\underline{3}$	$\underline{2}$	1	$\underline{0}$	
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	1	0	2
0	0	0	1	1	. 3
0	0	1	0	0	4
0	0	1	0	1	5
0	0	1	1	0	6
0	0	1	1	1	7
0	1	0	0	0	8
0	1	0	0	1	9
0	1	0	1	0	10
0	1	0	1	1	11
0	1	1	0	0	12
0	1	1	0	1	13
0	1	1	1	0	14
0	1	1	1	1	15
1	0	0	0	0	16
1	0	0	0	1	17
1	0	0	1	0	18
1	0	0	1	1	19
1	0	1	0	0	20
1	0	1	0	1	21
1	0	1	1	0	22
1	0	1	1	1	23
1	1	0	0	0	24

APPENDIX C SYSTEM INTERCONNECTION

A master transceiver can be interconnected with a number of local transceivers to make up a system. If a leased line is used for interconnection, up to 19 local transceivers can be connected. If customer-owned twisted pair lines are used, up to 24 local transceivers can be connected. Each transmitter output is essentially an open circuit unless it is ON. Each receiver input impedance is 15 kilohms.

The system is interconnected by one or two data channels implying either one or two Telemetry modules at the master. For each channel, the master transmitter outputs are connected to a wire pair designated as the command line which is connected to all local receiver inputs. The master receiver inputs and all local transmitter outputs are connected to another wire pair designated as the readback line. Transient protection on these lines is achieved with a Telemetry Interface Board (TIB) or a Communications Transient Suppressor (CTS) installed in the cabinets between each transceiver and the communication lines.

APPENDIX D GUIDE TO LEASE-LINE INSTALLATION

Telephone Companies offer several types of networks designed for lease-line service. This guide is intended to assist Econolite system users and their local telephone company with installation of the proper data transmission lines required for Econolite systems.

Econolite recommends the Broadcast Polling Multipoint Method as a cost-effective and reliable means of networking traffic control equipment. "Polling" refers to the method in which a Master station addresses a particular local station, anticipating a data response. Upon completion of the data transaction, the next local station is polled. Econolite utilizes this method but employs full duplex communications; whereby the Master station addresses the next local station while simultaneously receiving data from a previously addressed station.

The system consists of a single Master station, ASC/2M-1000 Zone Master or KMCE-10,000 Arterial Master and one to 24 local stations with any combination of the following controllers: ASC/2(S) family, the CBD, ASC-8000, ASC-8000RM, KMCE-8000, KFT-18/2400. All transmissions from the master station are simultaneously received by all local stations while all transmissions from local stations are received only by the master. Thus, the master station controls the network and no interaction between the local stations occurs.

The following specifications define telephone company lease-line requirements for Econolite Master/Local station networking. Econolite telemetry module modem design specifications are also enclosed to assist in telephone company circuit design. Further assistance from Econolite is available upon request.

LEASE-LINE SPECIFICATIONS

Line Type:
Interconnect Method:
Drops:
Battery Voltage:
Data Signal Power:

Loss Variation:
Terminal Equipment Impedance:
Isolation To Ground:
Breakdown Voltage:
Channel Requirements:

Voice Grade
Broadcast Polling Multipoint
20 Points or 4,000 Facility Miles
DC Voltage shall not be present on the line between tip and ring or tip, ring, and ground
Maximum Transmitted: 0 dBm (3 second average)
+13 dBm (instantaneous)
Received: -16 dBm " 1 dB
No more than " 4 dB long term (12 dB to 20 dB)
No more than " 3 dB short term
600 S " 10\% resistive over the voiceband and balanced
At least 50 kS AC $(300-3000 \mathrm{~Hz})$
At least 1500 VRMS at 60 Hz
Two channels minimum: (1) transmit, (1) receive. This is equivalent to one Econolite telemetry channel. For systems larger than 10 intersection controllers, Econolite recommends the use of two telemetry channels (four leased-lines) to ensure full data communications within 1 second.

ECONOLITE TELEMETRY MODULE MODEM SPECIFICATIONS

TRANSMITTER CHARACTERISTICS

Transmitter:	Digital-to-FSK modulator
Output Level:	0 dBm " 15% into a 600 S load adjustable to +6 dBm
Transmit Frequencies:	2200 Hz represents a digital LOW
	1200 Hz represents a digital HIGH
Frequency Stability:	$\pm 1 \mathrm{~Hz}$ over the operating temperature range

RECEIVER CHARACTERISTICS

Receiver: FSK-to-digital demodulator
Signal-To-Noise: +10 dB or greater
(In-band)
Signal-To-60 Hz Noise: Greater than -50 dB at an input signal level of 50 mV
Receiver Sensitivity:
Receiver Frequency:
-34 dBm
2200 Hz represents a digital LOW
1200 Hz represents a digital HIGH
Common Mode Rejection: Greater than 40 dB
(Input)

DATA CHANNEL CHARACTERISTICS

Communication Line: Unconditioned type 3002 voice grade, four-wire private line channel, or equivalent
Line Impedance:
Type of Transmission:
Baud Rate:
Word Length:
Command Message:
Readback Message:
Channel Capacity:
Channel Operation:

600 S
Time division multiplex/frequency shift keying 1200 bps
Eight bits plus odd vertical parity
Three words plus odd horizontal parity
Two words plus odd horizontal parity with phantom address
Twenty-five messages per second
One command message containing cycle, offset, split, master zero, and four special function commands is simultaneously transmitted to all local transceivers. Up to twenty-four command messages per second are then transmitted requesting status readbacks, data and special command and information.

APPENDIX E ASC/2S LOOPBACK DIAGNOSTIC INPUT/OUTPUT TABLES

Loopback diagnostic failures are identified by error codes. The tables in this appendix list these error codes and the input and output connections required for loopback diagnostics. For connectors A, B, C, D, and Telemetry, the connector pins and their corresponding input or output buffer circuits are listed with the associated error code. The tables show groups of circuits that can be connected for loopback diagnostics. Some groups contain one input (or output) circuit which can be paired with more than one output (or input) circuit to generate a different error code with each connection.
CONNECTOR A

PIN	$\begin{array}{\|l} \hline \text { ERROR } \\ \text { CODE } \end{array}$	INPUT BUFFER	OUTPUT CIRCUITS	DESCRIPTION	PIN	ERROR CODE	BUFFER INPUT	OUTPUT CIRCUITS	DESCRIPTION
f	00	RP22-16	U58-1 (IN)	$\varnothing 1$ VEH DET	z	10	RP24-12	U60-12 (IN)	NON-ACTUATED 2
s		U76-15	U46-7 (OUT)	¢1 GRN	K	11	RP24-16	U60-1 (IN)	Ø2 VEH DET
g	01	RP22-15	U58-15 (IN)	Ø1 PED DET	C		U77-15	U61-7 (OUT)	Ø2 GRN
Z		U76-14	U46-9 (OUT)	$\varnothing 1$ YEL	L	12	RP24-15	U60-15 (IN)	$\varnothing 2$ PED DET
h	02	RP22-19	U58-4 (IN)	$\varnothing 1$ HOLD	b		U77-14	U61-9 (OUT)	$\varnothing 2 \mathrm{YEL}$
D		U76-13	U46-10 (OUT)	$\varnothing 1$ RED	M	13	RP24-19	U60-4 (IN)	$\varnothing 2$ HOLD
N	03	RP17-14	U52-14 (IN)	RING 1 STOP TIME	F		U77-13	U61-10 (OUT)	$\varnothing 2$ RED
t		U76-12	U46-11 (OUT)	Ø1 WALK	n	14	RP21-14	U56-14 (IN)	TEST "A"
EE	04	RP22-17	U58-2 (IN)	$\varnothing 1$ PED OMIT	J		U77-12	U61-11	$\varnothing 2$ WALK
a		U76-11	U46-12 (0UT)	Ø1 PED CLR	v	15	RP24-17	U60-2 (IN)	$\varnothing 2$ PED OMIT
FF	05	RP18-14	U53-14 (IN)	RING 1 PED REC	H		U77-11	U61-12 (OUT)	$\varnothing 2$ PED CLR
E		U78-18	U62-4 (OUT)	Ø1 DON'T WALK	i	16	RP16-14	U51-14 (IN)	RING 1 FORCE OFF
w	06	RP20-14	U55-14 (IN)	$\begin{aligned} & \text { RING } 1 \text { OMIT ALL } \\ & \text { RED } \end{aligned}$	G		U78-17	U62-5 (OUT)	$\varnothing 2$ DON'T WALK
DD		U76-18	U46-4 (OUT)	$\varnothing 1$ PHASE ON	x	17	RP19-14	U54-14 (IN)	RING 1 RED REST
P	07	RP22-14	U58-14 (IN)	RING 1 INH MAX	e		U77-18	U61-4 (OUT)	Ø2 PHASE ON
u		U76-16	U46-6 (OUT)	Ø1 CHECK	GG	18	RP24-14	U60-14 (IN)	RING 1 MAX 2
T	08	RP16-12	U51-12 (IN)	LAMP CONTROL	d		U77-16	U61-6 (OUT)	$\varnothing 2$ CHECK
R	09	RP17-12	U52-12 (IN)	EXTERNAL START	q	19	RP23-19	U59-2 (IN)	I/O MODE "A"
AA	OA	RP21-13	U56-13 (IN)	TEST "B"	A		U74-18	U73-4 (OUT)	FAULT MONITOR
CC		U78-13	U62-10 (OUT)	RING 1 STATUS BIT "A"	HH	1A	RP23-17	U59-6 (IN)	I/O MODE "C"
S	0B	RP19-12	U54-12 (IN)	INTERNAL ADVANCE	y	1B	RP23-18	U59-4 (IN)	I/O MODE "B"
r		U78-12	U62-11 (OUT)	$\begin{array}{\|l} \hline \text { RING } 1 \text { STATUS BIT } \\ \text { "B" } \end{array}$	C		U78-16	$\begin{aligned} & \text { U62-6 } \\ & \text { (OUT) } \end{aligned}$	VOLTAGE MONITOR
k	OC	RP18-12	U53-12 (IN)	MANUAL CONTROL ENABLE					
BB	OD	RP21-12	U56-12 (IN)	WALK REST MODIFIER					
Y		U78-11	U62-12 (OUT)	RING 1 STATUS BIT "C"		1C			RESERVED
j	0E	RP20-12	U55-12 (IN)	MINIMUM RECALL					
m	OF	RP22-12	U58-12 (IN)	NON-ACTUATED 1	p				AC+
X		CR20	CR17 (OUT)	FLASHING LOGIC	U				AC-
		Q2	R58	FLASHING LOGIC	V				CHASSIS GROUND
		CR15	U78-14	FLASHING LOGIC					
		U62-9		FLASHING LOGIC					

APPENDIX E

ASC/2S LOOPBACK DIAGNOSTIC INPUT/OUTPUT TABLES

CONNECTOR B

PIN	$\begin{array}{\|l\|} \hline \text { ERROR } \\ \text { CODE } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { INPUT } \\ & \text { BUFFER } \end{aligned}$	CIRCUITS OUTPUT		DESCRIPTION	PIN	$\begin{array}{\|l\|} \hline \text { ERROR } \\ \text { CODE } \\ \hline \end{array}$	INPUT BUFFER	$\begin{aligned} & \hline \text { CIRCI } \\ & \text { OUTI } \end{aligned}$	$\begin{aligned} & \text { UITS } \\ & \text { PUT } \\ & \hline \end{aligned}$	DESCRIPTION
N		RP21-16	U56-1	(IN)	$\varnothing 3$ VEH DET	M		RP20-15	U55-15	(IN)	$\varnothing 4$ PED DET
D	1D	U72-15	U36-7	(OUT)	$\varnothing 3$ GRN	C	2F	U75-14	U45-9	(OUT)	$\varnothing 4$ YEL
AA	1E	U73-16	U37-6	(OUT)	OVERLAP "A" GRN	BB	30	U73-12	U37-11	(OUT)	OVERLAP "B" YEL
P		RP21-15	U56-15	(IN)	$\varnothing 3$ PED DET	h		RP20-19	U55-4	(IN)	$\varnothing 4$ HOLD
E	1F	U72-14	U36-9	(OUT)	$\varnothing 3 \mathrm{YEL}$	G	31	U75-13	U45-10	(OUT)	$\varnothing 4$ RED
p	20	U73-15	U37-7	(OUT)	OVERLAP "A"	CC	32	U73-11	U37-12	(OUT)	OVERLAP "B" RED
i		RP21-19	U56-4		$\varnothing 3$ HOLD	g		RP20-18	U55-3	(IN)	$\varnothing 4$ PHASE OMIT
F	21	U72-13	U36-10	(OUT)	$\varnothing 3$ RED	d	33	U75-12	U45-11	(OUT)	$\varnothing 4$ WALK
q	22	U73-14	U37-9	(OUT)	OVERLAP "A" RED	w	34	U74-13	U44-10	(OUT)	OVERLAP "D" GRN
R		RP21-18	U56-3	(IN)	$\emptyset 3$ PHASE OMIT	n		RP17-17	U52-2	(IN)	Ø8 PED OMIT
Y	23	U72-12	U36-11	(OUT)	$\varnothing 3$ WALK	H	35	U75-11	U45-12	(OUT)	$\varnothing 4$ PED CLEAR
FF	24	U74-16	U44-6	(OUT)	OVERLAP "C" GRN	EE	36	U74-12	U44-11	(OUT)	OVERLAP "D" YEL
m		RP16-17	U51-2		$\varnothing 7$ PED OMIT	k		RP18-17	U53-2	(IN)	Ø6 PED OMIT
Z	25	U72-11	U36-12	(OUT)	$\varnothing 3$ PED CLEAR	J	37	U73-17	U37-5	(OUT)	Ø4 DON'T WALK
HH	26	U74-15	U44-7	(OUT)	OVERLAP "C" YEL	u	38	U74-11	$\begin{array}{\|l} \hline \begin{array}{l} \text { U44-12 } \\ \text { (OUT) } \end{array} \\ \hline \end{array}$		OVERLAP "D" RED
T		RP19-17	U54-2	(IN)	$\varnothing 5$ PED OMIT	x		RP20-17	U55-2	(IN)	$\varnothing 4$ PED OMIT
a	27	U73-18	U37-4	(OUT)	$\varnothing 3$ DON'T WALK	e	39	U75-18	$\begin{aligned} & \text { U45-4 } \\ & \text { (OUT) } \\ & \hline \end{aligned}$		$\varnothing 4$ PHASE ON
DD	28	U74-14	U44-9	(OUT)	OVERLAP "C" RED	C	3A	U77-17	$\begin{aligned} & \hline \text { U61-5 } \\ & \text { (OUT) } \\ & \hline \end{aligned}$		$\varnothing 2$ PHASE NEXT
j		RP21-17	U56-2	(IN)	$\varnothing 3$ PED OMIT	S	3B	RP24-18	U60-3	(IN)	$\varnothing 2$ PHASE OMIT
s	29	U72-18	U36-4	(OUT)	$\varnothing 3$ PHASE ON	K		U75-16	U45-6	(OUT)	$\varnothing 4$ CHECK
A	2A	U76-17	U46-5	(OUT)	Ø1 PHASE NEXT	z	3 C	RP24-13	U60-13	(IN)	RING 2 MAX 2
U	2B	RP22-18	U58-3	(IN)	$\varnothing 1$ PHASE OMIT	B	3D	RP23-16	U59-8	(IN)	PREEMPT 2 CALL
r		U72-16	U36-6	(OUT)	$\varnothing 3$ CHECK	W	3E	RP23-15	U59-11	(IN)	PREEMPT 4 CALL
V	2 C	RP18-13	U53-13		RING 2 PED RECYCLE	X	3F	RP23-14	U59-13	(IN)	PREEMPT 5 CALL
t		U72-17	U36-5	(OUT)	Ø3 PHASE NEXT	v	40	RP23-13	U59-15	(IN)	PREEMPT 6 CALL
L		RP20-16	U55-1	(IN)	$\varnothing 4 \mathrm{VEH}$ DET	y	41	RP23-12	U59-17	(IN)	COORD FREE
b	2D	U75-15	U45-7	(OUT)	$\varnothing 4$ GRN	f		U75-17	U45-5	(OUT)	Ø4 PHASE NEXT
GG	2E	U73-13	U37-10	(OUT)	OVERLAP "B" GRN						

CONNECTOR C

PIN	$\begin{array}{\|l\|} \hline \text { ERROR } \\ \text { CODE } \\ \hline \end{array}$	INPUT BUFFER	CIRCUITS OUTPUT		DESCRIPTION	PIN	$\begin{array}{\|l\|} \hline \text { ERROR } \\ \text { CODE } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { INPUT } \\ & \text { BUFFER } \end{aligned}$	$\begin{aligned} & \hline \text { CIRC } \\ & \text { OUTI } \end{aligned}$	$\begin{aligned} & \text { UITS } \\ & \text { PUT } \\ & \hline \end{aligned}$	DESCRIPTION
P		RP19-16	U54-1	(IN)	$\varnothing 5$ VEH DET	G	55	U70-13	U34-10	(OUT)	Ø6 RED
i	42	U68-15	U32-7	(OUT)	$\varnothing 5$ GRN	CC	56	U70-18	U34-4	(OUT)	$\varnothing 6$ PHASE ON
K	43	U68-11	U32-12	(OUT)	$\varnothing 5$ PED CLEAR	q		RP18-18	U53-3	(IN)	$\varnothing 6$ PHASE OMIT
M	44	U68-17	U32-5	(OUT)	$\varnothing 5$ PHASE NEXT	LL	57	U70-12	U34-11	(OUT)	$\varnothing 6$ WALK
R		RP19-15	U54-15	(IN)	$\varnothing 5$ PED DET	BB	58	U70-16	U34-6	(OUT)	$\varnothing 6$ CHECK
J	45	U68-14	U32-9	(OUT)	$\varnothing 5 \mathrm{YEL}$	V		RP16-16	U51-1	(IN)	$\varnothing 7$ VEH DET
L	46	U69-18	U33-4	(OUT)	$\varnothing 5$ DON'T WALK	f	59	U71-15	U35-7	(OUT)	$\varnothing 7$ GRN
DD	47	U70-17	U34-5	(OUT)	$\varnothing 6$ PHASE NEXT	KK	5A	U71-11	U35-12	(OUT)	$\varnothing 7$ PED CLEAR
m		RP19-19	U54-4	(IN)	$\varnothing 5$ HOLD	U		RP16-15	U51-15	(IN)	$\varnothing 7$ PED DET
H	48	U68-13	U32-10	(OUT)	$\varnothing 5$ RED	E	5B	U71-14	U35-9	(OUT)	$\varnothing 7$ YEL
N	49	U68-18	U32-4	(OUT)	$\varnothing 5$ PHASE ON	y	5C	U69-16	U33-6	(OUT)	$\varnothing 7$ DON'T WALK
n		RP19-18	U54-3	(IN)	$\varnothing 5$ PHASE OMIT	EE		RP16-19	U51-4	(IN)	¢7 HOLD
j	4A	U68-12	U32-11	(OUT)	$\varnothing 5$ WALK	F	5D	U71-13	U35-10	(OUT)	$\varnothing 7$ RED
k	4B	U68-16	U32-6	(OUT)	$\varnothing 5$ CHECK	NN	5E	U71-18	U35-4	(OUT)	¢7 PHASE ON
a	4C	RP22-13	U58-13	(IN)	RING 2 INH MAX	r		RP16-18	U51-3	(IN)	¢7 PHASE OMIT
PP		U71-17	U35-5	(OUT)	$\varnothing 7$ PHASE NEXT	JJ	5F	U71-12	U35-11	(OUT)	$\varnothing 7$ WALK
u	4D	RP19-13	U54-13	(IN)	RING 2 RED REST	MM	60	U71-16	U35-6	(OUT)	$\varnothing 7$ CHECK
HH		U67-17	U31-5	(OUT)	Ø8 PHASE NEXT	t		RP17-16	U52-1	(IN)	$\varnothing 8$ VEH DET
v	4E	RP20-13	U55-13	(IN)	$\begin{aligned} & \hline \text { RING } 2 \text { OMIT ALL } \\ & \text { RED } \\ & \hline \end{aligned}$	X	61	U67-15	U31-7	(OUT)	$\varnothing 8$ GRN
A		U69-13	U33-10	(OUT)	RING 2 STATUS BIT "A"	w	62	U67-11	$\begin{array}{\|l} \begin{array}{l} \text { U31-12 } \\ \text { (OUT) } \end{array} \\ \hline \end{array}$		$\varnothing 8$ PED CLEAR
Z	4F	RP17-13	U52-13	(IN)	RING 2 STOP TIME	W		RP17-15	U52-15	(IN)	$\varnothing 8$ PED DET
B		U69-12	U33-11	(OUT)	RING 2 STATUS BIT "B" "B"	e	63	U67-14	$\begin{aligned} & \text { U31-9 } \\ & \text { (OUT) } \\ & \hline \end{aligned}$		$\varnothing 8$ YEL
Y	50	RP16-13	U51-13	(IN)	RING 2 FORCE OFF	C	64	U69-15	$\begin{aligned} & \hline \text { U33-7 } \\ & \text { (OUT) } \end{aligned}$		Ø8 DON'T WALK
C		U69-11	U33-12	(OUT)	RING 2 STATUS BIT "C"	X		RP17-19	U52-4	(IN)	Ø8 HOLD
S		RP18-16	U53-1	(IN)	$\varnothing 6$ VEH DET	D	65	U67-13	U31-10	(OUT)	$\varnothing 8$ RED
g	51	U70-15	U34-7	(OUT)	$\varnothing 6$ GRN	GG	66	U67-18	U31-4	(OUT)	$\varnothing 8$ PHASE ON
AA	52	U70-11	U34-12	(OUT)	$\varnothing 6$ PED CLEAR	S	67	RP17-18	U52-3	(IN)	$\varnothing 8$ PHASE OMIT
T		RP18-15	U53-15	(IN)	$\varnothing 6$ PED DET	d		U67-12	U31-11	(OUT)	$\varnothing 8$ WALK
h	53	U70-14	U34-9	(OUT)	$\varnothing 6 \mathrm{YEL}$	FF	68	U67-16	U31-6	(OUT)	$\varnothing 8$ CHECK
z	54	U69-17	U33-5	(OUT)	Ø6 DON'T WALK	b		$\begin{array}{\|l} \hline R 54, R 63, R \\ 64 \\ \hline \end{array}$	U19-2	(IN)	TEST C
p		RP18-19	U53-4	(IN)	$\varnothing 6$ HOLD		69				SEE TELEMETRY PORT 1

APPENDIX E

ASC/2S LOOPBACK DIAGNOSTIC INPUT/OUTPUT TABLES

CONNECTOR D

PIN	$\begin{array}{\|l} \hline \text { ERROR } \\ \text { CODE } \end{array}$	INPUT BUFFER	CIRCUITS OUTPUT	DESCRIPTION	PIN	$\begin{array}{\|l} \hline \text { ERROR } \\ \text { CODE } \end{array}$	INPUT BUFFER	CIRCUITS OUTPUT	DESCRIPTION
1		U65-12	U28-11 (OUT)	PREEMPT 5 ACTIVE	47	7A	RP14-12	U42-1 (IN)	EXP DET 2
57	6A	RP14-17	U49-2 (IN)	PREEMPT 1 CALL	41		U65-18	U28-4 (OUT)	SPARE 4
2		U64-14	U27-9 (OUT)	OFFSET BIT 3	20	7B	RP12-18	U47-3 (IN)	TEST C
50	6B	PR15-17	U50-2 (IN)	PREEMPT 3 CALL	42		U65-14	U28-9 (OUT)	OFFSET BIT 2
5		U63-17	U26-5 (OUT)	$\begin{aligned} & \text { CROSS STREET } \\ & \text { SYNC } \end{aligned}$	13	7C	RP12-12	U40-1 (IN)	EXP DET 8
60	6C	RP15-18	U50-3 (IN)	REMOTE FLASH	43		U66-15	U29-7 (OUT)	CYCLE BIT 1
49	6D	RP14-13	U42-2 (IN)	PREEMPT 2 CALL	16	7D	RP14-19	U49-4 (IN)	SPLIT BIT 1
8		U65-16	U28-6 (OUT)	NIC SPECIAL FUNTN 2	44		U65-15	U28-7 (OUT)	CYCLE BIT 2
61	6E	RP13-13	U41-2 (IN)	PREEMPT 6 CALL	14	7E	RP13-14	U41-3 (IN)	TIME RESET
11		U63-16	U26-6 (OUT)	SPARE 2	45		U64-18	U27-4 (OUT)	SPARE 5
55	6F	RP15-13	U43-2 (IN)	PREEMPT 4 CALL	19	7F	RP12-13	U40-2 (IN)	SPARE 3
15		U66-18	U29-4 (OUT)	SPARE 3	46		U63-14	U26-9 (OUT)	SPLIT BIT 2
56	70	RP13-17	U48-2 (IN)	PREEMPT 5 CALL	18	80	RP15-12	U43-1 (IN)	EXP DET 4
21		U63-15	U26-7 (OUT)	SPLIT BIT 1	48		U64-12	U27-11 (OUT)	PREEMPT 6 ACTIVE
58	71	RP12-17	U47-2 (IN)	CMV STOP TIME	17	81	RP14-16	U49-1 (IN)	EXP DET 1
22		U64-13	U27-10 (OUT)	PREEMPT 3 ACTIVE	51		U63-18	U26-4 (OUT)	SPARE 6
9	72	RP14-15	U42-4 (IN)	SPLIT BIT 2	25	82	RP15-19	U50-4 (IN)	CYCLE BIT 1
23		U66-13	U29-10 (OUT)	PREEMPT 1 ACTIVE	52		U66-17	U29-5 (OUT)	SPARE 7
38	73	RP13-18	U48-3 (IN)	DUAL COORD	30	83	RP13-16	U48-1 (IN)	EXP DET 5
24		U64-16	U27-6 (OUT)	NIC SPECIAL FUNTION 3	53		U63-13	U26-10 (OUT)	SYNC
3	74	RP15-14	U43-3 (IN)	SPLIT DEMAND	26	84	RP14-14	U42-3 (IN)	COORD FREE
27		U63-12	U26-11 (OUT)	COORD STATUS	40	85	RP12-16	U47-1 (IN)	EXP DET 7
12	75	RP13-15	U41-4 (IN)	OFFSET BIT 1	54		U65-17	U28-5 (OUT)	SPARE 8
28		U66-16	U29-6 (OUT)	NIC SPECIAL FUNCTN 1	31	86	RP15-16	U50-1 (IN)	EXP DET 3
36	76	RP12-15	U40-4 (IN)	OFFSET BIT 3	35	87	RP15-15	U43-4 (IN)	CYCLE BIT 2
29		U64-15	U27-7 (OUT)	CYCLE BIT 3	59		CR16	CR21 (OUT)	PREEMPT CMU INTERLOCK
10	77	RP12-19	U47-4	OFFSET BIT 2			Q3	R62	PREEMPT CMU INTERLOCK
32		U65-13	U28-10 (OUT)	PREEMPT 2 ACTIVE			R61	U27-5	PREEMPT CMU INTERLOCK
6	78	RP13-19	U48-4 (IN)	CYCLE BIT 3					$\begin{aligned} & \hline \text { PREEMPT CMU } \\ & \text { INTERLOCK } \\ & \hline \end{aligned}$
33		U66-14	U29-9 (OUT)	OFFSET BIT 1	37	88	RP12-14	U40-3 (IN)	TEST D
4	79	RP14-18	U49-3 (IN)	COORD SYNC	39	89	RP13-12	U41-1 (IN)	EXP DET 6
34		U66-12	U29-11 (OUT)	PREEMPT 4 ACTIVE					

APPENDIX E

ASC/2S LOOPBACK DIAGNOSTIC INPUT/OUTPUT TABLES

25-PIN TELEMETRY CONNECTOR AND PORT 1

PIN	$\begin{array}{\|l\|} \hline \text { ERROR } \\ \text { CODE } \\ \hline \end{array}$	INPUT BUFFER	CIRCUITS OUTPUT	DESCRIPTION	PIN	$\begin{array}{\|l\|} \hline \text { ERROR } \\ \text { CODE } \\ \hline \end{array}$	INPUT BUFFER	CIRCUITS OUTPUT	DESCRIPTION
9		U66-11	U29-12 (OUT)	TLM SPF 1	10		U64-11	U27-12 (OUT)	TLM SPF 3
3	8A	RP36-19	U30-2 (IN)	SYS DET A1	5	92	RP36-17	U30-6 (IN)	SYS DET B1
4	8B	RP36-15	U30-11 (IN)	SYS DET C1	7	93	RP36-13	U30-15 (IN)	SYS DET D1
14	8C	RP35-19	U57-2 (IN)	TLM SPARE 1	21	94	RP35-17	U57-6 (IN)	ALARM 2
15	8D	RP35-15	U57-11 (IN)	EXT ADDRESS ENABLE	18	95	RP35-13	U57-15 (IN)	LOCAL FLASH
22		U65-11	U28-12 (OUT)	TLM SPF 2	23		U63-11	U26-12 (OUT)	TLM SPF 4
2	8E	RP36-18	U30-4 (IN)	SYS DET A2	19	96	RP36-16	U30-8 (IN)	SYS DET B2
1	8 F	RP36-14	U30-13 (IN)	SYS DET C2	8	97	RP36-12	U30-17 (IN)	SYS DET D2
17	90	RP35-18	U57-4 (IN)	ALARM 1	6	98	RP35-16	U57-8 (IN)	TLM SPARE 2
20	91	RP35-14	U57-13 (IN)	CONFLICT FLASH	16	99	RP35-12	U57-17 (IN)	DOOR OPEN
						69			TELEMETRY FAIL

PORT 1 FSK LOOP BACK CONNECTOR

OUTPUT PIN	INPUT PIN
1	4
2	5

(Attach a 600 ohm resistor between pins 1 and 5.)
TERMINAL (PORT 2)

PIN	ERROR CODE	INPUT BUFFER	CIRCUITS OUTPUT	DESCRIPTION	PIN	ERROR CODE	INPUT BUFFER	CIRCUITS OUTPUT	DESCRIPTION
$9 A$				TERMINAL FAIL					

PORT 2 TERMINAL LOOP BACK CONNECTOR

OUTPUT	INPUT
PIN	PIN
2	3
5	4
20	6
8	6

SDLC (PORT 3)

PIN	ERROR CODE	INPUT BUFFER	CIRCUITS OUTPUT	DESCRIPTION	PIN	ERROR CODE	INPUT BUFFER	CIRCUITS OUTPUT	DESCRIPTION
$9 B$				SDLC FAIL					

PORT 3 SDLC LOOP BACK CONNECTOR

OUTPUT	INPUT
PIN	PIN
1	5
3	7
9	13
11	15

Figure 2-1. ASC/2S System Block Diagram

Figure 2-2. Processor Section Block Diagram

Figure 2-4. Processor-I/O Module Component Placement

