

AWS Certified Developer -
Associate Guide

Your one-stop solution to passing the AWS developer's
certification

Vipul Tankariya
Bhavin Parmar

BIRMINGHAM - MUMBAI

AWS Certified Developer - Associate Guide
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2017

Production reference: 2170118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78712-562-9

www.packtpub.com

http://www.packtpub.com

Credits

Authors
Vipul Tankariya
Bhavin Parmar

Copy Editors
Juliana Nair
Safis Editing

Reviewer
Gajanan Chandgadkar

Project Coordinator
Judie Jose

Commissioning Editor
Vijin Boricha

Proofreader
Safis Editing

Acquisition Editor
Heramb Bhavsar

Indexer
Aishwarya Gangawane

Content Development Editor
Abhishek Jadhav

Graphics
Kirk D'Penha

Technical Editor
Swathy Mohan

Production Coordinator
Aparna Bhagat

About the Author
Vipul Tankariya has very broad experience in cloud consulting, development, and training.
He has worked with a number of customers across the globe, solving real-life business
problems in terms of technology and strategy. He is also a public speaker at various AWS
events and meetups. He has not only extensively worked on AWS, but is also certified in
five AWS certifications:

AWS Certified DevOps Engineer – Professional
AWS Certified Solution Architect – Professional
AWS Certified Developer – Associate
AWS Certified Solution Architect – Associate
AWS Certified SysOps Administrator – Associate

This book combines his AWS experience of solving real-life business problems with his
hands-on development experience with various programming languages. Vipul is an
accomplished senior cloud consultant and technologist focused on strategic thought
leadership concentrated around next-generation cloud-based solutions with more than 21
years of experience.

He has been involved in conceptualizing, designing, and implementing large-scale cloud
solutions on a variety of public/private/hybrid clouds. He has also been instrumental in
setting up cloud migration strategies for customers, building enterprise-class cloud
solutions, Go-To market collateral, and AWS training, as well as cloud pre-sales activities.

Vipul has a wide range of experience working on DevOps, CI/CD, and automation at each
level of the delivery life cycle of products, solutions, and services on the cloud, as well as
on-premises.

Acknowledgments
There are many people in my personal and professional life who made me what I am today.
Though many of the names that I am going to mention in this book may not even know
what AWS is, without their support, I would not have even developed many of the basic
life skills, let alone the ability to write an AWS book.

First and foremost I would like to thank my father, who taught me how important it is to be
a good human being before being anything in life. I will always be indebted to my mother,
who taught me how to work hard and what strong willpower is. I would also like to
mention my wife, Priya; without her support this book would not have been possible. My
son, Arav, also deserves a special mention here, as I have spent some of his share of my
time on this book.

I would also like to thank my sisters, Asha and Bina, who taught me what compassion is. I
must thank my brother, Vijay, who has always protected me in every aspect of life.

I would also like to thank Badrinarayan Ramanujan, my friend, who has always motivated
me and helped me assess my real value. Very special thanks as well to Jaymin Jhala as I
don't think my IT career would have started without him.

I must thank my friend, Jay Punjani, my brother from another mother, who has taught me
to dream big and understand unspoken words. I would also like to thank Mr BSGK Shastry,
my Guru, who cultivated the professional approach in me.

I would also like to thank Mr. Ira Sheinwald, my friend and mentor, who showed
confidence in me and gave me a chance to work on my first AWS project. Heartfelt thanks
also goes to my friend, Shashikant Kuwar, along with Ira, as we have worked together to
solve many technical and strategic challenges on AWS.

I must show my gratitude to Mr. Vivek Raju, my friend and mentor in my AWS journey.
My AWS journey would not have been enriched without the support of Varun Dube and
Vikas Goel.

My heartfelt thanks also go to my friends Satyajit Das, Jhalak Modi, Appasaheb Bagali,
Ajaykumar Kakumanu, Pushpraj Singh, Chandrasekhar Singh, and Rakesh Sing, who have
been part of my AWS certification journey. Also, very special thanks to Gajanan
Chandgadkar, who has been with me in multiple counts for not only technically reviewing
this book, but also for being there in my AWS certification journey. We all worked together
for almost a year to get our five AWS certifications.

I would also like to thank Heramb Bhavsar, Abhishek Jadhav, Swathy Mohan, and the
entire team at Packt for making this book a reality.

Last but not least, I would like to thank my friend and co-author of this book, Bhavin
Parmar, who saw the dream of writing this book with me. If it was not for him, I would not
have taken this book as a project.

About the Author
Bhavin Parmar has very broad experience in cloud consulting, development, and training.
He actively participates in solving real-life business problems. Bhavin has not only
extensively worked on AWS, but he is also certified in AWS and Red Hat:

AWS Certified DevOps Engineer – Professional
AWS Certified Solution Architect – Professional
AWS Certified Developer – Associate
AWS Certified Solution Architect – Associate
AWS Certified SysOps Administrator – Associate
Red Hat Certified Architect

This book combines his AWS experience in solving real-life business problems with his
hands-on deployment and development experience. Bhavin is an accomplished technologist
and senior cloud consultant focused on strategic thought leadership concentrated around
next-generation cloud-based and DevOps solutions with more than 11 years of experience.

He has been involved in conceptualizing, designing, and implementing large-scale cloud
solutions on a variety of public/private/hybrid clouds. Bhavin has also been instrumental in
setting up cloud migration strategies for customers, building enterprise-class cloud
solutions, Go-To market collateral, and AWS training, as well as cloud pre-sales activities.

He has a wide range of experience of working at each level of the delivery life cycle of
products, solutions, and services on the cloud as well as on-premises.

About the Reviewer
Gajanan Chandgadkar has more than 12 years of IT experience. He has spent more than 6
years in the USA, helping large enterprises architect, migrate, and deploy applications in
AWS. He's been running production workloads on AWS for over 6 years. He is an AWS
certified solutions architect professional and a certified DevOps professional with more
than seven certifications in trending technologies. Gajanan is also a technology enthusiast
who has extensive interest and experience in different topics, such as application
development, container technology, and continuous delivery.

Currently, he is working with Happiest Minds Technologies as an Associate DevOps
Architect. He has worked with Wipro Technologies Corporation in the past.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1787125629.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787125629

I would like to dedicate this book to my parents, friends, and knowledge.

-Bhavin Parmar

Table of Contents
Preface 1

Chapter 1: AWS Certified Developer – Associate Certification 6

Domain 1.0 – AWS fundamentals 7
Domain 2.0 – Designing and developing 8
Domain 3.0 – Deployment and security 8
Domain 4.0 – Debugging 8
Frequently asked questions about the exam 9

Chapter 2: Introduction to Cloud Computing and AWS 12

History of the cloud 15
Evolution of cloud computing 16

Basic AWS concepts 17
Benefits of using AWS over a traditional data center 19
Accessing AWS services 20
AWS overview 20

AWS global infrastructure 21
Regions and AZs 21

What are SaaS, PaaS, and IaaS? 23
Understanding virtualization 24

Virtualization types based on virtualization software 25
Virtualization types based on virtualization methods 26

Elasticity versus scalability 27
Traditional data center resourcing 28
Cloud infrastructure resourcing 28

Comparing AWS cloud and on-premise data centers 29
Total Cost of Ownership (TCO) versus Return on Investment (ROI) 30
Creating a new AWS account 31
Deleting an AWS account 37
AWS free tier 37
Root user versus non-root user 38
AWS dashboard 39

Components of the AWS dashboard 40
Core AWS services 41
Shared security responsibility model 47

Table of Contents

[ii]

AWS soft limits 50
Disaster recovery with AWS 51

Backup and restore 53
Pilot light 54
Warm standby 57
Multi-site 58

Chapter 3: Identity and Access Management 61

Understanding the AWS root user 62
Elements of IAM 62

Users 63
Access key and secret key 65
Password policy 65
Multi-factor authentication (MFA) 67

Security token-based MFA 67
Steps for enabling a virtual MFA device for a user 68

SMS text message-based MFA 73
Creating an AWS IAM user using the AWS dashboard 73

Introduction to AWS CLI 77
Installing AWS CLI 77
Getting a AWS user access key and secret key 78
Configuring AWS CLI 78
AWS CLI syntax 79

Getting AWS CLI help 79
Creating an IAM user using AWS CLI 79

Groups 80
Creating a new IAM group 82
Creating an IAM group using CLI 82
Adding existing users to a group 83

IAM role 83
Creating roles for an AWS service 85
Creating IAM roles using AWS CLI 89

Policy 89
Managed policies 90
Inline policies 90
Resource-based policies 90

Example of a resource-based policy 93
IAM policy simulator 94
Active Directory Federation Service (ADFS) 94
Integration between ADFS and the AWS console 95
Web identity federation 96

Table of Contents

[iii]

STS 99
AWS STS and AWS regions 100
Using temporary credentials in Amazon EC2 instances 100
Using temporary security credentials with the AWS SDKs 101

IAM best practices 101
Exam tips 103

Chapter 4: Virtual Private Clouds 105

AWS VPCs 106
Subnets 109

Private subnets 109
Public subnets 110

IP addressing 111
Private IPs 111
Public IPs 112
Elastic IP addresses 114

Creating a VPC 115
VPCs with a single public subnet 116
VPCs with private and public subnets 122
VPCs with public and private subnets and hardware VPN access 125
VPCs with private subnet only and hardware VPN access 128

Security 131
Security groups 132
NACLs 134
Security groups versus NACLs 135
Flow logs 135
Controlling access 137

VPC networking components 138
ENI 139
Route tables 139
IGWs 141
Egress-only IGWs 143

NATs 143
Comparison of NAT instances and NAT gateways 146

DHCP option sets 147
DNS 148

VPC peering 149
VPC endpoints 150
ClassicLink 152

Table of Contents

[iv]

VPC best practices 152

Chapter 5: Getting Started with Elastic Compute Cloud 155

Introduction to EC2 155
Pricing for EC2 157

Per-second billing for EC2 instances and EBS volumes 160
EC2 instance life cycle 161

Instance launch 161
Instance stop and start 161
Instance reboot 162
Instance retirement 163
Instance termination 163

AMIs 163
Root device types 165
EC2 instance virtualization types 166

Creating an EC2 instance 166
Changing the EC2 instance type 173
Connecting to the EC2 instance 174

Connecting to a Linux EC2 instance from a Microsoft Windows system 175
Connecting to an EC2 instance using a PuTTY session 177

Troubleshooting SSH connection issues 179
EC2 instance metadata and user data 180
Placement group 182

Introducing EBS 183
Types of EBS 183

General Purpose SSD (gp2) 184
Provisioned IOPS SSD (io1) 184
Throughput Optimized HDD (st1) 185
Cold HDD (sc1) 185

Encrypted EBS 186
Monitoring EBS volumes with CloudWatch 187
Snapshots 187
EBS optimized EC2 instances 190

EC2 best practices 190

Chapter 6: Handling Application Traffic with Elastic Load Balancing 192

Introduction to the Elastic Load Balancer 192
Benefits of using an ELB 193
Types of ELB 194

Classic Load Balancer 194
Application Load Balancer 194

Features of an ELB 194
Step by step – creating a Classic Load Balancer 199

Table of Contents

[v]

How an ELB works 206
The working of a Classic Load Balancer 206
The working of an Application Load Balancer 208

ELB best practices 211

Chapter 7: Monitoring with CloudWatch 212

How Amazon CloudWatch works 213
Elements of Amazon CloudWatch 214

Namespaces 214
Metrics 215
Dimensions 216
Statistics 217
Percentile 218
Alarms 219

Creating a CloudWatch alarm 219
Billing alerts 226

CloudWatch dashboards 228
Monitoring types – basic and detailed 228
CloudWatch best practices 230

Chapter 8: Simple Storage Service, Glacier, and CloudFront 232

Amazon S3 234
Creating a bucket 238

Bucket restriction and limitations 244
Bucket access control 244
Bucket policy 245
User policies 246

Transfer Acceleration 248
Enabling Transfer Acceleration 248

Requester Pay model 249
Enabling Requestor Pays on a bucket 250

Understanding objects 250
Object keys 252

Object key naming guide 252
Object metadata 254

System-metadata 255
User-defined metadata 256

Versioning 257
Enabling versioning on a bucket 258

Object tagging 259
S3 storage classes 260

Table of Contents

[vi]

S3 Standard storage 260
S3-IA storage 261
S3 RRS 262
Glacier 262

Comparison of S3 storage classes and Glacier 263
Life cycle management 264

Life cycle configuration use cases 264
Defining life cycle policy for a bucket 265

Hosting a static website on S3 270
Cross-Origin Resource Sharing (CORS) 272

Using CORS in different scenarios 273
Configuring CORS on a bucket 274
CORS configuration example XML 274

Enabling CORS on a bucket 275
Cross-region replication 276

Enabling cross-region replication 277

Chapter 9: Other AWS Storage Options 280

Amazon EFS 285
AWS Storage Gateway 287

File gateways 288
Volume gateways 289

Gateway–cached volumes 289
Gateway–stored volumes 291

Tape-based storage solutions 292
VTL 293

AWS Snowball 295
AWS Snowmobile 297

Chapter 10: AWS Relational Database Services 298

Amazon RDS components 299
DB instances 299
Region and AZs 300
Security groups 300
DB parameter groups 301
DB option groups 301

RDS engine types 301
Amazon Aurora DB 302

Comparison of Amazon RDS Aurora with Amazon RDS MySQL 305
MariaDB 306
Microsoft SQL Server 307

Table of Contents

[vii]

MySQL 308
Oracle 309
PostgreSQL 310

Creating an Amazon RDS MySQL DB instance 311
Monitoring RDS instances 318
Creating a snapshot 319
Restoring a DB from a snapshot 321
Changing an RDS instance type 321
Amazon RDS and VPC 323

Amazon RDS and high availability 323
Connecting to an Amazon RDS DB instance 324

Connecting to an Amazon Aurora DB cluster 325
Connecting to a MariaDB instance 325
Connecting to a MySQL instance 326
Connecting to an Oracle instance 326

RDS best practices 327

Chapter 11: AWS DynamoDB - A NoSQL Database Service 328

Let's first understand what an RDBMS is 328
What is SQL? 329
What is NoSQL? 330

Key-value pair databases 330
Document databases 331
Graph databases 331
Wide column databases 332
When to use NoSQL databases? 333

SQL versus NoSQL 333
Introducing DynamoDB 334

DynamoDB components 335
Primary key 336
Secondary indexes 337
DynamoDB Streams 338
Read consistency model 340

Eventually consistent reads 340
Strong consistent reads 340

Naming rules and data types 341
Naming rules 341
Data types 342

Scalar data types 342
Document types 343
Set types 345

Table of Contents

[viii]

Creating a DynamoDB table – basic steps 345
Adding a sort key while creating a DynamoDB table 347
Using advanced settings while creating a DynamoDB table 347
Creating secondary indexes – table settings 349
Provisioned capacity – table settings 350
Auto Scaling – table settings 350

Methods of accessing DynamoDB 352
DynamoDB console 352
DynamoDB CLI 353
Working with API 355
DynamoDB provisioned throughput 356

Read capacity units 356
Write capacity units 356

Calculating table throughput 356
DynamoDB partitions and data distribution 359
Data distribution – partition key 359
Data Distribution – partition key and sort key 361
DynamoDB global and LSI 362

The difference between GSI and LSI 363
DynamoDB query 364
Query with AWS CLI 366
DynamoDB Scan 368
Reading an item from a DynamoDB table 368
Writing an item to a DynamoDB table 369

PutItem 370
UpdateItem 370
DeleteItem 371
Conditional writes 371

User authentication and access control 375
Managing policies 376
DynamoDB API permissions 378

DynamoDB best practices 380

Chapter 12: Amazon Simple Queue Service 381

Why use SQS? 382
How do queues work? 384
Main features of SQS 385
Types of queues 386
Dead Letter Queue (DLQ) 387
Queue attributes 387
Creating a queue 389
Sending a message in a queue 393
Viewing/deleting a message from a queue 396
Purging a queue 398

Table of Contents

[ix]

Deleting a queue 400
Subscribing a queue to a topic 401
Adding user permissions to a queue 403
SQS limits 405
Queue monitoring and logging 407

CloudWatch metrics available for SQS 407
Logging SQS API actions 409

SQS security 410
Authentication 410

SSE 410

Chapter 13: Simple Notification Service 411

Introduction to Amazon SNS 412
Amazon SNS fanout 413

Application and system alerts 414
Mobile device push notifications 414
Push email and text messaging 415

Creating an Amazon SNS topic 415
Subscribing to an SNS topic 418
Publishing a message to an SNS topic 420
Deleting an SNS topic 424
Managing access to Amazon SNS topics 426

When to use access control 426
Key concepts 427
Architectural overview 429
Access request evaluation logic 430

Invoking the Lambda function using SNS notification 432
Sending Amazon SNS messages to Amazon SQS queues 434
Monitoring SNS with CloudWatch 438
SNS best practices 441

Chapter 14: Simple Workflow Service 442

When to use Amazon SWF 442
Workflow 443

Example workflow 443
Workflow history 444

How workflow history helps 445
Actors 445

Workflow starter 446
Decider 447
Activity worker 447

Tasks 448

Table of Contents

[x]

SWF domains 448
Object identifiers 449
Task lists 449
Workflow execution closure 450

Lifecycle of workflow execution 451
Polling for tasks 454
SWF endpoints 454
Managing access with IAM 455

SWF – IAM policy examples 456

Chapter 15: AWS CloudFormation 458

What is a template? 459
What is a stack? 460

Template structure 463
AWSTemplateFormatVersion 464
Description 464
Metadata 465
Parameters 466

AWS-specific parameters 467
Mappings 477
Conditions 480
Transform 483
Resources 483
Outputs 485

Sample CloudFormation template 487
CloudFormer 488
Rolling updates for Auto Scaling groups 488

CloudFormation best practices 488

Chapter 16: Elastic Beanstalk 490

Elastic Beanstalk components 491
Architectural concepts 492

Web server environment tier 493
Worker environment tiers 495
Elastic Beanstalk-supported platforms 496
Creating a web application source bundle 497

Getting started using Elastic Beanstalk 497
Step 1 – signing in to the AWS account 497
Step 2 – creating an application 498
Step 3 – viewing information about the recently created environment 504
Step 4 – deploying a new application version 506
Step 5 – changing the configuration 508

Table of Contents

[xi]

Step 6 – cleaning up 510
Version life cycle 510
Deploying web applications to Elastic Beanstalk environments 511
Monitoring the web application environment 513
Elastic Beanstalk best practices 514

Chapter 17: Overview of AWS Lambda 515

Introduction to AWS Lambda 516
What is a Lambda function? 516
Lambda function invocation types 518
Writing a Lambda function 518

Lambda function handler (Node.js) 519
Lambda function handler (Java) 520
Lambda function handler (Python) 521
Lambda function handler (C#) 522

Deploying a Lambda function 523
AWS Lambda function versioning and aliases 524

Environment variables 525
Tagging Lambda functions 525

Lambda function over VPC 526
Building applications with AWS Lambda 526

Event source mapping for AWS services 527
Event source mapping for AWS stream-based services 529
Event source mapping for custom applications 530
AWS Lambda best practices 531

Chapter 18: Mock Tests 533

Mock test 1 533
Mock test 2 544
Answers to Mock test 1 555
Answers to Mock test 2 555

Index 556

Preface
This book starts with a quick introduction to AWS and the prerequisites to get you started.
It gives you a fair understanding of core AWS services and the basic architecture. Next, you
get familiar with Identity and Access Management (IAM) along with Virtual Private Cloud
(VPC). Moving ahead, you will learn about Elastic Compute Cloud (EC2) and handling
application traffic with Elastic Load Balancing (ELB). We will also talk about Monitoring
with CloudWatch, Simple Storage Service (S3), Glacier, and CloudFront, along with other
AWS storage options. Next, we will take you through AWS DynamoDB – A NoSQL
Database Service, Amazon Simple Queue Service (SQS), and get an overview of
CloudFormation. Finally, you will learn about Elastic Beanstalk and go through an
overview of AWS lambda.

At the end of this book, we will cover enough topics, tips, and tricks, along with mock tests,
for you to be able to pass the AWS Certified Developer – Associate exam and deploy as well
as manage your applications on the AWS platform.

With the rapid adaptation of the cloud platform, the need for cloud certifications has also
increased. This is your one-stop solutions and will help you transform from zero to
certified. This guide will help you gain technical expertise in the AWS platform and help
you start working with various AWS services.

What this book covers
Chapter 1, AWS Certified Developer – Associate Certification, outlines the AWS Certified
Developer – Associate exam and highlights the critical aspects, knowledge area, and
services covered in the blueprint.

Chapter 2, Introduction to Cloud Computing and AWS, elaborates the fundamentals of AWS.
The chapter starts by giving you a basic understanding of what cloud is and takes you
through a brief journey of familiarizing yourself with the basic building blocks of AWS. It
highlights some of the critical aspects of how AWS works and provides an overview of the
AWS core infrastructure.

Chapter 3, Identity and Access Management, covers all critical aspects of IAM and provides
sufficient details to allow you to work with IAM.

Preface

[2]

Chapter 4, Virtual Private Cloud, explains how you can create a VPC and start building a
secure network with a number of the components of AWS networking services.

Chapter 5, Getting Started with Elastic Compute Cloud, describes what EC2 is and how you
can start provisioning servers with various Windows and Linux operating system flavors. It
also describes how to connect and work with these servers.

Chapter 6, Handling Application Traffic with Elastic Load Balancing, describes how to create an
ELB, how it works, and what the critical aspects of an ELB service are.

Chapter 7, Monitoring with CloudWatch, describes how you can use Amazon CloudWatch to
collect and track metrics, collect and monitor log files, set alarms, and automatically react to
changes in your AWS resources.

Chapter 8, Simple Storage Service, Glacier, and CloudFront, provides an understanding of
Amazon S3, Glacier, and CloudFront services, and takes you through CloudFront, a
Content Distribution Network (CDN) service.

Chapter 9, Other AWS Storage Options, touches upon AWS Storage Gateway, which is a
network appliance or a server residing on a customer's premises. It provides an overview of
AWS Snowball, which is a service that accelerates transferring large amounts of data into
and out of AWS using physical storage appliances. It also provides a basic understanding of
AWS Snowmobile, which is an Exabyte-scale data transfer service used to move extremely
large amounts of data to and from AWS.

Chapter 10, AWS Relation Database Services, provides an understanding of AWS Relation
Database Services (RDS). It explains different types of engine supported by AWS RDS and
how to efficiently and effectively create and manage RDS instances on AWS cloud.

Chapter 11, AWS DynamoDB – A NoSQL Database Service, describes various components of
DynamoDB with the best practices to manage it.

Chapter 12, Amazon Simple Queue Service, provides an understanding of what SQS is and
how to create and manage it with relevant examples.

Chapter 13, Simple Notification Service, talks about fully managed messaging service that
can be used to send messages, alarms, and notifications from various AWS services such as
Amazon RDS, CloudWatch, and S3, to other AWS services, such as SQS and Lambda.

Chapter 14, Simple Workflow Service, provides a basic understanding of SWF, its various
components, and how to use them.

Preface

[3]

Chapter 15, AWS CloudFormation, provides an overview of the AWS CloudFormation
service. CloudFormation templates provide a simpler and efficient way to manage your
resources on AWS cloud.

Chapter 16, Elastic Beanstalk, introduces Elastic Beanstalk and describes how to create and
manage applications using the service.

Chapter 17, Overview of AWS Lambda, provides an overview of Lambda and describes how
it runs code in response to events and how it automatically manages the compute resources
required by that code.

Chapter 18, Mock Tests, consists of two mock tests for you to test your knowledge. It tries to
cover all the topics from the scope of the exam and challenges your understanding of the
topics. Each mock test contains 50 questions. You should try to complete a mock test in 90
minutes.

What you need for this book
As the practical examples involve the use of AWS, an AWS account is required.

Who this book is for
This book is for IT professionals and developers looking to clear the AWS Certified
Developer – Associate 2017 exam. Developers looking to deploy and manage their
applications on the AWS platform will find this book useful too. No prior AWS experience
is needed.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "For
Amazon RDS MySQL DB instances, the default port is 3306."

A block of code is set as follows:

mysql -h <endpoit> -p 3306 -u <masteruser> -p

Preface

[4]

Any command-line input or output is written as follows:

 $ pip install --upgrade --user awscli

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Select IAM under Security,
Identity & Compliance group from the AWS dashboard."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply email feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https:/ / www. packtpub. com/ sites/ default/ files/
downloads/AWSCertifiedDeveloperAssociateGuide_ ColorImages. pdf.

http://www.packtpub.com/authors
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AWSCertifiedDeveloperAssociateGuide_ColorImages.pdf

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ /www. packtpub. com/ submit- errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https:/ /www. packtpub. com/
books/content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
AWS Certified Developer –

Associate Certification
First of all, congratulations on choosing this book and beginning your journey toward
earning AWS Certified Developer - Associate certification. As the saying goes, a good
beginning is half done. You have set a target and taken the first step toward the target. If you
follow the instructions in this book, it will certainly help you in completing the certification
exam.

As you begin, you may have a number of questions running through your mind. This
chapter covers a number of such questions that are frequently asked by beginners. To begin
with, let us understand how you should start preparing for the exam.

Amazon publishes an official blueprint for each certification exam. The blueprint elaborates
the scope of the exam, prerequisites for attending the exam, and the knowledge required to
successfully complete the exam. This blueprint may change from time to time and you
should look out for the latest copy of the blueprint for the exam from Amazon.

At the time of writing, the official blueprint for the AWS Certified
Developer - Associate exam is available at the URL: https:/ /d0.
awsstatic. com/ training- and- certification/ docs- dev-associate/ AWS_
certified_ developer_ associate_ blueprint. pdf.

https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_blueprint.pdf

AWS Certified Developer – Associate Certification Chapter 1

[7]

This chapter outlines the AWS Certified Developer - Associate exam and highlights critical
aspects, knowledge areas, and services covered in the blueprint.

Let's begin with understanding the scope of the exam. The exam scope is divided into four
domains as given in the following table with their respective weight in the exam:

Sr. No. Domain % Weightage in exam

1.0 AWS fundamentals 10%

2.0 Designing and developing 40%

3.0 Deployment and security 30%

4.0 Debugging 20%

Total 100%

The topics and the content covered in these domains as per the blueprint are given in the
following section.

Domain 1.0 – AWS fundamentals
Identify and recognize cloud architecture considerations, such as fundamental components
and effective designs. Content may include the following:

How to design cloud services
Database concepts
Planning and design
Familiarity with architectural trade-off decisions, high availability versus cost,
Amazon Relational Database Service (RDS) versus installing your own database
on Amazon Elastic Compute Cloud (EC2)
Amazon Simple Storage Service (S3), Amazon Simple Workflow Service
(SWF), and Messaging
DynamoDB, AWS Elastic Beanstalk, and AWS CloudFormation
Elasticity and scalability

AWS Certified Developer – Associate Certification Chapter 1

[8]

Domain 2.0 – Designing and developing
Identify the appropriate techniques to code a cloud solution. Content may include the
following:

Configuring an Amazon Machine Image (AMI)
Programming with AWS APIs

Domain 3.0 – Deployment and security
Recognize and implement secure procedures for optimum cloud deployment and
maintenance. Content may include the following:

Cloud security best practices

Demonstrate the ability to implement the right architecture for development, testing, and
staging environments. Content may include the following:

Shared security responsibility model
AWS platform compliance
AWS security attributes (customer workloads down to physical layer)
Security services
AWS Identity and Access Management (IAM)
Amazon Virtual Private Cloud (VPC)
CIA and AAA models, ingress versus egress filtering, and which AWS services
and features fit

Domain 4.0 – Debugging
Content may include the following:

General troubleshooting information and questions
Best practices in debugging

AWS Certified Developer – Associate Certification Chapter 1

[9]

If you haven't worked with Amazon Web Services (AWS) before and cannot understand
the topics given in the blueprint, do not worry. This book covers all these domains and each
of the blueprint topics in detail. These topics are very carefully elaborated in subsequent
chapters. Some of the frequently asked questions are covered in the following pages and
will answer most of the queries you may have about the exam and how to get started with
preparing for it.

Frequently asked questions about the exam
The following are the questions that are frequently asked:

Are there any prerequisites for AWS Certified Developer - Associate exam?

There are no prerequisites for getting started with AWS Certified Developer -
Associate exam preparation; however, it is recommended that the person
preparing for this exam have knowledge or training in at least one high-level
programming language.

What is the total duration of the exam?

A total of 80 minutes are given to you to complete the exam.

How many questions are asked in the exam?

The exam has around 55 questions that you need to complete in the given
time. As per our experience, this number may vary at times.

What types of questions are asked in the exam?

The exam asks multiple-choice questions. It gives a question with multiple
answers and you have to choose one or more right answers from the given
list of answers.

You can refer to the following link for officially published sample
questions:

https:/ /d0. awsstatic. com/training- and- certification/ docs- dev-
associate/ AWS_ certified_ developer_ associate_ examsample. pdf.

https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf
https://d0.awsstatic.com/training-and-certification/docs-dev-associate/AWS_certified_developer_associate_examsample.pdf

AWS Certified Developer – Associate Certification Chapter 1

[10]

We have also given mock tests for you to practice and test your knowledge
after you have finished reading the book.

Where can I register for the exam?

Amazon has joined with Kryterion for the certification exams. Kryterion
centers are spread across the globe. You can go to
https://www.webassessor.com and create an account if you do not already
have one, or log in with your existing account. After logging in to the site,
you can follow the exam registration process given on the site to register for
the exam in a Kryterion center near you.

How much does it cost to register for the exam?

There are two types of exam: practice and final. The associate level practice
exam costs $20 and the final exam costs $150.

How should I prepare for the exam?

You can refer to all the chapters in this book and follow all the tips and tricks
in the book to prepare for the exam. Also, go through the mock tests given at
the end of the book. You can also refer to some of the reference materials
pointed out in the reference section of the book to explore some topics in
greater depth.

What is the passing score for the exam?

AWS does not publish the passing score for the exam as it is set by statistical
analysis of the exam. This score is subject to change. Based on our experience,
this score currently hovers around 65% to 70%. If more candidates start
scoring higher marks, the statistical model may set the minimum marks to a
higher limit. Similarly, if more candidates start failing in the exam or scoring
lower marks, then minimum passing marks may change based on this
statistical data.

https://www.webassessor.com

AWS Certified Developer – Associate Certification Chapter 1

[11]

How should I answer the questions in the exam?

The exam poses scenario-based questions. There may be more than one right
answer, but you have to choose the most suitable answer out of the given
answers. We suggest use the elimination theory whenever you face
difficulties in answering a question. Start discarding wrong answers first.
When you start eliminating the wrong answers, you may automatically be
able to find the right answer as eliminated answers will reduce your
confusion. Also, do not spend more time on a question if you do not know
the answer to it. Instead, mark the question for review. The exam interface
keeps track of all the questions marked for review, and you can revisit them
before submitting the final exam.

2
Introduction to Cloud
Computing and AWS

Clouds, as we know from our childhood, are tiny droplets of frozen crystals of water that
are high in the sky hovering around our planet, Earth. What do these clouds do? They
provide a service to the residents of planet Earth. They bring us rain. Something (clouds) that
is somewhere (up in the sky) provides us with a service by bringing rain. This same concept
of something somewhere can be applied to understanding cloud computing.

Introduction to Cloud Computing and AWS Chapter 2

[13]

Let's understand how we can imagine the concept of something somewhere with respect to
cloud computing. In cloud computing, the something is IT services such as compute,
database, storage, network, security, and so on. These services are hosted somewhere at a
secured place (that is, a data center) and are accessible without us needing to worry and
even think about how they are configured and licensed. Thus, cloud computing is a host of
services that are hosted at a remote location instead of a local server or personal computer,
and they are remotely accessible to us.

Let's look at some simple examples of accessing cloud services:

Fill in a registration form and start using public email services (such as Gmail,
Hotmail, Yahoo, and so on). In this case, we start using a service; we don't worry
about how the mail services are configured, how the infrastructure is secured,
how the software is licensed, whether highly qualified staff are available to
maintain the infrastructure, and so on. We just start using email services by
providing a secure password.
Another example could be a mobile phone or electricity at home or the office. We
just buy a SIM card from a telecom provider or an electrical connection from a
local power company, and we don't worry about how the telecom network works
or how power is generated and reaches our place. We just use them and pay the
bills per month, but only for the services that we have actually consumed.

The AWS cloud can be imagined the same way as a public email, mobile network, or
electricity-providing company. AWS is a public cloud, where we can fill in a form and start
using the cloud services (that is, IT services). It can be used to host personal, commercial, or
enterprise-grade IT infrastructures. Various IT services (such as compute, database,
network, storage, NoSQL, and so on) can be used as building blocks to create the desired IT
infrastructure to match the business requirement and compliance needs of an enterprise.

Introduction to Cloud Computing and AWS Chapter 2

[14]

At a higher level, clouds are of three types:

Private cloud: A host of infrastructure, platform, and application services
(located in secured remote facilities and providing compute, platform, or other IT
services on-demand, accessible and controlled only by a single specific
organization) is called a private cloud. It is preferred by companies needing a
secure and dedicated data center or hosting space. Constant upgrades of staff
skills and the data center infrastructure are required. It is generally very costly
and time-consuming to maintain a private cloud.
Public cloud: A host of infrastructure, platform, and application services (located
in secure remote facilities and providing compute, platform, or other IT services
on-demand on a shared but isolated platform that is open and accessible to the
public for subscription) is called a public cloud. It is preferred by start-ups,
MNCs, government organizations, military, scientific, and pharmaceutical
companies intending to utilize on-demand cloud computing. Cloud computing
enables organizations to focus on their actual business rather than periodically
getting engaged in upgrading existing IT infrastructure to design cutting-edge
solutions to compete with their competitors in the market. In a public cloud, all
services are provided on a pay as you go model. Hence, it is easy and economical
to try various different architectures to test and finalize the optimum solution to
accelerate organizational growth. Another important characteristic of a public
cloud is having a virtually unlimited pool of resources as and when it is required
to expand IT infrastructure for short or long-term needs.
Hybrid cloud: Hybrid cloud is a cloud environment that uses a combination of
on-premise, private cloud, and public cloud services to fulfill organizational
needs. In this model, a private cloud can use a public cloud's resources to meet a
sudden spike in resource requirements. Since private data centers have limited
resources, these data centers are extended to a third-party service provider's
public cloud. Such hybrid models can be used for any reason, such as budgets,
unusual requirements, infrastructure constraints, or any organizational need.

Introduction to Cloud Computing and AWS Chapter 2

[15]

History of the cloud
The history of the evolution of the cloud is shown in the following figure:

Figure 2.1: Cloud evolution

Image source: https://mycloudblog7.wordpress.com/2015/05/29/the-evolution-to-cloud-computing-how-did-we-get-here

Introduction to Cloud Computing and AWS Chapter 2

[16]

Evolution of cloud computing
The following table describes how cloud computing has evolved over a period of time:

Year Event

1950 Mainframe, dumb terminals

1970 Virtual machines (VMs)

1990 Virtual Private Network (VPN)

1997 Cloud defined by Ramnath Chellappa

1999 www.salesforce.com

2000 Amazon's modernized data centers

2000 Google Docs service

2006 Launch of AWS Services

2008 Launch of Google app engine

2010 Launch of Microsoft Azure

The evolution of the cloud started in the 1950s and concepts such as service-oriented
architecture, virtualization, and autonomic and utility computing are the stepping stones of
today's cloud computing:

In the 1950s, mainframe computers were shared among various users through1.
dumb terminals to save costs and enable the efficient use of resources.
In the 1970s, VMs were developed to overcome the disadvantages of earlier2.
technologies. VMs enabled us to run more than one different operating system
simultaneously in isolated environments, providing all essential resources such
as CPU, disk, RAM, and NICs individually to all VMs.
In the 1990s, telecom companies started dedicated point-to-point data circuits3.
called VPN. These were offered at a fraction of the cost of the then available
technologies. This invention made it possible to utilize bandwidth optimally. A
VPN made it possible to provide shared access to the same physical
infrastructure to multiple users in shared but isolated environments.

https://www.salesforce.com

Introduction to Cloud Computing and AWS Chapter 2

[17]

In 1997, Professor Ramnath Chellappa defined cloud computing as follows:4.

"Computing paradigm where the boundaries of computing will be determined by economic
rationale rather than technical limits alone."

In 1999, https:/ / www. salesforce. com started delivering enterprise-level5.
application services over the internet. This was one of the major moves in cloud
history.
In the early 2000s, Amazon introduced web-based retail services on its6.
modernized data centers. While Amazon was hardly using 10% of its data center
capacity, they realized that new cloud computing infrastructure models could
make them more efficient and cost-effective.
In the late 2000s, Google introduced its docs services directly to end users. This7.
gave a taste of cloud computing and document sharing to end users.
In 2006, Amazon formally launched EC2 and S3. Subsequently, over the years,8.
Amazon released various cloud services under the name AWS.
In 2008, Google announced the launch of its app engine services as a beta service.9.
This was the beginning of Google Cloud services.
In 2010, Microsoft Azure was formally released, followed by a number of cloud10.
services in subsequent years.

Basic AWS concepts
AWS is a public cloud. It provides a range of IT services that can be used as building blocks
for creating cutting-edge, robust, and scalable enterprise-grade solutions. It can be used to
host everything from simple static websites to complex three-tier architectures, scientific
applications to modern ERPs, online training to live broadcasting events (that is, sports
events, political elections, and so on).

http://www.salesforce.com
http://www.salesforce.com
http://www.salesforce.com
http://www.salesforce.com
http://www.salesforce.com
http://www.salesforce.com
http://www.salesforce.com
http://www.salesforce.com
http://www.salesforce.com

Introduction to Cloud Computing and AWS Chapter 2

[18]

According to Gartner's Magic Quadrant, AWS is a leader in cloud IaaS (this term is
explained further on in this chapter). AWS is way ahead of its competitors after it pioneered
the cloud IaaS market in 2006:

Figure 2.2: Gartner's Magic Quadrant, rates various public cloud providers

Image source : https://www.gartner.com/doc/reprints?id=1-2G2O5FC&ct=150519

Introduction to Cloud Computing and AWS Chapter 2

[19]

The Magic Quadrant (MQ) is a series of market research reports published by Gartner, the
United States-based research and advisory firm. It aims to provide a qualitative analysis
into a market, its direction, maturity, and participants. Gartner's reports and MQs are
respected in industries worldwide.

Benefits of using AWS over a traditional data
center
The benefits of AWS are significant and are listed as follows:

Switch Capital Expenditure (CapEx) to Operational Expenditure (OpEx): No
need to bear the huge upfront cost of purchasing hardware or software and
making provision CapEx for these in the budget. With AWS, you pay only for
what services you use on a monthly basis as OpEx.
Cost benefit from massive economies of scale: Since AWS purchases everything
in bulk, it gives them a cost advantage. AWS passes on the benefit from this cost
advantage to their customers by offering the services at low cost. As the AWS
cloud becomes larger and larger, these massive economies of scale benefit AWS
as well as end customers.
No need to guess required infrastructure capacity: Most of the time, before
actual IT implementation, guessing the IT infrastructure requirement leads to
either scarcity of resources or a waste of resources when actual production
begins. AWS makes it possible to scale the environment up or down as needed
without guessing infrastructure needs.
Increased speed and agility: While building an on-premise data center,
businesses have to wait to get the desired hardware or software from vendors for
an extended period of time. With AWS, it becomes easier for the business to
quickly get started and provision the required infrastructure on AWS
immediately, without depending on third-party vendors. They need neither to
raise a purchase order nor wait for delivery; they just log in to their AWS account
and have everything at their disposal.
Global access: AWS has data centers and edge locations across the globe. Take
advantage and host your infrastructure near to your target market or at multiple
locations across the globe at a very nominal cost.

Introduction to Cloud Computing and AWS Chapter 2

[20]

Almost every IT need of an organization can be satisfied using AWS
services, but there are still a few limitations, such as mainframe
computing, which is not supported by AWS at the moment.

Accessing AWS services
Users can access AWS services in multiple ways. Individual services or the whole
infrastructure can be accessed using any of the following means:

AWS Management Console: This is a simple to use, browser-based graphical
user interface that customers can use to manage their AWS resources.
AWS Command Line Interface (CLI): Mostly used by system administrators to
perform day-to-day administration activities. There are individual sets of
commands available for each AWS service.
AWS Software Development Kits (SDKs): AWS helps the user take the
complexity out of coding by providing SDKs for a number of programming
languages including Android, iOS, Java, Python, PHP, .NET, Node.js, Go, Ruby,
and so on. These SDKs can be used to create custom applications to meet specific
organizational needs.
Query APIs: AWS provides a number of HTTP endpoints. These endpoints can
be used to send GET and PUT HTTP requests to AWS to obtain the present status
and information for various AWS resources.

Most of the AWS services can be accessed with all of the preceding means.
Yet some AWS services may not have one or two of the previously
mentioned access methods.

AWS overview
AWS provides a highly reliable, scalable, low-cost infrastructure platform in the cloud that
powers hundreds of thousands of businesses in 190 countries across the world. The
following portion of the chapter provides a high-level overview of the basic AWS concepts
that you should understand before you start working with AWS services.

Introduction to Cloud Computing and AWS Chapter 2

[21]

AWS global infrastructure
AWS services are available at multiple locations across the globe. AWS provides these
services with their infrastructure spread across the globe. The AWS infrastructure is
connected and isolated in the form of Regions, Availability Zones (AZs), and Edge
Locations based on geography. Let's understand some basic concepts of the AWS global
infrastructure.

Regions and AZs
Each region, as shown in the following screenshot, is a collection of at least two or more
AZs. Each region is independent and they are isolated from each other to keep each of them
safe from catastrophic events. Such regions actually correlate with geographical areas such
as Asia, Europe, and North America:

Figure 2.3: Reference image is taken from the official AWS site

Introduction to Cloud Computing and AWS Chapter 2

[22]

Each AZ, as shown in the following figure, is separated based on a metropolitan area within
a region, but they are internally connected with each other through dedicated low-latency
networks within the same region to provide failover architecture:

Figure 2.4: Example of AWS region and AZ configuration

Image source: http://www.slideshare.net/AmazonWebServicesLATAM/awsome-daybrbfreis201409

It is highly recommended you select an AWS region based on distance to the targeted
market or based on legal compliance. For example, if a client's e-commerce website is selling
goods and services only in the EU then it is suggested you host the website in Frankfurt or
Ireland to minimize latency. You should also consider compliance requirements specific to a
region while deciding on a region for hosting the application infrastructure. For example, if
a client is running a website for betting, it may be illegal in one region, but it could be
permitted in another region in line with the legal compliance requirements of the region.

Introduction to Cloud Computing and AWS Chapter 2

[23]

AWS constantly evolves its service offerings. New services are launched in specific regions
and then gradually supported in other regions. Due to the gradual approach of AWS in
launching a service, there is a chance that not all the services may be available in all regions.
It is a best practice to review available services in each region before planning, designing, or
proposing any architecture.

Physical access to AWS data centers is strictly controlled, monitored, and
audited.

What are SaaS, PaaS, and IaaS?
Cloud computing is a broad term and covers many services. Common cloud computing
models are Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS).

Let's broadly understand these models:

IaaS: When a service provider offers virtualized hardware or computing
infrastructure as a service, such an offering is called IaaS.
PaaS: PaaS is a type of cloud service in which a service provider offers
application platforms and tools over the cloud, usually to enable application
development. In this service model, underlying hardware and software are
hosted on the service provider's infrastructure.
SaaS: In the SaaS model, the service provider offers software or applications as
services. Such services are hosted by the providers and the end customer simply
consumes this SaaS without worrying about the underlying hosting platform,
infrastructure, and maintenance.

Introduction to Cloud Computing and AWS Chapter 2

[24]

The line of responsibilities in IaaS, PaaS, and SaaS is explained in the following figure:

Figure 2.5: Stack and responsibility separation between cloud and customer among various cloud terms such as IaaS, PaaS and SaaS

Image source: https://thebpmfreak.wordpress.com/2012/09/28/iaas-paas-saas-a-pictorial-representation/

Understanding virtualization
Virtualization is a process of virtually segregating physical hardware resources into a set of
virtual resources that can independently work as a computing resource and provide
customized and dedicated CPU, RAM, storage, and so on. Each server and its resources is
created in an isolated environment. Each isolated environment is abstracted from the
physical operating system and underlying hardware configuration. Such resources are
called VMs or instances.

Introduction to Cloud Computing and AWS Chapter 2

[25]

Virtualization is achieved using virtualization software that maintains the abstract and
virtual layers on top of physical hardware. Let us understand these virtualization software
and virtualization types in the following sections.

Virtualization types based on virtualization
software
As shown in the following figure, virtualization software can be broadly categorized into
two categories, class 1 and class 2:

Figure 2.6: Virtualization types based on virtualization software

Class 1 type: This is also known as the bare metal virtualization type. Very thin
(that is of a small size) virtualization software called a hypervisor is installed
directly on the physical server. The AWS cloud uses a customized Xen
hypervisor. Class 1 hypervisors are faster than class 2 hypervisors. Examples of
class 1 hypervisors are Xen, OpenStack, Hyper-V, and vSphere.
Class 2 type: This is also called a hosted hypervisor. These types of hypervisors
are installed above the base operating system such as Windows or Linux.
Examples of class 2 hypervisors are VMware Workstation, VirtualBox, and
Virtual PC.

Introduction to Cloud Computing and AWS Chapter 2

[26]

Virtualization types based on virtualization
methods
As shown in the following figure, virtualization can also be categorized as per the
virtualization methods, as follows:

OS-level virtualization: Host machines and VMs have the same OS with the
same patch level
Software virtualization (hypervisor):

Binary translation: Sensitive instructions from VMs are replaced
by hypervisor calls.
Para Virtualization Mode (PVM): Guest OS is modified to deliver
performance.
Hardware Assisted Virtual Machine (HVM): Creates an abstract
layer between host and guest VMs. Uses special CPU instruction
sets (that is, Intel-VT and AMD-V) to boost guest VM performance.

Hardware emulation: Makes it possible to run an unsupported OS, such as
running Android on a PC:

Figure 2.7: Virtualization types based on virtualization methods

Introduction to Cloud Computing and AWS Chapter 2

[27]

Elasticity versus scalability
Elasticity and scalability are two important characteristics of cloud computing. They
describe the way cloud infrastructure is able to expand and shrink to match the actual
dynamic workload and are discussed as follows:

Scalability: This means adding resources either to the existing instance (scale up)
or in parallel to an existing instance (scale out). Scalability is essential to achieve
elasticity:

Scale up: Changing the instance type from small to large (that is,
changing to more memory or compute) is called scaling up. It is
also called Vertical Scaling. It may require stopping the existing
and running instance. Usually, scaling up is done to get more
compute and memory on the same instance. Scaling up is usually
suggested for an application that does not support clustering
modes easily such as, RDBMS. Usually, scaling up is achieved
manually and requires downtime.
Scale out: Placing one or more new instances parallel to the
existing instance is called scale out. It is also referred to as
Horizontal Scaling. It gives good performance and availability as
instances can be placed across multiple AZs. By having individual
resources such as a NIC and disk controller for each instance, much
better performance can be achieved compared to scaling up.
Usually, scaling out is suggested for clustering-enabled
applications such as stateless web servers, big data, and NoSQL.
Scaling out generally does not require any downtime.

Elasticity: In physics, elasticity can be defined as a material's ability to expand
and shrink with external parameters. Similarly, in the cloud infrastructure,
elasticity can be defined as the ability to automatically provision additional
resources to meet a high demand and reduce the extended number of resources
when the demand lowers.

Unlike a public cloud, generally, traditional data centers do not have on-demand scalability
and elasticity. The following sections compare traditional data centers and cloud infrastructure
resourcing.

Introduction to Cloud Computing and AWS Chapter 2

[28]

Traditional data center resourcing
As shown in the following screenshot, in traditional data centers, there may be situations
when provisioned infrastructure capacity is either more than what is needed or less than
required. When the capacity is more than what is required, it's a waste of CapEx and when
it is less than required, it throttles performance:

Figure 2.8: Traditional data center workload actual versus provisioned capacity

Image source: https://www.slideshare.net/AmazonWebServices/aws-101-cloud-computing-seminar-2012/12-On_and_Off_WASTE_Fast

Cloud infrastructure resourcing
In contrast to traditional data centers, cloud infrastructure can be designed with dynamic
scalability and elasticity based on actual workload. As shown in the following screenshot,
such flexibility almost nullifies the wasting resources or performance throttling. Until the
soft limit is reached, cloud infrastructure can keep scaling out and scaling down based on
the actual workload.

Introduction to Cloud Computing and AWS Chapter 2

[29]

To achieve such flexibility, cloud infrastructure has to be designed and automatically
provisioned in line with such requirements using various services offered by the respective
cloud service providers:

Figure 2.9: Cloud infrastructure actual workload versus provisioned capacity

Image source: https://www.slideshare.net/AmazonWebServices/aws-101-cloud-computing-seminar-2012/12-On_and_Off_WASTE_Fast

Comparing AWS cloud and on-premise data
centers
Whenever an organization thinks of migrating their infrastructure over to a public cloud,
the first question that strikes the organization is cost. AWS provides major advantages over
on-premise environments as there is no upfront cost from using AWS. Thus, there is no
CapEx requirement as AWS works on OpEx. That means a customer pays only on a
monthly basis based on actual consumption of AWS resources.

Introduction to Cloud Computing and AWS Chapter 2

[30]

The following table differentiates cost on various counts between AWS and on-premise
environments:

Pricing model One time
upfront cost

Monthly
cost

Public
cloud

On-premise
DC

Public
cloud

On-premise
DC

Server hardware 0 $$ $$ 0

Network hardware 0 $$ 0 0

Hardware maintenance 0 $$ 0 $

Software OS 0 $$ $ 0

Power and cooling 0 $$ $ $

Data center space 0 $$ 0 0

Administration 0 $$ 0 $$$

Storage 0 $$ $$ 0

Network bandwidth 0 $ $ $

Resource management
software 0 0 $ $

24x7 support 0 0 $ $

Cost comparison example is based on some assumptions

Total Cost of Ownership (TCO) versus
Return on Investment (ROI)
There is no doubt that public cloud computing has many advantages over traditional data
center concepts; for example, it provides a cutting-edge, secure, and robust platform to host
an organization's IT infrastructure. It impacts costs by turning CapEx into OpEx. However,
when making an investment in any technology or service, it is important for a business to
understand two key aspects: ROI and TCO. Both of these involve careful and critical
analysis. It is very important to find the lowest cost in the long run rather than just the
lowest initial cost.

Introduction to Cloud Computing and AWS Chapter 2

[31]

Deriving TCO not only involves purchase cost and maintenance cost, but it also involves
hidden costs such as operating cost, setup cost, change or reconfiguration cost, upgrade
cost, security cost, infrastructure support cost, insurance cost, electricity cost, depreciation,
tax savings, and environmental impact.

AWS provides an online TCO calculator at https:/ /awstcocalculator.
com.

RoI can be derived using a mathematical formula. Primarily, it can be used to evaluate
investments and decide how well a particular investment might perform compared to
others. In terms of IT, usually an enterprise's top-level management or CIO performs such a
comparison between owning a data center and using a public cloud.

AWS also provides a cost calculator to find monthly estimated expenses at
https:/ /calculator. s3. amazonaws. com/ index. html.

Creating a new AWS account
Creating a new account at AWS to start using cloud services is easy, just like opening a new
email account.

The AWS interface may change from time-to-time.

The steps to create an AWS account are as follows:

In a web browser, open the following URL: https://aws.amazon.com/.1.
Click Create an AWS Account, as shown in the following screenshot:2.

Figure 2.10: Create a new AWS account

https://awstcocalculator.com
https://awstcocalculator.com
https://awstcocalculator.com
https://awstcocalculator.com
https://awstcocalculator.com
https://awstcocalculator.com
https://awstcocalculator.com
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://aws.amazon.com/

Introduction to Cloud Computing and AWS Chapter 2

[32]

First, select I am a new user option, provide the E-mail or mobile number of an3.
authorized person to open a new account, and finally click on Sign in using our
secure server as follows:

Figure 2.11: Signing in a new AWS account

Enter Login Credentials fields such as name, email address, and password and4.
finally click on the Create account button as follows:

Figure 2.12: Login credentials

Introduction to Cloud Computing and AWS Chapter 2

[33]

Provide Contact Information as follows:5.

As per the actual usage, select Company Account or Personal Account.
Please provide the appropriate CAPTCHA and accept the agreement after
reading and understanding it.

Figure 2.13: Contact details

When the country selected is India, it cannot be changed later. If you
select any other country, it can be changed later. This restriction is specific
to India.

Introduction to Cloud Computing and AWS Chapter 2

[34]

Provide payment and PAN card details, as follows:6.

In the event of a credit/debit card not being handy, this step can be
skipped during this wizard and the information can be provided later on.
Also, PAN card details are optional.

Figure 2.14: Payment information

Introduction to Cloud Computing and AWS Chapter 2

[35]

When card details are provided, based on the card type you may be asked
to fill in a credit/debit card PIN to complete the transaction. To verify card
details, INR 2.00 may be deducted from your account. Later, it will be
adjusted to your usage (that is, monthly billing).

Provide appropriate contact details and verify the CAPTCHA image. The AWS7.
automated system will make a verification call. On screen, it will display a four-
digit PIN that you need to provide when you receive an automated verification
call. The following screenshot shows a similar verification screen:

Figure 2.15: Identity verification

Introduction to Cloud Computing and AWS Chapter 2

[36]

Finally, select Support Plan, as shown in the following screenshot:8.

Figure 2.16: Support plan

Introduction to Cloud Computing and AWS Chapter 2

[37]

Based on the plan selected, charges are applied to the monthly billing.

Finally, a new AWS account is created and a welcome email is sent to the9.
authorized person's email address.

Deleting an AWS account
In the same way that we created an AWS account, similarly an AWS account can be deleted
as easily. Once logged in to the AWS account using the root user, click on the right-hand
side drop-down menu. Usually, it is marked with the name given at the time the AWS
account was created. Under that, select My Account. It may open My Account Dashboard
in a new tab. At the bottom of the dashboard, select the checkbox under Close Account and
finally click Close Account as follows:

Figure 2.17: Deleting AWS account confirmation

For the current month, billing may be completed at the end of the month.
All AWS resources and data will be wiped out. Once the account is closed,
there will be no mechanism to undo and/or get the data back. It is highly
recommended you back up important data to a secured and safe place
before closing your AWS account.

AWS free tier
A new AWS account comes with a limited free tier capacity for 12 months, mostly on all
services with some limitations on usage. The main purpose of the free tier is to enable users
to have hands-on experience and build their confidence. The latest AWS free tier details can
be obtained from the following URL: https:/ /aws. amazon. com/ free/ .

https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/

Introduction to Cloud Computing and AWS Chapter 2

[38]

If AWS resource consumption exceeds the limit of the free tier, actual charges are
applicable, and billed in a monthly cycle. It is highly recommended you closely monitor
running resources on the AWS cloud, all the time.

Root user versus non-root user
The email address and passwords that are used to create an AWS account are called the
root user. This user has the highest privileges. It is highly recommended and also best
practice to log in with the root user and then create appropriate IAM users for day-to-day
activities (that is, for database administrator, system administrator) and so on. The root user
can log in to the AWS account using the following URL: https:/ /console. aws. amazon.
com/console/home.

Provide a valid username and password created in earlier steps (that is, when creating a
new AWS account).

If you are not able to memorize the preceding URL, go to https:/ /aws. amazon. com and
select My Account then AWS Management Console. This will also bring up the same login
screen as follows:

Figure 2.18: AWS account

https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com

Introduction to Cloud Computing and AWS Chapter 2

[39]

For a non-root user login, individual users are created with the help of the IAM service to
perform day-to-day infrastructure activities. To obtain a URL to log in using an IAM user, it
is essential to log in once with the root credentials. Go to the IAM dashboard and it will give
IAM users a sign-in link: https://123456789012.signin.aws.amazon.com/console/.

In the preceding URL, the first 12 characters represent an AWS account number, which
varies from AWS account to account.

AWS dashboard
Having a good understanding of the AWS dashboard is essential to perform day-to-day
activities. There are a number of components of the AWS dashboard, as shown in the
following screenshot. The AWS dashboard layout may change from time-to-time; the
screenshot is given for an overview:

Figure 2.19: AWS web console

Introduction to Cloud Computing and AWS Chapter 2

[40]

Components of the AWS dashboard
As you can see in the preceding screenshot, there are a number of components on the AWS
dashboard. The following list gives you an overview of these components:

: This icon represents console home. Clicking on this, you can go to
dashboard home.

: This drop-down lists a number of AWS services. Clicking on an
individual service takes you to the specific service console.

: You can segregate various services in resource groups.
Resource groups provide you with a way to quickly group and access frequently
used services based on your requirements.

: Frequently accessed services can be dragged and pinned at the top bar. It
can be toggled between Icon only, Text only, and icon with text.

: Shows all alerts and errors from AWS. Any planned maintenance from
AWS is also highlighted in advance:

: This is a drop-down menu to access My Account, My Billing
Dashboard, My Security credentials, and Sign Out options.

: Based on your region, you may see the region name here; if you
need to change the region, you can select it from the drop-down menu. Most of
the services are region-specific, but a few services are global, such as AWS
dashboard, IAM, and a few others.

The region drop-down menu by default doesn't show Government Cloud
and China Region.

A support drop-down menu gives options to go to Support Center, Forums,
Documentation, Training, and other resources.
A search bar is available to quickly find AWS services; sometimes it may be time-
consuming to find the desired AWS services from the long list of various services.

Introduction to Cloud Computing and AWS Chapter 2

[41]

On your dashboard, recently accessed AWS services appear at the top, based on your usage
of these services.

It is suggested you explore every corner of the AWS dashboard; it provides links to various
solutions, tutorials, and more useful information.

Core AWS services
AWS services are divided into various groups based on their use. The following table
describes a number of services provided by AWS with their purpose. As AWS continuously
evolves its service catalog, there may be periodic additions to this list:

Group AWS service Purpose

Compute Elastic Cloud
Compute (EC2)

Provides scalable compute capacity (virtual
servers).

EC2 Container
Service

Highly scalable and high performance container
management service. Supports Docker and runs on
a managed cluster of EC2 instances.

Lightsail

Provides template-based computing. It is also
called Virtual Private Servers (VPS). It makes it
possible to quickly launch virtual machines from
templates rather than selecting individual
components in EC2.

Elastic Beanstalk

Developers can quickly deploy and manage
applications in the AWS cloud. Developers just
have to upload their application and the rest is
taken care of by Elastic Beanstalk.

Lambda

Allows us to run code without actually spinning
servers. Such code can be triggered on certain
events in other AWS services such as S3, SNS,
DynamoDB, Kinesis Stream, and many other AWS
services.

Batch
Makes running any amount of batch processing for
developers, scientists, and engineers on AWS
cloud.

Introduction to Cloud Computing and AWS Chapter 2

[42]

Storage Simple Storage
Service (S3)

Provides highly-scalable, reliable, and low-latency
object storage.

Elastic File System Fully managed, scalable, and sharable storage
among thousands of EC2 instances.

Glacier Secure, durable, and extremely low-cost solutions
for backup and archiving.

Storage Gateway Seamlessly connect on-premise applications or
services with the AWS cloud storage.

Database Relational Database
Service (RDS)

Managed database services. Supports the Amazon
Aurora, MySQL, MariaDB, Oracle, SQL Server, and
PostgreSQL database engines.

DynamoDB Fast and flexible NoSQL database service. Provides
predictable performance.

ElastiCache

Makes it easy to deploy Memcached or Redis
protocol-compliant server nodes in the cloud.
Primarily, it improves application performance by
storing frequently accessed information into
memory.

RedShift
Fully managed petabyte-scalable columnar data
warehousing service. Also provides ODBC and
JDBC connectivity and SQL-based retrieval.

Networking
and Content
Delivery

Virtual Private
Cloud (VPC)

Logically isolates networks. Allows us to define IP
range selection, subnet creation, configuring routes,
and network gateways.

CloudFront
Using edge locations, contents are distributed to
provide low-latency and high data transfer speeds
across the globe.

Direct Connect
It provides alternatives to bypass the internet and
uses dedicated networks to connect private data
centers and the AWS cloud.

Route 53 Highly available and scalable global DNS service.

Migration Database Migration
Service (DMS)

Cross schema conversion tools such as Oracle
PL/SQL to SQL Server.

Introduction to Cloud Computing and AWS Chapter 2

[43]

Server Migration Enables VMware VM migration to AWS EC2.

Snowball
Accelerates TBs of data transportation between
data centers and AWS securely. Available in two
sizes, 50 TB and 80 TB.

Snowmobile
Makes possible exabytes of data transfer. Possible
to transfer up to 100 PB per Snowmobile. Comes in
a 45-foot long rugged shipping container.

Developer
tools CodeCommit

Provides a scalable and managed private Git
repository. Anything from code to binaries can be
stored.

CodeBuild Fully managed build service. Complies and tests
source code and makes it ready to deploy.

CodeDeploy Automated code deployment to any instance (that
is EC2 or on-premise).

CodePipeline

CodePipeline is an AWS product that automates
the software deployment process, allowing a
developer to quickly model, visualize, and deliver
code for new features and updates. This method is
called continuous delivery.

Management
tools CloudWatch

Can be configured to monitor AWS resources. It
can collect metrics and logs to monitor and
generate alerts.

CloudFormation

Automates and simplifies repeated infrastructure
tasks such as repeatedly creating the same
infrastructure in the same or different AZ or
region.

CloudTrail Records each AWS API call and stores log files into
an S3 bucket.

Config
Provides AWS resource inventory, configuration
history, and change notifications to enable security
and governance.

Introduction to Cloud Computing and AWS Chapter 2

[44]

OpsWorks

AWS OpsWorks is a configuration management
service that uses Chef, an automation platform that
treats server configurations as code. OpsWorks
uses Chef to automate how servers are configured,
deployed, and managed across your Amazon EC2
instances or on-premise compute environments.

Service catalog

AWS service catalog allows organizations to
centrally manage commonly deployed IT services,
and helps organizations achieve consistent
governance and meet compliance requirements,
while enabling users to quickly deploy only the
approved IT services they need with the constraints
your organization sets.

Trusted advisor Helps to reduce monthly billing, and increase
performance and security.

Application
discovery service

Quickly and reliably finds out an application's
dependencies and performance profile, running
on-premise data centers.

Security,
Identity &
Compliance

Identity Access and
Management (IAM)

Allows us to create and manage groups and users
to grant them required permissions to perform
day-to-day infra tasks.

Inspector Automated security assessment service to test the
security state of applications hosted on EC2.

Certificate Manager Manages SSL/TLS certificates. Also makes it easy to
deploy them across various AWS services.

Directory Service

It is an AWS Directory service for Microsoft Active
Directory. Makes it easy to deploy directory-aware
workloads on AWS resources to use and manage
AD in the AWS cloud.

Web Application
Firewall (WAF)

By configuring rules to allow, block, or just monitor
web requests, protects web applications from
external attack.

Shield Managed service to protect web applications
against DDoS attacks running on AWS.

Introduction to Cloud Computing and AWS Chapter 2

[45]

Analytics Athena Interactive query service to analyze data in
Amazon S3 using SQL.

Elastic Map Reduce
(EMR)

Based on the Hadoop framework, it provides easy
and cost-effective big data solutions.

CloudSearch Fully managed and scalable textual search
solutions for websites or applications.

Elasticsearch Managed services make it easy to deploy, operate,
and scale Elasticsearch clusters in the AWS cloud.

Kinesis Makes it possible to work on live streams of data to
load and analyze with AWS services.

Data Pipeline
Enables data movement and data processing
within AWS and also between on-premise and the
AWS cloud.

QuickSight
Fast, easy-to-use, and cloud-powered business
analytics service to build data visualization and ad
hoc analysis.

Artificial
Intelligence Lex

Provides a platform to build text and voice-based
interfaces, with high-quality speech recognition
and language understanding capabilities. Powered
by the Alexa engine.

Polly Provides a voice to the application, so it can speak.
It basically converts text into speech.

Rekognition Fully managed image recognition service powered
by deep learning.

Machine Learning
Allows us to build algorithm-based predictive
applications, including fraud detection, demand
forecasting, and click prediction.

Internet of
Things (IoT) AWS IoT Platform from which to connect devices and

sensors to the cloud easily and securely.

Game
development GameLift

Fully managed service to deploy, operate, and scale
session-based multiplayer game servers in the
cloud.

Introduction to Cloud Computing and AWS Chapter 2

[46]

Mobile
services Mobile Hub Provides a platform to build, test, and monitor

mobile app usage.

Cognito

Provides sign-up and authentication to web and
mobile apps. Also provides synchronization of data
between various devices (that is, mobile, tablet, and
laptop).

Device Farm
Enables mobile application (that is, Android and
iPhone) testing parallel on hundreds of real devices
in the AWS cloud.

Mobile Analytics

Can be used to analyze and visualize mobile
application usage. Compared to other such
analytical tools, it delivers reports within 60
minutes of receiving data while other tools take a
long time.

Pinpoint

Specifically designed to run precise campaigns for
mobile user engagement. Pinpoint observes users
interactions with the mobile application and
determines what message at what time to send
them.

Application
services Step functions

Managed service, coordinates the components of
distributed applications and microservices using
visual workflows.

Simple Workflow
(SWF)

Coordinates tasks (that is, scheduling tasks and
executing dependent processes) across distributed
application components.

API Gateway Enables developers to publish, monitor, and
maintain APIs in a secure and scalable manner.

Elastic Transcoder
Allows developers to transcode (that is, convert)
video and audio files from one to another format
using APIs.

Messaging Simple Queue
Service (SQS)

Provides a robust and secured message queue
mechanism to store and schedule process
messages.

Introduction to Cloud Computing and AWS Chapter 2

[47]

Simple Notification
Service (SNS)

Notifies real-time events (that is, publishes
messages) to the intended recipients. It can also
provide events to trigger other AWS services.

Simple Email
Service (SES)

Cost-effective and scalable solutions for email
campaigning.

Business
productivity WorkDocs

Managed and secured enterprise storage solution.
Enterprise-grade solution to share files, managing
multiple versions and sharing with others for
feedback. Allows you to control access.

WorkMail
Managed business emails, contacts, and calendar.
Allows seamless access from mobile devices, web
browsers, or Microsoft Outlook.

Desktop &
App
Streaming

WorkSpaces

Managed desktop computing. End users can
connect to high-end desktops in the cloud using
thin clients. Usually, EC2 is used to host servers not
desktops.

AppStream 2.0

Enables Windows application streaming by
running on the AWS cloud. It's an enterprise
application streaming service for Windows
applications on the AWS cloud.

Shared security responsibility model
Before developing, designing, and implementing cloud solutions, it is important to
understand the security responsibility shared between AWS and the customers who
consume these services. The following figure distinguishes the responsibilities of AWS as a
cloud service provider and the customers who consume these services:

Introduction to Cloud Computing and AWS Chapter 2

[48]

Figure 2.20: Reference URL: https://aws.amazon.com/compliance/shared-responsibility-model/

AWS cloud shared responsibility between service providers and customers

Amazon promises that security is its highest priority as a public cloud service provider.
AWS is committed to providing consistent, robust, and secured AWS public cloud services
to their customers. Amazon achieves this by securing foundation services, that is, compute,
storage, database, and networking, and global infrastructures such as regions, AZs, and
edge locations. Customers have to manage the security of their data, operating systems,
application platforms, applications, network, systems or any customer-specific services
deployed on AWS by them using IaaS. AWS provides various services such as AWS
Inspector, CloudWatch, IAM, Trusted Advisor, and CloudTrail to manage security in an
automated way so that users need not spend much time on routine security and audit tasks.
You can use these services as a building block of your environment on AWS.

In other words, AWS is responsible for providing security for the AWS cloud and the
customer is responsible for the security of the resources deployed within the cloud. In the
case of managed services (that is, DynamoDB, RDS, Redshift, and so on), AWS is
responsible for handling the basic security tasks of the underlying AWS resources and also
at the OS level.

Introduction to Cloud Computing and AWS Chapter 2

[49]

To match an organization's IT compliance requirement, AWS also provides third-party
audit reports to ensure that the AWS cloud fulfills all essential compliance needs. You can
refer to https://aws.amazon.com/compliance for more details.

Some compliances followed by AWS are given here:

IT security compliances:
SOC 1/SSAE 16/ISAE 3402 (formerly SAS 70)
SOC 2
SOC 3
FISMA, DIACAP, and FedRAMP
DOD CSM Levels 1-5
PCI DSS Level 1
ISO 9001 / ISO 27001
ITAR
FIPS 140-2
MTCS Level 3

Industry compliances:
Criminal Justice Information Services (CJIS)
Cloud Security Alliance (CSA)
Family Educational Rights and Privacy Act (FERPA)
Health Insurance Portability and Accountability Act (HIPAA)
Motion Picture Association of America (MPAA)

The AWS network provides protection against traditional network security problems (that
is, DDoS and MITM attacks, IP spoofing, and port scanning).

Remember, you need to get prior approval from AWS to perform penetration testing in
your AWS account, otherwise AWS understands such testing as malicious attacks and your
AWS account may be blocked.

AWS also ensures that when Elastic Block Store (EBS) volumes are deleted from one
account, internal wiping takes place before it is reused for another AWS account. Wiping is
done as per industry standards (that is, DoD 5220.22-M or NIST 800-88). It is also possible to
encrypt sensitive data on EBS volumes. AWS uses the AES-256 algorithm.

https://aws.amazon.com/compliance

Introduction to Cloud Computing and AWS Chapter 2

[50]

A detailed understanding of the shared responsibility model can be
obtained from https:/ /d0. awsstatic. com/ whitepapers/ aws- security-
whitepaper. pdf.

AWS soft limits
For every AWS account, region-based limits are enabled for each AWS service. Such limits
restrict an AWS account to provisioning limited numbers of resources in a specific AWS
service. For example, a news AWS account can provision around 20 EC2 instances. This
limit may vary according to resource types and the respective AWS services. Some of these
limits are soft limits and you can raise a support request to AWS to revise this limit in your
AWS account.

AWS Trusted Advisor displays account usage and limits for each specific service region.

Authorized IAM users or root accounts can place a request with AWS support to increase
such service limits.

Here's how you can request a change in service limits:

Log in to your AWS account; in the top right-hand side corner click on the1.
Support drop-down menu and select Support Center.
Click Create Case and select Service Limit Increase.2.
Select the AWS service whose limit is to be increased in the Limit Type drop-3.
down menu.

When any resource's soft limit is reached, no new resources can be
provisioned until the soft limit has been increased from the AWS end. For
example, if your soft limit in North Virginia is 20 EC2 instances then
spinning up the 21st instance will result in an error.

https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf

Introduction to Cloud Computing and AWS Chapter 2

[51]

Disaster recovery with AWS
For any enterprise, unplanned downtime can have a devastating impact, not only on
ongoing business but also on the overall enterprise. Any catastrophe or disaster can bring a
city or a region to a standstill and can impact businesses for a prolonged period. It is critical
for organizations to plan for disasters that can halt their business. AWS provides a number
of services and features that can be used to overcome unplanned downtime arising out of
natural disasters or human error.

Disaster Recovery (DR) is the process of designing an architecture that is able to recover
from any disaster situation within a stipulated time. The cost of DR planning is inversely
proportional to the time required to recover the infrastructure. Traditionally, in the case of a
private data center, it may be required to create similar data centers at any distant and safe
place. It also requires huge upfront investment, constant staff training, and maintenance.
On the other hand, by hosting infrastructure on AWS, it can be easier to plan for DR setup
in multiple regions or AZs. Resources in such additional regions or AZs can be
automatically scaled up or down as per the actual workload and you pay only for what is
actually used. One of the best aspects of AWS is you can select from a wide range of regions to
host the DR infrastructure.

Before DR planning begins, there are two very critical aspects of a DR plan that we need to
understand:

Recovery Time Objective (RTO): This defines the time within which business
processes should be recovered from downtime. The maximum time a business
process can sustain a down condition depends upon the criticality of the process.
Generally, RTO is defined separately for each business process and related
environment. For example, let's consider the RTO of a business process as three
hours. In this case, if disaster occurs, businesses can afford a downtime of three
hours at most, within which the environment should be recovered.
Recovery Point Objective (RPO): This defines the acceptable amount of data
loss, measured in time. For example, let's consider that the RPO of a business
process is one hour. In this case, if disaster occurs at 2:00 P.M. then all the stored
data should be available at least until 1:00 P.M. Thus, a business can afford to lose
one hour's data in case of any disaster.

Introduction to Cloud Computing and AWS Chapter 2

[52]

The best way to define RTO is to understand the financial impact to the business when the
system is not available, and similarly the best way to define RPO is to understand the
financial impact on the business when business data is not available for a specific time
frame. By considering these aspects along with the technical feasibility and cost of setting
up DR, one can understand and define the RTO and RPO of a business process.

In the case of having a traditional data center, hosting a DR site usually involves
duplication of the same type of data center at a distant and safe site. It also involves huge
upfront CapEx. On the other hand, by hosting IT infrastructure in AWS, it is possible
to only go for a pay as you go model. AWS services and concepts such as Region, AZs, EC2,
DNS - Route 53, Networking Service (VPC), Elastic Load Balancing, Auto Scaling,
CloudFormation, and many others can help in designing the DR plan.

The following figure shows the various DR reference models using AWS services:

Figure 2.21: AWS Multi Region

Reference URL: https://d0.awsstatic.com/whitepapers/aws-disaster-recovery.pdf

The DR approach can be broadly categorized in four models:

Backup and restore
Pilot light
Warm standby
Multi-site

Out of the four models described in the preceding figure, backup and restore is the most
economical model, but it may take more time in recovery. If you go from left to right in the
preceding figure, time to recovery decreases, but at the same time cost to recover increases.
Similarly, if you go from right to left as given in the preceding figure, time to recovery
increases and cost to recover decreases. Let's understand these DR models in subsequent
sections.

Introduction to Cloud Computing and AWS Chapter 2

[53]

Backup and restore
This approach to DR involves periodically backing up critical data and keeping it in a safe
and secured place for later use. In the event of disaster, the backed-up data can be restored
as needed.

Let's consider a traditional data center approach to understand the backup and restore DR
model. In this approach, data is periodically backed up on tape drives and sent offsite. In
the event of disaster in DC, you need to bring the backup tapes from an offsite location to
wherever restoration takes place. It takes longer to restore the data from tape drives, as tape
drives perform a sequential read of data. Usually, this type of DR mechanism is obsolete in
a modern, fast-paced enterprise.

For a similar backup and restore approach, AWS provides a number of services such as the
S3 and Glacier services. Transferring data to and from S3 and Glacier is much faster, safer,
and economical compared to tape drives. S3 can be compared to an offline object storage,
whereas Glacier can be compared to an economical tape drive used for archiving purposes.
S3 provides instant access to your data, whereas the comparatively cheaper option Glacier
may take around three to four hours to restore archived data. AWS also provides a service
called Import/Export, which offers physical data storage devices that can be used to
perform large data transfer directly to AWS. There are other options as well for
importing/exporting a large amount of data on AWS such as Snowball or Snowmobile.

AWS Snowball is a service that accelerates transferring large amounts of data into and out
of AWS using physical storage appliances, bypassing the internet.

AWS Snowmobile is an exabyte-scale data transfer service used to move extremely large
amounts of data to AWS. You can transfer up to 100 PB per Snowmobile, a 45-foot long
ruggedized shipping container pulled by a semi-trailer truck.

AWS also provides a service called Storage Gateway. It directly connects a physical data
center to AWS storage services. Using Storage Gateway, organizations can directly store
data to S3 or Glacier as a part of their DR strategy. Storage Gateway is fast, economical, and
robust.

Introduction to Cloud Computing and AWS Chapter 2

[54]

The following figure shows an example configuration to achieve a backup and restore a DR
setup scenario on AWS and a physical data center:

Figure 2.22: Using AWS services to design backup and restore DR setup

Reference URL: https://d0.awsstatic.com/whitepapers/aws-disaster-recovery.pdf

Pilot light
This model can be easily explained by the example of a gas heater, where a small flame is
always ignited and can be quickly ignited to a larger flame in a boiler to heat up an entire
house. The term pilot light is derived from the same concept.

In this DR scenario, the minimal DR version with the most critical components of the
environment is always kept running in parallel with the production environment. This can
be explained through a couple of examples:

The primary site runs on an on-premise DC and a DR setup with minimal critical
resources is kept running in the cloud. In the event of any issue in the data center,
other required resources can be provisioned in the cloud infrastructure and it can
start serving traffic after failover to the DR setup.

Introduction to Cloud Computing and AWS Chapter 2

[55]

The primary site runs on AWS in one region and a DR setup with minimal critical
resources is kept running in another region on AWS. In the event of any issue in
one AWS region, other required resources can be provisioned in a cloud
infrastructure in another region to match the primary environment setup and it
can start serving traffic after failover to the DR setup.

When an enterprise's IT is running on a traditional data center, it is also possible to shift
only critical applications, load them to the cloud, and run the rest of the infrastructure in a
traditional fashion. Figure 2.23 and Figure 2.24 show how this model works in normal
conditions and failover conditions, respectively:

Figure 2.23: Applications running under normal situation

Reference URL: https://d0.awsstatic.com/whitepapers/aws-disaster-recovery.pdf

Introduction to Cloud Computing and AWS Chapter 2

[56]

Figure 2.24: Earlier infrastructure under failover conditions

Reference URL: https://d0.awsstatic.com/whitepapers/aws-disaster-recovery.pdf

With the help of Figure 2.24 and Figure 2.25, we can clearly understand that in the event of
any disaster at the primary site (that is, data center or cloud-based) traffic is automatically
diverted to the secondary site. This is also called a failover scenario. Thus users experience
consistent performance rather than experiencing down time on the application. Compared
to the backup and restore model, the pilot light model is much faster. It may require a few
manual steps to perform or can be automated with the help of an automation process using
DevOps.

Introduction to Cloud Computing and AWS Chapter 2

[57]

Warm standby
In this DR scenario, a scaled-down and fully functional environment is always running in
the cloud. It extends the pilot light DR model. In the case of the pilot light model, you need
to create additional instances or resources to match the size of the primary environment. In
contrast to pilot light, warm standby keeps a fully functional DR setup with a minimum
fleet of instances with the minimum possible size of instances. In the event of any disaster,
the DR setup is scaled up to match the primary site and traffic is failed over to the DR setup.
Since fully functional infrastructure always runs in the warm standby approach, it further
reduces required recovery time.

Figure 2.25 and Figure 2.26 explain the concepts of primary and secondary sites under a
warm standby DR model. They explain how the load is transferred to a secondary site when
the primary fails:

Figure 2.25: End users are accessing a primary site under normal conditions

Reference URL: https://d0.awsstatic.com/whitepapers/aws-disaster-recovery.pdf

Introduction to Cloud Computing and AWS Chapter 2

[58]

Figure 2.26: End users are diverted to a secondary site under the warm standby DR model

Reference URL: https://d0.awsstatic.com/whitepapers/aws-disaster-recovery.pdf

Multi-site
In a multi-site DR model, infrastructure of the same size is always in sync and running at
multiple locations. These multiple locations can be between a physical data center and AWS
or between various AWS regions. In either case, when a primary site fails, the total
workload is transferred to the secondary site. In some practices, the secondary site keeps
handling partial traffic in parallel to the production environment. Such ratios can vary from
50-50 to 80-20 between primary and secondary sites.

Introduction to Cloud Computing and AWS Chapter 2

[59]

In multi-site models, resources are always synchronized across each facility (that is, primary
and secondary sites). Compared to all previous DR models, the multi-site option provides
the least downtime (that is, virtually none), but it is a little expensive. Since AWS follows
the pay as you go model for actual usage, it doesn't cost much compared to the loss that can
occur to the enterprise in absence of primary site failure. Figure 2.27 and Figure 2.28 explain
how multi-site DR configuration actually works:

Figure 2.27: End users accesses primary and secondary sites in parallel under normal circumstances

Reference URL: https://d0.awsstatic.com/whitepapers/aws-disaster-recovery.pdf

Introduction to Cloud Computing and AWS Chapter 2

[60]

Figure 2.28: Whole workload is transferred to a secondary site in case the primary site fails

Reference URL: https://d0.awsstatic.com/whitepapers/aws-disaster-recovery.pdf

3
Identity and Access

Management
Any organization using IT services may have a number of resources, processes,
environments, projects, and operational activities. All the organizational activities are
carried out by various departments. There is always a clear distinction as to who needs to
do what. Infrastructure and operational activities are performed by a specific set of
personnel in the organization. Similarly, there may be a development team, testing team,
project team, finance team, security team, and other relevant teams in the organization that
need to perform specific tasks in the organization.

As there are various teams to perform different activities in the organization, similarly there
is a clear set of responsibilities and accountability for each of the individuals in a team. A
developer may not need to access testing resources. Similarly, a testing resource may not
need access to production environments. On the other hand, a system administrator may
need to access all the servers, but may not need to access security compliance hardware.

Based on the preceding examples, we can understand that an organization has complex
access and security requirements. Addressing an organization's access and security
requirements is a critical task. AWS provides a robust service to fulfill this requirement that
is called the Identity and Access Management (IAM) service.

Identity and Access Management Chapter 3

[62]

Here's how we can define IAM: AWS IAM is a global service that is specifically designed to
create and manage users, groups, roles, and policies for securely controlling access to
various AWS resources. You use IAM to control who can use your AWS resources
(authentication) and what resources they can use and in what ways (authorization).

Understanding the AWS root user
Creating an AWS account also creates a root user. The email and password supplied at the
time of creating the AWS account becomes the username and password for the root user.
This combination of an email address and password is called the root account credentials.

The root account, that is, the root user, has complete, unrestricted access to all resources,
including billing information on the account. This is a supreme user and its permission
cannot be altered by any other user on the account.

Since the root account has unrestricted access to all the resources on the account, it is highly
recommended that you avoid using the root account for day-to-day activities. On a newly
created AWS account, it is recommended that you create individual IAM users based on the
organizational need and assign them the required permissions. These non-root-user
accounts should be used for day-to-day activities.

It is best practice not to share individual credentials with other users,
especially root credentials, as they give unrestricted access within an AWS
account.

Elements of IAM
It is essential to understand a few basic IAM terminologies, to effectively manage real-life
organizational users and their permissions to access AWS resources as per their roles and
responsibilities. The following list briefly describes these terminologies and subsequently
goes into the details of each of the elements of IAM:

User: A user is a person or an application that requires access to various AWS
resources to perform designated tasks. A user can access AWS resources with
either a username and password or with an access key and secret key.
Access key: An access key is a 20-character alphanumeric key that acts as a user
ID.

Identity and Access Management Chapter 3

[63]

Secret key: A secret key is a 40-character alphanumeric key that acts as a
password or secret key. The access key and secret key are used together for
initiating API, SDK, and CLI authentication.
Password policy: Password policy specifies the complexity requirement of a
password and defines the mandatory rotation period for a password associated
with IAM users.
Multi-factor authentication (MFA): This is an extra layer of security protection
for user authentication that requires users to enter a six-digit token on top of the
username and password.
Group: A group is a collection of IAM users.
Role: A role is an IAM entity that constitutes one or more IAM policies defining
resource permissions. A role enables access to performing specific operations
mentioned in the respective policies associated with the role.
Policy: A policy is a document written in JSON format that formally states one or
more permissions as per the IAM policy standards.

Let us now understand all these terminologies in detail and their significance in IAM.

Users
AWS IAM users can be created for any organizational entity (actual end users, such as a
person or an application). As per their roles and responsibility in the organization, these
users need to access AWS resources to perform their day-to-day tasks. By asking the
question Who is that user? , we will get an idea whether that entity is a user or an
application.

Usually, an individual user is authenticated by username and password. Similarly,
programmatic access (that is, SDKs and CLIs, also known as applications) are authenticated
using an access key and secret key. Individual users can also use an access key and secret
key by configuring them on EC2 instances or physical computers to execute AWS CLI
commands.

It is best practice to identify organizational entities and create respective IAM users with
credentials to give them access to the AWS platform. Every user, whether it is an individual
or an application, must provide appropriate credentials for authentication. Only after a
successful authentication can a user access AWS resources such as the AWS dashboard,
API, CLI, or any other AWS service.

Identity and Access Management Chapter 3

[64]

A logical representation of organizational users can be explored with the help of the
following figure:

Figure 3.1: Conceptual understanding of IAM users in AWS accounts

As shown in the preceding figure, various users are created in AWS accounts for
individuals or applications. Let's suppose that Tom is a system administrator, Helen is a
network administrator, and Jim is a database administrator. Best practice is to grant
minimum required privileges to each user based on what their role is expected to be. A
system administrator may need access on all the infrastructure; a network administrator
may need access to all network services and resources. Similarly, a database administrator
may need access only to databases.

On the other side, applications such as ERP and payroll may also need to access the
required AWS resources. Applications hosted on EC2 may need to access a hosted database
on RDS. For all such applications, there may be a user ID with an access key and secret key
that an application can use to access the respective resources on AWS.

Permissions can be granted to applications using an AWS role as well. In subsequent
sections, we will see how authentication works with AWS roles.

The access key and secret key are not generated for all users, as we saw in the preceding
figure. They are only generated for users who need to access AWS resources using API,
SDKs, and CLIs. For accessing services using an AWS console, one can use a username and
password.

Identity and Access Management Chapter 3

[65]

Access key and secret key
An access key and secret key come in a pair. An access key is a 20-digit key and a secret key
is a 40-digit key. Only corresponding keys work with each other for authentication. These
keys are used along with AWS SDK, CLI, REST, or Query APIs. As the name suggests, a
secret key is meant to be kept secret and protected. Best practice is not to hardcode an access
key and a secret key in application coding. If these keys are hardcoded and not removed
before sharing an AMI or EBS snapshot with others, it may pose a security risk.

An access key and a secret key are generated only once, either at the time of creating a user
or later, as and when required, manually. At the time of generating an access key and a
secret key, AWS gives an option to download them in CSV format. Once it is created, you
need to download and keep it securely. AWS does not provide any mechanism to retrieve
an access key and a secret key if these keys are lost. The only solution is to delete old keys
and regenerate new keys. As a result, you will need to edit an earlier key pair with a
regenerated new key pair for applications to work smoothly. A maximum two sets of access
keys and secret keys can be attached with any IAM user.

An access key and secret key look like this:

Access key: AKIAJ4B7SOIHQBQUXXXX

Secret key: oSpG3je8kYS1XpMDRG8kpo1awLizvnv1GaNBXXXX

It is best practice to periodically rotate access keys and secret keys for security purposes. It
is also recommended practice to periodically remove unutilized and unwanted access keys
and secret keys from an AWS account.

Password policy
Password policy specifies the complexity requirement of a password and defines a
mandatory rotation period for a password associated with IAM users.

Identity and Access Management Chapter 3

[66]

While creating an IAM user, an IAM administrator can provide a reasonably strong
password on behalf of the user. Optionally, an IAM administrator can also configure a user
to change the respective user password when the user logs in for the first time to AWS.
Password policy can be configured from Account settings within the IAM dashboard. As
per the organization's compliance requirement, password complexity can be configured by
choosing one or more options as shown in the following screenshot:

Figure 3.2: Password policy options

It is important to note that the password policy only affects the user password. It does not
affect in any way the access key and secret key. As a result of password policy, a user
password may expire after the configured number of days, but the access key and secret
key do not expire. When a password expires, the user cannot log in to the AWS console, but
API calls work fine using an access key and a secret key.

A change in password policy comes into effect for all new users, but for all
existing users, it comes into effect whenever their respective password is
changed. It does not apply to the existing user password until it is
updated.

Identity and Access Management Chapter 3

[67]

Multi-factor authentication (MFA)
MFA is an extra layer of security protection for user authentication that requires users to
enter a six-digit token on top of the username and password. MFA can be enabled for
individual IAM users. It is best practice to enable MFA for all users. It adds an extra layer of
protection on top of the username and password. Once it is enabled, the user needs to enter
a unique six-digit authentication code from an approved authentication source (that is,
hardware or software-based) or an SMS text message, while accessing the AWS
Management Console.

MFA can be enabled for both types of users: an individual console login as well as an
application's programmatic calls to the AWS. It can be also enabled for the root user.

MFA can be enabled in one of the following ways:

Security token with hardware or software
SMS text message

Security token-based MFA
When it comes to security token-based MFA, there are two options available: hardware-
based or software/virtual (that is, mobile application)-based. Hardware based security
tokens can be purchased from an authorized vendor and a virtual security token application
can be installed on smartphones. A hardware-based MFA token device may look something
like this:

Figure 3.3: Hardware MFA device for RSA token

Identity and Access Management Chapter 3

[68]

To enable MFA tokens on an IAM user, MFA hardware or software applications need to be
registered with an IAM user. Once a user is registered with either a hardware device or
software application, it keeps generating six-digit numeric codes based on a time
synchronization one-time password algorithm. It appears for 30 seconds and keeps
changing. Enabling MFA increases a security layer. If the username and password fall into
an unauthorized person's hands, still the person cannot misuse it without an MFA token.
The MFA token keeps rotating the token and it's generated only through an synchronized
MFA device for that particular IAM user.

Steps for enabling a virtual MFA device for a user
The following steps describe how to enable MFA for a user:

Log in to the AWS console.1.
Go to the IAM dashboard.2.
Select Users from the left pane and click on a user as shown in the following3.
screenshot:

Figure 3.4: User selection for enabling virtual MFA

Identity and Access Management Chapter 3

[69]

Select the Security credentials tab as shown in the following screenshot:4.

Figure 3.5: Enabling MFA - Security credentials tab selection

Click on the edit button to edit Assigned MFA device as shown in the following5.
screenshot:

Figure 3.6: Enabling MFA - editing Assigned MFA device

Identity and Access Management Chapter 3

[70]

Select A virtual MFA device and click on the Next Step button:6.

Figure 3.7: Enabling MFA - selecting A virtual MFA device

From the subsequent screen, click on the here link as shown in Figure 3.8. It7.
provides a list of AWS MFA-compatible apps, supported for various mobile
platforms. If you have already installed the Virtual MFA Applications, you can
click on Next Step and proceed to step 9:

Figure 3.8: Enabling MFA - selecting a virtual MFA device

Identity and Access Management Chapter 3

[71]

You can download the Virtual MFA Applications from your respective device8.
application store. Supported applications for various platforms are indicated
in Figure 3.9. You can close this information window to go back to the previous
screen, as indicated in Figure 3.8, and click on Next Step:

Figure 3.9: Enabling MFA - Virtual MFA Applications

Determine whether the MFA app supports QR codes, and then do one of the9.
following:

Use your mobile app to scan the QR code. Depending on the
application that you use, you may have to choose the camera icon
or some similar option. Subsequently, you need to use the device
camera for scanning the code.
In the Manage MFA Device wizard, choose Show secret key for
manual configuration, and then type the secret configuration key
into your MFA application.

Identity and Access Management Chapter 3

[72]

When you are finished, the virtual MFA device starts generating one-time
passwords:

Figure 3.10: Enabling MFA - entering authentication codes

Identity and Access Management Chapter 3

[73]

As shown in Figure 3.10, you need to type the one-time password into the10.
Authentication Code 1 box. You can use the one-time password given in the
virtual MFA device. Before you can enter the second one-time password into the
Authentication Code 2 box, you need to wait for approximately 30 seconds. After
a wait period, the device generates another one-time password. You can use the
fresh one-time password and enter it into the Authentication Code 2 box.
Subsequently, you can choose Activate Virtual MFA.

Now your virtual MFA device is ready for use. When a user for whom the MFA token is
enabled tries to log in to the AWS console, AWS poses an MFA token challenge after
authenticating the user with a valid user ID and password.

SMS text message-based MFA
To enable SMS text message-based MFA, you need to configure an IAM user with the user's
phone number to receive SMS messages. When a user tries to log in by providing a valid
username and password, it asks for the six-digit numeric code sent from AWS to the user's
mobile number as an SMS. This MFA mechanism can be used only for IAM users and not
for the root user. Also, at present, SMS-based MFA can be used only for signing in to the
AWS Management Console. It cannot be used with API or CLI calls.

Creating an AWS IAM user using the AWS dashboard
The steps for creating an AWS IAM user using the AWS dashboard are as follows:

Log in to the AWS Management Console with the appropriate credentials. The1.
IAM user must have sufficient privileges to create IAM resources (that is, user,
group, policy, and so on). In the case of a fresh AWS account, you need to log in
with the root credentials. This will take the user to the AWS dashboard.
Select IAM under the Security, Identity & Compliance group from the AWS2.
dashboard. This will take the user to the IAM dashboard.

Identity and Access Management Chapter 3

[74]

Select Users and click Add user. This displays the following screen:3.

Figure 3.11: IAM - Add user screen

Identity and Access Management Chapter 3

[75]

Provide a meaningful and relevant User name to resemble a real-world entity.4.
This will help to easily identify the correct user when performing day-to-day
maintenance activity. A valid username can have only alphanumeric characters
or _ + = , . @ - symbols. It is also possible to add multiple users (max 10 users) at
the same time by clicking on the Add another user link given next to the User
name textbox, as shown in Figure 3.11.
After entering the username, you must select Access type. You need to select at5.
least one option. It is also possible to select both the options.
Usually, Programmatic access is preferred for authentication through an access
key and a secret key while using APIs, SDKs, and CLI. For individual users,
ideally, AWS Management Console access is selected. If you select
Programmatic access, you can proceed to step 7. If you select AWS Management
Console access, it displays more options in the same screen as shown in the
following screenshot:

Figure 3.12: Password configuration options while creating an IAM user

If you select AWS Management Console access type, it allows you to configure6.
Autogenerated password or Custom password for the user. Also, the IAM
administrator can force a user to reset the password on the next login by selecting
options for this as shown in the preceding screenshot. After selecting the required
options, select the Next: Permission button.

Identity and Access Management Chapter 3

[76]

You can now see a screen with three options to assign permissions to the user, as7.
shown in Figure 3.13. You can create a group and add the user to a new group, or
you can add the user to an existing group. It is recommended that you add a user
to any group for better user management and access control; however, it is not
mandatory. A user can be added to any group in the future without any
requirement:

Figure 3.13: IAM - Adding user permissions

The next step is to assign permissions to the newly created user. To assign8.
permissions to the user, you can either Copy permissions from existing user or
Attach existing policies directly as shown in Figure 3.13. By default, newly
created users do not have any privileges in the AWS platform, until and unless
the appropriate policy is attached to the user ID. Any permissions you grant to a
user can be modified at a later stage. After adding the user to an appropriate
group or policy, you can click on the Next: Review button.

Identity and Access Management Chapter 3

[77]

Verify the details when the final review page appears. If there is any ambiguity,9.
you can perform modifications by going to the previous pages. It is also possible
to modify the user's property after it is created. In worst-case scenarios, an
existing user can be deleted and recreated.
Finally, click on Create to create an IAM user.10.

Introduction to AWS CLI
Before you start using AWS CLI, it is essential to set up a CLI environment. To set up a CLI
environment, you need to install the AWS CLI utility based on your system's operating
system where you want to set up the CLI. For Windows, you can install it with the MSI
installer; for Unix/Mac, you can install it with a bundled installer or pip.

Installing AWS CLI
AWS CLI installation on Windows operating systems is very easy using a step-by-step
wizard with the MSI installer. This section describes how to install AWS CLI on Linux and
Mac. On Linux and Mac, AWS CLI can be installed using pip, a package manager for
Python. The minimum requirement to install AWS CLI is to have the pip package manager
and Python 2.6.5+ or Python 3.3+. Once the pip package manager is installed, AWS CLI can
be installed using the following command:

 $ pip install --upgrade --user awscli

Based on the OS, specific methods can be used to install the Python pip
package manager. In this example, all the commands are related to
RHEL/CentOS.

The functionality of the AWS CLI utility is periodically updated by AWS to support the
command line for recently added services and features. To update the installed AWS CLI,
the same command can be used:

 $ pip install --upgrade --user awscli

You can use the following command to uninstall AWS CLI:

 $ pip uninstall awscli

Identity and Access Management Chapter 3

[78]

To make sure AWS CLI is properly installed and to check the version, the following
command can be used:

 $ aws --version

It may display the following, or the appropriate version information installed on your
system:

 aws-cli/1.11.55 Python/2.7.12 Linux/4.4.41-36.55.amzn1.x86_64
botocore/1.5.18
 $ pip install --upgrade --user awscli

Getting a AWS user access key and secret key
We will now discuss the steps for getting a AWS user access key and secret key:

Log in to the AWS Management Console with the appropriate credentials. An1.
IAM user must have sufficient privileges to create IAM resources (that is, user,
group, policy, and so on).
Select IAM under the Security, Identity & Compliance group from the AWS2.
dashboard. It will take you to an IAM dashboard.
Select Users and select the intended user to generate an access key and secret key.3.
Go to the Security credentials tab.4.
Click Create access key to generate an access key and secret key pair.5.
You need to ensure that the keys are stored safely as AWS does not allow you to6.
download these keys again.
Finally, click Close.7.

Configuring AWS CLI
After installing AWS CLI and obtaining the access key and secret key, we need to configure
the CLI before we can start using it.

AWS CLI uses the local machine date and time as a signature while
making calls to AWS. It is important to make sure that the machine's date
and time are set correctly; otherwise, AWS rejects any CLI request.

Identity and Access Management Chapter 3

[79]

To configure the AWS CLI, the following command can be used:

$ aws configureAWS Access Key ID [None]: AKIAJ4B7SOIHQBQUXXXXAWS Secret
Access Key [None]: oSpG3je8kYS1XpMDRG8kpo1awLizvnv1GaNBXXXXDefault region
name [None]: us-east-2Default output format [None]: ENTER

It will ask for four inputs: Access Key ID, Secret Access Key, the Default region
name where it should request the command, and Default output format. The output
format can be JSON, table, or text format. If the output format is not defined, the default
output format will be JSON.

AWS CLI syntax
AWS CLI supports commands for almost all AWS services. All the commands should be
preceded with aws as described in the following syntax:

 aws <top level command> <subcommands> <parameters>

Top-level commands indicate the AWS service name, such as ec2, s3, iam, and so on, while
subcommands are AWS-service-specific.

Getting AWS CLI help
It is possible to get detailed help for any of the aws top- or sub-level commands just by
placing help at the end of the command, as shown in the following example:

 $ aws help
 $ aws iam help

Creating an IAM user using AWS CLI
The AWS CLI create-user subcommand with the iam top command can be used to create
a new IAM user. The following AWS CLI command shows how to get more details about
subcommands:

 $ aws iam create-user help

A new IAM user can be created using the following command. The essential parameter is -
-user-name:

 $ aws iam create-user --user-name Jack

Identity and Access Management Chapter 3

[80]

Groups
In an organization, people work in different departments (that is, sales, purchase, IT, and so
on). Usually, only members from the IT department need to access AWS resources. But it
depends on the nature of the organization and its organizational hierarchy. In each
department, there can be subdepartments (for example, in IT, there can be many branches,
such as development, testing, operations, quality, security, and network). Each
subdepartment may have several people working in it. An organizational hierarchical
structure looks something like the following:

Figure 3.14: Logical representations of organizational entities

It is easy to manage privileges for a few users individually, but it becomes increasingly
difficult to manage these users separately as the user base increases. Most of the time, when
users belong to the same department with same or similar roles and responsibilities, their
privileges requirement may also be the same. In such scenarios, it is recommended that you
divide the users into logical groups and assign privileges to a single group instead of
individual users. A similar concept is used in an IAM group.

In simple terms, an IAM group is a collection of IAM users. A group lets you add, change, or
remove permissions for multiple users altogether.

Assign privileges (that is, policies) to a group rather than handling privileges at an
individual user level. Some users who are part of a group may require extra privileges to
perform advanced tasks. For such users, separate policies can be attached at user level.
When multiple policies are attached to any user or a group, such users or group get a union
of all the permissions from the attached policies. User and group management of a small
company is illustrated in the following figure:

Identity and Access Management Chapter 3

[81]

Figure 3.15: Logical representation of groups and users in a small enterprise

Source: IAM manual

As we have seen so far, groups are primarily used to assign specific permissions to a set of
users. When any user is added to a group, the user automatically inherits all the
permissions granted to that group.

Whenever a new employee joins an organization, the process of onboarding and granting
permissions to that employee becomes very easy if the organization follows the concept of
user groups. Just by creating an IAM user and adding that user as a member of a group, the
user automatically inherits all the privileges assigned to that IAM group. When the same
employee either changes department within the organization or leaves the organization,
managing the employee's privileges becomes easier just by removing the user from the
respective group.

Identity and Access Management Chapter 3

[82]

The following are the important characteristics of an IAM group:

Any group can have many users, and a user can be a member of multiple groups.
Groups can't be nested (that is, groups within groups); they can contain only
users, not other groups.
By default, users are not part of any group. As and when required, you need to
explicitly add them to required groups.
There is a soft limit of a maximum of 100 IAM groups and 5,000 users. If more
users are required, it is advisable to use the identity federation service to create
temporary security credentials.

Creating a new IAM group
The steps for creating IAM groups are discussed as follows:

Log in to the AWS Management Console with the appropriate credentials. An1.
IAM user must have sufficient privileges to create IAM resources (that is, user,
group, policy, and so on).
Select IAM under the Security, Identity & Compliance group from the AWS2.
dashboard. This will take you to the IAM dashboard.
Select Groups and click Create New Group.3.
Provide a meaningful group name. Group names can have a maximum of 1284.
characters. Click Next Step.
Attach the required IAM policies to the IAM group. When policies attached to a5.
group are modified, all the existing and future members of the group inherit the
updated privileges. It is always best practice to grant minimum privileges to a
user or a group.
At this stage, review group creation. If everything is fine, click on Create Group.6.

Creating an IAM group using CLI
A new IAM group can be created using the following command; the essential parameter is
--group-name:

 $ aws iam create-group --group-name Developers

Identity and Access Management Chapter 3

[83]

Adding existing users to a group
The following steps describe how to add an existing user to one or more groups:

Log in to the AWS Management Console with the appropriate credentials. An1.
IAM user must have sufficient privileges to create IAM resources (that is, user,
group, policy, and so on).
Select IAM under the Security, Identity & Compliance group from the AWS2.
dashboard. This will take the user to the IAM dashboard.
Select Existing user from Users.3.
Select the Groups tab.4.
Click Add user to groups.5.
A list of existing groups appears. Select the appropriate group. It is possible to6.
select one or more groups. One user can be a member of one or more groups and
inherits all the permissions from the respective groups.
Finally, click on Add to Groups.7.

IAM role
An IAM role is an AWS identity. Every IAM role has its own permission policy that defines
what that role can do and what it cannot do. It is like an IAM user without a password or an
access key and a secret key. An IAM policy can be associated with an IAM user or group,
whereas an IAM role cannot be associated with a user or a group. It can be assumed by a
user, application, or service to delegate access to an AWS resource within the same or
another account. It dynamically generates a temporary access key and secret key, which can
be assumed by an entity for authentication. Once a role is assumed, an entity can make API
calls to AWS services permitted to the role assumed by the entity.

For example, a role can be assigned to an EC2 instance with permission to access
DynamoDB and RDS databases. An application hosted on the EC2 can assume the role and
make API calls to access DynamoDB or databases on RDS.

Similarly, if you want to allow your web or mobile application to access AWS resources, but
you don't want to hardcode an access key and secret key in the application code, an IAM
role can come to the rescue. IAM roles can also be used to provide federated access to AWS
services using Microsoft Active Directory (AD), LDAP, or similar identity providers. In
subsequent sections, we will get into the details of these aspects.

Identity and Access Management Chapter 3

[84]

In a nutshell, AWS resource permissions in the form of IAM policies are attached to the
IAM roles rather than being attached to IAM users or groups. IAM roles can be assumed by
the following:

An IAM user in the same AWS account
An IAM user in a different AWS account
AWS web services (for example, EC2)
External user authentication software that uses an external identity provider
(IdP), compatible with Security Assertion Markup Language (SAML) 2.0 or
OpenID Connect (OIDC), or a custom identity broker

Let's start by understanding some of the important terminologies with respect to IAM roles.
These terminologies are as follows:

Delegation
Federation
Policy
Principal
Cross-account access

Each of these concepts is explained individually in the subsequent passage.

Delegation: Delegation is a way to extend an entity's permission on AWS resources to other
users or applications, allowing them to perform certain operations on the resources. It
involves creating a trust between the account where the AWS resources are hosted and the
account that contains the user that needs to access these resources.

The source account where the AWS resources are available is called a trusting account and
the account from where the user wants to access those source resources is called a trusted
account.

Trusting (source) and trusted (destination) accounts can be the following:

The same AWS account
Two different accounts managed by the same organization
Two different accounts managed by different organizations

Identity and Access Management Chapter 3

[85]

To delegate permission, you need to attach two policies to the IAM role. One policy defines
the permissions to be given and another is a trust policy that defines trusted accounts that
are allowed to grant its user permission to assume the role.

Federation: Identity federation is a mechanism through which applications can use external
IdPs for authenticating users rather than writing custom sign-in code for authenticating the
users. These external IdPs include Amazon, Facebook, Google, or any IdP that is compatible
with OIDC, MS AD, or LDAP and that supports SAML 2.0 to configure token-based
authentication mechanisms between external IdPs and AWS-hosted applications. Web
identity federation is explained in more detail in a subsequent section.

Policy: A policy is a JSON-formatted document written in line with IAM policy notation. It
defines the permissions to be granted to an IAM role. Policies can also be written to attach it
to IAM users and groups.

Principal: This is an element that is generally used in a policy to denote a user (IAM user,
federated user, or assumed role user), AWS account, AWS service, or other principal entity
that is allowed or denied access to a resource. Specified users are allowed or denied access
to perform actions on AWS resources.

Cross-account access: When AWS resources existing in one account are being accessed from
another account based on a trust relationship, it is called cross-account access. IAM roles are
the primary way to grant cross-account access.

As we have gone through the various elements of IAM roles, let's understand how to create
a role.

Creating roles for an AWS service
To create a role for an AWS service, perform the following steps:

Log in to the AWS Management Console with the appropriate credentials. An1.
IAM user must have sufficient privileges to create IAM resources (that is, user,
group, policy, and so on).
Select IAM under the Security, Identity & Compliance group from the AWS2.
dashboard. This will take the user to the IAM dashboard.
Select Roles from the IAM dashboard.3.

Identity and Access Management Chapter 3

[86]

Select Create New Role as shown in the following screenshot:4.

Figure 3.16: IAM - Create New Role

Give a meaningful role name with a maximum of 64 characters, as shown in the5.
following screenshot:

Figure 3.17: IAM - Role Name

Identity and Access Management Chapter 3

[87]

Select role type as AWS Service Roles as shown in Figure 3.18:6.

AWS Service Roles are assigned to AWS resources such as EC2,
RDS, Redshift, and so on. This grants them privileges to perform
various operations on required AWS services based on permissions
granted on the role.
Role for Cross-Account Access is used for establishing a trust
relationship between multiple AWS accounts.
Role for Identity Provider Access is used by external IdPs for
federated authentication.

Subsequent steps appear based on the selection in the previous step. Since we are7.
here exploring the role for AWS service (EC2), select AWS Service Roles and
click on Select against Amazon EC2 as follows:

Figure 3.18: IAM role - Select Role Type

Identity and Access Management Chapter 3

[88]

Attach Policy, as per the permissions required by the application hosted on EC2.8.
The policy may contain permissions for accessing S3 bucket, RDS, DynamoDB
table, or any other AWS services as per the application needs. Policies can be
selected from the screen shown in the following screenshot:

Figure 3.19: Create IAM role - Attach Policy

Finally Review and click on Create Role as shown in the following screenshot.9.
This is the concluding step in creating an IAM role for an AWS service. You can
assign this role to an EC2 instance while launching a new instance:

Identity and Access Management Chapter 3

[89]

Figure 3.20: Create IAM role - Review

Creating IAM roles using AWS CLI
A new IAM role can be created using the following command; the essential parameters are
--role-name and --assume-role-policy-document, which define a JSON-documented
policy:

$ aws iam create-role --role-name Test-Role --assume-role-policy-document
file://Test-Role-Trust-Policy.json

Policy
A policy is a document that formally states one or more permissions. Basically, policies are
written to explicitly allow or deny permissions to access one or more AWS resources.
Policies can be associated with one or more IAM users, groups, roles, or resources, based on
their type. Broadly, IAM policies can be classified as follows:

Managed policies:
AWS-managed policies
Customer-managed policies

Inline policies
Resource-based policies

Identity and Access Management Chapter 3

[90]

Managed policies
Built-in policies that are managed by AWS or policies that are created and managed by
customers are called managed policies. These policies can be attached to multiple users,
groups, and roles. Managed policies cannot be attached to resources. Managed policies are
further classified as follows:

AWS-managed policies: As the name suggests, these are built-in policies that are
created and managed by AWS. They are also updated from time to time and
updates are automatically applied to the attached IAM principal entities.
Customer-managed policies: Policies that are created and managed by customers
in their AWS account are called customer-managed policies. These policies can be
updated by customers as and when required. Effects of such changes are applied
immediately to the principal entities to which the policies are attached.

The main difference between these two policy types is that AWS-managed policies are
generic while customer-managed policies are precise in line with actual permission
requirements. The similarity between AWS-managed and customer-managed policies is
that an amendment to the policy doesn't overwrite it; IAM creates a new version of the
managed policy every time it is updated. A managed policy can have up to five versions.
Beyond that, it is required to delete one or more of the existing versions.

Inline policies
Inline policies are also customer-managed policies. But these policies have a one-to-one
relationship between policies and principal resources. These policies are created and
managed to be directly attached only to a single user, group, or role. Such policies are
useful to make sure that permissions in a policy are precisely granted as per the
organizational requirement. Such policies are also automatically deleted when an
underlying resource is deleted using the AWS Management Console. In contrast to
customer-managed policies, changes are immediately applied to principal resources where
policies are attached.

Resource-based policies
Resource-based policies are also an inline policy type as they are written inline for
attachment to a particular resource. Not all AWS services support resource-based policies.
At present, only S3 buckets, SNS topics, Amazon Glacier vaults, AWS Opsworks stacks,
AWS Lambda functions, and SQS queue support resource-based policies.

Identity and Access Management Chapter 3

[91]

Now that we understand the different types of policy, let's find out how to write a policy.
Every policy is JSON-formatted and carries at least one statement. Usually, a policy consists
of multiple statements to grant permission on different sets of resources. The following is an
example of a basic customer-managed policy:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource":
 "arn:aws:s3:::example_bucket"
 }
}

Amazon Resource Name (ARN) is a unique identifier for each AWS
resource. It is used in IAM policies, API calls, and wherever it's required to
identify AWS resources unambiguously.

An basic example of ARN is as follows:

arn:partition:service:region:account-id:resource
arn:partition:service:region:account-id:resourcetype/resource
arn:partition:service:region:account-id:resourcetype:resource

Here, the following terms are used:

partition: This specifies which AWS partition the AWS resource belongs to.
Various AWS partitions are as follows:

aws: public AWS partition
aws-cn: AWS China
aws-us-gov: AWS GovCloud

service: Specified AWS service name (that is, EC2, S3, IAM, and so on)
region: Specifies the AWS region where the resource resides. As some AWS
services are global, such as IAM, the ARN for such resources doesn't have a
region.
account ID: Specifies the 12-digit AWS account number.
resource, resourcetype:resource , or resourcetype/resource: This part
of ARN varies from service to service, as some services allow paths for resource
names(that is, slash (/) or colon (:).

Identity and Access Management Chapter 3

[92]

Examples of some ARNs are as follows:

ARN for EC2 resource:

 arn:aws:ec2:us-east-1:123456789012:dedicated-host/h-12345678

ARN for IAM role:

arn:aws:iam::123456789012:role/application_abc/component_xyz/S3Acce
ss

The preceding customer-managed policy allows us to perform any possible operations on
the S3 example_bucket. By attaching this policy to the IAM entity (user, group, or role), it
gets permission to read, write, delete, or perform any possible operations on the specified
S3 bucket. Various elements of IAM policy are explained as follows:

Version: This element specifies the IAM policy language version.

The latest and current version is 2012-10-17. It should be used for all the
policies (that is, managed or resource-based policies). For inline policies,
the version element can be 2008-10-17, but it is highly recommended to
keep 2012-10-17.

Effect: Effect element either Allows or Denies actions on the specified resources.
It defines whether the list of actions specified in Action elements against the
resources mentioned in Resource elements are allowed or denied. By default,
every service and resource is denied access. Usually, policies are written to allow
resource access..
Actions: This defines a list of actions. Each AWS service has got own set of
actions. As per the policy written for the resource, this list of actions varies.
Resources: This section specifies a list of resources on which the preceding
specified list of actions is allowed.

Identity and Access Management Chapter 3

[93]

The major difference between a managed policy and a resource-based
policy is a resource-based policy specifies who has access to the resource
(principal) and list of permitted actions, whereas in a managed policy, only a list
of actions is specified, not the principal entity. An IAM resource-based policy
can also be generated with the help of the AWS policy generator. The URL
for the AWS policy generator is https:/ / awspolicygen. s3. amazonaws.
com/policygen. html.

Example of a resource-based policy
The following example describes a resource-based policy. The S3 bucket policy in account A
might look like the following policy. In this example, account A's S3 bucket is named
mybucket, and account B's account number is 111122223333. It does not specify any
individual users or groups in account B, only the account itself:

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "AccountBAccess1",
 "Effect": "Allow",
 "Principal": {"AWS": "111122223333"},
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::mybucket",
 "arn:aws:s3:::mybucket/*"
]
 }
}

To implement this policy, account B uses IAM to attach it to the appropriate user (or group)
in account B:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:List*",
 "Resource": [
 "arn:aws:s3:::mybucket",
 "arn:aws:s3:::mybucket/*"
]
 }
}

https://awspolicygen.s3.amazonaws.com/policygen.html
https://awspolicygen.s3.amazonaws.com/policygen.html
https://awspolicygen.s3.amazonaws.com/policygen.html
https://awspolicygen.s3.amazonaws.com/policygen.html
https://awspolicygen.s3.amazonaws.com/policygen.html
https://awspolicygen.s3.amazonaws.com/policygen.html
https://awspolicygen.s3.amazonaws.com/policygen.html
https://awspolicygen.s3.amazonaws.com/policygen.html
https://awspolicygen.s3.amazonaws.com/policygen.html
https://awspolicygen.s3.amazonaws.com/policygen.html
https://awspolicygen.s3.amazonaws.com/policygen.html
https://awspolicygen.s3.amazonaws.com/policygen.html
https://awspolicygen.s3.amazonaws.com/policygen.html
https://awspolicygen.s3.amazonaws.com/policygen.html

Identity and Access Management Chapter 3

[94]

IAM policy simulator
Writing IAM policy can be a lengthy and error-prone process. There might be a few human
or logical errors while writing a policy. It can be a very time-consuming and tedious process
to find and rectify such policy errors. An IAM policy simulator provides a platform to
simulate and test policies before using them in an AWS account. Using the IAM policy
simulator, an existing AWS or custom managed policy can be copied and modified as per
requirements. It makes writing new policies easier. The IAM policy simulator uses the same
engine as used in an AWS account to evaluate policies. The only difference is the IAM
policy simulator is safe to test as it doesn't make actual AWS service requests, it just
simulates them. The policy simulator can be accessed from the URL https:/ /policysim.
aws.amazon.com.

Active Directory Federation Service (ADFS)
As you have seen in this chapter so far, you can access AWS resources either using an IAM
user ID and password or using an access key and secret key combination. Let us consider a
scenario in which a user uses IAM credentials to access AWS resources and an AD user ID
and password to access resources hosted within the on-premises environment. In such a
scenario, in an organization where there are a number of users, it becomes increasingly
difficult to maintain credentials in multiple systems. Users and operations teams not only
have to maintain user details on their organization's identity provider, but also on IAM. To
cater to such scenarios, IAM also supports identity federation for delegated access to the
AWS Management Console or AWS APIs. With identity federation, external identities such
as federated users are granted secure access to resources in your AWS account without
having to create IAM users. Active Directory Federation is one such method through which
you can access your AWS resources with your organization's AD services.

Let's take a look at a couple of scenarios demonstrating what you can do with ADFS with
AWS:

You can access the AWS Management Console by authenticating against your
organization's AD instead of using your IAM credentials. Once authenticated
against the AD, AWS generates temporary credentials for the user and allows
access on the AWS console.
You can access a web application hosted on AWS by authenticating against your
organization's AD. Once authenticated against AD, it provides single sign-on
(SSO), which provides users with seamless access to applications without re-
prompting for credentials after initial authentication.

https://policysim.aws.amazon.com
https://policysim.aws.amazon.com
https://policysim.aws.amazon.com
https://policysim.aws.amazon.com
https://policysim.aws.amazon.com
https://policysim.aws.amazon.com
https://policysim.aws.amazon.com
https://policysim.aws.amazon.com
https://policysim.aws.amazon.com
https://policysim.aws.amazon.com

Identity and Access Management Chapter 3

[95]

Such a setup that can authenticate as an identity provider and communicate with AWS is
achieved using Windows AD, ADFS, and SAML. Let's understand these terms before
getting into configuration details for such a setup:

Windows AD is a database that keeps track of all the user accounts and
passwords in your organization
ADFS is part of Windows AD services in the form of a web service that provides
a token-based SSO service for accessing systems and applications located across
organizational boundaries
SAML is an XML-based, open-standard data format for exchanging
authentication and authorization data between an IdP and a service provider

Integration between ADFS and the AWS console
Now we know the terminology for enabling ADFS with AWS, let's take a look at how ADFS
authentication works to access the AWS console:

Figure 3.21: Accessing the AWS console

Identity and Access Management Chapter 3

[96]

As indicated in Figure 3.21, accessing the AWS console using ADFS is a five-step process.
These steps are described here:

A user initiates a request to an ADFS web URL in an internet browser. This URL1.
may look something like
https://HostName/adfs/ls/IdpInitiatedSignOn.aspx. When you enable
an ADFS role on a Windows instance, it creates a virtual directory named adfs in
your default site. The sign-on page is automatically created under the adfs
virtual directory. This page provides an interface to enter a user ID and password
to authenticate against the site.
When a user submits the credentials, ADFS authenticates the user against2.
Windows AD.
In the third step, the user browser receives a SAML assertion in the form of an3.
authentication response from ADFS.
A user browser posts the SAML assertion to the AWS sign-in endpoint for SAML4.
(https:/ / signin. aws. amazon. com/saml). Behind the scenes, sign-in uses the
AssumeRoleWithSAML API to request temporary security credentials and then
constructs a sign-in URL for the AWS Management Console.
A user browser receives the sign-in URL and is redirected to the console.5.

The preceding details are sufficient to understand ADFS as far as the scope of the exam is
concerned. If you need more details about setting up and configuring ADFS with an AWS
console, you can refer to the AWS URL
https://aws.amazon.com/blogs/security/enabling-federation-to-aws-using-windows-

active-directory-adfs-and-saml-2-0/.

Web identity federation
When you create a web application or a mobile application, creating a user repository and
authenticating users against the repository is one of the core tasks of the application
development life cycle.

If you are creating a mobile application and that mobile application needs access to AWS
resources such as S3 and DynamoDB, how would you enable the application to access these
AWS resources? One way is to use an access key and a secret key in the application that
provides access to S3 and DynamoDB. However, the application would work with such an
approach, but it is not recommended to embed or distribute long-term AWS credentials to
an app that a user downloads to a device. Even if these credentials are stored in an
encrypted format on the device, it would pose a security risk.

https://signin.aws.amazon.com/saml)
https://signin.aws.amazon.com/saml)
https://signin.aws.amazon.com/saml)
https://signin.aws.amazon.com/saml)
https://signin.aws.amazon.com/saml)
https://signin.aws.amazon.com/saml)
https://signin.aws.amazon.com/saml)
https://signin.aws.amazon.com/saml)
https://signin.aws.amazon.com/saml)
https://signin.aws.amazon.com/saml)
https://signin.aws.amazon.com/saml)
https://signin.aws.amazon.com/saml)
https://signin.aws.amazon.com/saml)
https://aws.amazon.com/blogs/security/enabling-federation-to-aws-using-windows-active-directory-adfs-and-saml-2-0/
https://aws.amazon.com/blogs/security/enabling-federation-to-aws-using-windows-active-directory-adfs-and-saml-2-0/

Identity and Access Management Chapter 3

[97]

In such a scenario, AWS recommends using web identity federation. Using web identity
federation, applications can request temporary security credentials dynamically when
required. The credentials are generated based on an AWS role that carries permissions to
perform only required operations on specific AWS resources as permitted in the role.

Web identity federation enables you to use many well-known identity providers such as
Amazon, Facebook, Google, LinkedIn, or any other OIDC-compatible IdP for authenticating
users. You don't need to create your own custom sign-in code or manage your own user
identities. The application can authenticate a user against such an IdP. If a user is
authenticated, the application receives an authentication token. This token is exchanged in
AWS for temporary security credentials. Since these temporary security credentials are
based on an AWS role, the token carries permission only to perform specific tasks
mentioned in the role permissions. Using web identity federation, you don't have to embed
or distribute credentials with applications that keeps your AWS account secure.

The following Figure 3.22 shows a sample workflow using web identity federation:

Figure 3.22: Workflow using web identity federation

As shown in the preceding figure, when a user loads the application, the1.
application prompts the user for authentication using the login with Amazon
SDK. The app authenticates the user and receives a token from Amazon.

Identity and Access Management Chapter 3

[98]

Next, the user needs to be authorized to access resources in your AWS account.2.
The app makes an unsigned AssumeRoleWithWebIdentity request to STS,
passing the token from the previous step. Security Token Service (STS) verifies
the authenticity of the token; if the token is valid, STS returns a set of temporary
security credentials to the app. By default, the credentials can be used for 1 hour.
Finally, the app uses the temporary security credentials to make signed requests3.
for resources in your S3 bucket. Because the role access policy used variables that
reference the app ID and the user ID, the temporary security credentials are
scoped to that end user and will prevent them from accessing objects owned by
other users.

AWS recommends using Amazon Cognito with web identity federation instead of writing
custom code for authentication. Amazon Cognito lets you easily add user sign-up and sign-
in to your mobile and web apps. With Amazon Cognito, you also have the option to
authenticate users through social IdPs such as Facebook, Twitter, or Amazon, with SAML
identity solutions, or by using your own identity system.

The following figure shows a sample workflow using web identity federation with Cognito:

Figure 3.23: Workflow using web identity federation with Cognito

Identity and Access Management Chapter 3

[99]

As you can see in the preceding figure, an end user starts your app on a mobile1.
device. The application prompts the user to sign in.
When a user enters the credentials, and submits the authentication request, the2.
application redirects it to a Login with Amazon, third-party IdP for verifying the
credentials. If the user is authenticated, it receives an authentication token.
The application forwards the authentication token to Cognito using Cognito APIs3.
and exchanges the authentication token for a Cognito token.
The application passes the Cognito token to AWS STS to request temporary4.
security credentials. AWS STS provides temporary security credentials.
The temporary security credentials can be used by the app to access any AWS5.
resources required by the app to operate. The role associated with the temporary
security credentials and its assigned policies determines what can be accessed.

STS
STS is a web service that enables an application to dynamically generate temporary security
credentials with restricted permissions based on an IAM role. These temporary credentials
can be generated either for an IAM user or for a federated user as we have seen in the
previous section for web identity federation.

Temporary security credentials generated using AWS STS for a trusted user can control
access to your AWS resources. Temporary security credentials and the long-term access key
credentials used by IAM users work in almost the same way except for a few differences:

Temporary security credentials, as the name suggests, are for short-term use only.
These credentials expire after a specific time.
Temporary security credentials can be configured to expire within a few minutes
to several hours.
After the credentials expire, AWS does not recognize them. Any kind of access
from API requests made with expired credentials is not allowed.
Temporary security credentials are not stored with the user, but are generated
dynamically.
They are provided to the user or application based on the request.
The application or user should request new credentials before they expire.
When (or even before) the temporary security credentials expire, the user can
request new credentials, as long as the user requesting them still has permission
to do so.

Identity and Access Management Chapter 3

[100]

These differences lead to the following advantages from using temporary credentials:

You do not have to distribute or embed long-term AWS security credentials with
an application.
You can provide access to your AWS resources to users without having to define
an AWS identity for them. Temporary credentials are the basis for roles and
identity federation.
Temporary security credentials have a limited lifetime, so you do not have to
rotate them or explicitly revoke them when they're no longer needed. After
temporary security credentials expire, they cannot be reused. You can specify
how long the credentials are valid, up to a maximum limit.

AWS STS and AWS regions
Temporary security credentials are generated by AWS STS. By default, AWS STS is a global
service with a single endpoint at https:/ / sts.amazonaws. com. However, you can also
choose to make AWS STS API calls to endpoints in any other supported region. This can
reduce latency (server lag) by sending the requests to servers in a region that is
geographically closer to you. No matter which region your credentials come from, they
work globally.

Using temporary credentials in Amazon EC2
instances
If you want to run AWS CLI commands or code inside an EC2 instance, the recommended
way to get credentials is to use roles for Amazon EC2. You create an IAM role that specifies
the permissions that you want to grant to applications that run on EC2 instances. When you
launch the instance, you associate the role with the instance.

Applications, AWS CLI, and tools for Windows PowerShell commands that run on the
instance can then get automatic temporary security credentials from the instance metadata.
You do not have to explicitly get the temporary security credentials—the AWS SDKs, AWS
CLI, and tools for Windows PowerShell automatically get the credentials from the EC2
instance metadata service and use them. The temporary credentials have the permissions
that you define for the role that is associated with the instance.

https://sts.amazonaws.com
https://sts.amazonaws.com
https://sts.amazonaws.com
https://sts.amazonaws.com
https://sts.amazonaws.com
https://sts.amazonaws.com
https://sts.amazonaws.com
https://sts.amazonaws.com
https://sts.amazonaws.com

Identity and Access Management Chapter 3

[101]

Using temporary security credentials with the
AWS SDKs
To use temporary security credentials in code, you programmatically call an AWS STS API
such as AssumeRole, extract the resulting credentials and session token, and then use those
values as credentials for subsequent calls to AWS. The following example shows pseudo
code for how to use temporary security credentials if you're using an AWS SDK:

assumeRoleResult = AssumeRole(role-arn);
tempCredentials = new SessionAWSCredentials(
 assumeRoleResult.AccessKeyId,
 assumeRoleResult.SecretAccessKey,
 assumeRoleResult.SessionToken);
s3Request = CreateAmazonS3Client(tempCredentials);

IAM best practices
The security of your AWS resources can be maintained by following these best practices:

Never share credentials (that is, the password or access key and secret key).
Specifically, sharing root user credentials can pose a very serious security threat
as they carry the highest level of access in the relevant AWS account.
Never use the root account for day-to-day tasks. Create individual IAM users for
designated roles and responsibilities.
Until and unless it is essential, do not create an access key and a secret key. Also,
keep rotating the password and keys periodically.
It is not best practice to hardcode the access key and secret key in any program or
application.
Keep your access key and secret key secured so that they do not fall into the
hands of any unauthorized person. A secret key is only generated once paired
with a relevant access key. If a secret key is lost, then there is no mechanism in
AWS to retrieve it. You need to discard the existing key and regenerate it. When a
secret key is lost and discarded, the user must update the new key pair in the
application, API, SDKs, CLI, and wherever the old key pair is used. Updating the
new key pair ensures the smooth functioning of relevant applications, programs,
or services.

Identity and Access Management Chapter 3

[102]

Periodically remove unused IAM accounts and access keys and secret keys.
Implement a reasonably strong password policy to avoid compromising user
passwords. Password policy can be configured from Account settings in the IAM
dashboard.
Implement MFA for all users and possible SDKs.
Always grant least privilege to the users. Only grant required and essential
permissions to perform their day-to-day tasks. While inspecting privileges for the
user, group, role, and policy, accessing the Advisor tab from the IAM dashboard
can help.
To grant permissions, use groups rather than applying the permissions at user
level. Groups make it easier to manage permissions. If a user requires extra
permissions, a separate policy can be attached to a specific IAM user based on
need.
Periodically audit existing users, groups, policies, and roles. Remove unwanted
privileges from policies. Remove unused users, groups, and roles.
To provide credentials to an application running on EC2, create an IAM role and
attach it to an EC2 instance. Roles don't have a username and password or an
access key and secret key. Temporary credentials are dynamically generated for
roles and such temporary credentials are automatically rotated.
Apply policy conditions for an extra layer of security. For example, conditions
can be specified for an allowed range of IP addresses.
Monitor AWS account activity (that is, creating, deleting, accessing, and
modifying resources) using various AWS services such as Amazon CloudTrail,
Amazon Cloudwatch, and AWS Config.
It is suggested that you customize the IAM user sign-in link with an easy-to-
remember name as it is used by AWS IAM users to log in to AWS. The sign-in
link contains a 12-digit account number in the URL, which may be difficult for a
user to remember. It can be customized with a meaningful and unique name.

Identity and Access Management Chapter 3

[103]

Exam tips
The following are some exam tips for AWS IAM:

The AWS IAM service is a global service. This means it is not region-specific.
IAM entities such as users, groups, roles, and policies are the same across all
regions. Once they are created, they are same for all AWS regions.
By default, newly created IAM users do not have any privileges to perform any
tasks on AWS accounts. Users must be granted permission to access any service
or perform any operation in AWS. User permissions are granted by either adding
the user to a group with required permissions or by directly attaching an access
policy to a user.
IAM users can be a member of any IAM group, but an IAM group cannot be a
member of any other IAM group. In other words, an IAM group cannot be
nested.
One user can be part of multiple policies and multiple policies can be attached to
a single user.
An IAM user password is used for an AWS dashboard login and an access key
and secret key pair are used for API, CLI, and SDK authentication. However, vice
versa is not possible.
By default, for any IAM users, groups, or roles, permission to access any AWS
resource is denied, until and unless explicitly allowed in IAM policies. When
multiple IAM policies are attached to an IAM entity, explicitly denied access to
any AWS resource overrides explicitly allowed. For example, if a user is granted
permission to access an S3 bucket in one policy and the same user is explicitly
denied permission to access that S3 bucket, that user cannot access the specified
S3 bucket as explicit deny overrides explicit allow permissions.
Configuring or reconfiguring password policy does not impact existing user
passwords. Password policies come into effect only when a new user is created or
when an existing user updates the password.

Identity and Access Management Chapter 3

[104]

It is important to remember that IAM policies are JSON documents, written as
per the IAM policy standards. By default, access to AWS resources is denied, so
usually IAM policies are written to grant permission to any user, group, or
service.
It is very important to understand policy structure (that is, effect, action, and
resource), and how to write a policy and interpret it.
Understand IAM elements such as users, groups, and roles. As we know, users
are end users, groups are a bunch of logically similar users, and roles are IAM
entities that can be assumed by AWS resources and federated users. Roles can
also be assigned to application or program resources such as EC2 or Lambda. A
role attached to an AWS resource has it's own policy. The permission associated
with the policy defines what AWS resources can be accessed with the associated
role.
IAM roles don't have permanent credentials. As and when roles are assumed, a
temporary access key and secret key are dynamically generated and
automatically rotated.
IAM roles can be of three types:

IAM roles for AWS resources (EC2 and Lambda)
IAM roles for cross-account access (granting permissions to IAM
users across AWS accounts)
IAM roles for federated identity

Before running AWS CLI, it is important to install and configure a default access
key, secret key, region, and output format. The default output format is JSON.

4
Virtual Private Clouds

Before we understand what Virtual Private Clouds (VPCs) are, let us understand what a
computer network is. In very simple terms, when two or more computers are
interconnected for sharing resources and communicating between each other, it is called a
computer network.

When we talk about interconnected computers in an organization, there are some distinct
requirements on usage of these computers:

Some computers are restricted to be accessed from within the organization
Some computers are required to be accessed from within the organization as well
as from outside of it

Based on the usage of the resources in a network, the network is subdivided into a number
of segments. For example, the resources that are required to be accessed from within the
organization are kept in a private segment of the network.

Similarly, the resources that are required to be accessed from within the organization as
well as from outside of it are kept in a public segment of the network.

The segment that logically isolates the resources in a network is called a subnet. In an
organization, a network may be subdivided into multiple subnets based on the needs of the
organization. In other words, there may be more than one public or private subnet in a
network.

Resources in a network need to communicate with one another, hence they need to have a
unique identity through which these resources can be distinctly identified and
communication can be initiated between them. Such an identity for resources in a network
is called an IP address.

Virtual Private Clouds Chapter 4

[106]

So far, we have understood networks in simple terms. Let us revisit our understanding
about networks in a few simple points:

When two or more computers are interconnected for communication between
each other, it is called a network
Resources in a network need to communicate with each other based on
requirements
Resources in a network are subdivided into logical segments called subnets
Resources in a private subnet are accessible within the network or organization
Resources in a public subnet are accessible from outside the organization as well
We have also seen that resources in a network are logically isolated in subnets

AWS VPCs
As we now have a basic understanding of what a computer network is, let us understand
what an AWS VPC is. A VPC is similar to a computer network that we can create in an on-
premises data center. In the same way as we create dedicated and private networks within
an organization, where computers in a network share network devices such as routers,
switches, and so on, we can create a VPC when we create a new account in AWS. A VPC
makes it possible to shape similar network infrastructure as we can shape it in our own data
center. The difference is, it is a virtual environment within a public cloud wherein the
virtual network is logically isolated from other similar networks within the public cloud.

This chapter covers the following VPC components. Each of these components is described
in subsequent pages of the chapter:

VPC networking components
Elastic Network Interface (ENI)
Route table
IGW
Egress-only IGW
NAT
DHCP option sets
DNS
VPC peering
VPC endpoint
ClassicLink

Virtual Private Clouds Chapter 4

[107]

Unlike a traditional data center, a VPC can be created on demand without buying any
hardware. You just need to create an AWS account and you are ready to get started.

Let us understand VPCs with some visualization. As we have seen in the previous chapters,
AWS has multiple regions. At the time of writing, there are 16 AWS regions; out of them, 3
random regions are illustrated in the following figure for visualizing the regions. We will
see in subsequent figure how a VPC looks within a region:

Figure 4.1: AWS account with regions

Every AWS region has two or more AZs. In Figure 4.2, we have considered one region to
visualize multiple AZs and how a VPC spans a region and multiple AZs.

Virtual Private Clouds Chapter 4

[108]

Each AWS account can access multiple regions and each region has two or more AZs. A
VPC can be created in any region and can span multiple AZs. A VPC's scope is limited to a
single region; however, it can span multiple AZs. To explain this concept, Figure 4.2
represents an AWS account, one region out of multiple AWS regions, a default VPC with
Classless Inter-Domain Routing (CIDR) (172.31.0.0/16), and two AZs:

Figure 4.2: VPC visualization in a region with multiple AZs

Within one AWS account, several networks may exist (such as 10.0.0.0/16 and
10.1.0.0/16). For example, an organization can work on several different projects at the
same time and for each of the projects, they can create individual network VPCs to isolate
traffic and AWS resources. Each VPC spans the region in which it is created. An
organization may also create multiple VPCs for each of the regions where their offices are
located.

Virtual Private Clouds Chapter 4

[109]

When you create a VPC, you need to specify an IP range for that VPC. This IP range is
called CIDR, for example, 10.0.0.0/16. CIDR is a set of IP standards that is used to create
a unique identity for a network. It defines a set of IPs that can be allocated to resources
within a network. You can look at RFC 4632 standards at the URL https:/ /tools. ietf.
org/html/rfc4632 for more information on CIDR.

Now, let us understand what a subnet inside a network is with respect to a VPC.

Subnets
Subnet is short for subnetwork. As we saw at the beginning of this chapter, a network is
subdivided into multiple logical parts for controlling access to individual logical subparts of
the network. When we create a subnet, we need to specify a unique CIDR block for the
subnet. This CIDR block has to be a subset of the VPC CIDR block. Each subnet must reside
entirely within a single AZ as a subnet cannot span multiple AZs.

Subnets are categorized as public and private subnets based on their security profile, or in
other words, based on their route table. We will now discuss different types of subnets.

Private subnets
A private subnet is a subset of a network wherein resources within a subnet are isolated and
restricted for access from within the VPC. Any incoming traffic from the internet cannot
directly access the resources within a private subnet. Similarly, outgoing traffic from a
private subnet cannot directly access the internet. Outgoing traffic to the internet is either
restricted or it is routed through a Network Address Translator (NAT). We will learn more
about NATs in subsequent sections of the chapter.

Resources in a private subnet are assigned a private IP that is accessible only from within
the VPC. A route table defines the routing of the traffic to and from the subnet and
ultimately determines whether a subnet is a private or public subnet based on whether it
has a direct route to an internet gateway (IGW) or not. This chapter discusses IGWs in
subsequent sections.

https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc4632

Virtual Private Clouds Chapter 4

[110]

Public subnets
A public subnet is a subset of a network wherein resources within a subnet are isolated and
can be accessed from within the VPC as well as from the internet. Any incoming traffic can
directly access the resources located in a public subnet. Resources in a public subnet are
assigned a public IP that is accessible from the internet. Similarly, traffic originated from a
public subnet can directly access the internet. Unlike a private subnet, traffic going out from
a public subnet is not routed to a NAT, but directly routed to an IGW. Such routing makes
it possible for the resources to directly access the internet from a public subnet.

The following figure describes how public and private subnets are segregated within a
VPC:

Figure 4.3: VPC with public and private subnets

Source: http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/images/nat-gateway-diagram.png

Virtual Private Clouds Chapter 4

[111]

As you can see in Figure 4.3, VPC CIDR is 10.0.0.0/16 and there are two subnets, one
each for public and private resources. Both the subnets have their own CIDR. The main
differentiator is the route table. As you can see in the route table, for destination
0.0.0.0/0, the target in the private subnet is a NAT gateway ID and the target for the
public subnet is IGW ID. CIDR 0.0.0.0/0 denotes any traffic over the internet.

IP addressing
When an EC2 instance is launched, it carries an IP address and IPv4 DNS hostname. The IP
address and DNS hostname vary depending on whether the instance is launched in an EC2-
Classic platform or a VPC. When an instance is launched in Amazon VPC, it supports both
IPv4 and IPv6 addresses. An EC2-Classic platform supports only IPv4, it does not support
IPv6.

By default, Amazon uses IPv4 addressing for the instance and VPC CIDR. This is the
default behavior of EC2 instances and VPC. Alternatively, a user can assign IPv6 addressing
protocol to VPCs and subnets that would subsequently allow you to assign IPv6 addresses
to instances in a VPC.

Private IPs
As we have seen in earlier sections, a private IP address cannot be reached over the internet.
Private IP addresses can be used for communication between the instances within the same
network. When an instance is launched, Amazon uses Dynamic Host Configuration
Protocol (DHCP) to assign a private IP address to the instance. Apart from a private IP
address, an instance is also assigned an internal DNS hostname that ultimately resolves to a
private IPv4 address of the instance.

Here is an example of an internal DNS hostname: ip-10-5-200-21.ec2.internal. This
DNS name can be used for communication between instances within the same network, but
it cannot be resolved outside of the network or over the internet since it is a private DNS
address.

Virtual Private Clouds Chapter 4

[112]

When an instance is launched in a VPC, it is assigned a primary private IP address. This IP
address is automatically selected from the IPv4 range of the subnet. Alternatively, you can
also specify a custom IP address out of the IPv4 CIDR range of the subnet. If you specify a
custom IP, that IP must not be already in use by any other instance. A primary IP address is
assigned to a default Ethernet interface. This default Ethernet interface is named eth0. A
primary IP address cannot be changed once an instance is launched. You can also assign a
secondary IP address to an instance. Unlike a primary IP address, a secondary IP address
can be changed and assigned to other instances.

EC2 instances launched in VPC retain their IP addresses even if the instances are stopped or
restarted. The IP address is released only when the instance is terminated. Instances in EC2-
Classic release their IP address as soon as they are stopped or terminated. If an instance in
EC2-Classic is restarted, it is assigned a new IPv4 address.

Public IPs
Unlike a private IP address, a public IP address can be reached over the internet. Public IP
addresses can be used for communication over the internet. When an instance is assigned a
public IP address, it also receives an external DNS hostname.

Here is an example of an external DNS hostname: ip-XXX-XXX-XXX-
XXX.compute-1.amazonaws.com, where XXX-XXX-XXX-XXX indicates the public IP
address of the instance.

This public DNS name can be used for communication between instances within the same
network or outside of the network over the internet. When this external hostname is used
within the network, it is resolved to a private IP address of the instance. If this external DNS
name is used outside the network then it resolves to a public IP address. This public IP
address is mapped to a primary private IP address using NAT.

In an EC2-Classic platform, when an instance is launched, it is automatically assigned a
public IP from the public IPv4 address pool. Instances launched in an EC2-Classic platform
must have a public IP . This is the default behavior of the EC2-Classic platform and it
cannot be changed.

Virtual Private Clouds Chapter 4

[113]

When an instance is launched in a VPC subnet, there is a subnet attribute that determines
whether an instance launched in the subnet automatically gets a public IP or not. Public IPs
for VPC instances are assigned from the EC2-VPC public IPv4 address pool. Amazon
automatically assigns a public IP to an instance launched in a default VPC, whereas
instances in a non-default VPC do not get a public IP automatically. This behavior can be
controlled using the VPC subnet settings.

Here's how you can control public IPv4 addressing attributes for a VPC subnet:

Go to the VPC console through the dashboard or browse the URL1.
https://console.aws.amazon.com/vpc/.
From the VPC console, go to Subnets.2.
Select a subnet from the list of subnets in your VPC and choose Subnet Actions.3.
Select Modify auto-assign IP settings.4.
Select the Enable auto-assign public IPv4 address checkbox.5.
When this checkbox is selected, it assigns a public IPv4 address every time an6.
instance is launched in the selected subnet. You can select or clear this checkbox
based on the requirement and then save the settings.

You can override this behavior while launching an instance in a VPC subnet. Amazon
provides an option to choose whether you want to auto assign a public IP to the instance or
not while launching an EC2 instance.

After an instance is launched, one cannot assign or release a public IP address manually to
an instance. Amazon releases the public IP when an instance is stopped or terminated.
When the same instance is stopped and restarted, it automatically gets a new public IP
address. Again, you cannot control this behavior. If you want to use a persistent IP address
or need to manually assign/release the IP address, you need to use an Elastic IP address.

When you assign an Elastic IP address to the primary Ethernet interface, Amazon
automatically releases the public IP address of the instance. An Elastic IP address is
equivalent to a public IP address that can be controlled by users.

https://console.aws.amazon.com/vpc/

Virtual Private Clouds Chapter 4

[114]

Elastic IP addresses
An Elastic IP address is a public IPv4 address that can be allocated to an AWS account. An
Elastic IP can be assigned or released from an instance as needed. Once an Elastic IP is
allocated, it remains in the account until it is explicitly released from the account. As far as
the use of an Elastic IP is concerned, it is similar to a public IP specified in the previous
point. Here's some of the important aspects of an Elastic IP:

For using an Elastic IP, first you need to allocate it in your account. Once an
Elastic IP is allocated, you can assign it to an EC2 instance or a network interface.
If an Elastic IP is associated with a primary network interface of an instance,
Amazon automatically releases the public IP address associated with the instance
or interface. An instance with a primary network interface cannot have an Elastic
IP as well as a public IP at the same time.
You can associate an Elastic IP to an EC2 instance and disassociate it as needed.
Once the Elastic IP is disassociated from the instance, the same IP can be
associated to any other instance.
If you disassociate an Elastic IP from an instance, it remains in the account until
you explicitly release it from the account.
If an Elastic IP is not associated to an instance, Amazon charges the account on an
hourly basis for that IP. Amazon also charges if an Elastic IP is associated to a
stopped instance. In short, Amazon charges small fees for any unutilized Elastic
IP address to ensure efficient usage of Elastic IPs. There is no charge for one
Elastic IP address if it is associated with a running instance. If there is more than
one Elastic IP address associated with an instance, you are charged for additional
Elastic IP addresses.
An Elastic IP is associated with a specific region. You cannot use the same Elastic
IP in different regions.
When an Elastic IP is associated with a primary network interface of an instance,
its public IPv4 address is released and its public DNS hostname is updated to
reflect the Elastic IP address.
When a public DNS hostname is accessed from outside the VPC or network, it
resolves to a public IP or Elastic IP of the instance. If a public DNS hostname is
accessed from within the VPC or network, it resolves to a private IP of the
instance.

Virtual Private Clouds Chapter 4

[115]

Creating a VPC
By default, when you create an AWS account, Amazon automatically provisions a default
VPC for you. You can customize the default VPC based on your needs. You can add more
subnets, remove any existing subnet, change the default route table, attach network
gateways, or change the Network Access Control List (NACL) as per your requirements.

You can configure the default VPC and use it as needed or you can create additional VPCs
using either the VPC wizard or by creating custom VPCs manually. The VPC wizard
provides four predefined categories of VPCs, which can help you quickly build the VPCs.

The wizard provides the following four types of VPCs:

VPC with a single public subnet
VPC with public and private subnets
VPC with public and private subnets and hardware VPN access
VPC with private subnet only and hardware VPN access

Let's understand each of these VPC types and the steps involved in creating the respective
VPCs.

Virtual Private Clouds Chapter 4

[116]

VPCs with a single public subnet
For creating a VPC with a single public subnet using a wizard, follow these steps:

Browse https://console.aws.amazon.com/vpc or select VPC from the AWS1.
dashboard. It brings up the VPC dashboard as follows:

Figure 4.4: VPC dashboard

https://console.aws.amazon.com/vpc

Virtual Private Clouds Chapter 4

[117]

Ensure that you have selected the right region where you want to create the VPC.2.
Regions can be selected from the top-right corner of the screen, just as N.Virginia
is selected in the preceding screenshot.

Click on the Start VPC Wizard button, and the following screen will appear:3.

Figure 4.5: VPC wizard

Virtual Private Clouds Chapter 4

[118]

Click on the Select button. It will show you the following:4.

Figure 4.6: VPC wizard

Provide an IPv4 CIDR block. The default is 10.0.0.0/16, which provides5.
65,531 IPs in the VPC. This is the maximum size of VPC you can create in AWS
by using the /16 CIDR range. The following table shows the IP range for CIDR
10.0.0.0/16. If you are not familiar with how to calculate the CIDR range, you
can visit sites such as http://ipaddressguide.com/cidr and play around with
the CIDR calculator. As you can see in the following table, the total hosts or IP
address range in this CIDR is 65,536; however, only 65,531 IPs are usable.
Amazon reserves five IPs in any subnet for various purposes, shown as follows:

http://ipaddressguide.com/cidr

Virtual Private Clouds Chapter 4

[119]

CIDR range 10.0.0.0/16

Netmask 255.255.0.0

Wildcard bits 0.0.255.255

First IP 10.0.0.0

Last IP 10.0.255.255

Total IPs 65,536

Details of the reserved IPs are given in the following table. From the following
table, you can see that whenever you create any subnet, the respective five IPs in
that subnet are reserved by AWS, that is, x.x.x.0, x.x.x.1, x.x.x.2, x.x.x.3, and
x.x.x.255:

10.0.0.0 Network address

10.0.0.1 Reserved for VPC router

10.0.0.2 Reserved for DNS server

10.0.0.3 Reserved for future use

10.0.0.255 Network broadcast address

You can keep No IPv6 CIDR block selected or select Amazon provided IPv66.
CIDR block if your VPC needs IPv6 addresses as well. For ease of
understanding, keep No IPv6 CIDR block as selected.
Enter the VPC name as required again in the VPC name field. The VPC name can7.
have a maximum of 256 characters.
Specify the public subnet's CIDR range. The default is 10.0.0.0/24. This CIDR8.
range spans 256 IPs, out of which five IPs are reserved as described in step 5,
leaving reserved IPs aside; this gives you 251 usable IPs in the subnet.
You can choose to specify any specific AZ for the subnet or keep No Preference9.
as selected against the Availability Zone field.
Enter any subnet name against the Subnet name field. A subnet name can have a10.
maximum of 256 characters. You can add more subnets after the VPC is created.

Virtual Private Clouds Chapter 4

[120]

You can add Service endpoints by clicking on the Add Endpoint button. With11.
service endpoints, you can directly access the respective service from within the
VPC. Currently, this feature supports the S3 endpoint. Adding an S3 endpoint to
VPC allows direct access from VPC to S3. If an S3 endpoint is not added, any
request to S3 goes through IGW. That means your data or traffic goes through the
internet for any interaction with S3 service. Adding an S3 endpoint routes the
traffic directly to S3 and keeps the communication within the VPC network. For
now, do not add any endpoint for ease of understanding.
Keep Enable DNS hostnames selected as Yes. When the DNS hostnames12.
attribute is enabled in a VPC, any EC2 instance provisioned in the VPC is
automatically assigned a DNS hostname.
In the next step, you need to select Hardware tenancy. You can select either13.
Default tenancy or Dedicated tenancy. Default tenancy specifies that a single
physical AWS machine may run instances provisioned by multiple AWS
customers. If you select Dedicated tenancy, it ensures that EC2 instances
launched in this VPC are launched on a dedicated hardware. Tenancy of a VPC
cannot be changed after a VPC is created. Dedicated tenancy costs more than
Default tenancy. Select this option according to your requirements.
The Enable ClassicLink option allows a VPC to communicate with the EC214.
instances launched in EC2-Classic. Without this option enabled, resources in the
VPC need to use a public IP address of the EC2-Classic instance or tunneling for
communication. If you have any resources in EC2-Classic, you can choose Yes to
enable the ClassicLink, or else you can keep No as selected.
Click on the Create VPC button to create the VPC. This final step pops up a small15.
progress bar while the system creates your VPC. Once the progress completes
100%, it shows the newly created VPC in the Your VPCs list from the VPC
dashboard:

Figure 4.7: Your VPCs in the VPC dashboard

Virtual Private Clouds Chapter 4

[121]

The previously mentioned steps for creating a VPC generate a VPC with a single public
subnet. The following diagram shows the architecture of the VPC:

Figure 4.8: Architecture diagram - VPC with single public subnet

The wizard creates a VPC with the following list of features:

It creates a VPC with 10.0.0.0/16 CIDR block and 65,536 IPv4 addresses.
It associates IGW to the VPC.

Virtual Private Clouds Chapter 4

[122]

It also creates a public subnet with 10.0.0.0/24 CIDR range. It encompasses
256 IPv4 addresses. As elaborated earlier, Amazon reserves five IPs out of the
subnet, which leaves 251 usable IPv4 addresses.
It creates a custom route table and attaches it to the subnet. This route table
enables traffic between the subnet and IGW.

VPCs with private and public subnets
The steps for creating a VPC with private and public subnets are almost identical to VPC
with a single public subnets except the wizard offers to create private subnets and it also
offers to attach a NAT gateway for routing traffic from private subnets to the internet.

To create a VPC with single, private, and public subnets using the wizard, follow these
steps:

Browse https://console.aws.amazon.com/vpc or select VPC from the AWS1.
dashboard.
Ensure that you have selected the right region where you want to create the VPC2.
and click on Start VPC Wizard.
From the subsequent screen, select VPC with Public and Private Subnets as3.
shown and click on the Select button:

Figure 4.9: VPC wizard for VPC with public and private subnets

https://console.aws.amazon.com/vpc

Virtual Private Clouds Chapter 4

[123]

On the subsequent screen, you can see that the wizard is almost identical to the4.
wizard for creating a VPC with a single public subnet. This wizard offers to
create private subnets and it also offers to attach a NAT gateway for routing
traffic from private subnets to the internet:

Figure 4.10: VPC wizard - NAT and private subnet detail

Specify details in all the fields as required, including Elastic IP Allocation ID in5.
the Specify the details of your NAT gateway section. You can allocate a new
Elastic IP address and obtain its allocation ID from the listing of EC2 dashboard |
Elastic IPs.
Click on the Create VPC button after providing all the required details on the6.
screen. It creates a VPC with private and public subnets.

Virtual Private Clouds Chapter 4

[124]

The following diagram shows the architecture of the newly created VPC:

Figure 4.11: Architecture diagram - VPC with private and public subnets

Here are the details of the VPC created using the wizard:

It creates a VPC with /16 CIDR range and 65,536 IPv4 addresses.
It also creates a public subnet with /24 IPv4 CIDR range and 256 IPv4 addresses.
Since this is a public subnet, it also creates a route table entry with route to IGW.
It creates a private subnet with /24 IPv4 CIDR range and 256 private IPv4
addresses.

Virtual Private Clouds Chapter 4

[125]

It also adds an IGW and connects the VPC to the internet as well as other AWS
services.
It creates a NAT gateway with an Elastic IPv4 address supplied during the
wizard. This allows instances in the private subnet to communicate over the
internet through the NAT gateway.
It adds a custom route table and associates it with the public subnet. This route
table enables the instances in the public subnet to communicate with each other
and over the internet through IGW.

VPCs with public and private subnets and
hardware VPN access
The steps for creating a VPC with private and public subnets and hardware VPN access are
almost identical to the previous wizards except for an additional screen that requires details
for creating hardware VPN access. For ease of use and better understanding, only the last
part of the wizard is elaborated here.

The steps in brief are as follows:

Browse https://console.aws.amazon.com/vpc or select VPC from the AWS1.
dashboard.
Ensure that you have selected the right region where you want to create the VPC2.
and click on Start VPC Wizard.
From the subsequent screen, select VPC with Public and Private Subnets and3.
Hardware VPN Access and click on the Select button.
Fill in all the fields in the subsequent screen, which are identical to what we have4.
gone through in the previous wizard.

https://console.aws.amazon.com/vpc

Virtual Private Clouds Chapter 4

[126]

After filling in all the fields, click on the Next button. It will bring up the5.
following screenshot:

Figure 4.12: Create VPC wizard - configuring your VPN

Specify Customer Gateway IP, this is an IP address of the anchor from the on-6.
premises or target location where we need to establish a VPN tunnel from our
AWS VPC. The anchor can be a hardware or software appliance or router.
Provide Customer Gateway name, this is optional but recommended for easily7.
identifying the customer gateway.
Provide VPN Connection name, this is also optional but it is recommended to8.
give a name to this connection.
Select Routing Type, there are two route types, dynamic and static. If you select9.
static routing, it requires you to manually enter the IP prefix for your network
while creating the VPN connection. When you select dynamic routing, the IP
prefix is advertised automatically to the VPN gateway using Border Gateway
Protocol (BGP). Ensure that your target appliance supports BGP if you select
Dynamic (requires BGP).
Click on the Create VPC button after providing all the required details on the10.
screen. This creates a VPC with private and public subnets and hardware VPN
access.

Virtual Private Clouds Chapter 4

[127]

For establishing a VPN connection between a VPC and a target network,
an administrator on the target network needs to configure the anchor
appliance at the target. This is generally not required for a developer to
understand. Also, it is out of the scope of the AWS Certified Developer -
Associate exam. If you're interested in knowing more about how a
network administrator needs to configure the target anchor appliance for
VPN connectivity, you can refer to the following URL:
http://docs.aws.amazon.com/AmazonVPC/latest/NetworkAdminGuide/We
lcome.html.

The following diagram shows the architecture of the newly created VPC:

Figure 4.13: VPC with private and public subnets and VPN access

http://docs.aws.amazon.com/AmazonVPC/latest/NetworkAdminGuide/Welcome.html
http://docs.aws.amazon.com/AmazonVPC/latest/NetworkAdminGuide/Welcome.html

Virtual Private Clouds Chapter 4

[128]

The following points describe the VPC created using the wizard:

It creates a VPC with a size /16 IPv4 CIDR range with 65,536 private IPv4
addresses.
It creates a public subnet /24 IPv4 CIDR block and 256 private IPv4 addresses.
It creates a VPN-only subnet with IPv4 CIDR block of size /24 and 256 private
IPv4 addresses.
It also creates an IGW that connects the VPC to the internet and other AWS
services.
It also creates a VPN connection between the VPC and target network. The VPN
connection needs a Virtual Private Gateway (VGW) that points to the VPC
endpoint on AWS and a Customer Gateway (CGW) that points to the target
network endpoint.
It creates a NAT gateway with an Elastic IPv4 address supplied during the
wizard. This allows instances in a private subnet to communicate over the
internet through the NAT gateway.
It adds a custom route table and associates it with the public subnet. This route
table enables the instances in the public subnet to communicate with each other
and over the internet through IGW.
It also creates a route for routing the traffic to a VPN connection that is ultimately
routed to CGW. This entry enables the instances in VPC to communicate with
resources on the target network.

VPCs with private subnet only and hardware VPN
access
The steps for creating a VPC with a private subnet only and hardware VPN access are
almost identical to previous wizards except for one change: no public subnets are created in
this wizard. This wizard creates a VPN connection between the VPC and target network
over an IPsec VPN tunnel. There is no IGW for any communication with the internet. This
scenario is recommended for extending a target or an on-premises network to AWS VPC for
a secure communication without exposing it to the internet.

Virtual Private Clouds Chapter 4

[129]

The steps in brief for creating a VPC with a private subnet only and hardware VPN access
are as follows:

Browse https://console.aws.amazon.com/vpc or select VPC from the AWS1.
dashboard.
Ensure that you have selected the right region where you want to create the VPC2.
and click on Start VPC Wizard.
From the subsequent screen, select VPC with Private Subnets Only and3.
Hardware VPN Access and click on the Select button.
Fill in all the fields in the subsequent screen, which are identical to what we have4.
gone through in the previous wizard.
After filling in all the fields, click on the Next button. This will bring up the5.
screen that we saw in the previous wizard.
Specify Customer Gateway IP, this is an IP address of the anchor from an on-6.
premises or target location where we need to establish a VPN tunnel from our
AWS VPC. The anchor can be a hardware or software appliance or router.
Provide Customer Gateway name, this is optional but recommended for easily7.
identifying the customer gateway.
Provide VPN Connection name, this is also optional, but it is recommended to8.
give a name to this connection.
Select Routing Type, there are two route types, dynamic and static. If you select9.
static routing, it requires you to manually enter the IP prefix for your network
while creating the VPN connection. When you select dynamic routing, the IP
prefix is advertised automatically to the VPN gateway using BGP. Ensure that
your target appliance supports BGP if you select Dynamic (requires BGP).
Click on the Create VPC button after providing all the required details on the10.
screen. It creates a VPC with private subnet only and hardware VPN access.

For establishing a VPN connection between a VPC and the target network,
an administrator on the target network needs to configure the anchor
appliance at the target. This is generally not required for a developer to
understand. Also, it is out of the scope of the AWS Certified Developer -
Associate exam. If you're interested in knowing more about how a
network administrator needs to configure the target anchor appliance for
VPN connectivity, you can refer to the following URL:
http://docs.aws.amazon.com/AmazonVPC/latest/NetworkAdminGuide/We
lcome.html.

https://console.aws.amazon.com/vpc
http://docs.aws.amazon.com/AmazonVPC/latest/NetworkAdminGuide/Welcome.html
http://docs.aws.amazon.com/AmazonVPC/latest/NetworkAdminGuide/Welcome.html

Virtual Private Clouds Chapter 4

[130]

The following figure shows a VPC created for a private subnet only with hardware VPN
access:

Figure 4.14: Architecture - VPC with private only and hardware VPN access

The architecture created using this wizard includes the following:

It creates a VPC with /16 CIDR range and 65,536 private IP addresses.
It creates a VPN-only subnet with /24 CIDR range and 256 private IP addresses.
It creates a VPN connection between your VPC and target network. The VPN
connection includes a VGW pointing to the VPC and a CGW that points to the
anchor appliance on the target network.
It creates a custom route table associated to the subnet. The route table contains
route entries for communication between instances within the VPC and also an
entry for communication with other resources on the target network.

Virtual Private Clouds Chapter 4

[131]

Security
While creating a VPC, security is one of the most critical aspects of the VPN of an
organization. As AWS states in many of its official communications, security of the
customer network is one of its highest priorities. Keeping security at the top of the AWS
charter, Amazon provides two features for taking care of network security and one feature
for monitoring the network.

Security groups and NACLs are for network security and flow logs are for network
monitoring. Security groups act as an EC2 instance-level firewall, whereas NACLs act as a
subnet-level firewall. Flow logs provide insight into network traffic. In the following
sections in this chapter, these features will be described in detail.

To start with, let's take a high-level overview of the difference between security groups and
NACLs. The layers of communication, as shown in the following figure, help us to
understand the significance of security groups and NACLs in a VPC:

Figure 4.15: Security groups and NACLs

Reference URL: https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Security.html

Virtual Private Clouds Chapter 4

[132]

Security groups
A security group can be described as a virtual firewall that controls any traffic coming in or
going out of the instances associated with the security group. When an EC2 instance is
launched, that instance is associated with one or more security groups. Each of the security
groups contains rules to allow traffic to or from its associated instances.

A security group can have multiple rules for inbound and outbound traffic. Inbound and
outbound traffic is also called ingress and egress traffic, respectively. Security groups can be
attached to an EC2 instance to restrict unsolicited traffic. Each security group can be
attached to multiple EC2 instances. It is best practice to create an application-specific
security group and attach it to one or more EC2 instances hosting the same application,
using AWS to modify the security group and fine-tune it as per the changing business need
from time to time. As and when required, you can allow or block communication on certain
protocols, ports, and source IPs, without disturbing communication for other applications.
In general, security group rules are implemented as per the hosted application's
communication requirement for protocol, ports, and source IPs, on relevant EC2 instances.

To meet an organization's advanced security needs, third-party EC2-based firewall
applications can be deployed in an AWS account on top of the security groups attached to
EC2 instances. While launching an EC2 instance in a VPC, if a security group is not attached
explicitly, then a default security group of the VPC is automatically attached to the EC2
instance. Security groups attached to an EC2 instance can be changed at any time based on
need.

With the help of CIDR notation, a source IP can be fixed to the particular IP, such as
10.108.20.107/32. Also, any source IP can be allowed by 0.0.0.0/0 CIDR notation. It is
best practice to allow ingress communication from a specified source IP rather than
allowing it from everywhere, until and unless project specific requirement is there. For
example, communication on HTTP (port 80) or HTTPS (443) should be allowed from
anywhere, but for SSH (22) and RDP (3389), it should be allowed only from trusted source
IP(s). Also, a security group ID can be specified as a source IP, to allow communication
from all the instances that are attached to that security group. For example, in case of auto
scaling, the number of EC2 instances (that is, a hosted web application) and their IP
addresses keep changing. In such situations, it is best practice to attach a security group to
such EC2 instances with the help of an auto scaling templates and place a security group ID
as a source IP in another security group. This other security group may be attached to the
EC2 instance hosted with a database.

Virtual Private Clouds Chapter 4

[133]

A security group attached to an EC2 instance should have at least one rule
to allow SSH (22) or RDP (3389) to log in and perform maintenance
activities from the trusted IP source.

Some important points about security groups are as follows:

Each security group can have a maximum of 50 separate rules for inbound and
outbound.
One security group can be attached to more than one EC2 instance.
At any given time, a maximum of five security groups can be attached to a
network interface.
When multiple security groups are attached to a single network interface, rules
from each security group are aggregated as one rule and evaluated for any
inbound or outbound traffic request.
In situations where multiple rules for the same protocol and ports are given for
an EC2 instance, the most permissive rules are applied. For example, one rule
allows communication on protocol TCP port 22 (that is, SSH) from
10.108.123.65 and another rule allows communication on protocol TCP port
22 from everywhere 0.0.0.0. In that situation, communication from everywhere
is allowed.
As soon as any modification in security group rules is saved, it immediately gets
applied to all associated EC2 instances.
By default, when a security group is created, it allows all outgoing
communication and blocks all incoming communication.
In a security group, each rule is defined only to allow communication. There is no
provision in a security group to create a rule for explicitly denying any traffic.
The security group allows incoming traffic from all the ports and protocols
defined in the rules. All other traffic is implicitly denied. This way, it eliminates
the need for any explicit deny rule.
Security groups are stateful. That means any traffic allowed on a specific inbound
port and protocol is automatically allowed for outbound traffic on the same port
and protocol. You don't need to create outbound traffic rules for port and
protocol described in inbound rules.
Instances associated with the same security group cannot communicate with each
other unless there is a rule placed in any security group associated with these
instances that allows communication between these instances.

Virtual Private Clouds Chapter 4

[134]

NACLs
A NACL acts as a virtual firewall at subnet level. It is an optional layer of security. Every
VPC has a default NACL. Creating a VPC automatically creates a default NACL. Every
subnet, whether it is private or public in a VPC, must be associated to one NACL. By
default, NACLs block all inbound and outbound IPv4 traffic. At any given time, NACL
rules can be modified and be put into immediate effect as they are saved. In the same VPC,
different subnets can be associated with different NACLs.

Some important points about NACLs are as follows:

Each subnet in a VPC must be associated with at least one NACL. At the time of
creating a subnet, if it is not explicitly associated with any NACL then it
automatically gets associated with the default NACL.
One NACL can be associated with one or more subnets; however, at any given
time, only one NACL can be associated to a subnet.
NACL rules are evaluated based on its rule numbers. It evaluates the rule starting
from the lowest number to the highest number. The highest number can be
32,766. It is best practice to create rules with the sequence numbers having
increments of 10, 50, or 100. It gives freedom to insert rules in-between, if
required in the future.
Separate rules to allow or deny can be created for inbound and outbound.
Unlike security groups, NACL rules are stateless. That means if a port is open for
allowing inbound traffic, it does not automatically allow outbound traffic on that
port. Similarly, if a port is allowed for outbound traffic, it does not automatically
allow inbound traffic on that port. Rules for inbound and outbound traffic have
to be defined separately.
The default NACL for any VPC contains a rule numbered as * in inbound and
outbound. This rule appears and executes last. While evaluating a traffic request,
if any of the rules do not match whether to allow or block the network traffic, it
blocks that traffic. This is the default behavior of NACL and it cannot be changed.
Adding more rules to any NACL may bring network performance implications.
Add NACL rules carefully.

Virtual Private Clouds Chapter 4

[135]

Security groups versus NACLs
We will now compare a security group with a NACL:

Security group NACL

It is stateful, which means opening any
inbound traffic on a port/protocol
automatically allows outbound traffic on that
port and protocol.

It is stateless, which means you need to
explicitly define inbound and outbound
traffic rules. It does not allow inbound
traffic for a rule defined for outbound
traffic and vice versa.

Acts as a firewall at EC2 level. You need to
associate a security group with one or more
EC2 instances.

Acts as a firewall at subnet level. NACL
rules get applied to all EC2 instances
within the related subnet.

By default, all incoming requests are denied
and all outgoing requests are allowed.

By default, all incoming and outgoing
requests are denied.

Rules do not execute in a sequence. Rules execute in a sequence, as they are
numbered.

Up to five security groups can be attached to
a network interface.

Only one NACL can be attached to a
subnet.

Flow logs
Flow logs are a feature that enables you to track incoming and outgoing traffic from a VPC's
network interfaces. Flow logs can be enabled on a network interface, subnet, or VPC. Flow
logs makes it possible to audit network traffic. It contains information about source and
destination IP address, port, the IANA protocol number, and many more details for
allowed and denied traffic based on the security groups and NACL. It stores data in
CloudWatch logs. It is also possible to create alarms that notify you on the occurrence of
certain network traffic. Once a flow log is enabled on the AWS resources, it may take a little
while to start collecting the data and appearing on CloudWatch logs. It does not capture
real-time log streams for the network interfaces. Flow logs help in fault diagnostics and
traffic monitoring.

Flow logs for each network interface get stored in a separate log stream. It is possible to
create multiple flow logs publishing data to the same log group in CloudWatch Logs. For
the same network interface, there could be a separate flow log just to capture rejected or
accepted traffic. In such situations, flow logs are automatically combined as one log stream
for the same network interface appearing multiple times in a log group.

Virtual Private Clouds Chapter 4

[136]

Flow logs can be enabled for the network interfaces, which are either created for custom
AWS resources such as EC2 instance, or AWS services such as Elastic Load Balancing,
ElasticCache, RDS, and so on. Once a flow log is enabled at subnet or VPC level, adding a
new instance in that subnet or VPC automatically starts collecting the flow logs for newly
created network interfaces on that EC2 instance.

Once a diagnostic or network audit has been done, flow logs can be deleted at any time.
Deleting flow logs does not delete existing flow log records or log streams. It just disables
the flow log service and stops collecting new logs for respective resources such as network
interface, subnet, or VPC. Existing log streams can be deleted from the CloudWatch log
console.

The limitations of a flow log are as follows:

It cannot be enabled for a VPC that is peered with a VPC in another AWS
account. It can only be enabled when both the peered VPCs are in the same AWS
account.
It is not possible to tag a flow log.
Once a flow log is created, it is not possible to modify its configuration. You need
to delete the existing flow log and create a new one.
If any network interface has multiple IPv4 addresses, then in a flow log, traffic
sent to a secondary IP displays the primary private IPv4 address in the
destination IP address field.
It captures traffic for custom created DNS servers in the VPC, but does not
capture traffic for an Amazon DNS server and DHCP traffic.
It does not capture traffic generated by Microsoft Windows instances for Amazon
Windows license activation.
It does not capture traffic for instance metadata to and from 169.254.169.254.
This is a dynamically generated link-local address that is used by the instance for
collecting its instance metadata.
It does not capture traffic to the reserved IP address for the default VPC router.

Creating a flow log must be associated with an IAM role having sufficient
permissions to publish flow logs to the specified log group in CloudWatch
logs. Also, an IAM role must have a trust relationship, which should allow
the flow log service to assume the role.

Virtual Private Clouds Chapter 4

[137]

Controlling access
While designing the architecture of a VPC, it is recommended you use at least a privilege
policy. Access to various resources and services in the VPC should be granted to
individuals based on their role. There may be a number of roles in an organization, such as
network administrator, developer, database administrator, tester, and so on. All these
individuals with different roles should have access to specific resources and services as their
organizational role demands. AWS IAM makes it possible to define different access policies
for various users rather than giving full control to all of them. By defining access policies,
we can restrict the users to using specific APIs and take limited actions against various
AWS services.

The following is an example of an access policy for a network administrator. This policy
grants an administrator access to create and manage the VPC:

{
 "Version": "2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":["ec2:*Vpc*",
 "ec2:*Subnet*",
 "ec2:*Gateway*",
 "ec2:*Vpn*",
 "ec2:*Route*",
 "ec2:*Address*",
 "ec2:*SecurityGroup*",
 "ec2:*NetworkAcl*",
 "ec2:*DhcpOptions*",
 "ec2:RunInstances",
 "ec2:StopInstances",
 "ec2:StartInstances",
 "ec2:TerminateInstances",
 "ec2:Describe*"],
 "Resource":"*"
 }
]
 }

Virtual Private Clouds Chapter 4

[138]

The following is an example of a read-only policy. A user with this policy can list all VPCs
and various resources associated with the VPC:

{
 "Version": "2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":["ec2:DescribeVpcs",
 "ec2:DescribeSubnets",
 "ec2:DescribeInternetGateways",
 "ec2:DescribeEgressOnlyInternetGateways",
 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeNatGateways",
 "ec2:DescribeCustomerGateways",
 "ec2:DescribeVpnGateways",
 "ec2:DescribeVpnConnections",
 "ec2:DescribeRouteTables",
 "ec2:DescribeAddresses",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeNetworkAcls",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeTags",
 "ec2:DescribeInstances"],
 "Resource":"*"
 }
]
}

Similarly, you can create more such policies based on your needs and assign them to
specific users for controlling access to the VPC.

VPC networking components
A VPC network consists of certain components. We will now look briefly at these
components.

Virtual Private Clouds Chapter 4

[139]

ENI
ENI is a virtual network interface. It is a communication hub for an EC2 instance that
enables network communication on an instance. An EC2 instance can have one or more
network interfaces. When any EC2 instance is created inside a VPC, by default, a network
interface is also created and attached to it. The default network interface created while
launching an instance is called a primary network interface of the instance. This primary
network interface also gets one primary IPv4 address from the subnet's available IP range.
You cannot detach a primary network interface from an EC2 instance and attach to another.
However, although you cannot detach a primary network interface, AWS allows us to
create additional network interfaces that can be attached to the EC2 instance. Additional
network interfaces are also called secondary network interfaces. Secondary network
interfaces can be detached from one EC2 instance and attached to another EC2 instance.
During this transition from one EC2 instance to another, its attributes remain intact.

A network interface can have the following attributes:

Usually, default network interface (that is, a primary network interface) is
referred to as eth0.
One primary private IPv4 address is automatically associated with it from the
available range of IPs in its respective subnet.
One Elastic IPv4 address per private IPv4 address can be attached to a network
interface. Similarly, one public IPv4 address can be auto assigned to a primary
private IPv4 address.
One or more IPv6 address can be attached to an ENI.
One or more security groups can be attached to a single network interface.
Currently, AWS allows a maximum of five security groups with a single network
interface.
A Media Access Control (MAC) address is associated with each network
interface.
For easy identification, you can also specify a description of each network
interface.
The number of network interfaces and secondary private IPs attached to an ENI
depends on the EC2 instance type. In general, the bigger the instance type, the
more network interfaces and the more secondary private IPs can be attached to it.
You can attach multiple network interfaces to an instance for creating a
management network or for implementing network and security appliances in a
VPC.

Virtual Private Clouds Chapter 4

[140]

Route tables
A route table is a set of rules that determines how the network traffic is routed. These sets of
rules are also called routes. Routes determine how data packets travelling over an IP
network are directed. A route table is a very important VPC resource for controlling the
flow of network traffic.

For every VPC, there should be a main route table. While creating a custom VPC
automatically, a main route table is also created. Each subnet in the VPC must be associated
with a route table that controls routing for it. A subnet can only be associated with one
route table, while a route table can be associated with many subnets. While creating a
subnet, if it is not explicitly associated with any route table, then it is associated with a
VPC's main route table. The main route table controls the network traffic for all the subnets,
which are explicitly not attached to any route tables. A route table attached to subnets and
its respective route entries can be changed any time as per requirement.

It is recommended you create a custom route table rather than directly making permanent
changes in a VPC's default route table. Even if it is required to change the default route
table, it is best practice to perform tests in a custom route table before updating the default
route table. Once results are satisfactory and not disrupting network communication then
the change can be applied to a VPC's default route table.

Some important points about route tables are as follows:

Every VPC has an implicit router.
Every VPC has a main route table. It cannot be deleted, but it can be
complemented with other additional route tables. Also, route entries in a main
route table can be changed.
Each route entry in a route table specifies a destination CIDR and a target. A
target indicates that traffic for this specific CIDR block should be routed through
this specific VPC resource such as IGW, VGW, a NAT device, a peering
connection, or a VPC endpoint. For example, internet traffic (0.0.0.0/0) should
be routed through an IGW (igw-id).
Every route table contains one route entry to communicate within the VPC over
IPv4. It allows communication from one subnet to another subnet. For example,
communication between web or application servers deployed in a public subnet
and DB servers or RDS hosted in a private subnet.
Currently, AWS allows a hard limit of 200 route tables per VPC and a maximum
of 50 routes per table.

Virtual Private Clouds Chapter 4

[141]

Selection of the optimum route for network traffic is done based on the longest prefix
match. In other words, the most specific routes that match the network traffic. This is
explained in the following example route table:

Destination Target Description

172.168.0.0/16 local
Network traffic for IPv4 address range
172.168.0.0/16; destination will be routed only
within the VPC.

0.0.0.0/0 igw-abcd1236
Network traffic for internet IPv4 address 0.0.0.0/0
to be routed to the IGW (igw-abcd1236).

172.31.0.0/16 pcx-1234abcd
Network traffic for IPv4 address 172.31.0.0/16
points to a peering connection (pcx-1234abcd).

If route entries for VPN connection or AWS Direct Connect overlap with
local routes for VPC, local routes are given priority.

IGWs
An IGW is a virtual router in a VPC and an important stopping point for data on its way to
and from the internet. IGW makes it possible for EC2 instances to communicate with the
internet. As a result, we can take a remote access (that is, RDP or SSH) of the EC2 instance
available in public subnets. By deploying NAT instances in a public subnet, it can also
provide an internet connection to the EC2 instance in a private subnet. In subsequent topics,
we will see NAT in more detail. A NAT instance prevents unsolicited access from the
internet to the instances in a private subnet. IGWs are highly available, redundant, and
horizontally scaled in nature. This ensures that there is no bandwidth constraint and no
availability risk.

The following points are critical for enabling internet access in a VPC subnet:

The VPC must be attached to an IGW
All public route tables must point to the IGW
Instances in a subnet need to have a globally unique IP address, be it an IPv4
address, Elastic IP address, or IPv6 address
NACLs and security groups should allow traffic to and from the internet

Virtual Private Clouds Chapter 4

[142]

Figure 4.16 illustrates how traffic from public subnet 1 (10.0.0.0/24) is routed to the
internet. A custom route table entry for internet traffic (0.0.0.0/0) pointing to igw-id
enables the subnet to access the internet:

Figure 4.16: IGW

Virtual Private Clouds Chapter 4

[143]

Egress-only IGWs
As with IGWs, egress-only IGWs are also highly available, redundant, and horizontally
scaled. They only work with IPv6; they don't work with IPv4 addresses. For IPv4 network
traffic, you can use a NAT gateway instead of egress-only internet traffic.

An egress-only IGW ensures that EC2 instances can communicate with the internet;
however, these instances are not directly accessible from the internet. The main purpose of
an egress-only IGW is to secure the subnet against internet traffic and at the same time
enable the instances in a subnet to access the internet.

For enabling egress-only internet traffic, you need to create an egress-only IGW in VPC and
add a route to the route table pointing all IPv6 traffic to (::/0) to the egress-only IGW. It is
a stateful VPC resource. A NACL can be used to control network traffic for an egress-only
IGW.

NATs
A NAT can be defined as a virtual router or a gateway in a VPC, which enables instances in
a private subnet to interact with the internet. It's an important stopping point for data on its
way from private subnets to the internet without directly exposing the instances to the
internet. It acts as a firewall, dynamically assigns a temporary public address to an instance,
and routes the traffic between the requesting instances and the internet.

There are two types of NAT devices:

NAT gateway: This is the gateway service provided and managed by AWS
NAT instance: This is a custom-provisioned EC2 instance hosting NAT services

These NAT devices only support IPv4 network traffic. EC2 instances in a private subnet do
not have a public or an Elastic IP and a subnet's route table does not have route entry to
send traffic directly to the internet through an IGW. The NAT device acts as an intermediate
point between instances and IGWs. It receives traffic from an EC2 instance residing in a
private subnet and, before forwarding the traffic to the internet, it replaces the reply-to IPv4
address with its own public or Elastic IP address. When a reply is received from internet,
again it changes the reply-to address from its IP address to the EC2 instance private IP
address.

NAT devices do not support IPv6 traffic. If you need to use an IPv6 address for an EC2
instance, you can use an egress-only IGW instead of a NAT, restricting unsolicited
connection requests from the internet.

Virtual Private Clouds Chapter 4

[144]

In an enterprise's AWS cloud infrastructure, either a NAT gateway or a NAT instance is
deployed in a public subnet. A NAT instance can have a public or Elastic IP, whereas the
NAT gateway requires an Elastic IP. To route traffic from a private subnet to the internet,
there should be a route entry in a private subnet's route table, pointing internet traffic to the
NAT instance or NAT gateway.

A NAT gateway is provisioned in a public subnet of an AZ in a VPC. Multiple private
subnets in a single AZ can use the same NAT gateway. If an AZ fails, the NAT gateway
residing in that AZ fails and all the subnets using the NAT gateway cannot reach the
internet. It is advisable to create a NAT gateway in multiple AZs for failover.

Unlike a NAT gateway, there is an additional setting when you create a NAT instance. To
facilitate internet requests, you need to disable the source and destination check on the NAT
instance. By default, before sending traffic to the internet, every EC2 instance checks that its
public address is in the source or destination address. But in case of a NAT instance, it
sends and receives traffic on behalf of EC2 instances residing in a private subnet. In this
scenario, if the source/destination check is not disabled on the NAT instance, it cannot serve
the requests from other EC2 instances. If you ever find that EC2 instances in your private
subnet are not able to connect to the internet, do check whether the source/destination check
on the NAT EC2 instance is disabled.

The following are the steps to disable the source and destination check on a NAT instance:

Log in to the AWS web console using the appropriate credentials.1.
Navigate to the EC2 dashboard.2.
In the left-hand navigation pane, select Instances.3.
On the right-hand side upper pane, from the list of EC2 instances, select NAT4.
instance.
From the top toolbar, select Actions or right-click on the selected instance. Select5.
Networking and then Change Source/Dest. Check from the available options.
The subsequent dialog box gives provision to enable or disable the6.
source/destination check.

The characteristics of a NAT gateway are as follows:

A NAT gateway supports burstable bandwidth up to 10 GBps. Higher than 10
GBps bandwidth can also be achieved by deploying AWS resources into multiple
subnets and creating a NAT gateway for individual subnets.
A NAT gateway supports TCP, UDP, and ICMP protocols.

Virtual Private Clouds Chapter 4

[145]

Creating a NAT gateway automatically creates a network interface and allocates
a private IP from the subnet's address range. One Elastic IP address also has to be
attached. Once a NAT gateway is deleted, the attached Elastic IP gets released
from the NAT gateway, but remains reserved in the AWS account.

The following figure helps us to understand a NAT gateway:

Figure 4.17: NAT gateway architecture

Reference URL: https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-nat-gateway.html

Virtual Private Clouds Chapter 4

[146]

As you can observe from Figure 4.17, 10.0.1.0/24 is a private subnet. A route table entry
is added to the main route table with 0.0.0.0/0 as the destination is routed to nat-
gateway-id. Unlike private subnets, the public subnet's route table has igw-id as the
target for internet traffic. This means the private subnet routes the internet traffic to a NAT
gateway and the public subnet routes the traffic directly to the IGW.

Comparison of NAT instances and NAT gateways
It is highly recommended you use a NAT gateway rather than a NAT instance as it
provides better availability and higher bandwidth compared to a NAT instance. If you opt
for a NAT instance, bandwidth depends on the EC2 instance type. Also, you have to design
a custom failover logic for NAT instances, unlike a NAT gateway. A NAT gateway is
managed by AWS and does not require you to perform maintenance activity. A NAT
gateway being a managed service, Amazon takes care of maintenance activities. Amazon
optimizes NAT gateways for performance and cost-effectiveness.

The following troubleshooting steps may help in certain situations where some instances in
a VPC are unable to route traffic though a NAT instance:

Ensure that there is a route entry in the route table of each private subnet for
routing internet traffic to nat-gateway-id.
Ensure that the source/destination check is disabled on the NAT instance.
If some instances from a private subnet are able to access the internet and some
instances are not, it may be because of the NAT instance's network bandwidth
limitation. Ensure that the NAT instance type provides the expected bandwidth
required to serve the traffic. You may need to change the instance type for better
network bandwidth.

It is recommended you use a NAT gateway over an NAT instance. An
existing AWS cloud infrastructure having a NAT instance can easily
migrate to a NAT gateway by creating a NAT gateway and changing the
route table entries to point to nat-gateway-id.

Virtual Private Clouds Chapter 4

[147]

DHCP option sets
DHCP is a network protocol that dynamically assigns IP addresses to instances in a VPC
from the respective subnet's CIDR block. It also passes configuration information such as
domain name, Domain Name Server (DNS), NTP server, and so on. This configuration
information is called a DHCP option set. A DHCP option set is essential for any newly
created EC2 instance in a VPC. Every VPC has one DHCP option set. When creating a
custom VPC, it automatically associates a default DHCP option set for the VPC. Once the
DHCP option set is created, its parameters cannot be modified. You need to create new
DHCP option set and associate it with the VPC. If you do not want to automatically assign
configuration to a VPC, no DHCP option set can also be configured. As soon as the DHCP
option set changes for any VPC, existing and new EC2 instances start using new DHCP
option sets. Changing the DHCP option set does not require restarting EC2 instances. A
DHCP option set allows configuring of the following parameters:

DHCP option name Description

domain-name

Domain names are very useful in various networking and
application-specific naming and addressing purposes. Usually,
an organization's name or abbreviated name is used as a high-
level domain name.
By default, an Amazon-provided DNS is ec2.internal for
us-east-1 (N. Virginia) and in other regions it
is region.compute.internal. For example, in the Tokyo
region, it is ap-northeast-1.compute.internal.

domain-name-servers

This is also referred to as a DNS. It can be either an Amazon-
provided DNS or a maximum of four IP addresses of a custom
DNS separated by commas. It is essential to have a custom
DNS when you want to use custom domain names for
instances in a VPC.

netbios-name-servers

Network Basic Input/Output (NetBIOS) is a legacy
networking protocol. A NetBIOS name server is required, in
case an enterprise runs some legacy applications requiring
WINS. A maximum of up to four comma-separated IPv4
addresses can be specified for the NetBIOS server.

Virtual Private Clouds Chapter 4

[148]

ntp-servers

A Network Time Protocol (NTP) is used to synchronize the
clocks of computers to some time reference. In an organization,
it is essential to have all the computers using the same clock
settings. Having the same clock on all computers not only
helps for log auditing and understanding event sequence, it
also fulfills a base requirement to run many enterprise-grade
applications. You can specify a maximum of up to four NTP
server's IPv4 addresses, separated by commas.

netbios-node-type

This is a method that computers use to resolve a NetBIOS
name into an IP address. In general, a node type can be any of
the following types:
1: This is for a broadcast node, also called B-node.
2 : This is for a peer-to-peer node, also called P-node.
4: This is for a mixed node, a combination of B and P nodes,
but by default it functions as a B-node.
8: This is for a hybrid node, a combination of a P-node and a B-
node, but by default it functions as a P-node.
It is recommended you use value 2 (peer-to-peer) as value 1, 4,
and 8 with broadcast and multicast are not currently
supported.

DNS
Usually, DNS and DHCP work together to translate a domain name to an IP address and
vice versa. It also provides configuration information to instances within the network.
Every EC2 instance in a VPC requires a unique DNS name. A DNS name is a combination
of hostname and domain name. For any instance, to communicate over the internet, it
requires a public IP and it requires a private IP to communicate within a local network.

When launching a new EC2 instance inside a default VPC, by default, it gets a private and
public DNS hostname corresponding to private and public IPv4 addresses. However, when
an EC2 instance is launched in a custom VPC, by default, it gets only a private DNS
hostname and a corresponding IPv4 address. An internal DNS (private Amazon-provided
DNS) provides a DNS hostname to the EC2 instances in the form of ip-<private-ipv4-
address>.ec2.internal in N. Virginia (us-east-1) and ip-<private-ipv4-
address>.region.compute.internal for other regions. A public DNS (external
Amazon-provided DNS) is in the form of hostname ec2-public-ipv4-
address.compute-1.amazonaws.com in N. Virginia (us-east-1) and ec2-public-ipv4-
address.region.amazonaws.com for other regions.

Virtual Private Clouds Chapter 4

[149]

For a custom VPC, the behavior of a DNS can be modified with the help of the following
parameters:

Attribute Description

enableDnsHostnames

A parameter value can be true or false. When it is true, an EC2
instance in the VPC gets public DNS hostnames. When this
parameter is true, it also requires the enableDnsSupport
attribute to be true.

enableDnsSupport

A parameter value can be true or false. It indicates whether DNS
resolution (host to an IPv4 address and vice versa) is supported
or not. If it is set to false, it does not resolve public hostnames to
an IPv4 address.

By default, in a default VPC, both of the preceding parameters are set to true. However, in
the case of a custom VPC, only the enableDnsSupport parameter is, by default, set to true.
When both of the preceding parameters are set to true then an EC2 instance gets a public
DNS hostname and it can resolve an Amazon-provided private DNS hostname. When both
parameters are set to false, the instance does not get a public DNS hostname, the Amazon-
provided private DNS server cannot resolve the private hostname to IP, and the EC2
instance gets a custom private DNS hostname if the custom domain name is specified in a
DHCP option set.

At the time of writing, AWS VPC does not provide DNS for IPv6
addresses.

VPC peering
VPC peering is a way to connect two different VPCs within the same region for routing
traffic between them using IPv4 or IPv6 addresses. Once a VPC peering connection is
established between two VPCs, instances in either of these VPCs can communicate with
each other as they communicate with local instances within the same VPC.

Virtual Private Clouds Chapter 4

[150]

By default, network traffic either flows within the same VPC or to and from the internet, but
it does not route to other VPCs. If there is a need to route traffic between two VPCs, a VPC
peering connection can be established. VPC peering can be used between two VPCs within
the same region, irrespective of whether they belong to the same AWS account or a different
AWS account. Communication among peered VPCs takes place through routing. Network
traffic does not flow through any separate VPC resources such as gateway or VPN
connections.

Let us understand following critical points for enabling VPC peering:

The owner of VPC1 initiates a peering request for VPC2
VPC1 and VPC2 can belong to the same AWS account or to a different account
The two VPCs can belong to the same owner or to different owners
The two VPCs cannot have CIDR blocks that overlap with each other
The VPC2 owner accepts the peering request
For enabling traffic between the two VPCs, both the VPCs need to add a router
entry in their respective route tables pointing to the IP address range of peering
VPCs
Update the security groups of each VPC, where required, to enable traffic from
the peering VPCs
If there is a need to resolve DNS hostnames from peering VPCs, you need to
enable DNS hostname resolution in the respective VPC configuration
By default, when instances in both sides of the VPC peering connection refer to
each other using a public DNS name, it resolves to a public IP address of the
target instances

VPC endpoints
Generally, AWS services are different entities and do not allow direct communication with
each other without going through either an IGW, NAT gateway/instance, a VPN
connection, or AWS Direct Connect. A VPC endpoint is an AWS service that enables you to
create a private connection between different AWS services without going through the
previously mentioned communication gateways.

Virtual Private Clouds Chapter 4

[151]

Let's understand this scenario with some examples. In an enterprise infrastructure, an EC2
instance residing in a private subnet often needs to communicate with resources in other
AWS services, for example, storing and retrieving objects in S3. Before the launch of a VPC
endpoint, you need to deploy a NAT device in a public subnet with an Elastic IP and route
entry in the private subnet's route table. Such communication used to take place through
the internet. Now, with the help of a VPC endpoint, there is no need to route traffic through
the internet. It routes the traffic within the AWS infrastructure. A VPC endpoint is highly
available, horizontally scaled, redundant, and easy to configure. It does not use any other
VPC resources such as VPN connection, NAT devices, or Direct Connect for
communication. It simply works using basic VPC components. There are no additional
charges for using VPC endpoints. Only standard charges for resource usage and data
transfer apply.

When creating a VPC endpoint, you need to define a source VPC and target AWS service.
At the same time, a custom policy can be applied to fine-grain the access in a targeted AWS
service. Enabling a VPC endpoint automatically identifies associated route tables with the
source VPC and also automatically adds a route to each of the route tables. In route entry,
destination specifies the prefix list ID of the service (pl-xxxxxxxx), which represents the
range of public IPv4 addresses used by the service. It indicates a target with the endpoint ID
(vpce-xxxxxxxx). As a result, automatically all the EC2 instances in all the subnets using any
of the route table associated with VPC starts using this route to communicate with specific
AWS services.

VPC endpoint limitations are as follows:

It is not possible to tag VPC endpoints.
It is not possible to transfer a VPC endpoint from one VPC to another VPC. You
need to create new VPC endpoints for the desired AWS services in a related VPC
and delete old unwanted VPC endpoints.
VPC endpoints support only within the same region. Source VPC and target
resources of AWS services both must be in the same region.
VPC endpoint connections just work within the VPC. They do not work with the
VPN, VPC peering, Direct Connect, or ClassicLink connections.
In order to use a VPC endpoint, it is essential to enable a DNS resolution in a
VPC, whether using custom or Amazon-provided DNS servers.
VPC endpoints prefix list IDs cannot be used in an NACL's outbound rule to
allow or deny network traffic.

Virtual Private Clouds Chapter 4

[152]

ClassicLink
Since December 4, 2013, AWS supports EC2-VPC only. But before that, it was possible to
create EC2-Classic. EC2-Classic and EC2-VPC both are totally different in many ways.
ClassicLink is the only way to make communication possible between them within the same
region. Enabling the ClassicLink option allows a VPC to communicate with the EC2
instances launched in EC2-Classic. Without this option enabled, resources in the VPC need
to use the public IP address of the EC2-Classic instance or tunneling for communication. If
you have any resources in EC2-Classic that require direct communication with VPC
resources, ClassicLink can help.

Enabling ClassicLink allows you to use VPC security groups on the EC2-Classic instances
and, in turn, this enables communication between instances in EC2-Classic and VPC using
private IPv4 addresses. It is available in all AWS accounts that support EC2-Classic
instances. There is no additional charge for using ClassicLink; however, standard data
transfer charges apply.

VPC best practices
The following list summarizes VPC best practices:

Before starting to design and implement AWS VPC, it is essential to understand
present and future needs. It is recommended you plan your VPC architecture,
considering the minimum requirement for the next 2 years. Once infrastructure is
created on a VPC, making any changes in VPC requires redesigning and
recreating infrastructure. Lateral changes in the design and infrastructure can be
very time-consuming and expensive.
It is suggested you use CIDR range as per RFC 1918. Also, make sure that a
sufficient number of IP addresses are available in each subnet to match with
present and future needs. Also, ensure that the CIDR range in AWS does not
conflict with the CIDR range used in any other data center or VPC where you
may have to establish a VPN or Direct Connect connection.

Virtual Private Clouds Chapter 4

[153]

Remember, AWS reserves five IP address for internal purposes. The first four and
the last one are in an IP range.
Create subnets to isolate resources as per the project requirement (that is,
DMZ/Proxy, ELB, web applications, database, and so on). For example, a public
subnet to host internet-facing resources and a private subnet for databases that
do accept web requests.
Create multiple subnets (that is, public or private) in multiple AZs to host multi
AZ infrastructure and avoid single point of failure. By default, each subnet can
communicate with every other subnet in the same VPC.
Make sure that only required ports and protocols from trusted sources are
allowed to access AWS resources using security groups and NACLs.
Create individual security groups for each resource or the same type of resources.
For example, create a single security group for web servers.
Make sure unwanted outgoing ports are not open in security groups. For
example, a security group for a web application does not need to open incoming
mail server ports.
Control access to AWS VPC services using appropriate user segregation, groups,
and policies.
Use NACLs wisely. More rules in the NACL may bring performance implications
to overall networks.
While adding rules to the NACL, number each rule in increments of 10, 50, or
100. This gives flexibility to add rules in-between, when required.
Preferably, use a NAT gateway over a NAT instance. A NAT gateway provides
redundancy and better network bandwidth.
Rather than modifying a default route table and NACL, create a custom route
table. By default, a route table is used for newly created subnets.
Use Elastic IPs wisely. Unused Elastic IPs and IPs attached to stopped EC2
instances may incur charges to the AWS account.
It is essential to disable the source/destination check when a NAT instance is
configured.

Virtual Private Clouds Chapter 4

[154]

Use a bastion host to access private machines hosted in a private network in a
VPC.
Enable VPC flow logs for audit purposes. Studying flow logs from time to time
highlights unauthorized attempts to access the resources.
Never create security group rules allowing 0.0.0.0/0 unless it is unavoidable. It
is highly recommended you create customized security groups for each resource
or group of resources.
It is recommended not to allow UDP/ICMP ports for private instances in security
groups.
While defining a security group, use a target security group ID instead of using
an IP address for restricting access, and instead of using CIDR as a target. Such
approaches ensure that your environment security is not compromised or
mismanaged, even if IP addresses change.
VPC peering can be used to make communication between VPCs within the same
account, different AWS accounts, or any two VPCs within the same region.

5
Getting Started with Elastic

Compute Cloud
In the last decade of the 20th century, the world started rapidly moving towards
computerization. Now, when we are nearing the end of the second decade in the 21st
century, the word compute has become a necessity in almost every walk of life. Be it mobiles,
phablets, tablets, laptops, desktops, high-end servers, cars, GPS systems, toys, digital
advertisement boards, point-of-sale terminals, or a number of IoT devices, they all use
compute power. When computing has such a deep impact on our lives, how can any
organization stay away from it? For any enterprise, of any scale, computers are one of the
essential IT resources. They provide a mechanism to host and run business applications.

Introduction to EC2
The technology is evolving, demand is increasing, competition is increasing, and
organizations are continuously coming up with innovative solutions to serve their
customers. This entire ecosystem is dependent on computing power. It has become critical
for organizations to arrange highly available and reliable computing resources to run their
businesses. Amazon's EC2 is a compute service that provides an on-demand and scalable
computing service in the cloud. It eliminates the need for upfront investment on hardware
with the pay as you go model. With such flexibility in provisioning computing resources, it
makes it possible to develop and deploy applications faster. You can provision as many EC2
instances as you want, be it a single instance or tens or hundreds or thousands of servers
based on your need. You pay only for what you use. If you do not require the provisioned
instances, you can terminate them at will. You can scale up your fleet of servers or scale
them down, based on what your business demands. You can configure security, manage
networking, and add or remove storage as your business demands.

Getting Started with Elastic Compute Cloud Chapter 5

[156]

Some of the important aspects of EC2 are as follows:

Amazon EC2 is a virtualized environment in the cloud.
A provisioned EC2 resource is called an instance.
You can create new instances based on AMIs.
AMIs are preconfigured templates which include base operating systems and any
additional software in a single package.
It provides various combinations of CPU, memory, storage and networking
capacity for provisioning instances. These combinations are called instance types.
It provides a highly secured mechanism to log in to your instances using key
pairs. A key pair is a combination of private and public keys. When an instance is
provisioned, a public key resides on the EC2 instance and a private key is
provided to the user who provisions the server. A key pair is used for login to an
instance associated with the key pair.
Amazon provides temporary as well as persistent storage for your EC2 instances.
Temporary storage is also called an instance store.
Data on an instance store vanishes when the instances are stopped or restarted.
Amazon also provides persistent storage volumes on EC2, which is called EBS.
Amazon provides multiple physical locations for provisioning EC2 instances,
known as AZs.
It provides a firewall to your instances using security groups.
Security groups can control what port, protocol, and source IPs can access your
instance.
It provides a static IPv4 address for your instances, which is called an Elastic IP
address.
It allows you to assign metadata to your instances, known as tags. Tags can be
used to identify an instance. A tag can be a name, environment, department, cost
center, and so on.
EC2 instances are created in an isolated virtual environment and can be
associated to a VPC.

This chapter gradually touches upon all the critical points of EC2 in subsequent pages.

Getting Started with Elastic Compute Cloud Chapter 5

[157]

Pricing for EC2
If you just want to get started with working with EC2 and learning, Amazon provides EC2
in a free tier. It offers a t2.micro instance type to run for up to 750 hours per month. You
can use the Amazon free tier for 12 months from the date of opening a new account. These
750 hours can be utilized either by one instance for 30 days 24 x 7 or running 10 instances
for 15 hours as you need.

When using instance types other than the free tier, charges apply on a per hour basis and
charges vary based on instance type, region, and payment option. A small instance type,
with a smaller number of vCPUs and less memory, costs less compared to an instance type
having more vCPUs and memory.

Amazon charges EC2 instances on a per hour basis and actual EC2 pricing depends on
instance type, size, and payment model. There are four ways to pay for Amazon EC2
instances, as follows:

On-Demand: By default, EC2 hourly charges are applied at the On-Demand rate.
In this mode, compute (CPU and memory) is used as and when required. There is
no need to have any long-term commitment. Compute capacity can be increased
or decreased on the fly, to meet the business needs.

When to use On-Demand instances:

Usually, this payment mode is suitable when you create a new
infrastructure in the cloud and are not sure what instance type and
number of instances are required
You can even use On-Demand instances for carrying out tests
When low-cost and flexible compute is required without any
upfront payment or long-term commitment
You can use On-Demand instances for short-term applications with
unpredictable workloads

Getting Started with Elastic Compute Cloud Chapter 5

[158]

Things to remember while using On-Demand pricing:

On-Demand instances are charged on an hourly basis
It is the costliest pricing option available in AWS
When an instance is stopped, partial EC2 hours are rounded up for
billing and you pay for a full hour
On-Demand instances can be launched through the AWS
Management Console
You can launch up to 20 instances at a time using the RunInstance
API

Spot instances: This allows us to bid for spare Amazon EC2 compute capacity.
Usually, these computes can be up to 90% cheaper than On-Demand instances. It
requires you to bid and it specifies the maximum price you want to pay per
instance along with instance type and AZ. You get your spot instance, based on
availability and current spot pricing in the specified AZ. The prices for instance
types vary on the basis of availability of spare capacity in the specified AZ. In
other words, it's all about the supply and demand ratio of spare capacity. As the
demand for a specific instance type in spot instance increases, spot instance prices
also increase. When the current spot instance price goes above your bid price,
AWS terminates your spot instance. Before terminating EC2 spot instances, AWS
gives a notification, 2 minutes prior to termination.

When to use spot instances:

When you need cheap resources for a temporary purpose
When your application runtime is flexible and application
workload can be interrupted
When you need a large amount of additional computing capacity

Things to remember while using spot instances:

If a spot instance is terminated by AWS before completing an hour,
you are not charged for that hour.
If you terminate a spot instance in between an hour, you're charged
for that incomplete hour.
Spot instances cannot be stopped and restarted. If a spot instance is
stopped, it gets terminated.

Getting Started with Elastic Compute Cloud Chapter 5

[159]

Reserved instances: This provides a significant discount on the On-Demand per
hour prices. You can reserve and instance for a 1- or 3-year duration for your
predictable resource demand. It offers three types of reservation request: All
Upfront, Partial Upfront, and No Upfront payment options. With the All
Upfront payment option, you can save up to 75% in comparison to On-Demand
pricing. In the Partial Upfront method, a partial amount of total billing is paid
upfront and the remaining amount is paid on a monthly basis. The third option
for reservation is with No Upfront cost, wherein you pay only on monthly basis
for your Reserved instances. Even with No Upfront reservation, you can save
around 35% to 40% of cost in comparison to On-Demand pricing.

When to use Reserved Instances:

When you need to run a predictable and consistent workflow for a
long period
All applications require steady state infrastructure
Users or organizations who can commit to a 1- or 3-year duration

Things to remember about Reserved Instances:

When you reserve an EC2 instance, you reserve an instance type
and not a specific instance. Discounted prices are automatically
applied on a monthly bill basis on an instance type usage in the
account.
EC2 instances can be reserved at the AZ or at the region. A
Reserved Instance at the region level gives flexibility to select an
instance type and AZ.
Payment mode (that is, All Upfront, Partial Upfront, or No
Upfront) and term (1 year or 3 years) can be selected. It is
recommended to reserve for a year only, as AWS periodically
reduces resource pricing.

Getting Started with Elastic Compute Cloud Chapter 5

[160]

Dedicated Hosts: In a normal scenario, when you launch an EC2 instance, it is
provisioned in a virtual environment hosted on shared hardware. Though each
instance has its own dedicated resources, it shares the hardware platform with
other accounts. When using Dedicated Hosts, EC2 instances from the same AWS
account are physically isolated on Dedicated Hosts (that is, hypervisor). A
Dedicated EC2 instance using the same architecture may share hardware within
the AWS account. It gives additional control over host hardware. It helps to meet
corporate compliance and regulation requirements. The pricing model for the
Dedicated Hosts also can be an On-Demand, reserved (save up to 70%), or spot
instance (save up to 90%).

A dedicated EC2 instance has two pricing components:

Applicable price per hour, based on the selected pricing model.
Additionally, dedicated per region fees. It is $2, applicable per hour
for at least one Dedicated EC2 instance of any type running per
region.

Per-second billing for EC2 instances and EBS
volumes
Effective from October 2, 2017, Amazon launched per second billing for it's EC2 instances
and EBS volumes. Per second pricing is applicable on Linux instances in On-Demand,
Reserved and Spot instance categories. Also, EBS Provisioned storage volumes are billed on
per-second basis. Though, in the pricing section you may see per our billing rates, actual bill
is calculated in one-second increments. Even though the billing is calculated per-second
increments, it is important to note that minimum charge for an instance is calculated for 1-
minute. That means, if the instance runs for less than a minute, you are charged for full 1-
minute. However, if the instance runs for more than a minute, the bill is calculated for
incremental seconds.

Per-second billing does not apply to Windows instances and Licensed
Linux distributions that are linked with separate hourly charges.

Getting Started with Elastic Compute Cloud Chapter 5

[161]

EC2 instance life cycle
An EC2 instance passes through various statuses throughout its life cycle. It all starts with
launching an EC2 instance using a specific AMI. The following figure is an illustration of
the EC2 instance life cycle:

Figure 5.1: EC2 instance life cycle

Instance launch
When an instance is provisioned, it immediately gets into the pending state. Depending on
what instance type you have selected, it is launched on a host computer inside AWS
virtualized hardware. The instance is launched using the AMI you choose for provisioning.
Once the instance is ready for use, it gets into the running state. At this moment, you can
connect to your instance and start using it. AWS starts billing you for each hour that
instance is used once it enters the running state.

Instance stop and start
If you have launched an EC2 instance with an EBS-backed volume, you can stop and start
your instance as needed. If your instance fails any status check and is unresponsive,
stopping and starting the instance again helps at times.

Getting Started with Elastic Compute Cloud Chapter 5

[162]

When you stop an instance, AWS initiates the OS shutdown process and the instance enters
into the stopping state. As soon as the OS shutdown process completes, the instance enters
into the stopped state. Once an instance is in the stopped state, you are not charged for that
instance. However, AWS does charge you for any EBS volume or Elastic IPs associated with
that instance. There are certain configuration options that can be used only when the
instance is in the stopped state. When the instance is in the stopped state, you can change
the instance type or disassociate/associate root volume of the instance.

When an instance is started back, it enters into the pending state. Mostly, AWS moves the
instance to another host computer once it is stopped and started again. The instance may
remain in the same host computer if there are no hardware-related issues on the host
computer. AWS adapts this approach for automatically resolving hardware-related issues
on an instance.

If you are running an instance on EC2-Classic, AWS allocates a new IPv4 address every
time an instance is stopped and started again. However, EC2 on a VPC retains its IP address
even if it's stopped and started again.

Every time an instance transitions from the running to stopped state, AWS charges a full
billing hour. That means your billing hour count increases every time you stop and start an
instance. Considering hourly charges, it is recommended to exercise the stop and start
options wisely. However, with the introduction of per-second billing in October 2017,
hourly charges apply only to Windows and Licensed Linux distributions. Instances with
free Linux distribution carry per-second billing and charged accordingly.

Instance reboot
An EC2 instance can be rebooted in various ways. You can use AWS console, command-line
tools, AWS API, or you can restart the instance from the operating system. AWS
recommends rebooting the instance instead of rebooting the operating system. Rebooting
the instance is equivalent to rebooting the operating system. When an instance reboots, it
remains on the same host computer in the virtualized environment. It retains its IP
addresses and public DNS name. It also retains the data on its instance store.

Unlike stopping and starting an instance, rebooting does not initiate a new billing hour.

Getting Started with Elastic Compute Cloud Chapter 5

[163]

Instance retirement
If there is any irreparable issue in underlying hardware where an instance is hosted, AWS
schedules the instance for retirement. The instance is automatically stopped or terminated
by AWS when it reaches the scheduled retirement date. If your instance is an EBS-backed
instance, you can stop and start the instance. Stopping and starting the instance
automatically changes the underlying host and you can continue using the instance. If your
instance has a root volume with an instance-store-based volume, the instance gets
terminated and you cannot use it again.

Instance termination
If an EC2 instance is no longer required, you can terminate the instance. AWS stops
charging you as soon as your instance's status changes to shutting-down or terminated.

AWS provides an option called termination protection. If this option is enabled, users cannot
terminate an instance without disabling the termination protection. AWS provides this
option to prevent accidental termination of an instance.

Once an EC2 instance is terminated, it remains visible with a terminated status on the
console for a while and automatically disappears from the console after a while. Once an
instance is terminated, it cannot be recovered. If a safe backup of the instance is taken, you
can launch a new instance from the backup.

Every EC2 instance with EBS-backed volume supports an attribute that controls its behavior
on shutdown. This attribute is called InstanceInitiatedShutdownBehavior. While
launching the instance, you can select what happens on shutting down the instance. You
can select to stop the instance on shutdown or terminate it. The default behavior of an EC2
instance is stop on shutdown.

While launching an instance and associating an EBS volume, EC2 provides an option
against each EBS volume called DeleteOnTermination. If this attribute is selected against
an EBS volume, it is automatically deleted when the instance is terminated.

AMIs
While launching an instance, you may have a specific requirement such as an operating
system, preinstalled software, a number of EBS volumes, and their respective size. To cater
to such a requirement, AWS uses a feature called an AMI.

Getting Started with Elastic Compute Cloud Chapter 5

[164]

An AMI contains a set of information to launch an instance:

It contains a template that includes information such as operating system,
application server, and any other application software
It contains launch permissions describing which AWS account can use the AMI to
spin up new instance
It also contains block device mapping, describing the volume information to be
attached to the instance while launching

You can specify the AMI while launching an instance. An AMI can be used to launch as
many instances as required; however, an instance can be based on a single AMI. You can
also use multiple AMIs as required to launch different instances. The following figure helps
to understand how multiple EC2 instances from a single AMI can be created:

Figure 5.2: Concept of AMI and EC2 instance creation

Reference URL: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instances-and-amis.html

Amazon provides a number of preconfigured AMIs in its marketplace. The AMIs in the
marketplace include AMIs provided by Amazon with base configuration, community AMIs
contributed by a large AWS community, and a number of AMIs with third-party software.

All AWS AMIs are internally stored in an S3 bucket. AWS protects these AMIs and these
AMIs are not directly visible on S3. You can choose the AMIs only when you launch an
instance.

Getting Started with Elastic Compute Cloud Chapter 5

[165]

Apart from an underlying operating system and preconfigured software in the AMI, there
are two more characteristics of AMI that are critical for choosing an AMI:

Root device volume type
Virtualization type

Before launching or planning an EC2 instance OS in the enterprise architecture, it is
necessary to understand what these characteristics are.

Root device types
While choosing an AMI, it is essential to understand the root device type associated with
the AMI. A bootable block device of the EC2 instance is called a root device. As EC2 instances
are created from an AMI, it is very important to observe the root device type at the AMI. An
AMI can have either of two root device types:

Amazon EBS-backed AMI (uses permanent block storage to store data)
Instance store-backed AMI (which uses ephemeral block storage to store data)

While creating an EC2 instance using a web console, we can see whether an AMI is EBS- or
instance-backed. The following screenshot highlights the root device type while selecting an
AMI:

Figure 5.3: Root device type in an AMI

Amazon EBS-backed AMIs launch faster than instance-stored AMIs as you only need to
create the volume from the snapshot, for booting the instance, while AMIs with ephemeral
storage take a longer time to boot, as you need to load all the software on the ephemeral
storage before booting the instance.

Ephemeral storage devices are directly attached to the host computer, which makes it faster
in accessing the data; however, stored data gets wiped out on restarting or shutting down
the EC2 instance.

Getting Started with Elastic Compute Cloud Chapter 5

[166]

It is very important to remember that EBS-backed instances can be stopped; if ephemeral-
based instances are stopped or terminated, the data stored on the ephemeral storage gets
wiped out from the storage.

EC2 instance virtualization types
Similar to root device type, virtualization type is another aspect of an AMI that is critical to
understand before choosing an AMI. An AMI can fall into either of the following two
virtualization types:

Paravirtual (PV): EC2 instances boots by PV-GRUB
Hardware Virtual Machine (HVM): EC2 instances boots by Master Boot Record
(MBR)

The main difference between these two virtualization types is in their booting process and
their ability to take advantage of special hardware extensions, for a better performance of
CPU, network, and storage devices.

For the best EC2 instance performance, it is highly recommended you use the latest instance
type with HVM AMIs.

In the case of HVM, the OS can directly run on virtual machines without any modifications.
This makes HVM-based instances faster and more efficient. PV-based instances can run on
hardware without virtualization support; however, they cannot take advantage of special
hardware extensions. Special hardware extensions such as enhanced networking or GPU
processing can make a huge difference for running certain application types. Before the
enhancement in HVM technologies, PV-based instances used to perform better than HVM;
however, with technological enhancements, HVM is leading the race.

While creating an EC2 instance, you can see the type of virtualization against the AMI. The
following screenshot highlights the virtualization type given against an AMI:

Figure 5.4: AMI-virtualization type

Getting Started with Elastic Compute Cloud Chapter 5

[167]

Creating an EC2 instance
Now, since we have the basic information about EC2, its pricing model, and AMIs, let's
understand how to create an EC2 instance using the AWS console.

The following steps describe the process of creating an EC2 instance:

Log in to the AWS console using valid credentials and go to the EC2 dashboard.1.
Click on the Launch Instance command button.2.
Select the appropriate AMI based on the OS, root device type, and virtualization3.
type. The screen which displays a number of AMIs to choose from is shown
in Figure 5.5. By default, you can see a number of AMIs in Quick Start. If
required, you can select My AMIs, which contains all the custom AMIs created in
a user's account. If you select AWS Marketplace from the left menu, it displays a
number of third-party AMIs available in AWS Marketplace. Marketplace AMIs
may not be free. You can also choose Community AMIs that contain a number of
AMIs contributed by AWS community members. Alternatively, if you just want
to create a free tier instance, you can select the checkbox against Free tier only:

Figure 5.5: Selecting an AMI while launching an instance

Getting Started with Elastic Compute Cloud Chapter 5

[168]

Once you select an AMI, it displays on the screen as shown in Figure 5.6. Select4.
the appropriate instance type from the screen:

Figure 5.6: Selecting an instance type

After selecting the instance type from the screen, click on Next: Configure5.
Instance Details. The subsequent screen provides options to Configure Instance
details, such as the number of instances to launch, payment option (spot or on-
demand), VPC and subnet, public IP, IAM role, shutdown behavior, termination
protection, advanced monitoring, and user data. The following screenshot
displays the screen with options to configure instance details:

Getting Started with Elastic Compute Cloud Chapter 5

[169]

Figure 5.7: EC2 instance configuration details

Getting Started with Elastic Compute Cloud Chapter 5

[170]

Add additional EBS volumes as required. Amazon allows up to 30 GB of General6.
Purpose volume in the free tier. Also, while creating the EC2 instance, at this
stage, it is possible to change the Delete on Termination option to true or false
for each EBS volume, including the root volume. Once an instance is created, you
can change the Delete on Termination option for EBS only through CLI or API.
After selecting the appropriate option, click on the Next: Add Tags button, as
shown in the following screenshot:

Figure 5.8: Adding additional EBS volume

In the subsequent screen, as shown, you can add tags to your EC2 instance.7.
Amazon assigns a distinct instance ID to every EC2 instance for uniquely
identifying an instance. On top of that, you can also add additional tags to the
instance for grouping them based on environment, that is, development, testing,
preproduction or production, and so on. These tags are key value pairs and are
case-sensitive:

Getting Started with Elastic Compute Cloud Chapter 5

[171]

Figure 5.9: Adding tags

While creating the tags, by ticking against the Volumes column, AWS associates
the same tags to each relevant EBS volume associated to the instance. You can see
the volume column in the next screenshot. Click on Next: Configure Security
Group for the next screen.

The next screen shows provided options to Configure Security Group. You can8.
open the required port on a specific protocol and source IPs. Generally, inbound
rules are defined based on what ports and protocols are used by the application
hosted on the server. You can either use an existing security group or you can
create a new one based on the requirement. Figure 5.10 shows security group
configuration options. After configuring the security group, you can click on
Review and Launch:

Figure 5.10: Configuring the security group

Getting Started with Elastic Compute Cloud Chapter 5

[172]

In the subsequent screen of the wizard, you can finally review the configuration9.
options you have selected during the launch instance wizard. If required, you can
click on the Previous button and modify the options as needed:

Figure 5.11: Reviewing the configuration options

After verifying all the options, you can click on the Launch button. Once you10.
click on the Launch button, it asks you to either Select an existing key pair or
create a new key pair. Select an existing key pair or give a suitable key name to
create a new key pair. Remember to download the key. The key is available to
download during this wizard only. AWS does not provide an option to
download the key later on. After providing the key pair detail, you can click on
the Launch Instance button. It may take a few minutes for the instance to launch.
The time for an EC2 instance to come to running state depends on the AMI type
and instance type.

Getting Started with Elastic Compute Cloud Chapter 5

[173]

You can see all the instances on the EC2 dashboard. You can see all the relevant EC2
properties by selecting a specific instance:

Figure 5.12: Downloading the key pair

Changing the EC2 instance type
Once an instance is launched, it may be required to change the instance type based on the
need. For example, you may need to change the instance type to accommodate high CPU
and memory requirements. Perform the following steps to change the EC2 instance types.
An instance can be changed only if the instance is in stopped state. Shut down the instance
either from the OS or from the EC2 console and follow these steps:

Log in to the AWS dashboard using valid credentials and go to the EC21.
dashboard.
Go to Instances and select desired EC2 instance to change the instance type.2.

Getting Started with Elastic Compute Cloud Chapter 5

[174]

Shut down the EC2 instance. Once an EC2 instance is in the stopped state, right-3.
click on the EC2 instance and change its type by going to Instance Settings |
Change Instance Type, as shown in the following screenshot:

Figure 5.13: Changing the instance type

Once the instance type is changed, you can start the instance again. It may take4.
some time for the instance to come back to the running state.

Connecting to the EC2 instance
For remotely connecting to an EC2 instance in a public subnet, you need to know its public
IP or Elastic IP address. To work with EC2 instances residing in a private subnet, you need
to create a bastion host in a public subnet and attach an Elastic IP to access it. For
connecting to an instance in a private subnet, first you need to connect to a bastion host and
then, from the bastion host, connect to the EC2 instances in a private subnet. By default,
Linux-based EC2 instances can be connected on port 22 using tools such as PuTTY.
Microsoft Windows EC2 instances can be connected on port 3389 using the Windows
remote desktop utility. To connect to the Linux system, you need to pass a username, port,
and private key. The public key is embedded inside the EC2 instance.

Getting Started with Elastic Compute Cloud Chapter 5

[175]

Default users for various Linux systems are given in the following table:

OS on EC2 instance AMI (SSH username)

Amazon Linux ec2-user

BitNami bitnami

Centos centos

Debian admin

Fedora fedora

FreeBSD ec2-user

NanoStack ubuntu

OmniOS root

RHEL 6.3 and earlier root

RHEL 6.4 and later ec2-user

SUSE root

TurnKey root

Ubuntu ubuntu

Connecting to a Linux EC2 instance from a Microsoft Windows system
The prerequisites for connecting to a Linux EC2 instance from a Microsoft Windows system
are as follows:

Download PuTTY and PuTTYGen on the Microsoft Windows machine. You can1.
get links for downloading PuTTY and PuTTYGen from http://www.putty.org/.
Get the public DNS or public/Elastic IP of the desired Linux instance to connect.2.
When IPv6 is assigned to an EC2 instance, connecting to it requires the source3.
machine to also have an IPv6 address.
Keep the relevant private key file handy, which is downloaded while creating an4.
instance.
Ensure that SSH port 22 is open in inbound rules of the security group assigned5.
to the instance.
You need to convert the downloaded key file from .pem to a private key as .ppk.6.

http://www.putty.org/

Getting Started with Elastic Compute Cloud Chapter 5

[176]

Converting a PEM file to a private key (PPK)

The following steps describe how to convert a .pem file to a .ppk file:

Open PuTTYGen, and click on the Load button. Select All Files from the drop-1.
down menu and choose the appropriate .pem file that you need to convert to a
.ppk file.

At the time of loading a file, default filtration is only done on .ppk files. Change it
to show All Files (*.*) to get a list of desired .pem files to load, as follows:

Figure 5.14: Loading .pem files

In the same PuTTYGen screen, make sure parameters are configured to store a2.
public key as an RSA format and bit size 2048:

Figure 5.15: Parameters to save private key without password phrase

Click on the Save private key button.3.
When saving the key, a warning dialog box may appear; you can select Yes on4.
the warning:

Getting Started with Elastic Compute Cloud Chapter 5

[177]

Figure 5.16: Warning dialog box

Finally, save the public key with the .ppk extension.5.

Connecting to an EC2 instance using a PuTTY session
Once you have a .ppk file, you are ready to connect to an AWS EC2 Linux instance. The
following steps describe the process to initiate an SSH connection with an EC2 instance
using PuTTY:

Run an application PuTTY on Microsoft Windows from where you need to1.
connect to the EC2 instance.
In the Category pane, on the left-hand side, select Session and provide the2.
following details:

The default port is 22 for Linux OS
The connection type should be SSH
The username should be the default SSH username based on the
OS type as shown in the previous table and public DNS or
public/ElasticIP, as follows:

Getting Started with Elastic Compute Cloud Chapter 5

[178]

Consider the syntax, as follows:

<username>@<PublicIP>

For example, to connect to a RHEL/CentOS 7 EC2 instance, use the following:

ec2-user@34.204.99.20:

Figure 5.17: PuTTY session

Getting Started with Elastic Compute Cloud Chapter 5

[179]

On the left-hand side, in the Category pane, select Connection| SSH| Auth and3.
click Browse... to provide a private key:

Figure 5.18: Providing a private key

Once you click Open, a security dialog box may appear confirming that you trust4.
the host you are about to connect with. Choose Yes and the SSH connection takes
place.

Troubleshooting SSH connection issues
While establishing an SSH connection with an EC2 instance, if all the required details are
properly provided but, in spite of that, it fails to establish an SSH connection, check out the
following points:

Ensure that you are giving the correct IP address of the instance.
Verify the username you have given along with the IP address.

Getting Started with Elastic Compute Cloud Chapter 5

[180]

Make sure an EC2 instance is up and running.
Ensure that the security group has SSH port 22 open and is accessible.
Check the OS level firewall and ensure it's not blocking the connection.
If you are behind a network proxy, ensure that your network proxy is not
blocking it.
Ensure that you are using the right .ppk file.
After verifying all the preceding steps, if you are still not able to log in, you can
try stopping and restarting the instance.
You can also diagnose the issue by stopping the instance, detaching its root drive,
and attaching and mounting it to another healthy EC2 instance as a secondary
drive. Once the drive is attached to another EC2 instance, you can diagnose
configuration issues.

EC2 instance metadata and user data
Metadata is data about an EC2 instance. EC2 instance details such as AMI ID, hostname,
instance ID, instance type, private IP address, public IP address, and so on are metadata of
the instance. EC2 instance metadata can be retrieved by querying 169.254.269.254 on the
same machine. From a Linux system, you can use the following command to retrieve the
metadata from the EC2 instance:

 $ curl http://169.254.169.254/

Issuing the curl command gives the following output, categorizing the metadata based on
the date it was introduced by AWS:

 1.0
 2007-01-19
 2007-03-01
 2007-08-29
 2007-10-10
 2007-12-15
 2008-02-01
 2008-09-01
 2009-04-04
 2011-01-01
 2011-05-01
 2012-01-12
 2014-02-25
 2014-11-05
 2015-10-20
 2016-04-19

Getting Started with Elastic Compute Cloud Chapter 5

[181]

 2016-06-30
 2016-09-02
 latest

Furthermore, the latest metadata is divided into three categories, as shown in the
following output:

 $ curl http://169.254.169.254/latest
 dynamic
 meta-data
 user-data

An EC2 instance's individual metadata properties can be retrieved by adding the property
at the end of the following command:

 $ curl http://169.254.169.254/latest/meta-data/

For example, you can retrieve ami-id by querying the following URL:

 $ curl http://169.254.169.254/latest/meta-data/ami-id

Similarly, you can use the following list of properties with the curl command to retrieve its
value:

 ami-id
 ami-launch-index
 ami-manifest-path
 block-device-mapping/
 hostname
 instance-action
 instance-id
 instance-type
 local-hostname
 local-ipv4
 mac
 metrics/
 network/
 placement/
 profile
 public-hostname
 public-ipv4
 public-keys/
 reservation-id
 security-groups

Getting Started with Elastic Compute Cloud Chapter 5

[182]

On an Amazon Linux EC2 instance, the ec2-metadata command also
gives metadata.

Placement group
A placement group is a logical grouping of EC2 instances within a single AZ. A placement
group provides a possible lowest network latency across all the EC2 instances that are part
of the same placement group. Not all EC2 instances support high network throughput (that
is, a placement group). Before launching an instance in a placement group, you need to
ensure that the instance type supports a placement group. It is best practice to create all the
EC2 instances required in a placement group, and ensure they are created in a single launch
request and have the same instance type. If multiple instance types are mixed in a
placement group then the lowest bandwidth among the EC2 instances is considered as the
highest network throughput of the placement group. It is recommended you choose an
instance type that supports a 10 GBps or 20 GBps network throughput. There is no
additional charge for creating an instance group.

Some important points about placement groups are as follows:

A placement group can span peered VPCs.
When network traffic is flowing to and from outside the placement group,
network throughput is limited to 5 GBps.
An existing EC2 instance in the same AZ cannot be moved inside a placement
group. You need to create an AMI of the existing instance and then launch a new
EC2 instance inside the placement group.
Even in the same account, placement groups cannot be merged.
When you stop and start an instance inside a placement group, it remains in the
same placement group.
If you get a capacity error while launching an instance inside a placement group,
you can stop and start all instances in the placement group. Stopping and starting
instances automatically migrates the instances to another hardware that has the
capacity to run them.

Getting Started with Elastic Compute Cloud Chapter 5

[183]

Introducing EBS
EBS is an AWS block storage service that provides block-level, persistent storage volumes
for EC2 instances. EBS volumes are a highly available and reliable storage solution. An EBS
volume can be attached only to the EC2 instances running in the same AZ. It provides
persistent storage and it is independent from the EC2 instance. That means the data on the
EBS volume remains intact even if the instance is restarted. AWS charges for the allocated
EBS volume sizes, even if the volume is not attached to any instance. Also, charges are
based on the allocated volume size and not based on how much data is stored on the
volume. EBS volumes can be formatted into the desired block size and filesystem. It is very
suitable for the read and write, such as database application or throughput of intensive
workloads such as big data. Once EBS volumes are attached to EC2 instances, they are used
like a normal physical drive. Multiple EBS volumes can be attached to a single EC2 instance;
however, one EBS volume can be attached only to a single EC2 instance.

AWS replicates EBS data at least three times within a single AZ. Unlike S3 data, it does not
get replicated in multiple AZs within the same region. It is also important to understand
that EBS volumes are not directly attached to the hosts (hypervisor), but they are network-
attached block storage.

Types of EBS
Currently, AWS provides the following types of EBS volumes. These EBS types have
different performance and prices per GB:

Solid State Drive (SSD):
General Purpose SSD (gp2)
Provisioned IOPS SSD (io1)

Hard Disk Drive (HDD):
Throughput optimized HDD (st1)
Cold HDD (sc1)

Previous generation volume:
Magnetic (Standard)

Getting Started with Elastic Compute Cloud Chapter 5

[184]

General Purpose SSD (gp2)
The gp2 volumes are one of the EBS volume types that provide persistent storage. gp2
volume types are ideal for a number of workloads. gp2 volumes are very efficient and
provide single-digit millisecond latencies. A gp2 volume is capable of bursting up to 3,000
IOPS for a significant amount of time. You can provision a minimum of 1 GiB size of gp2
volume and a maximum of up to 16 TiB of a gp2 volume. gp2 volume provides 3 IOPS per
GiB of volume size. However, if a volume size is 33.33 GiB or less, it provides a minimum of
100 IOPS. As you increase the volume size, the IOPS it provides, also increases. However, a
gp2 volume can provide a maximum of 10,000 IOPS. If you use multiple gp2 volumes in an
instance, AWS imposes a limit of a maximum of 65,000 IOPS per instance.

The following list tells you where to use gp2 volumes:

They are recommended for almost all workload types
They can be used as a root volume for an operating system
They can be attached to a virtual desktop
They can be used in interactive apps requiring low-latency storage
They can be used in development workloads
They can be used in testing environments

Provisioned IOPS SSD (io1)
Provisioned IOPS SSD (io1) volumes are solid state drive volumes that are intended to
address the needs of I/O intensive application workloads. io1 volumes are specifically used
for database workloads that require high performance storage and consistent throughput.
Unlike gp2 volumes, the io1 volume provides a consistent performance. You can specify a
consistent IOPS rate while creating the volume. io1 volumes can provide maximum
performance out of all other volume types. An io1 volume size can range from 4 GiB to 16
TiB. An io1 volume can have a minimum of 100 IOPS and a maximum of 20,000 IOPS. If
you use multiple io1 volumes in an instance, AWS imposes a limit of a maximum of 65,000
IOPS per instance.

The following list tells you where to use io1 volumes:

Mission-critical applications
Business-critical applications requiring consistent performance
Large databases workloads such as SQL Server, Oracle, and so on

Getting Started with Elastic Compute Cloud Chapter 5

[185]

Throughput Optimized HDD (st1)
Throughput Optimized HDD (st1) volumes are designed to provide a financially viable
magnetic storage option. st1 volumes are architected to measure the performance in terms
of throughput and not IOPS. The st1 volume type is recommended for a large and linear
workload such as data warehouse, log processing, Amazon Elastic MapReduce (EMR), and
ETL workloads. It cannot be used as a bootable volume. An st1 volume size can range from
500 GiB to 16 TiB. An st1 volume can have a maximum of 500 IOPS per volumes. If you use
multiple st1 volumes in an instance, AWS imposes a limit of a maximum of 65,000 IOPS per
instance.

The following list tells you where to use st1 volumes:

Applications requiring consistent and fast throughput at a low cost
Big data
Data warehouse
Log processing

Cold HDD (sc1)
Cold HDD (sc1) volumes are designed to provide a cost-effective magnetic storage option.
sc1 volumes are designed to measure the performance in terms of throughput and not IOPS.
The sc1 volume type provides a lower throughput limit compared to st1. It is recommended
for large, linear, cold-data workloads. It's a good low-cost alternative to st1 if you require
infrequent access to your data. sc1 volumes cannot be used as bootable root volume. An sc1
volume size can range from 500 GiB to 16 TiB. An sc1 volume can have a maximum of 250
IOPS per volumes. If you use multiple sc1 volumes in an instance, AWS imposes a limit of a
maximum of 65,000 IOPS per instance.

The following list tells you where to use sc1 volumes:

In throughput-oriented storage
For large volumes of data when you don't need to access it frequently
In application needs where there is a need to lower the storage cost

Getting Started with Elastic Compute Cloud Chapter 5

[186]

Encrypted EBS
Amazon provides a simple EBS encryption solution that does not require building,
maintaining, and securing your own key management infrastructure.

After creating an encrypted EBS volume, when you attach it to a supported instance, it
encrypts the following types of data:

All data at rest, stored inside the volume
All data that is moving between the volume and the EC2 instance
All snapshots back up taken from the volume
AWS encrypts the data on the servers that host EC2 instances and provide
encryption of data-in-transit from EC2 instances and on to EBS storage

Amazon EBS encrypts the data using AWS Key Management Service (KMS) with a
customer master key whenever you create an encrypted volume and subsequently any
snapshots from them.

When an encryption-enabled EBS volume is attached to the supported EC2 instance type,
encryption takes place at EC2 for data-in-transit from EC2 to EBS storage. All future
snapshot and disk I/Os are encrypted. An encryption master key from Amazon KMS is used
to perform encryption and decryption. Two types of encryption master keys can be
used—an Amazon created key and custom key or a customer-provided key. When creating
an encrypted EBS volume for the first time in any AWS region, AWS automatically creates a
master key in that region. By default, this key can only be used to encrypt the EBS volume.
In order to use a custom key to encrypt EBS volumes, you need to create a Customer
Master Key (CMK) in AWS KMS. Creating a CMK gives more control over disabling and
defining access control, and creating and rotating encryption keys. At present, the root
volume attached to the AWS EC2 instance cannot be encrypted. Other than the root, all
attached EBS volumes can be encrypted. AWS uses Advanced Encryption Standard
(AES-256) algorithms for encryption.

Getting Started with Elastic Compute Cloud Chapter 5

[187]

Monitoring EBS volumes with CloudWatch
Once the desired size and type of EBS volumes have been created, it is recommended you
monitor the performance of the volumes. Monitoring helps in identifying any performance
bottleneck, if any, due to any issue. We can use performance logs in CloudWatch to
determine whether any volume type needs an upgrade in terms of size, IOPS, or
throughput. When an EBS volume is created, AWS automatically creates several
CloudWatch metrics for each EBS volume. Monitoring data is categorized into basic and
detailed monitoring. Basic monitoring details are free and include metrics such as read
bandwidth (KiB/s), write bandwidth (KiB/s), read throughput (Ops/s), write throughput
(Ops/s), and many others.

Only Provisioned IOPS SSDs (io1) send monitoring data to CloudWatch at 1-minute
intervals. The rest of the EBS volume types, such as General Purpose SSD (gp2),
Throughput Optimized HDD (st1), Cold HDD (sc1), and Magnetic (standard) send data to
the CloudWatch metrics at 5-minute intervals.

CloudWatch does not monitor at what rate the disk is being filled or at what percent the
disk is utilized or empty. For such requirements, you need to create a custom CloudWatch
matrix.

More details about monitoring EC2 instances and EBS volumes are given in Chapter
7, Monitoring with CloudWatch.

Snapshots
An EBS snapshot is an AWS service that provides a mechanism to back up EBS volumes.
AWS provides a way to back up your EBS data on S3 by taking a point-in-time snapshot.
Snapshots are incremental in nature. That means it only saves data blocks that have
changed since the last snapshot backup taken from the volume. This incremental approach
of backing up data saves the time and cost of storage. If there are multiple snapshots for an
EBS volume and you delete one of the snapshots, AWS deletes only the data relevant to that
snapshot. Other snapshots created out of the same volume refer to the base data and the
incremental change relevant to them.

Getting Started with Elastic Compute Cloud Chapter 5

[188]

However, AWS stores the snapshot on S3; snapshots are not directly visible to users on S3.
AWS stores the snapshot on a separate area in S3, which is inaccessible to end users. Users
can see their snapshots on a snapshot dashboard, given within the EC2 dashboard.

Whether EBS volumes are attached to any instance or not, an EBS snapshot can be taken. A
snapshot not only provides an option to perform point-in-time backup of EBS volumes, but
it also acts as a baseline for new EBS volumes. A snapshot can be used to migrate existing
EBS volumes along with its data from one AZ, region, or AWS account to another. Snapshot
of an encrypted volume is also encrypted.

The internal mechanism for a snapshot is to write the copy of data from the EBS volume to
the S3 where it is stored redundantly across multiple AZs in the same region. When we
access S3 using a web console, CLI, or API, we can't see the snapshots in S3.

It is critical for an organization to draft a backup and retention policy that determines how
frequently snapshots are taken for EBS volumes. It is advisable that the backup and
retention policy also defines a retention period for each snapshot depending on
organizational needs. Housekeeping activities should be automated using scripts or tools to
take the snapshots as well as delete unwanted snapshots from the account to control
unnecessary cost.

Snapshots are the incremental backup. For any EBS volume, when taking the first snapshot,
all the written blocks are copied to S3 and, finally, the Table of Contents (TOC) for the
snapshot is written to the S3. The TOC points to these blocks. When taking a consequent
snapshot for the same EBS volume, it only copies modified blocks from the EBS volume to
S3 and creates a relevant table of contents. The table of contents points to the recent blocks
copied from EBS to S3 as well as blocks copied during previous snapshots, which are not
changed. The following figure helps to understand the same. In the same figure, we can see
TOC 2 and TOC 3 are pointing to some of the new and some of the old blocks:

Getting Started with Elastic Compute Cloud Chapter 5

[189]

Figure 5.19: Snapshot creation and deletion

Reference URL: http://www.rightscale.com/blog/cloud-industry-insights/amazons-elastic-block-store-explained

It also helps us to understand that when any intermediate snapshot is deleted, only those
blocks that are not referred to by any other snapshot TOCs are deleted.

Getting Started with Elastic Compute Cloud Chapter 5

[190]

EBS optimized EC2 instances
In a normal EC2 instance, the usual network traffic and EBS traffic flows through the same
network interface. If network traffic on application processes increases, it adversely affects
the EBS performance. Similarly, activities on an EBS volume read and write can adversely
affect other network activities on the instance. The following figure indicates how network
traffic from an EC2 instance and EBS volume flows through the same network link:

Figure 5.20: Network traffic on EC2 instance and EBS volume

https://cloudnative.io/blog/2015/01/ebs-best-practices-and-performance-tuning/

To handle such performance issues, AWS provides EBS-optimized instance types. An EBS
optimized instance provides dedicated throughput between EBS volumes and EC2 instance.
Such instance types are essential for the application where predictable and consistent disk
performance is required. While using Provisioned IOPS SSD volumes, it is recommended
you use an EBS-optimized instance. It ensures best performance out of Provisioned IOPS
SSD volumes.

EC2 best practices
The following list summarizes EC2 best practices:

Ensure that unused EC2 instances are stopped and, if not required, terminate
them. This reduces unnecessary cost in the monthly AWS billing.
Closely observe snapshots and AMIs, regularly perform housekeeping, and
discard all the AMIs and snapshots which are not required. It is recommended
you automate and monitor this process.

Getting Started with Elastic Compute Cloud Chapter 5

[191]

Ensure that an instance type is set as per the requirement of the application
hosted on the instance. It is recommended you optimize instance type as per
application performance.
To match a seasonal spike in compute requirement, plan for auto scaling and load
balancing.
Divide your application load into multiple instances rather than going for one big
instance, where possible. Dividing the application workload over multiple
instances, in different AZs, can avoid single point of failure.
Ensure to use On-Demand, Spot, and Reserved Instances in the environment
based on need. Balancing the instance types can significantly reduce cost as
reserved and spot instances provide a huge cost benefit.
Always keep your key pairs safely. Once a key pair is lost, it cannot be recovered
from AWS.
Do not embed access key and secret key into the EC2 instance. Where possible,
use EC2 roles for accessing AWS resources from an EC2 instance.
Attach appropriate IAM roles and policies, at the time of creating an EC2
instance, to grant access to other AWS services.
Periodically update security groups and maintain least permissive rules.
Periodically update and patch the OS to overcome possible security and other
vulnerabilities.
According to the data storage requirement such as persistent or temporary, select
EBS or instance-type backed AMI for provisioning an instance.
It is recommended you use separate volumes for the operating system and data
storage.
Always tag AWS resources with appropriate and relevant tags. This provides a
convenient way to identify the right EC2 instance at the time of performing
maintenance.
Create golden AMIs and update them periodically.
Periodically perform maintenance to delete obsolete and unwanted AMIs as well
as snapshots to minimize monthly AWS billing.
Monitor EC2 and EBS volumes to identify any performance bottleneck in the
environment.

6
Handling Application Traffic with

Elastic Load Balancing

Introduction to the Elastic Load Balancer
An Elastic Load Balancer (ELB) is an AWS service that automatically distributes incoming
network or application traffic to a number of EC2 instances. It monitors the health of each of
the EC2 instances associated with it and forwards traffic only to healthy instances. An ELB
provides a single point of contact for the EC2 instances behind the ELB. Each of the EC2
instances is marked with a status, either InService if it is healthy, or OutOfService if it is
unhealthy. Traffic is routed only to InService instances. An ELB provides a single point of
contact for the application traffic that is hosted on multiple EC2 instances. By routing traffic
only to healthy instances, an ELB provides fault tolerance to the application and ensures
high availability of the application:

Handling Application Traffic with Elastic Load Balancing Chapter 6

[193]

Benefits of using an ELB
An ELB provides high availability, fault tolerance, elasticity, and security to your
environment. We will now look at the benefits of an ELB in brief:

High availability: An application hosted behind an ELB on a fleet of EC2
instances spread across multiple AZ provides high availability. Consider a
scenario where an application is hosted in an EC2 instance without using an ELB.
If traffic to the application spikes, EC2 may not be able to handle the traffic and
application performance, as well as availability being affected. Consider the
similar traffic scenario where an application is hosted in multiple E2 instances
across AZs behind an ELB. The ELB distributes the traffic in a round-robin
fashion to all the instances, ensuring that any one EC2 instance is not flooded
with traffic.
Fault tolerance: An ELB monitors the health of each of the instances associated
with it. If an instance is unreachable, it marks the instance as OutOfService.
Similarly, if an instance is reachable and healthy, it marks the instance as
InService. The traffic is directed only to the InService instances. This way, even if
an instance is down, application traffic is not affected and it provides fault
tolerance to the application.
Elasticity: In spite of high availability and fault tolerance with a limited number
of instances in an ELB, traffic can spike beyond the capacity of the instances in the
ELB. If traffic is very low, however, the number of instances in an ELB may be
underutilized. Over utilization of instances may lead to application performance
issues and under utilization results in unnecessary cost. To handle both these
scenarios, an ELB can be associated with an Auto Scaling group. It provides
elasticity to an ELB by automatically increasing the number of instances in an
ELB when the traffic is high and automatically reducing the number instances
when the traffic is low.
Security: An ELB, when used with VPC, provides robust networking and
security features. It provides the ability to create an internal-facing ELB, using
private IP addresses to route traffic within the VPN. You can also create an
internet-facing load balancer to route traffic from the internet to instances in a
private subnet. In either case, instances are not directly accessible to the traffic.
An ELB acts as a frontend to the instances associated with it, and provides a
security layer to protect them.

Handling Application Traffic with Elastic Load Balancing Chapter 6

[194]

Types of ELB
There are two types of ELB—a Classic Load Balancer and an Application Load Balancer.

Classic Load Balancer
A Classic Load Balancer is one of the initial offerings of AWS. It handles the traffic,
depending upon application or network level information. It is used for load balancing
simple traffic across multiple EC2 instances where the need is to have a highly available,
automatically scaled, and secured environment. It is not suitable for the applications that
require advanced routing capabilities for handling the application traffic.

Application Load Balancer
An Application Load Balancer has been introduced lately in AWS offerings. Unlike a
Classic Load Balancer, it provides advanced application-level routing options. It provides
the ability to route the traffic based on application content spread across multiple services,
microservices, or container services with multi-tiered application architecture.

Features of an ELB
There are several features of an ELB. Each type of load balancer, be it a Classic Load
Balancer or an Application Load Balancer, has its own set of features. The following table
illustrates these features and compares the two types of ELBs. This comparison can help in
choosing the right load balancer type depending on the requirement:

Features Classic Load
Balancer

Application Load
Balancer

Protocols HTTP, HTTPS, TCP,
SSL HTTP, HTTPS

Platforms EC2-Classic, EC2-
VPC EC2-VPC

Sticky sessions (cookies) Load balancer generated

Idle connection timeout

Connection draining

Handling Application Traffic with Elastic Load Balancing Chapter 6

[195]

Cross-zone load balancing Always enabled

Health checks Improved

CloudWatch metrics Improved

Access logs Improved

Host-based routing

Path-based routing

Route to multiple ports on a single
instance

HTTP/2 support

WebSockets support

ELB deletion protection

ELB feature comparison

Let's understand each of the features supported by the respective load balancer type.

Protocols: As depicted in the table, a Classic Load Balancer supports transport layers as
well as application layers. Transport layers consist of TCP and SSL protocols, whereas
application layers use HTTP and HTTPS protocols. An Application Load Balancer takes
routing decisions at the application layer and supports only HTTP and HTTPS protocols.

Platforms: A Classic Load Balancer, being one of the initial offerings, supports EC2-Classic
as well as EC2-VPC, whereas an Application Load Balancer is introduced later in AWS
offerings for advance application-level options, and supports EC2 instances hosted in a VPC
only.

Sticky sessions: Sticky sessions is a way to consistently route traffic requests from a
particular user to the same target instance based on an HTTP session, IP address, or a
cookie. A Classic Load Balancer supports application cookies or, if an application does not
have a cookie, you can create a session cookie by specifying stickiness duration in an ELB
configuration. It creates a cookie named AWSELB for mapping the session to an instance.

Handling Application Traffic with Elastic Load Balancing Chapter 6

[196]

An Application Load Balancer supports sticky sessions using load balancer-generated
cookies. It's a mechanism to route traffic requests originated from a user to the same target
group every time during a session. When a user sends a request to an application for the
first time, an ELB routes the request to one of the instances and generates a cookie. This
cookie is included in the response back to the user. When the user sends the subsequent
requests, the request contains the same cookie. Based on the cookie, this request is sent to
the same target instance until the session duration lasts. The name of the cookie generated
in an Application Load Balancer is AWSALB.

Idle connection timeout: Every time a user makes a request to an ELB, it maintains two
connections. One connection is created with the client and another connection is created
with the target EC2 instance. For each of these connections, the ELB maintains an idle
timeout period. If there is no activity during the specified idle time between the client and
the target EC2 instance, the ELB closes this connection. In short, if there is no traffic flowing
from client to EC2 or vice versa, the ELB closes the connection. By default, idle time
duration is 60 seconds in an ELB.

Connection draining: An ELB stops sending requests to instances that are either unhealthy
or are deregistering from the ELB. This can lead to the abrupt closure of an ongoing session
initiated by a user. Such abrupt closed sessions give an unpleasant experience to an
application user. To take care of such user experience issues, AWS supports connection
draining in an ELB. When connection draining is enabled and an instance becomes
unhealthy or deregistering, an ELB stops sending new requests to such instances; however,
it completes any in-flight request made to such instances.

The timeout value for connection draining can be specified between 1 second and 3,600
seconds. The default timeout value for connection draining is 300 seconds. The load
balancer forces a connection to close and deregisters it if the time limit is reached.

Cross-zone load balancing: When a Classic Load Balancer is created with instances spread
across multiple AZs, it distributes the traffic evenly between the associated AZs. If you have
an ELB with 10 instances in US-East-1a and two instances in US-East-1b, the traffic is
distributed evenly between two AZs. This means two instances in US-East-1b serve the
same amount of traffic as 10 instances in US-East-1a. This is the default behavior of Classic
Load Balancing. If you enable cross-zone load balancing, an ELB distributes traffic evenly
between all the EC2 instances across multiple AZs.

Cross-zone load balancing is configurable in a Classic Load Balancer; however, it is always
enabled in an Application Load Balancer.

Handling Application Traffic with Elastic Load Balancing Chapter 6

[197]

Health checks: To determine whether an instance is capable of handling traffic or not, an
ELB periodically sends pings, tries to establish a connection, or sends HTTP/HTTPS
requests. These requests are used to determine the health status of an instance and are
called health checks. All the healthy instances in an ELB that serve the traffic have a status
as InService instances. All the unhealthy instances, which cannot serve the traffic, are called
OutOfService instances. The ELB routes requests only to the healthy instances. It stops
routing traffic requests to OutOfService instances. It resumes sending traffic to the instances
as soon as the instance status becomes healthy and InService.

CloudWatch metrics: AWS sends data points to CloudWatch for load balancers and all the
instances associated with it. CloudWatch aggregates those data points and creates statistics
in an ordered set of time-series data. This time-series data is called CloudWatch metrics for
ELB. With CloudWatch metrics, you can verify the number of healthy EC2 instances in a
load balancer during a specific time period. It helps to verify whether the system is
consistently performing as expected or not. With CloudWatch, you can create an event
trigger in case the metric is outside of the acceptable range. Such event triggers can send a
mail to stakeholders or take any specific action based on its association with either a
Lambda function or Auto Scaling group.

Proxy protocol: When an end user request hits an ELB, the ELB changes source IP and other
request headers and forwards it to one of the EC2 instances where the application is hosted.
This is the default behavior of an ELB, which bars an application from obtaining original
client connection information. In some enterprise applications, it is required to have original
source connection details to perform traffic analysis. It helps the application to understand
more about end user's behavior with such information. However, an ELB does not provide
original connection information to application by default; it supports proxy protocol, which
can be used to obtain connection information from ELB. Proxy protocol is nothing but an
Internet Protocol (IP), which carries client connection information. You can enable or
disable the proxy protocol on an ELB with the help of AWS CLI.

For more details on enabling or disabling the proxy protocol, you can refer to the URL:
https://www.linkedin. com/ pulse/ enable- disable- proxy- protocol- support- aws- elb-
using-cli-bhavin- parmar/ .

Access logs: An ELB generates access logs for each request sent to it. With each passing
request, it captures information such as time of request, source IP address, latencies, request
path, and the server response. The access log can be used to analyze the traffic and for
troubleshooting any issue. Enabling an access log is optional and it is disabled by default.
Once the access log is enabled for an ELB, it captures the log and stores it in an Amazon S3
bucket. The S3 bucket name can be specified while enabling the access log on an ELB.

https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/
https://www.linkedin.com/pulse/enable-disable-proxy-protocol-support-aws-elb-using-cli-bhavin-parmar/

Handling Application Traffic with Elastic Load Balancing Chapter 6

[198]

AWS does not charge any additional amount for access logs, however, you are charged for
the storage you use on S3 bucket for access logs.

Host-based routing: Host-based routing refers to a mechanism of routing traffic to a
specific target group based on the hostname specified in the host header of the request. For
example, requests to www.example.com can be sent to target group A, requests to
mobile.example.com can be sent to target group B, and requests to api.example.com
can be sent to target group C.

Host-based routing is only supported in an Application Load Balancer.

Path-based routing: An Application Load Balancer provides a mechanism to route traffic to
a specific target group based on the URL path specified in the host header of the request.
For example, requests to www.example.com/production can be sent to target group A,
requests to www.example.com/sandbox can be sent to target group B, and requests to
www.example.com/admin can be sent to target group C.

Path-based routing is only supported in an Application Load Balancer.

Route to multiple ports on a single instance: An Application Load Balancer supports
routing traffic to multiple ports on an EC2 instance. For example, an EC2 instance can run
multiple applications on different ports on a single EC2 instance:

EC2 can run the main web server on port 80
It can run the admin application on port 8080
It can run the reporting application on port 5000

In such a scenario, an Application Load Balancer can route all the traffic requests with a
host header as www.example.com to port 80 on the instance, all traffic requests with a host
header www.example.com/admin to port 8080 on the instance, and all the traffic requests
with a host header www.example.com/reporting to port 5000 on the instance.

Routing to multiple ports on a single instance is only supported in an Application Load
Balancer.

HTTP/2 support: HTTP/2, also called HTTP/2.0 is a major revision of the HTTP network
protocol used on the internet. Using HTTP/2 features, web applications can increase their
speed. It improves the way data is framed and transported. Websites can increase the
efficiency and minimize the number of requests required to load an entire web page.

Handling Application Traffic with Elastic Load Balancing Chapter 6

[199]

An Application Load Balancer supports HTTP/2, industry standard protocol, and provides
better visibility on the health of the EC2 instances and microservers or containers.

WebSockets support: WebSockets are an advanced technological development that enables
the application to open an interactive communication session between the browser and an
application server. If WebSockets are enabled, it allows you to send a message to an
application server and receive event-driven responses from the server without polling the
server for its response. It provides a persistent connection between a browser and the
application server. The browser establishes the connection with the application server using
a process named WebSocket handshaking. Once a session is established, the browser or the
application can start sending the data unilaterally as and when required. An Application
Load Balancer supports WebSockets, whereas a Classic Load Balancer does not support it.

ELB deletion protection: An Application Load Balancer supports a configuration option
that ensures that an ELB is not accidentally deleted by anybody. This option is called an
ELB deletion protection. It is supported only by an Application Load Balancer. If ELB
deletion protection is enabled, you cannot delete the ELB unless this option is disabled
again.

Step by step – creating a Classic Load Balancer
Before creating a load balancer, it is necessary to ensure that the desired configuration of
VPC and EC2 instances are in place. If you create an ELB with EC2 instances spread across
multiple AZs, ensure that the required instances are in place in each AZ to perform tests
after creating the ELB. Also, verify that the security group attached to the respective EC2
instances allows incoming traffic on required ports and protocols. It is also recommended
that the desired application or web server is configured properly on the target EC2
instances. With this background, let's follow the steps to create a Classic Load Balancer:

Log in to the AWS web console with sufficient credentials to create an ELB.1.
Go to the EC2 dashboard and select Load Balancers from the left-hand side pane,2.
as shown in the following screenshot:

Figure 6.1: Load Balancers option on EC2 dashboard

Handling Application Traffic with Elastic Load Balancing Chapter 6

[200]

Click on the Create Load Balancer button, as shown in the following screenshot:3.

Figure 6.2: Creating a Load Balancer button

Select the Classic Load Balancer type, as shown in the following screenshot:4.

Figure 6.3: Selecting Classic Load Balancer

Handling Application Traffic with Elastic Load Balancing Chapter 6

[201]

Next, we define the Classic Load Balancer Basic Configuration:5.

Figure 6.4: Classic Load Balancer – Configuration

In this step, you need to understand the following ELB options:

Load Balancer name: Provide a meaningful and relevant ELB name; it can be
alphanumeric (A-Z, a-z, 0-9) and dash (-).
Create LB Inside: Select the desired VPC, where EC2 instances reside. Only one
VPC can be selected from the drop-down menu.
Create an Internal load balancer: Select this option when creating a load balancer
to manage traffic only from within an AWS environment. An internal load
balancer cannot serve internet traffic and can be accessed from within the
network or associated VPC.

Handling Application Traffic with Elastic Load Balancing Chapter 6

[202]

Enable advanced VPC configuration: Select this option to perform manual
selection of available subnets within a selected VPC in the region. When you
select this option, other relevant options become visible.
Listener Configuration: Listener defines the ports and protocols which the ELB
opens for end users to send requests and it defines target ports and protocols on
EC2 instances where the ELB can forward the incoming traffic. When the listener
port on the ELB is selected as HTTPS, in consecutive steps, it asks to upload an
SSL certificate along with essential cipher configuration.

Create a new security group or select an existing security group, as shown in the6.
following screenshot. It is recommended you create individual security groups
for every ELB. Security groups should open only the minimum required ports
and protocols:

Figure 6.5: Assign Security Groups

Handling Application Traffic with Elastic Load Balancing Chapter 6

[203]

Configure the SSL certificate. You can either Choose an existing certificate from7.
AWS Certificate Manager (ACM), Choose an existing certificate from AWS
Identity and Access Management (IAM), or Upload a new SSL certificate to
AWS Identity and Access Management (IAM), as shown in the following
screenshot:

Figure 6.6: Configure Security Settings

When a listener is selected to listen on a HTTPS (443) port, it is essential to
provide certificate details to move on to the next step.

Handling Application Traffic with Elastic Load Balancing Chapter 6

[204]

The next step is to Configure Health Check. You can use the health check8.
options table as a reference for configuring the health check options, shown as
follows:

Figure 6.7: Configure Health Check

The various health check options are listed as follows:

Health check
option Description

Ping Protocol Ping Protocol can be either HTTP, HTTPS, TCP, or SSL target instance,
which should allow the selected protocol for pinging it.

Ping Port

This is the port on which ELB can send the ping request to instances.
This port should be the port on which EC2 hosts the application. The
default port is 80, which can be changed based on where the application
listens.

Ping Path

Ping Path points to a specific document or page on the EC2 instance.
Ideally, this should be the path to the initial page loaded on the
application. The ping is considered as a success if it is able to reach the
page on a given path.
To minimize the time to complete each ping, it is recommended you
point it to the document root (/) rather than /index.html.

Handling Application Traffic with Elastic Load Balancing Chapter 6

[205]

Healthy
threshold

Healthy threshold is the threshold value in the range of 2 to 10. It
defines the number of consecutive successful health checks before
considering any EC2 instance as healthy instance.

Unhealthy
threshold

Unhealthy threshold is the threshold value in the range of 2 to 10. It
defines the number of consecutive failed health checks before
considering any EC2 instance as unhealthy instance.

Response
Timeout

This is an integer value in the range of 2 to 60 seconds. It defines the
time interval in seconds. If an instance fails to respond during this time,
the ELB considers it as a failed health check. The instance is marked as
an unhealthy instance if it crosses the unhealthy threshold.
Note: Health check timeout must be smaller than interval.

Interval
Interval can be given as an integer value in the range of 5 to 300 seconds.
The ELB waits for the number of seconds defined in the interval
between two health checks.

Add EC2 instances from each of the AZs selected. Select Enable Cross-Zone Load9.
Balancing and Enable Connection Draining as required. If connection draining
is enabled, you can specify the number of seconds against it. The ELB waits for
the number of seconds defined for in-flight traffic to drain before forcing a
session to close on deregistering an EC2 instance:

Figure 6.8: Add EC2 Instances to an ELB

Handling Application Traffic with Elastic Load Balancing Chapter 6

[206]

Add tags, as shown in the following screenshot. It is recommended you give10.
meaningful and relevant tags on an ELB as per enterprises naming conventions:

Figure 6.9: Add Tags to the ELB

Finally, click on Review and Create and verify the configuration. If everything is11.
as per requirement, click on the Create button. Once ELB creation is completed, it
provides an ELB endpoint. An ELB endpoint can be configured in the CNAME
record set in DNS to forward end user requests to the ELB.

How an ELB works
Since all the ELB terminologies and features are explained, let us understand how exactly
an ELB works.

The working of a Classic Load Balancer
As per the OSI model, a Classic Load Balancer runs at Layer 4, which is the transport layer.

A transport layer-level load balancer operates at the network protocol level. It does not
check the content of actual network packets. A transport layer-level load balancer does not
check specific details of HTTP and HTTPS requests. In other words, it distributes the load
without necessarily knowing much detail about the incoming traffic requests.

Handling Application Traffic with Elastic Load Balancing Chapter 6

[207]

A user creates the Classic Load Balancer with instances spread across one or more AZs.

The load balancer configuration includes the following:

Security group, which defines the security of the ELB including the source of
traffic that is allowed on the ELB, ports, and protocols open on the ELB for
incoming traffic.
Listener ports and protocols on which the ELB listens for incoming traffic and
target ports and protocols on EC2 instances where the ELB directs the traffic.
User includes SSL/TLS certification in the configuration.
User defines health check for the associated instances. Health check enables the
ELB to monitor the instances and determines whether an EC2 instance is InService
or OutOfService. The ELB routes traffic only to healthy instances with InService
status.
User can enable cross-zone load balancing to balance the traffic across all the
instances in multiple AZs as required. If cross-zone load balancing is not enabled,
traffic is routed on round-robin fashion between AZs.
User can enable connection draining. If connection draining is enabled, before
deregistering an instance from ELB, it allows in-transit sessions to complete for a
defined span of seconds.
Once an ELB is configured and associated with an application, AWS provides an
ELB endpoint. An ELB endpoint can be used to define a CName in Route53 or
any other DNS.
As described in the following figure, a user can type in a site URL
www.example.com in the browser.
The user's request for the website hits a DNS server, which resolves to an ELB
endpoint registered with the DNS, and the request is forwarded to the ELB
endpoint.
The ELB endpoint resolves in a public IP address if the ELB is defined as an
internet-facing ELB, or it resolves in a private IP address if the ELB is defined as
an internal-facing ELB:

Handling Application Traffic with Elastic Load Balancing Chapter 6

[208]

Figure 6.10: Classic Load Balancer

The ELB receives the request forwarded by user and checks the source IP, host header, and
cookie, if sticky sessions is enabled.

If the source of the request is authorized to access the ELB, it forwards the traffic in a round-
robin fashion to the AZs associated with the ELB. If cross-zone load balancing is enabled,
the traffic is distributed between all the instances in a round-robin fashion instead of
distributing it at AZ level. If sticky sessions is enabled, ELB establishes a persistent session
between client browser and EC2 instance. All subsequent requests from this user are
forwarded to the same EC2 instance until the user session ends.

The target EC2 instance forwards the response, which is captured by ELB and forwarded
back to the user.

The working of an Application Load Balancer
As per OSI model, an Application Load Balancer runs at Layer 7, called the application
layer.

An Application Load Balancer is more powerful than a Classic Load Balancer. It checks the
traffic packets for more detail. It also has access to the HTTP and HTTPS headers of the
requests. It fetches more detail from the packets, which empowers it to do a more intelligent
job in distributing the load to target instances.

Handling Application Traffic with Elastic Load Balancing Chapter 6

[209]

An Application Load Balancer supports content-based routing. You can enable host-based
and path-based routing on an Application Load Balancer.

It also supports routing to multiple ports on a single instance.

It provides support for HTTP/2, which enables a website to increase efficiency and
minimize the number of requests required to load a web page.

With the support of WebSockets, an Application Load Balancer can enable the application
to open an interactive communication session between the browser and an application
server.

A user creates the Application Load Balancer with instances spread across one or more
target groups in multiple AZs.

The load balancer configuration includes the following:

Security Group, which defines the security of the ELB including the source of
traffic that is allowed on the target group, ports, and protocols open on the ELB
for incoming traffic.
Listener ports and protocols on which the ELB listens for incoming traffic and
target ports and protocols on EC2 instances where the ELB directs the traffic.
User can also define content-based routing. Content-based routing includes host-
based routing or path-based routing. Depending upon the configuration, the
traffic requests are forwarded to specific target groups.
User includes SSL/TLS certification in the configuration.
User defines health check for the associated instances. Health check enables the
ELB to monitor the instances and determines whether an EC2 instance is InService
or OutOfService. The ELB routes traffic only to healthy instances with InService
status.
Cross-zone load balancing is automatically enabled in the Application Load
Balancer and the traffic is routed on a round-robin fashion across all the
instances.
User can enable connection draining. If connection draining is enabled, before
deregistering an instance from the ELB, it allows an in-transit session to complete
for a defined span of seconds.
Once an ELB is configured and associated with an application, AWS provides an
ELB endpoint. The ELB endpoint can be used to define a CName in Route 53 or
any other DNS.
A user can type in a site URL www.example.com in the browser.

Handling Application Traffic with Elastic Load Balancing Chapter 6

[210]

User request for the website hits a DNS server, which resolves to an ELB
endpoint registered with the DNS and the request is forwarded to the ELB
endpoint.
ELB endpoint resolves in a public IP address if the ELB is defined as an internet-
facing ELB, or it resolves in a private IP address if the ELB is defined as an
internal-facing ELB.

Figure 6.11: Application Load Balancer

The ELB receives the request forwarded by the user, and then checks the source IP, host
header, and cookie if sticky sessions is enabled.

If the source of the request is authorized to access the ELB, it forwards the traffic in a round-
robin fashion to the target group associated with the ELB. The traffic is distributed between
all the instances in round-robin fashion. If sticky sessions is enabled, the ELB establishes a
persistent session between the client browser and the EC2 instance. All subsequent requests
from this user are forwarded to the same target until a session lasts.

The target EC2 instance forwards the response, which is captured by the ELB and
forwarded back to the user.

Handling Application Traffic with Elastic Load Balancing Chapter 6

[211]

ELB best practices
ELB best practices are as follows:

While defining a load balancer, it is recommended you identify target AZs and
target groups
Use multiple AZs in the ELB as it provides high availability and fault tolerance
It is highly recommended that a security group for the ELB opens only required
ports and protocols
Always configure health checks for the ELB on appropriate ports and protocols
If the ELB is created for a web server, use the HTTP/HTTPS protocol in health
checks instead of the TCP protocol
Do not create internet-facing ELBs for internal needs
Use SSL security certificates to encrypt and decrypt HTTPS connections where
possible
If a heavy traffic spike is expected on a given schedule, contact AWS support and
ask them to pre-warm the ELB
Use ELB deletion protection from accidental deletion
Use cross-zone load balancing in a Classic Load Balancer for evenly distributing
the load across all EC2 instances in associated AZs
Carefully enable connection draining on ELBs associated with critical user
applications

7
Monitoring with CloudWatch

CloudWatch is an AWS service that can be used on the AWS cloud for monitoring various
infrastructure and application resources running on your AWS cloud. CloudWatch can be
used to collect a number of metrics from the AWS resources. It allows you to track these
metrics and also initiate actions based on the threshold you set. CloudWatch can also collect
log files, generate metrics out of them, and help to monitor log files. You can set alarms on
specific events and trigger an action whenever an event occurs. For example, if CPU
utilization for a specific instance crosses a threshold of 80%, you can initiate an action to
spin up a new instance.

CloudWatch supports the monitoring of many AWS services such as EC2 instances,
DynamoDB, RDS, and so on. You can also generate custom metrics and log files using your
own applications and associate them with CloudWatch. Amazon services like Auto Scaling
uses CloudWatch alarms to automatically scale an environment up or down, based on the
traffic on an environment.

CloudWatch provides a number of graphs and statistics. It gives your system broad insights
into how resources are utilized, how to monitor application performances, and tracks the
overall operational health of respective applications in an environment. All this
infrastructure and application telemetry data can be used to ensure smooth functioning of
your environment.

Monitoring with CloudWatch Chapter 7

[213]

How Amazon CloudWatch works
CloudWatch acts as a repository of metrics, by collating raw data from various AWS
services or applications, converting it into metrics, statistics, graphs, and facilitates certain
actions based on specific data points in metrics. The following figure shows the high-level
architecture of CloudWatch:

Figure 7.1: High level architecture of CloudWatch

Reference URL: https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_architecture.html

As shown in the preceding figure, various AWS services and your custom metrics data are
stored in CloudWatch. CloudWatch generates various statistical and graphical
visualizations out of these metrics which can be consumed directly from the AWS
Management Console or by various other means including, but not limited to, AWS CLI,
API, custom build applications, and so on. CloudWatch enables the user to set alarms that
can trigger certain actions based on the metrics threshold or events. It can send email
notifications or automatically scale an environment up or down using Auto Scaling groups
associated with alarms.

Monitoring with CloudWatch Chapter 7

[214]

Elements of Amazon CloudWatch
To understand and work with AWS-generated and custom metrics, it is important to
understand a few basic concepts and terminologies used with Amazon CloudWatch.

Namespaces
CloudWatch namespaces are containers in which metrics for different applications are
stored. It is a mechanism to isolate metrics of different applications from each other.
Namespaces ensure that an application's metrics, as well as respective statistical data, are
not accidentally mixed up with any other application's metrics. All the AWS services that
use CloudWatch to register their metrics use a unique namespace. A namespace name
begins with AWS/ and is generally followed by the application name. If you create a custom
application and need to store metrics in CloudWatch, you must specify a unique namespace
as a container to store custom metrics. Namespace can be defined at the time of creating the
metrics. The namespace name can be a string of up to 256 characters including (A-Z, a-z,
0-9), hyphen (-), underscore (_), period (.), slash (/), hash (#), and colon (:).

Some of the namespaces are given in the following table. For more details on namespace,
you can refer to URL: http:/ /docs. aws. amazon. com/ AmazonCloudWatch/ latest/
monitoring/aws-namespaces. html.

AWS product Namespace

Amazon API Gateway AWS/ApiGateway

Amazon CloudFront AWS/CloudFront

Amazon CloudSearch AWS/CloudSearch

Amazon CloudWatch Events AWS/Events

Amazon CloudWatch Logs AWS/Logs

Amazon DynamoDB AWS/DynamoDB

Amazon EC2 AWS/EC2

Amazon EC2 (Spot instances) AWS/EC2Spot

Amazon EC2 Container Service AWS/ECS

Amazon EBS AWS/EBS

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html

Monitoring with CloudWatch Chapter 7

[215]

Amazon EFS AWS/EFS

Amazon Elastic Transcoder AWS/ElasticTranscoder

Amazon ElastiCache AWS/ElastiCache

Amazon Elasticsearch Service AWS/ES

Amazon EMR AWS/ElasticMapReduce

Amazon Kinesis Analytics AWS/KinesisAnalytics

Amazon Kinesis Firehose AWS/Firehose

Amazon Kinesis Streams AWS/Kinesis

Amazon RDS AWS/RDS

Amazon Route 53 AWS/Route53

Amazon Simple Email Service AWS/SES

Amazon SNS AWS/SNS

Amazon Simple Queue Service AWS/SQS

Amazon S3 AWS/S3

Amazon Simple Workflow Service AWS/SWF

Metrics
Metrics are sets of data collected over a period of time with a specific time interval for
quantitative assessment, measurement, and comparison of performance data generated by a
specific application or a service. For example, CPU utilization data for an EC2 instance is
stored in a relevant CloudWatch metric at a time interval of one minute. Each AWS service
stores several metrics in CloudWatch. For an instance, EC2 stores CPUUtilization,
NetworkIn, NetworkOut, DiskReadOps, DiskWriteOps, and so on. CloudWatch, by
default, stores metrics data at an interval of five minutes. If you enable advance monitoring,
it can store a metrics data point at an interval of one minute.

Monitoring with CloudWatch Chapter 7

[216]

CloudWatch retains all metrics for 15 months before discarding them, however lower-level
granularity of data is deleted to keep the overall volume of data at a reasonable size:

Granularity of data Data retention period

60 seconds (1 minute) 15 days

300 seconds (5 minutes) 63 days

3600 seconds (1 hour) 455 days (15 months)

CloudWatch also allows you to create custom metrics with a custom name and the required
time interval to store a data point. Metrics are region based. AWS generated default metrics
or custom metrics can be found only in the region where it is created. Metrics cannot be
deleted manually. They automatically expire after 15 months from the time of the last
published data point into the metrics.

Metrics are unique in nature, defined by the combination of a namespace, metric name, and
one or more dimensions. Each data point has a timestamp, data point, and optionally, a unit
of measurement.

Dimensions
A dimension in a CloudWatch metric is a mechanism to uniquely identify metrics. It is a
name/value pair that is associated with metrics.

For example, CloudWatch stores metrics for EC2 instances in a namespace called AWS/EC2.
All EC2 metrics are stored in the specific namespace. If you need to retrieve metrics for a
specific InstanceID, you search the metrics with its InstanceID like
i-09x7xxx4x0x688x43.

In the preceding example, InstanceID is its name and i-09x7xxx4x0x688x43 is its value
which represents a dimension. When you search the metrics with the InstanceID value,
you are using a dimension. A dimension is a unique identifier of metrics. When you search
with a different value of InstanceID, CloudWatch provides you with a different metric
that is related to another instance. Similarly, you can search metrics with a different
dimension name. For example, you can search the EC2 metrics with an ImageID. Metrics
can have a maximum of 10 dimensions. Here's the list of dimensions in EC2:

InstanceId

ImageId

Monitoring with CloudWatch Chapter 7

[217]

InstanceType

AutoScalingGroupName

Just like EC2, other services have their own dimensions. You can also create a metric with
its custom dimensions.

Statistics
Statistics are a collection of aggregated metrics data for a specific period of time. Metrics
data is aggregated using namespace, metric name, dimensions, and several data points in a
given time period. CloudWatch provides the following statistics on the metrics data:

Statistic Description

Minimum
The least, smallest, or lowest value recorded in the metrics for a specific
period of time. For example, lowest CPU utilization recorded during the
day on an EC2 instance.

Maximum
The largest, biggest, or highest value recorded in the metrics for a specific
period of time. For example, highest CPU utilization recorded during the
day on an EC2 instance.

Sum
Total value resulting from addition of all the matching metrics for a
specific period of time. It is useful to study the total volume of activities.
For example, total data transferred on an EC2 instance in the past 24 hours.

Average

Average value resulting from addition of all the matching metrics for a
specific period of time and dividing it by the total number of sample
count. For example, average CPU utilization on an EC2 instance for the
last one hour.

SampleCount
Simply counts the number of data points used for the statistical
calculation.

pNN.NN
The value represented in percentile. It uses up to two decimal places to
specify a number. It helps to study statistics in terms of percentile such as
p80.43.

Monitoring with CloudWatch Chapter 7

[218]

At any given point of time, a data point may contain more than one value, as shown in the
following table. It describes some statistics with sample data:

Hour Raw data Sum Minimum Maximum SampleCount

1 80, 85, 75, 70, 77 387 70 85 5

2 60, 80, 70, 75, 65 350 60 80 5

Percentile
A percentile helps in finding the comparative standing of a value in a set of data. Let us take
an example of a data set that contains the CPU utilization of an EC2 instance. The example
data is arranged in ascending order for better understanding:

12 17 25 55 58 61 63 70 83 97

Let us consider the percentile for 83 from the preceding data set. In this example, 83 stands
at the 90th percentile. That means, 90 % of the data is less than or equal to 83 and the
remaining 10 % is above 83.

A percentile gives a better insight of the data with better understanding on how the data is
distributed. The following AWS services support percentiles:

EC2
Application Load Balancer
Classic Load Balancer
RDS
Kinesis
API Gateway

CloudWatch provides options to monitor systems and applications using various statistics
such as maximum, minimum, average, sum, or percentile. If you choose percentile,
CloudWatch starts displaying the statistics according to percentile value.

Monitoring with CloudWatch Chapter 7

[219]

Alarms
CloudWatch alarms help in defining a threshold value that is constantly monitored, and an
action is triggered when the threshold condition is breached.

For example, you can define a threshold of 80% CPU utilization on an EC2 instance and
trigger an action whenever the CPU utilization is >=80 for three consecutive periods.

The action can be one or more SNS notification, Auto Scaling action, or an EC2 action. An
SNS notification can be used to send an alert over mail, an SMS over mobile, and it can also
trigger a Lambda function. Auto Scaling action is used for scaling an environment up by
adding more instances or scaling an environment down by reducing the number of
instances. EC2 action can be used for rebooting, stopping, terminating, or initiating a
recovery on the instance.

An alarm can have three possible states:

Alarm status displays OK when the metric is within the defined threshold
Alarm status displays ALARM when the metric is outside of the defined threshold
Alarm status displays INSUFFICIENT_DATA when the alarm is just configured,
the metric is not available, or not enough data is available for the metric to
determine the alarm state

Creating a CloudWatch alarm
The following steps describe the process of creating a CloudWatch alarm:

Open CloudWatch console by navigating to https:/ /console. aws. amazon. com/1.
cloudwatch/ on your browser. It brings you to the CloudWatch dashboard.
Click on Alarms, as shown in the following screenshot:2.

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Monitoring with CloudWatch Chapter 7

[220]

Figure 7.2: CloudWatch dashboard

Click on the Create Alarm button, as shown in the following screenshot:3.

Figure 7.3: Create Alarm

Monitoring with CloudWatch Chapter 7

[221]

Click on Per-Instance Metrics:, as shown in the next screenshot. This window4.
shows multiple categories of metrics depending upon the metrics you have in the
account. For example, if you have EC2 instances in the account, it shows EC2
Metrics:, if you have ELB resources in the account, it shows ELB Metrics and
similarly, it shows different categories of metrics for which you have resources in
the account. Depending upon the requirement, you can select any of the category
metrics as needed:

Figure 7.4: CloudWatch Metrics by Category

Monitoring with CloudWatch Chapter 7

[222]

There are a number of metrics such as CPUUtilization, NetworkIn,5.
NetworkOut, and so on. You can select any of these metrics as needed. For this
example, select a metrics against an EC2 instance for
StatusCheckFailed_Instance, as shown in the following screenshot, and click on
the Next button:

Figure 7.5: Select a Metrics

Monitoring with CloudWatch Chapter 7

[223]

In the subsequent window, provide the alarm Name, Description, and threshold6.
values:

Figure 7.6: Alarm Threshold

In the Actions section, an action can be one or more from an SNS notification,7.
Auto Scaling action, or an EC2 action. An SNS notification can be used to send an
alert over mail or an SMS over mobile. An Auto Scaling action is used for scaling
an environment up by adding more instances or scaling an environment down by
reducing the number of instances. An EC2 action can be used for rebooting,
stopping, terminating, or initiating a recovery on the instance. For this example,
in the same window, select the + EC2 Action button which is shown as follows:

Monitoring with CloudWatch Chapter 7

[224]

Figure 7.7: Actions

When you click +EC2 Action, it displays the following screenshot. Select State is8.
ALARM against Whenever this alarm line item and select Recover this instance
from the action list:

Figure 7.8: EC2 Action

Monitoring with CloudWatch Chapter 7

[225]

If the instance is configured for basic monitoring, you have to select a minimum9.
of five minutes or a higher period, as shown in the next screenshot. An instance
can be configured for basic monitoring or it can be configured for advance
monitoring. With basic monitoring, instance is monitored at an interval of five
minutes. With advance monitoring, instance is monitored at an interval of one
minute. Depending upon the consecutive alarm period selected in the Alarm
Threshold section and the interval period for checking the alarm, Alarm Preview
shows the total duration for actions to trigger:

Figure 7.9: Alarm Preview

You can click on the Create Alarm button after selecting all the required options10.
in the Create Alarm window; this creates the alarm. Once the alarm is created, it
gets triggered based on the alarm status. In this example, alarm actions are
triggered when the instance status is failed for three consecutive periods of five
minutes each. Instance status failure alarm occurs when there is a hardware issue
or any issue with the virtualization host where the EC2 instance is hosted on
AWS. If you set this alarm, AWS automatically tries to recover the instance.

Monitoring with CloudWatch Chapter 7

[226]

You can follow similar steps for creating different types of alarms based on a metric of your
choice. For example, if you choose CPUUtilization metrics, you can either send an alert to
an administrator when the CPU utilization breaches the threshold or you can perform Auto
Scaling actions. Auto Scaling actions can add or remove instances in an Auto Scaling group
to optimize the resources required for serving the traffic.

Billing alerts
Just as CloudWatch monitors other AWS resources, it can also monitor the monthly billing
charges for an AWS account. You can set the threshold for billing. As soon as the billing
amount reaches the threshold or shoots above the specified threshold, it notifies the
specified administrators. You need to enable billing alerts before you can configure alerts on
billing data. You can enable billing alerts from AWS account settings. Remember, only the
root user can enable the billing alerts, an AWS IAM users cannot do that.

The process of enabling billing alerts is discussed as follows:

Log in to the AWS account with the root user credentials.1.
Click on the account name and My Billing Dashboard, as shown in the following2.
screenshot:

Figure 7.10: Opening My Billing dashboard

Monitoring with CloudWatch Chapter 7

[227]

From the left hand side pane, click on the Preferences and check Receive Billing3.
Alerts. Optionally, you can also enable Receive PDF invoice By Email and
Receive Billing Reports:

Figure 7.11: Billing dashboard preferences

Monitoring with CloudWatch Chapter 7

[228]

CloudWatch dashboards
Amazon CloudWatch provides a customizable dashboard inside a web console. It can
display a set of critical metrics together. You can create multiple dashboards where each
dashboard can focus on providing a distinct view of your environment. You can create a
custom dashboard to view and monitor the selected AWS resources from the same or
different regions. It provides a way to get a single view of critical resource metrics and
alarms for observing performance and health of the environment. It gives freedom to add,
remove, move, resize, and rename the graphs, as well as change the refresh interval of
selected graphs in a dashboard.

Monitoring types – basic and detailed
Amazon CloudWatch monitoring can be broadly categorized into two categories: basic
monitoring and detailed monitoring.

Basic monitoring: Basic monitoring is free and it collects data at a five-minute
time interval. By default, when you provision AWS resources, all AWS resources
except ELB and RDS start with a basic monitoring mode only. ELB and RDS
monitors the resources at a one-minute interval. For other resources, optionally,
you can switch the monitoring mode to detailed monitoring.
Detailed monitoring: Detailed monitoring is chargeable and it makes data
available at a one-minute time interval. Currently, AWS charges $0.015 per hour,
per instance. Detailed monitoring does not change the monitoring on ELB and
RDS which by default collates data at a one-minute interval. Similarly, detailed
monitoring does not change the EBS volumes which are monitored at five-minute
intervals.

Monitoring with CloudWatch Chapter 7

[229]

You can enable detailed monitoring while launching an instance or after provisioning the
instances. While launching an EC2 instance, it provides an option to enable detailed
monitoring in the third step, as shown in the following screenshot. You can refer to Chapter
5, Getting Started with Elastic Compute Cloud, which provides more details on how to launch
an EC2 instance:

Figure 7.12: Enable detailed monitoring while launching an EC2 instance

For enabling detailed monitoring on an existing EC2 instance, follow these steps:

Navigate to https:/ /console. aws.amazon. com/ec2/ for opening an EC2 console1.
from your browser.
From the left hand side navigation pane, select Instances.2.
Once the instance list is launched, select an instance for which you want to3.
change the monitoring type.
Select Actions | CloudWatch Monitoring | Enable Detailed Monitoring.4.
In the Enable Detailed Monitoring dialog box choose Yes, Enable.5.
Click on Close.6.

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Monitoring with CloudWatch Chapter 7

[230]

CloudWatch best practices
Here are the best practices that we can follow in CloudWatch:

It is best practice to monitor AWS resources and hosted applications using
CloudWatch. It helps in identifying performance bottlenecks and also helps in
optimizing resource costs.
It is recommended that you enable billing alerts for an AWS account. It helps to
monitor the monthly costs and keep a tab on them.
For better understanding of CloudWatch visualization, toggle the metrics
between UTC and local time.
By default, CloudWatch provides basic monitoring for resources and records
metrics at a five-minute interval. It is recommended that you use detailed
monitoring for critical resources, which records metrics at a one-minute interval.
Enable custom metrics where required. For example, you can enable memory
monitoring on EC2 instance, which is not part of the default EC2 metrics.
Create custom metrics for monitoring application behaviour and link them to
CloudWatch. They provide better insight on the application. For example, custom
metrics for monitoring JVM can be created for Java-based applications.
Enable Auto Recovery and Auto Restart Alarms for your critical EC2 instances. It
can automatically recover the instances from hardware related or virtualization
host related issues on AWS. Also, Auto Restart Alarm can recover the instance
from operating system level issues.
It is recommended that you automate monitoring tasks as much as possible.
Upload your critical custom logs to CloudWatch for quick statistical analysis.
While creating custom metrics, verify log files on your EC2 instances with
CloudWatch metrics to ensure that the right data synchronizes with CloudWatch.
Enable SNS notifications for critical metrics threshold breach.
AWS provides 10 alarms per month per customer for free. If you’re intending to
operate in a free tier, ensure that you do not exceed this limit.
AWS supports a maximum of up to 5,000 alarms for a customer in a region. If
you are a heavy user of alarms, plan your alarms in such a way that all critical
alarms are created before reaching the limit.

Monitoring with CloudWatch Chapter 7

[231]

CloudWatch does not validate actions while configuring them. Ensure that
configured actions exist and are validated properly. For example, ensure SNS
group has valid email IDs associated with it. Similarly, ensure that the Auto
Scaling group has a valid launch configuration associated with it.
While testing an application associated with an alarm, you can temporarily
disable alarms rather than getting flooded with alerts or unwanted actions being
triggered.
Some AWS resources may not send metric data to CloudWatch in certain
conditions. For example, an EBS volume does not send data to CloudWatch if it is
not attached to an instance. While trouble shooting any metrics availability issue,
ensure that the required conditions are met for monitoring the metrics for the
resource.

8
Simple Storage Service,
Glacier, and CloudFront

Before we understand what Amazon S3 is, let's look at some basic concepts around storage.
Storage services are usually categorized based on how they work and how they are used.
Specifically, there are three broad types of storage services: block storage, file storage, and
object storage:

Block storage: In simple terms, block storage is a type of storage that is not
physically attached to a server, but it is accessed as a local storage device just like
a hard disk drive. At the backend, the storage service provider creates a cluster of
disks, divided into a number of storage blocks. Each block is virtually connected
to a server and treated as local storage. The server operating system manages the
block of storage assigned to it. For example, AWS EBS is a block storage type.
When you provision a 100 GB EBS volume, a block of 100 GB is assigned from the
cluster of disks to that volume. The EBS volume is associated with an EC2
instance. The volume is subsequently formatted and a filesystem is created on it.
This volume is managed by the respective operating system installed on the EC2
instance for storing and retrieving data on it.

As each block of storage is treated as a local disk, block storage works well for
creating filesystems, installing operating systems, and databases. Even though the
block storage architecture is comparatively complex, it provides high
performance.

Simple Storage Service, Glacier, and CloudFront Chapter 8

[233]

File storage: File storage is also known as file-based storage. It is a highly
available centralized place for storing your files and folders. You can access file-
level storage using file level protocols such as Network File System (NFS),
Server Message Block (SMB), Common Internet File System (CIFS), and so on.
You can use file storage for storing and retrieving files and folders. Just like a
block storage, you can edit files stored on file storage. Unlike block storage, you
do not have access to format file storage, create a filesystem, and install an
operating system on it. It is centrally managed by the service provider.
Object storage: Object storage is a type of storage architecture where the data is
stored as objects. Each object consists of the data, metadata, and a globally unique
identifier. Metadata is data about data, and provides basic information about the
data stored in an object. Unlike block storage and file storage, you cannot edit the
data stored on object storage. If you need to edit a file, you have to create a new
file and delete the old file (or keep multiple versions of the same file).

The following table provides a comparison between block storage, file storage, and object
storage:

Block storage File storage Object storage

Unit of
transaction Blocks Files Objects, files with

metadata

How you can
update

You can directly
update the file

You can directly
update the file

You cannot update the
object directly. You create
a new version of the
object and replace the
existing one or keep
multiple versions of the
same object

Protocols SCSI, Fiber Channel,
SATA SMB, CIFS, NFS REST/SOAP over

HTTP/HTTPS

Support for
metadata

No metadata support;
it stores only filesystem
attributes

No metadata
support; it stores
only filesystem
attributes

Supports custom
metadata

Simple Storage Service, Glacier, and CloudFront Chapter 8

[234]

Usage

For creating
filesystems, installing
operating systems, and
storing transactional
data

Used as centralized
and shared file
storage

Used as a cloud storage
for storing static files and
data

Strength High performance
Simple to access,
highly available, and
easy for sharing files

Scalable, available over
the internet and
distributed access

Weakness Restricted to data
center capacity

Restricted to data
center capacity

Not suitable for in-place
editing of data

Can you
format it?

Yes, you get complete
access to format it and
manage filesystems on
it

No, you cannot
format it. It's a
shared service
wherein you have
access just to
manage data on it

No, you cannot format it.
It's a shared service where
you have access just to
manage objects on it.

Can you
install OS on
it?

Yes, block storage can
be used as a root
volume and you can
have an OS on it.

No, you cannot
install an OS on it

No, you cannot install an
OS on it

Pricing

You are charged based
on allocated volume
size irrespective of how
much data you store on
it

You are charged
based on the amount
of data you store on
it

You are charged based on
the amount of data you
store on it

Example of
specific
storage service

EBS Amazon Elastic File
System (EFS) S3

Amazon S3
S3 is a cloud-based object storage service from Amazon. It is highly scalable and makes it
easy to access storage over the internet. You can use S3 for storing and retrieving virtually
unlimited amounts of data at any time from anywhere. It provides you with access to a
highly scalable, reliable, efficient, and low-cost storage infrastructure that is used by
Amazon to run its own global network of websites.

Simple Storage Service, Glacier, and CloudFront Chapter 8

[235]

S3 is ideally suggested for storing static content such as graphics files, documents, log files,
audio, video, compressed files, and so on. Virtually any type of data in any file format can
be stored on S3. Currently, the permissible object size in S3 is 0 bytes to 5 TB. Objects in S3
are stored in a bucket. A bucket is a logical unit in S3 that is just like a folder. Buckets are
created at root level in S3 with a globally unique name. You can store objects and also
folders inside a bucket. Any number of objects can be stored in each bucket. There is a soft
limit of 100 buckets per account in S3.

S3 can be used for content storage and distribution, static website hosting, big data object
stores, backup and archival, storing application data, as well as for disaster recovery. Using
Java Script SDK and DynamoDB, you can also host dynamic applications on S3.

The following section describes the concepts and terminologies used in S3:

Buckets: A bucket is a logical unit in S3, just like a folder. It is a container in
which you can store objects and also folders. Buckets are created at root level in
S3 with a globally unique name. Any number of objects can be stored in each
bucket. For example, if you store an object named books/acda.pdf inside the
packtpub bucket, then it is accessible using the URL
https://packtpub.s3.amazonaws.com/books/acda.pdf.

Buckets are generally used for organizing objects in S3. It is associated with an
AWS account that is responsible for storing and retrieving data on the bucket. The
account, which owns the bucket, is charged for data transfer. Buckets play a vital
role in access control and pave the way for creating usage reports on S3.

Buckets can be created in a specific region. You can enable version control on a
bucket. If version control is enabled on a bucket, it maintains a unique version ID
against each object stored in it.

Objects: Objects are the basic entities stored in S3. Each object consists of the
data, metadata, and a globally unique identifier. Metadata is data about data, and
provides basic information about the data stored in an object. Metadata is stored
in a set of name/value pairs, which describes the information associated with the
object. For example, Date Last Modified, Content Type, Content-Length,
and so on. There can be two types of metadata associated with an object: system-
defined metadata and user-defined metadata.

An object is identified with a unique key (name) within the bucket and a version
ID, if versioning is enabled on the bucket.

Simple Storage Service, Glacier, and CloudFront Chapter 8

[236]

Keys: A key is the name that is assigned to an object. It is a unique identifier or
name for an object within a bucket. Every object in a bucket has only one key
associated with it. The combination of a bucket, key, and its respective version ID
uniquely identifies an object within a bucket. Every object within a bucket has a
unique address for accessing it through a web service endpoint. The address URL
consists of the bucket name, key, and a version number if versioning is enabled
on the bucket.

Example: https://packtpub.s3.amazonaws.com/books/acda.pdf. In this
example, packtpub is the name of the bucket and books/acda.pdf is the key as
follows:

Figure 8.1: Object URL in S3

Region: A region is a geographical region where Amazon S3 stores a bucket
based on user preferences. Users can choose a region while creating a bucket
based on the requirement. Ideally, a bucket should be created in the closest
geographical region where the bucket is needed to be accessed. Choosing a
closest region while creating a bucket optimizes latency while accessing the
bucket, reduces costs, and complies with any regulatory requirements an
organization may have.

Currently, Amazon has the following regions:

Region Location of S3 servers

US East (N. Virginia) Northern Virginia

US East (Ohio) Columbus Ohio

US West (N. California) Northern California

US West (Oregon) Oregon

Canada (Central) Canada

Asia Pacific (Mumbai) Mumbai

Asia Pacific (Seoul) Seoul

Simple Storage Service, Glacier, and CloudFront Chapter 8

[237]

Asia Pacific (Singapore) Singapore

Asia Pacific (Sydney) Sydney

Asia Pacific (Tokyo) Tokyo

EU (Frankfurt) Frankfurt

EU (Ireland) Ireland

EU (London) London

South America (Sao Paulo) Sao Paulo

S3 supported regions

When you create an object in a region, it is stored in the same region unless you explicitly
copy it over to any other region:

S3 data consistency model: Amazon provides two types of consistency model for
S3 data when you perform various input/output operations with it: read-after-
write consistency and eventual consistency.

The following table describes both of these data consistency models in S3:

Input/output operation Data consistency model Exception, if any

PUTS of new object read-after-write consistency

S3 gives eventual consistency for
HEAD or GET requests while
retrieving the key name before
creating an object

Overwrite PUTS and
DELETES

Eventual consistency No exception

Data consistency model

Amazon provides read-after-write consistency for PUTS of a new object. That means, if you
create a new object in S3, you can immediately read it.

Simple Storage Service, Glacier, and CloudFront Chapter 8

[238]

Amazon provides eventual consistency for overwrite PUTS and DELETES operations. That
means, it takes a few seconds before the changes are reflected in S3 when you overwrite an
existing object in S3 or delete an existing object.

Amazon replicates data across the region in multiple servers located inside Amazon data
centers. This replication process provides high availability for data. When you create a new
object in S3, the data is saved in S3; however, this change must replicate across the Amazon
S3 regions. Replication may take some time and you may observe the following behavior:

After you create a new object in S3, Amazon immediately lists the object keys
within the bucket and the new object keys may not appear in the list
When you replace an existing object and immediately try to read the object,
Amazon may return old data until the data is fully replicated
When you delete an object and immediately try to ready it, Amazon may read the
data for the deleted object until the deletion is fully replicated
When you delete an object in a bucket and immediately list the contents of the
bucket, you may still see the deleted object in the content of the bucket until the
deletion is fully replicated

Creating a bucket
The following steps describe the process of creating a bucket using the AWS Management
Console:

Sign in to your AWS account and go to the S3 console or visit https:/ /console.1.
aws.amazon. com/ s3/ . If you already have buckets in the account, it displays a list
of the buckets or the following screenshot, stating that you do not have any
buckets in the account:

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Simple Storage Service, Glacier, and CloudFront Chapter 8

[239]

Figure 8.2: S3 console

Click on the Create bucket icon, as displayed in the following screenshot:2.

Figure 8.3: Create bucket

Simple Storage Service, Glacier, and CloudFront Chapter 8

[240]

Clicking on the Create bucket button, display a popup as shown in the following3.
screenshot. Enter a DNS compliant bucket name. Bucket name must be unique
across all existing bucket names in S3. Since S3 is a shared service, it is likely that
you may not always get the bucket name you want as it might have been already
taken by someone.

Select the appropriate region where you want to create the bucket from the drop-
down menu as indicated in the following screenshot. If you already have some
buckets, you can Copy setting from an existing bucket. You can also click on the
Create button if you do not want to follow the remaining steps. You need to set
bucket properties and permissions later on, if you directly click on the Create
button. To understand these steps, you can click on the Next button:

Figure 8.4: Create bucket screen

Simple Storage Service, Glacier, and CloudFront Chapter 8

[241]

In the subsequent screen, as shown in the following screenshot, you can set the4.
required properties. You can see in the screen that by default, Versioning is
Disabled, Logging is Disabled, and there are no Tags. You can click on
Versioning and Logging as required or add tags as needed. When you click on
these items, it displays respective popups as shown in the following screenshot.
You can set the required properties as needed:

Figure 8.5: Bucket properties in Create bucket wizard

In the subsequent screen, as shown in the following screenshot, you can set folder5.
permissions. You can set individual user permissions, manage public
permissions, and manage system permissions:

Simple Storage Service, Glacier, and CloudFront Chapter 8

[242]

Figure 8.6: Manage bucket permission in Create bucket wizard

Simple Storage Service, Glacier, and CloudFront Chapter 8

[243]

In the subsequent screen, as shown in the following screenshot, review your6.
selection. If required, you can edit your selection under individual categories.
After reviewing everything, click on the Create bucket button. It creates a bucket
as per the input given by you:

Figure 8.7: Review your steps in the Create bucket wizard

Simple Storage Service, Glacier, and CloudFront Chapter 8

[244]

Bucket restriction and limitations
Bucket restrictions and limitations are listed as follows:

You can create a bucket using the S3 console, APIs, or the CLI.
Amazon imposes a soft limit of 100 buckets on an AWS account. You can increase
this soft limit by raising a support request with Amazon.
When you create a bucket, it is associated with the AWS account and the user you
have used to create it. Bucket ownership cannot be transferred to another AWS
account or another user within the same AWS account.
There is no limit on the number of objects that can be created in a bucket.
A bucket is created at the root level in S3; you cannot create a bucket inside a
bucket.
If you use an application that automatically creates a bucket, ensure that the
application chooses a different bucket name in case the bucket name generated by
the application already exists.

Bucket names should comply with DNS naming conventions, as follows:

Bucket names can range between 3 to 63 characters
Bucket names must be in lowercase letters. They can contain numbers and
hyphens
Bucket names must start with a lowercase letter or a number and similarly, must
end with a lowercase letter or a number
Bucket names must not be given as an IP address, that is, 192.168.1.10
It is recommended you avoid using periods (.) in bucket names

Bucket access control
Each bucket in S3 is associated with an access control policy, which governs how objects are
created, deleted, and enumerated within the bucket.

When you create an S3 resource, all S3 resources, including buckets, objects, life cycle
policy, or static website configuration, are by default private. Only the resource owner who
creates the resource, can access that resource. After creating the resource, the resource
owner can optionally grant permissions to other users using an access control policy.

Simple Storage Service, Glacier, and CloudFront Chapter 8

[245]

There are two types of access control policy:

Resource-based policies
User policies

Access policies that you associate with buckets and objects are called resource-based
policies. Bucket policies and Access Control Lists (ACL) are examples of resource-based
policies. Access policies that you associate with users are called user policies. You can use a
resource-based policy or user policy and, at times, a combination of both, to control access
to your S3 resources.

Bucket policy
A bucket policy, generally, comprises of the following elements:

Resource: This indicates Amazon S3 resources such as buckets and objects. While
creating a policy, you can specify ARN to allow or deny permissions on that
resource.
Action: This indicates one or more actions that are either allowed or denied. For
example, s3:GetObject specifies the permission to read the object data.
Similarly, s3:ListBucket specifies the permission to list objects in the bucket.
Effect: This specifies action type, either Allow or Deny access. If permission is not
explicitly granted on a resource, by default, access is denied. When you explicitly
Deny access, it ensures that the user cannot access the resource even if another
policy grants access.
Principal: This indicates the account/user who is allowed or denied access to the
resources mentioned in the policy statement. In a user policy, you may not need
to specify a principal. A user policy implicitly applies to the associated user.
Sid: This is an optional identifier known as statement ID, which is specified for
the policy statement. Sid values must be unique within the policy statement.
Here is an example of a bucket policy. The example policy allows the user
Heramb following three permissions on the bucket named packtpubs:

s3:GetBucketLocation

s3:ListBucket

s3:GetObject

Simple Storage Service, Glacier, and CloudFront Chapter 8

[246]

In the policy statement, Account-ID should be replaced with the AWS account number:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::Account-ID:user/Heramb"
 },
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::packtpubs"
]
 }
]
}

In the same policy, if you change the effect from Allow to Deny, it explicitly denies access to
the user Heramb on the packtpubs bucket to perform the specific set of actions mentioned
in the policy statement.

User policies
Access policies are associated with users or groups. Unlike a bucket policy, you don't need
to specify Principal in a user policy. A policy is implicitly applied to the user with whom
it is associated.

An example of user policy is as follows:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:ListAllMyBuckets"
],
 "Resource":"arn:aws:s3:::*"
 },

Simple Storage Service, Glacier, and CloudFront Chapter 8

[247]

 {
 "Effect":"Allow",
 "Action":[
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource":"arn:aws:s3:::packtpubs"
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:GetObject",
 "s3:DeleteObject"
],
 "Resource":"arn:aws:s3:::packtpubs/*"
 }
]
}

There are three parts to the preceding user policy example:

The first part describes permission to list all the buckets using a
ListAllMyBuckets action against arn:aws:s3:::*, which signifies all
resources in S3 for the account
The second part describes ListBucket and GetBucketLocation permissions
on the packtpubs bucket
The third part describes permissions to create, read, and delete objects in the
packtpubs bucket

Once a user policy is created, it can be attached to a user or a group to grant them respective
access specified in the policy.

Simple Storage Service, Glacier, and CloudFront Chapter 8

[248]

Transfer Acceleration
When you need to transfer a very big amount of data between your on-premises
environment and S3, time, efficiency, and the security of the data plays a very vital role. In
such requirements, S3 Transfer Acceleration can be very handy. It provides a fast, easy, and
secure way to transfer files between S3 and any other source or target of such data transfers.
For Transfer Acceleration, Amazon uses CloudFront edge locations. CloudFront edge
locations are spread across the globe, which facilitates the Transfer Acceleration process.

The scenarios in which you should use Transfer Acceleration are:

You have a centralized bucket, which your end customers use from across the
globe for uploading data
You regularly transfer GBs and TBs of data across continents
If available bandwidth is underutilized while you transfer data to S3

Enabling Transfer Acceleration
The steps for enabling Transfer Acceleration are as follows:

Log in to the AWS Management Console and go to the S3 Console or browse to1.
https:// console. aws. amazon. com/s3.
Open the bucket on which you need to enable Transfer Acceleration.2.
Click on the Properties tab as shown in the following screenshot:3.

Figure 8.8:Selecting Bucket Properties

https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3

Simple Storage Service, Glacier, and CloudFront Chapter 8

[249]

In the Properties tab, click on Transfer acceleration. It brings a popup to enable4.
or suspend Transfer Acceleration as shown in the following screenshot. You can
select Enabled in this popup to enable the Transfer Acceleration on the selected
bucket. Click on the Save button after the selection is done:

Figure 8.9: Enable Transfer Acceleration on a bucket

Requester Pay model
Generally, when you create a bucket in S3, you pay for data storage and data transfer. Based
on your usage, charges are added to the AWS account associated with the bucket. Amazon
provides an option in which you can configure your bucket as Requester Pays bucket.
When you configure a bucket as a Requester Pays bucket, the requester pays for the
requests they initiate to download or upload data in the bucket. You just pay for the cost of
the data you store in S3:

You can enable Requester Pays on a bucket when you want to share the data, but
do not want to get charged for the requests received, data downloads, or upload
operations
When you enable Requester Pays, AWS does not allow you to enable anonymous
access on the bucket

Simple Storage Service, Glacier, and CloudFront Chapter 8

[250]

All requests to Requester Pays buckets must be authenticated; when you enable
authentication, S3 can identify requesters and charge them for their respective
usage of the bucket
If a system or application makes requests by assuming an IAM role, AWS charges
the account where the assumed role belongs
If you make calls to the bucket using an application, the request must include x-
amz-request-payer in the header section if you make POST, GET, and HEAD
requests
If you make a REST request, you need to include x-amz-request-payer as a
parameter in the request
Requester Pays buckets do not support anonymous requests, BitTorrent, and
SOAP requests
Amazon does not allow you to enable end user logging on a Requester Pays
bucket and similarly, you cannot enable Requester Pays on a bucket where end
user logging is enabled

Enabling Requestor Pays on a bucket
You can enable Requestor Pays on a bucket in steps that are very similar to those you
followed in Transfer Acceleration:

Log in to the AWS Management Console and go to the S3 console or browse to1.
https:// console. aws. amazon. com/s3.

Open the bucket on which you need to enable Transfer Acceleration.2.
Click on the Properties tab as shown in Figure 8.8.3.
Click on Requester Pays to enable it.4.

Understanding objects
Objects are the basic entities stored in S3. Amazon has designed S3 as a simple key, value
store. You can store a virtually unlimited number of objects in S3. You can segregate objects
by storing them in one or more buckets.

https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3

Simple Storage Service, Glacier, and CloudFront Chapter 8

[251]

Objects consist of a number of elements—that is, key, version ID, value, metadata,
subresources, and access control information. Let us understand these object elements:

Key: Key is the name that is assigned to an object. It's just like a filename and can
be used to access or retrieve the object.
Version ID: If you enable versioning on a bucket, S3 associates a version ID with
each object. The bucket may have one or more objects with the same key, but a
different version ID. The version ID helps in uniquely identifying an object when
there are multiple objects with the same key.
Value: Value refers to the content or data that is stored on the object. It is
generally a sequence of bytes. The minimum size of an object can be zero and the
maximum 5 TB.
Metadata: S3 stores reference information related to an object in its metadata in
the form of name/value pairs. There are two types of metadata, that is: system-
metadata and user-defined metadata. System-metadata is used for managing
objects and user-defined metadata is used for managing information related to
objects.
Subresources: An object can have subresources associated with it. Subresources
are defined and associated with objects by S3. There can be two types of
subresources associated with an object, and they are, ACL and torrent:

ACL contains a list of users and respective permissions granted to
them. When you create an object, the ACL entry contains just an
owner. Optionally, you can add more users with required
permissions for each user.
Torrent is another subresource of an object. AWS supports the
BitTorrent protocol. It is very simple to access S3 objects using a
BitTorrent client. If you assign anonymous permission on an object,
that object can be accessed by a BitTorrent client by referring to the
object URL with ?torrent at the end. Once an object URL is
accessed with ?torrent at the end of it, AWS automatically
creates a .torrent file for that object. Subsequently, you can
distribute the .torrent file to end users to access the object using
BitTorrent client.

Access control information: Amazon S3 enables you to control access on the
objects you create using ACL, bucket policies, and user policies. Access control
information is nothing but the information containing permissions in the form of
ACL, a bucket policy, or user access policies.

Simple Storage Service, Glacier, and CloudFront Chapter 8

[252]

Object keys
When you create an object in S3, you need to give a unique key name to the object in the
bucket. A key name uniquely identifies an object in the bucket. When you browse a bucket
in the S3 console, it displays a list of objects within the bucket. The list of names within the
bucket are object keys.

An object key is a sequence of Unicode characters in UTF-8 encoding. A key name can be a
maximum of 1024 bytes long.

Object key naming guide
Each application applies its own mechanism to parse special characters. It is recommended
you follow best practices while naming an object key. These best practices provide
maximum compliance with DNS, web safe characters, XML parsers, and various other
APIs:

An object key name consists of alphanumeric characters [0-9,a-z,A-Z] and special
characters such as !, -, _, ., *, ', (,).
S3 can store buckets and objects. It does not have any hierarchical structure;
however, prefixes and delimiters used in an object key name allow S3 to use
folders.
Key name examples of how S3 supports folders:

projects/acda-guide.xlsx

books/aws-networking.pdf

outlines/vpc.xlsx

help.txt

Simple Storage Service, Glacier, and CloudFront Chapter 8

[253]

In the previously mentioned examples, S3 uses key name prefixes such as
projects/, books/, outlines/. These key name prefixes with, / as delimiter,
enable S3 to represent a folder structure. The following screenshot shows the
folder structure in S3:

Figure 8.10: Folder structure in S3

When you open a folder, it displays objects inside the folder. The S3 console displays the
bucket and folder in the breadcrumb, as shown in the following screenshot:

Figure 8.11: Objects inside a folder

Simple Storage Service, Glacier, and CloudFront Chapter 8

[254]

Special characters in an object key name: The following is a list of special characters that
require special handling if you use them in an object key name. Some characters may not be
properly rendered by a browser or application. If you plan to include these characters in S3
object key names, it is recommended you build appropriate logic to handle them in your
application.

Ampersand (&) Dollar ($) ASCII character ranges 00-1F hex (0-31 decimal) and
7F (127 decimal)

At (@) Equals (=) Semicolon (;)

Colon (:) Plus (+) Space - significant sequences of spaces may be lost in
some uses (especially multiple spaces)

Comma (,) Question mark (?)

AWS recommends avoiding the following characters in object key names.

Backslash (\) Left curly brace ({) Non-printable ASCII characters
(128-255 decimal characters)

Caret (^) Right curly brace (}) Percent character (%)

Grave accent / back tick
(`) Right square bracket (]) Quotation marks

Greater than symbol (>) Left square bracket ([) Tilde (~)

Less than symbol (<) Pound character (#) Vertical bar/pipe (|)

Object metadata
S3 stores reference information related to an object in its metadata in the form of name-
value pairs. There are two types of metadata: system-metadata and user-defined metadata.

Simple Storage Service, Glacier, and CloudFront Chapter 8

[255]

System-metadata
Amazon stores a set of system-defined metadata with every object in S3. For example, S3
stores the object creation date as well as size of the object in object metadata. There are two
types of system-metadata, one where only S3 can change the value of metadata such as
object creation date and size. There are other types of system-metadata such as storage class
and server-side encryption that can be controlled by users based on selection.

The following table displays a list of system-defined metadata:

Name Description

Can
user
modify
the
value?

Content-Length Indicates object size in bytes. No

Content-MD5
Indicates a base64-encoded 128-bit
MD5 digest of the object. No

Date Indicates current date and time. No

Last-Modified

Indicates date of last modification
on object. It can be the creation date
if object is not modified after initial
creation.

No

x-amz-delete-marker

It is displayed against objects in a
bucket where versioning is enabled.
It indicates if an object is marked
for deletion.

No

x-amz-server-side-encryption
This metadata indicates if server-
side encryption is enabled on an
object or not.

Yes

x-amz-server-side-encryption-aws-kms-key-id

When x-amz-server-side-
encryption is enabled on an object
and it includes aws:kms, it
indicates the ID of the KMS master
encryption key that is used for the
object.

Yes

x-amz-server-side-encryption-customer-algorithm
It indicates if server-side encryption
is enabled with customer-provided
encryption keys (SSE-C).

Yes

x-amz-storage-class
It indicates what storage class is
used for storing the object. Yes

Simple Storage Service, Glacier, and CloudFront Chapter 8

[256]

x-amz-version-id
When versioning is enabled on a
bucket, this metadata indicates the
version of the object.

No

x-amz-website-redirect-location

When website hosting is enabled on
an S3 bucket, this metadata
indicates the redirection URL if
request redirection is configured.

Yes

User-defined metadata
Amazon S3 allows users to assign user-defined metadata to an object. When you create an
object in S3, you can provide optional metadata as a name-value pair.

User-defined metadata is generally used for associating additional information with an
object. Such metadata can help in identifying objects. It can also be used for automating
data management tasks using scripts. For example, a script may traverse through all the
objects in a bucket and check for specific metadata on an object. If a desired key/value pair
of a metadata is assigned to an object, the script may further process the data in the object.
User-defined metadata must begin with x-amz-meta-.

Here is how you can assign metadata to an object using the S3 console:

Log in to the AWS console and go to the S3 console.1.
Open the required bucket.2.
Click on the object on which you want to define metadata.3.
Click on the Properties tab.4.
Click on Metadata.5.
Click on Add Metadata.6.
Select x-amz-meta-book-type from the dropdown and type the remaining value7.
in the Key as well as the Value box as shown in the following screenshot.

Simple Storage Service, Glacier, and CloudFront Chapter 8

[257]

Click on Save:8.

Figure 8.12: Add metadata to an S3 Object

Versioning
S3 allows you to keep multiple versions of an object in a bucket. Versioning can be enabled
at bucket level. Once versioning is enabled, it protects you from accidental updates and
deletes on an object. When you overwrite or delete an object, it keeps multiple copies with
version numbers.

For example, when you enable versioning on a bucket called packtpub, for each action on
an existing object in the bucket, S3 creates a new version and associates a version ID with it,
as shown in the following table:

Simple Storage Service, Glacier, and CloudFront Chapter 8

[258]

Object Last activity Version ID

developer-guide.pdf
Jun 12, 2017
9:42:02 AM VAgAtLChtLoMkKF4ZVoq.NAGRRBA1hSp

developer-guide.pdf
Jun 11, 2017
8:41:23 AM 3mWAzx.l25VRt3.V.1ExutyOAEG1npX3

developer-guide.pdf
Jun 10, 2017
5:39:58 PM hV_2iz3GgRvOTt1NoiL8KXg3FpLJkFI7

When you delete an object in a version-enabled bucket, S3 does not actually delete the
object but instead adds a delete marker to it.

Enabling versioning on a bucket
The steps for enabling versioning on a bucket are as follows:

Sign in to your AWS Management Console and go to the S3 console on https:/ /1.
console. aws. amazon. com/ s3/ .
Click on the bucket on which you want to enable versioning, as shown in the2.
following screenshot:

Figure 8.13: Select bucket to enable versioning

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Simple Storage Service, Glacier, and CloudFront Chapter 8

[259]

Click on the Properties tab:3.

Figure 8.14: Select bucket properties

Click on Versioning, Enable versioning, and save the changes:4.

Figure 8.15: Enabling Versioning

Object tagging
S3 allows you to add tags to your objects. Tagging an object helps in categorizing the
objects. Each tag is a key and value pair.

Example of tags on an object: Let's consider a scenario wherein an application processes
data stored in an S3 bucket. While traversing through the objects in a bucket, it checks for a
tag before processing the data in the object. In such scenarios, you may add the following
tag to the objects:

Processed=True

Or:

Processed=False

Simple Storage Service, Glacier, and CloudFront Chapter 8

[260]

The application may check for the tag in an object before processing the data in it. If the tag
indicates Processed=False then the application should process the data stored in the
object and change the tag to Processed=True.

You can add tags to an object from object properties in the S3 console. You can also add tags
to an object using the AWS CLI as follows:

AWS CLI syntax for adding tags to an object:

aws s3api put-bucket-tagging --bucket <Bucket> --tagging
'TagSet=[{Key=<key>,Value=<value>}]'

Example:

aws s3api put-bucket-tagging --bucket packtpubs --tagging
'TagSet=[{Key=Processed,Value=True}]'

S3 storage classes
Amazon S3 provides a number of storage classes for different storage needs. Storage classes
are divided into four main types, based on how they are used.

Storage classes include:

S3 Standard storage
S3-Infrequently Accessed (IA) storage
S3 Reduced Redundancy Storage (RRS)
Glacier

S3 Standard storage
S3 Standard storage is used as general-purpose storage for frequently accessed data. It
provides high availability, durability, and high-performance storage for frequently accessed
data. S3 Standard storage can be used in content distribution, cloud applications, big data
analytics, mobile or gaming applications, and dynamic websites.

Simple Storage Service, Glacier, and CloudFront Chapter 8

[261]

The key features of S3 Standard storage are listed as follows:

Provides low-latency and high-throughput performance
Ensures 99.999999999% durability for objects
Provides 99.99% availability in a year backed by Amazon S3 Service Level
Agreement (SLA)
Enables SSL encryption of data in transit using SSL
Supports AES-256 encryption of data at rest
Supports data life cycle management for automatically migrating data from one
class of storage to another

S3-IA storage
S3-IA storage is meant for data that is less frequently used, but needs to be available
immediately when needed. It provides low-latency, high throughput, and durable data
storage. It incurs relatively low per GB storage and retrieval costs. Being a low-cost and
high performance storage, S3-IA is best suited for backups, disaster recovery, and any long-
term storage needs. You can keep S3-IA class objects within the same bucket with other
class objects. It also supports object life cycle policies for automatically transitioning objects
to other storage classes without requiring any modification of applications using objects.
The key features of S3-IA are as follows:

Suitable for long-term data storage, backups, and disaster recovery
Provides low-latency and high-throughput performance, same as S3 Standard
Ensures 99.999999999% durability for objects
Provides 99.99% availability in a year backed by Amazon S3 SLA
Enables SSL encryption of data in transit using SSL
Supports AES-256 encryption of data at rest
Supports data life cycle management for automatically migrating data from one
class of storage to another

Simple Storage Service, Glacier, and CloudFront Chapter 8

[262]

S3 RRS
As the name suggests, S3 RRS provides reduced levels of redundancy as opposed to
standard S3 storage. It is suitable for storing non-critical and reproducible data. It is a
highly available storage solution for content distribution as a secondary storage for data
that is available elsewhere as well. It is ideal for storing thumbnails, transcoded media, or
any other processed data that can be reproduced.

S3 stores RRS objects across multiple facilities and provides 400 times durability than a local
disk drive; however, RRS objects are replicated relatively infrequently compared to S3
Standard objects:

Provides reduced level of redundancy
Comparatively cheaper than S3 Standard storage
It is backed by Amazon S3 SLA
Provides 99.99% durability in a given year
Provides 99.99% availability in a given year
Architected for absorbing data loss in a single facility
Enables SSL encryption of data in transit using SSL
Supports AES-256 encryption of data at rest

Glacier
Glacier is very low-cost, secure, and durable data archival storage. You can virtually store
unlimited amounts of long-term data on Glacier for a much cheaper rate. Glacier is ideal for
storing long term data, backups, archives, and data for disaster recovery. Unlike S3, data
stored on Glacier is not immediately available for access. You need to initiate a data
retrieval request for accessing data on Glacier. For keeping the costs low and still making it
suitable for different retrieval requirements, Glacier provides the following three options
for data retrieval:

Data retrieval option Minimum time for retrieval Comparative costs

Expedited retrieval 1 to 5 minutes $$$

Standard retrieval 3 to 5 hours $$

Bulk retrieval 5 to 12 hours $

Simple Storage Service, Glacier, and CloudFront Chapter 8

[263]

Comparison of S3 storage classes and
Glacier
The following table compares the three storage classes of S3 with glacier:

Description Standard Standard-IA Reduced
Redundancy Glacier

Availability SLA 99.9% 99% N/A N/A

Concurrent facility
fault tolerance 2 2 1 N/A

Availability 99.99% 99.9% 99.99% N/A

Durability 99.999999999% 99.999999999% 99.99% 99.999999999%

First byte latency milliseconds milliseconds milliseconds Select minutes or
hours

Life cycle
transitions yes yes yes yes

Minimum object
size N/A 128 KB N/A N/A

Maximum object
size 5 TB 5 TB 5 TB 40 TB

Minimum storage
duration N/A 30 days N/A 90 days

Retrieval fee N/A per GB retrieved N/A per GB retrieved

SSL support yes yes yes yes

Storage class object level object level object level object level

Supported
encryption at rest AES-256 AES-256 AES-256 AES-256

Data retrieval time immediately immediately immediately minimum 3 to 5
hours

Recommended
multipart upload
size

100 MB 100 MB 100 MB 100 MB

Simple Storage Service, Glacier, and CloudFront Chapter 8

[264]

Life cycle management
Life cycle management is a mechanism in S3 that enables you to either automatically
transition an object from one storage class to another storage class or automatically delete
an object, based on configuration. Life cycle rules can be applied to a group of objects based
on filter criteria set in the rule.

S3 allows you to configure one or more life cycle rules, in which each rule defines a specific
action. There are two types of action you can define in life cycle rules:

Transition actions: This defines when an object storage class changes from an
existing storage class to target storage class. For example, you can define a rule
for all object keys starting with data/ in a bucket to transition from Standard
storage to STANDARD_IA after 15 days. Similarly, you can define a rule to
transition for all objects keys starting with data/ from STANDARD_IA to
Glacier storage. Let's say, you have a bucket named packtpubs and inside the
bucket you have a folder named data. Within the data folder you have .csv
files. In such scenarios, this transition rule applies to all the files present in the
data folder.
Expiration actions: This defines when objects expire. When objects expire,
Amazon S3 automatically deletes them for you. For example, you can set a rule
for object keys starting with backup/ in a bucket to expire after 30 days. In such
scenarios, all the files from the backup folder in a specific bucket expire after 30
days and are automatically deleted from S3.

Life cycle configuration use cases
It is advisable to configure life cycle rules on objects where there is absolute clarity on the
life cycle of the objects. The following are example scenarios wherein you can consider
defining life cycle rules:

You have an application that generates and upload logs to an S3 bucket. The
application does not need these logs after a week or a month. In such scenarios,
you may want to delete these logs.
You have a bucket in which users and applications are uploading objects. These
objects are frequently accessed for a few days. After a few days of uploading,
these objects are accessed less frequently.

Simple Storage Service, Glacier, and CloudFront Chapter 8

[265]

You are archiving data to S3 and you need to keep this data only for regulatory
compliance purposes. You need this data in an archive for a specific period of
time to cater for regulatory needs and subsequently this data can be deleted.
You are taking a back up of your databases on S3 and your organization has a
predefined retention policy for this data. Based on the retention policy, you may
want to keep the backup for a specific period and then delete it.

Defining life cycle policy for a bucket
Object lifecycle rules can be configured using the Amazon S3 console, using the AWS SDK,
or using the REST API. The following list describes the steps for configuring life cycle rules
using the Amazon S3 console:

Sign in to your AWS account and go to the S3 console on https:/ /console. aws.1.
amazon.com/ s3.
Click on the bucket for which you want to create the life cycle policy.2.
Click on the Management tab and then click on + Add lifecycle rule as in the3.
following screenshot:

Figure 8.16: Adding lifecycle rule

In the subsequent window, enter the name for your rule as shown in the4.
following screenshot. The rule name must be unique in the bucket. You cannot
create more than one rule with the same name in a bucket.

https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3

Simple Storage Service, Glacier, and CloudFront Chapter 8

[266]

Specify filter criteria for filtering the objects in a bucket. The filter criteria can be a5.
string expression, for example backup/. You can also specify one or more object
tags and limit the scope of the rule accordingly, for example, backup/ |
processed. You can select a prefix and tags while entering the filter value, as
shown in the following screenshot. You can initially enter the prefix value
backup/ and then click on the tag as shown in Figure 8.17 to enter the tag value.
S3 uses the pipe (|) delimiter for separating the prefix and tag in the rule:

Figure 8.17: Enter lifecycle rule filter

Simple Storage Service, Glacier, and CloudFront Chapter 8

[267]

In the next screen, you can define whether the rule you create applies to the6.
current and latest version of the object or the previous version. If versioning is
enabled on the bucket, there may be more than one version of an object. Based on
your preference, you can select Current version or Previous versions or both as
required:

Figure 8.18: Select Current or Previous versions for applying lifecycle policy

Simple Storage Service, Glacier, and CloudFront Chapter 8

[268]

Click on +Add transition as shown in the preceding screenshot. It expands the7.
options for selecting transition options as shown in the following screenshot.
Select the transition action from the combo box, either Transition to Standard-IA
after or Transition to Amazon Glacier after. Also, enter the number of days after
object creation when an object should transition, as shown in the following
screenshot. You can also specify similar transition criteria for Previous versions
of objects:

Figure 8.19: Object transition options for lifecycle policy

In the subsequent screen, configure expiration options. Similar to the previous8.
steps, you can select either Current version or Previous versions or both of them
as required. You can additionally select to clean up expired object delete markers
and clean up incomplete multipart uploads:

Figure 8.20: Configure expiration options

Simple Storage Service, Glacier, and CloudFront Chapter 8

[269]

Based on the version selected, you get options for further selection. As shown in
the following screenshot, you can choose to expire the current version after a
specific number of days. You can also choose to Clean up expired object delete
markers. Delete markers are not created for expired objects. If you choose to
expire objects, you cannot select the option to clean up delete markers. Optionally,
you can opt to Clean up incomplete multipart uploads after a specific number of
days. This is useful in a situation in which you upload a large object to S3 and the
upload process is abruptly closed. S3 can automatically clean up such incomplete
multipart uploads based on the selection here:

Figure 8.21: Provide additional data for expiration options

Simple Storage Service, Glacier, and CloudFront Chapter 8

[270]

In the subsequent screen, review the Lifecycle rule and click on the Save button:9.

Figure 8.22: Review Lifecycle rule and save

Hosting a static website on S3
Amazon S3 allows you to host a static website. A static website can contain web pages with
static content as well as client-side scripts. S3 does not support server side scripting and due
to that, you cannot host a site with any server side scripting such as PHP, JSP, ASP.Net.

Simple Storage Service, Glacier, and CloudFront Chapter 8

[271]

You can host HTML pages, CSS, client-side scripts like JavaScripts, and so on. Here's a step-
by-step process to enable static website hosting on an S3 bucket:

Sign in to your AWS console and go to S3 console at https:/ /console. aws.1.
amazon.com/ s3.
Click on the bucket on which you want to enable static website hosting.2.
Click on the Properties tab as shown in the following screenshot:3.

Figure 8.23: Bucket properties tab

Click on Static website hosting as shown in the following screenshot:4.

Figure 8.24: Enable static website hosting

https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3

Simple Storage Service, Glacier, and CloudFront Chapter 8

[272]

Specify index and error document for your website as shown in the following5.
screenshot and click on Save. You can also configure Redirect requests as needed
and optionally specify Redirection rules. After configuring the options, you can
browse your site from the endpoint URL of the bucket as shown here:

Figure 8.25: Specify index and error documents for static website

Cross-Origin Resource Sharing (CORS)
Before understanding CORS, let us understand the significance of the same origin policy.
The cross-origin policy is a critical aspect of a web application security model. In a web
application security model, by default, a web browser does not allow a script file associated
with a web page to access data associated on a page in a different hostname, domain, or
port number. The purpose of cross-origin policy is to prevent any malicious script
embedded on one page to access sensitive data on another web page.

Simple Storage Service, Glacier, and CloudFront Chapter 8

[273]

For example, a script hosted in a page books.html on www.packtpub.com, can access
the Document Object Model (DOM) of any page within the same domain, that
iswww.packtpubs.com. If it tries to access DOM of a page hosted on another domain, the
access is denied. Even if a page is hosted on a subdomain such as books.packtpubs.com,
when it tries to access DOM of another page on projects.packtpubs.com, it is denied the
access. This is a way to maintain the security of the page based on the cross-origin web
application security model.

The CORS, as the name suggests, is an exact opposite of cross-origin policy.

CORS is a mechanism for client web applications hosted on one domain to use resources
hosted on another domain. You can host rich client-side web applications using CORS
support on S3. You can selectively enable CORS support on S3 using S3 console, S3 REST
API, and AWS SDKs.

Using CORS in different scenarios
Following are the example use case scenarios wherein CORS can be used:

Use case 1: Suppose you host a website on an S3 bucket named packtpubs. End
users can access this site using the URL:
https://packtpubs.s3-website-us-east-1.amazonaws.com. Amazon's S3
API endpoint for the bucket is assigned as packtpubs.s3.amazonaws.com. If
you try to make authenticated GET and PUT JavaScript requests on the pages
hosted in the bucket using S3 API endpoint, these requests are blocked by a
browser. You can allow such requests using CORS by explicitly allowing requests
from packtpubs.s3-website-use-east-1.amazonaws.com.

Use case 2: Consider a scenario in which you host a web site on a bucket and
need to load fonts from a different bucket. In such a scenario, the browser denies
access to fonts bucket as it refers to a different origin. CORS can help in such a
scenario. You can explicitly allow cross-origin requests from the font bucket.

Simple Storage Service, Glacier, and CloudFront Chapter 8

[274]

Configuring CORS on a bucket
For configuring CORS on a bucket, you need to create an XML document that defines the
rule to allow cross-origin access on your bucket. You can either open full access to all
domains or open access for specific origin domains or URLs. For maintaining the security of
your site, it is recommended you open access for specific domains. To further strengthen
the security of the site, you can allow specific HTTP methods like GET, POST, PUT,
DELETE, and so on.

CORS configuration example XML
The following XML describes example CORS configuration:

<!-- Sample policy -->
<CORSConfiguration>
 <CORSRule>
 <AllowedOrigin>*</AllowedOrigin>
 <AllowedMethod>GET</AllowedMethod>
 <MaxAgeSeconds>3000</MaxAgeSeconds>
 <AllowedHeader>Authorization</AllowedHeader>
 </CORSRule>
</CORSConfiguration>

The preceding policy is the default policy that you see when you enable CORS on a bucket.
It allows GET requests from all origins. MaxAgeSeconds is the number of seconds a
browser can cache a response from S3. AllowedHeader, by default, allows authorization
requests. If you want to allow all headers, you can specify * in AllowedHeader. It is
recommended you exercise caution while configuring CORS and create one or more rules to
allow specific domain and HTTP actions. The following example is more specific:

<!-- Sample policy -->
<CORSConfiguration>
<CORSRule>
 <AllowedOrigin>http://www.packtpub.com</AllowedOrigin>
<AllowedMethod>PUT</AllowedMethod>
<AllowedMethod>POST</AllowedMethod>
<AllowedMethod>DELETE</AllowedMethod>
<AllowedHeader>*</AllowedHeader>
</CORSRule>
</CORSRule>
<CORSRule>
 <AllowedOrigin>*</AllowedOrigin>
 <AllowedMethod>GET</AllowedMethod>
</CORSRule>

Simple Storage Service, Glacier, and CloudFront Chapter 8

[275]

</CORSConfiguration>

There are two rules in the preceding example; the first rule allows PUT, POST, and DELETE
actions from http://www.packtpub.com. The second rule allows GET requests from all
origins with AllowedOrigin as *.

Enabling CORS on a bucket
The following steps describe the process of enabling CORS on a bucket:

Sign in to your AWS console and go to S3 console at https:/ /console. aws.1.
amazon.com/ s3.

Click on the bucket on which you want to enable CORS.2.
Click on the Permissions tab as shown in the following screenshot:3.

Figure 8.26: Bucket permission tab

Click on the CORS configuration button as shown in the following screenshot:4.

Figure 8.27: Click on CORS configuration

https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3

Simple Storage Service, Glacier, and CloudFront Chapter 8

[276]

Edit the configuration XML as required and click on Save as shown in the5.
following screenshot:

Figure 8.28: Edit CORS configuration and save

Cross-region replication
Amazon S3 enables you to automatically and asynchronously copy objects from a bucket in
one AWS region to another AWS region. This is a bucket level feature, which can be
configured on source bucket. In the replication configuration, you can specify the
destination bucket where you want your source bucket objects to be replicated. In the
configuration, you can specify a key-name prefix. S3 replicates all the objects starting with
the specific key prefixes to destination bucket. Cross-region replication is generally used for
compliance requirements, for minimizing latency in accessing objects, and for any
operational reasons where compute resources in multiple regions need to access data from a
region specific bucket.

Simple Storage Service, Glacier, and CloudFront Chapter 8

[277]

There are some requirements for enabling cross-region replication:

Both source, as well as destination bucket, must have versioning enabled on them
Source and destination buckets must be in different regions
S3 allows you to replicate objects from a source bucket to only one destination
You must provide permission to Amazon S3 for replicating objects from source to
destination bucket
If the source and destination bucket owners are different, the source bucket
owner must have permission for s3:GetObjectVersion and
s3:GetObjectVersionACL actions
If the source and destination bucket are in different AWS accounts, the source
bucket owner must have access to replicate objects in the destination bucket

Enabling cross-region replication
The following are the steps for enabling cross-region replication:

Sign in to your AWS console and go to S3 console at https:/ /console. aws.1.
amazon.com/ s3.

Click on the bucket on which you want to enable cross-region replication.2.
Click on the Properties tab as shown in the following screenshot:3.

Figure 8.29: Bucket properties tab

https://console.aws.amazon.com/s3.
https://console.aws.amazon.com/s3.
https://console.aws.amazon.com/s3.
https://console.aws.amazon.com/s3.
https://console.aws.amazon.com/s3.
https://console.aws.amazon.com/s3.
https://console.aws.amazon.com/s3.
https://console.aws.amazon.com/s3.
https://console.aws.amazon.com/s3.
https://console.aws.amazon.com/s3.
https://console.aws.amazon.com/s3.
https://console.aws.amazon.com/s3.
https://console.aws.amazon.com/s3.

Simple Storage Service, Glacier, and CloudFront Chapter 8

[278]

Click on Cross-region replication and Enable cross-region replication as shown4.
in the following screenshot:

Figure 8.30: Enable cross-region replication

Simple Storage Service, Glacier, and CloudFront Chapter 8

[279]

As shown in the following screenshot, you can select Whole bucket or a specific5.
key-name prefix in the bucket for source objects. You need to select a destination
region from the drop-down menu. Depending upon available buckets in the
destination region, which have versioning enabled, it displays a list of buckets for
selection in destination buckets. In addition, you can also select an existing role or
create a new role for the cross-region replication on the bucket:

Figure 8.31: Configure cross-region replication

9
Other AWS Storage Options

AWS offers a variety of highly available, scalable, reliable, and secure storage services to
address various organizational needs. It provides a rich web console for all of the services,
which is easy to access and navigate. Its easy-to-use UI complements efficient services for
quickly performing day-to-day administrative tasks. AWS also provides a set of API and
CLI interfaces. You can use APIs and CLIs to perform advanced operations or to automate
various tasks using customized applications and scripts. The following table describes a
number of storage and backup services provided by AWS:

AWS service Description

Amazon S3

S3 is a cloud-based object storage service which can be used over
the Internet. It is ideally suggested for storing static content such as
graphics files, documents, log files, audio, video, compressed files,
and so on. Virtually, any type of data in any file format can be
stored on S3. Currently, permissible object size in S3 is 0 bytes to 5
TB. Objects in S3 are stored in a bucket. A bucket is a logical unit in
S3 that is just like a folder. Buckets are created at root level in S3
with a globally unique name. You can store objects and also folders
inside a bucket. Any number of objects can be stored in each
bucket. There is a soft limit of 100 buckets per account in S3.
Common usage: S3 can be used for content storage and
distribution, static website hosting, big data object store, backup
and archival, storing application data, as well as for DR. Using
JavaScript SDK and DynamoDB, you can also host dynamic
applications in S3.

Other AWS Storage Options Chapter 9

[281]

Amazon Glacier

Glacier is a highly secure, durable, and very low-cost cloud storage
service for archiving data and taking long-term backups. Each file
or object stored in Amazon Glacier is called an archive. These
stored archives are immutable, which means that contents of the
archive cannot be modified. If required, another version of the
archive can be stored and the existing version can be deleted. The
size of each archive can range from 1 byte to 40 TB. With the help of
the S3 life cycle rules, objects from S3 can be automatically
transferred to Glacier. These archives can be logically isolated in
containers called vaults. A maximum of 1,000 vaults per account
per region can be created.
A few important characteristics:
• Very economical for storing long-term archival data, which is rarely
accessed
• Retrieval incurs charges and may take a minimum of three to four
hours or more depending on the size of the data
• Amazon charges early deletion fees if data is deleted within three
months from the date of storing
Common usage: Glacier can be mainly used for data archival. It is
widely used for media asset archiving, healthcare information
archiving, regulatory and compliance archiving, scientific data
storage, digital preservation, magnetic tape replacement, and so on.
It is rarely retrieved for audit or other business purposes.

Amazon EFS

AWS EFS is a simple-to-use and scalable file storage service
that can be used with EC2 instances. It is a fully managed storage
service from AWS that can be used for storing GBs to TBs of data.
EFS volumes can be mounted and accessed by multiple EC2
instances at the same time. It uses the Network File System
versions 4.1 (NFSv4.1) protocol. When using any EFS volume for
the first time, you simply need to mount and format it to the
desired filesystem. Subsequently, you can mount this volume on
other EC2 instances directly and start using it. EFS volumes can
also be accessed from on-premise environments using Direct
Connect. You cannot access it from an on-premise environment
over VPN connectivity. EFS is available in two modes, General
Purpose mode and Max I/O mode.
Common usage: EFS is designed to provide very high disk
throughput. It can be used for big data and analytics, media,
content management, web serving, and home directories.

Other AWS Storage Options Chapter 9

[282]

Amazon EBS

EBS is a persistent, block-level storage service from Amazon.
Persistent storage is a type of storage that retains the data stored on
it even after power to the device is turned off. Block-level storage is
a type of storage that can be formatted to support a specific
filesystem such as NFS, NTFS, SMB, or VMFS. EBS volumes can be
attached to an EC2 instance. Because of its persistent nature, data
on an EBS volume remains intact even after restarting or stopping
an EC2 instance.
There are five variants of EBS:
• General Purpose SSD (gp2)
• Provisioned IOPS SSD (io1)
• Throughput optimized HDD (st1)
• Cold HDD (sc1)
• Magnetic (Standard)
Each of these variants differs in terms of price and performance.
EBS volumes are connected as a network storage to an EC2
instance. It can be sized from 1 GB to 16 TB. You can take a
snapshot of an EBS volume. A snapshot is a point-in-time backup of
an EBS volume. Snapshots can be used to restore the volume as and
when required.
Common usage: EBS volumes can be used as a root partition and
for installing operating systems. It is also used for storing enterprise
applications, application data, and databases.

Amazon EC2
instance store

Instance store is a temporary block-level storage service from
Amazon. Unlike EBS, an instance store is temporary in nature. Data
stored in an instance store volume is deleted when the EC2 instance
is either restarted, stopped, or terminated. Instance store volumes
are directly attached to the underlying hosts where an EC2 instance
is provisioned. Instance store volumes are faster in comparison to
EBS, however, it is a temporary data store. The performance of the
instance store volume attached to an EC2 instance, the size of each
of the volumes, and the number of such volumes that can be
attached to an EC2 instance, depend on the EC2 instance type.
Common usage: It is widely used to store swap files, temporary
files, or in applications where good disk throughput is required but
data persistence is not required.

Other AWS Storage Options Chapter 9

[283]

AWS Storage
Gateway

AWS Storage Gateway is a hybrid storage service that connects on-
premise environments with cloud storage using a software
appliance. It seamlessly connects on-premise environments with
Amazon's block-level and object-level storage services such as EBS,
S3, and Glacier. Storage Gateway uses standard storage protocols
such as NFS and iSCSI. It provides low-latency for exchanging data
from on-premise to S3, Glacier, or EBS volumes, and vice versa.
Storage Gateway can provide high performance for frequently
accessed data by caching it at source in on-premise environments.
Common usage: Storage Gateway can be configured for use as a
file server in conjunction with S3. It can also be used as a virtual
tape library for backup on S3 and virtual tape shelf for archival on
Glacier. It can also be configured to be used as a local iSCSI volume.
Storage Gateway can also be handy for transferring data from on-
premise environments to AWS or transferring the data from AWS
to on-premise environments.

AWS Snowball

AWS Snowball is a petabyte-scale level data transport solution that
uses physical appliances to transfer large-scale data from on-
premise environments to the AWS cloud and vice versa. A single
Snowball appliance can transport up to 80 TB of data. Snowball
comes in two sizes, 50 TB and 80 TB. Data can be copied over to
multiple physical appliances and transported to and from an AWS.
Transferring large-scale data over the internet can take a significant
amount of time depending on the size of the data. The purpose of
the Snowball service is to minimize the data transfer time by
transferring the data using a physical medium rather than
transferring data over the internet. Snowball can efficiently
compress, encrypt, and transfer data from the on-premise host to
the intended Snowball device. Once the data is copied over to one
or more snowball devices, these devices are transported back to the
nearest AWS data center. Subsequently, AWS transfers data from
Snowball devices to S3.
Common usage: Snowball is used for rapidly and securely
transferring bulk data between on-premise data centers and the
AWS cloud at a very economical rate.

Other AWS Storage Options Chapter 9

[284]

AWS Snowmobile

AWS Snowmobile is an exabyte-scale data transport solution that
uses physical containers to transfer extremely large-scale data from
on-premise environments to the AWS cloud and vice versa. A
Snowmobile container literally comes in a truck that can transfer up
to 100 PB of data per Snowmobile. The truck carries a high cube
shipping container that is 45 foot long, 8 foot wide, and 9.6 foot tall.
If your data is more than 100 PB, you can ask Amazon for more
than one Snowmobile. At a time, more than one Snowmobile can be
connected to the on-premise network for transferring data. When
connected to an on-premise network, the Snowmobile appears as a
standard NFS mounting point on the network. It may require up to
350 KW of power supply. Once the data is transferred from the on-
premise network to the Snowmobile, it returns to the nearest AWS
data center in the region and subsequently, the data is transferred
to the S3 of the respective customer account.
Common usage: Snowmobile is used for rapidly and securely
transferring extremely large-scale data between the on-premise
data center and the AWS cloud at a very economical rate.

Amazon CloudFront

Amazon CloudFront is a content delivery network (CDN) offered
by AWS. It is a system of distributed servers spread across edge
locations. It is mainly used for caching static content such as web
pages, style sheets, client-side scripts, images, and so on. It can also
speed up dynamic content distribution. When a user hits an URL
that is served through CloudFront, it routes the user request to the
nearest edge location. The nearest edge location gives minimum
latency in serving the request and provides the best possible
performance to the user.
Common usage: CloudFront is used for providing seamless
performance on the delivery of a website or web application for a
user base spread across multiple geographic locations. It can be
used for distributing software or other large files, streaming media
files, offering large downloads, and delivering live events.

Other AWS Storage Options Chapter 9

[285]

S3, Glacier, EBS, EC2 instance store, and CloudFront are elaborated in other relevant
chapters. The subsequent section of this chapter touches upon EFS, AWS Storage Gateway,
AWS Snowball, and AWS Snowmobile.

Amazon EFS
AWS EFS is a simple-to-use and scalable file storage service that can be used with EC2
instances. It is a fully managed storage service from AWS that can be used for storing GBs
to TBs of data. EFS volumes can be mounted and accessed by multiple EC2 instances at the
same time. It uses the NFSv4.1 protocol. When using any EFS volume for the first time, you
simply need to mount and format it to the desired filesystem. Subsequently, you can mount
this volume on other EC2 instances directly and start using it. EFS volumes can also be
accessed from an on-premise environment using Direct Connect. You cannot access it from
an on-premise environment over VPN connectivity. EFS is available in two modes, General
Purpose mode and Max I/O mode.

In the industry, it is a common requirement to share filesystems across the network, which
can be used as a common data source. EFS is a simple, secure, fully managed, scalable, and
reliable block storage to fulfill common file storage requirements. For using EFS with a
Linux EC2 instance, you may need to install the latest NFS packages. AWS recommends
using the NFSv4.1 client on EC2 instances. Unlike EBS, EFS does not require provisioning a
fixed volume size in advance. Being a managed service, you can store as much data as you
need and pay only for what you use.

Currently, EFS does not support Windows-based EC2 instances.

An EFS volume is created at the VPC level. At the time of creating an EFS volume, you can
specify the AZ from where it can be accessed. EC2 instances from all selected AZs within
the same VPC can access the EFS volume. Optionally, you can add tags to your EFS volume.
It is recommended to provide a relevant and meaningful name to your EFS volume along
with tags for better identification and reference. While creating an EFS volume, it is
essential to select the type of EFS volume. Types of EFS volume are General Purpose and
Max I/O. The default EFS volume type is General Purpose. Once an EFS volume is
successfully created, it returns a DNS endpoints. You can mount the EFS volumes on an
EC2 instance or an on-premises environment using the endpoint. Remember, you can
mount EFS volumes on an on-premise network only if you use Direct Connect.

Other AWS Storage Options Chapter 9

[286]

Successful creation of an EFS volume also creates mount points in each AZ. EFS carries
properties such as mount target ID, the filesystem ID, private IPv4 address, the subnet ID in
which it is created, and the mount target status. It is possible to mount EFS volumes using a
DNS name. Figure 9.1 elaborates an EFS:

Figure 9.1: EFS

Reference URL: https://docs.aws.amazon.com/efs/latest/ug/how-it-works.html

Other AWS Storage Options Chapter 9

[287]

An EC2 instance does not require a public or elastic IP to mount an EFS volume. You can
enable or disable any existing EFS volume as required. You can perform all such changes
from the Manage file system access option. Once you delete an EFS volume, it cannot be
recovered.

Snapshots can be created for EFS volumes. It is also possible to design a backup solution
using AWS Data Pipeline for copying data from one EFS volume to another EFS volume.
You can also configure a copy operation schedule.

AWS Storage Gateway
AWS Storage Gateway is a hybrid storage service provided by Amazon. With Storage
Gateway services, your on-premises applications can seamlessly use AWS cloud storage.
The following are some of the important points of AWS Storage Gateway:

AWS Storage Gateway connects on-premise software appliances with the AWS
cloud storage to provide a seamless integration experience and data security
between the on-premises data center and the AWS storage services
It is a scalable and cost-effective storage solution that also maintains data security
It provides an iSCSI interface, which can be used to mount a volume as a local
drive for easily integrating it with the existing backup applications
AWS Storage Gateway uses incremental EBS snapshots for backing up data to
AWS
AWS provides a VM image for running Storage Gateway on an on-premise data
center and you can also run it as an EC2 instance on AWS, and in case of any
issue, such as if the on-premise data center goes offline, you can deploy the
gateway on an EC2 instance
You can use a Storage Gateway hosted on an EC2 instance for DR, data
mirroring, and as an application storage
By default, Storage Gateway uploads data using SSL and provides data
encryption at rest using AES-256 when the data is stored on S3 or Glacier
Storage Gateway compresses data in-transit and at-rest for minimizing the data
size

Other AWS Storage Options Chapter 9

[288]

AWS Storage Gateway provides three types of solutions: file gateways, volume gateways,
and tape-based gateways. A file gateway creates a file interface into Amazon S3. It allows
you to access S3 using the Network File System (NFS) protocol. When using volume
gateways, you can mount a volume as a drive in your environment. Tape-based gateways
can be used similarly to a tape drive for backup.

File gateways
A file gateway creates a file interface in Amazon S3. It allows you to access S3 using the NFS
protocol. When you opt for a file gateway, a software appliance is hosted in the on-premise
environment on a virtual machine running on VMware ESXi. Once the file gateway is
created, it enables you to directly access S3 objects as files using an NFS volume mounted
on a server:

Figure 9.2: File gateway

Here is what file gateways can do for you:

They allow you to directly store files on S3 using the NFS 3 or NFS 4.1 protocol
You can directly retrieve files from S3 using the same NFS mount point
They also allow you to manage S3 data with life cycle polices, manage cross-
region replication, and enable versioning on your data

Other AWS Storage Options Chapter 9

[289]

Volume gateways
When you create a volume gateway, it creates a cloud-backed storage volume that you can
mount as an iSCSI device on your on-premises servers, where iSCSI stands for internet
Small Computer System Interface. Volume gateways store all data securely on AWS. There
are two types of volume gateway, which determine how much data is stored on-premises
and how much data is stored on AWS storage, and are discussed in the following
subsections.

Gateway–cached volumes
Cached volumes enable you to store complete data on S3 and cache a copy of only
frequently used data on-premise. By reducing the amount of data stored on on-premise
environments, you can reduce the overall storage cost. It also boosts performance by
providing low-latency access to frequently accessed data using a cache:

Figure 9.3: Gateway-cached volumes

Other AWS Storage Options Chapter 9

[290]

The key features of gateway-cached volumes are as follows:

A cached volume stores data in S3 and serves as a primary data storage
It creates a local copy of frequently accessed data, which provides low-latency
access for subsequent data access requests from applications
By reducing the amount of data stored on an on-premise environment, you can
reduce the overall storage cost
You can create up to 32 gateway-cached volumes in a single storage gateway
You can store from 1 GB to 32 TB in each volume with a maximum storage
volume limit of 1,024 TB (1 PB)
You can attach gateway-cached volumes as iSCSI devices on on-premise
application servers
You can take incremental snapshots of gateway-cached volumes
Gateway-cached volume snapshots are stored on S3 as EBS snapshots
Gateway-cached volume snapshots can be restored as gateway storage volumes
or you can create an EBS volume out of them and use it on an EC2 instance
The maximum size of an EBS volume created out of a snapshot is 16 TB and you
cannot create an EBS volume out of the snapshot if it is more than 16 TB in size
AWS stores gateway-cached volume data and snapshots in Amazon S3 and the
data is encrypted at rest with server-side encryption (SSE); you cannot access the
data with S3 APIs or any other tools
Gateway VM allocates storage in two parts:

Cache storage:
It serves as on-premise durable storage
It caches the data locally before uploading it to S3
It provides low-latency access to frequently accessed
data

Upload buffer:
Upload buffer serves as a staging location prior to
uploading the data to S3
It uploads data on an encrypted SSL connection to
AWS and stores it in an encrypted format on S3

Other AWS Storage Options Chapter 9

[291]

Gateway–stored volumes
You can use gateway-stored volumes when you need low-latency access to your entire
dataset. It stores all your data locally first and then asynchronously, takes a point-in-time
backup of this data as a snapshot to S3. It is generally used as an inexpensive off-site backup
option for DR:

Figure 9.4: Gateway-stored volumes

The key features of a gateway-stored volume are as follows:

It maintains the entire dataset locally, providing low-latency access to the data
It stores all your data locally first and then asynchronously takes a point-in-time
backup of this data as a snapshot to S3
You can attach gateway-stored volumes as iSCSI devices on on-premise
application servers
It supports up to 12 gateway-stored volumes per storage gateway application
Each gateway-stored volume can be from 1 GB to 16 TB in size with a total
volume storage limit of 192 TB

Other AWS Storage Options Chapter 9

[292]

Gateway-stored volumes can be restored as an EBS volume on an EC2 instance
Gateway-stored volume snapshots can be restored as a gateway storage volume
or you can create an EBS volume out of it and use it on an EC2 instance
The maximum size of an EBS volume created out of a snapshot is 16 TB and you
cannot create an EBS volume out of the snapshot if it is more than 16 TB in size
AWS stores gateway-stored volume data and snapshots in Amazon S3 and the
data is encrypted at rest with SSE; you cannot access the data with S3 APIs or any
other tools
Gateway VM allocates storage in two parts:

Volume storage:
It is used for storing actual data
You can map it to an on-premise DAS (Direct-
Attached Storage) or SAN (Storage Area Network)

Upload buffer:
Upload buffer serves as a staging location, before
uploading the data to S3
It uploads data on an encrypted SSL connection to
AWS and stores it in an encrypted format on S3

Tape-based storage solutions
A tape gateway serves as a replacement for an on-premise tape drive for backup purposes.
It stores data on Amazon Glacier for long-term archival. It provides a virtual tape that can
scale based on requirement. It also reduces the burden of managing the physical tape
infrastructure.

There are two types of tape-based storage solutions: Virtual Tape Library (VTL) and
Virtual Tape Shelf (VTS).

Other AWS Storage Options Chapter 9

[293]

VTL
VTL is a scalable and cost-effective virtual tape infrastructure, which seamlessly integrates
with your existing backup software:

Figure 9.5: Gateway-virtual tape library

It provides a low-cost and long-duration archival option in Glacier.
It provides a virtual tape infrastructure that can scale based on requirements. It
also reduces the burden of managing the physical tape infrastructure.
It allows you to continue using your existing tape-based backup software for
storing data on virtual tape cartridges, which can be created on a gateway-VTL.
Each gateway-VTL is equipped with preconfigured media changer and tape
drives. These are made available to existing backup applications as iSCSI devices.
You can add tape cartridges as needed for archiving the data.

Other AWS Storage Options Chapter 9

[294]

A Gateway VTL contains the following components:
Virtual tape:

Virtual tape emulates a physical tape cartridge
wherein the data is stored in AWS storage solutions
You can have up to 1,500 tapes in each gateway or
up to 150 TB of total tape data
Each tape can store from 100 GB to a maximum of 2.5
TB of data

VTL:
VTL emulates a physical tape library wherein the
data is stored in S3
When a backup software writes data to the gateway,
at first the data is stored locally and, subsequently,
asynchronously uploaded to virtual tapes in S3

VTS:
VTS works just like an off-site tape holding facility
In VTL, data is stored on S3 whereas VTS stores data
in Glacier
As it uses Glacier for data archival, it becomes an
extremely low-cost data archival option
VTS resides in the same region where the Storage
Gateway is created, and there is always only one
VTS irrespective of the number of gateways created
in an AWS account
The gateway moves a virtual tape to VTS when the
backup software ejects a tape
You can retrieve tapes from VTS only after retrieving
the tapes from VTL, and it takes around 24 hours for
the tapes to be available in the VTL

Other AWS Storage Options Chapter 9

[295]

Gateway allocates storage in two parts:
Cache storage

It serves as an on-
premise durable storage
It caches the data locally
before uploading it to S3
It provides low-latency
access to frequently
accessed data

Upload buffer
Upload buffer serves as
a staging location, prior
to uploading the data to
S3
It uploads data on an
encrypted SSL
connection to AWS and
stores it in an encrypted
format on S3

AWS Snowball
AWS Snowball comes in a hardware form and can be used with the AWS dashboard or API.
It is available in two different sizes, 50 TB and 80 TB. It can be used to transfer petabytes
(PB) of data into and from AWS S3. Dedicated Snowball software is made available by AWS
to perform data transfer in a compressed, encrypted, and secure manner. You can attach
multiple AWS Snowball devices at the same time to an on-premises network backbone.
Perform the following steps to obtain AWS Snowball:

Sign in to your AWS account and create a job inside the AWS Snowball1.
management console. While creating a job, you need to provide information such
as shipping details to receive Snowball device(s), job details mentioning the
region, the AWS S3 bucket name, and so on. You also need to provide security
details such as the ARN of the AWS IAM role and master key from AWS KMS.

Other AWS Storage Options Chapter 9

[296]

Once the job is created, the Snowball device is shipped to the given shipping2.
address. Figure 9.6 illustrates a Snowball device:

Figure 9.6: Snowball device and its features

Reference URL:
https://image.slidesharecdn.com/clouddatamigration1272016final-160127210855/95/aws-january-2016-webinar-series-cloud-data-migration-6-strategies-for-getting-data-into-aws-

14-638.jpg?cb=1466106757

Once the device is received, connect it to the network. It has two panels, one in3.
the front and another in the back. Flipping the front panel on the top gives access
to the E Ink-based touch screen to operate. Network and power cables can be
connected on the back side.
When a Snowball is connected to an on-premise network, it becomes ready to4.
transfer data. Snowball requires credentials to start a data transfer job. These
credentials can be retrieved from the AWS dashboard or API. These credentials
are encrypted with a manifest file and unlock code. Without the manifest file and
unlock code, it is not possible to communicate with the Snowball. AWS provides
a Snowball client to transfer data from on-premise to the Snowball device.
It is highly recommended that you do not delete the on-premise copy of the data5.
until the data is successfully migrated to the AWS S3 bucket.

Other AWS Storage Options Chapter 9

[297]

Once the job is complete, disconnect the device from the network and return the4.
device to the shipping address displayed on the display panel. When you create a
job, regional shipping carriers are assigned; for India, it is Amazon Logistics, and
for the rest of the world, UPS are the shipping carrier partners.
Once the device is shipped back to AWS, the job progress status indicating the5.
movement of data from Snowball to the AWS S3 bucket can be tracked on the
AWS dashboard or through APIs.

AWS Snowmobile
AWS Snowmobile is an exabyte data transfer service. This hardware comes in a high cube
shipping container that is 45 feet long, 8 foot wide, and 9.6 foot tall. Each Snowmobile truck
can store up to 100 PB of data, and multiple Snowmobile trucks can be connected to an on-
premise infrastructure at the same time. It uses 256-bit encryption, and a master key for
encryption can be managed with AWS KMS. It comes with GPS tracking, alarm monitoring,
24/7 video surveillance, and an optional escort security vehicle while in transit.

When you request a Snowmobile, AWS performs an assessment and subsequently
transports the Snowmobile to your designated location. An AWS resource configures it so
that you can access it as network storage. During the entire period that the Snowmobile is at
your location, AWS personnel work with your team for assistance. The AWS personnel
connect a network switch from your Snowmobile to your local network. Once the setup is
ready, you can start the data transfer process from multiple sources in your network to the
Snowmobile.

10
AWS Relational Database

Services
AWS Relational Database Service (RDS) is a fully managed relational database service
from Amazon. RDS makes it easier for enterprises and developers who want to use a
relational database in the cloud without investing a lot of time and resources in managing
the environment. AWS RDS supports six database engines: Amazon Aurora, PostgreSQL,
MySQL, MariaDB, Oracle, and Microsoft SQL Server. It provides easy-to-use, cost-
effective, and scalable relational databases in the cloud.

The advantages of Amazon RDS are as follows:

It's a fully managed service that automatically manages backups, software and
OS patching, automatic failover, and recovery.
It also allows taking a manual backup of the database as a snapshot. Snapshots of
a database can be used to restore a database as and when required.
RDS provides fine-grained access control with the help of AWS IAM.

AWS RDS does not provide root access to the RDS instance. In short, RDS does not allow
the user to access the underlined host operating system. That means that you cannot log in
to the server operating system. It also restricts access to certain system procedures and
tables that may require advanced privileges.

AWS Relational Database Services Chapter 10

[299]

After launching RDS in their service offerings, AWS was not providing an option to stop an
RDS instance for a very long time. Recently, an option to stop the RDS instance was
introduced by Amazon. However, unlike EC2 instances, there are some limitations in
stopping an RDS instance:

Only a single AZ RDS instance can be stopped.
An RDS instance can be stopped for a maximum of seven consecutive days. After
seven days, the instance is automatically restarted.

This way, by stopping an RDS instance, you can cut the cost for a limited period of time.
However, there is no limitation on restarting the instance or terminating all unused RDS DB
instances to stop incurring the cost.
If a manual snapshot is not taken before terminating the RDS DB instance, it prompts you to
take a final snapshot. Once an RDS DB instance is deleted, it cannot be recovered.

Amazon RDS components
The Amazon RDS components are detailed in the following subsections.

DB instances
Each Amazon RDS engine can create an instance with at least one database in it. Each
instance can have multiple user-created databases. Database names must be unique to an
AWS account and are called DB instance identifiers. Each DB instance is a building block
and an isolated environment in the cloud. These databases can be accessed using the same
tools that are used to access standalone databases hosted in a data center. On top of
standard tools, AWS RDS instances can also accessed by the AWS Management Console,
the API, and the CLI.

Each DB engine has its own version. With the help of a DB parameter group, DB engine
parameters can be configured. These parameters help to configure DB instance
performance. One DB parameter group can be shared among the same instance types of the
same DB engine and version. These sets of allowed parameters vary according to the DB
engine and its version. It is recommended to create individual DB parameter groups for
each database to have legacy to fine-tune each of them individually as per business needs.
When you choose an RDS instance type, it determines how many CPUs and memory is
allocated to it. The most suitable instance type can be selected based on the performance
need. Each DB instance can store a minimum of 5 GB and a maximum of 6 TB.

AWS Relational Database Services Chapter 10

[300]

However, there are some exceptions; for example, Microsoft SQL Server RDS DB instances
support up to 4 TB of storage. Also, AWS periodically keeps revising this limit for different
RDS engines. The minimum and maximum supported storage capacity may vary for each
instance type. RDS supports magnetic, general purpose (SSD), and provisioned IOPS (SSD)
storage types. RDS instances can be deployed within VPC. Based on the architectural needs,
it can be deployed in a public subnet for accessing over the internet or in a private subnet
for accessing it within the network.

Region and AZs
AWS hosts its computing resources in data centers spread across the globe. Each
geographical location where the data centers are located is called a region. Each region
comprises multiple distinct locations that are called AZs. Amazon creates AZs in isolated
locations so that a failure in one AZ does not impact other AZs in the region. AZs are
interconnected with low-latency network connectivity within a region. When you launch an
application in multiple AZs, it provides you with high availability and protects you from
the failure of an AZ.

An RDS DB instance can be provisioned in several AZs by selecting the Multi-AZ
deployment option. It can also be used for DR sites. It is advisable to create RDS in multiple
AZs for avoiding single points of failure. It automatically maintains synchronous replicas
across multiple AZs. RDS synchronizes DBs between primary and secondary instances. In
case a primary instance fails, the load is automatically shifted to a secondary instance.

Security groups
Security groups act like a firewall. They control access to an RDS DB instance by specifying
the allowed source port, protocol, and IPs. Three types of security group can be attached
with Amazon RDS DB instances – DB security groups, VPC security groups, and EC2
security groups.

In general, a DB security group is used when the RDS instance is not in the VPC. The VPC
security group is used when the RDS instance is within the VPC. The EC2 security group
can be used with EC2 instances as well as RDS instances.

AWS Relational Database Services Chapter 10

[301]

DB parameter groups
Over a period when a RDS instance is used in enterprise applications, it may be required to
tune certain allowed and common parameters to optimize the performance based on the
data insertion and retrieval pattern. The same DB parameter group can be attached to one
or more DB instances of the same engine and version type. If not specified, then the default
DB parameter group with default parameters will be attached. Before creating an RDS
instance, it is recommended to create DB parameter groups.

DB option groups
DB options groups are used to configure RDS DB engines. With the help of the DB option
groups, some of the DB engines can provide additional features for data management,
database management, and can also provide additional security features. RDS supports DB
option groups for MariaDB, Microsoft SQL Server, MySQL, and Oracle. Before creating an
RDS instance, it is recommended to create DB option groups.

Amazon RDS charges are based on instance type, running time, storage
size, type and I/O requests, total backup storage size, and data in and out
transfers.

RDS engine types
Amazon RDS supports six DB engine types: Amazon Aurora, MySQL, MariaDB, Microsoft
SQL Server, Oracle, and PostgreSQL. The following table helps us understand the
connecting port and protocol for each of these DB instances:

Amazon RDS engine types Default port Protocol

Aurora DB 3306 TCP

MariaDB 3306 TCP

Microsoft SQL 1433 TCP

MySQL 3306 TCP

Oracle 1521 TCP

PostgreSQL 5432 TCP

AWS Relational Database Services Chapter 10

[302]

The Amazon RDS engine for Microsoft SQL Server and Oracle supports two licensing
models: license included and Bring Your Own License (BYOL). In case you are already
invested in purchasing licenses for such databases, it can also be used as a BYOL with
Amazon RDS to minimize monthly billing.

Supported instance types may vary for each Amazon RDS engine.

Amazon Aurora DB
Amazon Aurora is a MySQL and PostgreSQL-compatible, fully managed Relational
Database Management System (RDBMS). It provides a rare combination of performance
and reliability like commercial databases and the cost effectiveness of open-source
databases. Amazon RDS also provides push-button migration tools to convert your existing
Amazon RDS for MySQL applications to Amazon Aurora. It is also possible to use the code,
tools, and applications you use today with your existing PostgreSQL databases with Aurora
(PostgreSQL).

Creating an Amazon Aurora DB instance will create a DB cluster. It may consist of one or
more instances along with a cluster volume to manage the data. These clusters consist of
two types of instance: primary instance and Aurora Replica. Actually, the Aurora cluster
volume is a virtual database storage volume of type SSD and it spans across multiple AZs
in the same region. Each AZ will have a copy of the cluster data. Each Aurora cluster grows
automatically as the amount of data in the database grows. It can grow up to 64 TB. Table
size is limited to the cluster volume size, hence, the table can grow up to 64 TB in size:

Primary instance: Performs read, writes, and modifies data to the cluster volume.
Each Aurora DB cluster has one primary instance.

AWS Relational Database Services Chapter 10

[303]

Aurora Replica: Performs only read operations. Each Aurora DB cluster supports
up to 15 Aurora Replicas plus one primary instance. Amazon RDS Aurora
instance availability can be increased by spreading Aurora Replicas across
multiple AZs. Figure 10.1 helps to understand this:

Figure 10.1: Amazon RDS Aurora primary and replica

Reference URL: https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Overview.html

With the help of various endpoints such as the cluster endpoint, reader endpoint, and
instance endpoint, it is possible to connect to the Aurora DB cluster. Each endpoint consists
of a domain name and port separated by a colon, and both are discussed as follows:

An endpoint is a URL to access an AWS resource. It can be used to access
the DB instance from an application, script, or as a CNAME in a DNS.

Cluster endpoint: To connect with primary instances to perform data read, write,
and modification operations. The primary instance also has its own endpoint. An
advantage of the cluster endpoint is that it always points to the current primary
instance.

AWS Relational Database Services Chapter 10

[304]

Reader endpoint: To connect with one of the Aurora Replicas to perform read
operations. This endpoint automatically loads a balanced connection across
available Aurora Replicas. In case a primary instance fails, then one of the Aurora
Replicas will be promoted as a primary instance, and in that situation all the read
requests will be dropped.
Instance endpoint: To directly connect with the primary or Aurora Replica
instance.

It is designed to be highly durable, fault tolerant, and reliable, and provides the following
features:

Storage auto-repair: It maintains multiple copies of data in three AZs to
minimize the risk of disk failure. It automatically detects the failure of a volume
or a segment and fixes it to avoid data loss and point-in-time recovery.
Survivable cache warming: It warms the buffer pool page cache for known
common queries every time a database starts or is restarted after failure to
provide performance. It is managed in a separate process to make it survive
independently of the database crash.
Crash recovery: Instantly recovers from a crash asynchronously on parallel
threads to make a database open and available immediately after crash.

Amazon RDS upgrades the newer major version of Aurora to the cluster only during the
system maintenance windows. Timing may vary from region to region and depending on
cluster settings. Once a cluster is updated, the database restarts and may experience a
downtime for 20 to 30 minutes. It is highly recommended to configure maintenance
window settings to match an enterprise's business requirements to avoid unplanned
downtime. But in the case of a minor version upgrade, Amazon RDS schedules an
automatic upgrade for all Aurora DB database engines for all Aurora DB clusters. It is
optional to allow that update at that scheduled time. It can be manually selected and
updated at the desired schedule. Otherwise, it gets applied at the next automatic upgrade
for a minor version release.

Amazon Aurora offers lab mode. By default, it is disabled. It can be enabled
for testing current instances and available features in the currently offered
version. New features can be tested before applying them to the
production instance.

AWS Relational Database Services Chapter 10

[305]

Comparison of Amazon RDS Aurora with Amazon RDS
MySQL
The following table helps in understanding the differences between Aurora and MySQL DB
engines:

Feature Amazon RDS Aurora Amazon RDS MySQL

Read scaling
Supports up to 15 Aurora Replicas with
minimal impact on the write
performance.

Supports up to only five
Read Replicas with some
impact on the write
operation.

Failover target Aurora Replicas are automatic failover
targets with no data loss.

Manually, Read Replicas are
promoted as a master DB
instance with potential data
loss.

MySQL version Supports only MySQL version 5.6. Supports MySQL version
5.5, 5.6, and 5.7.

AWS region Not available in some regions. Available in all regions.

MySQL storage
engine

It supports only the InnoDB storage
engine type. Tables from other types of
storage engine are automatically
converted to InnoDB.

Supports both MyISAM and
InnoDB.

Read Replicas
with a different
storage engine
than the master
instance

MySQL (non-RDS) Read Replicas that
replicate with an Aurora DB cluster can
only use InnoDB.

Read Replicas can use both
MyISAM and InnoDB.

Database engine
parameters

Some parameters apply to the entire
Aurora DB cluster and are managed by
DB cluster parameter groups. Other
parameters apply to each individual DB
instance in a DB cluster and are
managed by DB parameter groups.

Parameters apply to each
individual DB instance or
Read Replica and are
managed by DB parameter
groups.

Detailed comparison between Amazon RDS Aurora and Amazon RDS MySQL

Reference URL: https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Overview.html

AWS Relational Database Services Chapter 10

[306]

MariaDB
MariaDB is a community version of MySQL RDBMS under GNU GPL license. It maintains a
high level of compatibility with MySQL.

Amazon RDS MariaDB manages versions as X.Y.Z, where X.Y denotes a major version and
Z is the minor version. For example, a version change from 10.0 to 10.1 is considered a
major version change, while a version change from 10.0.17 to 10.0.24 is a minor version
change. In general, within three to five months, it will be introduced in Amazon RDS
MariaDB. Amazon RDS Management Console, CLIs, or APIs can be used to perform
common tasks such as creating an instance, resizing the DB instance, creating and restoring
a backup, and so on.

Minor version support may not be available in all AWS regions.

Amazon RDS MariaDB supports multiple storage engines, but not all of them are optimized
for recovery and durability. At present, it fully supports the XtraDB storage engine. It
supports point-in-time restore and snapshot restore. It also supports the Aria storage type
engine, but it may have a negative impact on recovery in the case of instance failure. Aria
storage engine is mainly used for managing spatial geographical data. It is not
recommended to use Aria storage engine for general purpose use.

Amazon RDS MariaDB is available in all regions except AWS GovCloud
(US) (us-gov-west-1).

Amazon RDS supports two kinds of upgrade for running instances: major version upgrades
and minor version upgrades. Minor version upgrades can take place automatically when
auto minor version upgrade is enabled from the instance configuration options. In all other
cases, upgrading minor versions or major versions requires manual upgrades.

AWS Relational Database Services Chapter 10

[307]

Microsoft SQL Server
It is possible to run Microsoft SQL Server as an RDS instance. It supports various versions
of MS SQL such as from SQL Server 2008 R2 to SQL Server 2016. There are a few limitations
for Microsoft SQL Server DB instances:

Each Amazon RDS Microsoft SQL instance can have a maximum of 30 databases.
Master and model databases are not counted as a database in this count.
Some ports are reserved for internal purposes and cannot be used for general
purposes.
It is not possible to rename a database when an RDS instance with Microsoft SQL
Server is deployed in Multi-AZ mirroring.
The minimum storage required is 20 GB with maximum 400 GB for the Web and
Express editions. For the Enterprise and Standard editions, a minimum of 200 GB
and a maximum of 4 TB of storage is required. In case larger storage is required,
with the help of sharding across multiple DB instances this can be achieved.
It is recommended to allocate storage based on future considerations. Once
storage volume is allocated, it cannot be increased due to the extensibility
limitations of striped storage attached to Windows Server.
It doesn't support some of the features of SQL Server such as SQL Server
Analysis Services, SQL Server Integration Services, SQL Server Reporting
Services, Data Quality Services, and Master Data Services. To use these features it
is required to configure Microsoft SQL Server on an Amazon EC2 instance.
Due to the limitations of Microsoft SQL Server, point-in-time restore may not
work properly until the database has been dropped successfully.

Amazon RDS Microsoft SQL instances support two licensing options: License Included and
BYOL. License Included mode is good for the enterprise if you have not already purchased
a license. In case you have already purchased a license and are using it in an existing
infrastructure, when migration to AWS cloud has been done, once the instance is running
with the help of a management console or CLI, BYOL can be implemented. When it is
deployed in a Multi-AZ mode, the secondary instance is passive and only provides read
operations until failover takes place. BYOL is supported for the following Microsoft SQL
Server database editions:

Microsoft SQL Server Standard Edition (2016, 2014, 2012, 2008 R2)
Microsoft SQL Server Enterprise Edition (2016, 2014, 2012, 2008 R2)

AWS Relational Database Services Chapter 10

[308]

It may be required to upgrade the Amazon RDS Microsoft SQL Server instance; Amazon
RDS supports major version and minor version upgrades. In either type, it is essential to
perform such upgrades manually. It requires downtime and the total time depends on the
engine version and the size of the DB instance.

MySQL
Amazon RDS supports various versions of MySQL. It is also compliant with many leading
industry leading standards such as HIPAA, PHI, BAA, and many others. MySQL versions
are organized as X.Y.Z, where X.Y indicates a major version and Z indicates a minor
version. Most of the major versions are supported in most of the regions, but it is
recommended to check the availability of desired major and minor versions in a region
where you are planning to create primary and DR sites. A new version of MySQL is
available with the Amazon RDS MySQL instance usually within three to five months. While
upgrading MySQL to a newer version, it is possible to maintain compatibility with specific
MySQL versions. Major versions can be upgraded from MySQL 5.5 to MySQL 5.6 and then
MySQL 5.6 to MySQL 5.7. Usually, major version upgrades complete within 10 minutes, but
it may vary based on the DB instance type. Minor versions automatically get updated when
AutoMinorVersionUpgrade is enabled. Amazon RDS policy on deprecation of MySQL is as
follows:

The major version is supported for three years from the release such as 5.5, 5.6,
5.7, and upcoming
The minor version is supported for a year from release such as MySQL 5.546
Three months of grace are provided from the date of version deprecation date

It is essential to perform an OS update (if any are available) before
upgrading Amazon RDS MySQL 5.5 DB instance to MySQL 5.6 or later.

Amazon RDS MySQL 5.6 and later support memcached in an option group. Amazon RDS
MySQL also supports various storage engines, but point-in-time recovery is only supported
by InnoDB. Amazon RDS currently does not support the following MySQL features:

Global transaction IDs
Transportable table space
Authentication plugin

AWS Relational Database Services Chapter 10

[309]

Password strength plugin
Replication filters
Semi-synchronous replication

It is possible to create a snapshot for an Amazon RDS MySQL instance storage volume.
Each snapshot is based on the MySQL instance engine version. As it is possible to upgrade
the version of an Amazon RDS MySQL instance, it is also possible to upgrade the engine
version for DB snapshots. It supports DB snapshot upgrades from MySQL 5.1 to MySQL
5.5.

Oracle
At the time of writing, the following Oracle RDBMS versions are supported by the Amazon
RDS Oracle engine:

Oracle 12c, Version 12.1.0.2
Oracle 11g, Version 11.2.0.4

The Amazon RDS Oracle engine also supports the following Oracle RDBMS versions, but
soon they will be deprecated:

Oracle 12c, Version 12.1.0.1
Oracle 11g, Version 11.2.0.3, and Version 11.2.0.2

Oracle RDS can be deployed within VPC and can perform point-in-time recovery and
scheduled or manual snapshots. Optionally, it can be deployed in Multi-AZ to get high
availability and failover. At the time of creating a DB instance, the master user gets DBA
privileges with some limitations. For example, SYS user, SYSTEM user, and other DB
administrative user accounts cannot be used.

Amazon RDS Oracle instances support two licensing options: License Included and BYOL.
Once an instance is running with the help of a management console or CLI, BYOL can be
implemented. In the case of License Included, it supports the following Oracle database
versions:

Oracle Database Standard Edition One (SE1)
Oracle Database Standard Edition Two (SE2)

AWS Relational Database Services Chapter 10

[310]

BYOL supports the following license models:

Oracle Database Enterprise Edition (EE)
Oracle Database Standard Edition (SE)
Oracle Database Standard Edition One (SE1)
Oracle Database Standard Edition Two (SE2)

Amazon allows you to change Oracle RDS instance types; however, if your DB instance
uses a deprecated version of Oracle, you cannot change the instance type. Such RDS
instances are automatically updated to a new version based on a cut-off date provided by
Amazon. For more details on supported versions, deprecated versions, and cut-off dates for
upgrading the deprecated versions, go to: http:/ /docs. aws. amazon. com/ AmazonRDS/
latest/UserGuide/ CHAP_ Oracle. html.

It supports both major and minor version upgrades. While upgrading an Amazon RDS
Oracle instance from 11g to 12c is a major version upgrade, it has to be done manually and
it requires downtime. This downtime may vary based on the current engine version and
size of the DB instance. While upgrading the engine version, it takes two snapshots. The
first snapshot is taken just before upgrading, in the case of failure due to any reason it can
be used to restore the database. The second snapshot is taken just after the engine upgrade
is completed. Once the DB engine is successfully upgraded, it cannot be undone. If there is
any requirement to rollback to previous version, you can create a new instance with the
snapshot taken before upgrading the version. The Oracle engine upgrade path may vary
depending on the current version running on the instance.

PostgreSQL
The Amazon RDS PostgreSQL engine supports various versions of PostgreSQL. It also
supports point-in-time recovery using periodically or manually taken snapshots, Multi-AZ
deployment, provisioned IOPS, Read Replicas, SSL connection to DB, and VPC.
Applications such as pgAdmin or any other tool can be used to connect to PostgreSQL and
run SQL queries. It is also compliant with many industry leading standards such as HIPAA,
PHI, BAA, and many others.

At the time of creating an Amazon RDS PostgreSQL instance master user (super user), a
system account is assigned to the rds_superuser role with some limitations. More details
about various PostgreSQL supported versions and their features can be obtained
from http://docs. aws. amazon. com/ AmazonRDS/ latest/ UserGuide/ CHAP_ PostgreSQL. html.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html

AWS Relational Database Services Chapter 10

[311]

Amazon RDS supported and unsupported database engines can be
installed and configured on Amazon EC2 instances as well. Compared to
Amazon RDS, installing a DB on Amazon EC2 gives more power to fine-
tune database engines as gets root-level access. Usually, when an
enterprise is looking for a managed service solution, Amazon RDS is
preferred, and when they are looking for more detailed fine-tuning,
hosting on Amazon EC2 is preferred.

Creating an Amazon RDS MySQL DB
instance
Amazon RDS MySQL DB instances can be created using the Amazon Management Console,
CLIs, or APIs, and the steps are as follows:

Log in to the AWS Management Console with the appropriate user privileges and1.
go to the Amazon RDS dashboard.
Select Launch a DB Instance, as shown in Figure 10.2:2.

Figure 10.2: Select a DB instance

AWS Relational Database Services Chapter 10

[312]

Select the engine type as MySQL, as shown in Figure 10.3:3.

Figure 10.3: Select Amazon RDS engine type as MySQL

Free tier allows us to create a t2.micro single-AZ instance for the first
year.

AWS Relational Database Services Chapter 10

[313]

Select the Production type: Dev/Test or MySQL Multi-AZ, as shown in Figure4.
10.4. It is also suggested to switch to Amazon Aurora as it is seamlessly
compatible with MySQL:

Figure 10.4: Select Amazon RDS MySQL instance to deploy in a single or Multi-AZ

Specify the Amazon RDS MySQL DB details as follows:5.

License Model: At present, it has only one license model: general-
public-license.
DB Engine Version: Amazon RDS MySQL engine supports
various versions. Based on the enterprise IT requirement, the
optimum and latest can be selected.
DB Instance Class: Select the RDS instance type. It decides the size
of RAM, CPU, network performance, and EBS performance.
Multi-AZ Deployment: Select Yes to enable a standby replica of
the DB instance in another AZ for failover support.
Storage Type: Supports three types: Magnetic, General Purpose
(SSD), and Provisioned IOPS (SSD). Storage type can be selected
based on the required number of read/write operations.
Allocated Storage: Size of the storage volume to attach to the
Amazon RDS DB instance.
DB Instance Identifier: It is a unique DB name for each DB within
the AWS account.

AWS Relational Database Services Chapter 10

[314]

Master Username and Master Password: Master user is the user
with the highest level of privileges within each Amazon RDS
instance. It is used to create enterprise-level users and grant them
privileges to perform day-to-day activities and applications. It also
defines passwords:

Figure 10.5: Amazon RDS MySQL DB instance details

AWS Relational Database Services Chapter 10

[315]

Configure Advanced Settings, as shown in Figure 10.6:6.

Figure 10.6: Amazon RDS MySQL DB instance advanced configuration

AWS Relational Database Services Chapter 10

[316]

VPC: Select a suitable network VPC.
Subnet Group: Subnet selection depends on architectural design. It
can be public or private based on requirements.
Publicly Accessible: It should be selected as Yes if you want to
allow the access to the DB from the internet. It creates a public DNS
endpoint, which is globally resolvable. Select No if you want this
DB instance to be accessible only from within the network or VPC.
Availability Zone: If you have any preference on which AZ you
want to launch your instance, you choose the specific AZ as
required. If you do not have any preferred AZ, you can select No
Preference. In this case, Amazon automatically launches the
instance in the appropriate AZ to balance the resource availability.
VPC Security Group(s): Security groups act as a software firewall.
One or more security groups can be attached to each Amazon RDS
instance.
Database Name: It can be a maximum of 64 alpha-numeric
characters. For a given name, it will create a database within the
DB instance. It can be blank also.
Database Port: For Amazon RDS MySQL DB instances, the default
port is 3306.
DB Parameter Group: It helps to configure DB engine parameters.
It is recommended to create the DB parameter group before
creating a DB instance. Once it is created, it will appear in an
available drop-down list to use at the time of creating a DB
instance. If it is not created before creating a DB instance, then the
default DB parameter group will be created. This group of
parameters can be applied to one or more DB instances of the same
engine type. When any dynamic parameter value is changed in the
DB parameter group, it gets applied immediately whether Apply
Immediately has been enabled or not. In case of any change in
static parameter value, it is required to manually reboot the DB
instance for the change to get effective on the instance.

AWS Relational Database Services Chapter 10

[317]

Option Group: It is supported by the MariaDB, Microsoft SQL
Server, MySQL, and Oracle Amazon RDS engines. With the help of
option groups, it is possible to fine-tune databases and manage
data. Option groups can consist of two types of
parameter—permanent and persistent. To change the persistent
option's value, it is required to detach the DB instance from the DB
option group. When the option group is associated with any DB
snapshot, to perform point-in-time recovery using that DB
snapshot, it is required to create a new DB instance with the same
DB options group. On the other hand, it is not possible to remove
permanent options from an option group. Also, an option group
with permanent options cannot be detached from a DB instance.
Copy Tags To Snapshots: In a backup window, it creates an
instance-level backup (that is, a snapshot) for the entire volume. By
enabling this parameter, each snapshot will copy tags from the DB
instance. This metadata can be very helpful to manage access
policies.
Enable Encryption: Enabling this option will encrypt data at rest in
the DB instance's storage volume and subsequent snapshots. The
industry standard AES-256 encryption algorithm is used. Amazon
RDS automatically takes care of authentication and
encrypts/decrypts data with minimal impact on performance.
Backup Retention Period: You specify the snapshot retention
period here in number of days. Snapshots that are older than the
specified number of days are automatically deleted. Any snapshot
can be retained for maximum of 35 days.
Backup Window: An automated backup time window can be
specified in a UTC. During this scheduled time, a snapshot will be
taken every day. When any snapshot exceeds the Backup Retention
Period, it automatically gets deleted. It helps to achieve an
organizational backup and retention policy and optimizes AWS
billing by removing the obsolete and old snapshots.
Enable Enhanced Monitoring: Amazon RDS maintains various
performance metrics in Amazon CloudWatch. The main difference
between normal and enhanced monitoring is the source of the data.
In the case of normal monitoring, CPU utilization of data is derived
from the hypervisor, but for enhanced monitoring, it is derived
from the agent installed on a hypervisor. Data collection from these
two sources may vary. In the case of small instance types, this
difference can be bigger.

AWS Relational Database Services Chapter 10

[318]

Auto Minor Version Upgrade: Amazon RDS instances can have
two types of upgrade: major and minor. Major version upgrades
may require downtime, hence they are not performed
automatically. Also, it may not be possible to reverse a major
version upgrade. Minor version upgrades are compatible with
previous versions and may not require downtime, hence they are
performed automatically during scheduled maintenance.
Maintenance Window: Amazon allows you to specify a
maintenance window. During the maintenance window, Amazon
may upgrade the DB instance's minor version or the DB cluster's
OS. Upgrade of the underlined OS or DB version may bring
performance implications. Considering this, you should carefully
define the maintenance window. The maintenance window
definition allows you to define the starting day of the week, hour of
the day, minute of the hour, and the total allocated time to perform
the maintenance activity. Once the maintenance activity begins,
and if it requires more time to complete the maintenance, it doesn't
terminate in between. It stops only after completing the
maintenance tasks.

Monitoring RDS instances
Once an Amazon RDS instance is created as per the present need, it is very important to
observe its performance with constantly changing business requirements and application
loads. It is possible to monitor the instance's CPU utilization, DB connections, free storage
space, free memory, and many other parameters. It helps to identify bottlenecks and will
also give you the opportunity to minimize monthly billing by reducing the resource size if it
is underutilized.

An alarm can be configured to take action on a specified threshold. For example, if CPU
usage is above 70% for a specified consecutive time period, then send SNS notifications to
the DBA. Such an alarm can be created either from the CloudWatch dashboard or from the
Amazon RDS dashboard.

AWS Relational Database Services Chapter 10

[319]

To create a CloudWatch alarm from the Amazon RDS dashboard, perform the following
steps:

Go to the Amazon RDS dashboard and select the desired DB instance from the1.
list of running DB instances.
Click Show Monitoring to get the list of supported metrics. For example, here we2.
have selected the CPU utilization metric and selected Create Alarm as given in
the Figure 10.7.
Create an alarm by specifying the threshold and other relevant details such as the3.
SNS topic to use to send notifications, CPU utilization threshold, consecutive
time period, and alarm name, as shown in Figure 10.7:

Figure 10.7: Create CloudWatch alert and action from Amazon RDS dashboard

Creating a snapshot
A snapshot is a frozen image of the DB instance's storage volume. It helps to restore a
database to a particular point in time. Usually, point-in-time recovery is performed when a
database is corrupted or by mistake some data has been dropped (that is, deleted) to bring a
database back to the last healthy state. At the time of creating an Amazon RDS instance, a
daily snapshot schedule has already been configured, but sometimes it may be required to
take a manual snapshot of the DB instance before performing any maintenance tasks on the
database. A snapshot will back up an entire DB instance including all databases and tables
and other resources existing on it.

AWS Relational Database Services Chapter 10

[320]

Creating a snapshot for a Multi-AZ DB instance doesn't bring many performance
implications, but taking a snapshot for a single-AZ DB instance may suspend DB I/O for a
few seconds to minutes. Manual snapshots can be taken using the Amazon Management
Console, CLI, or APIs. To take a manual snapshot using the Management Console perform
the following steps:

Select the desired DB instance.1.
Select Take Snapshot from the Instance Actions drop-down menu, available2.
above the list of the running RDS instances:

Figure 10.8: Take manual Amazon RDS DB instance snapshot

Provide the relevant Snapshot Name, as shown in Figure 10.9:3.

Figure 10.9: Provide Snapshot Name, while taking manual snapshot

AWS Relational Database Services Chapter 10

[321]

Restoring a DB from a snapshot
A snapshot can only be restored by creating a new instance. You cannot restore a snapshot
to an existing instance. While restoring the snapshot to a new RDS instance, you can have a
different storage volume type from the one used in the snapshot.

Creating an RDS DB instance from a snapshot automatically attaches a default parameter
group and security group to it. Once a DB instance is created, it is possible to change the
attached parameter group and security group for that instance.

By restoring a snapshot, the same option group associated with the snapshot will get
associated to the newly created RDS DB instance. Option groups are platform-specific: VPC
or EC2-Classic.

Creating an RDS DB instance inside a particular VPC will link a used option group with
that particular VPC. It means that when the snapshot is created for that DB instance, it
cannot be restored in a different VPC. To do that, it requires us to either attach a default
option group or create a new option group and attach it to the newly created DB instance
from the snapshot.

Creating a DB instance from a snapshot also requires us to provide parameters such as DB
Engine, License Model, DB Instance Class, Multi-AZ Deployment, Storage Type, DB
Instance Identifier, VPC, Subnet Group, Publicly Accessible, Availability Zone,
Database Name, Database Port, Option Groups, and other parameters that we define at
the time of creating a new Amazon RDS DB instance.

It is also possible to copy and share an Amazon RDS snapshot from one
region to another and share it among multiple AWS accounts,
respectively. It may require us to create a DB instance from a snapshot in a
different region or AWS account.

Changing an RDS instance type
An RDS instance type is generally changed to accommodate additional resource
requirement or for downgrading an existing instance type that is underutilized. For
changing the instance type, perform the following steps:

From the list of RDS DB instances, select the desired instance to modify the1.
instance type and select Modify from the Instance Actions drop-down menu.
The drop-down menu is shown in Figure 10.10:

AWS Relational Database Services Chapter 10

[322]

Figure 10.10: Instance Actions drop down menu to select Modify

Modifying a DB instance does not only allow us to change the DB instance type,2.
it also allows us to change many other parameters that are provided at the time of
creating a DB instance such as subnet group, security group, and many more
options. At the end of the parameters that can be changed, an option is available
to apply changes now or wait until an upcoming maintenance window, as shown
in Figure 10.11:

Figure 10.11: DB instance change parameters to Apply Immediately or wait till next maintenance window

If DB performance is throttling, you can change the DB instance parameters and3.
apply them immediately. If you do not apply them immediately, the changes are
automatically applied during the next maintenance window. Some modifications,
such as parameter group changes, may require us to reboot DB instances. It is
advisable to test any changes in a test environment first, before making the
changes in production environments directly.

AWS Relational Database Services Chapter 10

[323]

It is best practice to test such changes in a test environment first, before
making changes in production directly.

Amazon RDS and VPC
Before 2013, AWS supported EC2-Classic. All AWS accounts created after December 4, 2013
only support EC2-VPC. If an AWS account only supports EC2-VPC, then a default VPC is
created in each region and a default subnet in each AZ. Default subnets are public in nature.
To meet enterprise requirements, it is possible to create a custom VPC and subnet. This
custom VPC and subnet can have a custom CIDR range and can also decide which subnet
can be public and which one can be private. When an AWS account only supports EC2-
VPC, it has no custom VPC created, then Amazon RDS DB instances are created inside a
default VPC. Amazon RDS DB instances can also be launched into a custom VPC just like
EC2 instances. Amazon RDS DB instances have the same functionality in terms of
performance, maintenance, upgrading, recovery, and failover detection capability,
irrespective of whether they are launched in a VPC or not.

Amazon RDS and high availability
ELB and auto-scaling can be used with Amazon EC2 to perform load balancing and
launching or terminating an EC2 instance to match the load requirement. Auto-scaling
cannot be used with Amazon RDS. Amazon RDS supports Multi-AZ deployment to
provide high availability and failover. By enabling Multi-AZ deployment, Amazon RDS
creates two instances of the same instance type and configuration with individual endpoints
in two separate AZs. The sole purpose of another DB instance is to maintain a synchronous
standby replica. The standby replica receives traffic only when failover takes place. It can
not be used for load balancing or serving read-only traffic. For serving read-only traffic,
Read Replicas can be created, which is different from creating Multi-AZ instances. At the
time of writing this book, Amazon RDS supports six DB engines. Four out of the six DB
engines, Oracle, PostgreSQL, MySQL, and MariaDB, can perform failover from a primary
DB instance to a secondary DB instance using Amazon's failover mechanism. The Microsoft
SQL Server RDS engine uses SQL Server mirroring for high availability. The Amazon
Aurora cluster creates at least three copies of data across Multi-AZs within the same region,
which can fulfil the high-availability requirement. In Amazon Aurora, in case the primary
DB instance fails, one of the Aurora Replicas is promoted as a primary.

AWS Relational Database Services Chapter 10

[324]

Figure 10.12 helps to understand the Amazon RDS DB primary and secondary instance in a
VPC, where the primary instance is denoted as M and the secondary instance is denoted as
S:

Figure 10.12: Amazon RDS DB instance in a Multi-AZ

Reference URL : https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.MultiAZ.html

When using the BYOL licensing model, you must have a license for both the
primary instance and the standby replica.

Connecting to an Amazon RDS DB instance
Once the Amazon RDS DB instance is created, you can connect to it for performing
read/write operations as well as for performing day-to-day maintenance activities. Before
connecting to the DB instance, ensure that the port to connect with the DB instance is
allowed in the firewall or security group. Also, ensure that the source IP from where you
need to connect to the DB instance is allowed in the security group.

AWS Relational Database Services Chapter 10

[325]

Connecting to an Amazon Aurora DB cluster
Aurora DB clusters consist of a primary instance and an Aurora Replica. A separate
endpoint is available for the primary instance, Aurora Read instance, or a group of Aurora
Read instances. In line with the task you want to carry out, it is possible to use any of these
endpoints in scripting, application, or manually connecting them. Tools used to connect
with MySQL databases can be used to connect to Amazon Aurora cluster DB instances.

You can refer to the following syntax for connecting to an Aurora DB:

mysql -h <aurora-cluster-endpoint> --ssl-ca=[full path]rds-combined-ca-
bundle.pem --ssl-verify-server-cert

Connecting to a MariaDB instance
Every Amazon RDS MariaDB instance which is up and running, has a valid endpoint. It can
be used with an application, client, or tool to connect with the DB instance. By default, it
uses port 3306 and the TCP protocol.

Amazon RDS MariaDB instances can be accessed from the mysql
command-line utility. HeidiSQL is a GUI-based utility and it can be used
to connect MariaDB instances.

The following MySQL command helps to understand the syntax:

mysql -h <endpoit> -p 3306 -u <masteruser> -p

It is possible to provide a password immediately after the -p parameter,
however, it is suggested to avoid using -p parameter. It is a best practice
to provide password only during the runtime when the system prompts
for it.
Also remember that the number of concurrent connections that can be
established with a DB instance, depends on the memory available with the
instance type. Based on the available memory (instance type), the number
of concurrent connection limit is derived. DB instances with higher
memory have a higher number of concurrent connection limit. In
MariaDB, you can limit the number of concurrent connections in the
max_connections parameter

AWS Relational Database Services Chapter 10

[326]

Connecting to a MySQL instance
By providing an Amazon RDS endpoint, MySQL DB instances can be connected using a
standard MySQL client application or utility. Connecting to MySQL DB instances is similar
to connecting to MariaDB using a MySQL command-line tool:

mysql -h <endpoit> -p 3306 -u <masteruser> -p

Amazon RDS DB instance endpoints can be obtained from the RDS
console or by using CLI describe-db- instances.

Optionally, it is also possible to use SSL encryption to connect to an Amazon RDS MySQL
DB instance. The --ssl-ca parameter is used to provide a public key (.pem) for SSL-
encrypted communication.

It is possible to pass a password immediately after the -p parameter. Best
practice is not to provide it with the command, but to provide it at runtime
when prompted. The connection limit for a MySQL instance is dependent
on the instance type. DB instances with higher memory have a higher
connection limit. MySQL's maximum possible connection number is
defined in the max_connections parameter.

Connecting to an Oracle instance
SQL*Plus is an Oracle command-line utility that can be downloaded from the Oracle
website. Before connecting to the Amazon RDS Oracle DB instance, it is essential to find out
the Amazon RDS endpoint, port, and protocol. When connecting for the first time, we must
connect using master user credentials. Subsequently, we can create relevant users for
application and maintenance purpose. It is recommended to use separate users for
applications as well as day-to-day maintenance activity rather than using the master user
credentials. The following sqlplus command-line example helps us to understand this:

sqlplus 'mydbusr@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=<dns name of db
instance>)(PORT=<listener port>))(CONNECT_DATA=(SID=<database name>)))'

AWS Relational Database Services Chapter 10

[327]

Where:

mydbuser: This could be the master user or any other valid user
PROTOCOL: TCP is a protocol and it remains TCP only
PORT: By default, Oracle DB can be connected on 1521
SID: Database name, intended to connect where one instance may have more
than one database

RDS best practices
RDS best practices are as follows:

Create an individual AWS IAM user to perform DBA tasks. Grant the minimum
privileges required to perform day-to-day tasks. Remove unused access key and
secret key. Have a strong password policy and rotate the password periodically.
Before creating an RDS instance, identify Amazon RDS essential characteristics to
be specified such as VPC, security group, failover or Read Replica requirement,
the region and AZs to use, and storage and backup requirements.
Before creating an RDS instance, it is recommended to create a DB options group
and DB parameter group.
Monitor Amazon RDS instance resources such as CPU, memory, and storage to
avoid performance bottlenecks.
It is recommended to keep some extra buffer in memory and a storage volume
while choosing RDS instance types.
It is recommended to test your environment for failover as it may take different
lengths of time depending on the use case, instance type, and underlined data
size.
Amazon RDS provides an endpoint to connect to the RDS instance. The IP
address beneath that endpoint may change after failover takes place. So, if an
application caches the DNS IP address, set the TTL to under 30 seconds in your
application environment.

11
AWS DynamoDB - A NoSQL

Database Service
DynamoDB is an easy-to-use and fully-managed NoSQL database service provided by
Amazon. It provides fast and consistent performance, highly scalable architecture, flexible
data structure, event driven programmability, and fine-grained access control.

Before we go into detail about DynamoDB, let's understand some fundamental
characteristics of RDBMS/SQL and NoSQL databases. For a long time, the developer
community has been working with Relational Database Management Service (RDBMS)
and Structured Query Language (SQL). If you have used RDBMS and SQL, you will
probably want to understand the fundamental similarities and differences between the SQL
and NoSQL databases.

Let's first understand what an RDBMS is
RDBMS enables you to create databases that can store related data. A database is a
collection of information that stores data in database objects, called tables. A table is a
collection of related data entries, which consists of columns and rows.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[329]

RDBMS enables you to create a link between these tables by establishing a relationship
between them. This relational model helps in obtaining related information from multiple
tables using SQL. You can see in Figure 11.1 that there are three tables, Employee_Master,
Department_Master, and Emp_Dept. All these tables are related with a key field that is
called the primary key. In the following example, you can see how the Emp_Dept table,
which provides department detail for employees, is linked with the Employee_Master and
Department_Master tables:

Figure 11.1: Relation between tables in an RDBMS

In a nutshell, this is how RDBMS co-relates with data stored in tables.

What is SQL?
SQL is a standardized language to interact with relational databases. It can execute queries
against a database and retrieve data from one or more tables. It can insert, update, and
delete records from database tables and perform many other database-related activities. In
short, SQL can help you manage your databases.

Here's a simple example of a SQL statement:

Select * from Employee_Master

The preceding example simply retrieves all the records from the Employee_Master
database. Let's look at one more simple example of a SQL statement, which retrieves related
information from multiple tables:

Select a.employee_id, b.firstname, b.lastname, c.department_name from
Emp_Dept a, Employee_Master b, Department_Master c where a.employee_id =
b.employee_id and a.department_id = c.department_id

AWS DynamoDB - A NoSQL Database Service Chapter 11

[330]

The preceding example retrieves related employee information from three different tables.
The key to retrieving the information is in the relationship between them. The relationship
is established based on key fields in the respective tables.

In a nutshell, this is how RDBMS and SQL work.

What is NoSQL?
A NoSQL database provides a way to store and retrieve data that is in a non-tabular format.
It is also referred to as a Non SQL, Non Relational or Not only SQL database. NoSQL
databases are used for managing large sets of data that are frequently updated in a
distributed system. It eliminates the need for a rigid schema associated with an RDBMS.

There are basically four types of NoSQL databases:

Key-value pair databases
Document databases
Graph databases
Wide column stores

Key-value pair databases
It uses a very simple data model that stores data in a pair of unique keys and the associated
value. Commonly, it is used for storing time series data, click stream data, and application
logs.

Examples of key-value pair databases are: DynamoDB, Riak, Redis, and Aerospike.

Key Value

Name Abhishek

Mobile 0987654321

Address Mumbai

DynamoDB is a key-value pair database. In subsequent sections of the chapter, we will look
more deeply at key-value pair databases.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[331]

Document databases
It stores data elements in a structure that represents a document-like format such as JSON,
XML, or YAML. Document databases are commonly used for content management and
monitoring applications.

Examples of document databases: MongoDB, CouchDB, and MarkLogic.

Unlike RDBMS, the document database schema design is flexible and can combine multiple
entities in a single schema. The following example shows how employee information can be
stored in a MongoDB document:

db.employee.insert(
{
 {
 employee_id:'10001', firstname: 'Tony', lastname: 'Stark', birthdate:
'1965-04-04'
 },
 {
 employee_id:'10002', firstname: 'Thor', lastname: 'Odinson',
birthdate: '1983-08-11'
 },
 {
 employee_id:'10003', firstname: 'Natalia', lastname: 'Romanoff',
birthdate: '1984-11-22'
 }
})

Graph databases
A graph database is a NoSQL database type that uses graph structures and stores related
data in nodes. It emphasizes on the connection between the data elements to accelerate
query performance. It is mainly used for storing geographical data and recommendation
engines.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[332]

Examples of graph databases: Allegrograph, IBM graph, and Neo4J:

Figure 11.2: Graph database

Image Source: https://upload.wikimedia.org/wikipedia/commons/3/3a/GraphDatabase_PropertyGraph.png

Wide column databases
The wide column database is a type of NoSQL database that stores data using a column-
oriented model. It is also called a table-style database or column store database. It stores
data in a table-like structure and it can store large numbers of columns.

Wide column databases are generally used for storing data related to internet searches and
other similar large-scale web applications.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[333]

Examples of wide column databases: Cassandra, HBase, SimpleDB, Accumulo, and
Hypertable. In a wide column database, each column is stored in a separate file, as depicted
here:

Employee_id Firstname Lastname Birthdate

10001 Tony Stark 1965-04-04

10002 Thor Odinson 1983-08-11

10003 Natalia Romanoff 1984-11-22

When to use NoSQL databases?
A relational database stores data in one or more related tables. The relational model and
tabular format minimizes data duplication. However, scaling relational databases can
become very resource-intensive. In contrast, NoSQL databases store related data in a single
document, which can improve accessibility and scalability. A NoSQL database sacrifices
some of the query and transaction capabilities of RDBMS for better performance and high
scalability.

NoSQL is generally used for big data, advertisement technologies, gaming, mobile
applications, time series data, logs, IoT, and many other applications where heavy write
performance, reduced latency, and a dynamic schema are required.

SQL versus NoSQL
The following are some of the key differences between SQL and NoSQL databases:

SQL NoSQL

Database systems are termed RDBMS. Database systems are termed non-relational or
distributed systems.

It follows a rigid and pre-defined
schema model. It uses a dynamic schema.

It stores data in tabular form and is
also known as a tabular database.

It stores data in a collection of key-value pairs,
graph databases, documents, and wide column
stores.

Databases can be scaled vertically. Databases can be scaled horizontally.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[334]

It uses SQL for defining and
managing data.

It uses an unstructured query language, which
varies from database to database.

It is best suited to complex queries. It is not suitable for complex queries as it does not
use the relational data model.

It is not suitable for hierarchical data
stores. It is best suited for hierarchical data stores.

Oracle, SQL Server, MySQL, and
PostgreSQL are SQL databases.

DynamoDB, MongoDB, Bigtable, Cassandra,
Hbase, and CouchDB are NoSQL databases.

Introducing DynamoDB
Amazon DynamoDB is a fully managed NoSQL database service from Amazon that
provides fast and flexible NoSQL database service for applications that need consistent and
low-latency access at any scale. It supports key-value and document data models. It
provides a dynamic schema model and predictable performance. DynamoDB is best suited
to big data, advertisement technologies, gaming, mobile applications, time series data, logs,
IoT, and other applications where heavy write performance, reduced latency, and a
dynamic schema are required.

DynamoDB allows you to store any amount of data and handle any level of user traffic. It
allows you to scale up or down a table's read/write capacity without affecting the up time
and performance of the table. You can use the management console for monitoring
DynamoDB resource utilization and its effective performance metrics.

It helps you reduce storage usage by automatically deleting the expired items from a table.
Since it can help you automatically delete expired data, the cost for storing data can be
significantly optimized.

DynamoDB tables are spread across a cluster of servers that are sufficient for handling the
desired throughput and the required storage for consistent and reliable performance. It
stores data in Solid State Drive (SSD) and the data is replicated across multiple AZs for
obtaining high availability and data durability.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[335]

DynamoDB components
There are basically three core components of a DynamoDB table: tables, items, and
attributes.

Let's look at these core components in detail:

Tables: DynamoDB stores data in an entity called a table. A table consists of a set
of data; for example, the following employee table shows how you can store
employee information in a DynamoDB table.
Item: A table consists of multiple items. An item consists of a group of attributes.
An item is like a record or row in an RDBMS table. In the following employee
table example, you can see the data of two employees. Each employee's data
represents an item in DynamoDB.
Attributes: An item in a table consists of multiple attributes. An attribute is the
basic data element of an item. It is similar to a field or a column in an RDBMS.
However, unlike RDBMS, attributes in a table item can have subattributes. You
can see that in the following employee data example, the address attribute is
further broken down into multiple attributes for representing specific data:

Figure 11.3: DynamoDB table items and attributes

AWS DynamoDB - A NoSQL Database Service Chapter 11

[336]

As you can see in the preceding example, the first record in the table does not contain an
address whereas the next record has an address and its subset attributes in the record. This
shows the flexibility in the schema of a DynamoDB table. You can have different attributes
in subsequent records based on need.

Primary key
While creating a DynamoDB table, you need to specify the table name and the primary key
of the table. It is mandatory to define a primary key in the DynamoDB table. A primary key
is a mechanism to uniquely identify each item in a table. A primary key does not allow two
items with the same key value in a table. There are two types of primary keys:

Partition key: It is a simple primary key that is composed of a single attribute
named partition key. DynamoDB partitions the data in sections based on the
partition key value. The partition key value is used as an input to internal hash
functions, which determines in which partition the data is stored. This is the
reason the partition key is also called the hash key. No two items in a table can
have the same partition key. Since the data is divided into partitions based on its
partition key value, data retrieval becomes faster. In Figure 11.3, you can
see that employee_id is an example of a simple primary key. You can rapidly
access employee information from a table by providing the employee_id.

Partition key and sort key: Partition key and sort key are composed of two
attributes and that's why they are also called a composite primary key. As the
name suggests, the first attribute of the key is the partition key and the second
attribute is the sort key. Just like the partition key, the composite key also uses the
partition key as an input to an internal hash function. This hash function
determines the place of an item in a partition. The partition is a physical store,
which is internal to DynamoDB, for arranging the item to get the best possible
performance from the table.

DynamoDB stores all items with the same partition key together. In a partition, items are
ordered based on a sort key value. Thus, the partition key determines the first level of sort
order in a table, whereas the sort key determines the secondary sort order of the data stored
in a partition. A sort key is also called a range key.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[337]

A table with both a partition key and a sort key can have more than one item with the same
partition key value; however, it must have a different sort key. In the following example,
you can see that department_id is a partition key and employee_id is a sort key. A
department can have multiple employee records, which leads to repeating the
department_id; however, employee_id cannot repeat with the same department name:

Figure 11.4: Partition key and sort key

In a nutshell, there can be two types of primary keys:

Single attribute partition key
Double attribute partition key and sort key

Secondary indexes
DynamoDB allows you to create secondary indexes on a table. It is an alternate way to
query table data in addition to querying it using the primary key. It is not necessary to use
indexes, but using secondary indexes provides some flexibility in querying the data.

There are two types of secondary indexes:

Global Secondary Index (GSI): It consists of a partition key and a sort key,
which has to be different from the primary keys defined on the table
Local Secondary Index (LSI): It uses the same partition key as the table but uses a
different sort key

AWS DynamoDB - A NoSQL Database Service Chapter 11

[338]

DynamoDB allows you to create five GSI and five LSI on a table:

Every index is associated with a table, called the base table for the index.
DynamoDB automatically maintains the indexes. Whenever data is added,
updated, or deleted from the base table, DynamoDB adds, updates, or deletes the
corresponding item in the related indexes.
While defining the index, you can choose which attributes are copied to the
index. At a minimum, DynamoDB projects at least the key attributes from the
table.

DynamoDB Streams
DynamoDB Streams provides an optional feature that can capture data modification events
whenever a DynamoDB table is changed. The event data is captured in the stream in near
real time in chronological order as the event occurs. Each of the events are recorded by a
stream record.

When you enable a stream on a DynamoDB table, it writes a stream record as and when one
of the following events occur:

When a new item is added to a table, the stream captures an image of the entire
item including all of the item attributes
When an item is updated, the stream captures the before and after values of all the
attributes modified during the process
When an item is deleted from the table, the stream captures an image of the entire
item before it is deleted

A stream record consists of the name of the table, the timestamp when the event occurs, and
other metadata. A stream record can last for 24 hours; after that, it is automatically deleted
from the stream.

You can also use AWS Lambda to create a trigger along with DynamoDB streams. A
Lambda function can execute whenever a defined event occurs in a stream. Let's consider
the Employee table used in the previous examples. When a new employee record is created,
you want to send an email to all the employees in the department to welcome the new
person. In these cases, you can enable a stream on the Employee table and then associate
the stream with a pre-defined Lambda function, which sends an email to all the employees
in a department where a new employee joins.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[339]

The Lambda function executes whenever there is a new record available in the stream;
however, it processes only new items added to the employee table. The Lambda function
invokes the Amazon Simple Email Service (SES) for sending emails to the users in the
department. The following image illustrates this scenario:

Figure 11.5: DynamoDB Streams with Lambda Function

Apart from triggers, DynamoDB streams can be used for data replication within a specific
region or across multiple regions. They can also be used for materialized views of
DynamoDB tables. A materialized view is a database object that contains the result of a
query just like views in RDBMS terminology. DynamoDB stream can also be used for data
analysis with Kinesis-materialized views.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[340]

Read consistency model
Amazon provides DynamoDB in multiple AWS regions across the globe. All of these
regions are independent and physically isolated from each other. If you create a DynamoDB
table Employee in the us-east-1 region and similarly create another table Employee in the
us-west-2 region, these tables are two separate and isolated tables. An AWS region consists
of multiple AZs. Each of the AZs are isolated from failures in any of the AZs in a region.
Amazon provides an economical and low-latency network connection between all the AZs
in a region.

Whenever you write data to a DynamoDB table, AWS replicates this data across multiple
AZs to provide high availability. After writing data to a DynamoDB table, you get an HTTP
200 response. HTTP 200 (OK) indicates that the data has safely updated to all the
replicated copies stored in different AZs. AWS provides two types of read consistency
models: eventually consistent read and strong consistent read. These models are based on
the mechanism of how soon the data is replicated across the AZs.

Eventually consistent reads
While reading data from a DynamoDB table using eventually consistent reads, the result
you may get might not reflect any recently completed write operations. Since the data is
stored in multiple AZs, it takes a few seconds to synchronize the data in multiple locations.
Eventually, the consistency of data is achieved. In such cases, if you repeat your read
operation after a short while, it returns the latest copy of the data.

Strong consistent reads
If you opt for a strongly consistent read on a DynamoDB table, it provides the response
with the most up-to-date data. It reflects changes from all prior write operations that were
successful. While working with strongly consistent reads, if there is any outage or delay in
the network, the data may not be available immediately.

By default, DynamoDB uses eventually consistent reads. If you need to use strongly
consistent reads, you need to specify this while creating the table.

Read operations such as GetItem, Query, and Scan provide a ConsistentRead parameter.
When you set this parameter to True, DynamoDB uses strongly consistent reads.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[341]

Naming rules and data types
DynamoDB supports a number of data types. This section describes these data types as well
as the DynamoDB naming rules.

Let's start by understanding naming rules.

Naming rules
Each table, attributes, and any other object in DynamoDB should have a name. All the
names that you use in DynamoDB should be concise and meaningful. For example, a table
can be named Employee, Department, Books, and so on. Just like these names, whatever
name you use should be self-explanatory.

Here are some of the naming rules for DynamoDB:

Names are case-sensitive and must be encoded in UTF-8
A table name and an index name may range between 3 to 255 characters
Names may contain only the following characters:

a-z
A-Z
0-9
_ (underscore)
- (dash)
. (dot)
Attributes can have a number of characters between 1 to 255

There are a number of special characters and reserved words in
DynamoDB. These reserved words are given here: http:/ /docs. aws.
amazon. com/ amazondynamodb/ latest/ developerguide/ ReservedWords.
html.

Apart from these reserved words, the following characters have special meaning in
DynamoDB:

(hash)
: (colon)

Although DynamoDB allows you to use this list of reserved names and special characters, it
is recommended you not use them for naming purposes in DynamoDB.

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html

AWS DynamoDB - A NoSQL Database Service Chapter 11

[342]

Data types
DynamoDB supports a number of data types for attributes in a table. These data types can
be categorized into three parts:

Scalar types: The scalar data type represents one value. It includes data types
such as number, string, binary, Boolean, and null.
Document types: A document data type contains a complex structure with
nested attributes. Examples of these structures are JSON and XML. DynamoDB
supports list and map document data types.
Set types: A set data type contains a group of scalar values. The set types
supported by DynamoDB are string set, number set, and binary set.

You need to specify names and respective data types for each of the primary key attributes
while creating a DynamoDB table. In addition to that, each primary key, be it a partition
key or sort key, must be defined as one of the following scalar data types:

String
Number
Binary

DynamoDB is a schemaless NoSQL database. While creating a table, you need to define the
primary key and its respective data types. Apart from that, you do not need to define other
attributes and their data types while creating a table. In contrast, while creating a table in
RDBMS, you need to specifically define a schema with field names and its data types.
DynamoDB has a flexible schema that allows you to directly store the data without defining
the schema. You just need to define the primary key; the rest of the attributes can be taken
care of dynamically as you store the data in the table.

The following section describes each of these data types along with an example format.

Scalar data types
The scalar data type includes number, string, binary, Boolean, and null.

String:

Encoding Unicode with UTF-8 binary encoding

Length Greater than 0 and less than 400 KB

Partition key length Maximum 2048 bytes

AWS DynamoDB - A NoSQL Database Service Chapter 11

[343]

Sort key length Maximum 1024 bytes

Usage To represent string, alternatively date, and timestamp in string
format

Number:

Can store Positive, negative, or zero

Precision Maximum up to 38 digits

Positive range 1E-130 to 9.9999999999999999999999999999999999999E+125

Negative range -9.9999999999999999999999999999999999999E+125 to -1E-130

Binary:

Can store Binary data such as images, compressed text, and
encrypted data

Length Greater than 0 and less than 400 KB

Binary attribute as partition
key Maximum length 2048 bytes

Binary attribute as sort key Maximum length 1024 bytes

Supported encoding Application must send the data in base64-encoded format

Boolean: Boolean is also a scalar data type and it can store either true or false
values
Null: Null data type indicates an undefined or unknown state of the data

Document types
DynamoDB supports two document data types: List and Map. You can create a complex
data structure by nesting these data types up to 32 levels deep.

DynamoDB does not limit on the number of values it can store in a list of map data types;
however, a table item must not exceed a total item size of 400 KB..

AWS DynamoDB - A NoSQL Database Service Chapter 11

[344]

DynamoDB does not support empty scalar data types or set data types; however, it does
support empty list and map data types.

List: A list data type can store a collection of values in square brackets [...]. You
can compare the list data types with a JSON array. You can store any data types
within the list and all elements in the list may or may not be of the same data
type.
Simple list example:

TechGiants: ["Amazon", "Apple", "Google", "Facebook"]
Multiple data type list example:

DeckOfCards: ["Ace", 2, 3, 4, 5, 6, 7, 8, 9, 10, "Jack", "Queen", "King"]

Map: A map data type attribute can consist of a collection of name-value pairs.
This collection of values can be in any order. Map values are stored in curly
brackets { ... }. You can compare map with a JSON format. DynamoDB does not
restrict you from storing any data type in a map element. You can also store
multiple data types in an element. They do not need to be the same size.
Generally, maps are used for storing JSON documents in DynamoDB.

Example of map with a nested list:

{
employee_id: "D10007",
employee_name: "Tony Stark",
address: [
 home:
 {
 street: "10880, Malibu Point",
 city: "Malibu",
 state: "California",
 zip: 90265
 },
 office:
 {
 street: "890, Fifth Avenue, Manhattan",
 city: "New York",
 state: "New York",
 zip: 10019
 }

]
}

AWS DynamoDB - A NoSQL Database Service Chapter 11

[345]

Set types
DynamoDB supports set data types that contain a group of scalar values. The set types
supported by DynamoDB are string set, number set, and binary set.

When you use a set type, all the values within a set must be of the same data type. If you
declare a set of type string, the set can contain only string values. If you declare an attribute
of type number, the set can contain only number values within the set.

DynamoDB does not restrict you on the number of values within a set; however, the item
containing the set data cannot exceed the DynamoDB item size limit of 400 KB.

The set must contain unique values. DynamoDB does not preserve the order of set values.
Considering that, your application should not rely on any static element order in a set; also,
it is important to note that DynamoDB does not support an empty set.

Examples of string, number, and binary sets, respectively, are as follows:

["Amazon", "Google", "Microsoft", "Facebook", "Apple"]
[-3.14159, 0, 1, 1.4142, 2, 4, 8, 16, 32]
["eNrLz0sFAAKRAUM=","eNorKc8HAAK8AVs=", "eNoryShKTQUABm4CGQ=="]

Creating a DynamoDB table – basic steps
After going through the core components of a DynamoDB table, it's time to create a table.
This section describes the process of creating a DynamoDB table:

Log in to your AWS account and open the DynamoDB console at https:/ /1.
console. aws. amazon. com/ dynamodb/ .
Click the Create Table button.2.
In the Create DynamoDB table dialog, you can choose various options, as shown3.
in Figure 11.6:

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/

AWS DynamoDB - A NoSQL Database Service Chapter 11

[346]

Figure 11.6: Create DynamoDB table

 You can use following guideline to complete step 3 :

A) Enter the desired table name as shown in the preceding
screenshot, Table name can be between 3 to 255 characters long.

B) Enter the partition key name and select the key type from the drop-
down menu. Any primary key can only be a scalar data type, that
is, String, Binary, or Number.

C) Check the Add sort key checkbox, if required, and enter the sort key
name and data type. This is required only if you want to create a
composite primary key with a combination of a partition key and a sort
key.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[347]

D) With the default settings, Amazon creates a table without any
secondary indexes and provisions a 5 read with 5 write capacity. It also
creates a Basic alarms with 80% upper threshold using SNS topic
"dynamodb". You can customize these settings by unchecking the Use
default settings checkbox.

E) As you can see in Figure 11.6, there is a warning saying that You do
not have the required role to enable Auto Scaling by default. This
warning comes only if you do not have this role in your IAM roles. You
can safely ignore this, as DynamoDB creates a new role when you create
a table with default settings. In the advanced settings, there is an option
to create a new Auto Scaling role for DynamoDB or to use an existing
one. This is explained in the subsequent points.

Click Create, after choosing the appropriate options.4.

Now, let's look at some of the advanced settings in the table creation process.

Adding a sort key while creating a DynamoDB table
You can add a sort key while creating a table by selecting the Add sort key checkbox as
shown here:

Figure 11.7: Adding a sort key

Using advanced settings while creating a DynamoDB
table
With the default setting, Amazon creates a table without any secondary indexes and
provisions a 5 read with 5 write capacity. It also creates a Basic alarm with 80% upper
threshold using the SNS topic "dynamodb". You can customize these settings by
unchecking the Use default settings checkbox. Let's look at the options in the advanced
settings.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[348]

On the create table screen, uncheck Use default settings. It displays the screen, as shown
here:

Figure 11.8: Create table screen - advanced settings

AWS DynamoDB - A NoSQL Database Service Chapter 11

[349]

As you can see in the advanced settings, there is a provision to create secondary indexes
and set up Auto Scaling, and also an option to create a New role:
DynamoDBAutoscaleRole or to choose an existing role for Auto Scaling permissions. Let's
look at each of these options.

Creating secondary indexes – table settings
The create table screen allows you to create secondary indexes while creating a table. For
creating secondary indexes, click Add index in the Table settings screen, as shown in Figure
11.8.

Clicking Add index brings up Figure 11.9 with further options:

Figure 11.9: Creating secondary index

As shown in Figure 11.9, you can enter the Partition key name and optionally a sort key
name based on the requirement. Index name is automatically populated with the Partition
key name and the -index suffix. You can change the index name, if required. The index
name must be unique for each table.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[350]

Projected attributes are attributes that are stored in the index. While creating an index, you
can specify which attributes you want to add to the index. You can select these projected
attributes from the drop-down box. There are three options in the drop-down box. You can
either choose All attributes, Keys only, or you can select Include and add specific attributes
that you want to add to the index. Whatever attributes you choose here are returned by
query and a scan is performed on the index.

Provisioned capacity – table settings
If you choose to customize the default settings, you can configure the Provisioned capacity
for the table. Provisioned capacity settings are disabled if Auto Scaling is enabled. For a
custom read or write capacity, you need to disable the Read capacity and Write capacity
checkbox. After disabling the Auto scaling, you can choose the specific Read capacity units
and Write capacity units. You can refer to Using advanced settings while creating a DynamoDB
Table section. Table read and write capacity is automatically taken care of if you enable Auto
Scaling.

Auto Scaling – table settings
You can configure the Auto Scaling options from Table settings. You can selectively choose
Auto Scaling for Read Capacity and/or Write Capacity as per your needs. There are three
options you need to configure in order to use Auto Scaling:

Target utilization: The default value for Target utilization is 70 percent. You can
change this value based on your needs. DynamoDB automatically scales up the
read/write capacity of the table, in case the utilization goes beyond the target
utilization percentage configured here. The table capacity scales up to Maximum
provisioned capacity configured. You can individually specify Target utilization
thresholds for read as well as write operations.
Minimum provisioned capacity: While creating the table, you can specify the
Minimum provisioned capacity for a table. Irrespective of utilization,
DynamoDB provisions the minimum read and/or write capacity as configured
here. DynamoDB does not scale itself down beyond Minimum provisioned
capacity. You can separately specify the Minimum provisioned capacity for read
as well as write operations.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[351]

Maximum provisioned capacity: While using Auto Scaling on a table, you can
configure the maximum scaling capacity of a table. DynamoDB does not scale
beyond this capacity during Auto Scaling events. You can separately specify the
Maximum provisioned capacity for read as well as write operations:

Figure 11.10: Create table -Auto Scaling settings

You can enable or disable Auto Scaling for Read capacity and Write capacity separately as
displayed in Figure 11.10. Unchecking Read Capacity disables Auto Scaling for read
capacity. Similarly, unchecking the Write Capacity disables Auto Scaling for write capacity.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[352]

For Auto Scaling the table capacity, DynamoDB requires permission. As shown in the
previous snapshot, you need to either select New role: DynamoDBAutoscaleRole or
choose Existing role with pre-defined policies. If you select Existing role with pre-defined
policies, you need to specify an existing role name that carries sufficient permissions for
Auto Scaling the DynamoDB table.

For more details on creating a role for DynamoDB Auto Scaling, you can
refer to http:/ / docs. aws. amazon. com/amazondynamodb/ latest/
developerguide/ AutoScaling. CLI. html#AutoScaling. CLI.
CreateServiceRole.

Methods of accessing DynamoDB
Amazon provides a DynamoDB console, CLI, and API interface to access DynamoDB
resources.

Let's look at each of these interfaces.

DynamoDB console
Amazon provides a DynamoDB AWS Management Console. You can access the console
here: https://console. aws. amazon. com/ dynamodb/ home.

Here's what you can do with the DynamoDB AWS Management Console:

Access the DynamoDB dashboard for monitoring recent alerts, the total
provisioned capacity of tables, health of the service, and latest news on
DynamoDB.
Create, update, and delete tables. It also provides a capacity calculator that can
help you estimate the capacity units you may need based on the information you
provide.
Manage DynamoDB Streams.
See items stored in a table, add new items, update existing items, and delete
items.
Manage Time To Live (TTL) for items stored in a table. TTL is defined for
automatically deleting an item from the table when it expires.
Query items in a table and perform a scan on a table.

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.CLI.html#AutoScaling.CLI.CreateServiceRole
https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home

AWS DynamoDB - A NoSQL Database Service Chapter 11

[353]

Create and view alarms for monitoring a table's capacity usage.
View in real time a table's top monitoring metrics graph, directly from
CloudWatch onto the DynamicDB console.
Change the provisioned capacity of a table.
Create and delete GSIs.
Create triggers that can connect DynamoDB streams to a Lambda function.
Add tags to your DynamoDB resources for better identification and
categorization of resources.
Purchase reserved capacity.

The console also provides a number of navigation tabs. The following list provides a quick
reference to each of the tabs available on the console:

Navigation tab Description

Overview Displays table details and manage Streams and TTL

Items Manages table items and executes queries and scans against table and
indexes

Metrics Views and monitors CloudWatch metrics related to DynamoDB

Alarms Views and manages CloudWatch alarms

Capacity Views and updates provisioned capacity of a table

Indexes Views and manages GSIs

Triggers Manages triggers that can connect DynamoDB streams to a Lambda
function

Access control Manages fine-grained access control and configures web identity
federation

Tags Adds tags to resources for better identification and categorization of
resources

DynamoDB CLI
AWS provides CLI to manage AWS services using the command line. You can use CLI for a
number of purposes, such as creating a script to automate a task or creating a table and
performing many other DynamoDB tasks using utility scripts.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[354]

If you have not already set up AWS CLI, you can follow the instructions for downloading
and configuring it here: http:/ / aws. amazon. com/ cli.

Working with DynamoDB CLI is very simple, if you understand the basics. Here's the
syntax for working with DynamoDB CLI:

aws dynamodb <operation-name> <--parameters-name> <parameter-value> ... <--
parameters-name> <parameter-value>

The following command creates a DynamoDB table named employee with
the Employee_ID and Employee_Name attributes. It also creates a partition key on
the Employee_ID attribute:

aws dynamodb create-table \
 --table-name employee \
 --attribute-definitions \
 AttributeName=Employee_ID,AttributeType=S \
 AttributeName=Employee_Name,AttributeType=S \
 --key-schema AttributeName=Employee_ID, KeyType=HASH
 --provisioned-throughput ReadCapacityUnits=1,WriteCapacityUnits=1

Similarly, the following commands add new items to the employee table:

aws dynamodb put-item \
--table-name employee \
--item \
 '{"Employee_ID": {"S": "10001"}, "Employee_Name": {"S": "Vipul
Tankariya"}, "Country": {"S": "India"}}' \
--return-consumed-capacity TOTAL

aws dynamodb put-item \
--table-name employee \
--item \
 '{"Employee_ID": {"S": "10002"}, "Employee_Name": {"S": "Bhavin
Parmar"}, "Country": {"S": "India"}}' \
--return-consumed-capacity TOTAL
aws dynamodb put-item \
 --table-name employee \
 --item '{ \
 "Employee_ID": {"S": "10003"}, \
 "Employee_Name": {"S": "Gajanan Changadkar"}, \
 "Country": {"S": "India"} }' \
 --return-consumed-capacity TOTAL

Sometimes, the complex JSON format may create problems on the command line. AWS
provides a way to handle this format using a file as an argument on the command line. The
following example shows how you can run CLI with JSON file arguments.

http://aws.amazon.com/cli
http://aws.amazon.com/cli
http://aws.amazon.com/cli
http://aws.amazon.com/cli
http://aws.amazon.com/cli
http://aws.amazon.com/cli
http://aws.amazon.com/cli
http://aws.amazon.com/cli
http://aws.amazon.com/cli
http://aws.amazon.com/cli
http://aws.amazon.com/cli
http://aws.amazon.com/cli

AWS DynamoDB - A NoSQL Database Service Chapter 11

[355]

Let's assume that all the command line arguments are stored in a JSON file called
condition-file.json for creating items in the employee table:

aws dynamodb query --table-name employee --key-conditions file://condition-
file.json

AWS provides a number of commands to work with DynamoDB.

You can refer to http:/ / docs.aws. amazon. com/cli/ latest/ reference/
dynamodb/ index. html for more commands.

Working with API
Apart from the AWS Management Console and CLI, AWS also provides APIs to work with
DynamoDB. These APIs can be used to develop applications that can manage various
DynamoDB operations. For using APIs, you need to install AWS SDKs. AWS provides
SDKs for a number of programming languages such as Java, JavaScript in the browser, .Net,
Node.js, PHP, Python, Ruby, C++, Go, Android, and iOS.

The following table describes where you can start working with these SDKs:

Language Reference URL

Java https:/ / aws. amazon. com/ sdk- for-java

JavaScript in the browser https:/ / aws. amazon. com/ sdk- for-browser

+.Net https:/ / aws. amazon. com/ sdk- for-net

Node.js https:/ / aws. amazon. com/ sdk- for-node- js

PHP https:/ / aws. amazon. com/ sdk- for-php

Python https:/ / aws. amazon. com/ sdk- for-python

Ruby https:/ / aws. amazon. com/ sdk- for-ruby

C++ https:/ / aws. amazon. com/ sdk- for-cpp

Go https:/ / aws. amazon. com/ sdk- for-go

Android https:/ / aws. amazon. com/ mobile/ sdk/

iOS https:/ / aws. amazon. com/ mobile/ sdk/

http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-browser
https://aws.amazon.com/sdk-for-browser
https://aws.amazon.com/sdk-for-browser
https://aws.amazon.com/sdk-for-browser
https://aws.amazon.com/sdk-for-browser
https://aws.amazon.com/sdk-for-browser
https://aws.amazon.com/sdk-for-browser
https://aws.amazon.com/sdk-for-browser
https://aws.amazon.com/sdk-for-browser
https://aws.amazon.com/sdk-for-browser
https://aws.amazon.com/sdk-for-browser
https://aws.amazon.com/sdk-for-browser
https://aws.amazon.com/sdk-for-browser
https://aws.amazon.com/sdk-for-browser
https://aws.amazon.com/sdk-for-browser
https://aws.amazon.com/sdk-for-net
https://aws.amazon.com/sdk-for-net
https://aws.amazon.com/sdk-for-net
https://aws.amazon.com/sdk-for-net
https://aws.amazon.com/sdk-for-net
https://aws.amazon.com/sdk-for-net
https://aws.amazon.com/sdk-for-net
https://aws.amazon.com/sdk-for-net
https://aws.amazon.com/sdk-for-net
https://aws.amazon.com/sdk-for-net
https://aws.amazon.com/sdk-for-net
https://aws.amazon.com/sdk-for-net
https://aws.amazon.com/sdk-for-net
https://aws.amazon.com/sdk-for-net
https://aws.amazon.com/sdk-for-net
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-php
https://aws.amazon.com/sdk-for-php
https://aws.amazon.com/sdk-for-php
https://aws.amazon.com/sdk-for-php
https://aws.amazon.com/sdk-for-php
https://aws.amazon.com/sdk-for-php
https://aws.amazon.com/sdk-for-php
https://aws.amazon.com/sdk-for-php
https://aws.amazon.com/sdk-for-php
https://aws.amazon.com/sdk-for-php
https://aws.amazon.com/sdk-for-php
https://aws.amazon.com/sdk-for-php
https://aws.amazon.com/sdk-for-php
https://aws.amazon.com/sdk-for-php
https://aws.amazon.com/sdk-for-php
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-ruby
https://aws.amazon.com/sdk-for-ruby
https://aws.amazon.com/sdk-for-ruby
https://aws.amazon.com/sdk-for-ruby
https://aws.amazon.com/sdk-for-ruby
https://aws.amazon.com/sdk-for-ruby
https://aws.amazon.com/sdk-for-ruby
https://aws.amazon.com/sdk-for-ruby
https://aws.amazon.com/sdk-for-ruby
https://aws.amazon.com/sdk-for-ruby
https://aws.amazon.com/sdk-for-ruby
https://aws.amazon.com/sdk-for-ruby
https://aws.amazon.com/sdk-for-ruby
https://aws.amazon.com/sdk-for-ruby
https://aws.amazon.com/sdk-for-ruby
https://aws.amazon.com/sdk-for-cpp
https://aws.amazon.com/sdk-for-cpp
https://aws.amazon.com/sdk-for-cpp
https://aws.amazon.com/sdk-for-cpp
https://aws.amazon.com/sdk-for-cpp
https://aws.amazon.com/sdk-for-cpp
https://aws.amazon.com/sdk-for-cpp
https://aws.amazon.com/sdk-for-cpp
https://aws.amazon.com/sdk-for-cpp
https://aws.amazon.com/sdk-for-cpp
https://aws.amazon.com/sdk-for-cpp
https://aws.amazon.com/sdk-for-cpp
https://aws.amazon.com/sdk-for-cpp
https://aws.amazon.com/sdk-for-cpp
https://aws.amazon.com/sdk-for-cpp
https://aws.amazon.com/sdk-for-go
https://aws.amazon.com/sdk-for-go
https://aws.amazon.com/sdk-for-go
https://aws.amazon.com/sdk-for-go
https://aws.amazon.com/sdk-for-go
https://aws.amazon.com/sdk-for-go
https://aws.amazon.com/sdk-for-go
https://aws.amazon.com/sdk-for-go
https://aws.amazon.com/sdk-for-go
https://aws.amazon.com/sdk-for-go
https://aws.amazon.com/sdk-for-go
https://aws.amazon.com/sdk-for-go
https://aws.amazon.com/sdk-for-go
https://aws.amazon.com/sdk-for-go
https://aws.amazon.com/sdk-for-go
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/
https://aws.amazon.com/mobile/sdk/

AWS DynamoDB - A NoSQL Database Service Chapter 11

[356]

DynamoDB provisioned throughput
DynamoDB provides the Auto Scaling feature for automatically scaling the read and write
capacity of a table; however, if you do not use it, you need to manually handle the
throughput requirement of your table. DynamoDB measures the throughput capacity using
read and write capacity units.

Read capacity units
DynamoDB processes the read operations based on the type of read consistency used. Using
one read capacity unit, DynamoDb can process one strongly consistent read per second. In
the same line, DynamoDB can process two eventual consistent reads per second using one
read capacity unit. Using one read capacity unit, DynamoDB can process an item of up to 4
KB in size. If the item size is more than 4 KB, it requires an additional read capacity unit to
process it. In short, item size and consistency model determine the total number of read
capacity units required to process it.

1 read capacity unit = 1 strongly consistent read
1 read capacity unit = 2 eventual consistent reads
1 read operation can process an item of up to 4 KB in size
If an item is more than 4 KB in size, it requires additional read operations
If an item is less than 4 KB in size, it still requires 1 read capacity unit

Write capacity units
Using one write capacity unit, DynamoDB can process one write per second and write an
item of a maximum of 1 KB in size. If the size of the item is greater than 1 KB, it requires
additional write capacity units. In short, the number of write capacity units required to
process an item depends up on the size of the item:

1 write capacity unit = 1 write operation of up to 1 KB in size
If an item is greater than 1 KB, it requires additional write capacity units
If an item is less than 1 KB in size, it still requires 1 write capacity unit

Calculating table throughput
If you create a table with a throughput of 5 read capacity units and 5 write capacity units:

It can perform a strongly consistent read of up to 20 KB per second.
5 read capacity units x 4 KB.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[357]

It can perform an eventual consistent read of up to 40 KB.
5 read capacity units x 4 KB x 2.

It can write 5 KB per second.
5 write capacity units x 1 KB.

When you manually configure the throughput of a table, it determines the
highest amount of capacity an application can utilize from a table or associated
index. If your application consumes more throughput than configured in the
provisioned throughput settings, application requests start throttling. This can
either crash the application or give a lackluster performance.

Let's consider a couple of examples to understand the throughput calculation:

Example 1: You have an application that requires reading 15 items per second. Each item is
3 KB in size. If the application requires strongly consistent reads, what read capacity is
required to address this need?

Explanation:

One read capacity unit can process one strongly consistent read of up to 4 KB item in size. If
the item size is less than 4 KB, it still requires one read capacity to process the read
operation.

Let's formulate this understanding:

Read throughput = (item size rounded-up in multiples of 4 KB)/4 KB x number of items

Read throughput = 4/4 x 15 (item size is 3 KB, which is rounded-up to 4 KB)

Read throughput = 1 x 15

Read throughput = 15

The answer is 15 read capacity units.

In the same example, if the requirement changes to an eventual consistent read, then you
just need to divide the result by two as one read capacity unit can process two eventual
consistent reads.

Example 2: You have an application that requires reading 80 items per second. Each item is
5 KB in size. If the application requires using strongly consistent read, what read capacity is
required to address this need?

AWS DynamoDB - A NoSQL Database Service Chapter 11

[358]

In this example, the item size is 5 KB, which is greater than 4 KB. We need to round it up to
a multiple of 4 KB, which is 8 KB in this case. Remember, if an item is more than 4 KB in
size, it requires additional read capacity. This is the reason why we need to always use
multiples of 4 while calculating the read throughput.

Let's add the values in the formula for this example:

Read throughput = (item size rounded-up in multiples of 4 KB)/4 KB x number of items

Read throughput = 8/4 x 80

= 2 x 80

= 160

The answer is 160 read capacity units.

Similarly, if the requirement changes from strong consistent read to eventual consistent
read, you need to divide the answer by two.

Example 3: You have an application that requires reading 60 items per second. Each item is
3 KB in size and the application requires using eventual consistent read. What read capacity
is required to address this need?

Here's the formula for calculating read capacity for eventual consistency:

Read throughput = ((item size rounded-up in multiples of 4 KB) / 4 KB x number of items)/2

= (4 / 4 x 60) 2

= (1 x 60)/2

= 60/2

= 30

The answer is 30 read capacity units.

Example 4: You have an application that writes 10 items per second with each item being 8
KB in size. How many write capacity units are required to address this need?

Remember, 1 write capacity unit = 1 write operation of up to 1 KB in size. Here's the
formula that can help us in calculating the required write throughput.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[359]

Write Throughput = (item size rounded-up in multiples of 1 KB)/1 KB x number of items

= Item size rounded-up in multiple of 1 KB x number of items

= 8 x 10

= 80

The answer is 80 write capacity units.

DynamoDB partitions and data distribution
Table partitioning is a mechanism to segregate a large table into smaller, more manageable
parts without creating a separate table for each part. A partitioned table physically stores
data in groups of rows. These groups of rows are called partitions. You can access and
maintain each partition separately.

DynamoDB also manages data in partitions. DynamoDB uses SSDs for storing data and
automatically replicates data across multiple AZs in an AWS region. DynamoDB
automatically manages partitions; you as a consumer do not need to manage the partitions.

When creating a table, DynamoDB allocates a sufficient number of partitions to the new
table so that it can handle any provisioned throughput needs. However, DynamoDB can
allocate additional partitions to a table in certain situations. The following are the scenarios
when DynamoDB allocates additional partitions:

In case a table's provisioned throughput goes beyond what the existing partitions
can handle
In case an existing partition consumes allocated storage space and more storage
space is required

Partition management tasks are performed automatically in the background without
affecting the provisioned throughput of a table. It is also important to note that GSIs are
also segregated in partitions. The data in an index is stored separately from the base data of
a table. Index partitions and table partitions act in a similar manner in DynamoDB.

Data distribution – partition key
As we have seen earlier in this chapter, DynamoDB allows you to create a primary key
either with a single attribute partition key or with a composite key consisting of a
combination of a partition key and sort key.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[360]

If we create a table with only the partition key; each item in the table is retrieved based on
the partition key value.

DynamoDB uses an internal hash function for writing an item to the table. The partition key
value acts as an input to the hash function. Based on the partition key value, the hash
function determines the target partition for storing the item.

It is required to provide the partition key value for reading an item from the table. This
value is used in the hash function to locate the partition where the item can be found.

Let's look at an example to understand how the items are stored in a partition. Figure 11.11
describes the details of a Cars table. The table spans multiple partitions. The primary key
for the table is CarType. For simplifying the concept, only the primary key attribute is
included in Figure 11.11. While storing data in a table, DynamoDB uses an internal hash
function to determine the target partition for storing a new item. In this example, the hash
function determines the target partition based on the hash value of CarType, which is
Sedan. Here, it is important to understand that the items are not stored in a sorted order.
The location of each item is determined based on the value of the partition key:

Figure 11.11: Partitioning and hash function

AWS DynamoDB - A NoSQL Database Service Chapter 11

[361]

The preceding example with CarType is given for simplifying the data distribution concept
in DynamoDB partition. While designing a DynamoDB table, you should choose a partition
key that has a large number of distinct values. If the partition key values are similar, data
may end up getting stored in some specific partitions and may not give optimum
performance.

Let's try to understand this scenario with an example:

If you're creating a Vendor table, Vendor_ID is a good candidate for the partition key,
however, you need to ensure that the values in Vendor_ID are distinct.

If you choose values in Vendor_ID as V0001, V0002, V0003, and so on, it works and items
are distributed in multiple partitions depending up on the table size. However, the best way
to optimize partitioning is to use more distinct values such as FMG001, ITV001,
and SRV001. In this example, Vendor_ID includes the vendor type, such as FMG for Fast-
moving consumer goods vendor, ITV for IT vendor, and SRV for service vendor. These
approaches create more distinct values in the table and distributes data optimally in more
partitions.

Data Distribution – partition key and sort key
When you use the composite key in a DynamoDB table, which includes the partition key
and the sort key, the approach for calculating the hash value remains the same. In addition
to keeping partition key values physically close to each other, DynamoDB orders the data
by the sort key value.

As described in the previous section, while storing an item in a table, DynamoDB uses the
partition key value. The partition key value is supplied to the hash function, which
determines the target partition for storing the item. The target partition may already have a
number of items. In these scenarios, DynamoDB stores the item in the ascending order of
sort key values in the table.

For reading an item from the table, you need to supply the partition key value as well as the
sort key value. DynamoDB uses the partition key value to determine the source partition
where the item can be found. DynamoDB even allows you to read multiple items from a
table using a single query. However, reading multiple items in a single query requires that
the items have the same partition key value. While querying the table, you can optionally
apply a condition to the sort key so that the times within a specific range value are returned.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[362]

DynamoDB global and LSI
DynamoDB provides primary keys for quickly accessing items in a table by supplying
primary key values in a query. The primary key is useful and it can certainly speed up data
retrieval from the table; however, in certain scenarios, applications can take advantage of
secondary indexes. Secondary indexes can speed up item retrieval from a table based on
any attribute aside from the primary key. For fulfilling these requirements, you need to
create secondary indexes on the DynamoDB table. Once a secondary index is created on an
attribute, you can use a Query or Scan request on specific indexes to retrieve items.

Secondary index refers to a data structure that is made up of a subset of attributes in a table.
The main purpose of a secondary index is to provide an alternate key for query operations.
You can use secondary indexes to read data using a query, in the same manner as you
query a DynamoDB table. DynamoDB allows you to create multiple secondary indexes,
which can help you to access the data using different query patterns.

A secondary index is linked with a table, which becomes the source of data for it. The
source table from which an index takes data is also called the base table for the index. When
defining an index, you need to define an alternate key, which can be a partition key and sort
key. You can also choose which attributes you want to associate with the index. You can
choose all attributes, primary keys, or you can choose a specific set of attributes from the
table. DynamoDB copies all the attributes you choose into the index along with primary key
attributes. Once the index is created, you can query or scan the index in the same way you
query a table.

DynamoDB automatically maintains secondary indexes. When you change anything on the
base table, the change is automatically reflected in the indexes. If you add, modify, or delete
any item in the table, DynamoDB automatically updates this change in the index.

There are two types of secondary indexes:

GSI: An index that can have a different partition key and sort key as compared to
the base table. With GSI, you can query data spanned across all the partitions in a
base table. In short, when any query is executed against a GSI, its scope spans
across all the partitions in a table. This is the reason it is called Global Secondary
Index (GSI).

AWS DynamoDB - A NoSQL Database Service Chapter 11

[363]

LSI: An index that has the same partition key as its base table; however, it has a
different sort key. Every partition in an LSI is mapped with a base table partition,
which carries the same partition key value. In short, LSI's scope is associated with
its base table partition and this is the reason it is called Local Secondary Index
(LSI).

The difference between GSI and LSI
Characteristic Global secondary index Local secondary index

Key schema

Primary key of a GSI can be a
single attribute key which is
called a partition key or it can be
a composite key with two
attributes, the partition key and
the sort key.

Primary key of a LSI has to be a
composite key, a combination of
the partition key and sort key.

Key attributes
Partition key and sort key of the
index, can be any attributes from
the base table.

Partition key of the index must be
the same as the base table partition
key. Sort key can be any attribute
from the base table.

Size restrictions
per partition key
value

There is no restriction on the size
of the index.

Total size of all items for a specific
partition key value must be less
than or equal to 10 GB in size.

Online index
operations

GSI can be created while creating
a table. DynamoDB also allows
you to add additional GSIs to an
existing table or delete an
existing index as and when
required.

LSIs can be created while creating a
table, however, DynamoDB does
not allow you to add additional
LSIs to an existing table. It does not
even allow you to delete an
existing LSI.

Queries and
partitions

You can query the entire table
stored across all the partitions in
a GSI.

You can query only a single
partition with a partition key value
specified in the query.

Read consistency GSI supports only eventual
consistency reads.

LSI supports eventual consistency
or strong consistency reads based
on your requirement.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[364]

Provisioned
throughput
consumption

You need to configure a separate
provisioned throughput for GSI.
You need to explicitly specify the
read and write capacity units
while creating a GSI. When you
query a GSI, it uses read and
write capacity units on top of
base table consumption.

LSI does not have its own
provisioned throughput. It utilizes
read and write capacity units from
the base table when you query or
scan a table or write data to base
table.

Projected
attributes

While executing a query or scan
or a write request against a GSI,
you can specify only the
attributes, which are projected
while creating the index. It
cannot handle any request for
attributes that are not defined as
part of the index.

While executing a query, scan, or
write request against an LSI, you
can specify any attributes from the
table, even if these attributes are
not projected while creating the
index. When you query any
additional attributes that are not
part of the index, DynamoDB
automatically gets these attributes
from the base table.

DynamoDB query
DynamoDB query is a mechanism to request items from a table. Using queries, you can
request data from a table or any secondary index that has a composite primary key. While
querying a table or index, you have to provide the name of the partition key attribute and a
value for the same. The query returns all the items with that partition key value. You can
also select a sort key attribute and filter the search result using any of the comparison
operators.

For working with Query in GUI, you need to go to the DynamoDB dashboard: https:/ /
console.aws.amazon. com/ dynamodb. From the dashboard, you can select Tables -> Movies
-> Items tab. In this example, we are working with the Movies table. You need to select the
specific table name that you want to work with on your dashboard.

https://console.aws.amazon.com/dynamodb
https://console.aws.amazon.com/dynamodb
https://console.aws.amazon.com/dynamodb
https://console.aws.amazon.com/dynamodb
https://console.aws.amazon.com/dynamodb
https://console.aws.amazon.com/dynamodb
https://console.aws.amazon.com/dynamodb
https://console.aws.amazon.com/dynamodb
https://console.aws.amazon.com/dynamodb
https://console.aws.amazon.com/dynamodb
https://console.aws.amazon.com/dynamodb
https://console.aws.amazon.com/dynamodb

AWS DynamoDB - A NoSQL Database Service Chapter 11

[365]

In Figure 11.12 , you can see the Query window for the Movies table, which has year as the
partition key and title as the sort key:

Figure 11.12: DynamoDB query

Do remember to select Query from the dropdown box as shown, in the preceding
screenshot. By default, the item window is loaded with the Scan option selected instead of
Query.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[366]

For querying the table, you need to provide the partition key value and optionally provide
the sort key value. In this example, the partition key is the year and 2014 is given as the
value. You can click the Start search button after entering the required values. As you can
see in Figure 11.12, the table displays all items with the partition key value as 2014.

For sort keys and filters, you can use a number of key condition expressions. These
expressions are described in the following table:

Operator Example Description

= a = b true if the attribute a is equal to the value b

< a < b true if a is less than b

<= a <= b true if a is less than or equal to b

> a > b true if a is greater than b

>= a >= b true if a is greater than or equal to b

Between a BETWEEN b AND c true if a is greater than or equal to b, and less than
or equal to c

Begins with begins_with (a, substr) true if a begins with a specified substring

While working with Query, you can sort the output in ascending or descending order. You
can opt to display all the attributes of the table or you can choose to project specific
attributes from the table.

Query with AWS CLI
Here are some examples of using DynamoDB Query with AWS CLI:

aws dynamodb query \
 --table-name Items \
 --key-condition-expression "Item_ID = :id" \
 --expression-attribute-values '{":id":{"S":"i10001"}}'

AWS DynamoDB - A NoSQL Database Service Chapter 11

[367]

The query retrieves all records for Item_ID i10001 from the table Items. As you can see in
the preceding example, for initiating a query request to DynamoDB, you need to use the
aws dynamodb query command on AWS CLI. aws dynamodb query requires some
parameters. Let's explore the query with the following table:

Command/Expression Description

aws dynamodb query
AWS CLI command to initiate a query request to
DynamoDB.

\
Backward slash, \, is used for indicating
continuation of code in next line.

--table-name Indicates the name of the DynamoDB table.

--key-condition-expression

Describes the key condition. In this example, it
indicates the Item_ID attribute with id as the
expression attribute. Expression attributes can be
any string to describe the expression. It is different
from table attributes. It is a custom name given to
an expression. The value of the custom expression
is declared in --expression-attribute-
values, as described in the example.

--expression-attribute-values

Describes the value for the key-condition-
expression attribute defined in --key-
condition-expression. In this example, a
custom expression attribute, id, is declared. Here,
you need to declare the value type and the value
for the expression attribute. In this example, id is
of type S (String) with the value i10001. For the
numeric expression attribute, you need to specify N
instead of S.

If you need to deep dive into Queries, you can take a look at them
here: http:/ / docs. aws. amazon. com/ amazondynamodb/ latest/
developerguide/ Query. html.

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html

AWS DynamoDB - A NoSQL Database Service Chapter 11

[368]

DynamoDB Scan
When you use Query on DynamoDB, it uses only primary key attribute values to perform a
search on the table. You can further refine the result by using filters on attributes other than
primary keys. Unlike a Query, the Scan operation can perform a search on any attribute of
the table. It also allows you to refine the search by applying filters to the scan result.

When you perform a Scan operation on a table, it reads all the items in the table or indexes
and by default returns all the items and attributes. If you do not want to retrieve all the
attributes, you can use the ProjectionExpression parameter to retrieve only specific
attributes.

Irrespective of whether the items are found with the matching criteria or not, Scan always
returns a result set. If items with the specified criteria are found, it returns the result set
with the items else it returns an empty result set.

Every Scan operation can retrieve a maximum of 1 MB of data. You can apply a filter to the
scan for further narrowing down the result based on the filter conditions.

Example: The following AWS CLI example scans the Movies table and returns only the
items with ReleaseYear as 2017:

aws dynamodb scan \
 --table-name Movies \
 --filter-expression "ReleaseYear = :name" \
 --expression-attribute-values '{":name":{"N":"2017"}}

Reading an item from a DynamoDB table
You can use the GetItem operation for reading an item from a DynamoDB table. While
performing a GetItem operation, you need to provide a table name and the primary key of
the table item.

Example: The following example shows how to read an item from the employee table using
AWS CLI. In this example, employee_id is the primary key of the table:

aws dynamodb get-item \
 --table-name employee \
 --key '{"employee_id":{"S":"E10001"}}'

AWS DynamoDB - A NoSQL Database Service Chapter 11

[369]

For reading an item from the table, it is necessary to specify the entire primary key. If a table
has a composite key, you need to specify the partition key as well as the sort key in get-
item. It performs an eventual consistent read by default; however, you can use a strongly
consistent read by using the ConsistentRead parameter. Also, by default, get-item
returns all the attributes of a table. If you want to return specific attributes of the table, you
can use the project expression parameter. You can also set the ReturnConsumedCapacity
parameter to TOTAL for returning the number of read capacity used by the get-item
operation.

Example:

aws dynamodb get-item \
 --table-name employee \
 --key '{"employee_id":{"S":"E10001"}}' \
 --consistent-read \
 --projection-expression "FirstName, LastName, JoiningDate, Gender,
DateOfBirth" \
 --return-consumed-capacity TOTAL

Writing an item to a DynamoDB table
DynamoDB provides the following operations for creating, updating, and deleting an item
from a table:

PutItem
UpdateItem
DeleteItem

For performing either of these operations, you need to specify the complete primary key. If
the table has just a partition key, you can provide the partition key. If the table has a
composite key, you need to provide both the partition key as well as the sort key. Providing
just the partition key or the sort key alone does not work for these operations. You need to
specify both the keys for the composite key table.

If you want the operation to return write capacity consumed by the operation, you can set
the ReturnConsumedCapacity parameter with one of the following values:

TOTAL: Indicates the total number of write capacity units consumed by the
operation.
INDEXES: Indicates the total number of write capacity units consumed by the
table along with the secondary indexes affected by the operation.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[370]

NONE: Does not return any details for write capacity consumed by the operation.
If you do not explicitly specify the ReturnConsumedCapacity parameter, by
default, it considers NONE.

PutItem
It is used for writing a new item in the table. If the table already has an item with the same
key, it is replaced with the new item.

Example:

aws dynamodb put-item \
 --table-name employee \
 --item file://employee-item.json

Details of the --item argument are stored in the employee-item.json file:

{
 "FirstName": {"S": "Gini"},
 "LastName": {"S": "Davidson"},
 "JoiningDate": {"S": "20120817"},
 "Gender": {"S": "Female"},
 "DateOfBirth": {"S": "19850719"}
}

UpdateItem
UpdateItem is used for updating an item in a table. If you use an existing primary key with
UpdateItem, it updates the existing item. If the specified key does not exist, it creates a new
item in the table.

While you can specify the attributes that you want to modify with the update expression,
along with the update expression, you can use expression attribute values that act as
placeholders for the real values.

Example:

aws dynamodb update-item \
 --table-name employee \
 --key file://employee-key.json \
 --update-expression "SET FirstName = :fname, LastName = :lname,
JoiningDate = :jdate" \
 --expression-attribute-values file://expression-attribute-values.json \
 --return-values ALL_NEW

AWS DynamoDB - A NoSQL Database Service Chapter 11

[371]

The values for the arguments against the --key parameter are stored in the employee-
key.json file:

{
 "employee_id": {"S": "E10001"},
 "DateOfBirth": {"S": "19850719"}
}

The values for arguments against --expression-attribute-values are stored in the
expression-attribute-values.json file:

{
 ":fname": {"S":"Johnson"},
 ":lname": {"S":"David"},
 ":jdate": {"S":"19850720"}
}

DeleteItem
The deleteItem operation is used for deleting an item from a DynamoDB table. You need to
supply a specific key value as a parameter with the DeleteItem operation:

aws dynamodb delete-item \
 --table-name employee \
 --key file://key.json

It is important to note that if the table has a composite key, you need to specify both the
partition key and the sort key.

Here are the contents of the key.json file:

{
 "employee_id": {"S": "E10001"},
 "DateOfBirth": {"S": "19850719"}
}

Conditional writes
You can perform write operations in a DynamoDB table using PutItem, UpdateItem, and
DeleteItem. By default, these operations are unconditional in nature; this means that when
you perform write operations using these statements, they overwrite an existing item with
the same primary key value specified in the operation.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[372]

If you do not want to overwrite an existing item, or write an item only based on a specific
condition, you can use conditional write with these operations. Conditional write succeeds
only in case it meets an expected condition, otherwise, it returns an error. Conditional
writes can be used in multiple scenarios.

Example scenarios when conditional writes can be used:

You want to write an item using the PutItem operation, only if the item with the
specific key does not exist
You want to update an item using the UpdateItem operation, only if the item
attribute contains a specific value
You want to update an item using the UpdateItem operation, only if it has not
already been modified by another user

Conditional writes can be handy in situations where multiple users try to update the same
item. Let's look at Figure 11.13 to understand the scenario in which Vipul and Bhavin are
trying to update the same item in a DynamoDB table:

Figure 11.13: No Condition write

AWS DynamoDB - A NoSQL Database Service Chapter 11

[373]

Let's assume that Vipul tries to update the Price attribute to 10 in the ProductMaster
table:

aws dynamodb update-item \
 --table-name ProductMaster \
 --key '{"Id":{"N":"1"}}' \
 --update-expression "SET Price = :newprice" \
 --expression-attribute-values file://expression-attribute-values.json

As we explained earlier, the arguments for --expression-attribute-values should be
stored in a separate JSON file. In this case, arguments are stored in the file named
expression-attribute-values.json with the following content:

{
 ":newprice":{"N":"10"}
}

Now, let's consider that Bhavin updates the same item using the UpdateItem request and
changes the price to 20. For Bhavin, the --expression-attribute-values parameter file
can contain the following values:

{
 ":newprice":{"N":"20"}
}

The UpdateItem operation initiated by Bhavin succeeds, but it overwrites the change made
by Vipul.

For performing a conditional write, you need to specify the condition expression along with
PutItem, DeleteItem, or UpdateItem. A condition expression contains a string with attribute
names, conditional operators, and built-in functions. The operation executes only if the
entire expression evaluates to true, if not, the operation fails.

Let's look at the conditional write using the following figure, which shows how the
conditional write prevents Bhavin from overwriting Vipul's changes on the same item. You
can compare Figure 11.13 and Figure 11.14 and observe how the condition is highlighted:

AWS DynamoDB - A NoSQL Database Service Chapter 11

[374]

Figure 11.14: Conditional write

Let's look at how you can achieve this using AWS CLI.

While updating Price, Vipul gives a condition to update the Price to 10 only if the Price is
15:

aws dynamodb update-item \
 --table-name ProductMaster \
 --key '{"Id":{"N":"1"}}' \
 --update-expression "SET Price = :newprice" \
 --condition-expression "Price = :currprice" \
 --expression-attribute-values file://expression-attribute-values.json

AWS DynamoDB - A NoSQL Database Service Chapter 11

[375]

The arguments for --expression-attribute-values should be stored in a separate
JSON file. In this case, arguments are stored in the file named expression-attribute-
values.json with the following content:

{
 ":newprice":{"N":"10"},
 ":currprice":{"N":"15"}
}

Vipul's update succeeds as the condition evaluates to be true.

Similarly, Bhavin tries to update the Price to 20 with a conditional expression that checks
for the current price as 15 before updating it.

For Bhavin, the --expression-attribute-values parameter file can contain the
following values:

{
 ":newprice":{"N":"20"},
 ":currprice":{"N":"15"}
}

Since Vipul has already changed the Price to 10, the condition expression in Bhavin's
request evaluates to false and his update fails.

User authentication and access control
For accessing DynamoDB, you need credentials. The credentials should have the
permission to access the DynamoDB table. This section provides details on how you can use
IAM to secure DynamoDB resources.

There are a number of ways in which you can access DynamoDB resources:

AWS root user account
IAM user
IAM role

Identity federation
Cross-account access
AWS service access
Application running on EC2

AWS DynamoDB - A NoSQL Database Service Chapter 11

[376]

If you have valid credentials that can authenticate against DynamoDB, you can initiate the
request to access, but unless you have permissions associated with your credentials, you
cannot perform any operation against DynamoDB. For example, for creating a new
DynamoDB table, you need to have the table creation permission.

Before understanding these permissions, let's understand the resources in DynamoDB.

Tables are the primary resources in DynamoDB. Apart from tables, there are indexes and
streams, which are part of DynamoDB. Indexes and streams are associated with a table and
they are sub-resources of a table. DynamoDB maintains unique ARNs with each of the
resources and sub-resources, as shown in the following table:

Resource type ARN format

Table arn:aws:dynamodb:region:account-id:table/table-name

Index arn:aws:dynamodb:region:account-id:table/table-name/index/index-name

Stream arn:aws:dynamodb:region:account-id:table/table-name/stream/stream-label

Managing policies
Access to any resource is determined by a permission policy. In Chapter 3, Identity and
Access Management, managing policy is discussed in detail. This chapter emphasizes IAM
with respect to DynamoDB. There are two types of policy: identity-based policies and
resource-based policies. Identity-based policies are attached to an IAM identity and
resource-based policies are attached to a resource. This section discusses identity-based
policies only, as DynamoDB does not support resource-based policies.

There are three identities in IAM:

User
Group
Role

You can attach a policy to a user or a group and grant them access to DynamoDB resources
such as table, indexes, and streams.

You can attach a policy to a role for granting cross-account permissions.

AWS DynamoDB - A NoSQL Database Service Chapter 11

[377]

Here's an example of a permission policy. This example policy allows
dynamoDB:ListTables permission for all resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListTables",
 "Effect": "Allow",
 "Action": [
 "dynamodb:ListTables"
],
 "Resource": "*"
 }
]
}

Here's one more example of a permission policy. In this example policy, access is granted
on three actions, namely DescribeTable, Query, and Scan. As you can see in the previous
policy, access is granted to all resources with * and, unlike the previous policy, in this
policy, access is granted to a specific table using an ARN for the table:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DescribeQueryScanEmployeeTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:Query",
 "dynamodb:Scan"
],
 "Resource": "arn:aws:dynamodb:us-east-1:account-
id:table/employee"
 }
]
}

AWS DynamoDB - A NoSQL Database Service Chapter 11

[378]

DynamoDB API permissions
While setting up a permission policy, you can refer to the following table which lists
DynamoDB API operations, associated actions, and the ARN format for the resource. For
more information, refer to http:/ /docs. aws. amazon. com/ amazondynamodb/ latest/
developerguide/api- permissions- reference. html.

API actions Resources

dynamodb:BatchGetItem
arn:aws:dynamodb:region:account-id:table/table-name

or
arn:aws:dynamodb:region:account-id:table/*

dynamodb:BatchWriteItem
arn:aws:dynamodb:region:account-id:table/table-name

or
arn:aws:dynamodb:region:account-id:table/*

dynamodb:CreateTable
arn:aws:dynamodb:region:account-id:table/table-name

or
arn:aws:dynamodb:region:account-id:table/*

dynamodb:DeleteItem
arn:aws:dynamodb:region:account-id:table/table-name

or
arn:aws:dynamodb:region:account-id:table/*

dynamodb:DeleteTable
arn:aws:dynamodb:region:account-id:table/table-name

or
arn:aws:dynamodb:region:account-id:table/*

dynamodb:DescribeLimits arn:aws:dynamodb:region:account-id:*

dynamodb:DescribeReservedCapacity arn:aws:dynamodb:region:account-id:*

dynamodb:DescribeStream
arn:aws:dynamodb:region:account-id:table/table-name/stream/stream-label

or
arn:aws:dynamodb:region:account-id:table/table-name/stream/*

dynamodb:DescribeTable
arn:aws:dynamodb:region:account-id:table/table-name

or
arn:aws:dynamodb:region:account-id:table/*

dynamodb:DescribeTimeToLive
arn:aws:dynamodb:region:account-id:table/table-name

or
arn:aws:dynamodb:region:account-id:table/*

dynamodb:GetItem
arn:aws:dynamodb:region:account-id:table/table-name

or
arn:aws:dynamodb:region:account-id:table/*

dynamodb:GetRecords
arn:aws:dynamodb:region:account-id:table/table-name/stream/stream-label

or
arn:aws:dynamodb:region:account-id:table/table-name/stream/*

dynamodb:GetShardIterator
arn:aws:dynamodb:region:account-id:table/table-name/stream/stream-label

or
arn:aws:dynamodb:region:account-id:table/table-name/stream/*

dynamodb:ListStreams
arn:aws:dynamodb:region:account-id:table/table-name/stream/*

or
arn:aws:dynamodb:region:account-id:table/*/stream/*

dynamodb:ListTables *

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html

AWS DynamoDB - A NoSQL Database Service Chapter 11

[379]

dynamodb:ListTagsOfResource
arn:aws:dynamodb:region:account-id:table/table-name

or
arn:aws:dynamodb:region:account-id:table/*

dynamodb:PutItem
arn:aws:dynamodb:region:account-id:table/table-name

or
arn:aws:dynamodb:region:account-id:table/*

dynamodb:Query

To query a table:
arn:aws:dynamodb:region:account-id:table/table-name

or:
arn:aws:dynamodb:region:account-id:table/*

To query an index:
arn:aws:dynamodb:region:account-id:table/table-name/index/index-name

or:
arn:aws:dynamodb:region:account-id:table/table-name/index/*

dynamodb:Scan

To scan a table:
arn:aws:dynamodb:region:account-id:table/table-name

or:
arn:aws:dynamodb:region:account-id:table/*

To scan an index:
arn:aws:dynamodb:region:account-id:table/table-name/index/index-name

or:
arn:aws:dynamodb:region:account-id:table/table-name/index/*

dynamodb:TagResource
arn:aws:dynamodb:region:account-id:table/table-name

or
arn:aws:dynamodb:region:account-id:table/*

dynamodb:UpdateItem
arn:aws:dynamodb:region:account-id:table/table-name

or
arn:aws:dynamodb:region:account-id:table/*

dynamodb:UpdateTable
arn:aws:dynamodb:region:account-id:table/table-name

or
arn:aws:dynamodb:region:account-id:table/*

dynamodb:UpdateTimeToLive
arn:aws:dynamodb:region:account-id:table/table-name

or
arn:aws:dynamodb:region:account-id:table/*

dynamodb:UntagResource
arn:aws:dynamodb:region:account-id:table/table-name

or
arn:aws:dynamodb:region:account-id:table/*

AWS DynamoDB - A NoSQL Database Service Chapter 11

[380]

DynamoDB best practices
DynamoDB best practices are as follows:

Create a primary key that spans multiple partitions. Choose the primary key that
has more distinct values. If the number of distinct values is less in a primary key
attribute, items may be distributed in a limited number of partitions instead of all
available partitions.
In DynamoDB, each item can have a maximum size of 400 K; however, there is no
limit on the number of items in a table. To efficiently store large items in a table,
use one of the mechanism such as one-to-many table, multiple tables to support
varied access patterns, compress large attribute values, store large attribute
values in Amazon S3, or break up large attributes across multiple items.
By default, Scan reads the entire table with all items and consumes more
throughput. Use Query instead of Scan, as it is more economical.
Create LSIs for frequently-queried attributes on the table apart from primary key
attributes. It improves the query performance.
If it is required to use the Scan operation, design an application to use the Scan
operation in a way that minimizes the impact on read requests on the table.
One or more secondary indexes can be created to perform an efficient search and
query on the attributes other than primary and sort key.
Rather than Scan, use parallel scan to retrieve a large data set from the table as it
uses multiple work threads in the background at low priority without affecting
the production traffic. These background processes are called sweepers.
It is suggested to plan LSIs very carefully as they can only be defined at the time
of creating a table, and later, they cannot be deleted throughout the table
lifecycle. On top of that, they share primary read and write throughput from the
base table.
GSI allows creating a secondary index with a different primary key and sort key
from the base table. This secondary index can be created and deleted separately
at any given time on the base tables. These indexes are maintained automatically
with the base table but have their own read/write throughput, so create them
wisely.

12
Amazon Simple Queue Service

Before we look at the Simple Queue Service (SQS), let's look at what a message queue is. A
message queue is a queue of messages exchanged between applications. Messages are data
objects that are inserted in the queue by sender applications and received by the receiving
applications. Receiving applications get the data objects from the queue and process the
data received from the queue based on the application requirement. Figure 12.1 describes
the message queue in a simple way:

Figure 12.1: Message queue

SQS is a highly reliable, scalable, and distributed message queuing service provided by
Amazon. It's a hosted solution provided by Amazon so that you do not need to manage the
service infrastructure. SQS stores the messages in transit as they travel between various
applications and micro services. Amazon provides a host of web service APIs, which can be
accessed using any programming language supported by AWS SDK.

Amazon Simple Queue Service Chapter 12

[382]

The purpose of this chapter is to introduce readers to basic concepts of SQS with respect to
the scope of the AWS Certified Developer - Associate exam. From a development
perspective, SQS is a wide topic and a full book can be written on SQS. Considering the
scope of the exam, this chapter does not intend to teach the reader how to code SQS
applications, but focuses more on fundamental aspects of SQS.

Why use SQS?
There are many reasons to use SQS. Let's start by looking at a simple use case followed by a
brief review of a few more use cases.

Consider a scenario where you have a collaborative news site or application that accepts
images from the users, optimizes these images to display in multiple devices, and stores
them for future retrieval. If the application users are spread across the globe, the application
may get a huge number of visitors that upload images. If these images are directly
offloaded to the processing server, the server may not be able to handle the traffic. If you
use a scaled up environment to process the images, you end up incurring more costs. Also,
a scaled up environment may miss processing some of the images if the process gets
interrupted or crashes.

In these scenarios, a message queue comes in handy. The application can send all the image
processing requests to a message queue. At the other end, the image processing component
of the application can read the message queue and process the requests one by one. This
way, the application is not flooded with requests and all the images are processed
irrespective of the amount of traffic.

Here are a few more use cases for SQS:

Decoupling application processes: When you start a project, you may not be able
to predict what the future needs of the project will be. By segregating the data
generation process, the data consumption process, and implementing a message
queue in between the processes, you can create a data-based interface. All the
processes involved in the application can implement this data-based interface. In
this scenario, any process involved in the overall application workflow can be
changed without disturbing other processes.
Application scalability: Since the application processes are decoupled with a
message queue, you can easily scale up the data generation and data consuming
processes to control the rate at which the data is processed. Without changing the
underlying code and by simply adding more processing resources, you can scale
up the whole process.

Amazon Simple Queue Service Chapter 12

[383]

Guaranteed message delivery: Use of a message queue ensures that a message is
delivered at least once, and eventually processed by the processing application as
long as the process continues reading the queue. Depending on the configuration
of the queue, you can also ensure that a message is processed only once. This
guarantee is possible with SQS; when a process retrieves the message from the
queue, it temporarily removes this message from the queue. When the client
informs the queue that it has finished processing the message, SQS deletes this
message from the queue. If the client does not respond back to the queue in a
specific amount of time, SQS places the message back in the queue. This way, if
the message is not processed by a client, it will be available for another client to
process.
Message order guarantee: In many scenarios, the order in which the data is
processed is very important. SQS provides a mechanism to process the data in a
predefined order.
Asynchronous data processing: There are certain requirements where you do not
need to process the data immediately. SQS allows you to process the messages
asynchronously. That means you can add a message on the queue, but do not
need to process it immediately. You can add as many messages as required and
process them later.
Building resilience in the system: If some processes in your application
environment go down, your entire environment does not go down with it. Since
SQS decouples the processes, if a client processing a message goes down, the
message is added back to the queue after a specific amount of time. This message
is either processed by another client or the same client after it recovers. This way,
SQS builds resilience in the system.
Bringing elasticity to applications with SQS: When your application hits an
unusually high amount of traffic, it should be able to sustain the load with
additional resources. When the traffic subsides, it is wasteful to keep resources on
standby for future needs. In this scenario, you can use SQS to build elasticity into
your application. Since SQS helps you decouple the processes, you can host data
publisher processes, as well as data consumer processes, in separate resources.
Data publisher and data consumer resources can be scaled up when there is a
high amount of traffic and the resources can be scaled down when traffic is low.
Analyzing data flow and performance of the processes: When you build a
distributed system, it is critical to understand how each of the components
performs, and if there is any delay, the reason for that delay. SQS can easily help
in identifying underperforming resources with the insight on the rate at which
each of the resources perform.

Amazon Simple Queue Service Chapter 12

[384]

Building redundancy with SQS: Sometimes, processes do fail while processing
data. In these scenarios, if the data is not persisted, it is lost forever. SQS takes
care of this data risk by persisting the data until it's completely processed. SQS
uses something called the put-get-delete paradigm. It requires a queue to
explicitly state that its data has finished processing the message it pulled from the
queue. The message data is kept safe with the queue and gets deleted from the
queue only after confirmation that it has been processed.

How do queues work?
As shown in Figure 12.2, SQS works on the put-get-delete paradigm:

Figure 12.2: Working of SQS

The put-get-delete paradigm works in the following way:

The publishing application pushes a message, M, into the queue.1.
The consuming application pulls the message, M, from the queue and processes2.
it.
The consuming application confirms to the SQS queue that processing on the3.
message is completed and deletes this message from the SQS queue.

Amazon Simple Queue Service Chapter 12

[385]

Main features of SQS
SQS provides a scalable and reliable messaging platform. It enables you to build operational
efficiency in your application without any operational overhead. Here are some of the
benefits of using SQS:

Redundant infrastructure: Amazon SQS provides redundant infrastructure. With
its redundant infrastructure, it ensures that a message is delivered at least once in
a standard queue and it ensures that a message is delivered exactly once in a First
In First Out (FIFO) queue. It provides a concurrent access mechanism and a
highly-available environment for queue producer and consumer applications.
Multiple producers and consumers: Multiple components of a distributed
application can concurrently send and receive messages at the same time. When a
client picks up a message from the queue, SQS locks up that message until the
client confirms that it has completed processing the message. If the queue does
not receive a response from the client for a specific duration of time, the queue
unlocks the message and makes it available for other clients to pick up from the
queue.
Queue-wise configurable settings: SQS provides options to configure each
queue independently. You do not need to have the same configuration for all the
queues. For example, queue A may take longer than queue B to process a request.
This requirement means you need to configure your queues differently, and SQS
allows you to configure queues independent of each other.
Variable message size: SQS supports a maximum message size of 256 KB. If you
need a larger size, which is greater than 256 KB, you can store it in S3 or
DynamoDB. SQS holds the pointer to the S3 object in the queue.
Queue access control: SQS allows you to control producers and consumers that
can send and receive messages to or from the queue.
Delay queue: SQS enables you to set a delay time in a queue. Delay time ensures
that a message inserted in the queue is postponed for the time configured as delay
time in the queue. This delay time can be set while creating a queue. You can also
change the delay time later on, however, any change in the delay time is effective
only with the new messages added to the queue.

Amazon Simple Queue Service Chapter 12

[386]

Payment Card Industry (PCI) compliance: PCI standard mandates that any
service that handles payment data must adhere to PCI standards in order to be
PCI compliant. SQS supports the handling of credit card payments with the
storage and transmission of credit card data. Considering this need, Amazon has
built a PCI-compliant service.
Health Insurance Portability and Accountability Act (HIPAA) compliance: SQS
supports HIPAA compliance. If you have a Business Associate Agreement
(BAA) with AWS, it enables you to use SQS for building an HIPAA-compliant
application that can store Protected Health Information (PHI).

Types of queues
SQS mainly supports two types of queues:

Standard queues
FIFO queues

A standard queue generally sends the data in the same order as it receives it, however, on
certain occasions, the order may change. Unlike a standard queue, the order in which the
data is sent is fixed in FIFO queues.

Let's look at the differences between these two queue types with the help of the following
table:

Description Standard queue FIFO queue

Availability It's available in all AWS regions.
It's available only in the US East (N.
Virginia), US East (Ohio), US West
(Oregon), and EU (Ireland) regions.

Throughput

It supports an almost unlimited
number of Transactions Per
Second (TPS) with each API
action.

It supports limited throughput. It can
support up to 300 messages per
second without any batching. With a
batch size of 10 messages, it can
support up to 3,000 messages per
second.

Order

It generally sends the data in the
same order as it receives it,
however, in certain occasions the
order may change.

It ensures that the data is sent in FIFO
order.

Amazon Simple Queue Service Chapter 12

[387]

Delivery
guarantee

Standard queue guarantees that a
message will be delivered at least
once, however, occasionally a
message may be delivered more
than once.

FIFO queue guarantees that a
message will be delivered exactly
once. The message remains in the
queue until the consumer confirms
that the message is processed.

Usage
It is used when the throughput is
more important than the order in
which the data is processed.

It is used when the order in which the
data is processed is more important
than the throughput.

Dead Letter Queue (DLQ)
A DLQ is used by other queues for storing failed messages that are not successfully
consumed by consumer processes. You can use a DLQ to isolate unconsumed or failed
messages and subsequently troubleshoot these messages to determine the reason for their
failures.

SQS uses a redrive policy to indicate the source queue, and the scenario in which SQS
transfers messages from the source queue to the DLQ. If a queue fails to process a message
a predefined number of times, that message is moved to the DLQ.

While creating a queue, you can enable a redrive policy and set the DLQ name as well as
maximum receive count, after which if the message is still unprocessed, it can be moved to
the DLQ.

Queue attributes
SQS uses certain queue attributes that define the behavior of a queue. While creating a
queue, you can either create a queue with default attributes or customize these attributes as
per your needs.

Amazon Simple Queue Service Chapter 12

[388]

The following table describes these queue attributes with their acceptable ranges:

Queue attribute Description
Minimum
acceptable
range

Maximum
acceptable
range

Default
visibility
Timeout

The length of time that a message is
received from a queue will be
invisible to other receiving
components.

0 seconds 12 hours

Message Retention
Period

The amount of time that SQS retains
a message if it does not get deleted. 1 minute 14 days

Maximum Message
Size

Maximum message size accepted by
SQS. 1 KB 256 KB

Delivery Delay
The amount of time to delay the first
delivery of all messages added to the
queue.

0 seconds 15 minutes

Receive Message
Wait Time

The maximum amount of time that a
long polling receive call waits for a
message to become available before
returning an empty response.

0 seconds 20 seconds

Content-Based
Deduplication

The FIFO queue uses more than one
strategy to prevent duplicate
messages in a queue. If you select
this checkbox, SQS generates an
SHA-256 hash of the body of the
message to generate the content-
based message deduplication ID.
When an application sends a
message using SendMessage for the
FIFO queue with a message
deduplication ID, it is used for
ensuring deduplication of the
message.

N/A N/A

Amazon Simple Queue Service Chapter 12

[389]

Creating a queue
Since you have developed a basic understanding of what SQS is, let's go through the
following steps to create and configure our first SQS queue:

Log in to the AWS Management Console and navigate to https:/ /console. aws.1.
amazon.com/ sqs/ .

Click the Create New Queue button, as shown in Figure 12.3:2.

Figure 12.3: Create New Queue

On the subsequent page, type the name of the queue as shown in Figure 12.4,3.
ensuring that you are in the intended region. If required, you can change the
region from the top-right corner of the screen. Also note that Queue Name is case
sensitive and can have a maximum of up to 80 characters. When you're creating a
FIFO queue, Queue Name must end with a .fifo suffix:

Figure 12.4: Providing queue name

https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Chapter 12

[390]

By default, the SQS wizard has a Standard queue select. Depending on your4.
requirements, you can choose Standard or FIFO, as shown in Figure 12.5:

Figure 12.5: Queue types

If you want to create a queue with the default parameters, you can click the5.
Quick-Create Queue button. Alternatively, you can click the Configure Queue
button for configuring the queue parameters. These queue attributes are
described in the previous table. You can enter appropriate values in the queue
attributes, as shown in Figure 12.6:

Amazon Simple Queue Service Chapter 12

[391]

Figure 12.6: Queue Attributes

On the same screen, you can choose to enable the redrive policy, as shown6.
in Figure 12.7. This is an optional step and is required only if you want to divert
unprocessed messages to a DLQ. If you enable the redrive policy, you need to
specify the name of an existing queue that can act as a DLQ. You also need to
specify the maximum receive count. If a message is received back in the specified
amount of time, it is moved to the DLQ:

Figure 12.7: Dead Letter Queue Settings

Amazon Simple Queue Service Chapter 12

[392]

In this step, you can choose to enable Server Side Encryption (SSE), as shown7.
in Figure 12.8. If you choose to enable SSE, you can either use the default
Customer Master Key (CMK) from the AWS Key Management Service (KMS),
or you can specify any other existing CMK you have in KMS. If you select any
key other than the default CMK, you need to manually specify the ARN key. You
also need to specify a Data Key Reuse Period that can range between 1 minute
and 24 hours. For encrypting or decrypting data, SQS needs a data key, which is
provided by KMS. Once a key is obtained from KMS, it can be used by SQS for
the time specified in Data Key Reuse Period before going back to KMS for a new
data key:

Figure 12.8: Server-Side Encryption (SSE) Settings

After providing all the required input on the screen, you can click the Create8.
Queue button. Once the queue is created, you can see the queue in the SQS
dashboard, as shown in Figure 12.9:

Figure 12.9: SQS dashboard with newly-created queue

You can select the queue, and see more descriptions on the dashboard. You can also
perform other actions on the queue, such as configure queue, send a message, and delete a
queue.

Amazon Simple Queue Service Chapter 12

[393]

Sending a message in a queue
For sending a message in a queue, you can perform the following steps:

Go to the SQS dashboard and select the queue you want to send the message to,1.
as shown in Figure 12.10:

Figure 12.10: Queue list

Click the Queue Actions button and select Send a Message, as shown in Figure2.
12.11:

Figure 12.11: Queue Actions-Send a Message

Amazon Simple Queue Service Chapter 12

[394]

In the subsequent screen, enter the message that you want to send to the queue.3.
Enter the Message Group ID and also specify the Message Deduplication ID, as
shown in Figure 12.12. Message Group ID is mandatory; it is used for grouping
the message. When you specify Message Group ID, messages sent to a specific
group ID in a FIFO queue are guaranteed to be delivered in the First In First Out
order. If you have enabled the Content-Based Deduplication checkbox while
creating the queue, Message Deduplication ID given in Figure 12.12 is optional:

Figure 12.12: Send a Message options

Amazon Simple Queue Service Chapter 12

[395]

Optionally, you can also specify Message Attributes, as shown in Figure 12.13:

Figure 12.13: Message Attributes

Finally, click the Send Message button. It displays a confirmation message, as4.
shown in Figure 12.14:

Figure 12.14: Message sent confirmation

Amazon Simple Queue Service Chapter 12

[396]

You can either send another message or close the window after reading the confirmation.

Viewing/deleting a message from a queue
After the message is sent to the queue, you can retrieve it from the queue. While retrieving a
message from the queue, you cannot specify which message you want to retrieve from the
queue, however, you can specify how many messages you want to retrieve. Here are the
steps for viewing a message from the queue:

Select a queue from the queue list, as shown in Figure 12.15:1.

Figure 12.15: Queue list

Click Queue Actions and then View/Delete Messages, shown as follows:2.

Figure 12.16: Queue Actions-View/Delete Messages

Amazon Simple Queue Service Chapter 12

[397]

From the subsequent screen, you can click Start Polling for Messages, as shown3.
in Figure 12.17:

Figure 12.17: Polling for messages

In the subsequent screen, you can see up to 10 messages available in the queue, as4.
specified in the previous step. The screen resembles Figure 12.18:

Figure 12.18: Messages in a queue

Amazon Simple Queue Service Chapter 12

[398]

You can select one or more messages from the list that you want to delete, and5.
click Delete 1 Message. It displays the Delete Messages dialog box, as shown
in Figure 12.19. You can click Yes, Delete Checked Messages. This action deletes
the selected message:

Figure 12.19: Delete message confirmation

Purging a queue
Purging a queue means deleting all the messages from a queue. To purge a queue, you can
follow these steps:

Select a queue from the queue list, as shown in Figure 12.20:1.

Figure 12.20: Queue list

Amazon Simple Queue Service Chapter 12

[399]

Click Queue Actions, and then Purge Queue, shown as follows:2.

Figure 12.21: Queue Actions-Purge Queue

The subsequent screen displays a confirmation message with a number of3.
messages that it would purge from the queue, as shown in Figure 12.22. Clicking
the Yes, Purge Queue button purges the queue:

Figure 12.22: Purge Queues-confirmation

Amazon Simple Queue Service Chapter 12

[400]

Deleting a queue
You can perform the following steps to delete a queue:

Select a queue from the queue list, shown as follows:1.

Figure 12.23: Queue list

Click Queue Actions, and then Purge Queue, as shown in Figure 12.24:2.

Figure 12.24: Queue Actions-Delete Queue

The subsequent screen displays a confirmation message with the number of3.
messages the queue contains, as shown in Figure 12.25. Clicking the Yes, Delete
Queue button deletes the queue:

Amazon Simple Queue Service Chapter 12

[401]

Figure 12.25: Delete Queues-confirmation

Subscribing a queue to a topic
SQS enables you to subscribe your queues to SNS topics. You can choose from a list of
already available SNS topics and subscribe the queue to that topic. Subscription permission
is automatically managed by SQS. When a message is published to a topic in SNS, that
message automatically goes to all the queues subscribed to that topic. For more details on
SNS, you can refer to Chapter 13, Simple Notification Service.

At present, only standard queues can subscribe to an SNS topic. FIFO queues are presently
not supported for topic subscription.

Here are the steps to subscribe a queue to an SNS topic:

Select a queue from the queue list, as shown in Figure 12.26:1.

Figure 12.26: Queue list

Amazon Simple Queue Service Chapter 12

[402]

Click Queue Actions, and then Subscribe Queue to SNS Topic, as shown here:2.

Figure 12.27: Queue Actions-Subscribe Queue to SNS Topic

From the subsequent screen, select the appropriate region where your SNS topic3.
is available and choose a topic from the list. A topic's ARN is automatically
populated depending on the topic you select. Alternatively, you can manually
type the ARN as required. Finally, you can click the Subscribe button, as shown
in Figure 12.28:

Figure 12.28: Subscribe to a Topic

Amazon Simple Queue Service Chapter 12

[403]

It displays a confirmation dialog box, as shown in Figure 12.29. Click OK and the
queue is now subscribed to the topic:

Figure 12.29: Topic Subscription Result

Adding user permissions to a queue
SQS allows you to define permissions for your queue. This permission determines the
ability of your queue to interact. You can allow or explicitly deny some permissions. The
following steps explain how to set permissions for a queue:

Select a queue from the queue list, as shown in Figure 12.30:1.

Figure 12.30: Queue list

Amazon Simple Queue Service Chapter 12

[404]

Click Queue Actions, and then Add a Permission, as shown in Figure 12.31:2.

Figure 12.31: Queue Actions-Add a Permission

In the subsequent screen, for Effect, select Allow or Deny as required. You can3.
specify an account in Principal, if you want to assign the permission to a specific
person, or select the Everybody checkbox to assign the permission to everybody.
From the Actions tab, you can choose specific actions that you want to assign, or
you can select the All SQS Actions checkbox to assign permissions for all actions,
as shown in Figure 12.32:

Amazon Simple Queue Service Chapter 12

[405]

Figure 12.32: Add a permission to a queue

SQS limits
It is important to understand SQS limits with respect to queues, messages, and policies. This
topic describes various limits:

Limits related to queues
Limits related to messages
Limits related to policies

Amazon Simple Queue Service Chapter 12

[406]

The following table describes these limits:

Limit Applies to Description

Inflight messages
per queue Queues

Standard queue: Maximum 120,000 inflight messages.
FIFO queue: Maximum 20,000 inflight messages.
SQS returns an overLimit error if this limit is
exceeded.

Queue name Queues

Queue names can have a maximum of 80 characters.
FIFO queue names must end with .fifo. Queue names
can have alphanumeric characters, hyphens, and
underscores.

Message attributes Message A message can have a maximum of 10 metadata
attributes.

Message batch Message A message batch can have a maximum of 10 messages
per batch.

Message content Message Message content can include only XML, JSON, and any
unformatted text.

Message retention Message
A queue can retain a message for a minimum of 60
seconds, a maximum of 14 days, and, by default, the
message is retained for 4 days.

Message throughput Message

Standard queue: nearly unlimited TPS. FIFO queue:
maximum 300 messages per second without batch, and
3,000 message per second with a maximum batch size
of 10 messages per operation.

Message size Message Minimum size: 1 byte, maximum size: 256 KB.

Message visibility
timeout Message Maximum 12 hours visibility timeout for a message.

Policy information Policies A policy can have a maximum of 8,192 bytes, 20
statements, 50 principals, or 10 conditions.

Amazon Simple Queue Service Chapter 12

[407]

Queue monitoring and logging
Monitoring SQS queues plays a vital role in an application's lifecycle. There are many
functions that are dependent on monitoring, using CloudWatch and relevant triggers. For
example, you monitor the size of a queue and define a trigger to automatically scale up EC2
instances with an Auto Scaling group. Similarly, you can scale the number of instances
serving the consumer process in case the size of a queue is smaller. Considering the
criticality of monitoring with SQS, CloudWatch and SQS are integrated so that you can
easily view and analyze various CloudWatch metrics for SQS queues. Queue metrics can be
viewed and analyzed using an SQS console, CloudWatch console, programmatically using
APIs, or using the CLI.

Amazon automatically gathers CloudWatch metrics for an SQS queue and pushes it to
CloudWatch with an interval of five minutes. Amazon gathers metrics for all active SQS
queues. A queue is said to be active for up to six hours in case it has messages or in case any
API action is performed on the queue.

Amazon does not charge you for the SQS metrics collated in CloudWatch. It's provided as
part of the SQS queue service without any additional charges. SQS does not support detail,
one minute interval monitoring. CloudWatch supports metrics for both types of queues,
that is, standard queues as well as FIFO queues.

CloudWatch metrics available for SQS
CloudWatch supports a list of metrics for SQS. Each of these metrics are explained in the
following table:

Metrics Description Units Statistics

ApproximateAgeOfOldestMessage

It indicates the
approximate age
of the oldest
message in the
queue that is not
deleted.

Seconds

Average,
Minimum,
Maximum,
Sum, Data
Samples

Amazon Simple Queue Service Chapter 12

[408]

ApproximateNumberOfMessagesDelayed

It indicates the
number of
delayed messages
in the queue that
are not available
for reading
immediately.

Count

Average,
Minimum,
Maximum,
Sum, Data
Samples

ApproximateNumberOfMessagesNotVisible

It displays the
number of
messages that are
inflight.

Count

Average,
Minimum,
Maximum,
Sum, Data
Samples

ApproximateNumberOfMessagesVisible

It indicates the
number of
messages that are
available in the
queue for
retrieval.

Count

Average,
Minimum,
Maximum,
Sum, Data
Samples

NumberOfEmptyReceives

It denotes the
number of empty
responses
received by
ReceiveMessage
API calls.

Count

Average,
Minimum,
Maximum,
Sum, Data
Samples

NumberOfMessagesDeleted

It provides the
number of
messages that are
deleted from the
queue.

Count

Average,
Minimum,
Maximum,
Sum, Data
Samples

NumberOfMessagesReceived

It describes the
number of
messages that are
returned by the
ReceiveMessage
API calls.

Count

Average,
Minimum,
Maximum,
Sum, Data
Samples

Amazon Simple Queue Service Chapter 12

[409]

NumberOfMessagesSent

It captures the
number of
messages that are
pushed to a
queue.

Count

Average,
Minimum,
Maximum,
Sum, Data
Samples

SentMessageSize

It calculates the
size of messages
that are added to
a queue.

Bytes

Average,
Minimum,
Maximum,
Sum, Data
Samples

Logging SQS API actions
While using SQS, producer and consumer applications perform a number of actions using
API calls. It is critical to log all these API calls made by various components of a distributed
application. Apart from that, there are many operations performed on SQS queues using
SQS consoles; their activity should also be logged. In short, any change or operation
performed on any SQS queue using APIs should be logged for auditing and
troubleshooting. To cater to this requirement, Amazon has integrated SQS with CloudTrail.
CloudTrail is a service that captures any API call initiated to perform SQS operations on a
queue. Irrespective of the type of SQS queue, CloudTrail records all the activities performed
on a queue.

CloudTrail supports the following actions and records a detailed log for these actions:

AddPermission

CreateQueue

DeleteQueue

PurgeQueue

RemovePermission

SetQueueAttributes

Every time any of the preceding actions are performed on a queue, CloudTrail generates a
detailed log entry along with the requestor information that initiated the action. With this
information, you can verify whether the actions were performed by a root account or an
IAM user. It also includes the details if the requested operation was performed with any
temporary credentials, a federated user, or any other AWS service. Log files can be stored in
an S3 bucket for as long as required. Alternatively, you can define any S3 lifecycle rule to
archive it to Glacier or delete it.

Amazon Simple Queue Service Chapter 12

[410]

You can also integrate it with SNS for generating notifications when a new log file is
created. It can help you to quickly analyze the log and take any necessary immediate action.
AWS also allows you to aggregate SQS log files from more than one AWS region into a
single S3 bucket. This makes it easy to keep track of logs and perform an aggregated
analysis on the environment.

SQS security
Amazon's SQS service is built securely. It requires credentials to initiate any request to SQS
queues. Even if you supply credentials while initiating a request to a queue, you may not be
able to access it unless you have sufficient permission to access the queues and messages. In
this section, let's look at authentication and access control related to SQS queues.

Authentication
AWS allows you to access SQS with any of the following identities:

Root user
IAM user
IAM role

Federated access
Cross-account access
AWS service access
EC2 applications

SSE
Sometimes, it becomes necessary to protect your data using the SSE due to some
compliance requirement or due to the criticality of the data used in the SQS queue. Amazon
provides SSE to protect sensitive data in SQS. SSE helps you to transmit sensitive data in
encrypted queues. Amazon uses KMS to manage encryption keys. These keys are used for
encrypting the queue.

Messages are encrypted by SSE as soon as the messages are added to the queue. The queue
stores these messages in an encrypted format. These messages are decrypted when they are
sent to a consumer who is authorized to use it. When using SSE in SQS, requests initiated
with the queues must be on HTTPS protocol.

13
Simple Notification Service

AWS Simple Notification Service (SNS) works based on push technology. It is also called a
server push. In this mechanism, the message or transaction is initiated by the publisher or a
central server and the AWS SNS delivers it to the subscribers. It is the opposite of the pull
mechanism. The pull mechanism is also called a client pull, where the client raises a request
to fetch or pull data from the server. As a side note, unlike SNS, AWS SQS works on a pull
mechanism.

In enterprise architecture, we often need to send notifications to the subscribers. Some of the
following real-time notification use cases can help us to understand how and where they
are used:

When an EC2 instance is under- or over-utilized for a specific time frame, it
should send a notification to the system administrators and stack holders. For
example, at any given time, when the average CPU usage is above 70% or below
30% for a specific time frame, it sends a notification to the system administrator
or Auto Scale to scale-out or scale-in the number of EC2 instances as per the
configuration.
Mobile applications installed on a smartphone occasionally send push
notifications with various offers and discounts based on the user's interaction
with the mobile app.
To send a mobile application push notification, the end user may need to install
an application on the smartphone. On the other hand, SMS notifications can be
sent to any mobile device. It is irrelevant whether the end user has installed your
mobile application or not.

Simple Notification Service Chapter 13

[412]

When any new message is published to an SNS topic, it can invoke a subscribed
Lambda function. Some of the example use cases are:

Serverless architecture
Automated backups and other daily administrative tasks
Processing uploaded objects in S3 buckets

In this chapter, we will cover the following topics:

Introduction to Amazon SNS
Creating an Amazon SNS topic
Subscribing to an SNS topic
Publishing a message to an SNS topic
Deleting an SNS topic
Managing access to an SNS topic

Introduction to Amazon SNS
Amazon SNS is a managed notification service. It works on a push mechanism: the
publisher raises a request to send a message to the subscribers. Figure 13.1 shows us how it
works:

Figure 13.1: Introduction to SNS
Reference URL: http://docs.aws.amazon.com/sns/latest/dg/images/sns-how-works.png

Simple Notification Service Chapter 13

[413]

First, you need to create an Amazon SNS topic. An SNS topic acts as an access point
between the publisher and subscriber applications. The publisher communicates
asynchronously with the subscribers using SNS. Subscribers can be an entity such as a
Lambda function, SQS, HTTP or HTTPS endpoint, email, or a mobile device that subscribes
to an SNS topic for receiving notifications. To receive notifications, subscribers must specify
the protocol (that is, HTTP, HTTPS, Email, Email-JSON, Amazon SQS, Application, AWS
Lambda, or SMS). When a publisher has new information to share with the subscribers, it
publishes a message to the topic. Finally, SNS delivers the message/notification to all
subscribers.

Topic policy controls who can publish message, and subscribe to a topic.

Amazon SNS fanout
Amazon SNS and Amazon SQS are key services to create loosely coupled, scalable, cloud-
based, and serverless applications in the cloud. One of the common architecture concepts is
fanout. In this concept, several Amazon SQS's act as a subscriber. A publisher sends a
message to an SNS topic and it distributes this topic to many SQS queues in parallel. The
following image given in Figure 13.2 describes the concept of fanout in SQS. For example, a
virtual, multinational, e-commerce company introduces hundreds of products for sale in
many countries every day. Now when a new product is saved in a web application, it will
send a message to the SNS topic. Immediately, the SNS topic sends notifications in parallel
to all subscriber SQS queues.

Let's explore a scenario to better understand this point.

Consider a scenario where there is a web application hosted in multiple regions for a
number of countries. Each web application is hosted on a specific web endpoint with URLs
ending with a country-specific Top Level Domain (TLD) such as .in for India, .uk for UK,
and .nz for New Zealand. The global site is hosted on the .com domain. When a new
product is introduced at the .com portal, it sends a push notification to all the subscriber
SQS queues. Applications hosted in different countries read the queue on a periodic basis
and update the product details. The message fans out from SNS to multiple SQS, and finally
to a number of country-specific web applications.

Simple Notification Service Chapter 13

[414]

In certain scenarios, web applications can directly subscribe to the SNS topic with the HTTP
or HTTPS endpoint URL, however, that is not a fanout mechanism. It's a direct
communication between the SNS and web application endpoint:

Figure 13.2: Amazon SNS Fanout

Reference URL: http://docs.aws.amazon.com/sns/latest/dg/images/sns-fanout.png

Application and system alerts
It is important to monitor AWS resources over various parameters (that is, CPUUtilization,
MemoryUtilization, NetworkIn, NetworkOut, and so on) to avoid bottlenecks and to
deliver consistent web application performance to the end user. As resource consumption
crosses the defined threshold, the administrator should get an alert. This alert can be in the
form of an SMS and/or email to the system, network, or a DB administrator, based on the
resource type. Other AWS services also use SNS to send notifications on certain events. For
example, an Auto Scaling group can also optionally inform the administrator upon scale-
out and scale-in.

Mobile device push notifications
Mobile push notifications send a notification directly to mobile apps. User interaction with
the mobile app helps applications to understand the subscriber's interests and accordingly,
occasional notifications are sent to their mobile device to update them about offers on
products, services, or company news.

Simple Notification Service Chapter 13

[415]

Push email and text messaging
Email and text messages (SMS) are two common ways to convey important messages to an
individual or group(s) of people. Usually with this method, subscribers get notifications by
email or SMS on their subscribed email address or phone number, respectively. This
notification contains important messages and URLs to get more information.

Creating an Amazon SNS topic
First, it is essential you create an SNS topic, then it is possible for a publisher to publish a
message and for subscribers to subscribe to get a notification. New SNS topics can be
created by the following steps:

Sign in to the AWS account with the IAM user who has sufficient privileges to1.
work with Amazon SNS. On successful login to the AWS account, make sure that
the appropriate AWS region is selected from the right-hand side top toolbar as,
shown in Figure 13.3:

Figure 13.3: AWS web console, select desired region

From the AWS dashboard, select Simple Notification Service from the2.
Messaging services group, as shown in Figure 13.4:

Figure 13.4: AWS web console, select SNS

Simple Notification Service Chapter 13

[416]

Select Create topic from the SNS dashboard, as shown:3.

Figure 13.5: SNS dashboard, select Create topic

In the Create new topic pop-up box, provide the appropriate input and4.
click Create topic, as shown in Figure 13.6:

Figure 13.6: Provide appropriate Topic name and Display name

Topic name: This can be up to 256 characters in size.
Alphanumeric, underscores (_), and hyphens (-) are allowed. For
example, LearnSNS.
Display name: This is mandatory for the SMS protocol only. A
maximum of 10 characters are allowed. For example, LEARN-SNS.

Simple Notification Service Chapter 13

[417]

On successful creation of the SNS topic, the Topic counter changes from 1 to 0 on
the AWS SNS dashboard, as shown in Figure 13.7:

Figure 13.7: SNS dashboard

To see a complete list of SNS topics in a specific AWS region, select Topics from
the left-hand side pane on the SNS dashboard, as shown in Figure 13.8:

Figure 13.8: SNS dashboard, select Topics

Copy the SNS Topic ARN, as shown in the preceding screenshot. This ARN is
used in the subsequent steps for subscribing to the topic.

Simple Notification Service Chapter 13

[418]

Subscribing to an SNS topic
Each SNS topic can have multiple subscribers. Each subscriber may use the same or
different protocols. Copy the ARN of the recently-created SNS topic. This step-by-step
guide requires you to subscribe to a topic. Subscribers can receive a notification over a
desired protocol as and when the publisher sends any message to the same topic. The steps
for subscribing to an SNS topic are as follows:

Go to the SNS dashboard and select Subscriptions, as shown in Figure 13.9:1.

Figure 13.9: SNS dashboard, select Subscriptions

Click Create subscription, as shown in Figure 13.10:2.

Figure 13.10: Create subscription

Simple Notification Service Chapter 13

[419]

A pop-up will appear, as shown in Figure 13.11. Provide a valid Topic ARN,3.
Protocol, and Endpoint. Finally, click Create subscription:

Figure 13.11: Create subscription

Topic ARN: Paste the copied ARN of the recently-created SNS
topic
Protocol: Select the appropriate protocol (HTTP, HTTPS, Email,
Email-JSON, Amazon SQS, Application, AWS Lambda, or SMS)
Endpoint: According to the protocol, provide an appropriate
endpoint (that is, domain name, email address, SQS ARN,
application ARN, Lambda function ARN, or phone number,
respectively)

Amazon SNS will send an email on a specified endpoint to confirm the4.
subscription. Click the link in the email. It will lead to a web browser that
displays a confirmation of a subscription response from Amazon SNS.

Simple Notification Service Chapter 13

[420]

Publishing a message to an SNS topic
As soon as the publisher sends a message to a topic, Amazon SNS will try to deliver a
notification/message to all the subscribers. The subscriber may have different protocols and
individual endpoints. With the help of the following steps, a message can be published over
an SNS topic:

Go to the SNS dashboard, and select Topics from the left-hand side pane; it will1.
display a list of topics, as shown in Figure 13.12:

Figure 13.12: SNS Topics dashboard

Click the Topic ARN, as shown in Figure 13.13:2.

Figure 13.13: Select Topic, to get ARN

Simple Notification Service Chapter 13

[421]

Click Publish to topic, as shown in Figure 13.14:3.

Figure 13.14: SNS Topic details

To publish a message, provide the details, as shown here:4.

Figure 13.15: Publish a message on a Topic

Simple Notification Service Chapter 13

[422]

Subject: This is optional and can be up to 100 printable ASCII characters. In the
case of an email notification, it will appear as an email subject line.
Message format: This can be either Raw or JSON:

Raw: This is the actual plain text message to send to all the
subscribers
JSON: This is the formatted message to customize the message for
each of the protocols

Message: Based on the message format type, the actual message will either be
plain text or JSON. SMS messages can have up to 160 ASCII or 70 unicode
characters, while email messages can be up to 256 KB in size.
JSON message generator: This helps to format a plain text message into a JSON
format to support the subscriber's desired protocol. On using it, the message
format becomes the JSON type. It displays the pop-up, as shown in Figure 13.16.
Select the required protocols to meet the subscriber's configuration. The target
platform can be customized as per the actual requirement:

Figure 13.16: JSON message generator

Simple Notification Service Chapter 13

[423]

Time to live (TTL): This is in seconds and will be the same for all mobile
platforms' push notifications. It is an additional capacity to configure TTL apart
from the existing capacity of setting TTL within the SNS message body. It
specifies the time to expire metadata about a message. Within a specified time,
Apple Push Notification Service (APNS) or Google Cloud Messaging (GCM)
must deliver messages to the endpoint. If the message is not delivered within the
specified time frame, then the message will be dropped and no further attempts
will take place to deliver the message.

Finally, the message that you want to publish should look like the one in Figure5.
13.17. To publish a notification that sends an email and SMS to the subscribers,
click the Publish message button, as shown in Figure 13.17:

Figure 13.17: Publish a message

Simple Notification Service Chapter 13

[424]

Deleting an SNS topic
To delete an SNS topic, you first need to unsubscribe the subscribers, and then you can
delete the SNS topic. The following steps explain how to unsubscribe subscribers and delete
an SNS topic:

Go to the Amazon SNS dashboard and click Subscriptions, as shown in Figure1.
13.18:

Figure 13.18: SNS dashboard

Before you can delete a topic, you need to unsubscribe all the subscribers from2.
that topic. Select all the relevant subscribers for the topic and click Delete
subscriptions from the Actions drop-down menu, as shown in Figure 13.19:

Figure 13.19: Delete subscriptions

Simple Notification Service Chapter 13

[425]

Before unsubscribing the selected subscribers, click Delete in the confirmation3.
dialog box, as shown in Figure 13.20:

Figure 13.20: Popup, delete subscriptions confirmation

All the subscriptions that are pending for confirmation cannot be deleted
manually. They are automatically deleted after three days if the
confirmation is not received for those subscriptions.

Now, it is safe to delete the SNS topic.

Select Topics from the left-hand side pane, as shown in Figure 13.21:4.

Figure 13.21: SNS Subscriptions dashboard, select Topics

Simple Notification Service Chapter 13

[426]

Select a desired SNS topic to delete and click Delete topics from the Actions5.
drop-down menu, as shown in Figure 13.22:

Figure 13.22: SNS Topics dashboard, select desired topic to delete

Managing access to Amazon SNS topics
Amazon SNS supports multiple protocols such as HTTP, HTTPS, Email, Email-JSON,
Amazon SQS, Application, AWS Lambda, and SMS. SNS subscribers can receive the
message or notification over one of the supported protocols. Apart from the protocols, SNS
also provides topic policy, which can be used to control who can subscribe or publish to a
topic. The subsequent point describes when to use the topic policy for access control over an
SNS topic.

When to use access control
The access control policy helps to define the way to control access to an SNS topic. There
can be a number of scenarios where you may need to use the access control policy for an
SNS topic. Here are some examples:

You can use access control policy when you want to allow an IAM user to publish
a message to one or more SNS topics. This IAM user can be in the same or a
different AWS account.
SNS topics allows subscribers to use multiple supported protocols. With the help
of the access control policy, subscribers can be restricted to use one or more
specific protocols. For example, on an SNS topic, you can allow the subscriber to
use only email and HTTPS.

Simple Notification Service Chapter 13

[427]

You can also define the access control policy to restrict an SNS topic to only
publish a message to an SQS queue.

Key concepts
Understanding the following key concepts is essential to effectively write the access policy:

Permission: Permission is used for allowing or disallowing access to a specific
resource. Permission can be either be allow or deny.
Statement: A statement describes a single permission written in an access policy
language, such as JSON. One or more statements are part of a policy.
Policy: A policy is a JSON document; this includes one or more statements. Figure
13.23 helps us to understand the concept of single and multiple statements in a
policy:

Figure 13.23: Policy and statements

Reference URL: https://docs.aws.amazon.com/sns/latest/dg/images/AccessPolicyLanguage_Statement_and_Policy.gif

One statement allows Jack to subscribe to TestTopic using email protocol only.
Another statement restricts Adam to publish messages to TestTopic. As shown
in the preceding figure, these two statements can be placed in a single policy or
they can be placed separately in each policy.

Issuer: In general, an issuer is a resource owner. A person who writes the access
policy on a resource is called the issuer. For example, Bob has created an SNS
topic named TestTopic. He has full privileges to TestTopic. AWS doesn't
allow other IAM users to write an access policy on it. Bob can write an access
policy to specify who can publish or subscribe with which protocols
to TestTopic.

Simple Notification Service Chapter 13

[428]

Principal: When an issuer writes an access policy, the person to whom the
privilege is granted/restricted in the policy is called a principal. It can be an actual
identity, such as a username, or an IP address, such as CIDR range. A principal
can be anyone just by mentioning *. For example, in the statement, Jack will
subscribe to TestTopic using email protocol only; Jack is a principal.
Action: Action specifies the activity that a principal can perform on a resource.
One or more actions can be specified in a policy.
Resource: This is an object (that is, SNS topic) that a principal is requesting to
access. For example, in the statement, Jack will subscribe to TestTopic using
email protocol only; TestTopic is a resource.
Conditions and keys: Using conditions, you can apply specific restrictions on the
permission. For example, we can write a statement in a policy that will allow Jack
to subscribe to a topic, however, it adds a condition that allows Jack to subscribe
to the topic only using email protocol.
A key is a specific characteristic, such as date and time. It acts as a base for an
access restriction. Keys and conditions are used in a pair to define restrictions.
For example, when the issuer wants the principal to deny access to a resource
before Jan 1st 2018, then the condition to be used is DateLessThan and the key
should be aws:CurrentTime and the value set to 2018-01-01T00:00:00Z.

Requester: The person or entity sends the access request to the resource, called
requester. For example, the requester asks the AWS service: Will you allow me to do
B to C where D applies?
Evaluation: Evaluation is a process to conclude whether to allow or deny a
requester based on the applicable policies. In detail, we will see it in an evolution
logic.
Effect: Possible values for an effect can be deny or allow. At the time of policy
evaluation, it helps to decide whether the requester can perform an action against
configured conditions or not.
Default deny: When a policy statement is evaluated, by default, if a permission is
not explicitly allowed to perform an action, the statement considers it as deny. In
short, if any permission is not explicitly allowed in the policy statement, the user
is denied the permission for these actions, which are not defined in the policy.
Allow: Policy evaluation is allow when a policy statement has effect=allow
and defined conditions are met, a requester can perform an action on the
resource.
Explicit deny: Policy evaluation is deny; when a policy statement has
effect=deny and defined conditions are met, a requester cannot perform an
action on the resource.

Simple Notification Service Chapter 13

[429]

Architectural overview
Figure 13.24 helps us to understand the architectural overview at a high level. It helps us to
understand from the beginning, from when the resource is created until allow or deny
access is evaluated:

Figure 13.24: Architectural overview (policy evaluation)

Reference URL: https://docs.aws.amazon.com/sns/latest/dg/images/AccessPolicyLanguage_Arch_Overview.gif

Simple Notification Service Chapter 13

[430]

Each of the points given in Figure 13.24 are explained as follows. Readers are requested to
refer to the preceding figure and co-relate the point numbers given in the figure:

A user creates an AWS resource. For example, Bob creates SNS topics. Bob is the1.
owner for SNS topics.
Topics are created within AWS SNS.2.
An owner, also called an issuer, creates an access policy. Usually, one policy with3.
one or more statements is created rather than multiple policies, as it is easy to
manage.
Requests are incoming from the requesters to AWS SNS. Requesters can be4.
subscribers or publishers.
All incoming requests to access AWS resources (that is, in this case, SNS topics)5.
are evaluated against applicable policies and it is determined whether the
requester can access the resource or not. Evaluation is carried out by the access
policy language evaluation code.

Access request evaluation logic
Whenever any request to access an AWS resource is initiated, policy evaluation logic
evaluates the related policies to determine whether to allow an incoming request or deny.
Basic policy evaluation rules are given here:

First and foremost, policy evaluation logic applies to the default deny rule. That
means, except the resource owner, all other requests are denied if no explicit
allow permission is specified in the policy.
Explicit allow statements or a policy override the default deny. As a result,
request gets an access.
Explicit deny statements or a policy override the explicit allow statement.

Simple Notification Service Chapter 13

[431]

The following flowchart helps us to understand in detail how the request to allow or deny a
decision is made:

Figure 13.25: Policy evaluation flowchart

Reference URL: https://docs.aws.amazon.com/sns/latest/dg/images/AccessPolicyLanguage_Evaluation_Flow.gif

By default, the default deny rule applies. Any request apart from the owner is1.
denied.
AWS evaluates a policy based on evaluation logic, relevant resource, principal,2.
and conditions specified in the policies. If there is more than one policy
associated with a resource, the order of the policy evaluation is not important.
Any policy can be evaluated first, irrespective of in what order they are
associated with the resource.

Simple Notification Service Chapter 13

[432]

During the evaluation of policies, if any policy has an explicit deny, the final3.
decision is to deny the request.
If there is no explicit deny specified in the policy and there is an explicit allow4.
available in the policy, the final decision is to allow the request.
If there is no explicit allow or deny policy, the default deny rule is applied.5.

Invoking the Lambda function using SNS
notification
An AWS Lambda function can be invoked with Amazon SNS notifications. When a
publisher publishes a message to an SNS topic and a Lambda function is subscribed to the
same SNS topic, that Lambda function is invoked with the payload of a published message.
When a publisher publishes a message to an SNS topic, SNS provides the message delivery
status to the publisher stating that the message is sent to the Lambda function. The payload
message acts as an input parameter for the Lambda function. The function can process the
message (payload) as needed.

A prerequisite is to have an SNS topic and a Lambda function.

SNS topic can be configured to execute a Lambda function with the help of the following steps:

Go to the SNS dashboard, and select Topics from the left-hand side panel; it will1.
display a list of topics, as shown in Figure 13.26:

Figure 13.26: SNS Topics dashboard

Simple Notification Service Chapter 13

[433]

Click the topic ARN for a topic to subscribe a Lambda function, as shown here:2.

Figure 13.27: SNS Topics dashboard

Click Create subscription, as shown in Figure 13.28:3.

Figure 13.28: SNS Topics dashboard

Simple Notification Service Chapter 13

[434]

It will come up with a pop-up, as shown in Figure 13.29. Select Protocol as AWS4.
Lambda and provide a Lambda function Endpoint. It also allows you to
customize whether to trigger a specific alias or a version of an alias. Finally,
click Create subscription:

Figure 13.29: Create subscription

Sending Amazon SNS messages to Amazon
SQS queues
The Amazon SNS topic's publisher can send a notification to an Amazon SQS queue. It is
essential that the SQS queue is subscribed to a topic.

A prerequisite is to have an SNS topic and an SQS queue.

Consider the steps as following:

Go to the SQS dashboard, as shown in Figure 13.30:1.

Simple Notification Service Chapter 13

[435]

Figure 13.30: Amazon SQS dashboard

Select the queue and click the Queue Actions drop-down menu. Select Subscribe2.
Queue to SNS Topic, as shown in Figure 13.31:

Figure 13.31: Subscribe Queue to SNS Topic

Simple Notification Service Chapter 13

[436]

In the pop-up, select the appropriate AWS region where the SNS topic is created,3.
choose the appropriate SNS topic to subscribe to the selected SQS queue and
click Subscribe, as shown in Figure 13.32:

Figure 13.32: Subscribe to a Topic

In the preceding pop-up, typing an ARN helps an SNS topic in another
AWS account.

On successful subscription of an SQS queue to an SNS topic, a pop-up will4.
appear, as shown in Figure 13.33:

Figure 13.33: Subscription result

To verify whether the SQS queue has been successfully subscribed to a desired5.
SNS topic, select the SNS topic from the SNS dashboard | Topics and click ARN
to see details. It is visible that the SQS topic has been subscribed, as shown in
Figure 13.34:

Simple Notification Service Chapter 13

[437]

Figure 13.34: SNS Topic dashboard

Now, when the publisher publishes a message, the SQS queue will get a6.
notification. Visible messages at the SQS queue will be increased. To see a visible
message, go to the SQS dashboard, select the queue, and in the lower-pane,
Messages Available can be seen, as shown in Figure 13.35:

Figure 13.35: SQS dashboard

Simple Notification Service Chapter 13

[438]

The Amazon SQS queue will receive messages in a JSON format. Here is a sample message:

{
 "Type" : "Notification",
 "MessageId" : "153697k2i-5672-9k8g-6fp8-159hn86d4h97",
 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:TestTopic",
 "Subject" : "Testing message published to a subscribed queue",
 "Message" : "Hello world!",
 "Timestamp" : "2017-09-02T05:08:40.901Z",
 "SignatureVersion" : "1",
 "Signature" :
"EXAMPLEd4f5h7a3f5VO0FFbh75fkl97JLRfySEoWz4uZHSj6ycK4ph71Zmdv0NtJ4dC/El9FOG
p3VuvchpaTraNHWhhq/OsN1HVz20zxmF9b88R878hqjfKB5woZZmz87HiM6CYDTo3l7LMwFT4VU
7ELtyaBBafhPTg9O5GhsKkg=",
 "SigningCertURL" :
"https://sns.us-west-2.amazonaws.com/SimpleNotificationService-f3ecfb7224c7
233fe7bb5f59f96de52f.pem",
 "UnsubscribeURL" :
"https://sns.us-west-2.amazonaws.com/?Action=Unsubscribe&SubscriptionArn=ar
n:aws:sns:us-west-2:123456789012:MyTopic:c7fe3a54-ab0e-4ec2-88e0-
db410a0f2bee"
}

Monitoring SNS with CloudWatch
Amazon SNS and Amazon CloudWatch are both integrated. Every SNS topic publishes
standard metrics and dimensions in a CloudWatch. CloudWatch metrics for each SNS topic
can be viewed by performing the following steps:

Go to the CloudWatch dashboard with the IAM user who has sufficient1.
privileges. Click Metrics, as shown in Figure 13.36:

Simple Notification Service Chapter 13

[439]

Figure 13.36: CloudWatch Metrics dashboard

Select SNS to explore all metrics, as shown in Figure 13.37:2.

Figure 13.37: CloudWatch Metrics dashboard

Simple Notification Service Chapter 13

[440]

Click Topic Metrics to explore the SNS topic metrics, as shown in Figure 13.38:3.

Figure 13.38: CloudWatch Metrics dashboard

Select the appropriate metric from the lower-pane to see the activity graph on the4.
upper-pane, as shown in Figure 13.39:

Simple Notification Service Chapter 13

[441]

Figure 13.39: CloudWatch Metrics dashboard

It is a best practice to configure alarms on critical metrics such as
NumberOfNotificationsFailed.

SNS best practices
SNS best practices are as follows:

It is recommended to configure alerts on various SNS standard metrics to observe
performance parameters such as success rates, failure rates, and deliveries to SQS.
Configure access policy to control who can publish a message to and receive a
notification from an SNS topic.
In order to delete an SNS topic, ensure that all the subscriptions for that topic are
deleted first.
Use Amazon SNS and SQS services to build loosely-coupled applications or a
serverless architecture.

14
Simple Workflow Service

Amazon Simple Workflow Service (SWF) is a workflow management service that helps in
building applications that can handle work through distributed components. Using SWF,
you can define a number of tasks that can be executed in a predefined sequence. You can
build scalable, resilient, and truly distributed applications using Amazon SWF. You can
schedule tasks and define dependencies and concurrency depending on the logical
workflow of the application. This chapter introduces you to workflows, workflow history,
actors, tasks, domains, object identifiers, task lists, workflow execution closure, lifecycle,
polling for tasks, execution, access key and secret key, SWF endpoints, and managing access
with IAM.

The purpose of this chapter is to introduce readers to the basic concepts of SWF, with
respect to the scope of the AWS Certified Developer – Associate exam. From a development
perspective, SWF is a wide topic and a full book can be written on SWF. Considering the
scope of the exam, this chapter does not intend to teach the reader how to code SWF
applications, but focuses more on the fundamental aspects of SWF.

When to use Amazon SWF
Here are some scenarios where SWF can be used:

When you have multiple tasks that need to be coordinated and executed in a
specific sequence based on some dependency or in parallel
When you have multiple application components and need to dispatch tasks to
these application components

Simple Workflow Service Chapter 14

[443]

When you have a distributed application and you need to coordinate and process
tasks in a distributed application environment
When you need to execute ordered application steps
When you need to manage the application state during distributed execution
When you need to reliably execute periodic tasks and audit the execution
When you need to asynchronously execute event-driven tasks

Some of the SWF use cases are:

Media processing
Customer order processing workflow
Web application backend
Business process workflow
Analytics pipelines

Now that we know what SWF is and what it can do, let's look at some basic concepts of
SWF, such as workflows, workflow history, actors, tasks, domains, object identifiers, task
lists, workflow execution closure, execution lifecycle, and polling for tasks.

Workflow
A workflow is a mechanism to execute a number of distributed application tasks in an
asynchronous way. With workflow, you can manage multiple activities asynchronously
using more than one computing resources. The execution of the workflow tasks can be
sequential and parallel as needed. While creating a workflow, you need to determine the
tasks to be executed in the workflow. SWF recognizes these tasks as activities. You can
define the coordination logic in the workflow that determines the order in which the
activities are executed.

Example workflow
As shown in Figure 14.1, a customer order processing workflow can be implemented using
SWF:

Simple Workflow Service Chapter 14

[444]

Figure 14.1: SWF customer order processing workflow

The workflow starts with the customer placing an order.1.
The order is verified by the order verifiers component of the application, which is2.
hosted on a separate environment.
Once the order is verified, the customer is charged by the Credit Card Processors3.
component of the application.
After a successful payment, the warehouse employee processes the order and4.
ships it.
The order detail is updated in the database by the Database Recorder.5.
The workflow ends.6.

Workflow history
SWF keeps the history or execution progress of any workflow in the workflow history. Once
the execution of a workflow starts, SWF keeps a detailed history of each and every step of
the workflow. Whenever the workflow execution state changes, such as when a new
activity is scheduled in the workflow or an activity is completed, it is represented as an
event in the workflow history. It records events that change the state of the workflow, such
as when an activity is scheduled or completed or a task execution times out. It does not
record any event that does not change the state of the workflow.

Simple Workflow Service Chapter 14

[445]

How workflow history helps
Workflow history can be helpful in a number of ways. The following list describes some of
the ways workflow history can be helpful:

It stores all details about the workflow execution and thus eliminates the need for
the application to maintain the state.
It provides the current status of each of the activities scheduled along with its
results. SWF executes the next steps based on this information.
It provides an audit trail, which can be used to monitor and verify the workflow
execution:

Order0001

Start Workflow Execution

Schedule Verify Order
Start Verify Order Activity
Complete Verify Order Activity

Schedule Customer Payment
Start Charge Customer Payment Activity
Complete Customer Payment Activity

Schedule Ship Order
Start Ship Order Activity

Actors
In simple terms, an actor is a program or an entity that performs different types of activities
in a workflow. An actor can be any of the following:

Workflow starter
Decider
Activity worker

Simple Workflow Service Chapter 14

[446]

Actors can interact with SWF using APIs. Actors can be developed in any programming
language. Figure 14.2 shows SWF architecture along with its actors:

Figure 14.2: Amazon SWF architecture

Reference URL: https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dev-actors.html

Workflow starter
A workflow starter is a program or an application that starts the execution of a workflow. In
the customer order-processing example, the workflow starter can be a shopping site where
the customer orders an item. It can also be a mobile application from which the customer
places an order.

Simple Workflow Service Chapter 14

[447]

Decider
A decider is a program or an application that decides the coordination logic of a workflow.
It decides on the order of execution, concurrency, and scheduling of the tasks as per the
application logic. Whenever there is any change in the workflow execution, such as an
activity is completing, the underlined client polls for the tasks for making decisions and it
passes them to the programmatic entity, called a decider. The decider receives the decision
tasks along with the workflow history. The job of the decider is to analyze the execution
history and decide which step should be executed next. Once the decider takes the decision,
it communicates this decision back to SWF. Interactions between workers and the decider is
facilitated by Amazon SWF. It provides consistent views into the progress of tasks and
allows initiating new tasks in an ongoing manner. The tasks are stored by SWF and
assigned to workers as and when they are ready. SWF monitors the tasks and ensures that a
task is assigned only once and is never duplicated.

Remember, a decision is a data type in SWF, and represents the next
actions.

Activity worker
An activity worker is a program or an application that receives tasks from SWF, executes
the tasks, and returns the result back to SWF. Activity tasks are tasks that are identified by
you in your application.

For using an activity task, you need to register the activity task in an SWF console or
programmatically by using the RegisterActivityType action.

All the activity workers are registered in SWF polls for new activity tasks. SWF assigns
activity tasks to a worker. There may be some tasks that can be performed by specific
activity workers only. Once the activity worker receives a task from SWF, it starts the
execution of the task and reports it to SWF on completion along with the results.
Subsequently, it polls the SWF for the next task. This entire process of polling for a task and
executing it goes on until the entire workflow execution is completed.

Simple Workflow Service Chapter 14

[448]

Tasks
The work assignments that SWF provides to activity workers and deciders are called tasks.
There are basically three types of tasks in SWF, namely, activity task, Lambda task, and
decision task. Let's look at these task types in the following points:

Activity task: An activity task describes the actions to be performed by an
activity worker. The action depends upon the function of the activity worker. For
example, an activity worker may be asked to check the inventory for a specific
product or it may be asked to initiate a credit card transaction. The task contains
all the details that an activity worker requires to perform the actions.
Lambda task: A Lambda task and activity task are similar. As the name suggests,
it executes a Lambda function instead of any SWF activity.
Decision task: A decider determines the next activity in a workflow based on the
decision task. It tells the decider that the workflow execution status has changed.
The current workflow history is carried along with the decision task.

SWF can schedule a decision task as and when the workflow starts and when the status of
the workflow changes, that is, activity task scheduled, activity task completed, and so on.

SWF domains
Domains in SWF are a mechanism to scope SWF resources such as workflows, activity
types, and workflow execution. All the resources are scoped to a domain. Domains isolate
one set of types, executions, and task lists from other ones within an AWS account. When
you work with SWF, you need to first define a domain. All the other resources are defined
within a domain. You can define multiple domains in SWF. Similarly, one domain can have
multiple workflows, however, workflows defined in different domains cannot interact with
each other.

While registering a domain in SWF, you need to define the workflow history retention
period. SWF maintains the history of a workflow for the time specified in the workflow
history retention period even after the execution of the workflow is completed.

Simple Workflow Service Chapter 14

[449]

Object identifiers
Object identifiers are a way of uniquely identifying SWF objects. The following list
describes how different types of objects are identified in SWF:

Workflow type: A registered workflow type is distinguished by its domain,
workflow name, and workflow version. You can specify the workflow type in a
call to RegisterWorkflowType.
Activity type: A registered activity type is distinguished by its domain, activity
name, and activity version. You can specify the activity types in the call to
RegisterActivityType.
Decision tasks and activity tasks: SWF uses a unique task token to identify
decision tasks and activity tasks. It generates a task token and returns it with
other task information when PollForDecisionTask or
PollForActivityTask are called. Mostly, the token is used by the process that
is assigned to the task but the token can also be passed on to other processes.
Subsequently, the process with the token can report completion or failure of the
task.

Task lists
Task lists are a mechanism to organize different tasks related to a workflow. Task lists can
be thought of like dynamic queues. While scheduling a task in SWF, you can specify a task
list. The task list works in a similar way to a queue. While polling SWF for tasks, you can
specify the task list from where the task can be fetched.

Task lists offer a way to route tasks to worker processes based on the requirement of your
application workflow. You don't need to explicitly create a task list, it is automatically
created when a task is scheduled, if the task list is not already there. SWF maintains a
separate task list for activity tasks and decision tasks. A task belongs to only one task list, it
is not shared between multiple task lists. Just like activities and workflows, task lists also
have a restricted scope. The scope of a task list is restricted to a specific AWS region and a
specific SWF domain.

Simple Workflow Service Chapter 14

[450]

Workflow execution closure
When a workflow execution is started, it changes an open state. An open workflow
execution can be closed as one of the following:

Completed
Canceled
Failed
Timed out

Open workflow execution can be closed by a decider process, an administrator, or by SWF.
As and when the activities of the workflow finishes, the decider process identifies and
marks the workflow execution as completed. The decider uses the
RespondDecisionTaskCompleted action and forwards the
CompleteWorkflowExecution decision to SWF.

Similarly, a decider process can also close the workflow execution as cancelled or failed.
The decider process uses the RespondDecisionTaskCompleted action and forwards the
CancelWorkflowExecution decision to SWF.

Whenever a task enters a state that is outside the purview of normal completion, a decider
should fail that workflow execution. For failing the workflow execution, the decider uses
the RespondDecisionTaskCompleted action and forwards the FailWorkflowExecution
decision to SWF.

Workflow executions are continuously monitored by SWF to confirm that the workflow
execution does not exceed the timeout limit specified by the user in workflow settings. As
and when a workflow exceeds timeout, SWF closes the workflow.

At times, certain workflows run for too long and the history grows too large. The decider
may close the execution of this workflow and continue running it as a new workflow
execution. For this scenario, a decider uses the RespondDecisionTaskCompleted action
and forwards the ContinueAsNewWorkflowExecution decision to SWF.

Last but not least, a user can terminate a workflow execution directly from the SWF console.
You can also terminate the execution programmatically with
the TerminateWorkflowExecution API.

Simple Workflow Service Chapter 14

[451]

When you initiate termination of a workflow through the console or API, it automatically
forces closure of the running workflow execution based on the selected workflow from the
console or given domain, runID, and workflowID in an API call.

SWF can also terminate a workflow in case it exceeds any service-defined limits. It can also
terminate a child workflow if the parent workflow is terminated and the child policy
associated with the workflow is defined to terminate the child workflows.

Lifecycle of workflow execution
SWF starts communicating with actors from the start to the completion of a workflow and
allocates respective activities and decision tasks to these actors. Figure 14.3 describes the life
cycle of a customer order-processing workflow:

Figure 14.3: Workflow execution lifecycle

Here are the steps shown in Figure 14.3:

The workflow starter starts the workflow execution by calling1.
the StartWorkflowExecution action with order information.
SWF gets the request to start the workflow execution, sends it back with a2.
WorkflowExectuionStarted event, and schedules a decision task raising a
DecisionTaskScheduled event.
A process configured as a decider in the workflow, polls for a decision task using3.
the PollForDecisionTask action, and receives the decision task from SWF
along with the task history. The decider then uses coordination logic to ensure
that the execution is not already run. After verification, it schedules the verify
order activity using the ScheduleActivityTask decision and returns the
decision detail to SWF with the RespondDecisionTaskCompleted action.

Simple Workflow Service Chapter 14

[452]

SWF gets the decision from the decider, schedules the verify order activity task4.
and raises the ActivityTaskScheduled event. After scheduling the task, SWF
waits for the task until it gets completed or times out.
An activity worker polls for the tasks using the PollForActivityTask action5.
and receives the verify order activity task. After receiving the task, an activity
worker performs his task and responds back to SWF along with the result using
the RespondActivityTaskCompleted action.
SWF receives the result of the verify order activity shared by the activity worker6.
and raises the ActivityTaskCompleted event. It adds the result to the
workflow history. At the end of the step, it schedules a decision task and raises
the DecisionTaskScheduled event.
The decider polls for the decision task using the PollForDecisionTask action7.
and receives the decision task from SWF, along with the task history. The decider
then uses coordination logic to ensure that the execution has not already run.
After verification, it schedules a process customer payment activity using the
ScheduleActivityTask decision and returns the decision detail to SWF with
the RespondDecisionTaskCompleted action.
SWF gets the decision from the decider through the DecisionTaskCompleted8.
event, schedules the process customer payment activity task, and raises
the ActivityTaskScheduled event. After scheduling the task, SWF waits for
the task until it gets completed or times out.
An activity worker that can perform process customer payment, polls for the task9.
using the PollForActivityTask action and receives the process customer
payment activity task. After receiving the task, the activity worker performs the
task and responds back to SWF along with the result using
the RespondActivityTaskCompleted action.
SWF receives the result of process customer payment activity shared by the10.
activity worker and raises the ActivityTaskCompleted event. It adds the result
to the workflow history. At the end of the step, it schedules a decision task and
raises the DecisionTaskScheduled event.
The decider polls for the decision task using the PollForDecisionTask action11.
and receives the decision task from SWF along with the task history. The decider
then uses the coordination logic to ensure that the execution has not already run.
After verification, it schedules shipping of the order activity using
the ScheduleActivityTask decision and returns the decision detail to SWF
with the RespondDecisionTaskCompleted action.

Simple Workflow Service Chapter 14

[453]

SWF gets the decision from the decider through the DecisionTaskCompleted12.
event, schedules the ship order activity task, and raises the
ActivityTaskScheduled event. After scheduling the task, SWF waits for the
task until it completes or times out and raises a timeout event.
An activity worker that can perform the ship order polls for the task using the13.
PollForActivityTask action and receives the activity task. After receiving the
task, the activity worker performs the task and responds back to SWF along with
the result using the RespondActivityTaskCompleted action.
SWF receives the result of the ship order activity shared by the activity worker14.
through the ActivityTaskCompleted event. It adds the result to the workflow
history. At the end of the step, it schedules a decision task and raises a
DecisionTaskScheduled event.
The decider polls for the decision task using the PollForDecisionTask action15.
and receives the decision task from SWF along with the task history. The decider
then uses coordination logic to ensure that the execution has not already run.
After verification, it schedules a record completion activity using the
ScheduleActivityTask decision and returns the decision detail to SWF using
the RespondDecisionTaskCompleted action.
SWF gets the decision from the decider through the DecisionTaskCompleted16.
event, schedules the record completion activity task, and raises the
ActivityTaskScheduled event. After scheduling the task, SWF waits for the
task until it is completed or it times out and raises a timeout event.
An activity worker that can perform the record completion task polls for the task17.
using the PollForActivityTask action and receives the activity task. After
receiving the task, the activity worker performs the task and responds back to
SWF along with the result using the RespondActivityTaskCompleted action.
SWF receives the result of the record completion activity shared by the activity18.
worker through the ActivityTaskCompleted event. It adds the result to the
workflow history. At the end of the step, it schedules a decision task and raises
the DecisionTaskScheduled event.

Simple Workflow Service Chapter 14

[454]

The decider polls for the decision task using the PollForDecisionTask action19.
and receives the decision task from SWF along with the task history. The decider
then uses coordination logic and decides to close the workflow execution. It
returns the CompleteWorkflowExecution decision to SWF with
the RespondDecisionTaskCompleted action along with any result.
At the end, SWF closes the workflow execution, archiving the history for any20.
future reference and raises the WorkflowExecutionCompleted event.

Polling for tasks
Deciders and activity workers interact with SWF using long polling. They regularly send
messages to SWF indicating that they are ready to receive a task from a predefined task list.
In case there is a task already available to assign, SWF responds with the task immediately.
If the task is not available, SWF keeps the TCP connection alive for up to 60 seconds. If a
task becomes available in these 60 seconds, it responds back with the task. If there is no task
available within these 60 seconds, SWF responds back with an empty response and the
connection is closed. In cases where the decider or activity worker receives an empty
response, they should poll for the task again.

Long polling is suitable when there is a high volume of tasks available for processing. It is
recommended you keep deciders and activity workers behind a firewall.

SWF endpoints
Amazon provides SWF endpoints in multiple regions. These endpoints are provided to
reduce latency while accessing the service and storing or retrieving the data from AWS.
SWF endpoints are independent of each other. Your SWF domains, workflows, and
activities registered in a region are isolated from the other regions and they do not share
data or attributes with each other. For example, you can register a domain named SWF-
Mydomain-1 in multiple regions. Even though the domain name remains the same, they are
distinct domains specific to respective regions. A domain registered in us-east-1 cannot
share any data or attributes with a domain registered in us-west-1.

Simple Workflow Service Chapter 14

[455]

SWF endpoints available in different AWS regions are shown in the following table. For
more details refer to http:/ /docs. aws. amazon. com/ general/ latest/ gr/ rande. html#swf_
region:

Managing access with IAM
You can manage controlled access to SWF resources using IAM. Using IAM, you can create
users in your AWS account and provide them respective permissions. Each IAM user has a
separate set of IAM keys. These IAM keys provide users with access to respective resources
on AWS. An IAM policy can be attached to a user that controls what resources a user can
access. Using IAM policies, you can control access at the granular level, such as allow or
deny access to a specific set of SWF domains.

http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region

Simple Workflow Service Chapter 14

[456]

SWF uses the following principles for access control:

Access to various SWF resources is controlled only on the basis of IAM policies.
IAM uses denying by default policy. That means, if you do not explicitly allow
any access, by default, access is denied.
You need to attach IAM policies to the actors of the workflow for controlling
access to the SWF resources.
You can specify resource permissions only for domains.
You can use conditions in the permission to further restrict the permission in a
policy.

SWF – IAM policy examples
The following is a simple policy that allows all SWF actions on all the domains in the
account:

{
 "Version": "2012-10-17",
 "Statement" : [{
 "Effect" : "Allow",
 "Action" : "swf:*",
 "Resource" : "arn:aws:swf:*:123456789012:/domain/*"
 }]
}

The following policy allows all SWF actions, but restricts access to a specific domain in the
account:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect" : "Allow",
 "Action" : "swf:*",
 "Resource" : "arn:aws:swf:*:123456789012:/domain/mydomain1"
 }]
}

Simple Workflow Service Chapter 14

[457]

The following policy allows all SWF actions on two specific domains, mydomain1 and
mydomain2:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect" : "Allow",
 "Action" : "swf:*",
 "Resource" : "arn:aws:swf:*:123456789012:/domain/mydomain1"
 }, {
 "Effect" : "Allow",
 "Action" : "swf:*",
 "Resource" : "arn:aws:swf:*:123456789012:/domain/mydomain2"
 }
]
}

The following policy allows access to the StartWorkflowExecution action on
the mydomain1 domain, and specifically to version1 of myworkflow1:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect" : "Allow",
 "Action" : "swf:StartWorkflowExecution",
 "Resource" : "arn:aws:swf:*:123456789012:/domain/mydomain1",
 "Condition" : {
 "StringEquals" : {
 "swf:workflowType.name" : "myworkflow1",
 "swf:workflowType.version" : "version1"
 }
 }
 }
]
}

15
AWS CloudFormation

AWS infrastructure can be created and customized using the AWS dashboard (GUI), CLI, or
APIs. These methods may be quick to build an infrastructure for once but, over a long
period of time, to create a whole or partial infrastructure repeatedly in a different region to
build DR, or in a subsidiary AWS account, those methods would be costly not only in terms
of time and cost but also in terms of management, modification, and maintenance. It is a
case of re-inventing the wheel every time and it is also error prone. For resolving this issue,
Amazon provides the CloudFormation service. AWS CloudFormation allows you to create
and customize the AWS infrastructure using code. It enables you to create your
infrastructure as a code. The program or code is called a template in AWS CloudFormation.
These templates are also referred to as CloudFormation templates (CFTs). For fulfilling
various tasks, you may write one or more CFTs. Each CFT can be written in one of the
supported scripting languages (JSON/YAML). You can use these CFTs to recreate the same
infrastructure in a different region or in a different AWS account. With little or no changes
in the template using runtime parameters, the infrastructure gets ready in different regions
or different AWS accounts.

AWS does not charge you for using the CloudFormation service. You pay only for the
chargeable resources that you create using it. For example, you can create a web application
infrastructure using CFT that includes a VPC, a few EC2 instances, and a few RDS
instances. In this case, the AWS account incurs charges only for the EC2 instances and RDS
instances based on its configuration, such as instance size and attached EBS volumes, as
these are chargeable services. However, for custom VPC and CloudFormation services,
there are no charges applied, as both of these services are free.

In case the AWS account is eligible for the free tier, the same advantage
will be leveraged in the monthly AWS billing, whether AWS resources are
created using templates or any other possible methods.

AWS CloudFormation Chapter 15

[459]

What is a template?
AWS CFTs describes all AWS resources and their properties in JSON or YAML format.
Templates can be written using any text editor. It is recommended to give relevant and
meaningful filenames to each templates. Template extensions can be .json, .yaml, or
.txt. When these templates are executed, the defined AWS resources are created in the
respective AWS account. You can either upload the template to an S3 bucket and specify the
template URL or you can upload the template file using the browse button in the template
creation wizard. Even if you upload the template file using the browse button on the
template creation wizard, it is internally stored in S3.

Figure 15.1 helps us to understand this:

Figure 15.1: AWS CloudFormation flow

Reference URL: http://docs.amazonaws.cn/en_us/AWSCloudFormation/latest/UserGuide/images/create-stack-diagram.png

While creating a stack, if the template path is pointing to the local
machine, then automatically it will upload the CloudFormation template
to the AWS S3 bucket in the relevant region. In each region, AWS
CloudFormation will create its own bucket for that.

AWS CloudFormation Chapter 15

[460]

While writing a template, it is not required to identify AWS resource dependencies. It
automatically identifies the resource dependencies and creates them sequentially. For
example, when a template is written to create a custom VPC and an EC2 instance, it first
creates a custom VPC, and an EC2 instance is created in the same VPC only after the VPC is
available. Templates can be used to create simple or complex AWS infrastructures.

Generally, it is recommended to write a template for each layer of architecture. For
example, separate templates for networking components, database servers, web servers,
and so on. As a result, the required downtime during the maintenance and its impact on the
business can be minimized. In a single template, multiple AWS resources can be specified.
As the enterprise requirement changes with time, these templates can be modified
accordingly. These modified templates can be stored in a version control repository such as
Git to maintain the history of the CFTs.

AWS CFT creation is not just restricted to be written in a text editor using JSON or YAML
code, but it can also be created using the GUI tool, AWS CloudFormation Designer. For
designing your own templates with AWS CloudFormation Designer, you can refer to
https://console. aws. amazon. com/ cloudformation/ designer. For more details on
CloudFormaton Designer, you can refer to the following URL: http:/ /docs. aws. amazon.
com/AWSCloudFormation/ latest/ UserGuide/ working- with- templates- cfn-designer.
html.

To use AWS CloudFormation Designer, you may need to log in to your
AWS account.

What is a stack?
A stack is created on the successful execution of a template in CloudFormation. Executing a
template creates a defined set of AWS resources. A group of these AWS resources defined
in CloudFormation is called a stack. During template execution, if CloudFormation is
unable to create any resource, the whole stack creation fails. When a CloudFormation
execution fails, it rolls back all execution steps and deletes any resources created during the
process. CloudFormation execution may fail due to several reasons, including insufficient
privileges. Due to limited IAM privileges, if the rollback process is unable to delete the
created resources, the incomplete stack remains in the AWS account until it is deleted by
any IAM user with sufficient privileges to delete the stack.

https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html

AWS CloudFormation Chapter 15

[461]

At the time of creating a stack from the template, AWS CloudFormation
only checks for the syntax error in JSON/YAML notation. It does not check
whether the IAM user executing the template has sufficient privileges to
complete the template execution or not. Also, it does not check whether
any resource creation may violate AWS soft limits for the resources in the
account.

Stack helps to efficiently manage several AWS resources as a single unit. The property of
each resource created inside a stack can also be modified manually, but it is a best practice
to modify stack resource properties by modifying the CFTs only. With the help of the
update stack option, modifications can be carried out in an existing stack.

An existing CloudFormation stack can be updated by submitting a modified version of the
original stack template, or by giving different input parameter values during the execution.
During the re-execution of the template, AWS CloudFormation compares the updated
template with the original template and creates a change set. The change set includes the
changes required to update the stack. You can review the proposed changes and execute it
for updating the stack or you can opt to create a new change set. Figure 15.2 summarizes the
workflow for updating a stack:

Figure 15.2: Workflow for updating a AWS CloudFormation stack

Reference URL: https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/images/update-stack-diagram.png

AWS CloudFormation Chapter 15

[462]

AWS CloudFormation stacks can be easily deleted. When the stack is deleted, all the AWS
resources created during stack creation are also deleted. While deleting a stack, there may
be a situation when partial AWS resources are required to be retained for future use. With
the help of the deletion policy, these resources can be retained. For example, while deleting
a stack, you may want to delete an EC2 instance but retain the EBS volume attached to the
instance. You can control this behavior using the deletion policy.

The deletion policy can have the three following attributes:

Delete: When you specify this attribute in DeletionPolicy, CloudFormation
deletes the associated resource on stack deletion
Retain: When you specify this attribute in DeletionPolicy, CloudFormation
retains the associated resource even after the stack deletion
Snapshot: When you specify this attribute in DeletionPolicy,
CloudFormation creates a snapshot of the associated resource before deleting the
stack

The following is an example of how you can specify the deletion policy in a CFT:

"NewEBSVolume" : {
 "Type" : "AWS::EC2::Volume",
 "Properties" : {
 "Size" : "200",
 "Encrypted" : "false",
 "AvailabilityZone" : { "Fn::GetAtt" : ["Ec2Instance", "AvailabilityZone"
] },
 "Tags" : [{
 "Key" : "Name",
 "Value" : "DataVolume"
 }]
 },
 "DeletionPolicy" : "Retain"
}

AWS CloudFormation Chapter 15

[463]

Template structure
The following table helps us understand the basic AWS CFT structure in JSON and YAML
format:

JSON structure YAML structure

{
"AWSTemplateFormatVersion" : "version date",

"Description" : "JSON string",

"Metadata" : {
template metadata
},

"Parameters" : {
set of parameters
},

"Mappings" : {
set of mappings
},

"Conditions" : {
set of conditions
},

"Transform" : {
set of transforms
},

"Resources" : {
set of resources
},

"Outputs" : {
set of outputs
}
}

AWSTemplateFormatVersion: "version date"

Description:
String

Metadata:
template metadata

Parameters:
set of parameters

Mappings:
set of mappings

Conditions:
set of conditions

Transform:
set of transforms

Resources:
set of resources

Outputs:
set of outputs

Basic AWS CloudFormation template structure in JSON and YAML

Reference URL: https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html

AWS CloudFormation Chapter 15

[464]

Having a basic understanding of any one of these two data interchange
formats, JSON or YAML, is advantageous for writing a quick, efficient,
and effective AWS CFT.

A CFT is divided into nine sections. Out of these nine sections, the Resources section, is the
only required section to successfully execute an AWS CFT. Each Resources section must
have at least one resource definition to create with essential properties. For example, when
creating an EC2 instance, AMI ID and instance type are essential parameters. We will
understand the usage of each of these CFT sections.

AWSTemplateFormatVersion
The AWSTemplateFormatVersion section is optional. It identifies the capabilities of the
template. The latest and currently supported version is 2010-09-09 and must be defined as a
literal string (that is, enclosed in double quotes). In any case, if this section is not specified,
then by default the latest template format version is assumed. This template version is
different from the API or Web Services Description Language (WSDL) version.

Example in JSON:

"AWSTemplateFormatVersion" : "2010-09-09"

Example in YAML:

AWSTemplateFormatVersion: "2010-09-09"

Description
The description section is optional in a template. It makes it possible to write meaningful
comments from 0 to 1,024 bytes long for CFTs. In the future, it will help other developers to
understand the purpose of the template. For example, in the future, when changes are
required to be carried out in the existing infrastructure, it would be very important for
architects and developers to understand the purpose of the template. The description
section should always be next to the AWSTemplateFormatVersion section.

AWS CloudFormation Chapter 15

[465]

Example in JSON:

"Description" : "Provide meaningful description about the template."

Example in YAML:

Description: >
 Provide meaningful
 description about
 the template.

Metadata
Metadata is an optional section in a template. It can be used to write extra details in the
form of JSON or YAML objects. It supports metadata keys, which enables us to retrieve the
defined configuration or settings in the Resources section. These keys are defined in the
Metadata section. While writing this book, the CFT Metadata section supports the following
three metadata keys:

AWS::CloudFormation::Init

It defines the configuration or settings for the cfn-init helper scripts in the EC2 instance.
These helper scripts are executed only once while creating a new EC2 instance to install or
configure applications on those EC2 instances. In future, when these EC2 instances are
restarted, it doesn't execute this script:

AWS::CloudFormation::Interface

It helps to define the grouping and ordering for the input parameters. Input parameters
help to accept values (that is, at template runtime) for resource properties. It helps to make
stack creation and modification dynamic:

AWS::CloudFormation::Designer

A designer metadata key is automatically added to the CFT when it is created using AWS
CloudFormation Designer. Usually, it contains information about various AWS resources
and how they were laid down on a GUI designer.

AWS CloudFormation Chapter 15

[466]

Parameters
The parameter section is optional in a template. It can be used to pass values into the
template to be customized while creating a stack. It will allow us to create a stack every time
with different values at runtime without changing any code in the CFT. Suppose a template
has been written to create a three tier architecture and, based on the infrastructure
environment, such as test, development, pre-production, or production, the user may want
to change the EC2 or RDS instance type. With the help of the parameter section, these
values can be customized at runtime; stack creation will ask for a parameter to input values
for these resource properties. Optionally, it is also possible to provide default values for
each parameter. So, when the user does not provide any input, it will take that default
value. Optionally, validation can be placed in a parameter to allow the input of only
relevant information. No need to write separate CFTs for each environment such as test,
development, pre-production, or production.

Basic syntax for parameters:

Syntax in JSON:

"Parameters" : {
 "ParameterLogicalID" : {
 "Type" : "DataType",
 "ParameterProperty" : "value"
 }
 }

Syntax in YAML:

Parameters:
 ParameterLogicalID:
 Type: DataType
 ParameterProperty: value

A maximum of 60 parameters can be defined in an individual CFT. It is essential to declare
a unique logical name (that is, ParameterLogicalID) for each parameter within the
template. The parameter data type can be: String, Number, CommaDelimitedList, or AW-
specific type.

AWS CloudFormation Chapter 15

[467]

AWS-specific parameters
At runtime, when creating a stack from a template, you may need to get values from the
AWS environment. For example, an AWS architect or developer has written a CFT for a
specific time, as and when required, one of the team members needs to run this template to
create a stack. While running the template, it needs to identify the AWS region in which it is
executed. Based on the AWS region, the template uses a suitable key pair for an EC2
instance. AWS uses a number of pseudo-parameters, which are populated from the
presently-available resources in the specific region. For example, the number of AZs may
vary from region to region, or the list of EC2 key value pairs may vary from region to
region and from AWS account to account. For example, when a template that uses these
pseudo-parameters is executed for creating a stack, it enables an administrator to select the
desired AZs for creating the EC2 instances. The following table helps us understands
various pseudo-parameters and their usage:

Most AWS-specific parameters return multiple values in a drop-down list,
apart from AWS::EC2::Image::Id.

AWS-specific parameters Description

AWS::EC2::AvailabilityZone::Name

Provides a list of AZs in the current
region. Only one value from a drop-
down list can be selected. For
example: us-west-2a.

AWS::EC2::Image::Id

Provides an Amazon EC2 image ID.
Provides a textbox to enter a valid
AMI ID. For example: ami-
ff5467egf.

AWS::EC2::Instance::Id

Provides a list of Amazon EC2
instance IDs in the current region.
Only one value from a drop-down
list can be selected. For example:
i-0862FF253e23cfas2.

AWS::EC2::KeyPair::KeyName

Provides a list of key pairs in a
region. Only one value from a drop-
down list can be selected. For
example: test-key.

AWS CloudFormation Chapter 15

[468]

AWS::EC2::SecurityGroup::GroupName

Provides a list of security groups
existing in a region. Only one value
from a drop-down list can be
selected. For example: launch-
wizard-1.

AWS::EC2::SecurityGroup::Id

Provides a list of security groups
along with ID existing in a region.
Only one value from a drop-down
list can be selected. For example:
launch-wizard-1

(sg-28db6c88).

AWS::EC2::Subnet::Id

Provides a list of subnet IDs along
with its CIDR range in a region.
Multiple values from a drop-down
list can be selected. For example:
subnet-31hj765a

(172.31.48.0/20).

AWS::EC2::Volume::Id

Provides a list of EBS volume IDs
along with names that are available
in a region. Only one value from a
drop-down list can be selected. For
example: vol-010968da1fwd265d8
(TestVol).

AWS::EC2::VPC::Id

Provides a list of VPCs along with
IDs, CIDR range, and names
available in a region. Only one value
from a drop-down list can be
selected. For example
:vpc-6c5fe40a
(172.31.0.0/16)(DefaultVPC).

AWS::Route53::HostedZone::Id

Provides a list of hosted zones along
with domain name and ID, in an
AWS Route 53 service. Only one
value from a drop-down list can be
selected. For example:
testdomain.text

(A5EF6W8F6S8FF).

AWS CloudFormation Chapter 15

[469]

List<AWS::EC2::AvailabilityZone::Name>

Provides a list of AZs in the current
region and multiple AZs can be
selected from the drop-down menu.
For example: us-east-1a us-
east-1c.

List<AWS::EC2::Image::Id>

Provides a list of Amazon EC2 AMI
IDs.
For this parameter type, the AWS
console will not show a drop-down
list. It will show a text box.

List<AWS::EC2::Instance::Id>

Provides a list of existing EC2
instances in a region along with
instance ID and name. Multiple EC2
instances can be selected. For
example: i-0862FF253e23cfas2
(Test1) i-0862FF253e23xfax2
(Test2)

List<AWS::EC2::SecurityGroup::GroupName>

Lists the security groups only with
names available in the AWS region.
Multiple security groups can be
selected from the drop-down menu.
For example: launch-wizard-1
launch-wizard-2.

List<AWS::EC2::SecurityGroup::Id>

Lists the security groups with names
and IDs available in the AWS
Region. Multiple security groups can
be selected from the drop-down
menu. For example: launch-
wizard-1 (sg-28db6c88)
launch-wizard-2

(sg-56hs9g45).

AWS CloudFormation Chapter 15

[470]

List<AWS::EC2::Subnet::Id>

Lists all the subnets along with IDs,
CIDR range, and names. Multiple
subnets can be selected from a drop-
down menu. For example:
subnet-5d9d652
(172.31.16.0/20)
(DefaultSubnet-1C) subnet-
a6sd325s (172.31.32.0/20)

(DefaultSubnet-1E).

List<AWS::EC2::Volume::Id>

Lists all the volumes along with ID
and name in the region. Multiple
values can be selected from a drop-
down menu. For
example: vol-369a8sd6689sd4587
(Vol1) vol-98df536rt9as3thc3

(Vol2).

List<AWS::EC2::VPC::Id>

Lists all the VPCs in the region along
with IDs, CIDR range, and names.
Multiple VPCs can be selected from a
drop-down menu. For example:
vpc-65d3f69s
(192.192.192.0/24) (Custom)
vpc-69sd32rt (172.31.0.0/16)

(DefaultVPC).

List<AWS::Route53::HostedZone::Id>

Lists all the hosted zones available in
the region in AWS Route 53.
Multiple hosted zones can be
selected from a drop-down menu.

All AWS-specified parameters starting with list allows to select multiple
values from a drop-down menu, except List<AWS::EC2::Image::Id>.

AWS CloudFormation Chapter 15

[471]

Optionally, one or more properties can be defined for each parameter. It helps to make the
user interface much more natural at the time of creating a stack from the template. For
example, providing a drop-down list for valid values, showing * for each character when
sensitive information is entered such as password. The list of various allowed parameter
properties are defined as follows:

Properties Description

AllowedPattern

Required: No
Specify regular expression for a String type, to validate
manually entered string by the user at the time of creating the
stack. For example: accepting username or password.

AllowedValues

Required: No
Restricts the user to entering only valid values that are
specified in the list of values in an array. For example: EC2
instance type can be only [t2.micro, m3.large, m4.large].

ConstraintDescription

Required: No
When user input does not match with the constraint message
to be displayed, it can be defined here. For example:
username or password can only contain [A-Z, a-z, 0-9]+.

Default
Required: No
It specifies a value to be used, when the user has not
provided any value as input.

Description
Required: No
It describes the parameters; up to 4,000 characters can be
written.

MaxLength

Required: No
It defines the maximum number of characters to be allowed
for String type parameters. It can be defined by specifying the
integer value.

MaxValue
Required: No
It defines the allowed largest value for Number types. It can
be defined by specifying the integer value.

MinLength

Required: No
It defines the minimum number of characters to be entered
for String type parameters. It can be defined by specifying the
integer value.

AWS CloudFormation Chapter 15

[472]

MinValue
Required: No
It defines the allowed smallest value for Number types. It can
be defined by specifying the integer value.

NoEcho
Required: No
By enabling this property, sensitive information can be
masked by *.

Type

Required: Yes
It defines the data type for the parameter (data type). It can be
defined as String, Number, List<Number>, or
CommaDelimitedList.

List of allowed properties in parameter sections

The following example shows how to parameterize the EC2 instance type at the time of
creating a stack from a CFT. The drop-down list allows you to choose any one EC2 instance
type from t2.micro, m1.small, or m1.large. The default value is t2.micro.

Example in JSON:

"Parameters" : {
 "InstanceTypeParameter" : {
 "Type" : "String",
 "Default" : "t2.micro",
 "AllowedValues" : ["t2.micro", "m1.small", "m1.large"],
 "Description" : "Enter t2.micro, m1.small, or m1.large. Default is
t2.micro."
 }
 }

Ref. URL: https:/ /docs. aws. amazon. com/ AWSCloudFormation/ latest/
UserGuide/ parameters- section- structure. html.

Example in YAML:

Parameters:
 InstanceTypeParameter:
 Type: String
 Default: t2.micro
 AllowedValues:
 - t2.micro
 - m1.small

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html

AWS CloudFormation Chapter 15

[473]

 - m1.large
 Description: Enter t2.micro, m1.small, or m1.large. Default is
t2.micro.

Reference URL: https:/ / docs. aws. amazon. com/ AWSCloudFormation/
latest/ UserGuide/ parameters- section- structure. html.

In general, a function is available to be used only in a specific programming language; its
implementation is handled specifically by the compiler and is called as an intrinsic function.
AWS CloudFormation provides several built-in functions to help manage the stack, such as
Fn::Base64, Condition functions, Fn::FindInMap, Fn::GetAtt, Fn::GetAZs,
Fn::ImportValue, Fn::Join, Fn::Select, Fn::Split, Fn::Sub, and Ref. These
functions can only be used in specific parts of a template, such as resource properties in the
Resources section, Output section, metadata attributes, and update policy attributes:

Intrinsic function Description

Fn::Base64
This function converts parameterized string to the Base64
representation. Ideally, it helps to pass encoded data to Amazon
EC2 instance using UserData property.

Condition Functions

Conditional functions can be helpful while creating a
CloudFormation stack based on some conditions. While creating a
CloudFormation stack, there may be a need to build a few
resources based on certain conditions. For example, if the target
environment is Staging, the EC2 instance type should be micro,
and if the target environment is Production, the EC2 instance type
should be large.
The set of conditional intrinsic functions, such as Fn::If,
Fn::Equals, and Fn::Not, can refer to other conditions and
values from the Parameters and Mappings sections of a template
to conditionally create or update a stack.

Fn::FindInMap

It helps to find appropriate values corresponding to a two-level
map declared in a Mappings section. For example, in your CFT,
you can write a mapping to use an appropriate AMI in a respective
region. Depending on the region, CloudFormation can take an
appropriate AMI ID for creating an EC2 instance.

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html

AWS CloudFormation Chapter 15

[474]

Fn::GetAtt

It is a very common need to refer to some attributes of other resources
for creating a new AWS resource. For example, a template needs an
ELB endpoint to create a CNAME in a Route 53. For this scenario,
the Fn::GetAtt intrinsic function can be used to get the value of an
attribute from another resource created in the same template.

Fn::GetAZs
It is used for fetching a list of AZ in a region where the function is
executed.

Fn::ImportValue

It is recommended to create multi-layered CloudFormation stacks.
In a multi-layered CloudFormation stack, it may be required to
refer to the resources created in another stack.
The Fn::ImportValue function returns the value of an output
exported by another stack.

Fn::Join
This intrinsic function helps to concatenate a set of values into a
single value.

Fn::Select
This intrinsic function simply returns a single object from a list of
objects.

Fn::Split
This intrinsic function is opposite to the Fn::Join. This function
splits a given string into a list of string values based on a given
delimiter.

Fn::Sub
This intrinsic function substitutes a variable in an input string with
specified values.

Ref
This intrinsic function returns the value of the specified parameter
or resource referenced by this function.

While writing a template, a customized value for a parameter can be retrieved using
the Ref intrinsic function, as shown in following code example:

Example in JSON:

"Ec2Instance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 "InstanceType" : { "Ref" : "InstanceTypeParameter" },
 "ImageId" : "ami-2f726546"
 }
 }

AWS CloudFormation Chapter 15

[475]

Reference URL: https:/ / docs. aws. amazon. com/ AWSCloudFormation/
latest/ UserGuide/ parameters- section- structure. html.

Example in YAML:

Ec2Instance:
 Type: AWS::EC2::Instance
 Properties:
 InstanceType:
 Ref: InstanceTypeParameter
 ImageId: ami-2f726546

Ref. URL: https:/ /docs. aws. amazon. com/ AWSCloudFormation/ latest/
UserGuide/ parameters- section- structure. html.

Another example of parameter properties: two parameters, DBPort and DBPwd, are created
using parameter properties such as Default, Description, MinValue, MaxValue,
NoEcho, Description, MinLength, MaxLength, and AllowedPattern, respectively.

Example in JSON:

"Parameters" : {
 "DBPort" : {
 "Default" : "3306",
 "Description" : "TCP/IP port for the database",
 "Type" : "Number",
 "MinValue" : "1150",
 "MaxValue" : "65535"
 },
 "DBPwd" : {
 "NoEcho" : "true",
 "Description" : "The database admin account password",
 "Type" : "String",
 "MinLength" : "1",
 "MaxLength" : "41",
 "AllowedPattern" : "[a-zA-Z0-9]*"
 }
 }

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html

AWS CloudFormation Chapter 15

[476]

Reference URL: https:/ / docs. aws. amazon. com/ AWSCloudFormation/
latest/ UserGuide/ parameters- section- structure. html.

Example in YAML:

Parameters:
 DBPort:
 Default: 3306
 Description: TCP/IP port for the database
 Type: Number
 MinValue: 1150
 MaxValue: 65535
 DBPwd:
 NoEcho: true
 Description: The database admin account password
 Type: String
 MinLength: 1
 MaxLength: 41
 AllowedPattern: "[a-zA-Z0-9]*"

Reference URL: https:/ / docs. aws. amazon. com/ AWSCloudFormation/
latest/ UserGuide/ parameters- section- structure. html.

Pseudo-parameters are predefined by AWS CloudFormation and do not need to be
predefined before use in the template. They are used in the same way custom-defined
parameters would have been used, with the help of the Ref function. The list of the
presently-available pseudo-parameters are given in the following table:

Pseudo parameter Description

AWS::AccountId Returns 12 digit AWS account ID.

AWS::NotificationARNs
It returns ARNs for each resource in the current stack. To
fetch a single ARN from the list, the Fn::Select intrinsic
function can be used.

AWS::NoValue
When you specify this parameter as the return value in
the Fn::If intrinsic function, it removes the corresponding
resource property.

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html

AWS CloudFormation Chapter 15

[477]

AWS::Region
It returns the name of the AWS region where the resource is
being created.

AWS::StackId
It returns the stack ID as specified with the aws
cloudformation create-stack command.

AWS::StackName
Returns the stack name as specified with the aws
cloudformation create-stack command.

List of pseudo parameters

Mappings
The Mappings section is optional in a template. This section matches a key to a
corresponding set of named values. For example, the AMI ID for an Amazon Linux is
ami-22ce4934 in Northern Virginia and ami-9e247efe in Northern California. With the
help of the Mappings section, we can have a smart template based on the region where it is
running and it will take the right AMI ID to launch an EC2 instance.

In Mappings sections, values from parameters, pseudo-parameters, or
intrinsic functions cannot be used.

The Mappings section begins with mappings as a key name. It is required to have keys and
values; both must be literal strings. The following syntax in JSON and YAML helps us
understand this. Mappings in the top line indicate the beginning of a section as a key and
the string. The Mapping01 string indicates the variable or parameter to observe for
mapping a value. Usually, the output of a pseudo- or AWS-specific parameter is stored in
this variable or parameter. Key01, Key02, and Key03 could be different possible values in
that variable or parameter.

Syntax in JSON:

"Mappings" : {
 "Mapping01" : {
 "Key01" : {
 "Name" : "Value01"
 },
 "Key02" : {
 "Name" : "Value02"
 },
 "Key03" : {

AWS CloudFormation Chapter 15

[478]

 "Name" : "Value03"
 }
 }
 }

Reference URL: https:/ / docs. aws. amazon. com/ AWSCloudFormation/
latest/ UserGuide/ mappings- section- structure. html.

Syntax in YAML:

Mappings:
 Mapping01:
 Key01:
 Name: Value01
 Key02:
 Name: Value02
 Key03:
 Name: Value03

Ref. URL: https:/ /docs. aws. amazon. com/ AWSCloudFormation/ latest/
UserGuide/ mappings- section- structure. html.

For example, the output of the AWS::Region pseudo-variable is stored in a RegionMap
variable. If it returns us-east-1, then it should use the appropriate EC2 AMI available in
that region; for example, here ami-6411e20d. 32 is used as a key value. This value can be
anything meaningful to the project or enterprise. Here, we have used 32-bit as a key. It can
also be 64-bit to use the suitable AMI. As given in the following example, you can use an
intrinsic function, such as Fn::FindInMap, for automatically populating a suitable value
from the Mappings section.

Example in JSON:

{
 "AWSTemplateFormatVersion" : "2010-09-09",

 "Mappings" : {
 "RegionMap" : {
 "us-east-1" : { "32" : "ami-6411e20d", "64" : "ami-7a11e213" },
 "us-west-1" : { "32" : "ami-c9c7978c", "64" : "ami-cfc7978a" },
 "eu-west-1" : { "32" : "ami-37c2f643", "64" : "ami-31c2f645" },
 "ap-southeast-1" : { "32" : "ami-66f28c34", "64" : "ami-60f28c32" },
 "ap-northeast-1" : { "32" : "ami-9c03a89d", "64" : "ami-a003a8a1" }

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html

AWS CloudFormation Chapter 15

[479]

 }
 },

 "Resources" : {
 "myEC2Instance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 "ImageId" : { "Fn::FindInMap" : ["RegionMap", { "Ref" :
"AWS::Region" }, "32"]},
 "InstanceType" : "m1.small"
 }
 }
 }
 }

Reference URL: https:/ / docs. aws. amazon. com/ AWSCloudFormation/
latest/ UserGuide/ mappings- section- structure. html.

Example in YAML:

AWSTemplateFormatVersion: "2010-09-09"
 Mappings:
 RegionMap:
 us-east-1:
 "32": "ami-6411e20d"
 "64": "ami-7a11e213"
 us-west-1:
 "32": "ami-c9c7978c"
 "64": "ami-cfc7978a"
 eu-west-1:
 "32": "ami-37c2f643"
 "64": "ami-31c2f645"
 ap-southeast-1:
 "32": "ami-66f28c34"
 "64": "ami-60f28c32"
 ap-northeast-1:
 "32": "ami-9c03a89d"
 "64": "ami-a003a8a1"
 Resources:
 myEC2Instance:
 Type: "AWS::EC2::Instance"
 Properties:
 ImageId: !FindInMap [RegionMap, !Ref "AWS::Region", 32]
 InstanceType: m1.small

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html

AWS CloudFormation Chapter 15

[480]

Reference URL: https:/ / docs. aws. amazon. com/ AWSCloudFormation/
latest/ UserGuide/ mappings- section- structure. html.

On the same lines as another example, if it is a test or prod environment in the us-east-1
region, then use ami-8ff710e2 and ami-f5f41398, respectively. And when the region is
us-west-2, for the test and prod environments, use ami-eff1028f and ami-d0f506b0,
respectively.

Conditions
Conditions can be used in a template for reusing the same template again and again, based
on a scenario. The template behaves differently based on the conditions satisfied. For
example, in the Parameter section when the environment type is selected as test, then the
EC2 instance is created with basic capabilities, such as small volume size. Similarly, when
the environment is selected as production, the EC2 instance is created with a higher
configuration, such as larger EBS volumes and larger instance size.

An example template for the CloudFormation condition can be found at the following URL:
http://docs.aws. amazon. com/ AWSCloudFormation/ latest/ UserGuide/ conditions-
section-structure. html.

Conditions in a template can be modified only when resources are added,
modified, or deleted.

In order to create a resource based on a condition, it is essential to specify the statement in
at least three different sections in a template, that is, Resource or Output section, Parameter
section, and Condition section. In the Parameter section, you can define the input value that
evaluates whether the input conditions are true or false. In the Condition section, you can
specify the condition using an intrinsic function to determine whether to create an
associated resource or not.

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html

AWS CloudFormation Chapter 15

[481]

Finally, in the Resources and Output sections, associate conditions with the resources in the
Resources section or output in an Outputs section, which should be created conditionally.
Use the condition key and the condition's logical ID to associate it with a resource or output.
To conditionally specify a property, use conditional functions such as the Fn::And,
Fn::Equals, Fn::If, Fn::Not, or Fn::Or functions. Syntax in JSON and YAML is as
follows:

Syntax in JSON:

"Conditions" : {
 "Logical ID" : {Intrinsic function}
 }

Syntax in YAML:

Conditions:
 Logical ID:
 Intrinsic function

An example of the CloudFormation Conditions is shown here:

{
 "AWSTemplateFormatVersion" : "2010-09-09",

 "Mappings" : {
 "RegionMap" : {
 "us-east-1" : { "AMI" : "ami-7f418316", "TestAz" : "us-east-1a" },
 "us-west-1" : { "AMI" : "ami-951945d0", "TestAz" : "us-west-1a" },
 "us-west-2" : { "AMI" : "ami-16fd7026", "TestAz" : "us-west-2a" },
 "eu-west-1" : { "AMI" : "ami-24506250", "TestAz" : "eu-west-1a" },
 "sa-east-1" : { "AMI" : "ami-3e3be423", "TestAz" : "sa-east-1a" },
 "ap-southeast-1" : { "AMI" : "ami-74dda626", "TestAz" : "ap-southeast-1a"
},
 "ap-southeast-2" : { "AMI" : "ami-b3990e89", "TestAz" : "ap-southeast-2a"
},
 "ap-northeast-1" : { "AMI" : "ami-dcfa4edd", "TestAz" : "ap-northeast-1a"
}
 }
 },

 "Parameters" : {
 "EnvType" : {
 "Description" : "Environment type.",
 "Default" : "test",
 "Type" : "String",
 "AllowedValues" : ["prod", "test"],
 "ConstraintDescription" : "must specify prod or test."

AWS CloudFormation Chapter 15

[482]

 }
 },

 "Conditions" : {
 "CreateProdResources" : {"Fn::Equals" : [{"Ref" : "EnvType"}, "prod"]}
 },

 "Resources" : {
 "EC2Instance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 "ImageId" : { "Fn::FindInMap" : ["RegionMap", { "Ref" : "AWS::Region" },
"AMI"]}
 }
 },

 "MountPoint" : {
 "Type" : "AWS::EC2::VolumeAttachment",
 "Condition" : "CreateProdResources",
 "Properties" : {
 "InstanceId" : { "Ref" : "EC2Instance" },
 "VolumeId" : { "Ref" : "NewVolume" },
 "Device" : "/dev/sdh"
 }
 },

 "NewVolume" : {
 "Type" : "AWS::EC2::Volume",
 "Condition" : "CreateProdResources",
 "Properties" : {
 "Size" : "100",
 "AvailabilityZone" : { "Fn::GetAtt" : ["EC2Instance", "AvailabilityZone"
]}
 }
 }
 },

 "Outputs" : {
 "VolumeId" : {
 "Value" : { "Ref" : "NewVolume" },
 "Condition" : "CreateProdResources"
 }
 }
}

AWS CloudFormation Chapter 15

[483]

Reference URL: https:/ / docs. aws. amazon. com/ AWSCloudFormation/
latest/ UserGuide/ conditions- section- structure. html.

Transform
The Transform section is optional in a template. This section carries statements to condense
and simplify template authoring. For example, in hundreds of lines of CFT, a resource
declaration of multiple lines can be replaced by a single line. These statements are
declarative statements and tell AWS CloudFormation how to process the template. It uses
simple and declarative language with a powerful macro system. All transform functions are
resolved again and again on every change set created for a stack. At the time of writing this
book, the following transform declarative statements are supported:

AWS::Serverless

It is a specific version of an AWS Serverless Application Model (AWS SAM). It helps us
deploy an AWS Lambda-based application, also referred to as a serverless application and
composed of AWS Lambda functions triggered by events.

AWS::Include

It helps to include a separate template snippet. For example, to perform a common
repetitive task a separate CFT. In an enterprise application, it may be required to create a
web server for various projects. With the help of this transform, it is possible to call the web
server template in a main template for that particular project.

Resources
The only section required to run any AWS CFT is the Resources section with at least one
resource to create and include in the stacks. One template can have only one Resources
section; in that one Resources section, multiple resources separated by a comma can be
specified. When the stack is created from a template, all the specified resources will be
logically grouped in the same stack. The syntax for the Resources section is as follows:

Syntax in JSON:

"Resources" : {
 "Logical ID" : {
 "Type" : "Resource type",
 "Properties" : {

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html

AWS CloudFormation Chapter 15

[484]

 Set of properties
 }
 }
 }

Syntax in YAML:

Resources:
 Logical ID:
 Type: Resource type
 Properties:
 Set of properties

In the following table, the Resource fields are explained:

Resources
fields Description

Logical ID

Each logical ID must be unique within each template and can contain
only alphanumerics (A-Za-Z0-9). It is always suggested to give
meaningful and relevant logical names. The logical ID of one resource
can be used to perform further tasks on the same resource. For example,
a logical ID of an EC2 instance can be used to add an extra EBS volume
in the same template.

Type

Resource type specifies the type of AWS Resource that is being created,
for example AWS EC2, EBS, VPC, Subnet, and so on. A detailed list of
Resource types can be obtained at https:/ /docs. aws. amazon. com/
AWSCloudFormation/ latest/ UserGuide/ aws- template- resource- type-
ref. html.

Properties

Resource properties configure the characteristics of the AWS resource
that is being created. For various AWS resources, some properties are
essential to define and the rest can be optional. For example, in the case
of creating an EC2 instance, ImageId is one of the parameters that must
be specified.

Resource fields

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html

AWS CloudFormation Chapter 15

[485]

Outputs
The Outputs section is optional in a template. This section can be used to declare values to
be used in another template, return a response (to describe a stack call), or to view the AWS
CloudFormation console, for example, to display a public or private DNS name to access an
EC2 instance.

In the following syntax, we can see that it begins with the key name Outputs. In a single
template, a maximum of 60 outputs can be declared.

Syntax in JSON:

"Outputs" : {
 "Logical ID" : {
 "Description" : "Information about the value",
 "Value" : "Value to return",
 "Export" : {
 "Name" : "Value to export"
 }
 }
 }

Reference URL: https:/ / docs. aws. amazon. com/ AWSCloudFormation/
latest/ UserGuide/ outputs- section- structure. html.

Syntax in YAML:

Outputs:
 Logical ID:
 Description: Information about the value
 Value: Value to return
 Export:
 Name: Value to export

Reference URL: https:/ / docs. aws. amazon. com/ AWSCloudFormation/
latest/ UserGuide/ outputs- section- structure. html.

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html

AWS CloudFormation Chapter 15

[486]

The following table describes each Output field:

Output fields Description

Logical ID
It is required, must be unique for each output within the template,
and can be only alphanumeric (A-Za-z0-9).

Description

(optional) It is an optional String type, and at most, 4 K in length.

Value (required) It is required and it can have literals, parameter references, pseudo-
parameters, a mapping value, or intrinsic functions.

Export (optional)

It is optional and can be declared to export a resource to be used in
another stack. In other words, for a cross-stack reference. A few
important points to remember when exporting a resource:
• With an AWS account, Export names must be unique within a
region.
• Cross-stack references can be created for use within one region only.
The Fn::ImportValue intrinsic function can only import an exported
value in some stacks.
• Stacks can't be deleted when one or more resource is cross-referenced
by another stack.
• It is also not possible to modify or remove an output value referenced
by another stack.

Description about each of Output fields

The following code example helps us understand the Output section. It is called StackVPC
and returns the ID of a VPC, then exports the value for a cross-stack reference with the
name VPCID appended to the stack's name.

Example in JSON:

"Outputs" : {
 "StackVPC" : {
 "Description" : "The ID of the VPC",
 "Value" : { "Ref" : "MyVPC" },
 "Export" : {
 "Name" : {"Fn::Sub": "${AWS::StackName}-VPCID" }
 }
 }
 }

AWS CloudFormation Chapter 15

[487]

Reference URL: https:/ / docs. aws. amazon. com/ AWSCloudFormation/
latest/ UserGuide/ outputs- section- structure. html.

Example in YAML:

Outputs:
 StackVPC:
 Description: The ID of the VPC
 Value: !Ref MyVPC
 Export:
 Name: !Sub "${AWS::StackName}-VPCID"

Reference URL:
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/o

utputs-section-structure.html.

Sample CloudFormation template
The following reference URLs provide various ready-to-use CFTs to match the general
needs of an enterprise. These templates can be used directly or modified as per the actual
business need. Once templates are written, partial code can be referred, or copied and
pasted into another template for quickly creating new templates.

The following are important reference URLs for sample CFTs:

CloudFormation sample templates, region-wise, refer to
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-sam
ple-templates.html

AWS CFT solution for various AWS services; refer to
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/sample-
templates-services-us-west-2.html

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.htm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-sample-templates.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-sample-templates.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/sample-templates-services-us-west-2.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/sample-templates-services-us-west-2.html

AWS CloudFormation Chapter 15

[488]

CloudFormer
CloudFormer can automatically generate a CFT from existing AWS resources in your AWS
account. It stores the CFT in a target S3 bucket specified by you. Unlike writing a template
from scratch, CloudFormer performs a reverse-engineering task and makes your life easier
by generating a template from existing AWS resources in you account. This template can be
used as is for DR or you can use them for customizing your infrastructure based on your
needs. At the time of writing this book, CloudFormer is still in beta version. More about
CloudFormer can be found at the following URL: https:/ /docs. aws. amazon. com/
AWSCloudFormation/ latest/ UserGuide/ cfn- using- cloudformer. html.

Rolling updates for Auto Scaling groups
AWS CloudFormation provides you with a mechanism to control how an Auto Scaling
group updates your resources using the UpdatePolicy attribute. If you do not configure
your settings correctly, rolling an update on an Auto Scaling group may perform
unexpectedly. You can address this scenario by using the AutoScalingRollingUpdate
policy, which supports a number of options to configure your template.

Here is an example of the update policy for rolling updates, which can be found in official
AWS documentation at following URL: https:/ / aws.amazon. com/ premiumsupport/
knowledge-center/ auto- scaling- group- rolling- updates/ . You can also refer to a very
good article on rolling updates with CloudFormation here: https:/ /cloudonaut. io/
rolling-update-with- aws- cloudformation/.

CloudFormation best practices
CloudFormation best practices are as follows:

Always give meaningful and relevant names to AWS CloudFormation templates
and resources.
Make sure the resources used by a CloudFormation template exist in the region
where it is being executed to create a stack. For example, resources such as an
EC2 keypair. It can be also be created dynamically using templates but, if it is
hardcoded, make sure it exists in the relevant region.

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://aws.amazon.com/premiumsupport/knowledge-center/auto-scaling-group-rolling-updates/
https://cloudonaut.io/rolling-update-with-aws-cloudformation/
https://cloudonaut.io/rolling-update-with-aws-cloudformation/
https://cloudonaut.io/rolling-update-with-aws-cloudformation/
https://cloudonaut.io/rolling-update-with-aws-cloudformation/
https://cloudonaut.io/rolling-update-with-aws-cloudformation/
https://cloudonaut.io/rolling-update-with-aws-cloudformation/
https://cloudonaut.io/rolling-update-with-aws-cloudformation/
https://cloudonaut.io/rolling-update-with-aws-cloudformation/
https://cloudonaut.io/rolling-update-with-aws-cloudformation/
https://cloudonaut.io/rolling-update-with-aws-cloudformation/
https://cloudonaut.io/rolling-update-with-aws-cloudformation/
https://cloudonaut.io/rolling-update-with-aws-cloudformation/
https://cloudonaut.io/rolling-update-with-aws-cloudformation/
https://cloudonaut.io/rolling-update-with-aws-cloudformation/
https://cloudonaut.io/rolling-update-with-aws-cloudformation/
https://cloudonaut.io/rolling-update-with-aws-cloudformation/

AWS CloudFormation Chapter 15

[489]

Write a template and create a stack for each layer, for example, a separate stack
for web servers, application servers, and networks. It will help us minimize
downtime and efficiently manage and maintain infrastructures.
It is a best practice to use a cross-stack reference. It helps us integrate resources
from multiple templates into one template, especially when a separate stack is
created for each layer.
It is a best practice to provide essential IAM privileges to the IAM user executing
a CloudFormation template to create a stack. It may involve creating or
manipulating various AWS resources. Make sure sufficient permissions are
granted.
At the time of creating a stack, AWS CloudFormation only validates the syntax. It
doesn't check for required IAM privileges or soft limits for resources that are
being created. Make sure executing a template to create a stack doesn't attempt to
cross a soft limit. If so, ask AWS to extend it.
Reuse the whole or part of the template as and when required with adequate
modifications to meet business requirements.
Use a nested stack to perform common template patterns.
It is advised not to embed credentials or sensitive information in any template.
Parameters, constraints, AWS-specific parameters, and properties can be used
effectively to use the same template dynamically and to avoid invalid user input.
A set of Python helper scripts is maintained and periodically updated by AWS to
install software and start services on an Amazon EC2 instance. It is recommended
to always use the latest helper scripts.
Before creating a stack, validate the template syntax (JSON/YAML).
Stack resource updation, deletion, or modification should be carried out by
modifying a template rather than directly performing the action.

16
Elastic Beanstalk

Traditionally, deploying a web application on AWS may have required spending time on
selecting appropriate AWS services such as EC2, ELB, Auto Scaling, and so on, and creating
and configuring an AWS resource from scratch to host a web application. It could be
difficult for developers to build the infrastructure, configure the OS, install the required
dependencies, and deploy the web services. AWS Elastic Beanstalk removes the need to
manually build an infrastructure for the developer and makes it possible for them to
quickly deploy and manage a web application on AWS of any scale. Developers just need to
upload the code and the rest of the things such as capacity provisioning, building, and
configuring AWS resources such as EC2 instances, ELB, Auto Scaling, and application
health monitoring will be taken care of by Elastic Beanstalk. The developer still gets full
access to each of the underlying AWS resources, powering a web application to fine-tune
configuration over applications. In this chapter, we will learn about the following topics:

Elastic Beanstalk components
Architectural overview
Deploying web applications to Elastic Beanstalk environments
Monitoring the web application environment

At the time of writing this book, Elastic Beanstalk supports web applications developed in
Java, PHP, .NET, Node.js, Python, Docker, Ruby, and Go. It also supports web servers such
as Apache, nginx, Passenger, and IIS. An easy way to start working with AWS Elastic
Beanstalk is through the AWS web console. AWS also supports CLIs, APIs, and SDKs to
work with AWS Elastic Beanstalk. There are no additional charges for using AWS Elastic
Beanstalk; charges only apply for using the underlying resources such as EC2, ELB, and
Auto Scaling.

Elastic Beanstalk Chapter 16

[491]

Most of the deployment and infrastructure tasks, such as uploading a newer version of a
web application and changing the size of the Amazon EC2 instances, can be done directly
from the Elastic Beanstalk web console. Figure 16.1 helps to understand the application
deployment life cycle in Elastic Beanstalk:

Figure 16.1: Application deployment and lifecycle management on AWS Elastic Beanstalk

Reference URL: http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/images/clearbox-flow-00.png

The preceding figure, at a very high level, describes the way web applications are deployed
on AWS Elastic Beanstalk. Initially, a web application is developed with a preferred
programming platform on a developer's machine. Once it is developed, the source code is
converted into a source bundle, for example in Java, and the source bundle is converted into
a .war file. This is an initial version of a web application. Once the initial version of the
source bundle has been uploaded, Elastic Beanstalk automatically launches and configures
the underlying infrastructure for running the source bundle. With time, as the business
requirement changes, it is also possible to upload a newer version of a web application.

The main purpose of AWS Elastic Beanstalk is to set developers free from creating and
configuring AWS resources (that is, infrastructure) and purely allow them to focus on
application development. If they are comfortable to create and configure AWS resources to
host a web application, they can use CloudFormation to write templates and create a stack.

Elastic Beanstalk components
The following are various Elastic Beanstalk components that work together to make it
possible to deploy and manage custom applications easily in the AWS cloud:

Application: This is a logical collection of Elastic Beanstalk components,
including environment, versions, and environment configuration. For easy
understanding, it can be imagined as a folder.

Elastic Beanstalk Chapter 16

[492]

Application version: This refers to a specific source code version for a web
application. It points to an Amazon S3 object containing deploy code such as a
Java .war file. Application version is part of an application. Each application can
have multiple versions. Generally, applications run with the latest code version.
At times, multiple versions of an application may run simultaneously for catering
to users in a different location or for testing purposes.
Environment: There are two types of environments: the web server environment
to listen and process HTTP(S) requests, and the worker environment to process a
background task that listens for messages on an Amazon SQS queue. Each
environment runs only a single application version at a given time. Creating an
environment automatically creates underlying resources to run a specific
application version.
Environment configuration: This is a set of parameters and settings, and it
defines how an environment and its associated resources will behave. Elastic
Beanstalk will automatically apply changes from the environment configuration
to the existing resources. If required, it may delete existing resources and create
new resources to match with the environment configuration change.
Configuration template: This is a starting point for creating unique environment
configurations. Environment configuration can be created or modified using the
CLI or API.

Architectural concepts
In this topic, let us understand some architectural concepts. As you understood from the
core concepts, an environment is an essential component to deploy a web application.
Creating a new environment requires selecting the appropriate environment tier, platform,
and environment type. Broadly, environment tiers are divided into two environments:

Web server environment: This hosts a web application and handles HTTP(S)
requests. This environment is called a web server tier.
Worker environment: This hosts a web application and handles long-running or
scheduled background processing tasks. This environment is called a worker tier.

A detailed description of these environment tiers will be given in the following subsections.

Elastic Beanstalk Chapter 16

[493]

Web server environment tier
Figure 16.2 helps to understand the working of the web server environment tier:

Figure 16.2: Web server environment tier and it's components

Reference URL: https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/images/aeb-architecture2.png

The environment is a key component in an application, and it is highlighted as a solid blue
line in the preceding figure. It provisions the underlying required AWS resources to deploy
and run the web application. The resources in an environment can include an ELB, Auto
Scaling Group, and at least one or more EC2 instances.

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/images/aeb-architecture2.png

Elastic Beanstalk Chapter 16

[494]

Every environment has a CNAME and an alias in the Amazon Route 53 pointing to the
ELB. The registered domain name (for example, myapplication.com) will forward the
end user's request to access the web application on the CNAME. The CNAME points to an
ELB where the ELB is a part of the Auto Scaling group and it sits in front of the Amazon
EC2 instances. Based on the actual load on the application, the number of EC2 instances will
be scaled in and out.

The container type plays an important role. It decides the software stack to be installed on
each EC2 instance and its infrastructure topology. The software stack may include one or
more components such as programming language (such as Python, PHP, Java, and so on),
web server (such as Apache web server and so on), web container (such as Tomcat,
Passenger, and so on), and Docker containers.

In each environment, each EC2 instance runs one of the container types along with a
software host manager (HM). Later in this chapter, we will see containers in detail. The HM
is indicated in the preceding Figure 16.2 as a circle on the top right-hand side corner in each
EC2 instance. The HM is responsible for the following:

Aggregating events and metrics for retrieval using the web console, API, or CLI
Deploying the application
Monitoring the application log files for critical errors
Monitoring the application server
Generating instance-level events
Patching instance components
Rotating application log files and publishing them to the S3 bucket

By default, Elastic Beanstalk creates a security group and attaches it to the EC2 instances.
The security group acts as a firewall and allows anyone to connect on port 80 HTTP. It is
possible to customize security groups as per the web application's actual requirement.

Elastic Beanstalk Chapter 16

[495]

Worker environment tiers
The worker environment tier includes an Auto Scaling group, at least one or more EC2
instances, and an IAM role. Optionally, it also creates an Amazon SQS queue, in case of not
having one. Each EC2 instance in an Auto Scaling environment gets installed with a
daemon and the necessary support files for the programming language of choice. The
primary function of the daemon is to pull requests from an Amazon SQS queue and then
send data to the running web application in the worker environment tier to process those
messages. In the case of having multiple instances in a worker environment tier, each
instance has its own daemon, and they all read from the same Amazon SQS queue. Figure
16.3 helps us to understand the components of the worker environment tier at a very high
level:

Figure 16.3: Worker environment tier and its components

Reference URL: https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/images/aeb-architecture_worker.png

Elastic Beanstalk Chapter 16

[496]

Elastic Beanstalk-supported platforms
The platform defines the instance software configuration. Platforms are broadly divided
into two categories:

Preconfigured platform: This is also called an Elastic Beanstalk-supported
platform. These platforms are available in multiple configurations of various
programming languages, Docker containers, and/or web containers. Based on the
selected platform, Elastic Beanstalk will install the specific stack of software on
one or more Amazon EC2 instances. At present, all Linux platforms are running
over Amazon Linux 2017.03 (64-bit). At a very high level, preconfigured
supported platforms are as follows:

Packer builder
Single container Docker
Multicontainer Docker
Preconfigured Docker
Go
Java SE
Java with Tomcat
.NET on Windows Server with IIS
Node.js
PHP
Python
Ruby

Custom platform: It allows for the creation of a custom platform based on one of
the supported AMIs for OSs such as RHEL, Ubuntu, SUSE, and so on to create a
customized platform. This customized platform is created using a Packer tool. It
is an open-source tool and runs on major OSs. It makes it possible to create a
customized platform with a customized language or a framework that is not
currently supported in Elastic Beanstalk. The primary function of a Packer tool is
to build a machine and container for multiple platforms from a single
configuration.

Elastic Beanstalk Chapter 16

[497]

Creating a web application source bundle
Whether deploying a new web application, or updating a version for an existing web
application in Elastic Beanstalk, it is essential to prepare a source bundle of source code. In
general, the characteristics of source bundles for any programming language are as follows:

It should be a single ZIP or WAR file
In case of having multiple WAR files, it can be packed in a single ZIP file
Overall file size should not exceed 512 MB
It can have subdirectories but not parent directories

To deploy a worker application in a worker tier, the application source
bundle also must include the cron.yaml file.

A detailed understanding of preparing a source bundle can be obtained by visiting https:/
/docs.aws.amazon. com/ elasticbeanstalk/ latest/ dg/ applications- sourcebundle. html.

Getting started using Elastic Beanstalk
With the help of the following steps, an easy Elastic Beanstalk web application can be
created, viewed, deployed, updated, and terminated.

Step 1 – signing in to the AWS account
Understand the following guidelines to complete step 1:

Sign in to the AWS account with the IAM user having sufficient privileges to1.
work with AWS Elastic Beanstalk. In addition to the privileges to manipulate
resources at Elastic Beanstalk, the IAM user also requires privileges to create,
modify, and delete underlying resources in various AWS services such as EC2,
ELB, S3, Auto Scaling, and so on. The requirements of such AWS service
privileges totally vary from application to application.

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications-sourcebundle.html

Elastic Beanstalk Chapter 16

[498]

Make sure the appropriate AWS region is selected from the right-hand side top2.
toolbar, as shown in Figure 16.4:

Figure 16.4: Select the appropriate AWS region to deploy custom web application using Elastic Beanstalk.

From the AWS dashboard, select Elastic Beanstalk from the Compute group, as3.
shown in Figure 16.5:

Figure 16.5: Select Elastic Beanstalk from the Compute group

Step 2 – creating an application
Creating a web application and preparing the source code to deploy a web application
varies in each of the supported programming languages such as Java, .NET, Node.js, PHP,
Python, and Ruby. In this example, we have used a sample application provided by
Amazon Elastic Beanstalk. It is very important to remember that AWS does not charge you
for using Elastic Beanstalk services, but you need to pay for the resources you use for
creating an application such as EC2, RDS, and so on. The steps for creating the sample
application are as follows:

To create and deploy a sample web application on Elastic Beanstalk, follow the1.
preconfigured URL provided by AWS: https:/ /console. aws.amazon. com/
elasticbeanstalk/ home#/ newApplication? applicationName= getting- started
environmentType= LoadBalanced.

It will require you to log in to the AWS account with valid credentials and
privileges to create and manipulate Elastic Beanstalk and underlying
resources.

https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=getting-started&environmentType=LoadBalanced

Elastic Beanstalk Chapter 16

[499]

The AWS Elastic Beanstalk Create a web app dialog box will appear, as shown2.
in Figure 16.6:

Figure 16.6: Create a sample web application by using the preconfigured link provided by Amazon Elastic Beanstalk

Elastic Beanstalk Chapter 16

[500]

Usually, it is first required to create an application as it is a logical
container for the Elastic Beanstalk components. Once the application is
created, create the environment tier to deploy the web application. But in
this sample URL, everything will be created in one go.

Choose the appropriate platform and click on Review and Launch.3.

Configure the following parameters to review and launch the preconfigured
sample web application. It is required to select an appropriate platform. In this
sample web application, Tomcat is required to be selected, as shown in Figure
16.7:

Figure 16.7: Selecting the appropriate platform

If the platform parameter is not configured, an error message will be raised,
shown as follows:

Figure 16.8: Preconfigured platform is required to configure

Elastic Beanstalk Chapter 16

[501]

The preceding sample web application may take a few minutes to complete the underlying
resource creation. The default configuration to create AWS resources is as follows:

Figure 16.9: Configure and create resources for the web application

Elastic Beanstalk Chapter 16

[502]

From the preceding Figure 16.9, major configuration and creation options along with their
parameters are shown as follows:

Configuration Parameters

Tags None (in the current configuration, no tags are given. Depending
on the tags used, it appears in the configuration).

Software AWS X-Ray, Rotate logs, Log streaming, and Environment
properties.

Instances EC2 instance type, EC2 AMI ID, Root volume type, Root
volume size (GB), and Root volume IOPS.

Capacity Environment type, Availability Zones, and Instances.

Load balancer Port, Secure port, Cross-zone load balancing, and Connection
draining.

Rolling updates and
deployments Deployment policy, Rolling updates, and Health check.

Security Service role, Virtual machine key pair, and Virtual machine
instance profile.

Monitoring Health check path and Health reporting system.

Notifications Email address.

Network
VPC, Load balancer visibility, Load balancer subnets,
Associate public IP address, Instance subnets, and Security
groups.

Database Engine, Instance class, Storage (GB), and Multi-AZ.

AWS resources and configuration along with parameters

Elastic Beanstalk Chapter 16

[503]

By default, Elastic Beanstalk creates an application named getting-started and an
environment named Custom-env with the following AWS resources:

EC2 instance to run the web application on a configured platform. In this sample
web application, it is Tomcat.
Security Group for an EC2 instance. By default, it allows everyone to connect on
HTTP port 80.
An ELB accepts all incoming end user requests to access the web application and
distributes to the underlying healthy EC2 instances.
Security group for load balancer allows traffic on HTTP port 80. By default,
traffic is not allowed on other ports.
Auto Scaling group replaces an unhealthy EC2 instance with a new instance. It
scales-out and scales-in based on the traffic load on the application.
S3 bucket to store source code, logs, and other artifacts.
CloudWatch alarms to monitor load on the instances in the environment. It
works with Auto Scaling to help in scaling EC2 instances in and out.
AWS Elastic Beanstalk uses the CloudFormation stack to create underlying
resources and change the configuration.
A domain name that routes the end user's request to the web app, in the form of
subdomian.region.elasticbeanstalk.com.
Elastic Beanstalk creates a new web application version with a name sample
application. This web application refers to the default Elastic Beanstalk sample
application code files.
Deploys the sample application code to Custom-env.

It is possible to change the default configuration by clicking on Modify.
For example, in case of having a compute-intensive or a memory-intensive
web application, it is possible to change the EC2 instance type from
t1.micro to c4 or x1 respectively.

Elastic Beanstalk Chapter 16

[504]

As shown in Figure 16.10, Elastic Beanstalk will track the environment creation progress:

Figure 16.10: Elastic Beanstalk tracks environment creation progress

Step 3 – viewing information about the recently
created environment
Once the Elastic Beanstalk application is created, it is possible to view information about the
underlying resources from the environment dashboard in the Amazon Elastic Beanstalk
management console. The environment dashboard shows the application health,
application version, and the application's environment version. The Elastic Beanstalk
environment indicates Pending state until the underlying AWS resources are created and
the related web application is deployed on the environment.

Elastic Beanstalk Chapter 16

[505]

Figure 16.11: Amazon Elastic Beanstalk dashboard

The preceding Figure 16.11 shows the basic AWS Elastic Beanstalk dashboard. Only one
sample getting-started application and GettingStarted-env exist. By clicking
on GettingStarted-env, it is possible to see the Configuration, Logs, Health,
Monitoring, Alarms, Managed Updates, Events, and Tags, as shown in Figure 16.12:

Figure 16.12: Elastic Beanstalk application specific dashboard

Elastic Beanstalk Chapter 16

[506]

Step 4 – deploying a new application version
Over time, business needs change and a new version of a web application is developed.
Elastic Beanstalk allows you to upload the new version of application over an existing
application. Elastic Beanstalk creates a new application version upon deploying a newer
source bundle for an existing web application. As long as no update operations are in
progress, you can deploy a new version of your application over an existing application.
Let's see the steps to update a newer version for an existing web application:

Download the web application's updated source bundle from https:/ /docs. aws.1.
amazon.com/ elasticbeanstalk/ latest/ dg/ samples/ java- tomcat- v3.zip.

In the case of a custom-developed web application, it is required to create
a source bundle with the updated source code.

Go to the Elastic Beanstalk dashboard.2.
Select the getting-started application and GettingStarted-env3.
environment.
Select Upload and Deploy from the Overview section, as shown in Figure 16.13:4.

Figure 16.13: Application Overview

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/java-tomcat-v3.zip

Elastic Beanstalk Chapter 16

[507]

We can now upload the new code, as shown in Figure 16.14:5.

Figure 16.14: Upload and Deploy application

Click on Choose File to upload your source bundle.6.
By default, the version label will be the filename of the uploaded file. In this7.
example, the filename is java-tomcat-3. It can be changed to a meaningful and
relevant name.
Finally, click on Deploy to deploy a new web application.8.

While Elastic Beanstalk is deploying a new version of a web application, it is possible to see
a status of deployment on the web console. Once the deployment is completed, Running
Version will be changed from sample application to java-tomcat-v3 under the
environment's Overview, as shown in Figure 16.15:

Figure 16.15: Application overview

Elastic Beanstalk Chapter 16

[508]

Step 5 – changing the configuration
Amazon Elastic Beanstalk allows us to customize the web application environment at
runtime for better performance. Some of the configuration changes can be simple and can
take place quickly, while others may require us to delete and recreate the AWS resources,
which can take several minutes. In the event of replacing any underlying resources, it may
cause web application downtime. Elastic Beanstalk will warn you about this before finally
reflecting the configuration changes. For example, in the following steps, we are modifying
the minimum number of EC2 instances from one to two in the Auto Scaling group. Also, we
will verify that the same changes have reflected in the existing environment. The steps for
changing configuration are discussed as follows:

Go to the Amazon Elastic Beanstalk console.1.
Click on the getting-started web application and then GettingStarted-2.
env.
Go to the Configuration tab.3.
Select Scaling by clicking the setting icon on the top right-hand corner, as shown4.
in Figure 16.16:

Figure 16.16: Modify Scaling configuration

Elastic Beanstalk Chapter 16

[509]

Under the Auto Scaling section, modify the Minimum instance count from 1 to5.
2, as shown in Figure 16.17:

Figure 16.17: Auto Scaling, minimum instance count

At the bottom of the configuration page, click on the Apply command button.6.

Once the configuration has been changed and applied, it may take several
minutes to get reflected in the application stack. The time taken to reflect
changes depends on the configuration modification type.

Verifying the changes on the load balancer:

In the left-hand side pane, select Events. After some time, there will be an update7.
regarding recent configuration changes in the Auto Scaling group. The update
should be Successfully deployed new configuration to environment.
Go to the EC2 console.8.
Select Load Balancers under LOAD BALANCING on the left-hand side pane.9.
Identify the load balancer, part of the web application deployed at Elastic10.
Beanstalk.

Elastic Beanstalk Chapter 16

[510]

In the lower pane, under the Instances tab, we can clearly see that two EC211.
instances are part of the same ELB, as shown in Figure 16.18:

Figure 16.18: Elastic Load Balancer, under EC2 console shows modified minimum number of instances

Step 6 – cleaning up
It is essential to delete all unwanted versions, environments, and applications from Amazon
Elastic Beanstalk to prevent incurring unwanted charges to the AWS account.

Version life cycle
Elastic Beanstalk creates a newer application version upon uploading a newer source code
bundle. Creating a newer version and not deleting the old unwanted application version
leads to hitting the application version limit. As a result, it does not allow us to create any
newer web application versions.

Elastic Beanstalk Chapter 16

[511]

The default Elastic Beanstalk limits are as follows:

Resource Default limit

Applications 75

Application versions 1,000

Environments 200

With the help of the application version life cycle policy for an application, hitting an
application version limit can be avoided. Consistently, it will manage the number of
available application versions at any given time. Once the life cycle policy is enabled, it will
keep either the total count of recent versions (that is, the last 200 versions of the application)
or the versions that are not older than the specified age in terms of days (that is, 180 days).
The application life cycle can be configured using the web console, CLI, or API.

Deploying web applications to Elastic
Beanstalk environments
Elastic Beanstalk allows you to create a new web application using the web application tier
or worker tier, update an environment with a newer web application version, or redeploy
an earlier uploaded web application version:

Deploying a new web application is very quick. It creates an underlying required
AWS resource and deploys a web application.
While updating a newer version of a web application, you can perform in-place
update. This means that the already deployed web application will be updated
with a newer source bundle and may result in restarting the web container or the
web application server. As a result, the web application may be unavailable for a
while.
When an environment has more than one EC2 instance, in such a situation, a
newer version of a web application can be deployed in a rolling manner. It helps
to avoid total unavailability of a web application. It will deploy a newer version
of a web application in instance batches.
With the help of immutable updates, it is possible to always deploy a newer
version of a web application to new instances rather than updating an existing
instance. In this scenario, Elastic Beanstalk will create a new Auto Scaling group,
and the newly created Auto Scaling group will serve traffic along to the earlier
created instances until the newly created instances pass the health checks.

Elastic Beanstalk Chapter 16

[512]

In a normal scenario, during deployment of a newer version of a web application,
Elastic Beanstalk performs an in-place update. As a result, the web application is
totally unavailable until the deployment of a newer version completes.
Blue/green deployment is a solution to avoid such unavailability. In this
development method, a new infrastructure is created and on successful
deployment of a newer version on a newer infrastructure, it just changes the
CNAMEs of the old environment to the new environment to redirect traffic to the
new version instantly.

Details of the various deployment methods can be obtained from the following table:

Deployment
policy

Impact of
failed
deployment

Deploy
time

Zero
downtime

No
DNS
change

Rollback
process

Code
deployed
to

All at once
Leads to web
application
downtime

Least X Re-deploy Existing
instances

Rolling

Deploys new
web
application
version in an
instance batch

Moderate Re-deploy Existing
instances

Rolling with
an additional
batch

Offers minimal
impact in case
of failure of the
first batch or
else it is similar
to the rolling
deployment

Moderate
to higher Re-deploy

New and
existing
instances

Immutable Minimal High Re-deploy New
instances

Blue/green Minimal High X Swap URL New
instances

Actual deployment time for rolling and rolling with an additional batch
depends on the batch size.

Elastic Beanstalk Chapter 16

[513]

Monitoring the web application environment
Once a web application is successfully deployed, it is very important to monitor it's
performance. Monitoring helps to find if there is any infrastructure bottleneck, performance
issue or underutilization of resources. The Elastic Beanstalk web console gives a high-level
overview in terms of monitoring figures and graphs as shown in the following screenshot:

Figure 16.19: Monitoring Dashboard

Elastic Beanstalk also offers various other methods to monitor a deployed web application,
such as basic health reporting, enhanced health reporting and monitoring, managing
alarms, the Elastic Beanstalk environment's event stream, listing and connecting to server
instances, and viewing logs from the Elastic Beanstalk environment's EC2 instances. A
detailed understanding of the various monitoring methods can be obtained from https:/ /
docs.aws.amazon. com/ elasticbeanstalk/ latest/ dg/ environments- health. html.

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html

Elastic Beanstalk Chapter 16

[514]

Elastic Beanstalk best practices
Web application deployment on Elastic Beanstalk ultimately uses AWS services such as
EC2, ELB, ASG, SQS, S3, and many others. Points such as scalability, security, persistent
storage, fault tolerance, content delivery, software updates and patching, and connectivity
should be kept in mind when designing applications to deploy on AWS Elastic Beanstalk:

Web applications should be as stateless as possible, fault tolerant, and loosely
coupled to efficiently scale out and scale in as the end users request increases and
reductions respectively.
On AWS, security is a shared responsibility. AWS is responsible for providing as
and when required physical resources to make the cloud a safe place to deploy
our applications, and we as cloud users are responsible for the security of the
data coming in and out of the Elastic Beanstalk environment and the security of
the application.
Configure the SSL certificate to encrypt sensitive information transmission over a
public network such as the internet.
Elastic Beanstalk deploys an application on an Amazon EC2 instance that does
not have persistent storage. Applications should be designed to store data in a
persistent data source such as Amazon S3, EBS, Amazon DynamoDB, and
Amazon RDS.
It is highly recommended to design an application capable of auto recovering
from failure. Deploy an application and database across Multi-AZs. For a
mission-critical application and database for the enterprise, also design the DR
site.
End users may be accessing web applications from across the globe and various
networks. They may experience poor performance due to higher latency;
Amazon CloudFront can be used to avoid such poor user experience.
Periodically, Elastic Beanstalk updates its underlined platform configuration with
the latest software and patches. AWS recommends to upgrade your application
environments to the latest software and patches. These environment updates can
be applied on all servers at once, or you can apply them in smaller batches so that
your entire application environment does not go down.

17
Overview of AWS Lambda

In AWS, a compute resource such as AWS EC2 is used to host small-to-large enterprise
applications. Infrastructure configuration complexity in enterprise applications may vary
from application to application in different organizations. Handling day-to-day operational
activities on these compute resources may be time-consuming and require additional
resources for managing tasks. Even if an organization automates tasks, any periodical
manual intervention in activity may also create a hindrance for the management and the
maintenance of such resources. To address this organizational issue, Amazon provides a
hosted compute service called Amazon Lambda. The sole purpose of the Lambda service is
to abstract server management and simplify building on-demand applications. Lambda
provides an abstract layer for hosting application functions and manages underlined
servers in the background. A piece of code can be uploaded in an AWS Lambda. It is called
a Lambda function. The Lambda function gets executed against an event on the AWS
resource. These events can be a new object uploaded into an S3 bucket or new data added in
a DynamoDB table, or many other similar events. AWS Lambda supports a wide range of
events for a variety of AWS services.

Let's look at AWS Lambda in more detail. This chapter discusses the following topics:

Introduction to AWS Lambda
What is a Lambda function?
Lambda function invocation type
Writing a Lambda function

Overview of AWS Lambda Chapter 17

[516]

Introduction to AWS Lambda
AWS Lambda is a serverless and event-driven compute service. It allows you to upload a
piece of source code to execute against a valid event. The uploaded piece of code is called a
Lambda function. At the time of writing this chapter, AWS Lambda supports the Java,
Node.js, C#, and Python programming languages. In the case of EC2 instances, you are
charged for each running second. It is important to note here that until mid-2017, AWS used
to charge on an hourly basis for EC2 instances. In the case of AWS Lambda, charges apply
for code running time in increments of 100 milliseconds. Charges are not applicable for
uploading code. AWS does not charge you for just creating and keeping a Lambda function.
You are charged for the amount of time it takes a Lambda function to run.

You can create Lambda functions that run on events so, as any new object placed in an S3
bucket, a new record is inserted into a DynamoDB table, or you can directly invoke a
Lambda function using an API call. It can also execute code at a scheduled time, just like a
cron job on a Linux server. Lambda functions run on highly-available compute resources,
having a balanced CPU, memory, network, and other resources. Lambda automatically
scales from a few requests per day to thousands per second, based on the actual load to the
Lambda services in real time. AWS Lambda sets IT professionals free from creating an EC2
instance, server maintenance, patching, code monitoring, Auto Scaling, and so on. It
eliminates the need for managing servers for an operations team in an organization.

Lambda does not provide complete control over a base OS like EC2
instances. It is not possible to log in to a Lambda instance to customize the
OS-level parameters. On the other hand, AWS Lambda supports securely
running native Linux executables by calling out from a supported
runtime.

What is a Lambda function?
AWS Lambda functions includes source code along with all dependencies. Each Lambda
function has its own configuration information, such as runtime, environment variables,
handler, IAM role, tag(s), memory, timeout, VPC, and many other details that are defined at
the time of creation.

Overview of AWS Lambda Chapter 17

[517]

The amount of memory that can be allocated to a Lambda function ranges
between 128 and 1536 MB. The minimum memory that can be allotted to a
Lambda function is 128 MB. Based on the requirement, you can allot more
memory in increments of 64 MB. Depending upon the allotted memory,
AWS automatically allots proportional CPU power and other resources for
executing the specific Lambda function. In the background, AWS uses the
general-purpose M3 instance type for a Lambda service, which is opaque
to end users.

A Lambda function can be configured to execute in between 1 to 300 seconds. The Lambda
function execution time is called timeout. If a Lambda function is running after the defined
timeout, it is automatically terminated. The default configured timeout for a Lambda
function is 3 seconds.

Source code can be written using code-authoring tools and editors. When creating a
Lambda function using a web console, it automatically prepares a deployment package
before uploading the source code. The steps to create a deployment package vary from one
supported programming language to another. At the time of creating a Lambda function,
you can configure the amount of memory for executing the function. AWS automatically
allocates proportional CPU power and other resources for executing a specific Lambda
function. For example, a Lambda function with 256 MB memory may be allocated twice as
much CPU as a Lambda function with 128 MB allocated memory.

Lambda is widely used by many organizations for deploying small- to-
large- scale applications. These applications range from small, event-
driven applications to large, big data architecture for implementing
stateless infrastructure.

When creating a Lambda function along with memory, here are a few more parameters that
need to be defined:

Maximum execution time (timeout): The maximum it can be is 5 minutes. It
helps to prevent the Lambda function from running indefinitely. When timeout
has been reached, the Lambda function execution terminates.
IAM role (execution role): Lambda can assume an IAM role at the time of
execution. Based on the privileges granted to the IAM role, the Lambda function
can inherit the privileges for executing the function.
Handler name: It refers to the method name to be used by AWS Lambda to start
the execution. AWS Lambda passes an event information that triggers the
invocation as a parameter to the handler method.

Overview of AWS Lambda Chapter 17

[518]

For testing purposes, Lambda functions can be invoked on-demand from
the AWS Lambda console or by using the CLI.

To troubleshoot the AWS Lambda function, AWS Lambda automatically monitors functions
through CloudWatch metrics. This provides several metrics such as Invocation count,
Invocation duration, Invocation errors, Throttled invocations, Iterator age, and DLQ
errors. To manually validate the behavior of code, it is possible to insert logging statements
in it. Lambda will automatically will push all logs from the code to CloudWatch Log
groups.

Lambda function invocation types
AWS Lambda supports two invocation methods: synchronous and asynchronous. The
invocation type can be only specified at the time of manually executing a Lambda function.
This Lambda function execution is called on-demand invocation. Two examples would be
calling a Lambda function from a custom application, or manually executing it using a
CLI/GUI.

On-demand invocation is done by the invoke operation. It allows you to specify the
invocation type as synchronous or asynchronous. When a Lambda function is triggered
using an AWS service as an event source, the invocation type is predetermined for each of
the AWS services and it cannot be changed. For example, Amazon S3 always invokes a
Lambda function asynchronously and Amazon Cognito always invokes a Lambda function
synchronously.

A synchronous method blocks a thread's execution until the client receives a response from
the Lambda function. An asynchronous method returns control immediately, giving control
back to the calling thread without waiting for a response from a Lambda function.

Writing a Lambda function
At the time of writing this book, AWS Lambda supports Node.js, Java, Python, and C#.
Irrespective of the programming language used to write the AWS Lambda function, there is
a common pattern to write code for a Lambda function. It includes the following core
concepts:

Handler
The context object

Overview of AWS Lambda Chapter 17

[519]

Logging
Exceptions

A handler needs to be specified at the time of defining a Lambda function. It points to a
function in source code. Upon the occurrence of a configured event to execute, the Lambda
function starts executing the code by calling the handler function defined in the code. At the
same time, AWS Lambda passes event data to the handler function as a first parameter. It is
recommended to write a handler function that is capable of processing the incoming
parameters. Based on the supplied parameters, the function may invoke any other
subsequent function or method.

The context object, logging, and exceptions are explained in subsequent pages.

It is possible to write direct Lambda function logic in a handler function. It
is best practice to write separate functions to incorporate core logic from a
handler.

Lambda function handler (Node.js)
The general syntax of the handler function is as follows:

 exports.myHandler = function(event, context,) {
 ...
 }

The callback parameter is optional, based on whether it is required to return information
to the caller:

 exports.myHandler = function(event, context, callback) {
 ...

 // Use callback() and return information to the caller.
 }

Here is a list of components that are part of the syntax:

event: This parameter is used by AWS Lambda to pass event data to the handler
function.
context: This parameter is used by AWS Lambda to provide runtime
information from an executing Lambda function to the handler function, such as
the remaining execution time before AWS Lambda terminates.

Overview of AWS Lambda Chapter 17

[520]

callback: Optionally, callback is used to return information from the
executing Lambda function to the caller. Otherwise, by default, it returns null
value.

Node.js v0.10.42 supports context methods (done, succeed, and fail) to
gracefully complete the Lambda function execution. Node.js v6.10 and
v4.3 support callback.

myHandler: This is a function name and acts as an entry point to invoking the
Lambda function.

Lambda function handler (Java)
The general syntax of a handler function is as follows:

 outputType handler-name(inputType input, Context context) {
 ...
 }

Here is a list of components that are part of the syntax:

inputType: This can be an event data or custom input that is provided as a string
or any custom data object. To successfully invoke this handler, the Lambda
function must be invoked with the input data that can be serialized into the
defined data type of the input parameter.
outputType: When the Lambda function is invoked synchronously using the
RequestResponse invocation type, it is possible to return the output of the
Lambda function using a valid and supported data type.

If you invoke the Lambda function asynchronously with the help of Event invocation type,
the outputType should be void. For example, event source Kinesis, Amazon S3, and
Amazon SNS invoke an asynchronous Lambda function using Event.

inputType and outputType can be one of the following:

Predefined AWS event types: They are defined in aws-lambda-java-events
library.
Plain Old Java Object (POJO) class: It allows you to create your own POJO class.
The Lambda function automatically serializes and deserializes input and output
on the POJO type or JSON.

Overview of AWS Lambda Chapter 17

[521]

Primitive Java types: It supports primitive Java types such as String and int.

If the handler function is overloaded (that is, has multiple methods with the same name),
based on the following rules, the handler method selection will take place:

The method with the largest number of parameters
When two or more methods in a Lambda function have the same number of
arguments, the method that has Context as the last parameter is selected

If the overloaded handler methods do not have a Context parameter, the
behavior is unpredictable.

Lambda function handler (Python)
The following syntax can be used to write a handler function in Python:

 def handler_name(event, context):
 ...
 return some_value

Here is a list of components that are part of the syntax:

event: AWS Lambda passes event data to the handler with this parameter. It is
usually of the Python dict type.
context: AWS Lambda passes the runtime information of the executing Lambda
function. It is of the LambdaContext type.

Optionally, the handler can return values based on the invocation type to invoke the
Lambda function:

In a synchronous execution using the RequestResponse invocation type, the
Lambda function returns the result of a Python function call
In an asynchronous execution using Event invocation type, the return value is
discarded

Overview of AWS Lambda Chapter 17

[522]

Lambda function handler (C#)
You can write a Lambda function handler in C# as a static method in a class or as an
instance. You can access a Lambda context object with the definition of
the ILambdaContext type, as given in the following syntax:

 returnType handler-name(inputType input, ILambdaContext context) {
 ...
 }

Here is a list of components that are part of the syntax:

inputType: This can be event data or a custom input, provided by an event
source or string, respectively
outputType: When a Lambda function is invoked synchronously using
RequestResponse, it is possible to return the output of the Lambda function
using any of the valid and supported data types

When invoking the Lambda function asynchronously with the help of the Event invocation
type, outputType should be void. For example, event sources such as Kinesis, Amazon S3,
and Amazon SNS invoke the Lambda function asynchronously using Event.

Since we now understand the handler function, let's take a brief look at the other core
concepts in AWS Lambda, which include the context object, logging, and exceptions:

The context object and how it interacts with Lambda at runtime: As a second
parameter, AWS Lambda passes a context object to the handler function. It can
help the source code to interact with the AWS Lambda runtime. It can help to
find the remaining execution time before AWS Lambda terminates. In addition,
asynchronous programming languages, such as Node.js, use callbacks. It
supports additional methods on this context object method to tell AWS Lambda
to terminate the function and, optionally, return values to the caller.
Logging: AWS Lambda functions can have a logging statement depending on the
programming language used to write source code. These logs are written to the
CloudWatch Logs.
Exception: AWS Lambda functions need to return the invocation state in terms of
success or failure. Exceptions may be raised at the Lambda function initialization
or function invocation. If there is an exception at function invocation, each
supported programming language has different ways to return the success or the
failure of the Lambda function execution. With synchronous execution, AWS
Lambda forwards the result back to the client.

Overview of AWS Lambda Chapter 17

[523]

Deploying a Lambda function
A Lambda function can be created using the inline editor provided in the Lambda function
dashboard, or you can create a function in your location machine and deploy it on Lambda.
When you create a Lambda function in your local machine, you need to create a package
that can be uploaded to Lambda for deployment. AWS Lambda function configuration
requires a source code in a .zip or .jar file consisting of source code along with
dependencies. Creating a deployment package varies for each supported programming
language. For example, in Node.js, you simply zip up the contents of the directory along
with all the dependencies in a ZIP file and upload it to Lambda for deployment.

As shown in Figure 17.1, you just need to zip up all the files in MyFunctionFolder that
include the index.js and node_modules folders. Remember, you should not zip up the
MyFunctionFolder itself. The ZIP should contain only the index.js and all the
dependencies, but not its parent folder:

Figure 17.1: Deployment package

To create a Lambda function, it is essential to first create a deployment package. A
deployment package can be created in two ways:

It is possible to prepare a deployment package manually
Write code directly in a Lambda console and the console will create a deployment
package for you

Once the source code is converted into a deployment package, it can either
be directly uploaded to Lambda from the local machine or first to an
Amazon S3 bucket. The S3 bucket should be in the same region as where
the Lambda function is being created. Specify the same S3 link URL when
creating a Lambda function.

Overview of AWS Lambda Chapter 17

[524]

AWS Lambda function versioning and aliases
Lambda function versioning makes it possible to publish one or more versions of function
code. It makes it possible to use different function versions in different environments, such
as development, testing, pre-production, or production. Each Lambda function has a
unique and immutable ARN.

It is possible to create an alias for each Lambda function version. Each alias is a pointer to
the specific Lambda function version. Just like Lambda functions, an alias is a resource and
has a unique ARN for a function version to which it points. Aliases are mutable. They can
be modified to point to a different Lambda function version.

An alias can only point to a function version. It cannot point to another
alias.

Aliases primarily help to abstract the process of promoting the Lambda function version
from one environment to another. To simplify this, for example, the Amazon S3 bucket is an
event source; when some new objects are created in a bucket, the Lambda function gets
invoked. For triggering an event on S3 bucket, you need to configure the Lambda function
ARN in the bucket notification configuration. The configured Lambda function is invoked
on a new object event in the bucket. Normally, every time a new version of a Lambda
function is created, a function with a new ARN is generated. A new ARN for the function
forces you to modify the bucket configuration where the event is configured. To avoid
repeated S3 bucket configuration modifications, it is recommended to use a Lambda
function alias. The Lambda function alias can point to an ARN of any Lambda function. The
ARN of the Lambda function alias remains intact: you don't need to change it. You can
configure this alias ARN in S3 bucket for triggering the event. Every time you create a new
version of a Lambda function, you just need to update your alias pointing to the ARN of the
newly-created Lambda function. As a new version of a Lambda function is promoted from
one environment to another, we just need to change the alias pointing to the latest stable
Lambda function version and don't need to update the notification configuration in the
Amazon S3 bucket.

If you need to roll back a modification from a newer Lambda function version to an older
one, it can be done easily by changing where an alias is pointing. This removes the need to
update the event source mappings in the S3 bucket.

Overview of AWS Lambda Chapter 17

[525]

Environment variables
Reusable and efficient code often requires passing dynamic values at runtime. These
runtime values may be environment types, file paths, path to store logs, table names, and so
on. With the help of environment variables, Lambda functions allow us to pass dynamic
values at runtime. As a result, the code becomes reusable without making any changes to it.
Environment variables are key-value pairs and these key-values pairs are
encrypted/decrypted using the AWS KMS. Key-value pairs can be defined at the time of
creating a Lambda function. Externally configured environment variables are also accessible
within the Lambda function, using standard APIs supported by the different programming
languages. For example, Node.js functions can access environment variables using
process.env—process.env refers to an object in Node.js. In Node.js, process is the
global object and env is the sub-object of process, which provides all environment variables.

The rules for naming environment variables are as follows:

Lambda functions can have any number of environment variables, but the total
size should not exceed 4 KB
The first character must be an [a-zA-Z]
Consecutive valid characters are [a-zA-Z0-9_]

Specific environment variables, such as MemorySize and Timeout, are saved as a snapshot
for each Lambda function version. These settings are immutable.

Tagging Lambda functions
Tagging is useful for segregating and grouping Lambda functions with the help of key-
value pairs. By using tags, customers with hundreds of Lambda functions can easily access
and analyze a specific set by filtering on those that contain the same tag. Tags are key-value
pairs. They are associated with a Lambda function to organize them as well as to find other
details, such as frequency of invocation and the cost of each function invocation. Primarily,
tags help to group, filter, and allocate cost.

Overview of AWS Lambda Chapter 17

[526]

Lambda function over VPC
Deploying AWS resources inside an Amazon VPC makes sure that they cannot be accessed
over the public internet. By default, Lambda function code is invoked within a VPC. To
enable a Lambda function to access other AWS resources deployed in a private VPC, it is
essential to provide details such as VPC, subnets, and security groups at the time of
configuring it. VPC details are used by the Lambda function to create ENIs to connect
securely with other private VPCs.

AWS Lambda does not support connecting to resources within dedicated
tenancy VPCs.

When a Lambda function requires internet access, rather than deploying in a public subnet,
deploy it in a VPC in a private subnet with a NAT gateway or NAT instance in a public
subnet.

Building applications with AWS Lambda
In a serverless architecture, the main components are the event source and the Lambda
function. The event source could be custom applications or AWS. Each of the AWS event
sources uses a specific format for event data. At present, AWS Lambda supports the
following AWS as event sources:

Amazon S3
Amazon DynamoDB
Amazon Kinesis Streams
Amazon SNS
Amazon Simple Email Service
Amazon Cognito
AWS CloudFormation
Amazon CloudWatch Logs
Amazon CloudWatch Events
AWS CodeCommit

Overview of AWS Lambda Chapter 17

[527]

Scheduled Events (powered by Amazon CloudWatch Events)
AWS Config
Amazon Alexa
Amazon Lex
Amazon API Gateway
Other event sources: invoking a Lambda function on demand
Sample events published by event sources

These supported AWS services are broadly divided into two categories:

Stream-based services
Regular AWS services

Out of all the supported AWS services, Amazon Kinesis Streams and
Amazon DynamoDB streams are the only stream-based AWS services. The
rest of the services are regular AWS services.

Apart from the previously mentioned supported AWS services, a custom user application
can also create an event to trigger the Lambda function's invocation.

Event source mapping for AWS services
Regular AWS services publish events to invoke a Lambda function. It is also called a push
model. A push model has the following behavioral characteristics:

Regular AWS service resources maintain event source mappings with an event
source. AWS provides APIs to manage event source mappings. For example, the
S3 bucket notification configuration API enables us to configure an event source
mapping on a bucket. This configuration mapping identifies the bucket event,
which is published to a Lambda function that is configured on the bucket.
As the event source invokes the Lambda function, it is essential to grant the
necessary privileges to the resource, using a resource-based policy. This resource-
based policy is referred to as a Lambda function policy.

Overview of AWS Lambda Chapter 17

[528]

Figure 17.2 explains how Amazon S3 pushes an event to invoke a Lambda function:

Figure 17.2: How a Lambda function is invoked

Reference URL: https://docs.aws.amazon.com/lambda/latest/dg/images/push-s3-example-10.png

In the preceding figure, S3 pushes an event for each new object created in a bucket to
execute a Lambda function:

A privileged user creates a new object in an S3 bucket.1.
S3 detects the object creation event.2.
The Lambda function that is configured on the bucket is invoked according to the3.
event source mapping defined in the bucket notification configuration.
An attempt is made by the event source to invoke the configured Lambda4.
function. Immediately after the invocation call, the Lambda function refers to the
attached policy to ensure that the Amazon S3 has the necessary permissions.
After successful verification of the attached permission policy on the Lambda5.
function, the Lambda function is executed.

Overview of AWS Lambda Chapter 17

[529]

Event source mapping for AWS stream-
based services
Figure 17.3 explains the way a custom application writes a record to a Kinesis stream and
the way Lambda polls the stream:

Figure 17.3: Event source mapping for AWS stream-based services

Reference URL: https://docs.aws.amazon.com/lambda/latest/dg/images/kinesis-pull-10.png

The steps for the preceding figure are as follows:

The custom application writes records to an Amazon Kinesis stream.1.
At the same time, AWS Lambda continuously keeps polling the stream. As soon2.
as it detects a new record on the stream, it invokes the AWS Lambda function.
Based on the event configuration, it decides which Lambda function is to execute
against which event source.
It verifies that the attached IAM permission policy to the Lambda function allows3.
it to poll the stream. If it is not true, then the AWS Lambda function is not
invoked.

Overview of AWS Lambda Chapter 17

[530]

Event source mapping for custom
applications
A custom deployed application in an AWS account can also directly invoke the Lambda
function. Figure 17.4 explains this. Create a Lambda function in one of the IAM user
accounts and the same credentials will be used to invoke the Lambda function. You do not
require additional permissions to invoke the function:

Figure 17.4: Custom application publishes events and invokes a Lambda function

Reference URL: https://docs.aws.amazon.com/lambda/latest/dg/images/push-user-app-example-10.png

It is also possible to deploy a custom application in AWS account A, and invoke the
Lambda function from AWS account B. AWS account B (that is, where the Lambda function
is) must have cross-account permissions in the policy associated with the Lambda
function. Figure 17.5 explains this:

Overview of AWS Lambda Chapter 17

[531]

Figure 17.5: Lambda function execution in cross-account

Reference URL: http://docs.aws.amazon.com/lambda/latest/dg/images/push-user-cross-account-app-example-10.png

AWS Lambda best practices
The AWS Lambda best practices are as follows:

It is best practice to write an AWS Lambda function in a stateless style. It should
not have any affinity with the underlying compute infrastructure.
A persistent state should be stored in another cloud service, such as Amazon S3
or DynamoDB.
It is recommended to separate core logic from the Lambda handler, as the
handler is generally used as an entry point to the function.
When a Lambda function is deployed over a VPC, it is a best practice to avoid
DNS resolution for a public hostname, as it may take several seconds to resolve
adding several billable seconds.
It is recommended to specify at least one subnet in each AZ with the Lambda
function configuration.

Overview of AWS Lambda Chapter 17

[532]

It is recommended to make sure sufficient subnet IPs are free to allow Lambda
functions to scale. If there aren't any free subnet IPs, Lambda functions will not
scale and Lambda function failure will increase.
Rather than re-initializating variables or objects on every invocation, use static
initialization or constructor, global, or static variables and singletons. This helps
to improve the performance of the Lambda function.
Where possible, keep alive and reuse connections such as database or HTTP that
were established in an earlier invocation.
To cope with frequent changes in the operational parameters, pass them using
environment variables to avoid frequent changes in a Lambda function.
It is best practice to pack all the dependencies in a deployment of the Lambda
function. Where possible, control the dependencies in the Lambda function to
minimize the overall size and execution time.
If you are using a Java programming language, put dependencies in a separate
/lib directory rather than putting all functions and source code in a single jar
with a large number of .class files.
It is highly recommended to use a simple framework and minimize the
complexity of the dependencies to quickly load the container startup.
It is best practice to use Lambda metrics and CloudWatch alarms to monitor the
Lambda function's health rather than creating and maintaining custom metrics
from Lambda function code.

18
Mock Tests

Mock test 1
Question 1: Monthly billing for Lambda is based on what?

A: Number of uploaded functions in the AWS account per region
B: Number of uploaded functions in the AWS account per region plus the
execution time in minutes
C: Execution request and the time is rounded to the nearest 100 ms
D: Execution request and time is rounded to the nearest 1 second

Question 2: Which is a compulsory section in the CloudFormation template?

A: Outputs and Resources
B: Resources
C: Parameters and Outputs
D: None of the above

Question 3: If an EC2 instance with an instance store volume is stopped or terminated,
any data on the instance store volume is lost:

A: True
B: False

Mock Tests Chapter 18

[534]

Question 4: Which of the following statements is true about AWS regions and AZs?

A: Every region is independent, consists of at least two or more AZs, and AZs
within regions are interconnected through low-latency dedicated networks
B: Each region is independent and has only one AZ
C: You can create as many AZs as required from the AWS console
D: Regions and AZs are only required when hosting legacy applications on the
cloud

Question 5: Is it possible to stop an RDS instance?

A: Yes, it is possible to stop for a maximum of 7 days when it is in single AZ
B: Yes, it is possible to stop for any duration of time when it is in single AZ
C: Yes, it is possible to stop for a maximum of 7 days when it is in multi-AZ
D: Yes, it is possible to stop for any duration of time when it is in multi-AZ

Question 6: Which of the following statements are true? (Select 2)

A: A group can contain many users, and a user can belong to multiple groups
B: Groups can't be nested; they can contain only users, not other groups
C: Both users and groups can be nested
D: Groups can be nested but users cannot be nested

Question 7: What is the maximum size of an item in a DynamoDB table?

A: 400 Bytes
B: 400 KB
C: 400 MB
D: 400 GB

Question 8: Which of the following statements is true?

A: NACL applies at the EC2 level and security groups apply at the network level
B: Security groups apply at the EC2 level and NACL at the network level
C: It can be implemented interchangeably depending on the project's
requirements
D: None of the above

Mock Tests Chapter 18

[535]

Question 9: Which of the following AWS services supports infrastructure as a code?

A: CloudFront
B: CloudFormation
C: CodeCommit
D: None of the above

Question 10: When an RDS instance is configured in multi-AZ, what happens when the
primary instance fails?

A: The standby replica database automatically becomes the primary database
B: You need to manually failover control from the primary database to the
secondary database in a different AZ
C: Automatically CNAME pointing to the primary database instance changes to
the standby database instance
D: All of the above

Question 11: An organization, Example Inc, runs their website on Amazon S3, which is
named https://www.example.com. They have kept their corporate images in a separate
S3 bucket which is accessed on endpoint:
https://s3-us-east1.amazonaws.com/examplecorpimages. While testing the
website, Example Inc found that the images are blocked by the browser. In this scenario,
what should the company do to resolve the issue so that the images are not blocked by
the browser?

A: Make the examplecorpimages bucket where the images are stored public
B: Enable versioning on the examplecorpimages bucket
C: Create CORS configuration on the examplecorpimages bucket for allowing
cross-origin requests
D: You can't do anything as S3 does not allow you to host images in different
buckets

Question 12: Which encryption method is supported by AWS EC2 and S3 by default?

A: 256-bit Advanced Encryption Standard (AES-256)
B: RSA
C: 128-bit AES
D: DES

Mock Tests Chapter 18

[536]

Question 13: What is the purpose of the cfn-init helper script in CloudFormation?

A: Installs and configures applications and packages on EC2
B: Sends a signal to CloudFormation when the EC2 instance is successfully
created
C: Detects changes in resource metadata and runs user-specified actions when a
change is detected
D: All of the above

Question 14: A Load balancer can span across:

A: Multiple AZs
B: Multiple regions
C: Multiple AZs and optionally multiple regions
D: Depends on the region

Question 15: AWS IAM is:

A: Region-independent and free to use
B: Region-dependent and free to use
C: Region-dependent and the charges vary from region to region
D: None of the above

Question 16: Which of the following CloudFormation template sections match a key to a
corresponding value?

A: Transform
B: Mappings
C: Metadata
D: Conditions

Question 17: Which of the following statements is true?

A: VPC can span across multiple regions
B: VPC can span across multiple AZs
C: VPC can span across multiple AZs and multiple regions
D: VPC spans across AZs and optionally across regions

Mock Tests Chapter 18

[537]

Question 18: What happens when the password policy is changed or newly
implemented?

A: It is implemented immediately, but takes effect the next time an IAM user
attempts to change the password
B: It forces all the AWS IAM users whose passwords do not comply with the new
password policy to change their passwords immediately
C: It can be configured to apply only to a few IAM users
D: None of the above

Question 19: Billing alerts are triggered by which AWS service?

A: AWS Billing dashboard
B: CloudWatch
C: SES/SNS/SQS
D: All of the above

Question 20: What is true about Elasticity?

A: Elasticity refers to the provisioning of news resources to match an increase in
demand
B: Elasticity refers to automatically provisioning and deprovisioning resources to
match the workload demand
C: Elasticity refers to the deprovisioning of resources due to a decrease in
demand
D: None of the above

Question 21: How do you move/transfer an EC2 instance from one region to another?

A: It is not possible to move an EC2 instance from one region to another
B: It can be done only by a root user
C: Shut down the EC2, then take the AMI and copy it in another region to launch
the new EC2
instance from the AMI
D: Raise a support request with AWS
E: None of the above

Mock Tests Chapter 18

[538]

Question 22: Which of the following services are recommended for transferring
petabytes of
data between an on-premises data center and AWS?

A: Snowball or Snowmobile
B: S3 Transfer Accelerator
C: S3 multipart upload
D: S3 Import/Export
E: Direct Connect

Question 23: RRS stands for what?

A: Reduced Redundancy Storage
B: Reduced Risk Storage
C: Reduce Resource Storage
D: None of the above

Question 24: What can be used to provide internet connectivity to the resources residing
in a private subnet?

A: NAT instance or NAT gateway
B: Internet gateway
C: Virtual private gateway
D: Elastic Load Balancer

Question 25: Which of the following statements is true for CloudWatch metrics?

A: It can be manually deleted when the CloudWatch alarm is no longer used
B: It cannot be manually deleted
C: It doesn't create any metrics for any custom CloudWatch alarms
D: All of the above

Question 26: What subnet is usually recommended for hosting a database instance in
RDS?

A: Public subnet
B: Private subnet
C: A and B
D: None of the above

Mock Tests Chapter 18

[539]

Question 27: What is true about IAM policies?

A: IAM policies cannot be modified
B: When IAM policies are changed, it immediately reflects in the privileges of all
users and groups
C: IAM policies can be changed only by the AWS root account
D: You need to raise a support request with AWS to change IAM policies

Question 28: Which of the following AWS services is suitable for data archival?

A: S3
B: EMR
C: Glacier
D. All of the above

Question 29: What is true about deploying SSL on ELB?

A: It is not possible
B: It is not the best practice to deploy SSL on ELB as it may increase the load on
the EC2 instance
C: It is suggested to deploy the SSL certificate on ELB to reduce the load on the
EC2 instance
D: Use of SSL is not required with ELB, as it automatically looks after encryption
and decryption

Question 30: What is true about IP addressing in AWS?

A: You can access an EC2 instance over the internet using a private IP address
B: The public IP address of an EC2 instance does not change when you stop an
instance and restart it
C: Private IPs can be accessed only within the VPC
D: None of the above

Question 31: Which of the following features is supported by DynamoDB?

A: ELB
B: Auto Scaling
C: A and B
D: None of the above

Mock Tests Chapter 18

[540]

Question 32: One EBS volume can be attached to?

A: Only one EC2 instance
B: Multiple EC2 instances
C: Depends on the type of the EBS volume
D: EBS cannot be attached to the EC2, it can only be attached to the RDS

Question 33: Data stored in an S3 can be accessed from?

A: Within AWS
B: Within the same region
C: Within the same AZ
D: Anywhere across the internet

Question 34: Which statement is true?

A: Every region has at least two AZs and each AZ is isolated but inter-connected
with low-latency dedicated connectivity
B: Every region may have one or more AZs and each AZ is isolated but inter-
connected with low-latency dedicated connectivity
C: Every region has at least two AZs and each AZ is isolated but inter-connected
through the internet
D: Every region consists of only one AZ that automatically provides highly-
available infrastructures

Question 35: Which of the following AWS services offer a NoSQL service?

A: RDS
B: Simple database
C: EC2
D: EMR
E: DynamoDB

Question 36: What can be done to reduce the cost of a mission-critical production
application hosted on EC2 instances?

A: Spot instances can be used
B: A reserved instance can be used
C: An on-demand instance can be used
D: None of the above

Mock Tests Chapter 18

[541]

Question 37: What is the largest individual object size supported by S3?

A: 5 GB
B: 50 GB
C: 5 TB
D: Any size

Question 38: Which AWS service helps to perform log analysis and resource monitoring?

A: EC2
B: Lambda
C: CloudWatch
D: Any of the above

Question 39: What is true about indexes in DynamoDB?

A: GSI can have a different partition key and sort key compared to its base table
B: LSI can have a different partition key and sort key compared to its base table
C: GSI should have the same partition key as its base table
D: All of the above

Question 40: What happens when CloudFormation stack creation fails?

A: It rolls back the stack and deletes any resources that have been created
B: Skips that resource creation and continues
C: Depends on the region in which the stack is being created
D: None of the above

Question 41: What is session affinity in an ELB?

A: Ensures that the ELB stops sending requests to instances that are deregistered
or unhealthy, while existing connections are open
B: It enables to carry source connection request information to the destination
C: It enables ELB to bind a user's session to specific EC2 instances
D: It distributes an incoming user's request evenly across registered AZs with
ELB

Mock Tests Chapter 18

[542]

Question 42: By default, which of the following metrics are not supported by
CloudWatch?

A: DiskRead/Write operations
B: NetworkIn/Out
C: CPU usage
D: Memory free/used

Question 43: Which of the following statements is true for Lambda?

A: Security groups and subnets can be assigned with Lambda functions
B: Only subnets can be specified
C: Only security group can be specified
D: Neither security groups nor subnets can be specified

Question 44: By default, a newly-created object in S3 is what?

A: Private and only accessible by an owner
B: Private and only accessible by IAM users
C: Public, anyone can access it
D: All of the above

Question 45: Which of the following AWS services helps to use AWS storage as a local
storage to the applications installed in the data centers?

A: AWS storage gateway
B: Direct Connect
C: AWS Snowball
D: None of the above

Question 46: Which of the following AWS services provides a relational database as a
service?

A: RDS
B: DynamoDB
C: RedShift
D: EMR

Mock Tests Chapter 18

[543]

Question 47: Which of the following queues in SQS can target messages that can't be
processed (consumed) successfully?

A: Fresh queue
B: Broken queue
C: Dead-letter queue
D: All of the above

Question 48: What consistency model is used for scan operations in DynamoDB?

A: Strongly consistent
B: Eventually consistent
C: Read after write consistency
D: All of the above

Question 49: Which of the following AWS services can be used for various notification
types?

A: SES
B: SNS
C: SQS
D: All of the above

Question 50: Which of the following platforms does not have in-built support on AWS
Elastic Beanstalk?

A: Java with Tomcat
B: IIS
C: Java SE
D: Go
E: C/C++
F: Nginix

Mock Tests Chapter 18

[544]

Mock test 2
Question 1: What is the maximum execution time for a Lambda function to run that can
be assigned?

A: 1 minute
B: 3 minutes
C: 5 minutes
D: Depends on the complexity of the function

Question 2: Which of the following AWS services is used along with S3 to enable S3
Transfer Acceleration?

A: EMR
B: SES
C: SQS
D: CloudFront

Question 3: Which of the following features is supported by DynamoDB?

A: Supports relational databases
B: Supports nested JSON
C: Supports A and B
D: None of the above

Question 4: How many IPs are reserved in a VPC CIDR range?

A: 10
B: 5
C: 2
D: 1

Question 5: Which of the following programming languages is not currently supported
by Lambda?

A: Node.js
B: Java
C: Python
D: Scala

Mock Tests Chapter 18

[545]

Question 6: Which is the efficient way to serve high-volume read-only application traffic
in RDS?

A: Create one or more read replicas to server read-only application traffic
B: Deploy the Database in multi-AZ
C: Create a memory enhanced RDS instance type
D: None of the above

Question 7: What is the primary purpose of using AWS SQS?

A: Decoupling application components
B: Building server-less architecture
C: Building microservice architecture
D: Building monolithic applications

Question 8: AWS EC2 instance store volume provides:

A: Permanent block storage
B: Temporary block storage
C: A and B
D: None of the above

Question 9: Which statement is true about DynamoDB?

A: DynamoDB uses a pessimistic locking model
B: DynamoDB uses conditional writes for consistency
C: DynamoDB restricts item access during reads
D: DynamoDB restricts item access during writes

Question 10: Which of the following AWS storage services supports object storage?

A: EBS
B: EFS
C: S3
D: All of the above

Mock Tests Chapter 18

[546]

Question 11: Which of the following helper scripts cannot be used while bootstrapping
an instance during stack creating in a CFT?

A: cfn-get-metadata
B: cfn-put-metadata
C: cfn-init
D: cfn-hup

Question 12: Which of the following terms attracts CEOs and CTOs to select cloud
computing rather than on-premises infrastructure?

A: They adapt cloud computing as everybody is adapting
B: Cloud converts CapEx to OpEx and better ROI
C: Cloud computing does not require hardware and software
D: Cloud is more secure over on-premises environment

Question: 13: Which of the following statements about SWF is true?

A: SWF taks are assigned once and never duplicated
B: SWF needs to be associated with an S3 bucket to start the workflow
C: SWF uses SNS for sending mails and SES for sending notifications
D: SWF requires at least one EC2 instance per domain

Question 14: Which is the default consistency model in DynamoDB?

A: Strongly consistent
B: Eventually consistent
C: Occasionally consistent
D: All of the above

Question 15: Which of the following engines is not supported by RDS?

A: Cassandra
B: MySQL
C: Oracle
D: MS SQL

Mock Tests Chapter 18

[547]

Question 16: The default interval for CloudWatch metrics is what?

A: 10 minutes
B: 1 minute
C: 5 minutes
D: 2 minutes

Question 17: Which of the following notification mechanisms is not supported by SNS?

A: Pager
B: Email
C: SMS
D: All of the above

Question 18: Which of the following is an example of a good DynamoDB hash key?

A: User ID, where the application has many users
B: Status code, where there are only a few possible status codes
C: Item creation date, rounded to the nearest time period
D: Employee Name, where there are many employees with similar names

Question 19: By default, what privileges does a newly-created AWS IAM user get?

A: Inherits all root privileges
B: Inherits administrator privileges
C: Depends up on the AWS region where the user is created
D: Does not have any privileges

Question 20: What is the purpose of the cfn-init helper script in CloudFormation?

A: Download and install the packages and files described in the template
B: Retrieve metadata attached to the template
C: Initialize bootstrapping command
D: Signal that stack is ready

Mock Tests Chapter 18

[548]

Question 21: How many objects can be stored in each bucket?

A: 500 objects/bucket
B: 50,000 objects/bucket
C: Virtually unlimited
D: None of the above

Question 22: What is true about EC2 instances?

A: An EC2 instance can be part of only one target group
B: An EC2 instance can be part of multiple target groups
C: An EC2 instance cannot be a part of any target group
D: All of the above

Question 23: How do you obtain AWS security compliance documents?

A: You can ask to initiate a third-party inspection at the AWS data center
B: Schedule a visit to the AWS data center and ask for the document
C: Obtain the compliance documents from the AWS compliance reporting service
D: Every compliance agency across the globe is automatically sent the AWS
compliance report

Question 24: Packt publishing stores periodic log data from its high traffic book
subscription portal to S3. Which object naming convention would give optimal
performance on S3 for storing the log data?

A: instanceID-log-HH-DD-MM-YYYY
B: instanceID-log-YYYY-MM-DD-HH
C: HH-DD-MM-YYYY-log_instanceID
D: YYYY-MM-DD-HH-log_instanceID

Question 25: Which of the following AWS services provides a schemaless database?

A: RDS
B: Simple database
C: DynamoDB
D: All of the above

Mock Tests Chapter 18

[549]

Question 26: What can be done to avoid a single point of failure in AWS?

A: Create a multi-AZ architecture with ELB
B: Create a multi-region architecture with ELB
C: Create a multi-AZ with multi-region architecture with ELB and Auto Scaling
D: AWS automatically takes care of single-point failure

Question: 27: What can be the maximum size of an SQS message?

A: 1 MB
B: 512 KB
C: 128 KB
D: 256 KB

Question 28: Each datapoint in a CloudWatch needs to have a valid time stamp. This time
stamp can be :

A: Two weeks in the past and up to two hours into the future
B: Two hours in the past and up to two weeks into the future
C: Two hours in the past and up to two hours into the future
D: Two weeks in the past and up to two weeks into the future

Question 29: Which of the following statements is true for an internet-facing web
application?

A: Web server should be hosted in a private subnet and associated database
should be hosted in a public subnet
B: Web server should be hosted in a public subnet and associated database
should be hosted in a private subnet
C: Web server and database server should both be hosted in a public subnet
D: Web server and database server should both be hosted in a private subnet

Mock Tests Chapter 18

[550]

Question 30: What is the secured way to access an RDS database from an application
deployed on EC2?

A: Embed access key and secret in the application source code
B: Use IAM role with the EC2 instance
C: Directly specify database user ID and password in application configuration
file
D: Store credential file on an encrypted object in S3 and access it from application
for user ID and password

Question 31: Swathy Mohan, working for Packt Publication, is repeatedly trying to
launch an EC2 instance in the organization's AWS account, however, the instance gets
terminated as soon as it is launched. What could be the possible reason behind these
issue?

A: The snapshot used for launching the instance is corrupt
B: The AMI used for launching the instance is corrupt
C: The AWS account has reached the maximum EC2 instance limit
D: The user does not have permission to launch an EC2 instance

Question 32: Abhishek is unable to SSH an EC2 instance that is launched in Packt
Publication's AWS account. What could be the possible solution to resolve the
accessibility issue?

A: Modify EC2 instance's security group to allow incoming TCP traffic on port
443

B: Modify EC2 instance's security group to allow incoming ICMP packets from
your IP
C: Modify EC2 instance's security group to allow incoming TCP traffic on port 22
D: Apply the most recently-released Operating System security patches on the
EC2 instance

Question 33: Which AWS service triggers scale-in and scale-out in Auto Scaling?

A: SES
B: SNS
C: SQS
D: CloudWatch
E: All of the above

Mock Tests Chapter 18

[551]

Question 34: How do you change the EC2 instance type?

A: Directly change it using EC2 console, API, or CLI
B: Stop the EC2 instance and change the instance type using EC2 console, API, or
CLI
C: AWS does not allow you to change the EC2 instance type once it is created
D: The EC2 instance type can be changed only for a specific instance type family

Question 35: Which AWS service can be used to store archival data in a cost-effective
way?

A: AWS RRS
B: AWS S3
C: AWS RDS
D: AWS Glacier

Question 36: Packt Publication needs to process a big chunk of data stored in S3 using a
data analytics process. This process needs to run periodically on an EC2 instance and
does not need to have the EC2 instance running after the data is processed. The processed
data should be stored back in S3. Which of the following instance types would be the
most cost-effective for running these processes?

A: On-demand EC2 instance
B: Reserved EC2 instance with full upfront payment
C: Reserved EC2 instance with no upfront payment
D: Spot EC2 instance

Question 37: Which of the following AWS-managed services makes it easy to coordinate
work across distributed application components?

A: EMR
B: SWF
C: RedShift
D: SNS

Mock Tests Chapter 18

[552]

Question 38: Which of the following AWS services supports a volume that can be
mounted on multiple EC2 instances at a time?

A: EFS
B: EBS
C: Glacier
D: S3

Question 39: Which of the following AWS services is not supported as an AWS Lambda
event source?

A: Amazon alexa
B: AWS config
C: Amazon lex
D: EMR

Question 40: What is true about Amazon SQS queues?

A: Standard Queue guarantees at-least-once delivery and FIFO queue guarantees
exactly-once delivery
B: Standard Queue guarantees exactly-once delivery and FIFO queue guarantees
at-least-once delivery
C: Standard Queue and FIFO queues do not provide message delivery guarantees
D: None of the above

Question 41: Which of the following multi-AZ data replications is implemented by RDS?

A: Dynamic
B: Static
C: Asynchronous
D: Synchronous

Question 42: What is the difference between default VPC and custom VPC?

A: A default VPC is only available in a few regions and AZs
B: A default VPC is more secure than custom VPC
C: A default VPC is available in each region, while a custom VPC can be created
as per requirement
D: A custom VPC is more secure than a default VPC

Mock Tests Chapter 18

[553]

Question 43: Which of the following AWS services supports Content Delivery Network
(CDN)?

A: CloudFormation
B: CloudFront
C: VPC
D: All of the above

Question 44: Which of the following storage options can create a persistent storage
volume in EC2?

A: Ephemeral
B: EBS
C: Both Ephemeral and EBS
D: None of the above

Question 45: Which AWS service helps to connect a data center to the AWS directly,
bypassing the internet?

A: Direct Connects
B: Storage gateway
C: VPC
D: Data pipeline

Question 46: Which of the following services empowers ElasticBeanstalk? (Select three)

A: ELB
B: Auto Scaling Group
C: EC2
D: EFS
E: Cognito

Mock Tests Chapter 18

[554]

Question 47: What is the default limit for a number of S3 buckets that can be created in
an AWS Account?

A: 100 per account
B: 200 per account
C: 100 per IAM User
D: Maximum 100 per region
E: There is no limit on the number of buckets in S3

Question 48: A security group ______

A. Acts as a firewall at the EC2 level
B. Acts as a firewall at the subnet level
C. Acts as a firewall at the EC2 and the subnet level
D. None of the above

Question 49: ELB deletion protection helps to:

A: Prevent the user's connection from terminating
B: Prevents EC2 instance from being auto-terminated
C: Prevents accidental deletion of ELB
D: All of the above

Question 50: Which of the following statements is true?

A: A user must have the required privileges to successfully create a stack from a
template
B: Sufficient privileges should be with the user who has written the template
C: By default, every user gets a privilege to create any stack using any template
D: User privilege requirement depends upon the region where the CFT is
executed

Mock Tests Chapter 18

[555]

Answers to Mock test 1
1. C 2. B 3. A 4. A 5. A 6. A and B 7. B 8. B 9. B 10. C

11. C 12. A 13. A 14. A 15. A 16. B 17. B 18. A 19. B 20. B

21. C 22. A 23. A 24. A 25. B 26. B 27. B 28. C 29. C 30. C

31. B 32. A 33. D 34. A 35. E 36. B 37. C 38. C 39. A 40. A

41. C 42. D 43. A 44. A 45. A 46. A 47. C 48. B 49. B 50. E

Answers to Mock test 2
1. C 2. D 3. B 4. B 5. D 6. A 7. A 8. B 9. B 10. C

11. B 12. B 13. A 14. B 15. A 16. C 17. A 18. A 19. D 20. A

21. C 22. B 23. C 24. C 25. C 26. A 27. D 28. A 29. B 30. B

31. C 32. C 33. D 34. B 35. D 36. D 37. B 38. A 39. D 40. A

41. D 42. C 43. B 44. B 45. A 46. A, B, and C 47. A 48. A 49. C 50. A

Index

A
Access Control Lists (ACL) 245
Access Management (IAM) 203
access policy, key concepts
 action 428
 allow 428
 conditions 428
 default deny 428
 effect 428
 evaluation 428
 explicit deny 428
 issuer 427
 keys 428
 permission 427
 policy 427
 principal 428
 requester 428
 resource 428
 statement 427
Active Directory (AD) 83
Active Directory Federation Service (ADFS)
 about 94
 integrating, with AWS console 95
actors
 about 446
 activity worker 447
 decider 447
 workflow starter 446
Advanced Encryption Standard (AES-256) 186
alarms 219
alerts
 billing 226, 227
Amazon Aurora DB
 about 302
 cluster, connecting 325
 comparing, with Amazon RDS MySQL 305

Amazon CloudFront 284
Amazon CloudWatch
 alarms 219
 alerts, billing 226, 227
 basic monitoring 228
 detailed monitoring 228
 dimensions 216, 217
 elements 214
 metrics 215, 216
 namespaces 214
 percentile 218
 statistics 217, 218
 types, monitoring 228, 229
 working 213
Amazon EC2 instances
 temporary credentials, using 100
Amazon Machine Image (AMI)
 about 8, 163
 EC2 instance metadata 180
 EC2 instance type, modifying 173
 EC2 instance virtualization types 166
 EC2 instance, connecting to 174
 EC2 instance, connecting with PuTTY session

177

 EC2 instance, creating 167, 173
 Linux EC2 instance, connecting from Microsoft

Windows system 175
 placement group 182
 root device types 165
 SSH connection issues, troubleshooting 179
 user data 180
Amazon RDS DB instance
 Amazon Aurora DB cluster, connecting 325
 connecting 324
 MySQL instance, connecting 326
 Oracle instance, connecting 326
Amazon RDS MySQL DB instance

[557]

 creating 311
Amazon RDS
 about 323
 high availability 323
Amazon Resource Name (ARN) 91
Amazon S3
 about 234, 238
 buckets 235
 creating 240, 241, 243
 keys 236
 objects 235
 region 236
 terminologies 235
Amazon Simple Notification Service (SNS)
 about 411, 412
 application alerts 414
 fanout 413
 push email 415
 system alrts 414
 text messaging 415
Amazon SNS message
 sending, to Amazon SQS queues 434
Amazon SNS topics
 access control, using 426
 access request evaluation logic 430
 access, managing 426
 architectural overview 429
 creating 415
 deleting 424
 key concepts 427
 message, publishing 420
 subscribing 418
Amazon Web Services (AWS)
 about 9
 Availability Zones (AZs) 21
 benefits 19
 concepts 17, 18
 global infrastructure 21
 overview 20
 regions 21
 storage options 280
 URL 96, 100
Apple Push Notification Service (APNS) 423
Application Load Balancer
 working 208, 209, 210

architectural concepts, Elastic Beanstalk
 worker environment tiers 495
Aurora 298
Auto Scaling groups
 updates rolling 488
Availability Zones (AZs) 21
AWS account
 creating 31, 37
 deleting 37
 URL 38
AWS Certificate Manager (ACM) 203
AWS Certified Developer - Associate Certification
 debugging 8
 deployment 8
 designing 8
 developing 8
 fundamentals 7
 reference link 6, 10
 security 8
AWS CLI
 about 77
 AWS uer access key, obtaining 78
 configuring 78
 help, obtaining 79
 installing 77
 secret key, obtaining 78
 syntax 79
 used, for creating IAM user 79
AWS cloud
 comparing, with on-premise data centers 29
AWS dashboard
 about 39
 components 40
AWS EFS 281, 285
AWS free tier 37
AWS Inspector 48
AWS Lambda
 about 516
 best practices 531
 function 516
AWS SDKs
 temporary security credentials, using 101
AWS Serverless Application Model (AWS SAM)

483

AWS services

[558]

 accessing 20
 AWS Command Line Interface (CLI) 20
 AWS Management Console 20
 AWS Software Development Kits (SDKs) 20
 Database Migration Service (DMS) 42
 Elastic Cloud Compute (EC2) 41
 Elastic Map Reduce (EMR) 45
 event source mapping 527
 Identity Access and Management (IAM) 44
 Query APIs 20
 Relational Database Service (RDS) 42
 Simple Email Service (SES) 47
 Simple Queue Service (SQS) 46
 Simple Storage Service (S3) 42
 Simple Workflow (SWF) 46
 Virtual Private Cloud (VPC) 42
 Web Application Firewall (WAF) 44
AWS Snowball 283, 295
AWS Snowmobile 284, 297
AWS Storage Gateway
 about 283, 287
 file gateways 288
 tape-based storage solutions 292
 volume gateways 289
AWS stream-based service
 event source mapping 529

B
block storage 232
Border Gateway Protocol (BGP) 126
Bring Your Own License (BYOL) 302
bucket policy
 action 245
 effect 245
 principal 245
 resource 245
 sid 245
bucket
 access control 244
 creating 238
 militations 244
 policy 245
 restriction 244
 user policies 246
Business Associate Agreement (BAA) 386

C
CIDR Utility Tool
 URL 118
Classic Load Balancer
 creating 199, 200, 201, 202, 203, 204, 206
 working 206, 207
ClassicLink 152
Classless Inter-Domain Routing (CIDR) 108
cloud computing 12
cloud infrastructure resourcing 28
CloudFormation Designer
 URL 460
CloudFormation templates (CFTs)
 about 458
 references 487
CloudFormation
 best practices 488
CloudFormer
 about 488
 URL 488
clouds
 about 12
 cloud computation, evolution 17
 cloud computing, evolution 16
 history 15
 hybrid cloud 14
 private cloud 14
 public cloud 14
CloudTrail 48
CloudWatch alarm
 creating 219, 221, 222, 223, 224, 225, 226
CloudWatch dashboards 228
CloudWatch
 about 48, 214
 best practices 230, 231
 EBS volume, monitoring 187
 metrics, for SQS 407
 SNS, monitoring 438
cold HDD (sc1) 185
Common Internet File System (CIFS) 233
components, Amazon RDS
 AZs 300
 DB instances 299
 DB option groups 301

[559]

 DB parameter groups 301
 regions 300
 security groups 300
components, DynamoDB
 attributes 335
 item 335
 tables 335
Content Delivery Network (CDN) 284
Cross-Origin Resource Sharing (CORS)
 about 272
 configuration 274
 configuring, on bucket 274
 enabling, on bucket 275
 using 273
cross-region replication
 about 276
 enabling 277, 279
custom applications
 event source mapping 530
Customer Gateway (CGW) 128
Customer Master Key (CMK) 186, 392

D
data types, DynamoDB
 document types 343
 scalar type 342
 set type 345
Dead Letter Queue (DLQ) 387
debugging 8
DHCP option sets
 about 147
 DNS 148
 domain-name 147
 domain-name-servers 147
 netbios-name-servers 147
 netbios-node-type 148
 ntp-servers 148
dimensions 217
Direct-Attached Storage (DAS) 292
Disaster Recovery (DR)
 backing up 53
 multi-site 58
 pilot light 54
 restoring 53
 warm standby 57

 with AWS 51
Document Object Model (DOM) 273
document types
 about 343
 list 343
 map 344
Domain Name Server (DNS) 147
Dynamic Host Configuration Protocol (DHCP) 111
DynamoDB console
 URL 352
DynamoDB
 about 334
 access control 375
 accessing, methods 352
 advanced setting, using 347
 API permissions 378
 Auto Scaling 350
 best practices 380
 components 335
 conditional writes 371
 console 352
 data distributions 359
 data types 342
 DeleteItem 371
 DynamoDB CLI 353
 GSI 362
 item, reading from table 368
 item, writing to table 369
 key conditions expressions 366
 LSI 362
 naming rules 341
 partition key 359, 361
 partitions 359
 policies, managing 376
 primary key 336
 provisioned capacity 350
 provisioned throughput 356
 PutItem 370
 query 364
 query, with AWS CLI 366
 read capacity units 356
 read consistency model 340
 Scan operation 368
 secondary indexes 337
 secondary indexes, creating 349

[560]

 sort key 361
 sort key, adding 347
 streams 338
 strong consistency reads 340
 table throughput, calculating 356
 table, creating 345
 UpdateItem 370
 URL 341, 352, 355
 user authentication 375
 working, with API 355
 write capacity unit 356

E
EC2 instance
 instance launch 161
 lifecycle 161
 reboot 162
 retirement 163
 stop and start 161
 termination 163
Edge Locations 21
egress-only IGW 143
Elastic Beanstalk, components
 application 491
 configuration template 492
 environment 492
 environment configuration 492
Elastic Beanstalk
 application version, deploying 506
 application, creating 498
 AWS account, signing in 497
 best practices 514
 cleaning up 510
 configuration, modifying 508
 information, viewing 504
 supported platforms 496
 using 497
 version lifecycle 510
 web application source bundle, creating 497
 web applications, deploying 511
Elastic Block Store (EBS)
 about 49, 282
 best practices 190
 encrypted EBS 186
 optimized EC2 instances 190

 snapshots 187
 types 183
 volumes, monitoring with CloudWatch 187
Elastic Compute Cloud (EC2)
 about 7, 155
 features 156
 pricing 157
Elastic IP address 113
Elastic Load Balancer (ELB)
 about 192, 201
 access logs 197
 application load balancer 194
 Application Load Balancer, working 208, 209,

210

 benefits 193
 best practices 211
 classic load balancer 194
 Classic Load Balancer, creating 199, 200, 202,

203, 204, 206
 Classic Load Balancer, working 206, 207
 CloudWatch metrics 197
 connection draining 196
 cross-zone load balancing 196
 elasticity 193
 ELB deletion protection 199
 fault tolerance 193
 features 194
 health checks 197
 high availability 193
 host-based routing 198
 HTTP/2 support 198, 199
 Idle connection timeout 196
 path-based routing 198
 platforms 195
 protocols 195
 proxy protocol 197
 route, to multiple ports on single instance 198
 security 193
 sticky sessions 195
 types 194
 WebSockets support 199
 working 206
Elastic MapReduce (EMR) 185
Elastic Network Interface (ENI) 106, 139
elasticity

[561]

 traditional data center resourcing 28
 versus scalability 27
elements, IAM
 access key 65
 Multi-Factor Authentication (MFA) 67
 password policy 65
 secret key 65
 users 63
elements, policy
 actions 92
 resources 92
 version 92
engine types, Amazon RDS
 Amazon Aurora DB 302
 MariaDB 306
 Microsoft SQL Server 307
 MySQL 308
 Oracle 309
 PostgreSQL 310
environment tiers
 web server environment 492
 worker environment 492
environment variables 525
eth0 112, 139
event source mapping
 for AWS stream-based service 529
 for custom applications 530

F
features, SQS
 delay queue 385
 Health Insurance Portability and Accountability

Act (HIPAA) compliance 386
 multiple consumers 385
 multiple producers 385
 Payment Card Industry (PCI) compliance 386
 queue access control 385
 Queue wise configurable settings 385
 redundant infrastructure 385
 variable message size 385
file storage 233
First In First Out (FIFO) 385
flow logs
 about 131, 135
 limitations 136

G
gateway-cached volumes 289
gateway-stored volumes
 about 291
 key features 291
General Purpose SSD (gp2) 184
Glacier
 about 262, 281
 comparing, with S3 storage classes 263
Global Secondary Index (GSI)
 about 362
 versus Local Secondary Index (LSI) 363
Google Cloud Messaging (GCM) 423
group
 about 80
 IAM group, creating 82
 users, adding 83

H
Hard Disk Drive (HDD) 183
Hardware Virtual Machine (HVM) 166
Health Insurance Portability and Accountability Act

(HIPAA) 386
Horizontal Scaling 27
host manager (HM) 494

I
IAM role
 AWS service, creating 85
 creating, with AWS CLI 89
 cross-account access 85
 delegation 84
 federation 85
 policy 85
 principal 85
Identity and Access Management (IAM)
 about 8, 61
 access, managing 455
 best practices 101
 elements 62
 SWF - IAM policy examples 456
identity provider (IdP) 84
Import/Export 53
Industry compliances 49

[562]

Infrastructure as a Service (IaaS) 23
instance store 282
Internet gateway (IGW) 109, 141
Internet Protocol (IP) 197
Internet Small Computer System Interface 289
IP addressing
 about 111
 elastic IP address 114
 private IP 111
 public IP 112
IT security compliances 49

K
Key Management Service (KMS) 186, 392
Kryterion 10

L
Lambda function
 about 516
 aliases 524
 applications, building 526
 deploying 523
 handler (C#) 522
 handler (Java) 520
 handler (Python) 521
 handler(Node.js) 519
 invocation types 518
 invoking, with SNS notification 432
 over VPC 526
 parameters, defining 517
 versioning 524
 writing 518
life cycle management
 about 264
 actions 264
 expiration actions 264
 policy, defining for bucket 265, 270
 transition actions 264
 use cases 264
Local Secondary Index (LSI)
 about 363
 versus Global Secondary Index (GSI) 363

M
Magic Quadrant (MQ) 19
managed policies
 AWS managed policies 90
 customer managed policies 90
MariaDB 298, 306
Master Boot Record (MBR) 166
Media Access Control (MAC) 139
metrics 215, 216
Microsoft SQL Server 298, 307
Multi-Factor Authentication (MFA)
 about 67
 security token-based MFA 67
 SMS text message-based MFA 73
 virtual MFA, enabling for user 68
MySQL 298, 308

N
Network Access Control List (NACL)
 about 115, 134
 versus security group 135
Network Address Translator (NAT)
 about 109, 143
 instances, comparing with gateways 146
Network Basic Input/Output (NetBIOS) 147
Network File System (NFS) 233, 288
Network File System versions 4.1 (NFSv4.1)

protocol 281
Network Time Protocol (NTP) 148
non-root user
 versus root user 38
NoSQL
 about 330
 document databases 331
 graph databases 331
 key-value pair databases 330
 usage, determining 333
 versus SQL 333
 wide column database 332

O
object storage 233
object tagging 259
objects

[563]

 about 250
 access control information 251
 key 251
 metadata 251, 254
 object key naming guide 252
 object keys 252
 subresources 251
 system-metadata 255
 user-defined metadata 256
 value 251
 version ID 251
on-premise data centers
 comparing, with AWS cloud 29
OpenID Connect (OIDC) 84
Oracle
 about 298, 309
 URL 310
outputs, template
 references 485

P
Paravirtual (PV) 166
percentile 218
petabytes (PB) 295
pilot light 54
Platform as a Service (PaaS) 23
platforms, Elastic Beanstalk
 custom platform 496
 preconfigured platform 496
policy simulator
 URL 94
policy
 about 89
 Active Directory Federation Service (ADFS) 94
 ADFS, integrating with AWS console 95
 elements 92
 IAM policy simulator 94
 inline policies 90
 managed policies 90
 resource-based policies 90
 resource-based policy, example 93
 URL 92
 web identity federation 96
PostgreSQL
 about 298, 310

 URL 310
primary key
 about 336
 partition key 336
 sort key 336
Protected Health Information (PHI) 386
provisioned IOPS SSD (io1) 184
proxy protocol
 reference link 197

Q
queries
 URL 367
queues
 attributes 387
 CloudWatch metrics, for SQS 407
 creating 389
 deleting 400
 logging 407
 message, deleting 396
 message, sending 393
 message, viewing 396
 monitoring 407
 purging 398
 SQS API actions, logging 409
 subscribing, to topic 401
 types 386
 user permission, adding 403
 working 384

R
Recovery Point Objective (RPO) 51
Recovery Time Objective (RTO) 51
Regions 21
Relational Database Management System

(RDBMS)
 about 302, 328
 NoSQL 330
 SQL 329
 SQL, versus NoSQL 333
Relational Database Service (RDS)
 about 7, 298
 best practices 327
 components 299

[564]

 engine types 301
 instance type, modifying 321
 instances, monitoring 318
Requester Pay model
 about 249
 enabling, on bucket 250
Return on Investment (ROI)
 versus Total Cost of Ownership (TCO) 30
RFC 4632
 URL 109
root account credentials 62
root device 165
root user
 versus non-root user 38
route table 140

S
S3 console
 URL 248
S3 RRS 262
S3 storage classes
 about 260
 comparing, with Glacier 263
 glacier 262
 S3 RRS 262
 S3 Standard storage 260
 S3-IA storage 261
scalability
 about 27
 scale out 27
 scale up 27
 versus elasticity 27
secondary indexes
 about 337
 Global Secondary Index (GSI) 337
 Local Secondary Index (LSI) 337
Security Assertion Markup Language (SAML)
 about 84
 URL 96
Security group and NACL 131
Security Token Service (STS)
 about 98, 99
 AWS regions 100
 AWS STS 100
 temporary credentials, using in Amazon EC2

instances 100
 temporary security credentials, using with AWS

SDKs 101
security
 about 131
 access, controlling 137
 flow logs 135
 Network ACLs 134
 security group 132
 versus NACL 135
Server Message Block (SMB) 233
Server Side Encryption (SSE) 290
Service Level Agreement (SLA) 261
shared security responsibility model
 about 47
 URL 49
Simple Email Service (SES) 339
Simple Notification Service (SNS)
 best practices 441
 monitoring, with CloudWatch 438
Simple Queue Service (SQS)
 about 381
 features 385
 use cases 382
 using 382
Simple Storage Service (S3) 7, 280
Simple Workflow Service (SWF)
 about 7, 442
 endpoints 454
 object identifiers 449
 using 442
Single Sign-On (SSO) 94
SMS text message-based MFA
 AWS IAM user, creating with AWS dashboard 73
snapshot
 creating 319
 DB, restoring 321
Snowball 53
Snowmobile 53
soft limits 50
Software as a Service (SaaS) 23
Solid State Drive (SSD) 183, 334
source bundle
 URL 497
SQS limits 405

[565]

SQS security
 about 410
 authentication 410
 SSE 410
stack
 about 460
 Auto Scaling groups, updates rolling 488
 CloudFormer 488
 template structure 463
static website
 hosting, on S3 270, 272
statistics 217, 218
Storage Area Network (SAN) 292
storage services
 block storage 232
 file storage 233
 object storage 233
storage
 Amazon CloudFront 284
 AWS EFS 281
 AWS Snowball 283
 AWS Snowmobile 284
 AWS Storage Gateway 283
 EBS 282
 instance store 282
Structured Query Language (SQL)
 about 328, 329
 versus NoSQL 333
subnetwork (subnet)
 about 109
 private subnet 109
 public subnet 110

T
Table of Contents (TOC) 188
tape-based storage solutions
 about 292
 VTL 293
tasks
 activity task 448
 decision task 448
 lambda task 448
 polling 454
TCO calculator
 URL 31

template 459
template structure
 AWSTemplateFormatVersion 464
 conditions 480
 description 464
 mappings 477
 metadata 465
 outputs 485
 parameters 466
 resources 483
 transform 483
throughput Optimized HDD (st1) 185
Time To Live (TTL) 352
Top Level Domain (TLD) 413
Total Cost of Ownership (TCO)
 versus Return on Investment (ROI) 30
traditional data center resourcing 28
Transaction Per Second (TPS) 386
Transfer Acceleration
 about 248
 enabling 248
Trusted Advisor 48
types, EBS
 Cold HDD (sc1) 185
 General Purpose SSD (gp2) 184
 Provisioned IOPS SSD (io1) 184
 Throughput Optimized HDD (st1) 185

U
user policies, bucket 246

V
versioning
 about 257
 enabling, on bucket 258
Vertical Scaling 27
Virtual Private Cloud (VPC)
 about 8, 105, 323
 best practices 152
 creating 115
 with private and public subnet 122
 with private subnet only and hardware VPN

access 128
 with public and private subnets and hardware

VPN access 125
 with single public subnet 116
Virtual Private Gateway (VGW) 128
Virtual Private Servers (VPS) 41
Virtual Tape Library (VTL) 292
Virtual Tape Shelf (VTS) 292
virtualization
 about 24
 class 1 type 25
 class 2 type 25
 hardware emulation 26
 OS-level virtualization 26
 software virtualization 26
 types, based on virtualization methods 26
 types, based on virtualization software 25
volume gateways
 about 289
 gateway-cached volumes 289
 gateway-stored volumes 291
VPC console
 URL 113
VPC endpoint 150
VPC networking components
 egress-only IGW 143
 Elastic Network Interface (ENI) 138
 IGW 141

 route table 140
VPC peering 149
VPN connectivity
 URL 126

W
web identity federation 96
web server environment tier
 working 493
Web Services Description Language (WSDL) 464
workflow execution
 lifecycle 451
workflow
 about 443
 actors 445
 example 443
 execution closure 450
 history 444
 history, working 445
 object identifiers 449
 SWF domains 448
 task lists 449
 tasks 448

X
XtraDB 306

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Dedication
	Table of Contents
	Preface
	Chapter 1: AWS Certified Developer – Associate Certification
	Domain 1.0 – AWS fundamentals
	Domain 2.0 – Designing and developing
	Domain 3.0 – Deployment and security
	Domain 4.0 – Debugging
	Frequently asked questions about the exam

	Chapter 2: Introduction to Cloud Computing and AWS
	History of the cloud
	Evolution of cloud computing

	Basic AWS concepts
	Benefits of using AWS over a traditional data center
	Accessing AWS services
	AWS overview
	AWS global infrastructure
	Regions and AZs

	What are SaaS, PaaS, and IaaS?
	Understanding virtualization
	Virtualization types based on virtualization software
	Virtualization types based on virtualization methods

	Elasticity versus scalability
	Traditional data center resourcing
	Cloud infrastructure resourcing

	Comparing AWS cloud and on-premise data centers
	Total Cost of Ownership (TCO) versus Return on Investment (ROI)
	Creating a new AWS account
	Deleting an AWS account
	AWS free tier
	Root user versus non-root user
	AWS dashboard
	Components of the AWS dashboard

	Core AWS services
	Shared security responsibility model
	AWS soft limits
	Disaster recovery with AWS
	Backup and restore
	Pilot light
	Warm standby
	Multi-site

	Chapter 3: Identity and Access Management
	Understanding the AWS root user
	Elements of IAM
	Users
	Access key and secret key
	Password policy
	Multi-factor authentication (MFA)
	Security token-based MFA
	Steps for enabling a virtual MFA device for a user

	SMS text message-based MFA
	Creating an AWS IAM user using the AWS dashboard

	Introduction to AWS CLI
	Installing AWS CLI
	Getting a AWS user access key and secret key
	Configuring AWS CLI
	AWS CLI syntax
	Getting AWS CLI help
	Creating an IAM user using AWS CLI

	Groups
	Creating a new IAM group
	Creating an IAM group using CLI
	Adding existing users to a group

	IAM role
	Creating roles for an AWS service
	Creating IAM roles using AWS CLI

	Policy
	Managed policies
	Inline policies
	Resource-based policies
	Example of a resource-based policy

	IAM policy simulator
	Active Directory Federation Service (ADFS)
	Integration between ADFS and the AWS console
	Web identity federation

	STS
	AWS STS and AWS regions
	Using temporary credentials in Amazon EC2 instances
	Using temporary security credentials with the AWS SDKs

	IAM best practices
	Exam tips

	Chapter 4: Virtual Private Clouds
	AWS VPCs
	Subnets
	Private subnets
	Public subnets

	IP addressing
	Private IPs
	Public IPs
	Elastic IP addresses

	Creating a VPC
	VPCs with a single public subnet
	VPCs with private and public subnets
	VPCs with public and private subnets and hardware VPN access
	VPCs with private subnet only and hardware VPN access

	Security
	Security groups
	NACLs
	Security groups versus NACLs
	Flow logs
	Controlling access

	VPC networking components
	ENI
	Route tables
	IGWs
	Egress-only IGWs

	NATs
	Comparison of NAT instances and NAT gateways

	DHCP option sets
	DNS

	VPC peering
	VPC endpoints
	ClassicLink
	VPC best practices

	Chapter 5: Getting Started with Elastic Compute Cloud
	Introduction to EC2
	Pricing for EC2
	Per-second billing for EC2 instances and EBS volumes

	EC2 instance life cycle
	Instance launch
	Instance stop and start
	Instance reboot
	Instance retirement
	Instance termination

	AMIs
	Root device types
	EC2 instance virtualization types
	Creating an EC2 instance
	Changing the EC2 instance type
	Connecting to the EC2 instance
	Connecting to a Linux EC2 instance from a Microsoft Windows system
	Connecting to an EC2 instance using a PuTTY session

	Troubleshooting SSH connection issues
	EC2 instance metadata and user data
	Placement group

	Introducing EBS
	Types of EBS
	General Purpose SSD (gp2)
	Provisioned IOPS SSD (io1)
	Throughput Optimized HDD (st1)
	Cold HDD (sc1)

	Encrypted EBS
	Monitoring EBS volumes with CloudWatch
	Snapshots
	EBS optimized EC2 instances

	EC2 best practices

	Chapter 6: Handling Application Traffic with Elastic Load Balancing
	Introduction to the Elastic Load Balancer
	Benefits of using an ELB
	Types of ELB
	Classic Load Balancer
	Application Load Balancer

	Features of an ELB
	Step by step – creating a Classic Load Balancer
	How an ELB works
	The working of a Classic Load Balancer
	The working of an Application Load Balancer

	ELB best practices

	Chapter 7: Monitoring with CloudWatch
	How Amazon CloudWatch works
	Elements of Amazon CloudWatch
	Namespaces
	Metrics
	Dimensions
	Statistics
	Percentile
	Alarms
	Creating a CloudWatch alarm

	Billing alerts

	CloudWatch dashboards
	Monitoring types – basic and detailed
	CloudWatch best practices

	Chapter 8: Simple Storage Service, Glacier, and CloudFront
	Amazon S3
	Creating a bucket
	Bucket restriction and limitations
	Bucket access control
	Bucket policy
	User policies

	Transfer Acceleration
	Enabling Transfer Acceleration

	Requester Pay model
	Enabling Requestor Pays on a bucket

	Understanding objects
	Object keys
	Object key naming guide

	Object metadata
	System-metadata
	User-defined metadata

	Versioning
	Enabling versioning on a bucket

	Object tagging
	S3 storage classes
	S3 Standard storage
	S3-IA storage
	S3 RRS
	Glacier

	Comparison of S3 storage classes and Glacier
	Life cycle management
	Life cycle configuration use cases
	Defining life cycle policy for a bucket

	Hosting a static website on S3
	Cross-Origin Resource Sharing (CORS)
	Using CORS in different scenarios
	Configuring CORS on a bucket
	CORS configuration example XML
	Enabling CORS on a bucket

	Cross-region replication
	Enabling cross-region replication

	Chapter 9: Other AWS Storage Options
	Amazon EFS
	AWS Storage Gateway
	File gateways
	Volume gateways
	Gateway–cached volumes
	Gateway–stored volumes

	Tape-based storage solutions
	VTL

	AWS Snowball
	AWS Snowmobile

	Chapter 10: AWS Relational Database Services
	Amazon RDS components
	DB instances
	Region and AZs
	Security groups
	DB parameter groups
	DB option groups

	RDS engine types
	Amazon Aurora DB
	Comparison of Amazon RDS Aurora with Amazon RDS MySQL

	MariaDB
	Microsoft SQL Server
	MySQL
	Oracle
	PostgreSQL

	Creating an Amazon RDS MySQL DB instance
	Monitoring RDS instances
	Creating a snapshot
	Restoring a DB from a snapshot
	Changing an RDS instance type
	Amazon RDS and VPC
	Amazon RDS and high availability

	Connecting to an Amazon RDS DB instance
	Connecting to an Amazon Aurora DB cluster
	Connecting to a MariaDB instance
	Connecting to a MySQL instance
	Connecting to an Oracle instance

	RDS best practices

	Chapter 11: AWS DynamoDB - A NoSQL Database Service
	Let's first understand what an RDBMS is
	What is SQL?
	What is NoSQL?
	Key-value pair databases
	Document databases
	Graph databases
	Wide column databases
	When to use NoSQL databases?

	SQL versus NoSQL

	Introducing DynamoDB
	DynamoDB components
	Primary key
	Secondary indexes
	DynamoDB Streams
	Read consistency model
	Eventually consistent reads
	Strong consistent reads

	Naming rules and data types
	Naming rules
	Data types
	Scalar data types
	Document types
	Set types

	Creating a DynamoDB table – basic steps
	Adding a sort key while creating a DynamoDB table
	Using advanced settings while creating a DynamoDB table
	Creating secondary indexes – table settings
	Provisioned capacity – table settings
	Auto Scaling – table settings

	Methods of accessing DynamoDB
	DynamoDB console
	DynamoDB CLI
	Working with API
	DynamoDB provisioned throughput
	Read capacity units
	Write capacity units

	Calculating table throughput
	DynamoDB partitions and data distribution
	Data distribution – partition key
	Data Distribution – partition key and sort key
	DynamoDB global and LSI
	The difference between GSI and LSI

	DynamoDB query
	Query with AWS CLI
	DynamoDB Scan
	Reading an item from a DynamoDB table
	Writing an item to a DynamoDB table
	PutItem
	UpdateItem
	DeleteItem
	Conditional writes

	User authentication and access control

	Managing policies
	DynamoDB API permissions

	DynamoDB best practices

	Chapter 12: Amazon Simple Queue Service
	Why use SQS?
	How do queues work?
	Main features of SQS
	Types of queues
	Dead Letter Queue (DLQ)
	Queue attributes
	Creating a queue
	Sending a message in a queue
	Viewing/deleting a message from a queue
	Purging a queue
	Deleting a queue
	Subscribing a queue to a topic
	Adding user permissions to a queue
	SQS limits
	Queue monitoring and logging
	CloudWatch metrics available for SQS
	Logging SQS API actions

	SQS security
	Authentication
	SSE

	Chapter 13: Simple Notification Service
	Introduction to Amazon SNS
	Amazon SNS fanout
	Application and system alerts
	Mobile device push notifications
	Push email and text messaging

	Creating an Amazon SNS topic
	Subscribing to an SNS topic
	Publishing a message to an SNS topic
	Deleting an SNS topic
	Managing access to Amazon SNS topics
	When to use access control
	Key concepts
	Architectural overview
	Access request evaluation logic

	Invoking the Lambda function using SNS notification
	Sending Amazon SNS messages to Amazon SQS queues
	Monitoring SNS with CloudWatch
	SNS best practices

	Chapter 14: Simple Workflow Service
	When to use Amazon SWF
	Workflow
	Example workflow
	Workflow history
	How workflow history helps

	Actors
	Workflow starter
	Decider
	Activity worker

	Tasks
	SWF domains
	Object identifiers
	Task lists
	Workflow execution closure

	Lifecycle of workflow execution
	Polling for tasks
	SWF endpoints
	Managing access with IAM
	SWF – IAM policy examples

	Chapter 15: AWS CloudFormation
	What is a template?
	What is a stack?
	Template structure
	AWSTemplateFormatVersion
	Description
	Metadata
	Parameters
	AWS-specific parameters

	Mappings
	Conditions
	Transform
	Resources
	Outputs

	Sample CloudFormation template
	CloudFormer
	Rolling updates for Auto Scaling groups

	CloudFormation best practices

	Chapter 16: Elastic Beanstalk
	Elastic Beanstalk components
	Architectural concepts
	Web server environment tier
	Worker environment tiers
	Elastic Beanstalk-supported platforms
	Creating a web application source bundle

	Getting started using Elastic Beanstalk
	Step 1 – signing in to the AWS account
	Step 2 – creating an application
	Step 3 – viewing information about the recently created environment
	Step 4 – deploying a new application version
	Step 5 – changing the configuration
	Step 6 – cleaning up

	Version life cycle
	Deploying web applications to Elastic Beanstalk environments
	Monitoring the web application environment
	Elastic Beanstalk best practices

	Chapter 17: Overview of AWS Lambda
	Introduction to AWS Lambda
	What is a Lambda function?
	Lambda function invocation types
	Writing a Lambda function
	Lambda function handler (Node.js)
	Lambda function handler (Java)
	Lambda function handler (Python)
	Lambda function handler (C#)

	Deploying a Lambda function
	AWS Lambda function versioning and aliases

	Environment variables
	Tagging Lambda functions
	Lambda function over VPC
	Building applications with AWS Lambda

	Event source mapping for AWS services
	Event source mapping for AWS stream-based services
	Event source mapping for custom applications
	AWS Lambda best practices

	Chapter 18: Mock Tests
	Mock test 1
	Mock test 2
	Answers to Mock test 1
	Answers to Mock test 2

	Index

