Altivar 312

Variable speed drives for asynchronous motors

Programming manual

06/2010

Contents

Important information 4
Before you begin 5
Documentation structure 7
Software enhancements 8
Steps for setting up the drive 9
Setup - Preliminary Recommendations 10
Factory configuration 11
Basic functions 12
Remote display terminal option, ATV31 14
Remote graphic display terminal option, ATV61/ATV71 15
Remote display terminal option, ATV12 19
Structure of the parameter tables 20
Compatibility of functions 21
List of functions that can be assigned to inputs/outputs 23
List of functions that can be assigned to the Network and Modbus control word bits 25
Checklist 26
Programming 27
[SPEED REFERENCE] (rEF-) menu 31
[SETTINGS] (SEt-) menu 32
[MOTOR CONTROL] (drC-) menu 41
[INPUTS / OUTPUTS CFG] (I-O-) menu 47
[COMMAND] (CtL-) menu 50
[COMMAND] (CtL-) menu 61
[APPLICATION FUNCT.] (FUn-) menu 62
[FAULT MANAGEMENT] (FLt-) menu 91
[COMMUNICATION] (COM-) menu 98
[MONITORING] (SUP-) menu 100
Migration ATV31 - ATV312 105
Diagnostics and troubleshooting 106
Index of functions 111
Index of parameter codes and customer settings 112

Important information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a Danger or Warning safety label indicates that an electrical hazard exists, which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

4 DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death, serious injury or equipment damage.

A WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, can result in death, serious injury or equipment damage.

CAUTION

CAUTION indicates a potentially hazardous situation which, if not avoided, can result in injury or equipment damage.

CAUTION

CAUTION, used without the safety alert symbol, indicates a potentially hazardous situation which, if not avoided, can result in equipment damage.

PLEASE NOTE

The word "drive" as used in this manual refers to the "controller portion" of the adjustable speed drive as defined by NEC.

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this documentation.
© 2009 Schneider Electric. All rights reserved.

Read and understand these instructions before performing any procedure with this drive.

A A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Read and understand this manual before installing or operating the Altivar 312 drive. Installation, adjustment, repair, and maintenance must be performed by qualified personnel.
- The user is responsible for compliance with all international and national electrical code requirements with respect to grounding of all equipment.
- Many parts of this drive, including the printed circuit boards, operate at the line voltage. DO NOT TOUCH. Use only electrically insulated tools.
- DO NOT touch unshielded components or terminal strip screw connections with voltage present.
- DO NOT short across terminals PA/+ and PC/- or across the DC bus capacitors.
- Before repairing the variable speed drive:
- Disconnect all power, including external control power that may be present.
- Place a "DO NOT TURN ON" label on all power disconnects.
- Lock all power disconnects in the open position.
- WAIT 15 MINUTES to allow the DC bus capacitors to discharge.
- Measure the voltage of the DC bus between the PA/+ and PC/- terminals to ensure that the voltage is less than 42 Vdc .
- If the DC bus capacitors do not discharge completely, contact your local Schneider Electric representative. Do not repair or operate the drive
- Install and close all covers before applying power or starting and stopping the drive.

Failure to follow these instructions will result in death or serious injury.

A DANGER

UNINTENDED EQUIPMENT OPERATION

- Read and understand this manual before installing or operating the Altivar 312 drive.
- Any changes made to the parameter settings must be performed by qualified personnel.

Failure to follow these instructions will result in death or serious injury.

A WARNING

DAMAGED EQUIPMENT

Do not install or operate any drive that appears damaged.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

A WARNING

LOSS OF CONTROL

- The designer of any wiring diagram must take account of potential control channel failure modes and, for certain critical control functions, incorporate a way of achieving a safe state during and after a channel failure. Examples of critical control functions are emergency stop and overtravel stop.
- Separate or redundant control channels must be provided for critical control functions.
- System control paths may include communication links. Consideration must be given to the implications of unanticipated transmission delays or failures of the link. ${ }^{\text {a }}$

Failure to follow these instructions can result in death, serious injury, or equipment damage.
a) For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems".

Documentation structure

The following Altivar 312 technical documents are available on the Schneider Electric website (www.schneider-electric.com) as well as on the DVD-ROM (reference VW3A8200).

Installation Manual

This manual describes how to install and connect the drive.

Programming manual

This manual describes the functions and parameters of the drive's terminals and how to use them.

Quick Start

This document describes how to connect and configure the drive so that the motor can be started both quickly and easily for basic applications. This document is supplied with the drive.

Manuals for Modbus, CANopen, etc.

These manuals describe the installation process, the bus or network connections, signaling, diagnostics and the configuration of parameters specific to communication.
They also describe the communication services of the protocols.

Software enhancements

Since it was first marketed, the Altivar ATV 312 has been equipped with additional functions. Software version V5.1 IE 50 has now been updatedto V5.1 IE 54. This documentation relates to version V5.1 IE 54.
The software version appears on the rating plate attached to the side of the drive.

Enhancements made to version V5.1 IE 54 in comparison to V5.1 IE 50

New possible configuration

- Remote configuration : By pressing the MODE button during 3 seconds, the drive switches automatically to Remote configuration. The embedded Jog Dial works as a potentiometer (Fr1 = AIV1) and embedded RUN button is activated.
- Local configuration : It is possible to go back to Local configuration by pressing again the MODE button during 3 seconds (see page 28)

INSTALLATION

1. Please refer to the Installation Manual.

PROGRAMMING

Tips:

- Before beginning programming, complete the customer setting tables, page 112.
- Use the [Restore config.] (FCS) parameter, page 46, to return to the factory settings at any time.
- To locate the description of a function quickly, use the index of functions on page 111.
- Before configuring a function, read carefully the "Function compatibility" section on pages $\underline{21}$ and $\underline{22}$.
- Note:

The following operations must be performed for optimum drive performance in terms of accuracy and response time:

- Enter the values indicated on the (motor) rating plate in the [MOTOR CONTROL] (drC-) menu, page 41.
- Perform auto-tuning with the motor cold and connected using the [Auto-tuning] (tun) parameter, page 43.
- Adjust the [FreqLoopGain] (FLG) parameter, page 33 and the [Fr.Loop.Stab] (StA) parameter, page 34.

2. Apply input power to the drive, but do not give a run command.

3. Configure:

\square The nominal frequency of the motor [Standard mot. freq] (bFr) page 41 if this is not 50 Hz ,
\square The motor parameters in the [MOTOR CONTROL] (drC-) menu, page 41, only if the factory configuration of the drive is not suitable,
\square The application functions in the
[INPUTS / OUTPUTS CFG] (I-O-) menu, page 47, the [COMMAND] (CtL-) menu, page 50, and the [APPLICATION FUNCT.] (FUn-) menu, page 62, only if the factory configuration of the drive is not suitable.

4. In the [SETTINGS] (SEt-) menu, adjust the following parameters:
 ㅁ [Acceleration] (ACC), page 32 and [Deceleration], (dEC) page 32,
 ㅁ [Low speed] (LSP), page 33 and [High speed] (HSP), page 33,
 ■ [Mot. therm. current] (ItH), page 33.

5. Start the drive.

Setup - Preliminary Recommendations

Before powering up the drive

A DANGER

UNINTENDED EQUIPMENT OPERATION

Make sure that all logic inputs are inactive to avoid any unintended operation.
Failure to follow these instructions will result in death or serious injury.

Before configuring the drive

4 DANGER

UNINTENDED EQUIPMENT OPERATION

- Read and understand this manual before installing or operating the ATV312 drive.
- Any changes made to the parameter settings must be performed by qualified personnel.
- Make sure that all logic inputs are inactive to avoid any unintended operation when parameters are being changed.

Failure to follow these instructions will result in death or serious injury.

Start-up

Note: When factory settings apply and during power-up/manual reset or after a stop command, the motor can only be powered once the "forward", "reverse" and "DC injection stop" commands have been reset. If they have not been reset, the drive will display [Freewheel stop] (nSt) but will not start. If the automatic restart function has been configured ([Automatic restart] (Atr) parameter in the [FAULT MANAGEMENT] (FLt-) menu, page 91), these commands are taken into account without a reset (to zero) being necessary.

Line contactor

CAUTION

RISK OF DAMAGE TO DRIVE

- Frequent use of the contactor will cause premature ageing of the filter capacitors.
- Do not have cycle times less than 60 seconds.

Failure to follow these instructions can result in equipment damage.

Using a motor with a lower rating or dispensing with a motor altogether

- With the factory settings, motor output phase loss detection is active ([Output Phase Loss] (OPL) = [YES] (YES), page 94). To avoid having to use a motor with the same rating as the drive when testing the drive or during a maintenance phase, deactivate motor output phase loss detection ([Output Phase Loss] $(O P L)=[\mathrm{No}](\mathrm{nO})$). This can prove particularly useful if very powerful drives are being used.
- Set the [U/F mot 1 selected] (UFt) parameter, page 44, on [Cst. torque] (L) in the [MOTOR CONTROL] (drC-) menu.

CAUTION

RISK OF DAMAGE TO MOTOR

Motor thermal protection will not be provided by the drive if the motor 's nominal current is 20% lower than that of the drive. Find an alternative source of thermal protection.

Failure to follow these instructions can result in equipment damage.

Factory configuration

Factory settings

The Altivar 312 is factory－set for the most common operating conditions：
－Display：drive ready［Ready］（rdY）with motor stopped，and motor frequency with motor running．
－The LI5 and LI6 and logic inputs，AI3 analog input，AOC analog output，and R2 relay are unaffected．
－Stop mode when fault detected：freewheel

Code	Description	Value	Page
bFr	［Standard mot．freq］	［50Hz IEC］	$\underline{41}$
$t[\square$	［2／3 wire control］	［2 wire］（2C）：2－wire control	30
UFE	［U／F mot 1 selected］	［SVC］（n）：Sensorless flux vector control for constant torque applications	44
$\begin{aligned} & \text { ACL } \\ & \square E[\end{aligned}$	［Acceleration］ ［Deceleration］	3.00 seconds	$\underline{63}$
L 5 P	［Low speed］	0 Hz	33
H5P	［High speed］	50 Hz	33
It H	［Mot．therm．current］	Nominal motor current（value depending on drive rating）	33
5d［1	［Auto DC inj．level 1］	$0.7 \times$ nominal drive current，for 0.5 seconds	35
5 Fr	［Switching freq．］	4 kHz	40
$r r s$	［Reverse assign．］	［LI2］（LI2）：Logic input LI2	48
P5	［2 preset speeds］	［LI3］（LI3）：Logic input LI3	$\underline{73}$
P54	［4 preset speeds］	［LI4］（LI4）：Logic input LI4	$\underline{73}$
Fr 1	［Ref． 1 channel］	［AI1］（Al1）－Analog input Al1	$\underline{29}$
5月を	［Summing ref．2］	［AI2］（AI2）－Analog input Al2	71
r I	［R1 Assignment］	［No drive fit］（FLt）：The contact opens when a fault is detected or when the drive has been switched off	49
bra	［Dec ramp adapt．］	［Yes］（YES）：Function active（automatic adaptation of deceleration ramp）	64
Atr	［Automatic restart］	［ No ］（ nO ）：Function inactive	$\underline{91}$
5ヒヒ	［Type of stop］	［Ramp stop］（rMP）：On ramp	66
CFL	［Macro configuration］	［Factory set．］（Std）（1）	$\underline{45}$

Check whether the values above are compatible with the application．If necessary，the drive can be used without changing the settings．
（1）If you want to keep the drive＇s presettings to a minimum，select the macro configuration［Macro configuration］（CFG）＝［Start／stop］（StS） followed by［Restore config．］（FCS）＝［Factory Set．］（InI）（page 46）．
The［Start／stop］（StS）macro configuration is the same as the factory configuration，apart from the I／O assignment：
－Logic inputs：
－LII，LI2（reversing）：2－wire transition detection control，LI1＝run forward，LI2＝run reverse．
－LI3 to LI6：Inactive（not assigned）．
－Analog inputs：
－AI1：Speed reference 0－10 V．
－AI2，AI3：Inactive（not assigned）．
－Relay R1：The contact opens in the event of a detected fault（or drive off）．
－Relay R2：Inactive（not assigned）．
－Analog output AOC：0－20 mA，inactive（not assigned）．

Basic functions

Drive thermal protection

Functions:

Thermal protection by PTC probe fitted on the heatsink or integrated in the power module.
Indirect protection of the drive against overloads by tripping in the event of an overcurrent. Typical tripping values:

- Motor current = 185\% of nominal drive current: 2 seconds
- Motor current $=150 \%$ of nominal drive current: 60 seconds

Drive ventilation

The fan starts up when the drive is powered up then shuts down after 10 seconds if a run command has not been received.
The fan is powered automatically when the drive is unlocked (direction of operation + reference). It is powered down a few seconds after the drive is locked (motor speed $<0.2 \mathrm{~Hz}$ and injection braking completed).

Basic functions

Motor thermal protection

Function:

Thermal protection by calculating the $\mathrm{I}^{2} \mathrm{t}$.
The protection takes account of self-cooled motors

CAUTION

RISK OF DAMAGE TO MOTOR

External protection against overloads is required under the following circumstances:

- When the product is being switched on again, as there is no memory to record the motor thermal state
- When supplying more than one motor
- When supplying motors with ratings less than 0.2 times the nominal drive current
- When using motor switching

Failure to follow these instructions can result in equipment damage.

Remote display terminal option, ATV31

This terminal is a local control unit which can be mounted on the door of the wall-mounted or floor-standing enclosure. It has a cable with connectors, which is connected to the drive serial link (see the manual supplied with the terminal). Its display capabilities are practically identical to those of the Altivar 312. With this terminal, however, up and down arrows are used for navigation rather than a jog dial. There is also an access locking switch for the menus. There are three buttons for controlling the drive (1):

- FWD/REV: Reversal of the direction of rotation
- RUN: Motor run command
- STOP/RESET: Motor stop command or reset

Pressing the button a first time stops the motor, and if DC injection standstill braking is configured, pressing it a second time stops this braking.

View of the front panel::

- Position:		[MONITORING] (SUP-) and [SPEED REFERENCE] (rEF-) menus can be accessed.
	- Position:	
[SETTINGS] (SEt-), [MONITORING]		
	(SUP-) and [SPEED REFERENCE]	
(rEF-) can be accessed.		

Note: Protection via customer confidential code has priority over the switch.

Note:

- The remote terminal access locking switch also locks access by the drive keys.
- When the remote display terminal is disconnected, any locking remains active for the drive keys.
- The remote display terminal will only be active if the [Modbus baud rate] (tbr) parameter in the [COMMUNICATION] (COM-) menu, page 98, still has its factory setting: [19.2 Kbps] (19.2).
(1) To activate the buttons on the remote display terminal, you first have to configure [HMI command] (LCC) = [Yes] (YES), page $\underline{61}$.

Saving and loading configurations

Up to four complete configurations for ATV312 drives without an option card can be stored on the remote display terminal. These configurations can be saved, transported and transferred from one drive to another of the same rating. 4 different operations for the same device can also be stored on the terminal.
See the [Saving config.] (SCS) and [Restore config.] (FCS) parameters in the [MOTOR CONTROL] (drC-) menu, pages 45 and 46, the [INPUTS / OUTPUTS CFG] (I-O-) menu, pages 49 and $\underline{49}$, the [COMMAND] (CtL-) menu, pages $\underline{61}$ and 61 , and the [APPLICATION FUNCT.] (FUn-) menu, pages $\underline{90}$ and $\underline{00}$.

To transfer a configuration between an ATV31 and an ATV32, follow the procedure on page 90.

Remote graphic display terminal option, ATV61/ATV71

Description of the terminal

Thanks to the screen size of this graphic display terminal, which works with FLASH V1.1IE19 or higher and is part of the ATV71, it is possible to display more detailed information than can be shown on an on-board display. It is connected in the same way as the ATV31 remote display terminal.

Note: Keys 3, 4, 5 and 6 can be used to control the drive directly, if control via the terminal is activated.
To activate the buttons on the remote display terminal, you first have to configure [HMI command] (LCC) = [Yes] (YES), page 61 .

Powering up the graphic display terminal for the first time

When powering up the graphic display terminal for the first time, the user has to select the required language.

Display after the graphic display terminal has been powered up for the first time.
Select the language and press ENT.

3 seconds or ENT

DRIVE MENU
 SPEED REFERENCE SETTINGS MOTOR CONTROL INPUTS I OUTPUTS CFG COMMAND Code APPLICATION FUNCT. FAULT MANAGEMENT COMMUNICATION

The drive's rating details will now appear.

The [MAIN MENU] follows automatically.

Automatically switches to the [DRIVE MENU] menu after 3 seconds.
Select the menu and press ENT.

Powering up the drive for the first time

When powering up the drive for the first time, the user immediately accesses the 3 parameters below: [Standard mot. freq] (bFr), [Ref. 1 channel] (Fr1), and [2/3 wire control] (tCC), page 30. .

Subsequent power-ups

Description of the terminal

This terminal is a local control unit which can be mounted on the door of the wall-mounted or floor-standing enclosure. It has a cable with connectors, which is connected to the drive serial link (see the manual supplied with the terminal). Its display capabilities are practically identical to those of the Altivar 312. With this terminal, up and down arrows are used for navigation rather than a jog dial.
2 MODE button (1): If [SPEED
REFERENCE] (rEF-) is displayed,
this will take you to the
[SETTINGS] (SEt-) menu. If not, it
will take you to the [SPEED
REFERENCE] (rEF-) menu.

Used to quit a menu/parameter or
remove the currently displayed
value in order to revert
to the previous value
retained in the memory

Executes the function
assuming it has been
configured

(1) If the drive is locked by a code ([PIN code 1] (COd), page 103), pressing the Mode key enables you to switch from the [MONITORING] (SUP-) menu to the [SPEED REFERENCE] (rEF-) menu and vice versa.

To activate the buttons on the remote display terminal, you first have to configure [HMI command] (LCC) = [Yes] (YES), page 61.

Structure of the parameter tables

The parameter tables contained in the descriptions of the various menus are organized as follows.
Example:

1. Name of menu on 4-digit 7-segment display
2. Submenu code on 4-digit 7-segment display
3. Parameter code on 4 -digit 7 -segment display
4. Parameter value on 4 -digit 7 -segment display
5. Name of menu on ATV61/ATV71 graphic display terminal
6. Name of submenu on ATV61/ATV71 graphic display terminal
7. Name of parameter on ATV61/ATV71 graphic display terminal
8. Value of parameter on ATV61/ATV71 graphic display terminal

Compatibility of functions

Incompatible functions

The following functions will be inaccessible or deactivated in the cases described below:

Automatic restart

This is only possible for the 2 -wire level control type ([2/3 wire control] $(\mathrm{tCC})=[2$ wire $](2 \mathrm{C})$ and $[2$ wire type] $(\mathrm{tCt})=[$ Level $](\mathrm{LEL})$ or [Fwd priority] (PFO)).

Catch on the fly

This is only possible for the 2 -wire level control type ([2/3 wire control] (tCC) $=[2$ wire] (2C) and [2 wire type] (tCt) $=[$ Level (LEL) or [Fwd priority] (PFO)).
This function is locked if automatic standstill injection has been configured as DC ([Auto DC injection] (AdC) = [Continuous] (Ct)).

Function compatibility table

The choice of application functions may be limited by the number of I / O and by the fact that some functions are incompatible with one another. Functions which are not listed in this table are compatible.
If there is an incompatibility between functions, the first function configured will prevent the others being configured.
To configure a function, first check that functions which are incompatible with it are unassigned, especially those which are assigned in the factory settings.

Summing inputs (factory setting)		-		\uparrow	-	\uparrow				
+/- speed (1)	\bullet			-	-	\bullet				
Management of limit switches					-					
Preset speeds (factory setting)	\leftarrow	\bullet			\bullet	\uparrow				
PI regulator	\bullet	\bullet	\bullet	\bullet		\bullet	\bullet			
Jog operation	\leftarrow	-		\leftarrow	-		\bullet			
Brake control					\bullet	-		\bullet		
DC injection stop							\bullet			\uparrow
Fast stop										\uparrow
Freewheel stop								\leftarrow	\leftarrow	

(1) Excluding special application with reference channel [Ref. 2 channel] (Fr2) (see diagrams $\underline{53}$ and $\underline{55}$)

- Incompatible functions \square Compatible functions

Priority functions (functions which cannot be active at the same time):
$\leftarrow \quad \uparrow \quad$ The function marked with the arrow takes priority over the other.

Stop functions take priority over run commands.
Speed references via logic command take priority over analog references.

Compatibility of functions

Logic and analog input application functions

Each of the functions on the following pages can be assigned to one of the inputs.
A single input can activate several functions at the same time (reverse and 2 nd ramp for example). The user must therefore ensure that these functions can be used at the same time.
The [MONITORING] (SUP-) menu ([[LOGIC INPUT CONF.]] (LIA-) parameter, page 104, and [[ANALOG INPUTS IMAGE]] (AIA-) parameter, page 104) can be used to display the functions assigned to each input in order to check their compatibility.

Before assigning a reference, command or function to a logic or analog input, the user must check that this input has not already been assigned in the factory settings and that no other input has been assigned to an incompatible or unwanted function.

- Example of incompatible function to be unassigned:

In order to use the "+speed/-speed" function, the preset speeds and summing input 2 must first be unassigned.
The table below lists the factory-set input assignments and the procedure for unassigning them.

Assigned input	Function	Code	To unassign, set to:	Page
LI2	Run reverse	rrs	no	48
LI3	2 preset speeds	P 5 己	no	73
LI4	4 preset speeds	P54	no	73
Al1	Reference 1	Fr I	Anything but Al1	$\underline{58}$
LI1	Run forward	$t[5$	2C or 3C	47
AI2	Summing input 2	5月2	no	71

List of functions that can be assigned to inputs／outputs

Logic inputs	Page	Code	Factory setting
Not assigned	－	－	LI5－LI6
Run forward	－	－	LII
2 preset speeds	73	P 52	LI3
4 preset speeds	73	P54	LI4
8 preset speeds	73	P5日	
16 preset speeds	74	P516	
2 preset PI references	81	Pre	
4 preset PI references	82	Pr 4	
＋speed	78	$45 P$	
－speed	78	d $5 P$	
Jog operation	76	」ロL	
Ramp switching	64	rP5	
2nd current limit switching	86	L［ 2	
Fast stop via logic input	66	F5t	
DC injection via logic input	67	d［1	
Freewheel stop via logic input	68	n5t	
Run reverse	48	r r 5	LI2
External fault	$\underline{93}$	Et F	
RESET	$\underline{92}$	r 5F	
Forced local mode	$\underline{99}$	FLD	
Reference switching	59	rFL	
Control channel switching	$\underline{60}$	［［ 5	
Motor switching	87	［ HP	
Forward limit switch	$\underline{89}$	L AF	
Reverse limit switch	89	L $\mathrm{Hr}_{\text {r }}$	
Fault inhibition	$\underline{96}$	1 nH	

Analog inputs	Page	Code	Factory setting
Not assigned	－	－	Al3
Reference 1	58	Fr I	Al1
Reference 2	$\underline{58}$	Fre	
Summing input 2	71	5月2	AI2
Summing input 3	71	5月ヨ	
PI regulator feedback	81	P IF	

List of functions that can be assigned to inputs／outputs

Analog／logic output	Page	Code	Factory setting
Not assigned	－	－	AOC／AOV
Motor current	48	－［ r	
Motor frequency	48	－ $\mathrm{Fr}^{\text {r }}$	
Motor torque	48	ロtr	
Power supplied by the drive	48	ロPr	
Drive detected fault（logic data）	48	FLE	
Drive running（logic data）	48	r ¢	
Frequency threshold reached（logic data）	48	Ft \boldsymbol{A}	
High speed（HSP）reached（logic data）	48	FL A	
Current threshold reached（logic data）	48	ᄃ 1 A	
Frequency reference reached（logic data）	48	5 r 月	
Motor thermal threshold reached（logic data）	48	t5 ${ }^{\text {¢ }}$	
Brake sequence（logic data）	48	bL［	

Relay	Page	Code	Factory setting
Not assigned	－	－	R2
Detected fault	$\underline{49}$	FLt	R1
Drive running	$\underline{49}$	rUn	
Frequency threshold reached	$\underline{49}$	$F \in \mathrm{~A}$	
High speed（HSP）reached	49	FLA	
Current threshold reached	$\underline{49}$	ᄃヒA	
Frequency reference reached	$\underline{49}$	5 r月	
Motor thermal threshold reached	$\underline{49}$	t5 A	
Brake sequence	$\underline{49}$	bL［	
Copy of the logic input	49	L I／to L 16	

List of functions that can be assigned to the Network and

 Modbus control word bits| Bits 11 to 15 of the control word | Page | Code |
| :---: | :---: | :---: |
| 2 preset speeds | 73 | P5 2 |
| 4 preset speeds | $\underline{73}$ | P54 |
| 8 preset speeds | 73 | P5日 |
| 16 preset speeds | 74 | P516 |
| 2 preset PI references | 81 | Pre |
| 4 preset PI references | 82 | Pr 4 |
| Ramp switching | 64 | rPS |
| 2nd current limit switching | 86 | L [2 |
| Fast stop via logic input | 66 | F 5 t |
| DC injection | 67 | d[1 |
| External fault | 93 | Et F |
| Reference switching | $\underline{59}$ | rFL |
| Control channel switching | 60 | [[5 |
| Motor switching | 87 | [HP |

Checklist

Carefully read the information contained in the programming, installation and simplified manuals, as well as the information in the catalog. Before starting to use the drive, please check the following points relating to mechanical and electrical installations.
For the full range of documentation, please visit www.schneider-electric.com.

1. Mechanical installation (see the simplified and installation manuals)

- For details of the different installation types and recommendations concerning ambient temperature, please refer to the installation instructions in the simplified or installation manuals.
- Install the drive vertically in accordance with the specifications. Please refer to the installation instructions in the simplified or installation manuals.
- When using the drive, both the environmental conditions defined under standard 60721-3-3 and the levels defined in the catalog must be respected.
- Install the required options for your application. Refer to the catalog for details.

2. Electrical installation (see the simplified and installation manuals)

- Ground the drive. See the sections on how to ground equipment in the simplified and installation manuals.
- Make sure the input supply voltage matches the nominal drive voltage and connect the line supply in accordance with the simplified and installation manuals.
- Make sure you use appropriate input line fuses and circuit breakers. See the simplified and installation manuals.
- Arrange the cables for the control terminals as required (see the simplified and installation manuals). Separate the supply and control cables in accordance with EMC compatibility rules.
- The ATV312e0e0M2 and ATV312eee0N4 ranges include an EMC filter Using an IT jumper helps reduce leakage current. This is explained in the paragraph about the internal EMC filter on the ATV3120000M2 and the ATV3120000N4 in the installation manual.
- Make sure the motor connections are right for the voltage (star, delta).

3. Using and starting up the drive

- Start the drive. [Standard mot. freq] (bFr), page 29, is displayed the first time the drive is powered up. Make sure the frequency defined by frequency bFr (the factory setting is 50 Hz) matches the motor's frequency.
- When the drive is powered up for the first time, the [Ref. 1 channel] (Fr1) parameter, page 29, and the [2/3 wire control] (tCC) parameter, page 30, are displayed after [Standard mot. freq] (bFr). These parameters will need to be adjusted if you wish to control the drive locally.
- When the drive is powered up subsequently, [Ready] (rdY) is displayed on the HMI.
- The [Restore config.] (FCS) function, page 46, is used to reinitialize the drive with the factory settings.

Description of the HMI

Functions of the display and the keys

- REF LED, illuminated if [SPEED REFERENCE] (rEF-) menu is active

- MON LED, illuminated if [MONITORING] (SUP-) menu is active
- CONF LED, illuminated if the [SETTINGS] (SEt-), [MOTOR CONTROL] (drC-),[INPUTS / OUTPUTS CFG] (I-O-), [COMMAND] (CtL-), [APPLICATION FUNCT] (FUn-), [FAULT MANAGEMENT] (FLt-) or [COMMUNICATION] (COM-) menus are active

MODE button (1): 3s press on MODE button switches between the REMOTE/LOCAL configurations. If [SPEED REFERENCE] (rEF-) is displayed, this will take you to the [SETTINGS] (SEt-) menu. If not, it will take you to the [SPEED REFERENCE] (rEF-) menu.

- Used to quit a menu or parameter or to clear the value displayed in order to revert to the value in the memory
- In LOCAL configuration, 2s press on ESC button switches between the control/ programming modes
- Jog dial - can be used for navigation by turning it clockwise or counter-clockwise - pressing the jog dial enables the user to make a selection or confirm information.

Functions as a potentiometer in LOCAL configuration and in REMOTE configuration if [Ref. 1 channel] (Fr1-) in the [COMMAND] (CtL-) menu is set

RUN button: Controls powering up of the motor for forward running in LOCAL configuration and in REMOTE configuration if the [2/3 wire control] (tCC) parameter in the [INPUTS /OUTPUTS CFG] (I-O-) menu is set to [Local] (LOC), page 47 (could be hidden by door if function disabled)
to [Image input AIV1] (AIV1)

STOP/RESET button

- Enables detected fault to be reset
- Can be used to control motor stopping
- If [2/3 wire control] (tCC) is not set to [Local] (LOC), freewheel stop
- If [2/3 wire control] (tCC) is set to [Local] (LOC), stop on ramp or freewheel stop during DC injection braking

Note1: In LOCAL configuration, the three Leds REF, MON, and CONF are blinking simultaneously in programming mode and are working as a Led chaser in control mode.

Normal display, with no fault code displayed and no startup:

- 4 ヨ.ロ: Displays the parameter selected in the [MONITORING] (SUP-) menu (default: motor frequency). If the current is limited, the display flashes. In such cases, CLI will appear at the top left if an ATV61/ATV71 graphic display terminal is connected to the drive.
- In It: Initialization sequence
- rdy: Drive ready
- d[b: DC injection braking in progress
- n5t:Freewheel stop
- F5t:Fast stop
- $E U_{n}$: Auto-tuning in progress

In the event of a detected fault, the display will flash to notify the user accordingly. If an ATV61/ATV71 graphic display terminal is connected, the name of the detected fault will be displayed.
(1) If the drive is locked by a code ([PIN code 1] (COd), page 103), pressing the Mode key enables you to switch from the [MONITORING] (SUP-) menu to the [SPEED REFERENCE] (rEF-) menu and vice versa. It is no longer possible to switch between LOCAL and REMOTE configurations.

Programming

REMOTE and LOCAL configuration

The LOCAL configuration allows to activate automatically the embedded RUN button and the jog dial as a potentiometer. In that configuration, the speed adjustment will also be effective on remote keypads. MODE button on ATV12 remote display terminal and on ATV61/71 graphic display terminal (function key F4) is also active to switch from one configuration to another.
[Ref. 1 channel] (Fr1) is set to [AI Virtual 1] (AIV1) and [2/3 wire control] (tCC) are set to [2 wire] (2C) when switching to LOCAL configuration.
For parameters interdependencies reasons, switching from one configuration to another will change other parameters (for example : Input/ Output assignment will return to their factory value). Choose the configuration (REMOTE or LOCAL) before starting the parameters adjustment of the drive.

Structure of the menus

On the 7-segment display, a dash after menu and submenu codes is used to differentiate them from parameter codes.
Examples: [APPLICATION FUNCT.] (FUn-) menu, [Acceleration] (ACC) parameter

Configuring the［Standard mot．freq］（bFr），［2／3 wire control］（tCC），and ［Ref． 1 channel］（Fr1）parameters

These parameters can only be modified when the drive is stopped and no run command is present．

\begin{tabular}{|c|c|}
\hline Code \& \begin{tabular}{|l|l|l}
Description \& \begin{tabular}{l}
Adjustment \\
range
\end{tabular} \& \begin{tabular}{l}
Factory \\
setting
\end{tabular} \\
\hline
\end{tabular} \\
\hline bFr

50

60 \& | ［Standard mot．freq］ |
| :--- |
| This parameter is only visible the first time the drive is powered up． |
| It can be modified at any time in the［MOTOR CONTROL］（drC－）menu． |
| ［ 50 Hz IEC］（50）： 50 Hz |
| ［60Hz NEMA］（60）： 60 Hz |
| This parameter modifies the presets of the following parameters：［High speed］（HSP），page 33，［Freq． threshold］（Ftd），page 39，［Rated motor freq．］（FrS），page 41，and［Max frequency］（tFr），page 44 |

\hline | Fr I |
| :--- |
| － 11 |
| 月 12 |
| А 1 ヨ |
| トリリ। |
| UPdt |
| UPdH |
| L［［ |
| Пыь |
| nEt | \& | ［Ref． 1 channel］ ［AI1］（AI1）－Analog input AI1 ［AI2］（AI2）－Analog input AI2 ［AI3］（AI3）－Analog input AI3 ［AI Virtual 1］（AIV1）－In terminal control mode，the jog dial functions as a potentiometer． |
| :--- |
| If［ACCESS LEVEL］（LAC）$=$［Level 2］（L2）or［Level 3］（L3），the following additional assignments are possible： ［＋／－SPEED］（UPdt）：＋／－speed reference via LI．See configuration page 78. ［＋／－spd HMI］（UPdH）：＋／－speed reference by turning the jog dial on the ATV312 keypad． |
| To use，display the frequency［Output frequency］（ rFr ），page 101．The $+/$－speed function via the keypad or the terminal is controlled from the［MONITORING］（SUP－）menu by selecting the［Output frequency］（rFr） parameter． |
| If［ACCESS LEVEL］（LAC）$=$［Level 3］（L3），the following additional assignments are possible： ［HMI］（LCC）reference via the remote display terminal，［HMI Frequency ref．］（LFr）parameter in the ［SETTINGS］（SEt－）menu，page 32 ［Modbus］（Mdb）：Reference via Modbus ［Com．card］（nEt）：Reference via network communication protocol |

\hline
\end{tabular}

Programming

The jog dial (ENT) needs to be pressed and held down (for 2 s) to change the assignment for this parameter.

The [SPEED REFERENCE] (rEF-) menu displays [HMI Frequency ref.] (LFr), [Image input AIV1] (AIV1) or [Frequency ref.] (FrH) depending on which control channel is active.
During local control, the HMI's jog dial functions as a potentiometer, making it possible to increase or reduce the reference value within limits defined by the [Low speed] (LSP) and [High speed] (HSP) parameters.
When local control is deactivated, by the [Ref. 1 channel] (Fr1) parameter, only the reference values are displayed. The value will be readonly and can only be changed via the jog dial (the speed reference is supplied by an AI or another source).

Code	Description \quad Factory setting
LFr	[HMI Frequency ref.] This parameter only appears if the function has been enabled. It is used to change the speed reference from the remote control. ENT does not have to be pressed to enable a change of reference.
F リUI	[Image input AIV1] 0 to 100\% Used to amend the speed reference via the jog dial
Fr H	\square [Frequency ref.] LSP to HSP Hz This parameter is read-only. It enables you to display the speed reference applied to the motor, regardless of which reference channel has been selected.

［SETTINGS］（SEt－）menu

The adjustment parameters can be modified with the drive running or stopped．
Note：Changes should preferably be made with the drive stopped．

Code	Description		Adjustment range	Factory setting
$L F_{r}$	\square［HMI Frequency ref．］		0 to HSP	
	This parameter is displayed if［HMI command］（LCC）$=[\mathrm{Yes}]$（YES），page 61 or if［Ref． 1 channel］（Fr1）／［Ref． 2 channel］（Fr2）$=[\mathrm{HMI}]$（LCC）page 58，and if a remote display terminal is connected．In such cases，［HMI Frequency ref．］（LFr）can also be accessed via the drive＇s keypad． ［HMI Frequency ref．］（LFr）is reinitialized to 0 when power is switched off．			
	\square［Internal PID ref．］		0.0 to 100\％	0\％
	Parameter is only visible if［PID feedback ass．］（PIF）is not set to［ No ］（nO），page $\underline{81}$.			
R［［	\square［Acceleration］		In accordance with Inr，page 63	3 s
	Defined to accelerate from 0 to the nominal frequency［Rated motor freq．］（FrS）in the［MOTOR CONTROL］ （drC－）menu．			
H［己	\square［Acceleration 2］		In accordance with In r，page 63	5 s
\star	Parameter can be accessed if［Ramp 2 threshold］（Frt）＞0，page 64，or if［Ramp switch ass．］（rPS）is assigned， page 64.			
dE 2	\square［Deceleration 2］		In accordance with Inr，page 63	5 s
＊	Parameter can be accessed if［Ramp 2 threshold］（Frt）>0 ，page 64，or if［Ramp switch ass．］（rPS）is assigned， page 64.			
dEL	\square［Deceleration］		In accordance with Inr，page 63	3 s
	Defined to decelerate from the nominal frequency［Rated motor freq．］（FrS）（parameter in the［MOTOR CONTROL］ （drC－））menu to 0 ． Check that the value for［Deceleration］（dEC）is not too low in relation to the load to be stopped．			

（1）In corresponds to the nominal drive current indicated in the Installation Manual and on the drive nameplate．

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and set from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

Parameter can be accessed if [Type of stop] (Stt) = [DC injection] (dCI), page 66, or if [DC injection assign.] (dCI) is not set to $[\mathrm{No}](\mathrm{nO})$, page 67 .
After 5 seconds, the injection current is limited to 0.5 [Mot. therm. current] (ItH) if set to a higher value.

[DC injection time 2]

(2) $\quad 0.1$ to 30 s
0.5 s

CAUTION

RISK OF DAMAGE TO THE MOTOR

- Long periods of DC injection braking can cause overheating and damage the motor.
- Protect the motor by avoiding long periods of DC injection braking.

Failure to follow these instructions can result in equipment damage.
Parameter can be accessed if [Type of stop] (Stt) = [DC injection] (dCl) , page $\underline{66}$.

[Auto DC inj. time 1]
 0.1 to 30 s
 0.5 s

CAUTION

RISK OF DAMAGE TO THE MOTOR

- Long periods of DC injection braking can cause overheating and damage the motor.
- Protect the motor by avoiding long periods of DC injection braking.

Failure to follow these instructions can result in equipment damage.
Parameter can be accessed if [Auto DC injection] (AdC) is not set to [No] (nO), page 69.
(1) in corresponds to the nominal drive current indicated in the instamation ivanual and on the drive nameplate.
(2) Note: These settings are not related to the "automatic standstill DC injection" function.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

(1) In corresponds to the nominal drive current indicated in the Installation Manual and on the drive nameplate.
(2) Note: These settings are not related to the "automatic standstill DC injection" function.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.
[SETTINGS] (SEt-) menu

\starThese parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Code	Description	Adjustment range	Factory setting
5 Pヨ	\square［Preset speed 3］	0 to 500 Hz	15 Hz
＊	See page 74.		
$5 P 4$	\square［Preset speed 4］	0 to 500 Hz	20 Hz
＊	See page $\underline{74}$ ．		
$5 P 5$	\square［Preset speed 5］	0 to 500 Hz	25 Hz
＊	See page $\underline{74}$ ．		
5 P6	］［Preset speed 6］	0 to 500 Hz	30 Hz
\star	See page 74.		
5 P 7	\square［Preset speed 7］	0 to 500 Hz	35 Hz
＊	See page 74.		
5 P日	\square［Preset speed 8］	0 to 500 Hz	40 Hz
＊	See page 74.		
$5 P 9$	］［Preset speed 9］	0 to 500 Hz	45 Hz
＊	See page $\underline{74}$ ．		
5 P10	［［Preset speed 10］	0 to 500 Hz	50 Hz
\star	See page $\underline{74}$ ．		
5 P11	［Preset speed 11］	0 to 500 Hz	55 Hz
\star	See page $\underline{75}$ ．		
5 P12	［Preset speed 12］	0 to 500 Hz	60 Hz
\star	See page $\underline{75}$ ．		
5 P1ヨ	］［Preset speed 13］	0 to 500 Hz	70 Hz
\star	See page $\underline{75}$ ．		
5 P 14	［Preset speed 14］	0 to 500 Hz	80 Hz
＊	See page $\underline{75}$ ．		
5 P 15	\square［Preset speed 15］	0 to 500 Hz	90 Hz
\star	See page 75.		
5 P 16	\square［Preset speed 16］	0 to 500 Hz	100 Hz
＊	See page 75.		

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and set from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．
[SETTINGS] (SEt-) menu

5Et-

$d r[$

1-ロ-
ᄃ $E L$
FUn-
FLE-
ᄃロா-
5UP-

Code	Description	Adjustment range	Factory setting
[L I	\square [Current Limitation]	0.25 to $1.5 \ln (1)$	$1.5 \mathrm{In}(1)$
	CAUTION		
	RISK OF DAMAGE TO THE MOTOR AND THE DRIVE - Check that the motor will withstand this current, particularly in the case of permanent magnet synchronous motors, which are susceptible to demagnetization. - Check that the profile mission complies with the derating curve given in the installation manual. Failure to follow these instructions can result in equipment damage.		
	Used to limit the torque and the temperature rise of the motor.		
[L 2	\square [I Limit. 2 value]	0.25 to $1.5 \ln (1)$	$1.5 \mathrm{ln}(1)$
	CAUTION		
	RISK OF DAMAGE TO THE MOTOR AND THE DRIVE - Check that the motor will withstand this current, particularly in the case of permanent magnet synchronous motors, which are susceptible to demagnetization. - Check that the profile mission complies with the derating curve given in the installation manual. Failure to follow these instructions can result in equipment damage.		
\star	Parameter is only visible if [Current limit 2] (LC2) is not set to [No] (nO), page 86.		
$t \leq 5$	\square [Low speed time out]	0 to 999.9 s	0 (no time limit)
	After operating at [Low speed] (LSP) for a given time, the motor is stopped automatically. The motor restarts if the frequency reference is greater than the [Low speed] (LSP) and if a run command is still present. Note: Value 0 corresponds to an unlimited period.		
r 5L	\square [PID wake up thresh.]	0 to 100\%	0\%
	! DANGER		
	UNINTENDED EQUIPMENT OPERATION - Check that unintended restarts will not present any danger. Failure to follow these instructions will result in death or serious injury		

Parameter is only visible if [PID feedback ass.] (PIF) is not set to [No] (nO), page 81.
If the "PI" and "Low speed operating time" [Low speed time out] (tLS) functions, page 38, are configured at the same time, the PI regulator may attempt to set a speed lower than [Low speed] (LSP).
This results in unsatisfactory operation, which consists of starting, operating at [Low speed] (LSP), then stopping, and so on.
The [PID wake up thresh.] (rSL) parameter (restart error threshold) is used to set a minimum PID error threshold for restarting after a stop at prolonged [Low speed] (LSP).
The function is inactive if [Low speed time out] (tLS) $=0$.
(1) In corresponds to the nominal drive current indicated in the Installation Manual and on the drive nameplate.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

(1) In corresponds to the nominal drive current indicated in the Installation Manual and on the drive nameplate.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.
[SETTINGS] (SEt-) menu

(1) Parameter can also be accessed in the [MOTOR CONTROL] (drC-) menu.

With the exception of [Auto tuning] (tUn), which can power up the motor, parameters can only be changed in stop mode, with no run command present.

On the optional ATV31 remote display terminal, this menu can be accessed with the switch in theposition.

Drive performance can be optimized by:

- Entering the values given on the motor rating plate in the Drive menu
- Performing an auto-tune operation (on a standard asynchronous motor)

(1) In corresponds to the nominal drive current indicated in the Installation Manual and on the drive nameplate.

5Et－	Code	Description \quad Adjustment range Factory setting 4
dr $1-\square-$	$\square 5 P$	
CtL－ FUn－ FLE－ Cロח－ SUP－		0 to $9,999 \mathrm{rpm}$ then 10.00 to 32.76 krpm If，rather than the nominal speed，the nameplate indicates the synchronous speed and the slip in Hz or as a $\%$ ，calculate the nominal speed as follows： －Nominal speed $=$ synchronous speed $x \frac{100-\text { slip as a } \%}{100}$ －Nominal speed $=$ synchronous speed $x \frac{50-\text { slip in Hz }}{50}$（50 Hz motors） or －Nominal speed $=$ synchronous speed $x \frac{60-\text { slip in Hz }}{60}(60 \mathrm{~Hz}$ motors $)$
$5 \cup P-$	［ 05	\square［Motor 1 Cosinus Phi］ 0.5 to 1 In accordance with the drive rating Motor Cos Phi given on the motor rating plate
	$\begin{gathered} r 5[\\ n \square \\ \ln \operatorname{In} \\ \text { 日迏 } \end{gathered}$	\square［Cold stator resist．］ ［ No l （ nO ）：function inactive．For applications which do not require high performance or do not tolerate automatic auto－tuning（passing a current through the motor）each time the drive is powered up． ［Init］（InIt）：activates the function．To improve low－speed performance whatever the thermal state of the motor． Value of cold state stator resistance used，in $\mathrm{m} \Omega$ ． Note： －It is strongly recommended that this function is activated for mechanical handling applications． －The function should only be activated［Init］（InIt）when the motor is cold． －When［Cold stator resist．］（rSC）＝［Init］（InIt），the［Auto－tuning］（tUn）parameter is forced to［Power on］（POn）． At the next run command the stator resistance is measured with an auto－tune．The［Cold stator resist．］（rSC） then changes to a value of（㫜日㫜）and maintains it，［Auto－tuning］（tUn）is still forced to［Power on］（POn）． The［Cold stator resist．］（rSC）parameter remains at［Init］（InIt）as long as the measurement has not been performed． －Value 日昌日 can be forced or changed using the jog dial（1）．

（1）Procedure：
－Check that the motor is cold．
－Disconnect the cables from the motor terminals．
－Measure the resistance between 2 of the motor terminals（U．V．W．）without modifying its connection．
－Use the jog dial to enter half the measured value．
－Increase the factory setting of［IR compensation］（UFr），page 33，to 100\％rather than 20% ．
Note：Do not use［Cold stator resist．］（rSC）if it is not set to［No］（nO）or $=$［Power on］（POn）with catch on the fly（［CATCH ON THE FLY］ （FLr－），page 93）．

(1)Parameter can also be accessed in the [SETTINGS] (SEt-) menu.

Code	Description ${ }^{\text {a }}$ Adjustment range	Factory setting
	[No] (nO): Function inactive [Config 1] (Str1): Saves the current configuration (but not the result of auto-tuning) to EEPROM. [Saving config.] (SCS) automatically switches to [No] (nO) as soon as the save has been performed. This function is used to keep another configuration in reserve, in addition to the current configuration. When drives leave the factory the current configuration and the backup configuration are both initialized with the factory configuration. - If the ATV31 remote display terminal option is connected to the drive, the following additional selection options will appear: [File 1] (FIL1), [File 2] (FIL2), [File 3] (FIL3), [File 4] (FIL4) (files available in the remote display terminal's EEPROM memory for saving the current configuration). They can be used to store between 1 and 4 different configurations which can also be stored on or even transferred to other drives of the same rating. [Saving config.] (SCS) automatically switches to [No] (nO) as soon as the save has been performed.	
[FL	\square [Macro configuration] (1)	[Factory set.] (Std)
12 s	UNINTENDED EQUIPMENT OPERATION Check that the selected macro configuration is compatible with the wiring diagram used. Failure to follow these instructions will result in death or serious injury.	
$5 t 5$	Choice of source configuration. - [Start/Stop] (StS): Start/stop configuration Identical to the factory configuration apart from the I/O assignments: - Logic inputs: - LI1, LI2 (reversing): 2-wire transition detection control, LI1 = run forward, LI2 = run reverse - LI3 to LI6: Inactive (not assigned) - Analog inputs: - Al1: Speed reference 0-10 V - Al2, A13: Inactive (not assigned) - Relay R1: The contact opens in the event of a detected fault (or drive off). - Relay R2: Inactive (not assigned) - Analog output AOC: 0-20 mA, inactive (not assigned) \square [Factory set.] (Std): Factory configuration (see page 11). Note: The assignment of [Macro configuration] (CFG) results directly in a return to the selected configuration.	

(1)[Saving config.] (SCS), [Macro configuration] (CFG), and [Restore config.] (FCS) can be accessed from several configuration menus, but they apply to all menus and parameters.
(2) Parameter can also be accessed in the [SETTINGS] (SEt-) menu.

The jog dial (ENT) needs to be pressed and held down (for 2 s) to change the assignment for this parameter.

(1) [Saving config.] (SCS), [Macro configuration] (CFG), and [Restore config.] (FCS) can be accessed from several configuration menus, but they apply to all menus and parameters.
(2) The following parameters are not modified by this function; they retain their configuration:

- [Standard mot. freq] (bFr), page 41
- [HMI command] (LCC), page 61
- [PIN code 1] (COd), (terminal access code), page 103
- The parameters in the [COMMUNICATION] (COM-) menu
- The parameters in the [MONITORING] (SUP-) menu
(3) Options [File 1] (FIL1) to [File 4] (FIL4) continue to be displayed on the drive, even after the ATV31 remote terminal has been disconnected.

The jog dial (ENT) needs to be pressed and held down (for $2 s$) to change the assignment for this parameter.

The parameters can only be modified when the drive is stopped and no run command is present.
On the optional ATV31 remote display terminal, this menu can be accessed with the switch in the \qquad position.

The jog dial (ENT) needs to be pressed and held down (for 2 s) to change the assignment for this parameter.

Note: (1) With these assignments, configure [AO1 Type] (AO1t) = [Current] (OA).

Code	Description ${ }^{\text {a }}$（ Adjustment range	Factory setting
$\begin{aligned} & n \square \\ & F L E \\ & r U n \\ & F E A \\ & F L A \\ & C E A \\ & 5 r A \\ & E 5 A \end{aligned}$ APL L 1 I	［R1 Assignment］ This parameter is not visible when a communication card is connected to the product． ［ No ］（ nO ）：Not assigned ［No drive flt］（FLt）：No drive detected fault ［Drv running］（rUn）：Drive running ［Freq．Th．att．］（FtA）：Frequency threshold reached（［Freq．threshold］（Ftd）parameter in （SEt－）menu，page 39） ［HSP attain．］（FLA）：［High speed］（HSP）reached ［I attained］（CtA）：Current threshold reached（［Current threshold］（Ctd）parameter in the ［SETTINGS］（SEt－）menu，page 39） ［Freq．ref．att］（SrA）：Frequency reference reached ［Th．mot．att．］（tSA）：Motor thermal threshold reached（［Motor therm．level］（ttd）parame ［SETTINGS］（SEt－）menu，page 39） ［4－20mA］（APL）：Loss of 4－20 mA signal，even if［4－20mA loss］（LFL）$=[\mathrm{No}](\mathrm{nO})$ ，page ［LI1］to［LI6］（LI1）to（LI6）：Returns the value of the selected logic input The relay is energized when the selected assignment is active，with the exception of［ （energized if the drive has not detected a fault）．	［No drive fit］ （FLt） the［SETTINGS］ er in the 95 o drive flt］（FLt）
bLE APLto ${ }_{6}$	［R2 Assignment］ \square［No］（nO）：Not assigned －［No drive flt］（FLt）：No drive detected fault \square［Drv running］（rUn）：Drive running \square［Freq．Th．att．］（FtA）：Frequency threshold reached（［Freq．threshold］（Ftd）parameter in （SEt－）menu，page 39） \square［HSP attain．］（FLA）：［High speed］（HSP）reached \square［I attained］（CtA）：Current threshold reached（［Current threshold］（Ctd）parameter in the ［SETTINGS］（SEt－）menu，page 39） \square［Freq．ref．att］（SrA）：Frequency reference reached \square［Th．mot．att．］（tSA）：Motor thermal threshold reached（［Motor therm．level］（ttd）parame ［SETTINGS］（SEt－）menu，page 39） \square［Brk control］（bLC）：Brake sequence（for information，as this assignment can only be a deactivated from the［APPLICATION FUNCT．］（FUn－）－menu，page 85） \square［4－20mA］（APL）：Loss of $4-20 \mathrm{~mA}$ signal，even if［4－20mA loss］（LFL）$=[\mathrm{No}](\mathrm{nO})$ ，page \square［LI1］to［LI6］（LII）to（LI6）：Returns the value of the selected logic input The relay is energized when the selected assignment is active，with the exception of［ （energized if the drive has not detected a fault）．	［ No ］（nO） the［SETTINGS］ er in the ctivated or 95 o drive ftt］（FLt）
$\begin{aligned} & 5[5 \\ & 2 \mathrm{~s} \end{aligned}$	\square［Saving config．］（1） See page 45 ．	no
$\begin{aligned} & \text { LFG } \\ & 2 \mathrm{~s} \end{aligned}$	［Macro configuration］（1） See page 45 ．	Std
$\begin{aligned} & F[5 \\ & 2 \mathrm{~s} \end{aligned}$	\square［Restore config．］（1） See page 46.	no

（1）［Saving config．］（SCS），［Macro configuration］（CFG），and［Restore config．］（FCS）can be accessed from several configuration menus， but they apply to all menus and parameters．
rEF-

The parameters can only be modified when the drive is stopped and no run command is present.
On the optional remote display terminal, this menu can be accessed with the switch in the position.

Control and reference channels

Run commands (forward, reverse, etc.) and references can be sent using the following channels:

Command CMD	Reference rFr
tEr: Terminals (LI.)	Alx: Terminals
LCC: Remote display terminal (RJ45 socket)	LCC: ATV312 keypad or remote display terminal
LOC: Control via the keypad	AIV1: Jog dial
Mdb: Modbus (RJ45 socket)	Mdb: Modbus (RJ45 socket)
nEt: Network	nEt: Network

The [ACCESS LEVEL] (LAC) parameter in the [COMMAND] (CtL-) menu, page 58, can be used to select priority modes for the control and reference channels. It has 3 function levels:

- [ACCESS LEVEL] (LAC) = Basic functions. The channels are managed in order of priority. [Level 1] (L1):
- [ACCESS LEVEL] (LAC) = Provides the option of additional functions compared with [Level 1] (L1): [Level 2] (L2):
- +/- speed (motorized jog dial)
- Brake control
- 2nd current limit switching
- Motor switching
- Management of limit switches
- [ACCESS LEVEL] (LAC) = Same functions as with [Level 2] (L2). Management of the control and reference channels is [Level 3] (L3): configurable.

These channels can be combined in order of priority if [ACCESS LEVEL] (LAC) = [Level 1] (L1) or [Level 2] (L2).

Highest priority to lowest priority: Forced local mode, Network, Modbus, Remote display terminal, Terminals/Keypad (from right to left in the \quad dr Σ diagram below)

See the detailed block diagrams on pages 53 and 54 .

- On ATV312 drives, in factory settings mode, control and reference are managed by the terminals.
- With a remote terminal display, if [HMI command] (LCC) $=[\mathrm{Yes}]$ (YES) ([COMMAND] (CtL-) menu), control and reference are managed by the remote terminal display (reference via [HMI Frequency ref.] (LFr) in the [SETTINGS] (SEt-) menu).

The channels can be combined by configuration if [ACCESS LEVEL] (LAC) = [Level 3] (L3).

Combined control and reference ([Profile] (CHCF) parameter = [Not separ.] (SIM)):

Selection of reference channel: [Ref. 1 channel] (Fr1) parameter The control channel is connected to the same source.

Control and reference

Selection of reference
channel:
[Ref. 2 channel] (Fr2)
parameter
The control channel is
connected to the same source.

The [Ref. 2 switching] (rFC) parameter can be used to select the [Ref. 1 channel] (Fr1) or [Ref. 2 channel] (Fr2) channel, or to configure a logic input or a control word bit for remote switching of either one.
See the detailed block diagrams on pages $\underline{55}$ and $\underline{57}$.

The［Ref． 2 switching］（rFC）parameter can be used to select the［Ref． 1 channel］（Fr1）or［Ref． 2 channel］（Fr2）channel，or to configure a logic input or a control word bit for remote switching of either one．

Control

Selection of control channel：［Cmd channel 1］ （Cd1）parameter

Selection of control channel：
［Cmd channel 2］（Cd2）
parameter

The［Cmd switching］（CCS）parameter，page 60，can be used to select the［Cmd channel 1］（Cd1）or［Cmd channel 2］（Cd2）channel，or to configure a logic input or a control bit for remote switching of either one．

See the detailed block diagrams on pages $\underline{55}$ and $\underline{56}$ ．

Reference channel for [ACCESS LEVEL] (LAC) = [Level 1] (L1) or [Level 2] (L2)

 summing inputs and the preset speeds must be deconfigured beforehand.

Key:

Parameter:
The black square represents the factory setting assignment.

Function can be accessed for
[ACCESS LEVEL] (LAC) = [Level 2] (L2)

The [Forced local assign.] (FLO) parameter, page $\underline{99}$, the [HMI command] (LCC) parameter, page 61, and the selection of the Modbus bus or network are common to the reference and control channels.
Example: If [HMI command] (LCC) $=[\mathrm{Yes}]$ (YES), the command and reference are given by the remote display terminal.

Control channel for [ACCESS LEVEL] (LAC) = [Level 1] (L1) or [Level 2] (L2)

Key:

Parameter:
The black square represents the factory setting assignment

Control channel for [ACCESS LEVEL] (LAC) = [Level 3] (L3)

Combined reference and control

The [Ref. 1 channel] (Fr1) parameter, page 58, the [Ref. 2 channel] (Fr2) parameter, page 58, the [Ref. 2 switching] (rFC) parameter, page 59, the [Forced local assign.] (FLO) parameter, page 99, and the [Forced local Ref.] (FLOC) parameter, page g9, are common to reference and control. The control channel is therefore determined by the reference channel.
Example: If the [Ref. 1 channel] (Fr1) reference = [AI1] (Al1) (analog input at the terminals), control is via LI (logic input at the terminals).

Remote display terminal

Key:
Parameter:
The black square represents the factory setting assignment.

Control channel for [ACCESS LEVEL] (LAC) = [Level 3] (L3)

Mixed mode (separate reference and control)

The [Forced local assign.] (FLO) parameter, page 99, and the [Forced local Ref.] (FLOC) parameter, page 99, are common to reference and control.
Example: If the reference is in forced local mode via [AI1] (AI1) (analog input at the terminals), control in forced local mode is via LI (logic input at the terminals).

Key:

Parameter:
The black square represents the factory setting assignment.

(1) NOTE:

- It is not possible to simultaneously assign [+/- SPEED] (UPdt) to [Ref. 1 channel] (Fr1) or [Ref. 2 channel] (Fr2), and [+/-spd HMI] (UPdH) to [Ref. 1 channel] (Fr1) or [Ref. 2 channel] (Fr2). Only one of the [+/- SPEED] (UPdt)/[+/-spd HMI] (UPdH) assignments is permitted on each reference channel.
- The +/- speed function in [Ref. 1 channel] (Fr1) is incompatible with several functions (see page 21). It can only be configured if these functions are unassigned, in particular the summing inputs (set [Summing ref. 2] (SA2) to [No] (nO), page 71) and the preset speeds (set [2 preset speeds] (PS2) and [4 preset speeds] (PS4) to [No] (nO), page 73) which will have been assigned as part of the factory settings.
- In [Ref. 2 channel] (Fr2), the +/- speed function is compatible with the preset speeds, summing inputs, and the PI regulator.

Code	DescriptionAdjustment range, Factory setting
$\begin{array}{llll} r & F & C \\ & & & \\ \hline \end{array}$	- [Ref. 2 switching] The [Ref. 2 switching] (rFC) parameter can be used to select the [Ref. 1 channel] (Fr1) or [Ref. 2 channel] (Fr2) channel, or to configure a logic input or a control word bit for remote switching of [Ref. 1 channel] (Fr1) or [Ref. 2 channel] (Fr2). [ch1 active] (Fr1): Reference = reference 1 [ch1 active] (Fr2): Reference = reference 2 [LI1] (LI1): Logic input LI1 [LI2] (LI2): Logic input LI2 [LI3] (LI3): Logic input LI3 [LI4] (LI4): Logic input LI4 [LI5] (LI5): Logic input LI5 [LI6] (LI6): Logic input LI6 If [ACCESS LEVEL] (LAC) $=$ [Level 3] (L3), the following additional assignments are possible: [C111] (C111): Bit 11 of Modbus control word [C112] (C112): Bit 12 of Modbus control word [C113] (C113): Bit 13 of Modbus control word [C114] (C114): Bit 14 of Modbus control word [C115] (C115): Bit 15 of Modbus control word [C211] (C211): Bit 11 of network control word [C212] (C212): Bit 12 of network control word [C213] (C213): Bit 13 of network control word [C214] (C214): Bit 14 of network control word [C215] (C215): Bit 15 of network control word The reference can be switched with the drive running. [Ref. 1 channel] (Fr1) is active when the logic input or control word bit is at state 0. [Ref. 2 channel] (Fr2) is active when the logic input or control word bit is at state 1.
$\begin{aligned} & \text { ᄃHLF } \\ & \\ & \\ & 51 \Pi \\ & 5 E P \end{aligned}$	- [Profile] [Not separ.] (SIM) (control channels separated from reference channels) Parameter can be accessed if [ACCESS LEVEL] (LAC) = [Level 3] (L3), page 58. [Not separ.] (SIM): Combined [Separate] (SEP): Separate
[d 1 tEr L प [L L [Пォb nE	[Cmd channel 1] Parameter can be accessed if [Profile] (CHCF) = [Separate] (SEP), page 59, and [ACCESS LEVEL] (LAC) = [Level 3] (L3), page 58. [Terminal] (tEr): Control via terminals [Local] (LOC): Control via keypad [Remot. HMI] (LCC): Control via remote display terminal [Modbus] (Mdb): Control via Modbus [Com. card] (nEt): Control via the network

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.
rEF－
SEE－
drE－
I－G－
LEL－
FUn－
FLE－
Lロח－
SUP－

Code	Description	Adjustment rang	Factory setting
	［Cmd channel 2］ Parameter can be accessed if［Profile］（CHCF）＝［Separate］（SEP），page 59，and［ACCESS LEVEL］（LAC） $=[$ Level 3］（L3），page 58. ［Terminal］（tEr）：Control via terminals ［Local］（LOC）：Control via keypad ［Remot．HMI］（LCC）：Control via remote display terminal ［Modbus］（Mdb）：Control via Modbus ［Com．card（nEt）：Control via the network		
［［ 5	［Cmd switching］ Parameter can be accessed if［Profile］（CHCF）＝［Separate］（SEP），page 59，and［ACCESS LEVEL］（LAC） $=[$ Level 3］（L3），page 58. The［Cmd switching］（CCS）parameter can be used to select the［Cmd channel 1］（Cd1）or［Cmd channel 2］（Cd2）channel，or to configure a logic input or a control word bit for remote switching of［Cmd channel 1］ （Cd1）or［Cmd channel 2］（Cd2）． \square［ch1 active］（Cd1）：Control channel＝channel 1 \square［ch2 active］（Cd2）：Control channel＝channel 2 －［LII］（LII）：Logic input LI1 －［LI2］（LI2）：Logic input LI2 \square［LI3］（LI3）：Logic input LI3 \square［LI4］（LI4）：Logic input LI4 ［［LI5］（LI5）：Logic input LI5 \square［LI6］（LI6）：Logic input LI6 \square［C111］（C111）：Bit 11 of Modbus control word \square［C112］（C112）：Bit 12 of Modbus control word \square［C113］（C113）：Bit 13 of Modbus control word \square［C114］（C114）：Bit 14 of Modbus control word \square［C115］（C115）：Bit 15 of Modbus control word \square［C211］（C211）：Bit 11 of network control word \square［C212］（C212）：Bit 12 of network control word \square［C213］（C213）：Bit 13 of network control word \square［C214］（C214）：Bit 14 of network control word \square［C215］（C215）：Bit 15 of network control word Channel 1 is active when the input or control word bit is at state 0 ， Channel 2 is active when the input or control word bit is at state 1 ．		
$\begin{array}{llll}{[} & d & 1 \\ L & d & 2 \\ L & 1 & 1 \\ L & 1 & 2 \\ L & 1 & 3 \\ L & 1 & 4 \\ L & 1 & 5 \\ L & 1 & 6 \\ {[} & 1 & 1 & 1 \\ {[} & 1 & 1 & 2 \\ {[} & 1 & 1 & 3 \\ {[} & 1 & 1 & 4 \\ {[} & 1 & 1 & 5 \\ {[} & 2 & 1 & 1 \\ {[} & 2 & 1 & 2 \\ {[} & 2 & 1 & 3 \\ {[} & 2 & 1 & 4 \\ {[} & 2 & 1 & 5\end{array}$			
L ロP	\square［Copy channel 1＜＞2］ （copy only in this direction）		［ No ］（ nO ）
	UNINTENDED EQUIPMENT OPERATION Copying the command and／or reference can change the direction of rotation． －Check that this is safe． Failure to follow these instructions will result in death or serious injury．		

Parameter can be accessed if［ACCESS LEVEL］（LAC）＝［Level 3］（L3），page 58.
［No］（nO）：No copy
\square［Reference］（SP）：Copy reference
\square［Command］（Cd）：Copy control
\square［Cmd＋ref．］（ALL）：Copy control and reference
－If channel 2 is controlled via the terminals，channel 1 control is not copied．
－If the channel 2 reference is set via AI1，AI2，AI3 or AIU1，the channel 1 reference is not copied．
－The reference copied is［Frequency ref．］（FrH）（before ramp），unless the channel 2 reference is set via＋／－speed．
In this case，the reference copied is［Output frequency］（rFr）（after ramp）．
Note：Copying the control and／or reference can change the direction of rotation．

[^0]\begin{tabular}{|c|c|c|c|}
\hline Code \& Description \& Adjustment range \& Factory setting

\hline LLL

$n \square$

YE 5 \& \multicolumn{3}{|l|}{| \square [HMI command] |
| :--- |
| Parameter can only be accessed using a remote display terminal, and for [ACCESS LEVEL] (LAC) = [Level 1] (L1) or [Level 2] (L2), page 58. [No] (nO): Function inactive [Yes] (YES): Enables control of the drive using the STOP/RESET, RUN and FWD/REV buttons on the display terminal. Here, the speed reference is given by the [HMI Frequency ref.] (LFr) parameter in the [SETTINGS] (SEt-) menu. Only the freewheel stop, fast stop and DC injection stop commands remain active on the terminals. If the drive/terminal connection is cut or if the terminal has not been connected, the drive detects a fault and locks in [MODBUS FAULT] (SLF). |}

\hline PSt \& | \square [Stop Key priority] |
| :--- |
| This parameter can be used to activate stop button will be deactivated if the ac remote terminals. | \& This parameter can be used to activate or deactivate the stop button on the drive and the remote terminals. The stop button will be deactivated if the active control channel is different from that on the integrated display terminal or remote terminals. \& | [Yes] (YES) |
| :--- |
| terminals. The isplay terminal or |

\hline $$
2 \mathrm{~s}
$$

\[
$$
\begin{array}{r}
n \square \\
Y E S
\end{array}
$$

\] \& \multicolumn{3}{|l|}{| LOSS OF CONTROL |
| :--- |
| You are going to disable the stop button located on the drive and remote display Do not select "nO" unless exterior stopping methods exist. |
| Failure to follow these instructions can result in death, serious injury, or equipment damage. |}

\hline $$
r \square t
$$

\[
$$
\begin{aligned}
& d F r \\
& d r 5 \\
& b \square E
\end{aligned}
$$

\] \& | \square [Rotating direction] |
| :--- |
| This parameter is only visible assigned to L [[or $A 1$ I. |
| Direction of operation author terminal. [Forward] (dFr): Forward [Reverse] (drS): Reverse [Both] (bOt): Both directions | \& | Ref. 2 channel] |
| :--- |
| the RUN key | \& | [Forward] (dFr) |
| :--- |
| page 58, are |
| remote display |

\hline \[
$$
\begin{aligned}
& 5[5 \\
& 2 \mathrm{~s}
\end{aligned}
$$

\] \& | [Saving config.] |
| :--- |
| See page 45 . | \& (1) \& no

\hline $$
\begin{aligned}
& \text { LFL } \\
& 2 \mathrm{~s}
\end{aligned}
$$ \& See page 45 . \& (1) \& Std

\hline \[
$$
\begin{aligned}
& F[5 \\
& 2 \mathrm{~s}
\end{aligned}
$$

\] \& | [Restore config.] |
| :--- |
| See page 46 . | \& (1) \& nO

\hline
\end{tabular}

[^1]
[APPLICATION FUNCT.] (FUn-) menu

The parameters can only be modified when the drive is stopped and no run command is present.
On the optional remote display terminal, this menu can be accessed with the switch in the $\square^{\text {position. }}$

Some functions have numerous parameters. In order to clarify programming and avoid having to scroll through endless parameters, these functions have been grouped in submenus.
Like menus, submenus are identified by a dash after their code: \square for example.

Note: There may be an incompatibility between functions (see the incompatibility table, page 21). In this case, the first function configured will prevent the remainder being configured.

（1）When values higher than 9，999 are displayed on the drive or on the remote display terminal，a point is inserted after the thousands digit．

Note：

This type of display can lead to confusion between values which have two digits after a decimal point and values higher than 9,999 ．Check the value of the［Ramp increment］（Inr）parameter．
Example：
－If［Ramp increment］（Inr）$=0.01$ ，the value 15.65 corresponds to a setting of 15.65 s ．
－If［Ramp increment］（Inr）＝1，the value 15.65 corresponds to a setting of $15,650 \mathrm{~s}$ ．
（2）Parameter can also be accessed in the［SETTINGS］（SEt－）menu．

[^2]
(1)Parameter can also be accessed in the [SETTINGS] (SEt-) menu.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Code	Name／Description ${ }^{\text {a }}$（ Adjustment range $\begin{aligned} & \text { Factory } \\ & \text { setting }\end{aligned}$
5t［－	［STOP MODES］
$5 t t$ $\begin{aligned} & \text { rnf } \\ & \text { F5t } \\ & \text { n5t } \\ & d[1 \end{aligned}$	\square［Type of stop］ Stop mode on disappearance of the run command or appearance of a stop command． ［Ramp stop］（rMP）：On ramp ［Fast stop］（FSt）：Fast stop ［Freewheel］（nST）：Freewheel stop ［DC injection］（dCI）：DC injection stop
	［Fast stop］ ［ No ］（nO）：Not assigned －［LI1］（LII）：Logic input LI1 \square［LI2］（LI2）：Logic input LI2 －［LI3］（LI3）：Logic input LI3 －［LI4］（LI4）：Logic input LI4 －［LI5］（LI5）：Logic input LI5 ［LI6］（LI6）：Logic input LI6 If［ACCESS LEVEL］（LAC）＝［Level 3］（L3），the following assignments are possible： ［CD11］（CD11）：Bit 11 of the control word from a communication network \square［CD12］（CD12）：Bit 12 of the control word from a communication network \square［CD13］（CD13）：Bit 13 of the control word from a communication network \square［CD14］（CD14）：Bit 14 of the control word from a communication network ［CD15］（CD15）：Bit 15 of the control word from a communication network The stop is activated when the logic state of the input changes to 0 and the control word bit changes to 1 ． The fast stop is a stop on a reduced ramp via the［Ramp divider］（dCF）parameter．If the input falls back to state 1 and the run command is still active，the motor will only restart if 2－wire level control has been configured［2／3 wire control］（tCC）＝［2 wire］（2C），and［2 wire type］（tCt）＝［Level］（LEL）or［Fwd priority］ （PFO），page 47）．In other cases，a new run command must be sent．

\begin{tabular}{|c|c|c|c|}
\hline Code \& Name/Description \& Adjustment range \& Factory setting

\hline \multicolumn{4}{|l|}{5t - $\quad \square$ [STOP MODES](continued)}

\hline \multirow[t]{2}{*}{5tt

r
F $5 t$
n 5t
d[1} \& \multicolumn{2}{|l|}{\square [Type of stop]} \& [Ramp stop] (rMP)

\hline \& | Stop mode on disappeara |
| :--- |
| \square [Ramp stop] (rMP): On ramp |
| \square [Fast stop] (FSt): Fast stop |
| \square [Freewheel] (nST): Freew |
| \square [DC injection] (dCI): DC inj | \& a stop comma \&

\hline F5t \& \multicolumn{2}{|l|}{\square [Fast stop]} \& [No$](\mathrm{nO}$)

\hline \& | [No] (nO): Not assigned [LI1] (LI1): Logic input LI1 [LI2] (LI2): Logic input LI2 [LI3] (LI3): Logic input LI3 [LI4] (LI4): Logic input LI4 [LI5] (LI5): Logic input LI5 [LI6] (LI6): Logic input LI6 |
| :--- |
| If [ACCESS LEVEL] (LAC) [CD11] (CD11): Bit 11 of the [CD12] (CD12): Bit 12 of the [CD13] (CD13): Bit 13 of the [CD14] (CD14): Bit 14 of the [CD15] (CD15): Bit 15 of th |
| The stop is activated when The fast stop is a stop on to state 1 and the run com configured [2/3 wire contro] (PFO), page 47). In other | \& | s are possible work work work work work |
| :--- |
| nd the control F) parameter. art if 2-wire lev tCt) $=[$ Level $]($ | \& bit changes to 1. input falls back trol has been or [Fwd priority]

\hline $d[F$ \& \square [Ramp divider] \& 0 to 10 \& 4

\hline 大 \& \multicolumn{3}{|l|}{| Parameter can be accessed where [Type of stop] (Stt) = [Fast stop] (FSt), page 66, and where [Fast stop] (FSt) is not $[\mathrm{No}](\mathrm{nO})$, page 66 . |
| :--- |
| Ensure that the reduced ramp is not too low in relation to the load to be stopped. |
| The value 0 corresponds to the minimum ramp. |}

\hline
\end{tabular}

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

(1) Parameter can also be accessed in the [SETTINGS] (SEt-) menu.
(2) In corresponds to the nominal drive current indicated in the Installation Manual and on the drive nameplate.
(3) Note: These settings are not related to the "automatic standstill DC injection" function.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Code	Name/Description	Adjustment range	Factory setting
5t [-	- [STOP MODES] (continued)		
$t d[$	\square [DC injection time 2] (1)(3)	0.1 to 30 s	0.5 s
	RISK OF DAMAGE TO MOTOR - Long periods of DC injection braking can cause overheating and damage the motor. - Protect the motor by avoiding long periods of DC injection braking. Failure to follow these instructions can result in equipment damage.		
\star	Parameter can be accessed if [Type of stop] (Stt) = [DC injection] (dCl), page $\underline{66}$.		
n5t	[Freewheel stop ass.][No] (nO): Not assigned[LI1] (LI1): Logic input LI1[LI2] (LI2): Logic input LI2[LI3] (LI3): Logic input LI3[LI4] (LI4): Logic input LI4[LI5] (LI5): Logic input LI5[LI6] (LI6): Logic input LI6		[No] (nO)
$\begin{array}{lll} & n & 0 \\ L & 1 & 1 \\ L & 1 & 1 \\ L & 1 & 3 \\ L & 1 & 4 \\ L & 15 \\ L & 1 & 6 \end{array}$			
	The stop is activated when the logic state of the input is at 0 . If the input falls back to state 1 and the run command is still active, the motor will only restart if 2 -wire level control has been configured. In other cases, a new run command must be sent.		

(1) Parameter can also be accessed in the [SETTINGS] (SEt-) menu.
(2) In corresponds to the nominal drive current indicated in the Installation Manual and on the drive nameplate.
(3) Note: These settings are not related to the "automatic standstill DC injection" function.

When [Auto DC injection] (AdC) = [Continuous] (Ct), the injection of current is done even if a run command has not been sent.

- Check this action will not endanger personnel or equipment in any way

Failure to follow these instructions will result in death or serious injury.

NO HOLDING TORQUE

- DC injection braking does not provide any holding torque at zero speed.
- DC injection braking does not work when there is a loss of power or when the drive detects a fault.
dore necessary, use a separate brake to maintain torque levels.
\square [No] (nO): No injection
\square [Yes] (YES): Standstill injection for adjustable period
[Continuous] (Ct): Continuous standstill injection
[Auto DC inj. time 1]

CAUTION

RISK OF DAMAGE TO MOTOR

- Protect the motor by avoiding long periods of DC injection braking.

Failure to follow these instructions can result in equipment damage.
Parameter can be accessed if [Auto DC injection] (AdC) is not set to [No] (nO), page 69.
[Auto DC inj. level 1]
0 to $1.2 \ln (2)$
$0.7 \ln (2)$
(1) Parameter can also be accessed in the [SETTINGS] (SEt-) menu.
(2) In corresponds to the nominal drive current indicated in the Installation Manual and on the drive nameplate.
[APPLICATION FUNCT.] (FUn-) menu

(1) Parameter can also be accessed in the [SETTINGS] (SEt-) menu.
(2) In corresponds to the nominal drive current indicated in the Installation Manual and on the drive nameplate.

[^3]| Code | |
| :---: | :---: |
| 5月 1－ | ［SUMMING INPUTS］
 Can be used to sum one or two inputs to the［Ref． 1 channel］（Fr1）reference only．
 Note：The＂Summing inputs＂function may be incompatible with other functions（see page 21）． |
| 5月己
 －IU I
 L［［
 Пыь
 nEt | ［Summing ref．2］
 $\square[\mathrm{No}](\mathrm{nO})$ ：Not assigned
 －［AI1］（AI1）：Analog input Al1
 \square［AI2］（AI2）：Analog input AI2
 \square［AI3］（AI3）：Analog input AI3
 \square［AI Virtual 1］（AIV1）：Jog dial
 If［ACCESS LEVEL］（LAC）＝［Level 3］（L3），the following assignments are possible：
 \square［HMI］（LCC）：Reference via the remote display terminal，［HMI Frequency ref．］（LFr）parameter in the ［SETTINGS］（SEt－）menu，page 32.
 \square［Modbus］（Mdb）：Reference via Modbus
 \square［Com．card］（ nEt ）：Reference via network |
| 5月ヨ
 L［ $[$
 Пыь nEt | ［Summing ref．3］ ［ No ］（nO）：Not assigned ［AI1］（Al1）：Analog input Al1 ［AI2］（AI2）：Analog input AI2 ［AI3］（AI3）：Analog input AI3 ［AI Virtual 1］（AIV1）：Jog dial
 If［ACCESS LEVEL］（LAC）$=$［Level 3］（L3），the following assignments are possible： ［HMI］（LCC）：Reference via the remote display terminal，［HMI Frequency ref．］（LFr）parameter in the ［SETTINGS］（SEt－）menu，page 32. ［Modbus］（Mdb）：Reference via Modbus ［Com．card］（nEt）：Reference via network |

Summing inputs

See the complete block diagrams on pages $\underline{53}$ and $\underline{55}$ ．

Note：

Al 2 is $\mathrm{a} \pm 10 \mathrm{~V}$ input which can be used for subtraction by summing a negative signal．

[APPLICATION FUNCT.] (FUn-) menu

ref

5Et

Preset speeds

dr $[$
[t L - The following assignment order must be observed: [2 preset speeds] (PS2), then [4 preset speeds] (PS4), then [8 preset speeds] (PS8), then [16 preset speeds] (PS16).
$F L E$ - Combination table for preset speed inputs

ᄃロп-5uP-	16 speeds LI (PS16)	8 speeds LI (PS8)	4 speeds LI (PS4)	2 speeds LI (PS2)	Speed reference
	0	0	0	0	Reference (1)
	0	0	0	1	SP2
	0	0	1	0	SP3
	0	0	1	1	SP4
	0	1	0	0	SP5
	0	1	0	1	SP6
	0	1	1	0	SP7
	0	1	1	1	SP8
	1	0	0	0	SP9
	1	0	0	1	SP10
	1	0	1	0	SP11
	1	0	1	1	SP12
	1	1	0	0	SP13
	1	1	0	1	SP14
	1	1	1	0	SP15
	1	1	1	1	SP16

(1) See the block diagrams on page $\underline{53}$ and page $\underline{55}$: Reference $1=(\mathrm{SP} 1)$.

Note: If $\mathrm{Fr} 1=\mathrm{LCC}$ and $\mathrm{rPl}=\mathrm{nO}$, then PI reference (\%) $=10$ * $\mathrm{Al}(\mathrm{Hz}) / 15$

[APPLICATION FUNCT.] (FUn-) menu

(1) Parameter can also be accessed in the [SETTINGS] (SEt-) menu. This parameter will depend on how many speeds have been configured.
(2) Reminder: The speed remains limited by the [High speed] (HSP) parameter, page 33 .

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Code	Name/Description		Adjustment range	Factory setting
P5 5-	- [PRESET SPEEDS] (continued)			
5 P11	\square [Preset speed 11]	(1)	0.0 to 500.0 Hz (2)	55 Hz
$5 P 12$	\square [Preset speed 12]	(1)	0.0 to 500.0 Hz (2)	60 Hz
$5 \text { Р } 1 \exists$	\square [Preset speed 13]	(1)	0.0 to 500.0 Hz (2)	70 Hz
5 P 14	\square [Preset speed 14]	(1)	0.0 to $500.0 \mathrm{~Hz}(2)$	80 Hz
5 P 15	\square [Preset speed 15]	(1)	0.0 to 500.0 Hz (2)	90 Hz
5 P16	\square [Preset speed 16]	(1)	0.0 to 500.0 Hz (2)	100 Hz

(1) Parameter can also be accessed in the [SETTINGS] (SEt-) menu. This parameter will depend on how many speeds have been configured.
(2) Reminder: The speed remains limited by the [High speed] (HSP) parameter, page 33.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

(1) Parameter can also be accessed in the [SETTINGS] (SEt-) menu.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

[APPLICATION FUNCT.] (FUn-) menu

+/- speed

Function can only be accessed if [ACCESS LEVEL] (LAC) $=$ [Level 2] (L2) or [Level 3] (L3), page 58.
Two types of operation are available.

1. Use of single action buttons: Two logic inputs are required in addition to the direction(s) of operation.

The input assigned to the "+ speed" command increases the speed, the input assigned to the "- speed" command decreases the speed.
Note:
If the "+ speed" and "- speed" commands are activated at the same time, "- speed" will be given priority.
2. Use of double action buttons: Only one logic input assigned to "+ speed" is required.
+/- speed with double action buttons:
Description: 1 button pressed twice for each direction of rotation. Each action closes a contact.

	Released (- speed)	1st press (speed maintained)	2nd press (+ speed)
Forward button	-	a	a and b
Reverse button	-	c	c and d

Wiring example:
LI1: Forward
LIx: Reverse
Lly: + speed

This type of $+/$ - speed is incompatible with 3 -wire control.
Whichever type of operation is selected, the max. speed is set by the [High speed] (HSP) parameter, page 33.

Note:

If the reference is switched via [Ref. 2 switching] (rFC), page 59, from one reference channel to any other reference channel with " $+/-$ speed", the value of the [Output frequency] (rFr) reference (after ramp) is copied at the same time. This prevents the speed being incorrectly reset to zero when switching takes place.
$r E F-$
dre
I－
ᄃ t L－

Code	
UPd－	［＋／－SPEED］ （motorized jog dial） Function can only be accessed if［ACCESS LEVEL］（LAC）＝［Level 2］（L2）or［Level 3］（L3），and［＋／－spd HMI］ （UPdH）or［＋／－SPEED］（UPdt）selected，page 58. Note：The＂+ ／－speed＂function is incompatible with several functions（see page 21）．It can only be configured if these functions are unassigned，in particular the summing inputs（set［Summing ref．2］（SA2）to［ No ］（nO）， page 71 ）and the preset speeds（set［2 preset speeds］（PS2）and［4 preset speeds］（PS4）to［ No ］（nO）， page ${ }^{73}$ ）which will have been assigned as part of the factory settings．
$\Delta 5 P$ $\begin{array}{lll} & n & 0 \\ L & 1 & 1 \\ L & 1 & 2 \\ L & 1 & 3 \\ L & 1 & 4 \\ L & 1 & 5 \\ L & 1 & 6 \end{array}$	［＋speed assignment］ Parameter accessible for［＋／－SPEED］（UPdt）only．Selecting the assigned logic input activates the function． ［ No ］（ nO ）：Not assigned ［LI1］（LI1）：Logic input LI1 ［LI2］（LI2）：Logic input LI2 ［LI3］（LI3）：Logic input LI3 ［LI4］（LI4）：Logic input LI4 ［LI5］（LI5）：Logic input LI5 ［LI6］（LI6）：Logic input LI6
	［－Speed assignment］ Parameter accessible for［＋／－SPEED］（UPdt）only．Selecting the assigned logic input activates the function． ［ No ］（nO）：Not assigned ［LI1］（LI1）：Logic input LI1 ［LI2］（LI2）：Logic input LI2 ［LI3］（LI3）：Logic input LI3 ［LI4］（LI4）：Logic input LI4 ［LI5］（LI5）：Logic input LI5 ［LI6］（LI6）：Logic input LI6
5 tr $\begin{array}{r} n \square \\ r A \cap \\ E E P \end{array}$	［Reference saved］ Associated with the＂$+/$ speed＂function，this parameter can be used to save the reference： －When the run commands disappear（saved to RAM） －When the line supply or the run commands disappear（saved to EEPROM） Therefore，the next time the drive starts up，the speed reference is the last reference saved． ［No］（nO）：No saving ［RAM］（rAM）：Saving in RAM ［EEprom］（EEP）：Saving in EEPROM

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and set from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

PI regulator

Block diagram

The function is activated by assigning an analog input to the PI feedback (measurement).

5Et-
dre-
1-ロ-

ᄃロா-
SUP-

Reference B
Pages 53 and 55

PI feedback:

PI feedback must be assigned to one of these analog inputs, $\mathrm{Al} 1, \mathrm{Al} 2$, or Al 3 .
PI reference:
The PI reference can be assigned to the following parameters in order of priority:

- Preset references via logic inputs, [Preset ref. PID 2] (rP2), [Preset ref. PID 3] (rP3), and [Preset ref. PID 4] (rP4), page 82
- Internal reference [Internal PID ref.] (rPI), page 83
- Reference [Ref. 1 channel] (Fr1), page 58

Combination table for preset PI references

$\mathrm{LI}(P r 4)$	$\mathrm{LI}(P r 2)$	Pr2 = nO	Reference
			rPI or Fr1
0	0	rPI or Fr1	
0	1		rP2
1	0	rP3	
1	1	$r P 4$	

Parameters can also be accessed in the [SETTINGS] (SEt-) menu:

- [Internal PID ref.] (rPI), page $\underline{32}$
- [Preset ref. PID 2] (rP2), [Preset ref. PID 3] (rP3), and [Preset ref. PID 4] (rP4), page 36
- [PID prop. gain] (rPG), page 36
- [PID integral gain] (rIG), page 36
- [PID fbk scale factor] (FbS), page 36: The [PID fbk scale factor] (FbS) parameter can be used to scale the reference according to the variation range for PI feedback (sensor rating).
Example: Regulating pressure PI reference (process) 0-5 bar (0-100\%)
Rating of pressure sensor 0-10 bar
[PID fbk scale factor] (FbS) = max. sensor scaling/max. process
[PID fbk scale factor] (FbS) = 10/5=2
- [PID wake up thresh.] (rSL), page 38:

Can be used to set the PI error threshold above which the PI regulator will be reactivated (wake-up) after a stop due to the max. time threshold being exceeded at low speed [Low speed time out] (tLS)

- [PID correct. reverse] (PIC), page 36: If [PID correct. reverse] (PIC) $=[\mathrm{No}](\mathrm{nO})$, the speed of the motor will increase when the error is positive (example: pressure control with a compressor). If [PID correct. reverse] (PIC) $=[\mathrm{Yes}]$ (YES), the speed of the motor will decrease when the error is positive (example: temperature control using a cooling fan).

5Et- "Manual - Automatic" operation with PI

$d r[$ - This function combines the PI regulator and [Ref. 2 switching] (rFC) reference switching, page $\underline{59}$. The speed reference is given by $1-\square-\quad$ [Ref. 2 channel] (Fr2) or by the PI function, depending on the state of the logic input.

ᄃEL-Setting up the PI regulator

1. Configuration in PI mode

See the block diagram on page $\underline{79}$.
2. Perform a test in factory settings mode (in most cases, this will be sufficient).

To optimize the drive, adjust [PID prop. gain.] (rPG) or [PID integral gain] (rIG) gradually and independently, and observe the effect on the Pl feedback in relation to the reference.

3. If the factory settings are unstable or the reference is incorrect:

Perform a test with a speed reference in manual mode (without PI regulator) and with the drive on load for the speed range of the system:

- In steady state, the speed must be stable and comply with the reference, and the PI feedback signal must be stable.
- In transient state, the speed must follow the ramp and stabilize quickly, and the PI feedback must follow the speed.

If this is not the case, see the settings for the drive and/or sensor signal and cabling.
Switch to PI mode.
Set [Dec ramp adapt.] (brA) to no (no auto-adaptation of the ramp).
Set the [Acceleration] (ACC) and [Deceleration] (dEC) speed ramps to the minimum level permitted by the mechanics without triggering an [OVERBRAKING] (ObF) fault.
Set the integral gain [PID integral gain] (rIG) to the minimum level.
Observe the PI feedback and the reference.
Switch the drive ON/OFF repeatedly or quickly vary the load or reference a number of times.
Set the proportional gain [PID prop. gain] (rPG) in order to ascertain a good compromise between response time and stability in transient phases (slight overshoot and 1 to 2 oscillations before stabilizing).
If the reference varies from the preset value in steady state, gradually increase the integral gain [PID integral gain] (rIG), reduce the proportional gain [PID prop. gain] (rPG) in the event of instability (pump applications), and find a compromise between response time and static precision (see diagram).
Perform in-production tests over the whole reference range.

The oscillation frequency depends on the system dynamics.

| Parameter | Rise time | Overshoot | Stabilization
 time | Static error |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [PID prop. gain] (rPG) | | | $=$ | |
| [PID integral gain] (rIG) | | | | |

(1) Parameter(s) can also be accessed in the [SETTINGS] (SEt-) menu.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

(1) Parameter(s) can also be accessed in the [SETTINGS] (SEt-) menu.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

(1)Parameter(s) can also be accessed in the [SETTINGS] (SEt-) menu.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Brake control

Function can only be accessed if [ACCESS LEVEL] (LAC) $=$ [Level 2] (L2) or [Level 3] (L3) (page 53).
$1-\square-$ This function, which can be assigned to relay R2 or logic output AOC, enables the drive to manage an electromagnetic brake.

Principle

Synchronize brake release with the build-up of torque during startup and brake engage at zero speed on stopping, to help prevent jolting.

Brake sequence

Recommended brake control settings:

1. [Brake release freq] (brL), page 85:

- Horizontal movement: Set to 0.
- Vertical movement: Set to a frequency equal to the nominal motor slip in Hz .

2. [Brake release I FW] (Ibr), page 85:

- Horizontal movement: Set to 0.
- Vertical movement: Preset the nominal current of the motor then adjust it in order to help prevent jolting on start-up, making sure that the maximum load is held when the brake is released.

3. [Brake Release time] (brt), page 85 :

Adjust according to the type of brake. It is the time required for the mechanical brake to release.
4. [Brake engage freq] (bEn), page 85:

- Horizontal movement: Set to 0 .
- Vertical movement: Set to a frequency equal to the nominal motor slip in Hz. Note: Max. [Brake engage freq] (bEn) = [Low speed] (LSP); this means an appropriate value must be set in advance for [Low speed] (LSP).

5. [Brake engage time] (bEt), page 85:

Adjust according to the type of brake. It is the time required for the mechanical brake to engage.
6. [Brake impulse] (bIP), page 85 :

- Horizontal movement: Set to [No] (nO).
- Vertical movement: Set to [Yes] (YES) and check that the motor torque direction for "run forward" control corresponds to the upward direction of the load. If necessary, reverse two motor phases. This parameter generates motor torque in an upward direction regardless of the direction of operation commanded in order to maintain the load whilst the brake is releasing.

(1) In corresponds to the nominal drive current indicated in the Installation Manual and on the drive nameplate.

[^4]
(1) Parameter can also be accessed in the [SETTINGS] (SEt-) menu.
(2) In corresponds to the nominal drive current indicated in the Installation Manual and on the drive nameplate.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.
[APPLICATION FUNCT.] (FUn-) menu

(1) Parameter can also be accessed in the [SETTINGS] (SEt-) menu.
(2) In corresponds to the nominal drive current indicated in the Installation Manual and on the drive nameplate.

Management of limit switches

Function can only be accessed if［ACCESS LEVEL］（LAC）＝［Level 2］（L2）or［Level 3］（L3），page 58．
This function can be used to manage the operation of one or two series limit switches（non－reversing or reversing）．
－Assignment of one or two logic inputs（forward limit switch，reverse limit switch）
－Selection of the stop type（on ramp，fast or freewheel）
Following a stop，the motor is permitted to restart in the opposite direction only．
－The stop is performed when the input is in state 0 ．The direction of operation is authorized in state 1 ．

Restarting after stop caused by a limit switch

－Send a run command in the other direction（when control is via the terminals，if［2／3 wire control $]$（ tCC ）$=[2$ wire］（ 2 C ）and $[2$ wire type］$(\mathrm{tCt})=$［Transition］（trn），first remove all the run commands）．
or
－Invert the reference sign，remove all the run commands then send a run command in the same direction as before the stop caused by a limit switch．

\starThese parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and set from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．
5Et-

dr I- -8	Code	Name/Description	Adjustment range	Factory setting

ArE	\square [Select ATV31 conf.
This parameter is invisible	

This parameter is invisible if a communication option is present. It is only used to transfer a configuration via a loader tool or an ATV31 remote terminal.
[Select ATV31 conf.] (ArE) can be used during a transfer between an ATV31 and ATV312 to specify the type of ATV31 (ATV31 or ATV31e0ee*eA). See page 105 Configuration transfer between an ATV31 and an ATV312 for more details about compatible loader tools.
Note : The transfer can't be done from an ATV31 to an ATV312 with a communication option board
\square [No] (nO): Transfer between two ATV312
Note1: PowerSuite is only compatible with ATV312 using the standard input/output control board.
Note2: Transfer between 2 drives is only possible if they have the same communication board.
\square [ATV31 std] (31E): Transfer from an ATV31 to an ATV312. Set ARE $=31 E$ to download a configuration from a European ATV31.
\square [ATV31...A] (31A): Transfer from an ATV31eeeeeөA to an ATV312. Set ARE = 31A to download a configuration from an Asian ATV31.
Procedure for transferring a configuration:

- Set [Select ATV31 conf.] (ArE) to the required value.
- Perform the configuration transfer.
- Once the transfer is complete, turn the drive off.
- Power the drive up again to initialize the configuration.
- The parameter is restored to its factory setting.
[Saving config.] \quad (1) [No] (nO)
See page 45 .
[Macro configuration]
(1) $\quad[$ Factory set. $]$ (Std)
See page 45 .

[Restore config.]

(1)	$[\mathrm{No}](\mathrm{nO})$

See page 46 .
(1) [Saving config.] (SCS), [Macro configuration] (CFG), and [Restore config.] (FCS) can be accessed from several configuration menus, but they apply to all menus and parameters.

The parameters can only be modified when the drive is stopped and no run command is present. On the optional remote display terminal, this menu can be accessed with the switch in the \qquad position.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Code	Description	Adjustment range	Factory setting
	［Catch on the fly］ Used to enable a smooth restart if the run command is maintained after the following events： －Loss of line supply or simple power off －Reset of current drive or automatic restart －Freewheel stop The speed given by the drive resumes from the estimated speed of the motor at the time of the restart，then follows the ramp to the reference speed． This function requires 2 －wire control（［ $2 / 3$ wire control $](\mathrm{tCC})=[2$ wire $](2 \mathrm{C})$ ）with［2 wire type］（ tCt ）$=[$ Level $]$ （LEL）or［Fwd priority］（PFO）． \square［ No ］（nO）：Function inactive \square［Yes］（YES）：Function active When the function is operational，it activates at each run command，resulting in a slight delay （1 second max．）． ［Catch on the fly］（FLr）is forced to［ No ］（nO）if brake control［Brake assignment］（bLC）is assigned，page 85.		
	［External fault ass．］ ［No］（nO）：Not assigned ［LI1］（LI1）：Logic input LI1 ［LI2］（LI2）：Logic input LI2 ［LI3］（LI3）：Logic input LI3 ［LI4］（LI4）：Logic input LI4 ［LI5］（LI5）：Logic input LI5 ［LI6］（LI6）：Logic input LI6 If［ACCESS LEVEL］$($ LAC $)=[$ Level 3］（L3），the following assignments are possible： ［CD11］（CD11）：Bit 11 of the control word from a communication network ［CD12］（CD12）：Bit 12 of the control word from a communication network ［CD13］（CD13）：Bit 13 of the control word from a communication network ［CD14］（CD14）：Bit 14 of the control word from a communication network ［CD15］（CD15）：Bit 15 of the control word from a communication network		
LEE	－［External fault config］ \square［Active low］（LO）：The external fault is detected when the logic input assigned to［External fault ass．］（EtF） changes to state 0 ． Note：In this case，［External fault ass．］（EtF）cannot be assigned to a control word bit from a communication network． \square［Active high］（HIG）：The external fault is detected when the logic input or the bit assigned to［External fault ass．］（EtF）changes to state 1. Note：Where［External fault config］（LEt）＝［Active high］（HIG），［External fault ass．］（EtF）is assigned to a control word bit from a communication network，and where there is no［External fault ass．］（EtF）fault detection，switching to［External fault config］（LEt）$=$［Active low］（LO）triggers［External fault ass．］（EtF）fault detection．In this case，it is necessary to turn the drive off and then back on again．		
L			
$E P L$	－［External fault mgt］［Ignore］（nO）：Ignore［Freewheel］（YES）：Detected fault management with freewheel stop［Ramp stop］（rMP）：Detected fault management with stop on ramp［Fast stop］（FSt）：Detected fault management with fast stop		
пロ YE5 r F $5 t$			

［Active low］（LO）：The external fault is detected when the logic input assigned to［External fault ass．］（EtF） changes to state 0 network．
［Active high］（HIG）：The external fault is detected when the logic input or the bit assigned to［External fault ass．］（EtF）changes to state 1.
．Where［External fault config］$(\mathrm{LEt})=[$ Active high $](\mathrm{HIG})$ ，［External fault ass．］（EtF）is assigned to detection，switching to［External fault config］（LEt）＝［Active low］（LO）triggers［External fault ass．］（EtF）fault detection．In this case，it is necessary to turn the drive off and then back on again．

［External fault mgt］

［Ignore］（nO）：Ignore
r ПР
F5t
［Fast stop］（FSt）：Detected fault management with fast stop
[FAULT MANAGEMENT] (FLt-) menu

Code	Description	Adjustment range	Factory setting
$5 L L$	\square［Modbus fault mgt］		$\begin{aligned} & \hline \text { [Fast stop] } \\ & \text { (FSt) } \end{aligned}$
	LOSS OF CONTROL If［Modbus fault mgt］（SLL）＝［Ignore］（n0），communication control will be inhibited．For safety reasons， inhibiting the communication fault detection should be restricted to the debug phase or to special applications． Failure to follow these instructions can result in death，serious injury，or equipment damage．		
na YE5 r F $5 t$	［Ignore］（nO）：Ignore ［Freewheel］（YES）：Detected fault management with freewheel stop ［Ramp stop］（rMP）：Detected fault management with stop on ramp ［Fast stop］（FSt）：Detected fault management with fast stop This parameter does not apply to PowerSuite and SoMove software．		
［ पL	\square［CANopen fault mgt］		［Fast stop］（FSt）
	LOSS OF CONTROL If［CANopen fault mgt］（COL）$=$［Ignore］（ n 0 ），communication control will be inhibited．For safety reasons， inhibiting the communication fault detection should be restricted to the debug phase or to special applications． Failure to follow these instructions can result in death，serious injury，or equipment damage．		
no YE5 r $\quad \mathrm{P}$ FSt	［Ignore］（nO）：Ignore［Freewheel］（YES）：Detected fault management with freewheel stop［Ramp stop］（rMP）：Detected fault management with stop on ramp［Fast stop］（FSt）：Detected fault management with fast stop		
$t \cap L$	\square［Autotune fault mgt］		［Yes］（YES）
n Y 5	This parameter can be used to manage drive behavior in the event that auto－tuning is unsuccessful［AUTO TUNING FAULT］（nF） $\square[\mathrm{No}](\mathrm{nO})$ ：Ignored（the drive reverts to the factory settings） \square［Yes］（YES）：Detected fault management with drive locked If［Cold stator resist．］（rSC），page 42，is not set to［ No ］（nO），［Autotune fault mgt］（tnL）is forced to［Yes］ （YES）．		
LFL	\square［4－20mA loss］		［Freewheel］ （YES）
ni YE $L F F$ rLS r F $5 t$	［Ignore］（nO）：Ignored（only possible value if［Al3 min．value］（CrL3）$\leqslant 3 \mathrm{~mA}$ ，page 48） ［Freewheel］（YES）：Detected fault management with freewheel stop ［fallback spd］（LFF）：The drive switches to the fallback speed（［fallback spd］（LFF）parameter）． ［Spd maint．］（rLS）：The drive maintains the speed at which it was operating when the loss was detected． This speed is saved and stored as a reference until the fault has disappeared． ［Ramp stop］（rMP）：Detected fault management with stop on ramp ［Fast stop］（FSt）：Detected fault management with fast stop Note：Before setting［4－20mA loss］（LFL）to［fallback spd］（LFF）check the connection of input Al3． If［4－20mA loss］（LFL）＝［fallback spd］（LFF）or［Spd maint．］（rLS），no code is displayed．		
LFF	－［Fallback speed］ Fallback speed setting in the event of a［4－20mA loss］（LFL）．	0 to 500 Hz	10 Hz

[^5]
LOSS OF CONTROL

［ No l （ nO ）：Ignored（the drive reverts to the factory settings）
［Yes］（YES）：Detected fault management with drive locked
If［Cold stator resist．］（rSC），page 42，is not set to［No］（nO），［Autotune fault mgt］（tnL）is forced to［Yes］ （YES）．
[FAULT MANAGEMENT] (FLt-) menu
 The jog dial (ENT) needs to be pressed and held down (for 2 s) to change the assignment for this parameter.

[^6]

The parameters can only be modified when the drive is stopped and no run command is present. Modifications to the [Modbus Address] (Add), [Modbus baud rate] (tr), [Modbus format] (tFO), [CANopen address] (AdCO), and [CANopen bit rate] (bdCO) parameters are not taken into account until the drive has been switched off and back on again.
On the optional ATV31 remote display terminal, this menu can be accessed with the switch in the
 position.

Code	Description Adjustment range Factory setting
$\begin{array}{lllll}F L & \square & & \\ & & n & \square \\ L & 1 & 1 \\ L & 1 & 2 \\ L & 1 & 7 \\ L & 1 & 4 \\ L & 15 \\ L & 15\end{array}$	［Forced local assign．］ ［ No ］（nO）：Not assigned ［LI1］（LI1）：Logic input LI1 ［LI2］（LI2）：Logic input LI2 ［LI3］（LI3）：Logic input LI3 ［LI4］（LI4）：Logic input LI4 ［LI5］（LI5）：Logic input LI5 ［LI6］（LI6）：Logic input LI6 In forced local mode，the terminals and the display terminal regain control of the drive．
	［Forced local Ref．］ Parameter can only be accessed if［ACCESS LEVEL］（LAC）＝［Level 3］（L3），page 58. In forced local mode，only the speed reference is taken into account．PI functions，summing inputs，etc．are not active． See the diagrams on pages 55 to 57 ． ［AI1］（AI1）：Analog input AI1，logic inputs LI ［AI2］（AI2）：Analog input AI2，logic inputs LI ［AI3］（AI3）：Analog input Al3，logic inputs LI ［AI Virtual 1］（AIV1）：Jog dial，RUN／STOP buttons ［HMI］（HMI）：Remote display terminal：［HMI Frequency ref．］（LFr）reference，page 32，RUN／STOP／FWD／ REV buttons

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and set from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．
rEF-
5Et-
drc
1-0-
ctl-
$\mathrm{F} \mathrm{Un}_{\mathrm{n}}$
fle-
ᄃロா-
5UP-

The parameters can be accessed with the drive running or stopped.
On the optional remote display terminal, this menu can be accessed with the switch in any position.
Some functions have numerous parameters. In order to clarify programming and avoid having to scroll through endless parameters, these functions have been grouped in submenus.
Like menus, submenus are identified by a dash after their code: L I A $^{-}$for example.
When the drive is running, the value displayed is that of one of the monitoring parameters. By default, the value displayed is the output frequency applied to the motor ([Output frequency] (rFr) parameter).
While the value of the new monitoring parameter required is being displayed, press and hold down the jog dial (ENT) again (for 2 seconds) to confirm the change of monitoring parameter and store it. From then on, it is the value of this parameter that will be displayed during operation (even after powering down).
"Unless the new choice is confirmed by pressing and holding down ENT again, the display will revert to the previous parameter after powering down.

Note: After the drive has been turned off or following a loss of line supply, the parameter displayed is the drive status ([Ready] (rdY), for example).
The selected parameter is displayed following a run command.

Code	Description
$L F_{r}$	[HMI Frequency ref.] Frequency reference for control via built-in dis
$r P I$	[Internal PID ref.] Internal PID reference Parameter is only visible if [PID feedback as
$F r \mathrm{H}$	[Frequency ref.] Frequency reference before ramp (absolute
$r F^{\prime}$	[Output frequency] This parameter is also used for the $+/-$ speed It displays and validates operation (see page $(r \mathrm{Fr})$ is not stored and the $+/-$ speed function frequency] (rFr).
$\begin{gathered} 5 P d 1 \\ \text { or } \\ 5 P d 己 \\ \text { or } \\ 5 P d \exists \end{gathered}$	\square [Cust. output value] [Cust. output value] (SPd1), [Cust. output value] (SP [Scale factor display] (SdS) parameter, page 40 ([Cus
L [r	[Motor current] Estimation of current in the motor
ロPr	[Motor power] $100 \%=$ nominal motor power, calculated using (drC-) menu
$U L \square$	[Mains voltage] This parameter gives the line voltage via the
t Hr	[Motor thermal state] $100 \%=$ nominal thermal state 118\% = "OLF" threshold (drive overload)
EHd	[Drv. Therm att.] $100 \%=$ nominal thermal state 118\% = "OHF" threshold (drive overheating)

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

SEt－	Code	Description \quad Variation range
$5 \cup P$－	b LF ［FF ［F］ $[\cap F$ LロF ［rF E EF EPF IF I IF己 IF \exists IF 4 LFF nロF ロレF ロ［F ロHF DLF ロPF प5F PHF 5 ［F $5 L F$ 5ロF $t \cap F$ U5F	\square［Last fault occurred］ －［Brake control］（bLF）：Brake control detected fault \square［Incorrect config．］（CFF）：Incorrect configuration（parameters） \square［Invalid config．］（CFI）：Invalid configuration（parameters） \square［NETWORK FAULT］（CnF）：Communication detected fault on the communication card \square［CANopen com．］（COF）：Communication detected fault line 2 （CANopen） \square［Capa．charg］（CrF）：Capacitor precharge detected fault \square［EEPROM］（EEF）：EEPROM memory detected fault －［External］（EPF）：External fault －［INTERNAL FAULT］（IF1）：Unknown rating ［［INTERNAL FAULT］（IF2）：HMI card not recognized or incompatible／display absent \square［INTERNAL FAULT］（IF3）：EEPROM detected fault \square［INTERNAL FAULT］（IF4）：Industrial EEPROM detected fault －［4－20mA］（LFF）：4－20 mA loss ［［No fault］（nOF）：No fault code saved \square［Overbraking］（ObF）：DC bus overvoltage \square［Overcurrent］（OCF）：Overcurrent \square［Drive overheat］（OHF）：Drive overheating \square［Motor overload］（OLF）：Motor overload \square［Mot．phase］（OPF）：Motor phase loss \square［Mains overvoltage］（OSF）：Line supply overvoltage \square［Mains phase loss］（PHF）：Line phase loss \square［Mot．short circuit］（SCF）：Motor short－circuit（phase，ground） －［Modbus］（SLF）：Modbus communication detected fault \square［Overspeed］（SOF）：Motor overspeed \square［Auto－tuning］（tnF）：Auto－tuning detected fault \square［Undervoltage］（USF）：Line supply undervoltage
	ロヒr	［Motor torque］ 100%＝nominal motor torque，calculated using the parameters entered in the［MOTOR CONTROL］ （drC－）menu．
	r H	\square［Run time］ Total time the motor has been powered up： 0 to 9，999（hours），then 10.00 to 65.53 （kilo－hours）． Can be reset to zero by the［Operating t．reset］（rPr）parameter in the［FAULT MANAGEMENT］（FLt－） menu，page 97 ．

Code	Description ${ }^{\text {a }}$ Variation range
[0d ロFF ロп 	\square［PIN code 1］ Enables the drive configuration to be protected using an access code． When access is locked by means of a code，only the parameters in the［MONITORING］ （SUP－）and［SPEED REFERENCE］（rEF－）menus can be accessed．The MODE button can be used to switch between menus． Note：Before entering a code，do not forget to make a careful note of it． ［OFF］（OFF）：No access locking codes －To lock access，enter a code（2 to 9，999）．The display can be incremented using the jog dial．Then press ENT．［ON］（On）appears on the screen to indicate that access has been locked． ［ON］（On）：A code is locking access（2 to 9，999）． －To unlock access，enter the code（incrementing the display using the jog dial）and press ENT．The code remains on the display and access is unlocked until the next time the drive is turned off．Access will be locked again the next time the drive is turned on． －If an incorrect code is entered，the display changes to［ON］（On），and access remains locked． Access is unlocked（the code remains on the screen）． －To reactivate locking with the same code when access has been unlocked，return to［ON］（On） using the jog dial and then press ENT．［ON］（On）remains on the screen to indicate that access has been locked． －To lock access with a new code when access has been unlocked，enter the new code（increment the display using the jog dial）and then press ENT．On appears on the screen to indicate that access has been locked． －To clear locking when access has been unlocked，return to［OFF］（OFF）using the jog dial and then press ENT．［OFF］（OFF）remains on the display．Access is unlocked and will remain so until the next restart．
tU5 ヒ 月 PEnd ProL FAIL dロпE Strd	－［Auto tuning state］ ［Not done］（tAb）：The default stator resistance value is used to control the motor． ［Pending］（PEnd）：Auto－tuning has been requested but not yet performed． ［In Progress］（PrOG）：Auto－tuning in progress． ［Failed］（FAIL）：Auto－tuning was unsuccessful． ［Done］（dOnE）：The stator resistance measured by the auto－tuning function is used to control the motor． ［Entered R1］（Strd）：The cold state stator resistance（［Cold stator resist．］（rSC）which is not set to［No］ (nO) ）is used to control the motor．
$U d P$	［Drv．Soft．Ver］ This parameter gives the software version for the drive． Example： 1102 ＝V1．1 IE02
$\square I[t$ п \square $\begin{aligned} & d n t \\ & \text { Pb } 5 \end{aligned}$	［OPT1 card type］ This parameter is only visible if an option card is present． It is used to visualize the name of the option currently present． No card，CANopen card or DaisyChain card（these cards are unable to send their names to the ATV312） DeviceNet card Profibus card
$[\cap F$	－［Network fault］ Option card fault code This parameter is read－only and is only visible if an option card is present． The fault code remains saved in the parameter，even if the cause disappears．The parameter is reset after the drive is disconnected and then reconnected．The values of this parameter depend on the network card．Consult the manual for the corresponding card．

［Drv．Soft．Ver］

This parameter gives the software version for the drive．
Example： 1102 ＝V1．1 IE02

［OPT1 card type］

This parameter is only visible if an option card is present．
It is used to visualize the name of the option currently present．
No card，CANopen card or DaisyChain card（these cards are unable to send their names to the ATV312）
DeviceNet card
Profibus card

［Network fault］

Option card fault code
This parameter is read－only and is only visible if an option card is present．
The fault code remains saved in the parameter，even if the cause disappears．The parameter is reset after the drive is disconnected and then reconnected．The values of this parameter depend on the network card．Consult the manual for the corresponding card．

The ATV312 is compatible with the ATV31．
To retrieve the configuration of the ATV31，simply transfer the configuration from the ATV31 to the ATV312．See below Configuration transfer between an ATV31 and an ATV312

Dimensions

For all sizes，the ATV312 is 6 mm less deep than the ATV31 $\bullet \bullet \bullet \bullet \bullet A$.

Replacing an ATV31e00000A with an ATV312

Note：Position of the logic input switch

On the ATV31•0000•A，the logic input switch was set to＂Sink＂in the factory setting．
On the ATV312，it is set to＂Source＂in the factory setting．
Set the switch to match the setting on the product being replaced．For more information，see the＂Control terminals＂chapter in the Installation Manual．

Note：Position of the IT jumper

There was no integrated EMC filter on the ATV31•eゃゃゃ॰A．For details on how to deactivate the integrated EMC filter on the ATV312，see the＂Operation with IT connection＂chapter in the Installation Manual．

ATV312 used in LOCAL configuration（see page 27）uses the Jog Dial as a potentiometer and RUN button is activated．This is a similar way of working than ATV $31000 \cdot 0$ A．When the drive is powered up for the first time，the two parameters shown below appear after ［Standard mot．freq］（bFr）．They need to be set as follows：
［Ref． 1 channel］（Fr1），page 29，to［AI Virtual 1］（AIV1）
［2／3 wire control］（tCC），page 30，to［Local］（LOC）
The following parameters can be used subsequently to return to the other HMI version：
［Ref． 1 channel］（Fr1）in the［COMMAND］（CtL－）menu
［2／3 wire control］（tCC）in the［INPUTS／OUTPUTS CFG］（I－O－）menu

Factory settings

As well as the differences in terms of control by potentiometer，the following differences apply between the factory settings for the ATV31••0ッ・•A and those of the ATV312：

Parameter	ATV310e0eッA	ATV312
［2／3 wire control］（tCC）	Local control LOC	［2 wire］（2C）
［Ref．1 channel］（Fr1）	Analog input AIP	Al1
［Cmd channel 1］（Cd1）	Local control LOC	tEr
［Reverse assign．］（rrS）	［No］（nO）（if［2／3 wire control］（tCC）$=[$ Local］（LOC））	LI2
［Forced local Ref．］（FLOC）	AIP jog dial	AIU1
［Select ATV31 conf．］（ArE）	Parameter does not exist on the ATV31	［No］（nO）

Configuration transfer between an ATV31 and an ATV312（using the ATV31 remote terminal or a loader tool）

Compatible loader tools are ：
－Multi－Loader V1．10 and higher，
－Simple－Loader V1．3 and higher，
－SoMove V1．1．11．1 and higher，
－SoMove Mobile V2．0 and higher，
－PowerSuite 2．6 Patch1 and higher．
Note：The transfer can＇t be done from an ATV31 to an ATV312 with a communication option board．
A new［Select ATV31 conf．］（ArE）parameter has been added to the［APPLICATION FUNCT．］（FUn－）menu．
It can be used to specify the ATV31 type（ATV31 or ATV31•eゃe••A）during transfers between an ATV31 and ATV312．
Values of the［Select ATV31 conf．］（ArE）parameter：
－［No］（nO），factory setting，transfer between two ATV312
－［ATV31．．．A］（31A），transfer from ATV31•0000॰A to ATV312
－［ATV31 std］（31E），transfer from ATV31 to ATV312
To perform a configuration transfer，see the procedure on page $\underline{90}$ ．

Drive does not start, no code displayed

- If the display does not light up, check the power supply to the drive and check the wiring of inputs AI1 and AI2 and the connection to the RJ45 connector.
- The assignment of the "Fast stop" or "Freewheel stop" functions will prevent the drive from starting if the corresponding logic inputs are not powered up. The ATV312 then displays [Freewheel stop] (nSt) or [Fast stop] (FSt). This is normal since these functions are active at zero so that the drive will be stopped if there is a wire break.
- Check that the run command input(s) have been actuated in accordance with the chosen control mode (the [2/3 wire control] (tCC) parameter in the [INPUTS / OUTPUTS CFG] (I-O-) menu, page 47).
- If an input is assigned to the limit switch function and this input is at zero, the drive can only be started up by sending a command for the opposite direction (see page 89).
- If the reference channel (page $5 \mathbf{3}$) or the control channel (page $\underline{54}$) is assigned to a communication network, when the power supply is connected, the drive will display [Freewheel stop] (nSt) and remain in stop mode until the communication bus sends a command.
- If the LED on the DC bus is lit and nothing appears on the display, check that there is no short-circuit on the 10 V power supply.
- If the drive displays [Ready] (rdy) and refuses to start, check that there is no short-circuit on the 10 V power supply and check the wiring of inputs AI1 and AI2 and the connection to the RJ45 connector.
- In the factory setting, the "RUN" button is inactive. Set the [Ref.1 channel] (Fr1) parameter, page 29, and the [Cmd channel 1] (Cd1) parameter, page 59, to control the drive locally.

Fault detection codes which require a power reset after the fault is cleared

The cause of the fault must be removed before resetting by cycling power to the drive.
[PRECHARGE FAULT] (CrF), [OVERSPEED] (SOF), [AUTO-TUNING FAULT] (tnF), and [BRAKE CONTROL FAULT] (bLF) can also be reset remotely using a logic input (the [Fault reset] (rSF) parameter in the [FAULT MANAGEMENT] (FLt-) menu, page 92).

Code	Name	Probable cause	Remedy
$b L F$	[BRAKECONTROL FAULT]	- Brake release current not reached - Brake engage frequency threshold [Brake engage freq] (bEn) = [No] (nO) (not set) whereas the brake control [Brake assignment] (bLC) is assigned	- Check the drive/motor connection. - Check the motor windings. - Check the [Brake release I FW] (Ibr) setting in the [APPLICATION FUNCT.] (FUn-) menu, page 85. - Apply the recommended settings for [Brake engage freq] (bEn), pages 84 and 85 .
LrF	$\begin{aligned} & \text { [PRECHARGE } \\ & \text { FAULT] } \end{aligned}$	- Precharge relay control or damaged precharge resistor	- Replace the drive.
$E E F$	[EEPROM FAULT]	- Internal memory	- Check the environment (electromagnetic compatibility) - Replace the drive.
IF I	[INTERNAL FAULT]	- Unknown rating	- Replace the drive. - Restart the drive.
IF 2	[INTERNAL FAULT]	- HMI card not recognized - HMI card incompatible - No display present	Contact a Schneider Electric representative.
IF \exists	[INTERNAL FAULT]	- EEPROM	
IF 4	[INTERNAL FAULT]	- Industrial EEPROM	

Fault detection codes which require a power reset after the fault is cleared （continued）

Code	Name	Probable cause	Remedy
－［ F	［OVERCURRENT］	－Parameters in the［SETTINGS］ （SEt－）and［MOTOR CONTROL］ （drC－）menus are incorrect． －Inertia or load too high －Mechanical locking	－Check the parameters in［SETTINGS］（SEt－），page 32，and［MOTOR CONTROL］（drC－）page 41. －Check the size of the motor／drive／load． －Check the state of the mechanism．
$5[F$	［MOTOR SHORT CIRCUIT］	－Short－circuit or grounding at the drive output －Significant ground leakage current at the drive output if several motors are connected in parallel	－Check the cables connecting the drive to the motor， and the motor insulation． －Reduce the switching frequency －Connect chokes in series with the motor
5ロF	［OVERSPEED］	－Instability or －Driving load too high	－Check the motor，gain and stability parameters －Add a braking resistor －Check the size of the motor／drive／load．
$t \cap F$	［AUTO TUNING FAULT］	－Special motor or motor whose power is not suitable for the drive －Motor not connected to the drive	－Use the L ratio or the［Var．torque］（P）ratio（see［U／F mot 1 selected］（UFt），page 44）． －Check that the motor is present during auto－tuning． －If an output contactor is being used，close it during auto－tuning．

Fault detection codes that can be reset with the automatic restart function after the cause has disappeared

See the［Automatic restart］（Atr）function，page 91.
These detected faults can also be reset by turning the drive off then on again or by means of a logic input（the［Fault reset］（rSF）parameter， page 92，in the［FAULT MANAGEMENT］（FLt－）menu，page 91）．

Code	Name	Probable cause	Remedy
LnF	［NETWORK FAULT］	－Communication detected fault on the communication card	－Check the environment（electromagnetic compatibility） －Check the wiring． －Check the time out． －Replace the option card． －See the［CANopen fault mgt］（COL）parameter page 95 to define the stop mode with a（CnF）．
L पF	［CANopen FAULT］	－Interruption in communication on the CANopen bus	－Check the communication bus －Refer to the relevant product documentation．
E PF	［EXTERNAL FAULT］	－Depending on user	－Depending on user
LFF	［4－20mA LOSS］	－Loss of the 4－20 mA reference on input Al3	－Check the connection on input Al3．
ロレF	［OVERBRAKING］	－Braking too sudden or driving load	－Increase the deceleration time －Install a braking resistor if necessary． －Activate the［Dec ramp adapt．］（bra）function， page 64，if it is compatible with the application．
\square OF	［DRIVE OVERHEAT］	－Drive temperature too high	－Check the motor load，the drive ventilation and the environment．Wait for the drive to cool before restarting．

Fault detection codes that can be reset with the automatic restart function after the cause has disappeared (continued)

Code	Name	Probable cause	Remedy
DLF	[MOTOR OVERLOAD]	- Triggered by excessive motor current - [Cold stator resist.] (rSC) parameter value incorrect	- Check the [Mot. therm. current] (ItH) setting, page 33, of the motor thermal protection, check the motor load. Wait for the drive to cool before restarting. - Remeasure [Cold stator resist.] (rSC), page 42.
$\square P F$	[MOTOR PHASE LOSS]	- Loss of one phase at drive output - Output contactor open - Motor not connected or motor power too low - Instantaneous instability in the motor current	- Check the connections from the drive to the motor. - If an output contactor is being used, set [Output Phase Loss] (OPL) to [Output cut] (OAC) ([FAULT MANAGEMENT] (FLt-) menu, page 94). - Test on a low-power motor or without a motor: In factory settings mode, motor output phase loss detection is active ([Output Phase Loss] (OPL) = [Yes] (YES)). To check the drive in a test or maintenance environment without having to switch to a motor with the same rating as the drive (particularly useful in the case of high-power drives), deactivate motor phase loss detection ([Output Phase Loss] (OPL) $=[\mathrm{No}](\mathrm{nO})$). - Check and optimize the [IR compensation] (UFr), [Rated motor volt.] (UnS), and [Rated mot. current] (nCr) parameters, and perform an [Auto tuning] (tUn) operation, page 43.
ロ5F	[MAINS OVERVOLTAGE]	- Line voltage is too high. - Disturbed line supply	- Check the line voltage.
PHF	[INPUT PHASE LOSS]	- Drive incorrectly supplied or a fuse blown - Failure of one phase - Three-phase ATV312 used on a single-phase line supply - Unbalanced load This protection only operates with the drive on load	- Check the power connection and the fuses. - Reset - Use a three-phase line supply. - Disable the detection by setting [Input phase loss] $(\mathrm{IPL})=[\mathrm{No}](\mathrm{nO})([F A U L T$ MANAGEMENT] $(\mathrm{FLt-})$ menu, page 94).
5LF	[MODBUS FAULT]	- Interruption in communication on the Modbus bus - Remote display terminal enabled ([HMI command] (LCC) $=$ [Yes] (YES), page 61) and terminal disconnected.	- Check the communication bus - Refer to the relevant product documentation. - Check the link with the remote display terminal.

Fault detection codes that are reset as soon as their cause disappears

Code	Name	Probable cause	Remedy
C F F	[INCORRECT CONFIG.]	- The current configuration is inconsistent. - Addition or removal of an option	- Return to factory settings or retrieve the backup configuration, if it is valid. See the [Restore config.] (FCS) parameter, page 46.
[FI	[INVALID CONFIG]	- Invalid configuration The configuration loaded in the drive via the serial link is inconsistent	- Check the configuration loaded previously. - Load a consistent configuration.
U5F	[UNDERVOLTAGE]	- Insufficient line supply - Transient voltage dip - Damaged precharge resistor	- Check the voltage and the voltage parameter. Tripping threshold in [UNDERVOLTAGE] (USF) ATV312••••M2: 160 V ATV312••००M3: 160 V ATV312•e.0N4: 300 V ATV312••••S6: 430 V - Replace the drive.

Fault detection codes displayed on the ATV12 remote display terminal

Code	Name	Description
In 1t：	Initialization in progress	－The microcontroller is initializing． －Search underway for communication configuration
Г ロП. Е （1）	Communication error	－Time out detected fault（ 50 ms ） －This message is displayed after 20 attempts at communication．
$\text { A- } 17$ （1）	Alarm button	－A button has been held down for more than 10 seconds． －The keypad is disconnected． －The＂keypad＂wakes up when a button is pressed．
c L r （1）	Confirmation of detected fault reset	－This is displayed when the STOP button is pressed once during a remote terminal detected fault．
$d E U . E$ （1）	Drive disparity	－The drive brand does not match that of the remote terminal．
г ロП. Е （1）	ROM anomaly	－The remote terminal detects a ROM anomaly on the basis of checksum calculation．
г 月П. Е （1）	RAM anomaly	－The remote terminal detects a RAM anomaly．
$\begin{gathered} \angle P U . \\ (1) \end{gathered}$	Other detected faults	－Other detected faults

（1）Flashing

Index of functions

[+/- SPEED]	77
[2/3 wire control]	47
[ACCESS LEVEL]	58
[Analog./logic output]	48
[Auto DC injection]	69
[Automatic restart]	91
[Auto tuning]	43
Brake control	84
[CANopen address]	98
[Catch on the fly]	93
[Cmd switching]	60
Control and reference channels	50
[Current limit 2]	86
[Current Limitation]	38
[DC injection assign.]	67
[Dec ramp adapt.]	64
Drive thermal protection	12
Drive ventilation	12
[Fast stop]	66
[Fault reset]	92
[Forced local assign.]	$\underline{99}$
[Freewheel stop ass.]	68
[JOG]	76
Management of limit switches	89
[Modbus Address]	98
[Mot. therm. current]	33
Motor thermal protection	13
PI regulator	79
Preset speeds	72
[R1 Assignment]	$\underline{49}$
[R2 Assignment]	49
[RAMPS]	62
[Ramp switch ass.]	64
[Ref. 2 switching]	59
Return to factory settings/Restore configuration	46
Saving the configuration	45
[Skip Frequency]	36
[STOP MODES](continued)	66
[SUMMING INPUTS]	71
[Switching freq.]	40
[SWITCHING MOTOR]	87
[U/F mot 1 selected]	44

Index of parameter codes and customer settings

Code	Page	Name	Unit		Value／Possible function	Factory setting	Customer setting
A［2	$\underline{32}$	［Acceleration 2］	S	In accordance with $/ \mathrm{nr}$	－	5	
A［［	$\underline{\underline{32}}$	［Acceleration］	s	In accordance with Inr	－	\exists	
Ad［	$\underline{69}$	［Auto DC injection］	－	$\begin{aligned} & n \square \\ & y E S \\ & {[t} \end{aligned}$	［No］：No injection ［Yes］：Standstill injection for adjustable period ［Continuous］：Continuous standstill injection	YE 5	
Ad［	$\underline{98}$	［CANopen address］	－	\square to 127	－	\square	
Add	$\underline{98}$	［Modbus Address］	－	I to 247	－	1	
A 1 1 A	$\underline{104}$	［AI1 assignment］	－	－	－	－	
A İA	104	［AI2 assignment］	－	－	－	－	
A 1 ヨ	104	［Al3 assignment］	－	－	－	－	
（ IUI	31	［Image input AIV1］	\％	\square to 100	－	－	
AロIt	48	［AO1 Type］	－	$\begin{aligned} & \square A \\ & 4 B \\ & 1 \square U \end{aligned}$	［Current］：Configuration 0－20 mA ［Cur．4－20］：Configuration 4－20 mA ［Voltage］：Configuration 0－10 V	\square	
Ar E	$\underline{90}$	［Select ATV31 conf．］		$\begin{aligned} & \because \square \\ & \exists 1 A \\ & \exists 1 E \end{aligned}$	［No］：Transfer between two ATV312 ［ATV31．．．A］：Transfer from an ATV31eeeeeeA to an ATV312 ［ATV31 std］：Transfer from an ATV31 to an ATV312	пロ	
Atr	$\underline{91}$	［Automatic restart］	－	$\begin{aligned} & n \square \\ & Y E S \end{aligned}$	［No］：Function inactive ［Yes］：Automatic restart	n \square	
bd［	$\underline{98}$	［CANopen bit rate］	kbps	$\begin{aligned} & 10.0 \\ & 20.0 \\ & 50.0 \\ & 125.0 \\ & 250.0 \\ & 50.0 \\ & 10.0 \end{aligned}$	［10 kbps］： 10 kbps ［20 kbps］： 20 kbps ［50 kbps］： 50 kbps ［125 kbps］： 125 kbps ［250 kbps］： 250 kbps ［500 kbps］： 500 kbps ［1 Mbps］： 1000 kbps	125．	
b	85	［Brake engage freq］	－	$\begin{aligned} & n \square \\ & \square \text { to } L 5 P \end{aligned}$	Not set Adjustment range in Hz	n \square	
bet	85	［Brake engage time］	s	\square to 5	－	ロ． 5	
b Fr	$\frac{29}{41}$	［Standard mot．freq］	Hz	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & \text { [50Hz IEC] } \\ & \text { [60Hz NEMA] } \end{aligned}$	$5 \square$	
b IP	85	［Brake impulse］	－	$\begin{aligned} & \text { nロ } \\ & y E 5 \end{aligned}$	［No］：Motor torque during brake release in the direction of rotation requested ［Yes］：Motor torque during brake release in forward rotation	n口	
$b L[$	85	［Brake assignment］	－	$\begin{aligned} & n \square \\ & r e \\ & d \square \end{aligned}$	［No］：Not assigned ［R2］：Relay R2 ［DO］：Logic output AOC	n \square	
br ${ }^{\text {b }}$	$\underline{64}$	［Dec ramp adapt．］	－	$\begin{aligned} & n \square \\ & Y E S \end{aligned}$	［No］：Function inactive ［Yes］：Function active	YE 5	
brL	85	［Brake release freq］	Hz	D．\square to ID．\square	－	In accordance with the drive rating	
brt	85	［Brake Release time］	s	\square to 5	－	ロ． 5	

Code	Page	Name	Unit		Value／Possible function	Factory setting	Customer setting
［［ 5	$\underline{60}$	［Cmd switching］	－	［d I ［d己 L I I L I 己 L 1 ヨ $L 14$ L 15 LIG ［111「1 ノ ［11ヨ ［114 ［115 ［211 ［2 コ「こ1ヨ ［ᄃ 14 ［215	［ch1 active］：Control channel＝channel 1 ［ch2 active］：Control channel＝channel 2 ［LI1］：Logic input LII ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6 ［C111］：Bit 11 of Modbus control word ［C112］：Bit 12 of Modbus control word ［C113］：Bit 13 of Modbus control word ［C114］：Bit 14 of Modbus control word ［C115］：Bit 15 of Modbus control word ［C211］：Bit 11 of network control word ［C212］：Bit 12 of network control word ［C213］：Bit 13 of network control word ［C214］：Bit 14 of network control word ［C215］：Bit 15 of network control word	［dI	
［d 1	$\underline{59}$	［Cmd channel 1］	－	$\begin{aligned} & E E r \\ & L Q E \\ & L E L \\ & \text { חUb } \\ & \cap E E \end{aligned}$	［Terminal］：Control via terminals ［Local］：Control via keypad ［Remot．HMI］：Control via remote display terminal ［Modbus］：Control via Modbus ［Network］：Control via the network	$t E r$	
［d己	$\underline{60}$	［Cmd channel 2］	－	$t E_{r}$ L प［ L［［ Пdb nEt	［Terminal］：Control via terminals ［Local］：Control via keypad ［Remot．HMI］：Control via remote display terminal ［Modbus］：Control via Modbus ［Network］：Control via the network	7db	
［ F L	$\begin{aligned} & \frac{45}{49} \\ & \frac{61}{61} \\ & \hline 90 \end{aligned}$	［Macro configuration］	－	$\begin{aligned} & 5 t 5 \\ & 5 t d \end{aligned}$	［Start／Stop］：Start／stop configuration ［Factory set．］：Factory configuration	5td	
ᄃ HLF	$\underline{59}$	［Profile］	－	$\begin{aligned} & 51 \pi \\ & 5 E P \end{aligned}$	［Not separ．］：Combined ［Separate］：Separate	517	
［ HP	87	［Motor switching］	－	חロ L I I L ا 己 し1ヨ L 14 L 15 L IG ［dII ［al ［dI ［d 14 ［d 15	［No］：Not assigned ［LI1］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6 ［CD11］：Bit 11 of the control word from a communication network ［CD12］：Bit 12 of the control word from a communication network ［CD13］：Bit 13 of the control word from a communication network ［CD14］：Bit 14 of the control word from a communication network ［CD15］：Bit 15 of the control word from a communication network	$\cdots \square$	
［ L I	38	［Current Limitation］	In	ロ． 25 to 1． 5	－	1． 5	
［ L 2	$\begin{aligned} & \underline{38} \\ & \underline{86} \end{aligned}$	［I Limit． 2 value］	In	ロ． 25 to I． 5	－	1． 5	
$[\cap F$	103	［Network fault］	－	－	－	－	
［0］	103	［PIN code 1］	－	$\begin{aligned} & \square F F \\ & \square n \\ & \text { 日日日 } \end{aligned}$	［OFF］：No code is locking access ［ON］： A code is locking access． Access is unlocked．	－	

Index of parameter codes and customer settings

Code	Page	Name	Unit	Value／Possible function		Factory setting	Customer setting
［ पL	$\underline{95}$	［CANopen fault mgt］	－	$\begin{aligned} & n \square \\ & Y E S \\ & \text { rחP } \\ & \text { FSt } \end{aligned}$	［Ignore］：Ignore ［Freewheel］：Detected fault management with freewheel stop ［Ramp stop］：Detected fault management with stop on ramp ［Fast stop］：Detected fault management with fast stop	YE5	
L ロ	60	［Copy channel 1＜＞2］	－	$\begin{aligned} & n \square \\ & 5 P \\ & C d \\ & A L L \end{aligned}$	［No］：No copy ［Reference］：Copy reference ［Command］：Copy command ［Cmd＋ref．］：Copy command and reference	n \square	
［ 05	42	［Motor 1 Cosinus Phi］	－	D． 5 to 1	－	In accordance with the drive rating	
［05	88	［Motor 2 Cosinus Phi］	－	B． 5 to 1	－	In accordance with the drive rating	
［rHヨ	48	［AI3 max．value］	mA	4 to $2 \square$	－	$2 \square$	
［rLヨ	48	［AI3 min．value］	mA	\square to $2 \square$	－	4	
ctd	39	［Current threshold］	In	\square to 1.5	－	1	
$d[F$	66	［Differential current fault］	－	\square to $1 \square$	－	4	
d［ 1	67	［DC injection assign．］	－	n LII L ا己 L1ヨ L 14 L 15 LIG ［dII 「』1己 ［dIヨ ［d 14 ［dI5	［No］：Not assigned ［LI1］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6 ［CD11］：Bit 11 of the control word from a communication network ［CD12］：Bit 12 of the control word from a communication network ［CD13］：Bit 13 of the control word from a communication network ［CD14］：Bit 14 of the control word from a communication network ［CD15］：Bit 15 of the control word from a communication network	$\cdots \square$	
dE 己	$\frac{32}{64}$	［Deceleration 2］	s	In accordance with Inr	－	5	
dE［	$\frac{32}{\underline{63}}$	［［Deceleration］	S	In accordance with Inr	－	\exists	
d 0	48	［Analog．／logic output］	－	nロ प［r QFr ロヒr ロPr FLE r Un F \in A $F L$ A ᄃ 1 A 5r A t5月 b L L APL	［No］：Not assigned ［I motor］：Motor current ［Motor freq．］：Motor frequency ［Motor torq．］：Motor torque ［P．supplied］：Power supplied by the drive ［Drive fault］：Detected fault． ［Drv running］：Drive running ［Freq．limit］：Frequency threshold reached ［HSP limit］：High speed reached ［Brake seq．］：Current threshold reached ［Freq．ref．］：Frequency reference reached ［Drv thermal］：Motor thermal threshold reached ［Brake seq．］：Brake sequence ［No 4－20mA］：Loss of 4－20 mA signal	n \square	
$d r n$	96	［Derated operation］	－	$\begin{aligned} & n \square \\ & Y E S \end{aligned}$	［No］：Function inactive ［Yes］：Function active	n \square	

Index of parameter codes and customer settings

Code	Page	Name	Unit		Value／Possible function	Factory setting	Customer setting
d5P	78	［－Speed assignment］	－	$\begin{array}{lll} n & 0 \\ L & 1 & 1 \\ L & 1 & 2 \\ L & 1 & 3 \\ L & 1 & 4 \\ L & 1 & 5 \\ L & 1 & 6 \end{array}$	［No］：Not assigned ［LII］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6	n \square	
$E P L$	$\underline{93}$	［External fault mgt］	－	■ ロ YE 5 гПP F5t	［Ignore］：Ignore ［Freewheel］：Detected fault management with freewheel stop ［Ramp stop］］：Detected fault management with stop on ramp ［Fast stop］：Detected fault management with fast stop	YE5	
Erct	$\underline{98}$	［Error code］	－	$\begin{aligned} & \square \\ & 1 \\ & 2 \\ & 7 \\ & 4 \end{aligned}$	No error Bus off Life time CAN overrun Heartbeat	－	
$E \in F$	$\underline{93}$	［External fault ass．］	－		［No］：Not assigned ［LI1］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6 ［CD11］：Bit 11 of the control word from a communication network ［CD12］：Bit 12 of the control word from a communication network ［CD13］：Bit 13 of the control word from a communication network ［CD14］：Bit 14 of the control word from a communication network ［CD15］：Bit 15 of the control word from a communication network	n \square	
Fb 5	$\frac{36}{81}$	［PID fbk scale factor］	－	$\begin{aligned} & \text { B. I to } \\ & \operatorname{IDO} \end{aligned}$	－	1	
F［ 5	$\begin{aligned} & \frac{46}{49} \\ & \frac{61}{90} \end{aligned}$	［Restore config．］	－	$\begin{aligned} & n \square \\ & r E E \quad 1 \\ & \ln 1 \end{aligned}$	［NO］：Function inactive ［Internal］：The current configuration becomes identical to the backup configuration previously saved by 5 ［ 5 ＝5trl． ［Factory Set．］：Current configuration replaced by the configuration selected by the［F G parameter．	$n \square$	
$F L \square$	33	［FreqLoopGain］	\％	I to Iロロ	－	$2 \square$	
FLE	$\frac{39}{88}$	［FreqLoopGain 2］	\％	I to 100	－	2	
$F L \square$	99	［Forced local assign．］	－	$\begin{array}{lll} n & \square \\ L & 1 & 1 \\ L & 1 & 2 \\ L & 1 & 3 \\ L & 1 & 4 \\ L & 1 & 5 \\ L & 1 & 6 \end{array}$	［No］：Not assigned ［LII］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6	$n \square$	
$F L \square[$	$\underline{99}$	［Forced local Ref．］	－	A 1 I A1 己 ค 1 ヨ －1 \｜I L［［	［AI1］：Analog input AI1，logic inputs LI ［AI2］：Analog input AI2，logic inputs LI ［AI3］：Analog input AI3，logic inputs LI ［Network AI］：Jog dial，RUN／STOP buttons ［HMI］：Remote display terminal，RUN／STOP／FWD／ REV buttons	A 11	
F L r	93	［Catch on the fly］	－	$\begin{aligned} & n \square \\ & Y E S \end{aligned}$	［No］：Function inactive ［Yes］：Function active	n \square	

Index of parameter codes and customer settings

Code	Page	Name	Unit		Value／Possible function	Factory setting	Customer setting
Fr I	$\begin{aligned} & \underline{29} \\ & \underline{58} \end{aligned}$	［Ref． 1 channel］	－		［AI1］：Analog input AI1 ［AI2］：Analog input AI2 ［AI3］：Analog input Al3 ［Network AI］：Jog dial ［＋／－Speed］：＋／－speed reference via L । ［＋／－spd HMI］：＋／－speed reference using the jog dial on the ATV312 keypad ［HMI］：Reference via the remote display terminal ［Modbus］：Reference via Modbus ［Network］：Reference via network	A 11	
Fre	58	［Ref． 2 channel］	－	$\rightarrow \square$ H 11 － 1 己 －1ヨ －ノリノ UPdt UPdH L L L П』b nEt	［No］：Not assigned ［AI1］：Analog input AI1 ［AI2］：Analog input AI2 ［AI3］：Analog input Al3 ［Network AI］：Jog dial ［＋／－Speed］：＋／－speed reference via L I ［＋／－spd HMI］：＋／－speed reference using the jog dial on the ATV312 keypad ［HMI］：Reference via the remote display terminal ［Modbus］：Reference via Modbus ［Network］：Reference via network	n 0	
FrH	101	［Frequency ref．］	Hz	\square to 500	－	－	
Frs	41	［Rated motor freq．］	Hz	10 to $5 \square \square$	－	$5 \square$	
Fr 52	87	［Nom．motor 2 freq．］	Hz	$1 \square$ to $5 \square \square$	－	$5 \square$	
Frt	64	［Ramp 2 threshold］	Hz	\square to 5—ロ	－	\square	
F 5t	66	［Fast stop］	－	กロ L I L ا 己 L 1 ヨ L 14 L 15 LI6 ［d 11 ［－1 ［d1ヨ ［d 14 ［d 15	［No］：Not assigned ［LI1］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6 ［CD11］：Bit 11 of the control word from a communication network ［CD12］：Bit 12 of the control word from a communication network ［CD13］：Bit 13 of the control word from a communication network ［CD14］：Bit 14 of the control word from a communication network ［CD15］：Bit 15 of the control word from a communication network	$n \square$	
Ftd	39	［Freq．threshold］	Hz	\square to 5—०	－	$b F_{r}$	
H5P	33	［High speed］	Hz	$L 5 P$ to $t F_{r}$	－	$b F_{r}$	
16 r	85	［Brake release I FW］	In	\square to I．ヨб	－	In accordance with the drive rating	
Id［	$\underline{\underline{34}}$	［DC inject．level 1］	In	\square to In	－	ロ． 7	
InH	$\underline{96}$	［Fault inhibit assign．］	－	$\begin{array}{lll} n & 0 \\ L & 1 & 1 \\ L & 1 & 2 \\ L & 1 & 3 \\ L & 1 & 4 \\ L & 1 & 5 \\ L & 1 & B \end{array}$	［No］：Not assigned ［LII］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6	n 0	

Index of parameter codes and customer settings

Code	Page	Name	Unit		Value／Possible function	Factory setting	Customer setting
Inr	$\underline{63}$	［Ramp increment］	－	$\begin{array}{cc} 0 . & 0 \\ 0 . & I \\ 1 & \end{array}$	［0．01］：Ramp can be set between 0.05 s and 327.6 s ． ［0．1］：Ramp can be set between 0.1 s and $3,276 \mathrm{~s}$ ． ［1］：Ramp can be set between 1 s and $32,760 \mathrm{~s}$ ．	D． 1	
$I P L$	$\underline{94}$	［Input phase loss］	－	$\begin{aligned} & \text { nロ } \\ & Y E S \end{aligned}$	［No］：Ignore ［Yes］：Detected fault management with fast stop	YE5	
It H	33	［Mot．therm．current］	In	ロ．ᄅ to 1． 5	－	In accordance with the drive rating	
$J F 2$	36	［Skip Frequency 2］	Hz	I to 500	－	\square	
$J L F$	$\frac{36}{\underline{76}}$	［Jog frequency］	Hz	\square to $1 \square$	－	10	
J	$\underline{76}$	［JOG］	－	$\begin{array}{lll} n & \square \\ L & 1 & 1 \\ L & I & 1 \\ L & 1 & 3 \\ L & 1 & 4 \\ L & I & 5 \\ L & 1 & 6 \end{array}$	［No］：Not assigned ［LII］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6	$\cdots \square$	
$J P F$	$\underline{36}$	［Skip Frequency］	Hz	\square to 500	－	\square	
L A［	$\underline{58}$	［ACCESS LEVEL］	－	$\begin{array}{ll} L & I \\ L & 2 \end{array}$	［Level 1］：Access to standard functions ［Level 2］：Access to advanced functions in the $F U_{n}$－ menu ［Level 3］：Access to advanced functions and management of mixed control modes	L I	
L A F	89	［Stop FW limit sw．］	－	$\begin{array}{lll} n & 0 \\ L & 1 & 1 \\ L & I & C \\ L & 1 & \\ L & 1 & 4 \\ L & 1 & 5 \\ L & 1 & 6 \end{array}$	［No］：Not assigned ［LI1］：Logic input LII ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6	$\cdots \square$	
LAr	89	［Stop RV limit sw．］	－	$\begin{array}{lll} n & 0 & \\ L & 1 & 1 \\ L & 1 & Z \\ L & 1 & 3 \\ L & 1 & 4 \\ L & 1 & 5 \\ L & 1 & 6 \end{array}$	［No］：Not assigned ［LII］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6	n 0	
L A 5	89	［Stop type］	－	$\begin{aligned} & \text { rחP } \\ & \text { F5t } \\ & \text { n5t } \end{aligned}$	［Ramp stop］：On ramp ［Fast stop］：Fast stop ［Freewheel］：Freewheel stop	n5t	
$L[2$	86	［Current limit 2］	－	n \square LII L I 2 L 1 ヨ $L 14$ L 15 LIG ［dII ［dI ［dノヨ ［d 14 Ld 15	［No］：Not assigned ［LI1］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6 ［CD11］：Bit 11 of the control word from a communication network ［CD12］：Bit 12 of the control word from a communication network ［CD13］：Bit 13 of the control word from a communication network ［CD14］：Bit 14 of the control word from a communication network ［CD15］：Bit 15 of the control word from a communication network	$\cdots \square$	
L［［	61	［ HMI command］	－	$\begin{aligned} & \text { nロ } \\ & \text { YES } \end{aligned}$	［No］：Function inactive ［Yes］：Enables control of the drive using the STOP／RESET， RUN and FWD／REV buttons on the display terminal	$\cdots \square$	
L［r	101	［Motor current］	A	－	－	－	

Index of parameter codes and customer settings

Code	Page	Name	Unit		Value／Possible function	Factory setting	Customer setting
LEt	$\underline{93}$	［External fault config］	－	L H IL	［Active low］：The external fault is detected when the logic input assigned to $E \in F$ changes to state 0 ． ［Active high］：The external fault is detected when the logic input or bit assigned to $E E F$ changes to state 1 ．	H IL	
LFF	95	［Fallback speed］	Hz	\square to 5 ¢	－	10	
LFL	$\underline{95}$	［4－20mA loss］	－	$\begin{aligned} & \hline \text { nロ } \\ & y E S \\ & \text { LFF } \\ & r L 5 \\ & r \Pi P \\ & F S E \end{aligned}$	［Ignore］：Ignore ［Freewheel］：Detected fault management with freewheel stop ［fallback spd］：The drive switches to the fallback speed． ［Spd maint．］：The drive maintains the speed at which it was operating when the fault occurred． ［Ramp stop］：Detected fault management with stop on ramp ［Fast stop］：Detected fault management with fast stop	YES	
L Fr	$\begin{aligned} & \frac{32}{101} \end{aligned}$	［HMI Frequency ref．］	－	\square to H5P	－	－	
LFE	102	［Last fault occurred］	－	bLF LFF ［FI L $\cap F$ LロF LrF EEF EPF IF I IF ב IF \exists IF 4 LFF nロF ロレF प［F ロHF ロLF $\square P F$ ロ5F PHF 5LF $5 L F$ 5 ロF $E \cap F$ USF	［Brake control］：Brake control detected fault ［Incorrect config．］：Incorrect configuration ［Invalid config．］：Invalid configuration ［NETWORK FAULT］：Communication detected fault on the communication card ［CANopen com．］：Communication detected fault line 2 （CANopen） ［Capa．charg］：Capacitor precharge detected fault ［EEPROM］：EEPROM memory detected fault ［External］：External fault ［INTERNAL FAULT］：Unknown rating ［INTERNAL FAULT］：HMI card not recognized or incompatible／display absent ［INTERNAL FAULT］：EEPROM detected fault ［INTERNAL FAULT］：Industrial EEPROM detected fault ［4－20mA］：4－20 mA loss ［No fault］：No fault code saved ［Overbraking］：DC bus overvoltage ［Overcurrent］：Overcurrent ［Drive overheat］：Drive overheating ［Motor overload］：Motor overload ［Mot．phase］：Motor phase loss ［Mains overvoltage］：Line supply overvoltage ［Mains phase loss］：Line phase loss ［Mot．short circuit］：Motor short－circuit（phase，ground） ［Modbus］：Modbus communication detected fault ［Overspeed］：Motor overspeed ［Auto－tuning］：Auto－tuning detected fault ［Undervoltage］：Line supply undervoltage		
L I 1 A	104	［Config．LI1］	－	－			
LI2A	104	［Config．LI2］	－	－			
L I ヨ	104	［Config．LI3］	－	－			
L 14F	$\underline{104}$	［Config．LI4］	－	－			
L 15月	104	［Config．LI5］	－	－			
LIEA	104	［Config．LI6］	－	－			
L 5 P	$\underline{33}$	［Low speed］	Hz	\square to H5P	－	\square	
$n[r$	41	［Rated mot．current］	In	D． 25 to 1． 5	－	In accordance with the drive rating	
	88	［ N om．mot． 2 current］	In	ㅁ． 25 to 1． 5	－	In accordance with the drive rating	
nrd	$\underline{44}$	［Noise reduction］	－	$\begin{aligned} & Y E 5 \\ & n \square \end{aligned}$	［Yes］：Frequency with random modulation ［No］：Fixed frequency	YES	

Index of parameter codes and customer settings

Code	Page	Name	Unit		Value／Possible function	Factory setting	Customer setting
$\square 5 P$	$\underline{42}$	［Rated motor speed］	rpm	ロ to ヨこ，76ロ	－	In accordance with the drive rating	
п5P2	88	［Nom．mot． 2 speed］	rpm	ロ to ヨ己，76ロ	－	In accordance with the drive rating	
n5t	$\underline{68}$	［Freewheel stop ass．］	－	$\begin{array}{lll} n & 0 \\ L & 1 & 1 \\ L & 1 & 2 \\ L & 1 & 3 \\ L & 1 & 4 \\ L & 1 & 5 \\ L & 1 & 6 \end{array}$	［No］：Not assigned ［LII］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6	$\cdots \square$	
－ILE	103	［OPT1 card type］	－			YE5	
$\square H L$	$\underline{94}$	［Overtemp fault mgt］	－	n ロ YES $r \Pi P$ F5t	［Ignore］：Ignore ［Freewheel］：Detected fault management with freewheel stop ［Ramp stop］：Detected fault management with stop on ramp ［Fast stop］：Detected fault management with fast stop	YES	
$\square L L$	$\underline{94}$	［Overload fault mgt］	－	$\begin{aligned} & n \square \\ & Y E S \\ & \text { rחP } \\ & F S E \end{aligned}$	［Ignore］：Ignore ［Freewheel］：Detected fault management with freewheel stop ［Ramp stop］：Detected fault management with stop on ramp ［Fast stop］：Detected fault management with fast stop	YES	
$\square P L$	$\underline{94}$	［Output Phase Loss］	－	$\begin{aligned} & n \square \\ & \text { YES } \\ & \square H C \end{aligned}$	［No］：Function inactive ［Yes］：Tripping on $\square P F$ ［Output cut］：No tripping on［MOTOR PHASE LOSS］ （OPF），but output voltage is managed	YES	
ロPr	101	［Motor power］	\％	－	－	－	
ロヒr	102	［Motor torque］	\％	－	－	－	
P IL	$\begin{aligned} & \underline{36} \\ & \underline{81} \end{aligned}$	［PID correct．reverse］	－	$\begin{aligned} & n \square \\ & Y E S \end{aligned}$	［No］：Normal ［Yes］：Reverse	n 0	
P IF	81	［PID feedback ass．］	－	$\begin{array}{ll} n & \square \\ A & 1 \end{array}$	［No］：Not assigned ［AI1］：Analog input AI1 ［AI2］：Analog input AI2 ［AI3］：Analog input AI3	пロ	
P I I	$\underline{83}$	［Act．internal PID ref．］	－	$\begin{aligned} & n \square \\ & y E 5 \end{aligned}$	［ No ］：The reference for the Pl regulator is $F_{r} \quad I$ ，except for $U P d H$ and $U P d t$ ． ［Yes］：The reference for the PI regulator is provided internally via the $r P$ I parameter．	пロ	
Pre	81	［2 preset PID ref．］	－	$\rightarrow \square$ LII LI L 1 ヨ L 14 $L 15$ LIG ［dII ［dI己 ［dIヨ ［d 14 ［d 15	［No］：Not assigned ［LI1］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6 ［CD11］：Bit 11 of the control word from a communication network ［CD12］：Bit 12 of the control word from a communication network ［CD13］：Bit 13 of the control word from a communication network ［CD14］：Bit 14 of the control word from a communication network ［CD15］：Bit 15 of the control word from a communication network	n 0	

Code	Page	Name	Unit		Value／Possible function	Factory setting	Customer setting
Pr 4	82	［4 preset PID ref．］	－	חロ L 11 L I 2 L 1 ヨ L 14 L 15 LIG $\left[\begin{array}{ll}-1 & 1\end{array}\right]$ ［al己 ［d $1 \exists$ ［d 14 ［d 15	［No］：Not assigned ［LII］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6 ［CD11］：Bit 11 of the control word from a communication network ［CD12］：Bit 12 of the control word from a communication network ［CD13］：Bit 13 of the control word from a communication network ［CD14］：Bit 14 of the control word from a communication network ［CD15］：Bit 15 of the control word from a communication network	$\cdots \square$	
P516	74	［16 preset speeds］	－	$\rightarrow \square$ LI 1 LI L $1 \exists$ $L 14$ L 15 LIE $\left[\left.\begin{array}{l}d\end{array} \right\rvert\,\right.$ ［d 1 己 ［d $1 \exists$ ［d 14 ［a15	［No］：Not assigned ［LII］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6 ［CD11］：Bit 11 of the control word from a communication network ［CD12］：Bit 12 of the control word from a communication network ［CD13］：Bit 13 of the control word from a communication network ［CD14］：Bit 14 of the control word from a communication network ［CD15］：Bit 15 of the control word from a communication network	$n \square$	
P5 己	$\underline{73}$	［2 preset speeds］	－	$\rightarrow \square$ L 11 L ا己 L 1 ヨ L 14 L 15 L 16 ［d 11 ［d I 己 ［d1ヨ $\left[\begin{array}{ll}d & 14\end{array}\right]$ ［d 15	［No］：Not assigned ［LII］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6 ［CD11］：Bit 11 of the control word from a communication network ［CD12］：Bit 12 of the control word from a communication network ［CD13］：Bit 13 of the control word from a communication network ［CD14］：Bit 14 of the control word from a communication network ［CD15］：Bit 15 of the control word from a communication network	L 1 ヨ	
P54	$\underline{73}$	［4 preset speeds］	－	$\because \square$ L 11 L I 2 L1ヨ L 14 L 15 LIE ［all ［d I 己 ［d $1 \exists$ ［d 14 ［d 15	［No］：Not assigned ［LII］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6 ［CD11］：Bit 11 of the control word from a communication network ［CD12］：Bit 12 of the control word from a communication network ［CD13］：Bit 13 of the control word from a communication network ［CD14］：Bit 14 of the control word from a communication network ［CD15］：Bit 15 of the control word from a communication network	L 14	
P5日	$\underline{73}$	［8 preset speeds］	－	חロ L I I L ا 己 L 1 ヨ L 14 L 15 L 16 ［all ［d I己 ［d $1 \exists$ ［d 14 ［d 15	［No］：Not assigned ［LII］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6 ［CD11］：Bit 11 of the control word from a communication network ［CD12］：Bit 12 of the control word from a communication network ［CD13］：Bit 13 of the control word from a communication network ［CD14］：Bit 14 of the control word from a communication network ［CD15］：Bit 15 of the control word from a communication network	n 0	
P5t	61	［［Stop Key priority］］	－	$\begin{aligned} & n \square \\ & Y E S \end{aligned}$	［No］：Function inactive ［Yes］：STOP key priority	YE 5	

Index of parameter codes and customer settings

Code	Page	Name	Unit		Value／Possible function	Factory setting	Customer setting
r 1	$\underline{49}$	［R1 Assignment］	－	$\begin{aligned} & n \square \\ & F L E \\ & r U n \\ & F E A \\ & F L A \\ & C E A \\ & 5 r A \\ & E 5 A \\ & A P L \\ & L I \text { to } L I 6 \end{aligned}$	［No］：Not assigned ［No drive flt］：No drive detected fault ［Drv running］：Drive running ［Freq．Th．att．］：Frequency threshold reached ［HSP attain．］：High speed reached ［I attained］：Current threshold reached ［Freq．ref．att］：Frequency reference reached ［Th．mot．att．］：Motor thermal threshold reached ［4－20mA］：Loss of 4－20 mA signal ［LI1］to［LI6］：Returns the value of the selected logic input	FLE	
$r 2$	$\underline{49}$	［R2 Assignment］		$\begin{aligned} & n \square \\ & F L E \\ & r U n \\ & F E A \\ & F L A \\ & C E A \\ & 5 r A \\ & E 5 A \\ & \text { GLC } \\ & A P L \\ & L I I \text { to } L I G \end{aligned}$	［No］：Not assigned ［No drive flt］：No drive detected fault ［Drv running］：Drive running ［Freq．Th．att．］：Frequency threshold reached ［HSP attain．］：High speed reached ［I attained］：Current threshold reached ［Freq．ref．att］：Frequency reference reached ［Th．mot．att．］：Motor thermal threshold reached ［Brk control］：Brake sequence ［ $4-20 \mathrm{~mA}$ ］：Loss of $4-20 \mathrm{~mA}$ signal ［LI1］to［LI6］：Returns the value of the selected logic input	$\cdots \square$	
r F［	$\underline{59}$	［Ref． 2 switching］	－	$\begin{array}{llll} \hline F & r & 1 \\ F & r & 2 \\ L & 1 & 1 \\ L & 1 & 2 \\ L & 1 & 3 \\ L & 1 & 4 \\ L & 1 & 5 \\ L & 1 & 6 \\ C & 1 & 1 & 1 \\ C & 1 & 1 & 2 \\ C & 1 & 1 & 3 \\ C & 1 & 1 & 4 \\ C & 1 & 1 & 5 \\ {[} & 2 & 1 & 1 \\ {[} & 2 & 1 & 2 \\ C & 2 & 1 & \exists \\ C & 2 & 1 & 4 \\ {[} & 2 & 1 & 5 \end{array}$	［ch1 active］：Reference 1 ［ch2 active］：Reference 2 ［LI1］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6 ［C111］：Bit 11 of Modbus control word ［C112］：Bit 12 of Modbus control word ［C113］：Bit 13 of Modbus control word ［C114］：Bit 14 of Modbus control word ［C115］：Bit 15 of Modbus control word ［C211］：Bit 11 of network control word ［C212］：Bit 12 of network control word ［C213］：Bit 13 of network control word ［C214］：Bit 14 of network control word ［C215］：Bit 15 of network control word	Fr 1	
r Fr	101	［Output frequency］	Hz	$-5 \square \square$ to＋5 प	－	－	
－IL	$\begin{aligned} & \underline{36} \\ & \underline{81} \end{aligned}$	［PID integral gain］	－	D．$\square 1$ to I	－	1	
rロt	61	［Rotating direction］	－	$d F_{r}$ dr 5 bロt	［Forward］：Forward ［Reverse］：Reverse ［Both］：Both directions are authorized．	d Fr	
r P	$\underline{97}$	［Product reset］	－	$\begin{aligned} & n \square \\ & y \in S \end{aligned}$	［No］：No ［Yes］：Yes	$\cdots \square$	
rP己	$\frac{36}{82}$	［Preset ref．PID 2］	\％	\square to 100	－	$\exists \square$	
rPヨ	$\frac{36}{82}$	［Preset ref．PID 3］	\％	\square to IDロ	－	Eロ	
rP4	$\underline{\underline{36}}$	［Preset ref．PID 4］	\％	\square to 100	－	90	
rPL	$\underline{36}$	［PID prop．gain］	－	D．$\square 1$ to $10 \square$	－	1	
r P I	$\begin{aligned} & \frac{32}{83} \\ & \underline{101} \\ & \hline \end{aligned}$	［Internal PID ref．］	\％	\square to 100	－	\square	
$r P r r_{r}$	$\underline{97}$	［Operating t．reset］	－	$\begin{aligned} & n \square \\ & r t H \end{aligned}$	［No］：No ［rst．runtime］：Operating time reset to zero	$\cdots \square$	

Index of parameter codes and customer settings

Code	Page	Name	Unit		Value／Possible function	Factory setting	Customer setting
rP5	64	［Ramp switch ass．］	－	n \square L 1 I L ا 己 L 1 ヨ L 14 L 15 LI6 ［d I I CdI己 ［d1ヨ ［d 14 ［d 15	［No］：Not assigned ［LI1］：Logic input LII ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6 ［CD11］：Bit 11 of the control word from a communication network ［CD12］：Bit 12 of the control word from a communication network ［CD13］：Bit 13 of the control word from a communication network ［CD14］：Bit 14 of the control word from a communication network ［CD15］：Bit 15 of the control word from a communication network	$\cdots \square$	
rPt	62	［Ramp type］	－	$\begin{aligned} & L \ln \\ & 5 \\ & U \\ & L U 5 \end{aligned}$	［Linear］：Linear ［S ramp］：S ramp ［U ramp］：U ramp ［Customized］：Customized	L In	
r r 5	48	［Reverse assign．］	－	$\begin{array}{lll} n & \square \\ L & 1 & 1 \\ L & I & Z \\ L & 1 & 3 \\ L & 1 & 4 \\ L & 1 & 5 \\ L & 1 & 6 \end{array}$	［No］：Not assigned ［LI1］：Logic input LII ［LI2］：Logic input LI2 can be accessed if $t[[=$ ㄹ․ ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6	L I 己	
r $5[$	42	［Cold stator resist．］	－	$\begin{aligned} & n \square \\ & \ln \operatorname{lt} \\ & \text { 日日早 } \end{aligned}$	［NO］：Function inactive ［Init］：Activates the function Value of cold state stator resistance used	$\cdots \square$	
r 5F	$\underline{92}$	［Fault reset］	－	$\begin{array}{lll} \hline n & \square \\ L & 1 & 1 \\ L & I & 2 \\ L & 1 & 3 \\ L & 1 & 4 \\ L & 1 & 5 \\ L & I & 6 \end{array}$	［No］：Not assigned ［LII］：Logic input LI1 ［LI2］：Logic input LI2 ［LI3］：Logic input LI3 ［LI4］：Logic input LI4 ［LI5］：Logic input LI5 ［LI6］：Logic input LI6	n 0	
r 5L	$\begin{aligned} & \frac{38}{83} \\ & \underline{83} \end{aligned}$	［PID wake up thresh．］	\％	$\begin{gathered} \square \\ \text { to } 10 \square \end{gathered}$	－	\square	
$r t H$	102	［Run time］	Time	－	－	－	
5 ㄹ	71	［Summing ref．2］	－	กロ A 1 I － 12 －1 ヨ A IU I L［［ П』b nEt	［No］：Not assigned ［AI1］：Analog input AI1 ［AI2］：Analog input AI2 ［AI3］：Analog input Al3 ［Network AI］：Jog dial ［HMI］：Reference via the remote display terminal ［Modbus］：Reference via Modbus ［Network］：Reference via network	（12	
5 ค 3	$\underline{71}$	［Summing ref．3］	－	n ロ A 11 － 1 己 －1 ヨ A IU I L［［ П』b nEt	［No］：Not assigned ［AI1］：Analog input AI1 ［AI2］：Analog input AI2 ［AI3］：Analog input Al3 ［Network AI］：Jog dial ［HMI］：Reference via the remote display terminal ［Modbus］：Reference via Modbus ［Network］：Reference via network	n 0	
$5[5$	$\begin{aligned} & \frac{45}{49} \\ & \frac{61}{90} \\ & \hline 1 \end{aligned}$	［Saving config．］	－	$\begin{aligned} & \text { nロ } \\ & 5 \operatorname{trl} \end{aligned}$	［No］：Function inactive ［Config 1］：Saves the current configuration to EEPROM	n \square	
5d［ 1	$\underline{\underline{35}}$	［Auto DC inj．level 1］	In	$\begin{array}{cc} \square \\ \text { to } 1.2 \end{array}$	－	D． 7	
$5 d[$ 己	$\frac{35}{70}$	［Auto DC inj．level 2］	In	$\begin{array}{cc} \square & \\ \text { to } \quad 1 . & 2 \end{array}$	－	D． 5	
$5 d 5$	40	［Scale factor display］	－	$\begin{aligned} & \text { D. } 1 \\ & \text { to } 2 \square \square \end{aligned}$	－	$\exists \square$	

Index of parameter codes and customer settings

Code	Page	Name	Unit		Value／Possible function	Factory setting	Customer setting
5 Fr	$\begin{aligned} & \underline{40} \\ & \hline 44 \end{aligned}$	［Switching freq．］	kHz	2．\square to 16	－	4	
SLL	$\underline{95}$	［Modbus fault mgt］	－	$\begin{aligned} & n \square \\ & y E 5 \\ & \text { r } \Pi P \\ & \text { FSt } \end{aligned}$	［Ignore］：Ignore ［Freewheel］：Detected fault management with freewheel stop． ［Ramp stop］：Detected fault management with stop on ramp ［Fast stop］：Detected fault management with fast stop	YES	
$5 L P$	34	［Slip compensation］	\％	\square to 150	－	100	
5LPを	$\begin{aligned} & \frac{39}{88} \\ & \underline{88} \end{aligned}$	［Slip compensation 2］	\％	－to 150	－	100	
5 P10	$\begin{aligned} & \frac{37}{\underline{74}} \end{aligned}$	［Preset speed 10］	Hz	\square to $5 \square \square$	－	50	
5 P I I	$\begin{aligned} & \frac{37}{\underline{75}} \\ & \hline \end{aligned}$	［Preset speed 11］	Hz	\square to 5 ¢	－	55	
5P12	$\begin{aligned} & \frac{37}{\underline{75}} \\ & \hline \end{aligned}$	［Preset speed 12］	Hz	\square to $5 \square \square$	－	$6 \square$	
5 Р1ヨ	$\frac{37}{\underline{75}}$	［Preset speed 13］	Hz	\square to 5 ¢	－	70	
5×14	$\frac{37}{75}$	［Preset speed 14］	Hz	\square to $5 \square \square$	－	日	
5 P15	$\begin{aligned} & \frac{37}{75} \\ & \hline \end{aligned}$	［Preset speed 15］	Hz	\square to $5 \square \square$	－	90	
5 P 16	$\frac{37}{\underline{75}}$	［Preset speed 16］	Hz	\square to $5 \square \square$	－	100	
$5 P 3$	$\begin{aligned} & \frac{36}{74} \\ & \hline \end{aligned}$	［Preset speed 2］	Hz	\square to 5 ロロ	－	10	
5 Рヨ	$\begin{aligned} & \frac{37}{74} \\ & \hline \end{aligned}$	［Preset speed 3］	Hz	\square to 5 ¢	－	15	
$5 P 4$	$\frac{37}{\underline{74}}$	［Preset speed 4］	Hz	\square to $5 \square \square$	－	20	
$5 P 5$	$\begin{aligned} & \frac{37}{74} \\ & \hline \end{aligned}$	［Preset speed 5］	Hz	\square to 5 ロ	－	25	
$5 P 6$	$\frac{37}{\underline{74}}$	［Preset speed 6］	Hz	\square to $50 \square$	－	$\exists \square$	
5×7	$\begin{aligned} & \frac{37}{74} \\ & \hline \end{aligned}$	［Preset speed 7］	Hz	\square to 5 ロ	－	$\exists 5$	
5 P日	$\begin{aligned} & \frac{37}{\underline{74}} \\ & \hline \end{aligned}$	［Preset speed 8］	Hz	\square to $5 \square \square$	－	40	
$5 P 9$	$\begin{aligned} & \frac{37}{\underline{74}} \end{aligned}$	［Preset speed 9］	Hz	\square to 5 ロ	－	45	
5Pd 1	$\underline{101}$	［Cust．output value］	－	－	－	－	
5 Pdz	101	［Cust．output value］	－	－	－	－	
$5 P d \exists$	$\underline{101}$	［Cust．output value］	－	－	－	－	
5 r F	44	［Speed loop filter］	－	$\begin{aligned} & \hline \pi \square \\ & y E 5 \end{aligned}$	［No］：Filter remains active ［Yes］：Filter suppressed	$\square \square$	
5t A	34	［Fr．Loop．Stab］	\％	Ito 100	－	$2 \square$	
5ヒヵコ	$\begin{aligned} & \underline{39} \\ & \underline{88} \end{aligned}$	［Freq．loop stability 2］	\％	\square to 100	－	$2 \square$	

Index of parameter codes and customer settings

Code	Page	Name	Unit		Value／Possible function	Factory setting	Customer setting
$5 E P$	$\underline{96}$	［UnderV．prevention］	－	$\begin{aligned} & \text { nロ } \\ & \Pi \Pi 5 \\ & \text { rחP } \\ & \text { FSt } \end{aligned}$	［No］：Locking of the drive and freewheel stopping of the motor ［DC Maintain］：Stop mode using inertia to maintain the drive power supply as long as possible ［Ramp stop］：Stop according to the valid ramp ［Fast stop］：Fast stop	$n \square$	
5 tr	78	［Reference saved］	－	$\begin{aligned} & n \square \\ & r A \Pi \\ & E E P \end{aligned}$	［No］：No saving ［RAM］：Saving in RAM ［EEprom］：Saving in EEPROM	n 0	
5 ¢	66	［Type of stop］	－	$\begin{aligned} & \text { r MP } \\ & \text { F5t } \\ & \text { n5t } \\ & \text { d } 1 \end{aligned}$	［Ramp stop］：On ramp ［Fast stop］：Fast stop ［Freewheel］：Freewheel stop ［DC injection］：DC injection stop	г П P	
E 81	$\frac{33}{\underline{63}}$	［Begin Acc round］	\％	\square to $1 \square \square$	－	10	
ヒ 月 己	$\begin{aligned} & \underline{33} \\ & \underline{63} \end{aligned}$	［End Acc round］	\％	$\begin{aligned} & \square \text { to } \\ & \text { (Iロロ-ヒ A }) \end{aligned}$	－	10	
ヒ 月 ヨ	$\underline{\underline{33}}$	［Begin Dec round］	\％	\square to IVロ	－	10	
t 84	$\frac{33}{63}$	［End Dec round］	\％	$\begin{aligned} & \square \text { to } \\ & \text { (Iロロ-ヒ A } 3 \text {) } \end{aligned}$	－	10	
thr	92	［Max．restart time］	－	$\begin{aligned} & 5 \\ & 10 \\ & \exists 0 \\ & 1 h \\ & 2 h \\ & \exists h \\ & C t \end{aligned}$	［5 minutes］： 5 minutes ［10 minutes］： 10 minutes ［30 minutes］： 30 minutes ［1 hour］： 1 hour ［2 hours］： 2 hours ［3 hours］： 3 hours ［Unlimited］：Unlimited	5	
tbr	$\underline{98}$	［Modbus baud rate］	bps	4．$日$ 9．\square 19．ᄅ	［4．8 Kbps］：4，800 bits／second ［9．6 Kbps］： 9600 bits／second ［19．2 Kbps］：19，200 bits／second	19．ᄅ	
$\pm[$［	$\frac{30}{\underline{47}}$	［2／3 wire control］	－	$\begin{aligned} & \text { ㄹ[} \\ & \exists \Sigma \\ & \operatorname{LBL} \end{aligned}$	［2 wire］：2－wire control ［3 wire］：3－wire control ［Local］：Local control（drive RUN／STOP／RESET）	2［	
$t[t$	$\underline{47}$	［2 wire type］	－	LEL trn PFI	［Level］：State 0 or 1 ［Transition］：Change of state（transition or edge） ［Fwd priority］：State 0 or 1，＂forward＂input takes priority over the＂reverse＂input	trn	
$t d[$	$\begin{aligned} & \underline{34} \\ & \underline{68} \end{aligned}$	［DC injection time 2］	s	D．I to $\exists \square$	－	D． 5	
td［ 1	$\begin{aligned} & \underline{34} \\ & \underline{69} \end{aligned}$	［Auto DC inj．time 1］	s	ロ．I to $\exists \begin{aligned} & \text { a }\end{aligned}$	－	D． 5	
$t d[2$	$\frac{35}{70}$	［Auto DC inj．time 2］	s	\square to $\exists \square$	－	\square	
EFO	98	［Modbus format］	－		［8－O－1］： 8 data bits，odd parity， 1 stop bit ［8－E－1］： 8 data bits，even parity， 1 stop bit ［8－N－1］： 8 data bits，no parity， 1 stop bit ［8－N－2］： 8 data bits，no parity， 2 stop bits	日E 1	
$t F_{r}$	44	［Max frequency］	Hz	10 to $5 \square \square$	－	ED	
EHd	101	［Drv．Therm att．］	－	－	－	－	
t Hr	101	［Motor thermal state］	－	－	－	－	
ELS	38	［Low speed time out］	s	\square to 999． 9	－	\square	

Index of parameter codes and customer settings

Code	Page	Name	Unit	Value／Possible function		Factory setting	Customer setting
$t \cap L$	95	［Autotune fault mgt］	－	$\begin{aligned} & n \square \\ & Y E 5 \end{aligned}$	［No］：Ignore ［Yes］：Detected fault management with drive locked	YES	
tヒd	39	［Motor therm．level］	\％	I to 11日	－	Iロロ	
$t \in \square$	98	［Modbus time out］	s	ロ．I to $\exists \square$	－	10	
ヒUn	43	［Auto tuning］	－		［No］：Auto－tuning not performed ［Yes］：Auto－tuning performed as soon as possible ［Done］：Use of the values given the last time auto－tuning was performed ［Drv running］：Auto－tuning performed every time a run command is sent ［Power on］：Auto－tuning performed on every power－up ［LI1］to［LI6］：Auto－tuning performed on the transition from $0 \rightarrow 1$ of a logic input assigned to this function	n \square	
t 45	$\begin{aligned} & \underline{43} \\ & \underline{103} \end{aligned}$	［Auto tuning state］	－	ヒ 月 PEnd Prou FRIL $d \square \cap E$ 5trd	［Not done］：Default stator resistance value used to control the motor ［Pending］：Auto－tuning requested but not yet performed ［In progress］：Auto－tuning in progress ［Failed］：Auto－tuning failed ［Done］：Stator resistance measured by the auto－tuning function used to control the motor ［Entered R1］：Cold state stator resistance used to control the motor	ヒR	
$U d P$	$\underline{103}$	［Drv．Soft．Ver］	－	－	－	－	
$U F_{r}$	33	［IR compensation］	\％	\square to 100	－	20	
UFre	$\frac{39}{\underline{88}}$	［IR compensation 2］	\％	\square to 100	－	$2 \square$	
$\triangle F E$	$\underline{44}$	［U／F mot 1 selected］	－	$\begin{aligned} & L \\ & P \\ & n \\ & n L d \end{aligned}$	［Cst．torque］：Constant torque ［Var．torque］：Variable torque ［SVC］：Flux vector control ［Energy sav．］：Energy saving	n	
UFE己	88	［U／F mot． 2 selected］	－	$\begin{aligned} & L \\ & P \\ & n \\ & n L d \end{aligned}$	［Cst．torque］：Constant torque ［Var．torque］：Variable torque ［SVC］：Flux vector control ［Energy sav．］：Energy saving	n	
$U L \square$	101	［Mains voltage］	V	－	－	－	
Un5	$\underline{41}$	［Rated motor volt．］	V	－	－	In accordance with the drive rating	
$U \cap 52$	87	［Nom．mot． 2 volt．］	V	－	－	In accordance with the drive rating	

[^0]: These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and set from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

[^1]:

 The jog dial (ENT) needs to be pressed and held down (for 2 s) to change the assignment for this parameter.
 (1) [Saving config.] (SCS), [Macro configuration] (CFG), and [Restore config.] (FCS) can be accessed from several configuration menus, but they apply to all menus and parameters.

[^2]:

 These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and set from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

[^3]:

 These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

[^4]: \star These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and set from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

[^5]: ref－

[^6]: The jog dial (ENT) needs to be pressed and held down (for $2 s$) to change the assignment for this parameter.

