D))

AT&T loT Starter Ki

AT&T loT Starter Kit (2nd Generation) User’s Guide

If you purchased an AT&T loT Starter Kit (24 Generation) and just want to get started
with the QuickStart Demo, click here to jump right to that page in Chapter 1.

Copyright © 2019 by AT&T Incorporated

Revision 0.50 (Friday, February 8, 2019)

Table of Contents

Table of Contents

AT&T loT Starter Kit (2nd Generation) User's GUIEuuuuiissmmssmmnmssssssssmssssnmssssssssssssssssssssssnssssssssssssssnnsnnns 2
TADIE OFf CONTENTS ..ttt s s sssssssssssssssssnsssssssssssssssnsnsnsnsnsnsnsnnn 3
TADIE OF COUE LISTINGS ...eeeeeeieeeee ettt st s e e s s e s e s e e s mesess e e s ane s s s e e sane s nneasaneennnes 6
LiCENSE TOF COUE EXAIMPIES ...ueeeeeeeeeeeeeeeeeeeeteiteeeeeeeesesisee s e e esssassssesesesssssssssssssesssssssssessnessenssssennnnesanan 8
=] = 1o = RN 9

R oY S LT 0T =T 9
WAhaT ThiS BOOK COVENIS ..euvuurrururrrrursrsrsssnnns 9
Downloads, SUPPOIt @NA TOOISceeeeeeeeeeieeecite ettt et e st e st e e e s sse e e s s aste s s s esnneesssenessaneeeesannnes 11
REIQLEA DOCUMENTATION ..eeeeeeeeeeeeeiteeeeeeeee sttt e eeessss st ssseessssssssessaeesasssssssssasssassssssssanssssssssnssnnesnnsan 12
DOCUMENT LOCATIONS...ciiiiieciteitieeeiecccnrtie e e e e sec st e e e e s e se e ssreeeessseessassreeeessessssssseseessesassnnreeeesssanssnnnnnes 13

o IO € 1= 1 F= A0 > g (=Y 15

1.1. = T T Lo I 16
1.1.1. HOW DOES 10T WOTK? ..ttiiie e e ettt et e e e eecsnr e e e e e s e nss e e e e e s s e s sssnneeeesse s ssnnseeeeesesenssnnenenas 17
1.1.2. R[S 0= ET= I (o T @ 01 11U] F= T o IR 18
1.1.3. The SK2: 10T EVEIYWRNEIE ..ottt ettt e ee e e s e e e e e e s e s nnr e e e e e ean 18

1.2. Lo ISz Ta =T a1 (ST 402 T 19
1.2.1. What CoOmMES [N TN BOX.uiiiiiiiiiiieiieie e ettt ee e e cecitrre e e e e s s sarr e e e e s s seesnsseeeeessessnsseeeesssesnnnes 20
1.2.2. HArAWAIE OVEIVIEW ..cceeieceeieiiieeeeeecceeteeeeeesessasreeeesssesssssseeeesssesssssseseessesassssseeesssesanssnnsnens 21
1.2.3. Yo AT LR O A =T VL= P 24
1.2.4. (O (o U o I 0] o1 aT=To1 41771 7S PSRRI 25
1.2.5. Description of QUICKSTArT DEMOuueiieiiieccciireieeeeececcnrrereee s eersreeeessesesnseeeessesessnneeees 25

1.3. RUNNING the QUICKSEAIT DEMOeeeeeeeeeeeeeeeeeee e e eteeeseseee e e sste e e e seeaessseeassseeeasassenesssnnneesanennean 26

1.4. FRESOUICES ettt ettt ettt sttt st s e s s s e s s s s e s s s e s e s s e s s s s s s s s s e s s s s s e s s s s s e s e s e s s s e s s s e s s s s sesasasasasssasasasasasasasasasasnss 32
1.4.1. AT G T RESOUICTES ..uvuvrrrrrrrrrrrrrssessnnns 32
1.4.2. Register with cloudCONNECTKITS.OFE ...eeiiueiieeceee e e 32

2. EMDEAAEA LiNUXuuiiiiiieemmenusiieiimennnmnssssessmssnsssssssssimssssssssssssssessssssssssssssssssssssssssssssnssssssssssssnnnnnsssssnssnnn 33

2.1. [Lala oo [V (o (o) o N [1V) ORI 34

2.1.1. Kernel SPace VS USEI SPACEueeri et seee et e s e s s ne e s snneeeas 35
2.2. [a0y (3 4] 01011 (o R 36
2.2.1. [010D =T U= PSRRI 36
2.2.2. LTS3 (=] 1 37
2.2.3. {5700 1 A 0 7= o [39
2.2.4. [0 T0] (e] o= 11 o RSP 39
2.3. [QL0 Y] 1 1= R 40
2.3.1. BaSiC LINUX COMMANGAS....uuuiiiieeiieiiiinrrieeeeeeeiinreeeeeeesesssssseseesssesssssssseesssesasssnsssesssesesssnsssnees 40
2.3.2.] L= 1B Tod 1o 1 = PSP 43
2.4. ADB - CONNECING L0 thE SK2 ...ttt en e e 45
2.4.1. LTSy = 11 =Y I = 46
2.4.2. Sidebar - What happens during “adb deViCeS”ccciiirvceerrceeereeceee e e e e 49
2.4.3. ADB COMMANGAS ..vvurrrrrrrrerrrerennsereseesssnne 49
2.5. Controlling Hardware Using the LiNUX SNEIL.........coomieeeiieeeeeeeeee e 56
2.6. LiNUX BOOT SEQUENCE..c..cceeeeeeeeeeeetieeeeeeeeeessssesseeessssssssssesesssssssssssssssesssssssssssssessssssssssssnessessan 58
2.6.1. How Does the QuickStart Demo Run Automatically?.......cccccereeceereiceerecee s e e 58

AT&T loT Starter Kit (2nd Generation) User's Guide - Preface Page 3

Table of Contents

2.6.2. Configuring Linux Application BOOTSTrapccocuieieeciericieieeeeiee et 59

3. Installing and USING C/CHuumeeeiiiiriisssmmeerereesssssssmssssseessssssnmssssssesssssssmsssssessssssnmmssssnsssssssnnmnnssnnens 63
3.1. Installing the C/C++ TOOIS @NA SOFLWAIE ...cc..uveeeeeeeeieeeeeeeeseeeeessteeessseee e e sirteeeeseeeesssnneaesaneneeas 65
3.1.1. GIT (BN ADB) ..ttt ettt ettt sttt st s r s et s e s st e s b e s se e s se e s ne e s seeseneesneeeneenanes 65
3.1.2. Software Development Kit (SDK) ..ot s 66
3.2. Lo LY (e g (e = C: 0] o] L= PR 68
3.2.1. Clone the 10T_MoNitor SOUICE COUEoiuiiriiiiieeeiee ettt 68
3.2.2. Build the 10T MONItOr ProSramooceeeiieieeeesieesee ettt e e 69
3.2.3. Push and Execute iot_monitor AppliCationoceeeiieciiieeeie e e 70
3.2.4. Avnet 10T Monitor GitHUD @nd VIAEOScoueeiiriieiiecetee ettt 71
3.3. Create Your First SK2 C/CH PrOSIaMouuuueeeeeeeeeeeeeeeseeeeeesteaesseeeasssesssssseesssssseesssssensssns 72
3.3.1. L L= 1o TR ¢ o SRS PRRRRR 72
3.3.2. GNU Automake Build SYSTEMcoiiiei ettt 72
3.3.3. STArtING PrOJECT FIlES ...t s 73
3.3.4. Install SK2 User GUIAE EXAMPIES....uuuiieiiieieciiriieeeeececinrreeees s sesssssseeeessessssnseeeessesessnsssees 74
3.3.5. [T0 1o [T T~ o =1 | o PR PRRROR 74
3.4. EX@ample: BliNK LED (Fil© 1/O) cuuiiieieceesiteisieessitesssiessstessstsssstessssnsssessssnasssessssnssssesssssssssessssnssases 76
3.4.1. BliNK LED With Fil€ 1/0 ..eeiiiiiee ettt ettt st n s nnn s 76
3.5. USING the SDIK'S PEIIPNEIAI APl ettt ettt e et e st e e e s e s e s sneeaesaseeeasssennenans 78
3.5.1. LC] o (O I o 10 '] = /2 78
3.5.2. Example: Blink LED (GPIO API) c...uuiiieiieeeee st s s stessee e s s s e s sne s ssnesnnees 80
3.6. WIiIting C Programs FOF LINUXcueeeoueeeerieeieeeeiee et s s sneesne s 81
3.6.1. Y UL W a1 == Vo g V= 81
3.6.2. LAY = Tl = =T T 11 = 86
3.7. Lo Taa] o1 (= 10 €] o Lo X o TP 94
3.8. Where to GO fOr MOre INFOIMATION.......eeeeeeeeeiee ettt sennees 98
4. Installing and USING PYthONceiiiiimiiiimiiniimssssiesss s s s snsssms s s s s ssmss s ssmss snssmmsssnssmns s 929
4.1. LS = 1= a1 L 101
4.1.1. BACKUD /CUSTAPRP.....ee ettt sttt et e et s e e s e s ne e s ene e s ne e e nneenanes 101
4.1.2. Setting Up the PYthon IDE ...ttt s 103
4.2, CONNECE L0 PYENON IDE ...ttt e s st e e st e e s esnn e e s sneneeas 107
4.2.1. OVEIVIEW eeieieeeeet e st et ettt e st e s st e s e e e eae e e s st e e at e e s st e eae e e s aseeeaee e saseesaeeesneesaneessennnsnasas 107
4.2.2. (€] (O 2 070) o TSP TRPTUPPRTRTN 108
4.2.3. LD E ettt e e e—e e b et e eae e e b et e aaee e beeaaaee e beeaanee e neeaanee e beeenneenanes 109
4.2.4, T 7€ 110
4.2.5. B =T 02 01 LT YT PRPRPRP 111
4.3. Getting StArted With PYERON ...ttt e et e s s e a e s e e e s snae e e s sneeaesaneneenn 112
4.3.1. Running Python from the Command-Line.........cooceriieiieriieeee e 113
4.3.2. Example: Hello World USIiNg PYENONeeeiiiee ettt 116
4.3.3. Example: Cheer for HElIO WOTId.......uueiiei ettt e e eensr e e e nnr e 118
4.3.4. Example: BliNKiNg the REd LEDooi ittt e e e e 119
4.3.5. Example: Reading the USer BUTIONcoiiiriii e 120
4.3.6. Accessing Additional GPIO PiNS......c.cociiiiieiee e 120
4.3.7. Killing @ RUNNINEG PythON Program........ccceevcciieiecies e e s e e eeeee s e e e e e e ssnee e s enanee s 121
4.4, WWAN LED CIGSS ..utteeueeeteaeieesteesateesteassteesteasseeesaseasaseesaseasseesaseassnesaseassnsssseasannsnssnasasnssanes 122
4.4.1. Python FUNCHIONS @Nd CIASSES ..ceieueiiiieieeietie ettt 122
4.4.2. Example: USINg WWAN LED ClaSsscouiueiieeriienie e 124
4.4.3. Importing & Using the WWAN LED CIaSSccueereeciereeeeeeeeceeeceeeessseee e e e e es e e s enaeee s 125

AT&T loT Starter Kit (2nd Generation) User's Guide - Preface Page 4

Table of Contents

4.4.4. WWAN ClasSs SUDPIOCESSING.......cerrueiriieiiieiiie et s e s ee e s 125
4.5, GPIO INEEITUPTES IN PYTNON .ttt sse e e s e e s s esnn e e s sneneeas 126
45.1. Fancier Button INtErrupt EXGMPIE ...ueeeeeiiiecceeeie e eeecreerie e e e e e vnnreee e s e sesnne e e e e s e seennnseeeas 127
4.6. RUNNING Python SCrPtS @t BOOLeeeeeeeeeeeeeeeeeete e e setee e sttt e e st e e e s aneeaesaneeeassaseneesaneenenannnes 129
B O Vo [o [(oY= Tl =) =T =T Lo = N 130
5. Wireless Wide Area Networking With LTEccccciercecmrrrccerisssscesessecssesssmesesssscssesssssesessmsssessanes 131
5.1. Modem ABSEraction LAYEE (MAL) oottt ettt s ttee e ettt s e e e e e s e s s s s e e esnneaenannnes 133
5.1.1. Connecting to the MAL USING the LTE APl........eoiiieeee et e e e e 133
5.1.2. Using WWAN API to Get NetWOrK TimMe....ccceiiiiiiee e 138
5.1.3. PYtNON MAL EXGMPIE ..ottt ettt st se e e e s e e e s snneeean 140
5.2. Communicating OVEY HTTPR/HTTPS ...ttt e et ee st e e s seeeaesaseeeensnseaeesneeaesaneneenn 146
5.2.1. o U 146
5.2.2. [(o T0] 14 o1 1o 0] o o 147
5.2.3. HOOKDIN.COM EXAMIPIES ...ttt e s 148
5.3. Connecting to the Cloud: M2X @Nd FIOWeeeeeeeeeeeeceeeeeeeeeeeesteseeeseeeesssseeeesseeaesssneeassaneneens 157
5.3.1. 1Y 02, Q01U o] 26 ¢= Y g Al B L= 0 Lo TSR 158
5.3.2. L E T = 1Y S 164
5.3.3. F O ettt ettt e e et e e e e e e e e e ae e e e e e seeeeaneeeeeneeeaeaneeseaneeeaanreeeanneeeeannnenan 177
5.4, SENAING SIMS MESSAZES...ceeeueereeeeeeeeeseeeeeeesttesessetesssaseesessssesssssssessssssensssssesssssssnsssassnessassenesssns 195
5.4.1. 1L 195
5.4.2. | I I SRR 198

4 0 =1 T 1 200
e o) 0T 200
R (0TS . VA 201
A2. What is, and how do you CONFIGUIE, thE APNP.....eeeeeeeeeeceeesteee st es st s st sste s san s st s s s snnasnes 203
LA T L T Y o N RSN 203
6= T (ST ALY o AV N7 Y T 203
T E=To [T (PR 203
VIBW APN .ot e ettt e ettt e e et e e e et e e e e aeeeseasseeesasseeeeaseeeaaasseessassseeaassseeeaasseessasnneenennneanan 203
oo L1 VA Y o A RS 205
A3. General PUrPOSE Bit 1/ O (GPIO) ...oue ettt ettt s st e s e s s sne e e s s anne e e s ennnes 207
R g T [207
SK2 GPIO Pins for LEDS and PUShDUTIONScciiiiiiiceies et ee s s e e 208
GPIO Pin Numbers — WNC VS QUAICOMM c....eiiiiiiiii ettt ee e s s e e ne e eans 209
T 0D QT (O I T g A= 210
Deallocating GPIO RESOUICEScueiiieeeeeeiieeeeeeeeseieee s e s saeeeseseee s e seeessesseeesesnneeseaseeessaseessasnneesensnnennn 214
A4. More Details about the LinUX BOOt SEQUENCE........ueeeeeeeeeeiiieeereeeieesiiseeeeesssssssssesesesssssssssesssssssesas 217
Getting 10 CUSTAPP-POSTINIT.SN ..eeiieee e e e e 217
AS. TroubleShOOtING “@AD EVICES ..ottt ne s 220
A5.1 Cannot find ADB COMMEANGueiiieeiercieeeeeeceeeeeseee s e e e e s e sae e e eesse e s sesneeeseseeeeeennees s nneesenneenan 221
A5.2 EXecute From ADB Dilf€CTOIY ..uuuieieceeercieeeeeeceeeseseeeseseeeesssseeesesnseesssneeeseseeesesnneessesnneeseasneenan 221
AS.3 WNC_ADB UNAUEINOKIZEA ... ettt e et e e e e e nn e e s e e e s e e e e e e s annnnenes 223

AT&T loT Starter Kit (2nd Generation) User's Guide - Preface Page 5

Table of Code Listings

Table of Code Listings

[T2t I O g T T o1 (= G O 12 11 = o 44
Listing 2.2 Chapter_02/liST_dEV.Sh......uee ettt et e e e e s e e e e e e e e e ne e e e e nn e e e enneenan 44
Listing 2.3: Chapter_02/1iSt_pipe_Cat.Sh ... it 44
Listing 2.4: TUIMN Off TNE LED ... ueiiie ettt e ne e s 56
Listing 2.5: TUIN ON the LED ...eii ettt e et et e e s e e s s e e e e e e e e e nne e e s nneeeenneenan 56
Listing 2.6: Chapter_02/DIINK.Sh ...cii ettt se e s s e e e e e s e e e s ne e e s snneenas 57
Listing 2.7: Appendix/GPIO/TUrNONREALEA.SN ...coi it 57
Listing 2.8: Appendix/GPIO/TUrNOffREALEA.SNcoeeeeeeeeee s 57
Listing 2.9: CUSTAPP-POSLINIT.SN ..ot e e s e s e e e e e e e e s e e e e nn e e e enneenan 58
LiSting 2.20: rUN_AEMO.SN ...t s e s ne e s s e e s ene e s e e s neesans 58
Listing 3.1: Chapter_03/hellO/SIC/MAIN.C ..coiiiiiuiiiiiieeeeeiee et et e e s sse e e e se e e s ne e e s eneeeaas 72
Listing 3.2: SAMPIE .GIIBNOIEeeeeeee ettt et e et e e e s e e e e e e s e s e e s s ane e e e eaeeeeeanseeeeenneeeennnenan 75
Listing 3.3: Blinking Red LED with File I/0 (Chapter_03/fileio_red_led).....cccceeevmeerecceeereeceereeceeee e 77
Listing 3.4: Chapter_03/api_led_red_with_deinit/Src/main.Co.. . ccuiiiiiiieies e 80
Listing 3.5: Chapter_03/SigiNt/SIC/M@aIN.Cuuriiiiiiiiiiiiieieeiee et et ee e s e e se e s ne e e e s neeeeas 88
Listing 3.6: Chapter_03/SigiNt2/SIC/MAIN.C ceccooiiriieeeeeieeeeerseeeseeere e s ereeesesee e s esneeesesaeeeseeseessesnneesensneenan 89
Listing 3.7: Chapter_03/sigint2_with_pause/SIC/MaiN.Ccccceeeeceereeieeeeeieeeseeeeeseseeeeseseeeessnneeseseeeeenas 90
Listing 3.8: sk2_users_guide/Chapter_03/sigaction/SIC/MaiN.C ...couccueeeeeceerinieeeeeeee e seceeeesseeeeens 92
Listing 3.9: sk2_users_guide/src/api_button_interrupt ... 93
Listing 3.10: sk2_users_guide/myGPio/SIC/MAIN.C ..cceeeieeererreeereaiereerrsreeseaseesessseeessssseessasseessssseesessssens 94
Listing 3.11: sk2_users_guide/myGpio/SIC/MYGPIO.C .cuureereererereriereerrieeeseeseeseesseeessseeessasseessssseesessseess 95
Listing 3.12: sk2_users_guide/myGpio/SrC/MYGPIO.N.....eei ittt 97
Listing 4.1: Chapter_04/hellO_ChEEI.PY ..uueeiieiieieeiee ettt e e s se e s nne e s s neeeaan 118
Listing 4.2: Chapter_04/red_led_BliNK.PY ..ceeicieereeierceieeee e ese e s e eee e ee e e s e esnne e s esane e e e sne e e sesnneesennnnenan 119
Listing 4.3 - Chapter_04/bUttON_rEaAG.PY «..ueericeeerreieeeieeeeereseeeseessreessssseesesseeessesseessessneessasseeseasseessasnnees 120
[A T T T | ST o TTR 121
Listing 4.5: Chapter_O4/WWan_ClaSS. Y. ...ueeirrieerrareereereeeesieeesseseessseeesssaseesssssseessasseessssseessssnsesssansnenns 124
Listing 4.6: Chapter_04/WWan_BliNK. DYceeeiecieereeiesceieeeereseeeseseeesesesessssseeesssnseessssseessssssessnsnseesenssnenn 125
Listing 4.7: Chapter_04/button_iNTeITUPT.PY couueeereecieeceieeeeeeceeese e s eseee e e e e e e s senne e s e aee e e s e ne e e eesnne e s enneeean 126
Listing 4.8: Chapter_04/button_interrupt_fanCy.py ..ot 128

AT&T loT Starter Kit (2nd Generation) User's Guide - Preface Page 6

Table of Code Listings

Listing 5.1: ex_01_mal_api_example.py (PYtNON)ooi it 134
Listing 5.2: ¢_01_mal_api_eXample (C/CH) .uierieieeeeectieeerereseseee e e e e e esee e s esne e e e s e e e ensnne e s eaneeean 136
Listing 5.3: €X_02_get_ NEtWOIK_tiME. DY c.ueeeeieieereeiesceeteere e e s e rer e s e ee e e s s e e e s e enne e s s ane e e e s neeeeesnneesennnnenan 138
Listing 5.4: ¢_02_get_network_time/Src/mMal.npp ..ot 139
Listing 5.5: ¢_02_get_network_time/SrC/Mal.CpP .. uuu cceeerrriiieeeeeresseeee e et e s see e e se e s nne e s e eeas 139
Listing 5.6: ¢_02_get_network_time/SIC/MaiN.CPP. . cccreererrrrererererenrereeesseeesesseeseaseessssssesssssseesenssness 140
Listing B5.7: €X_03_get_ SYStEM _iNT0. DY iiiiceeeieiiereeiesceete e s e s e s e e s ee e e e e e e e e e enne e s s ane e e e s neeeeennneeeennnenan 141
Listing 5.8: Chapter_05\c_03_system_info\SIC\M@iN.CPP . uurerrrrrerirereeeeiieeeeeee e seee e see e sneee s 143
Listing 5.9: Chapter_05\c_03_system_info\src\wwan_status.npp.....cccoeccerrriiiiniiiennnreee e 144
Listing 5.10: Chapter_05\c_03_system_info\Src\Wwan_StatuS.CPP ...ceeeecrererrrrrrrrrriereerrrneeeerrnneesenseeenas 145
Listing 5.11: Chapter_05\sh_04_curl_to_hOOKbDIN.SN......cceceieieeiee e 148
Listing 5.12: ex_04_http_tO_NOOKDIN.PY «.eeeeiiiiieieies et 150
Listing 5.13: ¢_04_http_to_hooKbin/SrC/Main.CPP .ueu cceeerieiiieerieeesereee e et e e see e e se e s ee e e 152
Listing 5.14: ¢_04_http_to_hookhin/src/my_Curl_pOST.CPP .ueeeeecrrrrrriererreieeeierereseseeeeessneeeeesnneesesneeeeas 153
Listing 5.15: Chapter_05/c_05_http_put_post_get/Src/Main.CPP ...cccceerecreeererrrerereeereeseeeeesneesesseeenns 155
Listing 5.16: sSh_06_M2X_eXaMPIE.SH ... neeiiiiiiee e e s 168
Listing 5.17: ex_08_M2X_PriNt_ValUES.SN..cciiiiiiiiei ettt e 170
Listing 5.18: Chapter_05/c_07_m2x_create_device_stream_value/src/main.cpp (lines 120-173).172
Listing 5.19: Chapter_05/c_07_m2x_create_device_stream_value/src/main.cpp (lines 176-210).173
Listing 5.20: Chapter_05/c_07_m2x_create_device_stream_value/src/main.cpp (lines 212-248).174
Listing 5.21: Chapter_05/c_07_m2x_create_device_stream_value/src/main.cpp (lines 251-269).175
Listing 5.22: ex_09_timestamp_debug_flOW.JSONciccceeereciieiccres e e e e e s e 184
Listing 5.23: €X_10_CUI_tO_fIOW.SN ...eeiiieeeeeee ettt e e e e s e e e e e nn e e e aneeean 190
Listing 5.24: eX_10_ttp_tO_flOW. DY c.ueeiiiieeietee ettt s e nee e 191
Listing 5.25: ¢_10_http_to_flOW/SIC/M@aiN.CPP «eeeeeeeriieieieeieiiee e st e e et s nre e e 193
Listing 5.26: Chapter_05/ex_11_send_tWiliO_SMS.PY .uueeerriieierrrcrerereeeeeeseeeseseeeseseeeeessseessssnneesennneeeas 197
AT&T loT Starter Kit (2nd Generation) User's Guide - Preface Page 7

License for Code Examples

License for Code Examples

Copyright © 2019 AT&T

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.

You may obtain a copy of the License at:
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and
limitations under the License.

AT&T loT Starter Kit (2nd Generation) User's Guide - Preface Page 8

Preface

Preface

Work in Progress

As of January 2019, this User’s Guide is a work in progress. It currently includes the first five chapters.
With the final three planned for 1Q2019.

The next section highlights the chapters that are available, as well as the additional chapters planned
for development

What this Book Covers

The 2nd generation loT Starter Kit (SK2) development module runs a version of Linux and can be
programmed with either the C language or with Python. It has quite a few peripherals that allow users
to connect to various sensors and systems. What makes it an Internet of Things (loT) module is its
ability to connect to the world via an on-board LTE radio. These various capabilities and services are
discussed in the following chapters.

Chapter 1 - Getting Started

The first chapter is all about getting started with the SK2. After a brief introduction to the kit itself,
you'll begin by registering your kit's SIM card and then working through the QuickStart application that
comes programmed into the SK2.

Chapter 2 - Using Embedded Linux

The SK2 runs a tiny distribution of Linux. If you’ve used Linux before then you already know most of
what’s in this chapter. Along with showing you how to connect your personal computer to the kit, this
chapter provide a quick primer for running Linux on the SK2.

Chapter 3 - Programming with C

The SK2 can be programmed using the C programming language. In essence, you can write a C Linux
application to control the SK2 module. The SK2 is supported by two C callable libraries which let you
access the on-board peripherals as well as the LTE communications.

This chapter takes you through installing the C programming environment and writing your first C
program. Once complete, you should be able to control the on-board LED and read the User Switch by
programming the pins attached to those controls via the GPIO (General Purpose bit Input/Output) API
(applications programming interface).

Chapter 4 - Programming with Python

The fourth chapter accomplishes the same goals as Chapter 3 but using Python. Therefore, in this
chapter we will learn how to install a new Python-based image to the SK2 as well as use it to read the
User Switch and toggle the LED.

AT&T loT Starter Kit (2nd Generation) User's Guide - Preface Page 9

Preface

Chapter 5 - Connecting to the Cloud with LTE

One of the unique capabilities of the SK2 is its ability to communicate over the AT&T LTE wireless
network. This allows untethered, mobile access to the Internet. In this chapter you will learn how to
connect to the Cloud to send and receive data. This chapter leverages cURL and the connectivity
libraries to support both programming languages (Python and C).

Note: As described earlier, the following chapters are currently in development

Chapter 6 - Using the ADC with the Light Sensor

The ADC (analogue to digital converter) is a useful peripheral interface found on the SK2’s Linux
processor. This port converts real-world analog signals (i.e. voltages) into digital values (i.e. numbers)
that we can use to observe our environment. In this case, the on-board light sensor is connected to
our Linux processor through the ADC peripheral interface.

As the light landing on the sensor gets brighter or dimmer, the light sensor outputs a greater or lesser
voltage. Our Linux programs (either using C or Python) can read a numerical representation of the
voltage via the ADC port.

Chapter 7 - Using 12C with the Accelerometer

I12C (pronounced I-squared-C) is a common serial communications port widely used on microcontrollers
and processors. Alternatively, it's also called an I12C port, as this is easier to write in simple text files.

This serial port is widely used for communicating with lower-speed peripherals across short distances
within a board. One of the main differences from other types of serial ports (SPI or UART) is that 12C
ports support a simple addressing mechanism which allows them to connect multiple devices together
across a single port.

Conveniently, the SK2 contains an on-board sensor (the accelerometer) which is connected to our
Linux processor by way of the 12C port. This makes it makes it easy to experiment with the 12C port as
we learn about how it works.

Chapter 8 - Getting the Location Using GPS

GPS (global positioning system) is another popular sensor built into the SK2. In fact, this one is
notable in that the GPS antenna is one of the three wires that need to be connected when first
assembling the kit.

If you have a phone, or a GPS unit in your car, then you already know that GPS systems provide
location data by reading signals sent by orbiting satellites. We won’t get too deep into how GPS works
but we'll examine how your programs can retrieve location data from the GPS sensor to use locally or
pass along to the Cloud for further processing or tracking.

AT&T loT Starter Kit (2nd Generation) User's Guide - Preface Page 10

Downloads, Support and Tools

Downloads, Support and Tools

Downloads

Visit the following site to download the code for this User Guide:
e https://github.com/att-iotstarterkits

Support

Please visit the the AT&T loT Starter Kit Knowledge Base for support related to this book and/or your
kit.

https://att-iotservices.groovehg.com/help_center

Tools Needed for Code Examples

Hardware

e Windows, Mac, or Ubuntu computer with an available USB 2.0/3.0 port.
— Ubuntu Linux computeris required if you want to compile C/C++ code to run on the SK2.

A virtual Linux computer - for example, using VMware - will allow you to build C/C++
programs if you do not have a Linux computer. (See note at the beginning of Chapter 3.)

— Windows or Mac computers will work fine if you are only planning on to connect to the SK2 to
view files or execute pre-built examples. These operating systems also work well if you’re only
planning to write Python code.

e AT&T loT Starter Kit (24 Generation)

Software

The following list summarizes the software required for building and running code on the SK2.

e Chapter 2: Android Debug Bridge (ADB) is required to talk to the SK2 from your computer.
Installation instructions are included in Chapter 2.

o Chapter 3: The Avnet/WNC SDK must be installed to build C/C++ programs. Additionally, the
M18QxlotMonitor program must be installed if you want to rebuild the QuickStart demo. Chapter 3
shows how to install both - along with instructors for their use.

o Chapter 4: Python firmware image is required for Python coding in Chapter 4 (and later chapters):

e All Chapters: Command line (i.e. shell) is needed to execute ADB commands and run scripts. Linux
(BASH shell) and Mac (Terminal) command-line tools work fine. Some Windows users have
experienced problems with their standard command-line tools and may want to install an
improved command-line tool, such as:

e WSL (Windows Subsystem for Linux)
https://en.wikipedia.org/wiki/Windows Subsystem_for Linux

e CMDER (http://cmder.net/)

Note: The author used the standard command-line utilities for each platform in Chapter 1, then
switched to CMDER (on Windows) for subsequent chapters.

AT&T loT Starter Kit (2nd Generation) User's Guide - Preface Page 11

https://github.com/att-iotstarterkits
https://att-iotservices.groovehq.com/help_center
https://marketplace.att.com/products/att-iot-starter-kit-2nd-gen
https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux
http://cmder.net/

Related Documentation

Related Documentation

Product Brief

e AT&T loT Starter Kit 2nd Generation Product Brief (PDF)
e SK2 AT&T loT Starter Kit Overview Slides (PDF)

Hardware Documentation

e SK2 Hardware User Guide (PDF)

e SK2 SOM Schematic (PDF)

e AES-M18QXLTE SOM Schematic Symbol (Orcad) (ZIP)
e SK2 LTE SOM Bill of Materials (PDF)

Software Guides

e SK2 Quick Start Card (PDF)

e |oT Starter Kit (2nd Generation) Quick Start Guide (PDF)
e Avnet M180Qx LTE IoT API Guide (DOCX)

e Avnet M18Qx Perpherial 10T Guide (DOCX)

e Python M18Qx LTE loT APl Guide (PDF)

e Python M18Qx Peripheral |oT APl Guide (PDF)

Software / Repositories
Note that installation & usage instructions are provided in their associated chapters of this user guide.

e Avnet WNC SDK: This repository contains the software development kit (SDK) libraries and
documentation for use with the the loT Starter Kit (2" generation) (also known as ‘SK2’).

https://github.com/Avnet/AvnetWNCSDK

e Avnet loT Monitor Example: The monitor source code for the (SK2). This is the source code for the
Out-of-Box program that is loaded on the SK2 board when delivered from the factory.

https://github.com/Avnet/M18QxlotMonitor

o AT&T loT Starter Kit (2 Generation) Python Firmware Image

https://s3-us-west-1.amazonaws.com/td-marketplace-assets/SDK-
01/M18Q2 v12.09.182151 APSS OE v01.07.183121.zip

Warning: Do not install the Python firmware without reading the instructions in Chapter 4.

e AT&T GitHub Repository
https://github.com/att-iotstarterkits

AT&T loT Starter Kit (2nd Generation) User's Guide - Preface Page 12

http://cloudconnectkits.org/sites/default/files/C1244-ATT-IoT-Starter-Kit-2nd-Gen-Product-Brief_rev1.pdf
http://cloudconnectkits.org/system/files/avnet_att_2nd_gen_iot%20_kit_v1%20%2822%20SLIDES%29.pdf
http://cloudconnectkits.org/sites/default/files/M18Q2FG-ATT-LTE-Kit-HW-UG-v1-2.pdf
http://cloudconnectkits.org/sites/default/files/att-m18q2fg-m1-g_RevD.pdf
http://cloudconnectkits.org/sites/default/files/AES-M18QXX_sch_symbol_RevA.zip
http://cloudconnectkits.org/sites/default/files/AES-ATT-M18Q2FG-M1-G_RevD_2017-09-27.zip
http://cloudconnectkits.org/sites/default/files/ATT-MP-STARTERKIT-GS-C-2-portrait_3.pdf
http://avnet.me/QSG-AES-SK2
https://github.com/Avnet/AvnetWNCSDK
https://github.com/Avnet/AvnetWNCSDK
https://github.com/att-iotstarterkits/sk2-Users-Guide/blob/master/Users_Guide/Python_M18Qx_LTE_IoT_API_Guide.pdf
https://github.com/att-iotstarterkits/sk2-Users-Guide/blob/master/Users_Guide/Python_M18Qx_Peripheral_IoT_API_Guide.pdf
https://github.com/Avnet/AvnetWNCSDK
https://github.com/Avnet/M18QxIotMonitor
https://s3-us-west-1.amazonaws.com/td-marketplace-assets/SDK-01/M18Q2_v12.09.182151_APSS_OE_v01.07.183121.zip
https://s3-us-west-1.amazonaws.com/td-marketplace-assets/SDK-01/M18Q2_v12.09.182151_APSS_OE_v01.07.183121.zip
https://github.com/att-iotstarterkits

AT&T loT Starter Kit (24 Generation) Videos

e Device Fundamental Tutorial 1: Install the SDK, ADB plus other Tools (MP4)

e Device Fundamental Tutorial 2: Install and Build the loT_Monitor Reference Design (MP4)

e Device Fundamental Tutorial 3: Running loT_Monitor and Other Applications (MP4)

e Device Fundamental Tutorial 4: Exploring the loT_Monitor Application Source Code (MP4)

Certifications

Please refer to Avnet’s Cloud Connect Kits page and scroll to review and download the certification
documents.

http://cloudconnectkits.org/product/Ite-starter-kit-2

Document Locations

AT&T Marketplace

e https://marketplace.att.com/products/att-iot-starter-kit-2nd-gen

e https://marketplace.att.com/quickstart#starterkit-2nd-gen

Avnet Cloud Connect Kits

e http://cloudconnectkits.org/product/lIte-starter-kit-2

e http://cloudconnectkits.org/product/global-lte-starter-kit

AT&T loT Starter Kit (2nd Generation) User's Guide - Preface Page 13

https://vimeo.com/247404116
https://vimeo.com/247408365
https://vimeo.com/247412768
https://vimeo.com/247415717
http://cloudconnectkits.org/product/lte-starter-kit-2
https://marketplace.att.com/products/att-iot-starter-kit-2nd-gen
https://marketplace.att.com/quickstart%23starterkit-2nd-gen
http://cloudconnectkits.org/product/lte-starter-kit-2
http://cloudconnectkits.org/product/global-lte-starter-kit

Page left intentionally blank.

AT&T loT Starter Kit (2nd Generation) User's Guide - Preface Page 14

1. Getting Started

The chapter introduces loT (Internet of Things) and the AT&T loT Starter Kit (2nd Generation) -
nicknamed the “SK2” - and then quickly gets you playing with the QuickStart demonstration program
that comes pre-programmed into the kit.

After a brief review of loT and the kit's hardware, you will need to register the SIM (Subscriber Identity
Module) card that comes with the SK2 so that your kit can be recognized by AT&T'’s LTE cellular
network.

Once registered, we’ll take you through assembling your kit and kicking off the QuickStart demo, by
pushing the board’s User Button, whereupon the on-board LEDs indicate the various stages of the
demo’s execution.

Finally, we’ll introduce the support and development resources available for the SK2.

Topics

O € 1= P 0] = o (=Y 15
1.1. = T T Lo I 16
1.1.1. HOW DOES 10T WOTK? «ururiiii s s s s s s s s s snsssnsnsssnsnnnnnan 17
1.1.2. R[S 0= ET= I (o T 01 11U] F= T g o IR 18
1.1.3. The SK2: 10T EVEIYWRNEIE ..ottt st e e st e e et s s e e s e s e e e s e ane e e e e neeennnns 18
1.2. Lo ISz Ta =T a1 (T 42 T 19
1.2.1. What COMES 1N T8 BOX.iuiiiiiiiiiiiiiiiiiiieieiiieeeeeeeieieeeeeeeeeeeeesseeeerereeeeererererersrssersrsersrssesssessnne 20
1.2.2. HArAWAIE OVEIVIEW ..cceiicceiieeeieeeeeeieeteeeeeesessasreeeesesessssssseeesssesssssseeeessesassnseeesesesanssnnsnnnes 21
1.2.3. SOTEWAIE OVEIVIEW.....uueeiieieieiiiiirtieeeeeeesistreeeeeesessssreeeeeesesssssseesesssesssssseeeesssasssnssnseesssassnnnes 24
1.2.4. (O (o U o I 0] o1 aT=To1 41771 7SRRI 25
1.2.5. Description of QUICKSTA DEMIO......ueeiiiiee ettt s ene e 25
1.3. RUNNING the QUICKSEAIT DEMOeeeeeeeeeeeeeeeeee e et s e s eseee e e ssee e e e seeaessneeassaseeeasassenesssnnneesanennean 26
1.4. JRESOUICES eeeeeeieesreeieeeeees ettt e e e eesse s s eeeesssssssasseeasassssssssseasessssssssneaeesassssssnssessansssssnnnnnesnnen 32
1.4.1. AT & T RESOUICTES ..uvvvrurerrrrrrrssessnnns 32
1.4.2. Register with CloUdCONNECTKITS.OFE ...ceiiueiiieeiiieeeee et 32

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started

pg. 15

What is IoT?

1.1. What is loT?

Who hasn’t heard of loT (Internet of Things) these days? Well, maybe my mother doesn’t realize that
her thermostat, which can be controlled by her iPhone, is an loT device. But engineers, programmers

and makers are all trying to figure out how to leverage the Internet to make their projects more
exciting and useful.

There are just too many applications where IoT might be useful to cover them all, but here are three
examples where you might see it in your daily life:

1. Tracking buses, trains and other transportation: While it’s handy to inform riders when to expect
the next bus, it also provides useful data for managing operations and expenses.

2. Parking: Becoming more popular at airports and cities, tracking empty parking spaces allows
cloud and mobile apps to direct citizens and clients to available spaces. Once again, though, the
aggregate data from these operations also help communities and business better plan for, and
utilize, their infrastructure.

Figure 1.2

3. Asset Tracking: This is the most widely used application for loT today. Keeping track of trucks,
containers, pallets - or just about anything - is an essential requirement for our just-in-time world.

Figure 1.3

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started pg. 16

What is IoT?

1.1.1. How Does loT Work?

In each of above use cases, the device (i.e. “thing”) is capturing data (location, temperature, etc.) and
sending it to the cloud (i.e. “Internet”).

loT Device Connection Cloud Action
((g)) Q o
) A bRy
Problems to solve: E * Collect
* Verify temperature . * Log
* Track location : * Process
and route « Send

. Dashoa rd

IOTQ

Device

Figure 1.4 - How Does loT Work?

Breaking it down, we can describe loT in four parts:

1. loT Device: The device captures sensor data and sends it to the Internet. For decades we have
built devices that can read sensors, but only in the past few years have we begun to add the
hardware which allows them to talk to networks and the cloud.

2. Connection: There are several methods for sending data to the Cloud. For example, until recently,
WiFi is a popular method for many home or business applications. But a growing number of
applications require connectivity over longer distances and with fewer configuration headaches.
Cellular connections, as provided in the SK2, makes IoT easier and cheaper for most use cases.

3. Cloud: That is, the “Internet”, receives and processes the data sent from the device.

Action: While it's true that the Action is generally handled by the Cloud, we’re explicitly noting it
because this represents the reason for using 10T in the first place. Why capture and send data to
the Cloud if you don’t need to trigger alarms, notifications, or analyze the data in the first place?

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started pg. 17

What is IoT?

1.1.2. The Case for Cellular loT

As stated in the previous section, WiFi has been a popular ingredient for early loT projects, but it runs
into several roadblocks for a growing list of applications. In our earlier examples, WiFi might only be
able to send data from truck or container residing in a terminal, but not while in transit.

Similarly, trying to provide WiFi across an entire city, or even just a parking garage, is difficult and
expensive.

Finally, WiFi configuration is tedious and difficult. Many early loT adopters have struggled with the cost
of setting up and maintaining WiFi configuration. It’s not hard to imagine the value of outfitting every
vending machine with an loT device. Just think of how useful that data might be in managing a
vending operation. Then consider how much time you would need to pay your technicians to configure
the WiFi settings for each vending machine. Even worse, how about paying them to do this again each
time the building or business hosting the machines updates their WiFi passwords?

1.1.3. The SK2: loT Everywhere

With the AT&T IoT Starter Kit (2" Generation), developers get the power of AT&Ts LTE network in a
small, easy-to-develop module. A one-time configuration with the AT&T certified SIM (subscriber
identity module) will ensure your device stays secure and ready to connect anywhere.

Figure 1.5

This is where the AT&T loT Starter Kits fit into the picture. They give developers access to low-cost, fully
certified, small footprint modules that can be used to build LTE connected loT devices. Use them to
host your embedded applications, or to just provide the LTE connectivity to an embedded system you
have already developed. Either way, these kits make LTE a reality for loT applications.

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started pg. 18

loT Starter Kit (SK2)

1.2. loT Starter Kit (SK2)

Figure 1.6

AT&T loT Starter Kit (2nd Generation) - also known as “SK2” - provides an innovative new System-on-
Module loT solution, enabling the design of cellular connected edge devices, certified for operation in
the United States. (An alternative version of the kit “Global LTE |oT Starter Kit” is also available from
Avnet to support markets outside of the United States.)

Designed to be used for both prototyping and production, the slim form-factor LTE SK2 board is fully
compliant with FCC, PTCRB, and AT&T network certifications, thereby reducing development risk and
speeding loT deployments.

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started pg. 19

https://marketplace.att.com/products/att-iot-starter-kit-2nd-gen
http://cloudconnectkits.org/product/global-lte-starter-kit

loT Starter Kit (SK2)

1.2.1. What Comes In the Box

AT&T loT
Starter Kit
{‘E) LTEModule

AVNET

Figure 1.7

LTE loT SOM - LTE System Board (p/n: AES-ATT-M18Q2FG-M1-G).

LTE Primary + GPS Antennas - Pulse FPC LTE combo antenna.

LTE Secondary Antenna - Pulse FPC LTE antenna.

AT&T loT Starter SIM Card - 3FF Micro-SIM card.

AC/DC Power Supply - AC/DC power supply (5V @ 2.5A) plus country/region outlet adapter.

© o M w b e

USB Cable - for programming and debug.

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started pg. 20

loT Starter Kit (SK2)

1.2.2. Hardware Overview

The Starter Kit features a small (79.5 mm x 30 mm) development board built around Wistron NeWeb
Corporation (WNC) M18Q2FG-1 LTE Cat-4 modem module. The M18Q2FG-1 module provides cellular
modem functionality plus user application code support via a dedicated Arm® Cortex™-A7 processor,

thus eliminating the need for an external host processor.

The following discussion briefly introduces the top and bottom of the board. For additional technical
details regarding the kit's hardware, please refer to Avnet's SK2 Hardware User Guide (PDF).

1.2.2.1. Top

User 800 |

Light
RGB LED |

Sensor

Reset, User, Boot ‘
P/Button Switches

WWAN LED & |

PMOD™ 2x6
Connector
(3.3V levels)

GPS
Antenna U.FL

LTE Main

Antenna UFL | _Power LED @ |

Debug UART

LTE Diversity (3.3V levels)

Antenna U.FL

Micro USB
DC Supply

ADC Input |

i
e
Select i

" Micro USB
Host Interface

Figure 1.8 - Top of SK2 Module

The WNC modem/processor module sits on the left side of the board; this includes the Linux
processor that will be programmed in later chapters.

Starting at the left side of Figure 1.8, other features include:

ADC Input Select: The ADC (analog to digital convertor) jumper lets you select how the ADC pins
from the WNC module are connected within the SK2 board: either to the light sensor or the 60-pin
jumper.

Antenna Mounts (x3): Three antenna connections are found on the left side of the module. This
support both the LTE radio (which requires two antennas) as well as the GPS sensor.

Three Push Button Switches: There are three push-button switches on the board.
— Reset: Initiate a reset by pressing and holding the button for greater than 3 seconds.

— User: The USER BUTTON can be accessed by user programs. Programming this button via
GPIO (general purpose input/output) is discussed in Chapters 3 and 4.

— Boot: Forces USB boot for reprogramming the firmware. (This is an advanced function that is
not covered in this book.)

Light Sensor: The ADC (analog to digital convertor) in the WNC module measures the amount of
light hitting this sensor.

RGB LED: The User RGB (red, green, blue) LED can also be controlled via user software (also
discussed in Chapters 3 and 4).

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started

pg. 21

http://cloudconnectkits.org/sites/default/files/M18Q2FG-ATT-LTE-Kit-HW-UG-v1-2.pdf

loT Starter Kit (SK2)

e WWAN LED: The WWAN (wireless wide-area network) LED is controlled by the LTE modem and
provides status regarding the cellular connection. This can also be user programmed using SYSFS,
which is discussed in Chapters 2-4.

e PMOD connector: This allows you to attach PMOD peripheral boards, making it easy attach
sensors or other resources to your kit. There are a wide number of PMOD capable modules that
can be purchased separately. (Digilent provides a handy PMOD reference.)

e Power LED: This LED illuminates green when the circuit is correctly powered. It is not user
programmable.

o Debug UART: This port is dedicated for system debug output (i.e. Linux kernel debug log output)
and is currently not programmable.

e Two Micro USB connectors:

— DC Power Supply: USB connector requires 5V 2.5A DC power. (The kit includes the correct
AC/DC power adaptor).

— Host USB: The “Host Interface” USB connector can be connected to your computer, allowing
you to modify and control the module via the ADB (Android Debug Bus) protocol. (This is
discussed Chapter 2.)

1.2.2.2. Bottom

3FF Micro SIM |

Card Cage | 3.8V Current
Measurement
Testpoint

60-pin /0O Expansion 3D Accelerometer 1.8V to 3.3V
Connector (1.8V levels) + Temperature Sensor _ Level Shifter

Figure 1.9 - Bottom of SK2 module
Starting from the left and working around the board:

e 3FF Micro SIM Card Cage: Holds the micro SIM (Subscriber Identification Module) card that
comes with the kit. Once registered, the SIM allows communication through AT&T'’s loT
cellular network. (See the SIM registration steps later in this chapter.)

o 3.8V Current Measurement Testpoint: Can be used to test the output of the on-board voltage
converter. After applying an unregulated 5V supply thru, say, the micro-USB power connector,
the on-board converter adapts and regulates the power supply to the board. With a small
hardware modification, this unpopulated header can be used to measure the current flowing
through this regulated supply.

e 1.8V to 3.3V Level Shifter: Handles the voltage differences between the modem processor
module pins and the sensor and expansion devices.

e 3D Accelerometer & Temperature Sensor: Provides movement and temperature data to the
system. (These will be discussed later during the 12C chapter.)

e 60-pin I/0 Expansion connector: Provides access to many of the processor’s pins and ports.
Use this to add your own hardware to the SK2 system. Alternatively, you can attach the

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started pg. 22

https://store.digilentinc.com/pmod-modules-connectors/

loT Starter Kit (SK2)

Avnet’s LTE loT Breakout Carrier as shown below. The breakout makes it easier to access the
expansion pins - or allows easy connection of Click modules (as shown below).
Figure 1.10 Avnet’s LTE IoT Breakout Carrier
.
1.2.2.3. Block Diagram
5] = N
’ Us2DW12 | wr_ 57 o 2
K Accelerometer [™ ’l/ OGP))SJ lte lte
] + Temperature 12C - . -
Sensors bl GNSS Primary Diversity
ﬁ U.FL U.FL U.FL -
—
ALS-PT19 ! =
L i g
:'. Ambient ¥ L ~ AT&T
TN Light Sensor UIM Micro-SIM
B | card (3FF)
P2 | anc USB* (UARTL, AT modem port,
— ™ Sel. Android ADB port, NMEA port, ———
San |'[|; Ethernet over USB, Mass Storage) _ | Micro USB
E— 12C/SPI2 Y. WNC ~ ™| Connector
» o Wistron NeWeb Corp. .
- - UARTZ** Dbg UART
ERFE |a—3P1 N M18Q2FG-1 0 > Header |UAFT2
Samtec | 125/PCM LTE Cat.4 Module e
60pin | GPI0(10) _ (North America) el 18vAN > pyop |
/0 . _ 12C = Level 12C
Expafnsion o USB ey Translation ™1 Connector GPI093
SGMIl L, GPIO(2) I (3.3V levels) GPI095
Connector |« >
. WAKEUP_OUT
(1.8V levels) WAKEUP IN | GPI092
_ - USERRGBLED &%I; | crio101
1V8_VREF [=" m|Gpi0102
RESET_N WWAN STATE gl D2
[A 4
REG_EN RESETN | FORCE_USB GPIO9S 3V8_STATUS LED1 m
A
Power
Micro USB VCC_IN | DC/DC [—»3v8 SW1 Sw2 SW3 Note:
G ot T 3.8V31A RESET UsB U?er * MicroUSB and 60-pin connector share same USB
onnector 3V8 @ Boot Switch ** UART1, UART2 have predefined System functions
5V DC Power | =w—-
LDO [—»3Vv3
33V0.1A

Figure 1.11

Please refer to the SK2 Hardware User’'s Guide for further details and explanation regarding this

board.

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started

pg. 23

http://cloudconnectkits.org/product/lte-iot-breakout-carrier
https://www.mikroe.com/click
http://cloudconnectkits.org/sites/default/files/M18Q2FG-ATT-LTE-Kit-HW-UG-v1-2.pdf

loT Starter Kit (SK2)

1.2.3. Software Overview

The SK2 uses the WNC M18Q2FG-1 module, whose ARM Cortex-A7 processor is pre-loaded with an
OpenEmbedded version of Linux. User application code (scripts, C language, and Python) can run

within this Linux environment.

You can program the Linux processor using one or more of three different languages:

1. Linuxshell scripts: Useful for simple demos and examples.

2. Python: The optional AT&T Python environment lets you access the hardware using the popular
scripting language. The Python environment is covered in Chapter 4.

3. C/C++: You build C applications that run within the Linux environment. In fact, the QuickStart

demo - which comes pre-loaded on the SK2 - was written using C/C++. Chapter 3 describes how
to setup the tools and build C/C++ programs.

The M18Q2FG-1 Software Development Kit (SDK) provides APIs that simplify access to system
resources when programming with C/C++. The SDK consists of two main APIs (Application
Programming Interfaces):

Cellular Network Control API: Provides access to the communications services over the LTE
cellular radio. This is described in the Avnet M18Qx LTE loT API Guide and Python M18Qx LTE IoT
AP| Guide.

Hardware Related Control API: Provides access to the peripheral ports and pins on the M18Q2FG-
1 processor module. In other words, using this APl you can access the ports, as well as the
sensors that are connected to these ports (e.g. temperature, accelerometer). This is documented
in the Avnet M18Qx Peripheral loT APl Guide and Python M18Qx Peripheral 1oT API Guide.

:
4 Applications
Linux Sa:ketl
€ Function Call C Function Call Callular Netwark
@ Control (JSON API)
= WNCHard Related Control i
g atrShWa ?;z Lii:a:,.ri ontro M2X Cloud Access 1
% 7 + HTTR/MCTT
3 (Library) Mal Manager
g [Service Daemon)
“dev o o dev - < dev - o dev - ~ socket
. GPIO SPI 12¢C ADC TCP/UDR/IP 3G/LTE
a@ Driver Driver Driver Drriver Protocol Stack Modem
' I . I) [‘[') Sub-System
loT loT loT loT
Sensor Sensar Sensar Sensar

Customer’s APlIsfor
Application YNC Core Application

The Python firmware image for the SK2 includes these API by porting them into Python callable
functions. Coding with Python is discussed in Chapter 4. (Please refer to the Python versions of the two
API guides for specific details.)

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started pg. 24

https://github.com/Avnet/AvnetWNCSDK
https://github.com/att-iotstarterkits/sk2-Users-Guide/blob/master/Users_Guide/Python_M18Qx_LTE_IoT_API_Guide.pdf
https://github.com/att-iotstarterkits/sk2-Users-Guide/blob/master/Users_Guide/Python_M18Qx_LTE_IoT_API_Guide.pdf
https://github.com/Avnet/AvnetWNCSDK
https://github.com/att-iotstarterkits/sk2-Users-Guide/blob/master/Users_Guide/Python_M18Qx_Peripheral_IoT_API_Guide.pdf

loT Starter Kit (SK2)

1.2.4. Cloud Connectivity

AT&T services facilitate Cloud based application development and deployment:

e M2X-a cloud-based, fully managed loT device management and time-series data storage service
for network connected devices.

e Flow Designer - a visual loT application development and data orchestration environment, with
run-time support for complex nonstandard protocol translation, data processing and integrations,
to help developers create loT applications fast.

The SK2's QuickStart demo (i.e. IoT Monitor program) utilizes these services and provides an example
for how to get started with them.

1.2.5. Description of QuickStart Demo

When the loT Starter Kit (2nd Generation) is initially powered-on, a basic user interface will allow you
to perform complete Transmit/Receive operations. This initial program will post readings from the
sensors located on the loT Starter Kit module to a pre-configured AT&T Dashboard each time you push
the “User” button. You can see this operation progress by following the LED sequence on the board.

Sensor data from the module includes:
e Motion sensor data provides 3-axis accelerometer data indicating board position
e Temperature sensor

e Ambient light sensor
Note that GPS location data is not enabled in the startup application.

The demonstration runs the “loT Monitor” application. The code for this can be found on Avnet’s
GitHub site:

https://github.com/Avnet/M18QxlotMonitor

As this software is pre-loaded onto the module at production, there is no need for you to download or
modify it before running the QuickStart out-of-box demo. You can find further explanation, and
directions, for this demo in the next section. (Instructions for running the demo can be found in the
next section.)

This initial program, called “loT Monitor”, will post readings from the SK2 sensors to the cloud. Linux
has been configured to run it automatically upon powering up the SK2. In other words. the QuickStart
demo is implemented as a C/C++ program called iot_monitor.

Further examination of the QuickStart demo includes:

e Chapter 1 (this chapter) examines the QuickStart demo from a user perspective; that is, “how do |
run the demo?”

e Chapter 2 describes how the iot_monitor runs automatically by Linux when the SK2 boots up -
and how you can stop it from running automatically, if you want.

e Chapter 3 examines the demo’s the source code (i.e. the C/C++ iot_monitor program). It includes
instructions for downloading and rebuilding it, after you have installed the Linux C/C++ tools.

e Chapter 5 explores the ‘cloud’ side of the QuickStart demo by examining the AT&T's M2X service.

This includes a description for creating — and then sending - the QuickStart demo’s data to your
own M2X account.

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started pg. 25

https://github.com/Avnet/M18QxIotMonitor

Running the QuickStart Demo

1.3. Running the QuickStart Demo

1.3.1.1. Register the AT&T SIM Card

Before we get started with the QuickStart demo, we need to register your kit and its SIM card with the
AT&T Marketplace. This provisioning will allow AT&T’s network to recognize your Kit.

1. Logonto AT&T’s loT Marketplace:

https://marketplace.att.com

You have choice of login methods - either using an account that you have previously setup, an
AT&T Developer account, or a GitHub account. If you would like to create a new account, click the
“Create an account” link near the bottom of the screen.

2. After you are logged in, navigate to the Register SIMs screen by clicking:
Management > Register SIMs

3. Enter the SIM ICCID number located on the SIM card carrier (and the SIM card itself). Then click
the “Register SIMs” button.

We recommend giving it a nickname, just in case you end up with more than one kit or SIM card
and want to tell them apart.

Register SIMs

iz SIMICCID

SIM card ICCID Nickname (optional)

Add another SIM

Return to dashboard Register SIMs

4. View data about your SIM in the “Dashboard”.

If you are not taken to the Dashboard, click the “Dashboard” button and you should see your SIM
card listed. Click the + button next to your SIM card to view more data about your SIM card.

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started pg. 26

https://marketplace.att.com/

Running the QuickStart Demo

1.3.1.2. Assembling the SK2

To assemble loT Starter Kit (2nd Generation) components, there are just a few connection steps
required to connect the three main items needed for basic operation.

e Antenna
e SIM card

e Power adapter cable
Directions to assemble the kit include:

1. Connect the antennas.

The flexible antenna arrays should be gently connected to the module antenna terminals as
shown by matching each of the labeled antenna cables to the corresponding connector:

GPS Antenna ﬁ
LTE Primary Antenna . & 7

LTE Diversity Antenna

Figure 1.13

2. Install the SIM into the SK2 holder. siger \

Carefully pop the AT&T micro-SIM card out
from its carrier and install it into SIM card
holder:

Note: Note that you must register the SIM
card before it will be recognized by the AT&T network. Figure 1.15
(These instructions were provided in Section 1.3.1.1.)

3. Connect the micro-USB power cable.

The included power adapter cable should
be connected to the micro-USB connector
labeled “PWR IN” and the wall adapter
plugged into an AC power outlet. This will
power on the module:

Connect power adapter cable to
the PWR IN micro-USB connector

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started pg. 27

Running the QuickStart Demo

1.3.1.3. Running the QuickStart Demo

As stated earlier, the QuickStart demo comes pre-programmed into your kit and should run
automatically after power-up.

Note: The next chapter (Chapter 2 - Embedded Linux) will show how to stop this program from
running automatically - or how to set your own program or script to run at power-on.

4. Confirm successful power up.

When power is provided to the IoT module it automatically begins basic operations. The presence
of power is indicated by the Power-On LED (LED1) illumination:

= Network Service LED

Power On LED

Hint: If the power is already on, power-cycle the board by disconnecting and then reconnecting
the USB power supply cable.

Figure 1.17

5. Confirm network connectivity.

After the module is powered on, the Network Service LED (LED2) will begin flashing. This indicates
that the module is attempting to register with the AT&T network and establish a connection.

Once connected to the AT&T network, the yellow (WWAN) Network Service LED will quit flashing
and become steady.

Note: If the Network Service LED does not become steady (i.e. it keeps flashing), then it’s possible
that the APN has been incorrectly configured for your kit. Please refer to the Appendix for
more information about the APN setting and how to configure it.

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started pg. 28

Running the QuickStart Demo

Use the following QuickStart demo description for completing the next step.

Quick Start Demo Sequence of Events

1. The QuickStart demo starts up with the Red LED lit, indicating that communication has not yet
been established with the AT&T service. It becomes green when the service is ready.

2. While the tri-color LED is GREEN, the user may press the USER button to initiate a data
transmission.

3. While the push button is being pressed, the tri-color LED will illuminate white, while the tri-color
LED is WHITE no transmission takes place. The WHITE LED only indicates that the module detects
that the USER button is being depressed.

4. Once the USER push button is released, the tri-color LED will illuminate BLUE and the sensor data
will be collected and sent to AT&T'’s loT Platform (i.e. the AT&T M2X service). It will stay BLUE until
all the data has been sent and acknowledged by M2X. (Note that the Marketplace Dashboard,
described later, pulls the information from M2X. M2X will be described in Chapter 5.)

5. After the data transmission has completed, the tri-color LED will go back to GREEN.

This process can be repeated, and the Quick Start demonstration application will continue to follow
this execution logic as indicated in the following diagram:

Startup
or
Error Condition

Power On Board

#< gl

Module
Ready
Wait for User Button
Cloud Pressed
Response
Cloud
Connection

Figure 1.18 - QuickStart Demo Sequence - Tri-Color LED Chart

Stopping the Demo: If the USER push button is depressed for greater than 3 seconds, it
signals that the demonstration program should be terminated, and no further operations are
performed. At this point to restart the Quick Start demonstration application, you will need to
depress the RESET button for longer than 3 seconds (or power-cycle the board) to reset the
module. (To permanently stop the demo, please refer to the Linux Boot section in Chapter 2.)

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started pg. 29

Running the QuickStart Demo

6. When the Tri-color LED turns Green, push the user button once.

After network service is obtained, the module’s demo will connect to the AT&T M2X service. Once
established, the tri-color LED becomes GREEN.

After network service is established and the module is ready to receive user input, you can press

the USER Push Button (SW2) to initiate collecting sensor data from the SK2 and sending it to the
M2X service.

Each step in the sequence of events kicked off by pressing the USER button can been seen in the
Tri-color LED (LED3).

User push button Tri-color LED

Figure 1.19

Hint: The QuickStart demo’s sequence of events are described on the previous page.

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started pg. 30

Running the QuickStart Demo

1.3.1.3.1. Sidebar - QuickStart Data Sent to the Cloud

The following sensor data is sent to AT&T M2X each time the user presses the USER key:

3-Axis Acceleration Sensor Data:

e XVALUE = X data point from the onboard LIS2DW12 sensor chip
e YVALUE =Y data point from the onboard LIS2DW12 sensor chip
e ZVALUE = Z data point from the onboard LIS2DW12 sensor chip

Temperature Sensor Data:
e TEMP = Temperature data from the onboard LIS2DW12 sensor

Ambient Light Sensor Data:
e ADC = Light intensity measurement from the integrated ADC and onboard light sensor

The data is stored at the AT&T M2X service and sends an HTTP response allowing the
QuickStart demo to return to the green Ready state.

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started pg. 31

Resources

1.4. Resources

1.4.1. AT&T Resources

AT&T provides several resources, many of them are listed in the preface of this book. Here are four

sites to find support from AT&T for the SK2:
e https:
e https:

marketplace.att.com
marketplace.att.com
e https://github.com/att-iotstarterkits

e https://att-iotservices.groovehg.com/help_center

uickstart#starterkit-2nd-gen

roducts/att-iot-starter-kit-2nd-gen

1.4.2. Register with cloudconnectkits.org

Along with AT&T'’s information website, you can also find resources at Avnet’s Cloudconnectkits.org.

We recommend creating an account at:

http://cloudconnectkits.org/

During account creating, you will be able to register your Kit.

AVNET

Reach Further -

Home Products Buy

SEel int
Useraccoun FIRST NAME *

COMPANY =

COUNTRY *

USERMNAME *

PASSWORD *

YOUR SERIAL KIT NUMBER

CREATE NEW ACCOUNT

Forum

Select country v

Sponsors

LAST NAME *

POSITION *

CITY*

You will be able to login using your email and password

E-MAIL ADDRESS *

CONFIRM PASSWORD *

2 Sign in/Register

Figure 1.20

AT&T loT Starter Kit (2nd Generation) User's Guide - Getting Started

pg. 32

https://marketplace.att.com/products/att-iot-starter-kit-2nd-gen
https://marketplace.att.com/quickstart#starterkit-2nd-gen
https://github.com/att-iotstarterkits/sk2-Users-Guide
https://att-iotservices.groovehq.com/help_center
http://cloudconnectkits.org/

2. Embedded Linux

Most of today’s embedded systems run some form of operating system (OS). The OS provides a broad
set of services that simplifies programming the device, making it easier - and faster - to deploy new
products.

Linux is fast becoming a favorite operating system for embedded devices. Not only does it provide a
rich set of services, but it has wide community support and is a favorite among developers.

The AT&T loT Starter Kit (2" Generation) (i.e. SK2) is based on an OpenEmbedded distribution of
Linux. This environment provides the foundational basis for all interaction and development with this
kit. If you are already a Linux master, then you'll have a big head start with your development. If not,
we think you will find this 0S, and the kit itself, easy to use and fun to program.

Using the SK2 is somewhat akin to using a Raspberry Pi in that they are both small, Linux-based,
software-programmable kits. While the loT Starter Kit doesn’t provide quite the wide-range of
functionality found in the Raspberry Pi, it does have a built-in LTE cellular modem which gives it wide
ranging loT connectivity.

Topics

D7 = ¢ 11 07T o Lo =Y o TN 1T 1 33
2.1. L1 goTo [Lot Lo) g IR (o 3N B | 10) S 34
2.1.1. Kernel SPace VS USEI SPACEuuiriiiiieeieiee ettt eeeee et e s e se e s ne e s sneeeeas 35
2.2. L 10D 131] T L (o) 36
2.2.1. T 10 3G =T U= 36
2.2.2. LT LSTS LSy (= o 0 PSRRI 37
2.2.3. [To Yoyl o 7= Yo [39
2.2.4. o o] [g - 11 o 39
2.3. F 101G 1 1= 40
2.3.1. BasiC LINUX COMMEANGAS......ueiiieeiieceeiieee e e e e e e e s se s e e e e e s s e s snne e e e s e e s e nnneeeeeessennnnnenes 40
2.3.2.] LT LIRS T 1 101 F =PTSRS 43
2.4. ADB - CONNECING L0 thE SK2 ...ttt ettt an e e 45
2.4.1. LTSy = 11 =Y I = 46
2.4.2. Sidebar - What happens during “adb deViCeS”ccciiiievceerrieeereeceee e e e 49
2.4.3. PN = 3 00 Y0 0] g =1 o [£ 49
2.5. Controlling Hardware Using the LiNUX SNEIL..........ooumeeeeiieeeeeeeeeeee e 56
2.6. LiNUX BOOT SEQUENCE..c..cceeeeeeeeeeeetieeeeeeeeeessssesseeessssssssssesesssssssssssssssesssssssssssssessssssssssssnessessan 58
2.6.1. How Does the QuickStart Demo Run Automatically?.......cccccereeceereiceerecee s e e 58
2.6.2. Configuring Linux Application BOOTSTrapccueeieeceeriiiieeiriee et 59

AT&T IoT Starter Kit (2nd Generation) User's Guide - Embedded Linux

pg. 33

Introduction to Linux

2.1. Introduction to Linux

Linux, like all operating systems, provides a set of services to the user.

If you have ever used a Linux computer - or another other computer (e.g. Windows, Mac) - you are
familiar with many of these user-oriented services. For example, you may have used word processor
program to create and edit files, which are stored in the OS’s filesystem. Or, you may have used a web
browser, which relies on the networking services provided by the operating system.

While many Linux-based “embedded systems” do not generally run big word processor programs, they
still rely on the Linux filesystem to manage files - allowing programs to create, edit and delete files as
needed.

And like most other operating systems, Linux provides a command-line interface that can be used to

view files, execute programs or otherwise interrogate the system. While a command-line is rarely used
during the execution of an embedded system’s target application (i.e. we don’t use a command-line to
run our microwave), it is quite handy when developing and debugging software running user software.

While the following diagram is only a generic description, it gives us a summary of the types of services
we can expect to find in Linux, such as: memory management, file systems, networking, and device
drivers (e.g. serial ports, analog to digital converters). Together, this core group of services is often
called the ‘kernel’ of an operating system, hence the name Linux Kernel.

Process Memory Virtual File Network Stack Device
Management Management System Management

Linux Kernel
CPU support CPU/MMU Storage device @ Network device Character
code support code drivers drivers device drivers

Figure 2.1 - Linux Kernel

During this chapter we hope to provide a brief introduction to embedded Linux, some details about the
Linux distribution provided with the SK2, and how to interact with it. In subsequent chapters, we’ll dig
even further, learning how to write programs that run within the SK2’s Linux environment.

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 34

Introduction to Linux

2.1.1. Kernel Space vs User Space

Digging a little deeper into Linux, we need to delineate between “kernel” space and “user” space.

User Space

Application Application Application
Process Memory Virtual File Network Stack Device
Management Management System Management

Kernel Space

CPU support CPU/MMU Storage device | Network device Character
code support code drivers drivers device drivers

Figure 2.2 User Space vs Kernel Space

2.1.1.1. Kernel Space

In the previous section we described the Linux kernel as all the drivers and networking services
provided by the OS. This code typically runs with permissions that allow it to directly interact with the
hardware. With the SK2, the hardware manufacturer created the Linux kernel for us to work with their
hardware. In other words, WNC adapted generic Linux code to work with the CPU, memory and
peripherals found on their M18Q2FG-1 modem module.

2.1.1.2. User Space

In a similar way, we might describe ‘user’ space as all the programs and code that are isolated from
the hardware. These programs access standard driver and socket interfaces that are portable across
devices.

In fact, if you've used an Ubuntu Linux computer before, you might only recognize user space, as this
is the area where we interact with Linux to run programs and configure our preferences. In an
embedded system, we might think of user space as the area where we create and run software
applications.

2.1.1.3. Protecting the Environment

Notice how Kernel space comes between User space and the hardware? Linux systems are layered in
this fashion to create a secure and stable system. User applications are not allowed to talk directly to
hardware, rather, they must call upon the services of the Linux kernel to interact with memory and
peripherals. Therefore, when writing programs for Linux, we will need to learn how to interact with the
Linux kernel - that is, we will need to learn how to call the functions provided by Linux and WNC that
will let us access OS resources, such as the peripherals which talk to the sensors on the SK2, as well
as the cellular LTE modem.

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 35

Linux Distribution

2.2.

2.1.1.4. Protecting Users From Each Other

One last note, while we are talking about protection and User space. Another advantage to enforcing
that all resources are accessed via the kernel is that it helps to protect one user from another. We
might redraw our previous diagram to look like this:

User Space

Application Application Application
Process Memory Virtual File Network Stack Device
Management Management System Management

Kernel Space

CPU support CPU/MMU Storage device f§ Network device Character
code support code drivers drivers device drivers

Figure 2.3 Separation of User Space

Linux allows programmers to create application programs which run independently of each other, as
shown above. Alternatively, applications can be programmed to run in the same ‘space’ as each other
(like on the previous page). While the choice is yours, as a programmer, how to implement your
application(s) code, but we can thank the separation of Kernel space for helping to provide us with
these options.

Linux Distribution

Linux is delivered as a ‘distribution’. Generally, a distribution includes:
e Linux kernel - set of core services (as we discussed earlier)
o Filesystem - collection of user space libraries and utilities/applications

e Boot loader - an orderly, sequential means for low level hardware configuration and loading the
kernel

e Toolchain - common collection of compiler, linker, libraries, etc.

Our board comes pre-loaded with the Linux distribution. When writing code for the SK2, you will need
to download the appropriate toolset - choosing whether you want to write your programs in Python or
the C language. (Chapters 3 & 4 will describe each of these toolsets - how to download, install, and
build programs with them.)

2.2.1. Linux Kernel

We access resources using a combination of common Linux commands (e.g. reading and writing a file
or memory) or using a set of device driver libraries provided by WNC (the module vendor). These will
be covered in greater detail throughout the rest of this user’s guide.

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 36

Linux Distribution

2.2.2. Filesystem

The Linux filesystem provides a hierarchical organization for storing and retrieving files. Like most
operating systems, the Linux community has defined a common set of directories for storage. As an
example, the description below highlights a few key directories found on the SK2 filesystem (found on
the right side of the page):

Filesystem - Unlike Microsoft Windows, Linux only has a single filesystem.
In other words, Linux doesn’t have a filesystem for each drive or entity.
Where Windows users might be used to “C” and “D” drives, Linux only has

a single filesystem.

In Linux, the topmost location - that is, the root of the filesystem - is

denoted by “/”.

We won’t describe each folder in the SK2 filesystem, but here’'s a
description for a few of them:

CUSTAPP

For ‘your’ application (i.e. customer applications)

It’s the only folder in the filesystem that can be written
to; all other folders are read only

Contains the QuickStart demo that runs on powerup;
this will be discussed further later in this guide

data

This ‘directory’ is just a link to ‘/CUSTAPP’.

Like a shortcut in Windows or Mac
/data -> /CUSTAPP

dev

Common location for listing Linux device drivers

mnt

Common location to mount other file systems

Additional drives, memory cards, or network locations
become part of the one filesystem whenever they are
added (i.e. “mounted”) to the Linux device. “mnt” is a
generic place to place them.

media

Rather than using mnt for USB drives and CDROM
media, some Linux distributions create a “media”
where these items are mounted

sdcard

This ‘directory’ is just a link to ‘/media/card’.

Like a shortcut in Windows or Mac
/sdcard -> /media/card

proc

“/proc” is not a real directory, but rather, it’s a virtual
directory and does not hold physical files. Contained
within proc are information about processes and other
system information. This information is mapped to
/proc and mounted at boot time.

Here’s a good reference, if you are looking to learn more about the
standard Linux Filesystem Hierarchy:

https://en.wikipedia.org/wiki/Filesystem Hierarchy Standard

Filesystem
/
bin
boot

build.prop

factory
firmware
home

lib

linuxre

sys

system
target
tmp
usr

Var
Figure 2.4 Filesystem

AT&T IoT Starter Kit (2nd Generation) User's Guide - Embedded Linux

pg. 37

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

Linux Distribution

2.2.2.1. Virtual Files, Status Info, and Configuration

Extending the concept of the filesystem, Linuxs uses it for more than just text or binary files. Linux also
uses the file reading/writing paradigm to write to peripheral device-drivers. For example, you can write
to the user-LED on the SK2 by writing to a virtual file, as we will see later in the chapter.

In a similar fashion, Linux lets users read status information and/or write configuration preferences
through its filesystem. (As discussed earlier in the description of the /proc filesystem directory.)

2.2.2.2. Permissions and Owners

The Linux filesystem provides a robust set of file permissions and owners. To access a file, you must
have the required permission to read, write, and/or execute it. Here is another view of the SK2
filesystem. This one was generated using the “Is” (small LS) Linux list command with the “Is” (small
LS) option. That is, the specific was: 1s -1s

cmd - adb shell b

17

. o build.prop
File permissions

GO = MM = M MW O
[A A)

Links to file

File Owner

W L L e P
=

3 e !_- [N S

e P P P

8
8
8
8
8
8
4
8
8
8

Figure 2.5 Filesystem Listing ("Is -Is")

Note that if the “File Permissions” begins with a “d” then that line represents a directory. The
remaining characters indicate if the “owner”, “group”, and “all users” have permission to read, write,
and/or execute.

d r'WX r'—X rw_ Permissions:

r = read
/ [1 I w = write
= execute

Directory User Group Others |X
Figure 2.6 - File Permissions Explained

In this example, User can read, write and execute; the Group cannot write; and Others cannot execute.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 38

Linux Distribution

Here’s a handy reference to learn more about file permissions:
https://nitstorm.github.io/blog/understanding-linux-file-permissions

The “Linux Commands” section lists several commands useful for listing (e.g. “Is”), reading and
modifying the ownership of files, (“chown”) as well as viewing and changing the permissions on files
(“chmod”). In fact, the procedures in Section 2.52.4.3.3 will require executing chmod to enable
execute permissions.

2.2.3. Boot Loader

The SK2 Linux kernel has a pre-defined sequence for getting the module up-and-running. As part of
this sequence, you can hook your programs to “auto-execute”. That is, you make your own programs
begin running at power-up, just like the Out-of-Box example that ships with the SK2. This will be
discussed in further detail during a later part of this Users Guide.

2.2.4. Toolchain

The set of tools used to write software programs to run in a specific version of Linux. In later chapters,
we will introduce two toolchains for the SK2. One will focus on writing C programs, while the other will
utilize Python.

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 39

https://nitstorm.github.io/blog/understanding-linux-file-permissions

Linux Shell

2.3. Linux Shell

The Linux shell - also known as the Linux command-line - provides a textual interface for issuing
commands to Linux and then viewing the results. While most operating systems provide this capability,
Linux (and Unix) users, seem to rely on it more than users of other operating systems. With Embedded
Linux - where limited memory may not be able to support graphical interfaces - the command-line
shell becomes even more important.

The next section highlights several key commands that can be invoked from the Linux shell.
Experienced Linux users will likely know these already. For those new to Linux, we provide a short
explanation of each. With a little practice - and some Googling - all users should become comfortable
with them.

Note: If you are familiar with using the Windows command line, then you should be familiar with the
Linux shell. In some cases, both use the same command - for example both use the
command “cd” for “changing the active directory”. In other cases, they use different
commands (e.g. Windows uses “dir” to list a directory, while Linux uses “Is”).

Check out the ComputerHope site, which provides a brief comparison of both DOS and Linux
command-line shells.

2.3.1. Basic Linux Commands

Linux distributions a common set of programs that can invoke from the Linux shell. For example, if you
have ever used Linux - whether Ubuntu or embedded Linux - you will likely have made use of these

various command-line programs. From listing the files in a directory (“Is”), to editing files (“vi”), or
pinging a network (“ping”).

Note: It's OK if you're not familiar with the tools we just mentioned. Those, and many more, will be
discussed as needed throughout the rest of this user’s guide.

In other words, the commands we run from the Linux shell command are just executable applications
that reside within the Linux filesystem.

To minimize the size of the Linux on the SK2, its distribution packs all of these little command-line
utility programs into a single executable called BusyBox. This is a common way for embedded Linux
systems to include a large set of tools with a very small memory footprint, albeit with some minor
tradeoffs in functionality.

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 40

https://www.computerhope.com/unix.htm#dos
https://www.busybox.net/

Linux Shell

2.3.1.1. BusyBox Commands
The SK2 relies on BusyBox to provide many of the command line utilities that we use every day.
busybox

Entering the ‘busybox’ at the command line will return the version of BusyBox along with the
command-line functions supported with this distribution.

Figure 2.7 BusyBox

2.3.1.2. File Management

e pwd: print working directory - simply returns the directory where your command line is currently
located; good for answering “where am |” in the filesystem?

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 41

https://www.busybox.net/
https://www.computerhope.com/unix/upwd.htm

Linux Shell

e 1ls(small LS): listing - creates a simple listing of the files and subdirectories in the current
working directory

Make this more useful by adding an option, such as, “1s -1s” or “1s -1a”. This will list the files
vertically and provide the additional information shown in the graphic in Section 2.2.2.2

e alias: tells the shell to replace one string with another

This lets you create a new command from one (or more) other commands; for example:

alias 11='1ls -la’

After entering this command, entering Il (small LL) will execute the “Is -la” command for you.
e cd: change directory - changes the current working directory to a new location

Examples:

e “cd /7 sets your command-line session to the root of the filesystem

e “cd /CUSTAPP” makes CUSTAPP your current working directory
e cp:copy - copies a file (or files) from one location to another

e mv: move - moves a file (or files) from one location to another
Note that this is how you rename a file in Linux

e rm:remove - is how you delete a file or files

e 1n(small LN): link - link files which is like shortcuts in Windows
Also popular to create symbolic links, which adds an s option: “1n -s”.

e chmod: change mode - allows you to change the permissions of files and directories
e chown: change ownership of files and directories
e mkdir: make a new directory
e rmdir:remove directory - note that the directory must be empty before it can be deleted
e mount: mount a filesystem to your root (for example, attaching a USB or network drive)

e Generally, you must create a new empty directory - for example, in the /mnt folder - and
then mount the new filesystem into the root filesystem

e umount: unmount - unmounting a filesystem from the root
e find:find a file or group of files

e grep: global regular expression print - search one or more files for lines that match a regular
expression pattern

e tar: tape archive - combine a group of files into the tar archive format with - or without -
compression; the tar command can also be used to modify, extract and manage tar files

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 42

https://www.computerhope.com/unix/uls.htm
http://www.linfo.org/alias.html
https://www.computerhope.com/unix/ucd.htm
https://www.computerhope.com/unix/ucp.htm
https://www.computerhope.com/unix/umv.htm
https://www.computerhope.com/unix/urm.htm
https://www.computerhope.com/unix/uln.htm
http://www.yourownlinux.com/2013/09/chmod-basics-of-filesdirectories.html
https://www.computerhope.com/unix/uchown.htm
https://www.computerhope.com/unix/umkdir.htm
https://www.computerhope.com/unix/urmdir.htm
https://www.computerhope.com/unix/umount.htm
https://www.computerhope.com/unix/umount.htm
https://www.computerhope.com/unix/ufind.htm
https://www.computerhope.com/unix/ugrep.htm
https://www.computerhope.com/unix/utar.htm

Linux Shell

2.3.1.3. Viewing, Creating and Editing Text Files
e touch - Either creates a new empty file with the specified name or updates the files modification
timestamp if the file already exists

e cat: catenate - reads data from the specified file(s) and outputs the contents to the command-
line

e vi:visual editor - a small, simple text editor included with most Linux distributions

It’s not visual (or anything) like Microsoft Word, but it lets us view and modify text files while taking
up very little of our valuable memory

2.3.1.4. Program Control

¢ ps: process listing - produces a list of processes running on the Linux system
¢ top: produces a listing of processes sorted by % CPU usage

¢ kill:tell Linux to Kill a process using it PID (process ID) number; a PID can be viewed using
the ps or top command

¢ <ctrl>-c:stops a process by sending it the SIGINT interrupt signal

¢ clear: clears the Linux shell

2.3.2. Shell Scripting

As discussed earlier, the command-line shell provides a handy and powerful way to work with Linux,
such as managing files or executing programs.

Behind the scenes, this shell itself is a Linux program that provides the command-line interface and
command interpreter. There are a variety of shell programs found in Linux (and Unix) distributions -
the most common being one called Bash. Alternatively, the SK2 comes with a similar, smaller shell
program called Ash, which is part of the BusyBox toolset. (In fact, you can see this listed in Figure 2.7
BusyBox.)

Shell scripting is nothing more than a sequence of command-line (i.e. shell) calls. These sequences
can be a simple grouping of one or two commands or complicated sequences that contain logical
control statements.

We use the term “scripting”, rather than “programming”, as these sequences do not need to be
explicitly compiled before they are executed.

When grouped together into a single text file, the “.sh” file extension is used to signify a shell script.
Linux doesn’t require that we use the .sh extension, but this is common practice in Linux since this
makes it easier for us to identify which files are shell scripts.

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 43

https://www.computerhope.com/unix/utouch.htm
https://www.lifewire.com/uses-of-linux-cat-command-4011235
https://www.howtogeek.com/102468/a-beginners-guide-to-editing-text-files-with-vi/
https://www.lifewire.com/uses-of-linux-ps-command-4058715
https://www.computerhope.com/unix/top.htm
https://www.computerhope.com/unix/ukill.htm
https://www.computerhope.com/unix/uclear.htm

Linux Shell

Listing 2.1 is an example of a very simple shell script that was used to create Figure 2.5 Filesystem

Listing ("Is -Is"):

Listing 2.1: Chapter_02/list.sh

list.sh

#

list the files in the current directory to the command-line

note that the -1s option creates a vertical listing with more info
ls -1s

A second example lists the files in the dev directory:

Listing 2.2 Chapter_02/list_dev.sh

list_dev.sh

#

change to the /dev directory

and then print a listing the command line
cd /dev

ls -1s

Let’s look at one final example:

Listing 2.3: Chapter_02/list_pipe_cat.sh

list pipe cat.sh

#

- This script writes a listing of /dev directory into

a file named "mylisting.txt" in /CUSTAPP

- The ">" pipe symbole tells the shell to pipe the output
from the "ls -1s /dev" command into the txt file rather
than printing it to the standard output

— It then prints out the contents of mylisting.txt

using the Linux "cat" command

#

ls -1s /dev > /CUSTAPP/mylisting.txt

cat /CUSTAPP/mylisting.txt

Later, in Section 2.4.3.3 on page 52, we walk you through using shell scripts on your SK2.

Note: Linux Line Endings

Be careful when creating shell scripts in Windows for use in Linux on your SK2. Windows uses
different characters to signify line-endings than Linux. In some cases, the different characters
can return unexpected results.

A couple of guidelines to help you get better results:
- Do not use Windows Notepad to create shell scripts. It does not handle Linux line endings.

- Find and use a good Windows text editor. There are many good ones available. A popular,
free editor is Notepad++ (https://notepad-plus-plus.org).

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 44

https://notepad-plus-plus.org/

ADB — Connecting to the SK2

2.4. ADB - Connecting to the SK2

The SK2 was developed using ADB (Android Debug Bridge) to communicate between your computer
and the kit. ADB is a versatile command-line tool that facilitates a variety of device actions, such as
pushing and pulling files, as well as providing access to a Unix shell that you can use to run a variety of
commands on your device.

It is a client-server program that includes three components:

1. ADB Daemon (SK2): Resident on your SK2, running in the background, providing development
and debug access to authorized users through the COMmunications USB port.

2. ADB Client (Computer): The client runs on your development machine, letting you send
commands. You can invoke a client from a command-line terminal by issuing ADB commands.

3. ADB Server (Computer): The server manages communication between the client and the daemon.
The server runs as a background process on your development machine. Once the server has set
up connections to all devices, you can use ADB commands to access those devices.

Since the ADB daemon is already installed on your SK2, we only need to install ADB onto our
development computers. This is addressed in the next section.

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 45

ADB — Connecting to the SK2

2.4.1. Installing ADB

Since ADB is already installed on your SK2, we only need to install the remaining two components on
your development computer; these are both installed with a single installation program.

Installing ADB on your Windows, Mac or Linux computer follows a similar set of steps. After
downloading and extracting the ADB executables, you will also need to set up an authorization key file
to gainaccess to your SK2.

2.4.1.1. Install ADB Executables

1. Download the ADB ZIP file for your computer from the Android developers’ site.

There are separate download links for each 0S (Windows, Mac, Linux). Pick the one that matches
your development computer.

https://developer.android.com/studio/releases/platform-tools

Hint: If you are using a Debian-based Linux, such as Ubuntu, you can type the following
command to download and install ADB (and skip the next step):

sudo apt-get install adb

2. Extract the contents of this ZIP file into an easily accessible folder.
Some suggestions include:

Windows: C:\adb
Mac: /Users/MY_USER_NAME/Desktop/adb (replacing MY_USER_NAME with your login id)
Linux: /home/MY USER NAME/Desktop/adb (replacing MY_USER_NAME with your login id)

Note: Linux users can skip this step if ADB was installed with apt-get.

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 46

https://developer.android.com/studio/releases/platform-tools

ADB — Connecting to the SK2

2.4.1.2. Set up Credentials (i.e. access key)

3. Create a new folder called “.android” in your user directory.
Using your computer’s file browser (or command-line), create the new folder as shown:

Windows: C:\Users\MY USER NAME\.android (replacing MY_USER_NAME with your login id)
Mac: /Users/ MY_USER_NAME/ .android (replacing MY_USER_NAME with your login id)
Linux: /home/MY USER NAME/.android (replacing MY_USER_NAME with your login id)

4. Add “adbkey.pub toyournew “.android” folder.
For the SK2, this is simply a text file named “adbkey.pub” which contains a single word:

wnc000000

Hint: This file should contain only this word. It should not contain a carriage return or line-feed.

You can create this file yourself or download it from github.com:

https://github.com/Avnet/AvnetWNCSDK/blob/master/adbkey.pub

If downloading from github, we recommend right-clicking on the “Raw” button and select “Save
Link As...”

Executable File 1 lines (1 sloc) 9 Bytes ‘* Raue . PBlama | Hictan. —
Open Link in New Tab
Open Link in New Window

wnceaaaas

Bookmark This Link

C Save Link As... j

Save Link to Pocket

With this step complete, as an example, a Windows user named “doug” should have the following
file on their computer:

C:\Users\doug\.android\adbkey.pub

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 47

https://github.com/Avnet/AvnetWNCSDK/blob/master/adbkey.pub

ADB — Connecting to the SK2

2.4.1.3. Connect to Your SK2

5. Open a command window in the same directory where you installed the ADB binary.

In Windows, this can be done by holding Shift and Right-clicking within the ADB folder, then
choosing the “open command prompt here” option. (Some Windows 10 users may see
“PowerShell” instead of “command prompt”.)

Mac users can open “Terminal” from their Applications folder and navigate to where you installed
ADB (in step 2). For example:

cd /Users/MY USER NAME/Desktop/adb

Linux users should open their command-line shell and navigate to where you installed ADB (in
step 2). For example:

cd /home/MY USER NAME/Desktop/adb

Note: Linux users who installed ADB via apt-get may run ADB commands from any location.
You do not need to navigate to the adb folder in order to run it.

6. Connect your SK2 to your computer with a USB cable.

Make sure the USB power cable is also connected. It won’t work without both USB cables being
connected.

7. Inthe Command Prompt window, enter the following command to launch the ADB daemon:

Windows: adb devices

Mac and PowerShell:

(Precede commands with “. /") -/adb devices

Ubuntu Linux: sudo adb devices

In response, you should see:

WNC_ ADB device

as shown below:

EX Windows PowerShell - O x

Ps C:\adb> ./adb devices

List of devices attached

* daemon not running; starting now at tcp:5037
* daemon started successfully

WNC_ADB device

PS C:\adb>

Figure 2.8 adb devices

You can now run ADB commands (discussed in Section 2.4.3 on page 49) on your device.

Note: Refer to Appendix A5 for ADB Troubleshooting Tips.

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 48

ADB — Connecting to the SK2

2.4.2. Sidebar - What happens during “adb devices”

When you run “adb devices” a few things happen:

1. ADB Server is started. (This was briefly described in Section 2.4 on page 45.)
Note that you can explicitly start the ADB server with the command: adb start-server

The ADB Server scans your computer for connected ADB devices.

It then verifies if you have the credentials to access the connected ADB devices.
a) Looks for the required ‘key’ in your .android folder.

b) Creates the .android folder, if it doesn’t exist.

c) Ifakeydoesn’t exist, but it finds “adbkey.pub”, is uses that to create the actual authorization
key “adbkey”.

4. Finally, it prints the list of devices to the command line (as seen in Figure 2.8).

2.4.3. ADB Commands

This section assumes that you were able to install ADB on your computer and successfully list your kit
using the “adb devices” command. If not, please refer to Installing ADB (Section 2.4.1).

2.4.3.1. ADB Commands found in this User Guide

ADB Debugging

e adb devices - lists available adb targets
e adb Kill-server - stop the adb server

e adb reboot - reboots the SK2

File Management
e adb pull - pull a file from the SK2
e adb push - push a file to the SK2

Execute on Device
e adb shell - Starts a remote shell on the SK2

e exit - exits the remote shell and returns to your computers command-line

Of course, you can find a listing of all the commands from many places on the Internet, such as:
adbshell.com, https://developer.android.com/studio/command-line/adb, droidviews.

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 49

http://adbshell.com/commands/adb-devices
http://adbshell.com/commands/adb-kill-server
http://adbshell.com/commands/adb-pull
http://adbshell.com/commands/adb-push
http://adbshell.com/
https://developer.android.com/studio/command-line/adb
https://www.droidviews.com/a-comprehensive-guide-to-adb-android-debug-bridge-and-commands/

ADB — Connecting to the SK2

2.4.3.2. Exploring the SK2 Filesystem using “adb shell”

Here are the results after executing the following instructions. (Note that this screen-capture was
taken from a Windows computer running the CMDR shell.)

cmd = O x

cmd.exe Searchd v~ [~ & | =
Figure 2.9 Using "adb shell"

1. Open a command-line shell on your computer in the ADB folder.

This was discussed in Step 5 (Section 2.4.1.3) on page 48.

2. Verify you can connect to your board using ADB.
Running this command from the shell you just opened:
adb devices or ./adb devices
Should return:

WNC_ ADB device

If it doesn’t, then you need to verify your ADB installation (Section 2.4.1) and/or view ADB
troubleshooting (Appendix AS).

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 50

ADB — Connecting to the SK2

3. Start a remote session on your SK2 using “adb shell”.
You can start a remote shell session running on your SK2 using the adb shell command.

adb shell or ./adb shell

Notice, in Using "adb shell (Figure 2.9 Using "adb shell"), that the command prompt changes to
“#" after starting the “adb shell” command. The commands executed from the # shell are running
on the SK2 (and not on your computer).

4. Listthe SK2 filesystem “1s”.
5. List the SK2 filesystem again using “1s -1s”.

6. Exit the SK2 remote shell.

Exit the remote shell using the exit command.
exit

Notice how the command prompt returns to its original value. This indicates that our command-
line is running on our computer again.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 51

ADB — Connecting to the SK2

2.4.3.3. Running Shell Scripts (.sh) on the SK2

To demonstrate running shell scripts on your SK2, we will use the 1ist dev. sh script (Listing 2.2)
from earlier in the chapter that listed the contents of the /dev directory. We will create (or download)
the shell script on our computer and then push it to the SK2 and execute it.

Note: See a screen capture of this procedure’s results at the end of the instructions.

1. Create (or download) the 1ist_dev. sh file to your adb folder.

Since this is such a small file, you may prefer to create it using your text editor. If so, create a file
called “list_dev.sh” and add the following two lines of code.

cd /dev
1ls -1s

Note: If using Windows, save the file using Linux (or Unix) line endings.
(See note on page 44).

Alternatively, you may want to download this file from the AT&T Starter Kit GitHub site:

https://github.com/att-iotstarterkits/sk2-Users-Guide

Hint You can place your shell file in any folder; we only chose the adb folder for convenience.

2. Open a command-line shell on your computer, if it isn’t already open.
This was discussed in Step 5 (Section 2.4.1.3) on page 48.

3. Verify your SK2 connection using “adb devices”.
It should return:
WNC ADB device

If not, you will need to verify your ADB installation (Section 2.4.1) and/or do some ADB
troubleshooting (Appendix AS).

4. Push the shell script to the /CUSTAPP folder.

The ADB push command takes two arguments, the from and to locations:

adb push "C:/adb/list dev.sh" /CUSTAPP
or ./adb push "C:/adb/list dev.sh" /CUSTAPP

Modify the path to your 1ist dev. sh file as necessary.

5. Open a shell session on your SK2.

adb shell
or ./adb shell

6. Change directories, opening /CUSTAPP.

cd /CUSTAPP

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 52

ADB — Connecting to the SK2

7. Listthe /CUSTAPP directory and look at the permissions for your 1ist_dev. shfile.
ls -1s

You will see the shell file has the following permissions.
4 -rw-rw-rw- 1 root root 15 Oct 19 04:15 list dev.sh

Unfortunately, since the permissions do not include an ‘x’, you won’t be able to execute the script.
To prove this to yourself, you can try to run it, if you'd like.

8. Modify permissions so that you can execute your shell script.

There are several permutations for setting file permissions. By using the “+x” argument with the
chmod command we simply enable execute permission for our script file. (We recommend that
you explore file permission options further on your own.)

chmod +x list dev.sh

Hint Handily, Linux will autofill filenames when possible. For example, in this step, typing
“chmod +x 1is”and hitting the tab key should autofill the complete filename.

9. Check the permissions on the file after chmod.
ls -1s list dev.sh
Notice that the executable flags are set: —rwxrwxrwx
10. Runthe 1ist_dev.sh.
Since we are using the SK2 Linux shell, we must append “. /” when running executables.

./list _dev.sh

The contents of the /dev directory (the SK2 Linux drivers) should be printed to your terminal.

11. Notice that you remained in the /CUSTAPP directory.

Even though the shell script changed to the working directory to /dewv, the script returned to the
/CUSTAPP directory when it finished running.

This happens because shell scripts are run in their own “sub-shell”. This is often handy, especially
when running multiple sequential scripts.

You can use the source command (see next step) if you want to affect the working directory.
12. Run your script with the “source” command to have the script affect the working directory.
source ./list dev.sh

This time, your working directory should be /dev when the script completes.

(Notice the “/dev” to the left of the “#” prompt.)

13. Exit the ADB shell.

exit

AT&T IoT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 53

ADB - Connecting to the SK2

Here is a recording of our running the list_dev.sh shell script.

/CUSTAPP # chmed 777 list_dev.sh
/CUSTAPP # 1s -1s list dev.sh

4 -rWXrWXrx 1 root] C 84:15 list dev.s
/CUSTAPP # ./list_dev.sh

root
root

DL D 606
S e e e S e

1
1
1
1
1
1
1
1

B Cru-ru-ru-
/CUSTAPP #
/CUSTAPP # source ./list_dev.sh

-PW---- 1 root
rw---- 1 root
rw---- 1 root

CPW-PW- -
exit

Figure 2.10 Running the list_dev.sh script

AT&T IoT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 54

ADB — Connecting to the SK2

2.4.3.4. Modifying shell script with vi

You can use the “vi” text editor to create and modify text files with your SK2. This can be handy if you
need to make a change to a file already resident on the board.

This section assumes you have created the shell script (List dev.sh) in the previous section.
Additionally, please refer back to previous sections if you need with the early instructions in this
sequence.

1. Open a command-line shell on your computer, if it isn’t already open.
2. Verify your SK2 connection using “adb devices”.
3. Open a shell session on your SK2.
4, Change directories, opening /CUSTAPP.
cd /CUSTAPP
5. Copy “list_dev.sh” to “list_lib.sh”.
cp list dev.sh list lib.sh
6. Editthe 1ist_dev.shfile.
vi list lib.sh
a) Enter Insert/Edit mode.
type the “i” character
b) Change the cd command from “cd /dev” to “cd /lib”.

Using the arrow keys, move the cursor to the “d” in “/dev”.

Uy

Press the “x” (or Delete) key three times (to erase the “dev”).
Press the right arrow key once (to move the cursor to the right of the “/”).
Type “lib”.

c) Exit Insert/Edit mode.
<esc> (i.e., press the Escape key)
d) Write the changed file and quit.
:wqg (and press the Enter key)
7. Run the newly edited script.
./list_lib.sh

Uy

If you are used to editing with Microsoft Word, the “vi” editor may take some time to get used to. But
it's a convenient - and very powerful - text editor that resides inside your SK2.

Please search the web for numerous pages describing how to use vi’'s many options. Here are two to
get you started:

e https://www.howtogeek.com/102468/a-beginners-guide-to-editing-text-files-with-vi/
e https://www.cs.colostate.edu/helpdocs/vi.html

AT&T IoT Starter Kit (2nd Generation) User's Guide - Embedded Linux

pg. 55

https://www.howtogeek.com/102468/a-beginners-guide-to-editing-text-files-with-vi/
https://www.cs.colostate.edu/helpdocs/vi.html

Controlling Hardware Using the Linux Shell

2.5. Controlling Hardware Using the Linux Shell

The SK2 hardware can be controlled from the Linux shell. While it isn’t very effective to try and control
an 12C serial port from the command-line, the LED makes a convenient example.

The following examples demonstrate how to turn the WWAN LED on/off. (Refer to the Hardware
Overview in Chapter 1 if you cannot find the WWAN LED.)

If the QuickStart demo is running, you'll need to (temporarily) turn it off by holding the USER Button
down for longer than 3 seconds. After doing so, you will see the RGB LED turn off. (Ref: Section 2.6.2)

2.5.1.1. Writing the WWAN LED

In the filesystem, the WWAN LED is found under the /sys directory. This is one of the directories, along
with /dev, that maps hardware to the Linux filesystem.

C:\adb
db shell
eche @ > fsys/class/leds/wwan/brightness
che 1 > fsys/class/leds/wwan/brightness

Figure 2.11 Turning the WWAN LED off/on
To turn off the LED, we simply write a “O” to its associated (virtual) file.

Listing 2.4: Turn Off the LED

echo 0 > /sys/class/leds/wwan/brightness

Similarly, we can turn the LED on by writing a “1” to the same location.

Listing 2.5: Turn On the LED

echo 1 > /sys/class/leds/wwan/brightness

AT&T IoT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 56

Controlling Hardware Using the Linux Shell

2.5.1.2. Simple Blink LED Script
Here’s a very simple script which blinks the WWAN LED.

Listing 2.6: Chapter_02/blink.sh

blink.sh

#

This is a simple example for blinking the WWAN LED five times
- The For loop executes once per character (a thru e)

- 'sleep 1' causes the cpu to wait 1 second

- At the end of the script, the LED is turned off

#
f

or var in a b ¢ d e; do
echo 0 > /sys/class/leds/wwan/brightness
sleep 1
echo 1 > /sys/class/leds/wwan/brightness
sleep 1

done

echo 0 > /sys/class/leds/wwan/brightness

2.5.1.3. Using the RGB LED or USER Button

While the WWAN LED is controlled directly by the WWAN pin on the WNC module, the RGB LED and
USER button are controlled by GPIO pins.

Here’s a simple example for lighting the Red LED (in the RGB LED).

Listing 2.7: Appendix/GPIO/TurnOnRedLed.sh

TurnOnRedLed.sh

#

This simple example turns on the Red RGB LED
#

cd /sys/class/gpio

echo 38 > export
echo out > gpio38/direction

echo 1 > gpio38/value

Listing 2.8: Appendix/GPIO/TurnOffRedLed.sh

TurnOffRedLed.sh

#

This simple example turns off the Red RGB LED
#

cd /sys/class/gpio

echo 38 > export
echo out > gpio38/direction

echo 0 > gpio38/value

Refer to the Appendix on GPIO for more details concerning:

e Whatis GPIO?

e How do | use the Linux GPIO driver to access the RGB LED and Button?
e Additional GPIO shell examples

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 57

Linux Boot Sequence

2.6. Linux Boot Sequence

Linux follows an orderly boot sequence from power-up to user shell access. This sequence of scripts,
functions, and tasks prepares the operating system to host users or run programs. While most of
these details are not generally of interest - especially on the SK2 since we cannot affect them - the
final steps may be useful for us to understand.

In our case, the questions of interest may include:
e How does the SK2 QuickStart demo start running automatically?
e Can | stop the demo from running automatically?

e Once | have written a program of my own, can | start it running automatically?

These are the questions we’ll address in this section.

2.6.1. How Does the QuickStart Demo Run Automatically?

The QuickStart demo consists of a C/C++ program called iot monitor. Its name derived from the
fact that it monitors several sensors and then communicates that information over the Internet.
(Throughout many chapters in this book we’ll explore many facets of the iot monitor program -
starting with the C/C++ build tools in the next chapter.)

So how exactly does “iot_monitor” getting started?

1. The simple answer is that Linux always calls the following script file after at then end of its boot
sequence:

/CUSTAPP/custapp-postinit.sh

2. Examining the script file, we find it calls another script called run_demo. sh:

Listing 2.9: custapp-postinit.sh

start-stop-daemon -S -b -x /CUSTAPP/iot/run demo.sh

The start-stop-daemon is used to start system-level processes as described by:
http://www.man.he.net/man8/start-stop-daemon

3. Finally, when examining the /CUSTAPP/iot/run demo. sh, script we see that it calls the
actual iot _monitor program (along with a few arguments).

Listing 2.10: run_demo.sh

iot monitor -g5 -a a2e26b03fd4e77aab23dbc5294b277d69

Note that the 1ot monitor command-line arguments are described further in Section 5.3.1.2.

Bottom line, you can control what programs autostart on your SK2 by editing (or deleting) the
custapp-postinit.sh script.

Note: This is the simple, short answer. The longer, more involved answer is found in the Appendix
Linux Boot Sequence discussion.

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 58

http://www.man.he.net/man8/start-stop-daemon

Linux Boot Sequence

2.6.2. Configuring Linux Application Bootstrap

The QuickStart demo can be turned off by holding the USER Button down for longer than 3 seconds.
After doing so, you will see the RGB LED turn off.

Since the iot_monitor program autostarts after power-cycling the SK2, turning off the program using
the USER Button is only temporary. To stop the program altogether we need to edit, delete, or rename
the custapp-postinit.sh script. In this case, let’'s rename the script and then verify that the
QuickStart program doesn’t run.

2.6.2.1. Stop the QuickStart Demo (from running automatically)

1. Power-cycle your SK2 and verify the QuickStart demo runs.

Unplug, then plug back in the USB power to your SK2. The QuickStart demo should begin running
within a minute. You can refer back to Chapter 1 (Running the QuickStart Demo) for more
information about the demo.

2. Open a command-line shell on your computer in the ADB folder.

This was discussed in Step 5 (Section 2.4.1.3) on page 48.

3. Verify you can connect to your board using ADB.
Running this command from the shell you just opened:
adb devices or ./adb devices
Should return:
WNC_ADB device

If it doesn’t, then you need to verify your ADB installation (Section 2.4.1) and/or view ADB
troubleshooting (Ref: Appendix Ab).

4. Start a remote session on your SK2 using “adb shell”.
You can start a remote shell session running on your SK2 using the adb shell command.

adb shell or ./adb shell

Notice that the command prompt changes to “#” after running the “adb shell” command. (Ref:
Figure 2.9 Using "adb shell"), The commands executed from the # shell are running on the SK2
(and not on your computer).

5. Navigate to the /CUSTAPP folder.

cd /CUSTAPP

6. Rename the custapp-postinit. sh script to something else.

In Linux we can use the “mv” (move) command to rename a file. In this case, let’s just append
“.txt” to the end of the filename.

mv custapp-postinit.sh custapp-postinit.sh.txt
7. List the directory to verify the name was changed.

ls -1
8. Exit the ADB remote shell.

exit

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 59

Linux Boot Sequence

9. Power-cycle your SK2 and watch the LEDs to verify the QuickStart demo doesn’t start.

If the WWAN and RGB LEDs do not light up within a minute or two, it's a safe bet that the
QuickStart demo is not running.

2.6.2.2. Autostart the Blink Script

If you created and ran the /CUSTAPP/blink. sh script in Section 2.5.1.2, let’s try running that
script automatically. If not, we suggest that you return to that section and create the script and put it
into the /CUSTAPP directory before doing the following steps in this section.

1. Reconnect to the ADB shell.
adb shell
2. Change to the /CUSTAPP directory.
cd /CUSTAPP
3. Verify that blink.sh exists and is working.
./blink.sh
The WWAN LED should blink 5 times.

4. Create a new copy of the original custapp-postinit. sh file (which we renamed in the
previous section).

cp custapp-postinit.sh.txt custapp-postinit.sh
5. Editthe custapp-postinit. shfile.
vi custapp-postinit.sh
a) Enter Insert/Edit mode.
i
b) Modify the script to be executed:

The original script runs /CUSTAPP/iot/rundemo. sh. Change this to run our blink. sh
script. After editing it should read:

start-stop-daemon -S -b -x /CUSTAPP/blink.sh
c) Exit Insert/Edit mode.
<esc>
d) Write the changed file and quit.
TWq
6. Verify the file is correct.
cat custapp-postinit.sh
Which should print out the contents:

start-stop-daemon -S -b -x /CUSTAPP/blink.sh

AT&T IoT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 60

Linux Boot Sequence

7. Exit the ADB remote shell.
exit
8. Reboot/power-cycle the board to view blink running.
Run the following to reboot the board:

sudo adb reboot

And, it never hurts to power-cycle the board, too. Once the board reboots, the blink. sh script
should start running after 10-15 seconds. When it runs, the WWAN LED will blink five times.

2.6.2.3. Autostart the QuickStart Demo

Assuming that you have completed the previous two sections (2.6.2.1 and 2.6.2.2) we can return the
SK2 to its original state of running the QuickStart demo by renaming (or deleting) our new custapp-
postinit.sh file and restoring the original file.

1. Enter the ADB shell and change to the /CUSTAPP directory.

adb shell
cd /CUSTAPP

2. Rename your new custapp-postinit.sh file by adding appending blink to the name.
mv custapp-postinit.sh custapp-postinit.sh.blink

3. Restore the original custapp-postinit.sh file.
mv custapp-postinit.sh.txt custapp-postinit.sh

4. Verify the original file was restored by listing the directory and cat’ing the file.

ls -1
cat custapp-postinit.sh

5. Exit the shell.
exit
6. Power-cycle your SK2 to verify the original QuickStart demo runs again.
As an alternative to power-cycling the board, you could restart the SK2 by using this command:

adb reboot

How ever you restart the SK2, you should see the QuickStart demo begin running within 45-60
seconds, as it did in Chapter 1 (and at the beginning of this Section 2.6.2).

AT&T IoT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 61

Page left intentionally blank

AT&T loT Starter Kit (2nd Generation) User's Guide - Embedded Linux pg. 62

3. Installing and Using C/C++

The SK2 (AT&T loT Starter Kit - 2nd generation) is supported by a variety of programming tools and
languages. As demonstrated in the previous chapter, simply by the fact it’s running Linux, the board
can be programmed using simple shell scripts. In the next chapter, we explore how you can use the
simple, yet powerful Python language to build and run applications. For more demanding applications,
though, this chapter discusses how to utilize the C or C++ languages to build and run Linux programs
for the SK2.

The chapter begins with an introduction to the WNC Software Development Kit (SDK) and its
installation. With the tools installed you can download the source and rebuild the loT Monitor
application that comes pre-installed on your SK2.

After building and running the large, production-level IoT application, we pivot to building our own
applications. Starting small with Hello World provides us an opportunity to examine how to use the
GNU Automake toolset to build a simple application. Next, we examine how to program the same GPIO
resources - discussed in the previous chapter - using the C language. The chapter ends with a higher-
level discussion of building Linux C programs, multi-tasking, and using signals & interrupts.

Prerequisite Knowledge and Tools

This guide assumes that you are generally familiar with the C or C++ language. Language constructs
are not explained or taught in this book, although we do cover those topics that deal specifically with
using C/C++ on the SK2 running under Linux. Please refer to the “Additional Resources” section at the
end of the chapter for more information about building C or C++ programs - or writing such programs
running under the Linux operating system.

Additionally, you will need to have Internet access when installing the tools and software during the
first few sections of this chapter.

Note: Developing applications for the SK2 using C/C++ is only supported on Linux platforms.
Neither Windows or Mac platforms are supported.

Unfortunately, it is not an uncommon for development tools supporting Linux-based embedded
controllers to require development on a Linux host platform. As such, if you do not have access to a
Ubuntu Linux computer your options include:

e Create a virtual Ubuntu computer using software such as VMware Workstation (Windows),
VMware Fusion (Mac), Parallels (Mac), or Virtual Box (Windows and Mac). This essentially allows
you to run a Linux computer inside the virtual computer application on your Windows (or Mac)
computer.

The examples provided with this user guide were built and tested using Ubuntu 16.04 LTS running
within VMware Workstation 15 virtual machine on a Windows laptop.

e Create a second boot partition on your computer and install Ubuntu to host and run the WNC SDK
development tools.

e Program the SK2 using shell scripts (Chapter 2) or Python (Chapter 4).

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 63

Installing the C/C++ Tools and Software

Topics

3. Installing and USING C/CH+uuueriiiersssssnceeernresssssssmmssssnesssssssmmssssssesssssnsmmsssssessssnnns
3.1. Installing the C/C++ TOOIS @Nnd SOFtWAIEeeeeeeeeeeeeeeeeesceeeeeseeeeeeeseeeaesaneeeens
3.1.1. L LI =Yg o Y I =)
3.1.2. Software Development Kit (SDK) ..ccoo i
3.2. [OT_MONIEOF @XAMPIE ...ttt snen e
3.2.1. Clone the [0T_Monitor SOUrce COdEeuuiimiiiiiiriiiieee e cenree e
3.2.2. Build the 10T MONItOr PrOSramccccceeeeceeereeeeesceeeeeeeseeeseseeesssneeeseseeenas
3.2.3. Push and Execute iot_monitor Applicationc.ccccceeeecceerecceer e
3.2.4. Avnet l1oT Monitor GitHub and Videosccceeieeccciiiieee e
3.3. Create Your First SK2 C/CH+ PrOSram.....cccceeeeeieeieeieeeieeeaeaeeeaseesieeasessaesseeeneas
3.3.1. [L= Fo 1Yo o
3.3.2. GNU Automake Build SYSTEMceveeceeeceeeeeeree e e e
3.3.3. Starting ProjECt FIleSou i
3.3.4. Install SK2 User Guide EXamples......cooiiiienieeeeeeeeee e
3.3.5. L= 1011 o T ¥ =t o =T o
3.4. Example: BlinK LED (Fil€ 1/ Q) ..uuureeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseeesesneeassanenaasanenaenans
3.4.1. BliNk LED With Fil€ 1/0 oottt
3.5. Using the SDK’S PEIHPNEIGI APl
3.5.1. (€] o (O IS0 /0] = /2
3.5.2. Example: Blink LED (GPIO API) «.eeerieeeeeeeee ettt ee e s s s e
3.6. WIiting C Programs fOr LINUXoeeceeeeumaeaeesieeeee et
3.6.1. MUIIFENIEAAING ... e
3.6.2. LAV =T ol = =T T 11 =
3.7. L= T g o] [T 110 €] o] (o X o S
3.8. Where to Go for More INfOrmMation............eeeeeeeeecceceeeeeeeeeceeeeeeee e e eceeveeeeeeeeesanees

...................... 94

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++

pg. 64

Installing the C/C++ Tools and Software

3.1. Installing the C/C++ Tools and Software

Note: Once again, the C/C++ toolchain has been developed and tested for the Linux platform. The
examples and procedures in this book have been created and tested while running Ubuntu
16.04 LTS.

If you only have a Windows computer, you may find it necessary to create a second boot
partition with Ubuntu or create a virtual Ubuntu computer using software such as VMware or
Virtual Box. Creating such an environment is outside the scope of this document, but the
procedures and examples described in this book have been tested on Ubuntu 16.04 running
under VMware Workstation 14 and 15.

As described in Chapter 1, the WNC module on the SK2 contains a single, user-programmable Cortex-
AT processor that runs Linux. This is the processor that runs your software applications. The tools and
libraries needed to create your applications programs are found in the WNC Software Development Kit
(SDK), as well as natively within your Ubuntu Linux computer. After installing the SDK, your Ubuntu
development computer will be able to create ARM programs that will run under Linux on the SK2.

3.1.1. GIT (and ADB)

Before installing the SK2's software development kit (SDK), we need to make sure two other
necessary tools are available on your computer: GIT and ADB.

GIT is a popular version control system used to manage software development and deployment. In
fact, we will use GIT to download and install the SDK in the next section of this document. Your Ubuntu
computer needs to have the GIT tools installed for you to clone and download the tools, as well as
Avnet’'s example loT application.

If you are working sequentially through this User’s Guide, your system should already have ADB
installed, which was needed to explore Linux in Chapter 2. We include the installation of ADB here just
in case you are skipping around and have not installed it already - and the following won’t hurt
anything even if it's already been installed.

3.1.1.1. GIT (and ADB) Installation Procedure

The following steps will install both GIT and ADB onto your computer.

1. Open a command-line terminal window on your Ubuntu computer.

This was covered in Section 2.4.1.3. “Connect to Your SK2”.

2. Use apt-get to install GIT and ADB.

APT-GET is a tool used for downloading and installing packages from the Internet. The following
command will install the tools if they haven’t already been installed.

sudo apt-get install git adb

Prefixing commands with SUDO (superuser do) tells Linux to treat the command as if it's coming
from a superuser, who has advanced privileges. Just as with Windows or Mac, Ubuntu Linux
requires superuser privileges to install programs.

When executing SUDO commands, you may be asked to enter your logon password for your
Ubuntu computer, after which you should see the tools being installed (if they weren’t previously
installed).

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 65

Installing the C/C++ Tools and Software

3.1.2. Software Development Kit (SDK)

The WNC SDK will be installed next. It contains the additional tools and libraries required to build
programs for the SK2. As mentioned in the previous section, we’ll use GIT to download and install the
SDK onto our Linux computer.

3.1.2.1. SDK Installation Procedure

The following steps will download and install the WNC SDK.

1.
2,

Open a command-line terminal window on your Ubuntu computer.
Navigate to your home directory.
cd ~

The “cd” stands for “change directory.

“_n

The tilde “~” is Linux shorthand for the path to your user’'s home directory.

Make a new directory “AvNet2” for the SDK.

While you can do this with the Ubuntu file manager, it's just as easy to do it from the command
line.

mkdir AvNet2
where mkdir stands for “make directory”.
Change to the new AvVet2 subdirectory.

cd AvNet2
Clone the WNC SDK from Avnet’s GitHub site.
On your command line enter:

git clone https://github.com/Avnet/AvnetWNCSDK
which tells our computer to create a clone of the git repository found at the given URL.

Change to the cloned AvnetWNCSDK directory and view its contents.

The clone of the WNCSDK created a new directory inside of AvNet2. Change to that directory and
view its contents.

cd AvnetWNCSDK
1s -1 (list command “Is” with the small -L option)

You should see the following files in the directory:

— adbkey.pub

— adb_usb.ini

— Avnet M18Qx LTE loT API Guide.docx

— Avnet M18Qx Peripheral loT Guide.docx

— oecore-x86_64-cortexa7-neon-vfpv4-toolchain-nodistro.0.sh
— README.md

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 66

Installing the C/C++ Tools and Software

7. (Optional) Copy DOCX files and convert to PDF.

The API guides are useful references when writing programs. One guide describes the LTE
communication library API, while the other describes the Peripheral API.

Hint: If you find it difficult to open and use Word DOCX files for quick reference books, you may
want to create PDF versions of these two guides and place them in a more convenient
location on your computer. Alternatively, you may prefer to print them out, if that makes
referencing them easier for you.

8. Install the SDK using the provided shell script.

Make sure your command-line cursor is still in the AvnetWNCSDK directory and execute the
cloned shell script:

sudo ./oecore-x86 64-cortexa7-neon-vfpv4-toolchain-nodistro.0.sh

“y

Respond with “y” (for yes) when asked if you want to install the SDK.

Note: After successful installation, the SDK script tells us that we need to enter the following
configuration command each time we open a new shell session where we plan to build
code for the SK2. Please make note of this command:

. /usr/local/oecore-x86_ 64/environment-setup-cortexa’-neon-vfpvid-oe-linux-gnueabi

9. Run the shell configuration command indicated by the SDK installation script.

. /usr/local/ocecore-x86 64/environment-setup-cortexa7-neon-vfpv4-oe-linux-gnueabi

This script must be run each time you open a new command-line terminal and want to build code
for the SK2. (And, don’t miss the “.” at the beginning of the command.)

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 67

loT_Monitor example

3.2. loT_Monitor example

With the development tools and software installed, let’s download the code for the QuickStart demo,
rebuild it from source, and download it to the SK2. This allows us to verify that the tools and software
were correctly installed.

3.2.1. Clone the loT_Monitor Source Code

As we learned in the first two chapters, the QuickStart demo - which runs on the SK2 directly after
opening the box and powering up the board - is actually a C++ program called “iot_monitor”. Like the
WNC SDK, we recommend downloading the program source code using GIT.

1. Open a command-line terminal window on your Ubuntu computer.

2. Navigate to your “AvNet2” directory.

If you followed the previous procedures in this chapter, you can get there using the following
command:

cd ~/AvNet2

3. Clone the loT Monitor program from Avnet’s GitHub site.
git clone https://github.com/Avnet/M18QxIotMonitor

This command will create a new subdirectory “M18QxlotMonitor” and download the contents of
the GitHub project into it.

4. View the contents of the new loT Monitor program directory.

1ls M18QxIotMonitor

superiorview@ubuntu:~/AvNet2$ 1s M18QxIotMonitor

aclocal.m4 config.sub HTS221Reg.h lis2dwi2.c mal.hpp mytimer.c
arm-oe-linux-gnueabi-libtool configure http.c 1is2dwil2.h maljson.cpp mytimer.h
autogen.sh configure.ac http.h lis2dwi2.o maljson.o mytimer.o
automd4te.cache demo.c http.o ltmain.sh mal.o program_apn.bat
binio.c demo.o HTU21D.cpp m18qx_sao MAX31855.cpp qsapp.cpp
binio.h depcomp HTU21D. hpp m2x.c MAX31855.hpp qsapp.o
binioc.o emissions.cpp HTU21D.o m2x.h MAX31855.0 README . md
commands.cpp emissions.o install-sh m2x.o microrl_config.h stamp-h1l
commands.o fact_test.bat iot_monitor ma4 microrl.cpp TSYS@1.hpp
compile facttest.cpp iot_monitor.h main.cpp microrl.h TSYsez2D. hpp
config.guess facttest.o jsmn.c main.o microrl.o wwan.c
config.h firmware_update.bat jsmn.h Makefile missing wwan.o
config.h.in HTS221.cpp jsmn.o Makefile. MS5637.cpp

config.log HTS221.hpp KMA36.hpp Makefile.1i MS5637.hpp

config.status HTS221.0 LICENSE mal.cpp M55637.0

eriorview@ubuntu:~/AvNet2$

Figure 3.1 - Listing of M18QxlotMonitor

You will learn about many of these files as you work through this User Guide. You can also watch a
video tutorial that briefly describes many of the files in this program directory.

Device Fundamental Tutorial 4 can be found here: https://vimeo.com/247415717

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 68

https://github.com/Avnet/M18QxIotMonitor
https://vimeo.com/247415717

loT_Monitor example

3.2.2. Build the loT Monitor Program

With the tools, libraries and QuickStart IoT Monitor program source code installed, let’s try building the
application for ourselves. In all, there are four commands needed to build programs for the SK2:

¢ O Configure your shell environment (the command provided by SDK installation)
e Runthe GNU automake tools

- @ Autogen

- © Configure
e O Run the makefile

After making sure we're in the correct directory, let’s walk through the procedure to see each of these
commands in action.

5. Execute the environment configuration command, if you haven’t already done so after opening
your terminal command-line window.

. /usr/local/ocecore-x86 64/environment-setup-cortexa7-neon-vfpv4-oe-linux-gnueabi
6. Navigate to the “M18QxlotMonitor” project directory.
cd ~/AvNet2/M18QxIotMonitor

7. Runthe GNU automake tools to create a makefile for our project.

The GNU automake system automatically builds makefiles for your project. This requires running
two programs which are found in the project’s directory. (These files will be discussed further in
the next section.)

a) Run the “autogen.sh” shell script that’s found in the project directory
./autogen.sh
b) Run the “configure” automake utility.
configure ${CONFIGURE FLAGS}
Once complete, these two commands will have automatically created a makefile for your program.
8. Run the makefile to build the loT Monitor application.

make

Hint: While writing and debugging code, you only need to run the “make” command to rebuild
the program. The first three commands must be run under these conditions:

* Environment configuration needs to be run each time you start a new shell session.
* The autogen. sh and configure commands only needs to be run if you add, modify,
or delete any files associated with your project.

9. List the directory and verify the application was built.

List the directory with the -l (small L) option and check for the “iot_monitor” application. You
should see this file in your project directory. Verify that it exists with a time-stamp consistent with
your running the “make” command.

1s -1

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 69

loT_Monitor example

3.2.3. Push and Execute iot_monitor Application

After building the loT Monitor application, we need to push it onto the SK2 before we can run it. Even
though both environments are running Linux, the 10T Monitor was built to run on the ARM Cortex-A7
and therefore cannot be tested by running it on your Ubuntu Linux PC.

You use ADB to push the executable program to the SK2 and place it in the correct location. (This was
discussed previously in Chapter 2.)

1. Make sure you're in the M18QxlotMonitor directory (i.e. where your program file is).

cd ~/AvNet2/M18QxIotMonitor

2. Verify that your SK2 is powered on; plugged into your computer; and that your Ubuntu computer
recognizes the device.

Type this - adb devices

Response should be — List of devices attached
WNC_ADB device

(Please refer to Appendix A5 for ADB troubleshooting.)

3. [If required, stop the lIoT Monitor program that automatically runs when powering up your SK2.

Chapter 2 discussed how the loT Monitor program begins running automatically - and how you
can prevent this from happening. Most users want to stop the program from automatically running
before starting to write and debug their own programs.

If your SK2 is running the out-of-box loT Monitor program (i.e. QuickStart demo), you can
temporarily stop it by pressing and holding the USER BUTTON (middle button) on the SK2 for 10
seconds. This will quit the application, but it will auto-start again the next time you power up the
board without completing the steps in Section 2.6).

4, Use the ADB push command to send your program file to the SK2 “/CUSTAPP” directory.
adb push iot monitor /CUSTAPP

If successful, you will see a response that specifies the size, speed, and time for the transfer.
(Note that your results make differ from those shown here.)

93 KB/s (99080 bytes in 1.071s)

If you prefer, you can place your program into a subdirectory of CUSTAPP (Customer Applications).

Note: You do need to store your programs in CUSTAPP (or its subdirectories) because CUSTAPP
is the only “writeable” directory on the SK2.

5. Open a remote shell to your SK2 board.

adb shell

When running the remote shell on the SK2, you should see your command-line prompt change to
“#" character.

6. Change to the CUSTAPP directory

cd /CUSTAPP

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 70

loT_Monitor example

7. Run the program you pushed to the CUSTAPP directory.

./iot monitor

Not only will the program behave as when it was auto-started, if you are remotely connected via an
ADB terminal session, you can see the textual output from the program as well as control it using
the program’s terminal commands.

3.2.4. Avnet loT Monitor GitHub and Videos

The loT Monitor Avnet GitHub page provides a summary of these instructions along with a link to
Avnet’s Device Foundation videos, which walk through many of the steps listed towards the beginning
of this chapter.

GitHub site: https://github.com/Avnet/M18QxlotMonitor

Video Tutorial 1: Setting up the Development Environment (roughly covers Users Guide 3.1)
Video Tutorial 2: Downloading and building the IoT Monitor program (User’s Guide 3.2)
Video Tutorial 3: Running the loT Monitor program

Video Tutorial 4: Brief explanation of loT Monitor program files

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 71

https://github.com/Avnet/M18QxIotMonitor
https://vimeo.com/247404116
https://vimeo.com/247408365
https://vimeo.com/247412768
https://vimeo.com/247415717

Create Your First SK2 C/C++ Program

3.3. Create Your First SK2 C/C++ Program

We begin with the simple “Hello World” program so that we can focus on the steps to build and run a
Linux application on the SK2.

Note: The directions in the rest of this chapter assume that the QuickStart demo has been
temporarily or permanently disabled - was discussed in Section 3.2.3, Step 3 (on page 70).

3.3.1. Hello World

This program simply uses the Standard 1/0 runtime library to print “Hello World” to the terminal.

Listing 3.1: Chapter_03/hello/src/main.c

#include <stdio.h>

int main(void) {
printf ("Hello World\n");
return 0;

3.3.2. GNU Automake Build System

As described earlier in the chapter, the WNC SDK uses the GNU Automake tools. These tools simplify
the process of building application programs because they automatically build the makefile(s) required
to for creating applications. What are makefiles? They are the instructions that tell the toolchain (e.g.
compilers, linkers, etc.) how to compile and construct your application programs. This guide focuses
on using the tools as provided by the WNC SDK.

When building your own application programs, we suggest that you copy and modify the “hello”
example, tweaking it to meet your requirements. (This is what we have done to create the examples
provided for the user guide.)

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 72

Create Your First SK2 C/C++ Program

3.3.3. Starting Project Files

Here is an inventory of the starter files needed to build our “hello” project. There will be many more
files created after building the application, but these are the only required files when using the build
system for the WNC SDK toolchain. (Actually, the two shell script files highlighted in blue are not
required, but we added them for user convenience.)

Chapter 03/hello
| autogen.sh
configure.ac
Makefile.am
1 autoname.sh
_ 2 build.sh

|

|

|

|

|

/-=-=-src
main.c
Makefile.am

Figure 3.2 - Starter files in C/C++

The make system does not require users to put source code into a folder called “src”. This is common
practice by many GNU automake users, but not a requirement. In fact, the loT Monitor example
discussed earlier in this chapter used a single, flat folder. For the User Guide examples, though, we
chose to place our source code into the “src” subdirectory.

Here’s a summary of the project files, a brief description, and what you will need to modify when
reusing this example to build your own applications.

. Need to "
File Name . Description
Edit? P
autogen.sh No Shell script that runs the automake tools.

(Later versions of _1_autoname.sh build this file for you.)

Configuration script for the ‘configure’ automake tool.
configure.ac No Only need to edit this file if you change the subdirectory structure of your
project. (Later versions of _1_autoname.sh build this file for you.)

Specifies project subdirectories - again, you only change this file if you
Makefile.am No rename/modify the project’s subdirectories.
(Later versions of _1_autoname.sh build this file for you.)

This shell script builds a new src/Makefile.am (backing up any current version).
_l_autoname .sh No It renames the executable program app from the name of the project folder.
Additionally, it adds all .c and .cpp files found in the ‘src’ folder.

_2_build .sh No Runs the commands required to build the application and push it to the SK2.

This is your programs source code. You may also add additional c/c++ files to
the ‘src’ directory.

src/main.c Yes o Your program must contain a “main.c” or “main.cpp”

. The main() function must return an ‘int’. You app does not require main()
to have any arguments.

The _1_autoname.sh script builds this file for you. For complex programs,

src/Makefile.am Maybe though, you may have to manually edit Makefile.am.

(While GNU Automake power-users may want to edit all these files and more, most users can get by with these recommendations.)
Note that even a successful execution of the 1 autoname.sh script may generate the following errors:

ls: cannot access '*.c': No such file or directory
1ls: cannot access '*.cpp': No such file or directory
mv: cannot stat 'src/Makefile.am': No such file or directory

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 73

Create Your First SK2 C/C++ Program

3.3.4. Install SK2 User Guide Examples

Hint: We recommend using git, but alternatively, you can download them in zip format from:
https://github.com/att-iotstarterkits/sk2-Users-Guide/archive/master.zip

1. Open a command-line terminal window on your Ubuntu computer.

2. Navigate to your “AvNet2” directory.

If you followed the previous procedures in this chapter, you can get there using the following
command:

cd ~/AvNet2

3. Clone the User Guide examples from GitHub.

git clone https://github.com/att-iotstarterkits/sk2-Users-Guide.git

This command creates a new subdirectory and downloads the GitHub project to it.
4. View the contents of the new sk2-Users_Guide directory.

ls -1s sk2-Users-Guide

3.3.5. Building “Hello”

Here are the steps required to build the “hello” project. (Assuming you downloaded the examples as
described in the previous section.)

1. Open a command-line terminal window on your Ubuntu computer.

2. Navigate to the “hello” directory.

For example:
cd ~/AvNet2/sk2-Users-Guide/Chapter 03/hello
3. Run the build shell script.
./ 2 build.sh

This will follow the build steps outlined in Section 3.2.2. Then the script will push the executable
application program, residing in the “src” (src/hello), via ADB to the /CUSTAPP folder, if your
SK2 is connected.

Hint: Runningthe 2 build. sh script is convenient, but it always executes each step in the
procedure. If you are repeatedly building over-and-over again while debugging code, you
can speed up your build time by running “make” and manually pushing your application
to the SK2.

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 74

https://github.com/att-iotstarterkits/sk2-Users-Guide/archive/master.zip
https://github.com/att-iotstarterkits/sk2-Users-Guide.git

Create Your First SK2 C/C++ Program

3.3.5.1. .gitignore

If you are using GIT for your own development, you likely know that a “.gitignore” file tells GIT which
files you do not want to save into your repository. For example, even though running the build tools
creates many files, we relied on .gitignore to only retain the absolute minimum files, as presented in

Section 3.3.3.

We created our .gitignore file by starting with the recommendation from gitignore.io and adding the

files we wanted to ignore that were generated by the GNU automake tools.

Listing 3.2: sample .gitignore

Created by https://www.gitignore.io/api/c++
Edit at https://www.gitignore.io/?templates=c++

Backup Files
*.bak

##4 CH+ #44

Prerequisites
*.d

.deps/

Compiled Object files
.slo

.lo

.0

.obJj

* ok ok Kk

B

Precompiled Headers
.gch
*.pch

*

Autogenerated Automake Config Files
automédte.cache/

m4/

*.mé4
arm-oe-linux-gnueabi-libtool
compile

*.guess

config.h

*.in

config.log

config.status

config.sub

configure

depcomp

install-sh

ltmain.sh

Makefile

missing

stamp-hl

Compiled Static libraries
#*.lai

#*.1la

#*.a

#*.1ib

End of https://www.gitignore.io/api/c++

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++

pg. 75

http://www.gitignore.io/

Example: Blink LED (File 1/O)

3.4. Example: Blink LED (File 1/0)

Often called the embedded processing version of “Hello World”, blinking an LED is one of the
fundamental starting points for embedded systems. Once you can blink and LED, you've learned how
to build a simple program that can talk to real hardware.

In Chapter 2, we were able to use shell scripts to control pins (connected to LEDs) by writing to Linux
GPIO device drivers via virtual files. Since C can read/write files, we can do the same using the C
language. (In a later section, we'll explore using the WNC SDK API to interface to write code for the
Linux device drivers.)

3.4.1. Blink LED with File 1/0

As described in Chapter 2 - as well as the GPIO section of the Appendix - we can observe and control
GPIO pins using the virtual file system provided by the Linux device drivers. The resulting code is very
similar to the shell scripts in Chapter 2, only it uses the C standard 1/0 routines to make it so.

To quickly summarize working with GPIO, your program needs to:

e Export the driver - which allows user space access to the driver
e Set the drivers direction (in/out)

e Write the value (0/1) based on whether you want the LED off/on

The Red LED is connected to GPIO pin 38 on the WNC module. You can find a listing of the LED and
USER SWITCH pin numbers in the Appendix section titled “GPIO Pin Numbers - WNC vs Qualcomm”.

Note: When accessing GPIO using file I/0 we need to use the Qualcomm Pin Number (#38 as
shown in the following fileio red led example). Conversely, when using the WNC SDK API
you will need to use the WNC Pin Number (#98 as shown later in the api_red led example).

To blink an LED, you must turn it on, then off, while waiting for some time period between the on and
off states. We chose to use a 1-second time interval which was accomplished using the usleep(X)
function - which sleeps the processor for X microseconds.

To fit the code onto a single page (i.e. the next page), we removed some of the error checking, as well
as some printf’s to the terminal we used for debugging the code. You can find the full source code in
the project: Chapter 03/fileio red led with deinit.

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 76

Example: Blink LED (File 1/O)

Listing 3.3: Blinking Red LED with File |/0 (Chapter_03/fileio_red_led)

#include <stdlib.h>

#include <stdio.h> // Needed for fileio calls

#include <unistd.h> // Needed for usleep() calls

#define GPIO EXPORT "/sys/class/gpio/export"

#define GPIO_RED 38

#define GPIO_RED DIR "/sys/class/gpio/gpio38/direction"

#define GPIO RED LED "/sys/class/gpio/gpio38/value"

#define OFF 0

#define ON 1

#define SECOND 1000000 // One second = 1000000 microseconds

int main(void)

{

int count; // Loop counter for blinking
int max = 4; // Number of blinks before exiting program
FILE *fptr; // File pointer

// Open GPIO #38 (red) for use by exporting to user space
fptr = fopen (GPIO EXPORT,"w");
fclose (fptr) ;

// Set direction for GPIO #38 (red)
fptr = fopen(GPIO RED DIR,"w");
fclose (fptr) ;

// Turn off Red LED
fptr = fopen(GPIO RED LED,"w");
fclose (fptr) ;

// Blink Red LED 'count' times
for (count = 1; count <= max; ++count)
{
fptr = fopen(GPIO RED LED,"w");
fprintf (fptr, "%d", ON);
fclose (fptr) ;
usleep(l * SECOND) ;

fptr = fopen (GPIO RED LED,"w");
printf (fptr, "%d", OFF);
fclose (fptr);
usleep(l * SECOND) ;
}

return 0;

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 77

Using the SDK’s peripheral API

3.5. Using the SDK’s peripheral API

The WNC SDK provides a Peripheral Application Programming Interface (API) library which supports
the various peripherals found on the WNC M18Qx module used in the SK2. We can utilize this
peripheral interface to initialize and control the peripherals within our C/C++ programs.

The WNC Peripheral API supports the following peripherals:

e |2C
e SPI
e GPIO
e ADC

The GPIO peripheral interface is discussed in this chapter of the User’s Guide. The remaining

peripherals will be explored in future chapters.

3.5.1. GPIO APl Summary

Application programming interfaces (APIs) consist of “data types” and “methods” (i.e. functions). Such
is the case with the Peripheral API. The Avnet M18Qx Peripheral loT Guide.docx file, found in the WNC

SDK details the typedefs and functions for each peripheral. Turning to the GPIO Interface chapter we
find the following elements defined:

Datatype Example Description

gpio_pin_t GPIO_PIN_98 Specifies which GPIO pin should be initialized or
deinitialized. Enumeration only supports the GPIO
specific pins - and uses the WNC Pin Numbers.

gpio_direction_t GPIO_DIR_OUTPUT Specifies the direction of data transfer used by
the gpio_dir() function.

gpio_level_t GPIO_LEVEL_LOW Is the pin value O (low) or 1 (high).

gpio_handle_t hMyGpio This value is returned by the gpio_init() function

and is an argument to many other gpio_
functions. You can choose any valid C variable
name.

gpio_irq_trig_t GPIO_IRQ_TRIG_RISING | Passed to the gpio_irg_request() function, this
argument indicates when an interrupt should be
generated: when the signal goes from low—high,
high—low, or in both cases.

gpio_irq_callback_fn_t | Anyvalid C function This datatype is passed to the gpio_irq_request()
function. It indicates which C function should be
run in response to a triggered interrupt.

Notes:
e Commonly, definitions using the suffix “_t” are used to indicate data type.

. In many cases, the API guide specifies the valid enumerations (i.e. values) supported by the API. For example,

gpio_direction_t allows for GPIO_DIR_OUTPUT and GPIO_DIR_INPUT.

e The API's datatypes support specific requirements needed by the API's function arguments and return values
- that is, in those cases where a standard C datatype does not meet the need or may be unclear.

e For those used to programming low-level microcontrollers, you might think of the callback function (e.g.
gpio_irq_callback_fn_t) being like an Interrupt Service Routine “ISR”.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++

pg. 78

Using the SDK’s peripheral API

GPIO API Functions:

Allocating GPIO pin resources - the first three functions are used to allocate and de-allocate the
hardware resources to be used by your program.

e gpio_init()

e gpio_deinit()

e gpio_is_inited()
The next three functions are used to configure the GPIO resources once they have been allocated. You
always need to indicate the direction (in or out) that you plan to transfer data through the pin. But, you

only need to use the two IRQ (interrupt request) functions when the pin is used as an “input” and your
program needs the input pin to create an interrupt event when its value changes.

o gpio_dir()
e gpio_irg_request()
e gpio_irg_free()

The final two functions specify the data value of the pin to be transferred externally (when writing) or
internally (when reading).
e gpio_write() - when pin is configured as an OUTPUT

e gpio_read() - when pin is configured as an INPUT

Hint: To review all the details for the GPIO API functions and datatypes, please refer to the “Avnet
M18Qx Peripheral IoT Guide.pdf” found in your WNC SDK installation or on the Avnet SDK
GitHub page.

Note: We won’'t summarize the other peripheral APl in this User’s Guide, rather, we’ll let you read
through the API Guide on your own. We wanted, though, to discuss one of the peripheral’'s
functions and datatypes for users who might not have experienced working with hardware API
before the SK2.

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 79

https://github.com/Avnet/AvnetWNCSDK

Using the SDK’s peripheral API

3.5.2. Example: Blink LED (GPIO API)

In section 3.4.1, we detailed using the GPIO pin connected to the red LED using the File I/0 driver
interface. This section looks at the same example but uses the Peripheral API to configure and control
the pin. In fact, while the syntax may differ, you'll likely find the general steps in this example are very

much like those found in the File I/0 example.

3.5.2.1. api_led_red_with_deinit Example

Listing 3.4: Chapter_03/api_led_red_with_deinit/src/main.c

#include <stdint.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <hwlib/hwlib.h>

#define LED_RED
#define LED_GREEN
#define LED_BLUE

GPTO_PIN_92
GPIO_PIN_101
GPIO_PIN_102

#define USER_BUTTON GPIO_PIN_98
#define SECOND leaeeee
#define NUM_BLINKS 3

int main(void) {
int i = @;
int ret;
gpio_handle_t myGpio;

printf("Hello Gpio\n");

J// Initialize GPIO for Red LED

ret = gpio init(LED RED, &myGpio);

if (ret 1= 08) {
printf("ABORT: Could not initialize Red LED (ret = %d)\n",
exit(1);

gpio_dir(myGpio, GPIO_DIR_OUTPUT);

// Blink LED NUM_BLINKS times
for (i =8; i < NUM_BLINKS; i++)

{
gpio_write(myGpio, GPIO_LEVEL_HIGH);
usleep(1 * SECOND);
gpio_write(myGpio, GPIO_LEVEL_LOW);
usleep(1 * SECOND);

by

gpio_deinit(&myGpio);

return 8;

f ;'.;
7,
I/
7,

f ;'.;
J’; J'.;
f Jl.’.

f Jl.;
J’; J'.;

f Jl.;
f Jl.;
Jf. Jz.
J” Jl.’

Needed for printf()

Needed for usleep()

Needed for exit()

Needed for WNCSDK GPIO API

loop counter
return value
GPIO pin handle

GPIO call to initialize RED LED
gpio_init() returns '@' upon successful

Set direction of GPIO pin to "output”®

Turn on the Red LED
Wait 1 second

Turn off the Red LED
Wait 1 second

Release the GPIO resource

Notice the lines of code (#include and three key API functions) that are used to allocate, initialize and

control the GPIO pin which is connected to the red LED.

Line 5 - you must #include the <hwlib/hwlib.h> library when using the WNC SDK hardware API.

Line 23 - gpio_init() allocates the red GPIO_PIN_98 and assigns the resources to the myGPIO handle.
Line 28 - the pin resource pointed to by the myGPIO handle is configured as an output.

Line 33 and 36 - gpio_write() is used to send a high, then low, level to the pin specified by myGPIO.

Line 40 - deallocates red LED resource (i.e. GPIO_PIN_98).

Hint: It’s important to deallocate hardware resources at the end of a program, such as releasing
the LED GPIO pin on line 40 of this program. This topic is discussed further in Appendix A3,

under Deallocating GPIO Resources.

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 80

Writing C Programs for Linux

3.6. Writing C Programs for Linux

Writing C programs for the Linux platform often involves more than just plain C code. While this is the

case when writing code for any operating system, Linux provides a rich assortment of capabilities that
your programs can leverage.

For the most part, covering the use of Linux services falls outside the goals of this user guide, but we
wanted to introduce two main concepts that may be useful when writing programs for the Linux
platform: Multi-threading and Events. The latter topic - Events - includes a few example programs
since Events are often triggered by hardware peripherals, such as GPIO inputs.

3.6.1. Multi-threading

The terms multi-processing, multi-tasking, and multi-threading are often discussed when using an
operating system - especially a high-level O/S such as Linux. There are subtle differences between
their definitions, but they all describe multiple things (e.g. programs) executing in parallel. Application
programs, as well as users themselves, can start multiple program threads running at the same time
by using the operating system’s APl and commands. Let us introduce a few topics that you may find
useful during your code development.

3.6.1.1. Multiple Processors

If your system has multiple processors, it's easy to imagine running more than one program at a time.

Processor A Processor B Processor C

Figure 3.3 - Multi-processing

For example, if you have three processors, each with their own memory, you can execute three
different programs concurrently as shown below:

Processor A |

Processor B |

Processor C |

Figure 3.4 - Multi-processing Graph

This type of capability exists within the WNC M18Qx module. It has different processors which handle
various tasks, such as LTE communications, or running the Linux platform. We are only allowed to
program the single ARM Cortex-A7 apps processor, running Linux, with C/C++ or Python. While the
system gains from having multiple processors, your Linux programs can only use the one.

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 81

Writing C Programs for Linux

3.6.1.2. Multiple Processes

When you only have one processor, as in Figure 3.5 below, your programs must share the resource.
Linux enables this by letting you create multiple processes.

A “process” is defined by its memory and file descriptors. Returning to Figure 3.5, notice how each
process has its own memory (which also includes any file descriptors that have been allocated). The
memory management hardware in modern application processors, such as the ARM Cortex-A7,
firewalls the memory for each process. In other words, the code in “Process A” cannot access the
memory from “Process B” or “Process C” and vice-versa. This allows us to robustly run three different
programs at the same time.

Process A Process B Process C

Figure 3.5 - Multiple Processes

Well, let’s clarify that last statement. While three different programs can be configured to run
simultaneously, with only a single processor, only one program can run at a time. This can be seen in
Figure 3.6 where the processes take turns using the processor. The two waiting to run are effectively
paused (sometimes called “blocked”) waiting for their turn - but at least their memory is protected
from the running process.

Process A

Process B

Process C

Figure 3.6 - Multiple Processes Graph

3.6.1.2.1. Why create multiple processes?
Why multiple processes? Because it's easier using different programs to solve different problems.

For example, think about the host computer you use. Whether it runs Windows or Linux, you likely have
more than one program running at the same time. Think how much easier it is to build a robust
spreadsheet program if it doesn’t have to include all the features of a word processor. When you start
each program, it runs in its own process, sharing your systems resources.

This may also simplify your programming for the SK2. If you have independent activities that need to
operate at the same time, it may be easier to write two programs and set them both running when
your SK2 boots up.

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 82

Writing C Programs for Linux

3.6.1.2.2. How to Create a New Process using Fork

When Linux boots up, it's executing a single process. When a second process is needed, this is usually
done by issuing a Linux “fork” command. When a fork is executed, Linux makes a duplicate copy of the
current process - including all its memory and file descriptors. At this point, the new, duplicate
process can begin running a new program, changing anything or everything in the process without
affecting the original process.

fork

Splits one executing
process into two
with same environment

Figure 3.7 - Fork

Forking isn’t restricted to C/C++ programming, it can also be done from the Linux command-line. For
example, when you invoke a program from the terminal, such as:

./blink led

you may have noticed that the terminal session is paused, waiting for the new program to complete. In
other words, the blink_led program is running in the same process as the terminal. But, Linux actually
let’s us force the new program to run in its own process. This is done using the “&” symbol:

./blink led &

Including the ampersand at the end of the command-line tells Linux to fork the current process and
begin running the new program in the new process. In this case, you’ll notice that the command-
prompt returns immediately, even though the blink program may still be running.

You can implement the same action using fork() in your C/C++ programs - letting one program spawn
many different processes. However you invoke fork, it's a handy way to run multiple programs at the
same time.

One of the nice things about using Linux for your embedded system is the wide availability of example
code. We pulled a fork.c example from Beginning Linux Programming (see reference at the end of
this chapter) and tested it on the SK2. You can find a copy of this generic fork example in the User
Guide’s code examples: sk2 users guide/Chapter 03/fork/src/main.c

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 83

Writing C Programs for Linux

3.6.1.2.3. Useful Commands for Managing Processes

There’s a great deal of information available across the internet for learning about and managing
Linux processes. We're only introducing a few of the most basic commands that may come in handy.

Command

Description

ps

Lists currently running user processes

ps -e
pS ax

Lists all processes

top

Ranks processes in order of CPU usage

kill <pid>

Ends a running process

e PID is returned by fork()
e Get PID using “ps” or “top”

Kill <signal> <pid>

Pass a specific signal to a process
(Signals are discussed in Section 3.6.2.2)

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++

pg. 84

Writing C Programs for Linux

3.6.1.3. Multi-threading

Linux also includes the ability to create multiple threads of execution within a single process. Since
multiple program threads share a processes memory, it lowers the overhead of time and memory
versus creating multiple processes. But this is done at the expense of robustness, since one errant
thread could wipe out all of the shared memory in the process - in other words, no ‘firewall’ exists
between multiple threads (in a single process) as it does between processes.

Here’s a simple diagram showing Process A consisting of three threads of independent execution,
while Process B only contains one. (By default, a process always has at least one thread of execution.)

Process A Process B

Figure 3.8 - Multiple Threads in a Process

You may have noticed the additional threads in Figure 3.8 are labeled “pThread”. This comes from the
name of the function (and library) used to create additional threads within a process. Linux generally
includes the standard POSIX library (Portable Operating System Interface) which includes routines for
creating, managing, and deleting new threads of execution. The pthread create () function can
be used to spawn new program threads within in a process.

From a scheduling perspective, Linux sees each thread as an independent unit to schedule when
time-slicing between them. In words, the single thread in Process B may only get 25% of the processor
time while those in Process A will likely get 25% each. That said, Linux provides multiple ways to tweak
and override the scheduling and priority of threads - and that discussion falls outside of what we will
address here.

3.6.1.4. Why Should | Use Multiple Threads?

Back in Section 3.6.1.2.1 we suggested that using multiple processes can be useful to simplify
programming - creating smaller, simple programs for each independent task is often easier and more
robust than creating a single, more complex program.

But, there’s another big advantage to using multiple threads and/or processes. When one thread
blocks (i.e. is paused) waiting for a resource, such as a serial port or new sensor data, other threads
can use that time to execute their code. In fact, embedded systems make great use of this feature.

For example, the main program may spin in a while{} loop - or in a low-power mode - while waiting for
Linux Events to announce that new data is available or that a timer has signaled its time to sample a
sensor and post the data to the cloud. This leads us to the next section: Linux Events.

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 85

Writing C Programs for Linux

3.6.2. Event Handling

Traditional embedded systems are often built around handling various “events”; for example, when
data becomes available, a user presses a button, or a specified time interval has expired. When these
systems are built with Linux, there are even more events to choose from, such as signals from the
operating system.

Unique to the SK2 are the hardware peripherals and their associated API provided by the WNC SDK. In
this chapter we introduce the functions and procedures for handling hardware interrupt events
generated by the GPIO pins.

Before we deal with the GPIO functions, though, let’s explore a few other common Linux events that
are used throughout the user’s guide examples.

3.6.2.1. Sleep

Sleep is one of the many time-based events that can be generated by the Linux O/S. It’s also one of
the easiest to use - so easy, in fact, that we’ve already used it in many code examples.

There are a number of “sleep” functions, the most obvious being sleep() - which tells the process
calling the function to sleep (i.e. suspend execution) for a given number of seconds.

#include <unistd.h>

unsigned int sleep (unsigned int seconds);

If the sleep() function is interrupted by some other event, it returns the number of seconds not slept.
Most users ignore the return value, but you can use it to recall the function in order to force the
process to sleep for the specified time.

Two other similar functions are:
e usleep () - sleeps for a given number of microseconds

e nanosleep () - sleeps the process for a given number of nanoseconds

Besides increasing orders of precision, these two functions are slightly different from each other.
While the usleep() function works the same as sleep(), the nanosleep function is found in the <time.h>
library and requires a Linux timespec structure as its argument.

While our examples wait for seconds, we’ve chosen to use usleep() in most cases.

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 86

Writing C Programs for Linux

3.6.2.2. Signals

Signals (i.e. software interrupts) are events generated by Linux in response to an internal or external
event. Signals occur asynchronously to our software programs - meaning that they could happen at
any time, and won't necessarily happen at any specific point in our program code.

A signal can be raised (i.e. generated) by a variety of events. For example, when a user generates an
interrupt character (e.g. Ctrl-C); an error condition occurs - such as when a process divides by zero; or
when one process sends a signal to another.

Applications can be programmed to catch and respond to signals. This is done by passing an event
handler function to Linux, essentially telling it what code we wish to run in response to a given event...
if it occurs. The event handler function is often called a callback function because our program is
telling Linux to “call back” to our program using a specific function name.

Here’s a listing of Signals that Linux supports:

Signal | Description Signal | Description
SIGABORT | *Process abort SIGTERM | Termination
SIGALRM | Alarm clock SIGUSR1 | User-defined signal 1
SIGFPE *Floating-point exception SIGUSR2 | User-defined signal 2
SIGHUP Hangup SIGCHLD | Child process has stopped or exited
SIGILL *[llegal instruction SIGCONT | Continue executing, if stopped.
SIGINT Terminal interrupt SIGSTOP | Stop executing

(Can’t be caught or ignored)

SIGKILL Kill (can’t be caught or ignored) SIGTSTP Terminal stop signal
SIGPIPE Write on a pipe with no reader SIGTTIN Background process trying to read
SIGQUIT Terminal quit SIGTTOU Background process trying to write
SIGSEGV | *Invalid memory segment access

We’'ll explore one of the most common signals, SIGINT, the terminal interrupt that’s generated when
we press the Control-C keys while running a program from our terminal command-line.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++

pg. 87

Writing C Programs for Linux

3.6.2.2.1. Control-C (SIGINT)

SIGINT is a handy, common signal to use when debugging your programs. It makes it easy for you to
send a signal to your program from the command line. One simple example, shown here, is to catch
this signal and terminate your program.

Listing 3.5: Chapter_03/sigint/src/main.c

#include <signal.h>
#include <stdlib.h>»
#include <stdio.h>

void my_handler(sig t s){
printf("\nCaught signal %d\n",s);
exit(1);

¥

int main(int argc,char®** argv)

{
signal (SIGINT,my_handler);

while(1);
return @;

Except for one line of code in main() that deals with the SIGINT signal, this program will loop forever
due to the while(1) loop on line 15.

To handle the SIGINT signal event, two lines of code - and the my_handler() function - were added to
the program. Looking at main(), let’s examine the code required:

Line1 When using the Linux to handle the SIGINT event generated by Control-C, you must
include the <signal.h> header file.

Line 13 The signal() function tells Linux what to do when the SIGINT event occurs. More
specifically, this function registers the callback function “my_handler” to the SIGINT
signal event.

e Whenever SIGINT occurs while this program is running, Linux will pre-empt your
program and run the registered call-back function.

e When my_handler() is called by Linux (after Ctrl-C is pressed), it will print “Caught
signal” to the terminal and exit the function.

e [f you don’t want the program to exit after a signal occurs, don’t call exit() inside the
signal handler. (We provide an example of this in the GPIO pin Interrupt section.)

Note: Even though our example’s signal handler uses printf(), it is not recommended to use printf() in signal
handlers. That said, printf() makes it easy to visualize what is happening during program execution.

In fact, you can refer to the signal documentation (or the Beginning Linux Programming book listed at
the end of the chapter) for a list of functions that are safe to use within a signal handler.

Hint: One recommended technique, if you need to use an unsafe function, is to set a flag during the signal
handler and then print the message - or call the appropriate unsafe function - from inside the main
program.

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 88

Writing C Programs for Linux

3.6.2.2.2. Pause

The pause() function is a useful debugging function that puts a process to sleep while waiting for any
signal. Upon receiving a signal, it wakes and responds as if the routine as if it had been awake,
running the signal handler registered by the program.

We provide two examples to demonstrate this function. The sigint2 does not use pause() while the
sigint2_with_pause does. Both functions provide another example for handling the SIGINT.

Listing 3.6: Chapter_03/sigint2/src/main.c

// Example taken from “Beginning Linux Programming” 4% Edition
// by Neil Matthew and Richard Stones; Wiley Publishing © 2008
#include <signal.h>

#include <stdio.h>

#include <unistd.h>

void ouch (int sigqg)

{
printf ("\nOUCH! - I got signal %d\n", sig);
(void) signal (SIGINT, SIG DFL);

}

int main ()
{
(void) signal (SIGINT, ouch);

while (1) {
printf ("Hello World!\n");
sleep(l);

When running the program, “Hello World!” prints out repeatedly until the user has entered Ctrl-C twice.
Notice that the signal handler ouch() redefines the signal’s handler, changing it back to the signal’s
default (SIG_DFL) action for Linux (causing the program to exit). Here’s what it looks like in the
terminal:

-~

superiorview@ubuntu: ~/AvNet2/sk2_users_guide/Chapter_03/sigint2

| # ./CUSTAPP/sigint2
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

A

OUCH! - I got signal 2
Hello World!

Hello World!

Hello World!

Hello World!

~c/ # 11

Figure 3.9 - Running sigint2

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 89

Writing C Programs for Linux

Modifying the program slightly, we replaced the sleep() command with pause().

Listing 3.7: Chapter_03/sigint2_with_pause/src/main.c

#include <signal.h>
#include <stdio.h>
#include <unistd.h>

void ouch (int sigqg)

{
printf ("\nOUCH! - I got signal %d\n", sig);
(void) signal (SIGINT, SIG DFL);

}

int main ()
{
(void) signal (SIGINT, ouch);

while (1) {
printf ("Hello World!\n");
pause () ;

Notice that after swapping out sleep() with pause(), “Hello World!” only prints out once before and

after the first Cntrl-C:

<X superiorview@ubuntu: ~/AvNet2/sigint2_with_pause

/ # ./CUSTAPP/sigint2_with_pause
Hello World!

e

OUCH! - I got signal 2

Figure 3.10 - Running sigint2_with_pause

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++

pg. 90

Writing C Programs for Linux

3.6.2.2.3. Sending Signals from the Terminal

In the following figure, we are once again running the program sigint2 with pause, but this time
we added “&” to run it in a separate process. Notice that after starting the program in Figure 3.11, our
terminal returns to allow us to enter new commands - where we then executed the pscommand to
see our program running in a new process (with pid = 3349).

@ © @ superiorview@ubuntu: ~/AvNet2/sigint2_with_pause

./CUSTAPP/sigint2_with_pause &
Hello World!
#

/
/
/

ps
PID TTY TIME CMD

3311 pts/e 00:00:080 sh

3349 pts/e 80:00:00 sigint2_with_pa
3350 pts/o 00:00:00 ps

/ # kill -SIGINT 3349

] #

QUCH! - I got signal 2

Hello World!

/ # kill -SIGINT 3349
| #

Figure 3.11 - Running sigint2_with_pause in separate process

But now that the program is running in a separate process, it doesn’t receive our Control-C commands
anymore. How can we send it a signal?

As was mentioned back in Section 3.6.1.2.3, the Linux A7//command can be used to send a signal to a
running process. If we just typed:

kill 3349
our program would simply terminate. But rather, we used Ail/to send the SIGINT (i.e. Control-C) signal
kill -SIGNINT 3349

to the process using Aill. Notice how sending it twice caused the same results as was seen in Section
3.6.2.2.2.

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 91

Writing C Programs for Linux

3.6.2.2.4. Upgrading to sigaction()

While the signal() functionality is long-standing and well adopted by Linux and Unix, sigaction() has
become the preferred method of handling signals due to its robust flexibility. It takes a little more code
to implement, though, which is why we consider this an ‘upgrade’ to the previous example.
Additionally, we followed the earlier advice for moving the printf() functions out of the signal handlers.

Listing 3.8: sk2_users_guide/Chapter_03/sigaction/src/main.c

#include <signal.h> // Needed for sigaction()
#include <stdio.h> // Needed for printf ()
#include <unistd.h> // Needed for sleep/()
#include <stdlib.h> // Needed for exit ()
int flag = 0;
int lastSig = 0;
void ouch (int sig) { // First pass SIGINT handler
flag = 1;
lastSig = sig;
}
void quit (int sig) { // Second pass SIGINT handler
flag = 3;
}
int main() |
struct sigaction act; // ‘action’ struct for signal
act.sa handler = ouch; // Callback function is 'ouch'
sigemptyset (&act.sa mask); // Don’t block any signals
act.sa_flags = 0; // No signal action modifiers
sigaction (SIGINT, s&act, 0); // Set action for SIGINT signal
while (1) { // Respond to value of ‘flag’
switch(flag) {
case 0:
case 2:
printf ("Hello World!\n");
sleep(l);
break;
case 1:
printf ("\nOUCH! - I got signal %d\n", lastSig);
act.sa handler = quit; //Could have set to SIG DFL
sigaction (SIGINT, &act, 0); //Set new action for SIGINT
flag = 2;
break;
case 3:
printf ("\nOUCH again. This time it's Goodbye!\n");
exit (0);
break; Oc superiorview@ubuntu: ~/AvNet2/sigaction
default: / ﬁl.fCUS{,;«PP/sigaction
. " v Hello World!
pr}ntf(bon't Hello World!
exit (1), AC
} OUCH! - I got signal 2
} Hello World!
Hello World!
} Hello World!

Hello World!

~C
OUCH again. This time it's Goodbye!
]/ #

Figure 3.12 - Running sigaction

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 92

Writing C Programs for Linux

3.6.2.3. GPIO pin Interrupt

The Linux GPIO pin driver provides an interrupt event whenever an input pin is changed. Your program
needs to initialize and configure the GPIO input pin, as well as register the interrupt (“irq”) callback
function before it can catch the event.

The following code example enables interrupts from the SK2's User Button. Notice the three additional
items required to convert an input GPIO pin to an interrupt triggered GPIO pin.

1.
2.
3.
4.

Callback function

Call IRQ request to initialize the interrupt event

Free the IRQ resource when it's not needed anymore

Listing 3.9: sk2_users_guide/src/api_button_interrupt

Warning

Generating an

interrupt before the

IRQ request completes
triggers a user signal __|
that aborts the

program.

Prove this to yourself

by pressing the User
Button before getting
the “Device config
complete” message”. —

#include <stdint.h>

#include <stdio.h> // Needed for printf ()
#include <stdlib.h> // Needed for exit ()

#include <unistd.h> // Needed for pause/()
#include <hwlib/hwlib.h> // Needed for WNCSDK GPIO API

#define USER BUTTON GPIO PIN 98

int ret = 0; // Return value
gpio handle t myBtn = 0; // Handle for button's GPIO pin
gpio_handle t myLed = 0;

//***** GPIO Callback routine R R R R R R e I I I I b I I I I I b b b b b b i i i
int myBtn irg callback(gpio pin t pin name, gpio irqg trig t direction) {
if (pin name == USER BUTTON)
{
printf ("Button interrupt received\n”);
}
}

//***** Main R R R R R I I I I I I R b R I R I I I I b b R E b b b b i
int main(void)
{
printf ("\nStarting GPIO Callback Example!\n");
>

// Allocate and configure GPIO pin for User Pushbutton switch input
ret = gpio_init (USER BUTTON, &myBtn);
gpio_dir (myBtn, GPIO DIR INPUT);

// Register callback function for GPIO pin interrupt to trigger on up/down
gpio_irg request (myBtn, GPIO_IRQ TRIG BOTH, myBtn irqg callback);

> // Now waiting for interrupt to occur
pause () ; // Wait for signal from user button

// Release resources and exit

printf ("Releasing GPIO resources...\n");

gpio irqg free (myBtn); // Free the IRQ push button callback

gpio deinit(&myBtn); // Release the button's GPIO resource

return 0;

The user guide examples archive (or git) contains an additional example that turns on the blue LED
when the button is pressed. Look for: sk2 users guide/Chapter 03/api button irg led

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++

pg. 93

Example: myGpio.c

3.7. Example: myGpio.c

As the final example for the chapter, we’ve created a reusable GPIO example. This example contains a
generic initialization function that can allocate all the requested GPIO resources. Using the routine

requires a few instructions:
e myGpio.c

e main.c (or where ever you wish to initialize and use GPIO)

#include “myGpio.h”
Call the myGpio_init() function

Modify the myGpio structure in myGpio.c for the GPIO pins your application will use.
Create or modify the sample myGpio_irqg_callback function if you plan to use GPIO interrupts.

Call the myGpio_close() function when finished with the GPIO resources

If this doesn’t meet everyone’s needs, we hope it provides a good example that users can work from.

if (r)
printf("Not all requested GPIO resources were allocated.\n");

gpio_read(myGpio[3].hndl, &myGpio[3].val); /1
printf("Checking on the button's walue. It is %d.\n", myGpio[3].val);
printf("\nLED's will blink in color sequence until User Button is pushed.\n");
printf("Alternatively, you can also press Cntrl-C to quit the program.\n");
while(doExit)
{
// Blink all LEDs in sequence
for (i =8; i < NUM_LEDS; i++)
{
gpio_write(myGpio[i].hndl, GPIO_LEVEL_HIGH);
usleep(1 * SECOND);

f 4';
f 4';

gpio_write(myGpio[i].hndl, GPIO_LEVEL_LOW); I

usleep(1 * SECOND);

/7
¥
myGpio_close(); /1

return 8;

Listing 3.10: sk2_users_guide/myGpio/src/main.c
T T Y - Y U S WO - O J— T YT, YU F L SO
#include <stdint.h>
#include <signal.h» // Needed for signal()/sigaction()
#include <stdlib.h» // Needed for exit()
#include <stdio.h> // Needed for printf()
#include <unistd.h> // Needed for usleep() and pause()
#include <hwlib/hwlib.h> // Meeded for WNCSDK GPIO API
#include "myGpio.h"
#define SECOND leeoooe
#define NUM_LEDS 3
int doExit = 1;
J/ ==¥% STGINT Handler for Control-C
void my_handler(sig t s)
{
doExit = @;
printf("\nCaught signal (%d). Quitting the program...\n",s);
J/ ***% main
int main(void)
int i = @; // Loop counter
int r = 8; J// Return value
printf("\nllelcome to the myGpio example!\n");
signal (SIGINT, my_handler); // Register SIGINT signal handler
r = myGpio_init(); // Mllocate and initialize the GPIO resources

Read and output the value of the User Button

on LED
1 second

Turn
Wait

off LED
1 second

Turn
Wait

Release the GPIO resources

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++

pg. 94

Example: myGpio.c

Listing 3.11: sk2_users_guide/myGpio/src/myGpio.c

|- el T S ; 1 3%
1 #include <stdio.h>
#include <stdlib.h>
#include <hwlib/hwlib.h>
4 #include "myGpio.h"
» & |xtern int doExit;
= myGpio_t
* This structure indicates how the myGpio_init({) routine should allocate and
* configure the WNC M18Qx GPIO Linux drivers.
hndl: Set to @; will be initialized in myGpio_init()
* abr: Used to provide user terminal feedback during myGpio_init()
* nbr: Number of the GPIO pin being configured
* pin: WNC SDK enumeration for specified pin
* dir: Should myGpio_init() configure pin as input or output
= trig: If using pin as input interrupt, which trigger value enumeration
= should be configured
* cback: If using pin as input interrupt, what function should be used
= for callback
* val: Can be used to hold the pin value when reading pin
= ret: Return from gpio_init() function when called by myGpio_init();
= it should be initialized to -1
* irq: Return from gpio_irq_request() when called by myGpio_init();
= it should be initialized to -1
/
myGpio_t myGpio[] = {
hndl abr nbr pin dir trig chack val ret irq comment
@, "R", 92, GPIO_PIN_92, GPIO_DIR_OUTPUT, -1, a, e, -1, -1, // Red LED
@, "G", 101, GPIO_PIN 101, GPIO DIR OUTPUT, -1, a, e, -1, -1, // Green LED
o, “8", 102, GPIO_PIN_102, GPIO DIR OUTPUT, -1, a, e, -1, -1, // Blue LED
@, “S", 98, GPIO_PIN_98, GPIO DIR_INPUT, GPIO_IRQ TRIG_FALLING, myGpio_irq_callback, 8, -1, -1 // User Button Switch
1
#define _MAX_GPIO (sizeof(gpio)/sizeof (myGpio_t))
#define MAX_GPIO_PINS (sizeof(myGpio)/sizeof(myGpio_t))
const int _max_gpio_pins = _MAX_GPIO_PINS;
/7 ***% Simple example of a GPIO interrupt callback routine ¥¥&fddiikiiiokis
46 //
47 int myGpio_irq_callback(gpio_pin_t pin_name, gpio_irq_trig t direction)
a38{
98 if (pin_name != myGpic[3].pin)
return 8;
doExit = @;
printf("\nInterrupt occurred on %d! How exiting...\n\n", myGpio[3].nbr);
7/} **** myGpio_init()
// Initialize all the binary i/o pins in the system
int myGpio_init(void)
={
int ret;
int i =0;
int error = 8,
// Loop thru myGpio[] allocating required pins
printf("GPI0 sllocation (%d pins):\n", _max_gpio_pins);
for (i=@; i < _max_gpio_pins; i++)
{
myGpio[i].ret = gpio_init({ myGpio[i].pin, &myGpio[i].hndl); // Call GPIO init APT function
printf(" #s=%d\n", myGpio[i].abr, myGpic[i].ret);
if (myGpio[i].ret !=8)
748
printf(" --> ERROR: GPIO resource unavailable\n");
7 error = 1;
77 3
}
// Loop thru pins setting direction and irg
printf("\nBeginning configuration of GPIO pins:\n");
for (1=8; i < _max_gpio_pins; i++)
if (myGpio[i].ret == @)
{
gpio_dir(myGpio[i].hndl, myGpio[i].dir); // We're not checking gpio_dir() return value
if ((myGpio[i].dir = GPIO_DIR_INPUT) &% (myGpio[i].trig != -1))
{
myGpio[i].irq = gpio_irq_request(myGpio[i].hndl, myGpic[i].trig, myGpio[i].cback);
if (myGpio[i].irq == @)
{
printf("IRQ %d enabled\n", myGpio[i].nbr);
} else
printf("ERROR: GPIO %d IRQ unavailable\n\n", myGpi
error = 1;
}
}
} else
printf("--> Pin configuration skipped for %s (%d) since it failed allocation\n", myGpio[i].abr, myGpio[i].nbr);
1
}
printf("GPI0 configuration complete\n\n");
return error;

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++

pg. 95

Example: myGpio.c

Listing - sk2_users_guide/myGpio/src/myGpio.c (continued)

// **** myGpio_close()
// Release the resources allocated by myGpio_init()
// Skip any resources that failed during allocation/configuration
void myGpio_close(void)

int i = 8;

printf("Releasing GPIO resources\n\n");

for (i=0; i < _max_gpio_pins; i++)

if (myGpio[i].irq == 8)
{

gpio_irqg_free(myGpio[i].hndl);
¥

if (myGpio[i].ret == 8)
{
gpio_deinit(&myGpio[i].hndl);

¥
¥

i

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 96

Example: myGpio.c

- 1

3 I 4

Listing 3.12: sk2_users_guide/myGpio/src/myGpio.h
- 3. 5 N

2 #ifndef _ MYGPIO H__
#define _ MYGPIO_H__

ff =% myGpio_t
5 Btypedef struct _myGpio {

7 gpio_handle_t

& char

9 int
1@ gpio_pin_t
11 gpio_direction_t
12 gpio_irg_trig_t
13 gpio_irg_callback_fn_t
gpio_level_t

int
16 int

17} myGpio_t;

#ifdef __cplusplus
extern "C" {

#endif

extern myGpio_t myGpio[];
int myGpio_init(void);
vold myGpio close(void);
#ifdef __cplusplus
#endif

#include <sys/types.h>
#include <stdint.h>

#include <hwlib/hwlib.h>

#endif // _ MYGPTO H

hndl;
abr[2];
nbr;
pin;
dir;
trig;
cback;
val;
ret;
irg;

extern const int _max_gpio_pins;

#include <nettle/nettle-stdint.h>

/7
/7
17

17
17
17
17
17
17

Set to B; will be initialized in myGpjio_init()

Used to provide user terminal feedback during myGpio_init()

Number of the GPIO pin being configured

WNC SDK enumeration for specified pin

Should myGpio_init() configure pin as input or output

If using pin as input interrupt, which trigger value enumeration should be configured

If using pin as input interrupt, what function should be used for callback

Can be used to hold the pin value when reading pin

Return from gpio_init() function when called by myGpio_init(); it should be initialized to -1
Return from gpio_irq_request() when called by myGpio_init(); it should be initialized to -1

int myGpio_irq_callback{gpio_pin_t, gpio_irg_trig_t);

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 97

Where to Go for More Information

3.8. Where to Go for More Information

Recommended materials for learning more about C/C++ programming for Linux and the SK2.
e Avnet M18Qx Peripheral 1oT Guide (DOCX)

e Matthew, Neil, and Richard Stones. Beginning Linux Programming (4t Edition). Wiley, 2011.

e Robert Love. Linux System Programming: Talking Directly to the Kernel and C Library (2nd Edition).
O'Reilly Media, 2013

e Michael Kerrisk. The Linux Programming Interface: A Linux and UNIX System Programming
Handbook (1st Edition). No Starch Press, 2010.

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using C/C++ pg. 98

http://https/github.com/Avnet/AvnetWNCSDK/blob/master/Avnet%20M18Qx%20Perpherial%20IoT%20Guide.docx
https://www.amazon.com/Beginning-Linux-Programming-Neil-Matthew-ebook/dp/B004YK0KO8
https://www.amazon.com/Linux-System-Programming-Talking-Directly-ebook/dp/B00CS94J8U
https://www.amazon.com/Linux-Programming-Interface-System-Handbook-ebook/dp/B004OEJMZM

4. Installing and Using Python

Python 2.7 has been ported to the SK2 to aid in rapid-prototyping - or full-scale development - of
applications for the SK2 (AT&T loT Starter Kit 2nd Generation). After upgrading your SK2 firmware, you
will be able to run Python scripts from the Linux command-line. Additionally, the SK2 Python firmware
includes a cloud-based IDE for editing, running, and managing python scripts and applications.

This chapter focuses on installing and using the SK2’s Python platform. Look back to Chapter 2 for
details about the Linux environment and writing shell-scripts. Or Chapter 3 for details about C/C++
environment.

Also note that

Warning!

Installing the Python SK2 Linux firmware will replace the filesystem on your SK2. Please follow the
directions carefully - including Section 4.1.1 “Backup /CUSTAPP” - to make sure any files you have
added to your kit are backed up before installing the Python firmware.

Prerequisite Knowledge and Tools

This guide assumes that you are generally familiar with the Python language. Language constructs are
not explained or taught in this book, although it covers a few topics that are part of the Python code
examples for the SK2. Please refer to the Additional Resources section at the end of the chapter for
more information about Python coding.

AT&T loT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 99

Installing Python

Topics

4, Installing and USIiNg PYthONccceeiiieiiissscmeernnssssssssmseessnesssssssmmssssssesssssssmmsssssessssnnas
4.1. LS 21T = 0 a1 L
4.1.1. BaCKUD /CUSTAPP ..ottt sttt s
4.1.2. Setting up the Python IDE.......oo i
4.2, CONNECE LO PYLNON IDE ...ttt eas
4.2.1. OVEIVIEW ittt e et st e e s s e s ne e e e s ne e e e s nne e e s nnneas
4.2.2. (€] (O 2 070101 o SRS STRP
4.2.3. IDE ettt e e e ae e e b e e ene e s neennneenane
4.2.4, LN S ettt e e e nae e s reeenneenane
4.2.5. L= 021 F= SRR
4.3. Getting Started With PYtRONeeeeeeeeeeeeeee ettt e e e s a e s e aeeas
4.3.1. Running Python from the Command-Line.......cccccoeriiiierreciee e,
4.3.2. Example: Hello World using PYthON.........ooiiiiiiecien e
4.3.3. Example: Cheer for HEO WOrld........cooveeeiieiieieeee et
4.3.4. Example: Blinking the Red LEDcoovoeeereceeeecee e
4.3.5. Example: Reading the User BUttoncccceveceeeveccies e e
4.3.6. Accessing Additional GPIO PiNS........cocciiiiieiiinicereee e
4.3.7. Killing a Running Python Program..........cceceriienieeriieesee e
4.4, WWAN LED ClIASS ...uvteeeeerieieieesieassieesieasseeesseasssessseasssessseasssnessseasasnessnasasnssane
4.4.1. Python FUNCLioNS and CIASSES ...ccccuverieeeeereeieeeceee s e e e e e escee e s eseeeeens
4.4.2. Example: USing WWAN LED Classcoocoerreeriienrierseeesee e
4.4.3. Importing & Using the WWAN LED Classccceeeeriieenienieeesee e
444, WWAN Class SUDPIrOCESSING......cccueeeeeieiereiereeeeeeeeeeseeesesseesesseeeesssneeeennes
4.5. GPIO INtEITUPES IN PYTNON ..ottt ee st e st eesee e e s e e s sneeaesaneneenas
4.5.1. Fancier Button Interrupt EXample ...
4.6. RUNNIing Python SCriptS @t BOOLceiieeeeeeeeieeeeetee ettt
4.7. AdditiONG] REFEIENCES ..ottt ettt seneeeas

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python

pg. 100

Installing Python

4.1. Installing Python

Installing Python onto your SK2 involves updating the entire firmware image for the development
board. Python, and the cloud-based IDE have been baked into the Linux image. While this increases
the steps required to install Python - versus installing only a simple Python executable - the result is a
complete platform that has been pre-verified to run on the SK2 board.

The SK2 Python firmware downloads as a large ZIP file. After downloading the ZIP file, you will unzip
the firmware image and run a series of ADB commands in order to update the various elements of the
Linux firmware on your kit. When complete, your SK2 will include the Python executable and IDE.

WARNING - The following Python installation will replace your current SK2 Linux firmware. Any files
that have been created or written to the /CUSTAPP directory on your kit will be erased during
installation of the new Linux firmware. Please backup any files that you have added to the kit before
installing the new firmware - backup instructions are found in the next section.

4.1.1. Backup /CUSTAPP

The following sections step you through the procedure to update your SK2 with the new Python
firmware. These steps entirely replace your Linux firmware - including the /CUSTAPP directory where
you have likely created, modified, or uploaded files. Follow the steps in this section to backup - and
then verify - that your files have been saved from the SK2 before continuing with installation in the
next section.

1. Open a command-line shell on your computer in your ADB folder and verify that you can connect
to your board using “adb devices”.

This was covered in detail in chapter 2.

2. Start a remote session on your SK2 using “adb shell”.

You can start a remote shell session running on your SK2 using the adb shell command.

adb shell or ./adb shell

3. Test if Python is already installed.

Python should not be installed, but by trying this step now, we can tell later if our installation was
successful.

python --version
If Python was installed, it would return the version of Python currently available.
4. Change to the /CUSTAPP directory.
cd /CUSTAPP
5. List the read/write directory of the SK2 filesystem.
ls -1s

Make a note of any files or directories that you've added to /CUSTAPP.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 101

Installing Python

6. Backup any files that need to be saved from the SK2.

You can individually pull files from the SK2 using the “adb pull” command. Although, the easiest
solution may be to TAR (i.e. zip) the files and then pull them all with one command. This is the
method we’ll demonstrate.

a) TAR the files in /CUSTAPP.

Use the TAR (tape archive) command to create a compressed, archive of all the files within
/CUSTAPP.

tar -czvf myCustapp.tar.gz

tar: tape archive command

-c: Create and archive

-z Compress files when added to archive

-V Verbose - display progress in the terminal while creating the archive
-£: Specify the filename of the archive

You can use any name you want for your archive, although it should end with “.tar.gz”. We
chose the name “myCustapp.tar.gz”.

Finally, the “.” at the end of the command specifies all the files in the current directory. The
TAR command will recurse any subdirectories and include their files.

Hint: If you didn’t want to include a specific directory in your TAR files - for example, let's
say we had a directory named “temp”, it could be excluded by adding the following to
our example: tar exclude=’temp’ -czvf myCustapp.tar.gz

b) Listthe /CUSTAPP directory again.

The listing should now include your TAR file, for example: myCustapp.tar.gz
If it doesn’t, debug the problem with your TAR command and keep trying until you succeed.

¢) Exit the SK2 remote session.
exit
Your command-line terminal should be back in your “adb” folder on your host computer.
d) Pull the TAR file from the SK2.
adb pull /CUSTAPP/myCustapp.tar.gz
Make sure you include /CUSTAPP in your file’s path.

7. Verify saved files.

Open the TAR file on your host computer and verify it contains all the files you wanted to save
from step #5.

Hint: Many utilities allow you to view and extract TAR files. Popular utilities include: WinZip,
WInRAR, and 7-zip.

Make sure that you have saved all the files from your /CUSTAPP directory before proceeding with
the next section.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 102

https://www.winzip.com/
https://rarlab.com/
https://www.7-zip.org/

Installing Python

4.1.2. Setting up the Python IDE

The SK2 Python firmware image is provided in a large ZIP file. You need to download the ZIP file and

extract it to a folder on your host computer.

8. Download the SK2 Python Image ZIP file.

M18Q2 v12.09.182151 APSS OE v01.07.183121.zip

9. Unzip this file onto your computer.

After unzipping this file, your computer should contain a new folder named:

M180Q2 v12.09.182151 APSS OE v01.07.183121

View the files in the archive:

Files we will use for Python:

e Blue files support ADB and
Fastboot installation

e Remaining files make up the
Python firmware image

adb.exe

AdbWinApi.dll
AdbWinUsbApi.dll
fastboot.exe
firmware.ubi.4k
fw.bin.full.4k
mdm9607-boot.img.4k
mdm9607-datafs.ubi.4k
mdm9607-sysfs.ubi.4k

Files that are not needed from
the Python image ZIP file:

README - Usage of WNC_Dloader_SB3.0_Support_MDM9x07.txt
appsboot.mbn

cmd.bat

rom.mbn

sbll.mbn

tz.mbn

tzbsp_no_xpu.mbn
WNC_Dloader_SB3.0_Support_MDM9x07.exe
ENPRG9x07.mbn
factory.yaffs2.2k.ESMT
factory.yaffs2.2k.ETRON
factory.yaffs2.4k

firmware.ubi.2k

fw.bin.full.2k
M18_wnccm_fastboot_2k.txt
M18_wncem_fastboot_2k_ESMT.txt
M18_wnccem_fastboot_4k.txt
mdm9607-boot.img.2k
M18_download_4k.bat
mdm9607-datafs.ubi.2k
mdm9607-sysfs.ubi.2k
NPRG9x07.mbn

partition.mbn.2k

partition.mbn.4k

Note that you do not need to delete any of the “unnecessary” files listed above. We just wanted to
state that these files would not be needed in case you wondered why they weren’t used in the

following procedure.

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python

pg. 103

https://s3-us-west-1.amazonaws.com/td-marketplace-assets/SDK-01/M18Q2_v12.09.182151_APSS_OE_v01.07.183121.zip

Installing Python

10. Open a command-line shell on your computer, if it isn’t already running.

11. Change to the directory where you extracted the SK2 Python firmware image files.

To install the new firmware image, you will need to switch to the new directory created by
unzipping the SK2 Python Image ZIP - that is, the directory containing the files we just examined.

For example:

cd C:\M1802 v12.09.182151 APSS OE v01.07.183121

12. Verify that you can connect via ADB using the ADB in the Python image directory.

adb devices

You will likely see a notice stating that the ADB daemon is not running and that it has been
started. Since we are running a new version of ADB from the Python image directory, ADB will stop
the currently running server and restart it using the version of ADB in our new directory.

adb server is out of date.

Cih r12.89.182151_ APSS_0OE_wvael.a7
A adb devices
List of devices attached

Figure 4.1 - Restarting ADB with "adb devices"

killing.
* daemon started successfully *
WNC_ADB device

13. Execute the following series of commands to write (i.e. ‘flash’) the Python image files to your SK2.

The following steps reboot the device into bootloader mode and then use ‘fastboot’ to write the
images to their respective locations on the SK2.

adb reboot bootloader

fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot

flash boot b mdm9607-boot.img.4k

flash system b mdm9607-sysfs.ubi.

flash boot a mdm9607-boot.img.4k

flash system a mdm9607-sysfs.ubi.

flash data mdm9607-datafs.ubi.4k
flash firmware a firmware.ubi.4k
flash firmware b firmware.ubi.4k

reboot

4k

4k

Copy/Paste the commands
from this page.

Or, you can copy/paste them
from the git file:

Chapter_04\py_install_cmds.txt

Hint: View a successful execution of these commands on the next page.

14. When complete, open an ADB shell and check what version of Python is now installed.

adb shell

python --version

Not only will your python version command return a version - rather than an error - you can also

see quite a few new files and directories by listing the /CUSTAPP directory.

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python

pg. 104

Installing Python

cmd - adb shell = [m} X

ces attached
; rer is out of date. killing...
A successful e.xecutlon. of rted successfully *
the Python installation) ce

looks like —»

It only took a few minutes ~
i mdm2607-boot. 1
to Complete the entire target reported max download size of
sequence sending ‘boot_b' (49 B)-.-

ysfs.ubi.4k
of 7 bytes

astboot flash boot_a md
target reported max download s
ng ‘boot_a’ (B).--

bytes

0 [4.110s]
finished. total time: 4.815s

()a S
A fastboot flash data mdi
target reported max download s
sending ‘data’ (1047084 KB)...

finished. total time: 24.144s

C =1
A fastboot flash f
target reported max d
sending ‘firmware_a’
[©.984s]
ng ‘firmware_a'...
7s]

A fastboot reboot
rebooting...

finished. total time: @.887s

C S\ M1 §
A adb shell

/ # python -

I <

Figure 4.2 - Successful Flashing of Python Firmware

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 105

Installing Python

15. Exit the ADB remote session.
exit
16. Examine your Network settings

ipconfig

ee:bBa:eabé:

=fone:0eel

06

Figure 4.3 - ipconfig

Notice that along with our wireless LAN adapter, we now have an additional Ethernet connection
with an IPv4 address of 192.168.8.100. (This is important for the next section.)

17. Change back to your original ADB folder.

Leaving the Python image installation folder, return to your normal ADB folder. For example:
cd C:\adb
18. Run the ‘adb devices’ command to restart the original ADB server.

adb devices

) doesn’'t match this client (48); killing...
* daemon sta ssfully
WNC_ADB device

Figure 4.4 - Restarting Original ADB Server

19. Open an ADB shell and try verifying Python again.

adb shell
python --version Figure 4.5 - Verifying Python
C:)
A adb shell
/ # pythen --versien
hen 2.7.11

Pyt
f #

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 106

Connect to Python IDE

4.2. Connect to Python IDE

After the Python firmware has been installed on your SK2, you should be able to run Python scripts
from the SK2 command-line (from within an ADB remote session). Additionally, you can open and use
the Python IDE that was installed to your SK2 - which is what we will experiment with first.

4.2.1. Overview

From an Internet browser, connect to the following address:

192.168.8.1

Upon a successful connection, you should see the Python IDE overview.

loT Starter Kit Overview GPIO Control Terminal

AT&T loT Starter Kit (2nd Gen)

Introduction

The AT&T 0T Starter Kit (2nd Gen) provides an innovative new System-on-Module 10T solution, enabling the design of cellular connected
edge devices. This kit provides a complete development environment for sensor-to-cloud applications and services.

Overview
The AT&T loT Starter Kit (2nd Gen) comes with everything you need to start your next great loT Project: Hardware, services, data, and

integrations. Whether this is your first 1oT project or your hundredth, AT&T 10T Starter Kit (2nd Gen) was created for you.

Benefits
Simplicity & Usability

= Provides an all-in-one bundle to start your 10T Project / Prototype with ease. Hardware, services, data, and integrations.

* An end-to-end solution with AT&T 10T Platform integration.
Extensive Coverage, Reliability, & Speed

= Cellular connectivity & coverage powered by the AT&T Network allows your I0T projects to operate virtually anywhere in the US.

* Connect your loT assets and devices to AT&T's high-speed, nationwide LTE cellular network without depending on Wi-Fi signals.
Highly Flexible

* Access to open hardware architecture, a built-in microcontroller that connects to most M2M platforms, and commercial grade LTE shield
(option of standalone use or with any compatible micracontraller).

Documentation Links

loT Starter Kit

Figure 4.6 - Python IDE (Overview)

The overview provides a short introduction to the SK2 and its advantages. Next, let's explore the
main facets of the Python IDE.

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 107

Connect to Python IDE

4.2.2. GPIO Control

Click the “GPIO Control” button towards the top of the Python IDE.

GPIO Control

opens a screen that allows you to control the RGB LED on your connected SK2 as well as reading the

ADC value.
loT Starter Kit Overview GPIO Control IDE Links Terminal

GPIO Control
LEDs
Red LED on @
Green LED Off
Blue LED Off
ADC (Light Sensor)
ADC value

27 Refresh

| |

loT Starter Kit

Figure 4.7 - Python IDE (GPIO Control)
You can turn the various LED colors on/off. For example, we turned on the Red LED.

Clicking ‘Refresh’ to read the ADC (analog to digital convertor) causes the IDE to read the ADC
peripheral on the WNC module. Since it's connected to a light sensor on the SK2, reading the ADC
gives us a number that represents the amount of light hitting your board.

You can see a difference in light intensity using the SK2. First read the ADC by clicking ‘Refresh’. Then
change the amount of light hitting the board - say, by shining a flashlight on it - and clicking ‘Refresh’
again. Here’s an example of our readings:

Room lighting 27
Flashlight 3521

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 108

Connect to Python IDE

4.2.3. IDE

Clicking the “IDE” button towards the top right of the Python IDE:
IDE

opens the main Python IDE screen where you can create, edit, and run Python scripts.

loT Starter Kit Overview GPIO Control Terminal

Kit Is Connected! Integrated Development Environment

0/

name size

m2x_examples <dir>
iot_blink_led_example.py 1.38kb
iot_hw_example.py 2.28kb
iot_m2x_example.py 834b

iot_mal_example.py 970b

PE— e - vy e PR P A ¥

Figure 4.8 Python IDE (IDE)

You canopenthe iot blink led example.py thatcomes preinstalled with the Python image by
double-clicking on it. This opens the script in the editor, allowing you to modify or run the Python script.

loT Starter Kit Overview GPIO Control Terminal

Kit Is Connected! Integrated Development Environment

fimport iot_hw
import time

m2x_examples
iot_blink_led_example.py
iot_hw_example.py
iot_m2x_example.py red_led = iot_hw.gpio(iot_hw.gpio_pin.GPIO_LED_RED)
iot_mal_example.py red_led.set_dir(iot_hw.gpio_direction.GPIO_DIR OUTPUT)

green_led = iot_hw.gpio(iot_hw.gpio_pin.GPIO_LED_GREEN)
green_led.set_dir(iot_hw.gpio_direction.GPIO_DIR_OUTPUT)

blue_led = iot_hw.gpio(iot_hw.gpio_pin.GPIO_LED_BLUE)
blue_led.set_dir(iot_hw.gpio_direction.GPI0_DIR OUTPUT)

red_led.write(iot_hw.gpio_level.GPIO_LEVEL_HIGH)
time.sleep(1)

green_led.write(iot_hw.gpio_level.GPIO_LEVEL_HIGH)
red_led.write(iot_hw.gpio_level.GPIO_LEVEL_LOW)
time.sleep(1)

blue_led.write(iot_hw.gpio_level .GPIO_LEVEL_HIGH)
green_led.write(iot_hw.gpio_level.GPIO_LEVEL_LOW)
time.sleep(1)

New File
console: connected

Edit
client #1 console connected

Save
/ / e

u CUSTAPP/iot_files~> |

Deploy

loT Starter Kit

Figure 4.9 - Python IDE (IDE) showing code

Run the script open in the editor by clicking the “Run” button in the lower left-hand corner. The IDE
asks you to verify the script you want to run before executing it.

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 109

Connect to Python IDE

Note that if you modify the files in the Python IDE directory while it is open, the IDE may not see the
new files or folders. You can refresh the file listing by clicking the “Refresh” button or using Ctrl-R.

Kit Is Connected!

ame size
m2x_examples <dirs
iot_blink_led_example.py 1.38
iot_hw_example.py 2.28
iot_m2x_example.py 834b
iot_mal_example.py 970b

Figure 4.10 - Refresh File Listing

4.2.4. Links

Click “Links” to open the IDE’s links page. This page provides a few links connecting you to SK2
resources, such as the product page.

loT Starter Kit Overview GPIO Control IDE Links Terminal

Links

Resources
The following links provide further resources related to the [oT Starter Kit (2nd Gen).
oT Starter Kit (2nd Gen) product page

oT Marketplace Products and solutions

ATA&T IoT Platform: M2x

AT&T laT Platform: Flow Designer

Upgrading

The following links provide information for upgrading the firmware an the loT Starter Kit.

Upgrade procedure
Upgrade tools
Firmware v1.23

loT Starter Kit

Figure 4.11 - Python IDE (Links)

Note: Some of these links may not be active.

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 110

Connect to Python IDE

4.2.5. Terminal

Click “Terminal” to open a BASH command-line terminal.

This page allows you to connect to your SK2 and run command-line functions. It provides an alternate
to the ADB connection that we have used in other parts of this user guide.

For example, we executed the Python version command that was used earlier in this chapter.

loT Starter Kit Overview GPIO Control Terminal

Terminal

bash-4.3# python --version
Python 2.7.11
bash-4.3#% ||

10T Starter Kit

Figure 4.12 - Python IDE (Terminal)

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 111

Getting Started with Python

4.3. Getting Started with Python

Python is high-level, general purpose programming language that’s easy and fun to program. In fact, it
was named after the British television comedy “Monty Python’s Flying Circus”, so how much more fun
does it get than this?

Here are some key distinguishing features from “Python in Easy Steps” (Mike McGrath) that do well in
describing the Python language. (See “Additional References” at the end of the chapter for a reference
to his book.)

Python is free - is open source distributable software.
Python is easy to learn - has a simple language syntax.
Python is easy to read - is uncluttered by punctuation.
Python is easy to maintain - is modular for simplicity.

Python is “batteries included” - provides a large standard library for easy integration into your
own programs.

Python is interactive - has a terminal for debugging and testing snippets of code.

Python is portable - runs on a wide variety of hardware platforms and has the same interface on
all platforms.

Python is interpreted - there is no compilation required.

Python is high-level - has automatic memory management.

Like with shell-scripts and C, we'll begin using Python with the simple “Hello World” program, after
which we’ll quickly focus on how to access the SK2 hardware using the Python language.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 112

Getting Started with Python

4.3.1. Running Python from the Command-Line

Running Python from the command-line is different than you might have seen with other languages,

such as C/C++ which was covered in the previous chapter. While there are utilities that can convert

Python scripts into executable files, generally Python scripts (i.e. Python .py files) are executed by the
Python interpreter. But before we explore executing Python files, let’'s examine the Python command

interpreter.

4.3.1.1. Using the Python Interactive Interpreter

While you are not likely to use the Python interpreter in your normal SK2 applications, it can be handy
if you're starting out with Python and want to execute commands one-by-one.

1.

Open a SK2 remote command-line session.

There are now two easy ways to do this. With the SK2 powered-on and connected to your
computer:

e You can execute “adb shell” from your host computers terminal, as we’ve been doing since Chapter 2.
e Open the Python IDE’s “Terminal” window, as was discussed in the previous section of this guide.

It doesn’t matter which method you choose, either will let you run Python.

Start the Python interpreter.

Typing the command “python” without any arguments starts the python interpreter.

python

Hint: Note that you can see an example invocation of the commands from section 4.3.1.1 in
Figure 4.13 - Interactive Python interpreter session.

Enter the Python syntax to print ‘Hello World’ to the terminal output.

print (‘Hello World!’)

Python doesn’t care if you use single or double quotes, as long as they’re a matched pair. Also,
while Python 2 doesn’t require parenthesis for print statements, Python 3 does, so we recommend
getting used to it right from the beginning.

Execute a Python expression with the interpreter.

Enter the following expression:

10 * (20 + 12)
and see it return the result.

You can even use variables.

Try entering the following three lines, hitting return after entering each one:

a = 20
b =12
10 * (a + b)

Should return the same number we saw earlier.

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 113

Getting Started with Python

How about getting information from the command-line user (i.e. yourself).

Try the following two lines:

c = input (“Enter a number: “)
10
print (int(c) * (a + b))

The input function reads characters from the command line, in this case, assigning the value to
the variable ‘c’. We then printed the result of an expression - though we needed to cast the
character value in ‘c’ as an integer before we could mathematically combine it with ‘a’ and ‘b’.

Here are the commands from this section while using the Python IDE Terminal.

Terminal

bash-4.3# python

Python 2.7.11 (default, Aug 18 2018, 12:52:53)
[GCC 5.3.08] on linux2 T

Type "help™, "copyright”, "credits” or "license™ for more information.
>»> print(‘Hello World!")

Hello World!

>»> print "Hello World, again!’

Hello World, again!

>»> 10 * (20 + 12)

320

»»>» a =20

>»> b =12

>»> 18 * (a + b)

320

»>»» ¢ = input(“Enter a number: ™)

Enter a number: 18

>»> print(int(c) * (a + b))

320

»>]

Figure 4.13 - Interactive Python interpreter session

7. Exit the Python interpreter.

exit ()

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python

pg. 114

Getting Started with Python

4.3.1.2. Running Python scripts

More likely you will want to write your Python code into a file and run it. Before we write and execute
our own code, let’s simply try running one of the examples that’s included within the Python image.

1. Open a SK2 remote command-line session.

Use either of the methods discussed in Section 4.3.1.1, Step 1 (on page 113).

2. Open the /CUSTAPP/iot_files directory on your SK2.

If you are using the Python IDE Terminal, you should already be at this location. If using the
“adb shell” method, you’ll need to change directories to reach this location.

-PWXP-Xr-X
-PWXP-Xr-X
-PWXP-Xr-X
-PWXP-Xr-X
drwxr-xr-x
bash-4.3# []

1

Terminal

bash-4.3# pwd
/CUSTAPP/iot_files
bash-4.3# 1s -1

root

1 root
1 root
1 root

root

1413 Sep 23
2333 Sep 23

834 Sep 23
970 Sep 23
1048 Aug 19

2018 iot_blink_led_example.py
2018 iot_hw_example.py

2018 iot_m2x_example.py

2018 iot_mal_example.py

2018 m2x_examples

Figure 4.14 - Navigating to 'iot_files'

3. Runtheiot blink led example.py python script.

This is the same file we executed earlier, back in Section 4.2.3. To execute it from the command
line, you need to include “python” along with the file name.

python iot blink led example.py

As the script it running, you should see the RGB LED blink a variety of colors.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 115

Getting Started with Python

4.3.2. Example: Hello World using Python

Writing Python can be accomplished with any text editor, then executing the code as was examined in
the previous section. The SK2 makes the task easier, though, by providing a Python aware text editor

in the IDE view. Let’s create our first Python file using the IDE.
1. Open the Python IDE to the ‘IDE’ pane.

2. Create a new Python file named “hello.py”.
There are two ways to create a new file in the IDE:
a) Select the “New File” button.

b) Right-click in the editor, then choose: New — File.

In either case, enter the name “hello.py” and hit OK.

loT Starter Kit Overview

Kit Is Connected! Integrated Developme

€/

name size
m2x_examples <dir>
iot_blink_led_example.py 1.38kb
iot_hw_example.py 2.28kb
iot_m2x_example.py 834b
iot_mal_example.py 970b

Iy Paste

G New »

* (Un)Select All

Edit

Figure 4.15 - Creating a New Python File

Hint: Notice that the Right-click menu also allows you to create a new “Directory”.

Both tasks - creating a new file or directory - can be done from the command-line. There isn’t
anything fancy being done by the IDE, it just provides a simple way to create these objects without

having to leave the IDE.

3. Open “hello.py” in the IDE’s editor.
This can also be done two different ways:
a) Double-click on the ‘hello.py’ filename.

b) Right-click on the filename and choose “Edit”.

4. Enter the code for Hello World!

Simply add the following code which we saw earlier in the chapter:

print (“Hello World!”)

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python

pg. 116

Getting Started with Python

5. Save and run your hello.py script.

Clicking the two buttons in the lower-left corner will save and execute your script.

Save
Run

Upon clicking run, you’ll be asked to confirm the command that will be executed. While we could
modify it before clicking OK, we don’t need to do that for this example.

Click OK

Hopefully your program ran fine. Ours didn’t. Figure 4.16 shows the error we received.

print(“Hello World!")

File "hello.py"”, line 1
SyntaxError: Non-ASCII character '\xe2' in file hello.py on line 1

/CUSTAPP/iot_files~> |]

Figure 4.16 - Running 'hello.py’ (with error)

It’s difficult to see the error. It's the same code we used before with the interactive interpreter, so
why is it failing now? Well, we were lazy and copied the code from the user’s guide. Unfortunately,
Microsoft Word has a habit of replacing quotes with fancy curly versions... which apparently the
Python interpreter doesn’t like. Replacing the quotes in our file fixed the problem.

Y e T il Y PRI = Y NSNS VEP g o PR NN

Hello World!

/CUSTAPP/iot_files~> [}

Figure 4.17 - hello.py Success

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 117

Getting Started with Python

6. Close the file.

Right-click and select ‘Close’

Note that while the Right-click menu indicates that hitting the ‘Esc’ key will close the file, it didn’t
work for us.

Hint: Right-clicking too close to the bottom of the editor hides part of the context menu and you
might therefore be unable to see the lower options, such as ‘Close’.

Save

Go To Line

Cut

Copy
Paste

Neleie

Make sure you Right-click high enough on the screen to see the entire list.

4.3.3. Example: Cheer for Hello World

To demonstrate another relatively simple program, we expanded on the Hello World script by adding a
for loop. The code is in Listing X (and can be downloaded from the User’s Guide Git).

Listing 4.1: Chapter_04/hello_cheer.py

hello cheer.py
msg = 'Hello World'

for ¢ in msg:
print ("Give me a '™ + c + "'"M)

print ("\nWhat does it spell? \n " + msqg)

For those that are new to Python, note that the language is easy to read. Also note that white space is
important. The “contents’ of the for loop are defined by white space; notice that the print() statement

in the loop is indented and will be repeated, while the second print() only executes once. (By the way,

the “\n” characters tell Python to insert a line-feed, similar to how they work in C/C++.)

/CUSTAPP/iot_files # python helle_cheer.py
me
me
me
me
me
me
me
me
me
me
me

w

oW WwowoWwww oW

does it spell?
Hello World

/CUSTAPP/iot_files #

Figure 4.18 - Running hello_cheer.py

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 118

Getting Started with Python

4.3.4. Example: Blinking the Red LED

Like shell-scripts and C/C++, blinking an LED is a good way to begin working with hardware. It's easy

to see the results by verifying if the LED turns on or not.

The red led blink.py example (Listing 4.2) was easy to create because we could borrow directly

fromthe iot blink led example.py that came with the Python firmware image.

Listing 4.2: Chapter_04/red_led_blink.py

Define 'ON' and 'OFF'

ON = iot hw.gpio level.GPIO LEVEL HIGH

OFF = iot hw.gpio level.GPIO LEVEL LOW

Allocate and configure GPIO as output for Red LED
red led = iot hw.gpio(iot hw.gpio pin.GPIO_ LED RED)

Red on
red led.write (ON)
time.sleep (1)

Red off
red led.write (OFF)

Release Red LED resource
red led.close()

import time # Needed for time.sleep()
import iot hw # Allows access to SK2 hardware resources

red led.set dir(iot hw.gpio direction.GPIO DIR OUTPUT)

Executing the Python script will blink the Red LED once. Here are some notes about this example:

import time Like C, ‘time’ is a standard library which provides a simple sleep()
function
import iot_hw Again, like C/C++, this imports the library API which allows us to

use the SK2 hardware resources

ON, OFF These variables were not required; alternatively, the code could

have used the longer values (i.e.

iot_hw.gpio_level.GPIO_LEVEL_LOW) in the write() function

iot_hw.gpio() Allows the program to allocate GPIO resources; you must import
iot_hw in order to use this function; setting the variable with
iot_hw.gpio_pin.GPIO_LED_RED selects the color red - i.e. it tells
the library which pin needs to be used

iot_hw.set_dir() Configures the red_led object’s direction, which was allocated by
iot_hw.gpio()
red_led.write() The write() function, provided by the iot_hw module sets the value

of the GPIO pin

Please examine the iot blink led example.py to see another example utilizing the RGB LEDs.

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 119

Getting Started with Python

4.3.5. Example: Reading the User Button

Reading the User Button on the SK2 is similar to using the LEDs except for two items:
e The Button needs to be set as an input (iot_hw.gpio_direction.GPIO_DIR_INPUT)

e You read() the button rather than write() to it.

The following example simply reads from the button and prints out its value with a string.

Listing 4.3 - Chapter_04/button_read.py

button read.py

#
This script reads the button and prints whether

the button is up or down

import iot hw

ON = iot hw.gpio level.GPIO LEVEL HIGH
OFF = iot hw.gpio level.GPIO LEVEL LOW

Initialize the GPIO connected to the SK2 User Button
button = iot hw.gpio(iot hw.gpio pin.GPIO USER BUTTON)
button.set dir(iot hw.gpio direction.GPIO DIR INPUT)

val = button.read()

if val:

print ("The button is up (" + str(val) + ")")
else:

print ("The button is down (" + str(val) + ")")

Running the example twice - first with the button up, and then down - gives the following output.

The button is up (1)

The button is down (0)

Figure 4.19 - Running the button_read.py script twice

Note: Configuring the button as an interrupt is explored in Section 4.5.

4.3.6. Accessing Additional GPIO Pins

The Python Peripheral IoT API Guide provides details of all the peripheral API functionality provided by
the iot_hw Python module.

The API guide also includes details for setting up all the GPIO pins including the RGB LEDs and the
User Button.

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 120

Getting Started with Python

4.3.7. Killing a Running Python Program

If you accidentally write a program that won’t exit (e.g. an endless loop) you a second terminal and
Linux to Kill it. This is done by getting the PID (process ID number) assigned to your program by Linux,
then using the Kill command as discussed in Chapters 2 and 3.

ps -e | grep python
kill <pid>

Here’s a simple code example for an endless loop:

Listing 4.4: endless.py

import time

print ("Starting up...")
while 1:
time.sleep(5)
print ("Five more seconds have gone by...")

Running the endless.py example in the Terminal (below left), the program will run forever.

By starting a second remote terminal session on the SK2 (below right)

e Run the “ps” command to list the active Linux processes and pipe the results into grep to only
show those named ‘python’

e Using the PID (process ID), which in this case was 4376, you can tell Linux to kill the process

Terminal

Started running 'endless.py

bash-4.3# python endless.py

Starting up... Next, opened another remote

i more seconds have gone _— conection to SK2 and killed the
more seconds have gone -

more seconds have gone

more seconds have gone

more seconds have gone

more seconds have gone

more seconds have gone

endless process.

C:\adb

A adb shell

[/ # ps -e | grep python

4376 pts 80:00:00 python

Terminated / # kill 4
bash-4.3# D / #

Figure 4.20 - Running and killing endless.py

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 121

WWAN LED Class

4.4. WWAN LED Class

The Python peripheral API (iot_hw module) does not include support for the WWAN LED. The User
Guide software examples include a Python class which allows easy use of the WWAN LED. The class
includes the following methods: on(), off(), toggle(), value(), read().

4.4.1. Python Functions and Classes

4.4.1.1. Python Functions

You can create functions in Python using the “def” (define) keyword. The following example defines
and then uses a function called my_func().

my func example

def my func(a):
print (a)

Using the function my func ()
my func(‘Print me!’)

Which outputs:

Print me!

Notice that, like the for loop examined earlier, the body of the function is defined by the white space,
either using tabs or spaces.

Just like using C, or other extensible languages, you can “import” functions from other .py files. For
example, as long as we had added the proper import statement, we could have defined my_func() in a
separate .py file, away from where it was used.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 122

WWAN LED Class

4.4.1.2. Python Classes

Like other high-level languages, such as C++, Python classes can contain data and methods (i.e.
functions). The data and functions are coded like they are outside of classes with two distinct
differences:

e (Class elements must follow a “class” statement.

o C(Class elements must be indented using white-space.

For example, a class called “my_class” might look like:

class my class:
my class variable = 0

def init (self):
add code here to instantiate the class object

def print me(self, a):
print(a)

You could then use the class in your code by:

x = my class()
x.print me (“Hello”)

We don't include this example in our code listings since the next section examines a real-world
example class. The goal here was to provide a simple description for Python classes.

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 123

WWAN LED Class

4.4.2. Example: Using WWAN LED Class

The following code makes it easy to access and control the WWAN LED from your Python scripts,
whether you want to turn the LED on or off. You can also toggle the LED and read its value.

Listing 4.5: Chapter_04/wwan_class.py

import os
import time
import subprocess

WWAN_LED = r'/sys/class/leds/wwan/brightness”

OFF
ON =1

COUNT =1

class wwan:
value = "0°

def __init_ (self):
self.value = self.read()

def on(self):
self.value = '1°
os.system("echo 1 > " + WWAN_LED)

off(self):
self.value = "0’
os.system("echo 0 > " + WWAN_LED)

toggle(self):

i = int(self.value) ~ 1

self.value = str(i)

msg = "echo " + self.value + " > " + WWAN_LED
0s.system(msg)

return self._value

value(self):
return self.value

read(self):

p = subprocess.Popen(["cat™, WWAN_LED], stdout=subprocess.PIPE)
p-communicate()

r = s[0].strip()

return r

The WWAN LED is turned on/off using file I/0 as was described in the Linux chapter. Using the value()
method returns the value tracked in the class itself. Whereas, the read() method actually goes out and
reads the value from filesys.

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 124

WWAN LED Class

4.4.3. Importing & Using the WWAN LED Class

Using the WWAN class by following the steps required for most object-oriented languages. You must
follow two steps before you can use it:

e Import the class

e Instantiate the class object

At which point you are free to use it in your code.

Listing 4.6: Chapter_04/wwan_blink.py

import time
from wwan_class import wwan

COUNT =4

print(“Starting wwan_blink.py...")
w = wwan()
w.off()

for i in range(0, COUNT*2):
v = w.toggle()
time.sleep(1)

In this example, after we imported the “wwan” class from the wwan_class python file, we were able to

instantiate our local class object by setting our variable “w” equal to the wwan() class. From that point
on we used the off() and toggle() methods in order to blink the WWAN LED 4 times.

4.4.4. WWAN Class Subprocessing

We planned to write a simple example that showed accessing WWAN and the RGB LEDs using simple
File 1/0 function calls like the examples in the C/C++ chapter. This proved to be more difficult in
Python than expected. While performing file reads/writes in Python is pretty easy, there were timing
issues when talking to the virtual GPIO and WWAN drivers.

With GPIO resources being well handled by the Python Peripheral Driver API (i.e. iot_hw module), the
File I/0 examples for the LEDs and User Button were skipped. Unfortunately, since the APl does not
provide support for the WWAN LED, this needed to be handled with a File I/0 solution.

Sending commands (i.e. sending O or 1) to the WWAN LED is less problematic than GPIO since this
resource does not need to be exported before use. That said, timing issues still arose, especially when
trying to blink the WWAN LED quickly. The simple answer was to call shell commands from Python
using the “os.system()” call. Examples for this can be seen in the following WWAN class methods: on(),
off(), and toggle().

Reading the WWAN LED value was tricky. The Linux ‘cat’ function would read the WWAN virtual file
from sysfs, but subprocessing was needed to return the value from ‘cat’ back to Python.

Subprocessing let your Python program spawn new applications. It also has a mechanism for returning
results back to your program. You can see an example of this in the WWAN read() method.

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 125

GPIO Interrupts in Python

4.5. GPIO Interrupts in Python

Along with simply reading a GPIO input value, the Python Peripheral API also supports interrupts. This
support is similar to the C/C++ Peripheral APl support which was discussed in Chapter 3.

Using GPIO pins to generate interrupts requires three steps:
1. Allocate the GPIO pin.
2. Configure the GPIO pin as an input.
3. Setthe GPIO input as an interrupt (i.e. irq) specifying:
a) Whether interrupts should be triggered when the pin’s value rises, falls, or in both cases.

b) What callback function should run when a configured interrupt occurs.

The first two steps were explored in Section 4.3.5 Example: Reading the User Button. Interrupts
require one more function call to register the trigger and callback values.

Examine the following example which uses the SK2 User Button to trigger an interrupt.

Listing 4.7: Chapter_04/button_interrupt.py

import iot_hw
import time

def callback function(gpio_pin, trigger):
print("Interrupt occured...")
led = iot_hw.gpio(iot_hw.gpio_pin.GPIO LED BLUE)
led.set_dir(iot_hw.gpio_direction.GPIO_DIR_OUTPUT)
led.write(iot_hw.gpio_level.GPIO_LEVEL_HIGH)
led.close()
return-0

print(“"Starting up...")
button = iot_hw.gpio(iot_hw.gpio_pin.GPI0O_PIN_98)
button.set_dir(iot_hw.gpio_direction.GPIO_DIR_INPUT)
button.interrupt_request(
iot_hw.gpio_irq trig.GPIO_IRQ TRIG_FALLING,
callback_function)

print("Ready to sleep...")
time.sleep(30)

print("Freeing resources...")
button.interrupt_free()
button.close()

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 126

GPIO Interrupts in Python

Running the button_interrupt.py function results in the following:

Starting up...

Ready to sleep...
Interrupt occured...
Freeing resources...

Figure 4.21 - Running button_interrupt.py

Note that if the User Button was not pushed within the 30 second sleep time, the resulting output
would not include “Interrupt occurred...”.

4.5.1. Fancier Button Interrupt Example

The following example (Here’s the fancy code example. Notice below how the interrupt’s callback
function ‘trigger’ argument can be used to determine whether the button was pushed or released.

Listing 4.8) combines several elements discussed in this chapter:

e RGB LED using the Python Peripheral API

e User Button configured as an interrupt

e Interrupt callback function detecting which edge (rising, falling) and acting accordingly

e Using Python time.time() to get the current time - which was used to determine if the button had
been held for longer than 3 seconds

e WWAN LED class used to signify script is running

e ‘global’ keyword allows use of global variables within a function

Running the example produces the following output:

/CUSTAPP/iot_files/Chapter_84 # python button_interrupt_fancy.py

Starting up... please wait
Ready... feel free to press button

--» Falling interrupt occured...
<-- Rising interrupt occur
Button was held down for 2.9 6 seconds

-->» Falling interrupt occured...
<-- Rising interrupt occured...

Exiting... because button was held down for more than 3 seconds (5.499417 to be exact)

FI"EE_'I..I"Ig resources...

/CUSTAPP/iot_files/Chapter_84 #

Figure 4.22 - Running button_interrupt_fancy.py

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 127

GPIO Interrupts in Python

Here’s the fancy code example. Notice below how the interrupt’s callback function ‘trigger’ argument
can be used to determine whether the button was pushed or released.

Listing 4.8: Chapter_04/button_interrupt_fancy.py

[1 ; 2 3 TR ; 5 . ; 7 ; 3 39 ; o } 1 ; 2 ; 3
1

2 # button_interrupt_fancy.py

3 # 2018.12.17

1#

5 # After initialization, the routine will continue to blink the WWAN LED
& # until the User Button is pressed and held for 3 or more seconds.

7 #

& # Each time the User Button is pressed, the Blue LED is toggled on or off.

Import modules

import iot_hw # Needed for GPIO API to use SK2 LEDs and Button
import time # Needed for time.sleep() function
from wwan_class import wwan # Needed for WWAN LED class

Global variables

loop = True # Used for main while loop
blue = 1 # Used when toggling Blue LED
button_pressed = @ # Keeps track of time button is pressed between interrupt callbacks

28 # A callback function that will turn on the blue LED
21 &def my_callback_fcn(gpio_pin, trigger):

22 global loop, blue, button_pressed # Give function access to these global variables
23
248 if trigger == B: # If pushing the button down
25 print("--» Falling interrupt occured...”)
26 button_pressed = time.time() # Store current time to 'button_pressed’
blue "= 1
if blue == 8:

led.write(iot_hw.gpio_level.GPIO_LEVEL_HIGH) # Turn on Blue LED

318 else:
32 led.write{iot_hw.gpio_level.GPIO_LEVEL_LOW) # Turn off Blue LED
else: # If letting up on the button
print(“<-- Rising interrupt occured...™)
button_held = time.time() - button_pressed # Calculate how long button was held

if button_held »= 3:

loop = False # Change while loop's exit condition since button was held long encugh
print(“Exiting... because button was held down for more than 3 seconds (" + str(button_held) + " to be exact)\n")

418 else:

42 print("Button was held down for " + str(button_held) + " seconds\n")

-4 return @

Main code starts here

47 print("\nStarting up... please wait")

1 led = iot_hw.gpio(iot_hw.gpio pin.GPIO_LED BLUE)
led.set_dir(iot_hw.gpio_direction.GPIO_DIR_OUTPUT)
led.write{iot_hw.gpic level GPIO LEVEL LOW)

Allocate Blue LED GPIO pin
Set Blue LED GPIOD pin to "output”
Turn off Blue LED

BN

button = iot_hw.gpio(iot_hw.gpio_pin.GPIO_PIN_98)
2 button.set_dir(iot_hw.gpio_direction.GPIO_DIR_INPUT)
| Ebutton.interrupt_request(

Allocate User Button GPIO pin
Configure User BUtton as "input”

B

iot_hw.gpio_irq_trig.GPIO_IRQ TRIG_BOTH, # Trigger interrupt when pressing down on button

my_callback_fcn) # Run my_callback_fcn() after the interrupt is generated
w = wwan() # Create instances of WWAN LED class and set equal to ‘w’
w.off() # Turn off WWAN LED

print("Ready... feel free to press buttonin")
52 Hwhile loop == True:

w.toggle()

time.sleep(1)

Loop until "loop® variable is changed by the interrupt routine
Toggle WWAN LED
Sleep for 1 second

BN

Don't access this code unless button is pressed and held for 3 or more seconds
print("Freeing resources...\n")

button.interrupt_free() # Turn off button interrupt and free IRQ resources
9 button.close() # Free up User Button's GPIO pin
76 led.close() # Free up Blue LED
71 w.off() # Make sure the WWAN LED is off

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 128

Running Python Scripts at Boot

4.6. Running Python Scripts at Boot

The Linux boot sequence was discussed towards the end of Chapter 2. But here’s the gist of that
discussion: In order to autostart an application when powering on the SK2, you need to add an entry
into the following script:

/CUSTAPP/custapp-postinit.sh

In the following example, we added a shell script to custapp-postinit.sh. We viewed this file by
executing the Linux ‘cat’ command.

Using cat to view myCode . sh, we see that it runs a simple blink example for the Green LED and then
executes the fancy interrupt example discussed in the previous section of this chapter.

C:\adb

A adb shell

[/ # cd CUSTAPP

/CUSTAPP # cat custapp-postinit.sh
start-stop-daemon -S -b - C f

echo "##### custapp-postinit #HEEE" dev/kmsg
/CUSTAPP/etc/att_init/att_init post-init
/CUSTAPP/etc/att_init/att_init deploy-init
/CUSTAPP/etc/att_init/att_init late-init

JCUSTAPP # cat myCode.sh

-

en.sh

STAPP/iot_files/Chapter_e4/button_interrupt_fancy.py

fCUSTAPP #

Figure 4.23 - Viewing custapp-postinit.sh and myCode.sh

AT&T IoT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 129

Additional References

4.7. Additional References

There are a great many Python tutorials available on the Internet. Additionally, there are a great
number of Python books. Here are a couple that we found useful:

e Mike McGrath. Python In easy steps (2n9 Edition). In Easy Steps Limited, 2018.

e Magnus Lie Hetland. Beginning Python: From Novice to Professional (37 Edition). Apress, 2017.

Please note that two generations are in active use and both supported by the community: Python 2
and Python 3. The SK2 supports Python 2, so keep this in mind as you reference the books or Internet.
There aren’t a lot of differences between the two, but it good to keep this in mind when researching
and referencing Python information.

Along with the Python documentation, you may need to reference the APl document:
e SK2 Python Peripheral APl Guide (link not available at the time of publishing)

AT&T IloT Starter Kit (2nd Generation) User's Guide - Installing and Using Python pg. 130

https://www.amazon.com/Python-easy-steps-2nd-Covers-ebook-dp-B07FPPVWRX/dp/B07FPPVWRX
https://www.amazon.com/Beginning-Python-Professional-Magnus-Hetland-ebook/dp/B06XGVVVMG

5. Wireless Wide Area Networking with LTE

AT&T’s 2nd Generation loT Starter Kit (SK2) provides hardware that allows connecting the module to
the Wireless Wide Area Network (WWAN). For the SK2, this puts the “I” into 10T (Internet of Things).

Using both Python and C/C++, this chapter discusses connecting to the Modem Abstraction Layer
(MAL) to access the WWAN, as well as status information about the module’s radio hardware.

A WWAN connection to the Internet allows connection to AT&T’s loT Cloud Platform services, such as
M2X (for managing devices and storing data) and Flow (building custom IoT Cloud applications).
Before venturing into these services, though, a simple HTTP example connecting the SK2 to
Hookbin.com provides an easy way to confirm our ability to make HTTP connections.

Finally, this chapter also examines sending SMS messages. Since the module does not presently
support direct SMS communications, connections via two different 3 party services - Twilio and IFTTT
- are demonstrated.

Topics

5. Wireless Wide Area Networking With LTEcccccciiiismmmiimmsmnsemssnssess s sssssms s ssssssssssssmsssnssanes 131
5.1. Modem ABSEraction LAYEE (MAL) oottt e ettt s ttee e ettt s e et aasaaeeaessenaeeaneeaenannnes 133
5.1.1. Connecting to the MAL USing the LTE APIL.....c.ccci e 133
5.1.2. Using WWAN API to Get NetWOrK TimMe....cocceiiieiee et 138
5.1.3. PYthon MAL EXGMPIE .eoeieeeee e eectee e e e et e s e e s s e e e e s e e senn e s snne e e ensnneeennneeeennneenn 140

5.2. Communicating OVEY HTTPR/HTTPS ... ettt e et eee et s e s s e aesaseeaansnseaessneeaesaneneenn 146
5.2.1. o] 0 SR 146
5.2.2. [(00 14 o1 o0 o o 147
5.2.3. HOOKDIN.COM EXAMPIES ...vvriiiieeeieciteeeieeseeeiirrre e e s e e esbanreeessesessnseseeesesessnsseeeesesenssnnsenes 148

5.3. Connecting to the Cloud: M2X @Nd FIOWueeeeeeeeeeeeeceeeeeeeeeeeeteseeeeeeaessseeeessaeaesssneeaesaneneens 157
5.3.1. M2X QUICKSTAIT DEMIO ...ttt ettt e e e sse e s e e e s s nneeean 158
5.3.2. L E T = 1Y S 164
5.3.3. FLOW 1ttt st st a e b e e ae e b e e ae e b e e ne e e ne e e ne e s ne e e neenanes 177

5.4, SENAING SIMS MESSAZES...ceeeueereeeeeeeeeseieeeeeteaesssetesssaseeaessssesssssssessssssnnsssssesssssssnsssassneesassenesssns 195
5.4.1. B Lo T PSPPI 195
5.4.2. L P 198

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 131

Modem Abstraction Layer (MAL)

Detailed Outline
5. Wireless Wide Area Networking With LTEccceceecmmmrrrssssssssmesenmessssssssssssssesssssssmssssssesssssnmmsnns 131
5.1. Modem ABSEIraction LAYEE (MAL) oottt s et e ettt e e e et a e s e e s s s e s eaneeaenannnes 133
5.1.1. Connecting to the MAL USING the LTE APl........eooiieeee e e e 133
5.1.1.1. Python Example (ex_01_mal_api_eXample.py)...ccceerrrreerieieeeneieeeeeseeessseneeesseeeeas 134
5.1.1.2. C/C++ Example (c_O01_mMal_api_eXampPle)....ccccceerriiereeiee e eseee e see e 135
5.1.2. Using WWAN API to Get NetWOrK TimMe....cooceiiieiee e 138
5.1.2.1. Python Example (ex_02_get_NetWork_time).....ccceecceeereeciereeceee e e ee e s eseee e e e 138
5.1.2.2. C/C++ Example (c_02_get_netWork_time)ccceeeeceeeeeeeee e e s e e e 139
5.1.3. PYtNON MAL EXGMPIE ..ottt ettt st se e e e s e e e s snneeean 140
5.1.3.1. Python Example (ex_03_get_syStem_infO.pY)..cccccuriieemnrniin e 140
5.1.3.2. C/C++ Example (c_03_get_SYStemM_iNf0).....ccccceerrrieiereeierceceeeeeeseeeeeeee e s esee e e s e e e e 143
5.2. Communicating OVEYr HTTPR/HTTPS ...ttt e et e e et s e ssneeaesaseneansnsesessneeassaneneenn 146
5.2.1. o] 0 SR 146
5.2.2. [(0 T0] 14 o1 o0 o o 147
5.2.2.1. Getting Started with HOOKDIN.COMeeiiiees e 147
5.2.3. HOOKDIN.COM EXAMPIES ...vvriiiieeeieciteeeieeseeeiirrre e e s e e esbanreeessesessnseseeesesessnsseeeesesenssnnsenes 148
5.2.3.1. Shell-Script Example (sh_04_curl_to_hookbin.sh)ccceccceiiiiiiiiiiiieeee e 148
5.2.3.2. Python Example: ex_04_http_to_hooKbin.py ...cccceiiiiiiieiieeeee e e 150
5.2.3.3. C/C++ Example (c_04_http_to_hOOKDIN)ccceviueriiieiecieeeie e e e e e e 152
5.2.3.4. C/C++ Example (c_05_http_put_poSt_gel)....ccccerriirrerreiereeeeeeeeceeeee e esesee e e e e e e e 154
5.3. Connecting to the Cloud: M2X @nd FIOWeecueeeeeeeeeeeeieeeiee ettt ene s 157
5.3.1. M2X QUICKSTAIT DEMIO ...ttt e e sse e s ne e e e s nneeean 158
5.3.1.1. Obtain @ Master M2X APl KEYuueeeriieieeeeeeeececeeeseste e s e e s e seee e e s e e e sesne e s ssaneeesesneeesenns 158
5.3.1.2. Run the QuickStart Demo with Your OWn M2X KEY ...cccecuverrrcceeereieeeeeeeeeeeceeeeeeeeee e 160
5.3.1.3. Viewing QuickStart Data in M2Xooiiieiieeree e 162
5.3.2. L E T = 1Y S 164
5.3.2.1. USING M2X With PYtNON ...coeeeee ettt e e e e e s e e e e e e enns 164
5.3.2.1.1. Python Example (i0t_mM2X_eXamPpPlE.PY) .eeeeeereerraiererrrreerraeeeseseeeesesseeesesseessenees 165
5.3.2.1.2. Python Examples (m2x examples fOIdr) ... 167
5.3.2.1.3. Python Example (m2x_examples/example.py). ..o rceererieeninseeeesseeeeeeeees s 170
5.3.2.2. USING M2X WIth C/CH ..eiiiiiiiieeeee et e et s ee e s et e e e e e s e ee e s e e e e e nn e e seane e e e e neeeennns 171
5.3.2.2.1. C/C++ Example (c_07_m2x_create_device_stream_value)cccccceeeeeirvvvreenenn. 171
5.3.3. 0P 177
5.3.3. 1. STArTING UP FIOW .ttt 178
5.3.3.2. Flow Example - Timestamp/Debug (ex_09_timestamp_debug_flow.json)............... 179
5.3.3.3. EXPorting/IMPorting FIOWS......ccccceeereieieececee s ceeeeeeee e e s e e e s e ee e e s e e e sesne e s snaneeesenneeesenns 182
SIRC TG TG T I (o Yo T f 0T (o ToT=To 11 [(= TR 182
5.3.3.3.2. IMPOIt PrOCEAUIE...cci ittt et s s e e ne e s eanes 185
5.3.3.4. Flow EXample = HTTP/DEDUE ...ciieeiei ettt e s e s 186
5.3.3.4.1. Creating the Flow Project (eX_10_flOW.JSON) ...c.cceeerreciiereeeer e e e s e 186
5.3.3.4.2. cURL Example (eX_10_curl_to_flOW.Sh)....cccocuerriiiieeiieeeee e e 190
5.3.3.4.3. Python Example - Sending Data to FIOWc.coiieiieiiiieeeneeee e 191
5.3.3.4.4. C/C++ Example - Sending Data t0 FIOWcceeiieiiiiriiiieeeeee e 193
5.4, SENAING SIMS MESSAZES...ceeeueereeeeeeeeeseeeeeeesttesessetesssaseesessssesssssssessssssensssssesssssssnsssassnessassenesssns 195
5.4.1. B Lo T PSPPI 195
5.4.1.1.1. Setting up @ TWIlio ACCOUNT......eiiiiiiiiieeiie et 195
L T e 0 0 1 196
5.4.1.1.3. From the SK2 Via CURLoiiiiiiiieee ettt 196
5.4.2. L I PSPPSR 198

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 132

Modem Abstraction Layer (MAL)

5.1. Modem Abstraction Layer (MAL)

As described in Chapter 1, the AT&T loT Starter Kit (2@ Generation) (nicknamed ‘SK2) contains both
an applications processor - which we can program in C/C++ or Python - as well as an LTE modem to
establish and manage cellular network communications over the WWAN.

Applications can access and configure the modem using the MAL library API (application programming
interface). After using the MAL to turn on the radio and establish connection to the cellular 3G/4G LTE
network, applications are free to communicate over traditional networking protocols, such as HTTP,
cURL, and so on.

5.1.1. Connecting to the MAL Using the LTE API

Both Python and C/C++ languages support connections to the Modem Abstraction Layer. Each
language’s API is documented in its respective manual:

e Python: LTE_loT_API_Guide
e C/C++: Avnet M180Qx LTE loT API Guide

The MAL API consists of four groups of functions:

1. WWAN: Control the LTE module and retrieve status information.

2. Network: Control the system network.

3. System: Provide information about the system (e.g. the module’s ICCID).

4. Location: Managing GPS location data.

Communicating with the MAL involves sending and receiving JSON packets to the modem. Code
examples are provided for each language in this section.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 133

https://github.com/Avnet/AvnetWNCSDK/blob/master/Avnet%20M18Qx%20LTE%20IoT%20API%20Guide.docx
https://github.com/att-iotstarterkits/sk2-Users-Guide/blob/master/Users_Guide/Python_M18Qx_LTE_IoT_API_Guide.pdf

Modem Abstraction Layer (MAL)

5.1.1.1. Python Example (ex_01_mal_api_example.py)

The Python “iot_mal” module makes it easy connecting to the LTE Modem on the SK2. After importing
the module, you can instantiate a Python object for each of the API's function groups. The following
example utilizes the “system” API to read the SIM Card’s number (i.e. ICCID) from the SK2 hardware.

Listing 5.1: ex_01_mal_api_example.py (Python)

I } 1 + 2 + 3 + 4 + 5 + 6 + o + 8 + 9 + 8 + 1 + 2

file: ex @1 mal api_example.py

#

Connect to the Modem Abstraction Layer and access the SK2 SIM cards ICCID.

MAL provides three API groups: System, Network, and WWAN. This example uses
the "System" API.

#

Along with showing access to MAL, this example demonstrates how to get the

data value from the returned dictionary string.

#

import iot_mal # Import the Modem Abstraction Layer (MAL) API module

Accessing MAL to get system information

mal_sys = iot_mal.system() # Connect to MAL.system
raw_iccid = mal_sys.get_iccid() # This method reads the ICCID from the SIM card
print(raw_iccid) # Print the "raw" output for the iccid and

notice that a Unicode Python dictionary is returned
Python formatting examples

iceid = raw_iccid.get('iccid") # Use .get() to extract iccid value from dictionary var
print(iccid)
print(Your ICCID is: {8}'.format(iccid)) # One of many pythy ways to embed data inte output string

print(Your ICCID is: {8} .format(mal_sys.get_iccid().get(iccid'))) # Or do it all in one complex line of code

The Python module neatly handles creating and sending the JSON packet to the modem for you. The
API function returns a dictionary variable with the results as shown on the first line of the response
below.

{u'errno’': 0, u'errmsg’': u'', u'liccid': u'89011703278113077369"}
89011703278113077369

Your ICCID is: 89011703278113077369

Your ICCID is: 89011703278113077369

/CUSTAPP/iot_files> |}

Figure 5.1 - Results of ex_01_connect_to_mal.py

Various Python functions can be used to extract and format the results. This example used the
.get () function to extract the “iccid” field from the dictionary variable and then formatted it into a
pretty output.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 134

Modem Abstraction Layer (MAL)

5.1.1.2. C/C++ Example (c_01_mal_api_example)

The following example extracts information from the MAL using the C/C++ language. The C/C++
version requires more project code than the Python example, demonstrating that Python is easier to
use. Unlike Python, the C/C++ example requires a number of support files to package, send, and
receive the MAL commands to and from the modem.

These files were taken from Avnet’s “jot_monitor” (i.e. QuickStart) example. Using them, our
main.cpp can start the data service and extract a variety of information from the MAL.
e iot monitor.h: Contains definitions for the iot_monitor application, which was the basis
for the C/C++ MAL example. The simple MAL example does not require all these elements,
but to keep things simple, it was copied directly from the Avnet iot_monitor example.

e mal.cpp/mal.hpp: Provides an easy set of C functions for calling the MAL API. Along with
getting system information from the modem, there are functions for starting and configuring
cellular connections.

e jsmn.c/jsmn.h/maljson.cpp: Files provided with the iot_monitor application for

creating, parsing and managing JSON packets when communicating with the MAL API. These
files are required by the mal . cpp when communicating with the MAL API.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 135

Modem Abstraction Layer (MAL)

Listing 5.2: c_01_mal_api_example (C/C++)

F———+————1————+————2————+————3————+————4————+————5————+————6————+————?———
#include <stdio.h>»

#include "mal.hpp™

#include "iot_monitor.h"

#include <unistd.h>»

int ¢;
sysinfo mySystem;
unsigned int dbg flag = 8;

int main(void) {
json_keyval om[28];
printf("Hello Worldin");
c = start_data_service();
while (c <« 8) {
printf("WAIT: starting WNC Data Module (%d)\n",c);

sleep(18);
€ = start_data_service();

¥

printf("“\nData service runninginin");

do

mySystem.model=getModelID(om, sizeof(om));
while{ mySystem.model == "service is not ready");
mySystem.firmVer = getFirmwareVersion{om, sizeof{om));
mySystem.appsVer = getAppsVersion{om, sizeof({om));
mySystem.malwarVer = getMALManVer(om, sizeof(om));
mySystem.ip = get_ipAddr(om, sizeof(om));
mySystem.iccid = getICCID{om, sizeof(om));
mySystem.imei = getIMEI(om, sizeof(om));
mySystem.imsi = getIMSI{om, sizeof(om));
printf("WNC: Module # = %s\n", mySystem.model.c_str());
printf("“WNC: Apps Ver # = %s\n", mySystem.appsVer.c_str());
printf("WNC: Firmsare # = %s\n", mySystem.firmVer.c_str());
printf("“WNC: MAL Ver. # = %s\n", mySystem.malwarVer.c_str());
printf("WNC: IP Addr. # = ¥s\n", mySystem.ip.c_str());
printf("SIM: ICCID # = %s\n", mySystem.iccid.c_str());
printf("SIM: IMEX # = %s\n", mySystem.imei.c_str());

= Es\n\n",mySystem.imsi.c_str());

return 8;

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg.

136

Modem Abstraction Layer (MAL)

Running this example prints the following results:

C:\adb
adb shell

* daemon not running; starting now at tcp:5837

* daemon started successfully

S #

[# python fCUSTAPP/iot_files/mal_83 get system_info.py
ystem Information

M180Q2 v12.89.182151
8148146863415
3181788113

29811763

Information

Connection : Connected
Connection Ti : BB:81:25:25
Radioc Mode : 4G LTE

IP address : 168.43.197.243

Figure 5.2 - Results from ex_01_mal_api_example

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 137

Modem Abstraction Layer (MAL)

5.1.2. Using WWAN API to Get Network Time

The second example uses a WWAN MAL function to extract the time from the network.

5.1.2.1. Python Example (ex_02_get_network_time)

Using the iot_mal.wwan() function, Python can access the time from the WWAN network. As in the
previous example, the result is returned in a Python dictionary variable. The following example extracts
the time from the variable and adjusts it for Central Standard Time (CST).

Listing 5.3: ex_02_get_network_time.py

Fo——t——— 14— 23—

=
u
|
fa
~
1
1
1
=]
|
1
%]
|
1
=
+
1
1
1
iy
i

file: ex_02 get_network_time.py

Connect to the Modem Abstraction Layer and access the network time.
The network time can be accessed in a couple of different ways; this
example uses the WWAN get_network_time() method.

Along with showing access to MAL, this example demonstrates how to get the
data value from the returned dictionary string and format it.

#
#
#
#
#
#
#
#
#

12 import iot_mal # Import the Modem Abstraction Layer (M
13 from datetime import datetime, timedelta

15 CST = -6 # Time difference (hours®@ between GMT a

17 # Accessing MAL to get system information

18 mal_wwan = iot_mal.wwan() # Connect to MAL.wwan

19 raw_time = mal_wwan.get_network_time() # Reads network time over the wireless
21 print(raw_time) # Print the "raw" walue for the network

23 # Python formatting examples
net_time = raw_time.get(network_time") # Use .get() to extract the time from d
print(net_time = {08} .format(net_time))

LM 3

27 t = datetime.strptime(net_time, *HY/¥m/%d %H:%M:%5-%F,00") # Convert unicode string to datetime va
28 1t = t + timedelta(hours=CST)
29 print('Local time = {8} .format(lt))

31 # Do it all in one line of code
32 print(’Local time = {8} .format(datetime.strptime(mal_wwan.get_network_time().get(network_time"), "%Y/¥m/%d %

The results for this example are shown below. Notice that there’s a 6-hour time difference between “network
time” (GMT) and local time (CST).

{u'errno’: 0, u'network_time': u'2019/1/4 21:55:05-24,00', u'errmsg': u''}
net_time = 2019/1/4 21:55:05-24,00

Local time = 2019-01-04 15:55:05.240000

Local time = 2019-01-04 15:55:05.240000

/CUSTAPP/iot_files> [

Figure 5.3 - ex_02_get_network_time.py Output

AT&T loT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 138

Modem Abstraction Layer (MAL)

5.1.2.2. C/C++ Example (c_02_get_network_time)

As discussed in Section 5.1.1, commands sent to the modem (i.e. MAL) must be sent as JSON
packets. To simplify coding, ¢ 01 mal api example (Listing 5.2) reused the mal. cpp file from the
“iot_monitor” C++ QuickStart demo program, because it already contained a set of functions for
accessing data from the MAL. Unfortunately, mal. cpp does not contain a function to access the
network time.

Example ¢ 02 get network time works around this limitation by adding a get_networkTime()
function to mal . cpp. While this could have been added to main.cpp, we preferred to consolidate all
the mal functions in mal.cpp.

To make these changes we first added a new function prototype to mal . hpp:

Listing 5.4: c_02_get_network_time/src/mal.hpp

"CRar # gEtiADMAVEr (Fson keyvaT =kv, int kvsized; |

char * get_ipAddr{json_keyval *kv, int kwsize);

char * get_networkTime(json_keyval *kv, int kvsize);
= j eywval * i ws] A

Creating the new function was simple. Opening up mal.cpp, make a copy of get_ipAddr() and then
rename it to get_networkTime(). The only change required, besides the function name, was the
command being sent to the MAL. In this case, the command needed is “get_wwan_network_time”.
(This was found in the Avnet LTE API Guide.)

Listing 5.5: c_02_get_network_time/src/mal.cpp

O b e TSN W IS e N P I et e s SV UMDV VRSPV RS L S

char * get_ipAddr(json_keyval *kv, int kvsize) { —
int i, k;
char rstr[500];
char jemd[] = "{ \"action\" : \"get_wwan_ipv4_network_ip\" }";

send_mal_command(jecmd, rstr, sizeof(rstr), true);
i = parse_maljson (rstr, kv, kvsize); A
if(i < @) //parse failed
return NULL;
else if(atoi(kv[1].value)) // we got an error value back
return kv[2].value; // so return error message
else

return kv[3].value; _

¥

char * get_networkTime(json_keyval *kv, int kvsize) {
int i, k;
char rstr[500];

char jemd[] = "{ \"action\" : \"get_wwan_network_time\" }";

send_mal_command(jcmd, rstr, sizeof(rstr), true);
i = parse_maljson (rstr, kv, kvsize);
if(i < @) //parse failed

return NULL;
else if(atoi(kv[1].value)) // we got an error value back

return kv[2].value; // so return error message
else
return kv[3].value;
}
I i T e B P B P B Y T R N U Lt

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 139

Modem Abstraction Layer (MAL)

Since the main() function already referenced mal . cpp, the appropriate references were already
included. That meant we only needed to add the get_networkTime() call to our code to get the time.

Listing 5.6: c_02_get_network_time/src/main.cpp

printf("SIM: IMSI = = %s\n\n",mySystem.imsi.c_str());

printf(“\nNetwork Time = %s\n'n", get networkTime(om, sizeof(om)));

return @;

S Ty e

Thankfully, the arguments for get_networkTime(om, sizeof(om)) were easy to fill in since they are the
same as the get_ipAddr() call found earlier in main. cpp.

5.1.3. Python MAL Example

The final MAL information example obtains system and connection data.

5.1.3.1. Python Example (ex_03_get_system_info.py)

The third MAL example turns on the modem using the network set_connection_mode() function, then
retrieves system data as well as information about the connection itself. To enhance the printout, a
simple parse_state() function was created in Python to translate the Connection State from a
numerical value to something more readable.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 140

Modem Abstraction Layer (MAL)

Listing 5.7: ex_03_get_system_info.py

=

I 1 | 2. | 3 | ¥ [| ' | 7 | 2 q |

VU L

P R P P P RORD R B2
P S W SO YR AR R

o

1

UoR e @

o

o Y Y Y U N U NI VYR TR YR WY)
WP = @D ga B~

s
w

b3

file: ex_B3_get_system_info.py
#
Connect to the Modem Abstraction Layer and access system and connection info

import iot_mal # Import the Modem Abstraction Layer (MAL) API module

function: parse_state(state)
#
Parses the connection state wvalue and returns descriptive string

Hdef parse_state(state):
B8 if state ==
ret = 'Disconnected’

68 elif state ==

ret = 'Disconnecting’
=] elif state == 2:
ret = 'Connecting’

a8 elif state ==

ret = 'Connected’
=] elif state ==

ret = 'Disconnected, and PIN locked®
B elif state == 5:

ret = 'Disconnected, and SIM removed’

return ret

Main code

Setup the MAL and data connection

network_handler = iot_mal.network() # Connect to MAL.network
Hnetwork_handler.set_connection_mode(
1, # Mode: @ - Always, 1 - On-demand
B8 1@, # On-demand Timeout: Disconnect in mins if no access
B 2) # Manual Mode: ©® - Disconnect, 1 - Connect (Always/on-dey
2 - Connect once
system_handler = iot_mal.system() # Connect to MAL.system

Print out system information

firm = system_handler.get_firmware_version().get(version')
imei = system_handler.get_imei().get(imei")
imsi = system_handler.get_imsi().get('imsi")

iccid = system_handler.get_iccid().get(iccid’)

print('System Information')
print('----------mmeo -)
print('Firmware version: ' + firm)
print('IMEIL '+ imei)
print(' IMSI 0+ imsi)
print('ICCID : '+ iccid)

Print out connection information
status = network_handler.get_connection_status()

print('\nConnection Information”)

print({ "-------mmmee oo)

print('Connection State: parse_state(status.get(state’}))

print('Connection Time : status.get(connection_time"'))

print('Radio Mode . str(status.get('radio_mode')) + 'G ' + status.get('data_bearer_tech’))
print('My IP address status.get(ip"))

AT&T loT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 141

Modem Abstraction Layer (MAL)

The following output was generated by this example:

(hadb
A adb shell
* daemon not running; starting now at tcp:5837
* daemon started successfully

[# python /CUSTAPP/iot_files/mal 83 get system_info.py
rstem Information

M130Q2 v12.89.182151

814381466863
318178a:
8968117832781

Information

Connection : Connected
Connection Ti : B6:681:25:25
Radio Mode : 4G LTE

IP address : 16.43.197.243

Figure 5.4 - ex_03_get_system_info.py Output

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 142

Modem Abstraction Layer (MAL)

5.1.3.2. C/C++ Example (c_03_get_system_info)

This example expands on 5.1.2.2 C/C++ Example (c_02_get network time) by adding a call to
WWANStatus(), which passes WWAN and Network information back for printing to the terminal.

Listing 5.8: Chapter_05\c_03_system_info\src\main.cpp
e eSS S ., s
#include <stdio.h>
#include "mal.hpp"
#include "iot_monitor.
4 #include <unistd.h>
#include "wwan_status.hpp

=

int c;

sysinfo mySystem;
wwanInfo mybhwan;
netInfo myhletw;
unsigned int dbg_flag

[}
=
[

int main(void) {

int ret;
json_keyval om[28];

printf({"Hello Worldin");

c = start_ d service();
- /‘L-L (i’//ﬁ . " TR
[#FUNC: IP Adas %s\n", Vip.c_str()y,

= my

printf("SIM: ICCID = = #s'\n", mySystem.iccid.c_str());
printf{"SIM: IMEA = = %s\n", mySystem.imei.c_str());
printf("SIM: IMSI # = Zs\n\n",mySystem.imsi.c_str());

printf{"\nletwork Time = ¥s\n\n", get_networkTime{om, sizeof(

WWANStatus (&mylwan, &myNetw) ;
printf(“Radio mode: #s\n\n", mybwan.radioMode.c_str());

printf(“connType #s\n", myNetw.connType.c_str());
printf(“connState ¥s\n", myNetw.connState.c_str());
printf(“connTime %s\n", mylNetw.connTime.c_str());
printf(“provider #s\n", myNetw.provider.c_str());
printf(“radioMode ¥s\n", myNetw.radioMode.c_str());
printf{“dbTech #s\n", myNetw.dbTech.c_str());
printf(“roamStatus ¥s\n", myNetw.roamStatus.c_str());
printf(“sigStrength %s\n", myNetw.sigStrength.c_str());
printf(“siglevel #s\n", myNetw.siglevel.c_str());
printf("1lte #%s\n", myNetw.lte.c_str());

printf(“wcdma #s\n", myNetw.wcdma.c_str());
printf("ipve Xs\n\n", myNetw.ipvb.c_str());

Rather than code this information directly into main . cpp, the new function was added to its own file
to make it easier to reuse the code. In fact, you may need to obtain this information more than once if,
for example, your program needs to react based on the changing value of a setting, such as
connection time.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 143

Modem Abstraction Layer (MAL)

The files defining the new WWANStatus() function include wwan status.hpp and wwan_status.cpp.
The header (.hpp) file defines two data structures passed into, and updated within, the function. These

were defined in a similar way to the sysinfo structure found in iot _monitor.h.

Listing 5.9: Chapter_05\c_03_system_info\src\wwan_status.hpp

#ifndef WWAN STATUS H
#define _ WWAN STATUS H

#ifdef cplusplus

typedef struct {
std::string radioMode;
std::string sigStrength;
std::string sigLevel;
std::string radioState;
std::string cirSwState;
std::string packSwState;
std::string regState;
} wwanInfo;

extern wwanInfo myWwan;

#endif

#ifdef cplusplus

typedef struct {
std::string connType;
std::string connState;
std::string connTime;
std::string provider;
std::string radioMode;
std::string dbTech;
std::string roamStatus;
std::string sigStrength;
std::string sigLevel;
std::string lte;
std::string wcdma;
std::string ipv6;

} netInfo;
extern netInfo myNetw;
#endif

#ifdef cplusplus
extern "C" {
#endif

void WWANStatus (wwanInfo *, netInfo *);
#ifdef cplusplus

}
#endif

#endif // _ WWAN_STATUS_H__

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 144

Modem Abstraction Layer (MAL)

The WWANStatus() function in the wwan _status.cpp file is styled similar to how the mySystem
structure (based on sysinfo) was filled out in main(). Here is a snippet of the file:

Listing 5.10: Chapter_05\c_03_system_info\src\wwan_status.cpp

e e e e o ey

#include <stdio.h>

#include "mal.hpp”

#include "iot_monitor.h™

4 #include <unistd.h>

#include "wwan_status.hpp”

void WWANStatus(wwanInfo *wwan, netInfo *net)

{ {
json_keyval om[28];
int k; '
int i;
const char *radio_mode[] = {"No service", "3G", "4G" }; 1
const char *radio state[]= {

"No Registered”, "Registered with network”,
"searching”, "registration denied", "unknown" };
const char *xs_state[] = {"Unknown","Attached","Detached"}; 4
const char *roaming|] = {"Home", "Roaming”, "Unknown"};
primtf("\nbWAN Status \n"); {
printf("=== ====== ====== ====== ====== ==========\n");
printf(" Received: %d key/value pairs:\n", get wwan_status{om, sizeof(om)));
wwan->radioMode = om[3].value;
wwan-:sigStrength = om[4].value;
wwan-*siglevel = om[6].value;
wwan->radioState = radio state[atoi(om[7].value)];
wwan->cirSwState = xs_state[atoi(om[8].value)];
wwan - *packSwuState = xs_state[atoi(om[9].value)];
wwan->regState = roaming[atoi{om[16].value)];
printf(" Radio Mode: %s(%s)\n", radio_mode[atoi(om[3].wvalue)], om[3].value);
printf(" Signal strength: %s\n", om[4].wvalue);
printf(" Signal Lewvel: %s\n", om[6].wvalue);
printf(" state: %s(%s)\n", radio_state[atoi(om[7].value)], om[7].value);
printf(" Circuit-switched state: %s(%s)\n", xs_state[atoi(om[8].value)], om[8].value);
printf(" Packet-switched state: ¥s(¥s)'\n", xs_state[atoi(om[9].value)], om[9].value);
printf(" Registration state: #s(%s)\n\n", roaming[atoi(om[16].value)], om[16].value);
const char * type[] = {"3G/LTE", "Ethernet", "WiFi" };
const char * state[] ={ "Disconnected”, "Disconnecting”, "Connecting”, "Connected”,
"Disconnected, and PIN locked”, "Disconnected and SIM removed” };
printf("Network Connection Status ‘\n");
printf(=== ====== ====== ====== ====== ==========\n");
printf(" Received: ¥d key/value pairs:in", get connection_status(om, sizeof(om}));
afELz2connType = om[3].value; e

The calls to the MAL are highlighted in the example above. These two functions,
get_wwan_status() and get_connection_status(), are found in mal . cpp where they make
calls into the MAL using the following two queries, respectively:

e get wwan_serving_system_status
e get_network_connection_status

Remember, you can find the C/C++ MAL documented in the Avnet M180Qx LTE loT API Guide.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 145

https://github.com/Avnet/AvnetWNCSDK

Communicating over HTTP/HTTPS

5.2. Communicating over HTTP/HTTPS

There are many protocols supporting communication over the Internet, but none quite as ubiquitous
as the HyperText Transport Protocol (HTTP). The mainstay of communication with the World Wide Web
(WWW), it’s also useful sending and receiving data for a while range of uses, such as loT data
transfers.

5.2.1. cURL

This section provides HTTP examples whether you are using Shell Scripts, Python, or C/C++. When
communicating from the command-line - or within Shell Scripts - our examples utilize the cURL utility,
which is short for “command-line URL".

cURL is defined as: Command line tool and library for transferring data with URLs.
We demonstrate making HTTP requests using all three types of coding explored in this book:
Shell Scripts: Uses the cURL utility found in the SK2’s Linux distribution.

Python: While Python cURL libraries exist (e.g. PyCurl), these modules are not included in the
SK2. Rather, these Python examples use the simple HTTP Requests library module,
which is installed on the SK2.

C/C++; Uses the cURL library that’s already included in the C/C++ tools.

Like HTTP transactions, cURL lets you send data and headers to a URL. Look to Section 5.2.3.1 for an
example showing the cURL command-line syntax.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 146

Communicating over HTTP/HTTPS

5.2.2. Hookbin.com

To demonstrate HTTP connections, this example communicates with the website Hookbin.com. Upon
request, this free site provides a unique URL for each session, which allows you to simply post data to
the site and then view those posts via a web browser.

5.2.2.1. Getting Started with Hookbin.com

To get started with Hookbin, go to www.hookbin.com and create a new Hookbin Endpoint (that is,
request a Hookbin URL).

[H] Hookbin

Capture and inspect HTTP requests

Hookbin is a free service that enables you to collect, parse, and view HTTP requests.
Create your unique endpoints to inspect headers, body, query strings, cookies, uploaded files, and much more.

CREATE NEW ENDPOINT

B Make it private

2 a (-
Multiple Content Types SSL Secured Endpoints File Uploads Private Endpoints

JSON, XML, YAML, Multipart and All endpoints are secured with 2048- Parse and download back your Create private endpoints visible only
URL-Encoded requests bit SSL certificates uploads with just one click in this very browser

Handcrafted in Berlin. Brought to you by Przemek Matylla Privacy Cookies Terms

Figure 5.5 - Creating a New Endpoint at Hookbin.com

Here is the URL we received. We’ve used it within the following examples.

[H] Hookbin

Your Hookbin Endpoint:

https://hookb.in/PxNBKyBnMOsORjbyw@j6

Figure 5.6 - Hookbin Endpoint

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 147

http://www.hookbin.com/
http://www.hookbin.com/

Communicating over HTTP/HTTPS

5.2.3. Hookbin.com Examples

The following examples - in Shell Script, Python, and C - demonstrate sending the value of the User

Button (on the SK2) to Hookbin.com.

Note: The following examples depend upon the Hookbin.com endpoint that was established in the

previous section (Section 5.2.2.1).

5.2.3.1. Shell-Script Example (sh_04_curl_to_hookbin.sh)

The following Shell Script example borrows heavily from one of the GPIO examples found in the User

Guide’s GPIO Appendix:

Chapter 99 Appendix\GPIO\userButtonLed.sh

Instead of modifying the RGB LED, though, this example sends the button’s value to Hookbin.com.

Listing 5.11: Chapter_05\sh_04_curl_to_hookbin.sh

5

| I 2 |
sh_@4 curl_to_hookbin.sh
#

This example reads the value of the user button and sends
that value to Hookbin.com using CURL

#

Go to the GPIO directory
cd fsys/class/gpio

Grant user-space access to the USER button

USER button
echo 23 > export

echo in » gpio23/direction

Read the value of the USER push button into

val=%(cat gpio23/value)
echo Button = $val

echo 23 > unexport

Turn on LED
if [$val -gt @]
then
If "up”
data="{"button":"up"}"
else
If "down”
data='{"button":"down"}"
i

"val®

curl https://hookb.in/PxNBKyBnMOsORibyw8i6 --header "Content-Type: application/json™ --request POST --data $data

In brief, the cURL syntax is really just a call to the cURL utility while providing the necessary command-

line options. The Hookbin.com example includes four options after the “curl” command:
e URL endpoint: For example, Hookbin.com endpoint you established in Section 5.2.2.1
e HTTP headers: This example included a content-type header
e Transaction type: For example, we did an HTTP ‘POST’

e Data: The data (i.e. payload) you want to send (in the case of a POST)
Check out the cURL website for more information: https://curl.haxx.se

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 148

https://curl.haxx.se/

Communicating over HTTP/HTTPS

Running the script results in the following output to the Linux terminal:
C db

A adb push sh_@4_curl_to_hookbin.sh fCUSTAPP

sh_84 curl_to_hookbin.sh: 1 file pushed. 8.2 MB/s (658 bytes in ©.884s)

b

A adb shell

/ # cd CUSTAPP/
[CUSTAPP # chmod +x sh_84_ curl_to_hookbin.sh
./sh_84_curl_to_hookbin.sh

{"success”:true}/CUSTAPP #

Figure 5.7 - Running sh_04_curl_to_hookbin.sh

But more importantly, refresh your Hookbin.com page to see the cURL result. The Body in this example
shows that our button was being held down.

[H Hookbin

Your Hookbin Endpoint:

https://hookb.in/PxNjjyrXmvViojewBGOnQ

m Jan 22,2019 2:59:59 AM (a few seconds ago) @ Delete Request

Hostname: hookb.in Path: /PxNjjyrXmVi0jOWBGOnQ Port: 443 Client IP: XHR: No Response Time: 2 ms

HTTPHEADERS Request Response

accept: */*

content-length: 17
content-type: application/json
host: hookb.in

user-agent: curl/7.47.1

QUERY STRING

BODY

"button”: “down”

e N L e P s A N o bt TN s i T

Figure 5.8 - Hookbin.com results for sh_04_curl_to_hookbin.sh

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 149

Communicating over HTTP/HTTPS

5.2.3.2. Python Example: ex_04_http_to_hookbin.py

The SK2 Python image includes the simple HTTP requests library, making it easy to initiate HTTP
transfers and allowing you to get or post information to the web. The Hookbin example utilizes the
GPIO code from Chapter 4 to read the state of the SK2’s USER BUTTON and post that data to
Hookbin.com.

Note: While we agree that using “Requests” is simple, it’s really the developers who claim the
module is “A simple HTTP library for Python, built for human beings”.)

Notice the Hookbin URL, that was copied from their website, #defined in the code. This is the URL that
we’ll post our button state value to.

Listing 5.12: ex_04_http_to_hookbin.py
F-——4———-1-—4-—--2-———4—---3————4————4-———+ 5 | 6 | 7 | 3 f-—=-9-———4—-——B--——+-—-——-1--§

2 # file: ex 84 http_to_hookbin.py

2#

4 # This example sends a simple JSON data packet via HTTP to a site

5 # called Hookbin. This free 3rd party site allows you to view HTTP posts,

5 # puts, and gets. To try this example, you'll need to replace the HOOKBEIN_URL

7 # address with one you obtain from http://www.hookbin.com

8 #

5 # Using GPIO to read the value of the pushbutton was discussed in Chapter 4.
11 dmport iot_mal # Import the Modem Abstraction Layer (MAL) API module
12 import iot_hw # Allows access to SK2 hardware resources
13 import requests # A simple HTTP library for Python, built for human beings

15 HOOKBIN_URL = r'https://hookb.in/PxNBKyBnMOsORjbyw@j6" # Replace URL with one you get from Hookbin.com

17 ##HH Setup the MAL and data connection #HHHHEHEHHHREHEEHEHEHEHEHHEHEHEHEHERHEHEHE
18 network_handler = iot_mal.network() # Connect to MAL.network

19 Hnetwork_handler.set_connection_mode(
28 1, # Mode: @ - Always, 1 - On-demand
218 1@, # On-demand Timeout: Disconnect in mins if no access
L] 2) # Manual Mode: @ - Disconnect, 1 - Connect (Always/on-dema
23 # 2 - Connect once

25 A Initialize the GPIO connected to the 5K2 User Button #HHEHHEHAEHHEHREHHEHRERA
76 button = iot_hw.gpio(iot_hw.gpio pin.GPIO_USER_BUTTON)

27 button.set_dir(iot_hw.gpio_direction.GPIO_DIR_INPUT)

29 2if button.read():

] button_state = "up’

31 Helse:
32 button_state = "down”

34 §HHEE Use Python "requests’ module to send data over HTTP #HH

35 wurl = HOOKBIN_URL # Get URL from Hookbin.com (free 3rd party service)
27 Hheaders = { # List contains required HTTP headers
38 "Content-Type': "application/json’,
}
41 Hdata = { # JSON data to be sent
42 "button": button_state
43 3}
45 r = reguests.post(url, headers=headers, json=data) # Post data to Hookbin
46 print(r.text) # Print the response from Hookbin

AT&T loT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 150

https://html.python-requests.org/

Communicating over HTTP/HTTPS

This code example breaks into three sections:
1. Enable the network radio connection.
2. Get the state of the USER Button

3. Configure the “URL”, HTTP Headers, and DATA variables, then call the requests.post() function.
Like using cURL in the Shell Scripts example, our HTTP post requires the same information. In this
case, the “POST” command is part of the function call, while the other elements are passed as

parameters.

After executing the example with the USER BUTTON in the up-state, then refreshing the Hookbin.com

page, the following POST information appeared.

[H] Hookbin

Your Hookbin Endpoint:

https://hookb.in/PxNBKyBnMOsORjbywoj6

m Jan 5,20192:35:17 AM (14 hours ago)

Path: /PxNBKyBnMOsORjbyw0jé Port: 443 Client IP: 204.156.181.123

Hostname: hookb.in

HTTPHEADERS Request Response

accept: 7/~

accept-encoding: gzip, deflate

content-length: 146

content-type: application/json

host: hookb.in

user-agent: python-requests/2.9.1

QUERY STRING

BODY

"button”: "up”

P et

Figure 5.9 - ex_04_http_to_hookbin.py

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 151

Communicating over HTTP/HTTPS

5.2.3.3. C/C++ Example (c_04_http_to_hookbin)

The C/C++ example builds upon the previous examples in this chapter by sending the module’s
Connection Time to Hookbin.com. (It would have been just as easy sending the button value, but in
this case, we used one of the WWAN status values read from the MAL.)

Here’s the listing for main. cpp:

Listin

5.13: ¢_04_http_to_hookbin/src/main.cpp

B——+——-1-———4-——-2———4 3-——-

f————d————d-——-5-————}-———§ F-——-7¢

#include <stdio.h>
#include "mal.hpp"
#include "iot_monitor.h"
#include <unistd.h>
#include "wwan_status.hpp”
#include "my_curl_post.h"

#define URL "https://hookb.in/PxNBKyBnMOsORjbywdjb™

int c;

sysinfo mySystem;
wwanInfo mybhwan;

netInfo mylNetw;
unsigned int dbg flag = @
json_keyval wwanStatus[28];
json_keywal networkStatus

int main(void) {

int ret;
char str[88];

json_keyval om[28];

printf("Hello World\n");

WWANStatus (&mykwan, &myNetw);

sprintf(str, "Connection Time

ret = curl_post(URL, str);

printf("\n Program is exiting...

return 8;

Ty my /‘:__E't"'l,.
%shn', mySysiciTimei.c_str());
Fshnin”, mySystem.imsi.c_str());

= ¥s\n", myNetw.connTime.c_str());

\n"Y;

Only four lines were added to ¢ 03 system info/src/main.cpp in order to send the data to

Hookbin.com:

1. Include the header file for the curl_post() function.

The URL was #defined. (You will need to update this with your own endpoint address.)

2
3. Formatting the ConnectionTime into a string to pass to Hookbin.
4

Sending the data via cURL, passing the URL and string.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 152

Communicating over HTTP/HTTPS

While libcurl may already be part of the installed software, there is a little more code required to
perform a cURL post. This example borrowed the http-post. c routine provided by the cURL site.

We only changed their code by:

e Converting main() into a function call curl_post()

e Replacing the hardcoded URL and data values with parameters passed to the function

Otherwise, the cURL post example provided a simple way to perform HTTP transactions.

Listing 5.14: c_04_http_to_hookbin/src/my_curl_post.cpp

1 ' a 3

4 ' 5 ' 7

/

Proj

* Copyr:

* This
* you s
are a

* You may opt to use, copy, modify, merge, publish, distribute and/or sell

* copie
* furni

* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY

* KIND,

ect \

LS — _ < JE—

ight (C) 1998 - 2015, Daniel Stenberg, <danielghaxx.se», et al.

software is licensed as described in the file COPYING, which
hould have received as part of this distribution. The terms
1so available at https://curl.haxx.se/docs/copyright.html.

s of the Software, and permit persons to whom the Software is
shed to do so, under the terms of the COPYING file.

either express or implied.

/™ «DESC
* simpl
* </DESI
%

#include

#include

#include

int curl

CURL
CURL

/1
curl

/% g
curl

if(c

}
curl

retu

i

>
e HTTP POST using the easy interface
C>

<stdio.h>
<curl/curl.h>

"my_curl_post.h"
_post(const char *url, const char *data)

*curl;
code res;

n windows, this will init the winsock stuff */
_global_init(CURL_GLOBAL_ALL);

et a curl handle */
= curl_easy_init();

url) {

curl_easy_setopt(curl, CURLOPT_URL, url);

/* Now specify the POST data */

curl_easy setopt(curl, CURLOPT_POSTFIELDS, data);

/* Perform the request, res will get the return code */
res = curl_easy_perform(curl);
printf("\n");

/* Check for errors */
if(res 1= CURLE OK)
fprintf(stderr, "curl_easy_perform() failed: %s\n",
curl_easy_strerror(res));
/* always cleanup */
curl_easy cleanup(curl);

_global_cleanup();

rn @;

Hint: If you look carefully through the QuickStart’s iot_monitor program, you will find they used the

same method to post

HTTP data.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 153

https://curl.haxx.se/libcurl/c/http-post.html

Communicating over HTTP/HTTPS

5.2.3.4. C/C++ Example (c_05_http_put_post_get)

The original QuickStart demo does not provide easy developer access to the HTTP routines used by the
example, but with a few modifications they can be used in your own programs.

The c_05 http put post get example discards the my curl post.cpp/.hpp files from the
previous example, replacing it with the http.c/.h files from the QuickStart loT_Monitor example.

The two big difficulties in using http.c are:
e The HTTP post and put functions are static (i.e. not available external to the file).

e There is a bit of preparation coding required before the HTTP functions can be used.

To solve these problems, three new routines were added to http.c/.h:
— do_http_put()
— do_http_post()
— do_http_get()

The main() function in the example utilizes each of these for connecting to Hookbin.com, which was
explored in the previous example. (These functions are also used in the C/C++ M2X examples in
Section 5.3).

Here’s a snippet of main.cpp and the results of running the example.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 154

Communicating over HTTP/HTTPS

Listing 5.15: Chapter_05/c_05_http_put_post_get/src/main.cpp

— bl '_\"-‘_'_‘_"'_.V_‘\—._r"
31 AffsYatus an, &myletwy? AT N

83 J/ Create headers for HTTP transaction

84 sprintf(hdr8, "Content-Type: application/json™);

85 sprintf(hdrl, "Example: Header Info");

86 h[8] = hdrB;

87 h[1] = hdrl;

89 // Create data for HTTP Transaction

9E sprintf(data, "Connection Time = %s'n", myNetw.connTime.c_str({));

92 // Do HTTP PUT

93 printf("\nlow starting http put...\n");
94 ret = do_http put(URL, 2, h, data);

// Do HTTP POST

C printf("\nlow starting http post...\n");
98 ret = do_http post(URL, 2, h, data, rbuf);
39 printf("%s\n", rbuf);

181 /f Do HTTP GET

182 printf("\nlow starting http get...'\n");

163 do_http get(URL, 2, h, data, response, sizeof(response));
184 printf({"Response: #s\n", response);

186 printf("\nProgram is exiting... \n");
18 return @;

,
w4l
-

AT&T loT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 155

Communicating over HTTP/HTTPS

© & © superiorview@ubuntu: ~fAvNet2/sk2_users_guide/Chapter_05/c_05_ht|

/ # ./CUSTAPP/c_O5_http_put_post_get
Hello World

Data service running

System Information
: Module M18Q2FG-1
: Apps Ver # OE_v01.07.183121

: Firmware # M18Q2_v12.09.182151

ipv6 address:

Received: 4 key/value pairs:
Allow Data Roaming: YES (1)

Now starting http put...

URL: https://hookb.in/yDWeM688mAhO70PZWSMD
Header (@) is: Content-Type: application/json
Header (1) is: Example: Header Info

Data: Connection Time = 00:23:13:48

REPLY WAS: {"success":true}

Now starting http post...

URL is: https://hookb.in/yDWeM688mOhO7OPZWSMD
Header (®) is: Content-Type: application/json
Header (1) is: Example: Header Info
{"success":true}

Now starting http get...

URL is: https://hookb.in/yDWeM688mOhO70PzwBMD (10024)
Header (@) is: Content-Type: application/json

Header (1) is: Example: Header Info

Response: {"success":true}

Program is exiting...

8/

Figure 5.10 - c_05_http_put_post_get output

The results at Hookbin.com are like the previous example, although you will see GET (highlighted
below) and PUT results, as well as the POST version seen earlier. The differences aren’t remarkable in
this context, but it shows we were able to communicate using three HTTP transaction types.

27,2019 6:03:22 PM (a few seconds ago)

Hostname: hookb.in Path: /yDWeM&688m0OhO7OPzw8MD Port: 443

HTTP HEADERS Request Response

accept: */*

Figure 5.11 - c_05_http_put_post_get Hookbin results

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 156

Connecting to the Cloud: M2X and Flow

5.3. Connecting to the Cloud: M2X and Flow

AT&T provides two platform tools which make it easy to get your loT device data into the Cloud:
o M2X: Register and manage your devices, while providing storage for your data

e Flow: Build custom data flows (i.e. JavaScript programs) to transform and utilize your data

While a thorough investigation of these tools is outside the scope of this book, this section provides a
brief explanation for these useful Cloud tools - as well as some code examples to get you started.

M2X

M2X is an excellent resource for IoT developers. It’s device centric, which makes it intuitive to use. You
can add “devices” to your account in order to represent the devices you have in the field. Within your
M2X device you can add data “streams” to represent each of the data items you want to send from
your device to the Cloud. For example, if you were creating a thermostat, you might have:

e M2X Device: Main Level Thermostat
— Stream 1: Temperature Value
— Stream 2: Humidity Value
— Stream 3: Temperature Setting

With this set, you could have your actual thermostat hardware send the three data values to your M2X
device every minute - or whatever makes sense for your application requirements. (This was just an
arbitrary example. We'll see how the SK2 QuickStart uses M2X in the next section.)

While M2X provides a nice graphical interface for letting you create and setup your devices and their
associated data streams, this could be tedious if you are making and deploying a fleet of loT hardware
devices. To that end, M2X provides an extensive API letting you do almost everything from your
keyboard... or better yet, from the loT device itself. For example, using the QuickStart demo, your SK2
will create its own M2X device and data streams - and then send data to each stream every time you
press the USER BUTTON.

To learn more about M2X, check out: https://m2x.att.com/developer/get-started
Flow
AT&T Flow is based upon Node-Red which describes itself as “Flow-based programming for the

Internet of Things”. Being both intuitive and easy-to-use, Flow provides you with an excellent way to
manage and react to your data in the Cloud.

- /“/ \ \\ =
€ = \(/ S ey \
/’/ \
=)
W

>3

e o

nfo Endpoints

To get started with Flow, we suggest their introductory tutorial: https://flow.att.io/help/start

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 157

https://m2x.att.com/
https://m2x.att.com/developer/get-started
https://flow.att.io/
https://nodered.org/
https://flow.att.io/help/start

Connecting to the Cloud: M2X and Flow

5.3.1. M2X QuickStart Demo

We begin examining M2X using the QuickStart demo that ran automatically on your SK2 (when you
pulled it out of the box) whenever it was powered up. (Note that it’'s OK if you already turned off the
autorun feature of this demo, we show you how to run it from the command-line.)

As described in Chapter 1, the QuickStart demo collects sensor data from the SK2 and sends it to the
Cloud whenever the USER BUTTON is pressed. Until now, most users could only visualize this by
watching the RGB LED, as it indicated each of these steps in sequence. But, since the QuickStart
demo sends the data to M2X, we can now view the sensor data in the M2X cloud.

5.3.1.1. Obtain a Master M2X API Key

You need to obtain a M2X authorization key in order to send data from your QuickStart app to the M2X
service. You can retrieve your key by logging into M2X and accessing your account profile.

Follow these steps to access your M2X API (i.e. authorization) key.

1. Open M2Xin your web browser. (Log in, if necessary).

Open the following URL in your browser:

m2x.att.com

The upper right-corner of the service shows if you're logged in or not. Log into the service if you're
not already logged in using your AT&T Marketplace USERID and Password (obtained in Chapter 1).

S maropaomy s e

M 2x FEATURES SHOWCASE SOLUTION PROVIDERS

Build Intelligent, Enterprise Grade
Connected Device Solutions

AT&T M2X provides time-series data storage, device manages
brokerin, geo-

your industrial {nternet of Things (10T) products and services.

Sebetidsi ey

Figure 5.12 - M2X service

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 158

Connecting to the Cloud: M2X and Flow

2. Open your Account Settings.

In the upper-right corner of the web page, select:
Manage — Account Settings

as shown below.

Hello, Scott @ w

B 40

Resources Help

Q Search Dev ‘L Developer Account

Upgrade to Full Access

'n' Account Settings ‘

o Usage Stats

My Organizations

i o - T

!HMWWWMW‘”MMM

Figure 5.13 - Opening M2X Account Settings

3. Record your M2X master API Key.
From the Account Settings page, record (copy) your Master APl Key.

" R
M2X i e e
Devices Distributions Dashboards Resources Help Manage
Se
M2X SsETTINGS
Master Keys Add Master Key
Master Keys
NAME & INCLUSIONS API KEY ACCESS EXPIRATION
Usage Stats
Account Plan Master Key b276207928b91150£1106065d73098a GET, POST, FUT, DELETE —

1 Developer Account

Figure 5.14 - M2X Master Key

Master Key

Protect your Master Key since it allows full access to your M2X account. Later on, we’ll see that
you can create authorization keys for individual devices, but this is the Master Key.

Hint: If yours becomes public, like in the case above where we shared our in print, you can use the
circular arrow button to the right of the key to regenerate a new key.

AT&T loT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 159

Connecting to the Cloud: M2X and Flow

5.3.1.2. Run the QuickStart Demo with Your Own MI2X Key

Run the QuickStart demo while passing your M2X key on the command line. This will direct the output
to your M2X account rather than to the Starter Kit AMOC Dashboard.

Note: If you reimaged your SK2 for Python, you will need to rebuild and install the QuickStart demo
C/C++ program (named “iot_monitor”) before you can continue with the remaining steps in
this section. This procedure is described in Section 3.2.

4. Open an ADB remote connection to your SK2.
adb shell

5. Navigate to the /CUSTAPP/iot directory.

This is the location for the original QuickStart program. You may need to choose a different
location if you rebuilt the program and placed it in a different location on your SK2.

6. Copythe run_demo. sh script file.

We recommend making a copy of the original run demo. sh script.

cp run_demo.sh run demo.original

Hint: If you don’t have a run_demo. sh, skip to the next step.

7. Edit and save your run_demo. sh, adding your M2X API key.

We used vi to edit our script:

vi run demo.sh

Edit the file replacing the string after “-a” with your M2X key from Section 5.3.1.1.
3bo115eaf11668b5d

run demo.sh 1/1 188%
Figure 5.15 - Editing run_demo.sh

Note: If you don’t have the run demo. sh file, create the file and specify the correct path to
your iot monitor program, and include your M2X API key.

8. Run the QuickStart app using the run_demo . sh script.
./run_demo.sh

This is the script that runs automatically when your SK2 is new. We can also run it manually.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 160

Connecting to the Cloud: M2X and Flow

9. Send data to M2X.

Once the program initializes and the LED turns Green, push the USER BUTTON to send data to the
Cloud.

After the LED turns green again, go ahead and push it again to send another set of data.

10. Exit the QuickStart demo. (Although, don’t exit the demo if you want to see live data received by
M2X.)

Following the directions printed to the terminal, you can exit the demo by pressing the USER
BUTTON for more than 3 seconds.

Hint: If you leave the program running and jump to the next section, you can continue to press
the USER BUTTON and see new data posted live to M2X.

Here’s the terminal display when following these instructions.

adb shell

run_demo.sh
run_demo.sh
-setting API Key to [b2762879a8b9115e8f11868b5d7

Quick Start Application:

-Validating API

Create a new d ce.

-Creating the data

Using API Key = b2762879%a a, Device Key = 3

This application will post XYZ data, Temperature data, and Light ADC data to a standard M2X
account. To access the data, browse to this URL:

https://api-m2x.att.com/device 11298a8d1ab331bd5174a68b118be

These streams are updated continuously with user a user specfied Delay between postings.
LED colors will display a different colors after each set of sensor data is sent to M2X.

To exit the Quick Start Applicatiein, press the User Button on the Global
LTE TIoT Starter Kit for > 3 seconds.

1. Sending ADC value, TEMP value, XYZ values...All Values sent. (delay 2 seconds)
2. Sending ADC value, TEMP value, XYZ values...All Values sent. (delay 2 seconds)

Figure 5.16 - Running the steps from Section 5.3.1.2

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 161

Connecting to the Cloud: M2X and Flow

5.3.1.3. Viewing QuickStart Data in M2X

Returning to your M2X account, selecting the Devices button should reveal a new device named:
Global Starter Kit
When running the QuickStart demo, it automatically:

a) Added the Global Starter Kit device to your M2X account.
b) Added data streams for ADC, TEMP, XVALUE, YVALUE, and ZVALUE

Each time you press the USER BUTTON, the program sends the sensor data to the five streams.

&
M2x W N B e =-
Devices Distributions Dashboards Resources Help Manage
Personal Account v 5010 Q Search Devices.. Advanced Search
(#) Create New = 3 bin

NAME VISIBILITY LAST ACTIVITY ~ STATUS
R Al Devices
[-] Global Starter Kit @ Private @® 26 minutes ago enasiep [l
[~ SsTREAMS CURRENT MIN 3 Max t AVE
ADC 0051375 0037578 0051375 0044477
You do not have any
collections.
TEMP 75650002 75.087502 75.650002 75.368752
Add Collection
XVALUE 124.928001 124.928001 359167999 242,048
Learn more about
collections from the docs YVALUE 260.384033 960.384033 109319995 1026752014

ZVALUE 8050047852 £050.047852 201.008301 £030.528077

Figure 5.17 - Viewing the Global Starter Kit M2X device

AT&T loT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 162

Connecting to the Cloud: M2X and Flow

Clicking on the Global Starter Kit link (circled above) takes you to an expanded view of your device.
This view lets you view a graph of your data - or view the log of data received. It also contains the
Device ID, Endpoint, Device Key, and Device Serial # values which allows you to interact with your M2X
device using the M2X API.

-
M| e =-
=

Resources Help Manage

Devices > Global Starter Kit AL Personal Account v Q. Search Devices.. Advanced Search

50110
& Duplicate | 2% Distribute

Global Starter Kit EJEZS B prvaTe | © ewaco [l
0y cisaien & Devices & Tacs
Scott 38211298a001ab3310d5174a680118be asTA Device
= P
fdevices/38e11298a0d1ab33 1005174068018 [REa]
@ E ¥ ?
No lacation available 8ec143e1¢21c0810ee048a1c082d70 [copy | T 3
gl APID tat >
seumentstion
£0011703278113075678
Tutorials >
Overview AP Keys API Request Log Trigger Log Info
Streams @@ Triggers | 0 Location (0 Charts (0 Data Exports | 0 API Cheatsheet)
| O
Add Stream I charts View @ values Log [o |
h 4
Yy A v ADC
STREAM anc
= o B o B o B oo
TEMP
XVALUE 0050
YVALUE 0048
ZVALUE 0.045
0042
040
0.038
04 05 06 07 08 09 {0 hil 12 13
Show resuts from last: | 100 values .| Autorefiesh (5 seconds) () ON (@) OFF

Figure 5.18 - Getting Further Details on Your Device

Hint: Clicking the “API Cheat Sheet” button (middle-right) brings up a series of cURL commands
that can be used to interact with your M2X device. These commands can be run from your
device - to say, post new data values - or on your computer to retrieve data stored in M2X.

AT&T loT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 163

Connecting to the Cloud: M2X and Flow

5.3.2. Using M2X

At its most basic, using M2X involves creating one or more devices with streams. While there’s a lot
more to the service, we will limit the discussion to these features.

If you have already read the preceding parts of Section 5.3, we mentioned that you can interact with
M2X in one (or all) of three ways:

e M2X Web-based GUI
e HTTP Rest API (e.g. using cURL)

e Language Specific API libraries

To make your efforts easier, the language specific API's have been ported to the SK2 for Python. We
will explore M2X through the example code provided for both Python and C/C++.

5.3.2.1. Using M2X with Python

The SK2 Python IDE includes twelve examples to make it easy to work with M2X.

Python IDE
| iot_blink led example.py
iot_hw_example.py
| iot_m2x_example.py
| iot_mal_example.py
|
N\---m2x_examples

create_device.py
create_stream.py

delete device.py

delete location_history.py
distribution_add_device.py
distribution_device list.py
example.py
export_values.py
iterate_over_devices.py
post_value.py
search_devices.py

Figure 5.19 - SK2 Python IDE’s M2X examples

In this discussion, we examine three of the provided M2X examples in order to help you figure out how
to use them with SK2 devices.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 164

Connecting to the Cloud: M2X and Flow

5.3.2.1.1. Python Example (iot_m2x_example.py)

This example is designed to send the SK2's light_sensor value (discussed in a later chapter) to an
M2X device. Before using this example, you need to create an M2X device with a stream named

“light_sensor”.

Set up M2X

You can create a new device from the M2X Devices dashboard by clicking the “Create New” button

and selecting “Device”.

Personal Account v 5 of 10

Figure 5.20 - Creating an M2X device

When the create device dialog appears, give it a name - for example, “Test” - and then click the
Create button at the bottom of the dialog.

Scroll down the page and click on the “Add Stream” button. Set the “Stream ID” to “light_sensor” and

click Save.

T W L
Overview

API Keys AP Request Log Trigger Log Info i
streams P Triggers | 0 Location (0 Charts (0 Data Exports | 0
Add a Stream
Devices are composed of streams. Each stream (.. a sensor) consists of a single type of dat,
A stream ID is used to identify your stream
within APl commands.
Stream ID [light_sensoi]
Stream IDs can only contain letters, numbers, undescores, and dashes — no spaces or special characters are allowed
Display Name €.0. garage humidity <
{
Stream Type @ Numeric Non-Numeric !
You e values that are ted in a numeric format (e.g. full words, alphanumeric strings, etc.). Staring nen-numeric
values will disable functionalit 5 ch as <, graphing and triggers.
Unit & Symbol e.g. Ohm, Watt eg. We 0O

Figure 5.21 - Creating a stream

T e i e U

AT&T loT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 165

Connecting to the Cloud: M2X and Flow

Edit iot_m2x example.py

For the Python code example to find your M2X device and have the appropriate authorization, you'll
need to copy two values from your M2X device into the code example. The values are highlighted
below in the M2X GUI as well as in the code listing.

Test E3E=

&

Scott

No location available

A e e T e e

T

29377c83e3fb261fdbddBeala3bl17 T3

/devices/293T7c83e3Tb261Tdbdd8eara3nliTr3

aedd25d410ac8de3bd38325420787842

AR E]

import iot_mal
import iot_hw

from m2x.client import M2XClient

#Before running this example, read the ATT M2X Dashboard sectif

KEY = "aedd25d41@ac8dedb9383e542078F842"

#Setup the MAL and data connection

EVICE_ID = "293f7c83e3fb26lfdbddBea’albl7ff3"
STREAM_MAME = "light_sensor”

network_handler = iot_mal.network()
network_handler.set_connection_mode(1,18,2)

#Initialize the ADC and read the ambient light level

light_sensor = iot_hw.adc()

light_value = light_sensor.read()

light_sensor.close()

Setup the M2X stream based on the values input above

client = M2XClient(key=KEY)

device = client.device(DEVICE_ID)
light_sensor_stream = device.stream(STREAM_NAME)

#Add the light sensor value to the data stream

light_sensor_stream.add_value(float(light_value))

e

Figure 5.22 - Getting Device ID and Key from M2X “Test” Device Dashboard

Run the Example

Once you have added the two values to the appropriate Python variables, go ahead and run the Python

example.

In fact, try running it multiple times while changing the amount of light hitting your SK2 board. Then
view the data in M2X device log (or graph).

Overview

Streams (§P

APl Keys API Request Log Trigger Log Info

Triggers | 1 Location | 0 Charts (0 Data Exports { 0

light_sensor

TIMESTAMP

01/03/2019 09:59:08 CST

01/03/2019 09:58:49 CST

01/03/2019 09:58:07 CST

01/03/2019 08:55:11 CST

Y U VU s SV SNSRIy

VALUE

0.03077699989080429

0.1834859997034073

0.02989800088107586

0.03048600070178509

Figure 5.23 - Results after running iot_m2x_example.py multiple times

3

o e e A ik s aabn L J

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 166

Connecting to the Cloud: M2X and Flow

5.3.2.1.2. Python Examples (m2x examples folder)

Opening the m2x_examples directory in the Python IDE lists eleven examples which can be used to
manage and control M2X from your SK2. In this section, we’ll utilize the two highlighted in the graphic
below.

loT Starter Kit

loT Starter Kit

Kit Is Connected!

O/

name size Kit Is Connected!

m2x_examples <dir>

iot_blink led example.py 1.38kb €3 /m2x_examples/ X

iot_hw_example.py 2.28kb name size

iot_m2x_example.py 834b " . <dir>

iot_mal_example.py 970b e e] 382b
create_stream.py 388b
delete_device.py 715b
delete_location_history.py 546b
distribution_add_device.py 653b
distribution_device_list.py 756b
example.py 382b

T e S export_values.py 868b

iterate_over_devices.py 915b
post_value.py 723b
search_devices.py

Figure 5.24 - Viewing m2x_examples folder

These examples were designed to be run from the command line - which means that we can call all
them as shown below to create a new device and stream.

The comments inside each example roughly describe how the file is to be invoked. For example,
create device.py should be called with:

API KEY=<YOUR MASTER API KEY> python example.py

Hint: When using the M2X API functions provided as part of the Python SDK, you may find the
following resources helpful:

https://m2x.att.com/developer/documentation/v2/device
https://github.com/attm2x/m2x-python/tree/master/m2x/v2
https://github.com/attm2x/m2x-python/blob/master/USAGE.md

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 167

https://m2x.att.com/developer/documentation/v2/device
https://github.com/attm2x/m2x-python/tree/master/m2x/v2
https://github.com/attm2x/m2x-python/blob/master/USAGE.md

Connecting to the Cloud: M2X and Flow

The following shell script provides an example for running these two Python scripts as well as posting
data to the stream. Originally, we planning to use post value.py to post the data values, but this
file is a self-contained example creating a device, stream and then posting data. But that's OK
because this allows us to show an example of using the HTTP REST API for interacting with M2X.

Listing 5.16: sh_06_m2x_example.sh
: 1 | 2 | 3-———+ | 5 t-——6 | f—

echo sh_B86_m2x_example.sh g
echo
echo This shell script invokes two python scripts from: JCUSTAPP/iot_files/m2x_examples
echo The first Python example creates an M2X device called 'Current Time Example’ and the
echo second example adds a stream called 'stream_name’.
echo i
echo Since the "post_value.py' example does more than just posting a value to a stream,
echo we chose to use cURL to add two values to the M2X device.

~
o

o]
©

#

Note: Your ATAT IoT Starter Kit (2nd generation) must have the Python image installed §
for this example to work

MY_MASTER_API_KEY=b2762879a8b9115e8+11068b5d73098a # Replace this value with the Master API Key F%
echo

my_device_id=$(API_KEY=$MY_MASTER_API_KEY python create_device.py) g

echo The new device key is: $my_device_id

DEVICE_ID=%my_device id API_KEY=$MY_MASTER_API_KEY python create_stream.py
echo "The 'stream_name' stream was added to the device”

{
echo

echo "Now the script will add the walues '1' and '2' to the stream” <
echo

echo "Adding "1°" z
eChD - oo ’
curl -i -X PUT http://api-m2x.att.com/v2/devices/$my device id/streams/stream name/value -H "X-M2ZX-KEY:3

echo i
echo

echo "Adding *2""

echo -------oommmmm e
curl -i -X PUT http://api-m2x.att.com/v2/devices/$my device id/streams/stream name/value -H X -M2X-KEY £

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 168

Connecting to the Cloud: M2X and Flow

Running the shell script results in the following output:

A adb push sh_86_m2x_example.sh /CUSTAPP/iot_files/m2x_examples
sh_B6_m2x_example.sh: 1 file pushed. 8.4 MB/s (1526 bytes in ©.884s)

C:\adb
A adb shell
/ # cd JCUSTAPP/iot_files/m2x_examples/
'm2x_examples # chmed +x sh_86_m2x_example.sh
CUSTAPP/iot_files/m2x_examples # ./sh_86_m2x_example.sh

This shell script invokes twe pytheon scripts from: /CUSTAPP/iot_files/m2x_examples
The first Python example creates an M2X device called Current Time Example and the
second example adds a stream called stream_name.

Since the post_value.py example does more than just pesting a value to a stream,
we chose to use cURL to add twe values to the M2X device.

The new device key is: 3e88adc5c8e48f32a0des
The "stream_name’ stream was added to the den

Mow the script will add the walues 1" and '2' to the stream

Adding "1°

HTTP/1.1 282 Accepted

Content-Type: application/json; charset=UTF-38
X-M2X-VERSION: v2.112.2

Vary: Accept-Enceding

X-Ratelimit-Limit: 18

X-RatelLimit-Remaining: 8

X-Ratelimit-Reset: 1548462456

Content-Length: 21

{"status":"accepted"}

HTTP/1.1 282 Accepted
Content-Type: applicati
X-M2X-VERSION: 112.7

Vary: Accept-Encoding
X-Ratelimit-Limit: 18
X-RateLimit-Remaining: 9
X-RatelLimit-Reset: 1548462457
Content-Length: 21

{"status":"accepted”}

JSCUSTAPPfiot files/
Figure 5.25 - sh_06_m2x_example.sh Output

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 169

Connecting to the Cloud: M2X and Flow

5.3.2.1.3. Python Example (m2x_examples/example.py)

Once you have a device that contains some stream data the example . py code will print out

information about the device.

Before you try out example.py beware of a few caveats:

e The pprint module is not installed, therefore you need to comment out “import pprint” and change
the pprint() function to printf().

e The command-line arguments for this example are different than the other examples. Rather than
“API_KEY” this example calls it “KEY”. Similarly, “DEVICE_ID” is now “DEVICE”.

Here’s simple script to try out, making sure you fill in your own DEVICE and KEY (and correct the items
from above).

Listing 5.17: ex_08_m2x_print_values.sh

Note: Your AT&T IoT Starter Kit (2nd generation) must have the Python image installed

for this example to work

M2X EXAMPLES PATH="/CUSTAPP/iot files/m2x examples" # Set location of your m2x examples dir
MASTER API KEY=b2762079a8b9115e0£11060b5d73098a # Replace the KEY with yours

M2X DEVICE_ ID="293f7c83e3fb261fdbdd8ea7a3bl7£f£3" # Need to replace this one, too

DEVICE=SM2X DEVICE ID KEY=SMY MASTER API KEY python S$M2X EXAMPLES PATH/examplel.py

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 170

Connecting to the Cloud: M2X and Flow

5.3.2.2. Using M2X with C/C++

The C/C++ M2X library has not been ported over to the SK2, but there are still plenty of ways to
communicate with the loT service.

e Use HTTP transfers - which is what is shown in our code example below.

e Run Linux cURL utility from within your C/C++ programs

The QuickStart demo includes a few M2X functions which are leveraged by our example. In those
cases where specific M2X functions are not available - or were too proprietary to the needs of the
QuickStart demo - this example borrows from HTTP Get/Put/Post functionality.

5.3.2.2.1. C/C++ Example (c_07_m2x_create_device_stream_value)

Given the following information:

#define M2X API KEY "b2762079a8b9115e0£f11060b5d73098a"
#define M2X DEVICE NAME "CTEST"
#define M2X STREAM NAME "temp"

This example obtains the System, WWAN, and Network status info (same as examples from Section
5.1), then implements the following M2X tasks:

e Given a Master M2X_API_KEY, gets a list of M2X devices for that account.

o Creates a new M2X device for M2X_DEVICE_NAME, if it doesn’t already exist for this account.
e Gets the streams available for M2X_DEVICE_NAME.

e Creates a new stream for M2X_STREAM_NAME if it wasn’t on the downloaded list of streams.
e Writes the value ‘2’ (arbitrary value) to M2X_STREAM_NAME.

To use this example, you need to:

e Create an M2X account. (If you don’t already have one.)

e Replace the value for M2X_API_KEY with the value from your account. (Find this key as described
in Section 5.3.1.1).

While this example is longer than some of the others we have discussed, it breaks down nicely into
manageable parts. The next four subsections describe each of these parts.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 171

Connecting to the Cloud: M2X and Flow

5.3.2.2.1.1. Get List of M2X Devices

This example uses HTTP get to access the list of devices for a user’s account. The API help for this can

be found at https://m2x.att.com/developer/documentation/v2/device#List-Devices.
Listing 5.18: Chapter_05/c_07_m2x_create_device_stream_value/src/main.cpp (lines 120-173)

e) S | S S — . ——

// Create headers for HTTP transaction ’ Prepare list Of headers
sprintf{hdr8, "Content-Type: application/json™) headers reqmrEd by M2X

sprintf(hdrl, "X-M2X-KEY: %s", M2X_API_KEY);
sprintf(hdr2, "Accept: */*");

h[B8] = hdr;

h[1] = hdril;

h[2] = hdrZ;

HTTP Get is needed to get a list
of devices from an account

J/ Create data for HTTP Transactio

sprintf(data, "Connection Time =& Y myMetw.con

J/ Do M2ZX Get Devices
printf("\nNow starting 'Get M2x Devices'...\n");
do_http get(M2X_DEVICES_URL, 3, h, data, response, sizeof(response));

arse_maljson (response, odl, sizeof(odlk Parse JSON response;

i=p

if(i»0) { .

. arse maljson() creates an
for (p = 8; p < 1; p++) { P - J ()

if (strstr{odl[p].key, "name")) { array of keyfvalue pairs
devices[dev].name = odl[p].value;
if (strstr(devices[dev].name, M2X DEVICE MAME)) {
skipDev = 1;
d = dev; & Look for M2X_DEVICE_NAME
h and set 'd' to its index
if (strstr(odl[p].key, "id"))
devices[dev].id = odl[p].value; - ¥ -
if (strstr{odl[p].key, "status"))
devices[dev].status = odl[p].value;
if (strstr(odl[p].key, "key™)) Stt_ap thru_the_.JSON key/value
devices[dev].key = odl[p].value; pairs saving info and save to
if (strstr(odl[p].key, "visibility")) devices[10] array

devices[dev].visibility = odl[p].value;
if (strstr(odl[p].key, "description™))

devices[dev].description = odl[p].value Stl’StI’() was used (rather than ==)

if (strstr(odl[p].key, "count™)) { since maljson() left some artifacts
devices[dev].streamCount = odl[p].valug in the key names
dev++; 1

h y

3

printf(“\nHere's a list of M2X devices for this account:\n");
for (p = 8; p < dev; p++) |
if (p == d)
found = (char *) " (®)";
else Print list of devices to terminal
found = (char *) " " ’ marking M2X_DEVICE_NAME

prinmtf("M2X Device (%d): ¥s¥s\n", p, d : .
//printf("M2X Device: ¥s (%s, ¥s, %s, with an
1
}
else {
printf("Parse error - name (%d)\n", i);
printf (" \nDump:\n¥s\n", response);
} ey N P e N . ik W

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 172

https://m2x.att.com/developer/documentation/v2/device#List-Devices

Connecting to the Cloud: M2X and Flow

5.3.2.2.1.2. Create M2X Device (if needed)

M2X uses HTTP post to create a new device. This is only done if that device name doesn’t already exist
in the list we just downloaded. The API help for this can be found at

https://m2x.att.com/developer/documentation/v2/device#Create-Device.

Listing 5.19: Chapter_05/c_07_m2x_create_device_stream_value/src/main.cpp (lines 176-210)

I 7- I a = n = r—

I 1 I 2 I B I 4 I = I

176 // Do Create Device

1 printf("\nNow starting ‘'Create M2X Device' (%d)...\n", ski

179 if (skipDev) {
186 printf("Device ¥%s already exists
else {

183 devices[dev].name =

184 devices[dev].visibility =
185 devices[dev].description =

(char *) M2X_DEVICE_NAME;
(char =) M2X_VISIBILITY;

(char =) M2X_DEVICE_DESCR;
18 sprintf(data, "{

o V. oy ey "
Vinameh M ZWUEsNT, N

193 i = parse_maljson (rbuf, od, sizeof(od));
194 if(i>e){

196 for (p = 8; p < i; p++) {

19 if (strstr(od[p].key, "id")) {
198 devices[dev].id = od[p].value;
199 printf("\nlew M2X Device name (id): 7

s, so it won't be created (dev=¥d)(d=%d)\n", M2X_DEVICE_NAME, dev, d); i

YWidescriptionh": Y'HEsA\,
188 "\wisibility\":\"%s\" 17, evices[dev].name, devices[dev].description, devices[dev].visibility)}
189 J/printf("%s\n", data);
198 Create 'data’ payload with new device
g ret = do_http_post(M2X_DEVICES_URL, 2, h, data, rbuf);

Skip this task if the device already exists
(i.e. skipDev > 0)

Add new device's info to devices[] array
Assuming it might be needed later on...

information for HTTP post transaction

H

Do the HTTP post to create the device

\n", devices[dev].name, devices[dev].id);

200 d = dev;

0o] } Parse the response and print the
203 T new device's Name and ID
204 else {

205 printf("\nParse error - id\n");

206 prinmtf("%s\n", rbuf); . . .

207 T Since we just added a new device,

increment the device count

AT&T loT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 173

https://m2x.att.com/developer/documentation/v2/device#Create-Device

Connecting to the Cloud: M2X and Flow

5.3.2.2.1.3. Get the Device’s Stream Names

Like earlier when getting the list of devices, HTTP get is used to download the list of streams available

for the specified device. The API help for this can be found at

https://m2x.att.com/developer/documentation/v2/device#List-Data-Streams.

Listing 5.20: Chapter_05/c_07_m2x_create_device_stream_value/src/main.cpp (lines 212-248)

——— == = : = i =
// Get the dewvice's stream names Build the 'url'
printf(“\nlow starting "Get M2x Streams’ (¥d)...\n" : L .

which includes the Device ID

memset(url, @, sizeof(url));
sprintf({url, "¥s/%s/streams”, M2X_DEVICES_URL, devices[d].id);
J/printf ("URL: %s\n", url);

do_http get{url, 3, h, data, response, sizeof(response));

Use HTTP Get to download
arse_maljson (response, osl, sizeof(osl)); the list of device streams

i=p
iF(i»0) {
for (p =8; p < 1; p++) {

T

if (strstr(osl[p].key, "display name")) {
//printf("Display name\n");

if (strstr(streams[str].name, M2X_STREAM MNAME))

} else if (strstr(osl[p].key, "name")) { Parse the response to find
streams[str].name = osl[p].value; the stream names

skipStream = 1;
s = str;

L

}

3

printf("“\nHere's a list of streams (%d) his device
for (p = 8; p < str; p++) {
if (p == s)
found = (char *) " (*)";
else
found = (char *) " ";
printf("M2X Stream: ¥s¥s\n", streams[p].name, found);
¥
¥
else {
printf(“Parse error - name (%d)\n", i);
printf (" \nDump:\n¥%s\n", response);

M—- _— e e e a T oo

strit; Print the list of streams
highlight M2X_STREAM_NAME
if it exists

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 174

https://m2x.att.com/developer/documentation/v2/device#List-Data-Streams

Connecting to the Cloud: M2X and Flow

5.3.2.2.1.4. Create the Stream, then Add a Value to It

The SK2 QuickStart demo code already contains generic functions for creating a stream and another
for adding a value to it. Like the HTTP get/put/post functions, they are in the http.h/http.c files.

Listing 5.21: Chapter_05/c_07_m2x_create_device_stream_value/src/main.cpp (lines 251-269)

if (skipStream) {
» printf("Stream %

else {

printf("Create stream return

¥
J/ Add Value to the Stream
printf("Return from update stream w.

printf("\nProgram is exiting...
return @;

\n")s

e T e i Vg S

value:

T T e e e P e e e
// Do Create Stream
printf("\nNow starting 'Create M2X Stream' (%d)...\n", d

for device=¥%s) already exists, so it won't be created (str=%d)(d=%d)(s=%d)\n", M2X_STREAM_!{

ret = m2x_create_stream(devices[d].id, M2X_API_KEY, M2X_STREAM |
#¥d\n", ret);

ret = m2x_update_stream_value(dev1ces[d] id, M2X_API_KEY, M2X_STREAM_NAME,

Don't create the stream,
if it already exists

QuickStart iot_monitor demo has
m2x_create_stream()
function we can use

"2"); // 2" was chosen arbitrarily

Similarly the demo includes an
m2x_update_stream_value()

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 175

Connecting to the Cloud: M2X and Flow

5.3.2.2.1.5. Results and Terminal Output
After executing this program successfully, your M2X account will contain a device (named ‘CTEST’) with a
stream named ‘temp’. Whether these existed before or not, the value ‘2’ will be added to ‘temp’.

Here’s a record from running the program on our SK2:

Terminal File Edit View Search Terminal Help
@ & 6 superiorview@ubuntu: ~/AvNet2/sk2_users_guide/Chapter_05/c_07_m2x_create_device_stream_value

[# ./CUSTAPP/c_0O7_m2x_create_device_stream_value
Hello World

Data service running

System Information

M18Q2FG-1
OE_v01.07.183121
M18Q2_v12.09.182151
malm 75 vO2. 01 1807300

WNC: Apps Ver #
WNC: Firmware #
WNC: MAL Uer. #

ate: Connected(3)
connection time: ©0:23:18:03
provider: 10.45.232.128
radio mode: 048 26
data_bearer_tech: 4
roaming status: LTE

Now starting 'Get De

URL is: http:/fapi-m2x.att. com;vz;dev1ces (10024)

Header (®) is: Content-Type: application/json

Header (1) is: X-M2X-KEY: b2762079a8b9115e0711060b5d73098a
Header (2) is: Accept: */*

Here's a list of M2X devices for this account:
Device (0): Test
Device (1): Starter Kit (old)
Device (2): Virtual Starter Kit
Device (3): Global Starter Kit
Device (4): Current Time Example
Device (5): Example_@7
Device (6): CTEST (*)

From QuickStart demo

From Python examples

starting 'Create M2X Device' (1)...
Device CTEST already exists, so it won't be created (dev=7)(d=6)

Now starting 'Get M2 5" (6)...

URL is: http:/fapi-m2x.att.com/v2/devices/2abf990ec1225faef79bb335522ac1b4/streams (10024)
Header (®) is: Content-Type: application/json

Header (1) is: X-M2X-KEY: b2762079a8b9115e68f11060b5d73098a

Header (2) is: Accept: */*

Here's a list of streams (4) for this device (CTEST):
Stream: light_sensor
Stream: Test2

Stream:

starting 'Create Stream' (6)..
Stream temp (for devlce CTEST) already exists, so it won't be created (str=4)(d=6)(s=3)
Return from update stream value: ©

Program is exiting...

| #

Figure 5.26 - Results from running c_07_m2x_create_device_stream_value

Reading through this output, it appears that we had already run the program at least once before this
execution because we see that both the device and stream already existed.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 176

Connecting to the Cloud: M2X and Flow

5.3.3. Flow

AT&T Flow, as is its progenitor Node-Red, is an excellent rapid-prototyping tool, as well as a production
environment.

o Data Registration Virtual Devica Trigger azure 1 Ful s

Branch: undefined

GET b CEV lewnea Sansar Endpaints Calcuate lest ndex can you gat & werking?

FEGRTER CoEGH Gacuato Hoat e
/_/,/_,. /}\\H & [reyre—
22 AUTH ENCODE / \
= st n .
- weut e
Climate GET S

Cid st Doard LED

Infa Endpoints

MRUCHT

Figure 5.27 - The AT&T Flow Tool

The visceral, drag-and-drop environment is intuitive, making it fun and easy to use. Behind the scenes,
once you hit the Deploy button, your design begins running in the ‘Cloud’ without any further effort
required. Thankfully, we don’t need to worry about the details of server allocation, load balancing, and
all that IT stuff which can slow you down on other platforms.

This section only explores the very basic elements of Flow - that is, sending data to Flow and getting a
response back. Later, in Section 5.4, we explore how to send SMS messages from Flow.

Hint: At the time of writing, we had problems opening Flow in Google Chrome.
Though, it works fine when using Firefox.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 177

Connecting to the Cloud: M2X and Flow

5.3.3.1. Starting up Flow

Head to https://flow.att.io to open Flow. Like M2X, Flow uses the same login settings as your AT&T
Marketplace account.

Flow opens to the Flow Dashboard where you can see the previous projects you’ve created.

S ATAT Flow Designer: Dsshbo: X [l = u]

&« c @ ® & https;/fflow.attio 120% ses w Search

AT&T loT Platform

Dashboard @&
Flow a
Settings y
Avnet Starter Ki-290118-171146
The base use case for the Starter Kit utilizing M2X and Flow. A Flows:0| 2 Admin| @
RECENT PROJECTS T
= Avnet Starter
Ki-290118-171146 Shape Demo
> Shape Demo A Flows:0| & Admin | @
public
MyButton
SUPPORT
A Flows:0| & Admin | @
HE‘D > private
Resources Gt Stagted
)[} Code Samples
FAQ . .
o Click here +o create a vew, empty project

Community Projects

Figure 5.28 - Starting a new Flow

If you're new to flow, you may want to go check out the Resources —» Get Startedtutorial.

Additionally, under Resources you will also find Code Examples, although most of them are not well
suited for beginners. You can also access the FAQ and Community Projects from here. (The
Community Projects may also be difficult for new users. If you are looking for beginner-ware, you may
want to do an Internet search for Node-Red beginner projects.)

To get started with a blank canvas, click the blue + button. (We’ll do this in the next section.)

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 178

https://flow.att.io/

Connecting to the Cloud: M2X and Flow

5.3.3.2. Flow Example - Timestamp/Debug
(ex_09_timestamp_debug_flow.json)

After starting Flow, we’ll create a simple, starter project. While simple, we’'ll build on it with our SK2.

Hint: This Flow example can be imported usingthe ex 09 timestamp debug flow.json file found in the
SK2 User’s Guide GitHub site. Please refer to Section 5.3.3.3.2 for “how to” import Flow projects.

1. Create a new Flow project.

Click the blue + button in the lower-right corner of the Flow Dashboard, as shown in Figure 5.28.

2. Complete the Mew Project dialog and click Create.

We recommend calling the project: Timestamp-Debug.

r 3

Create A New Project)

Timestamp-Debug

A simple starting point

Public

The project can be cloned without any authentication. N

@ Private

Project access must be granted explicitly for each user.

m

Assign a Team clear v

The following environment will be deployed on the cloud. v
Azure

[4

The Flow canvas should open after the project is created (which may take a few seconds).

Note: While we explain many features about the Flow canvas when though our example, it's
outside the scope of this user guide to provide an in-depth explanation of Flow.

3. Add the /nject node to the Flow canvas. o
Flow 1
The palette to the left of the canvas contains
a wide range of nodes (bubbles, functions,
or whatever you want to call them). The
nodes are grouped - for example, the first °
m INPUT

ones are Inputs and the second group are timestamp

Outputs.

CALAMP)
Drag and drop the /nject node (from Inputs)
to the canvas. (It's about 15 nodes down the
list.) After dropping the node, it should say

“timestamp” with “INJECT".

=D .

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 179

Connecting to the Cloud: M2X and Flow

4. Add the Debug node to the Flow canvas.
Next, let’s add the Debug node from the Output group.

Hint: Type Debug into the node search box to filter down the long list of nodes.

Debug
» MOST-RELEVANT @
timestamp
DEBUG
» INPUT
» OUTPUT

After filtering the list using the Search box (as shown above), drag Debug onto the canvas. Note
that its name will change to “msg.payload” with a small “DEBUG”. The node is telling us that it will
write the payload of the incoming message (i.e. msg.payload) to the Debug window. (Which we’ll
see shortly.

While you can change the names of the nodes on the canvas, as well as other options, we
recommend leaving them as is, for now.

5. Connect the two nodes - Inject output to Debug input.

Start by clicking the white output bubble on the right-side of the Inject node... and then dragging to
the white input bubble on the Debug node.

timestamp b msg [ayf[nad

timestamp — msg.p ayload

. Sy

6. Deploy your design.

Click the Deploy button in the upper-right corner. This turns your design into a real-world cloud
server application.

OFFLINE MODE @

timestamp _— msg\.ﬁayﬁ\oad

Note that the first time you deploy a design takes a couple of minutes to complete. Subsequent
deploys (after you make changes to your design) go quickly.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 180

Connecting to the Cloud: M2X and Flow

7. Click the Inject button (on the left side of the node).

Clicking this button will inject (i.e. send out) a timestamp value. More specifically, the node will
output a JSON message that contains a payload with the current timestamp.

timestamp msg. [

N

8. Open the Debug window to view Inject node’s output.

The Debug tab displays the output from Debug nodes (all Debug nodes, if you have more than one
in your flow).

Clicking the arrow (highlighted by the red circle) opens and closes the tabbed windows at the
bottom of the display. You may need to click it to view the Debug window contents.

timestamp _— msg.f_aﬂoad

Debug's button

turns off its output

Info Endpoints Console Debug @
All Flows Current Flow

msg payload - number 1548655023663

You can toggle a Debug node on/off by clicking the button on its right side. This can be especially
helpful if you have multiple Debug nodes in your Flow project. In fact, try clicking the Inject button
with the Debug node turned off.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 181

Connecting to the Cloud: M2X and Flow

5.3.3.3. Exporting/Importing Flows

We can export a copy of our Flow project.

Even though Flow projects are stored in your account. They can be shared and linked to Git
repositories. But sometimes you might want to save a copy to your computer. Or export it so that you

can send it to a colleague.

Importing and Exporting are two of the options on the menu under the Deploy button.

O Full Build
Zoom Controls —> | = - +|=

4 View

Exit online mode

4 Import
4 Export

Search flows

Configuration nodes
4 Flows

4 Subflows

Keyboard shortcuts
Node-RED website

Figure 5.29 - Flow project canvas controls

5.3.3.3.1. Export procedure

1. Select all nodes (or at least the ones you want to export).

Select the nodes by dragging your mouse over them. Or better yet, using Control-A.

2. Select the Export to Clipboard option.

Click the hamburger menu (i.e. button with three horizontal lines), then Export, and then
Clipboard.

Menu — Export — Clipboard

Flow 1 O Full Build
Select all nodes \E

4 View

timestamp) msg,gayluad .

4 Import
Chpboa@ At Export

Search flows

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 182

Connecting to the Cloud: M2X and Flow

3. Copy the selected JSON text using your keyboard. (e.g. Control-C).
After you click Clipboard in step 2, the following dialog appears.

Export nodes to clipboard

Export to clipboard Current Flow All Flows copy the tEXt WIth your
keyboard

/

(e.g. Control-C)

~

|

W

Export caveats:

e At least one node must be selected to enable the Export menu item.

e Text is not automatically sent to the clipboard.

e The text must be in order to be copied.

e Use either a keyboard shortcut or the right-click context menu to copy the text.

— It appears like you cannot copy the text with the right-click menu because a red warning
sign © appears at the cursor, but it does let you copy the selected text.

e Clicking the dialog buttons appeared to de-select the text but clicking the mouse over the text
re-selects it.

4. Paste and save the copied text to a JSON file.

You can save the text in any manner you prefer, but we saved our previous example to:

ex 09 timestamp debug flow.json

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 183

Connecting to the Cloud: M2X and Flow

The resulting file looks like:

Listing 5.22: ex_09_timestamp_debug_flow.json

O A AL A
1 HE9 I
25 {9
3 "id": "368b3913.e59f1e",9
4 "type": "inject",9
5 "'y "7431afd4.82d4828",9
6 "name”: "",9
7 "topic": "",9
8 "payload": "",9
a "payloadType": "date",9
1@ "repeat": "",9
11 "crontab": "")9
12 "once": false,f
13 "x": 142.75,9
14 "y'": 91.833328247087831,9
15 % "wires": [9
16 9
17 "12fad2c5.3d164d"9
18t 19
19 | 19
2 3,9
g {9
22 "id": "12fad2c5.3d164d",9
23 "type": "debug",q
24 "' "7431afd4.82d828",9
25 "name": "",9
26 "active": true,f
27 "console": "false",9
28 "complete™: "false",q
29 "x": 389.74998474121094,9
30 "y'": 89.833328247067831,9
31 "wires": []9
2 L9
33 L§

AT&T loT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 184

Connecting to the Cloud: M2X and Flow

5.3.3.3.2. Import Procedure

Importing nodes is like exporting them.

1. Usingthe ‘hamburger’ menu in the upper-right corner, import from clipboard.

= — Import — Clipboard
2. Paste the JSON node description into the /mport nodes dialog, then click /mport.

Import nodes

Import to geiciddbi8l New Flow

Cancel

3. Place the resulting nodes by moving your mouse to an appropriate location and then clicking.

After clicking the Import button in the previous step, the nodes will appear (grouped together),
ready for you to place them by clicking your mouse.

Move your mouse around until you like the positioning of the imported nodes and then click your
mouse.

Try it out

After exporting nodes from a Flow project, create a new Flow project by clicking the blue + button in
the lower right-corner. Name the project something, such as “Import Test”.

When Flow opens to a new empty project, follow the Import Procedure outlined above. When done,
deploy your new flow and then test it out.

After testing is complete, you can delete the Test project. Alternatively, if you want to keep the project
we recommend that you set it into offline mode using the button shown in Figure 5.29 (on page 182).

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 185

Connecting to the Cloud: M2X and Flow

5.3.3.4. Flow Example - HTTP/Debug

The Timestamp/Debug example is a great way to get started with Flow but doesn’t exercise the SK2.
The HTTP/Debug example takes an input from an HTTP post, which will be sent by the SK2.

This example is broken into four sections:
1. The first part (in Section 5.3.3.4.1) discusses the Flow project.
2. The second part (in Section 0) sends data to Flow using cURL.
3. The third part (in Section 5.3.3.4.3) sends data to Flow using Python.
4. The fourth part (in Section 5.3.3.4.4) sends data to Flow using C/C++.

You only need to complete two sections to run the example. For instance, if you are only interested in
programming in Python, you would need to complete #1 and #3.

5.3.3.4.1. Creating the Flow Project (ex_10_flow.json)

Creating the project follows the basic procedure outlined in Section 5.3.3.2. Starting with the
Timestamp/Debug project, this one requires adding three additional nodes.

The first two nodes are HTTP Input (HTTP IN) and HTTP Response (HTTP RESPONSE).

timestamp msg_payload
E
L]]
My HTTP Input My HTTP Response 1
it - —V““-.‘g———w——l

Figure 5.30 - HTTP Input and Response Nodes

When sending an HTTP post to Flow, the HTTP response is not returned to the sender unless you add
an HTTP Response node. Depending upon how you code your application posting data using HTTP, it
will hang waiting for a response that never arrives. The HTTP RESPONSE node - when configured as
shown in Figure 5.30 - will echo back the incoming data to the posting program.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 186

Connecting to the Cloud: M2X and Flow

But it might be more fun to do something with the incoming data. By adding a FUNCTION node to the
Flow, you can create a Javascript function that will modify the payload being sent to the HTTP
RESPONSE node - effectively changing what is being returned to the sender.

limles_t‘a_mp msg.payload

: : [} L]
My HTTP Input —_— My Function Fm_H_TTEB_eEpP:nse

I I

Figure 5.31 - HTTP/Debug Flow Project

Hint: The project described here can be imported usingthe ex 10 flow. json file.

Procedure
Create this Flow project using the following steps.

1. Re-use or re-create the Timestamp/Debug project from Section Flow Example -
Timestamp/Debug (ex_09_timestamp_debug_flow.json)from Section 5.3.3.2.

The original project contained two nodes: INJECT, DEBUG.

2. Add three new nodes to the project.
Drag three more nodes onto the project canvas:
— HTTPIN
— HTTP RESPONSE
— FUNCTION

Hint: Once again, the search box at the top of the palette makes it easier to find the nodes.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 187

Connecting to the Cloud: M2X and Flow

3. Arrange and connect the nodes as shown in Figure 5.31.

4. Configure “HTTP IN” node.

Double-click on the HTTP IN node to configure it. Doing so will open a configuration panel:

Edit http in node

Delete Cancel m

= Method | POST &
Q@ URL /me

¥ Name My HTTP Input

= Auth None V

Method: Select Post. Any would work for this project, but POST seems appropriate.

URL: The URL entered here will be appended to your Flow project’s Endpoint URL, making the URL
for this node unique. This unique endpoint allows us to talk directly to this node.

Name: Name the node anything you want. This is just displayed in the canvas.

5. Configure HTTP Response node.

The only configuration parameter is its name. (And you don’t even have to give it a name.)

6. Configure the FUNCTION node.

The Function node provides a blank canvas, so to speak, for creating a JavaScript function. We'll
use this to modify the message payload being sent from HTTP IN to HTTP RESPONSE.

In our earlier description for this project we stated that we wanted to send a different value, one
for the “led” color, in our HTTP RESPONSE - basing the value upon whether the incoming number
data was even or odd. The following FUNCTION code implements this:

var v = msg.payload.value;

if (v %2) {

// odd

msg.payload.led = 'green';

node.log("Value was 'odd'");
} else {

// even

msg.payload.led = 'blue';

node.log("Value was 'even'");

}

return msg;

Most Flow nodes send messages with a payload. If our sending application sends the data
“value=56", the HTTP IN adds this to the payload it sends out. The FUNCTION’s JavaScript code

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 188

Connecting to the Cloud: M2X and Flow

picks up this ‘value’ and then tests whether it’s odd/even. Setting an ‘led’ value to ‘green’ or
‘blue’ in the process.

Hint: Setting msg.payload.led both adds ‘1ed’ to the message payload as well as sets its
value. We suggest that you read more about Node-Red if you'd like to better understand
how Flow works.

Here’s the dialog we used to configure the FUNCTION node:

Edit function node

Delete Cancel m

¥ Name My Function| 8~

© Dependencies

FUNCTION

var v = msg.payload.value;

=

My Function

-if (v % __) {
msg.payload.led .
node. log ("Value was

= } else {

msg.payload.led = '

10 node. log("Value was

114 }

=1 o U oW L N

W om

13 return msg;

e U g L P = N, SRS

7. Deploy your project.

Once the project has been configured, make sure you deploy it.

Hint: If you hadn’t noticed before now, the little blue dots in the upper-right corner of nodes,
such as in Figure 5.30, indicates that node has been modified since the Flow was
deployed.

With the Flow project complete, follow along with one of the next three sections in order to send data
to the Flow and see its response.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 189

Connecting to the Cloud: M2X and Flow

5.3.3.4.2. cURL Example (ex_10_curl_to_flow.sh)

Sending a value to Flow is straightforward using cURL from a shell script. Here’s an example sending
the two numbers 25, then 320.

Listing 5.23: ex_10_curl_to_flow.sh

I———+————1————+————2————+————3————+————4————+————5————+————6————+————?————+————8————+————9——
echo "ex 18 curl to flo

echo

echo "Thi ell script sends a number to an AT&T Flow iot project using cURL

echo "Flo esponds by sending back the number along with a color

echo

Replace URL with your Endpoint from AT&T Flow

MY_FLOW_URL="https://runm-west.att.io/e9215af2bbeea/8374c4f23615/fa5ebabladlss26,/in/flow / me’
echo

echo

echo "Sending an 'odd" number to Flow"

echo —--mmm o

curl -X POST $MY_FLOW_URL -d "value=25"

echo

echo

echo "Sending an 'even' number to Flow"
echo —-m e
curl -X POST $MY_FLOW _URL -d "walue=328"

The results from this are shown below.

This shell script sends a number te an AT&T Flow iot project using cURL.
Flow responds by sending back the number along with a color:

Green if the number is “odd®
Blue if the number is ‘even’

Sending an "odd’ number to Flow
25","led” :"green"}

Sending an "even' number to Flow

{"value™:"328","led”: "blue™}

That's it, we're done!

Figure 5.32 - Results from ex_10_curl_to_flow.sh

Let us note that we didn’t use the response data from Flow in the shell script to light the LEDs. While
eminently possible, we didn’t implement this.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 190

Connecting to the Cloud: M2X and Flow

5.3.3.4.3. Python Example - Sending Data to Flow

This Python example is like the earlier example: ex_04_http_to_hookbin.py

The modifications from the earlier example include:
1. Changing the URL to point to Flow.

2. Addingin the code (from leds blink.py) to initialize the RGB LED (this code is hidden by the
cut-out we used to squeeze the program onto one page).

Selecting a random number to send as data.
Adding a block to turn on the ‘Blue’ or ‘Green’ LED.

Listing 5.24: ex_10_http_to_flow.py
15 /Eﬁﬁaﬁf”ﬁufm”_i_ﬁr_th“*_JuﬂFJ&rH_‘””“A“““”_‘r"'JﬁmuﬁL"‘ﬁ_TEEE}t the Modef ABstractio

import iot_hw # Allows access to SK2 hardware
-_ import requests # A simple HTTP library for Pytho
15 from random import * # Module required to generate ra

28 # Replace URL with your Endpoint from ATA&T Flow
21 MY_FLOW URL = r'https://runm-west.att.io/e9215af2bBeea/8374cAf23615/Ta5ebabladBB526/in

23 ##HHE Setup the MAL and data connection #HHHEHHHHEHEEEEEEHEEEHEHEHEHEEEEEEEEEE

L— network_handler = iot mal.network() # Connect to MAL.network

25 Hnetwork_handler.set_connection mode(

26 # Mode: B - ﬁlways 1 - On-deman

gi— - # Dn demand r"1_=.<:c|nne<:‘|: i
44 blue_al #2800 _hw.gpio uZ "y | DIR OUTPuL.
45 blue led.write(OFF)

47 #HEHEF Pick a number (randomly) to send to Flow #HHEHESHEHBHBERBEHRESHERREERESHERRERSE
value = randint(1l, 168) # Pick a random number between 1
print("\nSending the random number: " + str(value) + "\n")

FHHHF Use Python ‘requests’ module to send data over HTTP #HHEHHHERERHEHEHEHEHERRH

52 wurl = MY_FLOW _URL # Get URL from flow.att.io
54 Hheaders = { # List contains required HTTP he
55 #'Content-Type': "application/json’,
56}
58 Hdata = { # Data to be sent
5 "value": value
¥
52 r = requests.post(url, headers=headers, json=data) # Post data to Flow
print("HTTP Response: " + r.text + "\n") # Print the response from Flow

Turn on the appropriate LED

Elf ‘blue’ in r.text:
blue_led.write(ON)
green_led.write(0FF)

A print("Setting the RGE LED to "blue'‘\n")

/0 Helse:

71 blue_led.write(OFF)

2 green_led.write(0ON)

print("Setting the RGB LED to 'green’\n")

AT&T loT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 191

Connecting to the Cloud: M2X and Flow

The results from the running the program are shown below. As well, we can confirm that the Blue or

Green LED is being lit by the program.
/CUSTAPP/iot_files # python ex_18 http to_flow.py
Sending the random number: 31
HTTPF Response: {"value”:31,"led":"green”}

Setting the RGE LED to "green’

/CUSTAPP/iot_files # python ex_18 http to_flow.py

Sending the random number: 48
HTTP Response: {"value":48,"led”:"blue”"}
Setting the RGE LED to 'blue’

/CUSTAPP/iot_files #

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 192

Connecting to the Cloud: M2X and Flow

Figure 5.33 -Results from ex_10_http_to_flow.py

5.3.3.4.4. C/C++ Example - Sending Data to Flow

Listing 5.25: ¢_10_http_to_flow/src/main.cpp

printf("Random value = ¥d\n", wvalue);

J// Create cURL command
sprintf(cmd, "curl -X POST ¥s -d ‘\"value=%d\"", URL, wvalue);

printf("---------o oo \n");

if ((fp = popen(cmd, "r")) l= NULL) {
while (fgets(rbuf, BUFSIZ, fp) != MULL)

primtf("--------ooo oo i H

o,

printf("Response = ¥s\n", rbuf);

J/ Turn on correct LED

if (strstr(rbuf, "blue")) {
printf("\nTurning on Blue LED...\n");
LED(GPIO_RED_LED, OFF, fptr, "Error: red/off");
LED(GPIO_GREEN_LED, OFF, fptr, "Error: green/off");
LED(GPIO_BLUE_LED, ON, fptr, "Error: blue/on");

} else if (strstr(rbuf, "green”)) {
printf("\nTurning on Green LED...%n");
LED(GPIO_RED_LED, OFF, fptr, "Error: red/off");
LED(GPIO_GREEN_LED, ON, fptr, "Error: green/on");
LED(GPIO_BLUE_LED, OFF, fptr, "Error: blue/off");

1 else {
printf("\nError: Turning on Red
LED(GPIO_RED_LED, ON, fptr, '
LED(GPIO_GREEN_LED, OFF, fptr, '
LED(GPIO_BLUE_LED, OFF, fptr, "

ED...\n");

rror: red/on");
rror: green/off");
rror: bluefoff");

momomo—

}

1 else {
printf("\nError: Turning on Red LED...\n");
LED(GPIO_RED_LED, ON, fptr, "Error: red/on");
LED(GPIO_GREEN_LED, OFF, fptr, "Error: green/off");
LED(GPIO_BLUE_LED, OFF, fptr, "Error: blue/off");

¥

// Release Hardware Resources
printf("\nReleasing Hardware Resources...\n"};
UNEXPORT (fptr,GPIO_RED, "-» Red");

UNEXPORT (fptr,GPIO_GREEN, "-» Green"};
UNEXPORT (fptr,GPIO_BLUE, "-> Blue");

printf("\nProgram is exiting... \n\n");
return @;

// Run the cURL comamnd in a subprocess and pipe the response to rbuf
printf("\nSending the data to Flow using the following command\ncmd= ¥sin", cmd);

f-+ 1 } 2 } 3 } 4 } 5 } 6-———4 +--—-8 t-3%
printf("System Information n");
printf(" \n");
printf("WNC: Module # = ¥s\n", mySystem.model.c_str());
printf("WNC: Apps Ver # = #s\n", System.appsVer.c_str());
printf("WNC: Firmware # = %s\n", mySystem.firmVer.c str());
printf("WNC: MAL Ver. # = ¥s\n", mySystem.malwarVer.c_str());
printf("WNC: IP Addr. # = %s\n", mySystem.ip.c_str());
printf("SIM: ICCID # = #%s\n", mySystem.iccid.c str());
printf("sI # = ¥s\n", mySystem.imei.c_str());
printf("SIM: IMSI # = %s\n'\n",mySystem.imsi.c_str());
// Create data to send to Flow
value = rand(); /I ret

— .

.

e i o it

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 193

Connecting to the Cloud: M2X and Flow

/cus P # ./c_10_http_to_flow
Hello World

Allocating Hardware Resources...
Exported -> Red LED (#38)
Exported -> Green LED (#21)
Exported -> Blue LED (#22)

Data service running
System Information

Module
: Apps Ver
Firmware
© MAL Ver.
: IP Addr.
+ ICCID
: IMEA
: IMSI

M18Q2FG-1
0E_v01.07.183121
M18Q2_v12.09.182151

= malm_75_v02.01.18087300
10.43.184.167
89011703278113077369
014814000341576
310170811307736

HOH R R H BB

Random value = 2072246913

Sending the data to Flow using the following command
url -X POST https://runm-west.att.io/e9215af2bBeea/8374c4f23615/fa5e6ab1a408526/in/flow/me -d "value=2072246913"

Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
36 100 16 22 9 0:00:01 0:00:01 --: -- 32

72246913","led":"green"}
Turning on Green LED...
Releasing Hardware Resources.
Unexported -> Red (#38)
Unexported -> Green (#21)
Unexported -> Blue (#22)

Program is exiting...

CUSTAPP #

Figure 5.34 -Results from ¢_10_http_to_flow/src/main.cpp

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 194

Sending SMS Messages

5.4. Sending SMS Messages

SMS (short message service) is a popular way to send Alerts and other short pieces of information. It's
also an easy way to communicate from your IoT project during development. While the SK2 does not
have built-in SMS messaging capabilities, it’s easy to get your kit sending messages through a third
party service. We highlight two of the most popular - and easiest to work with - in this section.

5.4.1. Twilio

Twilio is one of the leading mobile communications services. After setting up an account with them
you can try sending SMS messages right to your phone from your connected SK2.

Twilio is the larger, more professional of the two services we have provided examples for. They've
been working in the mobile communications space for a long time. While they are not the only service
available today, they make it easy to their services.

5.4.1.1.1. Setting up a Twilio Account

Twilio, as of this writing, still offers free trial accounts that allow you to try out the service. Once you
have signed up, you'll need to copy down a few items that will be needed when sending SMS
messages.

From the Dashboard you’ll need your Account SID and Auth Token. You can paste these into the shell-
script or Python examples that we’ve provided.

sgspecker@gmail... W e
A

Dashboard Account Dashboard
] Billing

Project Info

Usage
()
e Settings We've customized your dashboard based on the PROJECT NAME ‘@gmail.com's Account edit

products you selected. Use the product getting PP -
Upgrade] ACCOUNTSID ACQ
started guides to get up and running
AUTH TOKEN yiew
We can't wait to see what you build!

,9\ Owner 5% 1 manage &| 2FA Disabled edit

L i I T I o P ST

Figure 5.35 -Twilio Dashboard

The third item that you will need is either a Twilio or Verified phone number. You can find out more by
visiting their trial account page. (Note that we used a Twilio number when developing these examples.
It was very inexpensive over the two months we needed it.)

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 195

https://support.twilio.com/hc/en-us/articles/223136107-How-does-Twilio-s-Free-Trial-work-
https://support.twilio.com/hc/en-us/articles/223136107-How-does-Twilio-s-Free-Trial-work-

Sending SMS Messages

5.4.1.1.2. Flow

AT&T Flow makes it easy to send SMS messages through Twilio, as shown in the following Flow
project. This project takes loT temperature data, coming from M2X (via the HTTP IN node) and
processes the data. After processing, the data was posted to HookBin.com and SMS (via Twilio).

timestamp

=

[p?s_t]:fhm —_— hEvgr]g —_— Message

Figure 5.36 -AT&T Flow project with Twilio Node

The red Twilio node can be dragged from the palette and configured using the information from your
account. Configuring the Twilio node is a two-step process. Clicking on the Edit icon in the dialog on
the left takes you to a second dialog where you can enter your Twilio account details.

Edit twilio out node
Edit twilio-api node

Delete Cancel m
Update

Delete Cancel

& Twilio Me-Twilio v [& “
Account SID AC
#= Output SMS 5
& From 12165551212
ETo 12145551212
& Token sssssese
% Name Me
% Name Me-Twilio

Figure 5.37 -Configuring a Twilio Node in AT&T Flow

5.4.1.1.3. From the SK2 via cURL

The second method uses cURL to send a message to Twilio, who then forwards it to your recipient.
Twilio provides an API for development, but their Python SDK has not been ported to the SK2. We
couldn’t get an HTTP post working either, but thankfully, cURL works well from either Python or a shell-
script. (A C/C++ example hasn’t been created, but since example ¢c_10_http_to_flow uses cURL, it
would be easy to adapt for this purpose.)

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 196

Sending SMS Messages

The following Python example sends an SMS message using Twilio. You can find the shell-script
version of this example in the Chapter_05 directory in the SK2 User Guide Git. The example only

requires filling in the four items of information highlighted below.

Listing 5.26: Chapter_05/ex_11_send_twilio_sms.py

file: ex 11 send_twilio_sms.py

(ST

This example sends “data’ to afl SMS number using the Twilio.com service.
Twilio supports sending messages via CURL. Without a native CURL Python
module on the SK2, the example uses the os.system module to call CURL from
the Linux command line (i.e. shell out to the command line).

WOoea)

Using GPIO to read the wvalue of the pushbutton was discussed in Chapter 4.

#
#
#
#
#
#
#
#

11 import iot_mal
12 import iot_hw
12 import requests
14 import os

16 # Replace URL with one you get from your Twilio account
17 TWILIO_URL = r’https://api.twilic.com/2018-84-81/Accounts//Messages.json”
15 TWILIO SID P AC OO0 00000000

Import the Modem Abstraction Layer (

Allows access to SK2 hardware resourc
A simple HTTP library for Python, bui
Needed to call shell commands via "os

26 1,
. 18,
2)

19 TWILIO AUTH = r’ o000 oo 3
20 SM5_FROM = r"+12165551212"]
21 SM5_TO = r"+12145551212"

22

23 ##HHE Setup the MAL and data connection #HHHHEHERHHEHEHHEREHREHERRHBREREHERRERREREH

24 network_handler = iot_mal.network() # Connect to MAL.network E
25 Bnetwork_handler.set_connection_mode(4

Mode: @ - Always, 1 - On-demand
On-demand Timeout: Disconnect in minsJ
Manual Mode: 8 - Disconnect, 1 - Connéd
2 - Connect once

22 button = iot_hw.gpio(iot hw.gpio pin.GPI0 USER BUTTOM)
3 button.set_dir(iot_hw.gpio direction.GPIO DIR_INPUT)

=if button.read():

E button_state "up
27 Belse:
38 button_state = "down’

data = "Body="button": " + button_state

print(curly)

2 r = os.system{curly)

42 curl_url = "+ TWILIO_URL + "/" + TWILIO SID + "/Messages.json”
43 curl_cmd = " -X POST”
44 curl_to = " --data-urlencode 'To=" + SM5_TO + """
45 curl_from = " --data-urlencode 'From=" + SMS_FROM + """
46 curl_data = " --data-urlencode '" + data + """
47 curl_auth = " -u " + TWILIO SID + ":" + TWILIO AUTH
curly = "curl ' # curl_url + curl_cmd + curl_to + curl_from + curl_data + curl_auth

1
1

AT&T loT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE

pg. 197

Sending SMS Messages

5.4.2. IFTT1

The maker channel of If This Then That (IFTTT) provides another easy way to send yourself SMS
messages for free. While not recommended for production systems, this service works fine for maker
projects and the like.

Sending SMS messages from your SK2 requires a few steps:

1. Signing up for a free IFTTT account.

2. Adding your SMS (i.e. mobile phone) number to your IFTTT account.

https://ifttt.com/services/sms/settings

IFTTT E MyApplets = Activity Q Search

My Applets > SMS

SMS settings

View activity log

Account Info

Phone Number: 2145561212
Ifttt Phone Number: (415)-555-1212
Status: active

Edit connection

Disconnect SMS
a—— amenanet~

3. Creating an IFTTT Webhooks applet.

https://ifttt.com/maker webhooks

Using the maker webhooks you can generate an IFTTT event. These events can be used to trigger
any applet, though we just used it to trigger an SMS message.

IFTTT E MyApplets = Activity Q Search

Documentation % Settings

s

Webhooks

Integrate other services on IFTTT with your DIY projects. You can create
Applets that work with any device or app that can make or receive a web
request. If you'd like to build your own service and Applets, check out the

IFTTT platform.

Clicking on the Documentation link takes you to a screen that explains how the service works.

AT&T loT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 198

https://ifttt.com/services/sms/settings
https://ifttt.com/maker_webhooks

Sending SMS Messages

Your IFTTT account will generate a unique key, such as that shown below (phiOVWW9_4847GHBSS:i).
Using this key, you can create custom URLs to signify different maker events. Try filling in the
“event” field on the documentation screen, then hitting “Test It”.

&S

Your key is: phiOVVW9_4847GHBSSi

Back to service

To trigger an Event
Make a POST or GET web request to:

https://maker.ifttt.com/trigger/| {event} |/with/key/phiOVVW9 4847GHBSSi
With an optional JSON body of:

{ "value1” : " ", "value2” : " ", "value3” : "}

The data is completely optional, and you can also pass value1, valuez, and value3 as query parameters or form variables. This content will be
passed on to the Action in your Recipe.

You can also try it with cur1 from a command line.

curl -X POST https://maker.ifttt.com/trigger/{event}/with/key/phi0VVNS_4347GHBSSi

AT&T IoT Starter Kit (2nd Generation) User's Guide - Wide Area Networking with LTE pg. 199

Appendix

Topics

A 0] 0T o o | SRR 200
e o) o2 TR 200
B € (0 E T SRS RPS 201
A2. What is, and how do you CONFIGUIE, tNE APNP........eeeeeeeeeeeeeeeeeetee et eee e te e e e see e s e s e sarenaeesnnes 203
LAY T T T o AN 203
e T g AL o NV V7Y T 203
ST U 1RS]S 203
BT A A 203
0T TV A A 205
A3. General PUrpoSeE Bit [/O (GPIO) ..uucceeecieeseeeieieseeessttasstesssstassae s st s s ssnassessssnsssessssnassesssnasasensnnas 207
LAY T T T [207
SK2 GPIO Pins for LEDS and PUShDUTIONSuuiiiiii ittt ee e e e e e e e e e s e e e nnnnnees 208
GPIO Pin Numbers — WNC VS QUAICOMM ...uuuiiiieiiieciirieieeseeeiirneeeesseessnnseeessessssnnseesesssesssnnssseesssas 209
T 5 o [I T4 V7= 210
Deallocating GPIO RESOUITESueiiiiiiieeee et s e s e ene s 214
A4. More Details about the LinUX BOOt SEQUENCE........ueeeeeeeeeeeeeeeeieeeeeeseeietieeaeeesesieseeesesssessnsseeenensnas 217
Getting 10 CUSTAPP-POSTINIT.SN ..eeeeeeee e e e e e e e e e e nneeeas 217
AS. TroublesShOOtiNg “@AD UEVICES”........eeieeieeeece ettt 220
A5.1 Cannot find ADB COMMEANG ... ccciiiiieescecseere e e s e e eeeanr e e e e e s e s snnsee e e e s s e e nnsneeeessessnnnnnees 220
A5.2 Execute From ADB Dir€CTOIYueiiieeiieeeeeeeieeeseee st e s e s e sse e s sne e e sne e s e e sne e s ne e sneesnnas 221
AS5.3 WNC_ADB UNAULNOTIZEAciieeeeeceieeecee e ceeee s et e e s e e s e e s et e s e sane e s seane e e e s ne e e sennnn e s snnnneennan 222

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 200

A1. Glossary

Al. Glossary

APN (Access Point Name)

The APN is the endpoint where cellular communications enter a cellular carrier’'s mobile network.

Or, as Wikipedia says, an Access Point Name (APN) is the name of a gateway between a GSM, GPRS,
3G or 4G mobile network and another computer network, frequently the public Internet.

The APN’s network must be provisioned to recognize each SIM card that wants communicate with it.
Based on this, most cellular phone SIM cards will not be able to communicate with loT APN’s and vice
versa.

Embedded System

Embedded Systems are small systems that generally provide a static set of functionalities aimed at
addressing a problem. Think, for example, that your microwave oven cooks food, but that’s about it.
Similarly, your thermostat controls your heating and air conditioning, but is limited to that functionality,
too.

EOL (End of Line)

The end-of-line character(s) - also known as “newline” - tell software reading a document that a line
of text has ended. While this is a relatively straightforward concept, Mac/Linux/Unix and Windows use
different characters (or sets of characters) to signify EOL.

— Mac / Linux / Unix use a line-feed (LF) to signify the end of a line.

— Windows uses line-feed (LF) and a carriage-return (CR) to end a line.

GPIO (General Purpose Input/Output)

Processors (e.g. microprocessors, microcontrollers) have various ways to communicate with external
devices, the most basic of which is GPIO. GPIO generally refers to talking across a single pin of the
device. With a single pin the device can receive or send (i.e. the input and output in GPIO) an “On” or
“Off” value using a higher or lower voltage, respectively. Programmers describe this On/Off
communication using a “bit” (binary digit) which can have the value “1” or “0”. In light of this, it's easy
to understand why many users commonly define GPIO as “General Purpose Bit I/0”.

LED (Light Emitting Diode)

A light-emitting diode is a semiconductor light source. It's a diode that emits light a suitable current is
applied to it. LEDs can be created in a variety of colors.

Microcontroller (MCU) / Microprocessor (MPU)

The terms processor, microprocessor, and microcontroller are used fairly interchangeably nowadays.
They generally refer to an integrated circuit (i.e. semiconductor) that can be programmed with
software to implement a variety of tasks.

The microprocessor originally consisted of a block called the central processing unit (CPU) which
handled the execution of software mainly consisting of logical, arithmetic, and control instructions. The
term “micro” processor referred to their small size as compared to the original computers (which were
often room-size). While processor is a general term for “processing” things, it has also become an
abbreviated way to reference microprocessors. Likewise, the acronym “MPU” is used for a long list of
terms, one of which is “microprocessor”.

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 201

https://en.wikipedia.org/wiki/Gateway_(telecommunications)
https://en.wikipedia.org/wiki/Global_System_for_Mobile_Communications
https://en.wikipedia.org/wiki/General_Packet_Radio_Service
https://en.wikipedia.org/wiki/3G
https://en.wikipedia.org/wiki/4G
https://en.wikipedia.org/wiki/Cellular_network
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Internet

A1. Glossary

The term microcontroller (MCU) was created in 1971 when engineers from Texas Instruments put all
the building blocks of a computer onto a single integrated semiconductor. You can think of MCU’s as a
superset of the microprocessor. Along with the CPU (found in the microprocessor), they added memory
and input/output peripherals.

Over the years both types of processors have become more and more integrated with the addition of
different types of memory and peripherals. In fact, it can difficult to tell them apart in todays processor
market. Vendors still use the term microcontroller, though, to refer to their processor chips which
include Read Only Memory (ROM) - such as Flash EEPROM (electrically eraseable programmable read
only memory). Devices use ROM memory to store software instructions, thus making them stand alone
computer devices. Microprocessors, on the other hand, require an external ROM-like memory chip to
store their instructions, which are usually loaded into fast RAM (read-write memory) at boot time (i.e.
startup). In these days of highly integrated circuits, microprocessors still use an external memory chip
because inexpensive read-only memory circuits are not fast enough to keep up with the high clock
rates of MPU’s.

Operating System (OS or O/S)

An operating system is system software that manages computer - or embedded system - hardware
and software resources and provides common services for computer programs.

The OS is often thought of the support infrastructure for the program that users what to run. For
example, a user may want to run a want to run a word processor. The OS does not include a program
such as this, but it provides underlaying software support for such programs.

Similarly, looking at an embedded system example - say, an Internet connected thermostat. The
operating system would not provide the logic to control the heating and ventilation (HVAC) unit, but it
would provide services to the embedded software that runs the HVAC unit.

SIM (Subscriber Identity Module)

A subscriber identity module or subscriber identification module, widely known as a SIM card, is an
integrated circuit that is intended to securely store the international mobile subscriber identity number
and its related key. These are used to identify and authenticate subscribers on mobile telephony
devices

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 202

A2. What is, and how do you configure, the APN?

A2. What is, and how do you configure, the APN?
What is “APN”?

According to Wikipedia:

An Access Point Name (APN) is the name of a gateway between
a GSM, GPRS, 3G or 4G mobile network and another computer network, frequently
the public Internet.

In other words, the APN is the endpoint for the cellular network that your loT Starter Kit connects to.
This value is not embedded into the SIM card; therefore, you may need to configure this if it's not
connecting to the network properly.

Note, AT&T cellular phones (as well as other vendors) use different APN addresses. As such, you
cannot generally use a SIM card provisioned for a cellular phone in your AT&T loT Starter Kit. You must
use the SIM card that comes with the Starter Kit or purchase a new loT SIM from the AT&T
Marketplace. (Note that SIM cards are defined in Chapter 1.)

Starter Kit APN value

The APN for our Starter Kit:
m2m.com.attz

Your board should be pre-configured with this value. If not, you will need to modify your board’s
configuration before it can connect with the network.

Prerequisites

The following procedure requires:

e ADB connection to your starter kit. (Chapter 2 - ADB)
e Rudimetary knowledge of Linux filesystem. (Chapter 2 - Filesystems)

View APN

The APN for your SK2 is stored on your kit in the malmanager.cfg file. If you are comfortable with
editing using the “vi” editor, you could connect to your SK2 (using “ADB shell”) and directly view this
file. Alternatively, you can pull this file over to your computer and view it with any text editor.

The following command will “pull” a copy of the malmanage configuration file from your SK2
filesystem to the “adb” folder on your computer.

adb pull /data/user/mm_conf/malmanager.cfg C:\adb\

You don’t have to use the “adb” folder, but that is where we copied it to on our Windows computer.

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 203

https://en.wikipedia.org/wiki/Gateway_(telecommunications)
https://en.wikipedia.org/wiki/Global_System_for_Mobile_Communications
https://en.wikipedia.org/wiki/General_Packet_Radio_Service
https://en.wikipedia.org/wiki/3G
https://en.wikipedia.org/wiki/4G
https://en.wikipedia.org/wiki/Cellular_network
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Internet
https://marketplace.att.com/products

A2. What is, and how do you configure, the APN?

Once the file is on your computer, you can search for “name” to see if it's set to the correct value (i.e.

m2m.com.attz). You can see a picture of the “name” in the diagram below.

For the comparison in Figure (Appendix) A-1, we copied the malmanger.cfg from both a working
SK2 (left) and a non-working SK2 (right). Notice how the APN in the working system includes
“m2m.com.attz”, while the non-working system does not.

Q 1_malmanager.cfg <--> 2_malmanager.cfg - Text Compare - Beyond Compare - O x
Session File Edit Search View Tools Help I}
@ @ [*x = = H o= | & B .| 2 | # ‘ v 4 & 9
Home Sessions All Diffs Same | Context Minor | Rules Format Copy = Edit Next Section Prev Section | Swap Reload
|C:\adb\1_malmanager.dg ~ B~ |C:\adb\2_ma|manager.cfg - B~
9/14/2018 1:25:04 PM 5330 bytes Everything Else ~ ANSI ~ UNIX 9/14/2018 1:20:18 PM 5,304 bytes Everything Else ~ ANSI ~ UNIX
CONNECT_THRESHOLD = 6; A CONNECT_THRESHOLD = 6; f\
DORMANT_TIME = 3@; DORMANT_TIME = 3@;
HE—3 DATA Roaming = "on"; DATA Roaming = "on";
_— APN_SEL_MODE = “selection”; APN_SEL_MODE = "selection”;
_ AUTO_APN : AUTO_APN :
| — { i
— LIST = "/etc/autoapn.list"; LIST = "/etc/autoapn.list";
— PDN = "ipv4"; PDN = "ipv4";
roaming_PON = "ipv4"; roaming_PDN = "ipv4";
= name = "m2m.com.attz"; & name = "internet";
username = ""; username = "";
auth = "none"; auth = "none";
password = ""; password = "";
prefix_delegation = "off"; prefix_delegation = “off";
clat = "off"; clat = "off";
I ¥
MANUAL_APN : MANUAL_APN :
{ i
= name = “m2m.com.attz”; @ name = “"internet";
dial no = ""; dial_no = "";
username = ""; username =
password = ""3 password =
auth = "none”; auth = "none”;
PDN = "ipva"; PDN = "ipv4";
roaming_PDN = "ipv4"; roaming_PDN = “ipv4";
prefix_delegation = “off"; prefix_delegation = “off";
clat = "off"; clat = "off";
I ¥
DEFAULT_APN_PROFILE = 8; DEFAULT_APN_PROFILE = @8;
SECOND_APN_PROFILE = 1; SECOND_APN_PROFILE = 1;
THIRD_APN_PROFILE = 2; THIRD_APN_PROFILE = 2;
PROFILE_APN = (PROFILE_APN = (
{ {
index = @; index = @;
profile_name = "Default Profile”; profile_name = “Default Profile";
=] name = "m2m.com.attz"; 4 name = "broadband";
dial ne = ""; dial no = "";
username = ""; username = "";
password = "" password = "";
auth = "none®; auth = “none";
PDN = “"ipva"; PDN = “ipva";
roaming_PDN = "ipv4"; roaming_PDN = “"ipv4";
prefix_delegation = "off"; prefix_delegation = "off";
clat = "off"; clat = "off";
1 b
{ { y
index = 1; index = 1;
profile_name = “ATT LwM2M"; profile_name = “ATT LwM2M"; *
=} name = "m2m.com.attz"; =] name = "attwlc"; °
dial ne = ""; v dial_no = ""; ¥
1: 1 Default text < > 1:1 Default text < >
=PMALD_CMD- = "/usr/sbin/mald";
[PMALD_CMD-=:"/fusr/sbin/mald™;
8 difference section(s) Same Insert Load time: 0.06 seconds
Figure (Appendix) A-1 - Malmanager.cfg comparison
AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 204

A2. What is, and how do you configure, the APN?

Modify APN

To modify the APN for your SK2, you need to edit malmanager.cfg to include the proper APN value
specified by your cellular carrier. For the SK2, that means using “m2m.com.attz”.

Edit in Place

You can edit your APN “in place” by connecting to the SK2 and changing the APN.
1. Verify that your computer is connected to the SK2.
ADB devices
2. Open a remote session on your SK2.
ADB shell
3. Change to the mm_conf directory.
cd /data/user/mm conf
4. Edit malmanager.cfg with vi.
vi malmanager.cfqg

5. Change the APN, as required using “vi”.
See Chapter 2 - vi for more info.

6. Power-cycle your SK2.

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 205

A2. What is, and how do you configure, the APN?

Edit on your Computer

Alternatively, you can pull the malmanager.cfg file over to your computer. Edit it and then push it back
onto the SK2.

1. Verify that your computer is connected to the SK2.
adb devices
2. Pull the malmanager.cfg file onto your computer. (We chose to place it into our “adb” folder.)
adb pull /data/user/mm conf/malmanager.cfg C:\adb\
Replace C:\adb\ as needed for your OS and preference.

3. Change the APN, as required using your favorite text editor.

Windows users, make sure you save the file using Unix/Linux/Mac line-endings.

4. Rename the original file.

adb shell mv /data/user/mm conf/malmanager.cfg /data/user/mm conf/malmanager.cfg.orig

5. Push the file back onto your SK2.

adb push malmanger.cfg /data/user/mm conf/

6. View the new and original files.

adb 1ls /data/user/mm conf

5M5 . ¢

lan

5ms

routing

ggeeeaal
Ch

7. Power-cycle your SK2 to utilize the new APN.

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 206

A3. General Purpose Bit I/0 (GPIO)

A3. General Purpose Bit I/0 (GPIO)
What is GPIO?

From the glossary we find GPIO defined as:

Processors (e.g. microprocessors, microcontrollers) have various ways to communicate with external devices,
the most basic of which is GPIO. GPIO generally refers to talking across a single pin of the device. With a
single pin the device can receive or send (i.e. the input and output in GPIO) an “On” or “Off” value using a
higher or lower voltage, respectively. Programmers describe this On/Off communication using a “bit” (binary
digit) which can have the value “1” or “0”. In light of this, it's easy to understand why many users commonly
define GPIO as “General Purpose Bit I/0”.

In other words, GPIO allows us to send or receive a single bit of information at a time through one of
the GPIO pins on a processor. While multiple GPIO pins on a device could be grouped together to send
larger numerical values than 1 or O, a single bit of information is actually quite useful in embedded
systems. With a single bit we can control lights (e.g. LED) or read the value of a switch. Similarly, we
could use it to control whether a motor - or just about anything - is on or off. Of course, there is a
limited amount of power that can be supplied by a microcontroller’s pin, but the GPIO pin can be used
to control a relay or driver that can supply a much greater amount of power to a circuit.

Looking at at a simple circuit connecting an LED to a GPIO pin we see:

Resistor

4
2 LED

Ground

Figure (Appendix) 2 - Generic LED Circuit

In this example, the GPIO pin is supplying the voltage and current which travels through a resistor, the
LED, and then into ground. When the pin is set to low (i.e. “0”), there is little to no voltage difference
between the pin and ground and therefore the LED is off. Conversely, when the pin is set high (i.e.
“1"), the voltage drop between the pin and ground is large enough to allow the LED to turn on.

Note: If you were building this circuit, you would choose a resistor value that allows the full (or
desired) brightness of the LED without burning it out.

The LED circuits on the SK2 board are a bit fancier than what we have shown here, but the premise
still holds. By setting the GPIO pin on the processor module to “1” or “O” we can turn the associated
LED on or off.

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 207

A3. General Purpose Bit I/0 (GPIO)

SK2 GPIO Pins for LEDs and Pushbuttons

As shown in Chapter 1 (Hardware Overview), the SK2 provides a few user-controllable items

connected to GPIO lines on the WNC module. They include:
e WWAN LED - which uses 1 GPIO pin.

e RGB LED - which uses 3 GPIO pins to control the Red, Green, and Blue individual colors.

e User push-button switch - which uses a GPIO pin to input the physical state of the switch.

The SK2 schematic shows how the GPIO lines are connected to each user
component. For example, here’s a clip of the schematic showing the RGB
LED.

From this diagram, we can see that the following GPIO pins are connected
to the RGB LED colors:

GPI1092 Red LED
GPIO101 Green LED

GPI10102 Blue LED

Therefore, we need to set the values on these three pins to turn the
associated LEDs on/off, which is discussed in Chapter 2 where we
demonstrate controlling LEDs from the Linux Shell. In fact, one of the
examples takes this a step further by showing how to blink an LED, turning
it off/on once per second.

By speeding up the blinking to a rate fast enough that the human eye
doesn’t perceive blinking anymore, you could effectively control the
brightness of each LED. And with the RGB LED, by similarly controlling all

RGB LED

SHD

Figure (Appendix) 3 - RGB
LED Schematic

three LEDs and their brighnesses, it’s possible to create the effect of generating a wide array of colors.

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix

pg. 208

A3. General Purpose Bit I/0 (GPIO)

GPIO Pin Numbers - WNC vs Qualcomm

As discussed earlier in this document, the 10T Starter Kit (2n4 generation) board includes the WNC
M18Q2FG-1 LTE module. If we could look inside the WNC module, we would find it contains a
Qualcomm processor, which is at the heart of the SK2.

WNC M18Q2FG-1 SK2 Board
Module

Qualcomm
Processor

Figure (Appendix) 4 - SK2 Nested Processor Modules

The GPIO pins from the Qualcomm processor are routed to pins on the WNC module... which are then
routed to the various components on the SK2, such as the LEDs. As often happens when building

systems up from various components, WNC pin numbers don’t exactly match with those coming from
the Qualcomm processor. Here’s a table that describes the GPIO pin numbers we are concerned with:

SK2 Component WNC Pin Number Qualcomm Pin Number
USER Button GPI098 GPIO_MDM_GPI023
RGB - Red LED GP1092 GPIO_MDM_GPIO38
RGB - Green LED GPI0101 GPIO_MDM_GPI021
RGB - Blue LED GPI0102 GPIO_MDM_GPI022

Using this table as a key, we can figure out how to design the hardware or software. Since the SK2
hardware designers were building the board using the WNC module, their design schematics show the
WNC GPIO pin numbers (e.g. Red LED connected to GPIO92).

On the other hand, since software actually runs on the Qualcomm processor inside the WNC module,
software should be written using the Qualcomm pin number. For example, from the Linux shell we can
use the Linux “echo” command to write a “1” to Pin 38 to turn on the Red LED. (We explain what
“/value” means in the next section.)

echo 1 > gpio38/value

Note that code examples for controlling LED’s using Python and C will be described in Chapters 3 and
4.

Note: The WWAN LED is driven by the WWAN pin on the WNC module. As such, it does not connect
to a general purpose GPIO pin which is why it was not listed in the WNC vs Qualcomm table.

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 209

A3. General Purpose Bit I/0 (GPIO)

Linux GPIO Drivers

By choosing Linux for the SK2, its developers were granted access to the various services in the O/S.
In this case, it means they were able to utilize the Linux GPIO driver architecture. But it's not only the
developers who benefit by using standard Linux drivers, SK2 users also get to use a common,
standard driver API for GPIO. If you're experienced with Linux, the following should be familiar to you; if
you're new to Linux, you’'ll not only learn how to use the GPIO driver for the SK2, but this knowledge
will likely by useful if you ever use another Linux based system.

GPIO Driver Architecture

As discussed in Chapter 2 (Kernel Space vs User Space), the Linux Kernel owns all the hardware
resources. Users must request access - or call Kernel functions - to gain access to these resources.
Such is the case with GPIO. The Linux GPIO driver architecture provides a standard methodology for
accessing and reading/writing the available GPIO pins in the system.

When a User request is granted by the Linux Kernel, it will become available under the Sysfs (“system
file system”) directory in the Linux filesystem. Specifically, it will be found in:

/sys/class/gpio

Also mentioned back in Chapter 2 (Virtual Files), that while its obvious that a GPIO pin is not a real file,
upon request, Linux will create a virtual file interface for each available GPIO pin that you can read or
write. For example, writing a “1” to this virtual file will set the associated GPIO pin “on” (i.e. high
voltage).

GPIO Control Interface

The Linux GPIO driver provides two functions for controlling User access to a GPIO pin:
export Request kernel to export control of GPIO pin to userspace
unexport “Return” control of GPIO pin back to kernel
Note that once you “export” a pin, unless you export it, it will be available until you power-down or

reset the device. In other words, it's common to “export” the pins you need during your programs
system initialization code.

GPIO Signal Interface

Once exported, access to GPIO pins are found along the /sys/class/gpio path. For example,
gpio38 would be found in the filesystem at:

/sys/class/gpio/gpio38

Even further, working with each GPIO is structured around a standard set of read/write attributes.
direction Defines which direction (“in” or “out”) should be assigned to a given pin.

Note that the the SK2 hardware is fixed for the GPIO pins being discussed;
in other words, you cannot change how the hardware works by using this
signal, rather, you must apply the value as assigned by the hardware

(i.e. “out” for LED, “in” for button).

value Represents the “value” of the pin. For input direction, reads as either a
0 (low) or 1 (high). When used as an output, writing a O sets the pin “low”,
while any non-zero value sets it “high”.

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 210

A3. General Purpose Bit I/0 (GPIO)

LED Examples

Considering the previous discussions for the SK2 GPIO assignments and the Linux GPIO driver
architecture, the following shell code example turns “on” the RED.

Listing (Appendix) 1 - # TurnOnRedLed.sh

TurnOnRedLed
#

#

This simple example turns

.sh

cd /sys/class/gpio

echo 38 > export
echo out > gpio38/direction

echo 1 > gpio38/value

on the Red RGB LED

Listing (Appendix) 2 - Turn off Red LED

#

#

echo out > gpi

echo 0 > gpio3

This simple example turns

TurnOffRedLed.sh

cd /sys/class/gpio

echo 38 > export

038/direction

8/value

off the Red RGB LED

Like the export command, the direction persists until the system is reset or powered off. Thus it can

also be set once in your prog

ram'’s initialization code.

The following blink example simply blinks the Blue LED five times.

Listing (Appendix) 3 - Blink the Blue LED five times

blinkBlue.sh

- 'sleep 1"
- At the end

e

cd /sys/class/

echo 22 > expo
echo out > gpi

for var in a b
echo 0 >
sleep 1
echo 1 >
sleep 1

done

echo 0 > gpio2

This is a simple example for blinking the Blue RGB LED five times
- The For loop executes once per character (a thru e)

causes the cpu to wait 1 second

of the script, the LED
gpio

rt
022/direction

c d e; do
gpio22/value

gpio22/value

2/value

is turned off

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix

pg. 211

A3. General Purpose Bit I/0 (GPIO)

USER Button Examples

The USER button on the SK2 is like the LED example except that we set it up as an input and read the
value from the virtual file.

Hint: The SK2 button hardware was designed so that the button is “up” by default and therefore
reads as “1”. When pressed down, the button will read as “0”.

The first button example makes use of the Linux “cat” command. You may remember that this will
read the contents of a file and write it to the standard output (i.e. your ADB shell terminal - refer to
Chapter 2 for a listing of common Linux shell commands as well as how to use the ADB shell.)

The example also sleeps for 3 seconds after reading the switch, letting you change the state of the
button - that is, pressing it down - before reading the button again.

Listing (Appendix) 4 - Reading USER Button

userButtonCat.sh

#
This is a simple example reads the value of the user button
and outputs the value (using 'cat') to the command line.

It then waits 3 seconds and does it again#
cd /sys/class/gpio

echo 23 > export
echo in > gpio23/direction
cat gpio23/value

sleep 3
now hold-down the USER button and press up-arrow to repeat previous command
cat gpio23/value

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 212

A3. General Purpose Bit I/0 (GPIO)

The second button example reads the value of the button and turns on either the Red or Green LED.

Listing (Appendix) 5 - USER Button Lights Green or Red LED

userButtonLed.sh

This example reads the value of the user button and turns
on either the Green or Red RGB LED depending upon the value
of the user button

EE

Go to the GPIO directory
cd /sys/class/gpio

Grant user-space access to all 3 LEDs and the USER button

USER button
echo 23 > export
echo in > gpio23/direction

Green LED
echo 21 > export
echo out > gpio2l/direction

Blue LED
echo 22 > export
echo out > gpio22/direction

Red LED
echo 38 > export
echo out > gpio38/direction

Turn off all three LEDs
echo 0 > gpio38/value
echo 0 > gpio22/value
echo 0 > gpio2l/value

Read the value of the USER push button into "val"
val=$ (cat gpio23/value)
echo $val

Turn on LED

if [$val -gt 0]

then
If "up" turn on Green LED
echo 1 > gpio2l/value

else
If "down" turn on Red LED
echo 1 > gpio38/value

fi

Further Reading

For further details, you may want to refer to:
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix

pg. 213

https://www.kernel.org/doc/Documentation/gpio/sysfs.txt

A3. General Purpose Bit I/0 (GPIO)

Deallocating GPIO Resources

It likely goes without saying that most programmers realize that they should deallocate any resources
they used at the end of their programs. Needless to say, our early blink LED examples did not, which
caused problems when running and debugging them. To address this, we added the deinit() function
as well as testing for whether we obtained the resource during init(). The differences can be seen in

this comparison:

Cihgithub'sk2-Users-Guide\Chapter_03\api_red_led\src\main.c

v‘ E‘ - ‘C:\g\thub\skZ-Users-Gu\dE\Chaptar_O}\apl_rad_led_wwth_de\mt\src\mam‘c

V‘ =

12/3/2018 6:48:44 AM 1,693 bytes C,C++,C#0bjC Source v ANSI = PC

#include-<stdint.h>
2 #include-<stdio.h>
: #include- <unistd.h>
4 #include-<stdlib.h>
s #include- <hwlib/hwlib.h>

7 #define- LED_RED GPIO_PIN_92

5 #define- LED_GREEN GPIG_F‘IN:IBZL
5 #define- LED_BLUE GPIO_PIN_182
0 #define-USER_BUTTON GPIO_PIN_98
2 #define- SECOND 1868808

3 #define- NUM_BLINKS 3

: int-main(void)- {

: int i-=0;

int-ret;

gpio_handle_t- - -myGpio;

24 gpio_dir(myGpio, - GRIO_DIR_OUTPUT);
3 //+Blink NUM_BLINKS: times
a7 for: (i 1< NUM_BLINKS; - i++:)
28 {
23 gpio_write(-myGpio,-GPIO_LEVEL_HIGH:);
£l usleep(-1-*:SECOND-);
£ gpio_write(-myGpio, -GPIO_LEVEL_LOW:);
3 usleep(-1-*:SECOND-);
at oo}
=
return-o;

12/3/2018 6:48:44 AM 2,141 bytes

#include: <stdint.h>
#include: <stdio.h>
#include: <unistd.h>
Jrinclude: <stdlib.h>

s #include- <hwlib/hwlib.h>

7 #define- LED_RED GPIO_PIN_92

#define- LED_GREEN GPTO_PTN_181
#define- LED_BLUE GPIO_PIN_ 182

o #define-USER_BUTTON GPIO_PIN_98
#define- SECOND 1688800
#define NUM_BLINKS 3

3 usleep(-1:*: SECOND-);
gpio_write(-myGpio, GPIO_LEVEL_LOW-);
usleep(-1:*: SECOND-);
ag }
{340 eeegpio_deinit(sRmyGpios Jze e e e aniiiiiii e
4
2 return: 2;
4 }

int-main(void)-{
inti-=8;
int-ret;
gpio_handle_t: - -myGpio;

printf("Hella: Gpio\n");

//-Initialize-GPIO- for-Red-LED
ret-=-gpio_init(- LED_RED, -&myGpio-);

508470 ({7E0 =aE})o fo05905000 0060000000009 00003000008003000030T
printf("ABORT: - Could-not-initialize-Red-LED: (ret-=-%d)\n",-ret);H

exit(1);H
gpio_dir(myGpio, - GPIO_DIR_CUTPUT);

//+Blink+ LED+NUM_BLINKS: times
for: (+i-=:@;-i < NUM_BLINKS;- i++)
{

gpio_write(:myGpio, - GPIO_LEVEL_HIGH:-);

C,C++,C£0bjCSource » ANS| ~ PC

/-Needed- for- printf()
/-Needed- for-usleep()
Needed: for-exit()

/-Needed- for- WNCSDK-GPIO- APT

//+1oop- counter
//-return-value
//-GPTI0- pin-handle

//-GPI0- call- to-initialize-RED- LED!
//-gpio_init()-returns: '@"-upon-successful: completionn

//-set-direction-of-GPIO- pin- to- ‘output’

//+Turn+on:the:Red: LED
//+Wait: 1+ second

//f+Turn: off+ the:Red- LED
//+Wait: 1+ second

---------------- //+Release: the:GPI0: resourcel

This Appendix discusses what went wrong with the original example as well as our experiences
debugging the example.

AT&T IoT Starter Kit (2nd Generation) User's Guide - Appendix

pg. 214

A3. General Purpose Bit I/0 (GPIO)

What’s wrong with this example?
The original code (api_red_led/src/main.c) runs, so what’s wrong with it?

Try running it a second time (without power-cycling the board) and you see that it fails. This is because
we allocated the GPIO pin to our program but did not deallocate it before exiting the program. In fact,
even when we fixed this problem (discussed next) it can still cause problems when debugging buggy
code.

We can easily solve the allocation/deallocation problem by inserting the following line of code at the
end of the program:

gpio deinit (&myGpio);

This line deallocates the GPIO pin resource once we are done using the pin, but before exiting the
program. It's always good programming practice to release any resources - especially shared
hardware resources - before exiting your programs.

But wait, there’s another problem with this code example... we never checked for a valid return (“ret”)
from the gpio_init() function. Therefore, this example doesn’t even recognize the case where the GPIO
pin might have been allocated to a different program. These types of resource collisions can be very
difficult to find. It's always good practice to verify function return values and handle the problem
‘elegantly’ when a resource conflict occurs.

You can find an example that addresses both issues in the User Guide code examples. Look for the
following Chapter 3 project:

Chapter 03/api red led with deinit

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 215

A3. General Purpose Bit I/0 (GPIO)

API GPIO Init Problems When Debugging

It’s not uncommon to iterate between editing and debugging your code - whether writing in C, shell
scripts, or Python. We invariably start out with bugs in our code and slowly fix them all until the
program is running smoothly.

What happens when the program fails between initializing a GPIO pin (as in the preceding example)
and using it? Since we don’t finish executing the program, the GPIO pin doesn’t get de-initialized. Thus,
unless you’'re rebooting your SK2 between each iteration, the next call to initialize the same GPIO pin
will fail. And, since your new program did not initialize the resource, you cannot even call the
gpio_deinit() API function to de-initialize it.

Looking back to the file i/o version of the program, we can guess that the gpio_init() function is -
among other things - exporting the pin to user space. Once exported, the gpio_init() function was not
written such that it can re-export the pin.

You can simulate this problem by running the fileio red led program, which exports the red LED
pin (but doesn’t unexport it), before running the api red led program. The “api” version of the
program fails because it cannot successfully initialize the pin with gpio_init().

> ./fileio red led

> ./api_red led <--- Fails to run

You can solve this problem by “unexporting” the pin before calling the api _red 1led program. Doing
this allows the gpio_init() function to successfully allocate the pin. The programs fileio export and
fileio unexport allow you to easily export or unexport the GPIO pins, which can be handy when
testing and debugging your programs.

> ./fileio red led
> ./fileio unexport

> ./api_red led <--- Successfully runs

Besides debugging, how might this affect you?

1. When your program is running in production, it’s not likely that you will run into this problem -
unless your program fails and it’s restarted without rebooting the board.

2. Your program can borrow from the fileio unexport program, forcing the GPIO pin to be
made available by writing to the GPIO pin’s unexport virtual file.

3. Forcing a pin to be available (i.e. unexported) in a program may solve ‘your’ problem... but this
may create problems with ‘other’ programs. Unlike non-Linux embedded systems, Linux allows us
to execute many programs simultaneously. This can be a convenient way to build (or add)
functionality into your embedded system. But “stealing” resources (as described in #2) will cause
one program to run while crashing another.

4. If two programs MUST share a hardware resource, such as a pin, you must handle this in advance.
There are many examples discussed across the Internet - and in Universities - for handling
resource conflicts. We've even seen cases where one program thread owns the resource and
handles requests from many other program threads.

In the end, you will need to plan how - and where - to allocate the resources available to your system.

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 216

A4. More Details about the Linux Boot Sequence

A4. More Details about the Linux Boot Sequence

Chapter 2 (Linux Boot Sequence) provided the simple answer to “How does the QuickStart boot
automatically run at startup?” The QuickStart program (called iot_monitor) is started by the script

/CUSTAPP/custapp-postinit.sh

which is always run by Linux once the boot process has completed. This chapter provides further

details for how this script gets run.

The following discussion is only background information, though, since the scripts leading up to

custapp-postinit.sh reside in read-only memory on the SK2.

Getting to custapp-postinit.sh

We won't start at the beginning of the Linux boot sequence, but rather at the at the point where it runs

a set of scripts found in the “/etc/rc5.d” directory.

/ # 1s -1 /etc/rc5.d/

Figure (Appendix) 5 - Listing /etc/rc5.d

t 1
t
t
t
t
t
t
t
t
t
t
t
t
t

ct
t
t
t
t
t
t
t
t

ct

Ideally a very skilled system administrator can modify these scripts files to change the system options
and programs that get started at boot time. (But as we said above, on the SK2 these files reside in

read-only memory and cannot be changed.)

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix

pg. 217

A4. More Details about the Linux Boot Sequence

During the boot process, Linux executes these files in numerical order. “SO1” is executed first,
followed by “S15”, then “S20”, and so on. The following diagram highlights this sequence.

Linux Startup Process | -
Run Level 5 —) S01 neﬂorklng
-

| S15chgrp-diag |

— This file does
| S20hwclock.sh not exist
— by default

| S20syslog |

-
| S25host-mode-preinit.sh |»I ICUSTAPP/custapp-preinit.sh

| S29init_irsc_util |

§99malmanager

—

S99power_config

—

-
S99stop-bootlogd

-
S99wnc_fwup |

| S99rmnologin.sh

S100host-mode-postinit.sh |»I /ICUSTAPP/custapp-postinit.sh Iﬂ /CUSTAPP/iot/run_demo.sh |
-

| lot_monitor |

Figure (Appendix) 6 - Linux Boot Sequence - running files from /etc/rc5.d

Note that S25host-mode-preinit.sh executes 4th - or better put, very early in the boot process
- while S100host-mode-postinit.sh executes last or very late in the process.

Viewing the contents of /etc/rc5.d/S25host-mode-preinit.sh we see:

Listing (Appendix) 6 - /etc/rc5.d/S25host-mode-preinit.sh

#!/bin/sh

if [-e /data/custapp-preinit.sh]; then
chmod +x /data/custapp-preinit.sh

. /data/custapp-preinit.sh

fi

Looking at this file, we see that the S25host-mode-preinit.sh file calls /data/custapp-
preinit.sh, and this is started early in the process.

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 218

A4. More Details about the Linux Boot Sequence

From Chapter 2, remember /data is a link to /CUSTAPP. Examining that directory:

/CUSTAPP #
total 1144
ArWXIrWXTWX
drwxr-xr-x
“rw-r—-r--
“TWXYWXTWX
drwxr-xr-x
ArwxXrwxrwx
drw-r--r—--
1rwXrwxrwx
drwxr-xr-x

ls -la

6 122 129 1128 Feb 8 20:09 .
24 root root 2048 Feb 7 20:34 ..

1

GFR NN

root
root
root
root
root
root
root

root
root
root
root
root
root
root

170378 Feb 8 20:38 all.log

0 Feb 7 19:51 custapp-postinit.sh
304 Jan 1 1970 fwup

304 Feb 6 22:39 iot

312 Jan 3 1970 psm

11 Jan 1 1970 upload -> /mnt/upload
592 Jan 2 1970 user

we find there is not a file called custapp-preinit. sh. Thatis okay, though, since the script tests
for the existence of the file before executing it (using the “-e” option).

Further down the list of /etc/rc5.d files is a second script S100host-mode-postinit.sh that
executes after all the board “services” are set up and running. This script:

Listing (Appendix) 7 - /etc/rc5.d/S100host-mode-postinit.sh

fi

#!/bin/sh

if [-e /data/custapp-postinit.sh]; then
chmod +x /data/custapp-postinit.sh

. /data/custapp-postinit.sh

also tests for and executes a program in the /data (i.e. /CUSTAPP) directory called custapp-
postinit.sh. This is the same file we discussed in Chapter 2 (How Does the QuickStart Run).

Examining it we find:

Listing (Appendix) 8 - /CUSTAPP/custapp-postinit.sh

|start—stop—daemon -S -b -x /CUSTAPP/iot/run demo.sh

Following the chain to /CUSTAPP/iot/run_ demo. sh file, we find that it finally points to the
QuickStart demo executable, called iot monitor.

Listing (Appendix) 9 - run_demo.sh

|iot_monitor -5 -a a2e26b03f4e77aab23dbc5294b277d69

That’s quite a long process to start the “iot_monitor” QuickStart demo, but this chain
of events provides a great deal of flexibility for the Linux operating system. In our

case, we can create/edit the two init scripts in the /CUSTAPP directory to kick off pro-
grams early or late in the boot process, as needed:

custapp-preinit.sh

custapp-postinit.sh

This process was explored, for custapp-postinit.sh, in Chapter 2.

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix

pg. 219

Ab. Troubleshooting “adb devices”

A5. Troubleshooting “adb devices”

Chapter 2 (Section 2.4) describes how to connect the AT&T loT Starter Kit (274 Generation) (i.e. SK2) to
your development computer using ADB. This includes both installing ADB as well as the commands
that can be issued to start the service, find your device, and connect to it remotely.

Ideally, when you enter the “adb devices” command into your terminal, the response will be:

WNC_ADB device

This appendix topic provides a few troubleshooting suggestions for when this expected response
doesn’t occur.

Here are the troubleshooting topics:
— A5.1 Cannot find ADB command
— Ab.2 Execute From ADB Directory
— A5.3 WNC_ADB unauthorized

A5.1 Cannot find ADB command

For example, when executing the “adb devices” command, we received the following error.

Ps C:‘\adb> adb devices

Figure (Appendix) 7 - Mac/Linux/PowerShell needs “./”

There are three reasons the ADB commands might not be recognized by your system.

5. ADB was not installed (or improperly installed) on your computer. If this is the case, go review and
implement the installation directions in Section 2.4.1.

6. Not running ADB from the “adb” folder. When following the ADB installation directions in this
guide (and most Internet sites), you need to execute ADB commands from the ADB installation
folder. The exception to that in this guide was if you installed ADB with apt-get on an Ubuntu
(i.e. Debian) Linux computer. Please refer to the next topic (Section A5.2.)

7. Precede the ADB command with ./

A good rule of thumb would be, “If the adb devices command doesn’t work on your computer, then
try .,/adb devices.”

When using Windows PowerShell, Mac, or Linux, you need to precede commands with the ./
characters. Therefore, you should do the same with ADB commands.

./adb devices

Note that PowerShell also accepts using the backslash character: .\adb devices

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 220

Ab. Troubleshooting “adb devices”

A5.2 Execute From ADB Directory

The ADB executable wasn’t found:

PS C:%\> ./adb devices

Ps C:\> cd adb
Ps C:\adb> ./adb devices
List of devices attached
WNC_ADB device

Ps C:M\adb>

Figure (Appendix) 8 - Execute from the ADB Folder

Since “./adb” was used correctly for PowerShell, we know that wasn’t the issue. But it appears we
were trying to run ADB from the “C:/” drive location. Unless you modify your Windows configuration
(i.e. PATH variable), you either need to specify the full path to ADB... or simply run ADB from the folder
you installed it to.

Change to the ADB folder by using the “cd” command as shown above. Since we installed ADB to the
“C:\adb” directory, and our cursor resides at “C:\”, we only need to use:

cd adb
adb devices

to get to the proper location before running the “adb devices” command.

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 221

Ab. Troubleshooting “adb devices”

A5.3 WNC_ADB unauthorized

When executing the “adb devices”, the command returns the error:

WNC ADB unauthorized

Such as in this example:

EN Windows PowerShell

Ps Cc:“\adb> ./adb devices
List of devices attached
* daemon not running; starting now at tcp:5>037

* daemon started successfully
WNC_ADB unauthorized

Figure (Appendix) 9 - WNC_ADB unauthorized

In this case, it appears that the ADB server started and found the SK2 (our WNC_ADB) device but did
not find the proper credentials to access the device. This error occurs when ADB cannot find the
correct authorization key in your . android directory.

Examine your . android directory. It should now contain two files:

Name Size Modified W
[adbkey.pub 1KE 10/18/2018 9:23:28 AM
2 J adbkey 2KE 10/18/2018 5:22:23 AM

Figure (Appendix) 10 - adb keys

adbkey is a private key generated by the ADB Server based upon the adbkey . pub file we placed in
our .android directory, if you followed our ADB Installation directions in Section 2.4.1).

If you examine adbkey with a text editor, you will notice it looks something like:

b | ----BEGIN PRIVATE KEY-----
MITEvAIBADANBgkahkiGOwABAQEFAASCEBKYwgeSiAgEALOIBAQCAq6RbIBZ1aY3T
gVFIZpClPQTWE /hE0KewSoqy+X/ LRFyYpeYQOAIWG 3PuMnhmvGBZ FUVKTamgxUc
2ANmlezgf 1901 26000 x] r8dGiRI+MEMET FAJWZCrSqhiD4@t T -mPhXHXSCR
BNF&w *EkLE] 17+s1Pnt+m. SRS hGE8vv108i 10, ~AGTaPl r VWS /2y, TSERE
xkyt/885z6Fv+PpM2rwDpd@d(QGsaqdGIWlet]2o6byv2pSigai FMVKwrRlkAutcg9
uTPupV1lbed8qncudlLgkMicg==
————— END PRIVATE KEY-----

Figure (Appendix) 11 - Private key

If our device is unauthorized, then something is likely wrong with this file. Since it is generated from
adbkey.pub, it is likely that the correct adbkey . pub was not present before running “adb devices”
or has been corrupted. (For some reason, starting the ADB server sometimes overwrites adbkey . pub
with an incorrect hash string.)

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 222

Ab. Troubleshooting “adb devices”

Procedure to Correct “WNC_ADB unauthorized”

1. Double-check that adbkey.pub still contains the single word “wunc000000” (without the quotes).
If it doesn’t, delete the contents of this file and replace it with this word. You can do this by
manually enter the word or by downloading this file from the Avnet GitHub.

e —— ———

b wncBaasas

Figure (Appendix) 12 - adbkey.pub

Hint: The adbkey.pub file should contain only this word. It should not contain either a
carriage-return or line-feed.

2. Run the following ADB command to stop the adb server from running.
adb kill-server

or./adb kill-server

3. Run the “adb devices” command again.

You can see the sequence we followed below.

EN Windows PowerShell
PS C:\adb> ./adb devices Replace corrupt contents
List of devices attached of “adbkey.pub” with the
* daemon not running; starting now at single word:

* daemon started successfully

WNC_ADB unauthorized wnc000000

c r-V\adhe /adh L3 Then run kill-server
Ps C:\adb> ./adb kill-server command

Ps C:\adb> ./adb devices
List of devices attached
* daemon not running; starting now at Top. vt

* daemon started successfully
WNC_ADB device

Figure (Appendix) 13 - kill-server and re-running adb devices

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 223

https://github.com/Avnet/AvnetWNCSDK/blob/master/adbkey.pub

Ab. Troubleshooting “adb devices”

If the preceding three steps do not result in “WNC_ADB device”, here’s a few more things to try.

4. Try killing and starting the server several times by repeating this sequence of commands. Each
time, confirm that the adbkey . pub file is still 9 bytes. If not, correct it as shown above. Then run

the “adb devices” command again.

adb kill-server (or ./adb kill-server)
adb start-server (or ./adb start-server)
adb devices (or ./adb devices)

Did it work?

Does adbkey.pub still only contain 9-bytes?
Try repeating it again.

5. If you are using Linux, try using SUDO.

Linux users report that starting the server with sudo (i.e. as a root user) can often help to get ADB
working. Make sure the ADB server is off, by using kill-server, then try starting the server with
sudo.

adb kill-server
sudo adb start-server
adb devices

Did it work?
Does adbkey.pub still only contain 9-bytes?
Try repeating it again.

AT&T loT Starter Kit (2nd Generation) User's Guide - Appendix pg. 224

	AT&T IoT Starter Kit (2nd Generation) User’s Guide
	Table of Contents
	Table of Code Listings
	License for Code Examples
	Preface
	Work in Progress
	What this Book Covers
	Chapter 1 - Getting Started
	Chapter 2 - Using Embedded Linux
	Chapter 3 - Programming with C
	Chapter 4 - Programming with Python
	Chapter 5 - Connecting to the Cloud with LTE
	Chapter 6 - Using the ADC with the Light Sensor
	Chapter 7 - Using I2C with the Accelerometer
	Chapter 8 - Getting the Location Using GPS

	Downloads, Support and Tools
	Downloads
	Support
	Tools Needed for Code Examples
	Hardware
	Software

	Related Documentation
	Product Brief
	Hardware Documentation
	Software Guides
	Software / Repositories
	AT&T IoT Starter Kit (2nd Generation) Videos
	Certifications
	Document Locations
	AT&T Marketplace
	Avnet Cloud Connect Kits

	1. Getting Started
	1.1. What is IoT?
	1.1.1. How Does IoT Work?
	1.1.2. The Case for Cellular IoT
	1.1.3. The SK2: IoT Everywhere

	1.2. IoT Starter Kit (SK2)
	1.2.1. What Comes In the Box
	1.2.2. Hardware Overview
	1.2.3. Software Overview
	1.2.4. Cloud Connectivity
	1.2.5. Description of QuickStart Demo

	1.3. Running the QuickStart Demo
	1.3.1.1. Register the AT&T SIM Card
	1.3.1.2. Assembling the SK2
	1.3.1.3. Running the QuickStart Demo

	1.4. Resources

	2. Embedded Linux
	2.1. Introduction to Linux
	2.2. Linux Distribution
	2.2.1. Linux Kernel
	2.2.2. Filesystem
	2.2.3. Boot Loader
	2.2.4. Toolchain

	2.3. Linux Shell
	2.3.1. Basic Linux Commands
	2.3.2. Shell Scripting

	2.4. ADB – Connecting to the SK2
	2.4.1. Installing ADB
	2.4.2. Sidebar - What happens during “adb devices”
	2.4.3. ADB Commands

	2.5. Controlling Hardware Using the Linux Shell
	2.5.1.1. Writing the WWAN LED
	2.5.1.2. Simple Blink LED Script
	2.5.1.3. Using the RGB LED or USER Button

	2.6. Linux Boot Sequence
	2.6.1. How Does the QuickStart Demo Run Automatically?
	2.6.2. Configuring Linux Application Bootstrap

	3. Installing and Using C/C++
	3.1. Installing the C/C++ Tools and Software
	3.1.1. GIT (and ADB)
	3.1.2. Software Development Kit (SDK)

	3.2. IoT_Monitor example
	3.2.1. Clone the IoT_Monitor Source Code
	3.2.2. Build the IoT Monitor Program
	3.2.3. Push and Execute iot_monitor Application
	3.2.4. Avnet IoT Monitor GitHub and Videos

	3.3. Create Your First SK2 C/C++ Program
	3.3.1. Hello World
	3.3.2. GNU Automake Build System
	3.3.3. Starting Project Files
	3.3.4. Install SK2 User Guide Examples
	3.3.5. Building “Hello”

	3.4. Example: Blink LED (File I/O)
	3.5. Using the SDK’s peripheral API
	3.5.1. GPIO API Summary
	3.5.2. Example: Blink LED (GPIO API)

	3.6. Writing C Programs for Linux
	3.6.1. Multi-threading
	3.6.2. Event Handling
	3.6.2.1. Sleep
	3.6.2.2. Signals
	3.6.2.3. GPIO pin Interrupt

	3.7. Example: myGpio.c
	3.8. Where to Go for More Information

	4. Installing and Using Python
	4.1. Installing Python
	4.2. Connect to Python IDE
	4.3. Getting Started with Python
	4.3.1. Running Python from the Command-Line
	4.3.2. Example: Hello World using Python
	4.3.3. Example: Cheer for Hello World
	4.3.4. Example: Blinking the Red LED
	4.3.5. Example: Reading the User Button
	4.3.6. Accessing Additional GPIO Pins
	4.3.7. Killing a Running Python Program

	4.4. WWAN LED Class
	4.4.1. Python Functions and Classes
	4.4.2. Example: Using WWAN LED Class
	4.4.3. Importing & Using the WWAN LED Class
	4.4.4. WWAN Class Subprocessing

	4.5. GPIO Interrupts in Python
	4.6. Running Python Scripts at Boot
	4.7. Additional References

	5. Wireless Wide Area Networking with LTE
	5.1. Modem Abstraction Layer (MAL)
	5.1.1. Connecting to the MAL Using the LTE API
	5.1.1.1. Python Example (ex_01_mal_api_example.py)
	5.1.1.2. C/C++ Example (c_01_mal_api_example)

	5.1.2. Using WWAN API to Get Network Time
	5.1.2.1. Python Example (ex_02_get_network_time)
	5.1.2.2. C/C++ Example (c_02_get_network_time)

	5.1.3. Python MAL Example
	5.1.3.1. Python Example (ex_03_get_system_info.py)
	5.1.3.2. C/C++ Example (c_03_get_system_info)

	5.2. Communicating over HTTP/HTTPS
	5.2.1. cURL
	5.2.2. Hookbin.com
	5.2.3. Hookbin.com Examples
	5.2.3.1. Shell-Script Example (sh_04_curl_to_hookbin.sh)
	5.2.3.2. Python Example: ex_04_http_to_hookbin.py
	5.2.3.3. C/C++ Example (c_04_http_to_hookbin)
	5.2.3.4. C/C++ Example (c_05_http_put_post_get)

	5.3. Connecting to the Cloud: M2X and Flow
	5.3.1. M2X QuickStart Demo
	5.3.2. Using M2X
	5.3.2.1. Using M2X with Python
	5.3.2.1.1. Python Example (iot_m2x_example.py)
	5.3.2.1.2. Python Examples (m2x examples folder)
	5.3.2.1.3. Python Example (m2x_examples/example.py)

	5.3.2.2. Using M2X with C/C++

	5.3.3. Flow
	5.3.3.2. Flow Example – Timestamp/Debug (ex_09_timestamp_debug_flow.json)
	5.3.3.3. Exporting/Importing Flows
	5.3.3.4. Flow Example – HTTP/Debug
	5.3.3.4.1. Creating the Flow Project (ex_10_flow.json)
	5.3.3.4.2. cURL Example (ex_10_curl_to_flow.sh)
	5.3.3.4.3. Python Example – Sending Data to Flow
	5.3.3.4.4. C/C++ Example – Sending Data to Flow

	5.4. Sending SMS Messages
	5.4.1. Twilio
	5.4.2. IFTTT

	Appendix
	A1. Glossary
	A2. What is, and how do you configure, the APN?
	Modify APN

	A3. General Purpose Bit I/O (GPIO)
	What is GPIO?
	SK2 GPIO Pins for LEDs and Pushbuttons
	GPIO Pin Numbers – WNC vs Qualcomm
	Linux GPIO Drivers
	LED Examples
	USER Button Examples
	Further Reading

	Deallocating GPIO Resources

	A4. More Details about the Linux Boot Sequence
	A5. Troubleshooting “adb devices”
	A5.1 Cannot find ADB command
	A5.2 Execute From ADB Directory
	A5.3 WNC_ADB unauthorized

