

PROBLEM 2.5

Two control rods are attached at A to lever $A B$. Using trigonometry and knowing that the force in the left-hand rod is $F 1=120 \mathrm{~N}$, determine (a) the required force $F 2$ in the right-hand rod if the resultant \mathbf{R} of the forces exerted by the rods on the lever is to be vertical, (b) the corresponding magnitude of \mathbf{R}.
[(a) 107.6 N
(b) 75.0 N$]$

PROBLEM 2.18

Solve the problem using trigonometry
Two forces \mathbf{P} and \mathbf{Q} are applied as shown at point A of a hook support. Knowing that $P=60 \mathrm{~N}$ and $\mathrm{Q}=100 \mathrm{~N}$, determine graphically the magnitude and direction of their resultant using (a) the parallelogram law, (b) the triangle rule.

$$
\left[148.6 \mathrm{~N} \searrow 76.6^{\circ}\right]
$$

PROBLEM 2.25

While emptying a wheelbarrow, a gardener exerts on each handle $A B$ a force \mathbf{P} directed along line $C D$. Knowing that \mathbf{P} must have a $135-\mathrm{N}$ horizontal component, determine (a) the magnitude of the force $\mathbf{P},(b)$ its vertical component.

$$
\left[\begin{array}{ll}
{[\text { (a) } 176.2 \mathrm{~N}} & \text { (b) } 113.3 \mathrm{~N}]
\end{array}\right.
$$

PROBLEM 2.34
Determine the resultant of the three forces in Problem 2.34

PROBLEM 2.43
Two cables are tied together at C and are loaded as shown. Determine the tension (a) in cable $A C,(b)$ in cable $B C$.

PROBLEM 2.54

Two cables tied together at C are loaded as shown. Determine the range of values of W for which the tension will not exceed 1050 N in either cable.

$$
[0 \leq \mathrm{W} \leq 609 \mathrm{~N}]
$$

PROBLEM 2.61

Two cables tied together at C are loaded as shown. Knowing that the maximum allowable tension in each cable is 900 N , determine (a) the magnitude of the largest force \mathbf{P} which may be applied at $C,(b)$ the corresponding value of α.
[(a) 1215 N
(b) $\left.77.5^{\circ}\right]$

PROBLEM 2.71

A load \mathbf{Q} is applied to the pulley C, which can roll on the cable $A C B$. The pulley is held in the position shown by a second cable $C A D$, which passes over the pulley A and supports a load \mathbf{P}. Knowing that $P=800 \mathrm{~N}$, determine (a) the tension in cable ACB, (b) the magnitude of load \mathbf{Q}.

$$
\left[\begin{array}{ll}
{[\text { (a) } 2.30 \mathrm{kN}} & \text { (b) } 3.53 \mathrm{kN}]
\end{array}\right.
$$

