

201 West 103rd Street,
Indianapolis, Indiana 46290

Creating
Web Pages

Todd Stauffer

Absolute Beginner’s Guide to Creating Web
Pages
Copyright 2002 by Que Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, pho-
tocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for dam-
ages resulting from the use of the information contained herein.

International Standard Book Number: 0-7897-2732-3

Library of Congress Catalog Card Number: 2002100458

Printed in the United States of America

First Printing: April 2002

04 04 03 02 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or ser-
vice marks have been appropriately capitalized. Que cannot attest to the
accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accu-
rate as possible, but no warranty or fitness is implied. The information pro-
vided is on an “as is” basis. The author and the publisher shall have
neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book.

Associate Publisher
Dean Miller

Acquisitions Editor
Dean Miller

Development
Editor
Sean Medlock

Managing Editor
Thomas Hayes

Project Editor
Tricia Liebig

Copy Editors
Candice Hightower
Sossity Smith

Indexer
Mandie Frank

Proofreader
Juli Cook

Technical Editor
Lindy Humphreys

Team Coordinator
Cindy Teeters

Interior Designer
Kevin Spear

Cover Designer
Trina Wurst

Page Layout
Brad Lenser

Contents at a Glance

Introduction, 1

Part I: Creating Web Pages, 5

1 Fundamentals of Web Publishing, 7
2 A Crash-Course in Web Design, 23
3 What You Need to Get Started, 39
4 Creating Your First Page, 57

Part II: Design and Conquer, 73

5 Formatting Your Text, 75
6 Visual Stimulus—Adding Graphics, 95
7 Building Hypertext Links, 113
8 Basics Tables, 129
9 Advanced Table Elements and Table

Design, 143
10 Get Splashy: Style Sheets, Fonts, and

Special Characters, 171
11 Advanced Web Images and

Imagemaps, 199

Part III: Building Your Site, 213

12 Creating Sites with HTML Frames, 215
13 Adding Multimedia and Java

Content, 231
14 Site-Wide Styles: Design, Accessibility,

and Internationalization, 251

Part IV: Interacting with Your Users, 263

15 Adding HTML Forms, 265
16 CGIs and Data Gathering, 293
17 Introduction to JavaScript, 307
18 JavaScript and User Input, 343
19 Adding Dynamic HTML, 375

Part V: Web Publishing Tools, 423

20 Graphical Editors, 425
21 Forums, Chats, and Other Add-

Ons, 445
22 Web Publishing Services, 461

Part V: Appendix, 471

A XHTML and CSS Command
Reference, 473
Index, 501

Table of Contents

Introduction 1

Is This The Book for You? 1
How This Book Is Organized 2

Conventions Used in This Book 4

For More Information 4

I Creating Web Pages

1 Fundamentals of Web Publishing 7

A Two-Minute History of the Internet 8

How the Web Works 9
What Is HTTP? 10
What Is HTML? 11
Hypertext and Hyperlinks 12
Uniform Resource Locators 13
The Different Protocols for URLs 14

HTML Versus XHTML 15
Who Sets HTML Standards? 15
Why a New Standard? 16
Which Should You Use? 17

HTML Is Not Programming 17
Markup Fundamentals 18
Decorating with Style Sheets 19
Adding Scripts to the Mix 20

Summary 21

2 A Crash-Course in Web Design 23

The Fundamentals of Page Design 24
Web Design Theory 24
Organizing Your Page 25
Images and Multimedia 27
Interactivity and Scripting 29
What Good Pages Look Like 30

Planning a Site 31
Considering Your Audience 32
Organizing the Site 33
Design Ease and Consistency 35

HTML Trends and Issues 36
Accessibility 36
Internationalization 37
Browser Compatibility 37

Summary 38

3 What You Need to Get Started 39

The Basic Tools 40
Text Editors 41
HTML Editors 42

Other Tools You’ll Want 44
Graphics Editors 44
Animation Tools 45
Multimedia Tools 45
Scripting Resources 46

Finding a Web Server 47
What Is a Web Server? 47
Dealing with an ISP 47
What Software Does Your Server Run? 49
Accessing Your Web Server Space 50

Organizing a Web Site’s Files 51
Types of File Organization 51
Creating the Hierarchy 52
Naming Your Files 53
Updating Your Web Site 54

Summary 55

4 Creating Your First Page 57

Build Your HTML Template 58
Add Document Elements 58
The DTD 59

vi ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

The comment Element 61

Create an HTML Template 61

The Document Head 62
Your Web Page’s Title 63
The <base> Element 63
The <meta> Element 64

The Body Section 65
Entering Paragraph Text 66
The
 Element 68

Saving, Testing, and Validating 69
Saving Your Page 70
Testing Your Page 70
Validating the Page 71

Summary 72

II Design and Conquer

5 Formatting Your Text 75

Organize the Page 76
Add Headings 76
Horizontal Lines 77

Styling Your Text 78
Physical Style Elements 79
Logical Style Elements 81

Paragraph Style Elements 84
The <pre> Element 84
Using <pre> for Tables 85
The <blockquote> Element 86
The <address> Element 88
Marking Changes: <ins> and 89

Using Lists on Your Web Page 90
Ordered and Unordered Lists 90
Definition Lists 93

Summary 94

6 Visual Stimulus—Adding Graphics 95

Images on the Web 96
What Images Can You Use? 97
What Images Should You Use? 98

Creating and Translating Web Images 99
Using Paint Shop Pro 99
Using GraphicConverter 103

The Element 106
Alternative Text 107
Aligning Text and Images 108
Right- and Left-Aligning Images 109
Width and Height 110

Summary 111

7 Building Hypertext Links 113

How Hyperlinks Work 114
The Uniform Resource Locator 114
Relative Versus Absolute URLs 114

The <base> Element 117

Creating Links 118
Linking on the Same Page 119
Building Links Using Images 121

Using Special Links 122
Creating a mailto: Link 122
Creating a Link to an FTP site 123
Gopher Servers 124
Link to Newsgroups 125
Links to Telnet Servers 125

Cool Tricks: Targets and Client-Pull 126
Open a New Window 126
Changing Pages Automatically 127

Summary 128

CONTENTS vii

8 Basics Tables 129

Creating a Table 130
The <table> Element 130
Captions and Summaries 132
Table Rows 133
Table Cell Elements 134
Changing a Cell’s Span 136
Cell and Row Colors 136

Additional Table Attributes 138
The width Attribute 139
The border and align Attributes 140
The cellpadding and cellspacing

Attributes 141

Summary 142

9 Advanced Table Elements and Table
Design 143

Table Design Theory 144
Using Images in Tables 146
Nesting Tables 148

Grouping Columns and Rows 152
Table Row Groupings 153
Column Groupings 155

Frames and Rules 160

Table Design Examples 161
A Row-Centric Table 162
Focusing on Columns 165

Summary 170

10 Get Splashy: Style Sheets, Fonts, and
Special Characters 171

Style Sheets in Theory 172
What Are Style Sheets? 172
Why Use Style Sheets? 173
Understanding CSS and XHTML 174
What Style Sheets Replace 175

Creating Style Sheets 176
The style Attribute 176
The <style> Element 177
Creating Special Classes 179
Using the Element 180
Using the <div> Element 182
Linking Versus Embedding 183

Properties and Styles 185
Text Styles 185
Font Properties 186
Background and Color Properties 188
Alignment and Block Appearance
Properties 189
Styles for Links and Objects 192
First Letter and First Line 193
Special Table Styles 193

Special Characters 195

Summary 197

11 Advanced Web Images and Imagemaps
199

Making Your Images Better 200
Optimizing Web Images 200
Image Compression and Progressive
Encoding 202
Image Transparency 203

Creating Animated Images 205
Jasc Animation Shop 206
VSE Animation Maker 207

Using Imagemaps 207
Creating a Client-Side Imagemap 208
Adding usemap to 208
The <map> and <area> Elements 209
Working with Server-Side Maps 211

Summary 212

viii ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

III Building Your Site

12 Creating Sites with HTML Frames 215

The Great Frames Debate 216
What Frames Are 216
What’s Wrong with Frames? 217
When Should You Use Frames? 218

Adding Frames to Your Site 219
Creating the Frameset 219
<frame> and <noframes> 220
Naming and Targeting Frames 222
Options for <frame> 224
Nesting Framesets 224

Advanced Frames 226
Special Targets and Removing
Frames 226
Offering Options to Users 227
The <iframe> Element 229

Summary 230

13 Adding Multimedia and Java
Content 231

Understanding Multimedia 232
Why Include Multimedia? 233
Understanding Multimedia File Types 233
Linking Versus Embedding 235

Adding Multimedia to Your Pages 237
Adding Hyperlinks 237
Embedding Multimedia 240
Embedding QuickTime 241
Windows Media Movies 244
RealMedia Movies 246
Flash Controls and Movies 247

Working with Java 248
Java Applets 248
Add Applets Using <object> 249

Summary 250

14 Site-Wide Styles: Design, Accessibility, and
Internationalization 251

The Site-Wide Style Sheet 252
The Basic Site 252
Planning the Styles 254
Style Sheet Power 257

Accessibility Through Style Sheets 259

International Issues 261
lang and <q> 261
Table and Block Directions 262

Summary 262

IV Interacting with Your Users

15 Adding HTML Forms 265

The Basics of HTML Forms 266
The <form> Element 267
Other <form> Attributes 268

Creating the Form 269
Text Fields and Attributes 269
The <input> Element 270
Password Entry Boxes 272
Creating Menus 277
Sample Feedback Form 280

Designing Forms Well 281
Form Design Issues 282
Line Breaks, Paragraphs, and Horizontal
Lines 282
Horizontal Lines 284
Using Paragraphs 285

Other Elements for Form Formatting 287
Using Lists for Forms 288
Using Tables for Forms 289
Form Structure 289
Accessibility: Labels and Access Keys 291

Summary 292

CONTENTS ix

16 CGIs and Data Gathering 293

What is CGI? 294
CGI Languages 294
A Simple CGI Script 295
Referencing CGIs 296

How Scripts Work 297
Receiving Form Data 297
The mailto: Option 299
Your Script’s Output 301

Finding and Using Scripts 302
Working with Other’s Scripts 302
Creating Your Own Scripts 305

Summary 306

17 Introduction to JavaScript 307

What Is JavaScript? 308
The JavaScript/Java Relationship 309
JavaScript Versus VBScript 310
How Web Scripts Work 310

Entering Scripts in Your Web
Documents 311

The <script> Element and Script
Hiding 312
Strict Versus Transitional 313
Script Meta Type and <noscript> 315
The “Hello World” Example 315

Creating Functions in JavaScript 317
Declaring Functions 318
Function Calls and Value Return 319
Function Call Example 321

Working with Variables 322
Variable Names 323
Variables, Math, and Assignments 323
Incrementing and Decrementing
Variables 324
Understanding Arrays 325

Controlling Your JavaScript 327
Comparison Operators 327
The if…else Condition 328
Looping Conditionals 329
Break and Continue Your Loops 330
Loops and Arrays 331

Understanding JavaScript Objects 332
Creating New Objects 333
More on Methods 335
Built-in Objects 336
The Math Object 339
The Date Object 340

Summary 341

18 JavaScript and User Input 343

Understanding JavaScript Events 344
Types of Event Handlers 345
The this Keyword 347

Introducing the Document Object Model 347
Understanding Scope and Pointers 349
Working with High-Level Objects 351

JavaScript and HTML Forms 356
The form Object 356
Form Error Checking with JavaScript 357
Client-Side JavaScript 361

JavaScript for Redirection and Frames 365
Browser Redirection 365
The JavaScript Link Menu 367
JavaScript and HTML Frames 369

Summary 373

19 Adding Dynamic HTML 375

What Is Dynamic HTML? 376
The Document Object Model
Revisited 376
Browser Compatibility 377
CSS and CSS Positioning 378

x ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Mouseovers: Changing Things Without
Clicks 378

Basic Image Mouseover 378
Remote Image Mouseover 380
Preloading Images 383

CSS Positioning and Layers 384
Basic CSS Positioning 385
Overlapping Elements and z-index 389
Nesting Positioned Elements 392
Relative Positioning 394

Dynamic Positioning and Layers 395
CSSP Layers 395
Dynamic Positioning 397
CSSP Visibility 400
Netscape Layers 404
Netscape’s Inline Layer 407
Scripting Netscape’s Layers 407

Cross-Browser DHTML Example 410
Cross-Browser APIs 416

Dynamic Styles and Classes 417
Scripting Styles and Properties 417
Dynamic Classes and IDs 419

Summary 421

V Web Publishing Tools

20 Graphical Editors 425

Netscape Composer 426
Where to Get It 426
Composer’s Strengths 426
Composer’s Weaknesses 427
Composer’s Highlights 428

Adobe GoLive 430
Where to Get It 430
GoLive’s Strengths 431
GoLive’s Weaknesses 432
GoLive’s Highlights 432

Macromedia Dreamweaver 434
Where to Get It 435
Dreamweaver’s Strengths 435
Dreamweaver’s Weaknesses 438
Dreamweaver’s Highlights 439

Microsoft FrontPage 2002 440
Where to Get It 441
FrontPage’s Strengths 441
FrontPage’s Weaknesses 442
FrontPage’s Highlights 443

Summary 444

21 Forums, Chats, and Other Add-Ons 445

Creating and Hosting Forums 446
Forum Types and Technologies 446
Choosing a Server-Side Forum 447
Installing a Server-Side Forum 449
Hosted Forum Solutions 451

Add Live Chat to Your Site 453

Counters and Web Statistics 455
Accessing Your Web Statistics 455
Adding a Web Counter 457

Server-Side Includes 458

Summary 460

22 Web Publishing Services 461

Finding the Right Web Host 462

Using Free Servers 464
America Online Hometown 464
Yahoo! GeoCities 465
Lycos Tripod 465
Apple’s iTools 466

E-Commerce Solutions 467
Yahoo! Store 468
Catalog.com 468

CONTENTS xi

Oracle Small Business 468
Miva Merchant Servers 469

Summary 470

VI Appendix

A XHTML and CSS Command
Reference 473

Document Elements 474
DTD Declarations 474
The <html> Element 474
The <head> Elements 474
The <body> Element 476
The Comment Element 476

Styles and Scripting 476
The <script> Element 476
The <noscript> Element 477
The <style> Element 477
Style, Script, and Universal
Attributes 477
class 478
id 478
style 478
dir 478
lang 479

General Markup 479
Formatting Blocks 479
Formatting Text 480
Creating Lists 482

Images, Hyperlinks, Java, and Plug-Ins 483
Adding Images 483
Adding Hyperlinks 484
Imagemaps 485
Multimedia Content 487
Java Applets 487

Creating Tables 487

Creating Framesets 490

Creating Forms 492
The <form> Element 492
<textarea> 493
The <input /> Element 493
The <select> Element 495

CSS 496

Index 501

xii ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

About the Author
Todd Stauffer is the author or co-author of more than 25 computing books,
including HTML Web Publishing 6-in-1, HTML by Example with Ann Navarro, and
Creating Your Own AOL Web Page with Andy Shafran. Stauffer has written for a num-
ber of magazines, including Publish magazine, Silicon Alley Reporter, Working Woman,
and MacAddict.

Todd has worked as an advertising writer, technical writer, and magazine editor, all
in consumer-oriented computing. Outside of computing, he’s also a humor colum-
nist and a travel/automotive writer. You can reach him via his Web site, at
http://www.mac-upgrade.com.

Acknowledgments
I’d like to thank Todd Green and Dean Miller, who gave me the opportunity to write
this book, helped develop the outline, managed submissions, and acted as under-
standing taskmasters throughout the process. Thanks also to Tricia Liebig, Sean
Medlock, and Lindy Humphreys for their hard work on the manuscript.

Sections of this book are updated and adapted from my earlier work, HTML Web
Publishing 6-in-1, published in 1997 by Que. I’d like to thank the editorial team who
worked on that book, including Jane Brownlow, Mark Cierzniak, Kate Givens, and
Henry Wolin. The material from that book that survives in this one (a lot has
changed in Web publishing, but not everything) was developed and managed by
those great folks.

As always, thanks to Neil Salkind and the entire staff of the Studio B agency for
keeping me clothed and fed and to Donna Ladd for keeping me going strong.

CONTENTS xiii

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do bet-
ter, what areas you’d like to see us publish in, and any other words of wisdom
you’re willing to pass our way.

As an Associate Publisher for Que, I welcome your comments. You can fax, e-mail,
or write me directly to let me know what you did or didn’t like about this book—as
well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every mes-
sage.

When you write, please be sure to include this book’s title and author as well as
your name and phone or fax number. I will carefully review your comments and
share them with the author and editors who worked on the book.

Fax: 317-581-4666

E-mail: feedback@quepublishing.com

Mail: Associate Publisher
Que Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

INTRODUCTION
The Internet has come a long way. In fact, even if you’re only a few months past 10 years
old, you’ve seen the Internet and the World Wide Web grow up to affect nearly every
aspect of global culture—education, commerce, politics, and entertainment. It’s been a
fast change and one that affects most of us either personally, professionally or both.

One of the results has been the need for Web publishing skills for many knowledge
workers, educators, and professionals. Hobbyists, club members, and parents can
benefit as well from knowing a little something about Web publishing. In fact, Web
publishing may one day be the “typing” of the future—nearly anyone with a sec-
ondary education will need a firm grasp on the basics.

For now, it’s an important bullet point on many résumés as well as the key to many
plum assignments, both paid and unpaid. If you’re ready to put together and man-
age your own Web site, then it’s time to get a book on the subject and start learning.
The Absolute Beginner’s Guide to Creating a Web Page is the perfect place to start.

Is This the Book for You?
You can divide the study of Web publishing into two approaches—those that focus
on the underlying code-level technologies and those that teach the broad strokes of
Web publishing via graphical Web editors. This book is a friendly guide to the first
of these approaches, showing you how to dig into the HTML and XHTML standards
to build Web pages, manage Web sites, and augment them with further levels of
complexity—style sheets and scripting among them. At the end of this book, you’ll
understand many of the more complex issues involved in Web publishing, even if
you don’t have a single Web page to your name.

Let me stress, however, that this book is not for everyone. The Absolute Beginner’s
Guide to Creating a Web Page is designed to take you from basic computer literacy—
you understand how to create files and type in Windows, the Macintosh OS, or a
variant of Unix—and help you build, manage, and maintain your first Web pages
and Web sites. You’ll do this by building, chapter by chapter, an understanding of
the authoring codes (for creating Web pages), the graphical and multimedia tech-
nologies, and eventually the scripting and programming basics necessary for a full
interactive and interesting Web site.

If you’re interested in Web publishing skills for use in your company, organization,
or education, you should find this book a great place to start. All the principles are
outlined, terms are defined, and fundamentals are explained. And that’s done with-
out the “cutesy” approach that some other beginner series can devolve into.

But I also want to be honest about the approach. If your goal is a “Web Page in a
day,” this book isn’t for you. Likewise, if you plan to begin your foray into Web pub-
lishing using a particular graphical tool, such as Macromedia Dreamweaver, I’d sug-
gest a book that specifically discusses that tool.

I believe that the approach in the Absolute Beginner’s Guide to Creating a Web Page is
the best one, because it’s still very important to understand the underlying code of
today’s Web pages to truly soak up a new skill. Although graphical tools can help
(and, in fact, I’ll cover a few of them in Chapter 20, “Graphical Editors”), anyone
who wants to really understand Web pages and put together entire Web sites should
consider the code-level approach that is found in these pages. Fortunately, learning
XHTML, style sheets, JavaScript, and even Dynamic HTML really isn’t all that
tough—in my opinion, a pricey Web editor can sometimes just get in your way!

How This Book Is Organized
This book is very much a tutorial, particularly in the first 19 chapters. It moves lin-
early from an introduction and overview of the basic Web publishing concepts,
through the fundamentals of creating a Web page, and on to more complex topics.
Here’s a breakdown:

Part I: Creating Web Pages—In this first section you’re introduced to the con-
cepts and terms you’ll see throughout the book, including the Internet, the Web,
HTML, XHTML, style sheets, JavaScript, and many more. Chapter 2, “A Crash-
Course in Web Design,” offers a primer on Web design fundamentals and Chapter 3,
“What You Need to Get Started,” covers the tools you’ll need before setting out on
your Web authoring adventure (text editors and applications to manipulate graph-
ics). This section ends in Chapter 4, “Creating Your First Page,” with the creation of a
sample Web page and a template for future pages.

Part II: Design and Conquer—In this second section you learn most of the basics
of creating Web pages using XHTML. You begin with basic text and paragraph for-
matting, including headings, text styles, and special types of paragraph blocks,
including bulleted and numbered lists. Chapter 6, “Visual Stimulus—Adding
Graphics,” introduces you to Web images, including how to add them to pages and
what file formats you can use. Chapter 7, “Building Hypertext Links,” is all about
creating hyperlinks—the technology at the heart of the Web—including links that
point to external Web pages and those that point to parts of the current document.
Chapter 8, “Basics Tables,” introduces you to XHTML tables, which can be used, as
discussed in Chapter 9, “Advanced Table Elements and Table Design,” for formatting
entire pages. Chapter 10, “Get Splashy: Style Sheets, Fonts, and Special Characters,”
discusses style sheets: the “modern” way to change the appearance of text, alter

2 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

margins, and otherwise control the look of your Web pages. Chapter 11, “Advanced
Web Images and Imagemaps,” finishes out the section with an in-depth look at Web
images, including how to optimize them for use in your pages.

Part III: Building Your Site—Part III moves on to some of the Web-building tech-
nologies that can be applied to an entire Web site—a collection of individual pages
that work together. Chapter 12, “Creating Sites with HTML Frames,” begins with
XHTML Frames, which enable you to split a Web browser window into different
frames so that more than one Web page can be displayed at once. Frames are a
great way to quickly create an “interface” for viewing many different Web docu-
ments. Chapter 13, “Adding Multimedia and Java Content,” discusses multimedia
content—movies, animations, and audio—along with Java technology, which actu-
ally enables you to place small computer programs on a Web page with which your
users can interact. Chapter 14, “Site-Wide Styles: Design, Accessibility, and
Internationalization,” finishes this section with a look at how you can use the style
sheet specifications to select and alter the look of all the documents that comprise
your Web site.

Part IV: Interacting with Your Users—In this section you learn some of the
technologies you can use on the Web to receive input from your users and respond
to that input. Chapter 15, “Adding HTML Forms,” begins with a primer on XHTML
forms, which enable you to add entry boxes, checkboxes, menus, and other controls
to your Web documents. Chapter 16, “CGIs and Data Gathering,” introduces you to
CGI programming, which is often used in conjunction with XHTML forms to respond
to user input via forms. Chapter 17, “Introduction to JavaScript,” and Chapter 18,
“JavaScript and User Input,” focus on JavaScript, a popular scripting language that
you can use to automate portions of your Web page. Chapter 19, “Adding Dynamic
HTML,” covers some topics that are often called “dynamic HTML” or DHTML,
because they combine JavaScript and style sheets to make the appearance of Web
pages seem to change in response to choices that the user makes.

Part V: Web Publishing Tools—The last part of the book focuses on software and
services you can use to extend your Web publishing experience. Chapter 20,
“Graphical Editors,” covers some popular graphical Web-authoring packages, such
as Macromedia Dreamweaver and Microsoft FrontPage. Chapter 21, “Forums, Chats,
and Other Add-Ons,” focuses on enhancements for your Web server—specifically,
scripts and other programs you can use to add page counters, interactive forums,
and chat rooms. Chapter 22, “Web Publishing Services,” ends with a look at some
different Web server solutions, including free Web servers and companies that offer
e-commerce solutions.

INTRODUCTION 3

In addition to these sections, this book also includes an appendix that features a
quick reference to many of the elements in the XHTML specification and the CSS
style sheet standards.

Conventions Used in This Book
As you’re reading you’ll notice that a few different elements are used within the
body of the text to break things up and to offer some additional information. Those
items include

Notes are designed to define terms or give you additional important or interesting infor-
mation about a particular topic. You should read the notes you come across, as they
generally add something important to the text.

A tip is usually a suggestion or shortcut that’s along the same lines as the body text, but
a little off topic. If you find the tip useful, you can make use of it in your Web author-
ing; otherwise, it should be safe to ignore.

You’ll also find sidebars in some chapters that go off on an interesting tangent, gen-
erally to simply offer more information than you really need on a given topic. If you
want to ignore sidebars, you should be able to without trouble.

As you read the text, you’ll come across some typographic conventions as well.
When certain elements and attributes, particularly those that are special parts of the
XHTML specification, are mentioned in the text, they’ll appear in a different font,
from the regular body text. Items that you’re meant to type, on the other hand, will
often appear in bold. And code listings that require more than one line will be:
separated from the text.

And will often appear in small chunks between the paragraphs

that explain that code.

For More Information
To ask a question, report an error, or for more information on the this book, visit
http://www.mac-upgrade.com/abgcwp/ on the Web. There you’ll find updates from me,
Q&As (if I receive any questions), and links to my e-mail address and online forums
for asking questions or making comments.

Thank you for considering this book and I wish you the best of luck—and skill—in
your Web publishing projects!

4 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Tip

CREATING WEB
PAGES

IPART

T

1

FUNDAMENTALS
OF WEB
PUBLISHING
he Internet has quickly become so completely integrated into our lives
that there’s no assessing the full nature of its value. Along with e-mail
and other technologies, the World Wide Web is a huge part of the
Internet phenomenon. However, those Web pages don’t get there by
themselves. Knowing something about Web publishing is important for
most anyone, particularly those of us with something to create, discuss,
share, or sell. If you’ve ever thought that you’d like to create a Web
page, build a Web site, or just know a little something about how this
all works, you’re ready to learn more about Web publishing.

This chapter discusses the following:

■ A brief history of the Internet and the World Wide Web

■ The basics of how the Web works, including the protocols and
acronyms you see throughout this book

■ The present and future of HTML and XHTML, including what
exactly you need to learn

■ The fact that HTML isn’t as difficult as programming and, in
fact, is surprisingly easy to learn

■ Although HTML isn’t programming, Web publishing does offer
other levels of complexity, which are discussed here and in later
sections of this book

A Two-Minute History of the Internet
The Internet began as the ARPANet, a computer networking project funded by the
U.S. government’s Advanced Research Projects Agency in the late 1960s to create a
computer network that could enable continued communications during war or natu-
ral disasters. What was most original about the ARPANet was the approach it took—
the network was decentralized, enabling packets of data to find their way from node
to node to reach a destination. This meant that data could take more than one path
to its final destination, making the network more resistant to problems.

In the early 1980s, TCP/IP (Transmission Control Protocol/Internet Protocol) was cre-
ated and became the dominant system for swapping packets on the ARPANet. At
about this same time, it became clear that TCP/IP would be used to interconnect var-
ious other smaller networks of computers, making it possible to share data on a
national or even global scale. The term “Internet” was first used to suggest this
larger sort of network.

In late 1989, the ARPANet project was disbanded, but by that point universities and
scientific organizations had taken over the Internet. In the early 1990s, corporations
began to use the Internet for e-mail communication, but a ban on commercial traf-
fic by the National Science Foundation kept the Internet from being a medium for
commerce. That ban was lifted in 1991, making the Internet more widely available
to individuals, corporations, and institutions outside the government and higher
learning, as well as for totally commercial uses such as direct sales and advertising.

In 1991, Tim Berners-Lee of the CERN, in Switzerland, used a NeXt computer to cob-
ble together the code for what would soon become the World Wide Web. By 1993,
Mosaic, a graphic Web browser application, had been released. In 1994, Marc
Andreesen, one of the original programmers of Mosaic at the University of Illinois
National Center for Supercomputing Applications, moved to California and started
the Netscape Corporation with venture capitalist and businessman Jim Clark.

Soon after releasing commercial versions of its Web browser for personal computers,
Netscape introduced the Netscape Commerce Server. This was a Web server applica-
tion that not only enabled an organization to post Web sites and send Web pages to
browsers running on personal computers, but also to accept credit card numbers
over secure connections, where the data that’s transferred is encrypted so that it can’t
be read by anyone but the sender and receiver. Throughout the 1990s, the Internet
saw intense growth both as a communications medium and as a mechanism for
commerce.

Many upgrades and millions of users later, the Internet and the World Wide Web
remain an important part of the communications infrastructure for most of the
world. The Internet and the Web are increasingly available via non-PC tools such as

8 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

mobile phones and handheld computers. Television, radio, and print media often
refer consumers to the Internet for more information. In times of crisis, the Internet
can be the first method by which you reach someone or learn new information.

However, as important as the Internet is to huge governments and global corpora-
tions, it’s still accessible to the average person, enabling you to create your own Web
sites and participate whether your goal is commercial, educational, or more infor-
mal. All it takes is a little knowledge and some basic computing tools. Let’s start
with the knowledge.

It’s easy to confuse the Internet and the Web, but they are different. The Internet is the
global network of wires, servers, and protocols that enables millions of computers to
communicate with one another. The Web is a service that’s made available over the
Internet. It’s just one means of accessing information and communicating via the
Internet, along with e-mail, Internet chat, file transfer, and others.

How the Web Works
The World Wide Web isn’t a particular place on the Internet, nor is it a particular
computer or something that you can “log into.” Instead, the best way to describe the
Web is as a service on the Internet. Using certain protocols, computers that are desig-
nated as Web server computers—because they’re connected to the Internet and run
Web server software—can respond to requests from client computers running Web
browser software.

All a computer needs to be a Web server is an Internet connection and Web server soft-
ware. In fact, such software is built into most modern operating systems—Windows, the
Mac OS, and Unix all offer Web servers, sometimes as simpler “Web Sharing” solutions.
The Web server sits on the Internet, waiting for Web browser applications (Netscape,
Internet Explorer, and their ilk) to contact them and ask for documents. The server then
responds by sending the document to the address specified by the Web browser.

Every computer on the Internet has an address. When a request comes into a Web
server computer from a particular address, it responds by sending the requested file
back to that address. When the browser application receives that file, it reacts
accordingly, generally by displaying the file as a Web page, image, or multimedia
element within the browser’s own window. In other cases, the browser might recog-
nize that it can’t handle the file, so it hands it off to a helper application or saves the
file in a designated place on the client computer’s hard disk.

CHAPTER 1 FUNDAMENTALS OF WEB PUBLISHING 9

Note

Note

During a typical Web surfing session, this back-and-forth communication happens
repeatedly for each page—not only do the words need to be downloaded, but so does
every image and multimedia feed (sounds, digital movies, and so on). This is possi-
ble because both computers are connected to the Internet. They both recognize a
protocol for transmitting and receiving commands, and the client computer can rec-
ognize the language that’s used to re-create and display the Web page in the Web
browser application. So, we’re dealing with three different protocols or languages
here.

The first of these protocols is TCP/IP. This is how computers are connected to one
another on the Internet. Each computer is given an address, which is then used to
identify the computer and enable it to send commands and data from one place
to another. If you have a computer that you plan to use on the Internet, you need
to establish a TCP/IP connection for that computer, whether it’s via a telephone
modem, cable modem, DSL connection, or some other means, such as a corporate
or institutional network-based connection.

After you have that TCP/IP connection up and running, launch a Web browser
application, which uses the Hypertext Transfer Protocol (HTTP) to trade commands
and communication. Then, the Web server sends Hypertext Markup Language
(HTML) documents to your Web browser, which displays them to you. Let’s look at
these protocols—HTTP and HTML—more closely.

What Is HTTP?
The Hypertext Transfer Protocol (HTTP) is the underlying protocol that makes it pos-
sible for Web browsers and Web servers to communicate. A fairly simple protocol, it
isn’t terribly interesting to most Web designers because it’s used exclusively by the
Web browser and Web server computers to communicate. So, you don’t necessarily
need to know the intimate details of how HTTP works in order to be a Web author.
But the basics don’t hurt.

The Web browser requests a connection, via an HTTP command, with the Web server
computer. If the Web server computer is able to grant the request, the Web browser
then requests particular files that it believes are available on that Web server com-
puter. If the files are available, the Web server computer sends them to the Web
browser, which can then display the files if it’s capable of doing so.

Note that HTTP isn’t the only protocol that’s in use on the Internet. There are also
protocols designed for transferring files (File Transport Protocol, or FTP) or transfer-
ring e-mail messages (Post Office Protocol, Simple Mail Transport Protocol), among
others. In fact, there are even variations on HTTP, such as Secure HTTP (SHTTP),
which uses an encrypted, or coded, communication between the Web browser and

10 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

server to transmit and receive secure information, such as Web commerce informa-
tion and credit card numbers.

But the protocol tends to work behind the scenes. Indeed, the only place where you
really need to worry about the protocol you’re using is when you’re creating hyper-
links, as discussed a little later in this section. (You also dig a little deeper into HTTP
when you’re creating HTML forms, discussed in Chapters 15, “Adding HTML Forms”
and 16, “CGIs and Data Gathering.”)

Although newer versions of HTTP are under development, the most common version is
HTTP 1.1, which differs from the original in that it enables a connection between a
browser and server to stay open longer, resulting in slightly better performance.

What Is HTML?
The Hypertext Markup Language (HTML) is a series of standard codes and conven-
tions designed to create pages and emphasize text for display in programs such as
Web browsers. Using HTML, you can create a Web page that includes formatted text
and commands that cause the Web browser to load and display images or other
multimedia elements (movies, sounds, and animations) on that page.

A Web page is defined as a single HTML document, regardless of its length. When view-
ing a single Web page in your browser, you may not have to scroll the page at all, or
you may have to scroll through many screens. In either case, you’re viewing just one
Web page.

HTML’s name gives you a hint as to what it is—it’s a markup language, which distin-
guishes it, primarily, from a programming language. In general terms, HTML is a set
of instructions that tells a Web browser how certain text and images should be dis-
played on the page. In most cases, this is done using commands that dictate the
organization of a document. For example, an HTML document might include a
command, like the following, that tells the browser that certain text is to be regarded
as a heading in the document:
<h1>Welcome to My Page</h1>

The <h1> and </h1> surrounding the heading text are called tags, and they make up
the <h1> element, which tells a Web browser that the text between the tags is a “level
one” heading. The browser then knows to treat this text differently than regular
paragraph text, or text that is supposed to be a bulleted list.

CHAPTER 1 FUNDAMENTALS OF WEB PUBLISHING 11

Note

Note

Likewise, an HTML document can include a command that tells the Web browser to
load an image file and place it on the page:

This code tells the Web browser to load an image called image.jpg and place it on the
Web page.

Even the images and multimedia you see on a Web page are part of the markup of
HTML. Whereas in a Word document images are embedded as part of the document,
an HTML document points to the location of image files, which must be individually
available alongside it. Every HTML document is nothing more than a plain text doc-
ument and no images or multimedia are a part of that HTML document.

So, when a Web browser reads an HTML document, it also reads instructions for
loading and positioning any images or multimedia files that you’ve decided to
include. Among those instructions, an HTML document almost invariably includes
instructions for creating a hyperlink—a link to other HTML documents.

Hypertext and Hyperlinks
One of the keys to HTML—and, by extension, a key to the way the Web works—is its
support of hypertext links. Using special commands in HTML, a Web author can
change certain text to make it “clickable.” When the user clicks hypertext, as shown
in Figure 1.1, that user’s Web browser generally responds by loading a new Web
page. (I say “generally” because sometimes clicking hypertext will cause a helper
application such as RealAudio or Telnet to appear, or it may cause a file to be down-
loaded to your hard disk.)

12 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 1.1

Hypertext links

usually appear

on a Web page

in a different

color and under-

lined.

However, not all links are necessarily text—images can also be clickable. In that
case, it’s more appropriate to call the link a hyperlink instead of hypertext, but it’s
not terribly important. The terms are basically interchangeable.

What’s more important is recognizing what a big part hyperlinks play in Web pub-
lishing and the World Wide Web. Nearly every page on the Web is in some way
linked to every other page. On a smaller scale, hyperlinks make it important for you
to consider the organization of your site. They also make it possible for your Web
page to take part in a larger world of related pages.

How is it possible to link to all these pages? Using HTML markup, you simply create
a link that points the Web browser to another address on the Web. Every page on
the Web (and most other Internet resources) has a special address that uniquely
identifies it, enabling the Web browser to specifically request that page. Those
addresses are called Uniform Resource Locators (URLs).

This book is much easier to read if you say “URL” like the name “Earl” instead of “You-
are-ell.”

Uniform Resource Locators
Most Internet services have some sort of addressing scheme so you can find a partic-
ular resource easily. For each service, the format of these addresses tends to be a bit
different.

For example, you would send an e-mail message to my America Online account
using the address tstauffer@aol.com in an e-mail application. On the other hand, to
access the AOL public FTP site (where you might download the AOL software appli-
cation), you would enter the following address in your FTP application: ftp.aol.com.

Web browsers are capable of accessing many different types of Internet services, and
the Web is about accessing individual documents. So, the URL is a combination of
addresses, such as ftp.aol.com, and some additional elements that allow you to spec-
ify the type of Internet service and the particular document you’d like to retrieve.
That way, URLs can be used to access, by address, most any document or service
that’s accessible via a Web browser. An URL follows the format:
protocol://internet_address/path/filename.ext

or
protocol:internet_address

Here’s an example of an URL to access a Web document:
http://www.microsoft.com/windows/index.html

CHAPTER 1 FUNDAMENTALS OF WEB PUBLISHING 13

Note

Look at this address carefully. According to the format for an URL, http:// is the pro-
tocol and www.microsoft.com is the address of Microsoft’s Web server computer. That’s
followed by a slash (/) to suggest that a path statement is coming next.

The path statement tells you that you’re looking at the document index.html, located
in the directory windows.

If you’re familiar with DOS, Windows, or Unix, you probably recognize path statements
straight away. If you use the Mac OS, you simply need to realize that a path statement
offers directions to a specific file on the server computer’s hard drive. A Web browser
needs to know in exactly which directories and subdirectories (folders and subfolders) a
file can be found, so a path statement is a standard part of any URL.

The two basic advantages to URLs are:

■ First, they enable you to indicate explicitly the type of Internet service
involved. HTTP, for example, indicates the Hypertext Transfer Protocol.
However, a URL could easily include a different protocol. You’ll look at this
part of the URL in a moment.

■ Second, the URL system of addressing gives every single document, program,
and file on the Internet its own unique address.

The Different Protocols for URLs
HTTP is the protocol most often used by Web browsers to access HTML pages. Table
1.1 shows some of the other protocols that can be part of an URL.

TABLE 1.1 Possible Protocols for an URL
Protocol Enables Access to…

http:// HTTP (Web) servers

https:// Some secure HTTP (Web) servers

file:// HTML documents on your hard drive

ftp:// FTP servers and files

gopher:// Gopher menus and documents

news:// A Usenet newsgroup server

news: A particular Usenet newsgroup

mailto: An e-mail message addressed to a particular e-mail address

telnet: A Remote Telnet (login) server

14 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

By entering one of these protocols, followed by an Internet server address and a path
statement, you can access nearly any document, directory, file, or program available
on the Internet or on your own hard drive. As you can see in Table 1.1, URLs extend
beyond Web servers to other types of Internet protocols. FTP servers are used specifi-
cally for transferring files (as opposed to viewing those files). Gopher servers were the
(largely defunct) precursors of Web servers that made plain-text documents avail-
able for retrieval. A Telnet server is used for remote login connections, where you
enter a username and password, and then use command-line syntax to accomplish
things on the server computer. Most Web browsers can display FTP site listings and
Gopher menus, and some can send e-mail messages, but most require a helper
application for Telnet access.

The mailto:, news:, and telnet: protocols have slightly different requirements for cre-
ating an URL. mailto: is followed by a simple e-mail address, news: is followed by just
the newsgroup name, and telnet: is followed by just a server address (no path state-
ment).

HTML Versus XHTML
As you’ve seen, HTML is a markup language designed to combine text, multimedia,
and hyperlinks to create a Web page. HTML is also a moving target, though,
because several different versions have been introduced since it first appeared in the
early 1990s. Although each version has built upon the last, and most Web browsers
are designed to be “backward-compatible” with previous versions, it’s important to
know something about current and future versions of HTML.

Who Sets HTML Standards?
The World Wide Web Consortium (http://www.w3.org) is responsible for creating the
specifications that other companies adhere to (for the most part) when creating such
things as Web browser applications and devices for viewing Web pages. The W3C is
an industry group, founded by Tim Berners-Lee, that includes most of the major
players in the corporate world of Web development (such as Microsoft, Netscape,
AOL, and AT&T).

One of the tasks the W3C undertakes is maintaining the HTML specification.
Because technology is always changing, the W3C constantly works on new versions
of the HTML standard. Every so often, it publishes working drafts that attempt to cod-
ify the advances in technology and capabilities of HTML and the Web, while keep-
ing in mind the needs of the majority of Web browsers and users. (For instance, the

CHAPTER 1 FUNDAMENTALS OF WEB PUBLISHING 15

Note

W3C might reject or alter an element that one of the browser companies invents
because it only works in visual Web browsers, leaving out users of text-based
browsers or browsers for the visually impaired.)

After a working draft has been published and is bandied about by peers and the
public for a while, it becomes final and is published as the official recommendation.
Then, Web browsers and authoring tools implement the parts of the recommendation
that they haven’t already (by the time the specification is official, most companies
have rolled in the majority of the new elements discussed at the recommendation
stage) and then release new versions of their products. While browser companies
aren’t forced to follow the specification set by the W3C, failing to do so means the
pages created by Web authors may be incompatible in different browser versions. So,
most of the browser companies attempt to keep up with the standards.

The HTML specification has gone through this updating process many times,
through various versions, from an HTML 1.0 standard to the most recent HTML 4.01
standard (finished in 1999). Since then, HTML development has been focused on
making HTML’s core elements compatible with XML (eXtensible Markup Language),
a newer standard that is designed to be a foundation for many other markup lan-
guages. XML can be used to create and define markup languages that are specific to
certain applications, industries, and so on. Because of the power of XML, one of the
W3C’s recent goals has been to recast, or rewrite, HTML in XML so that the standards
are compatible. At the same time, it’s done everything it could to keep the new
HTML as similar to the old HTML as possible, so as not to introduce too many com-
patibility problems.

Why a New Standard?
The result of this recasting of HTML is called XHTML. While it may seem that
changing the name to XHTML would mean it’s a really big deal, the truth is the cur-
rent version, XHTML 1.0, is only slightly different than its predecessor, HTML 4.01.
XHTML does have a few differences, but mostly it’s just a bit more strict than HTML
has been in the past, requiring that authors be more diligent in the way they imple-
ment their Web pages. Overall, though, it’s easy enough to grasp.

Why the new standard? Essentially, as more Web browsers support XML, XHTML will
become only one module of many different XML-based markup languages that can
be understood and displayed by browsers and other applications. That makes it pos-
sible, for example, to create a math-specific markup language to display complex
mathematical formulae in pages rendered by XML-compliant applications.

Strict adherence to the XHTML standard will also make the future a bit easier to
cope with. Already many different types of devices and applications are used to

16 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

access the Web, from phones and handheld computers to devices used by the physi-
cally challenged. XHTML is designed to take all those browsers into account. The
better your code conforms to the standard, the better it will render in a variety of
circumstances.

Which Should You Use?
It may seem obvious that you should use the latest standard, XHTML 1.0, but it
actually isn’t quite that simple. The problem is, even within the XHTML 1.0 stan-
dard, there are two basic approaches: a strict approach and a transitional approach.
While using strict XHTML would seem ideal, doing so can have an unintended
drawback—it can fail to work in older Web browser applications. Although the vast
majority of computer users upgrade their Web browsers fairly regularly, there are
still quite a few older computers out there, with older browsers that may not recog-
nize all the changes XHTML requires.

So, you have to decide if you’ll work with strict XHTML or transitional XHTML. In
fact, you have to declare one or the other within your Web document, as discussed
in Chapter 4, “Creating Your First Page.” Throughout this book, you’ll focus on the
strict XHTML commands and settings. However, under some circumstances I’ll also
show you the transitional options, when they differ. That way, you can opt to use a
transitional approach to XHTML, which simply includes more of the older com-
mands and properties, while knowing the difference between the two.

Neither the strict approach nor the transitional approach is right or wrong. Eventually
(we’re talking years), the strict approach will be more completely supported by Web
browsers and recommended more stringently, so that non-graphical Web browsers and
other devices can access your data. For the immediate future, however, using the transi-
tional elements and properties is perfectly acceptable.

HTML Is Not Programming
You might be a little intimidated by all these acronyms, abbreviations, and
specifications-speak. Don’t be. Heck, I had to look most of that stuff up as I was writ-
ing this, just to make sure I was up-to-date! In most cases, HTML and XHTML con-
cepts are surprisingly simple after you have the basic sense of the way the markup
works.

It may be comforting to keep repeating to yourself that HTML isn’t anywhere near
as complex as programming. Whereas programming is the process of creating scripts
or applications using complicated computer languages such as C++ or Java, creating
Web pages is generally referred to as authoring. That’s because most of what you’re

CHAPTER 1 FUNDAMENTALS OF WEB PUBLISHING 17

Note

doing is simply entering text, and then adding codes in and around that text to
organize it on the page. From there, you add elements that cause images or multi-
media to appear on the page, or elements that make the page look better. That’s
what a good portion of this book deals with and it’s all you need to know to put
together informative, organized Web pages.

Beyond basic XHTML markup, two other Web publishing concepts are discussed in
this book. The first concept is style sheets, which make Web pages look pretty (or at
least different), with a variety of sizes, fonts, colors, and so on. The second concept is
scripting, which actually is programming, but on a smaller scale and used in tandem
with XHTML markup and style sheets.

Markup Fundamentals
While scripting and style sheets can get a little involved, the markup itself is pretty
straightforward. Essentially, you type text on a page, and then you add elements to
the page to organize it. HTML and XHTML have only two basic types of elements—
empty elements and non-empty elements.

Empty elements do something on their own—they add a line to the page, add an
image to the page, or cause a multimedia file to be loaded and displayed. One
example is a simple element that’s used to create a horizontal line on the page:
<hr />

Non-empty elements, also called containers, are used to do something to the text that
they surround. For example, if you wanted to strongly emphasize certain text on the
page, you could do so with strong tags surrounding the text:
This is a very important point.

Notice the slash. In both HTML and XHTML, the slash is used to indicate the closing
tag of a non-empty element, such as the strong element. In XHTML, it’s also impor-
tant to put that closing slash in an empty element, such as the horizontal rule tag
shown earlier. In older HTML implementations, the trailing slash wasn’t necessary.

The trailing slash in an empty element is often added with a space for readability, such
as <hr />. The space isn’t required, though, so <hr/> would be valid, as well.

HTML and XHTML must be much more complicated than this, right? Otherwise, it’s
tough to justify the other hundreds of pages in this book. Well, they are a bit more
complicated, but not so much in theory as in practice. A good deal of getting to
know HTML or XHTML is understanding the element attributes, which are simply
used to fine-tune the way a particular element appears or acts on the page. For
example, consider the basic tag for placing an image on the Web page:

18 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

The portion of the tag is really the complete image element, although it
wouldn’t be of much use without the src (source) attribute that tells the image ele-
ment what file to locate. Beyond that attribute are others, such as the alt (alterna-
tive text) attribute that offers text that can be displayed when the image can’t be, or
the align (alignment) attribute that can be used to align the image, as in the follow-
ing:

Now you see how elements can get more complicated—they tend to offer a lot of
options.

If you’re familiar with previous versions of HTML, these lines of code may look
slightly different from what you’ve seen. The examples in this book conform to the
syntax guidelines for XHTML coding, which include the following:

■ XML is case-sensitive, so all elements should be lowercase, such as <p>, </p>,
and
.

■ All elements must have closing tags or trailing slashes, even if they are empty
elements, such as <hr />.

■ All attributes must have quotes around them, such as <img src=”file.jpg”
align=”left”>;.

Even if you aren’t used to the HTML of the past, know that XHTML is easy to read
and learn, thanks to these new conventions.

Decorating with Style Sheets
Basic markup elements are the first level of complexity in HTML and XHTML. The
second level of complexity, particularly with XHTML, comes from the need to use
and understand style sheets. Style sheets are how Web pages get some of their person-
ality and, well, style. You’ll use style sheets to change the fonts, colors, sizes, and
placement and positioning of text and other elements on the Web page.

This is an important distinction. When you’re using typical XHTML markup to
create a Web page, you’re not really altering or determining the exact appearance
of the text—at least, not in terms of the font faces, sizes, and other such attributes.
Instead, XHTML markup is used to categorize and arrange text.

In the past, HTML and HTML extensions (elements supported by browsers, but not
endorsed by the W3C) have made it possible to directly alter the appearance of text
or other items on the page, using elements such as the element or attributes
such as color and various others. Although many such pages (including some I’ve
developed) continue to use those conventions, the transition to XHTML requires that
these elements be avoided in favor of style sheets.

CHAPTER 1 FUNDAMENTALS OF WEB PUBLISHING 19

When using style sheets, instead of directly altering text or other items on the page,
portions of the page are labeled and then compared against a style sheet that the
Web browser can use to style the page. The Web browser can also opt not to style the
page, as in the case of the more limited browsers built into mobile phones and
handheld computers. In that case, the style sheets separate the XHTML code from
the styling of the page, making it possible for more devices to access the page and
organize it correctly, while using as much of the style information as it can.

For instance, a text-only browser built into a mobile phone may be able to display
certain text as a heading and other text as a hyperlink, but may not be able to spec-
ify Arial as the font family and 14-point as the font size. When you place those
style-specific commands in a style sheet, the text-only browser is free to ignore them,
while still displaying the page and its organizational elements.

Up to Chapter 10, “Get Splashy: Style Sheets, Fonts, and Special Characters,” we’ll be
discussing primarily organizational XHTML markup. In Chapter 10, you’ll see how style
sheets fit into the mix, as well as more discussion on the difference between style
sheets, which are recommended, and direct style markup, which isn’t.

Adding Scripts to the Mix
The third level of complexity for the Web author is scripting. Today’s browsers sup-
port standard scripting languages, which enable you to do quite a bit to make your
Web page less static and more exciting and interactive to the user. The possibilities
range from something as simple as a rollover effect (when the user points at text in
the browser window, it changes the color, size, or some other attribute of the text, as
shown in Figure 1.2) to complex applications that can be accessed via a Web
browser.

You might notice that Figure 1.2 is a Mac screenshot. Web authoring isn’t platform-
specific, so you’ll see both Mac and Windows screenshots throughout the text. In fact, if
you have access to Windows, Macintosh, Unix, or other operating systems, it’s always a
good idea to view your pages on as many platforms as possible to make sure they look
good to all your potential visitors.

Scripting is indeed programming, but you’ll find that it isn’t terribly difficult to
grasp, particularly when you understand the fundamental concepts behind pro-
gramming logic. The scripting language JavaScript (and its relatives ECMAScript
and JScript) is a straightforward scripting language that enables you to get started
quickly with useful scripts.

20 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Note

FIGURE 1.2

The rollover

effect is achieved

through a com-

bination of

XHTML, style

sheets, and

scripting.

CHAPTER 1 FUNDAMENTALS OF WEB PUBLISHING 21

Scripting also works with both XHTML and style sheets to add interactivity to your
pages, bringing things together in Dynamic HTML or DHTML. Although XHTML
has replaced DHTML as everyone’s favorite Web-related acronym, you’ll see that
creating dynamic pages can be useful and entertaining as well.

Summary
This chapter covered a bit of the background that you need to understand before
jumping into Web publishing. It started with a brief history of the Internet, and
then it discussed the World Wide Web, including its protocols, its languages, and its
addressing scheme, the URL. HTML and XHTML were defined and discussed, and
you learned that XHTML is the future of Web development and will be the specifica-
tion taught in this book. XHTML comes in both strict and transitional varieties, with
the transitional version allowing older elements and compatibility with older
browsers. Throughout this book, the emphasis will be on strict XHTML, but transi-
tional elements and markup will be discussed, too.

The chapter concluded with a discussion of the different levels of complexity
involved in Web publishing, from the relatively simple—creating and organizing
Web pages—to the somewhat more complex—styling the pages and adding scripts
and other dynamic elements.

In Chapter 2, “A Crash-Course in Web Design,” you’ll be introduced to the funda-
mentals of Web design, including how to organize your page, how to plan pages
and sites that work well, and how to use XHTML standards to their fullest to build
robust and compatible sites.

C

2

A CRASH-
COURSE IN WEB
DESIGN
hapter 1, “Fundamentals of Web Publishing,” hinted at some of the

issues we’ll discuss in this chapter, particularly style sheets and their role

in HTML markup. There’s a definite tug-of-war in the world of Web

design, where two different approaches—a visual approach and an

organizational approach—have clashed with earlier HTML specifica-

tions. XHTML clarifies this considerably, separating organizational and

visual design and making it a little easier to develop Web pages that

look good while communicating effectively in a wide variety of applica-

tions. What that approach means to you, and why you might care, is

what you’ll read about in this chapter.

This chapter discusses the following:

■ The fundamentals of organizing and presenting your page

■ What good sites look like and how to plan a site so that it
works well

■ HTML trends and considerations, including accessibility, interna-
tionalization, and browser compatibility

The Fundamentals of Page Design
Planning for the Web takes a number of forms, from planning individual pages to
planning an entire site made up of pages that you’ve decided to group together on
the Web. Let’s begin with a look at the individual page—how a page should look,
and how to avoid some common mistakes as you’re beginning to create pages. In
this section, we’ll look at some fundamental tenets of page design for the Web:

■ The theory behind XHTML and style sheets

■ Organizing the page according to the logic of HTML and XHTML

■ Separating content on the page from the design of the page

■ The use of images, multimedia, and interactivity to further your Web design
goals

At the end of this section, we’ll take a look at some sample Web pages and consider
their design advantages.

Web Design Theory
HTML was created to help disseminate scientific and academic information over
what started off as a government and higher-education project—the Internet. Over
time, HTML became the language of many different Web-based tasks, including edu-
cation, entertainment, and commerce. HTML wasn’t really conceived for those tasks,
however, particularly when it came to creating highly visual pages. So, developers
of Web browsers, such as Netscape and Internet Explorer, added their own non-
standard HTML-like commands and cleverly tweaked the HTML specification to
create some tricky and attractive-looking pages.

While that was okay with Web designers and Web browser developers, it didn’t
always sit right with the W3C, which is in charge of maintaining and codifying the
Web’s standards. Perhaps even more importantly, it didn’t fit well with XML, the
next generation of markup languages that the entire computing world has shown
an interest in.

In the past few years, HTML has been recast as XHTML and returned to its roots of
organizing and disseminating information instead of beautifying it. Making pages
look good is left to a technology called style sheets, as was touched on in Chapter 1.
In other words, XHTML once again separates the organization of the page from its
appearance, as HTML did originally. So what does this mean for Web authors?

In a nutshell, it means you’ll want to consider the function of your Web design before
you consider its form. While it may seem appropriate to figure out what the page
will look like before wondering what it will say, that’s a notion you’ll need to alter
slightly. XHTML’s primary focus is organizing and communicating information, so
that’s the best way to approach learning and using XHTML.

24 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

However, that’s not to say that pages can’t be attractive and entertaining. They can
be both of those things. But XHTML offers methods that are more correct for accom-
plishing those entertaining, attractive pages. These methods will also make your
page accessible to browsers designed for the physically challenged, non-graphical
browsers for handheld devices or mobile phones, or even browsers designed to access
the Web using audio only, such as phone-based browsers. With a well-organized,
XHTML-compliant page, you should be able to do all of this in a way that’s satisfy-
ing to your designer’s eye.

Organizing Your Page
It’s difficult to separate your overall Web site from each individual page—you’ll need
to consider your Web site’s organization before you can finish each page and make
it part of the whole. We’ll discuss some of that in upcoming sections.

Having said that, there are some basics you should consider for each page you
create. Web pages can vary dramatically in the way they organize material, from
a basic page with paragraphs and headings to a more complex page that uses a
newsletter-style approach. Of course, some pages may have no discernible organiza-
tion, which is to be avoided whenever possible.

Here are some quick tips:

■ Keep it simple—While plenty of exciting Web technologies are available—
images, sounds, video, and animation—you should only use them if they fur-
ther the goals of your page’s content.

■ Create content-driven designs—Your page should be primarily designed
to focus your user’s attention on the content and communicate that content
as quickly as possible. This means using subheads, emphasized text, and
hyperlinks to help your reader quickly understand the information you’re try-
ing to present.

■ Chunk-ify—Using headings, bulleted lists, and other markup elements, you
can take a long page of text and break it into chunks of information that are
easier for your visitor to digest. Adding images and dividing lines also make
the page easier to read.

■ Balance page length—Another issue when designing a page is knowing
when to quit and move on to another page. Web pages that scroll on forever
will often lose the reader’s attention, and the page may end up taking a long
time to download. On the other hand, pages that are too short can also be
annoying to the readers because they have to keep clicking to the next page
to keep reading.

CHAPTER 2 A CRASH-COURSE IN WEB DESIGN 25

To summarize, it’s important to remember that your visitors are likely looking for
useful pages that offer them important or entertaining information. At the same
time, most people don’t enjoy reading long passages on a computer screen, so you’ll
want to break things up along organizational lines with headings, emphasized text,
images, and other such elements (see Figure 2.1). Finally, remember that not all
your visitors are even using a visual browser. If you stick to conventional organiza-
tion and XHTML recommendations, you can create an appealing page that always
works well on handheld computers and assistive browsers.

26 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 2.1

On the left, a

solid page of

text; on the

right, a page

broken up with

headings and

lists.

Before you begin creating pages within your site, you should consider how best to
present your material. One way to do that is to consider how traditional publica-
tions, such as books, newspapers, and magazines, organize information. For
instance, this book attempts to keep your interest by organizing pages logically,
using subheadings within topics, and breaking things up with images. You can do
the same things with a Web site, with the added advantages of hyperlinks and mul-
timedia.

A newsletter or newspaper uses headings, subheads, and sidebars to communicate
information, as well as images that are positioned with text wrapping around them.
Again, you can accomplish a similar look using XHTML to organize the page for
best viewing (see Figure 2.2). Quite a few Web sites use the newsletter approach,
including most daily newspapers. For instance, the New York Times
(http://www.nytimes.com/) uses such an approach, with hyperlinks that lead you
deeper into each story.

You can even model your Web site after a mail-order catalog. If you’re selling prod-
ucts or real estate, you might want to create pages that include pictures, descrip-
tions, prices, and so on. Like a mail-order catalog, you’ll want all the pages to be
consistent, attractive, and easy for the reader to use. You can do this with a combi-
nation of basic XHTML elements, images, and an attention to detail.

FIGURE 2.2

With the

newsletter

approach, using

XHTML table

elements, the

page is broken

up into columns

and rows.

CHAPTER 2 A CRASH-COURSE IN WEB DESIGN 27

Images and Multimedia
Beyond the basics of dividing your pages into chunks of information, you can also
use images and multimedia on the Web. While these items shouldn’t be used indis-
criminately, they can make your Web site much more interesting and useful to the
reader.

You’ll use two basic types of images—those you create yourself, and existing photos.
Images you create yourself can be anything from logos and banner images to
charts, graphs, or cartoons that you use to get your point across. Photos can be
taken with a digital camera, captured from videotape or DV camcorders, or scanned
with a scanner. Whatever the approach, images can go a long way toward keeping
your readers interested while communicating key information quickly.

USA Today offers a lesson to Web authors—why write out something that can be
communicated effectively in a table or chart? If you have such information, you can
often create a chart or graph in a program such as Excel, and then export it as a
Web-compatible image.

When you export an image, you’re simply saving it in a new file format. While most
Web browsers can’t display native Excel charts, they can display images saved in the GIF
and JPEG file formats. So, you’ll export your chart as a compatible image, using a spe-
cial command in the application (often it’s File, Export).

Note

Then, add the image to your Web page and you’ve instantly made things a bit eas-
ier to understand and a touch more convenient for the reader, who can take in the
information more quickly. (Figure 2.3 shows a Web page that uses a graphic to com-
municate information.)

28 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 2.3

Using an image

can improve a

page’s appear-

ance and read-

ability by

breaking up the

text a bit.

Images are great for catalog sites, classifieds, and even press releases that you create
for your company or organization. In fact, the only way you can go wrong is to
either use images that don’t communicate the right information or use too many
images on one page. Avoid extraneous images, which can slow down your page’s
download in the visitor’s Web browser, and you’ll be on the right track.

With multimedia, the possibilities are even more exciting, but the problems are
manifold. While adding a video, audio clip, or animated short to your page may be
fun and entertaining, most multimedia still takes a long time to reach the user’s
browser.

There’s another problem with some multimedia, which will be expanded on in Chapter
13, “Adding Multimedia and Java Content.” To view many multimedia elements, your
reader will need additional software. If your reader doesn’t have that software, they’ll
have to go through the additional step of downloading it.

That means you should only use multimedia when it’s absolutely necessary to com-
municate something useful, or when you make it available as an option. You can

Note

allow users with high-bandwidth connections to view the multimedia, without slow-
ing down those using modems or other lower-bandwidth Internet connections.

Bandwidth refers to the amount of data that can be retrieved or sent via a particular
Internet connection at one time. High-bandwidth connections are available in many
businesses and homes via DSL, cable modems, and other technologies. However, it’s still
a growing market, with the majority of users using dial-up modems or other slower con-
nections.

As you’ll see in Chapter 13, there are quite a few decisions you need to make when
it comes to using multimedia in your pages, but it’s definitely an interesting and
exciting option for Web authors. At the same time, multimedia can be a huge stum-
bling block for slower Web connections, so it’s something to be added with care.

Interactivity and Scripting
You’ll find that your Web pages can be used to interact with the user, creating a two-
way dialog instead of simply publishing items and making them available for pas-
sive consumption. Web pages can be used to receive feedback from users, accept
purchase orders, and even enable users to communicate with one another. One way
to manage all this is to use XHTML form elements that add menus, buttons, and
switches to your Web page. These form elements are similar to parts of other appli-
cations you’ll find on your computer (dialog boxes for settings, for instance), but
can be used on a Web page to accept input of some kind from your visitors (see
Figure 2.4).

CHAPTER 2 A CRASH-COURSE IN WEB DESIGN 29

Note

FIGURE 2.4

Form elements

are used to

interact with the

user.

You can also use a combination of interactive elements (such as menus, buttons, or
other application-like selectors) to enable users to navigate your Web site. This adds
a level of complexity to your Web authoring, but it can make your Web site easier to
use. You can even use some special commands that react to the user pointing at a
particular part of the page, for instance, making the page almost seem alive with
activity.

However, the extent of interactivity you choose still hinges on the basic questions of
Web design. Do the buttons, menus, and active elements communicate additional
information? Do they help the user navigate the page (or Web site) more effectively?
And do they add more to the experience than they detract? If they don’t, a simpler
page design may be the better answer.

What Good Pages Look Like
So what does a good Web page look like? Some of my favorite pages are simple in
their presentation, with a focus on the content instead of on images or multimedia.
This focus makes it possible for a page to be viewed on any number of Web browsers
and other items.

For a representative of this category, you need to look no further than the W3C itself,
where the HTML and related specifications are debated and codified. Although the
site can be dense with information, it’s broken up with boxes, headings, hyperlinks,
and paragraphs (see Figure 2.5).

30 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 2.5

The W3C’s site

offers some

insight into text-

heavy, well-

organized pages.

(The page

shown is

http://www.w3.

org/MarkUp/.)

Most Web sites aren’t designed to communicate material that’s quite as heavy (and,
well, dense) as the Web publishing standards, so you’ll likely encounter sites that are
a bit more lively. C|Net’s sites tend to do a good job of this, offering straightforward
navigation and very clean presentation of story headlines, summaries, and date-
lines. Just by glancing at the site, you get a good idea of what material is available
and how it’s organized. Figure 2.6 shows http://www.news.com/, the main technology
news site at C|Net.

CHAPTER 2 A CRASH-COURSE IN WEB DESIGN 31

FIGURE 2.6

Note that

C|Net’s news

page does have

images, but

they’re used

somewhat

sparsely to

enhance the

text, not over-

whelm it.

Planning a Site
You’ve now seen some of the elements that define a good Web page. But in most
cases, what you’ll create as a Web author won’t be a single page, but an entire site.
If that’s the case, you’ll want to do a little planning before you get too deep into the
creative process. How you implement your Web site will affect a number of things,
including how you design individual pages, how you save those pages on a Web
server, and even how the pages are decorated and beautified—particularly if you
rely on style sheets for your site.

In this section, let’s look at some of the considerations you need to make when plan-
ning your site:

■ Thinking about the audience for your Web site and how that will affect the
design

■ Your options for designing and implementing Web sites

■ The elements and ideas that make a good site

Considering Your Audience
Perhaps the most important factor in site design is considering your audience, not
only for the topics you’ll be covering, but also for the technology and capabilities
they’re likely to have. You should also consider how voluntary their participation in
your site is, and how much they’ll put up with before deciding to leave.

Most Internet ventures—such as Webzines, catalogs, and online applications—need
to be incredibly well designed, not only visually, but from a site-wide organizational
point of view. That’s because the audience for these sites is not necessarily a captive
one—a user may opt to leave your site very quickly, for any number of reasons. The
way to convince your users to stay on your site (aside from compelling content or
wonderful prices) is with a straightforward design that doesn’t get in the way. You
should also do everything you can to make the user comfortable, while doing noth-
ing that makes them wait, confuses them, or irritates them.

Sound like a tall order? Generally, you can satisfy these things by considering a few
basic criteria:

■ Organize your site—Make it easy for your visitors to find the information
they’re seeking. For example, if you want users to contact you via the Web,
postal mail, or phone, you should have a link that clearly states Contact
Information, Address and Phone Info, or something similar. If you put this
important information in a section called Other Info or About Our
Organization, it may be a bit tougher for the user to find. How you organize
your site can dictate other things, such as how difficult it is to use and
update.

■ Focus on navigation—Hand-in-hand with site organization is site naviga-
tion. Put more simply, you need to create hyperlinks to other pages on your
Web site that make sense to the user, and ideally that are always in the same
place. Navigation should also be simple to grasp and easy on the eyes.

■ Stay within technical boundaries—Don’t require your users to have a
particular multimedia technology for basic navigation or information gather-
ing. For instance, if you require all your visitors to view a Macromedia Flash
animation to see important information on your site, you’re cutting out a
large chunk of your audience, particularly if your site isn’t specifically tar-
geted at high-tech issues or applications. Although a site devoted to movie
trailers might require QuickTime, you shouldn’t require it on your astronomy
discussion site without good reason and/or alternatives.

■ Remember your target and goals—If you’re aiming your site at a partic-
ular group or demographic, you should consider their level of computing
expertise and the technology they’re likely to use. The more general-interest

32 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

your site is, the less complicated and more clearly designed it should be. If
you’re creating a site for Internet gaming, it’s probably okay to design the site
with bells, whistles, and links everywhere. If you’re creating a site about strat-
egy board games, however, you may want a simpler site for newer Internet
users who may not have the latest technology.

One of the best sites when it comes to usability, organization, and universal useful-
ness is Yahoo!. It’s a low-requirements site that still offers good organization along
with some bells and whistles (see Figure 2.7).

CHAPTER 2 A CRASH-COURSE IN WEB DESIGN 33

FIGURE 2.7

Yahoo!’s pages

organize a great

deal of content

and are targeted

at all sorts of

browsers.

Organizing the Site
Once you have a sense of your audience, the next consideration is how to organize
your site. How you do this is up to you, but we can discuss some general guidelines.

For a simple site, the organization will probably be clear. If you have, say, five differ-
ent pages, you can probably store all of them in the main directory on your Web
server, and you can place hyperlinks to each of them on each of the other pages on
your site. Let’s say you have a real-estate site that includes five pages: the index
page, a page of homes for sale, a page about the area, a page about mortgage rates
at local banks, and a page about you, the agent. Such a site is easy to organize
because you can include links to every one of those pages at the top of all the other
pages (see Figure 2.8).

But what if that same page had links to individual pages that discussed each house?
There might be 10–15 houses available at a given time, so you couldn’t possibly put
a link to each house at the top of every page. Instead, links to those houses might
only show up on a special index page for linking to the house pages.

Now you’ve made the organization a bit more complex, as it’s beginning to look like
the chart shown in Figure 2.9.

34 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 2.8

With this simple

approach to

organizing your

site, you can

link to every

page.

FIGURE 2.9

As the organiza-

tion becomes

more complex,

so can the inter-

face for users.

Houses

Listing 01
Listing 02
Listing 03
Listing 04
Listing 05
Listing 06
Listing 07
Listing 08
Listing 09
Listing 10

Moving to the Area

Main Page

Mortgage Rates

Bank 01
Bank 02
Bank 03

About the Agency

About Frank
Our Board
Staff Members
Directions

At this point, you’ll need to start making decisions. On one hand, each of the
individual house-description pages could have links to all the other house-description
pages—but that will become tedious to update. Or, each of the house-description
pages could have direct hyperlinks to the contact and mortgage information pages—
although that might be confusing to the user.

Another solution would be to take the Yahoo! approach and make the path to the
current page apparent on the page itself, as shown in Figure 2.10. In fact, note that
the page shown is using a hybrid approach—the current path to the page is shown,
as well as convenient links at the top of the page. These options, if consistently pre-
sented on every page on the site, can make navigation as easy as can be for the
user.

CHAPTER 2 A CRASH-COURSE IN WEB DESIGN 35

FIGURE 2.10

At the top are

standard links

for main sec-

tions of the site;

on the page

itself, links make

the path appar-

ent.

As the site grows even more complicated and the pyramid of pages grows, you’ll
have to continue to refine this approach. But this is a solid approach, used by sites
as large as Yahoo! and About.com. It’s worth considering on your own pages.

Design Ease and Consistency
I’ve harped on consistency quite a bit already, and for good reason—giving your
pages a consistent look helps define them as a cohesive Web site, and a consistent
approach to the site’s interface makes it easy to navigate. If you don’t have these
things, you risk alienating the user.

Beyond the organization of your site, there are two areas where consistency pays off.
First, the interface that’s used to navigate the pages should be consistent. For most
sites, that means having basic, text-based navigation hyperlinks that appear on
every page, even if some pages also use images or multimedia for navigation.

Second, a consistent look is something that’s even easier to manage when you use
style sheets with your XHTML pages. Style sheets, discussed in Chapter 10, “Get
Splashy: Style Sheets, Fonts, and Special Characters,” and Chapter 14, “Site-Wide

Styles: Design, Accessibility, and Internationalization,” allow you to define the font
family, text color, and many different attributes of text, paragraphs, and other ele-
ments on your page. They’re a strength when it comes to consistency because you
can define a single style sheet for an entire Web site. This is a simple way to choose
the look of all your pages at once, while adhering to XHTML standards and making
your pages available in a variety of situations and mediums. As you’re creating
pages and designing sites over the next few chapters, keep in mind that you’ll be
able to give your sites a unique look using style sheets, which are discussed in
Chapter 10.

HTML Trends and Issues
I’ve mentioned that one of the reasons for creating XHTML was to enable compliant
Web sites to better support a disparate audience of Web browsing applications and
devices. That’s one of the trends that XHTML development has been moving toward.
Combined with broader support for style sheets in Web browsers, the newer stan-
dards make it easy for Web sites to communicate with many different types of
devices, and look good on them, too. That includes assistive browsers, handheld
computers, and even browsers designed to speak content aloud and accept voice
commands from the user.

Beyond simply adhering to these standards, you’ll find that making your Web pages
broadly available will require you to take advantage of all the tools at your disposal.
In a sense, creating accessible and widely useful Web sites is a mindset, because it
means taking advantage of some additional attributes and doing a little extra work
to support browsers other than Internet Explorer and Netscape. Let’s take a quick
look at some of these issues.

Accessibility
The latest XHTML standards give you a number of ways to offer support for Web
browsers that assist site-impaired and other special-needs users. For instance, an
image element can include alternative text that can be displayed instead of the
image. (This is discussed further in Chapter 6, “Visual Stimulus—Adding Graphics.”)
This text can be used on non-graphical browsers to explain what the images show.
In certain cases, you can even create a hyperlink to a longer, text-only description of
the image that might be useful for blind visitors with Web browsers that speak text
aloud or make text available in Braille.

Other elements offer assistive features as well. For instance, the elements used to
create HTML forms pages—those that enable you to choose from menu items, radio

36 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

buttons, and entry boxes—now offer increased assistive features. This makes it easier
for visitors with assistive browsers to use your sites.

The most important factor in making your pages available to a wide audience, how-
ever, is to design them as simply and logically as possible. That means using head-
ings, paragraphs, bulleted lists, and other elements with more emphasis on the
content of the page than on its look. For instance, even pages that use simple
XHTML table elements for design purposes can be difficult to interpret on non-
graphical Web browsers. A more simply organized page, using headings and para-
graph text, can be viewed on a variety of Web-enabled devices.

Internationalization
XHTML offers some elements and attributes that make it a little easier to publish
flexible pages for a worldwide audience. For instance, a number of elements can
accept the lang attribute, which enables you to specify the language being used for a
particular element. This language attribute can be reinterpreted by the browser, or
displayed differently if desired. This attribute, along with the <q> element (which can
be used to display quoted text in different international formats), is discussed in
Chapter 5, “Formatting Your Text.”

Another aspect of internationalization is the use of automatic translation software to
make your page readable in other languages. In general, this software is most effec-
tive on the simplest pages. If you’d like others to be able to translate and read your
pages, you should endeavor to use the clearest language possible. Stick to the sim-
plest words and grammar, and avoid colloquialisms, metaphors, and cliches. (For
instance, “He’s a bear on the ballfield” won’t translate out of English all that well,
while “He is a good player” will.) You might even offer special simplified pages for
the cleanest international translations, if you feel it’s appropriate. Some sites that
offer these translation capabilities include

■ Google.com—See http://www.google.com/help/faq_translation.html for details.

■ AltaVista.com—Offers the BabelFish service at
http://babelfish.altavista.com/.

■ FreeTranslation.com—Another site that will translate nearly any page is
at http://www.freetranslation.com/default.htm?tab=web.

Browser Compatibility
Finally, browser compatibility has been a constant challenge and sometimes a
source of frustration. Different browsers will sometimes interpret commands differ-
ently, or may offer their own elements in place of those that are part of the XHTML

CHAPTER 2 A CRASH-COURSE IN WEB DESIGN 37

standard. While this problem has gotten better as browsers have incorporated more
of the official standards, sometimes you still need to add two different elements that
do the same thing to support different browsers. You should also make a habit of
testing your pages in different browsers to see the differences. Using style sheets and
other tricks can eliminate some of the problems, but it’s an issue to keep an eye on.
It’ll be discussed throughout the book.

Summary
In this chapter you were introduced to the basic principles of Web page and site
design, including some of the fundamental tenets. The simpler your page and the
simpler the system for navigating your Web site, the more accessible your Web site
will be to readers. This includes organizing each individual page, organizing entire
sites, and considering how your design approach can affect all your users, including
those who are using non-graphical browsers or who want to translate your page into
spoken text, Braille, or another written language. You also saw some examples of
good sites and got some suggestions for other sites to emulate.

In the next chapter, you’ll be introduced to the tools you need to create Web docu-
ments, and you’ll see how to publish those documents on the Web.

38 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

3

WHAT YOU NEED
TO GET STARTED
Web publishing doesn’t require expensive or complicated

tools. In fact, you’ll find that you can get away with using just a simple

text editor, like those that come with Windows, Unix, or the Mac OS. In

addition, you can find useful downloadable shareware applications to

help you with HTML, graphic images, and multimedia. Beyond the basic

tools, you also need to look into Internet services if you plan to make

your Web pages available on the Internet.

This chapter discusses the following:

■ The different types of editors for creating Web pages

■ Tools for graphics, animation, and scripting

■ How Web server space works

■ Obtaining Web server space and uploading files to that space

40 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

The Basic Tools
As discussed in Chapter 1, “Fundamentals of Web Publishing,” HTML documents are
nothing more than plain-text documents with markup commands that instruct a
Web browser to arrange and format text in certain ways. Other commands are used
to add images, hypertext, and multimedia to the page, but those commands are still
plain-text commands that are interpreted by the Web browser.

The plain-text nature of HTML documents means that all you really need to hand-
code HTML is a text editor application. It can be something as simple and friendly
as Windows Notepad (see Figure 3.1) or the Mac’s SimpleText editor. You have simi-
lar choices in other operating systems—vi or emacs in any Unix and Unix-like OS,
and TextEdit in Mac OS X.

FIGURE 3.1

HTML pages can

be edited in sim-

ple text editors

such as Windows

Notepad.

The main issue to remember is that your documents need to be saved as plain-text
or ASCII documents, so your text editing application must be capable of saving such
documents (as opposed to, say, Microsoft Word format or Rich Text Format). You can
use a word processing application to create your HTML documents, as long as you
save the documents as plain-text.

ASCII stands for American Standard Code for Information Interchange, a standard
method for representing English letters and numbers in computing. The most universal
format for text documents on computing platforms, it’s the basis of many files being
read by different sorts of computers, such as HTML documents.

If you do opt to use a word processor (which I don’t really recommend), note that
many of them have the specific option of saving files as HTML documents.
Generally, you don’t want to do that because the word processor translates the page,

Note

as typed, into HTML, adding markup to maintain the appearance of the document
in your word processor. In other words, it ignores the HTML markup that you’ve
entered yourself and adds markup so that the page appears with the tags intact
when displayed in a browser (see Figure 3.2).

CHAPTER 3 WHAT YOU NEED TO GET STARTED 41

FIGURE 3.2

If you use a

word processor

for your pages,

save them as

text, not as

HTML.

Otherwise, your

element tags

appear when

the page is

viewed in a

Web browser.

Instead, you should save the document as plain-text, text, or ASCII text, but with
the filename extension .htm or .html (more on that later).

Ideally, though, you’d use either a text editor—which can be very basic or rather
specialized—or an HTML editor that enables you to edit the HTML source code (the
text and markup) directly. Let’s look at each possibility.

Where do you find these programs? Throughout the next few sections, you’ll see the
Web sites associated with the individual editors that are recommended. But if you’d like
to do a little surfing on your own, try www.download.com/, which offers links to the vast
majority of shareware, freeware, and demonstration applications available for all the dif-
ferent computing platforms.

Text Editors
As noted, you can opt to use the simple text editors included with your operating
system. In Microsoft Windows, it’s Notepad; in the Mac OS it’s SimpleText or
TextEdit. Unix and Linux systems offer a number of text editors, from basic to
sophisticated.

Note

If you’d like to move up to the next level, however, you’ll find that a good program-
mer’s text editor may be helpful in creating and organizing your HTML code.
Popular editors for Microsoft Windows include TextPad (www.textpad.com), UltraEdit
(www.ultraedit.com, shown in Figure 3.3) and EditPlus (www.editplus.com), among
many others. The Macintosh has fewer text editors, although BBEdit and BBEdit Lite
(www.barebones.com) are very highly regarded, for both Mac OS 9 and Mac OS X. (Mac
OS X also includes Unix-style text editors via its Terminal application.)

42 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 3.3

In UltraEdit you

can manage

multiple text

files, see HTML

codes in special

colors, and

access a quick

reference panel

of HTML ele-

ments.

Most text editors you come across are designed to work well for HTML authoring, as
well as other types of markup and programming. You’ll find that some of them
automatically recognize markup as such, turning them into different colors for easy
viewing. Others may offer a toolbar button for displaying an HTML document in a
Web browser (to test how it looks and whether hyperlinks are working correctly), a
spell-checking feature, or other interesting options. Experiment a bit to find a text
editor that really works well for you.

HTML Editors
The other type of editor you might consider downloading or purchasing is one that’s
specifically designed for HTML documents. These editors come in two basic flavors—
source code editors and WYSIWYG editors. WYSIWYG, which stands for “What You See

Is What You Get,” means you’re editing the Web page as it will look in a Web
browser. In this case, you’re not marking up text and adding HTML commands and
elements, but rather typing text, importing images, and moving items around on
the page, much as you’d do in a word processing or desktop publishing program.

Because this book focuses on editing XHTML source code (the raw text and markup
elements), WYSIWYG editors are not discussed until Chapter 20, “Graphical Editors.”
You’ll find that a WYSIWYG editor is a great tool to have on hand for prototyping
and editing Web sites. That said, it’s important to learn the raw XHTML first, partic-
ularly if you aspire to do Web publishing professionally, because no WYSIWYG edi-
tor is perfect. They can’t always adhere to the latest standards, they aren’t all
capable of more complex tasks (such as scripting or interactive elements), and some-
times you need to “dig into the code” to get them to work exactly as you’d like them
to. If you want to go beyond a text editor, you might look into one that’s specifically
designed to help you edit HTML source code. For Microsoft Windows, some recom-
mended editors include HotDog Professional and HotDog PageWiz (www.
sausagetools.com), HandyHTML (www.silveragesoftware.com), and CoffeeCup HTML
Editor (www.coffeecup.com). For Macintosh, popular options include PageSpinner (www.
optima-system.com) and WebDesign (www.ragesw.com). The latter is shown in Figure 3.4.

CHAPTER 3 WHAT YOU NEED TO GET STARTED 43

FIGURE 3.4

WebDesign is a

Mac HTML edi-

tor that makes it

easy to edit

HTML source

code.

If you need to watch out for anything with HTML editors, it’s that they’re up-to-date
and support the level of HTML (or XHTML) that you want to use for your authoring.
For the purposes of this book, you should use an editor that supports HTML 4.01
Transitional or XHTML 1.0 Transitional, if it’s an option. (If you’re trying to create
strict documents, you can use XHTML 1.0 Strict if the editor supports it). Older HTML
editors may support an older standard, or may recommend elements or markup that
don’t conform to the newer standard. You can probably still use them; just be aware
of the differences.

Some editors can support different compatibility modes, so you may find an option in
the preferences to format pages as strict, transitional, XHTML 1.0, or HTML 4.01. In
other cases, the editor may only support one specification, so it’s good to know which
one.

Other Tools You’ll Want
Beyond editors to help you create your HTML documents, the Web author’s arsenal
isn’t complete without some other tools. In particular, you definitely need a good
image editing application on hand to help you convert and tweak the images that
you plan to use on your Web pages. As you dig deeper into Web authoring, you may
also find you’d like to work with other applications that enable you to create ani-
mated content and multimedia content, as well as other tools that simply make
being a Web author easier.

Graphics Editors
If you plan to put images on your Web pages—and I bet you do—you need a decent
application for translating, cropping, resizing, and otherwise tweaking your images.
Of course, your options include some wonderful and expensive commercial applica-
tions, such as Adobe Photoshop and Macromedia Fireworks. If you don’t have such
applications, however, you might opt instead for downloadable shareware options.
Two of the most popular for Microsoft Windows are Paint Shop Pro (www.jasc.com/)
and LView Pro (www.lview.com/). For Macintosh, the standard-bearer is
GraphicConverter (www.lemkesoft.com/). For Linux and other open source operating
systems, it’s the Gnu Image Manipulation Program or GIMP (www.gimp.org).

Whichever graphics application you opt to use, you want to be able to perform at
least a few basic tasks:

■ Creating images using shapes and text.

■ Cropping and resizing images.

44 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

■ Changing the number of colors used to render the image.

■ Saving images in JPEG, GIF, or PNG formats.

■ Working with the special features of the various graphics file formats, such as
transparent GIFs and progressive JPEGs.

These things are discussed in much more detail in Chapters 6, “Visual Stimulus—
Adding Graphics,” and 11, “Advanced Web Images and Imagemaps.” For now, bear
in mind that you might want to shop around (either on the Web or in the computer
store) for a graphics editing application.

Animation Tools
Web animation comes in a few different forms. One way to animate images on a
Web page is to use the animated GIF specification, which is less interactive (it
doesn’t respond to user input such as mouse clicks) but common for animated
images such as online advertisements.

You’ll find a few animated GIF applications available as freeware or shareware,
although some animation tools—particularly those designed for creating Web adver-
tisements—tend to be a bit more expensive than shareware image-editing applica-
tions. Try Ulead GIF Animator (www.ulead.com) and Animagic GIF Animator
(www.rtlsoft.com/animagic/index.html) for Microsoft Windows. For Macintosh,
try GifBuilder (homepage.mac.com/piguet/gif.html) or VSE Animation Maker
(vse-online.com/animation-maker/index.html).

Up one step from animated GIFs are Macromedia Flash animations. Flash is very
popular, in part because it allows for interactivity. Viewers of a Flash animation can
click controls to make choices within the animation, altering what they see next.
This is popular with car manufacturers, Web application businesses, and many oth-
ers who want to show products or ideas in a multimedia presentation.

Aside from Macromedia’s own Flash application (www.macromedia.com/flash/), which
retails for several hundred dollars, other Flash tools include CoffeeCup Firestarter
(www.coffeecup.com/) for Microsoft Windows and ez-Motion (www.beatware.com/) for
Macintosh. Chapter 13, “Adding Multimedia and Java Content,” discusses Flash in
more detail.

Multimedia Tools
Editors and image applications are the basic tools in the Web author’s arsenal, but
you may want to go beyond those basics if your focus is on multimedia content. You
may find yourself creating movies using QuickTime, Windows Media, or other multi-

CHAPTER 3 WHAT YOU NEED TO GET STARTED 45

media formats. Or, you may find yourself creating and editing sound files for your
Web site—anything from basic background sounds using the MIDI standard (for
computer-synthesized playback of songs) to the MP3 standard for CD-like recorded
audio playback.

If that’s the case, you want to shop around for applications that enable you to create
and edit such media. Before venturing too far afield, however, be aware that such
tools may come bundled with Microsoft Windows and the Macintosh OS, depending
on the version of the operating system with which you’re working. Microsoft
Windows Me and later versions include Windows Movie Maker, which enables you
to edit video recorded on a DV-compatible camcorder. You can then turn that video
into Windows Media or a similar format that can be displayed via the Web.
Similarly, many Macintosh models include iMovie, which offers simple editing of DV
video and exporting to the QuickTime movie format. QuickTime Pro is available for
both Windows and Macintosh users, offering some simple tools for editing and
translating movie files into QuickTime format for display on the Web.

DV stands for Digital Video, a file format for video images that are recorded using DV-
compatible camcorders (often on MiniDV cassettes). The video is easy to edit using a
computer application such as Movie Maker or Apple’s iMovie. DV is quickly becoming a
popular competitor for VHS camcorders.

Likewise, many different applications are available for editing and translating sound
files into one of many Web-compatible sound formats. Such applications include
Sound Forge XP (www.sonicfoundry.com) for Microsoft Windows and Sound Studio
(www.felttip.com/) for Macintosh. iTunes, included with most Macs, is also capable of
creating MP3 and other sound files, and the QuickTime Pro player can be used to
translate between different sound formats.

Scripting Resources
Some of the Web editors discussed earlier can also be helpful with popular scripting
languages such as JavaScript and JScript. At the same time, you may want to seek
out utility applications that can help you with JavaScript, or even cut-and-paste
JavaScripts that you can use when creating your pages. A few such applications for
Microsoft Windows are iCoder (www.eport.webhoster.co.uk/iCoder/), JavaScript Tools
(www.sausagetools.com/), and JavaScript Developer (www.liquidsoftware.cjb.net/).

46 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Finding a Web Server
Before you can display your HTML pages on the Web, you need access to a Web
server. This may already be taken care of for you, especially if you are creating
pages and posting them within your organization or corporation. When you want to
update the site, you just need to know how and where to send your HTML and
related files, or you might need to know how to copy them over the network to your
Web server.

Otherwise, if you’re working within a smaller organization or on your own, you
need to make some arrangements for obtaining Web server space and figuring out
how to get your files online.

What Is a Web Server?
A Web server is simply a computer that runs software designed to send out HTML
pages and other file formats (such as multimedia files). The server should have a rel-
atively high-speed connection to the Internet (faster than typical modem connec-
tions, for example) and should be powerful enough to deal with a number of
simultaneous connections.

Generally, Web server software requires a fairly robust operating system (like Unix,
Linux, Windows NT/2000, or Mac OS X). However, software is available for other
versions of Microsoft Windows, and earlier Macintosh OS versions are popular for
smaller (and reasonably worry-free) Web sites.

Dealing with an ISP
For any sort of connection to the Internet, you probably need to work with an
Internet service provider (ISP). ISPs offer dial-up and special high-speed connections
to the Internet, as well as Web servers and other types of Internet servers for your
use.

You can access lists of ISPs around the country (and the world) at thelist.com or
www.yahoo.com/Business_and_Economy/Companies/Internet_Services/Web_Presence

_Providers/. You might also check with your current ISP for Web deals, because many
popular online services offer free or cheap Web space.

For the typical smaller Web site, you want a hosted account, sometimes called a
shared hosting account. This simply means that you share space on one of the ISP’s
Web server computers with others who have hosted accounts. Generally, this gives
you an URL that begins with the name of the ISP’s host computer, but points to a
special directory for your HTML pages. For example:

http://www.isp.com/username/index.html.

CHAPTER 3 WHAT YOU NEED TO GET STARTED 47

Tip

For this type of service, prices range from free (particularly if you already use other
services from that ISP) to $25 or so, depending on the amount of storage space you
have and how many megabytes of downloaded traffic your site is allowed to handle.
The more traffic, the more expensive your site is.

At the next level, you might decide that you’d prefer to have your own domain name.
This means your Web site is accessible at an URL similar to
http://www.yoursitename.com, such as http://www.fakecorp.com. Clearly, this is desirable
for organizations and businesses, although you may opt to register a domain name
for your own personal or avocational use as well.

Domain names always have domain name extensions, such as .com, .net and, .org,
which are used to differentiate otherwise identically named sites. For instance, w3.com
and w3.org are two different Web sites. The number of domain name extensions has
multiplied recently, with possibilities such as .biz and .info.

In general, ISPs help you register a domain name when you’re establishing new
service, but that isn’t completely necessary. You can register domain names on your
own via a number of different services, such as Register.com (www.register.com/) and
Network Solutions (www.networksolutions.com/). Prices for domain registration can
vary, although most name brand services charge $25–$35 per year for a domain
name.

You’ll often find that your favorite domain names are already registered. On many of the
registration service sites, you can perform a WhoIs lookup to see whether a domain
name is registered, and to whom. Paying for a domain name that you really want, par-
ticularly if someone is “squatting” the address and not using it is still common (although
perhaps not as glamorous).

After you have a domain name registered, your ISP can set up a Domain Name
Service (DNS) record that tells other DNS servers around the world to point to a par-
ticular server computer whenever that domain name is requested. So,
www.fakecorp.com points to the server that the ISP has provided for your Web pages,
and others are able to access your pages easily.

DO YOU ALREADY HAVE SERVER SPACE?
If you use an ISP for your Internet access, there’s a decent chance that you already have
Web server space available to you. Most of the major national and international ISPs (such
as ATT WorldNet, America Online, and Prodigy.net) offer free Web space with most of their
account types.

48 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Note

If your ISP offers free space, all you need to do is find out how much space you get and
how to take advantage of it. You may also want to look into any options your ISP offers for
registering domain names. In most cases, having your own domain name associated with
the Web server space costs extra. See Chapter 22, “Web Publishing Services,” for more on
free and commercial Web server options.

What Software Does Your Server Run?
For HTML documents, images, and most multimedia feeds, the software that your
ISP uses for its Web server computers is largely irrelevant. However, when you get
into more advanced tasks—or when you decide you want to take advantage of inter-
activity options and add-ons—the type of software your ISP uses can become much
more important. So, these are a few questions you might consider asking a customer
service representative at your ISP (or a prospective one):

■ Can I run CGI scripts? If so, which languages? Although most basic Web sites
don’t deal in CGI scripts, you may need them if you want to add interactivity
to your site in the guise of HTML forms, bulletin-board forum software, or
database access. Note that in some cases a particular language version may
be required (such as Perl 5 instead of Perl 4), so knowing the version numbers
can be helpful. (See Chapters 16, “CGIs and Data Gathering,” and 21,
“Forums, Chats, and Other Add-Ons,” for more information.)

Perl is a scripting language that’s commonly used for programs that are stored on Web
servers and used to interact with Web browsers.

■ Which extensions and server side includes are available? Depending on the Web
server software and any extensions that are installed, you may be able to add
special commands to your HTML documents that make it possible to display
the current time, hit counter, and quite a few other options that are specific
to particular Web server applications (see Chapter 21).

Every time a user loads a page on your site, it’s called a hit. The hit counter is one way
to keep track of how many visitors a page on your site has received.

■ How are statistics reported? With some ISPs, you may be able to access a spe-
cial URL that shows you how many people have visited your Web site, along
with other information from them (such as which pages referred them to
your site). In other cases, statistics are stored in a special file that you need to
download to your computer and then process with a statistical analysis pro-
gram (generally available as a free download).

CHAPTER 3 WHAT YOU NEED TO GET STARTED 49

Note

Note

Asking these questions—particularly when you’re a bit more familiar with the
answers you want to hear—may help you decide on an ISP to use for your Web serv-
ing. See later chapters, particularly Chapter 21, for more details.

Accessing Your Web Server Space
After you’ve decided on an ISP, you’re ready to create your HTML pages and upload
them to the server. To do all this correctly, though, you probably need to ask a few
questions:

■ What is my site’s default URL? This should be the ISP’s host address and a direc-
tory for your username. For example, if your username is jsmith, the default
URL for your site might be www.fakeco.net/jsmith/, members.fakeco.net/jsmith/,
or something similar. Different ISPs organize this in different ways, so you
need to make sure you get this right.

With most Web server programs, the default page that is first loaded is named
index.html or index.htm. So that’s the name you use for the first page you’d like to
present to users when they access your Web site.

■ How do I upload files to my site’s directory? You should get instructions for
accessing your Web site’s directory on the Web server using an FTP applica-
tion. This is discussed in more detail in the section “Updating Your Web Site,”
later in this chapter.

■ What limitations are there on the names I can give my files? The Web server’s
operating system may not be instantly obvious to you. If this is the case, you
want to ask if there is a certain filename length or a certain format for nam-
ing files that you need to follow.

When in doubt, use the DOS 8.3 filename convention in the style filename.ext, where
the filename can be no more than eight letters and .ext is a three-letter extension, such
as .htm.

■ Can I create subdirectories within my main Web site directory? Most Web servers
give you this ability, but some don’t.

With those questions answered, you are able to upload and access your Web pages
easily.

50 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Tip

Organizing a Web Site’s Files
You may recall from Chapter 1 that a URL is composed of a protocol, a server
address, and a path to a particular document. All of those components are impor-
tant. When you’re creating and organizing your Web site’s files, however, the most
important is the path statement. If you have a system for how you store files when
you’re creating them on your computer (locally), you’ll have less trouble later when
you store your files on a Web server computer.

Although a Web site can be arranged in a number of different ways, you should
keep in mind some rules of thumb. For the most part, you should organize your Web
site files to make it easy to update your pages in the future. If you have to move all
your files around every time you change something on a single page, you are also
forced to change all the hypertext links on many other pages—and that can be
incredibly time-consuming. Early on in the process, you should consider how your
site’s files will be organized. This is true even if you’re only planning one page or a
few pages. Organizing the images and multimedia feeds that go along with those
pages is still important.

Types of File Organization
These are different types of organization for Web sites:

■ Single-directory sites: Smaller sites, with just a few HTML pages and images,
can often get by with a single directory on the Web server. All your graphics
and HTML pages go in this one directory. One of the biggest advantages of
this system is that links to local files and graphics require no special path
statements. The disadvantage is that this sort of system can be unwieldy as
your site grows, making it more difficult to update in the future.

■ Directories by function: One way to organize more complicated sites is to put
each section of related Web pages in the same directory. For example, in your
main directory you might only store the index page and its associated graph-
ics. For a business site you’d have subdirectories for sections called About,
Products, Support, and so on. In each of these subdirectories, you’d include
all the related HTML files and the image files for those pages.

■ Directory by file type: Some people prefer to create subdirectories according to
the type of file, as opposed to the content of the page. Your main directory
may have only the index page of your site. Other subdirectories might be
called Images, Pages, Downloads, and so on. The main advantage of organiz-
ing this way is that files generally have to be replaced only once. If you use a
graphic on a number of different pages, for example, you can replace it once
in the Images subdirectory and all the HTML pages that access the graphic
use the new one.

CHAPTER 3 WHAT YOU NEED TO GET STARTED 51

■ Hybrid: The best way to organize a large site is to use a hybrid of the two pre-
ceding methods. Creating separate subdirectories for nonrecurring items (such
as individual Web pages in each category) while creating other subdirectories
for items used multiple times (such as graphics) enables you to get at all the
files in an efficient way. A hybrid file organization is shown in Figure 3.5.

52 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 3.5

In this hybrid

site (displayed

in Windows

Explorer), differ-

ent functions

are organized

into different

folders, but a

single image

folder is also

used for all

images.

The other thing to remember when determining how you’re going to organize your
Web directories is that the directories themselves become part of the URL when you
create them and store files using them on the Web server. So, if you go with the
hybrid approach, your URLs might make more sense to the user. For example:

www.fakecorp.com/products/mousetrap.html

This is as opposed to a straight “functional” organization, which would result in an
URL like this:

www.fakecorp.com/webpages/mousetrap.html

In this case, the products directory tells the user what he will see and how the Web
site is organized.

Creating the Hierarchy
Once you’ve selected a system, the next step is to create local folders that mirror the
directories you’re using on your Web server. If you create a folder called images
where you plan to store image files, you’ll need that folder in the same relative loca-
tion on your local hard disk and on the Web server computer.

In some operating systems they’re called folders, and in others they’re called directories.
It’s just two names for items that are functionally equivalent. You’ll often hear folders
used when referring to local hard disks (particularly in Windows and Mac OS) and
directories used when referring to the server computer (which is often running Unix
or a Unix-like OS).

For each Web site, create a folder somewhere on your computer. The name of it isn’t
important, since it will be the equivalent to the nameless root directory (/) on your
Web server. For instance, if you’re creating a new personal site, start by naming a
folder mysite. That’s where your main index.html page will be stored. Inside that
folder, add other subfolders that you plan to use as part of your organizational hier-
archy, such as images or products, depending on the approach you’re taking.
Remember that these folders need to be the same names you plan to use for subdi-
rectories on your Web server. In fact, a good rule of thumb is to use all lowercase let-
ters for them, in both places, just to avoid any problems with case-sensitive servers.

This organizational structure will do two things for you. First, it keeps you from acci-
dentally placing files in the wrong directories when you’re uploading them to your
Web site. Second, it makes it easier to create relative URLs, which is a topic you’ll dig
into in Chapter 7, “Building Hypertext Links.”

Naming Your Files
You’ve already seen that file extensions are an important part of all the filenames
you use for your Web site. Because other Web browsers may rely on a file’s extension
to know what sort of document or file it is, you need to include the appropriate
extensions with all your Web site files.

Your Web site almost always begins with a file called index.html or index.htm. Most
Web server software programs load this page automatically if the URL of your site is
accessed without a specific path and file reference. For example, typing
http://www.fakecorp.com/ will probably result in the page http://www.fakecorp.com/
index.html being loaded into your browser. Your Web site’s first page (whether it’s a
“front door” page or the first page of your site) should be designed with this in mind.

The thing to consider when naming your files is how you plan to organize your site.
If you’re using a single-directory organization, your filenames should be as unique
as possible, and graphics and other files should probably have names that relate to
their associated Web pages. For instance:

about_company.html

about_header.jpg

about_ceo_photo.jpg

CHAPTER 3 WHAT YOU NEED TO GET STARTED 53

Note

These names help you determine which files are associated with which HTML pages
when you go to update those files. If you have more structure to your site (for
instance, if you’ve created an about directory on the Web server), names such as
company.html might be more appropriate because the ultimate URL path you’re
creating would be about/company.html.

Updating Your Web Site
If you organize your site well, updating it is simply a matter of replacing an out-
dated file with a new file using the same filename.

You need to check with your company’s system administrator or your ISP’s technical
staff to figure out exactly how you update files. (When you sign up for service, most
ISPs will tell you how to do this or provide you with documentation that explains
the process.) With an ISP, you can usually use an FTP program to put new files in
your directory organization on the Web site, as shown in Figure 3.6. (Some HTML
editors include the built-in ability to upload pages via FTP.) The process is simple:

1. Your Web space provider requires you to enter a username and password to
gain access to the Web server. In most cases, you point your FTP program to
the Web server itself (for example, www.isp.com), although sometimes you’ll
log into a computer with an address that starts with ftp. If your Web site has
its own domain name, you might need to sign into that, such as
www.fakecorp.com or ftp.fakecorp.com.

54 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 3.6

An FTP client

program is

being used to

transfer Web

site files from

my local hard

drive (bottom)

to the Web

server computer

(top).

2. If the server recognizes your username and password, you’ll be connected to
the server. Most likely, you’ll be in your personal Web site’s main directory. (If
not, you need to use the cd command or otherwise change directories in your
FTP program.)

3. You can add files using the put command in your FTP program. If you’re
uploading new files, remember to place them in the same relative locations
that you used on your local hard disk. (Put the image files in the image direc-
tory on the server, and so on.) You may need to create the directories on the
server the first time you log in.

4. To replace an existing file, you use the put command again, this time upload-
ing the replacement file with the same name as the file you want to replace
(including the upper- or lowercase letters). This will overwrite the file, so con-
sider whether you want a backup of the older file before you replace it. You
won’t be able to recover the older version unless you’ve created a backup
of it.

As you can see in Figure 3.6, it’s a good idea to maintain a folder or directory on
your own hard drive that is as identical as possible to the Web site and its directory
structure. That way FTP updates are easy, as is testing to ensure that your filenames
and local hyperlinks have been built correctly.

Summary
In this chapter, you took a look at some of the tools that you need—and some others
you might simply want—to create Web pages. You also got some suggestions for
other tools, including those that help with images, animation, and multimedia files.
Next, the chapter discussed obtaining Web server space from an ISP, including some
of the important questions you need to ask. The chapter ended with a discussion of
how your Web site’s files and directories should be organized, and how you go about
updating your Web site as you create and edit HTML and other Web files.

In Chapter 4, “Creating Your First Page,” you’ll create your first Web page, as well as
a template that includes the main structural elements that you’ll need on every
XHTML document you create.

CHAPTER 3 WHAT YOU NEED TO GET STARTED 55

I

4

CREATING YOUR
FIRST PAGE
n this chapter, you begin creating HTML documents by piecing together

the required skeleton of XHTML elements into a basic template. After

you’ve created that template, you move on to the basics of entering

text for your page. After that, you learn how to save your document,

test it by viewing it in a browser window, and validate it to make sure

your code adheres to set standards.

This chapter discusses the following:

■ Creating an HTML template

■ Structuring Web documents properly

■ Typing text into paragraphs

■ Saving, testing, and validating the page

Build Your HTML Template
As you saw in Chapter 3, “What You Need to Get Started,” all you need to create
HTML documents is a basic text editor. HTML pages, although they include the .htm
or .html file extensions, are simply ASCII text files. Any program that generates
ASCII text files works fine as an HTML editor—even a word processor such as
WordPerfect or Microsoft Word, as long as you save correctly.

After you have that program, you’re ready to create a basic template for your HTML
documents. This is the skeleton of the HTML page that you use for building content-
filled pages, using the markup elements discussed later in the book. The skeleton
includes the document elements, which are simply the markup elements that define
the file you’re creating as a Web page.

Add Document Elements
The first XHTML elements you learn about are the document elements. These are the
tags that are required for every HTML document you create. They define the differ-
ent parts of the document.

Don’t let me confuse you by switching back and forth between XHTML and HTML.
When I’m referring directly to the elements, I’ll call them XHTML elements, because
that’s the specific standard we’re going to adhere to throughout this book. When I’m
referring generically to HTML as a concept or to Web documents and applications, I’ll
call them HTML documents or HTML editors.

Like a magazine article, an HTML document has two distinct parts—a head and a
body. The head of the HTML document is where you enter the title of the page.

To create the head portion of your HTML document, type the following into your
text editor:
<head>

</head>

This section tells the Web browser what special information should be made avail-
able about this page, and what it should call the document in the title bar of the
browser window.

Now that you’ve got a head, you need a body, right? The body is where you do most
of your work; entering text, headlines, graphics, and all your other Web goodies. To
add the body element, start after the </head> tag and enter the following:
<body>

</body>

58 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Between these two tags, you enter the rest of the text and graphics for your Web
page.

Now, wrapped around the <head> and <body> elements, you’ll add an element that’s
designed to tell that world that it’s dealing with an HTML document: the <html> ele-
ment. Above the first <head> tag, enter this:
<html>

After the </body> tag, type the following:
</html>

Even though your document is saved in plain ASCII text, a Web browser will know
that the page is really supposed to be an HTML document.

But wait… this isn’t just any old HTML document. It’s an XHTML document! Because
you’re using XHTML, you need to be a little more specific with that first <html> tag:
<html xmlns=”http://www.w3.org/1999/xhtml”>

This attribute for the <html> element is xmlns, and it stands for XML namespace. It’s
required for XHTML-compatible documents, particularly those that strictly conform
to the XHTML 1.0 standard.

So, the end result of all these elements would look like
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

</head>

<body>

</body>

</html>

Now you have a nearly complete Web document, at least as far as your Web browser
is concerned.

The DTD
Before any HTML document—and particularly one adhering to the XHTML standard—
is truly complete, you need to add something called the DTD, or document type defini-
tion, to the top of the page. It’s a dirty little secret that most of today’s Web browser
applications will read a page that doesn’t have a DTD and display it without prob-
lems. However, this definition will become more and more important in the future.
What is it? It’s a quick element at the top of the page that enables everyone to know
which languages and standards you’re using for that page. As XML becomes more
important on the Web, and as a wider variety of applications and devices are used
to access the Web, this definition will become a requirement.

You should put a DTD at the top of every HTML document you create. Fortunately,
they’re simple to add. All you have to do is pick the right one.

CHAPTER 4 CREATING YOUR FIRST PAGE 59

If you’re working with a page that already exists, or that has been generated by a
typical WYSIWYG HTML editor, you probably want to update it with the following
DTD:
<!DOCTYPE html

PUBLIC “\//W3C//DTD XHTML 1.0 Transitional//EN”

“DTD/xhtml1-transitional.dtd”>

This is the XHTML Transitional DTD, which simply tells the Web browser that you’re
using the XHTML 1.0 Transitional specification for your pages. The PUBLIC attribute
is followed by the specific DTD name, including the language used, which is English
(EN). Note that even if you’re using another language for the text on your page, the
language of XHTML is always EN.

The next line of the DOCTYPE is the URL of that particular DTD file that’s main-
tained by the W3C. This line is optional, but there’s no harm in including it.

As you’ll see in later chapters, the XHTML Transitional DTD enables you to use ele-
ments that directly affect the look and feel (fonts, colors, and so on) of text on the
page. As noted in Chapter 1, “Fundamentals of Web Publishing,” HTML isn’t really
designed to do this, so the XHTML Strict DTD doesn’t support such codes.

Specifically, the XHTML Transitional DTD causes a Web browser to run in a back-
ward-compatibility mode. This enables a number of non-standard elements, such as
those created by the browser companies instead of the W3C, to render, or display in
the browser, without generating errors. The other option is to have the browser run
in strict mode, which requires the XHMTL Strict DTD:
<!DOCTYPE html

PUBLIC “\//W3C//DTD XHTML 1.0 Strict//EN”

“DTD/xhtml1-strict.dtd”>

You use this definition if you don’t plan to use any browser-specific codes, and you
plan to use style sheets to change the appearance of elements on your page. For
most of the pages you create using this book, the XHTML Strict DTD should work
well.

Why use one or the other? As you work through the book, you’ll see that using the
XHTML Strict DTD will require you to use style sheets to change the appearance and lay-
out of the text on your page, while the XHTML elements will only be used for organiz-
ing the page. With the XHTML Transitional DTD in force, you can use some special
HTML elements and attributes to change the appearance of text, lists, tables, and other
elements. The XHTML Transitional DTD is simply a little more lax about allowing older
elements, which is why I recommend adding it to existing HTML documents that you’re
updating.

60 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Also note that you don’t need to space the DOCTYPE element (which is the only ele-
ment in XHTML that can be uppercase), as shown in the prior examples. You can
place the attributes for the DOCTYPE element on the same line if desired, as in the
following:
<!DOCTYPE html PUBLIC “\//W3C//DTD XHTML 1.0 Strict//EN” “DTD/
➥xhtml1-strict.dtd”>

The comment Element
One other element needs to be discussed before you put together your template. The
comment element is a bit different from other elements. It contains text, but it doesn’t
have an opening or closing tag. Instead, the text for your comment is enclosed in a
single tag that begins with <!-- and ends with -->. The text inside the tag is ignored
by the Web browser.

Hiding the text enables you to create a private message to remind you of something,
or to help those who view the raw HTML document to understand what you’re
doing. That’s why it’s called the comment element. For example:
<!--This is a comment that won’t display in a browser-->

Generally, you use the comment element for your own benefit—perhaps to mark a
point in a particular HTML document where you need to remember to update some
text, or to explain a particularly confusing part of your page to others who may
need to update it in the future. Because it’s fairly easy for anyone to view your raw
HTML document, you might also use the comment element to create a copyright
message or give information about yourself.

It might seem like a good idea to place comment tags around other HTML elements
you’d like to hide temporarily, but it’s better to delete obsolete links and elements when
you don’t want to use them. Some browsers may inadvertently display certain elements
even if they are hidden using the comment element.

Create an HTML Template
Now it’s time to take what you know and create a template. By saving this template
as a text file, you have a quick way to create new HTML files. Simply load the tem-
plate and select File, Save As to save it as your new Web page.

CHAPTER 4 CREATING YOUR FIRST PAGE 61

Tip

1. Start by entering the following in a blank text file:
<!DOCTYPE html PUBLIC “\//W3C//DTD XHTML 1.0 Strict//EN”
“DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Enter Title Here</title>

<!--Designed By Lucy Smith-->

<!--Last updated 10/12-->

</head>

<body>

</body>

</html>

2. Next, save this as an ASCII text file called template.html (or template.htm if
you’re using DOS or an early version of Windows).

Now, whenever you’re ready to create a new HTML document, simply load
template.html into your text editor and select File, Save As to rename it to something
more meaningful, such as index.html or products.html. You can then alter the page
by adding text, links, and other markup elements.

The Document Head
As the name implies, the head section of any HTML document precedes the main
information (or the body). The head section is defined by the <head> element, which
is a container element. Text contained between these <head> and </head> tags tells the
browser application general information about the file and is not displayed as part
of the document text itself.

The <head> element can hold a number of other elements, including the following:

■ <title>—The document’s name

■ <base>—The original URL of the document

■ <meta>—Additional information about the page

Only the <title> element is required. The rest are optional and often do not appear
in basic HTML documents. However, it’s important to know how all these elements
work because they can help you produce a richer, more sophisticated Web site.

62 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Your Web Page’s Title
The <title> element is used to give your page a name. Most graphical Web browsers
display the title in the browser window’s title bar. Likewise, the title is often used
when the page is saved using a Web browser’s bookmark or Favorites feature. The
title is not the name of the file itself (such as index.html) but instead a few descriptive
words, such as Customer Support Page or FakeCorp’s Site Map.

The title element should be added inside the <head> element, as follows:
<head>

<title>FakeCorp’s Bargain Page</title>

</head>

You should make your title informative, but keep it relatively short. A long title can
look odd at the top of a browser window and may be truncated when added to a vis-
itor’s bookmark or Favorites list. Your page’s title may also be used in search engines
and other places as a link to your page, so it’s worth some consideration. Here are
some simple suggestions to help you create a better title:

■ Avoid generic titles—Say exactly what your site does, what the page is about,
and why it’s interesting. Remember that any page title might be used as a
bookmark or entry in a search engine such as Google or AlltheWeb.com.

■ Avoid catchy slogans—Remember that your title should indicate the nature of
the service or the purpose of the page. Just giving a company’s name or
motto doesn’t always help, particularly if the title of many or all of your
pages is the same. Instead, work your organization’s name into an informa-
tive title, such as FakeCorp’s Customer Support or About FakeCorp’s Executive
Team.

■ Use no more than 60 characters—The XHTML specification does not limit the
length of the <title> element. However, before you give your Web pages end-
lessly descriptive names, keep in mind that the space where the title is dis-
played (either the viewer’s title bar or window label) is limited. Keep your title
short.

The <base> Element
File paths and URLs can get a little complicated, and they tend to be a stumbling
block for new Web page designers. The <base> element can be used to make this
process a bit more palatable. Essentially, the <base> element is used to set the root
level of all a page’s relative URLs. It’s a bit involved, so we’ll save the specifics for
Chapter 7, “Building Hypertext Links.” It’s mentioned here because it goes in the
head of your document.

CHAPTER 4 CREATING YOUR FIRST PAGE 63

The <meta> Element
The <meta> element is used to add metadata, which simply means data about data.
In this case, the element is used to add information about your Web page that other
people or computers can use. One very common use for the <meta> element is to pro-
vide keywords and a description of your content to Web search engines such as
Yahoo! and Excite. This makes your page easier to find for people who have similar
interests.

When search robots encounter your page, they’ll look for two fairly common <meta>
elements:
<meta name=”description” content=”Products offered by FakeCorp”>

<meta name=”keywords” content=”hair, perm, highlights, comb, dryer”>

Often called bots, search robots are small programs designed to comb the Web for
interesting pages to catalog. Some of them are designed to read and store the descrip-
tion and keywords you enter for your page.

The first <meta> element in the preceding example is used by robots to describe your
site in its listing in a Web directory. For the content attribute, descriptions should be
between 50 and 200 words, depending on the search robot (shorter is probably best).
Another example might be as follows:
<meta name=”description” content=”Virtual writer’s group

➥for New York, including job listings, tips, advice and

➥discussion.”>

The other <meta> element is for keywords that you want the search robot to associate
with your site. If a user enters these keywords at a major search engine, it’s more
likely to present your page as one of the results. The following is an example, using
the New York writers’ group page from the preceding example:
<meta name=”keywords” content=”writers, writer, free-lance,

➥ for hire, articles, submissions, postings, want ads”>

These aren’t the only uses for the <meta> element; just some very common ones. The
<meta> element must include the content attribute and either the name or http-equiv

attribute, but never both. In fact, the name attribute accepts generic values, which
may or may not be useful to a browser. For instance, you could add your name and
a copyright for your page:
<META name=”author” content=”Rich Guy”>

<META name=”copyright” content=”© 2002 FakeCorp, Inc.”>

64 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

In general, it’s used to convey hidden information to the Web browser (when used
with name) or to access HTTP server properties (when used with http-equiv).

<meta> can be used with the http-equiv attribute to automatically load new Web
pages, as discussed in Chapter 7.

The Body Section
The body section of all HTML documents is defined by the <body> container element.
It has an opening tag, <body>, to show where the body starts, and a closing tag,
</body>, to indicate where the body ends. Inside the body is where you’ll put every-
thing that your visitors will actually see in the browser window—text, hyperlinks,
headings, images, form elements, tables, and all other XHTML markup.

The sample XHTML in Listing 4.1 shows where the body fits into the overall Web
page structure. Note that it’s embedded inside the <html> and </html> opening and
closing tags, which means it’s a substructure of <html> itself. Almost everything else
in your document is contained in the body and thus fits inside the <body> and </body>

tags.

LISTING 4.1 Sample HTML Body Element

<!DOCTYPE html PUBLIC “\//W3C//DTD XHTML 1.0 Strict//EN” “DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>FakeCorp Web Deals</title>

</head>

<body>

<h1>FakeCorp’s Web Deals</h1>

...actual content of page

</body>

</html>

Figure 4.1 shows Listing 4.1 as displayed in a Web browser (including some Web
content that appears inside the <body> element, but isn’t shown in the listing).

CHAPTER 4 CREATING YOUR FIRST PAGE 65

Tip

FIGURE 4.1

Text, headings,

and pretty much

everything else

you see on a

page goes

between the

<body> and

</body> tags in

your HTML doc-

ument.

66 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

WELL-FORMED CODE
As you’ll see in this chapter and throughout the book, an important part of the process of
creating XHTML-compatible documents is using well-formed code. The term well-formed
means that the documents you author conform to some basic rules that are part of the
basic XHTML standard. If you’ve worked with HTML in the past, you might notice that
things are getting a bit more strict under XHTML.

For instance, well-formed XHTML tags are all lowercase (<body> instead of <BODY>), and
they should all have closing tags. In the past, some container elements, such as the
paragraph element, would let you get away with using only one of the tags. For empty
elements, you close the tag by adding a slash (/) before the final bracket (>).

Other rules apply, as you’ll see in later chapters. For instance, older HTML specifications
allowed for empty attributes, such as NOSHADE, but XHTML requires an attribute to have a
value, such as noshade=”noshade”.

Entering Paragraph Text
Most of the text you type between the <body> and </body> tags is enclosed in another
important container element: the <p> (paragraph) element. This element is used to
show a Web browser which text in your document constitutes a paragraph.

You might think that a paragraph element would be superfluous. In most text edi-
tors, you can simply press the Return or Enter key on your keyboard to create a new
paragraph in the document. For HTML documents, though, that doesn’t work. In
most cases, Web browsers are designed to ignore more than one space between

words, so they’ll ignore any returns that you add to your HTML document while
you’re creating it.

To give the appearance of paragraphs, you have to use the paragraph container ele-
ment. It uses the following format:
<p>Here is the text for my paragraph. It doesn’t matter how long it is,
how many spaces are between the words or when I decide to hit the return
key. It will create a new paragraph only when I end the tag and begin with
another one.

</p>

<p> Here’s the next paragraph. </p>

The paragraph element tells the Web browser that all the text between the <p> and
</p> tags is in a single paragraph. When you start another paragraph, the Web
browser drops down a line between the two paragraphs.

In earlier HTML implementations, the <p> element could be used as an empty element.
You could simply place a <p> tag at the beginning or end of a paragraph of text. This
isn’t well-formed code, however. It doesn’t work under the XHTML Strict DTD, which
requires that all container elements have a closing tag. To be on the safe side, use both
tags to enclose all of your paragraphs.

This is another example that has some extra spaces. Remember, spaces and returns
almost never affect the way the text is displayed onscreen. In a paragraph container,
the browser ignores more than one space and any returns:
<p>Thanks for shopping at FakeCorp.</p>

And:
<p>

Thanks

for shopping at

FakeCorp.

</p>

These look exactly the same when displayed in a Web browser, as shown in
Figure 4.2.

CHAPTER 4 CREATING YOUR FIRST PAGE 67

Note

FIGURE 4.2

Notice that

pressing the

Return key when

entering text has

no effect on how

it’s rendered.

68 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

The
 Element
You’ve learned how to create entire paragraphs. But what if you want to specify
where a particular line is going to end? Let’s say you want to enter an address into a
Web document, as follows:
<p>

Donald Johnson

12345 Main Street

Yourtown, NY 10001

</p>

This looks about right when you type it into your text editor. However, when it’s dis-
played in a Web browser, it looks like the top part of Figure 4.3.

You already know what the problem is: Web browsers ignore extra spaces and
returns. But if you put each of those lines within its own paragraph containers, you
end up with an extra space between each line. That looks wrong too, as shown at
the bottom of Figure 4.3.

FIGURE 4.3

Pressing Return

or Enter and

using <p> con-

tainers doesn’t

add simple line

returns in HTML

documents.

The answer to this conundrum is the empty element
, which forces a line
return in your Web document. (The “br” in the tag stands for “break.”) Properly for-
matted, the address would look like this:
<p>

Donald Johnson

12345 Main Street

Yourtown, NY 10001

</p>

This looks just right in a Web browser, as shown in Figure 4.4.

CHAPTER 4 CREATING YOUR FIRST PAGE 69

FIGURE 4.4

Here’s the listing

with
 ele-

ments at the

end of each line

of text.

Although some versions of Netscape’s browser recognize more than one
 tag
and create additional line breaks, the HTML standard doesn’t recognize more than one

 tag in a row. One accepted way to add space in an HTML document is the
<pre> container, as discussed in Chapter 5, “Formatting Your Text.” The most appropri-
ate way to add space on your page is via style sheets, as discussed in Chapter 10, “Get
Splashy: Style Sheets, Fonts, and Special Characters.”

Saving, Testing, and Validating
As you’re working on a new page, it’s important to go through a three-step process
to make sure the page is saved properly, works well in a Web browser, and conforms
to HTML standards.

Note

Saving Your Page
If you’re working from an HTML template, you’ve probably saved your page with
a meaningful name because that’s recommended immediately after you load the
template.html document. (If not, you may have accidentally added text and markup
to your template.html document.) If you don’t have your HTML document saved with
a meaningful name, select File, Save As to save the file.

When you’re saving the file, remember that it should be in the same relative position
where it will be after it’s uploaded to a Web server. This can be a bit difficult to grasp
at first, but it’s closely related to the discussion of directories and site structure in
Chapter 3, “What You Need to Get Started.” If you’re saving the file products.html in
your products folder on your hard drive, it should be bound for the products direc-
tory on your Web server. Otherwise, moving files around can mess up their links to
images and hyperlinks, as you’ll see in Chapters 6, “Visual Stimulus—Adding
Graphics,” and 7, “Building Hypertext Links.”

Testing Your Page
You need to use a Web browser to check on the appearance of your Web page as you
create it. Almost any Web browser can load local pages from your hard drive, just as
they can load HTML pages across the Web. Check the menu of your Web browser for
a command such as File, Open File. Then use the Open dialog box to locate the
HTML document and load it into your browser, as shown in Figure 4.5.

70 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 4.5

Select a file and

click Open to

load an HTML

document from

your hard drive

and display it in

the browser

window.

To test an HTML document in your Web browser:

1. Select File, Save to save any changes you’ve made to the HTML document in
your text editor.

2. Switch to your Web browser application, and then choose File, Open File to
open the file in your browser.

3. The document should appear in your Web browser. Check it for problems,
typos, and other issues.

4. Switch back to your text editor and make any changes that are necessary, or
continue working on the page. When you’re done, select File, Save again.

5. If the page is already open in your Web browser, you should be able to click
the Reload button to see the changes you just made and saved in the HTML
document.

Validating the Page
Finally, after you’ve saved and tested your page, you’re ready to validate it.
Although validation isn’t a requirement, it’s a good idea. In essence, an automated
testing application determines whether your page meets the W3C’s guidelines for
compatibility with HTML (or XHTML, in many cases). If your page validates, you
know it completely conforms to the standard and that you don’t have any syntax
errors that could affect the display of your markup. If the page doesn’t validate,
either you’re dealing with a typo or you’ve used an element that isn’t valid in the
HTML or XHTML specification you’re testing against. Most validators will give you
an error report so that you can fix the error.

A Web page doesn’t need to pass a validator in order to work correctly in Web
browsers. Indeed, many pages on the Web today wouldn’t pass a validator. But adher-
ing to the standards is growing more and more important, particularly with XHTML. If
your page passes, it’s likely to be displayed correctly in the broadest range of browsers.

So how do you test? You have a few choices. The most obvious choice is HTML Tidy,
whose source code is maintained by Dave Raggett of the W3C. The code is available
in numerous formats, including a validation program that runs at the Windows
command line. Many other versions of the software have been written and ported,
including Windows, Mac, and Unix graphical applications and editors. See
http://www.w3.org/People/Raggett/tidy/ for a list of these other versions. Note that
some popular HTML editors also support HTML Tidy add-ons and plug-ins, such as
support within NoteTab for Windows and BBEdit plug-ins for Macintosh.

Likewise, you can use a third-party validator application that you download to your
computer. CSE HTML Validator Lite (http://www.htmlvalidator.com/lite/) is one such
application for Windows that has the added advantage of being freeware. A Real
Validator (http://www.arealvalidator.com/) is a Windows shareware option.

CHAPTER 4 CREATING YOUR FIRST PAGE 71

Note

Finally, you can use a validator that checks HTML over the Web. In this case, you
need to have uploaded your page to a Web server already, and you need to know
the URL of the page that you want to validate. Then, you visit the validator’s Web
page and enter the URL. A number of such validators exist, but you only need to
concern yourself with the W3C’s, which is the most authoritative. You can find it at
http://validator.w3.org/.

The W3C also offers a validator for style sheet coding (CSS, or cascading style sheets) at
http://jigsaw.w3.org/css-validator/.

Summary
In this chapter you learned how to create an HTML template, including the funda-
mentals of the DTD and the main page elements. You then learned how to add to
that basic template by filling out the head of the document, as well as typing text
into paragraphs within the body of the document. Then you learned how to save,
test, and validate your pages.

In Chapter 5, you’ll learn the elements used for organizing and formatting text on
the page, including headings, block-level elements, and lists.

72 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

DESIGN AND
CONQUER

IIPART

5

A

FORMATTING
YOUR TEXT

t this point, you’re familiar with the HTML template, you’ve typed

some text into paragraphs, and you’ve successfully saved and validated

the work you’ve done so far. In this chapter, you learn quite a bit about

styling and organizing text as you type it into the body of your HTML

document.

This chapter discusses the following:

■ Adding headings and horizontal lines to organize the page and
make it easier for the reader to understand

■ Styling the text you’re typing into your Web page

■ Using different container elements to format entire paragraphs
of text

■ Adding bulleted and numbered lists to your Web page

Organize the Page
After you’ve placed some basic paragraphs on your page, you may be ready to break
them up a bit. You can do that with two different elements discussed in this section:
headings and horizontal lines. Headings are very important to a well-organized
page, particularly one that offers a lot of text. Horizontal lines can be helpful, too,
in defining sections of a Web document visually.

Add Headings
Heading elements are containers, and unlike many other XHTML elements, they
double as paragraph elements. Ranging from level 1 to level 6, headings enable you
to create different levels of emphasized headlines to organize your Web page. This is
an example:
<h1>Level one headers are the largest for headlines</h1>

<h2>Level two is a little smaller for major subheads</h2>

<h3>Level three is again smaller, for minor subheads</h3>

<p>This is regular text.</p>

<h4>Level four is about the same size as regular text, but emphasized</h4>

<h5>Level five: again emphasized, but smaller than regular text</h5>

<h6>Level six is generally the smallest heading</h6>

See Figure 5.1 for the results.

76 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 5.1

The different

levels of

headings you

can use.

Ideally, headings should be used in descending order, and you shouldn’t skip a
number—that is, an <h3> shouldn’t be the next heading to follow an <h1> without an
<h2> between them. In practice, some Web authors will use a particular heading size
to make text appear smaller or larger as desired. This is not well-formed code, though,
because different browsers can render small headings in different ways. The better
plan is to use style sheets to choose font sizes, as discussed in Chapter 10, “Get
Splashy: Style Sheets, Fonts, and Special Characters.”

You cannot include a heading element on the same line as regular text, even if you
close the heading element and continue with unaltered text. A heading element has
the same effect as a <p> element, in that it creates a new line after its “off” tag.
Consider the following:
<h1>This is a heading</h1> And this is plain text.

This will look nearly the same in a browser as
<h1>This is also a heading</h1>

<p>And this is paragraph text.</p>

In both cases, the Web browser places the header text and text that follows on different
lines, with the header text appearing larger and the plain text appearing at “normal”
size. (Also note that the first example is not well-formed code. The second half of the
line should be enclosed in a paragraph element.)

Horizontal Lines
Want to divide paragraphs with more than just spaces? The <hr /> element places a
line across the width of the Web browser’s window. If the reader changes the size of
the window, the line resizes to match. The <hr /> element is an empty element, so it
does not require a closing tag. (The “hr” stands for “horizontal rule,” which simply
means a horizontal line.)

A horizontal rule inserts a paragraph break before and after the rule. The <hr />
element can be added anywhere in a document, although it always appears on its
own line.
<hr />

<h2>Review: Burrito Factory</h2>

<p>This week we report on two great lunches at the Burrito Factory, a
wonderful little restaurant with locations on the Upper West Side and in
the West Village.</p>

CHAPTER 5 FORMATTING YOUR TEXT 77

The <hr /> element can also accept some attributes that change its appearance,
but these attributes should be used only if you’re working within the confines of the
XHTML Transitional DTD. These attributes are not strict XHTML. (If you do want to
stay strict, you should use style sheet commands instead of these attributes, as dis-
cussed in Chapter 10.) They give you control over the weight of the line, its length,
and the location of the horizontal rule within the browser’s window. You can also
drop the etched look of the line in favor of a solid black rule. Table 5.1 lists the
<hr /> parameters and what they do.

TABLE 5.1 Style Attributes for <hr />
Attribute Description

size Sets thickness of the horizontal line

width Sets width in pixels or a percentage of the viewer window’s width

align Enables the line to be justified left, center, or right within the viewer window

noshade Changes the appearance of the horizontal line to be solid black with no
etched effect

The term pixel refers to a picture element on a computer display or, in Web terms, a
single dot. If you make something 5 pixels wide, that’s wider than 2 pixels, although the
exact width would vary depending on the resolution of the user’s display. The <hr />
element is 1 pixel wide by default.

You can add any of these attributes by typing them into the <hr /> element before
adding the closing bracket (/>). An example is
<hr size=”4” width=”50%” align=”center” noshade=”noshade” />

Styling Your Text
When you’re ready to move beyond simple paragraphs of plain text, your next step
is to begin styling that text. All it takes is a little more markup, in the form of tags
that you place on either side of the text you’re typing onto the page. Beyond that,
you need to put a little bit of thought into which type of style elements you’re going
to use—physical styles or logical styles.

Physical styles are those that specifically tell the browser how the text should be
emphasized or changed. Boldface, for example, is a physical style. Logical styles, on
the other hand, simply suggest to the browser that the marked-up text should be
emphasized in some way. The elements (for “emphasize”) and (for
“stronger emphasis”) are logical elements.

78 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

It might seem that the logical elements are redundant, but they really aren’t—in
fact, they’re preferred. That’s because not all Web browsers can display particular
physical styles, such as boldface. If a cellphone-based browser can’t display boldface,
it ignores your element. If you use a logical element instead, however, the phone
may be able to emphasize the text onscreen in another way. For instance, the
element generally makes text appear bold in a graphical browser. In a non-graphical
browser, however, the element could be rendered differently—perhaps
underlined or highlighted. But that same non-graphical browser would probably
ignore the element.

In general, you should at least consider using a logical style before automatically
typing a physical style, even though the physical styles may seem more familiar.
That way, your meaning and emphasis can reach a broader community of readers
and visitors.

Physical Style Elements
If you’ve used almost any word processor, you instantly recognize the physical style
elements. Physical styles emphasize your Web page’s plain text with boldface, italic,
and underlining. These elements are absolute, which means that every Web browser
should display these physical style elements in exactly the same manner.

Although some browsers may not be able to display logical text styles the way you
expect them to be displayed, there is no way for a browser to misinterpret a physical
style. Bold is bold. Italic is italic. If the browser can’t display a physical style, it
almost invariably ignores it.

Table 5.2 contains some descriptions of physical styles.

TABLE 5.2 Physical Styles and Their Meanings
Element What It Does…

, Boldface

<i>, </i> Italic

<tt>, </tt> Monospaced typewriter font

<u>, </u> Underlined

<big>, </big> Makes text bigger

<small>, </small> Makes text smaller

_, Subscript

[,] Superscript

CHAPTER 5 FORMATTING YOUR TEXT 79

Adding a physical style element to your Web page is simple. The key is selecting the
text that is contained by the style tags. The contained text is what is styled in the
Web browser:

1. Enter text into your HTML document.

2. Place the cursor at the beginning of the text you’d like to style. Type the
opening tag for the style element you’d like to apply to this text.

3. Move the cursor to the end of the text you want to style.

4. Type the closing tag for the style you’re applying to this text. This is an
example of some physical style elements added to the example Web page:

<p><tt>Site News:</tt> We’ve changed around the posting schedule for
<i>new</i> restaurant reviews. They’ll now be posted on
Wednesdays, by popular demand, so that everyone has ample
chance to get out on <u>Thursday and Friday</u> to try them
out.[*]</p>

<p>[*]This promise is subject to our sleeping schedule and
whether or not the restaurant is open earlier in the week!</p>

Figure 5.2 shows how these physical styles are rendered in a Web browser.

80 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 5.2

Generally

browsers don’t

vary in how

they display

physical styles.

Placing markup tags right next to the text they represent is important, as in Tuesday
and Thursday as opposed to Tuesday and Thursday. This ensures
proper spacing in the browser. In the second example, some browsers (or other agents)
may render the line with andThursday running together.

Note

Logical Style Elements
In Chapter 4, “Creating Your First Page,” you learned that the paragraph element
doesn’t just create space between blocks of text—it actually defines the enclosed text
as an element called a “paragraph.” That’s an important distinction, because it
means a paragraph is actually a logical element in HTML. The paragraph element
doesn’t define a fixed amount of line spacing in point size, or a particular margin.
Instead, it leaves the exact determination of what a paragraph is (within certain
limits) up to the Web browser application.

In HTML, logical styles work similarly. A logical style is one that can be rendered by
the Web browser in any way that it chooses. Although most browsers tend to render
paragraph text in a familiar way (single-spaced with a blank line between the para-
graph and the next container), paragraphs could be rendered in other ways—all
green text with a flush-right margin, for example—if the browser programmer or
user decided this was necessary. The same holds true for text that’s surrounded by a
logical style container element. The browser makes the text bold, italic, highlighted,
green, spoken louder (in a text-to-speech browser), or whatever is appropriate for
that particular browser application.

Each logical style element has an opening tag and a closing tag that form a container
for the inserted text. Table 5.3 describes these logical styles.

TABLE 5.3 Logical Styles and Their Meanings
Element The Enclosed Text Is…

, Emphasis

, Stronger emphasis

<cite>, </cite> A citation or a reference to an outside source

<code>, </code> Computer programming code

<dfn>, </dfn> The primary or defining instance of the term

<samp>, </samp> Sample output, often rendered in a way similar to code

<kbd>, </kbd> Representing text typed at the keyboard

<var>, </var> A variable or value

<q>, </q> Quoted text

<abbr>, </abbr> An abbreviation

<acronym>, </acronym> An acronym

CHAPTER 5 FORMATTING YOUR TEXT 81

In a graphical browser, usually italicizes text and usually makes it
boldface. But in other browsers, might do something different, such as underline
the text with a solid line, while might cause the text to be highlighted. In a
text-to-speech browser, text might be louder than paragraph text and
text louder than both. The basic idea is that is just a bit more emphatic—
visually or otherwise—than .

The other styles in Table 5.3 tend to be used for particular purposes, mostly related
to scientific or technical documentation. Again, a browser designed for such documen-
tation could be very creative in how it displays those elements. In most browsers, they’ll
be italicized, monospaced, or won’t have special styling at all.

Internet Explorer for Macintosh enables you to use a personal style sheet to view pages
any way you like. Select Web Content in the Preferences dialog box, and then enable
the Use My Stylesheet command. (You need to locate a stylesheet document, as dis-
cussed in Chapter 10.) Netscape and IE for Windows enable you to choose colors and
fonts. Opera (http://www.opera.com), which is available for a variety of operating systems,
offers extensive control over how elements appear in your browser window.

Listing 5.1 shows an example similar to the one shown in Figure 5.2, but it uses
logical styles instead of physical ones. The results are pictured in Figure 5.3.

LISTING 5.1 Logical Styles

<p>All users need to remember to log out of their terminal accounts
before leaving the computer lab. To <dfn>log out</dfn>, type
<kbd>logout</kbd> or <kbd>exit</kbd> at the prompt. When you see the result <samp>Thank
you. Goodbye.</samp> on screen, you’ll know that it’s safe to turn off the terminal
display. Please do so using the button on the front of the display.</p>

82 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Tip

FIGURE 5.3

In a typical

browser, logical

styles are ren-

dered in a way

that’s similar to

physical styles.

The <q> element is used to place language-specific quotation marks around text
within paragraphs or similar container elements. In current browsers, this usually
just adds quotation marks around the text. In future browsers, it may offer curly
quotes, for example. In other cases, it can be used for alternative display and/or for
responses by assistive browsers, such as a change in inflection for a computer-voiced
browser page. This is an example:
<p><q lang=”en”>I’m not really sure what you mean,</q> Jack said.</p>

The lang attribute is optional and accepts two-letter abbreviations for different
language types, such as “fr” for French and “es” for Spanish (Español).

The last two logical style elements, <abbr> and <acronym>, are a little different. In
essence, they’re used to provide additional information about truncated words. The
Web browser may or may not opt to render this additional information for the reader,
but it can be helpful. Both elements can accept two attributes: lang (for language)
and title. The title attribute is used to hold the actual definition of the abbreviation
or acronym. Theses are some examples:
<abbr lang=”en” title=”United States of America”>U.S.A.</abbr>

<acronym title=”situation normal all fouled up”>snafu

<acronym lang=”fr” title=”Association Canadienne pour la Recherche en
➥Economie de la Sante”>ACRES

Ideally, if a browser recognizes an abbreviation or acronym, that browser somehow
expands the definition of the abbreviation or acronym when prompted. For example,
Internet Explorer displays the definitions in a small pop-up window when it’s pointed
to, as shown in Figure 5.4.

CHAPTER 5 FORMATTING YOUR TEXT 83

FIGURE 5.4

In IE for

Windows, the

text in the title

attribute is dis-

played when

you mouse over

a word that’s

contained by

<abbr> or

<acronym>.

You might notice that this is an easy way to make text pop up around items that aren’t
actually abbreviations or acronyms, but simply words (or phrases) for which you’d like to
see little pop-up windows appear (with definitions or help, for instance) when the
mouse is pointing at them.

Paragraph Style Elements
Chapter 4 discussed the paragraph element, which is used for most of the text that
you put on your Web pages. However, <p>, </p> isn’t the only paragraph container
element. Other elements can also be used in place of the paragraph element to
contain blocks of text in different ways.

The <pre> Element
The preformatted text element, represented by the tags <pre> and </pre>, is a little
different from the paragraph element in that it recognizes every space and hard
return that you type between the tags. Unlike the paragraph element, you don’t need
to add
 or other tags to render line returns. Between <pre> tags, the lines tend
to look exactly like what you type. The following example is illustrated in Figure 5.5:
<pre>

Missed the Saturday dance,

Heard they crowded the floor.

I couldn’t bear it without you,

I don’t get around much anymore.

</pre>

84 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Tip

FIGURE 5.5

With <pre> tags,

your spacing

and returns are

honored.

Preformatted text is excellent for items like programming code examples that you
want to indent and format appropriately. The <pre> element also enables you to
align text for table creation by padding it with spaces. However, because those tables
appear in monospaced font, you may prefer to spend the extra time constructing the
standard HTML tables, discussed in Chapter 8, “Basics Tables.”

Actually, you can use style sheets to change the font of text inside a <pre> element,
which makes it more attractive for uses like the preceding poem. However, this doesn’t
help much with <pre> tables, discussed in the next section, because such tables rely on
the monospaced font to make columns line up correctly.

Using <pre> for Tables
One use for <pre> is to create a primitive table. The key to making this work correctly
is alignment. If you simply enter text between the two <pre> tags, you can use the
space bar to line up each column, and what appears in the browser should be very
similar to what you type. For instance:
<pre>

Year Event

1965 I was born

1966 First novel completed

</pre>

Realize, however, that if you use XHTML elements within the <pre> element, you’ll
need to compensate for the space taken up by their tags. For instance:
<pre>

Year Event

1965 I was born

1966 <i>First</i> novel completed

</pre>

Because the tags in the third line don’t exist on the final page, the spacing will be
correct, even though it looks misaligned when typed.

In fact, in <pre> tables you should probably avoid emphasis styles (both logical and
physical). It is nearly impossible to align columns correctly in every browser when one
row is bold and other rows (or columns) are plain text. Different browsers make bold
text a fraction wider than regular text, so the row or column becomes increasingly mis-
aligned. Even if it looks good in your browser, chances are it doesn’t work in all of them.

CHAPTER 5 FORMATTING YOUR TEXT 85

Note

Tip

To create a simple table:

1. Open your template and enter the following (or a similar table) between the
<body> tags. You may need to play with the spacing a bit to line everything up:
<h1>Average Hourly Rate, Per Region</h1>

<pre>

Region Handywork Creative Business Advertising

NorthWest $40 $50 $75 $100

NorthEast $35 $45 $70 $95

SouthEast $30 $40 $65 $90

SouthWest $25 $35 $55 $75

</pre>

2. Save the HTML document, and then use the Open File command in your
browser to proof it. Keep playing with it until it looks right.

Even within the <pre> container element, tabs are not recognized by browsers. If you’re
using a text editor or word processor, fight the urge to use the Tab key to align <pre>
elements. Use the spacebar instead. (Some HTML editors add spaces when you press the
Tab key, which would work okay.)

The <blockquote> Element
Historically, the <blockquote> container element has been used more for its physical
attributes than for its logical ones. Generally, the <blockquote> element indents each
of the margins of the paragraph it contains, making it look different from other
paragraphs on the page. Although that remains the case even in XHTML, it shouldn’t
be your primary motive for using <blockquote>. The following is a listing that uses
<blockquote> simply for its indenting qualities:
<h1>Site News!</h1>

<blockquote>The site is up and running, including some
introductory reviews, a feature on baking at
home and <tt>Quick Bites</tt> -- a column focused on getting quick,
healthy meals around town. Also, don’t forget to check out the
Discussion Forums and please consider signing up for a
subscription to the Just In... newsletter, featuring
updates and new restaurants as soon as we post them.</blockquote>

Figure 5.6 shows what this looks like in a browser.

86 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Now, although this isn’t illegal by any means, it’d be better to use a paragraph
element, and then rely on style sheets to change the width of the margins. According
to the W3C, the <blockquote> element should be used for presenting quoted material,
such as
<p>From the Gettysburg Address:</p>

<blockquote>Four score and seven years ago, our forefathers brought forth
on this continent a new nation, conceived in liberty and dedicated to the
proposition that all men are created equal.</blockquote>

This example is a more correct use of the <blockquote> element (and it’s shown in
Figure 5.7). That said, it’s okay to use <blockquote> to simply indent text, as long as
you realize that some browsers may (and are allowed to) interpret the paragraph
slightly differently.

CHAPTER 5 FORMATTING YOUR TEXT 87

FIGURE 5.6

The

<blockquote>

element in

action.

FIGURE 5.7

The

<blockquote>

element used

appropriately.

For the record, the <blockquote> element renders as regular body text font, the same
style featured throughout the rest of your HTML document. It doesn’t recognize addi-
tional spaces and returns that you enter as you type in the HTML document. As with
<p>, the text in a <blockquote> container is spaced uniformly.

The <blockquote> element can also accept the cite attribute, which enables you to
include the URL for a particular quotation. You can use this to show a source that
you’ve used (if it’s online), as in
<blockquote cite=”http://eserver.org/history/gettysburg-address.txt”>Four
score and seven years ago, our forefathers brought forth on this continent
a new nation, conceived in liberty and dedicated to the proposition that
all men are created equal.</blockquote>

Although few popular browsers do much with the cite attribute, in the future it may
become more common for browsers to provide a link or other behavior in response
to this attribute.

The <address> Element
The <address> container element is used to create paragraph-like text that’s specially
formatted to stand out as information about the author of the page. In most browsers,
the <address> element is displayed as an italicized paragraph. But, as with any logical
style, browsers are free to display <address> text any way they want to.

An example of <address> might be
<address>Page created and maintained by Ed Smiley</address>

Traditionally, the <address> element is used toward the end of a Web page to give
information like

■ When the page was last updated.

■ Who should be contacted concerning the page (usually the Webmaster’s
e-mail address).

■ What the URL for this page is.

■ Phone numbers or physical addresses for the company or association.

Most of these elements aren’t vital to your page’s contents, but they’re nice additions
to consider. An example of a full address might be
<address>

This page last updated 6/12 at 9:08pm.

Contact edsmiley@fakecorp.com with corrections or problems.

FakeCorp

1732 93rd Street

88 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

New York, NY 10025

212-555-1200

</address>

Notice the use of
 to insert line breaks within an <address> element. This
address is shown in Figure 5.8.

CHAPTER 5 FORMATTING YOUR TEXT 89

FIGURE 5.8

Generally, text

within the

<address>

element is

italicized.

Marking Changes: <ins> and
<ins> and are elements that are particularly interesting in more formal business
and academic settings. Ideally they’re interim tags, to be used while you’re working
with an HTML document and before it’s final.

You can use the element to surround text that you feel should be deleted, and
then use the <ins> element around text that should be inserted in its place. (They
can also be used individually, if you’re simply deleting or inserting text.) This is most
useful when more than one person is working on the same HTML document and you
want to see the changes. If you’re familiar with the Track Changes feature in Microsoft
Word, that’s basically what you’re doing with these elements.

Both elements can accept the datetime, cite, or title attributes, which you can use to
better explain what you’re doing. The datetime attribute is used to show the date and
time of the insertion or deletion, using a somewhat clunky, but functional, approach:
2001-12-05T09:00:00-05:00

This stands for 9:00 a.m. EST on 12/5/2001. Note that the –05:00 represents distance
from mean (Zulu) time, so for PST, you’d use –08:00 and so on. The cite attribute is
used to reference an URL that includes an explanation of the insertion or deletion.
The title attribute can be used to explain it within the tag. This is an example:
<p>It’s important for the <ins datetime=”2001-12-05T09:00:00-05:00”
title=”Changed after the board’s vote on this matter”>Board of
Directors</ins>Office of the President to have an opportunity to
make its case to the shareholders.</p>

This is shown in Figure 5.9.

The <ins> and elements can also be used around blocks of XHTML markup, like
entire <p> container elements of text.

Using Lists on Your Web Page
List elements, just as with paragraphs and preformatted text, are XHTML container
elements that can accept other markup within their boundaries. XHTML lists require
at least two elements, one that defines the type of list and one to contain each item
within the list. Those contained items can be words, sentences, paragraphs, or other
XHTML elements, such as images.

Most XHTML lists follow this format:
<list type>

First item in list

Second item in list

Third item

</list type>

Each of the elements is an item, and each item begins on a new line. How that
line begins depends on whether the list is ordered or unordered.

Ordered and Unordered Lists
It might be better to think of ordered and unordered lists as numbered and bulleted
lists, respectively, especially when discussing their use in HTML documents. For
numbered/ordered lists, the element is , and for bulleted/unordered lists, the
element is .

For either of these lists, a list item is designated with the element . In the case of
ordered lists, the tag inserts a number; for unordered lists, it inserts a bullet point.

90 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 5.9

The <ins> and

 elements

help you man-

age an ongoing

discussion over

text (or other

elements) in a

page.

Note

This is an ordered list:

Item number one.

Item number two.

Item number three.

And this is an unordered list:

First item.

Second item.

Third item.

To see how these look in a browser, see Figure 5.10.

CHAPTER 5 FORMATTING YOUR TEXT 91

FIGURE 5.10

Ordered

(numbered)

and unordered

(bulleted) lists.

Aside from other XHTML markup, you can include other lists within lists, as long as
they’re carefully nested within one another. For example:

item 1

item 2

item 3.1

item 3.2

item 4

The rule is simple—you need to end the list that’s nested within the original list
before you can end the original list. In fact, you need to end the list item in which
that nested list resides before you can move on.

Ordered List Attributes
You have the option of changing the way lists act and appear on the page. However,
it’s worth noting that these are transitional attributes, not compliant with the XHTML
Strict DTD, so have the XHTML Transitional DTD specified if you’re going to use
them. The better approach is to use style sheets, as discussed in Chapter 10.

Most graphical browsers recognize some additional attributes for ordered list items,
including start, value, and type. Likewise, unordered lists can accept the type attribute,
which enables you to change the appearance of the bullet. Table 5.4 covers the
attributes for ordered lists.

TABLE 5.4 Attributes for Ordered List Items
Tag Display List Value As…

<ol type=”A”> Uppercase letters

<ol type=”a”> Lowercase letters

<ol type=”I”> Uppercase Roman numerals

<ol type=”i”> Lowercase Roman numerals

<ol type=”1”> Numbers

In addition, the start attribute can be used to change the starting value for that list.
For example, you could have a numbered list start at the value 10 by beginning it
with this tag:
<ol start=”10”>

You can also use the value attribute to change the value of an individual list item.
For example, this is how to change the numbering within the list:

Item #1

Item #2

<li value=”1”>Item #1

Item #2

92 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Bullet List Attributes
This example is also transitional, so you should use a style sheet if you’re trying to
keep to the XHTML Strict DTD. If you’re not, you can change the appearance of
bullets in unordered lists with the type attribute. The bullet styles are as follows:

■ Solid circle—<ul type=”disc”>

■ Solid square—<ul type=”square”>

■ Open circle—<ul type=”circle”>

Note that not all Web browsers can render these bullet styles, and not all do it
correctly when they try. You might get squares for all these bullets, for example.

Definition Lists
The final list element is the definition list, which is designed to allow for two levels
of list items: the defined term and its definition.

The elements for this list are the main list container element <dl> (definition list) and
two list item container elements, <dt> (definition term) and <dd> (definition). The <dt>
element is designed to fit on a single line of your Web page, although it wraps to the
beginning of the next line if necessary. The <dd> element accepts a full paragraph of
text. In most visual browsers, the definition text is continuously indented beneath
the <dt> term. For example:
<dl>

<dt>genus <i>(n.)</i></dt>

<dd>A group or type marked by common characteristics.</dd>

<dt>geocentric <i>(adj.)</i></dt>

<dd>Of, related to or coming from the center of the earth.</dd>

<dt>geography <i>(n.)</i></dt>

<dd>The study of the earth, its topography and its natural or manufactured
features.</dd>

</dl>

Notice that standard XHTML markup is permissible within the boundaries of a defi-
nition list, and that using bold and italics for the defined terms adds a dictionary-
like quality. This is shown in Figure 5.11.

CHAPTER 5 FORMATTING YOUR TEXT 93

Not all browsers display definition lists in the same way, so adding spaces to <dt> items
to get them to line up with the <dd> text is often a waste of time.

Just because definition lists allow for two different types of list items, you don’t need
to use both. Using just the <dt> element in your list, for example, results in a list not
unlike an unordered list—except that nearly all browsers display it without bullets.
For example:
<dl>

<dt>Uptown - above 60th Street

<dt>Midtown - 14th to 60th Street

<dt>Downtown - below 14th Street

</DL>

And, although the <dd> element isn’t as useful, it could be used on its own to indent
paragraphs repeatedly within the definition list structure.

Summary
In this chapter, you learned about quite of few of the basic XHTML elements that are
used to change the organization of text on your Web pages. The chapter began with a
look at the heading elements, and then it explained the physical and logical elements
that are used to emphasize and stylize text. You then saw the various elements used
to alter the organization and appearance of paragraphs, followed by the elements
used to create lists on the page.

In Chapter 6, you’ll learn how to create images for your Web documents and add
them using the element and its attributes.

94 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 5.11

A typical

definition list.

Tip

T

6

VISUAL
STIMULUS—
ADDING GRAPHICS
he vast majority of Web pages you encounter have images that either

enhance the appearance of the Web pages, add to their usability, or

communicate information. Generally, these images are easy to create

and easy to add to your Web document. All you need are the correct

tools and the knowledge of a few additional XHTML elements. It’s

important to realize that your images are not visible to all of your Web

users, however, so you’ll want to compensate for non-graphical

browsers. Fortunately, attributes that substitute text when images can’t

be displayed are built-in, as are other options for customizing the

appearance of images on your pages.

This chapter discusses the following:

■ Creating or translating images for use on the Web

■ Placing an image in your HTML document

■ Attributes for altering an image and offering alternative text

■ Aligning an image on the page

Images on the Web
When you’re talking about images on the Web (and in computing in general), what
you’re really talking about is a particular type of computer file. Such files can be any
sort of visual element—a drawing, something placed on a digital scanner, a photo
from a digital camera, even an image of text created in a graphics application—but
that element is always in a particular file format.

This means that a text editor like Windows Notepad or Mac’s SimpleText won’t be
able to read an image properly. Instead, you’d need to use an image-browsing
application, an image-editing application, or a Web browser. Ultimately, it’s the file
format that differentiates the image document from a text document and, by exten-
sion, from an HTML document.

It’s a simple matter to add images to your Web pages—all it takes is the ele-
ment. Realize, however, that you’re not adding the images to your HTML document.
You place a pointer in your HTML document, which tells a Web browser how to find
and load the image from its location either on your Web server or on the Internet.
The image file and HTML document need to exist separately (see Figure 6.1).

96 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 6.1

The image on

this page is the

result of an

instruction in

the HTML

document to

locate the image

file and place it

in the browser

window.

This issue of “where the image file is” can be a bit confusing, so let me clarify. Just
as with any HTML document, an image file is referenced using a unique URL. This
URL can point to an image file that’s in the same folder or directory as the HTML
document, one in a different directory on the same disk or Web server, or one that’s
somewhere else on the Internet. But the important issue is that you’re using an URL.
You’ll see how exactly to do that later, in the section “The Element.” First,
though, let’s go through a quick primer on graphic file formats and how to create
and/or translate images for the Web.

What Images Can You Use?
As mentioned, images are special files in particular formats that are recognized by
Web browsers and other applications. On the Web, these file formats include JPEG,
GIF, and PNG. But images can come in many other formats as well, such as PCX,
TIFF, PICT, and so on.

For the sake of compatibility, however, only those first three formats are appropriate
for use on your Web pages. If you have files in other formats, you’ll want to trans-
late them. Here’s a look at the image formats that are Web-compatible:

■ JPEG (Joint Photographic Experts Group, pronounced “J-Peg”)—
This format is generally used for photographs because it looks best at millions
of colors. If you have an image that’s been scanned using a scanner or taken
with a digital still camera, it’s possible that the image is already in JPEG
format.

■ GIF (Graphics Interchange Format, pronounced “Jiff” or “Giff”)—
This file type is best used for images that are computer-created—particularly
text and mouse-drawn graphics that require fewer colors. GIF files are highly
compressed, so they take less time to travel over the Internet—an important
consideration. GIF also supports transparency within the image (so that images
can appear to be sitting directly on the Web page’s background) and animation.

■ PNG (Portable Network Graphics, pronounced “Ping”)—This format
was actually created as a replacement for GIF, in part because GIF uses a
patented compression scheme whereas PNG is free of patents. PNG also
supports transparency and animation.

So, if you’re creating an image in a drawing or photo-editing application, you’ll
likely choose PNG or GIF, particularly if it isn’t a photographic-quality image. If
the image is a photograph in another format, you’ll likely use an image program
to translate it into JPEG format, as discussed later in this chapter.

You should avoid copying or translating images for your own use if you don’t have the
rights to do so. Web browsers and other applications will allow you to copy images from
other Web sites, and you may have access to other images that you’d like to use on your
Web pages. Many images, such as logos and photographs (among many others), are
copyrighted and owned by individuals or corporations. Your best bet is to use only
images that you create, not just translate or alter. Of course, I’m not an attorney, so
consult one if you have a particular legal question.

CHAPTER 6 VISUAL STIMULUS—ADDING GRAPHICS 97

Caution

What Images Should You Use?
When you’re choosing or creating the images for your Web page, you should focus
on two basic issues. The images should be there for a good reason (not just to make
the page look pretty) and should download quickly to the user’s browser.

The photos, charts, and graphs that you use will likely improve both the appearance
of your page and its ability to communicate with the reader. Text alone won’t always
hold a reader’s attention, so images can be used to break up the text, summarize key
points, or simply make the page more attractive.

Clear images communicate their function almost instantly. In fact, icons—which
are simply small images similar to the folders and documents that appear in Microsoft
Windows or the Macintosh OS—are often a clever way to get a point across graphically,
while keeping your images small and to a minimum.

The images that communicate best may not even seem to be images at all—instead,
they may be text. You’ll find it’s often convenient to create images that are largely
text, if only to put more visually appealing text on your page. Figure 6.2, for
instance, shows title text that looks a little more stylish than an HTML heading.

98 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 6.2

Images on a

page can

include stylized

text.

Although adding Web images to your pages is a fairly painless process, creating
those images can be a bit tougher. The trick with Web images is to keep them inter-
esting, entertaining, and useful, yet small and unobtrusive. It takes a bit of getting
used to, but the best Web designers understand that having a balance is the most
important element for successful images. Here are a few basic rules:

■ Images and drawn graphics should have a clear purpose on your page. Having
images just for the sake of having pictures on the page should be kept to a mini-
mum. Most Web surfers are looking for information or services, not cool images.

■ Image files should be small and load quickly. By the same token, your Web
page should load quickly, too—which means it can’t be overwhelmed with
images.

■ Take advantage of technology to improve your images. Make sure you
choose the correct image format for your graphic, and use your image-editing
application to trim the image and make it as small as possible while still being
useful. You should also consult Chapter 11, “Advanced Web Images and
Imagemaps,” to learn more about advanced issues that can make your
images more highly compressed and efficient.

There are two measurements of image size on Web pages: the amount of the screen
that an image takes up, and the storage space the image’s file requires on the server
computer. So, when we say you should have small images, it isn’t only that the
image shouldn’t take up much space on the page. More importantly, it should be
small in actual file size, which makes the image download to a user’s Web browser
more quickly.

How do you make files smaller? Some applications have special tools that help you
shrink your images’ file sizes. But mostly it’s a question of choosing the correct image
format (JPEG for photos, GIF or PNG for drawn or painted graphics and text), using
the fewest number of colors possible, and cropping or trimming the images so that
you only use as much space as necessary. For other hints and ideas, see Chapter 11.

Creating and Translating Web Images
Once you’ve considered the implications of using images on the Web, you can set
yourself to the task of creating and/or translating images. You’ll need a image-editing
application (discussed in Chapter 3, “What You Need to Get Started”), and you’ll
need either some existing images or some ideas for creating new images. In this section,
we’ll discuss two different applications—Paint Shop Pro for Microsoft Windows and
GraphicConverter for Macintosh.

Using Paint Shop Pro
Paint Shop Pro for Windows is the most popular shareware option for image editing,
particularly among Web designers. And there’s good reason—the basic tasks are simple.

If you already have an image you’re working with, you should load that image into
Paint Shop Pro by selecting File, Open. The image can be anything—a photograph,
a drawing you’ve created in another application, or even an image that you’ve
created in Paint Shop Pro. Once the image is loaded, you’re ready to crop it and
prepare it for the Web.

CHAPTER 6 VISUAL STIMULUS—ADDING GRAPHICS 99

Cropping the Image
Cropping an image simply means selecting the portion of the original image that
you’d like to use as the final image on your Web page. In many cases, it’s a good
idea to crop an image to the bare minimum you’d like to use. This is partly so that
the image will fit well on your page, but also so that it’s as small as possible while
still communicating important information. With images that you create in other
programs, you may also find it useful to crop each image so that less of its back-
ground will appear on the Web page.

In Paint Shop Pro, with the image loaded, select the Crop tool and drag an outline
around the area that you’d like to keep. You do this by pointing at the top-left corner
of the area, and then clicking and holding the mouse button while you drag to the
bottom-right corner of the portion you’d like to keep. Release the mouse button and
the area should be surrounded by a box (see Figure 6.3).

100 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Crop tool

FIGURE 6.3

Selecting an

area for crop-

ping in Paint

Shop Pro.

With the selection made, choose Image, Crop from the menu or double-click inside
the box that you’ve drawn. The image is cropped to the portion inside the box.
Choose File, Save to save the changes, or choose File, Save As to give the cropped
image a new name, thus keeping the original image as well.

Resizing an Image
Often you’ll find that even once you’ve cropped a high-resolution photo to the
desired size, you’ve still got something that’s a little too big to fit comfortably and
effectively on your Web page. The solution is to resize the image, which is fairly
simple to do in Paint Shop Pro.

With the image open in a document window, select Image, Resize. In the Pixel size
section of the Resize dialog box, you can enter a new size, in pixels. Note that when
you change the width, the height changes automatically. That’s because the Maintain
Aspect Ratio option is turned on at the bottom of the Resize dialog box. This ensures
that a resized image won’t be stretched or compressed in a way that makes it look
distorted. (If you want distortion, turn this option off.)

If you’d prefer, you can click the radio button next to Percentage of Original and
enter a new width or height. That way you can quickly change the size of the image
without worrying about an exact size in pixels.

When you’ve made your changes, click OK and the image will change in size.

ALL ABOUT PIXELS
What’s all this about pixels? Pixels are picture elements, which is a fancy way to say
“dots.” Images on your screen are composed of a certain number of dots. The more
dots, the larger the image will appear.

Your computer display is set within your operating system to display a fixed number of
pixels—usually 1,024×768, or sometimes 800×600. (It may have a different setting, usu-
ally dependent on the size of the display.) Images from digital cameras can be
“megapixel” images—1,024×768 at the lowest, with some of them pushing
2,048×1,536 or higher. Clearly, that’s more pixels than you need for a Web image. The
solution is to crop the images and/or resize them.

You may come across one other measurement, called pixels per inch (ppi). Different
items have different pixel resolutions, which is why pixels can be so darned confusing. If
you’re asked by an application, images for a Web page generally don’t need to be more
than 72 ppi. As you’ll see in Chapter 11, you can change the ppi of images to make
them take up less storage space and travel over the Internet more quickly.

Adding Text
To add text to an image (or to create an image that’s exclusively text), you simply
click the Text button (it looks like a capital “A”) and then click in the image window
to begin adding text. When you click, the Text Entry dialog box will appear.

CHAPTER 6 VISUAL STIMULUS—ADDING GRAPHICS 101

Enter the text you’d like to add to the image in the Enter Text Here entry box. Then
use the commands elsewhere in the dialog box to fine-tune the appearance of the
text, including font, size, style, alignment, and even kerning (space between characters)
and leading (space between lines). When you’re done, click OK.

One option enables you to anti-alias the text, which means to smooth the appearance
of the text onscreen. This is a great idea for most Web images because the text looks
more polished and professional.

After you click OK, your text becomes an object in the image, as shown in Figure
6.4. If you’d like to move the text, you can do that by pointing at the very middle
of the text until you see the mouse pointer change into a four-way arrow. Now click
and hold the mouse button, and then move the mouse around and you’ll drag the
text around on the image. When you get to its new home, release the mouse button.

102 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Text tool

FIGURE 6.4

Adding text in

Paint Shop Pro.

If you point at one of the corners of the text area, and then click the mouse and drag,
you can change the size of the image, actually stretching it in different directions. This is
an interesting way to get some “tall text” or “fat text” effects.

Tip

Saving or Translating the Image File
When you’re ready to save an image for the Web, you’ll want to select File, Save As,
so that you can choose the appropriate image file format. In the Save As dialog box,
enter a name for the image in the File name entry box. I recommend you avoid using
spaces in the filename because they’re a little tougher to deal with on the Web.

Now you’ll see the Save as Type menu, which you can use to choose the file type. For
photographic images, choose JPEG—JFIF (JFIF Compliant) as the type. For images
you’ve created in Paint Shop Pro, choose either CompuServe Graphics Interchange
or Portable Network Graphics. With that selection made, you can click Save to save
your new image in its Web-compliant format.

You can do a lot more when saving images, including tricks to make them take up less
space as files. See Chapter 11 for more details.

Using GraphicConverter
GraphicConverter is the most popular shareware graphics solution for Macintosh,
with both Mac OS 9 (and earlier) and Mac OS X versions available. To load your
image into GraphicConverter, select File, Open. Once it’s loaded, you’ll be able to
crop, resize, and save or translate it.

Cropping (Trimming) the Image
To crop an image in GraphicConverter, click the Selection tool in the toolbar (it looks
like a dotted rectangle) and move the mouse pointer over to the image. Now draw a
box around the portion of the image that you’d like to keep. You do this by pointing
at the top-left corner of the area you’d like to keep, and then clicking and holding
the mouse button while you drag to the bottom-right corner of the portion you’d like
to keep. Release the mouse button and the area should be surrounded by a dotted
line (see Figure 6.5).

To crop out the rest of the image and keep the outlined portion, choose Edit, Trim
Selection. You’ll see a new, smaller version of the image. Choose File, Save to imme-
diately save the change. (If you’d like to give the cropped image a new name so that
the original remains intact, choose File, Save As, as discussed later in the section
“Saving or Translating the Image File.”)

CHAPTER 6 VISUAL STIMULUS—ADDING GRAPHICS 103

Note

Resizing an Image
To resize an image in GraphicConverter, open the image in a document window and
select Picture, Size, Scale from the menu. In the Scale dialog box, enter a new value
in either the Width or Height entry box. The other value will change automatically
as long as the Keep Proportions option is checked. Note that you can alter the units
for the measurement you’re changing by selecting Pixel or Percent from the pop-up
menu that appears next to both the Width and Height entries.

When you’re done making adjustments, click the OK button.

Typically, you won’t want a photo to be more than a few hundred pixels wide by a few
hundred pixels tall. In most cases, a 300×200 image will take up about 25% of the user’s
display. For more on pixels, see the “All About Pixels” sidebar earlier in this chapter.

Adding Text
To add text to an image (or to create an image that’s exclusively text), you simply
click the Text button (it looks like a capital “A”) and then click in the image window
to create a text area. You can use the mouse to drag the sides of the text area to
make it larger. Then, simply start typing the text you want to add to the image (see
Figure 6.6).

104 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Selection tool

FIGURE 6.5

Selecting an area

for cropping in

GraphicConverter.

Note

If you’d like to move the text area, place the mouse pointer over it until the pointer
turns into a hand. Now click and hold the mouse button, and you’ll see the hand
turn into a fist. Move the mouse around to drag the text around on the image.
When you get to its new home, release the mouse button.

If you’d like to change the style of the text, you can do so while the text area is still
highlighted. (If it isn’t, first click the Selection tool, and then click the text area again).
Simply double-click the Text tool and a dialog box will appear in which you can
change the font, size, alignment, and style of the text. When you’re done, click the
OK button.

Anti-alias means to smooth the appearance of text onscreen. This is a great idea
for most Web images, as anti-aliasing text tends to make it look more polished and
professional.

Saving or Translating the Image File
Once you have the image open and ready to save or translate, choose File, Save As.
In the Save dialog box, enter a name for the image in the Name entry box. I recom-
mend names without spaces because they’re easier to add to your HTML documents.
Next, select a format from the Format menu—JPEG/JFIF for photographic images,
GIF or PNG for images you’ve created in GraphicConverter. (When you choose the
format, a three-letter filename extension is appended automatically.) Click Save.

CHAPTER 6 VISUAL STIMULUS—ADDING GRAPHICS 105

Text tool

FIGURE 6.6

Adding text in

GraphicConverter.

Note

When you choose JPEG/JFIF, a dialog box appears. In that dialog box, you can choose
the quality level of the image. The lower the quality, the smaller the file size of the
image. You can also choose to use either QuickTime or JPEG 6.0 as the compression
library—choose JPEG 6.0. Click OK to finish saving the image as a JPEG.

The Element
When you want to insert a graphic file on a Web page, you actually do so with an
URL. This URL is the specific location on the Internet where the graphic file is located.
It can be on the same Web host computer that your HTML document is on, or it can
be on a host somewhere else on the Internet.

The most basic element can be used to create an inline image, which appears
exactly where you place it relative to the text in the HTML document. The other
kind of images, floating images, are discussed later in the section “Left- and Right-
Aligning Images.” The basic difference between the two types is that inline images
aren’t aligned against a margin—they’re anchored in the text of the page. Floating
images can be made to stick to the left or right margin.

To add an inline image to your page, you’ll use the element. This element
acts as a placeholder in your text where the browser will put the graphic. The basic
image element has the following syntax:

The src attribute means source and refers to the location of the image (it’s on some
hard drive somewhere in the world). The actual URL for the image file replaces the
words image_URL.

The image_URL can be a full URL with full machine name (such as
http://www.fakecorp.com/images/product1.jpg). Alternatively, the URL can refer to the
image file’s relative URL. In this case, you refer to the file’s location relative to the
directory where the Web page is.

A relative URL is one that doesn’t include an entire Internet address, such as
/images/product1.gif. When you enter an URL in this way, the machine address
portion of the URL (as in www.fakecorp.com) is assumed to be the same as that of
the HTML document that includes the relative URL reference.

The following is sample HTML code for adding an inline graphic to the page (see
Figure 6.7):
<p>Rudolpho’s offers excellent

vegetarian options, including a fabulous array of olive-based

appetizers, delectable breads and great house wines. The

mix-and-match pastas give you an array of choices for sauce

106 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

and pasta style and the atmosphere is the perfect blend of

sidewalk cafe and intimate conversation nooks. The only
downside -- weak service and a surprisingly woeful dessert tray.

Three stars.</p>

CHAPTER 6 VISUAL STIMULUS—ADDING GRAPHICS 107

FIGURE 6.7

Notice that the

image appears

on the same line

as the text. It’s

an inline image.

Notice that the element is using a relative URL. Actually, it could have
just as easily been a complete URL like

Both are similarly useful, but you only need to use a complete URL if the image
you’re loading resides elsewhere on the Internet. If it’s in a subdirectory, something
like this will work just fine:

It’s important to avoid linking to files using a direct file URL to your hard drive. (This will
sometimes happen when you use less-sophisticated or older HTML editors.) Remember,
your computer’s hard drive isn’t on the Internet—your Web server’s hard drive is. So, if
you create an image link like , your users
will not be able to see the image once the page is uploaded to your Web server.

Alternative Text
Not everyone on the Internet has access to Internet Explorer, Netscape, or another
graphical browser. In some cases you may be dealing with text-only Web browsers,
such as those on cell phones, handheld computers, and “dumb” terminals at college
campuses or libraries. In other cases, you may be dealing with sight-impaired users
or others whose browsers offer assistive features.

Note

So how can you accommodate these users, even when you use images in your Web
pages? HTML provides a simple solution: the alt (alternative) attribute. This attribute
defines a text string that replaces the image in browsers without graphics support.
This text is often displayed in a box to separate it from the surrounding body text.
Here’s an example:
<img src=”graph1.gif” alt=”Chart shows sales up 25 percent in six months”
➥/>

You should consider alt a required attribute for well-formed XHTML code, and it offers
the most benefit to the widest possible audience. In that spirit, it’s also important not
to place irrelevant text in the alt attribute (like “put text here” or “colorful bullet
point”). Many assistive browsers will be forced to waste time by rendering that text
in speech or in Braille, for instance. In other words, keep your alt text relevant and
brief.

If you have a strong desire to explain an image in more detail, you can do so with
another attribute: longdesc. This attribute enables you to specify an URL which can
be linked to and explain the image in more detail, as in
<img src=”graph1.gif” alt=”Chart shows sales up 25 percent in six months”
➥longdesc=”http://www.fakecorp.com/charts/chart1.html” />

Aligning Text and Images
On their own, Web browsers don’t do much to help text and images share space
on a Web page. Web browsers treat inline images like characters in the line of text.
Often this doesn’t look very good, particularly with photographs. Instead, you’d
probably prefer an image to look more like an image on a magazine page, with the
text wrapped around it.

Fortunately, you can do something about this. comes with an attribute called
align, which determines how text and images interact with one another on a Web
page. Specifically, align controls how text that’s placed on the same line as an image
will line itself up along the vertical sides of the image.

The align attribute is written as

The standard (inline) values for the align attribute are shown in Table 6.1.

TABLE 6.1 Standard Values for the align Attribute
Value Effect on Text

“top” Aligns the bottom of the text to top of the image

“middle” Aligns the bottom of the text to the middle of the image

“bottom” Aligns the bottom of the text to the bottom of the image

108 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

The bottom value is the default for , so you don’t need to specify it if that’s
what you want to use. When using any of the standard values, Web browsers leave
white space around the text on the line, and the text wraps down to the next line
beneath the bottom of the image. Figure 6.8 shows how a Web browser handles each
of these attribute values.

CHAPTER 6 VISUAL STIMULUS—ADDING GRAPHICS 109

FIGURE 6.8

The image is

aligned to

bottom, top,

and middle,

respectively.

Right- and Left-Aligning Images
The align attribute can accept two other values, left and right, which change the
image from an inline image to floating images. They won’t appear exactly where
you place the element in the text, but rather on the selected margin near
the text that surrounds the element. In addition, the text will wrap around
the image, somewhat like an image on a magazine page, as shown in Figure 6.9.
Here’s an example:
<p>Views. If there’s

anything the Sky Mountain Inn and Spa offers more abundantly

than luxuries, it’s views. Nearly every window has something

to offer, from the peaks to the valleys, to water, to trees.

There’s so much to see, you’ll wonder why they call it “getting

away from it all.” </p>

Older browsers will recognize two other attributes, vspace and hspace, which can be
used to add space between a floating image and text. These commands are not well-
formed code, however. In Chapter 10, “Get Splashy: Style Sheets, Fonts, and Special
Characters,” you’ll see that style sheets can be used to create the same effect.

Width and Height
Two other attributes for , width and height, are worth mentioning. These two
attributes are designed to make your Web page appear in the user’s browser just a
bit more quickly.

By telling the browser the size of the images (in pixels), the browser is able to mock
up the layout and lay in the text before it finishes retrieving the images. This makes
it appear that your page is loading more quickly in the browser window, and it allows
the visitor to read text and click hyperlinks even as the page continues to download.
Here’s an example of the width and height attributes in action:
<p>

Views. If there’s anything the Guest Cottage offers more abundantly

than luxuries, it’s views. Nearly every window has something to offer,

from the peaks to the valleys, to water, to trees. There’s so much to

see, you’ll wonder why they call it “getting away from it all.”</p>

110 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 6.9

The top image is

left-aligned; the

bottom is right-

aligned.

Note

Need to know the size of an image? In most cases, your image-editing application can
help you. Just look for an Info command. In Paint Shop Pro, select Image, Image
Information. In GraphicConverter, choose Picture, Show Information.

Note that the width and height attributes can actually be used to change the apparent
size of an existing image and force it to conform to the pixel size that you specify.
That means you could take an image that’s 300 pixels wide and 150 pixels high and
force it to appear 150 pixels wide and 75 pixels high simply by specifying those sizes:

This is certainly possible, but it’s not a great idea for one reason: file size. The file
size of the image remains the same, regardless of the height and width specified. In
the preceding example, you’re forcing your visitors to download the full image and
view it at half size. The better plan would be to crop or scale the image in an image-
editing application, and then use that smaller image on your page.

Summary
In this chapter, you learned about the file formats that can be used on the Web, and
how to modify and translate other images so that they can be saved in those formats.
You also learned how to crop images and create images that include text. Then, you
learned how to use the element to add images to your Web documents,
including many of the attributes associated with that are used to align the
image against text on the page, add alternative text, and specify the width and
height of the image.

In Chapter 7, you’ll learn how to add hyperlinks to your pages so that you can link
to other Web pages, other Web sites, and even other Internet services.

CHAPTER 6 VISUAL STIMULUS—ADDING GRAPHICS 111

Tip

H

7

BUILDING
HYPERTEXT
LINKS
ypertext was the basic concept that propelled the idea of the Web for-

ward, allowing information and ideas to be linked together in a way

that hadn’t happened before on the Internet. Combined with most

Web browsers’ graphical and multimedia capabilities, hypertext links

(hyperlinks) make the Web an entirely new medium for communication

and publishing.

This chapter discusses the following:

■ How hyperlinks work, including relative links versus absolute
links and the various HTML elements used for links

■ Creating the links and putting them on your Web page

■ Linking to parts of the same page and building graphical links

■ Creating special links, including links to other Internet services

■ Automatic link stuff: changing pages and opening new Web
browser windows

How Hyperlinks Work
On the Web, hyperlinks are the basis of all movement and manipulation. Clicking a
link on a Web page generally moves you to the related resource by loading that
resource in your Web browser or in a helper application. Sometimes that’s a new
Web page; sometimes it’s another Internet service, like an e-mail message or an FTP
(file transfer protocol) server. Before the user can click a link, however, it has to be
created by the Web author.

You use an XHTML element, the <a> anchor element, to create a hyperlink. The
anchor requires the href attribute, which is used to tell the Web browser which new
URL is being referenced by the hyperlink. So, to create a hyperlink, you’ll first need
to determine the URL for the target page or resource.

The Uniform Resource Locator
Every hyperlink contains a Uniform Resource Locator, or URL. The URL is the address
of the Web page that appears in the Location or Address box near the top of your
Web browser when you’re surfing the Web. It’s also the address that shows up, in
many cases, at the bottom of your Web browser’s window when you move the cursor
over a hyperlink.

As mentioned in Chapter 1, “Fundamentals of Web Publishing,” the URL consists of
two major items: the protocol and the destination (although they have all types of
other names). The protocol tells you what kind of Internet resource you’re dealing
with. The most common protocol on the Web is http://, which retrieves HTML docu-
ments from the Web.

The destination can be a filename, a directory name, or a computer name. An URL
such as http://www.fakecorp.com/products/index.html tells you exactly where the HTML
document is located and what its filename is. If the URL is ftp://ftp.netscape.com/,
the URL is telling the browser to access a computer named ftp.netscape.com using
the File Transfer Protocol.

Relative Versus Absolute URLs
There’s another distinction you can make when it comes to URLs for your hyperlinks.
If a particular Web page’s URL is basically the same as the current page—except,
perhaps, for the filename—it’s possible to use a relative URL to reference that page.
Consider the following two pages:
http://www.olelondonisp.net/drwatson/index.html

http://www.olelondonisp.net/drwatson/resume.html

114 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Both of these URLs are absolute URLs—they could both be used to reference their
respective pages (index.html and resume.html) from anywhere on the Internet. But
what if you’re creating a hyperlink on the first page (index.html) that points to the
second page (resume.html)? In that case, you could use a relative URL, because the
rest of the information is the same.

It’s a little like working with files in folders on your PC or Mac. If you save a file in a
particular folder and then decide to open a new file, generally you don’t have to go
spelunking through your entire hard drive to find that folder again. Many applica-
tions will open right to the last-used folder.

A Web browser does the same thing. When it encounters an URL that’s nothing more
than a path or filename, such as resume.html, the browser will assume that the
author meant “Use the current URL and directory, but open a new file.” For instance,
let’s say the current page is stored in this directory:
http://www.olelondonisp.net/drwatson/

It’s assumed that the relative link should simply be tacked onto that URL:
http://www.olelondonisp.net/drwatson/ + resume.html

This results in the following:
http://www.olelondonisp.net/drwatson/resume.html

So, you could use the following relative URL to refer to the second page from the first
page:
resume.html

This is shown in Figure 7.1. If index.html and resume.html are in the same directory
(and on the same Web server computer), everything will work fine.

CHAPTER 7 BUILDING HYPERTEXT LINKS 115

FIGURE 7.1

The links shown

are relative

links, which

should work fine

as long as those

pages are in the

same directory

as the page

being edited.

This relativity, if you will, means you can also reach other directories on the server
using common notation. For instance, if you want to access an item that’s in a sub-
directory of the current directory, you could use an URL such as /pages/house.html or
even /assistants/roger/resume.html to access those items. If those are valid subdirecto-
ries of the directory where the HTML document currently resides, those items will be
accessed.

Similarly, you can use special notation to cause the URL to access a directory that’s
the parent of the current directory. For instance, suppose you’re saving the current
HTML document in the products directory, which is a subdirectory of the site’s main
(or root) directory. In that case, you could access the main index page using an URL
like this:
../index.html

Likewise, you could access a subdirectory of the root directory using an URL like this:
../service/contact.html

The two periods at the beginning are standard notation that represents the parent of
the current directory. They mean “go up one directory level.” Figure 7.2 shows you
where these files would be located to give you a sense of the hierarchy.

Using relative links can be a bit risky because they make it harder for you to move direc-
tories and subdirectories around on your site. If you reorganize your site at some point,
your relative links may no longer work correctly.

116 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

FIGURE 7.2

If the current

page is in the

products direc-

tory, its parent is

the root direc-

tory of the Web

site.
index.html

/

contact.html product1.html help_doc.html

service/ about/ products/ help/

“../service/contact.htm
l”

“../index.htm
l”

The <base> Element
You’ve already seen that relative URLs take some of the effort out of creating hyper-
links. But, as noted, relative URLs are always “relative” to the directory where the
current HTML document is stored. But what if you’d like some other location to be
the URL that gets added to your relative URL to make up the entire address? You can
do that with the <base> element.

Take this example:

1. You’ve created a directory structure that begins at this URL:
http://www.fakecorp.com/

2. Within that directory you’ve created some subdirectories, like images, about,
and products.

3. You create a page called widget.html within a new_products subdirectory of the
products directory. The URL to that file would be

http://www.fakecorp.com/products/new_products/widget.html

4. Let’s say you want to get to the contact.html page that’s inside the about direc-
tory. One solution would be to use the two periods introduced earlier, which
would result in a relative URL such as

../../about/contact.html

5. Unfortunately, that’s not much more fun than typing an absolute URL, such
as http://www.fakecorp.com/about/contact.html. Plus, you’re probably a bit more
likely to commit a typo. But there is another option. You could use the <base>
element to set the base URL to your site’s root directory:

<head>

<base href=”http://www.fakecorp.com/” />

</head>

6. What this means is that all relative URLs will be relative to the base href URL
instead of to the document’s current location. So, to access that contact page,
the URL would now be
about/contact.html

Essentially, adding a <base> element means that the base URL is added together with
any relative URLs to create a complete reference. In the example, the base URL
http://www.fakecorp.com/ is added to the relative URL about/contact.html to create this
absolute URL:
http://wwww.fakecorp.com/about/contact.html

CHAPTER 7 BUILDING HYPERTEXT LINKS 117

Notice, though, that the <base> element will affect every relative URL on the page.
You’ll need to change any relative URLs that don’t take the base URL into account.
That said, the <base> element doesn’t affect absolute URLs at all, so you don’t need to
worry about them.

Creating Links
Most hypertext links by themselves are added to HTML documents using the anchor
element (<a>,). This element surrounds the text that describes what the link
points to. The URL itself must be in quotes, and it uses the href (hyperlink reference)
attribute. A link in HTML takes the following format:
put your link text here

So, if you want to link the text “About our company” with the HTML document
called about.html that resides in the root directory of the www.fakecorp.com machine,
the HTML code would look like this:
About our company

Try to make your link text descriptive. Links that say things such as “Click here” or
“Follow this link” don’t give the users enough information about what they are getting
into.

As mentioned earlier in this chapter, absolute URLs aren’t the only ones you can use
for hyperlinks. If, for instance, team.html is in the same directory and on the same
machine as the page containing the following HTML code, the URL shown will work
fine:
About our executive team

Another interesting aspect of relative links is that they don’t change just because
you move the files. It’s like furniture in your living room. If you moved from one
address to another, chances are that the armchair and couch could still be found if
you told a friend, “Look in the living room.” If you used an absolute reference (“Go
to 123 Main and look in the living room”), you’d have to change part of that refer-
ence when you moved to a new place.

In the same way, you’d have to change an absolute URL, such as http://www.
oldfakecorp.com/about.html, if you moved to a new server computer (such as
www.fakecorp.com). If the URL were relative, however, it would still work fine in the
new location.

118 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Tip

Make sure you’ve enclosed something inside your anchor—whether it’s text or an image
element. If you don’t put anything in there, you aren’t giving your audience much of a
target to click.

One thing you can’t do with a link is nest one link within another—you must close
the first anchor element before starting another one. The following example is
illegal:
Order Product #1 or

Product #2 from our store.

Instead, the link would need to be something more along these lines:
Order Product #1 or

Product #2 from our store.

You can also create links that point to any sort of file that a Web browser can display,
such as a text file (.txt) or an image file (.jpg, .gif, .png). In fact, you can link to many
types of multimedia files as well, and they’ll be handed off to a helper application, if
appropriate (see Chapter 13, “Adding Multimedia and Java Content”).

Linking on the Same Page
Picture this—you’ve got a long Web page with different sections, and you want to
include a link that takes the user to a different part of the page that is already being
displayed. It’s easy. You’ll first name a portion of your page, and then you’ll create
an anchor that points to that named portion.

First things first. On some part of your page, you’ll use the <a> element with the name
attribute, as in
<h2>Question 1</h2>

<p>What is the cause of the root of the problem?</p>

For the record, though, this actually isn’t well-formed code for XHTML because XML
doesn’t really support the name attribute. Instead, you should use the id attribute,
which is much more acceptable (as you’ll see in later chapters). Furthermore, id (in
this context) isn’t implemented in many earlier Web browsers. So, for the foreseeable
future, the solution is actually to include them both:
<h2>Question 1<h2>

CHAPTER 7 BUILDING HYPERTEXT LINKS 119

Note

Tip

And just to be perfectly clear, the name and id specified can be anything alphanu-
meric that begins with a letter, and it can include dashes, underscores, periods, and
colons. So “12” wouldn’t be acceptable, while “question:one” or “myitem56” or
“r134567” would all be acceptable.

Now, to reference that section with a link, you simply create an anchor tag that
points to that name but includes the pound sign (#) as part of the URL:
<p>See Question 1 for more information.</p>

It may help to see all this in context. Figure 7.3 shows a sample HTML document
that includes a number of named anchors on the same page.

120 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 7.3

Here’s a page

that includes

multiple named

anchors and

links.

Named anchors can also be referenced when you’re linking from other pages, even
across the Internet. The named anchor simply becomes part of the URL that defines
the page:
<p>For more, see
➥Question 1 on the Questions page.</p>

In this example, the browser locates the page questions.html, locates the section of
that page named “q1”, and displays it in the browser window.

Building Links Using Images
If you’d like users to click an icon or a picture to move on to a new page or part of
the current page, you can create a link that uses an image in the place of descriptive
text. For instance, if you have an image named “icon.gif” you can use it as a link
like so:
<img src=“mount1.jpg alt=“Read about the mountain
➥range” />

This places a highlighted border (most color browsers use blue by default) such as
the one shown in Figure 7.4. This tells your user that the image can be followed by
clicking it, just like any other hyperlink.

CHAPTER 7 BUILDING HYPERTEXT LINKS 121

FIGURE 7.4

Images can be

either large or

small and still

be clickable

hyperlinks.

If you use alternative (alt) text when an image is also a hyperlink, users of non-graphic
browsers will see a textual hyperlink, just as they normally would. Otherwise, they may
not see anything and/or won’t be able to access the hyperlink.

If you’re working in transitional XHTML, you can add another attribute to your
 element that can change the size of the border, in pixels, that appears around
the image. The attribute, cleverly named border, accepts a number:
<img src=”button_about.gif” alt=”About Us” border=”0”
➥/>

While the number can be any integer you desire, using 0 will keep the border from
appearing at all on the page. In strict XHTML, this border issue should be handled
with a style sheet, as discussed in Chapter 10, “Get Splashy: Style Sheets, Fonts, and
Special Characters.”

Tip

Using Special Links
URLs are so flexible that you can use them to create links to practically anything on
the Net. You can create links to e-mail, FTP, Gopher, Usenet newsgroups, and even
Telnet sessions. This makes it possible for Web pages to put related information
together on the same page. For instance, you could have a link to a Web page that
describes a downloadable shareware program, a link to a Usenet newsgroup where
that software is discussed, and a link to an FTP server where the program can be
downloaded. In other words, your readers no longer have to fire up individual
Internet programs to get to the information you want them to see.

This flexibility is part of what has made the Web browser the single most important
Internet tool. From your browser, you can do just about everything you can do on
the Net, including accessing a variety of resources that technically aren’t part of the
World Wide Web. And when the browser doesn’t support a service, generally it’s
launched in another application automatically, such as your e-mail application or a
multimedia viewer.

As a Web author, you can create links that lead your visitors to those resources.
Regardless of the type of service accessed, each hyperlink uses the anchor element.
From there, the only things that change are the protocols for the hyperlinks and the
type of URL address used.

Creating a mailto: Link
Putting an e-mail link in an HTML document is pretty easy. All you need is a valid
e-mail address, which is made up of four parts: the account or username, the @ sym-
bol, the machine name, and the domain name.

Here’s an example of an e-mail address:
questions@mac-upgrade.com

The account name is questions and the domain name is mac-upgrade.com. In this
example, there is no machine name. However, consider an e-mail address like this:
robert@mail.fakecorp.com

In this case, mail is a machine name.

After you have a valid e-mail address, you just use mailto: as the protocol for it in an
anchor element. An example of an e-mail link is as follows:
Send questions directly to
➥me.

Figure 7.5 shows another example of a mailto: link. Many authors like to “sign”
their home page by putting an e-mail link at the bottom.

122 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 7.5

When users click

an e-mail link

on your home

page, a new

message window

will appear in

their e-mail

applications.

CHAPTER 7 BUILDING HYPERTEXT LINKS 123

Want to specify the subject line? It won’t work in all browsers, but the safest way to
do this is to use the title attribute for the <a> anchor:
Order the
➥book

Creating a Link to an FTP Site
FTP is mostly used to copy files between computers. Users of FTP have to log on to
remote computers, often as guests, and get the files they want.

The only thing you need to put in a link to an FTP site is an Internet address to an
FTP server computer. So, if a valid FTP site is ftp.microsoft.com, the link would look
like the following:
Microsoft’s FTP Site

If you’re inviting your Web visitors to download a particular file from your site, you
should specify the file path for them. This keeps users from trying to find their way
through unknown directories.

For example, let’s say you have a compressed program (program.zip) in a directory
called downloads (downloads/) that you want people to access. A link to it might
look something like the following:
The program (PKZip
➥format)

This tells the Web browser to connect with FTP, go directly to the correct directory,
and immediately begin downloading the file.

ARE FTP SERVERS IMPORTANT?
If you’re building a Web site for a company that has a lot of files to make available to
customers or visitors, it’s a good idea to put the files on an FTP server and then just
include a link to that server on your Web page. This prevents your Web page from
becoming cluttered with download links, and FTP servers are more efficient at sending
files than HTTP (Web) servers are.

That said, smaller sites don’t need to have FTP servers. The HTTP protocol is capable of
transmitting binary files—particularly those that are in .exe form or have been com-
pressed using PKZip (.zip) or StuffIt (.sit) compression engines. Then, a simple http://
link to the file will cause the receiving browser to download the file and save it to the
user’s hard disk. For example:
Click to
➥download

This should work fine—the user will be prompted to select a place to store the file on
his or her hard disk.

Gopher Servers
Before the Web came into existence, one of the most popular ways of storing and
accessing information was through Gopher sites. Gopher is basically a collection of
text-based menus that present information in a hierarchical format, as shown in
Figure 7.6. As you might imagine, there aren’t a ton of these sites left, thanks to the
Web’s popularity.

124 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 7.6

You can point

your users

directly to a

Gopher server

with a simple

hyperlink.

Gopher is very similar to the Web except that it doesn’t have any built-in multime-
dia capabilities, such as graphics or sound. You can incorporate a link to a Gopher
site on your Web page by adding an anchor around the computer’s address and put-
ting gopher:// in front of it. A Gopher link would look like the following:
The Library of Congress

Link to Newsgroups
Usenet newsgroups are the discussion groups of the Internet. Although they’re called
“news,” they’re really centered around posting and replying to messages and having
discussions. You may want to point people to a newsgroup because your home page
relates specifically to what goes on in that group. Or, if you think that the users
might have more questions than you can answer, you can include a link to a related
newsgroup in hopes of decreasing the amount of e-mail you receive.

While Usenet remains popular, many discussion groups have moved to the Web, where
bulletin board software makes the discussions easier to follow and more graphical. See
Chapter 21, “Forums, Chats, and Other Add-Ons,” for a discussion of bulletin board
options for Web sites.

Whatever the case, a link to a Usenet newsgroup is different from most other hyper-
text tags. To put in a link to a newsgroup, simply enter news: followed by the news-
group name in the anchor. A typical newsgroup link would look like the following:
Discuss Star Trek on Usenet

In this case, the user’s browser would do one of two things: Access its own news
server (if one has been preconfigured) and attempt to locate the message group, or
hand the command off to a helper application designed to access Usenet news-
groups.

If, for some reason, you were going to point the user to a particular news server
computer instead of a particular newsgroup, you could do that using the double-
slash version of the protocol:
Visit our news server

Links to Telnet Servers
A link to a Telnet server allows your user to log directly onto a computer that has a
remote access server enabled. In most cases, this is a text-based remote access ses-
sion, such as those between terminal computers and Unix or mainframe servers.
Indeed, no popular browsers support Telnet directly, so the user will likely need a
Telnet helper application that will be launched when the link is clicked.

CHAPTER 7 BUILDING HYPERTEXT LINKS 125

Tip

The syntax for a Telnet link is pretty straightforward: You just type telnet:// fol-
lowed by the remote computer’s address as the URL. A typical Telnet link would look
something like the following:
Log into the corporate Telnet
➥server

You can also create a link that automatically enters the logon name to use for guest
accounts. All you have to do is specify the logon name they should use, followed by
the @ sign before the machine name. So, if you want a person to access your com-
puter with the logon name of guest, the HTML code would be
Log in anonymously.

When the browser sees this, it notifies the user of the correct logon name.

Cool Tricks: Targets and Client-Pull
Before we finish this chapter, let’s look at two unrelated but interesting things you
can do with URLs and links. In one case, you’ll augment the anchor element with
another special attribute; in another, you’ll use a completely different element to
load a new Web page.

Open a New Window
We’ll discuss targets for hyperlinks more in Chapter 12, “Creating Sites with HTML
Frames,” where you’ll see how targets can be used to change pages in different
frames within the Web browser. In this section, though, we’re interested in one spe-
cial case—opening a hyperlink in a new Web browser window.

To do this, you’ll use the target attribute to the anchor element. The specific target in
question is called “_blank”, and it forces the linked page to appear in a new win-
dow. Here’s an example:
Click

here for more information on HTML and XHTML.

You can specify the target attribute in the <base> element, too, if you’d like all hyper-
links on the page to open in new browser windows. For example, using <base
href=”http://www.fakecorp.com/” target=”_blank” /> in the <head> of your docu-
ment would accomplish this.

126 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Tip

Changing Pages Automatically
Using a process called client-pull, the <meta> element and its attributes enable you to
load another HTML page automatically after a predetermined amount of time. You
can also use these tags to reload, or refresh, the same HTML document over and
over. It’s called client-pull because the user’s Web browser (often called the client in
Internet-speak) is instructed to automatically load (or pull) a new page from the Web
server without the user clicking anything or the Web server sending any special com-
mands.

The client-pull concept is based on the <meta> element, introduced in Chapter 4,
“Creating Your First Page,” which is used in the head of your document. For client-
pull, the <meta> element takes the attributes http-equiv and content. Client-pull fol-
lows this format:
<head>

<title>Title of Page</title>

<meta http-equiv=”refresh” content=”seconds; url=”new URL” />

</head>

The http-equiv attribute always takes the value “refresh” in client-pull; it only loads
a new document if the content attribute includes an URL. Otherwise, it refreshes
(reloads) the current document.

The content attribute accepts a number for the amount of time (in seconds) you want
the browser to wait before the next page is loaded (or the current page is refreshed).
After that number, you type a semi-colon and url= followed by a valid URL for the
page that should be loaded automatically.

Here’s an example that just refreshes the current page after waiting ten seconds:
<head>

<title>Page Title</title>

<meta http-equiv=”refresh” content=”10” />

</head>

In this next example, we’ll use client-pull to load a new page after waiting 15
seconds:
<head>

<title>Page One</title>

<meta http-equiv=”refresh” content=”15;
url=”http://www.fakecorp.com/index2.html” />

</head>

CHAPTER 7 BUILDING HYPERTEXT LINKS 127

Summary
In this chapter, you learned how URLs are built and how they work together with the
<base> and <a> anchor elements to make hyperlinks possible. You saw how to create
hyperlinks that lead to outside Web sites, how to link to parts of a particular Web
page, and how to use images as hyperlinks. Beyond that, you saw how to create
hyperlinks to various types of Internet resources, as well as how to manage some
automatic link-related tasks.

In the next chapter, you’ll learn the basic XHTML table elements, which allow you
to place data visually in rows and columns. You’ll also see how to create the table
and change its appearance using the <table> element and attributes.

128 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Y

8

BASICS TABLES
ou’ve seen how lists and paragraph elements can be used to organize

text logically on the page. The next level of complexity is the table,

which can be used to divide a section of the Web page into different

rows and columns. You can use the table elements to more precisely

place rows and columns of data, text, links, and even images. In

Chapter 9, “Advanced Table Elements and Table Design,” you will see

how you can use tables for something even grander—page layout.

This chapter discusses the following:

■ The <table> element

■ Table captions

■ Table rows and headings

■ Creating table data cells

■ Advanced options and attributes for the <table> element

Creating a Table
You use the table container element to hold together a group of other elements that
define each individual row, and within each row, elements define each cell. Indeed,
working with XHTML tables is very similar to working with a spreadsheet applica-
tion. An XHTML table consists of rows and columns. Where a row and a column
meet, you find a cell. Each individual cell is designed to be a container of data.
XHTML table cells can contain nearly any text and XHTML elements, such as hyper-
links and images.

Tables take the following format:
<table>

<caption>Caption text for table</caption>

<tr><th>column head 1</th><th>column head 2</th><th>column head
3</th></tr>

<tr><td>cell1-1 data</td><td>cell1-2 data</td><td>cell1-3 data</td></tr>

<tr><td>cell2-1 data</td><td>cell2-2 data</td><td>cell2-3 data</td></tr>

...additional rows...

</table>

The main element is the <table> container. Using the optional <caption> element, you
can add a line that explains the table or gives it a title. Within the <table> element,
you add container elements for table rows, <tr>, and table data, <td>. Most tables
also use the table heading element, <th>, which is useful for the title text for rows
and columns.

Although these table elements have been around for many years now, there are some
popular Web browsers that can have trouble with them—particularly, browsers in some
mobile phones and Personal Digital Assistants (PDAs). If you’d like your pages to be visi-
ble to these users, you may opt for simpler layouts (using lists, for example). Or you can
offer two pages, one that uses tables and one that uses the <pre> element.

The <table> Element
You begin any XHTML table with the <table> element, which is designed to contain
all the elements necessary to create a table. Between the <table> and </table> tags,
you use the <tr> table row container element to create each row. Then, each <td>
container element defines a cell, in which you place that cell’s data:

1. To begin a table, enter a set of <table>, </table> tags in your HTML document.

2. Between the table tags, add a set of <tr>, </tr> tags for each row you’d like in
the table.

130 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

3. Now, in the first row definition, add a set of <th>, </th> table header tags for
each column header (and, hence, each column) you’d like to define. Type the
text for each column header inside each <th> element. (Remember, the <th>
element is optional. In most graphical browsers, it simply makes the text
boldface. Your first row can use the <td> element if desired.)

4. In all the remaining rows, add a set of <td>, </td> tags to define each individ-
ual cell. Between each set of <td> tags, enter the text and/or XHTML markup
for that cell.

At this point, you need to be sure that your table has the same number of columns
and/or column headings in each row. If your first row has three <th> elements, the
second row needs to have three <td> elements, the third row needs three, and so
forth. (You can skip cells, but we won’t cover that until the section “Changing a
Cell’s Span” later in this chapter.) The table renders incorrectly if you don’t define a
consistent grid.

Want a blank cell? You can create one using the non-breaking space entity code,
 , within a cell definition. For example, <td> </td> should create a blank
cell in most browsers.

One example of a basic table using this format is the following:
<table border=”1”>

<caption>Regional Sales Teams</caption>

<tr><th>West</th><th>South</th><th>North</th></tr>

<tr><td>Will H.</td><td>Sally F.</td><td>Jude L.</td></tr>

<tr><td>Harvey D.</td><td>Paul M.</td><td>Dale E.</td></tr>

<tr><td>Ryan C.</td><td>John L.</td><td>Roger E.</td></tr>

</table>

Although <table> has many attributes, the border attribute is perhaps the most basic
one. Use the attribute border=”1” for a one-pixel border around the table (interior lines
are also drawn). A larger number can make the border thicker.

So far, this isn’t too tough. Once you’re familiar with the concept, you can see how
tables are similar to other containers, such as XHTML lists and paragraph elements.
(In fact, as with list and paragraph elements, an XHTML table automatically begins
and ends with space around it, separating it from other XHTML elements that come
before or after it.) Figure 8.1 shows how this example might look in a browser.

CHAPTER 8 BASICS TABLES 131

Note

Note

FIGURE 8.1

This basic

XHTML table is

a great way to

communicate

tabular data.

132 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Captions and Summaries
The <caption> element is a container, inside which you type the name or a descrip-
tion for your table, along with any XHTML markup you’d like to use for that
description. For example:
<caption>Consumer Retail Sales, according to the <i>Wall Street
➥Journal</i></caption>

Just about any sort of markup tags are possible inside the <caption> element,
although some—like list elements—wouldn’t make much sense. You could use
hyperlinks within the caption, however, which might be useful for referring the
reader to another Web page for more information about the table, or to the source
documents you use for data in the table.

If you use the <caption> element, it should come immediately after the opening
<table> tag. Note that only one <caption> element is permitted per table.

By default, the caption text appears at the top of your table. If you’d like to force it
to appear somewhere else (at the bottom of the table, for example), you can use the
attribute align. Note that align isn’t supported under the XHTML Strict DTD, but
most browsers recognize it if you’re using the XHTML Transitional DTD. The values
for align include align=”top” and align=”bottom”, which simply mean the caption
appears at the top or bottom of the table. (In most browsers, the caption is automat-
ically centered horizontally.) For example:
<caption align=”bottom”>Feed prices since spring, source: USA
➥Today</caption>

Each table you create can have a summary, which is a string of text that’s used, in
most cases, to help users of non-visual or assistive browsers (such as text-to-speech
browsers) to recognize the purpose and structure of a table. The summary is added
via an attribute to the <table> element, called summary. Place the summary text in
quotes following the attribute. The following is an example:

<table summary=”This table shows that sales in the Western region were 500
➥in spring and 600 in summer; sales in the Northern region were 300 in
spring and 400 in summer and sales in the Southern region were 200 in
spring and 650 in summer.”>

<caption>Sales (in thousands) for Spring and Summer
Quarters</caption>

<tr><th>Quarter</th><th>West</th><th>North</th><th>South</th></tr>

<tr><th>Spring</th><td>500</td><td>300</td><td>200</td></tr>

<tr><th>Summer</th><td>600</td><td>400</td><td>650</td></tr>

</table>

Table Rows
The table row element can accept two attributes you may be interested in using,
align and valign. These attributes are used to align the cells in that row horizontally
and vertically, respectively. This is an example that uses align, shown in Figure 8.2:
<table border=”1”>

<tr align=”center”><th>Year of Survery</th><th>Coffee
➥Preferred</th><th>Tea Preferred</th></tr>

<tr align=”right”><th>1980</th><td>65%</td><td>35%</td></tr>

<tr align=”right”><th>1990</th><td>60%</td><td>40%</td></tr>

<tr align=”right”><th>2000</th><td>45%</td><td>55%</td></tr>

</table>

CHAPTER 8 BASICS TABLES 133

FIGURE 8.2

Cells are aligned

to their right

margins.

This align attribute can accept “center”, “left”, and “right” as values. valign can
accept the values top, bottom, and center. You’ll find this particularly useful when
aligning images, as shown here:
<table border=”1”>

<tr valign=”top”>

<td><img src=”image1.png”</td>

<td></td>

<td></td>

</tr>

</table>

Although the cells have to stretch to the height of the tallest image, all of the images
in this example are aligned to the top of their respective cells to give the table a
more uniform look. Figure 8.3 shows this top alignment, as well as the example with
images aligned to center.

134 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 8.3

In the first table,

cells are aligned

to top. In the

second, they’re

aligned to

center.

Like most XHTML elements, the spaces and returns you add in the middle of table row
elements aren’t rendered by the browser. So you can feel free to create spaces or
returns between the various elements if it helps you when you’re authoring the page. In
particular, you may find it’s helpful to place each cell on its own row as you get into
more and more content and markup in each cell.

Table Cell Elements
You’ve already used the <th> and <td> elements to include headers and data in your
tables. You may have noticed that, essentially, the only difference between the two is
that <th> emphasizes the text (boldfaces it, in graphical browsers) and <td> does not.

Tip

Technically, <th> is an element that the browser interprets as a header, so it displays
text in a way that’s distinct from the <td> element. In practice, this generally means
it’s boldface. In theory, however, it could mean the table is rendered very differently,
particularly in non-graphical browsers, so you should only use the <th> container on
cells that truly represent header data.

For best compatibility with assistive browsers, you should use <th> for the header data
in your table whenever possible, if your columns and rows have headings. That helps
assistive browsers organize and communicate the table data.

Aside from accepting nearly any type of XHTML markup tags within them, both
tags can accept two attributes that help you align data within the cell. These attrib-
utes are align and valign. For example:
<td align=”center” valign=”bottom”>

align is used to align the data within the cell horizontally, accepting values of left,
right, and center. Note that align in a <td> or <th> element is redundant if you’ve
already used the align attribute with <tr>, unless you’re specifically trying to override
the row’s alignment in a particular cell.

valign is used to align the data vertically within cells. Possible values are top, bottom,
and center. Sometimes this doesn’t actually look much different in a Web browser,
especially if all your cells contain approximately the same amount of data. In the
case of two cells that are different in the amount or size of the content enclosed,
though, the valign attribute can make a significant difference in the appearance of
the table. Figure 8.4 is an example of the valign attribute in action. Note the differ-
ence in the alignment of the second two images because the first image stretches the
height of the overall row.

CHAPTER 8 BASICS TABLES 135

Note

FIGURE 8.4

Cells vertically

aligned to top,

bottom, and

center.

In addition to the alignment attributes, <th> supports another interesting attribute—
the scope attribute. This allows you to specify the range of cells for which the <th>
element is the header. It can accept the values row and col to specify that a particu-
lar <th> element is the header for its row, or its column, respectively. For example:
<tr><th scope=”row”>Processor</th><td>G9-1.6</td><td>G9-1.7</td></tr>

Changing a Cell’s Span
Sometimes you need two or more cells with common borders (whether they’re in the
same row or the same column) to act as a single cell. You might fuse two cells
together because they include the same information. Or, you might want to enter a
single heading one time, and enable it to span over a number of columns.

Whatever the reason, attributes for the <th> and <td> elements enable you to force
one cell to span more than one row or column. Those attributes are colspan and
rowspan. The following is an example:
<table border=”1”>

<caption>PortaBook Specifications</caption>

<tr><th> </th><th>model 100</th><th>model 200</th></tr>

<tr><th>Processor</th><td>G9-1.6</td><td>G9-1.7</td></tr>

<tr><th>Hard disk</th><td>78GB</td><td>90GB</td></tr>

<tr><th>Video card</th><td colspan=”2”>Rageous 428p</td></tr>

<tr><th>AV Output</th><td rowspan=”2”>n/a<td>Yes</td></tr>

<tr><th>Docking port</th><td>Optional</td></tr>

</table>

Note that colspan is causing the entry Rageous 428p to span the second two columns
of the fourth row—its function is fairly clear. The rowspan attribute can be a little
more obscure—it’s spanning the second column of the fifth and sixth rows. That
means, in the sixth row, the entry Optional actually appears in the third column,
even though it seems that only two cells are defined in that row. Remembering not
to put a cell there (or realizing your mistake if you get an odd-looking table) goes
along with the territory when you decide to use rowspan.

Viewed in a browser, the table looks like the one in Figure 8.5.

Cell and Row Colors
As you’re working with your tables, you may want to change the background color
of some of your rows or even of individual cells. Each of the elements is able to
accept a bgcolor attribute that can be used for this. The bgcolor attribute is not com-
patible with the XHTML Strict DTD, however, so you only want to use it with the
XHTML Transitional DTD.

136 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

The bgcolor attribute accepts a color name as its value and works with the <table>,
<tr>, and <td> elements, as shown in this example:
<table>

<tr><th>Region</th><th>June</th><th>July</th><th>August</th></tr>

<tr bgcolor=”yellow”><th>North</th><td>600,000</td><td>400,000</td>
➥<td>800,000</td></tr>

<tr><th>South</th><td>300,000</td><td>200,000</td><td>400,000</td></tr>

<tr bgcolor=”yellow”><th>East</th><td>230,000</td><td>490,000</td>
➥<td>980,000</td></tr>

<tr><th>West</th><td>320,000</td><td>120,000</td><td>490,000</td></tr>

</table>

Aside from color names, the bgcolor attribute also accepts three two-digit hex numbers
that represent the RGB (red, green, and blue) values for a particular color. For example,
bgcolor=”#FFFFFF” creates a white background. (For more on this, see Chapter 10,
“Get Splashy: Style Sheets, Fonts, and Special Characters.”)

As you can see in Figure 8.6, one reason to change the background color of your
tables it to shade alternating rows of data. As accountants and engineers have
known for years, it’s easier to communicate information in tables when alternating
colors make the individual rows of data stand out.

CHAPTER 8 BASICS TABLES 137

Tip

FIGURE 8.5

The colspan and

rowspan attrib-

utes can force a

cell to take up

two or more

columns or

rows.

FIGURE 8.6

Using back-

ground colors,

you can make a

table a bit easier

on the eyes.

138 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Additional Table Attributes
Now that you have created a basic table, you can move on to a more advanced
understanding of the <table> element itself and its optional attributes. You’ve
already seen some of them, including align and border, but a few others are worth
examining:

■ width—Sets the relative width of your table as part of the browser window (or
an absolute width), usually in pixels. The values can be either percentages,
as in width=”50%”, or an integer representing pixels.

■ border—Defines the width of the border surrounding the table. The value is a
number (integer) in pixels.

■ align—Not strict XHTML, but it can be handy if you’re using the XHTML
Transitional DTD. align can be used much as it’s used for the element,
enabling you to create a “floating” table that enables text to wrap around it.

■ cellspacing—Tells the browser how much space to include between the walls
of the table and between individual cells. The value is a number (an integer)
in pixels.

■ cellpadding—Tells the browser how much space to use between data elements
and the walls of the cell. The value is a number in pixels.

■ rules and frames—Used to determine which lines are drawn between cells
(rules) and around the table (frames). This one is exclusive to visual
browsers, but it’s allowed under the XHTML Strict DTD.

Let’s take a look at each attribute briefly.

The width Attribute
By default, a table in XHTML takes up only as much space as needed to display the
data in the cells of its longest row. Only when the table has filled the width of the
browser window does it begin to wrap the data in its cells to a second line.
Expanding the size of the browser window (if the user still has room on his display)
rearranges the text in those cells accordingly.

With the width attribute, you can take a little bit more control over how the table
looks. The value that width accepts is either an integer representing the number of
pixels wide that the table should be, or the percentage of the page that the table
should take up. In this second case, the table is still free to grow or shrink when the
user changes the size of her Web browser window, but within certain constraints.

For example, a table that takes up 75% of the browser window could be created with
the following table definition, which is shown in Figure 8.7:
<table width=”75%”>

<tr><th>Region</th><th>June</th><th>July</th><th>August</th></tr>

<tr bgcolor=”yellow”><td>North</td><td>600,000</td><td>400,000</td>
➥<td>800,000</td></tr>

<tr><td>South</td><td>300,000</td><td>200,000</td><td>400,000</td></tr>

<tr bgcolor=”yellow”><td>East</td><td>230,000</td><td>490,000</td>
➥<td>980,000</td></tr>

<tr><td>West</td><td>320,000</td><td>120,000</td><td>490,000</td></tr>

</table>

CHAPTER 8 BASICS TABLES 139

FIGURE 8.7

Using the width

attribute, you

can force tables

to different sizes.

Note that the width attribute forces the table to that width, even if the data doesn’t
need that much room. For example, a table with a width=”100%” attribute takes up
the entire width of the browser window, regardless of the amount of data in the cells.

With absolute values for width, you can also include a suffix that defines the units used,
as in px for pixels or in for inches (for example, width=”3.5in”). Absolute values for
table widths are not recommended, because tables should react to user input (like a
user changing his browser window size). That said, it’s a fairly common practice to use
absolute values, particularly when designing entire pages using tables (as discussed in
Chapter 9).

The border and align Attributes
By default, most browsers render a table without lines defining its perimeter and
cells. Using the border attribute, you can change this so that a table has lines that
separate cells from one other. You can also specify the width of the line that sur-
rounds the table on the outside, in pixels. For example:
<table border=”8”>

The align attribute can be used with the <table> element to either center the table on
the page or cause the table to become a floating object, with text wrapping around
it on the left or right. Although this can be handy for page presentation and layout,
it’s not compatible with the XHTML Strict DTD and you should only use it if you’re
working under the XHTML Transitional DTD.

The following is an example of both attributes, the result of which is shown in
Figure 8.8:
<table border=”8” align=”center” width=”50%”>

<caption>Candy Sales Per Student Per Type</caption>

<tr>

<th>Type</th><th>Melissa</th><th>Brian</th><th>Roger</th>

</tr>

<tr>

<th>Chocolate Bars</th><td>50</td><td>25</td><td>50</td>

</tr>

<tr>

<th>Fruit Chews</th><td>50</td><td>45</td><td>30</td>

140 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Tip

</tr>

<tr>

<th>Lollipops</th><td>15</td><td>25</td><td>40</td>

</tr>

</table>

CHAPTER 8 BASICS TABLES 141

FIGURE 8.8

A table with a

thick border,

centered on the

page.

The cellpadding and cellspacing Attributes
Although the border attribute is used to set the pixel width of the lines that enclose
cells in your table, the cellpadding and cellspacing attributes give you fine control
over the amount of space used in other parts of the table. The cellspacing attribute
specifies how much space is between cells, in pixels. As shown in Figure 8.9, includ-
ing the cellspacing attribute also increases the size of the interior border walls, even
if the actual border attribute is set to a low number. For example:
<table border=”1” cellspacing=”10”>

However, cellspacing is equally effective when you aren’t using a border on your
table at all:
<table cellspacing=”10”>

The cellpadding attribute is used to specify the amount of space that should be dis-
played between a cell’s wall and the contents of that cell. (Again, this measurement
is in pixels.) The default setting for cellpadding (that is, if you don’t include the
attribute at all) is 1. You can set cellpadding=”0”, but that causes the items in each
cell to bump up against the border. The following example is the second table
shown in Figure 8.9:
<table border=”1” cellpadding=”10”>

FIGURE 8.9

Two tables:

cellspacing

with a border

and cellpadding

with a border.

142 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Summary
This chapter taught you the basics of creating an XHTML table, from entering the
<table> element to adding the row (<tr>), heading (<th>), and data cell (<td>) ele-
ments. You also learned some of the attributes for cells and rows, including align-
ment, background colors, and attributes that enable you to span more than one row
or more than one column with a single cell. Then, you saw some of the more
involved attributes for a <table> element, including those that alter the spacing of
cells and the borders between them. This has all been primer for Chapter 9, where
you’ll learn some advanced uses for tables, including formatting entire pages using
table elements.

I

9

ADVANCED TABLE
ELEMENTS AND
TABLE DESIGN
n Chapter 8, “Basics Tables,” you learned the basics of table design and

saw how to create tables that communicate information in rows and

columns. Obviously, that’s a primary use of the XHTML table elements.

In this chapter, you’ll be introduced to one of the other common uses

of table tags—formatting entire pages. Using the table tags gives you

some interesting options for controlling the appearance of your Web

page, including the placement of paragraphs, interface controls (such

as hyperlinks for different pages in your Web site), and even images.

You’ll look at many of those possibilities in this chapter.

This chapter discusses the following:

■ The basics of designing a Web page with a table

■ Creating page sections, setting table widths and heights, and
border appearance

■ Examples of using table design for different types of pages

Table Design Theory
Since the HTML tables standard appeared on the scene, the sophistication and
professionalism of Web pages have improved dramatically. With the control over
cells that the standard offers, it’s easier to put pictures, text, lists, and links wherever
you want them on the page. In this way, you can create an all-page table, or a table
that is used to control the design of the entire Web page.

You do this by aligning cells, creating spanning cells (or fusing cells together), and
adding the appropriate cell padding and spacing, as you saw in Chapter 8. You can
add some other tricks as well, including nested tables, which enable you to place one
table inside another.

At its most basic, though, using tables for layout simply gives you rows and columns
with which to work. As with a page in a newsletter, newspaper, or magazine, you can
visually divide your Web page to make it easier to read or to guide the eye to different
elements, such as the hyperlinks used to change pages. For example, take this page
on a fictional realtor’s Web site that’s designed to display the particulars of a home
that’s for sale:
<table border=”1” cellpadding=”5”>

<!-- Top control area -->

<tr>

<td colspan=”2” align=”center”>

Home Page |

Home for Sale |

Homebuyer Information |

Mortgage/Rates Info |

Contact Me

</tr>

<!-- Main body of page -->

<tr>

<td rowspan=”2” valign=”top”>

<h1>Farmhouse Living</h1>

<p>This 3/2 traditional has a full basement (modern

touches like Italian lighting and Berber carpet) for

a media room, home office or an unemployment den for

that English-major college grad of yours. Screened porch

in back overlooks a nice badminton/croquet lawn complete

144 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

with a walking garden on the side and a dog run in the trees.

325 Main Street. $129,000.</p></td>

<td>

</td>

</tr>

<tr>

<td>

</td>

</tr>

</table>

Figure 9.1 shows this example as displayed in a browser window.

CHAPTER 9 ADVANCED TABLE ELEMENTS AND TABLE DESIGN 145

FIGURE 9.1

Here’s a page

that uses a

simple table

to separate

elements.

As you create more and more complicated page tables, you’ll find it’s helpful to use the
comment element liberally throughout, if only to remind you what a particular row or
cell is meant to do.

Here’s a quick walkthrough of what’s being done to create this table:

1. It begins with a standard <table> opening tag, which includes a border defini-
tion and a setting for cell padding.

Note

2. Next, the first row is defined, followed by a single data cell that spans two
columns. Within that data cell is the markup, text, and anchors that define
the top-of-the-page links used to move between the pages on this Web site.

3. That cell and row are closed, and then the next row is defined. Note that this
row will have two different <td> elements, meaning it will have two columns.
(That’s why the previous row’s data cell spanned two columns.)

4. In the first cell, text is entered. If more than one paragraph is required,
standard <p> containers can be used.

5. In the second cell, elements will cause images to appear on that side
of the table. (Note that the width of the images will dictate the width of this
column—and, hence, the width of the other column—as mentioned in
Chapter 8.)

6. Finally, the second row is closed and the table is closed.

This page is really a simple layout, but tables allow you to add the navigation toolbar
at the top, which is separated out into its own table row. Next, in the second row, the
table is divided into two columns, separating the description from the images that
appear along the side. (The only other way to do this would be to use floating images
[those using an align=”right” or align=”left” attribute], which wouldn’t align them-
selves as neatly.)

It’s a clean, inviting interface that’s easy to work with. But let’s back up a little bit
and look at exactly how to put together these types of pages.

Using Images in Tables
Using an XHTML table to display images really offers some advantages. It’s nice to
have such exacting control over the placement of the images. Plus, tables make it
easier to align text and images so the user knows how they’re related to one another.

For example, another page that our fictional real estate agent might want to post on
the Web is a listing of all available homes. Using a table, the home images and
descriptions are simple to align:
<table border=1 cellspacing=2 cellpadding=2 width=”100%”>

<tr><td colspan=”2”><h1>Current Home Sale Listings</h1></td></tr>

<tr>

<td>

146 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

<p>This 3/2 traditional has a full basement (modern

touches like Italian lighting and Berber carpet) for

a media room, home office or an unemployment den for

that English-major college grad of yours. Screened

porch in back overlooks a nice badminton/croquet lawn

complete with a walking garden on the side and a dog

run in the trees. 325 Main Street. $129,000.</p>

</td>

<td>

</td>

</tr>

<tr>

<td>

<p>You don’t see garden estates at these prices anymore.

Brick fenced entry (with a fancy remote control) opens to

a winding drive up the front lawn to this colonial in the

best Jeffersonian tradition. Inside, you’ll find formal

living and dining, a basement game room (perfect for

media or art projects) and a downstairs master suite with

whirlpool tub. This one even has extras like a butler’s pantry

(for storing all those family-sized cans of ravioli-os) and a

second, back staircase for creeping quietly down in the middle

of the night to get one more small sliver of homemade pie. And,

best yet, a babbling brook right there on the property.

19 E. Gables Road. $279,000. </p>

</td>

<td>

</td>

</tr>

</table>

Figure 9.2 shows this one in action. Note how the table tags make it easy to align
images with text.

CHAPTER 9 ADVANCED TABLE ELEMENTS AND TABLE DESIGN 147

Nesting Tables
Here’s another bit of theory to ingest before we move on—I’ve mentioned that a table
cell can accept all sorts of data. As it happens, this includes a second table. When
you place one table inside another, you’re said to be nesting the tables. It can get a
little confusing in your raw HTML code, but you’ll find that nesting tables is an
invaluable solution to a number of layout problems.

For starters, you’ll recall from Chapter 8 that a table can have a width. Let’s say you
want a particular cell to have a fixed (or specific) width. You want to create two cells—
one that’s about 25% of the page and one that’s about 75%. The 25% side will be used as
a sidebar of sorts, perhaps for navigation. The 75% side will be used for the text you’re
interested in putting on the page. Figure 9.3 shows a table that fits this description.

One way to do this is to use the width attribute for the <td>, as in <td width=”75%”>.
Sure, that seems easy, but unfortunately, it’s not strict XHTML. If you’re using the
transitional DTD, you could use the width attribute.

The other solution is to use a nested table. Because the <table> element can legally
accept a width attribute (in XHTML), you can put a table in one of the cells and
thereby define its width. The code in Listing 9.1 matches up with Figure 9.3.

If you add cell padding or cell spacing to your original table, note that those pixels will
affect the overall width of the column that includes your nested table. For instance, with
3 pixels of cell padding, a column with a 150-pixel nested table will actually be 156 pixels
wide. In other words, to be exact, you may need to do a little math or go without cell
padding or cell spacing.

148 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 9.2

Tables can help

you align

images and text

in creative ways.

Note

LISTING 9.1 Nesting a Table Within a Table

<table width=”100%” cellpadding=”0”cellspacing=”0”>

<tr>

<td>

<table width=”150” cellpadding=”3”>

<tr>

<td>markup for left side</td>

</tr>

</table>

</td>

<td>

<table cellpadding=”5”>

<tr>

<td>markup for right side</td>

</tr>

</table>

</td>

</tr>

</table>

In this case, the nested tables are used simply to create single cells over which you
have some formatting control. By setting the left-side table to 150 pixels, you’re able
to fix its width. The rest of the overall page table will still resize to the browser win-
dow, but this left-side table is fixed.

CHAPTER 9 ADVANCED TABLE ELEMENTS AND TABLE DESIGN 149

FIGURE 9.3

Here’s a table

where the width

of the cells has

been specified.

As shown in the example, you can use white space in your HTML document, both hard
returns and spaces, to help you remember which rows and columns are related to which
tables. It’s important to keep track, because forgetting a </td>, </tr>, or </table> tag
will likely cause your page to fail in the Web browser (or at least look very odd).

Okay, so you’ve seen a basic nested table. But what about a table that has even
more functionality—for instance, one that’s used for formatting inside the cell? In
place of the left-side table in Listing 9.1, consider what the page might look like
with the following table in its place:
<table width=”150” cellpadding=”2” border=”1”>

<tr bgcolor=”yellow”><td>Home Listings</td></tr>

<tr><td>

129k, 3/2, Sumner

139k, 4/2, Ridgewood

142k, 4/2, Highland

159k, 4/2/2, Haven

179k, 5/2.5, Haven

229k, 5/3/2, Laurel

</td></tr>

<tr bgcolor=”yellow”><td>Call for more: 645.3567</td></tr>

</table>

Figure 9.4 shows this table in action. (Note that I’ve made each of the listings a
hyperlink for Figure 9.4, although I left the anchor elements out of this listing for
clarity.) This little nested table replaces the left side with something more interesting:
an interface control.

150 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Tip

FIGURE 9.4

Here a complete

table is nested

on the left side.

While you’re nesting tables, don’t forget the possibilities presented by floating tables,
which are aligned to the right or left using the align attribute with the <table> element.
Floating tables are great for adding tabular information in a way that’s a bit more
visually pleasing. Text wraps around the table, while other markup can be used to
call attention to the table’s contents. For instance, using the code in Listing 9.1, slip
a floating table into the right-side nested table, as shown in Listing 9.2.

LISTING 9.2 Add a Floating Table to the Mix

<table width=”100%” cellpadding=”0”cellspacing=”0”>

<tr>

<td>

<table width=”150” cellpadding=”3”>

<tr>

<td>markup for left side</td>

</tr>

</table>

</td>

<td>

<table cellpadding=”5”>

<tr>

<td>

<!-- Here’s the floating table -->

<table align=”right” cellpadding=”5” width=”200” border=”1”>

<tr bgcolor=”yellow”><td>19 E. Gable Road</td></tr>

<tr><td>Price: $279,000</td></tr>

<tr><td>Appraisal: $309,000</td></tr>

<tr><td>Owner is moving to Florida and interested in a

quick sale. Call 645.3567 and ask for Andy</td></tr>

</table>

<h1>Your Own Mini-Estate</h1>

<p>You don’t see garden estates at these prices anymore.

Brick fenced entry (with a fancy remote control) opens to a

winding drive up the front lawn to this colonial in the best

Jeffersonian tradition. Inside, you’ll find formal living and

dining, a basement game room (perfect for media or art

projects) and a downstairs master suite with whirlpool tub.

This one even has extras like a butler’s pantry (for storing

CHAPTER 9 ADVANCED TABLE ELEMENTS AND TABLE DESIGN 151

all those family-sized cans of ravioli-os) and a second, back

staircase for creeping quietly down in the middle of the night

to get one more small sliver of homemade pie.</p>

</td>

</tr>

</table>

</td>

</tr>

</table>

Remember that it’s the align=”right” attribute to the table that makes it a floating
table. The result of all this nesting is shown in Figure 9.5.

152 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 9.5

You can nest a

floating table

(on the right)

for an interest-

ing effect.

Grouping Columns and Rows
So far, most of the markup you’ve seen is actually the basic table elements used for
larger chunks of text and images—that’s most of what table-based layout is about.
There are a few more elements to discuss, however, and you’ll find that they’re impor-
tant as your tables grow in complexity. These new elements will enable you to group
your rows, defining different portions of the table (and hence the page). Other elements
enable you to better group and define your columns, as you’ll see in this section.

LISTING 9.2 (continued)

Table Row Groupings
Table row groupings are reasonably straightforward. They’re designed to help you
group your rows into different sections of the table, just as you group different ele-
ments into a head and body in an HTML document. In this case, the elements are
<thead>, <tfoot>, and <tbody>. The idea behind these elements is to enable a Web
browser or other application to consider the header and footer to be separate from
the body, so that, for instance, the body of the table can scroll while the header and
footer stay in place. Likewise, a browser can decide that the header and footer infor-
mation on each page of a multi-page table will appear when printed, just like the
header and footer of a typical word processing document.

Each of these elements is a container, and each one is designed specifically to hold
certain types of table rows and data. Note also that you still need to use the <tr>
container element for each row, and that each of these row grouping elements should
have at least one row contained within it. Also, if you plan to include a table header
and a table footer, there’s one oddity—the footer needs to be typed in first, before the
body, so that the browser knows it’s there. Here’s an example:
<table border=”1”>

<thead>

<tr>

<th colspan=”2”>Customer</th><th rowspan=”3”>Sales Month:</th>

</tr>

<tr>

<th>September</th><th>October</th><th>November</th>

</thead>

<tfoot>

<tr>

<td colspan=”4”>Source: New York Gazette-Tribune</td>

</tr>

</tfoot>

<tbody>

<tr>

<td>NonCo, Inc.</td><td>450,000</td><td>350,000</td><td>50,000</td>

</tr>

<tr>

<td>RichCo, LLC</td><td>345,000</td><td>230,000</td><td>12,400</td>

</tr>

<tr>

<td>FakeCorp, Ltd.</td><td>120,000</td><td>543,000</td><td>10,000</td>

</tr>

CHAPTER 9 ADVANCED TABLE ELEMENTS AND TABLE DESIGN 153

...additional rows...

</tbody>

</table>

This is a fairly simple example, and one you might not encounter too often. After
all, the vast majority of HTML documents you create probably won’t be designed to
show page after page of scrolling tables of numbers. That’s pretty dull for a Web page.

Instead, one place you’ll likely want to consider using these row grouping tags
is when you’re building a full page using table elements, and you’d like a non-
scrolling header and footer. (Remember, of course, that the browser isn’t required to
render them as non-scrolling.) Defining your document in this way—with a banner
image in the header, for instance, and navigation links in the footer—gives you
some extra flexibility without affecting older browsers that don’t recognize the row
groupings. Here’s one way such a table could be created:
<table cellpadding=”5”>

<thead>

<tr><td colspan=”5”><img src=”top_banner.png” alt=”Flatland Real
➥Estate”/></td></tr>

</thead>

<tfoot>

<tr>

<td>About</td>

<td>Land and Homes</td>

<td>Buyer’s Broker Services</td>

<td>Sell Your Home</td>

<td>Mortgage Info</td>

</tr>

</tfoot>

<tbody>

<tr>

<td colspan=”5”>

<h1>Farmhouse Living</h1>

<p>This 3/2 traditional has a full basement (modern touches

like Italian lighting and Berber carpet) for a media room,

home office or an unemployment den for that English-major

college grad of yours. Screened porch in back overlooks a

nice badminton/croquet lawn complete with a walking garden

on the side and a dog run in the trees. 325 Main Street.

154 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

$129,000.</p></td>

</tr>

</tbody>

</table>

In many browsers, the header and footer will appear in their proper places inde-
pendent of the body of the table, as shown in Figure 9.6.

CHAPTER 9 ADVANCED TABLE ELEMENTS AND TABLE DESIGN 155

FIGURE 9.6

Using row

groupings can

augment the

look and

organization of

your all-page

table.

Column Groupings
You’ll find that column groupings are a touch more complex, if only because they
offer a few more options and reasons for being. You may have noticed already that
columns seem to be afterthoughts with the XHTML spec, because most of what gets
defined are rows and data cells. You can group columns, however, and you can
select individual columns (or groups of columns) for certain types of markup, as
you’ll see.

In this section we’re dealing with two different elements, the <colgroup> and <col>

elements. The <colgroup> element is used to create groups of columns, to which you
can then assign other attributes. (Or, future browsers may recognize groups of
columns for some reason, although none of them really do that now.) The <col>
container can be used on individual columns to assign properties without putting
them in a particular group.

With <colgroup>, you’ll use the span attribute to assign the number of columns in a
particular group. For example, take a table that has five columns in it. Here’s an
example of <colgroup> being used to break it into two different groups (see Figure 9.7):

<table border=”1” cellpadding=”5”>

<colgroup span=”3” align=”center”> </colgroup>

<colgroup span=”2” align=”right” width=”100”> </colgroup>

<tr><th>Quantity</th><th>Prod ID</th><th>Description</th>

<th>Unit Price</th><th>Sub-Total</th></tr>

<tr><td>12</td><td>0876547</td><td>#4 wing nuts</td>

<td>$1.00</td><td>$12.00</td></tr>

<tr><td>10</td><td>0876501</td><td>#4 wood screws </td>

<td>$1.50</td><td>$15.00</td></tr>

<tr><td>20</td><td>0887965</td><td>ProBuild Hammer</td>

<td>$9.50</td><td>$190.00</td></tr>

<tr><td>5</td><td>0927125</td><td>Caulking gun</td>

<td>$4.00</td><td>$20.00</td></tr>

<tr><td>10</td><td>1034526</td><td>3-Pk Masking Tape</td>

<td>$2.00</td><td>$20.00</td></tr>

</table>

156 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 9.7

Using

<colgroup>

to define and

align groups of

columns.

Note that <colgroup> can accept an align attribute and/or a valign attribute, which is
applied to each of the columns specified in the span of the element. All the groups
are defined first, before the first row definition. (They’re defined before the applicable
<thead> or <tbody> elements as well.) The <colgroup> element can also include a width
attribute, which defines a default width for each of the columns in that group. For
instance, <colgroup span=”4” width=”10”> would set each of those columns to a
default width of 10 pixels.

The <colgroup> element can accept a special width value, written as width=”0*” (as
can the <col> element, discussed next). That tells the browser to determine the default
width based on the least amount of space required by the lengthiest entry in that
column. If the longest entry requires 50 pixels, for instance, that’s what the width of
the column will be.

The other element, <col>, is used inside a <colgroup> element when you’d like to
define the characteristics of columns individually within their group. In other words,
if you have a column that needs a different setting from the one that’s specified in
the <colgroup> element, you can use <col>. Here’s an example, using the data that
was used for Figure 9.7:
<table border=”1” cellpadding=”5”>

<colgroup span=”3” align=”center”>

<col width=”50” />

<col span=”2” width=”100” />

</colgroup>

<colgroup span=”2” width=”150”>

<col align=”center” />

<col align=”right” />

</colgroup>

<tr><th>Quantity</th><th>Prod ID</th><th>Description</th>

<th>Unit Price</th><th>Sub-Total</th></tr>

<tr><td>12</td><td>0876547</td><td>#4 wing nuts</td>

<td>$1.00</td><td>$12.00</td></tr>

<tr><td>10</td><td>0876501</td><td>#4 wood screws</td>

<td>$1.50</td><td>$15.00</td></tr>

<tr><td>20</td><td>0887965</td><td>ProBuild Hammer</td>

<td>$9.50</td><td>$190.00</td></tr>

<tr><td>5</td><td>0927125</td><td>Caulking gun</td>

<td>$4.00</td><td>$20.00</td></tr>

<tr><td>10</td><td>1034526</td><td>3-Pk Masking Tape</td>

<td>$2.00</td><td>$20.00</td></tr>

</table>

In this example, we still have two column groups. However, some of the columns are
getting a bit more individual attention. In the first group, the first column is getting
a different width from the second two columns; in the second group, the two columns
have the same width, but different alignment properties. The <col> element can
handle the same attributes as <colgroup>, including span. The only major difference is
that <col> doesn’t define a new group—it only sets attributes for columns. Refer to
Figure 9.8 to see how these changes affect the table.

CHAPTER 9 ADVANCED TABLE ELEMENTS AND TABLE DESIGN 157

Note

As you’ll see in Chapter 10, “Get Splashy: Style Sheets, Fonts, and Special Characters,”
<col> isn’t completely dissimilar from other elements that are used for style and attribute
markup, such as and <div>. In fact, you’ll likely find yourself using <col> with
style sheet markup.

So far, most of what we’ve seen of <colgroup> and <col> has affected a basic data-
focused table, but these elements can be just as effective with an all-page table that’s
used for page layout. You’ve got some interesting options for managing entire columns
of markup with a few easy elements. Here’s an earlier example updated to manage
the columns:
<table border=”1” cellspacing=”2” cellpadding=”2” width=”100%”>

<colgroup>

<col width=”500”>

<col align=”center”>

</colgroup>

<tr><td colspan=”2”><h1>Current Home Sale Listings</h1></td></tr>

<tr>

<td>

<h1>Farmhouse Living</h1>

<p>This 3/2 traditional has a full basement (modern

touches like Italian lighting and Berber carpet) for

a media room, home office or an unemployment den for

that English-major college grad of yours. Screened porch

in back overlooks a nice badminton/croquet lawn complete

with a walking garden on the side and a dog run in the

trees.</p>

</td>

<td>

325 Main Street. $129,000

158 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 9.8

Using <col> to

set attributes

within the

column groups.

Note the col-

umn width

and alignment

differences

when compared

to Figure 9.7.

Tip

</td>

</tr>

<tr>

<td>

<h1>Mini Estate</h1>

<p>You don’t see garden estates at these prices anymore.

Brick fenced entry (with a fancy remote control) opens to

a winding drive up the front lawn to this colonial in the

best Jeffersonian tradition. Inside, you’ll find formal

living and dining, a basement game room (perfect for media

or art projects) and a downstairs master suite with whirlpool

tub (see photo). This one even has extras like a butler’s pantry

(for storing all those family-sized cans of ravioli-os) and a

second, back staircase for creeping quietly down in the middle

of the night to get one more small sliver of homemade pie.</p>

</td>

<td>

19 E. Gables Road. $279,000.

</td>

</tr>

</table>

Figure 9.9 shows how this looks in a browser.

CHAPTER 9 ADVANCED TABLE ELEMENTS AND TABLE DESIGN 159

FIGURE 9.9

Here’s an

example of

<colgroup>

and <col> for

a table that’s

focused more

on page layout

than tabular

data.

Frames and Rules
One last set of attributes can be used both for advanced tabular data and page
layout tables. These attributes are frame and rules. The frame attribute is used to
determine which lines around the outside of a table are rendered when the border
attribute is used. The rules attribute is used to determine which lines are drawn
inside a table, between cells, when border is used.

An example might be
<table border=”1” frame=”hsides” rules=”rows”>

...table markup...

</table>

The result is a table that has only an outline of the table and its columns, as shown
in Figure 9.10. (Compare it to Figure 9.9, which shows the full set of border lines.)

160 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 9.10

You can use the

frame and rules

attributes to

choose the

portions of a

table’s border

that you want

to display.

Each attribute offers a number of options. The frame attribute, which deals with the
four outer sides of the table, is set to show them all by default when the border
attribute is used. Other values for frame are

■ void—No sides of the table are rendered

■ above—The top of the table is drawn

■ below—The bottom is drawn

■ hsides—The left and right sides are drawn

■ vsides—The top and bottom are drawn

■ lhs or rhs—Left or right side only, respectively

You can also use the values box or border to draw all four sides. (This might be
necessary in some scripting, for instance, although in regular markup you’d simply
omit the frame attribute.)

It’s worth noting that the frame attribute for the <table> element has nothing to do
with the HTML Frames elements discussed in Chapter 12, “Creating Sites with HTML
Frames.” In this case, the frame attribute is meant to suggest the outline of cells and
rows in an XHTML table.

For the lines inside your table, you can vary the value you assign to rules. Those
potential values include

■ none—No lines drawn inside the table

■ groups—Lines will only appear between row groups—those defined by <thead>,
<tfoot>, and <tbody>—and column groups defined by <colgroup>
containers

■ rows—Lines only appear between rows

■ cols—Lines only appear between columns

■ all—Lines appear on all sides of every cell, as in the default value

Although these attributes are part of the strict XHTML specification, be aware that
you can also accomplish some of these visual changes with style sheets, as discussed
in Chapter 10. That probably would be preferable if you’re working with late-model
visual Web browsers. (Non-visual and older Web browsers will ignore all these attrib-
utes anyway.)

Table Design Examples
Now that you’ve learned a good bit of the theory behind table design and the bulk
of the elements and attributes you can use for a table, let’s turn our attention to some
slightly more complex examples. You’ll find that XHTML table elements are useful
for a wide variety of page design approaches. Almost anytime you want some con-
trol over the placement of paragraphs, images, and other rows or columns of data, a
table is the right choice. Let’s look at two examples—one that focuses on dividing
the page into rows, and one that focuses on creating and managing columns.

CHAPTER 9 ADVANCED TABLE ELEMENTS AND TABLE DESIGN 161

Note

A Row-Centric Table
This fairly clean-looking page example is designed for that fictional real estate
agent. In this case, you’ll notice that the page is rather row-centric. By that I mean
that most of what you’re seeing are a bunch of rows, each one with really only a
single column of data. When you need multiple columns, you simply nest another
table with as many columns as desired. This is one way to design reasonably simple-
looking pages that still use tables for fine control over the layout. (And you can
usually keep the rows and columns straight in your head when you think this way.)

Note also that this page sets a border of 0 for the main table, so as to offer white space
around most of the elements. As part of the example, the row grouping elements are
used, so that a browser that wanted to could render the header (image and links)
and footer (contact address information) separately, non-scrolling or on each page
of a printout. See Listing 9.3 for the entire document (in strict XHTML), including the
declarations that are required for such documents (and were introduced back in
Chapter 4, “Creating Your First Page”).

LISTING 9.3 A Row-Centric All-Page Table Design

<?xml version=”1.0” encoding=”iso-8859-1”?>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

“http://www.w3.org/TR/html4/strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Inside the House</title>

</head>

<body bgcolor=”#ffffff”>

<!-- Start the whole-page table -->

<table border=”0” width=”100%” cellpadding=”10”>

<thead>

<!-- Top banner image -->

<tr>

<td align=”center”></td>

</tr>

<!-- Control center row -- >

<tr>

162 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

<td align=”center”>

Main Page |

 The House |

<ahref=”area.html”>Moving to the Area |

Terms of Sale |

Directions

</td>

</tr>

</thead>

<tbody>

<!-- Thumbnail images in a nested table -->

<tr>

<td align=”center”>

<table width=”450” border=”1” cellspacing=”2” cellpadding=”5”>

<tr>

<td width=”33%”></td>

<td width=”33%”></td>

<td width=”34%”></td>

</tr>

<tr>

<td width=”33%” valign=”top”>Master Bedroom includes

luxury bath with whirlpool tub</td>

<td width=”33%” valign=”top”>Second Bedroom features

good light and cool breezes</td>

<td width=”34%” valign=”top”>Rustic living area includes

stone fireplace with gas logs</td>

</tr>

</table>

</td>

</tr>

<!-- Main body text and floating table-->

<tr>

CHAPTER 9 ADVANCED TABLE ELEMENTS AND TABLE DESIGN 163

LISTING 9.3 (continued)

<td>

<h1>Your Own Mini-Estate</h1>

<table align=”right” cellpadding=”5” width=”200” border=”1”>

<tr bgcolor=”yellow”><td>19 E. Gable Road</td></tr>

<tr><td>Price: $279,000</td></tr>

<tr><td>Appraisal $309,000</td></tr>

<tr><td>Owner is moving to Florida and interested

in a quick sale. Call 555.1023 and ask for Rich</td></tr>

</table>

<p>You don’t see garden estates at these prices anymore.

Brick fenced entry (with a fancy remote control) opens to a

winding drive up the front lawn to this colonial in the best

Jeffersonian tradition. Inside, you’ll find formal living and

dining, a basement game room (perfect for media

or art projects) and a downstairs master suite with whirlpool tub.

This one even has extras like a butler’s pantry (for storing all

those family-sized cans of ravioli-os) and a second, back staircase

for creeping quietly down in the middle of the night to get one

more small sliver of homemade pie.</p>

</td>

</tr>

</tbody>

<!--Last row, info line -->

<tr>

<td align=”center”>

<address>For more information or for an appointment,

call 945.555.1023 or send e-mail to
➥Rich Salesguy

with the subject line “Mini Estate.” Thanks!</address>

</td>

</tr>

</body>

</html>

164 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 9.3 (continued)

Focusing on Columns
Being row-centric is great for basic tables, but it falls down a little when you decide
you’d like to organize your page into multiple columns. A columnar approach is
popular for sites that would like to look a lot like a newsletter, or otherwise organize
a lot of information in as little space as possible. That’s partly why this design
approach is popular with portal sites, such as Excite (http://www.excite.com/) and
Yahoo! (http://www.yahoo.com), and with news sites such as the New York Times site
(http://www.nytimes.com/).

If you’d like to try this design, you’ll find it’s certainly possible. For the most part,
you’ll simply have very large data cells, with <td> container tags many, many lines
apart. It can be a little tough to see this when you look at the raw HTML code,
because columns that appear side-by-side in a Web browser must be defined one
after the other in your HTML document.

But it won’t be that tough, particularly if you use HTML comments liberally to
remind you where you are in your all-page table. See Listing 9.4 for a sample of a
column-focused page. Figure 9.12 shows what the results look like in a Web browser.

CHAPTER 9 ADVANCED TABLE ELEMENTS AND TABLE DESIGN 165

FIGURE 9.11

Here’s the page

as shown in

Listing 9.3.

Note the nested

tables.

The result is shown in Figure 9.11.

In my experience, browsers can be a little independent-minded when it comes to the
align attribute. You may find that your columns look a little different in different
browsers. It’s also important to know that <colgroup> and <col> are relatively recent
additions. The solution, in some cases, is to use <td width=”xx”> on cells within your
table. Because a column must be as wide as its widest cell, generally you can get away
with specifying the width of just your top data cells in each column. I’ve used that
technique in this listing instead of relying on <colgroup> and <col>.

LISTING 9.4 Here’s a Page Specifically Divided into Columns

<?xml version=”1.0” encoding=”iso-8859-1”?>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

“http://www.w3.org/TR/html4/strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Real Estate News!</title>

</head>

<body>

<!-- Begin Page Table -->

<table width=100% border=”0” cellpadding=”5” cellspacing=”0” bgcolor=”#eeeeee”>

<!-- Begin top rows -->

<thead>

<tr>

<td align=”center” colspan=”3”>Updated: 10/14/02 2:15 PM EDT</td>

</tr>

<tr>

<td align=”center” colspan=”3”></td>

</tr>

<tr>

<td align=”center” bgcolor=”#eeeeee” colspan=”3”>

Home |

Mortgage Report |

Nancy’s View |

166 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Archives |

Forums

</td>

</tr>

<tr>

<td colspan=”3”> </td>

</tr>

</thead>

<!-- End top rows -->

<!-- Begin main row -->

<tbody>

<tr>

<!-- Begin left-side column -->

<td valign=”top” bgcolor=”#eeeeee” width=”150”>

Just posted, new message areas!

<p> Visit the Real Estate News

Forum.

Chat about changes in the area’s market, ask questions of

leading mortgage experts and discuss anything at all related

to the business of making home buyers and sellers happy!</p>

Cool Links

<p>Check out these other interesting sites for news and views about real estate:</p>

<p>

World of RE

</p>

<p>

CHAPTER 9 ADVANCED TABLE ELEMENTS AND TABLE DESIGN 167

LISTING 9.4 (continued)

Mortgage Planet

</p>

<p>

Real Deal RE

</p>

<p>

FixItUppers.com

</p>

</td>

<!-- End left-side column -->

<!-- Begin middle column -->

<td valign=”top” bgcolor=”#ffffff”>

<h1>Closing Costs Head Down</h1>

<p>Thanks to local competition and a soft national economic outlook,

many banks are lowering or rebating key closing costs to move more

traffic to their banks and encourage new and existing home purchases.

In some cases, the advantages are available for individuals interested

in refinancing their homes.</p>

<p>Read more...</p>

<h1>Insurance Investigation Begins</h1>

<p>The State Attorney General is looking into the practices of two

regional title insurance companies that may have overcharged customers

in the past five years. Spokespeople for both companies say they’re

168 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 9.4 (continued)

working with the state government to uncover the errors.</p>

<p>Visit the state site...</p>

<h1>Nancy: Doing the Books</h1>

<p> In this week’s column, Nancy takes a look at some of the personal

accounting options you have for tax time and personal budget management.

The end goal? Putting together the perfect portfolio for increasing the

amount a bank is willing to lend you.</p>

<p>Read Nancy’s column...

<!-- End middle column -->

</td>

<!-- Begin right-side column -->

<td width=”150” valign=”top” bgcolor=”#eeeeee”>

<p>Featured Property</br>

This week’s featured listing is a 4/2/2 with a finished, walk-out basement,

13 acres and it’s own swimming hole fed by the Rogers River. If you’ve ever

wondered what those relaxation books mean by “walking meditation” wait until

you take a stroll on your own riverfront property.</p>

<p>[4/2/2 Riverfront]</p>

<!-- End right side column -->

</tbody>

CHAPTER 9 ADVANCED TABLE ELEMENTS AND TABLE DESIGN 169

LISTING 9.4 (continued)

</td>

</tr>

</table>

</body>

</html>

170 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 9.4 (continued)

FIGURE 9.12

Here’s the page

as shown in

Listing 9.4,

with its column-

focused

newsletter look.

Summary
In this chapter, you learned some of the advanced techniques for using table elements
to organize and lay out an entire page. You began with some theory—a look at the
techniques involved in adding images to tables, using nested tables and grouping
the columns and rows within your table so that they can be labeled and altered.
Then, you saw how those techniques can all come together in some example table-
based layouts, including one that focused on formatting rows and one that focused
on creating columns on the page.

In the next chapter you’ll be introduced to style sheets, the modern approach to
changing the look and feel of your pages.

H

10

GET SPLASHY: STYLE
SHEETS, FONTS, AND
SPECIAL CHARACTERS
TML, in its most ideal form, is application-neutral. Pages created in

HTML (and even more so in XHTML) should render as completely and

informatively on a cell phone’s display or a palm-held computer as they

do in a full-fledged graphical browser application on a Windows or

Macintosh computer. As mentioned in previous chapters, this is done by

separating the styling of a page from the content and organization of

that page. This chapter discusses that styling, and also touches on the

less ideal ways that you can style your page—the transitional options.

This chapter covers the following:

■ The basics of creating style sheets, including the theory behind
them

■ The building blocks of style sheets, including <style>, ,
and <div>, as well as a discussion of linking versus embedding
style sheets

■ Creating new classes and adding inline style attributes to other
HTML elements

■ The various properties and styles you can render using style
sheets

■ Adding special characters and symbols to your document’s text

Style Sheets in Theory
Early versions of HTML didn’t have much control over the look-and-feel of the page.
In the early 1990s, most Web pages were fairly basic-looking. You had a text font
(generally Times or similar), a monospaced font (usually one with a typewriter look
to it), and many of the basic HTML elements you’ve seen in this book, such as head-
ings, lists, images, and hyperlinks. Heck, it even took a while before HTML tables
appeared in the specification.

As the Web became more popular as a commercial medium, the graphics designers
started to get their hands in Web design, and the Web browser companies—particu-
larly Netscape and Microsoft—began to oblige them with proprietary elements that
did more to change the look of a page. These elements included <center>, , and
the once-popular and always-maligned <blink> element.

Although some of these elements were included in HTML specifications (notably
HTML 3.2), they were frowned upon by the HTML gurus, in part because they
encouraged graphic-focused coding. For instance, the following markup became a
popular approach to creating headings that cut the <h1> elements out of the mix:
Welcome to the Site

Because of this, browsers that don’t recognize the element (again, a handheld
computer comes to mind) not only ignore the element, but also they don’t
communicate the fact that the enclosed text is supposed to be a header. If <h1> is
used, both the graphical and non-graphical browsers can figure out a way to tell the
user, “Hey, this is a header.”

What do I mean by non-graphical browsers? They’re browsers that don’t display differ-
ent fonts or font sizes, and in many cases can’t support images. This might include
Web browsers built into handheld computers (such as Palm or PocketPC devices). Non-
graphical browsers can also include assistive browsers that are speech-enabled or com-
municate in Braille. These browsers can’t recognize elements such as , but they
may have a way to communicate the difference between <h1> and <h2> elements.

What Are Style Sheets?
Although the element and its ilk were (and are) immensely popular for visual
browsers, these style-only elements would be ignored by non-graphical browsers, at
best, or would be a problem, at worst. So, some solution needed to be reached. That
solution is style sheets, which enable the Web developer to use the strict XHTML ele-
ments, such as <h1>, while also being able to style that element, such as
<h1 style=”font-family: Arial, Helvetica”>Welcome to the Site</h1>

172 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Everyone is happy—users with graphical browsers see pretty fonts, and users with
non-graphical browsers still have an <h1> element that enables them to recognize
this line as a heading and format it appropriately, even if they’re forced to ignore
the style attribute.

That’s the theory behind the style sheet—you separate the look-and-feel of the page
from the organization and content of the page. It’s a strong enough theory, in fact,
that it’s required for strict XHTML—you can only use those older formatting tags if
you specify a transitional DTD.

Why Use Style Sheets?
Style sheets are helpful in a few other ways. They can actually be separated from the
HTML document entirely. As you’ll see in this chapter, the style attribute isn’t the
only way to assign styles. You can set up an entire Web site to know that a <p> con-
tainer (or nearly any other element) should be in a certain font, color, size, or some
other visual, aural, or tactile property. So, style sheets can make it easier to set a par-
ticular series of style guidelines for your Web site and force all your pages to adhere
to it.

Separating style tags from organizational tags maintains another goal of HTML and
XHTML—making the code human-readable. Consider the following line:
<p>
Thanks for visiting. Please sign the guest book below and let me know if
there’s anything else you’d like to see on the site.</p>

This isn’t impossible to read and decipher, but it’s even easier to read if you specify
in the style sheet definitions that the <p> element has a certain font face, size, and
color, using a definition at the top of the page like this:
<style>

p { font-family: Arial, Helvetica, San Serif; font-size: 16pt; color:
➥green }

</style>

Now, for the body of the document, you’ll only need to enter this:
<p>Thanks for visiting. Please sign the guest book below and let me know

if there’s anything else you’d like to see on the site.</p>

And, if that happens to be the style you want for your entire page, or your entire
Web site, suddenly all <p> elements can be defined with those characteristics. Even if
that isn’t the style you want for every single one of your paragraphs, you can still

CHAPTER 10 GET SPLASHY: STYLE SHEETS, FONTS, AND SPECIAL CHARACTERS 173

define a style ahead of time and then assign it to a particular element or selection
with a minimum of hassle. In other words, style sheets are definitely a timesaver,
and they’re great for giving your pages a uniform look.

Finally, style sheets are useful in a grander, industry-wide sense because they stop
the browser companies from coming up with as many proprietary (and often incom-
patible) elements. In the mid-1990s, creating proprietary elements became some-
thing of a horserace, with Netscape and Internet Explorer diverging on the different
ways that you aligned and styled text and other items. With the style sheet
approach, there’s a set standard for everything and, perhaps surprisingly, there are
only a few actual XHTML elements to learn in order to implement style sheets.

Understanding CSS and XHTML
As with XHTML and HTML, the style sheet language we’ll be dealing with has a set
specification—CCS2, or Cascading Style Sheets 2. This standard is what’s used most
often in Web publishing, and it’s the standard that most modern visual Web
browsers recognize. (Some browsers support only CCS1, but not too much has
changed in CCS2, so most of that markup will be recognized.)

The CSS approach is fairly straightforward. You’ll find that the specification offers a
number of properties, each of which can accept a range of values. Those properties
are used as part of the style attribute for a given XHMTL element; that element is
then styled by the browser, if possible. Here are a few examples:
<h1 style=”font-family: Arial, Helvetica, Sans Serif”>Your Restaurant
Reviews</h1>

<p style=”font-size: 12pt”>Welcome to the section of the site where you
review the restaurants. If you disagree with something we’ve said, have a
different take on a dish or if you’d like to let everyone know about a
find you’ve made, do it here!</p>

Using style sheets isn’t required in XHTML documents—you can simply go without
this level of formatting. And if you do decide to format, technically you don’t have
to use CSS. You could use a different style sheet specification, if you declare it in your
Web browser’s <head> section. That said, most Web browsers are designed to recognize
CSS, not other style sheet specifications, so CSS is the best bet.

CSS has been supported in Web browsers since around the 4.0 level of Netscape and
Microsoft’s applications. At this point, you can be assured that the basic formatting
of your page, using style sheets, is recognized by upwards of 90% of the graphical
Web browsers out there. In other words, you can leave the <blink> and ele-
ments behind for good!

174 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

If you’re concerned about CCS2 versus CCS1, don’t be. Very little has changed
between the two specifications. CSS2 really just builds on the CSS1 specification, par-
ticularly in more complex operations—style elements for tables, for non-visual pres-
entation (audio and Braille, for instance), and for some advanced topics such as
CSS-based positioning and internationalization. These are discussed in later chap-
ters. The non-visual CSS properties are in Chapter 14, “Site-Wide Styles: Design,
Accessibility, and Internationalization,” and CSS positioning is discussed in Chapter
19, “Adding Dynamic HTML.”

What Style Sheets Replace
Before we dig deeper into style sheets, let’s back up and cover some of the older ele-
ments and attributes that have remained among the favorite methods for styling a
Web page. Many pages (including some of mine!) continue to use the ele-
ment, along with some attributes that are officially discouraged as of XHTML 1.0
(and, in some cases, the HTML 4.0.1 standard that preceded it).

The element can accept a number of different attributes, including face, size,
and color. The element is a container that is placed around the text that it is
to affect, as in
Welcome to My Site

For the face attribute, you can include a list of font family names. If the first name
isn’t installed on the user’s system, the second name listed will be used, if possible.
You can also use the names “Sans Serif” and “Serif” to use the default fonts of those
types assigned in the browser. For size, you can specify a size from 1 to 7, or you can
tell font to render the text in a size that is a certain number larger or smaller than
the current size. (For instance, if the element appeared within an <h1> ele-
ment, the attribute size=”-2” would make the font of that <h1> element two “sizes”
smaller.) The color attribute can accept color names (red, green, blue, aqua, yel-
low…) or hexadecimal values (discussed in the “Understanding Color Values” section
later in this chapter).

The <center> container element is one popular way to center nearly any markup
that appears between the tags—images, text, hyperlinks, and even multimedia
objects. <center> is easily replaced with the <div> element (discussed in the next sec-
tion), so it shouldn’t be missed.

A few other attributes in the past have included the <blink> container (causes text to
blink on and off), the <s> and <strike> containers (make text appear as
strikethrough text), and the <u> container (underlines text).

CHAPTER 10 GET SPLASHY: STYLE SHEETS, FONTS, AND SPECIAL CHARACTERS 175

As has been noted in previous sections, many of the elements we’ve learned about
thus far have been able to accept an align attribute in previous HTML specifications.
That isn’t allowed in strict XHTML, but it’s easy enough to fix with style sheets.
Likewise, many elements (including the <body> element, <p> element, and others)
that have accepted a bgcolor attribute (background color) in the past now rely on
style sheets for that option.

Creating Style Sheets
Now that you’ve seen some of the theory of style sheets, let’s move on to the ele-
ments and attributes that actually enable you to put style sheets to use. That
includes a quick discussion of the different methods you can use to implement styles:

■ The style attribute—Using the style attribute for various XHTML elements,
you can add style to an individual element or container.

■ Defining element styles—Using special style definitions, you can define
elements—such as <p>, <blockquote>, <h3>, and so on—so that they have a par-
ticular styling on the entire page, or even throughout your Web site. If you’d
like every paragraph to use a particular font, for instance, you can create a
style sheet definition that does that.

■ Defining element classes—Finally, you can create new classes that are
styled, and elements can be assigned particular classes. If you create a partic-
ular class of <p> element that is red text, for instance, you can then use that
class definition when you’re creating a red paragraph on your page. Other
paragraphs (or other elements) can be styled differently, if desired.

So, you have all these options. Beyond that, you can also decide how you’re going to
make those style sheet definitions available. You have two basic choices. First, you
can embed the style information in each individual Web page. You’ll do that either
by adding style information in the <head> of the document, or by adding style infor-
mation to any of the individual elements in your page using the style attribute.

Second, you can link to a style sheet, which enables you to create a central style
sheet document and use it for multiple pages. We’ll cover all of those eventualities in
the upcoming sections.

The style Attribute
Let’s begin with the most basic way that you can embed styles in your Web docu-
ment—using the style attribute. The style attribute is a simple way to tell almost
any XHTML element, “Hey, I’d like to apply a style sheet style to you.” Most XHTML
elements can accept a style attribute, which can then be used to style that element.

176 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

For instance, you’ve seen <p> and <h1> elements accept the style attribute earlier in
this chapter. But other elements can accept the style attribute as well. The following
would suppress the underlining of the hyperlink:
Click to visit the
➥online store

Or the following would change the background color of the selected table cells:
<tr><td style=”background: yellow”>100</td><td>200</td>
<tdstyle=”background: yellow”>300</td></tr>

To add more than one element at a time, simply separate the properties and their
values using a semicolon:
<p style=”align: left; font-style: italic; font-weight: bold;
background: yellow”>Here’s some bold, italic text on a yellow
background.</p>

You’ll find that the style attribute is a simple way to quickly add a few different style
properties within your page. However, it doesn’t substitute for creating an overall
style definition using the <style> element, as discussed next.

The <style> Element
The style attribute is useful for the occasional property change, but when you’re
really serious, it’s time to think about using the <style> element. This element, which
is placed in the <head> of your document, is where you can embed style definitions
that can be used throughout the page. The basic format is this:
<head><style type=”text/css”>

p { font-style: small-caps }

</style>

<style type=”text/css”>

Element {property: setting}

</style>

</head>

It’s fairly straightforward. For example, if you’d like to set every paragraph on the
page so that its text is in small caps, you’d create the following <style> element in
the head of the document:
<style type=”text/css”>

p { font-style:italic}

</style>

The typed element (such as the “p” in the preceding example) is called the selector in
CSS-speak, and anything between the brackets is called the definition. The overall
entry is a rule.

CHAPTER 10 GET SPLASHY: STYLE SHEETS, FONTS, AND SPECIAL CHARACTERS 177

Selectors should be familiar to you—they’re the letters that make up XHTML ele-
ments, such as p, h1, and ul, which you’ve seen in earlier chapters. When you create
a rule, you’re assigning a particular style definition to an element of your choosing,
as in
ul { list-style: disc }

The <style> element can have more than one rule. Each rule technically ends with a
closing bracket, so you could place more than one rule on a single line. But, it’s best
to format each definition on its own line, as in
<style type=”text/css”>

p { font-style:italic}

h1 { color: blue }

ul { list-style: disc }

</style>

Also, a particular definition can have more than one property within it. Properties
are separated by semicolons, but you might consider placing each property on a sep-
arate line to make it more readable:
<style type=”text/css”>

p { font-style:italic;

background: yellow;

padding-left: 12px

}

</style>

Again, all that spacing isn’t required, but you can see that it helps make the rule
clearer.

It’s worth noting that you can assign the same definition to a number of elements at
the same time simply by adding more selectors, separated by commas. For instance:
<style type=”text/css”>

p, h1, h2, h3, blockquote, ul, ol { font-family: Arial, Helvetica }

</style>

This approach enables you to quickly set the font or a similar attribute for a group
of elements at once, making them all more uniform on the page.

Finally, part of the point of calling the standard Cascading Style Sheets is to suggest
that there’s a certain amount of cascading (or, more technically, inheritance) going
on. For instance, if a particular font style is assigned to a <table> element, elements
within that table—row and cell definitions—are also assumed to have those charac-
teristics.

178 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

The same is true, for instance, for the <body> element, which can be used to set some
overall defaults for your page, such as font properties, background colors (or
images), and so forth. Once these properties are set, all other elements within the
<body> element will inherit these properties unless they’re specifically overridden with
either a definition of their own or the style attribute. For example, the following
style definition would cause the main body font to be a sans-serif font (Arial,
Helvetica), but would override that for unordered lists (ul), using Times or Times
New Roman instead:
<style>

body { font-family: Arial, Helvetica; font-size: 12pt }

ul { font-family: Times New Roman, Times}

</style>

Creating Special Classes
Beyond simply redefining the properties of existing XHTML elements, you can go
further with style sheets by creating new classes. In essence, these classes enable you
to assign to a particular style a particular element sometimes, while leaving the
original element’s definition alone. For instance, consider this code snippet:
<head>

<style>

h1.red { color: red }

</style>

</head>

<body>

<h1>This Heading is the Default Color</h1>

<h1 class=”red”>This Heading is Red</h1>

</body>

Using the h1.red selector instead of just h1 means you’re not assigning a style that
will appear every time you use <h1>. Instead, it will only appear when you use the
class attribute to specify that style rule. You can use this approach in many different
ways, not the least of which is to define more than one class for the same element:
<style>

p.body { font-family: Times New Roman, Times; font-size: 14pt }

p.footnote { font-family: Arial, Helvetica; font-size: 10pt }

</style>

In this case, all you have to do is change the class attribute’s value for a particular
<p> element and that element’s content will change appearance.

CHAPTER 10 GET SPLASHY: STYLE SHEETS, FONTS, AND SPECIAL CHARACTERS 179

You can also create a class that isn’t tied to a particular element, which enables you
to add that class to any element in the body of the page that you’d like to style. For
example:
<style>

.small { font-family: Arial, Helvetica; font-size: 10pt }

</style>

This rule could be used to change the formatting of pretty much any container that
handles text, such as <ul class=”small”> to <blockquote class=”small”> and so on.

Using the Element
When you’re working with style sheets, you’ll find that a new element, , can
come in handy. In essence, is used to apply style sheet formatting to whatever
markup you’d like to use it for. Anything from a single letter to entire paragraphs
can be contained by the element, which can then be used to apply a certain
style or style class to the selection.

The element has the same basic scope as the element (it’s an inline
element), so it isn’t designed to enclose elements such as images and multimedia
objects. If you need to apply formatting to large sections of your page, use the <div>
element (discussed in the next section).

You’ve got three ways to define and use . The first method is to simply use it
with the style attribute for a quick styling fix, as in

This text is in small caps.

Just as you can define the style for almost any other element, you can define the
style for span, as in
<style>

span { font-family: Arial, Helvetica; font-size: 12pt }

</style>

You can then use on its own as a simple way to apply some different format-
ting to a selection, such as
<p>Coming soon: More interesting content!</p>

180 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

So, that’s one way to use , but it’s probably not the most interesting way
because it limits you to a single style definition. The second way to define is to
create classes of the element, the same way you might create a class for a <p>
or element:
<head>

<title>Drop and Small Caps</title>

<style>

span.dropcap { font-family: Times New Roman, Times; font-size: 28pt;
➥float: left}

span.smallcaps {font: Arial, Helvetica; font-variant: small-caps }

</style>

</head>

With those rules in place, you could use the element with a class attribute to
change the appearance of the enclosed markup, as in
<p>It was a dark and
➥stormy night.

The clouds rolled in – thundered in – and the bleak black was only
➥occasionally interrupted

by bright flashes of fear.</p>

Putting these rules together with such markup, you’d end up with a page that looks
similar to Figure 10.1.

CHAPTER 10 GET SPLASHY: STYLE SHEETS, FONTS, AND SPECIAL CHARACTERS 181

FIGURE 10.1

Here you can see

the ele-

ment at work,

changing the

markup using

universal style

classes you’ve

created.

The third thing you can do with is use it with a defined standalone class, such
as
<style>

.dropcap { font-family: Times New Roman, Times; font-size: 24pt; text-
➥align: top }

</style>

Using , you can apply this styling to a section of text, just as
you could use the class attribute with another text container tag to apply the drop-
cap style.

Using the <div> Element
Another style-related element is <div>, which is short for “division,” and can be used
to create sections within your entire Web document. The <div> element can be used
to apply almost any formatting to nearly any elements that it contains, including
tables, images, and multimedia objects. You could think of <div> as sort of a user-
defined element that’s one rung below the <body> and <head> elements in signifi-
cance. (In specifications-ese, it’s called a block-level element, which means it
automatically has white space around it, like a <p> or <blockquote> element.)

The <div> element can be used in a way that’s similar to . Style sheet rules can
be defined for it, and then the class attribute can be used to apply those styles to the
enclosed markup. For instance:
<h1>Dining Out</h1>

<div style=”background-color: yellow”>

<p>Some tips for a better business dining experience:</p>

Call ahead and check to see if the restaurant takes reservations.

For six or more people, request special accommodations, such as
➥seating in a quiet area, banquet room or near a window with a view.

If you call early enough (before dinner) you can also ask for a quick

rundown of their house and recommended wine selections. Then, look them up

and have an idea if they’re good recommendations.

Know whether the restaurant offers vegetarian, kosher, diabetic or
➥other dietary considerations, particularly if you aren’t familiar with
➥all of your diners.

Consider any other special needs in your party (wheelchair access,
➥special seating) and request or discuss those items ahead of time.

Discreetly hand your credit card to the head waiter when you’re first
➥seated, or otherwise let him or her know that you’ll be taking the check.
This can avoid tussles at the end of the meal.

Tip well, including bartenders and bar wait staff if you wait for your
table in the bar or lounge area.

</div>

182 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

As you can see from this listing and from Figure 10.2, the <div> element can be used
around multiple types of container elements, such as <p> and containers. The
<div> element is designed to do just this—to create artificial divisions for styling and
alignment purposes.

CHAPTER 10 GET SPLASHY: STYLE SHEETS, FONTS, AND SPECIAL CHARACTERS 183

FIGURE 10.2

Using the <div>

tag enables you

to span multiple

elements with a

style definition.

<div> can accept an align attribute that is recognized in many browsers, even those
that predate style sheet support. Use <div align=”center”>, </div> to center all
markup—paragraphs, tables, images—contained in the <div> element. (This is prefer-
able to the <center> element, which is not a recommended part of the HTML or
XHTML specification.)

As with other elements, including , the <div> element can be defined with a
style rule, it can be assigned classes directly, or it can work with independent class
rules.

Linking Versus Embedding
There’s one other issue before we move on to the various styles that are available for
use—and it’s a fairly important issue. It turns out that you have two different meth-
ods for style sheet definitions available to you. So far, you’ve seen many examples of

Tip

the first option—embedded style sheet definitions, using the <style> container within
the head of the document. This is particularly useful if your style sheet only applies
to the page in which it’s embedded.

Of course, many of us don’t design Web sites that way. Our Web sites will often have
common elements and styles on many, most, or all the pages. In that case, you may
find it more convenient to create a more universal style sheet, and then link to it
from within each document.

This linking approach offers two advantages. First, the obvious advantage is that
you don’t have to add the <style> container to the top of each page that you create.
Second, using a single document for your style sheet definitions means you can
quickly and easily alter the look-and-feel of your entire Web site with a simple
change to the style sheet document. Plus, it’s easier to manage a large Web site, even
one developed by different Web authors and designers, if they are all expected to
link to a predetermined style sheet.

Of course, even with linked style sheets, you can override a given style with a
or <div> element or by using the style attribute within an element. Likewise, you can
still use the <style> element on individual pages to add to the style sheet document
or to override portions of the linked style sheet document.

So, how do you link? First, you need to create the style sheet document. It should be
plain ASCII text, just like an HTML document. Save the file with a .css extension,
such as styles.css. The file can include rules that define element styles and rules
that define classes. Within the style sheet, you can also use a special comment tag if
you choose—text between /* and */ is ignored, as in
/* Begin rules for headings */

h1 {

font-family: Arial, Helvetica;

font-size: 24pt;

font-weight: bold;

word-spacing: 2pt;

}

Once the file is created and saved, you can link to that file using the <link /> ele-
ment, which is placed in the head of your document:
<head>

<title>Main Page</title>

<link rel=”stylesheet” href=”http://www.fakecorp.com/styles.css”>

</head>

184 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note that the URL to which you link can be a relative URL, but it would vary
depending on where in your site’s hierarchy you’ve saved the style sheet file. If you
use the <base> element on your pages, you can use a relative URL that builds on the
<base> element, as discussed in Chapter 7, “Building Hypertext Links.”

Want to play around with linked styles a bit? Visit http://www.w3.org/
StyleSheets/Core/ to learn about some styles that the W3C has created, which you
can use on your own page. Any typical HTML document with a simple <link /> ele-
ment pointed to one of the W3C’s stylesheets will be recast with new fonts, styles, and
effects. It’s a cool way to see how powerful style sheet linking is.

Properties and Styles
Now that you’ve seen the different ways to add styles to your pages, let’s take a look
at the variety of styles that you can add using CSS1 and CSS2. This section doesn’t
cover them all; only the most popular. However, you can visit http://www.zvon.org/
xxl/css1Reference/Output/index.html for an excellent reference to the CSS1 specifica-
tion. (It also has links to a CSS2 reference.) The official CSS2 specification is at
http://www.w3.org/TR/CSS2/.

In the following sections, I’ll touch on some of the styles for text, fonts, backgrounds,
and links, and for working with borders, margins, and padding.

Text Styles
The text styles in the CSS definition are those that enable you to determine how text
will be rendered, positioned, and aligned on the page. These styles can be used with
nearly any XHTML element, giving you control over how text and inline images
appear in your document. Table 10.1 shows many of these text styles.

TABLE 10.1 CSS Text-Style Properties
Property Value Example(s)

word-spacing Number and units 1pt, 4em, 1in

letter-spacing Number and units 3pt, 0.1em, +1

line-height Number and units 14pt

text-decoration Value underline, line-through, box, blink

text-transform Value capitalize, lowercase, uppercase, none

text-indent Number and units or percentage 1in, 5%, 3em

vertical-align Value or percentage baseline, sup, sub, top, middle, 50%

text-align Value left, right, center, justify

CHAPTER 10 GET SPLASHY: STYLE SHEETS, FONTS, AND SPECIAL CHARACTERS 185

Note

The properties word-spacing, letter-spacing, line-height, and text-indent accept length
values, which include a number and the units of length. An example of this would
be extra point-size spacing:
p.wide { letter-spacing: 2pt }

When creating CSS-compliant rules, length (among many other values) includes
both a number and the measurement unit. The number can be either positive or
negative; there should be no space between the number and the unit. Unit measure-
ments you can use include px (pixels), in (inches), mm (millimeters), cm (centime-
ters), pt (points), em (the height of the current font), and ex (the height of the
current font’s letter “x”).

text-decoration is used to change the appearance of text in your document, and it
includes the values listed in Table 10.1. The value none is also possible.

The vertical-align and text-align properties give Web designers much-desired con-
trol over centering and justifying text in a document. Vertical alignment is best used
with elements that appear inside another element. For instance, this style definition
creates a class of the element that can be used as a superscript:
em.super { vertical-align: super }

So, adding this class within another paragraph creates text that is superscript com-
pared to the surrounding text:
<p>The only thing we have to fear is fear itself. <em class=”super”>F.D.R,
➥public speech, 1933.</p>

Font Properties
While the element is frowned upon, that doesn’t mean there isn’t an entire
Web out there with defined fonts and snazzy-looking paragraphs! One way to get in
on the action is to define fonts—including font family, size, weight, color, and
more—using style sheet properties to create rules. With fonts in particular, remember
inheritance. You can specify font properties for the <body>, for instance, and then
override that specification for elements or classes that need to be different from the
main body. Table 10.2 offers some of the font-related CSS styles and shows how they
can be used.

TABLE 10.2 CSS-Defined Style Properties
Property Value Example(s)

font-family Name of font Helvetica, Serif, Symbol

font-size Number/percentage 12pt, +1, 120%

font-weight Number/strength normal, bold, bolder, 100, 900

186 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

font-style Name of style italic, oblique, normal

font-variant Name of style normal, small-caps

font Combination 12pt Serif

color Word/hex number red, green, blue, #FF00FF

Here’s a quick rundown of all these style sheet properties:

The font-family property allows you to choose the name of the font that you’d like
text to appear in. With any font property, you want to be as general with font fam-
ily names (such as Helvetica or Courier) as possible because the user’s browser will
have to decide what that font name’s closest counterpart is on the user’s system. So,
avoid names like “Helvetica Oblique” or “Courier Heavy 12.”

In fact, font-family allows you to specify alternative font names for different com-
puter systems, like this:
<style type=”text/css”>

p.standard { font-family: Helvetica, Arial, sans-serif }

</style>

Font family names with spaces should be put in quotes, like “Century Schoolbook”,
when found in a style definition rule. When they’re used with the style attribute, you
can use single quotes, as in style=”font-family: ‘Century Schoolbook’, serif”
because the style attribute itself requires double quotes.

The font-family property can also accept one of five generic font names: serif,
sans-serif, cursive, fantasy, and mono-space. If you stick with these generic names (or
at least include them in your list of values), you’ll always have at least some meas-
ure of predictability in your visual browser.

font-size can be a percentage, point size, or word size, such as larger or smaller.
font-weight refers to the boldness of the font, with possible values like bolder, lighter,
or numerical values from 100–900. (Normal is 400.) font-style values determine the
italic nature of the font. Possible values are italic, oblique, and normal.

The font-variant property is simply used to set the font to either normal or small-caps.

The font property is basically a shorthand reference for the four that appear preced-
ing it in the table. You can simply use any of the related values for the catch-all font
property, effectively describing its entire appearance in one definition. The font prop-
erty’s implementation can be problematic in different browsers, so it’s recommended
that you define font properties separately (particularly font-family and font-size) for
cross-platform compatibility.

CHAPTER 10 GET SPLASHY: STYLE SHEETS, FONTS, AND SPECIAL CHARACTERS 187

Note

TABLE 10.2 (continued)
Property Value Example(s)

Background and Color Properties
Style sheets can be used to give unprecedented control over what appears in the
background of your Web page. Not only can you specify a color or an image for the
background, but you can also decide how the image will be repeated, whether it acts
like a “watermark,” and other characteristics.

Although background properties are popularly applied to the <body> tag (so that
they affect the entire document), background properties can actually be assigned to
nearly any XHTML element, from inline elements (or) to block elements
such as <p> or <h1>. This makes it possible to set highlighting colors around individ-
ual words or background colors for blocks of text in paragraphs, lists, and elsewhere.
Table 10.3 discusses the background properties.

TABLE 10.3 CSS Background Properties
Property Value Example(s)

background-color Color name of RGB value white, #0000FF

background-image url() url(image.gif), url(http://www.
fakcorp.net/bgnd.jpg)

background-repeat Word value repeat, repeat-x, repeat-y, no-repeat

background-attachment word value scroll, fixed

background-position Direction or percentage top, left center, 20%, 65%

background Combination white url(image.gif) repeat-x fixed

The possible values for color include black, red, maroon, white, green, olive, lime, aqua,
teal, blue, navy, yellow, brown, gray, silver, orange, purple, and fuchsia. If you opt to
use a red-green-blue (RGB) value for your colors, you can do that in one of two ways.
You can either use a three-digit hexadecimal number in the form #0F0F0F, or you can
specify a 256-color value for each of red, green, blue, as in “color: rgb(255,255,0)”.

Hexadecimal numbers are in base 16 instead of base 10, meaning they have a “ones”
place and a “sixteens” place. Because we only have ten numerals, including 0, the let-
ters A-F are used to represent the values 10–15. So, the base 10 value of the number
FF would be (15*16)+15 or 255, while the hexadecimal number 10 has a base 10 value
of 16.

188 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

As for the background colors, you may find them interesting but largely unneces-
sary. That’s because you can use the background property as a shorthand reference to
all (or any) of the other properties:
<style type=”text/css”>

body { background: url(http://www.fakecorp.com/images/back.gif)

white repeat-x fixed }

</style>

If you need or want to use the precise background property, here are some quick
explanations of the less obvious ones:

■ background-repeat—This property uses one of four codes (shown in Table 10.3)
to determine how a background image will be repeated to tile itself over the
entire browser window area. repeat-x sets it to repeat horizontally; repeat-y
sets it to repeat only vertically.

■ background-attachment—Determines whether or not the background image will
scroll along with the rest of the Web document (scroll), or if the page scrolls
over the background as it stays in place (fixed).

■ background-position—Accepts direction names or percentages to determine the
position of the top-left corner of the background image.

Alignment and Block Appearance Properties
XHTML elements that include white space around them tend to be called block ele-
ments because in effect, they create a box of text (and other markup) that can then
be considered an object on the page. (Just to confuse matters, the CSS specification
refers to blocks as boxes, so this section really talks about box properties.) And
because the box is an object, there are certain ways you can alter its alignment and
appearance, including setting margins, padding the box, adding a border, and so
on. While you saw some of these properties for tables in Chapter 9, “Advanced Table
Elements and Table Design,” it’s interesting to note that with style sheets, you can
apply them to any block-level element.

The CSS style sheet definition creates a number of properties specifically designed to
help you control the appearance of these boxes. Table 10.4 shows you the box prop-
erties.

CHAPTER 10 GET SPLASHY: STYLE SHEETS, FONTS, AND SPECIAL CHARACTERS 189

TABLE 10.4 CSS Box Appearance Properties
Property Value Example(s)

margin Length or percentage 1in, 5% 10%, 12pt 10pt 12pt 10pt

padding Length or percentage 1in, 5% 10%, 12pt 10pt 12pt 10pt

border Width/style/color medium dashed red, 2in grooved, blue

width Length/percentage .5in, 10%

height Length/percentage 10em, 12pt

float Direction left, right, none

clear Direction none, left, right, both

The margin and padding properties work in very similar ways, with the number of val-
ues included in the definition determining which sides of the page are being
affected:

■ A single value, such as {margin: 5pt}, means that margin is applied to the
top, right, bottom, and left sides of the page.

■ Two values, such as {padding: .5in .4in}, means the initial value is applied to
the top and bottom, while the second value applies to the right and left.

■ Three values, such as {padding: .5in .4in .3in}, means the first number
applies to the top, the second to the right and left, and the third to the
bottom.

■ Four values, such as {margin: 5em 4em 6em 9em}, means the numbers apply to
the top, right, bottom, and left, respectively.

The difference between the two properties is that margin applies extra space outside
the borders of the current element, while padding applies spaces between the edges of
the element’s box and the text it encloses.

Note that both of these properties can also be broken out into directional versions,
such as “margin-left: 12px” or “padding-bottom: 1in”, which is useful when you need
to specify only one side for margin or padding.

The border property is a shortcut property, like background. In border’s case, it can
accept values for the width, style, and color of the border of a particular element.
The width can be thin, medium, thick, or a length; the color can be any color name or
set of hexadecimal pairs; and the style values include none, dotted, dashed, solid, dou-
ble, groove, ridge, inset, outset. For example:
p.redborder {border: red dashed 20px}

190 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

The border property is a shortcut for many different properties, including a series of
border-size properties (border-left-size, border-right-size, and so on) and border-
width properties (border-bottom-width, border-left-width, and so on). Even as a short-
cut property, you can include directions, such as “border-left: 12px blue dotted” and
so on.

The width and height properties can be used to specify the width or height of any
block element, using either a length or percentage. (The value “auto” can also be
used in individual cases to override a setting and change the width and height to
normal.)

The float property can be used to allow text to flow around an element. This works
the same way that align=”left” and align=”right” do for the element, except
that the float property works for any element:
h2.wrap { float: left }

And finally, the clear property can be used to determine whether or not an element
will allow other elements to float to one side of it (that is, whether or not the ele-
ment will wrap around other elements). If clear has a value of left, the element is
moved below any floating element to its left; if the value is right, the element is
moved below any images floating to the right. For instance, with the style rules:
<style type=”text/css”>

img.right { float: right }

h2.no_wrap { clear: right }

</style>

Adding this markup would create a page that looks like Figure 10.3:
<h2>3 Bedroom Traditional</h2>

<p>This 3/2 traditional has a full basement (modern touches like Italian
lighting and Berber carpet) for a media room, home office or an
unemployment den for that English-major college grad of yours. 325 Main
Street. $129,000.</p>

<h2 class=”no_wrap”>Mini Mansion</h2>

<p> This one even has extras like a butler’s pantry and a second, back
staircase for creeping quietly down in the middle of the night to get one
more small sliver of homemade pie. And, best yet, a babbling brook right
there on the property.

19 E. Gables Road. $279,000.</p>

CHAPTER 10 GET SPLASHY: STYLE SHEETS, FONTS, AND SPECIAL CHARACTERS 191

FIGURE 10.3

With clear, the

second <h2>

heading refuses

to wrap next to

the floating

image, begin-

ning below the

image instead.

(Note the extra

white space

above the “Mini

Mansion”

heading.)

192 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Styles for Links and Objects
Changing the style of your hyperlinks may be some of the easiest fun you can have
with style sheet properties. Not only can you choose the colors that your links
appear in, but you can use style sheets to change the appearance of a link when
someone points the mouse at it—a popular way to make pages appear a bit more
active. This is done using something called pseudo classes—specifically, those
designed for links and similar objects.

The pseudo classes are shown in Table 10.5.

TABLE 10.5 Pseudo Classes
Property Explanation

:link Properties of the hyperlink before it’s clicked

:visited Properties of the hyperlink after it’s clicked

:hover Properties of the link or object while the mouse pointer is over it

:focus Properties of the link or object while text is being entered or it’s selected by
the keyboard

:active Properties of the link or object while it’s being selected (that is, while the
mouse button is down or the Enter key is pressed)

These classes can be defined in style sheet rules with color, font, and background
properties, as in
<style type=”text/css”>

a:link { color: red; background: white }

a:visited { color: pink; background: white }

a:hover { color: blue; background: yellow }

a:active { color: orange; background: yellow }

</style>

When defined in this way, the styles are automatically assigned to <a> elements used
throughout the page.

First Letter and First Line
Two other pseudo classes might grab your attention. The :first-letter and :first-

line classes can be used to create drop caps, small-cap introductions, or similar
effects. For instance:
<style type=”text/css”>

p.drop:first-letter {

font-family: Times, “Times New Roman”;

font-size: 450%;

float: left;

margin-right: 5px;

}

</style>

This would create a drop-cap at the beginning of each paragraph, with the attribute
class=”drop” as part of the <p> element. The same sort of thing would work for first-
line.

Special Table Styles
Many of the text and box styles discussed so far can be used on markup that
appears inside tables. But what about using styles with the table elements them-
selves, particularly <table>, <td>, and <tr>? All of these elements can be used with the
background, color, and box style properties discussed earlier in this chapter.

With table rows especially, you may find it useful to define style rules that can be
used for background colors, alignment, and more. For example:
<style>

tr.yellow { background-color: yellow }

</style>

This definition creates a class of <tr> that can be used to create rows that have a yel-
low background. Other background and box properties could also be used with the
<tr> element or with individual <td> elements.

CHAPTER 10 GET SPLASHY: STYLE SHEETS, FONTS, AND SPECIAL CHARACTERS 193

While it’s clear that the <tr> element can accept many style properties to style each
row, what about defining styles for columns? If you use the <colgroup> or <col /> ele-
ments discussed in Chapter 9, you can assign style properties to them. For instance,
you could give a particular column a background color. First, define the style:
<style>

col.yellow { background-color: yellow }

</style>

Then, using the <col /> element, you can assign a particular column the style class
that you’ve created:
<table>

<colgroup>

<col />

<col class=”yellow” align=”right” />

</colgroup>

<tr><td>January</td><td>$100.50</td></tr>

<tr><td>February</td><td>$50.95</td></tr>

<tr><td>March</td><td>$1000.55</td></tr>

</table>

Because the second <col /> element is the one that has been assigned a style class,
the second column will appear with a background color.

You may want to change the border and margin characteristics of your table, which
you can do with the border and margin properties discussed earlier in the section
“Alignment and Block Appearance Properties.” You’ll find that you can alter both
the <table> and individual <tr> elements with those styles, as well as the <col /> ele-
ment. For instance:
<table style=”border: solid red”>

This opening tag begins a table with a solid red border around it. Whether or not
the table has interior lines would rely on the border property with individual <col />
and <tr> elements. (Note also that the current versions of most Web browsers differ
in their implementation of table borders. You might want to stick with the table
border, frame, and rules attributes discussed in Chapter 9 for a while longer.)

In my experience, Listing 10.1 generates a red border around all cells in Internet
Explorer 5 (and higher), but only a red border around the entire table in Netscape 6.
Ideally, it would create a border around all cells.

194 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 10.1 Using Border Properties with HTML Table Elements

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<style>

.redborder { border: solid red }

</style>

</head>

<body>

<table class=”redborder”>

<colgroup>

<col class=”redborder”/>

<col class=”redborder” />

</colgroup>

<tr class=”redborder”><td>January</td><td>$100.50</td></tr>

<tr class=”redborder”><td>February</td><td>$50.95</td></tr>

<tr class=”redborder”><td>March</td><td>$1000.55</td></tr>

</table>

</body>

</html>

Special Characters
In previous chapters, you’ve seen ways to add special quotation marks (using the <q>
element), and I touched briefly on the use of the non-breaking space (). There
are many other special characters you can add to your HTML document, although
how to add them may not be readily apparent.

What do you do if you need to render a character that can’t be typed into a plain-
text document? Or what about special characters, such as < and >, that XHTML uses
as part of its own syntax? You add them using special entities that look much like

CHAPTER 10 GET SPLASHY: STYLE SHEETS, FONTS, AND SPECIAL CHARACTERS 195

the non-breaking space already discussed. This can be used to solve one thorny
problem—how to actually display XHTML elements in an HTML document. For
example, consider these two lines:
Students should remember to use the and elements.

Students should remember to use the and elements.

In a browser, the first line will make the word and appear boldface. In the second
line, the entities < and > are used to represent the less-than and greater-than
signs, respectively, so that they aren’t interpreted as XHTML by the browser. Instead,
when the browser displays the second line, it will look like the first line does on this
page.

All entities begin with an ampersand and end with a semicolon. Some use letters
between those two symbols, while others use numbers. Table 10.5 shows some of the
other named entities you can use in your pages.

Although the table displays entity names, all of those entities can also be referenced by
number. For instance, a non-breaking space can be rendered as as well as using
 . See the Web resources discussed later in this chapter for the numbers that cor-
respond to these entity names.

TABLE 10.5 Named ISO Entities for HTML Documents
Entity Name What It Represents

 Non-breaking space

< Less-than sign (<)

> Greater than sign (>)

⁄ Forward slash (/)

& Ampersand (&)

© Copyright symbol

™ Trademark symbol

® Registered trademark symbol

¶ Paragraph symbol

‘ Left single quotation mark

’ Right single quotation mark

“ Left double quotation mark

” Right double quotation mark

¥ Yen currency symbol

€ Euro currency symbol

196 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

£ English Pound currency symbol

¢ Cent currency symbol

– En dash (–)

— Em dash (—)

&iexl; Inverted exclamation point

¿ Inverted question mark

Aside from these entities, there are many others, including special language charac-
ters. For instance, to represent ñ, which is the letter n and a tilde, you can use
ñ in your document. For an uppercase Ñ, you would use Ñ in your text.
Entities work similarly for other language characters, such as ö for ö (an o with
an umlaut) or é for é (an e with an acute accent).

Other types of diacritical marks are supported, along with codes for Greek letters,
mathematical characters, and many other special marks and symbols. For easy-to-
follow references, see http://www.w3schools.com/html/html_entitiesref.asp or
http://hotwired.lycos.com/webmonkey/reference/special_characters/. For a
comprehensive look at the definitions of these entities, see http://www.w3.org/
TR/REC-html40/sgml/entities.html.

Summary
In this chapter you learned the theory behind style sheets, why they’re recom-
mended, and how they can be implemented on your pages. You learned what the
Cascading Style Sheets specification is, as well as some of the XHTML elements, such
as and <div>, that work hand-in-hand with style sheet concepts. The second
portion of this chapter was devoted to the myriad styles that can be used to dress up
your pages, including text, font, background, and block properties. You learned some
of the special pseudo classes, which can be used for special effects in style sheet-
enhanced pages. And you learned some special ways that style sheet properties can
be applied to HTML tables. Finally, you were introduced to the entity codes you can
use in HTML documents to represent special characters.

In Chapter 11, “Advanced Web Images and Imagemaps,” you’ll learn a little more
about Web images, including how to optimize them for quick downloading and how
to turn them into clickable imagemaps.

CHAPTER 10 GET SPLASHY: STYLE SHEETS, FONTS, AND SPECIAL CHARACTERS 197

TABLE 10.5 (continued)
Entity Name What It Represents

C

11

ADVANCED WEB
IMAGES AND
IMAGEMAPS
hapter 6, “Visual Stimulus—Adding Graphics,” discussed the basics of

creating Web images and putting them on the page, but there’s a lot

more to cover. Creating and translating images that work well on the

Web is an art and a science. You want images that look good, but you

want the image files to be small so that they transfer very quickly over

the Internet. You can do much more with images than simply create

them and post them on the Web. You can animate them, in certain

cases, and you can use certain XHTML elements to turn images into

clickable imagemaps, in which different parts of the image can be used

as hyperlinks to different URLs.

This chapter discusses the following:

■ Making your images better, smaller, and faster

■ Creating and using animated image sequences

■ Creating clickable imagemaps for Web site navigation

Making Your Images Better
In Chapter 6, you learned the basics of choosing your image format, saving images,
and translating them. You also saw how to crop and resize images; two steps that
can help reduce their file size. In this section, let’s dig in and a take a look at some
of the more advanced options you find in our two graphics editors of choice: Paint
Shop Pro for Windows and GraphicConverter from Macintosh. (Getting these appli-
cations is also discussed in Chapter 6.)

The issues covered include optimizing your images by tweaking settings in the
graphics application. You then see the myriad of options that you’re likely to
encounter when saving or translating images, and how those options can affect the
final images you decide to put on the page.

Optimizing Web Images
Aside from cropping and resizing your images, probably the most important consid-
erations are to use as few colors as possible (in most cases) and to lower the resolu-
tion of the images to the appropriate dots per inch (dpi) for onscreen display.

Color Depth
Using fewer colors is generally appropriate for GIF and PNG format images. JPEG
images, if they’re photographic, almost always require millions of colors. (You can
translate JPEG to 256 colors, but photos look pretty bad at that setting.) Colors
means the palette of colors available to the image. If you use fewer colors in the
palette, it’s likely that the image is smaller in file size because very similar colors are
made the same. The size of the palette is called the color depth.

In Paint Shop Pro, you can change the color depth of an image by opening the
image and choosing Colors, Decrease Color Depth from the menu. You’re then
presented with some choices in the Decrease Color Depth dialog box, shown in
Figure 11.1.

200 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 11.1

The Decrease

Color Depth

dialog box.

In this dialog box, you likely want to choose the Standard/Web-safe palette in the
first column of options, because the Web is the destination for this image. The Web-
safe palette is recognized by Web browsers as the most accurate across different plat-
forms.

Next, you choose a reduction method, which you can experiment with if desired.
The Nearest Color method is the most self-explanatory—when it’s tossing out a par-
ticular color that’s not supported by the smaller palette, it chooses the color that’s
closest. The other two are different approaches that diffuse colors and dither, or vary
a pattern of dots, to get slightly different resulting colors.

After a color change has been put into place, you can choose Edit, Undo Decrease
Colors to undo that change, so you can return the image to its original palette and
experiment with other changes.

In GraphicConverter, choose Picture, Colors. In the menu that appears, choose the
Change to… option that you’d like to try—that selection is the number of colors
used in the image. Note that you can also use the Picture, Colors, Minimize Color
Table option to use the smallest palette of colors possible.

Remember, if you’re dealing with color photographs, lowering the color palette often
doesn’t work, partly because JPG works only with millions of colors or 256 colors,
and partly because photos just look bad when you take out color information. If
you’re creating images from scratch in GIF or PNG, however, lowering the color
palette should be helpful. In fact, generally you can start with a lower color palette
(say, 256 colors or the Web-safe 216-color palette) when you first create a new image
document. In both Paint Shop Pro and GraphicConverter, you can choose a color
depth in the New dialog box.

Resolution
Although you don’t often change the color depth of scanned or digital camera
images, you may often want to change their resolution. Many images that are cap-
tured via scanner or camera use more resolution information than is necessary for
them to be displayed onscreen. In general, images for the Web only need to be 72
dots per inch (dpi, sometimes also pixels per inch, or ppi), instead of the 200 dpi or
higher that is often used for scanned images destined for a printer.

To change the resolution in Paint Shop Pro, select Image, Resize. Turn on the
Actual/Print Size radio button, and then change Resolution to 72 ppi. Click OK. Now
you likely need to resize the image, because changing the resolution in Paint Shop
Pro makes it larger. Choose Image, Resize again, and then turn on the Pixel Size
radio button. Enter the pixel size you want for either the width or the height. If the

CHAPTER 11 ADVANCED WEB IMAGES AND IMAGEMAPS 201

Tip

Maintain Aspect Ratio option is checked (as it should be), the other measurement
changes automatically. Click OK, and your image is now the correct size and the
correct resolution for the screen.

In GraphicConverter, select Picture, Resolution. In the Resolution dialog box, enter
72 in each of the fields, leave the Convert picture option checked, and then click OK.
The image is converted to the new resolution.

Image Compression and Progressive Encoding
When you save your Web images, you still aren’t finished making decisions, particu-
larly if you’re dealing with JPEG images and (to a lesser extent) PNG format docu-
ments. That’s because you’ve got some additional choices to make in the Save dialog
box of your image-editing application.

Compression
When saving JPEG images, usually you can choose a quality setting. The lower the
quality, the more compressed the image file is, and the smaller its file is. It’s a direct
trade-off, but one you might consider if you find that, even after cropping, sizing,
and changing the resolution of an image, you’re still stuck with an image file that’s
too big.

In Paint Shop Pro, you can change the compression setting when saving a JPEG
image. First, choose File, Save As. If the image isn’t already in JPEG format, choose
JPEG-JFIF Compliant from the Save As Type menu. Now click the Options button. In
the Options dialog box, note the Compression Factor slider. The more you drag that
slider to the right, the higher the compression and the lower the quality. Make your
selection, click OK, and then save the file.

Paint Shop Pro has a neat feature, the Optimizer, which can help you make JPEGs that
are small in file size but still good-looking. Click Run Optimizer in the Options dialog box
and the Optimizer appears. (Note that it also has a wizard option, which can walk you
through the optimization process.)

In GraphicConverter, you also set compression options when saving. Choose File,
Save As, and make sure JPEG/JFIF is selected in the Format menu. Now click the
Options button. In the JPEG/JFIF dialog box, use the Quality slider to choose the bal-
ance point between compression and quality. Note that with the Calculate File Size
option turned on, you can see the approximate size of the file that you are saving
(see Figure 11.2).

202 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Tip

FIGURE 11.2

The JPEG/JFIF

dialog box

shows you both

file size and a

preview image.

CHAPTER 11 ADVANCED WEB IMAGES AND IMAGEMAPS 203

Saving Progressive Images
In the options for saving JPEG, GIF, or PNG images in an image editing program,
generally you’ll find a setting that enables you to make the image progressive, or
interlaced. What this means is simple—the image can appear in a browser window
as it downloads, instead of appearing only after the entire image has been received
by the client computer. This makes your Web page appear in the browser a bit more
quickly, while giving the user a sense of what the image will look like before it has
completely appeared.

Both Paint Shop Pro and GraphicConverter make a progressive option available in
the same option dialog box you access to set compression for a JPEG image.
(GraphicConverter’s is shown in Figure 11.2.) PNG and GIF images can also be pro-
gressive (with GIFs, the option is generally called interlaced), so look in the Options
dialog box when saving them.

Image Transparency
Although image transparency doesn’t really make an image download any faster or
appear any more quickly in a Web browser window, it’s still an interesting effect to
play with. Transparency is supported in the GIF and PNG formats, enabling you to
select one color within the image and make it transparent so that any background
images or colors show through it.

This is most useful for creating images that appear to “float” on the page. Or, with
the right shading and photographic qualities, a portion of the image might actually
appear to be sitting on the Web browser’s background, as shown in Figure 11.3.

The transparent color you choose needn’t be the background color—you can make
other parts of the image transparent, if you have a reason to. Only one color can be
transparent, however, so you might need to plan ahead when creating the image. If
your background is two-tone, you need to change that before you can make the
whole thing transparent.

FIGURE 11.3

The image’s

background is

transparent, so

the rest of the

image appears

to be sitting on

the page.

204 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

In Paint Shop Pro, you can make a color transparent by selecting Colors, Set Palette
Transparency. You might then be told that the image needs to be converted before
transparency can be added. This is particularly true if the image started as a high-
color photograph. (See the “Color Depth” section earlier in this chapter for details.)

After you have the image in the correct format, you see the Set Palette Transparency
dialog box (see Figure 11.4). You can choose no transparency, set it to the current
background color (which you often do), or set it to a particular color. If you’d like to
choose a particular color, you don’t have to enter its number by hand (unless you
happen to know the number). Instead, you can simply move the mouse pointer to
the image and click the color you want to turn transparent—its number appears in
the dialog box. When that’s done, click the OK button.

FIGURE 11.4

In Paint Shop

Pro, you can

click the image

to select the

transparent

color.

In Paint Shop Pro itself, the portion that is now transparent turns a pinkish color.
That color will be transparent after the image is saved as a GIF or PNG and dis-
played in a Web browser.

In GraphicConverter, transparency is even a bit easier. With the image on the
screen, simply click the transparency tool in the toolbar—it looks like a magic wand
with the letter “T” as part of the icon. Now drag the pointer to the color in the image
that you want to turn transparent and click the mouse button. Immediately, that
color turns gray, indicating that it’s transparent. You can click another color to
change the selection, or you can save the image as a PNG or GIF and it’s ready to be
displayed.

Creating Animated Images
The GIF format (specifically, GIF89a) supports a certain level of animation, akin to a
flipbook animation you might have sketched into the corner of your grade school
textbooks. By creating a series of images that are quickly displayed one after
another on the screen, you can use these image formats to create the appearance of
animation. If you’ve spent some time browsing the Web, no doubt you’ve seen this
animation, generally in the form of Web advertisements.

Creating your own animations requires nothing more than some dedication and an
animation application. Although many animation applications are pricey options
from big-name graphics companies such as Macromedia and Adobe, others are
available as shareware. In fact, most distributions of Paint Shop Pro include
Animation Shop, which is a good option for Microsoft Windows users. For
Macintosh, you might consider GifBuilder (http://homepage.mac.com/piguet/gif.html),
which is freeware, or VSE Animation Maker (http://www.vse-online.com/), which is
shareware.

To create an animated GIF, generally you need to begin by either creating a series of
GIF images (in Paint Shop Pro or GraphicConverter, for example) or creating image
frames within the animation tool. Then those frames are put together in sequence
and saved as an animated GIF. You can then add the GIF to your pages with a stan-
dard element. The following is a quick look at the process in different appli-
cations.

Animation can be time-consuming because you need to create a series of GIF images or
frames, usually by painting them. You’ll find that the more sophisticated applications
enable you to set the duration or frames, and to automatically add transitions and
effects that make fewer painted frames appear more “animated” and interesting. But
such animation applications tend to be pricey.

CHAPTER 11 ADVANCED WEB IMAGES AND IMAGEMAPS 205

Note

Jasc Animation Shop
Animation Shop makes GIF animation fairly easy to accomplish. You begin by creat-
ing a new project (File, New), and then either drawing frames on the screen or
importing them using the Animation, Insert Frames, From File option. Animation
Shop can also be used (via the File, Open command) to open and work with anima-
tions in the popular FLI and FLC animation formats.

If you’re creating a banner advertisement, try the Banner Wizard (File, Banner Wizard). It
walks you through the process of creating a fairly simple banner advertisement, com-
plete with transitions.

After you’ve created the project, you see each frame in the window. (You need to
scroll to see more than the first few frames.) Using the tools in the toolbar, you can
add text, draw, paint, and otherwise make changes to each frame. To add more
frames, choose Animation, Insert Frames, Empty, and then use the dialog box to
specify the number of frames that you’d like. Remember, each frame represents
another progressive change in the animation, so you may need to create a few
frames if your animation is complicated.

After you’ve created your frames, you can select a frame and then select Effects,
Insert Image Transition to add a transition effect. Or choose Effect, Insert Image
Effect if you’d simply like to add a special effect to that frame. You’ve got a few dif-
ferent effects to choose from.

To test your handiwork, choose View, Animation. Now you see the VCR-like controls
spring to life, enabling you to play your animation to test it. If it’s moving too
quickly, you may need to change the duration of some or all the frames. You can do
that by selecting Animation, Frame Properties and changing the settings in the dia-
log box. To determine whether or not the animation will loop and to choose a trans-
parency color (if desired), choose Animation, Animation Properties.

Looping means the animation will play again once it’s completed. In some cases, you
can choose to have an animation loop one time, a fixed number of times, or continu-
ously.

To save your animation, choose File, Save. With CompuServe Graphics Interchange
selected in the Save As Type menu, you can name the image and click Save to save
it as a GIF. Then you simply add it to your page as you would any GIF image.

206 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Tip

Note

VSE Animation Maker
Animation Maker isn’t as full-featured as Animation Shop, but it’s relatively inex-
pensive. With Animation Maker, you can create individual frames using paint and
text tools, or you can import a series of images (PICT images are supported) using
the Frame, Open PICT and Insert command.

Animation Maker doesn’t have built-in transitions, but you can double-click a frame
in the Frames window to change the percentage of time it spends on the screen, give
it a name, and see its size. To control the overall speed of your animation, you
choose Set, Speed, and then select how many frames per second (or seconds per
frame) you want the animation to be. To test the animation, click the Play arrow in
the main window or select Set, Play Animation.

If you’d like to create an animation that loops continuously, choose Set, Settings, and
then, in the Loop section, decide if the animation should loop infinitely or just a set
number of times. You can also specify a comment in this dialog box.

When you’re done creating the animation, choose File, Save As, GIF. In the Save GIF
file dialog box, you can turn checkboxes on and off to make selections about the
comments and delay times. Then you can select a transparent color, if desired, and
finally click Save to view a Save As dialog box so that you can name the file. When
saved, you can add the GIF to your Web page using a standard element.

Using Imagemaps
One other use for images on Web pages that hasn’t been touched on yet is the
imagemap. Put simply, an imagemap enables you to define different portions of an
image as hyperlinks that point to different URLs. The sections of such an image are
often called hot zones, and they’re defined using the imagemap specifications.

You have two different imagemap approaches to consider: client-side and server-
side. Server-side imagemaps are the older type. In essence, they rely on the server
computer (specifically, a map server) to recognize and deal with the clicks that a user
makes. Most graphical Web browsers now support the client-side approach, which
simply means that the browser itself can recognize where the user clicks and
launches the specified URL. This section focuses on client-side maps because they are
the dominant type. Server-side maps are discussed briefly at the end of this chapter.

CHAPTER 11 ADVANCED WEB IMAGES AND IMAGEMAPS 207

Tip

Creating a Client-Side Imagemap
To begin creating a client-side map you need an appropriate graphic. You can create
one in an image-editing application, or you can use an existing photo or image and
overlay it with hot zones.

These hot zones are defined by x,y coordinates, where 0,0 is the top-left corner of the
image. Using these coordinates and telling the browser what shape the hotzone
should be makes it fairly simple to create a clickable image. The only real catch is
figuring out what the various coordinates should be. One way to do this is to use
your image-editing application. You can find the x, y coordinates in both Paint Shop
Pro (in the bottom-left corner of the image window) and GraphicConverter (in the
top-right corner of the image window, using the Picture, Show Position command).
You can point to various parts of your image to learn the coordinates, and then jot
them down for use in the imagemap.

You can also work with a map-editing program, such as MapEdit
(http://www.boutell.com/mapedit/), which is available for both Windows and
Macintosh. Using MapEdit, you can create hot zones (the clickable shapes that work
as hyperlinks) that you’d like to use for your map. In fact, MapEdit actually saves
the client-side imagemap information to your HTML document, enabling you to skip
some of the steps in the rest of this chapter. (You probably want to read them any-
way, just to see what’s going on.)

You may find that other map-editing applications create a map definition file. This is
the file that’s generally used for a server-side imagemap, but it contains the coordi-
nate information that you can use for a client-side map.

Then, to add the client-side map to your page, you use a new attribute to the
element, called usemap, along with an entirely new element, the <map> container ele-
ment. Inside the <map> element, you use <area /> elements to specify the coordinates
and URLs for each of the hot zones.

Adding usemap to
To create a client-side imagemap, you need to add the new attribute usemap, as
follows:

Notice that the point of usemap is to specify a named link for the map definition
information that you’d like to use. Elsewhere in the document, you enter the map
definition itself in a <map name=”map_name”> element that has the same name specified
in the usemap attribute. An example of the element might be
<img src=”main_banner.gif” usemap=”#banner_map” alt=”Top banner for
➥navigation” />

208 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

This element goes in the HTML document at the point where the image for the
imagemap will appear. This element displays the image and tells the
browser that this is a client-side imagemap. Before you have a complete imagemap,
however, you need to create the definition that the browser uses for that map.

The <map> and <area> Elements
The <map> container is used to create each of the hot zones that are used as hyper-
links in your imagemap. Each zone is created using an <area /> element, which
defines the shape, coordinates, and URL associated with that hotzone:
<map name=”map_name”>

<area shape=”shape_type” coords=”coordinates” href=”URL” alt=”text” />

<area shape=”shape_type” coords=”coordinates” href=”URL” alt=”text” />

...

</map>

The <map> element can be anywhere in the document. Often, it’s easiest to put it at the
top of the body section, so you can get to it quickly. It doesn’t display anything in the
browser window, so its placement won’t affect other elements.

If your map-editing application created a map definition file, you’ll find that most
of the information required for your <map> definition is in that file. If not, the coordi-
nates you approximated in your graphics editing application should suffice. Based
on those numbers, you can come up with <area> elements that define each of the hot
zones in your imagemap.

First, though, you need to know something about the shapes that are supported. The
shapes for client-side hot zones differ a bit from those for server-side maps, which is
important to know if you’re using an imagemap editor to determine coordinates.
Only three basic shapes are accepted by the shape attribute, and then the numbers
are given to the coords attribute. The three basic shapes are as follows:

■ rect—The rectangle requires the coordinates for the top-left corner and the
bottom-right corner. For example, 0,0, 10,10 places the left and top lines of
the rectangle at 0,0 and the right and bottom lines at 10,10.

■ circle—A circular hot zone requires three different coordinates: center-x,
center-y, and a radius. An example might be 100,100,20, which would repre-
sent a circle with a center at 100,100 on the page, and a radius of 20 pixels.

CHAPTER 11 ADVANCED WEB IMAGES AND IMAGEMAPS 209

Tip

■ polygon—The third shape, a polygon, enables you to specify a shape with any
number of sides. Each vertex requires a pair of points as its definition. The
coordinates 100,100,200,200,0,200 would create a three-sided polygon (a tri-
angle) with its top at 100,100, its bottom right at 200,200, and its bottom left
at 200,0.

The href attribute is used to assign an URL to each hot zone. If no URL is desired, the
attribute nohref=”nohref” can be used to define a particular hot zone that doesn’t ref-
erence a URL.

The simpler your imagemap is, the better. For the most part, today’s imagemaps use rec-
tangular hot zones because rectangles are easy to define, they’re button-like, and there
isn’t much novelty left in the idea of complicated clickable images. You may find a good
reason to use the other shapes, particularly when you’re creating clickable photos or
educational sites. For basic navigation, though, rectangles are easy.

For example, consider a bar that you might put at the top of your site as a graphical
navigation option:
<body>

<img src=”banner.gif” usemap=”#banner_map” alt=”navigation banner”
➥border=”0” />

<h1>The Movie Site</h1>

<p>Welcome to the Movie Site, the number one place on the Internet for
information about movies, stars, directors and more.</p>

<map name=”banner_map”>

<area shape=”rect” coords=”45,45,115,70” href=”films.html” alt=”Film
➥Details” />

<area shape=”rect” coords=”150,45,220,70” href=”actors.html” alt=”Actor
➥Bios” />

<area shape=”rect” coords=”260, 45, 330, 70” href=”directors.html”
➥alt=”Director Filmographies” />

<area shape=”rect” coords=”370, 45, 440, 70” href=”producers.html”
➥alt=”Producer Info” />

<area shape=”rect” coords=”480, 45, 550, 70” href=”reviews.html” alt=”User
➥Reviews” />

<area shape=”rect” coords=”0, 0, 585, 75” href=”help.html” alt=”To Help”
➥/>

</map>

</body>

Figure 11.5 shows this image.

210 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Tip

FIGURE 11.5

An imagemap

that might be

used for naviga-

tion.

CHAPTER 11 ADVANCED WEB IMAGES AND IMAGEMAPS 211

Notice in the previous example that the last area element has coordinates that cover
the entire image. According to the client-side specification, the area that’s defined
first takes precedence when two areas overlap. So, if someone clicks in one of the
first four hot zones, they’ll be taken to the appropriate URL. If they miss a hot zone,
though, they’ll be taken to a document called help.html, where you can tell them
how to use the map correctly.

If you elect not to create your own default hot zone, client-side maps automatically
ignore clicks that fall outside your other hot zones.

Working with Server-Side Maps
Most likely, you don’t need to work with server-side imagemaps. For years now, the
HMTL standard and Web browsers have supported client-side maps, which are more
efficient and effective. At this point, they’re really only useful when very old Web
browsers are used to access the map.

If you do need to work with a server-side map, it certainly isn’t difficult. All you
have to do is add the ismap=”ismap” attribute to your element, and then wrap
the element in an anchor element that points to an imagemap definition
file that’s stored on the server. When the server detects that an imagemap definition
file is being requested, it automatically launches the imagemap server, which then
handles all the hot zone requests. For example:

Tip

You need to ask your ISP or administrator how and where to store imagemap defini-
tion files, as it can vary somewhat depending on the Web server application and
platform. You need to create the map definition file by using a map editor applica-
tion such as MapEdit, mentioned earlier. That map definition file is the one that you
store on the server and access via the anchor element.

Summary
This chapter began by discussing some of the advanced techniques you can use to
make the image files on your Web pages smaller, faster, and more efficient. You also
saw how to create transparent colors within images, and how to animate GIF format
images. Then you saw how to create imagemaps, which enable you to create click-
able hot zones on your images, hyperlinking to different URLs.

In Chapter 12, “Creating Sites with HTML Frames,” you’ll see how to create a Web
interface using the <frameset> element, which divides a single browser window so
that multiple HTML documents can be displayed at once.

212 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

BUILDING YOUR
SITE

IIIPART

F

12

CREATING SITES
WITH HTML
FRAMES
or a long time, Web authors wanted to display many similar documents

via their Web sites, offering common controls (in the form of hyperlinks

or imagemaps) that quickly allowed the viewer to move through the

pages.

Using the standard approach of individual Web pages, you would be

forced to replicate these links or controls on every page. With the

advent of the HTML Frames specification, however, it was possible to

split the browser window to allow more than one Web page to appear

at a time. Suddenly, with the ability to split the window into frames,

Web authors had a whole different option for designing their sites. This

continues into the XHTML standard. Frames aren’t always recom-

mended, however, as you’ll see in this chapter.

This chapter discusses the following:

■ What frames are, and how to decide if you should use them

■ Adding frames to your site, including the frameset elements
and the target attribute

■ Advanced frames issues, including special targets and inline
frames

The Great Frames Debate
For a while, the problem with HTML frames was that many browsers couldn’t view
them. The frames specification was added after HTML 3.2 standard, which was cre-
ated around 1997. (At that time, frames were already popular, but only with
Netscape users.) Frames have been formalized in the HTML 4.0 standard, and most
browsers have handled frames well. Interestingly, frames still remain just a bit con-
troversial. Before we get to that, though, let’s understand what frames are.

What Frames Are
The HTML frames specification enables you to display two or more pages in the
same Web browser window at the same time. Those pages have separate URLs,
separate scroll bars (if necessary), and otherwise act pretty much independently.
Figure 12.1 shows a site that’s using a frames interface.

216 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 12.1

A Web page

that’s using

frames to make

multiple docu-

ments easily

accessible.

Splitting the page into frames is done by replacing the <body> element in your Web
page with an element called <frameset>. The <frameset> container is designed to hold
individual <frame /> elements, which then define the frames on the page and deter-
mine which URLs are loaded in the frames as default pages.

Once you’ve created those frames, the individual pages within the frames can
include hyperlinks that specify which frame another URL should be loaded into. For
instance, you could have a frame that you’ve determined is the “main viewer”
frame where your documents will appear. (In Figure 12.1, this is the frame where the
IDE Defined article appears.)

On the document used as an index, you can include hyperlinks that load different
pages in that main viewer window, giving you an effect that’s a little like a remote
control changing channels on a television screen. In Figure 12.1, the document that
contains the links All About RAM and Prying Open the Case is such an index. It’s
not the same HTML document as the article that appears in the main viewer. What’s
more, each of the hyperlinks in that index document uses a target attribute to spec-
ify that its URL will be loaded in the main viewer frame. So, clicking a link on the
left side changes the article that appears on the right side.

Note also that the frames often have their own scroll bars and, in many cases,
moveable dividers. While viewing a page that uses frames, you can often click and
drag on the divider to change the size of the frame.

What’s Wrong with Frames?
So far, frames sound cool, don’t they? It seems odd that they’d be controversial, but
there are some reasons why they are. First, using frames will sometimes make it
more difficult for the viewer to discover the full URL to a particular page, because a
frameset can be used to view many different pages at once. When you load a new
document in one frame on the page (for instance, in that “main viewer” frame), the
user may have trouble accessing that frame’s page again directly via URL. (It’s usu-
ally possible, but not as easy as using a bookmark or favorite.) Instead of showing
that page’s URL in its address bar, many Web browsers will display the URL to the
frameset document itself. (In some browsers, this problem can extend to printing the
individual frames.)

When you’re Web surfing, you can usually get around this issue by right-clicking the
frame in Windows, or Ctrl-clicking it in the Mac OS. You’ll probably see an option such
as Open Frame in New Window, which enables you to view the page, view its URL, and
create a bookmark of that document.

The other issue is more basic—some people just don’t like visiting sites that use
frames. They’d prefer not to be forced to scroll around on different parts of their Web
browser page, or be overwhelmed with different frames that act independently.
Because framesets access a number of different URLs at once, they can be slower
than typical Web pages. Your users with slow connections might find them annoying
for that reason.

The solution, generally, is to use HTML frames only when you have a good reason,
and not just because the technology is there. You can also take pains not to load
another Web site’s page into your frameset, which really tends to irritate people.
You’ll see how to avoid that in this chapter. Finally, when you do use frames, they
should be as simple and cleanly designed as possible.

CHAPTER 12 CREATING SITES WITH HTML FRAMES 217

Tip

When Should You Use Frames?
So, you’ve seen the “don’ts”—what are the “dos”? While you’re never required to use
HTML frames, it’s not a bad idea under a few particular circumstances:

■ Making documents available by index—One common use for frames is
to make many similar documents available using a convenient interface (as
shown in Figure 12.1). Using frames in this way enables you to keep the
index or table of contents readily available to the viewer, while the main
frame is updated with different content.

■ Discussions or annotations—Another reason to use frames is that it
enables you to load two different pages at once on the same page. For
instance, you could add annotations or explanations in one frame while the
other frame holds a historical text or document that’s being studied.

■ Fixed elements—Let’s say you’d like to place a banner image at the top of
your Web page and have the content of the page (or the content of multiple
pages) scroll beneath the banner image, instead of having the banner image
move offscreen when you scroll the page. If you have two frames, one of
them can hold that banner image (or anything else, such as hyperlinks or
contact information) while the other frame holds a document that can scroll
independently of that image. Figure 12.2 shows an example.

218 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 12.2

With the banner

image fixed at

the top of the

page, it’s possi-

ble to scroll

another docu-

ment beneath it.

With HTML frames, you should always offer options to your visitors. In effect, you
can do a few simple things that enable your visitors to “opt out” of the frames inter-
face, if desired. You have a few different ways of doing this, which we’ll explore later
in this chapter.

Adding Frames to Your Site
As you’ve already seen, creating HTML frames means adding some elements to your
repertoire, including the <frameset> and <frames /> elements. Before you do that,
however, you’ll need to specify a new DTD and set up your Web document accord-
ingly.

To work with framesets and be XHTML-compliant, you’ll need to use the XHTML
Frameset DTD, which enables you to create frames while using the transitional set of
elements and attributes. The frameset DTD is added in the same way that the strict
or transitional DTDs are added to your page, using a short entry at the top prior to
the <html> open tag:
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset/EN”

“http://www.w3.org/TR/xhtml1/DTD/frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

Creating the Frameset
Now you’ve defined this HTML document as a frameset document. The next step is
to actually add the frameset by simply replacing the <body> element with the
<frameset> element:
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset/EN”

“http://www.w3.org/TR/xhtml1/DTD/frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Review.Central.Org</title>

</head>

<frameset>

</frameset>

</html>

The <frameset> element can accept two attributes: cols and rows. With an individual
<frameset>, you can only define it as being broken into columns or rows. If you need
both, you’ll use multiple <frameset> elements, as you’ll see in a moment. For now,
though, notice what happens if you include a frameset definition that looks like this:
<frameset cols=”25%, 75%”>

</frameset>

The result is shown in Figure 12.3. (Note that if you try this example in a browser, it
won’t work until you’ve added some <frame /> elements inside the <frameset> con-
tainer. This is the basic structure, though.)

CHAPTER 12 CREATING SITES WITH HTML FRAMES 219

FIGURE 12.3

Here’s an exam-

ple of using a

<frameset> ele-

ment to create

columns.

220 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

The <frameset> element will accept as many rows or columns as you want to create,
and they don’t need to be percentages, either. You can use specific pixels, such as
rows=”10,200,30,300”. This would create four rows. The top row will be 10 pixels high,
beneath that will be a row that’s 200 pixels high, and so on. Also, you can use an
asterisk (“*”) as a placeholder, which tells the <frameset> element to create a row or
column that fills the rest of the space. For example, cols=”200, 400, *” would create
a third column that takes up any space that’s left after the first 600 pixels. It works
just as well with percentages, as in rows=”25%, 35%, *”, with the added advantage of
not forcing you to perform actual arithmetic.

<frame> and <noframes>
The <frameset> container doesn’t do much for you on its own—you need to add addi-
tional elements before anything appears on the page. The <frameset> element sup-
ports two major elements: <frame /> and <noframes>. The <frame /> element is used to
define frames within the document, while the <noframes> element is used to offer text
and markup that can be seen by browsers that don’t support frames. The first you
might consider adding is the <noframes> element, such as
<frameset>

<noframes>

<p>This site requires HTML frames support. If your

browser doesn’t support frames, you can access the

article index

directly.</p>

</noframes>

</frameset>

Technically, the <noframes> container element could hold an entire page’s worth of
markup, if you thought that would be appropriate. In practice, however, you’ll prob-
ably find it useful to create a special page that supports visitors who can’t view
frames. For instance, you could create an index that’s loaded in the left column of
your frameset, but that could also be used, in a browser window all by itself, as an
index for accessing other pages. We’ll discuss this idea more in the section “Offering
Options to Users.”

Meanwhile, the next step within that frameset container is to add <frame /> elements
that define the rows or columns that you’d like to add to your page. For instance, if
you’ve defined the frameset as having two columns, you’ll add two <frame /> ele-
ments, one for each column’s definition:
<frameset cols=”25%, 75%”>

<frame src=”index.html” />

<frame src=”viewer.html” />

<noframes>

<p>This site requires HTML frames support. If your

browser doesn’t support frames, you can access the

article index

directly.</p>

</noframes>

</frameset>

Generally speaking, the <frame /> element is used to define the original source HTML
document that is to be displayed in that frame of the frameset via the src attribute.
The src URL can be either a relative URL, as shown in the example, or an absolute
URL, such as http://www.fakecorp.com/index.html.

Those source files should be full-fledged HTML or XHTML documents, complete with
a DTD, <html> container, <head> and <body> containers, and so on, just like all the
XHTML-compliant documents you’ve created thus far. For example, the page
index.html might look like this:
<!DOCTYPE html PUBLIC “\//W3C//DTD XHTML 1.0 Strict//EN”

“DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Index Frame</title>

</head>

<body>

<h1>index.html</h1>

</body>

</html>

CHAPTER 12 CREATING SITES WITH HTML FRAMES 221

Granted, this is not a terribly useful index page, but it shows you how the frameset
works, as shown in Figure 12.4.

222 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 12.4

Now all the

columns have

URLs associated

with them, and

those URLs’ doc-

uments are dis-

played by

default.

Naming and Targeting Frames
So far this frames thing is interesting, but you might have noticed one problem—the
frame definitions are static. In other words, how do you go about actively loading a
new page in a particular frame? It’s a two-step process. First you name the frames,
and then you target those frames with your URL.

By using the name attribute, you assign the frame a name in a way that’s similar to
naming a section of a page for an internal link. (If you’re working under the
XHTML frameset DTD, you should also include the id attribute with an identical
value as the name attribute for future compatibility. The name attribute was officially
replaced by id, but most browsers still recognize name and will for a long time.)

Here’s our example as it’s progressing:
<frameset cols=”25%, 75%”>

<frame src=”index.html” />

<frame src=”viewer.html” name=”doc_viewer” id=”doc_viewer” />

<noframes>

<p>This site requires HTML frames support. If your

browser doesn’t support frames, you can access the

article index

directly.</p>

</noframes>

</frameset>

Note that I’ve named the second frame “doc_viewer” while leaving the first frame
unnamed. In this scenario, that first frame doesn’t need a name because it will
always be the index page that’s assigned by default. However, I’ll be creating links
on that index page that will target the “doc_viewer” frame.

When you name frames, you’re free to do just about anything except start the name
with an underscore (“_”). That’s because there are reserved targets that begin with
underscores. (They’re discussed in the “Special Targets and Removing Frames” section
later in this chapter.) The most important thing is to make sure that each name is unique
but efficient—don’t make the name overly long.

Targeting is done with the target attribute to the <a> anchor element. On the index
page (in this example), I create a hyperlink that looks something like this:
Read Story #1

Now, when that link is clicked on the left side, the right side will display the URL ref-
erenced in the anchor. Figure 12.5 shows an example that includes a few additional
targeted links. In each case, the href URL is different, but the target is always that
named frame.

CHAPTER 12 CREATING SITES WITH HTML FRAMES 223

Note

FIGURE 12.5

On the left side

are targeted

links. On the

right side is the

named “viewer”

frame.

What should you use as the default source file for your viewer window? Figure 12.5
shows a default document that explains the interface. You might do something similar,
or you can simply display the first article, image, or whatever it might be that you’re
using frames to display.

Tip

Note that the anchors can link to any URL that you’d like. For instance, you could
create a link to a remote page:
Learn more about
➥HTML

That page will appear in the target frame. (This is what can annoy some people
about frames—they allow you to place other site’s documents within your frameset,
and users can’t always tell where a page is coming from.)

An anchor element that’s in a named frame can target its own frame if desired,
although it doesn’t have to. If you’re viewing a document in the “doc_viewer”
frame, for instance, and you click an untargeted hyperlink on that document, the
resulting page will load in the same frame.

Options for <frame>
While the src attribute is the only one that you really need to worry about when cre-
ating frames, you’ll find that a few other optional attributes can be handy for cus-
tomizing the look of your frameset. Those attributes include the following:

■ noresize=”noresize” can be used to make it impossible for your visitors to
change the size of a frame by dragging its frame border.

■ frameborder can accept either a 1 or a 0 (as in frameborder=”1”). A 1 means
that the frame has a border, while a 0 means it does not.

■ scrolling can accept yes, no, or auto as values that enable you to decide
whether or not a particular frame displays scroll bars. yes means always, no
means never, and auto means scroll bars appear only when they’re needed.

■ marginwidth and marginheight attributes can be used to change the margins at
the left and right (marginwidth) and top and bottom (marginheight) of the
frame. Each accepts a value in pixels.

■ longdesc takes an URL as its value. This enables you to include a link to an
HTML document that describes the contents of the frame, which is ideal for
assistive (Braille- or speech-enabled) browsers.

Once you’ve worked with the frames a bit, you’ll start to see the value of some of
these attributes for making your frameset pages look exactly as you’d like them to.

Nesting Framesets
One issue that’s bound to come up is that you may want both rows and columns on
your frameset document. For instance, you might want a row along the top of the
document for a banner image that displays your site’s name and/or logo, and then

224 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

two columns below it that are used as index and viewer. You would do this by nest-
ing the <frameset> elements.

You really want two things here. First, you want two rows—a row at the top of the
page and a row at the bottom of the page. Then, in that second row, you want to
split it into two columns. You can accomplish that second feat by placing a second
frameset within the first frameset, like so:
<frameset rows=”100, *”>

<frame src=”banner.html” scrolling=”no” noresize=”noresize” />

<frameset cols=”25%, 75%”>

<frame src=”index.html” noresize=”noresize” />

<frame src=”viewer.html” marginwidth=”5” marginheight=”5”/>

</frameset>

<noframes>

<p>This site requires HTML frames support. If your

browser doesn’t support frames, you can access the

article index

directly.</p>

</noframes>

</frameset>

In this example, the second <frameset> element is nested within the first. In fact, it
replaces the second <frame /> element that would be required in that first frameset.
That’s because the nested <frameset> element is the second row of that first frameset,
and it’s defining that row as two columns. See Figure 12.6 for an example of how all
this is coming together.

CHAPTER 12 CREATING SITES WITH HTML FRAMES 225

FIGURE 12.6

With nested

<frameset> ele-

ments, you can

define rows

within columns

and vice versa.

Advanced Frames
Beyond the basics of creating framesets and defining frames are some techniques
that you can use to load items in different frames, or even in new windows. This sec-
tion will also explore some tips and tricks for making frames a little less annoying,
and for giving your visitors the option of opting out of frames. Finally, you’ll take a
look at the inline frame element that can be used in regular (non-frameset) HTML
documents.

Special Targets and Removing Frames
I mentioned earlier that there are reserved target values that begin with an under-
score. These values allow you to target particular frames or portions of the frameset
without referring to them specifically by name. You can also use a special target to
cause a Web document to appear in a new Web browser window, if desired. Here are
those special targets:

■ _self—Using this as the target value in an anchor element enables you to
target the frame in which the current document appears.

■ _parent—This value causes an anchor to attempt to target the frameset that’s
a parent of the current frame.

■ _top—Using this value causes the anchor to attempt to target the current win-
dow, removing the frameset and loading the Web page referenced in href in
the full browser window.

■ _blank—This target is arguably the most fun; it allows you to open the refer-
enced Web document in a new window.

These may seem a bit confusing. Consider the following listing, which shows a sim-
plified version of the frameset we’ve been working with in previous examples and
figures:
<frameset rows=”100, *”>

<frame src=”banner.html” />

<frameset cols=”25%, 75%”>

<frame src=”index.html” />

<frame src=”viewer.html” name=”doc_viewer” id=”doc_viewer” />

</frameset>

</frameset>

Now consider the following links, which could be a part of the index.html document
that’s loading in the second row, first column of that frameset. Here’s what each of
the various targets could do:

226 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

<!--Targets the third frame -->

<!-- Targets the frame where index.html was originally -->

<!-- Targets the first frameset, placing the page in the top row -->

<!-- Targets the top of the page, removing the framesets -->

<!-- Opens newpage.html in a new browser window -->

So, aside from all the cool possibilities for targeting frames, selves, and parents
within a frameset document, we have two ways to remove the framesets altogether.
target=”_top” places the referenced page at the top of the current browser window,
and target=”_blank” creates a new page.

The target attribute and these special target values can be used with a few other ele-
ments as well. The <base> element discussed in Chapter 7, “Building Hypertext Links,”
can accept a target, as can the <area> element that’s discussed in Chapter 11,
“Advanced Web Images and Imagemaps.” And you can use target with the <form>
element, which is introduced in Chapter 15, “Adding HTML Forms.”

Offering Options to Users
Working with what you now know about frames, you may begin to see some of the
options for helping visitors to your site who don’t want to use the frameset interface.
If you manage things correctly, you may find that it’s simple to create a site that
uses both frames and non-frames interfaces.

The Index Page
In many cases, one of your frames will be used to hold a document that includes a
series of hyperlinks—the remote control, if you will. That’s true for document-centric
frames, image-centric frames, and many others. If this is the case for your page, you
may find it handy to make that page available to the user directly (see Figure 12.7).

If you have a link on that page or elsewhere in your frameset, you can allow users
to load that index page in a full browser window. This gives them access to the docu-
ments or images listed on that page. It’ll be a little less convenient for them (they’ll
have to use the Back button in their browser quite a bit), but they’re the ones who
don’t like frames! Here’s some sample code:
Click to view this index in the
➥full browser window.

CHAPTER 12 CREATING SITES WITH HTML FRAMES 227

Tip

FIGURE 12.7

On the left, the

original frame-

set. On the

right, the index

page in its own

browser window.

228 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

The link could also be to a different index, which might be more attractively designed or
add other non-frames elements or styles. Still, you can see how easy it is to remove the
frameset and load a different page in its place.

Self-Referential URLs
Another issue that tends to annoy detractors of frames are pages that are viewed in
a frame without any reference to that page’s URL. That makes it difficult to book-
mark the page for later reference. It may also make that document difficult to print
in some browsers.

The solution is simple. On all your pages that are destined for a frame, include their
URLs as hyperlinks somewhere on the document. (The very bottom or top should
suffice.) That way, the viewer knows the URL that references a particular page.

If you make a self-referential URL a hyperlink with a blank page as the target, you
also make it easy for the user to print that page:
<p>Click to print or view

http://www.review.central.org/articles/article2.html

in its own browser window.</p>

Outlinks
Finally, the last major issue with frames is “framing” someone else’s content.
Although you may find it handy to place a document from another Web site in a
frame on your site, it can be considered rude at best (or a legal matter at worst). To
avoid any potential problems, it’s best to use a target=”_blank” attribute for any link
on your framed site that reaches out to another server computer. That way the page
appears in a blank window, just as that other Web author intended it to look.

Note

Some popular Web sites, such as About.com and Ask.com, make a habit of framing
content from other sites. Both of them provide an obvious Turn Off This Top Frame or
Remove Frame button, generally using a target=”_blank” attribute. I don’t know if
that’s enough to keep them from legal trouble or user outrage, but you can at least
check out their implementations of frames if you’re curious.

The <iframe> Element
Interestingly, this element is related to the <frame /> element without being related
to the <frameset> element at all. How is that? What <iframe> does is enable you to
have an independent frame, called an inline frame, within a regular HTML docu-
ment. The <iframe> container can appear inside the <body> element of a typical win-
dow, but it’s used to display another Web page, just like a frame is within a
frameset. Here’s an example of how it works:
<iframe src=”extra.html” width=”300” height=”300”

frameborder=”1” scrolling=”yes” align=”right”>

If you’re seeing this text, then your browser

doesn’t support inline frames. Click to read

this frame’s content.

</iframe>

The <iframe> element supports most of the <frame> element’s attributes, including
frameborder, marginwidth, marginheight, and scrolling. It adds to those the height and
width attributes that are used to set the inline frame’s size in pixels. And <iframe> can
accept an align attribute that can be used to make the <iframe> a floating element
when set to left or right, just as with an element’s align. You’ll also notice that
it’s a container element—the text that it contains is displayed when the browser
doesn’t support inline frames. Figure 12.8 shows the preceding example in a Web
browser window.

The <iframe> element can only be used with the transitional DTD, incidentally,
because it isn’t supported under strict XHTML. (A similar effect can be achieved with
the <object> element, which is supported in strict XHTML and is discussed in Chapter
13, “Adding Multimedia and Java Content.”)

CHAPTER 12 CREATING SITES WITH HTML FRAMES 229

Note

Summary
In this chapter, you learned about HTML frames and how they can be used to divide
a Web browser window so that multiple Web pages can be displayed on the screen
at once. You also learned why some people dislike frames and that it’s important to
only use them when there’s a strong advantage to them, and even then it’s usually
prudent to allow your visitors to opt out of the frames interface.

Once you’ve decided to work with frames, adding them is fairly easy. The <frameset>
element is used, in place of the <body> element, to define the columns or rows that
make up the frame-based page. You then add <frame /> elements to define the
default URL for the frame along with other attributes. One of those attributes is the
name or id, which is used to identify the frame when it is to be used as a target for
hyperlinks from elsewhere in the frameset.

Beyond that, you saw how to dig deeper into the <frameset> specification, including
the nesting of framesets to create more complicated pages. You also learned how to
use the special targets to launch Web pages in parent frames, without frames, and
in a new browser window. Then you saw the different ways to let your visitors opt
out of the frames interface. Finally, you learned about the <iframe> element, which
can be used to create an inline frame, similar to an image, on an otherwise regular
HTML document that’s using the transitional DTD.

In the next chapter, you’ll learn how to add multimedia content to your pages,
including movies, animations, and Java applications.

230 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 12.8

The <iframe>

element can be

used to add

markup from a

different Web

document in a

frame within

your document.

O

13

ADDING
MULTIMEDIA AND
JAVA CONTENT
ver time, the Web has become increasingly used for communicating via

video and audio, as well as formatted text and images. In this chapter,

we’ll take a look at popular video formats such as QuickTime and

Windows Media along with portable documents, flash animations, and

so on. Meanwhile, audio has moved along as well, with the advent of

technologies such as the popular MP3 format, which makes CD-quality

audio available over the Internet at reasonable download speeds.

We’ll also take a look at Java, a popular programming language and tech-

nology that many Web browsers can implement right in the browser win-

dow, making it possible for you to interact with your users programmatically.

This chapter discusses the following:

■ Understanding the different types of multimedia and why you
might want to add them

■ Using portable documents, Flash animations, Word documents,
and other multimedia objects on your site

■ Understanding Java and adding Java applets to your pages

Understanding Multimedia
What is multimedia? You’ve likely heard the term countless times, but it’s still useful
to define it. Multimedia generally refers to a computer-based presentation of data that
makes use of more than one medium—text and sound, for instance, or video and
sound. In common usage, however, multimedia really suggests a medium beyond
basic text and images. In other words, a soundless video stream that you view via
a Web browser is still a multimedia presentation, because it’s something beyond the
text and images that you typically see on a Web page.

Most of the multimedia items that you encounter on the Web are composed of time-
based data—video, audio, or animation that you can start, stop, and play much like
a video- or audiocassette. Some of those multimedia presentations will have interactive
portions—buttons to click, for instance. But for the most part, the multimedia you
encounter will be similar to other forms of media you find around the house—video,
audio, and so on.

Consider, for example, a video using QuickTime or Windows Media formats. Such a
movie file is really a series of images, shown in rapid succession, that give the appear-
ance of motion, somewhat like the animated GIF image discussed in Chapter 11,
“Advanced Web Images and Imagemaps.” Computer movie technology is a little
more sophisticated than that, and movie files generally also have synchronized
audio tracks, but the basics are simple—images that change over time. The same is
true of audio files—thousands of sound samples are played per second to reproduce,
at various levels of quality, a recording that has been digitized (turned into computer
data) and saved in the form of a computer file.

Three issues are important to you as a Web author:

■ First, why would you want to include multimedia elements on your Web site
(and if you want to do so, should you)?

■ Second, you need to know the multimedia file formats you’ll be working with
and how likely it is that your visitors will be able to display those types of
files. The type of multimedia technology you’ll be using can dictate the per-
centage of your users who will be able to experience the multimedia.

■ Third, and related to the second, is how you’re going to add the multimedia
element to your page. Will it be handled by the Web browser, or by a second
application (called a helper application)? Or can the multimedia file be
embedded in your page and played by a third-party plug-in to the Web
browser? Let’s look at these issues more closely.

232 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Why Include Multimedia?
The first issue is whether or not you should include the multimedia content on your
page at all. In general, the trade-off with multimedia is similar to the trade-off with
images—you need to decide if the information conveyed is important enough to jus-
tify the amount of time your visitor will need to wait for the file to download and
appear in the browser window. If there’s a difference with multimedia files, it’s that
they can take tens or hundreds of times more storage space than a typical image file.

Video can require the largest files—even a one-minute movie trailer that takes up
only a portion of your screen and plays for thirty seconds can require 10MB, 20MB
or more of storage. Most Web users won’t download such a movie over a modem-
based connection. Audio files don’t take as long to download, although a CD-quality
song of three minutes can be up to 3.5MB in size. Animations destined for the Web
tend to be a bit more optimal, but they can still be hundreds of kilobytes in size,
often much larger than a typical Web image.

So, you have to decide if the multimedia item you’d like to add to your page
communicates something vital. If so, you’ll probably want to include it, and you
may want to cause it to appear in your visitor’s browser window by default. If the
multimedia item isn’t that important, you may want to give your visitor the choice
of viewing it or skipping it. If it’s only interesting because of the technology and not
because of its content, you might decide not to include it at all.

Understanding Multimedia File Types
You’ve already seen some of the basic types of multimedia we’re discussing in this
chapter—video, audio, and animations. Some of the popular file types have also
been mentioned—QuickTime and Windows Media for video (and/or audio, in some
cases), WAV and MP3 for audio, and Macromedia Flash for interactive animations.
Aside from these, there exist a number of other file formats that you may run across,
as shown in Table 13.1. This table isn’t exhaustive, but it does include the majority
of the formats you’ll encounter on the Web.

TABLE 13.1 Multimedia File Formats
File Format Type of File Extension

Sun Systems sound Digital audio .au

Windows sound Digital audio .wav

Audio Interchange Digital audio .aiff, .aifc

MPEG/MP3 audio Digital audio .mpg, .mp3

MIDI audio Audio instructions .mid, .midi

CHAPTER 13 ADDING MULTIMEDIA AND JAVA CONTENT 233

RealMedia Audio/video stream .ra, .rm, .ram

CompuServe GIF Graphics .gif

JPEG (compressed) Graphics .jpg, .jpeg

TIFF Graphics .tif, .tiff

Windows bitmap Graphics .bmp

Macintosh picture Graphics .pict

Fractal animations Animation .fli, .flc

MPEG video Video .mpg, .mpeg

QuickTime Video .mov, .qt

Microsoft video Video .avi

Digital video (DV format) video .dv

Macromedia Shockwave Director Multimedia presentation .dcr, .dir

Macromedia Shockwave Flash Multimedia animation .swf

ASCII text Plain text .txt, .text

Postscript Formatted text .ps

Adobe Portable Document Format Formatted text and images .pdf

Microsoft Excel documents Spreadsheet data .xl, .xls

Microsoft Word documents Formatted text .doc

One thing you’ll notice about the table is that it includes the filename extension
that’s related to the multimedia file type. That’s because filename extensions are very
important for the cross-platform world of the Web. While some operating systems
deemphasize or hide these extensions, it’s important to get to know them if you’ll be
adding such files to your Web site. The filename extension is the primary mechanism
that most Web browsers use to determine what a multimedia file’s format is and
how the file is to be dealt with.

Table 13.1 also includes some file formats you might not expect, such as the Microsoft
Word and Excel file formats. While they might not be multimedia formats (arguably),
they are rich media formats that can sometimes be downloaded and viewed over the
Web, particularly using viewer applications that Microsoft has written for that purpose.
Also, the ubiquity of Microsoft’s applications means that most visitors will have
access to Word or an application that can translate a Word document. So, allowing a
user to download a Word document is one option for making formatted documents
available over the Internet, particularly if, for instance, you want the visitor to be
able to edit and print the document.

234 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

TABLE 13.1 (continued)
File Format Type of File Extension

Finally, it’s worth noting that Table 13.1 doesn’t show the depth of all the formats.
For instance, both QuickTime and Windows Media can be streaming formats, like
RealMedia. Streaming simply means the video and/or audio is played as it’s received
from a server computer, instead of waiting for the entire multimedia file to arrive at
the user’s computer before playback. Also, QuickTime and Windows Media can be
used exclusively for audio, if desired, as can RealMedia formats.

So, how does a single Web browser handle all these file formats? In most cases, it
doesn’t, as you’ll see in the next section.

Linking Versus Embedding
Most Web browsers can deal with a limited number of file types. In general, Web
browsers can display HTML documents, plain text documents, and the popular
image file formats. Many Web browsers also know how to access and display infor-
mation from other Internet server computers, such as File Transfer Protocol (FTP)
and Usenet news servers.

On top of that, some browsers can play basic sound file formats, such as the WAV
audio format. But for the most part, multimedia capabilities aren’t built into Web
browsers. Instead, they’re the responsibility of supporting applications, either in the
form of helper applications or Web browser plug-ins. A helper application is an applica-
tion that the Web browser launches automatically to deal with a particular type of
multimedia. In these cases, you’re said to be linking to the multimedia file—such a
link is sometimes called a hypermedia link.

A plug-in actually works with the browser application to display the multimedia file
within the Web browser window, making it appear to be a part of the Web page, much
like an image. In those cases, the multimedia document is said to be embedded on the
page. Plug-ins are small files of programming code that are stored in a special folder
on your hard disk—usually it’s a subfolder of the Web browser’s folder. When you
start up your Web browser, it looks in this special folder and notes which plug-ins
are installed. Then, when the browser encounters the <embed> or <object> XHTML
elements, it will attempt to use one of the plug-ins to display the multimedia file in
the Web browser window.

Whether you choose hyperlinking or embedding depends first of all on whether or not
a plug-in is available for a particular type of multimedia file. If the plug-in doesn’t
exist at all, it’s a moot point and you’ll want to link to the multimedia file. If a plug-
in does exist, there are still some other issues to consider, including how pervasive
the plug-in is, how likely your visitor is to have that plug-in, and how easily the
plug-in can be obtained and installed if the visitor doesn’t have it already.

CHAPTER 13 ADDING MULTIMEDIA AND JAVA CONTENT 235

For instance, QuickTime movies are often embedded in Web pages. Nearly all
Macintosh users have some form of QuickTime system software installed, and the
QuickTime plug-in is standard with most Macintosh Web browsers (see Figure 13.1).
Likewise, millions of Windows users have QuickTime installed, and it’s reasonably
simple to install the Web plug-in component, which is updated regularly by Apple at
http://www.apple.com/quicktime/.

236 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 13.1

Here’s an

example of

a QuickTime

movie being

played within

the browser

window.

Windows Media files are also embedded in many Web pages, for the obvious reason
that the majority of computer users are running Windows and can easily view a
Windows Media movie or listen to Windows Media audio.

Another of the most common plug-ins is Macromedia Flash, which enables interactive
animations that you’ll see often on high-dollar sites designed to sell cars or introduce
new movies and television shows. A high percentage of Web users have the Flash
plug-in installed, so you can often embed a Flash animation in your page without
much worry. Although Macromedia Director isn’t as pervasive, you can also embed
Director presentations in your Web pages, as well as RealMedia presentations. Both
formats offer easy-to-download plug-ins for Web users who haven’t already installed
them.

Some other types of files and documents are more commonly linked to, however,
causing a helper application to launch. For instance, PDF documents can be embedded
(there’s an Adobe Acrobat plug-in that’s fairly common). But more often they’re
linked to so that the document can be more easily saved on the user’s hard disk and

printed, where appropriate. MP3 files can be linked to, particularly when you want
the user to be able to download the file to his hard disk and use it again later. Other
sound, video, and text documents are often made available via hyperlink.

A PDF (portable document format) document is a type of application-independent docu-
ment that includes font information and sometimes images embedded in the document
itself. This makes it possible for the PDF document to look almost identical on different
computers and computer platforms, even if those computers don’t have the same fonts
and internal graphics capabilities.

In the end, though, the decision is usually fairly simple. If you’d like your multimedia
item to look like it’s part of your Web page, and the element’s file format is one that
commonly offers a plug-in, you can consider embedding it in the page. If the multi-
media item would look better or offer the user more benefits in its own window or
running in its own helper application, your best plan is to create a link to it. You’ll
see how to do each in the following sections.

Adding Multimedia to Your Pages
In this section, let’s take a general look at the two approaches to adding multimedia
to your pages—the hyperlink and embedding. Then, we’ll take a slightly closer look
at some of the most popular technologies, including a discussion of streaming
technologies.

Adding Hyperlinks
A hypermedia link really isn’t much different from any other kind of link, except in
one detail—instead of linking to another HTML document, you link to a multimedia
file. The browser has to recognize the kind of file you’ve linked to and then load a
helper application. The helper application takes over from the browser and displays
the multimedia file.

Hypermedia links can look like any other hyperlink—they can be text, clickable
graphics, or hot zones on imagemaps. All you have to do differently is enter an URL
for a multimedia file in place of an URL to an HTML document. Hypermedia links
are created like other links, too. Here’s an example for a Windows sound file in MP3
format:
Greeting from Our Fearless Leader (1.2
➥MB)

CHAPTER 13 ADDING MULTIMEDIA AND JAVA CONTENT 237

Note

When your user clicks the link, the file is downloaded to the user’s computer. After
that, it’s up to the browser and the user’s available helper applications to actually
play the file. If a helper application isn’t available (or isn’t configured), generally
the user will have the option of downloading the file to disk and storing it for later
viewing or listening.

Two recommendations:

First, you should include the approximate size of the multimedia file in the highlighted
text that describes that link. That way, a visitor can get an idea of how large the file is
and how long it may take to download.

Second, it’s important to have permission before you link to a multimedia file on another
person’s or organization’s site. Multimedia files can slow down Web servers while adding
greatly to the total byte count that’s transmitted by a site. With some sites, exceeding a
certain transfer limit can cost money because ISPs charge for certain thresholds. For that
reason, and for legal and intellectual property reasons, you should only link to multimedia
files you’ve stored on your own server, unless you have explicit permission.

So how does this work? Every Web browser keeps a table of hypermedia file types
and the helper applications associated with each type. Whenever the browser is told
to link to a file that isn’t an HTML document—and it’s a file that the browser doesn’t
otherwise know how to display—it will load a helper application to display the file.

There are a number of multimedia files that the typical browser can handle:

■ Graphics such as .GIF, .JPEG, and .PNG, as discussed previously

■ Sound files, especially .MIDI and .WAV for background sounds

■ Plain text files with a .TXT extension

Files that don’t fall into these categories generally require a helper application.
Figure 13.2 shows the table that Internet Explorer for Macintosh uses to determine
what helper application is invoked or what other behavior takes place when a
particular file is encountered in a link. You can reach this dialog box by selecting
Explorer, Preference, Helpers in Mac OS X. Nearly all other browsers have similar
preference settings. In Windows, later versions of Internet Explorer use the File Types
options that are built into the OS to recognize and manage helper documents.

238 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

When the user clicks a link, the file format is noted and the preference table is
consulted. If that user has set a special preference for this type of file—that it should
be launched in a particular helper application, or immediately downloaded to disk—
generally the browser will move ahead with that instruction. If the browser encounters
a file for which it has no preference setting, it will probably pop up a dialog box and
ask the user what to do with the file.

For the record, these preferences are often set automatically. For instance, when you
install some graphics applications, they’ll ask if you’d like to use it as the default application
for this particular file type. In some cases, that will extend to having it set as a default
helper application in your Web browser. Likewise, selecting an application the first time
your visitor asks for help with a new document type may automatically set the selected
application as the default for that file type.

So, with hyperlinks, you aren’t even limited to particular types of files or formats.
If you’d like to make a TIFF image or a Microsoft Word document or a ZIP archive
available via your Web page, you can link to it. When the link is scrutinized by the
user’s browser, either the file will be handled automatically by the browser or the
user will be asked what he or she wants to do with the file.

Again, recall that the only way the browser knows what type of file it’s dealing with is
the filename extension. So, if you’re making available a multimedia file of some sort,
make sure it has a filename extension that’s accurate for that file type.

CHAPTER 13 ADDING MULTIMEDIA AND JAVA CONTENT 239

FIGURE 13.2

Internet

Explorer’s Helper

preferences

are used to

determine

how particular

multimedia file

formats are

handled.

Note

Note

Embedding Multimedia
The other approach to adding multimedia to your Web page is to embed it directly
in the page itself. This is very similar to adding an image using the element.
In essence, embedding a multimedia file in a Web document simply defines a certain
part of the Web browser window that is given over to the plug-in application, which
is then responsible for displaying, playing, and otherwise controlling the multimedia
element.

It’s worth noting that, in general, embedding multimedia in a Web page can make the
controls for the movie less accessible to special-needs users, particularly those that rely
on keyboard controls instead of the mouse. If accessibility is a concern, you should
consider always linking to multimedia files instead, because the standalone media players
generally offer better accessibility. Likewise, embedded movies cause more problems
with cross-browser compatibility than hyperlinks do. If you can sacrifice the coolness
of embedding multimedia in the interest of better accessibility and features, consider a
simple hyperlink to the media file.

How does one accomplish this embedding magic? Actually, this gets a little interesting.
The problem is that the entire plug-in approach, which is very popular with Web
authors, is not XHTML-compliant. Instead, it relies on a Netscape-created element
that’s still in fairly wide use. That element is the <embed> element, and using it means
you need to specify a transitional DTD for your page.

In a way, <embed> is sort of an element on steroids. When you add an item
via the <embed> element, you do so by specifying the name of the item, its URL, and,
if desired, its height and width. Here’s an example:
<embed name=”Movie1” src=”movie1.mov” width=”240” height=”120”

➥ pluginspage=”http://www.apple.com/quicktime/download/”>

</embed>

Note that the element supports a name attribute (useful for accessing via JavaScript),
as well as width and height attributes. In a way, it’s very similar to an element,
with the exception of the required closing tag. That similarity can be a bit deceiving,
however, because each individual browser plug-in can support additional non-XHTML
attributes that will affect the playback of the multimedia (as discussed in the upcoming
technology-specific sections).

The pluginspage attribute is a handy one to include because it helps the user’s browser
locate the correct download page for a plug-in that isn’t currently installed.

240 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Tip

In the meantime, there is an XHTML-compliant element that can be used for adding
some plug-in media—the <object> container. As you’ll see later in this chapter, <object>
is more often used for Java applets, as well as other embedding possibilities. For
instance, you can embed another HTML document within the current document,
producing something that’s similar to an inline frame (<iframe> is discussed in
Chapter 12, “Creating Sites with HTML Frames”). The <object> element can also
get a bit complicated, but you’ll see some examples in the following sections.

Internet Explorer 5.5 and higher no longer support the <embed> element, instead opting
to focus entirely on the <object> element (and, more to the point, on Microsoft’s own
ActiveX technology). To add embedded multimedia, you’ll need to use the <object>
element, as discussed in the next few sections.

You should consult any documentation you have for the multimedia technology
you’re using (QuickTime, RealMedia, and so on) to see the various ways that you
can add the technology. For instance, some technologies offer both a Netscape-style
plug-in and an ActiveX or Java control that makes it possible to add the multimedia
item using <embed>, <object>, or both.

Embedding QuickTime
If you’d like to embed a QuickTime movie in your Web document so that it appears
in the browser window, you can begin with the <embed> element:
<embed name=”NewMovie” src=”newmovie.mov” height=”320”
➥width=”240”></embed>

Beyond this example, however, Apple offers a slew of additional attributes that you
can use to customize how the QuickTime movie and player will appear in the browser
window. Some of those attributes, and their recommended values, are shown in
Table 13.2.

TABLE 13.2 Commands for a QuickTime <embed> Element
Command Value What It Does

autoplay true Causes movie to begin automatically

controller false Hides movie controls

loop true Loops movie over and over

playeveryframe true Plays every frame, even if movie is too slow

volume 0 - 256 Chooses the volume level; 256 is highest

hidden true Movie is hidden (useful for sound-only movies)

href URL Allows user to click movie to move to another URL;
works only if controller=false

CHAPTER 13 ADDING MULTIMEDIA AND JAVA CONTENT 241

Note

These special attributes are added to the <embed> element only when it’s being used
for a QuickTime movie. Here’s a simple example:
<embed src=”movie1.mov” autoplay=”true” height=”320” width=”240”></embed>

In this example, the movie would appear immediately in the Web browser window
and begin playing as soon as the movie file was downloaded to the user’s computer.
The <embed> element is often used in a slightly different way with QuickTime movies,
however, making the playing of the movie a two-step process. Here’s the slightly
more complicated example:
<embed src=“post_movie.mov” autoplay=”true”

➥ controller=”false” href=“full_movie.mov”>

</embed>

The way this <embed> command is set up, the first movie loaded (post_movie.mov)
should actually be a poster movie, or a movie file that only has one frame. Then,
when the user clicks that poster frame, the actual movie (full_movie.mov) is launched,
as specified in the href attribute. This is useful for enabling your users to verify their
intent to view the movie (and therefore commit to a long download) by clicking the
poster movie.

Because of the controller=”false” attribute, the user won’t be able to control the
playback of the movie. Once downloaded, the QuickTime movie would begin playing
all the way through without requiring any input from the user.

Aside from the attributes in Table 13.2, you can add quite a few other attributes and
options to the <embed> element for QuickTime. See http://www.apple.com/
quicktime/authoring/embed.html for details and instructions.

Apple notes that some browsers—notably Internet Explorer for Windows 5.5 and
higher—don’t support the <embed> element, but they do support ActiveX, a Microsoft
technology for embedding programming functionality. For those browsers, you should
include the <object> element along with the <embed> element, if appropriate. (Using
JavaScript, discussed in Chapter 17, “Introduction to JavaScript,” and Chapter 18,
“JavaScript and User Input,” you can determine the type of browser that you’ve
encountered and then serve a compatible page, which might be a better solution.)
Here’s how Apple recommends that you add the <object> element:
<object classid=”clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B”

➥ width=”320”HEIGHT=”240”

codebase=”http://www.apple.com/qtactivex/qtplugin.cab”>

<param name=”src” value=”movie1.mov” />

<param name=”autoplay” value=”true” />

242 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Tip

<param name=”controller” VALUE=”false” />

<embed src=”movie1.mov” width=”320” height=”240”

➥ autoplay=”true” controller=”false”

➥ pluginspage=”http://www.apple.com/quicktime/download/”>

</embed>

</object>

This does a number of things. First, the <object> element will not only display the
QuickTime movie in compatible browsers, but it will actually cause the ActiveX
control to be downloaded to the browser automatically, if necessary. Then, with the
<embed> element inside the <object> element, <embed> will be recognized by browsers
that don’t support ActiveX, while the QuickTime movie will play in those browsers
that do require ActiveX.

For more on these instructions, see http://www.apple.com/quicktime/products/
tutorials/activex.html.

Finally, it’s important to note that QuickTime movies can be streaming media as
well as the downloadable movie type. As mentioned earlier, streaming means that
the movie data arrives just in time to be played back to the user. Streaming media
feeds can be live events and broadcasts, or they can be regular QuickTime movies
that begin playing in the Web browser more quickly than a downloaded movie.

If you’re adding a streaming movie to your Web page, you’ll need to make only
minor tweaks to the HTML elements on your page. The real effort comes in acquiring
the appropriate streaming server software, which is required to make QuickTime
streaming work.

The major difference with QuickTime streaming is that you’re sending a different
type of URL to the end user, one that uses the realtime streaming protocol (rtsp://).
You’re also sending a different type of movie—if it’s a downloadable movie, it needs
to be saved as a Hinted QuickTime movie, which is something you can do in most
QuickTime-compatible editing software. (In fact, you can do it with QuickTime Pro,
which is an inexpensive upgrade to QuickTime.)

A hinted movie file is one that’s saved in a special way so that streaming server software is
more effective. The “hints” tell the server how the data should be put together for opti-
mal playback.

CHAPTER 13 ADDING MULTIMEDIA AND JAVA CONTENT 243

Tip

Note

So, for a downloadable movie file stored on a QuickTime Streaming Server computer,
you’ll first save the movie as a hinted movie, and then use the same <embed> and/or
<object> elements to make it available. As you can see, there isn’t much difference in
the element, aside from the URL’s protocol:
<embed src=”rtsp://www.fakecorp.com/movies/hintedmovie.mov”

➥ width=”240” height=”180”

➥ pluginspage=”http://www.apple.com/quicktime/download/”>

Windows Media Movies
Windows Media offers embedding options in the form of both ActiveX controls and
Netscape-style plug-ins, so you’ll find that the basic elements for including a Windows
media movie or a streaming media feed are about the same. In my experience, the
Netscape-style plug-ins that Microsoft has created for Macintosh aren’t all that
effective. In many cases, your best plan for cross-platform support is to offer Windows
Media movies and feeds as hyperlinks that appear in the Windows Media player.

But, if you’d like to embed a Windows Media feed in a browser window using the
Netscape-style plug-in, you can use the familiar <embed> element:
<embed src=”mymovie.avi” width=”240” height=”180” autoplay=”-1”>

</embed>

The <embed> element for Windows Media player embedding includes a number of
parameters, discussed in Table 13.3.

TABLE 13.3 <embed> Parameters for Windows Media Movies
Parameter Value Meaning

showcontrols 0 or non-zero 0 means don’t show controls; any other number
means controls should be shown

autosize 0 or non-zero 0 means don’t automatically size according to the
movie’s requirements

showstatusbar 0 or non-zero 0 means don’t show the status bar

autostart 0 or non-zero 0 means don’t automatically start the movie after
download

As with other <embed> elements, you can use the pluginspace attribute to specify a
location for the Windows Media plug-in, as well as src for the movie itself. Also, type
is used with many <embed> element definitions to help specify which sort of media is
to be expected, particularly since the Windows Media player can accept a number of
different movie formats.

244 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

In programming circles, true and false are sometimes represented as non-zero and
zero, where 0 means false and –1 is customarily (but not necessarily) the non-zero value
meaning true.

For the ActiveX version of the Windows Media player, you can use the <object>
element (wrapped around the <embed> element, if desired):
<object id=”Player” type=”application/x-oleobject”

classid=”CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6”

➥ standby=”Loading Windows Media Player components...”

➥ width=”320” height=”240”

➥ codebase=”http://activex.microsoft.com/activex/controls/

➥ mplayer/en/nsmp2inf.cab#Version=6,4,7,1112”>

<param name=”autoStart” value=”true”>

<param name=”URL”

➥ value=”http://www.fakecorp.com/movies/mymovie.avi”>

<embed src=”mymovie.avi” width=”320” height=”240”

➥ showstatusbar=”-1” showcontrols=”-1” showdisplay=”-1”

➥ pluginspage=”http://www.microsoft.com/netshow/download/player.htm”>

</embed>

</object>

Within the <object> definition, you can see that the codebase attribute is used to auto-
matically locate and install the ActiveX component if it isn’t already available. The
<embed> element appears within the <object> element—just as with QuickTime, you
now have both the Netscape-compatible plug-in and ActiveX scenarios covered.

The last issue with Windows Media is the case of streaming media. Using the
Windows Media Encoder (http://www.microsoft.com/windows/windowsmedia/wm7/
encoder.asp), you can encode a movie so that it streams using a Windows Media-
compatible streaming server. (If you don’t have such a server available, you’ll need
to make your movies available as regular downloadable movies instead.) You then
link to the encoded file, but with one other important step in between. You first need
to create what’s called a metafile that points to the encoded file.

Generally, you feed the .avi file to the Windows Media Encoder, which then trans-
forms it into an encoded Windows Media file with the extension .wmv. You then save
that file on the Windows Media Server computer, and you create a metafile by open-
ing a text editor and creating a new document that includes only the components
that this example does, including the special mms:// URL protocol:
<ASX version = “3.0”>

<Entry>

<Ref href = “mms://www.myfakeserver.com/movie/encodedmov.wmv” />

</Entry>

</ASX>

CHAPTER 13 ADDING MULTIMEDIA AND JAVA CONTENT 245

Note

Save that file with a .wvx filename extension, which identifies it as a streaming
Windows Media video file. (If you’re creating an audio-only stream, you can save
the metafile with a .wax extension.)

With that metafile created, you can store it anywhere on your regular Web server
(assuming the metafile has an absolute URL to the movie file) and then access it just
as if it were an AVI file. The href or src attributes of the anchor (<a>) element, <embed>
element, and <object> element can also be pointed at that metafile, which in turn
will launch the streaming media movie you’ve created.

RealMedia Movies
Next up is RealMedia. As a format, RealMedia doesn’t give you the option to distribute
downloadable multimedia—instead, it’s all about streaming audio and video. So,
you’ll need some tools handy for encoding QuickTime or AVI movies into RealMedia,
and then you’ll need a RealMedia server to use as your jumping-off point for the
streamed multimedia. See http://www.realnetworks.com/products/producer/index.html
for information on RealSystem Producer Basic (free) or RealSystem Producer Plus,
which is Real’s commercial encoding solution.

RealNetworks, Inc. appears to make its Basic versions much more difficult to find than
their Pro versions. If you can’t find Producer Basic at http://www.realnetworks.com/
products/producer/basic.html, try to locate an “A-to-Z” product listing at
http://www.realnetworks.com/ and track down a free version that you can at
least test before committing to the high-dollar solution.

Once the movie is encoded, you’ll have a file with an .rm extension (in most cases),
which can be stored either on a Real Media server of some kind or on a standard
HTTP server. In the latter case, you simply copy the .rm file to your server and create
a link to that file:
Click to view the streaming file

This approach offers limited functionality and requires a Web server that recognizes
the .rm extension and file type, but it causes the RealMedia player to be launched for
the user and the feed to be displayed.

For higher-end serving, you’ll need a RealMedia server. If you’ve got one, you can then
link or embed in a number of different ways—consult the Real Producer documentation
for a good look at them. The most basic way is to use the <embed> element to access the
.rm file that’s stored on a Real Media server computer. Here’s an example:
<embed src=”http://realserver.fakecorp.com:8080/ramgen/realmovie.rm?embed”

➥ width=”320” height=”240” type=”audio/x-pn-realaudio-plugin”

➥ controls=”ControlPanel” console=”one” autostart=”true”>

</embed>

246 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

You’ll notice a few differences from other types of media, including the ?embed portion
of the URL that’s required to tell the RealMedia plug-in to embed the playback
instead of launching the RealPlayer helper application. The controls and console

attributes are also specific to the RealPlayer plug-in, enabling you to specify the look
of the controls and how they interact with any other controls you embed. This
example should serve you well in most cases, however—consult the documentation
for other options.

Flash Controls and Movies
Macromedia Flash multimedia presentations are still often called movies, but generally
they’re a bit different from a QuickTime or Windows Media movie. Instead of a linear
stream of video and audio data, a Macromedia Flash movie is often an interactive
animation. In other words, you’ll find yourself pointing and clicking within the
Flash movie to decide what you’d like to view next.

Creating Flash movies is the subject of plenty of books, so I won’t cover that in this
book. But once you have a Flash movie created, you’ll likely want to embed it in
your Web document, which you can do using one of the two elements we’ve grown
familiar with: <embed> or <object>. If you’re using Macromedia Flash software, you
may be able to generate automatic templates that give you the required HTML code.
For the record, though, here’s an example of both elements, used to cover all the
bases for embedding Flash:
<object classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”
➥ width=”100” height=”100”

codebase=”http://active.macromedia.com/flash5/cabs/swflash.cab#version=5,0
➥,0,0”>

➥<param name=”movie” value=”flashmovie.swf” />

<param name=”play” value=”true” />

<param name=”loop” value=”true” />

<param name=”quality” value=”high” />

<embed src=”flashmovie.swf” width=”100” height=”100”

➥ play=”true” loop=”false” quality=”high”

➥ pluginspage=”http://www.macromedia.com/

➥ shockwave/download/index.cgi?p1_prod_version=shockwaveflash”>

</embed>

</object>

If you’ve seen the elements used for QuickTime, you’ll notice that Flash’s use of these
elements doesn’t vary much. Flash does offer a litany of additional attributes that
aren’t covered here, but they’re for specific preferences and controls. For details on
the Flash-related attributes that work with <embed> and <object>, see http://
www.macromedia.com/support/flash/ts/documents/tag_attributes.htm.

CHAPTER 13 ADDING MULTIMEDIA AND JAVA CONTENT 247

Flash movies can also be saved as QuickTime movies, which can retain some Flash
interactivity. If you feel that you’ll have better compatibility by saving a Flash movie in
QuickTime format, you can consider that an option for embedding your movie.

Working with Java
If you’ve spent much time on the Internet, you’ve probably heard at least a little
something about Java. In a nutshell, Java is a full-fledged computer programming
language that’s designed to work a lot like some other popular languages—notably
a programming language called C++. Many popular Macintosh and Windows
applications are written in C++.

The difference is that Java is designed to run on nearly any sort of computer that
might be connected to the Internet. It’s popular for programmers who want to write
programs for use on the Web, because once the Java program is downloaded, it can
be run by nearly anyone who visits the Web site.

Java Applets
For the most part, Java programs end up being very small when they’re used on
Web sites, for the same reason that Web authors try to keep everything else small—
it takes time to download files from the Internet. These small programs are often
called applets because, unlike full-sized computer applications, they generally perform
a specific function. That’s not to take away from Java, however, as some more complex
applications are written and available in that language. Figure 13.3 shows one of
the Java applications that Sun makes available for free at http://java.sun.com.

248 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Tip

FIGURE 13.3

Java applica-

tions tend to be

a little less full-

featured than

applications on

your hard disk,

but they can

still be fairly

sophisticated.

If you’re not going to write Java applets yourself (or have someone else do it
for you), you might want to check out what the Web has to offer in the way of
freeware and shareware Java applets for your site. A good place to start is
http://www.yahoo.com/Computers_and_Internet/Programming_Languages/Java/Applets/

from Yahoo! or http://java.sun.com/openstudio/ from Sun Microsystems, the developer
of Java.

For the most part, Java applets are small games, Web communications enhancements,
or ways to display data from internal databases on Web sites. It’s also typical to see
Java applets for presenting animated information screens, online classrooms, or even
virtual meeting spaces. There are more sophisticated Java applications available
online, including financial applications, business applications, and even productivity
applications for word processing and similar tasks. While Java may never completely
take over the Web, it’s not a bad idea to understand how to work with and add Java
applications to your site.

Add Applets Using <object>
As you’ve seen with other multimedia items, the <object> element is king in HTML
4.01, XHTML 1.0, and higher. While <applet> is an older element, it’s still around for
backward compatibility; it would require a transitional DTD. Instead, most modern
browsers recognize <object> for Java applets, which is probably the best approach.

Here’s a sample of the <object> element for Java:
<object codetype=”application/java”

➥ classid=”java:myapplet.class” standby=”Applet Loading...”

➥ width=400 height=350>

</object>

In this example, the applet should be named myapplet.class and stored in the same
directory as the document. You can also use a codebase attribute, if desired, to create
a full URL to the applet, which would alter the element slightly:
<object codetype=”application/java”

➥ codebase=”http://www.fakecorp.com/applets/”

➥ classid=”java:myapplet.class” standby=”Applet Loading...”

➥ width=400 height=350>

</object>

That’s all it takes. If the user’s browser has Java enabled (not all of them will), the
applet will be launched and displayed in the browser window, just as with other
embedded content.

CHAPTER 13 ADDING MULTIMEDIA AND JAVA CONTENT 249

Summary
In this chapter, you learned what multimedia content is and how it relates to the
Web page. You saw the different reasons for adding multimedia content to your
pages, along with a few reasons to avoid it. From there, you learned how to include
multimedia content by either linking to it or embedding it in the page. The chapter
continued with a discussion of some specific multimedia formats—QuickTime,
Windows Media, RealMedia, and Flash. Finally, it ended with a discussion of Java
applets and how they, too, can be embedded in your Web pages.

In the next chapter, you’ll learn a little about designing an entire Web site, including
the creation of style sheets and site-wide styles that can be used to make the appear-
ance of your Web site uniform.

250 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

I

14

SITE-WIDE STYLES: DESIGN,
ACCESSIBILITY, AND
INTERNATIONALIZATION

n this chapter, let’s look a little deeper into that site-wide style sheet con-

cept. You’ll take a look at some additional style sheet properties to alter

the table elements you may use when designing your pages.

This chapter shows the CSS specification and offers help on the evolving

HTML and XHTML specifications with special support for browsers that

respond to aural (sound) style sheet entries. If your goal is to create a

complete, site-wide style sheet, you may want to include accessibility

styles within that sheet for the sake of completeness.

Finally, we’ll discuss some of the issues that involve internationalization

and language properties on your pages.

This chapter discusses the following:

■ Building and implementing a site-wide style sheet

■ Working with accessibility styles to further the goals of your
style sheet

■ Special international considerations, including different lan-
guages and changing the direction of text

The Site-Wide Style Sheet
The idea of linking to a style sheet was touched on in Chapter 10, but not fully
explored. If you’re designing a large Web site, particularly if you’re starting from the
ground up and the appearance and professionalism of the site are important to you,
I fully encourage you to begin with a site-wide style sheet. Not only will this keep the
text of your pages cleaner, it will also make it possible to quickly change or update
the styling of nearly every page on your site. In my own experience, I can tell you
that it’s a pain to update all your older pages when a site goes through a redesign. If
you focus your design efforts on a site-wide style sheet, however, you’ll find that
making changes will be much easier in the future.

And if you already have a site you’re working on, you can transform it fairly easily
into a site that relies on style sheets for its design. This has the added advantage of
cleaning up the actual markup of the page, particularly if that page is littered with
 elements and other elements that have been used for visual design. By remov-
ing those elements, you can make your pages easier to edit, update, and interpret
when you return to the page at a later date—or, when another person goes in to
update or edit the page. With a site-wide style sheet in place, the markup can look
simpler because styles are defined separately for the basic block and text elements.

Once you’ve gone through your site and determined the styles that you’d like to use,
you’ll create a single style sheet document. Then, that document will be linked to all
of your documents, using the <style> element, so that each page uses the same style
sheet for its visual presentation.

In this section, let’s take a look at how a site-wide style sheet approach can change
the look and feel of a basic Web site that we’ll use as a case study.

The Basic Site
We’ll begin with a look at a sample basic site before redesign. Actually, this site has
already existed for quite some time. For this example, it’s being redesigned and
updated for a site-wide style sheet approach. Until now, it has used a hodgepodge of
visual elements and attributes, which means that various pages look slightly differ-
ent from one another (see Figure 14.1).

However, with a bit of a redesign and a style sheet, these pages can be made to look
much the same with very little effort. What’s more, the pages can also be designed
so that a small change to the style sheet can make a big difference in how every
page on the site looks—without even opening all those other pages. The changes are
automatic because of the linked style sheet.

252 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 14.1

These two pages from the same Web site have subtly different styles for headlines and text.

Here’s a sample portion of HTML code from one of the pages on the site:
<head>

<title>No Styles Example</title>

</head>

<body>

<hr width=”50%”>

<h2>From the Editor...</h2>

<h4>Good-bye Sick
Leave</h4>

<blockquote>

<p>Hello all,</p>

<p>How goes it in the writing world?
Things are good on this end -- especially now that I’ve survived my bout
with the flu currently sweeping the nation. Ouch.</p>

<p>I’m not usually one to belly ache
to strangers about being sick, but allow me some leniency this month.
Besides, my illness offers some valuable lessons for all you would-be
free-lance writers.</p>

<p>Editor Letter continued...</p>

CHAPTER 14 SITE-WIDE STYLES: DESIGN, ACCESSIBILITY, AND INTERNATIONALIZATION 253

</blockquote>

<hr width=”50%”>

</body>

As you can see, the page’s markup is pretty messy, but it looks okay in a browser
window, as shown in Figure 14.2. (And, in fact, I even cheated a little and put the
HTML elements in lowercase—they were uppercase on the original. That was a dif-
ferent era of HTML…). The first thing this page can use is some cleaning up. With a
style sheet, however, we should be able to change the preceding to something much
simpler. First, let’s consider the style sheet.

254 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 14.2

Here’s how this

small snippet

looks in a Web

browser.

Planning the Styles
Building a site-wide style sheet will definitely take some planning, because you’ll
need to consider all the different elements you’ll use on the page and how they
should be styled. You’ll also need to consider how many different styles you’ll have
for the same element. For instance, you might find yourself with four or five differ-
ent styles that can be used with the <p> element. As you might guess, you’ll probably
be adding styles to your style sheet for a while as you’re designing your Web site.
While it’s important to keep the style sheet as simple as you can, it’s better to have a
slightly complicated style sheet if the result is less complicated pages.

For now, let’s look at that last example and see what we can come up with for style
sheet entries. Here are some highlights of the process:

■ If it’s the “look” for the site, we can set all <hr /> elements to 50% width with
hr {width: 50%} instead of <hr width=”50%”>.

■ Let’s make all headings Arial, Helvetica, and Sans-Serif, as in h1, h2, h3, h4,
h5, h6 {font-family: Arial, Helvetica, Sans-Serif}.

■ In the original, <h2> was used for the first heading. This isn’t recommended,
but it was done so that the font was a little smaller. Instead, we can define a
smaller <h1> if that makes sense for the whole site, as in h1 {font-size: 18pt}.

■ The original is using <h4> immediately after an <h2>. This isn’t recommended
and was only done for visual reasons, because the <h4> is supposed to repre-
sent a subhead. Instead, we’ll define a particular type of paragraph for sub-
heads, as in p.subhead {font-family: Times, Times New Roman, Serif; font-size:
16pt; color: blue}.

■ We’ll define a special indented paragraph style so that we don’t have to use
the <blockquote> container inappropriately, as in: p.indent {font-family:
Times, Times New Roman, Serif; font-size: 12pt; margin-left: 50px; margin-

right: 50px}.

Okay, all that effort lands us a style sheet that looks something like this:
hr { width: 50% }

h1, h2, h3, h4, h5, h6 { font-family: Arial, Helvetica, Sans-Serif }

h1 {font-size: 24pt }

p.subhead { font-family: Times, Times New Roman, Serif;

font-size: 14pt; font-weight: bold }

p.indent { font-family: Times, Times New Roman, Serif;

font-size: 12pt; margin-left: 50px; margin-right: 50px }

We can even go further with this and make the style sheet a bit more efficient. Let’s
work from the assumption that all <p> containers will be Times, Times New Roman,
and 12 point. We can define that, and then use the style sheet’s assumption of inheri-
tance so that we only need to change the properties that need changing for addi-
tional style sheet definitions.

Inheritance simply means that once you’ve defined styles for an element, any classes
subsequently defined for that element will also include the new styles. If you define
paragraph text as 24 points tall and define a class of paragraph text that is red, the red
text will also be 24 points tall. The only exception would be if you specifically overrode
the paragraph size in the red text class definition.

CHAPTER 14 SITE-WIDE STYLES: DESIGN, ACCESSIBILITY, AND INTERNATIONALIZATION 255

Note

Then, the style sheet would look more like this:
hr { width: 50% }

h1, h2, h3, h4, h5, h6 { font-family: Arial, Helvetica, Sans-Serif }

h1 {font-size: 24pt }

p { font-family: Times, Times New Roman, Serif; font-size: 12pt }

p.subhead { font-size: 14pt; font-weight: bold }

p.indent { margin-left: 50px; margin-right: 50px }

Notice how this makes the styles a little easier to read. The main <p> element is
defined, and then the subsequent class definitions need only define the difference
from the main <p> definition.

Save this style sheet as default.css, or something similar, and store it in your main
Web site directory. Now the following listing should yield results that are nearly
identical to Figure 14.2:
<head>

<title>Style Sheet Example</title>

<link rel=”stylesheet” href=”default.css” />

</head>

<body>

<hr>

<h1> From the Editor...</h1>

<p class=”subhead”>Good-bye Sick Leave</p>

<p class=”indent”>Hello all,</p>

<p class=”indent”>How goes it in the writing world?

Things are good on this end -- especially now that I’ve

survived my bout with the flu currently sweeping the

nation. Ouch.</p>

<p class=”indent”>I’m not usually one to belly ache to

strangers about being sick, but allow me some leniency

this month. Besides, my illness offers some valuable

lessons for all you would-be free-lance writers.</p>

<p class=”indent”>Editor Letter
continued...</p>

<hr>

</body>

256 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

How does that look? As you can see, the markup is already quite a bit cleaner, it
isn’t using elements that aren’t recommended (such as <h4> and <blockquote> in the
wrong places), and if the page is viewed by a non-graphical browser, it won’t choke
on all the extra visual elements. It took a little work up front, but this will make the
page markup a little more readable, and the page (and the rest of the site) will be
easier to revise in the future. Plus, as you can see in Figure 14.3, it’s a dead-ringer for
Figure 14.2.

CHAPTER 14 SITE-WIDE STYLES: DESIGN, ACCESSIBILITY, AND INTERNATIONALIZATION 257

FIGURE 14.3

Here’s the style

sheet version of

the page in the

browser window.

Style Sheet Power
So, you’ve seen some of the advantages of using style sheets. But their real strength
is that you can now use this style sheet for all pages in the Web site. Once you’ve
defined the main elements and some additional classes in the style sheet, you can
generate very clean, XHTML-compliant documents that will be styled according to
your defaults. Of course, you can also define more than one style sheet for your Web
site and switch between them using different <link /> elements, if desired.

And then there’s my favorite advantage to style sheets—experimentation. Once you
have a basic style sheet defined, you can continue to refine it as desired, experiment-
ing to see what the overall changes would look like on your page and your site.
With a few simple tweaks and additions, for instance, consider what this style sheet
will do to the newly defined sample Web site:
a:hover { color: yellow; background-color: blue }

.indent { margin-left: 100px; margin-right: 100px;

padding-left: 10px; padding-right: 10px;

background-color: ffccff }

hr { width: 50% }

h1, h2, h3, h4, h5, h6 {font-family: Arial, Helvetica, Sans-Serif;

font-variant: small-caps}

p {font-family: Times, Times New Roman, Serif; font-size: 12pt}

p.subhead {font-family: Courier, Courier New, Monaco;

font-size: 16pt; color: blue}

With these changes, again saved to the same style sheet document test.css, I can
clean up the page even more. I’ll use a <div class=”indent”> (since the indent class
has been defined without specifying an element) to cover the entire indented section
of paragraphs. And I’ll play with the look and feel a bit (see Figure 14.4). Here’s the
final version:
<head>

<title>Style Sheet Example</title>

<link rel=”stylesheet” href=”test.css” />

</head>

<body>

<hr>

<h2>From the Editor...</h2>

<div class=”indent”>

<p class=”subhead”> Good-bye Sick Leave</p>

<p>Hello all,</p>

<p>How goes it in the writing world?

Things are good on this end -- especially now that I’ve

survived my bout with the flu currently sweeping the

nation. Ouch.</p>

<p>I’m not usually one to belly ache to strangers

about being sick, but allow me some leniency this month.

Besides, my illness offers some valuable lessons for

all you would-be free-lance writers.</p>

<p>Editor Letter continued...</p>

</div>

<hr>

</body>

258 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 14.4

Here’s the page

after a little

experimenting.

CHAPTER 14 SITE-WIDE STYLES: DESIGN, ACCESSIBILITY, AND INTERNATIONALIZATION 259

Of course, experimentation can get you in about as much trouble as it saves you.
(I call this “Murphy’s Law of Vertical Hold. The more you mess with something, like
the knobs on a TV, the worse it looks.”) But being able to change massive styling ele-
ments without digging into your page each time acts as a remote control over the
design of your pages, which can be very powerful.

Accessibility Through Style Sheets
If your Web site is aimed at a sight-challenged audience, or if you’d simply like the
most complete and accessible page possible, you should dig into the aural styles that
the CSS2 specification makes available to you. These styles should be particularly
easy to add to a site-wide style sheet that you’ve used to define the styling for the
bulk of your elements. If you’ve already gone that far, adding these extras can be
incredibly simple and helpful to your audience.

As was mentioned in Chapter 10, CSS2 is as different from CSS1 as it is an add-on to it.
Aside from aural elements, CSS2 adds styles for tables and the CSS positioning capabili-
ties discussed in Chapter 19, “Adding Dynamic HTML.”

CSS2 offers a number of styles that are specifically designed to control the output to
aural browsers that speak text aloud. Table 14.1 shows many of these properties.

Note

TABLE 14.1 CSS2 Aural Properties
Property Values Description

azimuth left, center-left, center, Enables you to specify the angle from which
center-right, right or an a sound seems to be coming
angle value (–360 to 360)

cue-after url Plays the sound file at the specified URL
after reading the attached content

cue-before url Plays the specified sound file before reading
the specified content

elevation below, level, above, angle Enables you to specify the angle of a sound,
value (–90 to 90) above or below the listener

pause-after seconds or milliseconds Pauses for a certain number of seconds after
the element is spoken

pause-before seconds or milliseconds Pauses for a certain number of seconds
before the element is spoken

pause seconds or milliseconds Pauses before and after the element is
spoken

pitch low, medium, high, Chooses the pitch, or frequency, of the
number (Hertz) spoken text

pitch-range 0, 50 or any number The inflection of the spoken text; 0 is mono-
tone, 50 is normal

play-during url Plays a sound file while the text of the ele-
ment is being read

speak none, normal, spell-out Sets how the element’s text is spoken

speak-numeral digits, continuous Sets whether numbers are read as digits
(“1-2-3-4”) or words (“one thousand,” “two
hundred and thirty four”)

speak- none, code If it’s code, punctuation, then it is read
punctuation aloud, as in “period” and “exclamation

point”

speech-rate slow, medium, fast, Sets how quickly text is read; if it’s a
number number, the number represents words per

minute

voice-family male, female, child, Specifies the name of the voice to be used
Zervox, Princess for speech (similar to font families, the

voice must be installed on the user’s com-
puter)

volume silent, soft, medium, loud Sets the volume of the spoken text

260 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

You use these properties within a style definition the same way you’d use any other
properties. For instance:
h1 { volume: loud; voice-family: male; pause: 1; speak-numeral: digits }

p { volume: medium; voice-family: female; speak-punctuation: none }

Most of these properties should make sense. The voice-family property works much
like the font-family property, specifying voices that are installed on the user’s system.
The generic values—male, female, and child—should map to certain specific voice
files on the user’s computer.

The azimuth, elevation, and pitch properties are a bit more esoteric, but essentially
they’re used to fine-tune the playback of the spoken text. It’s possible to have head-
ings, paragraphs, and other elements coming at different stereo “angles” from one
another, making them easier to distinguish (or at least more entertaining).

Of course, you’d need an aural Web browser to test all these tags, and currently no
mainstream browser supports them. It’s still a young standard, though, so hopefully sup-
port is forthcoming. You can test your page for accessibility issues, however, using
Bobby WorldWide at http://www.cast.org/bobby/.

International Issues
Another step you may want to take as you’re developing a plan for your overall
Web site is specifying languages for your pages. XHTML supports this with a special
lang attribute, the <q> element, and some special instructions for table and text
blocks.

lang and <q>
The lang attribute can work with a number of different elements to specify the lan-
guage of those elements. It accepts a two-letter code to specify the language, as in
<p lang=”es”>Eso es en Espanol.</p>

The lang attribute can help the browser make decisions about how the element is
rendered, including how to hyphenate words, how speech synthesizers should treat
the text, and how search engines should recognize the page. By default, you specify
a language as part of the XML definition of the page (as discussed in Chapter 4,
“Creating Your First Page”), so generally the lang attribute is used to change lan-
guages mid-page.

CHAPTER 14 SITE-WIDE STYLES: DESIGN, ACCESSIBILITY, AND INTERNATIONALIZATION 261

Note

Some of the possible language codes include ar for Arabic, de for German, es for
Spanish, fr for French, he for Hebrew, hi for Hindi, it for Italian, ja for Japanese, nl
for Dutch, pt for Portuguese, ru for Russian, sa for Sanskrit, ur for Urdu, and zh for
Chinese.

The lang attribute can also be used with the <q> element to define quotation marks
according to the attributed language. For example:
<p><q lang=”en”>I can’t believe he said that,</q> Phillip said.</p>

<p><q lang=”es”>Si, es verdad,</q> Marcia replied.</p>

Table and Block Directions
Finally, it’s interesting to note that you can specify the direction of text, using the dir
attribute to most container tags. The result specifies the direction in which text flows,
as in
<p dir=”rtl”>This text goes from right to left, instead of from left to
➥right.</p>

The dir attribute can be assigned to <tr> or <td> elements to change the direction of
text within them. While you could change the language for any block of text, this is
most useful for languages that are read from right to left, such as Hebrew.

Again, this relies on implementation of the dir attribute by the browser, which isn’t
terribly reliable even in the latest browser versions.

Summary
This chapter gave you a closer look at creating a style sheet that can be imple-
mented site-wide, and explained the advantages of doing so. Using a site-wide style
sheet gives you a consistent-looking site, while making your XHTML code cleaner
and enabling you to experiment freely with the look of the page. You also saw how
this approach to style sheets can be incorporated with CSS2’s aural styles to make
your Web pages more accessible. And, at the end of the chapter, you saw some of
the elements and attributes that enable you to specify the languages used on your
pages.

In the next chapter, you’ll learn about the elements used to create interactive forms
on your page, including entry fields, pop-up menus, and other elements you can use
to enable your users to make choices and communicate with you.

262 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

INTERACTING
WITH YOUR
USERS

IVPART

H

15

ADDING HTML
FORMS
TML allows you to add interface elements to your pages, such as

menus, radio buttons, and text areas, that make it possible for your vis-

itors to send you information or data. The data can be as simple as an

e-mail address sent to you for inclusion in your Web guest book. Or, the

interaction can be as complex as enabling the user to make choices for

an online computer application, such as those that locate doctors at

HMO Web sites or that help you rent a car at a nationwide auto rental

Web site.

In this chapter, let’s take a look at how you can create HTML forms and

make them look good. In Chapter 16, “CGIs and Data Gathering,”

you’ll see how to create the back-end scripts that are used to process

these forms.

This chapter discusses the following:

■ The basics of HTML forms

■ Adding form fields, buttons, and controls

■ Using other elements to organize your forms

■ Designing forms with lists, tables, and CSS

The Basics of HTML Forms
The idea behind an HTML form and its components is simple—they enable you to
ask for and accept information or answers from your users with varying levels of
guidance. Users can be asked to

■ Type answers, either in small boxes (such as for name or address) or in full
sentences (such as for comments or complaints)

■ Choose answers from a list of possibilities you create, including via a menu
or check box

■ Choose one answer from a number of options that you specify, using the
radio buttons interface that you’ll commonly find in Windows and Macintosh
dialog boxes

The form is created using a series of XHTML elements that define the entry boxes,
checkboxes, and other controls. Each of the form elements that you create will have
a name, and that name will be used to create a variable where the user’s response is
stored. For instance, if you assigned the name city to an entry box and the user
typed Boston, then Boston will be stored as the value for the variable city.

Those variables and their associated values are then passed on to the Web server
computer, which in turn passes it along to a small computer program, called a
script. The script is designed to interpret the data, act on the data, and (in most
cases) respond with XHTML markup and text that are used to create an automatic
Web page in response to the data. This page might contain the results of the data-
crunching, or a simple “thank you” response.

To deal with forms data, then, you need to understand a little something about cre-
ating these scripts (which are Common Gateway Interface scripts and can be written
in many different programming languages). While you probably won’t learn
enough from this book to produce incredibly complicated scripts, we will discuss cre-
ating them in Chapter 16. You can also use HTML form elements with JavaScript in
various ways, as is discussed in Chapter 17, “Introduction to JavaScript,” and
Chapter 18, “JavaScript and User Input.”

In the meantime, Figure 15.1 shows a basic form you might decide to create for your
Web site. As you can see, the HTML form can appear on a page with other markup,
and textual (and other) cues can appear within the form area itself. In some ways,
HTML forms are very similar to HTML tables, in that they require a chunk of the
page but not the whole thing. As you’ll see, you can even use tables to help lay out
your form, if desired.

266 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 15.1

This form might

be used to

accept survey

results.

CHAPTER 15 ADDING HTML FORMS 267

The <form> Element
In an HTML document, forms are created using the <form> element, which acts as a
container. The form container works as follows:
<form method=”get_or_post” ACTION=”URL to data destination”>

...form elements and markup...

</form>

The most basic <form> element has two attributes: method and action. The method
attribute is used to determine how that form’s data will be sent to the server. The
attribute’s possible values are post or get. The get method causes the data from the
form to be appended to the URL for the data’s destination. In most cases, it’s very
limited in length, often less than 100 characters. For a single form element or two,
such as a quick search box or a single check box answer, get works fine. For
example:
<form method=”get” action=”/cgi-bin/search”>

If you plan to create a long form with multiple entry boxes and menus, you’ll prob-
ably opt to use the post method. It sends the data separately, without any practical
limit on the amount of data that can be transferred. You use a form opening tag
that looks like this:
<form method=”post” action=”/cgi-bin/survey.pl “>

The second attribute is action, which simply accepts as its value the URL for the
script that will process your form’s data. Most often, the script is stored in a directory
called bin/ or cgi-bin/ located on your Web server. (Chapter 16 discusses the particu-
lars of CGI scripts in much more detail.)

An example of the <form> element, then, would be the following:
<form method=”post” action=”http://www.fakecom.net/cgi-bin/survey.pl”>

</form>

As with any HTML container element, this example of the <form> element has actu-
ally created a complete form (just like the <p> and </p> tags create a complete para-
graph). Of course, this one doesn’t do much, but it is complete. It’s also worth noting
that the <form> element can’t be nested within other <form> elements—you need to
start and end one form container before beginning another.

Other <form> Attributes
Aside from the two basic attributes, the <form> element can accept a few others.
While none of these attributes are required, you may find them useful under certain
circumstances. (In fact, while you’re creating your first few forms, you may want to
move directly to the section “Creating the Form.” These attributes are a bit dense.)

The first of these is enctype, which accepts a MIME type entry that specifies the type
of content that will be submitted. This is really only worth worrying about if you
will be asking the visitor to upload a file to your server (using a special input
element, discussed later in this chapter.) If that’s the case, you should specify
enctype=”multipart/form-data”, which makes it possible to send a file (such as an
image file) via an HTML form.

The name and id attributes can be used to identify the form for either scripting or for
style sheets. Remember that id is the XHTML-compliant attribute, although name is
sometimes still recommended for backward-compatibility. You can have both, as in
name=”myform” id=”myform”.

The <form> element can accept a few other odd-duck attributes. The accept attribute
can be used to specify, in a comma-separated list, the types of files that the server
can handle correctly, using MIME names such as image/jpg and video/quicktime.
You can view a list of MIME types at http://www.isi.edu/in-notes/iana/assignments/
media-types/media-types. In isolated cases where you’re asking the visitor to upload a
file, the browser can check the accept attribute to make sure that the visitor is
uploading a file type that’s on the specified list. If the user is trying to upload a file
of a type that isn’t in the accept attribute, the browser can opt to deny the upload
and display an error message.

268 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

The accept-charset attribute is similar. What it does is allow you to specify the char-
acter encodings that the server is prepared to accept when processing the form’s
data. For instance, if you wanted to be able to process characters that are specific to
Spanish, you might need to include accept-charset=”es” as part of your <form> ele-
ment. Character set values can be found at http://www.iana.org/assignments/
character-sets on the Web.

By default, most Web browsers assume that the character encoding type that the page
uses is the same one that any forms would accept. So if the page is set to Spanish
already, the browser will most likely assume that Spanish-language characters are
acceptable.

Creating the Form
Now that you’ve seen how to begin and end a <form> element, you’re probably just
about ready to start adding some substance to it. You can add all sorts of elements
to your forms, including areas for entering text, menus for selections, check boxes,
and radio buttons for options. You’ll also need to add at least a few buttons, includ-
ing the special buttons that enable your visitors to submit the form’s data to your
Web server computer.

Text Fields and Attributes
One of the more common uses for forms is to accept multiple lines of text from a
user, perhaps for feedback, bug reports, or other uses. To do this, use the <textarea>
element within your form. You can set this element to control the number of rows
and columns it displays, although it will accept as many characters as the user
desires to enter. It takes the following form:
<textarea name=”name” rows=”number” cols=”number”>

default text

</textarea>

The <textarea> element is a container element. What’s contained between the tags is
the default text, which is text that you can use to tell your users what you’d like them
to type in. For instance:
<form method=”post” action=”/cgi-bin/form1.pl”>

<textarea name=”comments” rows=”4” cols=”40”>

Enter your comments about our Web site.

Include your e-mail address if you’d like a response.

</textarea>

</form>

CHAPTER 15 ADDING HTML FORMS 269

Tip

The default text appears in the text box just as typed. In Figure 15.2, notice that text
inside the <textarea> element is formatted as if it were inside a <pre> container. Any
returns or spaces you add to the text are displayed in the browser window.

270 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 15.2

The <textarea>

element in

action.

The name attribute is used to assign a unique identifier to the text area. When the
data is passed on to the processing script, the name is used as a label for the data
associated with that text area. You’ll need to include instructions in the processing
script itself for processing this data, but at least you’ll have a name to go by.

The rows and cols attributes can accept different numbers to change the size of the
<textarea> box, but you should make sure that the majority of browsers can see the
entire box onscreen. Handheld browsers and some text-based browsers only display
40 or 60 characters in width.

Among some of the other attributes that <textarea> can accept is readonly (which
should be added as readonly=”readonly” for XHTML compliance). This attribute pre-
vents the text area from being edited and makes it so the text between the two
<textarea> tags is sent as the data associated with the text area.

The <input> Element
The <textarea> form element is a fairly basic data entry tool, allowing your users to
type whatever text they feel is appropriate, within a certain number of characters.
Often, however, you’ll find it useful to limit the responses that your users can give.
The <input> element lets you be a bit pickier about the type of input you’re going to
accept from the user. It enables you to create a number of different types of controls,
including

■ Text boxes—(type=”text”) Users can type shorter entries, such as name and
address information.

■ Passwords—(type=”password”) In these special text boxes, what is typed by
the user isn’t shown onscreen.

■ Check boxes—(type=”checkbox”) With these controls, you let the user select or
deselect a particular item.

■ Radio buttons—(type=”radio”) With these controls, the user can select one,
and only one, of a series of options.

■ Hidden fields—(type=”hidden”) This special type of input element is simply a
field that can be sent with the form using a prespecified value.

■ Control buttons—(type=”reset” or type=”submit” or type=”button”) Finally, the
<input> element enables you to create a number of different types of buttons
that are used for submitting the form, resetting the form, and other tasks you
designate.

The <input> element follows this format:
<input type=”type_of_input control” name=”name” size=”number”
➥maxlength=”number” />

The only required attributes are type and name. Some other types of the <input> ele-
ment will also accept the attribute value, which is used to set the value or values that
the individual can select. The <input> element can also accept a variety of other
attributes, but they come up when you’re creating different types of controls, so we’ll
cover them in turn.

Text Boxes
The first possible value for the type attribute is text, which creates a single-line text
box of a length you choose. Notice that the length of the box and the maximum
length entered by the user can be set separately. It’s possible to have a box that’s
longer (or, more often, shorter) than the maximum number of characters you allow
to be entered. Here’s an example of a text box:
Last name: <input type=”text” name=”last_name” size=”40” maxlength=”40” />

When entered in a proper <form> container, this <input> element yields a box similar
to the one shown in Figure 15.3. If desired, the attribute value can be used to give the
text box a default value, as in the following example:
City: <input type=”text” name=”city” size=”50” maxlength=”50” value=”New
➥York” />

CHAPTER 15 ADDING HTML FORMS 271

FIGURE 15.3

Using the text

option with the

type attribute.

272 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Password Entry Boxes
Setting type=”password” is nearly identical to setting type=”text”, except that using the
password entry box usually causes the Web browser to respond to typed letters by
displaying bullet points, asterisks, or similar characters to keep the words from being
read over the user’s shoulder. Here’s an example:
Enter User Name: <input type=”text” name=”username” size=”25”
➥maxlength=”25” />

Enter Password: <input type=”password” name=”password1” size=”10”
➥maxlength=”10” />

When characters are typed in to this text box, they are displayed on the screen as
shown in Figure 15.4.

FIGURE 15.4

When you spec-

ify a password

entry box, typed

characters are

hidden from

view.

It’s important to note, however, that the only security that is really provided is the
bullets or asterisks. The password itself is passed on by the browser in clear text—it is
not encrypted or masked in any particular way.

For better security, you should use a secure HTTP (shttp) connection that encrypts trans-
missions so that they can’t be intercepted. Secure servers are discussed briefly in
Chapter 22, “Web Publishing Services.”

Check Boxes
Setting type=”checkbox” in the <input> element enables you to offer a check box
“on/off” or Boolean control for your forms. This is best used when there are two pos-
sible values for a given choice—and no other values. You can also decide ahead of
time whether or not a check box will be checked already (so that it must be
unchecked by the user if desired) by using the attribute checked=”checked”. Here’s an
example of adding check boxes to a form:
Where you heard about us:

<input type=”checkbox” name=”web” checked=”checked” />Web Search or Link

<input type=”checkbox” name=”advert” />Radio or TV Ad

<input type=”checkbox” name=”press” />Article or press mention

Check here to join our mailing list: <input type=”checkbox” name=”mailing”
➥/>

In this example, each of the values is standalone in the sense that more than one of
these boxes can be checked at once. In the case of the first three, all three options
could be selected. That may or may not be the desired result. The fourth check box is
also evaluated separately from the first three, so it doesn’t really matter that it
appears on its own line and has a different label.

CHAPTER 15 ADDING HTML FORMS 273

Tip

FIGURE 15.5

Each check box

is evaluated sep-

arately; note the

prechecked

option below the

other three.

Radio Buttons
Like checkbox, radio is designed to offer your user a choice from predetermined
options. The difference is that radio also forces the user to select only one response
from among options. Whereas checkbox is Boolean or true/false, radio is multiple
choice.

While radio is similar to checkbox, you’ll notice one major difference—it uses the
same name attribute value for each of the elements in the same grouping. In other
words, among the multiple options from which the user will select only one value,
all of them must have the same name value so that the browser knows that they’re
grouped.

The radio input type also requires you to use the value attribute, and each value
attribute must have a unique value that can be assigned (to the variable created by
name) if selected. For instance, look at the following example:
Where you heard about us:

<input type=”radio” name=”where” value=”web” checked=”checked”>Web Search
➥or Link

<input type=”radio” name=”where” value=”advert”>Radio or TV Ad

<input type=”radio” name=”where” value=”press”>Article or press mention

<input type=”radio” name=”where” value=”other”>Other

This example is shown in Figure 15.6. With radio, it’s important to assign a default
value because the user may simply skip the entry altogether. While the user can’t
check more than one, he or she might not check any of them. So, choose the value
that you think makes sense as the default and set it as checked=”checked”, just so the
form-processing script doesn’t have trouble.

274 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 15.6

Radio buttons

limit the user to

one choice

among many.

Hidden Fields
This input type really isn’t “input” at all. Rather, it’s designed to allow you, the form
designer, to pass along a preset value to the Web server or the script that will be pro-
cessing the form. This is generally done when you’re using the same script for a

number of different forms or pages and you’d like the script to know which form is
accessing it. The <input type=”hidden” /> element can accept the attributes name and
value, as in
<input type=”hidden” name=”identify” value=”form2” />

Hidden in this context doesn’t really mean covert, because an intrepid user could simply
use the View Source command in most any Web browser (usually under the Edit menu)
to see the value of the hidden field. It’s more useful from a programmer’s standpoint.

The Reset Button
Aside from entry boxes, checkboxes, and hidden fields, you can also use <input> to
create buttons. Using the reset type of the <input> element, you can automatically
add a button to your form that clears all other elements of entered data when
clicked. When the user clicks this reset button, it resets all the entries and selections
that the user has made to that point. For example:
<input type=”reset” value=”Reset the Form” />

The value attribute isn’t required, but it’s used to give the button a unique name. If
you don’t include it, the button will simply say Reset.

The Submit Button
The <input> element also has a type that creates a button to enable the user to sub-
mit the data that’s been entered into the HTML form. This is how the user signals
that he or she is done with data entry and ready to send it to the server. The submit
type accepts only the attribute value, which can be used to rename the button.
Otherwise, the only purpose of the Submit button is to send off all the other form
information that’s been entered by your user. See the following two examples:
<input type=”submit” />

<input type=”submit” value=”Send it in!” />

You can use just about anything you want for the value, although it’s best to remem-
ber that really small words such as “OK” don’t look great as buttons. To make a but-
ton larger, you can create a value with spaces on either end, like in the following:
<input type=”submit” value=” Submit “ />

The form already knows how and where to submit the data, thanks to the form’s
own method and action attributes. So, the Submit button itself is rather simple.

CHAPTER 15 ADDING HTML FORMS 275

Tip

The Image Submit Button
If you’d like to use an image for your Submit button, you can use type=”image” with
the <input> element. The element also needs an URL to the image file and alternate
text for non-graphical browsers, so it ends up looking like this:
<input type=”image” src=”images/buttons/submit.gif” alt=”Submit Form” />

That’s easy enough. But you should know that there are other ways to add custom
buttons that are more highly recommended, so I’ll focus on those.

Other Buttons
HTML 4.01 and higher offers another element for creating form buttons, the <button>
element. It offers three type values: reset, submit, and image. What’s different about
the <button> element is that it’s actually a container, and it enables you to use
markup within the button itself. For example:
<button name=”submit” type=”submit”>

<span style=”font-family: Courier; font-variant: small-caps; font-size:
➥14pt”>Send</button>

<button name=”reset” type=”reset”>

</button>

The <button> element can accept name, type, and value attributes, although type is the
only one required for Reset and Submit buttons. However, for the best coding, you
should at least include a name attribute. Figure 15.7 shows these enhanced buttons.

Transparent GIFs or PNGs make the best buttons when you’re using the <button>
element.

276 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Tip

FIGURE 15.7

These cus-

tomized buttons

use the <button>

element and

include markup

and style infor-

mation.

Creating Menus
Another type of input control that you can offer to users revolves around the
<select> element, which can be used to create different types of pop-up menus and
scrolling menus. This is another control designed specifically for allowing users to
make a choice—they can’t enter their own text. The <select> element requires a name
attribute and allows you to decide how many options to display at once with the
size attribute.

Also notice that <select> is a container. Options (using the <option> element) are
placed between <select> and </select>, each with a particular value. When one of
those options is chosen, its value gets assigned to the name that’s specified in the
opening <select> tag.

The attribute selected=”selected” sets the default value in a given list. An example of
all this might be
Select how often you visit this site:

<select name=”frequency”>

<option selected=”selected” value=”first”>First Time</option>

<option value=”monthly”>Monthly</option>

<option value=”weekly”>Weekly</option>

<option value=”daily”>Daily</option>

</select>

You can also use the size attribute to display the menu in its entirety. Simply change
the first line of the example to the following:
<select name=”frequency” size=”4”>

Both examples are shown in Figure 15.8.

CHAPTER 15 ADDING HTML FORMS 277

FIGURE 15.8

A pop-up select

menu and a

scrolling list,

thanks to the

size attribute.

In the first example, selecting the menu item with the mouse causes the menu to
pop up on the page. The user can then select from the choices. In the second exam-
ple, it’s necessary to click the desired item.

But what if you want to allow users to select more than one option at a time?
Another attribute for the <select> element allows the user to select more than one
option from the menu. Using the multiple=”multiple” attribute forces the menu to be
displayed as a scrolling list, regardless of the existence of a size attribute. (You
should still use size to specify the number of items that appear at once in the list.)
An example might be the following:
<p>What topics do you enjoy reading about online (pick all that
➥apply):</p>

<select name=”topics” multiple=”multiple”>

<option value=”upgrade”>Upgrading computers</option>

<option value=”repair”>Repairing computers</option>

<option value=”apps”>Application How-Tos</option>

<option value=”tricks”>Tips and Tricks</option>

<option value=”news”>Industry news</option>

<option value=”rumor”>New Product rumors</option>

<option value=”none” selected=”selected”>None</option>

</select>

In this case, the user can select multiple options, or none.

Different browsers can auto-select options in different ways—some will submit <select>
results that have no value, while others will select the first value in the menu as the
default. So, it’s best to create your own default using selected=”selected”, particularly
if you want to avoid inaccuracies when your scripts are processing form data.

Before we get away from <select> controls, there’s one other element that you can
toss into the mix: <optgroup>. This element enables you to group disparate options
within the same <select> control. Consider this example:
<p>Where did you hear about us (pick all that apply):</p>

<select name=”refer” multiple=”multiple”>

<option value=”npr”>Public Radio</option>

<option value=”netrad”>Network Radio News</option>

<option value=”satrad”>Satellite Radio</option>

<option value=”travel”>Travel TV</option>

<option value=”food”>The Food Channel</option>

<option value=”pbs”>Public Broadcasting</option>

<option value=”times”>The Times</option>

<option value=”news”>The News-Hearld</option>

<option value=”none” selected=”selected”>None</option>

</select>

278 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

There’s nothing particularly wrong with this list, except that we might be mixing
apples and oranges a bit. As it gets longer and longer, it becomes more unwieldy.
The solution is to use <optgroup>, which accepts a label attribute that can be used to
label groups within the list:
<p>Where did you hear about us (pick all that apply):</p>

<select name=”refer” size=”15” multiple=”multiple”>

<option value=”none” selected=”selected”>None</option>

<optgroup label=”Radio”>

<option value=”npr”>Public Radio</option>

<option value=”netrad”>Network Radio News</option>

<option value=”satrad”>Satellite Radio</option>

</optgroup>

<optgroup label=”TV”>

<option value=”travel”>Travel TV</option>

<option value=”food”>The Food Channel</option>

<option value=”pbs”>Public Broadcasting</option>

</optgroup>

<optgroup label=”Newspapers”>

<option value=”times”>The Times</option>

<option value=”news”>The News-Hearld</option>

</optgroup>

</select>

If your user’s Web browser is compatible, it should display the list in a slightly differ-
ent layout, which should make it easier to make selections (see Figure 15.9). Note
that not every browser recognizes <optgroup>. When it doesn’t, you’re not any worse
off than with a full list.

CHAPTER 15 ADDING HTML FORMS 279

FIGURE 15.9

Here’s a list

organized by

<optgroup>

elements.

Sample Feedback Form
At this point, let’s take the bulk of what’s been discussed and toss it all together into
a sample form. We’ll be putting together a feedback survey form, using the elements
that have been discussed so far:
<form method=”post” action=”mailto:surveys@fakecorp.com”>

First name: <input type=”text” name=”first_name” size=”40” maxlength=”40”
➥/>

E-mail address: <input type=”text” name=”e-mail” size=”40” maxlength=”40”
➥/>

Where you heard about us:

<input type=”radio” name=”where” value=”web” checked=”checked”>Web Search
➥or Link</input>

<input type=”radio” name=”where” value=”advert”>Radio or TV Ad</input>
➥

<input type=”radio” name=”where” value=”press”>Article or press
➥mention</input>

<input type=”radio” name=”where” value=”other”>Other</input>

<p>Enter your comments about our Web site.

<textarea name=”comments” rows=”10” cols=”40”>

Include comments or questions in this area.

</textarea>

</p>

Check here to join our mailing list: <input type=”checkbox” name=”mailing”
➥/>

<button name=”submit” type=”submit”>

<span style=”font-family: Courier; font-variant: small-caps; font-size:
➥14pt”>Submit Survey

</button>

<button name=”reset” type=”reset”>

<span style=”font-family: Courier; font-variant: small-caps; font-size:
➥14pt”>Clear Page

</button>

</form>

You can see how this looks in Figure 15.10. Overall, the form still doesn’t look all
that great as far as alignment and design. We’ll cover those topics in the rest of this
chapter.

280 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 15.10

Here’s the sam-

ple form, func-

tional if not

pretty.

CHAPTER 15 ADDING HTML FORMS 281

A lot of users like to move through HTML forms using the Tab key. If you’d like to spec-
ify which direction a press of the Tab key will take a person, you can add the tabindex
attribute to any form element, using any number between 0 and 32767 as a value. (For
the item that should be first, set tabindex=”1”, for the second item, set tabindex=”2”,
and so on.) Once you’ve added those numbers, elements will be reached in the order
specified by the tabindex attribute when the Tab key is pressed.

You may also have noticed that the <form> element itself uses an interesting action
attribute—it includes a mailto: style URL. This makes it possible for the form’s data
to be mailed to a given e-mail address instead of being processed by a script. You
may find this useful if you want to go through the forms by hand, or if you have an
e-mail-based processing solution. (See Chapter 16 for more discussion of e-mail pro-
cessing.)

Designing Forms Well
You’ve seen how to create forms, but we haven’t covered how to make those forms
attractive. It takes a little thought and quite a bit of XHTML markup to make the
form elements look good, logical, and interesting to your users—interesting enough
that they dive in and use the form. In this section, let’s take a look at some
approaches to designing useful forms.

Tip

Form Design Issues
Central to the idea of form design is making the form easy for users to understand
so that they follow through and fill it out. The less incentive you give them to fill out
the form, the less likely they are to try. A short, clean form is more likely to entice
users than a long, confusing one.

Here are some guidelines you should consider when building your forms so that
they’re easier to use and more effective:

■ Use other XHTML elements to make things clear—You can use
,
<hr />, and paragraph tags to set apart different chunks of your form, while
emphasis (,) can be used to make labels and other parts of the
form easier to read.

■ Keep your forms short—This isn’t always possible, but even when your
forms are long, it’s important to at least use <hr /> and similar elements to
break them up a bit. Splitting up forms into smaller sections makes them eas-
ier on the eye.

■ Use intuitive design—Common sense is sometimes the key to a good form.
For instance, putting the Submit button in the middle of the form will keep
people from filling out the rest of it. Often it’s best to use <select>, radio but-
tons, and check boxes to keep your users from guessing at the type of data
you want them to enter.

■ Warn users of unsecured transactions—You should tell your users if
your Web server is secure—and how they can make sure that the connection
is current. If you ask for credit card numbers or similar personal information
over an unsecured connection, let them know that, too.

Finally, you can use style sheets just as effectively with forms as with other elements.
In some cases, you might find them even more useful, particularly for breaking up
parts of the form into chunks. And, as you’ll see in this section, HTML offers some
accessibility elements to help make forms easier for assistive browsers.

Line Breaks, Paragraphs, and Horizontal Lines
Unlike text-oriented XHTML, your best friend in form design is not really the para-
graph element as much as it is the
 element. This is because you want to
directly affect the layout of the forms, instead of leaving it up to the browser.
Therefore, you’ve got to be a little more proactive. You’ll end up with a lot of line
break elements before your form is through.

282 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Consider the following example:
<form>

Enter your name and phone number:

First Name: <input type=”text” name=”first” size=”30”>

Last Name: <input type=”text” name=”last” size=”40”>

Phone: <input type=”text” name=”phone” size=”12”>

</form>

To get each of those text boxes on a separate line, and thus make them more pleas-
ing to the eye, you need to add a few instances of
:
<form>

Enter your name and phone number:

First Name: <input type=”text” name=”first” size=”30”>

Last Name: <input type=”text” name=”last” size=”40”>

Phone: <input type=”text” name=”phone” size=”12”>

</form>

Adding the
 element forces each subsequent text box to the next line. This is a
more attractive form, and the
 elements make it a little easier for the user to
understand, as shown on the bottom half in Figure 15.11.

CHAPTER 15 ADDING HTML FORMS 283

FIGURE 15.11

Simply adding

 makes

the form a little

easier to look at

and use.

Notice the use of instructional text for these text boxes. Most of your forms will need
instructions throughout, just as any paper-based form does. It’s a good idea to standard-
ize your instructions. You may also want to use bold, italic, or other emphasis to make
the instructions or labels stand out from your other text.

Tip

Horizontal Lines
By placing <hr /> elements in your form, you make it clear that new instructions are
coming up, or that the form has reached the next logical chunk of entry. The <hr />
element simply makes the form easier to look at as it guides the user through the
different parts of the form. In the following, I’ve added <hr /> at the logical breaks:
<form method=”post” action=”/cgi-bin/form1.pl”>

First name: <input type=”text” name=”first_name” size=”40” maxlength=”40”
➥/>

Last name: <input type=”text” name=”last_name” size=”40” maxlength=”40”
➥/>

E-mail address: <input type=”text” name=”e-mail” size=”40” maxlength=”40”
➥/>

<hr />

Where you heard about us:

<input type=”radio” name=”where” value=”web” checked=”checked”>Web Search
➥or Link</input>

<input type=”radio” name=”where” value=”advert”>Radio or TV Ad</input>
➥

<input type=”radio” name=”where” value=”press”>Article or press
➥mention</input>

<input type=”radio” name=”where” value=”other”>Other</input>

<hr />

<p>Enter your comments about our Web site.

<textarea name=”comments” rows=”5” cols=”40”>

Include comments or questions in this area.

</textarea>

</p>

Check here to join our mailing list: <input type=”checkbox” name=”mailing”
➥/>

Check here if you’d like a sales call: <input type=”checkbox” name=”call”
➥/>

Check here if you’d like a print catalog: <input type=”checkbox”
➥name=”catalog” />

<hr />

<button name=”submit” type=”submit”>

<span style=”font-family: Courier; font-variant: small-caps; font-size:
➥14pt”>Submit Survey

</button>

<button name=”reset” type=”reset”>

<span style=”font-family: Courier; font-variant: small-caps; font-size:

284 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

14pt”>Clear Page

</button>

</form>

The <hr /> elements make the form a little longer, as shown in Figure 15.12. But you
haven’t sacrificed the approachability by adding <hr /> elements. Increasing the
white space and organization in a form is nearly as important as keeping it short
enough so it isn’t intimidating to users.

CHAPTER 15 ADDING HTML FORMS 285

FIGURE 15.12

Adding a few

horizontal lines

makes the form

a bit more

logical.

Using Paragraphs
Paragraph containers are good for keeping form data together in smaller chunks. As
always, a paragraph element will add space on each side of the text that it encloses.
This makes it possible to create visual chunks without the full break that a <hr />
suggests. The extra spacing also makes the page a bit less cluttered and easier to fol-
low. Figure 15.13 shows how the following <p> additions change the page for the
better:
<form method=”post” action=”/cgi-bin/form1.pl”>

<p>

First name: <input type=”text” name=”first_name” size=”40” maxlength=”40”
➥/>

Last name: <input type=”text” name=”last_name” size=”40” maxlength=”40”
➥/>

E-mail address: <input type=”text” name=”e-mail” size=”40” maxlength=”40”
➥/>

</p>

<p>

Where you heard about us:

<input type=”radio” name=”where” value=”web” checked=”checked”>Web Search
➥or Link</input>

<input type=”radio” name=”where” value=”advert”>Radio or TV Ad</input>
➥

<input type=”radio” name=”where” value=”press”>Article or press
➥mention</input>

<input type=”radio” name=”where” value=”other”>Other</input>

</p>

<p>

Enter your comments about our Web site.

<textarea name=”comments” rows=”5” cols=”40”>

Include comments or questions in this area.

</textarea>

</p>

<p>

Check here to join our mailing list: <input type=”checkbox” name=”mailing”
➥/>

Check here if you’d like a sales call: <input type=”checkbox” name=”call”
➥/>

Check here if you’d like a print catalog: <input type=”checkbox”
➥name=”catalog” />

</p>

<hr />

<button name=”submit” type=”submit”>

<span style=”font-family: Courier; font-variant: small-caps; font-size:
➥14pt”>Submit Survey

</button>

<button name=”reset” type=”reset”>

<span style=”font-family: Courier; font-variant: small-caps; font-size:
➥14pt”>Clear Page

</button>

</form>

286 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 15.13

Use paragraph

elements to

break up the

page with more

white space.

CHAPTER 15 ADDING HTML FORMS 287

Other Elements for Form Formatting
One of the most annoying parts of setting up a form so far has been the inability to
line up text box fields as they go down the page. For instance, whenever the Name:
and Address: fields have been used in examples, they’ve always looked a little
ragged.

One solution is the <pre> element. Because anything between the two <pre> tags uses
the same spacing and returns, this element does two things. First, it allows you to
line up your text boxes. Second, it eliminates the need for
 elements at the end
of <input> elements, because the browser will recognize your returns. The following is
a ragged-looking example:
<p>

First name: <input type=”text” name=”first_name” size=”40” maxlength=”40”
➥/>

Last name: <input type=”text” name=”last_name” size=”40” maxlength=”40”
➥/>

E-mail address: <input type=”text” name=”e-mail” size=”40” maxlength=”40”
➥/>

</p>

To improve this situation, you can put form elements inside a <pre> container and
format them yourself:
<pre>

First name: <input type=”text” name=”first_name” size=”40”
➥maxlength=”40” />

Last name: <input type=”text” name=”last_name” size=”40”
➥maxlength=”40” />

E-mail address: <input type=”text” name=”e-mail” size=”40” maxlength=”40”
➥/>

</pre>

Remember that you need to use the spacebar, not the Tab key, to create the space
between the name of the box and the text box itself. As before, you may need to
play with the formatting a little to get things lined up like they are on the bottom of
Figure 15.14.

288 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 15.14

Use the <pre>

container to

align elements

of your form, as

shown in the

bottom three

rows.

If you can, set your text editor to a monospaced font (like Courier) for editing text
inside your <pre> container. This will allow you to see exactly how <pre> text will be
displayed when viewed in a browser, because <pre> forces your browser to use a
monospaced font.

Using Lists for Forms
Another form design trick involves using the list tags to create organization for your
forms. Nearly any form element can be part of a list, and there are often good rea-
sons to use them. Consider the following example:
Where you heard about us:

<dl>

<dd><input type=”radio” name=”where” value=”web” checked=”checked”>Web
➥Search or Link</input></dd>

<dd><input type=”radio” name=”where” value=”advert”>Radio or TV
➥Ad</input></dd>

Tip

<dd><input type=”radio” name=”where” value=”press”>Article or press
➥mention</input></dd>

<dd><input type=”radio” name=”where” value=”other”>Other</input></dd>

</dl>

You’ve used lists in this way before, to create indented lists or outline formats that
help you communicate a little better. In this case, it also makes the form look better.

Using Tables for Forms
You may also find it useful to align and manage your form elements with table cells.
They can give you some fine control over the placement of text and form controls.
For example:
<form>

<table>

<tr>

<td>First Name</td> <td><input type=”text” name=”first_name”></td>

</tr>

<tr>

<td>E-mail Address</td> <td><input type=”text” name=”e_mail”></td>

</tr>

</table>

</form>

This basic approach can be improved upon in any way you see fit, including remov-
ing borders (so that the organization appears to be created without table cells), cell
padding, row or column spanning, and so on.

Form Structure
Later iterations of the HTML standard have added two elements, <fieldset> and
<legend>, that can be used for creating structure within a longer form. As it turns out,
they’re also handy for assistive browsers and can be used with style sheet properties.

The <fieldset> element is used simply to create groupings of form elements and
markup. In many browsers, you’ll see border lines drawn around the defined field-
sets. In our example form, one <fieldset> might be the personal information at the
top, while another might be the questions section. The <fieldset> element, because
it’s similar to a <div> element, is also very useful for style sheet properties.

The <legend> element is used to label a particular fieldset or otherwise add a textual
label to the underlying structure of the form. <legend> will not only appear in a
browser window, but can be read aloud or otherwise rendered by assistive browsers
as well. Listing 15.1 shows an example that includes these elements, along with

CHAPTER 15 ADDING HTML FORMS 289

many of the others discussed in this section. Note that this example is the XHTML
used to generate the survey page shown in Figure 15.1.

Listing 15.1 A Full Survey Page

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Site Survey</title>

</head>

<body>

<form method=”post” action=”/cgi-bin/form1.pl”>

<h1>Web Site Survey</h1>

<fieldset style=”background-color: #CCCCCC”>

<legend>Contact Information</legend>

<table cellpadding=”5”>

<tr>

<td>First name:</td> <td><input type=”text” name=”first_name”

➥size=”40” maxlength=”40” /></td>

</tr>

<tr>

<td>Last name:</td> <td><input type=”text” name=”last_name”

➥size=”40” maxlength=”40” /></td>

</tr>

<tr>

<td>E-mail address:</td> <td><input type=”text” name=”e-mail”

➥size=”40” maxlength=”40” /></td>

</tr>

</table>

</fieldset>

<fieldset style=”background-color: #FFFFFF”>

<legend>Questions and Comment</legend>

<p>

Where you heard about us:</p>

<input type=”radio” name=”where” value=”web” checked=”checked”>Web Search

➥or Link</input>

290 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

<input type=”radio” name=”where” value=”advert”>Radio or TV Ad</input>

<input type=”radio” name=”where” value=”press”>Article or press mention</input>

<input type=”radio” name=”where” value=”other”>Other</input>

</p>

<p>Enter your comments about our Web site:</p>

<p>

<textarea name=”comments” rows=”5” cols=”40”>

Include comments or questions in this area.

</textarea>

</p>

</fieldset>

<fieldset style=”background-color: #CCCCCC”>

<button name=”submit” type=”submit”>

<span style=”font-family: Arial, Helvetica; font-variant:

➥small-caps; font-size: 12pt”>Submit Survey

</button>

<button name=”reset” type=”reset”>

<span style=”font-family: Arial, Helvetica; font-variant:

➥small-caps; font-size: 12pt”>Clear Page

</button>

</fieldset>

</form>

</body>

</html>

Accessibility: Labels and Access Keys
Recent iterations of HTML and XHTML have added an element and an attribute to
help with accessibility issues. The <label> element is used to create a relationship
between a form element and the text that precedes it. It also requires the use of an id
attribute to the form element itself. The <label> container surrounds the text that
labels the form element. It has a for attribute, which references the id of that form
element. For example:
<label for=”first”>First Name:</label><input type=”text” name=”first_name”
➥id=”first”>

CHAPTER 15 ADDING HTML FORMS 291

Listing 15.1 (continued)

This element specifically indicates the text that is a label for a particular form ele-
ment. This is considered assistive because it can tell speech synthesizers how to ren-
der the labels in a particular way. It’s also useful because it specifies which text is a
label for which form element, even when lists or tables are being used to format the
form.

You can also label a form element implicitly by surrounding it with the <label> ele-
ment, as in
<label>

First name:

<input type=”text” name=”first_name”>

</label>

This makes it possible to specify the label text without using the for and id

attributes.

Along with <label>, the entire repertoire of form elements can be used along with the
accesskey attribute to enable form elements to be selected with a single keypress. For
instance:
First name: <input type=”text” name=”first_name” accesskey=”f”>

This example will enable some browsers to move the user directly to the First Name
entry box when the F key is pressed on the keyboard, usually in combination with
another key. (On Microsoft Windows computers, generally it’s the Ctrl key; on Macs,
it’s often the command key.)

Summary
In this chapter, you learned how to add HTML forms and form elements to your
pages. The chapter began with an overview of how forms work and which items
need to be present in the <form> element itself. You learned how to add text areas,
text entry boxes, radio buttons, check boxes, password fields, hidden fields, and
menus to your HTML form. From there, the discussion turned to creating attractive,
easy-to-understand forms through certain layout and labeling techniques. This
included some methods that can be used to better organize your form and make it
more accessible to assistive browsers.

In the next chapter, you’ll see how Common Gateway Interface scripts work, and
how to use scripts to work with HTML form data.

292 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

I

16

CGIS AND DATA
GATHERING
n Chapter 15, “Adding HTML Forms,” you got an in-depth look at cre-

ating and formatting HTML forms. In this chapter, you’ll see the other

side of HTML forms—gathering the data and reporting back to the user.

This is accomplished using scripts, small programs that are stored on the

Web server computer. Form data is sent to these scripts, as specified in

the action attribute to the <form> element. Once the script receives the

form data from the Web server, it should look through that data, com-

pute what it needs to compute, and reply to the user. In this chapter,

we look at the components that make up this back-end system, and

you’ll get a taste of the scripting that’s required to make this all work.

This chapter discusses the following:

■ The fundamentals of the Common Gateway Interface, includ-
ing the languages you can use and why you’d use them

■ How scripts work, how data is passed to a script, and how the
script replies to the user’s browser

■ Finding and using scripts on the Web, or writing your own

What Is CGI?
Fill-in forms for your Web pages don’t do anything by themselves. Your readers can
fill them in, but when they click the Submit button, the data won’t go anywhere
unless you’ve written a special script to process the data. (As you’ll see in Chapter
17, “Introduction to JavaScript,” and Chapter 18, “JavaScript and User Input,” you
can also use JavaScript and client-side scripting to process some types of data.)

So how do you get data from the HTML form to the script? That’s where the
Common Gateway Interface (CGI) comes in. By developing CGI scripts, you can
make your forms interactive.

CGI scripts bring your static Web pages to life—returning requested data, responding
to user input, and making a record of how many people access your site. In this
way, the script interacts with your user, responding to what they enter in forms
instead of simply displaying static Web pages.

In practice, a link to a CGI script works the same way a link to an HTML page
works. But under the hood, a CGI script is much more than a normal Web page.
When a typical Web page’s URL is requested via hyperlink, a file is read, interpreted,
and displayed by the browser. When an URL to a CGI program is requested, it causes
a program to be executed on the server, and that program can do just about any-
thing you want it to: scan databases, sort names, or send e-mail. CGI scripts allow
for complex back-end processing. In the case of an HTML form, generally the CGI
will receive the values in that form, process them, and then reply to the user.

CGI changes the definition of what a Web page is. While normal pages are static
and unchanging, CGI programs enable a page to react to the user’s input, making
them dynamic.

CGI Languages
You do not write CGI scripts in HTML, CSS, or even JavaScript, which are all lan-
guages that can be used in Web documents. CGI scripts are written in other com-
puter languages, such as Unix shell scripting, Perl, C, AppleScript, and Visual Basic,
so you need knowledge of at least one of these languages. You then store the script
separately, in its own file, on your Web server computer. Here’s a look at some of the
languages you can use for CGI scripting:

■ Unix shell scripts (or the similar Windows batch files) are a good choice for
small or temporary CGI programs. They are easy to write and you can see
results immediately, but they aren’t designed for high-volume use by multiple
users, as might occur with a shopping-cart application on a busy commercial
Web site. A shell script often has a filename with a .sh suffix.

294 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB SITES

■ Perl is a good choice for medium-complexity programs, and most platforms
support it. It’s fast, easy to program, and interpreted, meaning that it doesn’t
need to be compiled into a fixed, formal application as with the C program-
ming language. Also, Perl libraries exist that automatically translate any
data sent to your CGI program into a usable form. Information on Perl itself
is available all over the Web, including at http://dir.yahoo.com/Computers_
and_Internet/Programming_and_Development/Languages/Perl/ and http://www.yahoo.

com/Computers_and_Internet/Internet/World_Wide_Web/Programming/Perl_Scripts.

Interpreted languages are those that don’t require that a script or program be translated
into machine code before it’s executed. The script stays exactly as written until it’s exe-
cuted. Only when the script is put into action does the interpreter quickly change its
typed commands into machine language that the server computer can recognize. This
extra step makes interpreted scripts a little slower, but they’re also easier to edit and
tweak when necessary.

■ For very complex data manipulation, it’s best to use a full-fledged compiled
language, such as C. It will give you the fastest response and let you work
with your information in the most flexible way. C libraries also exist for using
Web data. Other C variants, such as Objective C and C++, are popular on
some platforms.

■ Macintosh Web servers are popular alternatives to Windows and Unix/Linux,
and easy-to-create hooks exist between the Web server applications and Mac
scripting languages such as AppleScript. You might start with the AppleScript-
focused http://www.scriptweb.com/.

A Simple CGI Script
Although CGI programs can become extremely complex, they can also be quite sim-
ple. One of the simplest is the Unix shell script shown here:
#!/bin/sh

echo “Content-type: text/html”

echo “”

echo “<html><head><title>CGI Generated Page</title></head>”

echo “<body>This page was generated by a simple CGI
script.</body></html>”

CHAPTER 16 CGIS AND DATA GATHERING 295

Note

Even if you aren’t familiar with Unix, you may be able to see what this simple script
is doing. The first line of this script (#!/bin/sh) tells Unix which shell this program is
written for. If the program were a Windows NT batch file, the line could be excluded.
(For our purposes, you can ignore that first line if you aren’t familiar with shell
scripting at all, and move on to the next line.)

The second line (echo “Content-type: text/html”) uses the echo command to tell the
Web server what type of information is to follow in MIME (Multipurpose Internet Mail
Extension) format. (The echo command is a common way for batch and shell scripts
to “type” text as if a person were at the keyboard.) MIME is a method of delivering
complex binary data using only ASCII text characters. There are hundreds of stan-
dard MIME formats now registered, but the two most common for CGI applications
are text/html (for HTML/XHTML output) and text/plain (for plain ASCII output).

The third line (echo “”) is simply an empty space to tell the server that what follows
is the data described by the “Content-type.”

Finally, the fourth and fifth lines are the actual HTML data. These are sent through
the server to the browser and interpreted just the same as instructions would be if
they’d been read from an HTML file.

In other words, this simple script begins by telling the Web server to expect some
HTML, and then it sends the server a few lines worth of text and HTML markup.
Whenever this script is executed, these lines are sent to the remote browser, where
they’ll be interpreted and displayed just like any other Web document.

Referencing CGIs
Although conventions differ between servers, most require CGI programs to be
installed in a special CGI directory. This is a subdirectory of the main directory on
the Web server’s hard drive, and it’s usually called cgi-bin. If you aren’t allowed to
install your program in that directory (or if you’re not sure), talk to your system
administrator or your ISP.

You may also need to ask your administrator or ISP how to install the script itself,
which is usually a matter of copying it from your own computer to the appropriate
directory of the main Web server. The cgi-bin directory may not be called exactly
that, and it may be located in an odd place on your Web server. (For instance, on
many Mac OS X servers, which are Unix-like at their core, CGI scripts are stored in
the /Library/WebServer/CGI-Executables/ folder even though they’re referenced using
a standard call to the cgi-bin directory in an URL.)

After your CGI script is in place, you can reference it from a browser like any other
URL. For example, if you installed a program called script.sh in the cgi-bin directory,
its URL would be as follows:
http://www.fakecorp.com/cgi-bin/myscript

296 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB SITES

These URLs can be used like any others, including as href URLs in anchor elements
or as src URLs for images.

Not all ISPs require that you have a special CGI-BIN directory; one of the servers I use on
a regular basis allows CGI scripts to be launched from anywhere within my assigned
directory space. When that’s the case, however, you’ll often find that you need the script
to have an accurate filename extension, such as .pl for Perl scripts, .sh for shell scripts,
and .exe for executable programs (such as compiled C language programs). Often a
script stored in the CGI-BIN directory doesn’t require a filename extension.

How Scripts Work
Although creating detailed CGI scripts can get complicated, the basic theory behind
what’s going on isn’t that tough to understand. Scripts are designed to accept data
and/or generate HTML documents in response. It all begins when the script is called,
via an URL, often as the action of a <form> element. When the server notes this call,
it locates the script in the cgi-bin directory and tells that script to execute. The script
then checks the method used to send the data (if any) and then retrieves that data.
The script begins to cull through that data looking for important information. When
it finds what it’s looking for, it computes, stores, or does whatever else it needs to
with that data. Then, in most cases, it returns an HTML document to the user’s
browser, with the results of the computation, a thank-you page, or something
similar.

Scripts can also be called directly, without a <form> acting as the intermediary.
Instead, the script might be part of a hyperlink, or it might even be the URL in an
 element. When that happens, it’s often designed to either launch a very simple
script or a complex one. A fairly simple script might be one that returns a “quote of
the day,” a random number, or a page counter. A very complex script might be
responsible for an entire Web application, such as those used to take online mer-
chandise orders or manage travel reservations.

In either case, eventually the script will need to check for data from the user and
evaluate that data using some set methods. Let’s take a look at how that works from
the point of view of the script, as well as what the script will see when data is sub-
mitted to it.

Receiving Form Data
You may recall from Chapter 15 that there are two different methods to pass data to
your CGI script. These two methods, get and post, cause data to be sent in different
ways.

CHAPTER 16 CGIS AND DATA GATHERING 297

Note

The method used to send the data is stored in an environment variable called
REQUEST_METHOD on the Web server. (Environment variables are those that the Web
server stores so that their values can be accessed by scripts.) The get method simply
appends your form data to the URL and sends it to the server. Most servers will then
store these appended data elements in another environment variable called
QUERY_STRING. This string is generally limited to less than one kilobyte of data
(approximately 1,000 characters), which explains why the get method is less
popular.

The term string is used in programming to suggest a single series of characters, gener-
ally accessible using a variable name. In this case, it’s the environment variable
QUERY_STRING. So, a script can be written to check the QUERY_STRING variable for rele-
vant data and then act on that data.

Using the post method causes the length of the data string to be stored in a variable
called CONTENT_LENGTH, while the data itself is redirected to stdin (“standard in”). In
effect, the data is made to appear to your script or program as if it was typed in to
the server using a keyboard. Your script must then be designed to parse that input.

In English, parsing means to explain the grammatical form or function of a word. In
computerese, parsing means something more like breaking up unreadable computer
data into something that people (or at least programs written by people) can work with.

There are actually two steps to receiving the input: decoding and parsing. Data sent
from your Web browser is encoded to avoid data loss—essentially, by turning spaces
into plus signs (+) and non-text characters (such as an exclamation point) into a
percent sign (%) and a hexadecimal code. For instance, ! is turned into %21.

There are programs designed specifically for decoding Web data. cgi-bin.pl is the Perl
library for this on Windows and Linux servers. Mac Web servers might use Parse CGI for
AppleScript CGI scripts.

Once you’ve worked through the decoding process, you’re left with a text input that
follows this format (where the ampersand simply separates each pairing of name
and value):
NAME1=VALUE1&NAME2=VALUE2&...

An example of this might be
address=1234 Elm Ave&city=Atlanta&state=GA

298 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB SITES

Note

Note

Tip

And so on. You might notice that these entries actually pair up nicely with the
names you specified in your HTML form for each of the elements used to receive
input. For instance, let’s say you have the following form snippet:
<p>

Last name: <input type=”text” name=”last_name” size=”40” maxlength=”40” />

City: <input type=”text” name=”city” size=”50” maxlength=”50” value=”New
York” />

</p>

<p>

Where you heard about us:

<input type=”radio” name=”where” value=”web” checked=”checked”>Web Search
or Link

<input type=”radio” name=”where” value=”advert”>Radio or TV Ad

<input type=”radio” name=”where” value=”press”>Article or press mention

<input type=”radio” name=”where” value=”other”>Other

</p>

The values parsed from the data stream might be something like this:
last_name=Smith&city=Denver&where=advert

Or something similar, according to the choice made by your user. Those are really
the basics of how to use form data in scripts.

If you’re not using a parsing program or library (which, ideally, would allow you to easily
reassign the values in this file to variables in your script), your script will need to accept
this data stream, strip the ampersands, and reassign the values to appropriate variables.
That’s a tougher requirement, and it’s beyond the scope of this text. You might consider
Que’s Special Edition Using XHTML, ISBN: 0-7897-2431-6, Special Edition Using XML,
ISBN: 0-7897-1996-7, and Special Edition Using Java 2, Enterprise Edition, ISBN: 0-7897-
2503-7 if you’d like to learn more about writing CGI scripts that parse input.

The mailto: Option
This section may seem like something of an aside, but it makes sense in this context.
Chapter 15 mentioned the possibility of using a mailto: URL in your action attribute
instead of referencing a CGI script directly. What happens then is simple—the
unparsed, undecoded form data is sent directly to the specified e-mail address
(assuming the user’s Web browser is equipped to send mailto: messages). Here’s an
example of a mailto: URL in a <form> element:
<form action=”mailto:surveys@fakecorp.com” method=”post”>

CHAPTER 16 CGIS AND DATA GATHERING 299

Note

When your user clicks the Submit button, the results of the form are now forwarded
to the specified e-mail address instead of being sent to a CGI script. And that’s great
if you don’t have access to your Web server’s CGI directory. The only downside is fig-
uring out what exactly you should do with the e-mail message once you receive it.
Most likely, it isn’t yet ready for easy reading.

The first problem is that the e-mail message is still encoded in the post format that
forms use to send messages to scripts. Figure 6.1 shows an example of a typical
received message—it’s not a very pretty sight.

300 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB SITES

FIGURE 16.1

Here’s what an

e-mail message

looks like when

it’s sent from an

HTML form.

Interestingly, some versions of Internet Explorer will send form data in a decoded format
when IE recognizes a mailto: URL. Unfortunately, you can’t count on all your users to
have IE when they’re accessing your form, so you’ll still likely have to deal with this
encoded data sometimes.

The second problem is an extension of the first: You’re either going to have to
process all these e-mails by hand or write a program that interacts with your e-mail
program to handle these messages. Either approach is probably fine for the small-
business or home Web designer; at least you get the form data from users without
requiring you to implement a CGI script. In some cases, there may be an easy
solution—many modern e-mail programs can interact with scripting languages
such as Visual Basic Scripting or AppleScript. Those scripts then parse the output
and do something automatically (such as make a computation based on the data
and respond to the user via e-mail).

You might also notice one last problem—once the user clicks Submit and data is
sent by e-mail, the page just sits there because there isn’t a CGI script that can
respond to the form page with an acknowledgment page. Instead, you’ll need to
include a Back button or hyperlink on the page to let users move back to a previous
page. Add a clickable image, for instance, that says something like “Click after sub-
mitting,” and then hyperlink that button to another page.

Note

Another solution is a little more automatic: You can use JavaScript to respond to the
user’s click, launching a new page at the same time. See Chapter 18 for details.

If you have access to the cgi-bin directory but you aren’t much of a programmer, you
can install a generic forms-to-e-mail gateway, like the one available at
http://www.worldwidemart.com/scripts/formmail.shtml. This solution is a bit more
elegant because it will redirect the user to a new page after the form has been submit-
ted. Plus, you’ll receive the form data fully parsed and ready to read.

Your Script’s Output
Creating output with a script is probably the easiest part. Because stdout (“standard
out”) is redirected to the HTML browser, you simply need to use print (Perl and other
languages), echo (Unix shell and Windows batch scripts) lprint (C language), or sim-
ilar commands that print directly to the screen, terminal, or console. You use the
print command to output HTML codes, just as if you were using your text editor.

Here’s a short snippet of a Perl script to do just that:
print “Content-type: text\html\n\n”;

print “<html>\n<head><title>Submission - Thank You!</title></head>\n”

print “<body>\n<h1>Success</h1>\n<p>Thank you for your submission<\p>\n”

print “<p>Click to go back to the main page.
➥<\p> \n</body></html>”

Remember that all this “standard in” and “standard out” stuff is so your script
seems as if it’s typing something into the server computer. In this case, when sending
to standard out, it’s as if an HTML document is being typed and sent to the Web
browser, which will then interpret the text and markup as it would any HTML
document.

In a number of programming languages, \n is the newline character, which simply
feeds a return to standard out, as if you had pressed the Return or Enter key while
typing. Otherwise, this should look rather familiar; it’s basic HTML.

Whatever the programming language’s “print” command is, as long as it’s designed
to print to stdout, you should be able to create automatic Web pages in this way. In
fact, you can use the same approach, along with variables you define and use
within your script, to print out pages that include information about the user’s com-
puter, information from the form that was submitted, or information that has been
calculated in response to items that were submitted on the form. For instance, Figure
16.2 is the output generated from a call to a sample CGI script called printenv that’s
included with many different operating systems. It’s used to print the environment
variables that a given Web server makes available to you for scripting purposes.

CHAPTER 16 CGIS AND DATA GATHERING 301

Note

FIGURE 16.2

The output of

the printenv

script shows you

how variables

can be used in

output, as well

as how many

variables there

are for your

scripts to use.

302 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB SITES

Finding and Using Scripts
While a tutorial on any particular scripting language is outside the scope of this
book, we can take a quick look at some other resources you might want to consider
when it comes to CGIs. In fact, if you’re lucky at all, you may come across scripts
that don’t require much or any programming. If they’re reasonably well docu-
mented, you can sometimes even edit publicly available scripts a bit to get them to
work with your site.

In this section, you’ll see some of the Web sites you can visit to learn more about
scripting and to get scripts you can use on your own server. You’ll also see a few
sample scripts and resources that will give you a sense of how all this scripting stuff
works and, frankly, if it’s the sort of thing you’re interested in pursuing for your site.
In some cases, you may find it easier to just download and use prebuilt CGI scripts
with your site. You may also want to explore JavaScript or similar options that will
be discussed in Chapter 17.

Working with Other’s Scripts
As with any programming endeavor, there are people who love to create scripts and
people who, well, could do without it. Regardless of the category you fall into, you
may find it helpful to visit some sites on the Web that focus on CGI scripting, includ-
ing those that make sample scripts available for download. In some cases, scripts

are available for free and can be freely altered, so that you can turn a given script
into something you find more useful. In other cases, you may come across commer-
cial solutions that enable you to purchase and use a script on your site or server.

One great place to start is the CGI Resource Index at http://cgi.resourceindex.com.
This site includes links to thousands of different CGI scripts—both freebies and com-
mercial scripts—that you can use to alter your site. They run the gamut from Web
counter scripts to full-fledged site management applications. For instance, you can
use a downloadable script for processing an HTML form. Some scripts will work with
a backend database, for instance, while others can be used simply to parse the form
data and send it to you in e-mail. One such script is Form Processor from
FreeScripts.com (http://www.freescripts.com/scripts/).

Installing the Script
Once you’ve downloaded a script you’d like to use, such as Form Processor, it needs
to be installed in your cgi-bin directory. (Most scripts available on the Web work on
Unix-based servers, but you’ll find scripts designed for Windows- or Mac-based
servers as well.)

When installing the script in your cgi-bin directory, you may need to set permissions
so that the script can be properly accessed and executed by the Web server. For Unix-
based servers, this is generally done using the chmod 755 scriptname.pl command at a
command-line prompt or in a terminal window. (If that last sentence doesn’t make
much sense to you, consult your system administrator or ISP.) You may also find
that your FTP application will allow you to change permissions for scripts.

Not all Web servers require you to place CGI scripts in a cgi-bin directory. Some will exe-
cute the CGI script wherever you store it on the Web server. You may still need to set
permissions for the script, however. For Unix-based servers, you’ll probably set the per-
missions to read, write, and execute for the owner, and read and execute for others
(group and world). (This means, in the interest of security, you’re giving yourself permis-
sion to alter the script, but nobody else can.) Again, consult your administrator or ISP for
specific instructions regarding your particular Web server, as permissions are sometimes
set differently on different servers.

Once installed, the script will likely require some special configuration. In many
cases, you’ll edit a text-based configuration file that’s stored somewhere on your
server computer. This file will be used to set options, choose default directories, and
determine other behaviors. In the case of Form Processor, the script mentioned ear-
lier, a few simple configuration options are built into the script, including options
that determine whether an e-mail with the form data is sent or whether a text file is

CHAPTER 16 CGIS AND DATA GATHERING 303

Note

saved. Other options enable you to append data to a contact file or to send a confir-
mation e-mail to users when they submit the form.

Along with this configuration, Form Processor also uses a series of hidden fields to
choose preferences such as to whom the processed form data should be e-mailed:
<input type=”hidden” name=”admin” value=”admin@fakecorp.com”>

<input type=”hidden” name=”subject” value=”Web Order”>

<input type=”hidden” name=”redirect”
value=”http://www.fakecorp.com/orders/confirm.html”>

Along with these hidden fields, the script uses a system of codes for the name attrib-
utes within the forms. Those codes make it possible to set the order of the fields that
are reported to the user. And, using particular name entries (such as user_email)
enables the script to recognize the e-mail address for use with the auto-generated
reply.

If there’s one issue you’ll occasionally encounter when using other’s scripts, it’s some
level of incompatibility. If you’re installing Perl scripts, you may need to know the
version of Perl (such as Perl 5) that’s installed on your server computer, and occa-
sionally you may need to ask your administrator or ISP to turn on a particular pref-
erence or enable some secondary level of support, such as a particular library or
directory path. For the most part, though, you’ll find that installing somebody else’s
scripts is fairly painless, and you’ll soon get used to the configuration files and pref-
erences, particularly if you read any included documentation carefully.

Using a Hosted Script
Another approach to using outside scripts is something called a hosted script, which
simply means the script remains on the host’s server computer. Because a form
method statement or the src attribute for any sort of link can point to a remote URL,
you can actually have your forms processed (or other CGI scripts invoked) on
another server. This is particularly useful if you don’t have access to the cgi-bin
directory on your server and/or you are limited in the number or types of CGI scripts
that you can run from your server. (Such limits aren’t completely uncommon, partic-
ularly on free or inexpensive servers.) In that case, the best solution might be a
hosted script of some sort.

The CGI Resource site includes a page that links to various hosted options at
http://cgi.resourceindex.com/Remotely_Hosted/. Again, the types of CGIs vary greatly,
from counters to bulletin boards to online chats. As you might expect, a number of
them exist for processing forms. For basic form processing, a service such as Form
Buddy at http://www.formbuddy.com/ might do the trick. You create a form and use
Form Buddy’s CGI script URL as the method of your form. Then, when the user

304 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB SITES

submits the form, the data can be e-mailed to you, or it can be stored on the server
and you can access it later. Also, the CGI can send an acknowledgment e-mail mes-
sage to the user who submits the form (assuming that user also submits a valid e-
mail address). Of course, the site is ad-supported, but that may be a small price to
pay if you can’t otherwise install CGI scripts on your server.

Hosted CGIs can get more complex, too. For instance, Formsite.com can be used to
create a variety of different forms using templates as a guide. Depending on the
level of service (in some cases, you’ll have to pay), you can either create a form and
link to Formsite.com for the CGI processing, or host the entire form (or forms) on its
site. Formsite.com’s templates range from guest books and password protection to
order-taking e-commerce pages.

You’ll find other third-party scripts discussed elsewhere in the book, particularly Chapter
21, “Forums, Chats, and Other Add-Ons,” which covers a number of different commu-
nity-building scripts and applications for creating bulletin boards, chat rooms, and so on.

Creating Your Own Scripts
If you plan to create your own scripts, you’ll need to start by learning a compatible
language (if you don’t already know one). Far and away the most popular language
is Perl, although many Mac users opt for AppleScript, and simple CGIs are often
written as Unix shell scripts. For a high-end overview on many Web authoring and
programming topics, see Que’s Special Edition Using XHTML, Special Edition Using XML,
and Special Edition Using Java 2, Enterprise Edition. To learn more about Perl, check out
Perl 5 by Example, ISBN: 0-7897-0866-3, also published by Que.

When you’re creating Perl scripts, you’ll often do so in standard text editors, such as
Emacs or Pico. If you aren’t developing in Unix, programming text editors for
Windows or Macintosh will work just as well. Perl is an interpreted language. This
means that scripts don’t need to be compiled ahead of time, so you won’t need
development environments or compilers such as those required for C or similar pro-
gramming. You will need to test your scripts, however. The easiest way to do that is
probably to run a local, Perl-capable Web server on your computer (or over your
local network). Enable CGIs on that Web server, install them in the appropriate
directories, and begin your testing.

If you’re testing your scripts on your home or office computer instead of on a remote
server, you should consider shutting down your Internet connection while your Web
server software is active. Even if you’re only playing around with a Web server and
scripts, others could access that server over the Internet and gain access to your per-
sonal data. It’s not a huge risk, but to be safe, a computer that’s used for testing Web
servers and scripts should be isolated from the Internet to avoid remote tampering.

CHAPTER 16 CGIS AND DATA GATHERING 305

Tip

Caution

Although Perl is designed for a command-line Unix environment (which is broad
enough to include any Linux-variant FreeBSD versions and their progeny, such as
Mac OS X), it’s available for other platforms as well. The Classic Mac OS (Mac OS
9.x and earlier) has MacPerl (http://www.macperl.com/), which can be used for slightly
modified Perl scripting and Mac-based CGIs. For Windows, Indigo Perl
(http://www.indigostar.com/indigoperl.htm) is a freeware solution that includes a built-
in Apache server that enables you to test your Perl scripts. Another popular option
for Windows is ActivePerl (http://www.ActiveState.com/Products/ActivePerl/).

For more on Perl programming, you may want to visit Perl.com. There you’ll find
articles, discussions, How-To’s, and tools. Other resources include the Perl Mongers
(http://www.perl.org/) and the Perl Monks (http://www.perlmonks.org/), two different
groups of Perl programmers and aficionados banding together to share information,
code snippets, and other resources. For even more, check out Yahoo!’s Perl pages at
http://dir.yahoo.com/Computers_and_Internet/Programming_and_Development/Languages/

Perl/.

For other CGI programming, generally you need to choose a language that your
Web servers (both your testing server and your target, final Web server) are comfort-
able dealing with. If that’s Unix, you can use many of the aforementioned lan-
guages—Perl, C, or shell scripts. For Windows, you might opt for Visual Basic or a
language supported by the particular server application—that may also be Perl or C.
For Macintosh, use AppleScript, MacPerl, or a similar scripting environment, such as
Frontier technologies (http://www.userland.com/), which is also available for Windows.

Summary
This chapter continued the discussion from Chapter 15, focusing on the Common
Gateway Interface scripts and programs that are required to process HTML form
data. You learned what CGI scripts are and how they work. You learned how form
data is submitted to the script, parsed into useful data, and stored in variables. You
also saw how such form data can be sent, if desired, via e-mail.

The second part of the chapter focused on getting and installing CGI scripts, includ-
ing a discussion of some online resources and some representative scripts for form
processing. There was also a brief discussion of what’s in store for you if you opt to
learn a scripting language and attempt to write your own scripts.

In the next chapter, you’ll be introduced to JavaScript, a language that enables you
to embed scripting commands directly within your HTML documents, making them
dynamic and more responsive to users.

306 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB SITES

T

17
INTRODUCTION
TO JAVASCRIPT
he last few chapters showed you how to use HTML forms and CGI

scripts to interact with the user. CGI requires access to the server com-

puter (at least the cgi-bin folder). JavaScript, on the other hand, works

within the browser (assuming the browser is compatible with it). That

means you can use it for small scripting tasks or for very complex tasks

that don’t involve the server at all.

It’s also a pretty involved topic. See Chapter 18, “JavaScript and User

Input,” to take a closer look at some of the tasks you can perform with

JavaScript that have to do specifically with user interaction. Then, in

Chapter 19, “Adding Dynamic HTML,” the use of JavaScript is shown

with dynamic HTML.

This chapter discusses the following:

■ The basics of JavaScript—what it is, why you might want to
learn it, and what your options are

■ Creating your first JavaScript: embedding and linking

■ Creating and using JavaScript functions

■ Inside the lingo: variables, comparisons, conditionals, and loops

■ How objects and methods work, and a few objects you can use
in your scripts

What Is JavaScript?
JavaScript is a scripting language that’s similar to AppleScript, Visual Basic Scripting
(VBScript), and languages such as Unix’s shell scripting languages. Although
JavaScript is similar in on the surface in some ways to full-fledged programming
languages, such as C, C++, and Java, it doesn’t require you to worry as much about
the program’s underlying structure. It’s a bit limited in that way, but still very useful.

JavaScript was specifically designed by Netscape to work together with HTML (and
XHTML) to create more dynamic Web pages. Netscape and Internet Explorer
browsers tend to support JavaScript from the 3.0 level on up, while other browsers
have spotty support for JavaScript—some are better than others. In most cases, you
can’t rely on your user to have JavaScript capabilities, so it’s important to design
your pages to support all possible users. We’ll discuss that throughout this section.

Microsoft’s implementation of JavaScript is called JScript, and its basic operation is about
the same as JavaScript. It offers some different commands, but there’s a strong overlap-
ping pool of commands and logic. Both, in turn, are relatives of ECMAScript
(http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM). It’s the “official” standard set by
the European Computer Manufacturers’ Association, to which JavaScript and JScript
conform.

JavaScript is designed to work with the different elements on your page, reacting to
user input, feeding form values to equations and formulas, and otherwise making it
possible to turn a Web document from a static page into something that more
closely resembles a computer program’s interface. If you get hooked on JavaScript,
you’ll find it handy in many different situations, including such things as auto-
mated HTML frame interfaces and form data checking (see Figure 17.1).

308 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

FIGURE 17.1

JavaScript can

be used to check

an HTML form

before it’s ever

submitted to a

CGI script, mak-

ing sure it has

all the requisite

data filled in

and accounted

for.

JavaScript isn’t part of the HTML or XHTML standards, although it’s used almost
exclusively within HTML documents, and both standards have a special <script> ele-
ment that’s used in tandem with JavaScript. Plus, JavaScript (or a similar scripting
language) is at the heart of what’s called Dynamic HTML, which uses JavaScript, style
sheets, and other technology to create interesting and interactive pages.

The JavaScript/Java Relationship
Java and JavaScript are not the same and aren’t really even related in any signifi-
cant way, despite their names. Java is a full-fledged programming language,
invented by Sun Microsystems, in the spirit of C++. Designed for the more advanced
programmer, Java has a number of strengths:

■ It’s a very modern programming language that’s still familiar to the legions
of C and C++ programmers who are interested in using a newer language.

■ It has been designed to be more than a computer language. It’s also a virtual
machine technology, which means that Java applications can run on a vari-
ety of computer platforms.

■ Web browsers often support Java much as they do multimedia plug-ins. A
Java application can take over part of the Web browser window and interact
with the user almost as if the user had launched the Java application from
his or her hard disk.

The virtual machine concept is the reason that at one time, many thought that the
computing world would eventually be overtaken by Java. The idea behind the vir-
tual machine is that every computer in the world can pretend to be a less sophisti-
cated “Java-standard” computer.

Usually a computer is defined by the sort of hardware it’s composed of and the oper-
ating system it uses. For instance, you can’t run Macintosh applications on a typical
Microsoft Windows-based computer. Part of that is because Macintosh applications
are designed for a different operating system, the Mac OS, which in turn is designed
for different processors and hardware from Microsoft Windows.

But Java creates a standard computer—a virtual machine—completely in the soft-
ware. Instead of programming specifically for Windows or the Mac OS, programmers
simply write the program for the virtual machine, which is nearly the same on all
computer platforms. Because Web browsers can create this machine, it’s possible to
run Java programs (which are called Java applets in this context) from within the
Web browser, making sites more interactive and entertaining.

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 309

The truth is that, so far, Java’s virtual machine hasn’t really taken over desktop
computers, and Windows, Macintosh, Unix, Linux, and other operating systems still
require applications written (or at least compiled) directly for them. That said, there
are some Java applications available for use on the desktop, and Java is popular in
Web browsers. Beyond that, Java is also popular simply as a computer language,
and many applications—both on the desktop and for the Web—are now written in
Java.

So, why do Java and JavaScript have similar names? Aside from confusing novice
computer users, there is a reason for the similar names—JavaScript was designed to
use a fairly Java-like syntax. That’s it. Even though JavaScript isn’t nearly as power-
ful or complex, and it’s only designed to work within Web browsers, it uses some
commands and syntax that are similar to Java. Of course, that’s not really saying
much, because Java is similar to C++, and C++ is based on C. In essence, JavaScript
is easy to learn for anyone who’s ever programmed in one of these modern object-
oriented programming languages.

JavaScript Versus VBScript
JavaScript is certainly the most popular scripting language for Web documents, but
it isn’t the only one. VBScript runs a distant, but occasionally significant, second
place in the Web scripting world, despite the fact that it’s a Microsoft-only technol-
ogy that’s only supported in Internet Explorer for Windows.

VBScript has two things going for it: It’s the scripting language recommended for
ActiveX controls (which are sort of Microsoft’s proprietary version of Java applets),
and it’s very much like Visual Basic, the popular Windows programming language.
Whereas both Java and JavaScript are platform-neutral, VBScript and ActiveX have
made a very Windows-centric play for control of the Internet.

This chapter and the next two focus on JavaScript because it’s the more widely
accepted of the two, it’s already cross-platform, and it uses a slightly more approach-
able syntax. Still, if you plan to implement Web sites that are Microsoft-only (such
as intranets), if you’re working with ActiveX controls, and/or if you’re already a pro-
ficient Visual Basic programmer, you may want to look further into VBScript for
scripting within your Web documents.

How Web Scripts Work
With the preliminaries out of the way, now we can move on to two basic concepts in
Web scripting with JavaScript: functions and event handling.

310 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

In most of the scripts you create using JavaScript, you’ll have two distinct sections—
code within the <head> of your document, and code within the <body> of your docu-
ment. The stuff in the <head> will usually be functions, while the code in the <body>
will often comprise function calls.

Function calls don’t do a lot of actual processing. Instead, they’re in the <body> of the
document to either respond to user input or follow a set path of statements. The
function calls usually take a particular value and send it up to the functions that are
stored in the <head> of the document. Those functions then process the data, do some
math (or some other sort of computation), and then return the value to the function
call in the body of the script.

Of course, this whole process would be silly if the function calls simply happened in
order—at that point, you might as well put the whole script in one part of the docu-
ment. But the value of functions is that they can be reused at different points in a
script, in different orders. That’s where event handling comes into play. In essence, the
script is able to wait for certain events to happen—such as the user clicking a partic-
ular link or button, or entering data in an HTML form. When that happens, the
script can respond to the event, send data to a function, and get a returned value.

Instead of a procedural program that guides the user from step A to step B to step C,
the function/event approach means that the script waits for the user to do some-
thing, and then reacts to it. When a particular piece of information needs to be
retrieved from the user, or if a certain calculation needs to be performed, a function
is called to solve that problem. But functions are only invoked when the user does
something that the script needs to react to. That’s why it’s called handling events.

Note that events aren’t always something the user does—a script can be programmed
to react to other events, such as a certain time or date, a page being loaded, or in
response to one of the server’s variables changing. These events are things that the
script can react to as well, by automatically generating XHTML markup, changing the
content of a frame, or any number of other reactions.

Entering Scripts in Your Web Documents
JavaScript is simply more plain-text markup that you’re adding to your Web pages,
so you don’t need any new applications or tools. That said, a text-based editor that
includes a JavaScript reference is always helpful, and you may want to have the
JavaScript guide from Netscape open in a Web browser window as you work (it’s at
http://developer.netscape.com/docs/manuals/js/client/jsguide/index.htm). It’s also
important to test your scripts carefully in as many Web browsers as you can—includ-
ing Internet Explorer, Netscape, and others—in different version numbers, and for

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 311

Note

different computing platforms. If you’re using JavaScript for business or organiza-
tional use, testing is very important.

JavaScript authoring involves a new element, the <script> element. Although the
element is your typical XHTML container element, what isn’t typical is that you’ll
need to hide the <script> element within your page.

The <script> Element and Script Hiding
The <script> element is used to add JavaScript commands to your HTML pages. This
is done so that JavaScript-compatible browsers can determine which text is actually
scripting commands and which text should be displayed in the browser window.
<script> is a container that can accept the attribute type, which enables you to spec-
ify the scripting language used. (Generally, JavaScript is the default.)

For backward compatibility, particularly for browsers that predate the 3.0 level of IE and
Netscape, you may want to include the language=”JavaScript” attribute as well. It isn’t
necessary for later browsers, but using both type and language is the most complete
approach.

Here’s how it works:
<script type=”text/javascript”>

Script function definitions

</script>

Although some old browsers that don’t recognize JavaScript may just skip over the
<script> element and its contents, it’s also possible that an old browser will attempt
to interpret your script commands or other text as HTML markup. So, you’ve got to
be careful about how you hide the script stuff.

For non-JavaScript browsers, you do that hiding with the scripts commands within
the opening and closing brackets of the HTML comment element:
<script type=”text/javascript”>

<!--

script commands

// -->

</script>

To keep scripts from causing trouble in older browsers, we’ve got to add all these spe-
cial commands. You might have even noticed that you have to put two slashes (//)
in front of the closing XHTML comment tag. This is because JavaScript will generate
errors when it sees -->; it will try to interpret that as scripting code. (To JavaScript,

312 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

that looks like two minus signs and a greater than sign.) So, you need to comment
the comment, using JavaScript’s comment command, which happens to be those
two slashes.

Of course, the primary purpose of JavaScript comments is to include information
about the script itself. Using JavaScript’s two comment types, you can add informa-
tion about how the script works and why it does what it does:
<script type=”text/javascript”>

<!--

script command // A comment about this command

...script commands...

/* If you have longer comments, you can place then

between these two comment elements */

// this JavaScript comment precedes the HTML comment closing tag -->

</script>

The two types of comments are the single-line JavaScript comment and the multi-line
comment. Single-line comments start with two forward slashes and must completely
fit on a single line with a return at the end. Multi-line comments can be enclosed in
an opening comment element (/*) and a closing comment element (*/), with as
much space and comments inside as desired.

With all these comments and hiding, it’s not a bad idea to create a template for starting
out with your script-based pages. You can use that template to begin pages from
scratch, or you can cut and paste all the default scripting comments and elements to
get a head start.

Strict Versus Transitional
If you’re hiding scripts within your Web document, you’ll need to use the XHTML
Transitional DTD. If you want to use the strict DTD with scripts, you can, but only if
you link to your script’s function definitions instead of embedding them in the page
(more on that in a moment), or if you take an additional hiding step within the
page.

The reason for this type of hiding is that certain common characters used in
JavaScript are interpreted differently in XML. (And XHTML is HTML cast in XML,
remember?) As a result, the characters < and & can be mistaken for XML items
instead of the scripting elements they’re intended to be. The solution is to include

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 313

Tip

another layer of hiding to prevent an XML interpreter from interpreting the scripting
as XML commands. Here’s how:
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Strict Scripting</title>

<script type=”text/javascript”>

<![CDATA[

...script commands...

]]>

</script>

</head>

In this case, the <![CDATA[and]]> tags are used to tell the XML parser to ignore what
comes between them. At least, that’s the official recommendation. The problem is
that this method of hiding is still somewhat theoretical. It may be the desired
approach for future Web browsers, but right now it simply doesn’t work. So, using
the strict DTD with the <script> element in your pages is tough.

If you really want to use the strict DTD, there is another solution. You can place the
script function declarations (the script portions that appear in the <head> of your doc-
ument) in a separate document and link to it. That would look something like
<head>

<title>Linking to JavaScript</title>

<script type=”text/javascript” src=”script_functions.js”>

</script>

</head>

The document script_functions.jp would be a simple text file that starts with the first
JavaScript command, just as if it were enclosed in the <script> container. This is by
far the best way to get around all the scripting hiding issues.

To avoid all this, you might want to simply use the transitional DTD on your JavaScript
pages. (That’s how I’ll do it in examples throughout this chapter and the next two.) Also,
be aware that at some point in the future, aspects of scripting on the page—particularly
the event handling bits—may have to change before the Web can go fully XHTML Strict.

314 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Script Meta Type and <noscript>
Technically, each instance of the <script> element should include a type attribute
(although not all Web browsers require this to the letter). You can get around that,
however, by declaring a default using the <meta> element in the <head> of your docu-
ment:
<head>

<title>JavaScript By Default Page</title>

<meta http-equiv=”Content-Script-Type” content=”text/javascript”>

</head>

Doing this will be particularly important as you get deeper into scripting.
JavaScript’s event handlers (where a script function is called from within the Web
page itself) don’t allow you to specify script type, so they rely on the <meta> definition
(or force the browser to guess).

Finally, XHTML also offers the option of a <noscript> container that can be used
within a <script> element to offer alternative text and markup for browsers that
don’t support scripting. That looks something like
<body>

<script type=”text/javascript”>

<!--

//<![CDATA[

...functions...

//]]>

// -->

</script>

<noscript>

<p>It appears your browser doesn’t support JavaScript. Please visit

the no-script page to see a non-JavaScript

version of this page.</p>

</noscript>

</body>

Let’s put it all together in a template and a quick example.

The “Hello World” Example
Whenever you learn a new programming language, traditionally the first example
you encounter is a “Hello World” script or program. This Hello World example will
show you the basics of the hiding and scripting commands and how the <script> ele-
ments work.

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 315

For the purpose of this example, you need to know one command you haven’t been
introduced to yet. It’s document.writeln(), and it’s called a method in JavaScript. A
method is a function that’s built into a particular object, enabling it to do something
automatically. In this case, it can automatically “write” to the object “document.” In
other words, the method document.writeln() writes text to your Web page.

Listing 17.1 is a complete HTML document that includes some basic JavaScript.

LISTING 17.1 Hello World Example

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Hello World</title>

<meta http-equiv=”Content-Script-Type” content=”text/javascript”>

</head>

<BODY>

<script language=”JavaScript”>

<!-- hide script

document.writeln(“<h1>Hello World!<\/h1>”)

// end hiding -->

</script>

<noscript>

<p>Your browser doesn’t appear to support JavaScript.</p>

</noscript>

</body>

</html>

This example offers a few things worth discussing:

■ The <script> container has been added in the <body> of the document. That’s
typical when you’re using the script to create something within the docu-
ment’s body, instead of defining functions, which happens in the <head>. In
more complicated scripts, you’ll likely have <script> containers in both sec-
tions.

■ Within the document.writeln() command, the closing </h1> tag actually looks
like <\/h1>. That’s because the closing / would otherwise be misinterpreted by
the document.writeln() method as the beginning of a special character, such
as the newline (/n) character. So, you need to escape the forward slash using
the backslash.

316 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

■ Because you’re using the <meta> element to specify the scripting content, you
don’t need a type attribute for <script>. However, the language attribute is still
there for backward compatibility.

Save this document as something like helloworld.html and then open it using a Web
browser. If your browser is capable of dealing with JavaScript, your output should
look something like Figure 17.2. If it’s not, you’ll just see the <noframes> text.

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 317

FIGURE 17.2

Here’s the result

of the Hello

World script in

all its glory.

Creating Functions in JavaScript
A function can be thought of as a mini-program within your script. Generally, a
function is designed to accomplish one particular task and then return a value to
the main body of the script. Functions start by being passed a particular value. That
value is then used in calculations or as part of a procedure. Then, in most cases, the
function will return a new value to the body of the script, where something else may
or may not happen.

Although it’s perfectly possible to have an entire script in the body of your document
(and you will, occasionally), you’ll find that this sort of procedural programming is
both wasteful and limited. By breaking your scripts into functions and function calls,
you gain two advantages.

First, the functions don’t have to be used in any particular order, just like you don’t
have to click the icons in Microsoft Windows or Macintosh applications in any par-
ticular order. So, a script can be changed around or used with event handlers to call
the functions in any order.

Second, functions can be reused. You can use different data with the same function
to get different results. If the function is flexible enough, it will save you quite a bit
of programming to simply call the function whenever its particular capabilities are
required.

However, functions do need to be declared, or defined, usually in the <head> of your
Web document. Then, the functions have to be called, or launched, usually from
within the Web page itself.

Declaring Functions
Declaring a function is when you tell the browser, “I’m going to have this function,
and this is what it’s going to do.” When the browser loads a page, it will make note
of the different functions that you’ve declared so that it knows to return to them
when they’re called.

Most script authors will declare their JavaScript functions in the <head> of their Web
documents, although that isn’t strictly required. They can be declared anywhere
within the document. The function declaration needs to appear inside a <script>
container, and you’re free to place more than one <script> container in a document.
In fact, JavaScript is a little weird because all the <script> elements, taken together,
comprise the script. (In most programming, your script isn’t broken up with HTML
and XHTML markup in-between the functions and function calls.)

Here’s the basic format for a function call:
<script type=”text/javascript”>

<!-- hide script

function function_name(incoming_value) {

...function code...

return (new_value)

}

// end hiding -->

</script>

Remember that when a script calls a function, it often sends along a value. In your
function definition, you’ll need to assign a name to that passed value, which is rep-
resented by incoming_value. If the function is designed to perform simple math, for
instance, you might call the incoming value first_num or something similar. You can
then use that name in formulas, such as new_num = first_num * 3.

When you give the incoming value a name, you’re creating a variable. Then the
computer reserves some memory for that variable and gives it a name. You can then
assign a certain value to that name and use that name in your script. For instance:

1. In the body of your script, you send the value 5 to a function.

2. The function receives that value and creates a variable called my_number to
which that value is assigned.

318 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

3. Then you tell the script to “add 10 to my_number” using a formula such as
new_number = my_number + 10

4. If you did it right, the script returns the answer using the variable new_number
to the body of the script.

5. The body of the script accepts that new value, and the answer is 15.

Along with that variable, note the keywords function and return. The function key-
word is always the beginning of a function declaration, followed by the name of the
function and, in parentheses, the variable name to be assigned to the incoming
value. The return keyword is used to end the function declaration—it’s telling the
function to return the parenthetical value to the portion of the body of the script
that called this function in the first place.

Also, notice that the entire calculating part of the function is between curly brackets,
between the two keywords. An example of a function declaration might be
<script type=”text/javascript”>

<!--

function getSquare (num)

{

squareNum = num * num;

return (squareNum);

}

// end hiding -->

</script>

In this example, you’ve created a function called getSquare, which accepts a value,
names it num, and then multiplies that value by itself and assigns the resulting value
to a variable named squareNum. Finally, it returns that value to the body of the script.

At least, that’s what the function has been declared to do. It won’t actually do it yet
because it doesn’t know which actual values to work with until you call the function
from within the body of the script.

Function Calls and Value Return
Generally, the body of your script will be just a series of function calls. There isn’t a
whole lot of calculating done in the guts of your script. You send a value out to a
function to be computed and then receive the results back in the body. A function
call either appears inside a <script> container, in an event-handler attribute (see
Chapter 18), or in an URL. A typical function call looks like this:
function_name(value);

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 319

You can put a variable name, an actual number, or a string of text in the parenthe-
ses, as long as the function is designed to accept such a value. (Function calls in the
body of your document need to be surrounded by <script> tags, just like the function
definitions in the head of the document.)

Your function calls must always pass a value type that the function expects. If you pass a
string of text to a function designed to perform math functions, you won’t get anything
useful in return.

As an example, consider the following script that might appear in the body of a doc-
ument. This script will call the getSquare function created in the previous section:
<script type=”text/javascript”>

<!--

myNum = 10;

mySqr = getSquare (myNum);

document.writeln (“The square of “ + myNum + “ is “ + mySqr + “.”);

//-->

</script>

Here’s what is happening in this function call:

1. You’ve assigned the value 10 to the variable myNum.

2. Then that variable (and hence the value 10) is passed to the function
getSquare. (This example assumes we’re using the same function created in
the previous section, “Declaring Functions.”)

3. When that number gets up there to the function, it’s assigned to the variable
num and then the computation occurs.

4. After the computation, the new value is passed back to the function call in
the body of the script.

5. Here’s the interesting part. The entire function call is replaced with the value
that is passed back from the function declaration. In this example, the entire
call getSquare (myNum) is replaced with the value of 25.

6. As a result, the variable mySqr is assigned the value of 25, thanks to that
equals sign in the script line.

In JavaScript (and in most computer programming), a variable followed by an equal
sign is an assignment. In this case, there are actually two. First, you assign myNum =
10, and then you assign mySqr = getSquare (myNum). What you’re telling the script is,
“Set the variable mySqr equal to the value of the function getSquare when we send it
the value myNum.”

320 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

In JavaScript, the equal sign is used to assign values to variables. So when you type
countNum = 12, it isn’t a question. You’ve told the browser that the number 12 is now
the value of the variable countNum. This is in contrast to a comparison, which is repre-
sented by two equal signs (==). You use the comparison when you want the script to
decide whether or not two values are equal. You’ll see more on variables and com-
parisons later in the section “Controlling Your JavaScript.”

Function Call Example
Building on the function call and return process that we’ve discussed so far, let’s take
a look at a sample document that incorporates the entire script that’s been used as
an example in this section. Listing 17.2 shows the whole thing coming together.

LISTING 17.2 Function Call and Return

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Get Squared</title>

<meta http-equiv=”Content-Script-Type” content=”text/javascript”>

<script type=”text/javascript”>

<!--hide scripting

function getSquare (num)

{

squareNum = num * num;

return (squareNum);

}

//end hiding -->

</script>

</head>

<body>

<h1>Here’s the answer:</h1>

<script type=”text/javascript”>

<!--hide scripting

myNum = 10;

mySqr = getSquare (myNum);

document.writeln (“The square of “ + myNum + “ is “ + mySqr + “.”);

// end hiding -->

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 321

</script>

<noscript>

<p>Your browser doesn’t appear to support JavaScript.</p>

</noscript>

</body>

</html>

As you can see, you can incorporate regular markup with the script’s function call.
After the processing, the variables all have values and the document.writeln() method
is able to put the answer onscreen in the browser window, as shown in Figure 17.3.

322 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 17.2 (continued)

FIGURE 17.3

This Web page’s

second line is

the result of a

function call

and returned

value.

Working with Variables
In your scripts, you’ll work with two basic types of data: literals and variables. Literals
are simply values that don’t change, such as 5 or “Love hurts” or 6.02. These repre-
sent different types of values that you can use directly in the assignments and com-
putations (both of which, together, are called expressions in programming) that
make up your script.

You’ve already had a brief introduction to variables in JavaScript, but they’re worth
looking at a bit more closely. Variables in JavaScript are probably easier to work
with than those in many other programming and scripting languages, because you
don’t need to be explicit about declaring the variables and setting them with a cer-
tain type. You’ll find that there are four types of values that you can work with in
JavaScript: integers, floating-point numbers, text strings, and Boolean values.

Integers are plain, non-decimal values such as 4, 17, and 2546. They can be positive
or negative, such as –57. Floating-point numbers are those that include a decimal
point, such as 3.2, 2456.24, and 1.45674e10 (which would be 14,567,400,000 using
exponent notation). Boolean values simply mean true or false; you can use these
values in certain comparisons within your script.

Strings are a special type of value that represents a series of characters that appear
between quotation marks. These values can be words, sentences, data series, and
even numbers. The difference between a string and an integer or floating-point is
that strings can’t be used in arithmetic. (They can be converted to numbers when
necessary, however.) For instance, City = “Miami” and Zip = “33140” are both string
assignments, because they are strings of characters in quotation marks.

Variable Names
There are rules and conventions for naming variables that you should consider fol-
lowing when you’re creating your JavaScript code.

Variable names must start with either a letter or the underscore character.
Otherwise, they can be composed of upper- and lowercase letters and the digits 0–9.
Variable names are case-sensitive, so myVar and Myvar are two different variables.

So, how do you pick the names? Different script writers will take different
approaches, but I recommend making your names as meaningful as possible. You
can often do that by compressing words together to make variable names such as
NewNum or TotalSales. You can also use an underscore to create variables like oct_sales
or fish_count. Either is acceptable, although I’d recommend keeping your variable
names reasonably short, because you’re going to have to type them repeatedly.

It’s also fairly common to use short, one-letter variables in certain situations, usually
when you want a “toss-away” variable that’s used for counting something.
Throughout the examples in this section, you’ll see cases where a simple variable
letter is used. As long as it’s a letter, and not a number or punctuation of some kind,
it’s legal.

Variables, Math, and Assignments
As you might guess, particularly if you have an experience with algebra, these vari-
ables are used in a lot of math. You can add (+), subtract (-), divide (/) or multiply
(*) variables and literals, such as
myNum * 5

x + 1

12%5

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 323

In that third example, you get the remainder—2—after division between the two val-
ues takes place. In fact, you’ll see this sort of math going on a lot in scripts and pro-
gramming. However, you may have noticed something about those examples—
they’re pretty much useless. Again, as with algebra, math in scripting is really only
handy when you assign the result to some variable:
newNum = myNum * 5;

x = x + 1;

These are assignments, and they’re used to further the cause of the script. (They’re
also valid JavaScript expressions, which is why each one has a semicolon at the
end.) Now that the new value is assigned to a variable, it can be used later in the
script.

Variable assignments can be simpler, if desired:
myName = “Mike”;

x = 4;

carColor = “light blue”;

JavaScript also enables you to declare a variable without immediately assigning a
value to it. This can be handy when you need to create a variable, but you don’t
want it to have a particular value yet:
var x;

var myVariable;

By the way, you’re free to declare new variables as part of an assignment, too, as
long as the variable hasn’t already been created. So, the following is valid:
var mileageCount = 10000;

Incrementing and Decrementing Variables
As you’ve seen, math is pretty easy to accomplish in JavaScript. One of the most typ-
ical operations is to increment a particular variable, sometimes to count how many
times something happens within a script. One way that’s done has been shown
already:
x = x + 1;

The plus sign in this equation is called a binary operator because it requires two
items that can be added together. In this particular instance, the old value of x is
added to 1, and the result becomes the new value of x. For instance:
var y = 5;

y = y + 1;

After the first line, the value of y is 5; after the second line, the value of y is now 6.

324 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

JavaScript allows you to do this particular operation in another way, using unary
operators. A unary operator requires only one operand, as in the unary increment
operator:
x++;

In fact, you can increment with either x++ or ++x. The difference is in when the incre-
ment occurs. For instance, if x equals 2:
y = x++;

y will be assigned the value 2, and then x will be incremented to 3. Consider the fol-
lowing example, though:
y = ++x;

x is incremented first, to 3, and then that value is assigned to y, so that they both
now equal 3.

Decrementing (subtracting from) variables works the same way, with both x-- and
--x as possibilities. Both work similarly to x = x - 1, except that --x will decrease
before being assigned.

It is also possible to assign the value to variables at the same time you increment or
decrement. Generally, you would do this with an expression like the following:
x = x + 3;

However, this is also possible with the unary operators += and -=. For instance, the
preceding could be written as
x += 3;

If x was originally 5, it would now equal 8. Similarly, these two expressions yield the
same result:
y = y - 2;

y -= 2;

Understanding Arrays
Before we leave this discussion of variables, there’s another type of variable we
should discuss. It’s called the array, and it’s actually a technique by which you can
store more than one value within the same variable name. In other words, you can
create a list of values within one variable. Here’s an example:
var player = new Array (“Bob”, “Steve”, “Marcia”, “Dinah”);

Now, the player variable is actually an array, meaning it’s storing those four values
at once. So, how do you access one of those variables? Using an index number, as in
document.writeln (“The winner is “ + player[2] + “!”)

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 325

Arrays are indexed from 0, so in this example, player[2] would equal “Marcia” and
that name would be used in the println method. You can use a special property,
called length, to determine the number of items that are stored in an array:
numPlayers = player.length;

Note that, because the array index starts at zero, you can’t simply use the number
stored in the length property as the index. For instance, if there are 5 items in the list
(and thus the length value is 5), the last item is index [4], because the first one has
index [0]. So, you need to compensate for that in the script.

Once the array is created, you can use the index to add players, or you can use the
index to change the value of a player using a standard assignment. This script sam-
ple shows a number of these array issues at once:
<script type=”text/javascript”>

<!--hide scripting

var player = new Array (“Bob”, “Steve”, “Marcia”, “Dinah”);

document.writeln (“<p>Player #3 is: “ + player[2] +”<\/p>”);

player[2] = “Roger”;

player[4] = “Susan”;

document.writeln (“<p>Player #3 is now: “ + player[2] +”<\/p>”);

var newIdx = (player.length - 1)

document.writeln (“<p>Our newest player is: “ + player[newIdx] +”<\/p>”);

// end script hiding -->

</script>

Figure 17.4 shows the results in a browser.

326 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 17.4

Here’s a script

that accesses

different values

stored in an

array.

Controlling Your JavaScript
So far you’ve seen quite a few of the basic JavaScript programmer’s tools, including
variables, functions, assignments, and math. The next step is using those items
together with some of JavaScript’s built-in statements to create meaningful expres-
sions that help you get things done in your scripts. This section discusses some of the
statements you use to control the script.

If you have any experience with programming languages, JavaScript’s statements
should be familiar: the if…else construct and the loop statements for, while, break,
and continue.

The key to many of these statements is called the condition, which is simply a bit of
JavaScript code that needs to be evaluated before your script decides what to do
next. You can think of a condition’s logic as, “If something is true, then something
else will happen.” A similar condition might be, “Until something is true, continue
trying to make it true.” And so on.

Often, these conditions require a comparison of some kind—is one value equal to
another, or is a value greater than another? That works together with the condi-
tional to create a statement along the lines of, “If x is greater than y, then return the
value of x.”

So, before you look at JavaScript conditional statements, take a look at the compari-
son operators that JavaScript recognizes.

Comparison Operators
Comparisons are generally enclosed in parentheses, and they are always small snip-
pets of code designed to evaluate as true or false. For instance, the following is a
conditional statement:
(x == 1)

This may look like an assignment, but note carefully that there are two equal signs.
That means this is a comparison to see if the two values really are equal to one
another. If x does equal 1, this condition is true.

Now, believe it or not, an assignment can also have a value—it’s always true. The
following condition will always evaluate to true, because it’s an assignment:
(errorLevel = 1)

Although it may seem to make sense to use an equal sign to create the “does x
equal 1” comparison, if you don’t use the proper operator, you’ll accidentally
change it to “set x equal to 1.” That isn’t what you want. In this instance, you actu-
ally need to use the comparison operator == for this condition.

Table 17.1 shows a listing of the comparison operators.

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 327

TABLE 17.1 Comparison Operators in JavaScript
Operator Meaning Example Is True When

== Equal to x == y x equals y

!= Not equal to x != y x is not equal to y

> Greater than x > y x is greater than y

< Less than x < y x is less than y

>= Greater than or equal to x >= y x is greater than or equals y

<= Less than or equal to x <= y x is less than or equals y

All these operators can be used to create expressions that can be evaluated as either
true or false. Some examples are
(countVar == 5)

(testAver > 85)

(itemType != “shirt”)

As the examples show, comparisons can test strings as well as numerical values.
When a comparison is evaluated, the actual comparison itself—the parentheses and
all—is set to either true or false. It’s given a value that could be assigned to a vari-
able if necessary. Just remember to picture those parentheses as replaced by “true” or
“false” when you’re scripting and you’ll have a good sense of how the comparisons
are actually working.

The if…else Condition
So how do you put these comparisons and operators to use? JavaScript offers the
if…else conditional statement as a way to create either/or situations in your script.
Here’s how it works:
if (condition) {

script statements }

else {

other statements }

The condition can be any comparison that evaluates to either true or false. The
statements can be any valid JavaScript statements. For example:
if (x == 5) {

document.writeln(“The variable X equals 5.”);

return;

}

else {

document.writeln(“The variable X does not equal 5.”)

}

328 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

The else statement and related statements are not required if you simply want the if
statements to be skipped and the rest of the function executed. An example might
be
if (totalValue == 0) {

return (0)

}

In this case, if the condition is false (totalValue does not equal 0), the if statement is
skipped completely and anything that comes after it is executed. If the condition is
true, the return (0); command is executed and this particular function has ended
abruptly.

Looping Conditionals
The next two conditional types are used to create loops—script constructs that repeat
until a condition is met. These loop statements are for and while.

A for loop looks like this:
for (counter variable; condition; increment_counter variable) {

JavaScript statements

}

This is how it works:

1. You’ll generally start a for loop by initializing your counter variable.

2. Then, you’ll evaluate the counter within a condition to see if it’s reached a
certain level.

3. If it hasn’t, the loop will perform the enclosed statements.

4. Once the statements have been performed, the counter variable is incre-
mented.

5. If the counter has reached your predetermined value, the for loop ends. If
not, the loop continues with step 2.

For example:
for (x=0; x<10; x=x+1) {

totalNum = 2 * x;

document.writeln (“Two times “ + x + “ equals “ + totalNum + “<br
➥\/>”);

}

You start by initializing a counter variable (x=0) and then evaluating the counter in
a conditional statement (x<10). If the condition is true, the loop will perform the

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 329

enclosed scripting. Then it will increment the counter—in this case, add 1 to it. The
loop begins again and the new value of x is compared to 10; when the counter
reaches 10, the loop ends.

The while loop is similar to the for loop, except that it offers a little more freedom.
It’s used for a great variety of conditions. The basic while loop looks like
while (condition) {

JavaScript statements

}

As long as the condition evaluates to true, the loop will continue. An example
would be the following:
x = 0;

while (x <= 5) {

x = x + 1;

document.write (X now equals “ + x + “<br \/>”)

}

As long as the condition remains true, the while statement will continue to loop. In
fact, the risk with while statements is that they can become infinite loops if the
expression never evaluates to false. Here’s a common mistake:
while (x = 5) {

x = x + 1;

document.write (X now equals “ + x + “<br \/>”)

}

The condition is actually an assignment, not a comparison, so it will always evalu-
ate to true. In this example, the loop would continue indefinitely, and the output
would always be X now equals 6.

Break and Continue Your Loops
Two other keywords, break and continue, can be used in for and while loops to
change the way a loop operates when certain conditions occur.

break is ideally used when you’re not sure which values are coming—for instance,
when the values are being input by a user, via XHTML form elements. Consider a bit
of script like this:
for (x=0; x < 10; x=x+1) {

z = getInput ();

if (z == x)

break;

}

330 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

In this case, a function called getInput() is being called. Assuming that function asks
the user for a number and that number is assigned to z, the break occurs if the val-
ues of z and x happen to be the same. Otherwise, the for loop continues until x
reaches 10.

The continue statement is used within a loop to skip a particular increment. For
instance:
<script>

var x = 0

while (x < 10) {

x = x + 1;

if (x == 5) continue;

document.writeln (x + “ does not equal 5. <br \/>”);

}

</script>

In this case, when the condition (x == 5) evaluates to true, the continue statement
will cause the loop to move directly back to the while statement, thus skipping over
the last line that writes out the statement. When the condition is false, as it will be
most of the time, the last line will execute, resulting in another line of XHTML text
and markup.

Loops and Arrays
Although there are plenty of reasons to use loops in your scripting, one reason that
may not have jumped out at you yet is working with arrays. It turns out that loops
and arrays are natural helpmates. Loops are great at counting from one number to
the next, and arrays store multiple values using a numerical index.

Let’s consider the example of a while loop designed to extract values from an array:
<script type=”text/javascript”>

<!-- Hide scripting

student = new Array(“Bill”, “Wendy”, “Susan”, “Barry”, “Olga”, “Narice”);

numStudents = (student.length);

document.writeln (“There are “ + numStudents + “ students in the class <br
➥\/>”);

var x = 0;

while (x < numStudents) {

document.writeln (“Student #” + (x+1) + “: “ + student[x] + “<br \/>”);

x++;

}

// end hiding -->

</script>

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 331

Because of the funny way arrays work, we need to do a little math with the x vari-
able. It’s used to count through the while loop, as well as to fill in with the student
number and as the index for the array. Because student #1 equals index [0], we need
to change the student number to (x+1). Otherwise, everything else hums along
swimmingly, as you can see in Figure 17.5.

332 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 17.5

Loops make a

lot of sense

when you need

to work with

arrays.

Understanding JavaScript Objects
So far in this chapter, you’ve been introduced quickly to creating scripts that per-
form logical computing tasks using JavaScript. In this last section, we’ll be focusing
on JavaScript’s use of objects or collections of properties.

JavaScript, as with many other modern-day computer languages, is object-oriented.
This means you can create these special named collections of properties that include
variables and special built-in functions, called methods. You’ll find that these objects
can make working with chunks of data quite a bit easier.

In more practical terms, an object is a named container of sorts. In most cases, you
create an object with a special function, in a way that’s similar to creating an array.
You can then refer to the object using special notation that enables you to dig into
the object and access certain variables or methods. You’ve already seen a few
instances of this, such as
document.writeln()

This command is actually a call to the writeln() method that is part of the document
object. As you’ll see in Chapter 19, an HTML document is actually one large object
with many different variables that you can access and change. Changing aspects of
the document is one of the really cool things that JavaScript enables you to do.

You can also create your own objects and use them to store values. As an example,
consider an object called home01. This particular object is designed to store informa-
tion about a real estate listing, so it might have the following variables as part of it:
home01.price = 125000

home01.sqfoot = 2300

home01.beds = 3

home01.baths = 2

home01.base = true

home01.descrip = “Great location, good schools.”

What’s happened here is simple—values have been assigned to variables that all
happen to be associated with one another, because they’re all properties of the
home01 object. Because they’re all part of a single object, you can use the object for
such things as function calls:
<script>

showListing (home01);

</script>

And then you can use the pointer to that object to access each of the individual vari-
ables:
<script>

function showListing (home) {

document.writeln (“Home Price = “ + home.price + “<br \/>”>);

document.writeln (“Square Footage = “ + home.sqfoot + “<br \/>”);

document.writeln (“Beds/Baths = “ + home.beds + “/” + home.baths + “<br
➥\/>”);

document.writeln (“Description = “ + home.descrip + “<br \/>”);

return;

}

</script>

Of course, for this example to work correctly, you’d need to actually create the object
home01, which I haven’t gotten around to telling you how to do yet. Let’s look at how
that’s done before moving on.

Creating New Objects
Creating objects is done in two steps. First, you need to create a template for the
object, which is done using a function declaration. Then, you need to create an
instance of a particular object so that you can begin to work with it.

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 333

For instance, to create the template for your home object, you need to create a func-
tion:
function home(price, sqfoot, beds, baths, base, descrip) {

this.price = price;

this.sqfoot = sqfoot;

this.beds = beds;

this.baths = baths;

this.base = base;

this.descrip = descrip;

}

Notice the use of the word this. In JavaScript, this is a special keyword that’s used to
refer to the current object. It’s used throughout object manipulation, particularly
with forms, as you’ll see in Chapter 18.

Meanwhile, note also that the object will be created, based on the function template,
using the new keyword. Using new is the second step in creating your new object. The
following is an example:
home01 = new home(125000, 2300, 3, 2, true, “Great location, good
➥schools.”);

The new keyword creates a new object. It also tells the object-creating home function
that the price of this new object will be 125000, and so on. When the home function is
called, home01 will replace this and the assignment will work like this:
home01.price = 125000

home01.sqfoot = 2300

home01.beds = 3

home01.baths = 2

home01.base = true

home01.descrip = “Great location, good schools.”

Of course, you won’t see any of this happen. But, it’s now possible for you to access
this data just like a regular object:
document.writeln (“This house is priced at: $” + home01.price);

What if you only want to create one object? If that’s the case, you don’t need a tem-
plate. Instead, you can simply use an assignment to create the object:
myhouse = {price:125000, sqfoot:2300, beds:3, baths:2,

base:true, descrip:”Great location, good schools.”}

334 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

And while you’re working with individual objects, you’re free to add properties to an
object at any time. For instance:
home01.location = “midtown”

This is perfectly okay. It won’t affect any other objects that have been created, even
if those objects used the same function template that this one did.

More on Methods
Just as an object’s properties are simply variables that are associated with that
object, methods are basically functions associated with objects. For instance, one of
the methods you’ve used quite a bit is document.writeln(), which is really just a func-
tion provided by JavaScript that allows you to write XHTML marked-up text to the
current document object.

Notice that writeln() is the function, and document is the associated object. JavaScript-
compatible browsers define certain basic objects, like document, so it’s easier to access
them and change their properties.

You can even create your own methods by simply assigning a function name to an
object variable:
object.methodname = function_name

Or, in an object definition function, you can create a method like this:
function showListing () {

document.writeln (“Home Price = “ + this.price + “<br \/>”>);

document.writeln (“Square Footage = “ + this.sqfoot + “<br \/>”);

document.writeln (“Beds/Baths = “ + this.beds + “/” + this.baths + “<br
➥\/>”);

document.writeln (“Description = “ + this.descrip + “<br \/>”);

return;

}

function home(price, sqfoot, beds, baths, base, descrip) {

this.price = price;

this.sqfoot = sqfoot;

this.beds = beds;

this.baths = baths;

this.base = base;

this.descrip = descrip;

this.showListing = showListing;

}

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 335

Then, for instance, if you’ve defined an object named home01, calling the method
home01.showListing() would cause the showListing function to execute, using home01 in
the place of the this keyword in the function.

Note that you need to include the parentheses when you’re calling methods, even if you
don’t have data to pass to that method. If that’s the case, just opened and closed paren-
theses “()” are appropriate.

Built-In Objects
When you’re authoring scripts, there are a number of things you’re likely to do over
and over again. JavaScript includes some of these often-used calls in the language
itself, instead of forcing you to write your own functions and create your own
objects. The built-in objects tend to store useful values or offer convenient methods.
The functions usually perform some fairly intensive calculating that you’ll often
need to use.

You’ll learn about three major built-in objects available for you in JavaScript:

■ The first is the String object, which helps you manipulate your strings.

■ The Math object holds certain constant values for you to use in your script
and methods, making it a little easier to perform some mathematical func-
tions.

■ The Date object can be used to get the current date or to create a date object
for any date or time in the past or future.

These are only a few of the built-in objects, shown here because they’re often used and
they’re representative of the other objects. For more on built-in objects, see the Objects
chapter of the JavaScript reference at http://developer.netscape.com/docs/
manuals/js/client/jsguide/obj.htm.

The String Object
The String object is interesting if only because you don’t actually have to use the
notation string.property to use it. In fact, any string you create is a String object. You
can create a string as simple as this:
mystring = “Here’s a string”

The string variable mystring can now be treated as a String object. For instance, to
get a value for the length of a String object, you can use the following assignment:
stringlen = mystring.length

336 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Note

When you create a string, and JavaScript makes it a String object, the value of its
length is stored in the property length. (Note also that, because length is a property
and not a method, you don’t need the parentheses.) It also associates certain meth-
ods with the object, like toUpperCase(). You could change a string to all uppercase let-
ters with the following line:
mystring = mystring.toUpperCase()

If the string had the value “Here is a string”, this assignment would change it to
“HERE IS A STRING”. Table 17.2 shows some of the other methods available with string
objects.

TABLE 17.2 Methods for Strings in JavaScript
Method What It Does Example

anchor Creates a target anchor mystring.anchor(section_name)

big Displays string as big text mystring.big()

blink Displays string as blinking text mystring.blink()

bold Displays string as bold text mystring.bold()

charAt Selects an individual character mystring.charAt(2)

fixed Displays string in teletype font mystring.fixed()

fontcolor Displays string in color mystring.fontcolor(“red”)

fontsize Displays string in new font size mystring.fontsize(2)

indexOf Finds index # of a letter mystring.indexOf(“w”)

italics Displays string as italic mystring.italics()

lastIndexOf Finds last occurrence of letter mystring.lastIndexOf(“w”)

link Creates a link from the string mystring.link()

small Displays string as small text mystring.small()

strike Displays string as strikethrough text mystring.strike()

sub Displays string as a subscript mystring.sub()

substring Selects part of the string mystring.substring(0,7)

sup Displays string as a superscript mystring.sup()

toLowerCase Displays string as lowercase mystring.toLowerCase()

toUpperCase Displays string as uppercase mystring.toUpperCase()

You’ll notice that the table often says that the string is displayed as something,
because the methods don’t actually change the original value of the string. Instead,
they return a value that’s appropriate to their functions. That is, the small() method

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 337

returns the string as small text, while the toUpperCase() method returns the string as
uppercase text. So, the following example doesn’t really accomplish anything
because the small() method doesn’t change the original string:
<script type=”text/javascript”>

<!-- hide scripting

var testString = “Testing 1, 2, 3”;

document.writeln (testString + “<br\/>”);

testString.small()

document.writeln (testString + “<br\/>”);

// end hiding -->

</script>

A better way to do this would be as follows:
<script type=”text/javascript”>

<!-- hide scripting

var testString = “Testing 1, 2, 3”;

document.writeln (testString + “<br\/>”);

var smallString = testString.small()

document.writeln (smallString + “<br\/>”);

// end hiding -->

</script>

Now, with the returned value assigned to a new variable, you’ll find yourself with
something a bit more useful.

So what are these methods doing? For instance, the following two script lines would
have the same results:
document.write(“<big>” + mystring + “</big>”);

document.write(mystring.big());

Some of the other tags need explaining—especially those that deal with indexes.
Every string is indexed from left to right, starting with the value 0. So, in the follow-
ing string (which has been assigned to the variable howdystring), the characters are
indexed according to the numbers that appear under them:
Howdy, you

0123456789

In this case, using the method howdystring.charAt(4) would return the value y. You
could also use the method howdystring.indexOf(“y”), which would return the value 4.
Notice that there are two instances of y, however. Using howdystring.lastIndexOf(“y”),
you could find out that the index of that second y (as it’s also the last one in the
string) is 7.

338 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

The Math Object
The Math object just holds some useful constants and methods for use in mathemati-
cal calculations. Its properties are mathematical constants like e, Pi, and log10e (log-
arithm, base 10, of e). You can use these by simply adding the name as the Math
property, as in the following example:
var pi_value = Math.PI;

area = Math.PI*(r*r);

Table 17.3 shows you the various properties for the Math object.

TABLE 17.3 Properties for the Math Object
Property Value

PI Pi (approximately 3.1416)

E e, Euler’s constant (approximately 2.718)

LN2 Natural log of 2 (approximately 0.693)

LN10 Natural log of 10 (approximately 2.302)

LOG10E Base 10 log of e (approximately 0.434)

SQRT1_2 Square root of 1/2 (approximately 0.707)

SQRT2 Square root of 2 (approximately 1.414)

Of course, the properties are simply values that are conveniently stored within the
Math object. Along with those properties, the Math object offers methods that you can
use for a variety of mathematical hoop-jumping. The Math object’s methods are
called like any other methods. For instance, the arc sine of a variable can be found
by using the following:
Math.asin(your_num);

Table 17.4 shows the methods for the Math object.

TABLE 17.4 Methods for the Math Object
Method Result Format

abs Absolute value Math.abs(number)

acos Arc cosine (in radians) Math.acos(number)

asin Arc sine (in radians) Math.asin(number)

atan Arc tangent (in rads) Math.atan(number)

cos Cosine Math.cos(num_radians)

sin Sine Math.sin(num_radians)

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 339

tan Tangent Math.tan(num_radians)

ceil Least integer >= num Math.ceil(number)

floor Greatest int <= number Math.floor(number)

exp e to power of number Math.exp(number)

log Natural log of number Math.log(number)

pow Base to exponent power Math.pow(base, exponent)

max Greater of two numbers Math.max(num, num)

min Lesser of two numbers Math.min(num, num)

round Round to nearest integer Math.round(number)

sqrt Square root of number Math.sqrt(number)

These methods should come in pretty handy in creating the functions for your
scripts, especially if you’d like to do some serious scientific or mathematic calcula-
tions on your Web pages. That is to say, if you know more about math than I do.

The Date Object
Finally, let’s quickly look at another object you may have reason to use in your
JavaScript—the Date object. You can use the Date object to set the current date, per-
form math between different dates, and so on.

To use the Date object, you’ll need to create a particular instance of that object:
todayDate = new Date();

If you create a Date object that doesn’t include anything in the parentheses, it uses
the current date and time, in this format:
Day Mon Date HH:MM:SS ZNE Year

Here’s an example:
Thu Nov 29 13:57:46 CST 2001

You can use methods for the Date object to extract different portions of the date, such
as todayDate.getDay(), or todayDay.getDate() and todayDate.getHours(). If you’d like to
place the current date and time in your page, for instance, the following would do
that:
<script type=”text/javascript”>

<!-- begin hiding

var todayDate = new Date();

340 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

TABLE 17.4 (continued)
Method Result Format

document.writeln (“Today is: “ + “ “ + todayDate.getMonth() +

“/” + todayDate.getDate() + “/” + todayDate.getYear() + “
”);

document.writeln (“The time is: “ + todayDate.getHours() + “:” +

todayDate.getMinutes() + “
”);

// end hiding -->

</script>

The results would look something like this:
Today is: 10/5/2002

The time is: 14:31

Summary
In this chapter, you learned quite a bit about the basics of JavaScript, beginning
with how to add scripting elements to your pages, how to hide them from incompat-
ible browsers, and how to create comments within the script. You then saw a brief
“Hello World” example, which showed you a working JavaScript.

From there, you were introduced to functions, how they’re declared, and how they’re
called from the body of the script. Then you learned about variables, how they’re
created, how values are assigned to them, and some special ways in which they can
be incremented and decremented. In that same section, you were introduced to
arrays.

After variables came comparisons, including a look at many of the comparison
operators and how they differ from mathematical operators. In that section, you
also learned about the comparisons that can be done and how they’re used together
with the conditionals and loops to control the flow of a JavaScript.

Finally, you learned about objects within JavaScript, including how to define objects
and how to create and use methods. The chapter ended with an overview of three
important built-in objects: the String object, the Math object, and the Date object. You
can use all this knowledge in Chapters 18 and 19 as you create more advanced
scripts and solutions with JavaScript.

CHAPTER 17 INTRODUCTION TO JAVASCRIPT 341

I

18

JAVASCRIPT AND
USER INPUT
n this chapter, we’ll focus on some tasks you can accomplish with

JavaScript. You’ll see the different ways that you can handle events that

occur when people use your HTML documents and how you can react

to those events with scripted responses.

After that, you’ll see how to react to data that’s been entered into HTML

forms, calculate values based on that data, and return values to the

user. You’ll also see how to use JavaScript with full-fledged HTML forms

to check for errors or trouble with input before those forms are sub-

mitted to CGI processing scripts.

Finally, we’ll look at some other JavaScript automation possibilities,

including automatic page redirection, launching new pages with

JavaScript, and working with an HTML frames interface using a

JavaScript control.

This chapter discusses the following:

■ What events are and how they are handled

■ Using object pointers and accessing objects

■ Using JavaScript and HTML forms for interaction with the user

■ Using JavaScript to check HTML form data for errors

■ Automating the browser to redirect pages, create special links,
and manage HTML frames

Understanding JavaScript Events
In Chapter 17, you saw numerous references to event handling. One of JavaScript’s
main functions is to react to what the user does on the page, whether that’s selecting
buttons, clicking hyperlinks, or even hovering over items with the mouse. Anything
that the user does is considered an event, as is anything that happens automatically
or that occurs within the browser. For instance, when a page loads, that’s an event.
When the page is unloaded so that another page can appear, that’s an event, too.

To deal with these events, you’ll need to add event handlers to certain XHTML ele-
ments. You’ll follow this general format:
<element event_handler=”JavaScript code or function call”> </element>

Most <form> elements, hyperlinks, and some other elements can accept the various
event handler attributes. For instance, a few of the event handlers are designed
specifically to work with the <body> element, so that things can happen automati-
cally when the page is first loaded into a browser window.

The <form> elements are where you’ll see a lot of event handlers, however. Take the
following example, which enables you to use a form button not to submit the form
to a CGI script, but rather to submit the entry to a JavaScript function:
<h1>Computing the Entry:</h1>

<form>

Enter a number: <input type=”text” name=”userEntry” size=”5” />

Here’s the result: <input type=”text” name=”result” size=”5” />

<input type=”button” value=”Calc” onclick=”result.value =
➥compute(userEntry)”>

</form>

In this snippet of code, the user is asked to enter a number in the top form element
(a text entry box) and then click the Calc button. When that button is clicked, an
event handler, called onClick, is invoked. That event handler calls a function, called
compute, and sends a pointer to the <input> object named userEntry so the function
can find that data and use it for the calculation. Then, when the function returns a
value, it’s assigned to the variable result, and that result appears in the second
entry box, which happens to be named result. You can see how all this looks in
Figure 18.1. (Note that the function isn’t shown in the preceding sample, but it sim-
ply adds 100 to the number.)

344 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 18.1

Using event

handlers and

form elements,

JavaScript can

return values

without worry-

ing about CGI

scripts.

CHAPTER 18 JAVASCRIPT AND USER INPUT 345

Types of Event Handlers
Sometimes called intrinsic events to suggest that they’re scripting attributes without
the formal requirement of the <script> element, these event handlers are focused on
form elements. However, they can be used for a number of other elements on the
page that a user might interact with. Some events are used exclusively with certain
elements, while others can be used with a wide range of elements. You’ll see both
types in Table 18.1.

TABLE 18.1 Event Handlers and Their Purposes
Event Handler The Event Is Triggered When…

onfocus The user enters a form element (<input>, <select>, <textarea>, and
<button>) or other input element (<a>, <label>) using the mouse or
keyboard.

onblur The user leaves a form element, hyperlink, or other input element
(same elements as for onfocus), either by using the mouse or press-
ing a key.

onclick The user clicks an element.

ondblclick The user double-clicks an element.

onchange The user changes a value and leaves a form element (used with
<input>, <select>, and <textarea> only).

onkeypress The user presses a key while an element has the focus.

onkeydown The user holds a key down while an element has the focus.

onkeyup The user releases a key while an element has the focus.

onload The page loads (used with <body> or <frameset>).

onunload The page is exited (<body or <frameset>).

onmouseover The user points the mouse at an element.

onmousedown The user holds the mouse button down while pointing at an ele-
ment.

onmouseup The user releases the mouse button while pointing at an element.

onmousemove The user moves the mouse while it’s over an element.

onmouseout The user moves the mouse pointer away from an element that it
had been pointing to.

onselect The user selects either an <input> or <textarea> form input field.

onreset The user resets a form (works only with the <form> element).

onsubmit The user submits a form (works only with the <form> element).

Creating an event handler is simply a question of adding one of these handlers as
an attribute to the element that will be the focus. Then, inside the handler’s quota-
tion marks, you either include scripting code or a function call. Here’s an example
that calls a built-in function:
<body onunload=”alert(‘Thanks for visiting!’)”>

Incidentally, this example is the major reason that JavaScript will allow you to use
either single or double quotes in your scripting, as long as you’re consistent. If you
used double quotes in this alert function (the function is being passed a string
value), the onunload handler’s quotes will be closed early, thus creating an invalid
handler.

As noted, one way to respond to a user’s input is through an alert box, which is sim-
ilar to a dialog box except that it has only one button for a response. An alert box
communicates directly with the user, often blocking the main document window
until it’s dismissed.

The newline character, \n, allows you to add a hard return in the middle of a text string
used to create an alert box.

Aside from using built-in functions, such as alert(), you could call your own func-
tion from within the handler:
<input type=”text” name=”phoneNumber” onchange=”checkPhone (this.value)”
➥/>

In this example, the checkPhone() function is called and passed the value of the
<input> text entry box named phoneNumber. It does this by sending a pointer to that
value, using the this keyword, which is discussed in the next section.

346 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

TABLE 18.1 (continued)
Event Handler The Event Is Triggered When…

Tip

The this Keyword
The this keyword is probably one of the odder ducks you’ll encounter while trying to
learn JavaScript. What it does, in essence, is stand in for the current object that has
focus relative to the handler. Here’s an example like the one discussed in the previ-
ous section:
<form name=”myForm”>

<input type=”text” name=”phoneNumber” onchange=”checkPhone (this.value)”
➥/>

</form>

this is used to suggest “this input element,” and value is a property that stores the
value associated with this form element. You could also access that same value as
the following in order to pass along the value:
<form name=”myForm”>

<input type=”text” name=”phoneNumber”
onchange=”checkPhone (document.myForm.phoneNumber.value)” />

</form>

Note that the name of the form and the name of the <input> element are both vital
in getting at the correct value. That’s one reason for the this keyword; another is
simple convenience.

Introducing the Document Object Model
The this keyword is also an insidious harbinger of a concept that you must grasp
before you get too deep into forms—the Document Object Model (DOM). The DOM
extends the concept of objects—which you learned about in Chapter 17—until it
covers the documents that you’re creating in XHTML and working with in
JavaScript. In other words, it makes the document itself into objects, which you can
then use for JavaScript.

You’ve just seen an example of the DOM in action. In the most recent example, you
saw the following as the event handler for an <input> element:
onchange=”checkPhone (document.myForm.phoneNumber.value)”

That series of references inside the function call—document.myForm.phoneNumber.value—
is a reference to the DOM. Beginning with the first object name, document, you then
work through a number of objects that have been created in the course of the
XHTML authoring for this page. First is the myForm object, which holds all the differ-
ent elements’ named objects; then the phoneNumber object, which stores a number of
properties for that particular <input> element; and finally the value property of
phoneNumber, where the number entered by the user is stored.

CHAPTER 18 JAVASCRIPT AND USER INPUT 347

It turns out that the DOM also enables you to work with a set of properties between
a function call and a function without actually passing any values between the two.
Listing 18.1 is an example of this—notice that neither the function nor the function
call requires any parameters. That’s because the form data is stored in the DOM,
which can be accessed using the correct object syntax.

LISTING 18.1 Working Directly with Your Document’s Object
Properties

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Passing the Pointer</title>

<meta http-equiv=”Content-Script-Type” content=”text/javascript”>

<script>

<!-- Begin hiding

function compute()

{

var myNum = document.myForm.userEntry.value;

myNum = eval(myNum)

var myResult = myNum + 100;

document.myForm.result.value = myResult;

return;

}

// End hiding -->

</script>

</head>

<body>

<h1>Computing Form Data:</h1>

<form name=”myForm”>

Enter a number: <input type=”text” name=”userEntry” size=”5” />

Here’s the result: <input type=”text” name=”result” size=”5” />

<input type=”button” name=”Calc” value=”Calc” onclick=”compute()” />

</form>

</body>

</html>

348 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Here’s how this works:

1. The user enters a number in the userEntry text box.

2. Then, when the user clicks the Calc button, the compute() function is invoked.

3. The function looks up the value of that user entry and assigns it to myNum.
Next, it accesses a built-in function, eval(), which evaluates that entry into a
number. (Otherwise, it would think the value is text, even though we asked
for a number.)

4. Some arithmetic happens and the answer is assigned to myResult.

5. myResult is assigned to the value property for the result entry box that’s down
in the form. The answer automatically appears in the result entry box, and
hence is made visible to the user. (This is the same example you saw back in
Figure 18.1.)

One thing to watch out for when you’re working on this sort of script is when to use
the value property and when to ignore it. In most cases, if you’re trying to assign
something to a particular element with a form, you’ll need to use the value property.
That’s because the named element—say, userInput—has more than just a value asso-
ciated with it. It also has a type property, for instance, which was set in the original
<input> element. So, you can’t just use document.form.userInput = x; because userInput

is an object, not a property.

The DOM has only recently been standardized by the W3C, and Internet Explorer,
Netscape, and other browsers have varying implementations of it. Throughout this chap-
ter and the next, I’ll try to touch on only cross-platform DOM issues (those that work in
both browsers). Chapter 19, “Adding Dynamic HTML,” will offer some platform-specific
discussion of other DHTML issues, though.

Understanding Scope and Pointers
One of the issues that can be something of a pain with the DOM is constantly refer-
ring to items by their full DOM paths. In general, you need to start at the highest
object and move through them, with a period between each one, to get down to a
particular property or method. In fact, we’ve already been using a shortcut. The
highest-level object is actually window, so most of our references in the previous sec-
tion could have looked like this (or something similar):
window.document.form.userInput.value

CHAPTER 18 JAVASCRIPT AND USER INPUT 349

Note

As it turns out, though, these paths have something called a scope, which means
you can use a shorthand within certain boundaries. Because our scripts aren’t affect-
ing any other windows at this stage, we can start with the document object because
the current window is assumed.

Along with scope comes another interesting concept, called the pointer. In essence, a
pointer is a variable that holds the location of an object. This allows us to cut down
the amount of typing we do by assigning a variable to a particular object’s path:
function compute()

{

var theForm = document.myForm;

var Num = theForm.userEntry.value;

Num = eval(Num)

var Result = Num + 100;

theForm.result.value = Result;

return;

}

With this simple change to Listing 18.1, we’re able to substitute theForm for
document.myForm in each of the object references, which makes life just a little bit
easier.

These assignments don’t have to happen up top, either. Instead, you could create the
pointer in the transaction between the function call and the function. First, consider
the function call:
<form name=”myForm”>

...other elements...

<input type=”button” name=”Calc” value=”Calc” onclick=”compute(myForm)” />

</form>

Notice that this is a little different from Listing 18.1, because now you’re going to
pass the name of the current form to the function. Because of scoping, you don’t
have to use the entire DOM path to myForm—because you’re in myForm, you can go
ahead and simply use myForm in the function call. Now you have to rewrite the func-
tion to accept the value and create a pointer:
function compute(theForm)

{

var Num = theForm.userEntry.value;

Num = eval(Num)

var Result = Num + 100;

theForm.result.value = Result;

return;

}

350 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Creating the pointer isn’t tough at all. All you have to do is give the pointer a name
in the parentheses following the function name and you’re set. When the function is
called, the pointer is created and it’s assigned the location of the form. Now, when
you access objects and values using that pointer, you can work with them just as if
you were using the entire DOM path.

Working with High-Level Objects
So far what we’ve dealt with are form objects, and we’ll get back to those later in
this chapter. In the meantime, however, you may be interested to see some of the
other DOM objects that you can use in your scripting. In particular, let’s take a look
at the window object, the location object, and the document object.

The window Object
The window object is something you’re already familiar with, even if you don’t know
it. One familiar method of the window object is the alert() method, which you’ve
seen in sample scripts up until now. The full reference to that method is
window.alert(), but unless you’re trying to open an alert for another window, scoping
allows you to drop the full reference. What alert() does is pop up a dialog box that
must be dismissed—by clicking the OK button—before anything else can happen in
that window. A string in the parentheses determines what text will appear in the
alert dialog box.

As with any other object, the window object has both properties and methods. For the
most part, the properties can only be read—you can’t change many of them,
because the window already exists. Those properties include name (in the title bar),
length (number of frames in the window), self (which points to the current window),
and status. This last one can actually be used to change the Web browser’s status
line, which is the little description line at the bottom of the window. Here’s an
example:
<a href=”products.html” onmouseover=”status=’See our full line of
products’” onmouseout=”status=’’”>Products

The window object offers a number of methods that you can use to change things
about the window. These include both alert() and the eval() methods, which you’ve
been introduced to. The eval() method, which we used to turn a string into a num-
ber, can actually be used to turn any string into JavaScript code, not just into a
number.

Other methods that you can use with the window include confirm(), which, like
alert(), pops up a dialog box with the enclosed string as its message. Instead of just
an OK button, however, the user can also choose a Cancel button. If Cancel is

CHAPTER 18 JAVASCRIPT AND USER INPUT 351

clicked, a value of false is returned; if OK is clicked, true is returned. For example:
var keepGoing = confirm(“Do you want to continue?”);

The prompt() method is also similar to alert() and confirm(), but it’s used to receive a
value from the user. You can include both a string for the dialog box text and an
optional sample value:
var numberGuess = prompt(“Enter a number”, 5);

var emailAddress = prompt(“Enter your e-mail address”,
➥“myadd@fakecorp.com”);

The open() method can be used to open a new window, and you can include param-
eters to govern how that window is opened and what URL it displays. To open a win-
dow and display a particular URL, simply use window.open(“URL”).

The resizeTo() method is a fun one—you can automatically resize a browser window
to a particular width and height in pixels. For instance, if your site is best viewed in
800×600, you might opt for a line such as this:
<body onload=”window.resizeTo(800,600)”>

Along with those properties and methods, the window object has a number of sub-
objects, such as location, document, and history. The first two have their own sections
coming up, but history is worth looking at here. You can use the history object to
access different URLs stored in the browser’s history (the pages that have been visited
recently). Properties for history include current, previous, and next, which can be used
to get the URLs of recently visited pages. The length property can be used to deter-
mine the number of URLs that are stored in the history, and then the history.go(x)
method can be used to go to a particular entry, where x is the number of entries to
go backward in the history. (To go forward, make x a negative number.) Other meth-
ods include back() and forward(), as in the following:
Go back

The location Object
As mentioned, the location object is actually part of the window object, so it’s techni-
cally referenced using window.location. In practice, scoping generally enables you to
leave off the window and just use location, as in location.href.

You can access a number of different properties of the location object, all of which
are designed to help you learn different portions of the URL of the current page. For
instance, location.href is used to display the entire URL of the current page:
document.write(“The current URL is: “ + location.href);

352 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

The rest of location’s properties hold portions of the page’s URL that can be accessed
separately. They include the following:

href Holds the full URL

protocol Stores the protocol, as in http:

hostname Stores the name of the computer that is hosting
the current document, as in www.fakecorp.com

port Stores the port number, if relevant

pathname Stores the path statement, including the directo-
ries, the subdirectories, and the name of the cur-
rent document

You can use this information for something as simple as a command to place the
current URL on every page, perhaps near the top or the bottom of the page. For
instance:
document.writeln(“This page’s URL is: “ + location.href);

You can also cause a new page to load in the browser window with a command
such as this:
location.href = “http://www.fakecorp.com/newpage.html”;

The document Object
The document object is another child of the window object, but it’s a child that’s all
grown up. This one is really the main object you’ll be dealing with when it comes to
JavaScript, and particularly HTML forms. That’s not to say other objects aren’t acces-
sible, but the document object is where all the other objects and elements on your
page are stored. So it’s through the document object that you’ll access and alter those
elements.

The document object’s properties include

domain Stores the domain at which this document is
located (as in www.fakecorp.com)

URL Stores the URL to the current document

referrer Can be used to determine the URL of the page
from which this page was linked (the page that
referred the user to this page)

lastModified Stores the date when the document was last
changed

title Stores the title of the document (as defined
between the <title> tags)

CHAPTER 18 JAVASCRIPT AND USER INPUT 353

anchors This is an array, which stores each of the anchors
in the document that has a name associated
with it

images Another array that stores all the images on the
page

forms Yet another array, designed to make different
forms on the page accessible

Most of these are fairly self-explanatory. The last few arrays can be accessed using
the same approach to arrays that was discussed in Chapter 17. For instance, to find
out the URL to the first image on the page, you could use this:
alert(document.images[0].src);

You could also set that image to a new URL, which would actually substitute the
image on the page. This is something we’ll look into more in Chapter 19, as it’s con-
sidered a “dynamic HTML” trick:
document.images[0].src = “images/new.gif”

The document object includes a few methods with which you are already familiar,
such as document.writeln(), which is used to write a line of text and markup to the
page. Similarly, document.write() can also be used for this purpose—the only differ-
ence is that writeln() includes a hard return at the end of each line. (Generally that
isn’t important in XHTML markup, unless the return occurs inside a <pre> element or
inside some other element definitions.)

Another method enables you to clear out the current markup first, and then write
to the page. It’s the document.open() method, which clears the page. Follow it with
document.write() or document.writeln() methods and the document.close() method,
and you’ve got a new page, as shown in Listing 18.2.

LISTING 18.2 Using a Form Value for Personalization

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Personalization Page</title>

<script type=”text/javascript”>

<!-- Begin hiding

function personalizePage ()

{

var userName = personalForm.myName.value;

354 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

document.open()

document.write(“<html><head><title>New Document</title></head>”)

document.write(“<body><h1>Welcome, “ + userName + “</h1>”)

document.write(“<p>This page has been customized for your personal enjoyment.</p>”)

document.write(“</body></html>”)

document.close()

}

// End hiding -->

</script>

</head>

<body>

<h1>Personalize the Page</h1>

<p>Enter your name, then click the Personalize button. The content of the
page will change.
 Note that the URL will not change, only this page’s
content.</p>

<form name=”personalForm”>

Enter your name: <input type=”text” name=”myName”> <input type=”button”
name=”personalButton” value=”Personalize “ onclick=”personalizePage()”>

</form>

</body>

</html>

Note that this example not only demonstrates the document.open() method, but it
also demonstrates that you’re not actually changing documents. The statement var
userName = personalForm.myName.value; shows that the document is still the ultimate
scope—it’s able to access the personalForm object without a more strict object refer-
ence. If this were a new page (changed using location.href, for instance), you’d have
a tougher time accessing that form value. Figure 18.2 shows Listing 18.2 in action.

CHAPTER 18 JAVASCRIPT AND USER INPUT 355

LISTING 18.2 (continued)

FIGURE 18.2

On the left is the

original page; on

the right is the

page after the

document.open()

method has

been invoked.

JavaScript and HTML Forms
In the previous section, you saw a number of the DOM objects you can access and
alter using JavaScript. In this section, we’re going to focus on one subset of the
document object, the form object, and the various ways it can be manipulated.

The form Object
First, we should get the issue of multiple forms out of the way. In most cases, your
forms will have names, thanks to the name attribute you use in the <form> element. If
you give your form a name, as in name=”myForm”, you can easily access the elements
of that form:
var name = document.myForm.custName.value

Likewise, you’ve seen the steps you need to take to either pass a value to a function,
pass a pointer to a function, or pass nothing to a function and let the function
directly access the form via the document object. Easy enough.

But, as was mentioned, the document object has a property called forms that’s actually
an array of the forms stored in that document. Assuming myForm in the preceding
example is the first form in the document, it could also be accessed in this way:
var name = document.forms[0].custName.value

That’s perfectly valid. And at times, you may find it useful to access forms using the
array, particularly if you need to access them automatically:
for (x=0; x<3; x=x+1) {

var formName[x] = document.forms[x].name

}

With that sort of for loop, you could set each form’s name to an array, making them
individually accessible using the formName array.

Each form object (whether it’s accessed as an array or by name) has a number of
properties, just like the document and window objects do. The form object’s properties
include the following:

action The action URL, as set in the <form action=” “> attribute

method The method attribute’s value (get or post)

name The name of the form, as set in the <form name=” “>
attribute

length The number of elements (input, textarea, and select ele-
ments) in the form

target The window or frame that is targeted by the form

elements An array that holds all the elements (input, textarea,
and select elements) in that form

356 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

The form object also includes some methods, including reset() and submit(), which
can be used as if the Reset or Submit buttons were clicked by the user.

Form Error Checking with JavaScript
JavaScript and event handling are ideal for checking your user’s form entries. As
users type, JavaScript can be working in the background to make sure that the users’
entries are correctly coded, have the right number of characters, and so on. You’ll
find that you can check pretty much any form element, although you’ll most likely
want to focus on entry boxes and textarea elements.

Let’s start with an example script. Listing 18.3 shows you an entire page that has
been designed to enable form entry, while checking the user’s input in the ZIP Code
entry box to make sure the ZIP Code is a valid number.

LISTING 18.3 Verifying Form Data with JavaScript

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Checking the Zip</title>

<meta http-equiv=”Content-Script-Type” content=”text/javascript”>

<script>

<!--

function zipCheck()

{

var zipStr = custForm.zipCode.value;

if (zipStr == “”) {

alert(“Please enter a five digit number for your Zip code”);

return(-1);

}

if (zipStr.length != 5) {

alert (“Your Zip code entry should be 5 digits”);

return(-1);

}

return(0);

}

function checkSend()

CHAPTER 18 JAVASCRIPT AND USER INPUT 357

{

var passCheck = zipCheck();

if (passCheck == -1) {

return;

}

else {

custForm.submit();

}

}

// end hiding -->

</script>

</head>

<body>

<h1>Please fill out the following form:</h1>

<form action=”cgi-bin/address.pl” method=”post” name=”custForm”>

<pre>

Name: <input type=”text” size=”20” name=”name”>

Address: <input type=”text” size=”50” name=”address”>

City: <input type=”text” size=”30” name=”city”>

State: <input type=”text” size=”2” name=”state”>

Zip: <input type=”text” size=”5” NAME=”zipCode”

onBlur = “zipCheck()”>

Email: <input type=”text” size=”40” Name=”email”>

<input type=”button” value=”Send It” onClick = “checkSend()”>

</form>

</body>

</html>

This form works by using the onblur event handler to notice when the user moves
away from the ZIP entry box—either by clicking in another box or by pressing the
Tab key. The event handler then invokes the zipCheck function, which makes sure
that the ZIP Code has been entered correctly. First, if nothing has been entered, an
alert pops up, letting the user know that the ZIP Code is required. This is done by
checking if the zipStr variable is empty:
if (zipStr == “”) {

358 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 18.3 (continued)

Next, the function checks that the ZIP Code entered is five characters long—not
longer or shorter. It does so with this if statement:
if (zipStr.length != 5) {

If the ZIP Code is the correct length, nothing happens and the user can continue
entering items on the form. If the ZIP Code isn’t the correct length, an alert pops up.

Of course, the user could either ignore the alert or change the ZIP Code but still get
it wrong. In that case, the zipCheck function gets called a second time, from within
the checkSend function:
var passCheck = zipCheck();

If the ZIP Code is still incorrect, the zipCheck function will return the value –1, which
the checkSend function is on the lookout for:
if (passCheck == -1) {

return;

}

So, if the ZIP Code is still not correctly entered, the checkSend function will return to
the form so the user can try again.

If the user did enter a correctly sized ZIP Code this time, the form is submitted:
else {

custForm.submit();

}

See Figure 18.3 for an example of what happens when the user enters a ZIP Code
incorrectly.

CHAPTER 18 JAVASCRIPT AND USER INPUT 359

FIGURE 18.3

If the ZIP Code

isn’t entered cor-

rectly, an alert

box appears.

Actually, we haven’t completely checked for a valid ZIP Code. Indeed, this could get
as complicated as you want it to be. For instance, you could add code that makes
sure the ZIP Code is made up of numbers, thus disallowing characters. One way to
do that is using the charAt() method of the String object, which can check each char-
acter to make sure it falls within the correct range of 0 through 9. Here’s the
expanded zipCheck function:
function zipCheck()

{

var zipStr = custForm.zipCode.value;

if (zipStr == “”)

{

alert(“Please enter a five digit number for your Zip code”);

return(-1);

}

if (zipStr.length != 5)

{

alert (“Your Zip code entry should be 5 digits”);

return(-1);

}

for (x=0; x < 5; x++)

{

if ((zipStr.charAt(x) < “0”) || (zipStr.charAt(x) > “9”))

{

alert(“All characters in the Zip code should be numbers.”);

return(-1);

}

}

return(0);

}

Now, with this one, we’ve added another check, just in case the user squirms by the
first two. This third check begins with a for loop, so that the script can move
through the length of the ZIP Code and check each character:
for (x=0; x < 5; x++)

{

360 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Using the for loop, we can move through each index value (from 0 to 4) of the
zipStr array. Then, using a clever little if statement, the function checks each char-
acter to see if it’s a number (that is, it makes sure the character isn’t below 0 or
above 9):
if ((zipStr.charAt(x) < “0”) || (zipStr.charAt(x) > “9”))

{

The || means “or,” by the way. This expression evaluates as “if the character is less
than zero or if the character is more than 9.” If one of those is true, the alert is trig-
gered:
alert(“All characters in the Zip code should be numbers.”);

return(-1);

If the alert isn’t triggered, the if statement is over and the user is none the wiser for
having been checked.

Client-Side JavaScript
Another advantage of JavaScript is that it gives you an option for dealing with
forms without ever worrying about a CGI script. In some cases, you’ll find that you
don’t have access to the CGI directory on your server. In other cases, you simply
don’t want to go to the hassle of creating a CGI script. Listing 18.4 shows an exam-
ple of such a script.

LISTING 18.4 The Completely Client-Side Form

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Customer Survey Form</title>

<script>

<!--

function processform () {

var newline = “\n”;

var result_str = “”;

var Form1 = document.form1;

result_str += Form1.first_name.value + “ “ + Form1.last_name.value + newline;

result_str += Form1.email.value + newline;

CHAPTER 18 JAVASCRIPT AND USER INPUT 361

for (x = 0; x < Form1.where.length; x++) {

if (Form1.where[x].checked) {

result_str += Form1.where[x].value + newline;

break;

}

}

if (Form1.desktop.checked) result_str += “desktop computers” + newline;

if (Form1.notebook.checked) result_str += “notebook computers” + newline;

if (Form1.peripherals.checked) result_str += “peripherals” + newline;

if (Form1.software.checked) result_str += “software” + newline;

document.form2.results.value = result_str;

return;

}

// -->

</script>

</head>

<body>

<h1>Web Site Survey</h1>

<form name=”form1” id=”form1”>

<table cellpadding=”5”>

<tr>

<td>First name:</td> <td><input type=”text” name=”first_name” size=”40” maxlength=”40”
➥/></td>

</tr>

<tr>

<td>Last name:</td> <td><input type=”text” name=”last_name” size=”40” maxlength=”40”
➥/></td>

</tr>

<tr>

<td>E-mail address:</td> <td><input type=”text” name=”email” size=”40” maxlength=”40”
➥/></td>

</tr>

362 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 18.4 (continued)

</table>

<p>

Where you heard about us:</p>

<input type=”radio” name=”where” value=”Web” checked=”checked”>Web Search or
➥Link</input>

<input type=”radio” name=”where” value=”Advertisement”>Radio or TV Ad</input>

<input type=”radio” name=”where” value=”Press Mention”>Article or press
➥mention</input>

<input type=”radio” name=”where” value=”Other”>Other</input>

</p>

<p>

What products would you like more information about? (check all that apply)

<input type=”checkbox” name=”desktop”> desktop computers

<input type=”checkbox” name=”notebook”> notebook computers

<input type=”checkbox” name=”peripherals”> peripherals

<input type=”checkbox” name=”software”> software

</p>

<button name=”submit” type=”button” onclick=”processform ()”>

Submit Survey

</button>

<button name=”reset” type=”reset”>

Clear Page

</button>

</form>

<hr />

<form name=”form2” id=”form2” action=”mailto:survey@fakecorp.net”>

<p>Check the entries below for accuracy. If they’re accurate, then enter a comment on
the last line (if desired) and click Send It to send the form via e-mail.</p>

<textarea name=”results” cols=”40” rows=”10”>

</textarea>

<button name=”submit” type=”submit”>

CHAPTER 18 JAVASCRIPT AND USER INPUT 363

LISTING 18.4 (continued)

Send It!

</button>

</form>

</body>

</html>

This script isn’t too terribly complicated, but it’s worth examining. First, the script
accepts values from the user via the survey form. Then, it translates those values,
via the script up top, into text values, which are fed into the second form’s text area.
Then, the user is able to edit the data (add a comment, for instance, as shown in
Figure 18.4) and click the Send It! button to send the form as an e-mail message.

364 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 18.4 (continued)

FIGURE 18.4

Here the user

can edit the

data before

sending it.

The data will still arrive in the post format (see Chapter 15, “Adding HTML Forms”),
but there’s only one field to worry about working with once the text has been parsed.

This example shows that it’s important to get the correct values from checkboxes
and radio buttons. Listing 18.4 shows two different ways to do that. To begin, let’s
look at radio buttons. You need to determine which of the radio buttons has been
checked, and then you can work with that value. With radio buttons, the values are
stored in a special array, so we use a loop to access them:

Note

for (x = 0; x < Form1.where.length; x++) {

if (Form1.where[x].checked) {

result_str += Form1.where[x].value + newline;

break;

}

}

All the radio buttons are stored in an array of objects that are named for the name
attribute used to create the radio buttons—in this case, that’s where. Within each
where object, the property checked can be used to determine if that value has been
selected. When you find the checked where object, the associated value property is
what you’re interested in. So, the preceding loop looks at each checked property.
When it finds one that’s true, that value is used (in this case, it’s added to result_str)
and the for loop stops, thanks to the break command.

The second example shows how to deal with a series of checkboxes. Again, you test
the checked property. Because each checkbox has its own name attribute, however, you
don’t need an array or a loop. Each checkbox is evaluated individually to see if it’s
checked. If it is, its value is used:

if (Form1.desktop.checked) result_str += “desktop computers” +
➥newline;

if (Form1.notebook.checked) result_str += “notebook computers” +
➥newline;

if (Form1.peripherals.checked) result_str += “peripherals” + newline;

if (Form1.software.checked) result_str += “software” + newline;

If the box is checked, a string is added to the result_str; if it isn’t checked, the script
moves to the next if statement.

JavaScript for Redirection and Frames
You’ve seen how to access and alter some of the main objects of the DOM, and
you’ve seen how to verify form data and use JavaScript to alter form data and for
client-side processing. In this section, let’s take a quick look at some other little
JavaScript tricks, including redirecting a browser, building links in JavaScript, and
using JavaScript with frames.

Browser Redirection
It can be useful to figure out which browser your user is using and redirect that user
to a particular page. Not only is it sometimes important to know if the browser is
Internet Explorer, Netscape, or another brand, but you can also use browser redirec-
tion to determine whether or not a browser supports JavaScript and make sure your
user automatically visits the appropriate page.

CHAPTER 18 JAVASCRIPT AND USER INPUT 365

For browser redirection, you’ll use another object we haven’t touched on much, the
navigator object. Using this object and its properties, you can get a sense of which
browser version you’re dealing with. The navigator.appName property stores a string
that tells you the full name of the application, the navigator.userAgent object tells
you the general level that the browser is compatible with (as in Mozilla/4.0, which
could be any Netscape-compatible 4.0-level browser), and the navigator.appVersion
property reports the version number.

So, the first thing you can do with this knowledge is create a document that will
show you all the properties of the browser that access that document:
<script type=”text/javascript”>

document.writeln (“navigator.appName: “ + navigator.appName + “<br \/>”);

document.writeln (“navigator.userAgent: “ + navigator.userAgent + “<br
➥\/>”);

document.writeln (“navigator.appVersion: “ + navigator.appVersion + “<br
➥\/>”);

</script>

Although this information is useful, it can be a bit more difficult to turn it into a
perfectly useful browser redirection script—one that notes the version and loads a
particular URL in response. That’s because you need to actually have the script parse
those names and figure them out so you know which browser is which. This can be
done with a series of if statements, as shown in Listing 18.5.

LISTING 18.5 Browser Redirection

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Browser Detector</title>

<script type=”text/javascript”>

<!--

var browserAppName = navigator.appName;

if (browserAppName == “Netscape”) {

window.location = “net_index.html”;

}

else {

if (browserAppName == “Microsoft Internet Explorer”){

window.location = “ie_index.html”;

}

366 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

else {

window.location = “index.html”;

}

}

//-->

</script>

</head>

<body>

<h1>Browser Detector</h1>

<p>If this page doesn’t refresh, then you may have a browser that isn’t JavaScript
compatible, or you may have JavaScript turned off. Please click to visit our
non-JavaScript index page.</p>

</body>

</html>

Of course, you already may have figured out that if your goal is simply to detect
JavaScript versus non-JavaScript, the best way is to include a JavaScript redirect
command—just a simple window.location = “newpage.html” command will suffice. If
that page doesn’t redirect, you can assume the user doesn’t have a JavaScript-capa-
ble browser, so you can offer him a link to the non-scripted part of your site.

Sometimes you’ll need to know more than simply the brand of browser. In that case,
you may also want to test the .appVersion property to see what version of the applica-
tion you’ve encountered. Also, Chapter 19 has a more sophisticated look at browser
detection (often called browser sniffing) in the section “Cross-Browser DHTML
Example.”

The JavaScript Link Menu
One of the form elements we haven’t yet discussed is the <select> element, partly
because it’s the odd duck of form elements and JavaScript. In this example, though,
we’ll create a navigation menu that you can use on your pages to allow your users
to quickly move to a different page. And we’ll use a <select> menu to create that
navigation menu. Listing 18.6 shows this in action.

CHAPTER 18 JAVASCRIPT AND USER INPUT 367

LISTING 18.5 (continued)

Note

LISTING 18.6 The <select> Menu and JavaScript

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Change Page</title>

<script type=”text/javaScript”>

<!--

function changePage(theSelect) {

var x = theSelect.selectedIndex;

window.location.href = theSelect.options[x].text;

}

// -->

</script>

</head>

<body>

<div align=”center”>

<form name=”changeForm”>

<p>

<select name=”changeSelect” onchange=”changePage(this)”>

<option selected=”select”>Choose a Page</option>

<option>index.html</option>

<option>products.html</option>

<option>service.html</option>

<option>about.html</option>

<option>help.html</option>

</select>

</p>

</form>

</div>

<hr />

<h1>Welcome to the Site!</h1>

<p>Markup...</p>

</body>

</html>

368 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

With a <select> menu, there are no assigned values, as with most other form ele-
ments. Instead, the text of the menu itself is what is stored, in a text property of the
select menu’s object. Also, the selected value is stored in a selectedIndex property. So,
using the following function, the script simply consults the selectedIndex property,
and then uses that index to access the text of the selected option (which is stored in
the options array):
function changePage(theSelect) {

var x = theSelect.selectedIndex;

window.location.href = theSelect.options[x].text;

}

Programmatically, that’s how you get items out of a <select> element. Figure 18.5
shows this page in action.

CHAPTER 18 JAVASCRIPT AND USER INPUT 369

FIGURE 18.5

Changing pages

with a <select>

menu and

JavaScript.

Of course, the way this script and menu are set up, you’ll need to copy them to each
of the pages involved if you want the menu as a fixture on your Web site. There is
another option—you could use frames, as discussed next.

JavaScript and HTML Frames
So, assuming you are working with a browser that’s capable of JavaScript, wouldn’t
it be interesting to use it for the entire interface? One way to do that is to use HTML
frames to create the interface, while offering your users a pull-down menu for navi-
gation. In this section we’ll create such a site, which will be designed as an archive
of Web articles, easily accessed via a menu.

As with any frames interface, you’re going to need a number of different documents
to make this interface work. First, a <frameset> document will be used to bring the
whole thing together. Second, you’ll need a navigation page that includes a <select>
menu, as discussed in the previous section. With just a few tweaks, that menu can
be used for this frames-based approach as well.

In addition to those two elements, you’ll need a document that loads when the
frameset appears. In this case, it will be the default page that explains the interface.
And of course, you’ll need all the content pages that are to appear in the frames
interface.

To begin, Listing 18.7 shows the frameset document.

LISTING 18.7 The Frameset Document

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>The Article Viewer</title>

</head>

<frameset rows=”150, *”>

<frame src=”navigate.html” />

<frame src=”default.html” name=”main_viewer” />

</frameset>

Next up, we need navigate.html, which will be the top frame of the frameset and is
based on the <select> menu example used in the previous section. Listing 18.8 shows
that example, now tweaked to target the main_viewer frame of the frameset, using the
object reference top.main_viewer.location.href. As you may remember from Chapter
12, “Creating Sites with HTML Frames,” top is a special target that means, ulti-
mately, the browser window. It’s also an object in the DOM, which includes all the
frames of the frameset, so that those frames can be assigned URLs programmati-
cally.

Note, also, that this version of the navigate page has been altered so that the user,
instead of seeing URLs, sees a description, which is translated into the appropriate
URL. That’s done simply by creating an array of URLs, which are referenced using
the index number of the selection in the menu. You’ll need to carefully construct this
array (to make sure that the <option> entries in the <select> element correspond to
this list of URLs in the array), but it’s a tricky way to make the menu a little more
readable.

370 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 18.8 The navigate.html Page

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Navigate Page</title>

<script type=”text/javaScript”>

<!--

function changePage(theSelect) {

pageArray = new Array(“default.html”, “article1.html”, “article2.html”,
“article3.html”, “article4.html”, “article5.html”);

var x = theSelect.selectedIndex;

top.main_viewer.location.href = pageArray[x];

}

// -->

</script>

</head>

<body style=”background-color: yellow”>

<div align=”center”>

<h1>FakeCorp Article Archive</h1>

<form name=”changeForm”>

<p>What article would you like to read?</p>

<p>

<select name=”changeSelect” onchange=”changePage(this)”>

<option selected=”select”>Default Page</option>

<option>The Skinny on RAM</option>

<option>Hard Drive Technologies</option>

<option>Choosing a Monitor</option>

<option>Upgrading and Swapping Processors</option>

<option>Troubleshooting the OS</option>

</select>

</p>

</form>

</div>

</body>

</html>

CHAPTER 18 JAVASCRIPT AND USER INPUT 371

Now, we need a default.html page that can appear when the frameset is first loaded.
This page is a simple XHTML document that tells the user a little about the inter-
face, offers any news or updates, and enables incompatible browsers to avoid the
frames interface. Listing 18.9 shows the page.

LISTING 18.9 The default.html Page

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Default Page</title>

</head>

<body style=”margin: 24pt”>

<h1>Welcome to the Article Viewer!</h1>

<p>Using the menu above, select the article that you’d like to view.
It should load automatically in this window. If you’d like to return
to this page, choose Default Page from the menu. </p>

<p>If you’d prefer to view this site without a frames interface, or if
your browser doesn’t support JavaScript, please visit or
no-frames interface to read these articles.</p>

<h2>Latest Additions</h2>

<p>10/13 -- We’ve just posted an article that looks
into the various RAM technologies to help you decide which is right
for your model of computer. Check it out for in-depth coverage of the
numbers and statistics you need to know to buy reliable RAM.</p>

<p>10/5 -- Check out Upgrading and Swapping Processors
for step-by-step discussion on deciding whether it’s time to upgrade your
PC’s processor and, if so, how you should go about it.</p>

</body>

</html>

Now, assuming the other articles are in place (those referenced in the array that
was created for the navigate.html page), we’re ready to put this frameset to use.
Figure 18.6 shows the final frameset in action.

372 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 18.6

Using a frameset

and a special

<select> menu

navigation

page, you can

create a

JavaScript-based

interface.

CHAPTER 18 JAVASCRIPT AND USER INPUT 373

Summary
In this chapter, you saw some advanced JavaScript issues focusing on how to react
to user input. The chapter began with a discussion of event handlers and how
they’re used in conjunction with JavaScript function definitions to create scripts that
respond to the user. The chapter then took a fairly in-depth look at some of the
main objects of the Document Object Model, all of which can be useful for altering
document, window, and page properties using a script.

After that, the chapter turned to using the DOM, event handlers, and JavaScript to
respond to user’s input in HTML forms. You saw how to check the data that is input
into form elements, as well as how to create a form that is completely processed in
JavaScript and then sent via e-mail, bypassing the CGI script approach that was dis-
cussed in Chapter 16, “CGIs and Data Gathering.”

Finally, the last section of the chapter focused on using JavaScript to change the
page automatically. You saw how to redirect pages based on the Web browser
brand, how to create a menu of URLs for page switching, and how to build a fairly
sophisticated menu-based interface using JavaScript and HTML frames.

In the next chapter, you’ll learn more about JavaScript and how it can work
together with the CSS technology to become something that’s often called Dynamic
HTML.

W

19

ADDING
DYNAMIC HTML
hen JavaScript, the Document Object Model, and Cascading Style

Sheets are brought together on a single page, the result is often called

Dynamic HTML. Ideally, using Dynamic HTML helps you create a page

that responds to user input with special effects that can make your

information engaging and entertaining, as well as informative.

Dynamic HTML varies somewhat from Web browser to Web browser,

with Netscape and Microsoft in particular offering slightly different fea-

tures. In this chapter we’ll spend most of our time looking at the

Dynamic HTML elements that the two browsers have in common,

focusing on using JavaScript and style sheets together to create pages

that can change automatically.

This chapter discusses the following:

■ What Dynamic HTML is, and what the implications are of using
it on your page

■ The “greatest hits” of Dynamic HTML—using mouseovers to
change images and positioning

■ Exploring, understanding, and scripting layers

■ Working with style sheets—scripting styles and classes

What Is Dynamic HTML?
Let’s begin the definition of Dynamic HTML by discussing what it isn’t—it isn’t an
official standard. HTML has become XHTML, and CSS is a standard, as is the
Document Object Model. But Dynamic HTML is really something more of a market-
ing term, or an unofficial name, meant to suggest using scripting and the DOM
together to do things on the page—usually visual tricks. Dynamic HTML sometimes
means that you’re using scripts to alter your style sheet properties. It can also some-
times mean you’re incorporating technology called layers, which enable different
parts of a document to overlap and even hide one another.

In fact, you have already seen some minor examples of Dynamic HTML in Chapter
18, “JavaScript and User Input,” when you saw the images array being accessed and
the document object being opened and rewritten. We’ll take those examples further in
this chapter, and we’ll cover some new technologies. First, let’s complete the defini-
tion of Dynamic HTML by taking another look at the DOM, as well as some other
important technologies.

In the past, Dynamic HTML has been used to mean some other things as well. Netscape
used the term to cover downloadable font technology, which both Microsoft and
Netscape offer in incompatible ways. DHTML has also been used to refer to some spe-
cial filter effects that Microsoft had offered in its browser. In this chapter, I’ll stick to the
CSS and CSSP (CSS Positioning) aspects of DHTML. For more on all other aspects, see
Sams Teach Yourself DHTML in 24 Hours or a comprehensive text such as Que’s
Platinum Edition Using XHTML, XML, and Java 2.

The Document Object Model Revisited
Perhaps the most important thing to recognize about the DOM is that it’s only
recently become a standard. The W3C has standardized the DOM, with the latest
version being a working draft of DOM level 3. The latest Web browsers (Internet
Explorer 6.x and Netscape 6.x) incorporate aspects of DOM level 2, which is a great
start. It means that those browsers are much more compatible with one another
than IE and Netscape have been in the past.

At about the 4.0 level of both browsers, the DOM was introduced for public con-
sumption. It varied quite a bit between the two browsers, because there were no
guiding standards and each company wanted to make a variety of object properties
and methods available to the user. The result was a bit chaotic, as it was difficult to
really decide whose DOM implementation to use.

Although the basic document objects discussed in Chapter 18 are safe, the 4.0 level
of Internet Explorer and Netscape offered many other objects that could be altered.
IE made nearly every element on the page an object, and hence scriptable. IE has

376 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

also had support for reformatting pages without reloading them, so that you could
change an element’s content (even a paragraph or a bullet point) using a script, and
the page would reconstitute itself on the fly. Netscape 4.x doesn’t support that,
although Netscape 6 does, and arguably offers a more complete implementation of
the W3C’s DOM.

Browser Compatibility
These different approaches have also slowed the adoption of some of the DHTML
techniques, as has the unbalanced adoption of CSS and JavaScript implementations
by Netscape’s and Microsoft’s browsers. For the sake of practicality, that means you
probably should only use DHTML when you also offer the same information in
other formats. Otherwise, your users may not see everything you’re trying to com-
municate. You should also encourage your users to download and install the latest
versions of their Web browsers. IE 5.5 and 6 and Netscape 6 are much more stan-
dards-based, and cross-platform DHTML tricks are easier when you can assume that
your users are surfing with one of those two browsers (or a third-party browser that’s
compatible).

In this chapter, we won’t cover too much of the Netscape 4- or IE-specific technology—
we’ll stick closer to the W3C standards. But, if you do opt to use browser-specific
approaches, you’ll want to either automatically redirect incompatible browsers (as
discussed in Chapter 18 or later in the section “Cross-Browser DHTML Example”) or
provide links to non-DHTML pages that users can choose. In the past, many pages
were developed with small badges or lines of text saying “Best Viewed in Netscape”
or “Best Viewed in Internet Explorer.” You can take that route too, although in
today’s Web development world, cross-browser compatibility is encouraged.

For more on the two main browser’s DHTML capabilities, I recommend you visit their
respective developer Web sites. Netscape offers DOM- and DHTML-related discussions
for Netscape 6 at http://developer.netscape.com/tech/dom/ and coverage of DHTML
issues in Netscape 4.x at http://developer.netscape.com/tech/dynhtml/index.html.
Microsoft’s site for HTML and DHTML is http://msdn.microsoft.com/library/
default.asp?url=/workshop/author/dhtml/dhtml_node_entry.asp.

I’m editorializing here, but Microsoft’s approach to URLs on its Web site (like the one
above) is a wonderful example of how not to arrange your pages if you want them to
be convenient for your users. Whenever possible, you should try to have direct paths to
documents that can be jotted down, or some other way to make the reference easy,
such as simple article numbers.

CHAPTER 19 ADDING DYNAMIC HTML 377

Note

CSS and CSS Positioning
Both Netscape and Microsoft have supported a great deal of the CSS standard since
their 4.0 browsers, and both support a lot of scripting of those elements. You’ll find
that CSS is the overlapping Dynamic HTML principle we can focus on.

Beyond the type of style sheet information discussed in Chapter 10, “Get Splashy:
Style Sheets, Fonts, and Special Characters,” there’s another level of CSS, called CSS
Positioning or CSSP. CSSP takes the style sheet approach and enables you to choose
the exact position of elements on the page, including ways that enable them to
overlap or hide one another. In addition, both browsers (particularly IE 6 and
Netscape 6) offer support for scripting those positioned elements, even to the point
that you can move them around in the browser window. We’ll discuss some of that
in this chapter, as well.

Mouseovers: Changing Things Without Clicks
One of the more popular uses of DHTML is to create mouseover scripts that enable
you to change either an image or a text property when you place the mouse pointer
over it. These scripts are actually fairly easy to create, with the JavaScript and CSS
knowledge you already have.

Although CSS-based mouseovers (using the pseudo-classes such as a.hover) work in
Netscape 4, these DOM-based mouseovers work only in Internet Explorer 4 and
above, and in Netscape 6 and above. If you use the mouseovers to communicate
important information, you may need to offer another page for users of earlier
browsers.

Basic Image Mouseover
To begin, let’s look at a very basic mouseover, which simply causes an image to
change when you place the mouse over it. This might not sound like much, but it
can actually be quite handy. Not only is it a visual cue to show users that the mouse
is hovering over the image, but it can also be used to display two images in the
space of one image—for real estate or classified ad pages, for instance.

Listing 19.1 shows the code for the image mouseover.

LISTING 19.1 A Basic Image Mouseover

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

378 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

<head>

<title>Mouseover Image Demo</title>

</head>

<script type=”text/javascript”>

<!--

function changeImage () {

document.images.myImage.src=”second.jpg”;

}

function changeBack () {

document.images.myImage.src=”first.jpg”;

}

// -->

</script>

<body>

<p>Mouse over the image to change it:</p>

<img src=”first.jpg” id=”myImage” onmouseover=”changeImage()” onmouseout=”changeBack()”
➥/>

</body>

</html>

When the user places the mouse pointer over the image, it changes from the first.jpg
image to the second.jpg image. When the user removes the mouse pointer from the
image, the first.jpg image returns. This is shown in Figure 19.1.

CHAPTER 19 ADDING DYNAMIC HTML 379

LISTING 19.1 (continued)

FIGURE 19.1

On the left, the

image before

mousing over;

on the right, the

image is being

pointed to with

the mouse

pointer, so it

changes.

For this to work, particularly for cross-browser compatibility, your images need to be the
exact same size, down to the pixel. If they’re even a little off, you’ll get odd results. IE
may reformat the page, which looks bad, while earlier Netscape versions may have trou-
ble rendering the images at all.

As you can see, this is a fairly simple script that relies on something you’ve already
seen, the images object that’s part of the document object:
function changeImage () {

document.images.image01.src=”second.jpg”;

}

In this case, the image was given an object name via the id=”image01” attribute that
was added to the element, which makes it possible to refer to the image by
name in this object reference. This is convenient, but not entirely necessary. The
images object is an array, which can be accessed using an index. So, for instance, you
could have used
function changeImage () {

document.images[0].src=”second.jpg”;

}

This gives you the same result, because image01 and images[0] refer to the same
image—in this case, it’s the first and only image on the page.

Remote Image Mouseover
Another step up in the “Wow” department is the remote image mouseover. This sim-
ply means that you can encourage your users to mouse over an element—a hyper-
link, for example—and that changes an image on another part of the page.

For this example, a table will be used for layout. On the left side of the table are
links that can receive the mouseovers; on the right side is the image. If the user
decides to click a link, the full page for that link will load.

The way this example is done, it will still work well in earlier versions of Netscape and
Internet Explorer (at least, those that support tables). While the image won’t swap in
some versions, the user is still free to click the hypertext link to see more about each
item (in this case, a house). Presumably, they’d be able to see more traditional images
on those pages.

Listing 19.2 shows the code for this page.

380 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Note

LISTING 19.2 Remote Mouseover for Images Swapping

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Dynamic Image Demo</title>

</head>

<style>

a, h1 {font-family: Arial, Helvetica}

</style>

<script type=”text/javascript”>

<!--

function changeImage (indexNum) {

if (indexNum == 1) document.images.image01.src=”1980main.jpg”;

if (indexNum == 2) document.images.image01.src=”1730maple.jpg”;

}

function changeBack () {

document.images.image01.src=”logo.jpg”;

}

// -->

</script>

<body>

<h1>Featured Listings</h1>

<table border=”0” width=”600” cellpadding=”10”>

<tr>

<td width=”380”>

<p>1980
➥Main Street</p>

<p>This beautiful 3/2 farmhouse is right in the heart of Old Towne, taking you out of

CHAPTER 19 ADDING DYNAMIC HTML 381

the suburbs and back to within walking distance of not only the drug store, but the

drug store’s soda fountain! Put life back the way it’s supposed to be, at $125,000.</p>

<p>

1730
➥Maple Avenue</p>

<p>

Not only does this neighborhood have good schools and good shade trees, it’s got great

sidewalks. Get out and meet your new neighbors, or strap on that helmet and get back on

that bicycle you haven’t ridden in years. The bike path in front of this property takes

you right along Creekside Drive and into the county park! This 2/2 cottage has two
porches and a two-car garage with studio apartment. Only $135,000.

</p>

</td>

<td width=”200”>

<div align=”center”>

</td>

</tr>

</table>

</body>

</html>

You’ll notice that this script is actually pretty similar to Listing 19.1—particularly the
script functions, which perform the same basic image assignment using an object
reference. The only difference up top is the series of if statements, which are used to
determine what image should be loaded depending on the hyperlink that receives
the mouseover event. Each individual hyperlink is designed to send its own index, so
you know which image to load. Figure 19.2 shows this script in action.

382 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 19.2 (continued)

FIGURE 19.2

On the left, the

page before a

mouseover event;

on the right, the

pointer is over a

hypertext link

and the image

has changed.

CHAPTER 19 ADDING DYNAMIC HTML 383

Preloading Images
Before we move on to some other DHTML topics, we should cover the notion of pre-
loading images. When you preload an image for mouseover use, that image is stored
in the browser’s cache. That means the browser won’t have to retrieve the image
when the mouseover occurs, which can result in delays that confuse the user. To get
around that, you need to tweak the approach a little bit, as shown in Listing 19.3.

LISTING 19.3 Preloading Images for a Mouseover

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Preload Image Mouseover Demo</title>

</head>

<script type=”text/javascript”>

<!--

function loadImages () {

image01 = new Image();

image01.src = “first.jpg”;

image02 = new Image();

image02.src = “second.jpg”;

}

function changeImage () {

document.images.myImage.src=image02.src;

}

function changeBack () {

document.images.myImage.src=image01.src;

}

// -->

</script>

<body>

<script type=”text/javascript”>

<!--

loadImages();

// -->

</script>

<p>Mouse over the image to change it:</p>

<img src=”first.jpg” id=”myImage” onmouseover=”changeImage()”
onmouseout=”changeBack()” />

</body>

</html>

The major difference in this script is the new loadImages() function, which is called
from the main body of the script so that the images load into the browser’s cache.
That’s done by creating a new Image object (using the new Image() command) and
assigning it a particular image file as a source. (The Image object is a preset object
that’s built into JavaScript implementations.) Now, these image objects can be used
in the changeImage() and changeBack() functions, with the added advantage that the
images are already loaded when called—the user won’t have to wait to see the
images change.

CSS Positioning and Layers
The most cross-compatible DHTML technology is CSS Positioning, which is an exten-
sion of the CSS style script standard that enables you to be very specific about the
position of elements on your page. As long as everything is stable, your pages will
look very similar in IE, Netscape 4, and Netscape 6.

When you decide to move an element or change its position, however, you find
yourself in a different situation. Each browser has a slightly different DOM imple-
mentation, meaning you need to access the CSSP elements slightly differently.

384 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 19.3 (continued)

Adding more confusion is Netscape 4, where it’s easier to dynamically alter items on
the page if they’re formatted using two elements that Netscape created, the <layer>
and <ilayer> elements. These elements enable you to place content on top of other
content, set the visibility of the layers, and hide and show content dynamically.

Unfortunately, the <layer> elements also aren’t standard—the W3C never incorpo-
rated them, and Netscape has moved away from them. We’ll look at them briefly in
this section, but I recommend you stick to CSSP for your positioning. As you’ll see at
the end of this section, you can create a page based on CSSP that works in all three
browser versions.

Basic CSS Positioning
Ultimately, the point of CSS Positioning is that the content and appearance of a Web
page should be separated and separable. With regular CSS style sheets, you’ve seen
how that’s true—the style sheets make the page look good, but without them, a
browser could still access the information on that page.

CSSP takes that same theory a little bit further. Although CSSP enables you to pre-
cisely position elements on the page—even more precisely than with table elements—
it does so without interfering with the regular markup. You can create pages that
look completely different in CSS-compatible browsers, and yet those same pages
could be viewed in a non-graphical or incompatible browser.

CSSP really isn’t all that odd if you’ve gotten used to regular CSS properties—it’s just
more of the same. In most cases, you’ll create a new class to specify a particular
position for an element. Then you can either add the class attribute to a particular
element or use the or <div> elements to assign that position class to a number
of elements. First, though, you need to know the CSS properties that are useful for
positioning. They’re shown in Table 19.1.

TABLE 19.1 CSS Positioning Properties
Property Possible Values Example

position absolute, relative, static position:absolute

left number and units left:100px

top number and units top:50px

width number and units width:250px

height number+units height:5in

clip rect (top, right, bottom, left) rect (100px,50px,50px,100px)

CHAPTER 19 ADDING DYNAMIC HTML 385

These properties enable you to work with an individual element, division, or span as
a single box. You can define that box at a particular size and have it begin at a par-
ticular spot on the page, either relative to where it would have appeared on the
page without the styling (the relative position), or relative to the top-left corner of
the page itself (the absolute position).

If you use the position: static property, the item acts as if it were a regular XHTML
element without any particular CSSP markup.

If any of these properties is a bit odd, it’s the clip property, which is used to make
only portions of a particular division visible. It works a little like cropping an image
in an image-editing application, by hiding any part of the element that’s not
enclosed in the rectangle that’s created by the property. An example might be
.story_text {

position: absolute;

left: 25px;

top: 80px;

width: 210px;

clip: rect(10px, 200px, 500px, 10px);

}

When you type in and test Listing 19.4, try substituting the preceding class definition to
see how clipping can change things. The result is shown in Figure 19.3.

386 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Tip

FIGURE 19.3

The clipped

story looks

almost as if it

were cropped in

a photo applica-

tion.

To see some of these items in action, let’s begin with a simple example that uses
positioning to place a headline and a story on the page in a newsletter style.
Listing 19.4 shows this page.

LISTING 19.4 Positioning a Headline and News Story via CSSP

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>CSSP Basic Example</title>

</head>

<style type=”text/css”>

.headline1 {

position: absolute;

left: 25px;

top: 20px;

width: 200px;

height: 50px;

}

.story_text {

position: absolute;

left: 25px;

top: 80px;

width: 210px;

}

</style>

<body>

<h1 class=”headline1”>Man Bites Cat</h1>

<div class=”story_text”>

<p>Orwitz, Nevada -- In a bizarre story that has local officials

scratching their heads, an Orwitz man has been questioned in an alleged biting attack

on a feline. Rich Cutter, 42, a noted local physician, apparently scrambled up a tree

in his backyard in pursuit of the cat, which lives with a neighbor. It was in that tree

that the alleged biting incident took place.</p>

CHAPTER 19 ADDING DYNAMIC HTML 387

<p>The cat is known to prowl Cutter’s neighborhood, often singing, say some residents

of the calm suburban division, into the early morning hours.</p>

<p>”It’s a sweet cat,” said Muffy Einstein, a local school teacher. “It’s just crazy
what that man did.”</p>

<p>Others, like former professional athlete Hugh Ballhandler, call the cat’s

vocalizations “screeching” and “loud meowing.”</p>

<p>”That cat got what it deserved,” said Ballhandler. “No jury in their right mind

would convict. That noise had to stop!”</p>

<p>The cat was available for comment, but seemed too agitated to make much sense.</p>

</div>

</body>

</html>

As you can see from Figure 19.4, the CSSP properties give you some interesting con-
trol over the page. The measurements used in Listing 19.4 use pixels, which is prob-
ably the most convenient way to parcel up the browser window and figure out how
to position things. Note also that the appearance of the fonts in the browser could
affect the ultimate layout, too. You might want to couple the CSSP properties with
the standard CSS properties to keep things as uniform as possible.

388 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 19.4 (continued)

FIGURE 19.4

Here’s a nice

CSSP layout

thanks to

Listing 19.4.

Overlapping Elements and z-index
CSSP gives you the tools to lay out boxes and elements on your page with exacting
specifications. That includes overlapping those elements, if desired. In fact, some-
thing as simple as changing Listing 19.4 so that the story_text class begins a bit
higher causes the two elements to overlap:
.story_text {

position: absolute;

left: 25px;

top: 25px;

width: 210px;

}

Figure 19.5 shows what that overlap looks like.

CHAPTER 19 ADDING DYNAMIC HTML 389

FIGURE 19.5

Using CSSP to

cause items to

overlap on the

page.

That might not seem terribly useful. However—aside from visual collage—there are
a few instances where overlapping elements could be useful. For instance, you might
want to place text on top of an image, which could be done with CSSP. Listing 19.5
is an example.

LISTING 19.5 Overlapping Items Using CSSP

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Overlap Text and Images</title>

</head>

<style type=”text/css”>

.image {

position: absolute;

left: 25px;

top: 20px;

width: 300px;

height: 225px;

z-index: 0;

}

.cutline {

position: absolute;

left: 125px;

top: 200px;

width: 210px;

z-index: 1;

font-face: courier;

font-weight: bold;

color: white;

}

</style>

<body>

<p class=”cutline”>12:04 P.M: Grandma’s House</p>

</body>

</html>

In this example, the text is positioned over the image, making it appear as if it is
part of the image (or at least that you did this on purpose). Figure 19.6 shows this
example.

390 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 19.5 (continued)

Want to specify which element appears on top of which other elements? By default,
later elements are piled on top of earlier elements, so text that appears in the Web
document after an image will appear on top of that image. By using another CSSP
property, z-index, you can change that order by giving each element or class a num-
ber. The higher the number, the closer to the top of the pile that element will be.
(Note that z-index is recognized in Netscape 6 and IE, but not in Netscape 4, which
uses the <layer> element for this sort of thing.)

With some minor adjustments to the style definition for the previous example, you
can change the z-index order so that the image appears on top of the text. (You’ll
also change the size and color of the text so that you can see it back there.)
<style type=”text/css”>

.image {

position: absolute;

left: 25px;

top: 20px;

width: 300px;

height: 225px;

z-index: 1;

}

.cutline {

position: absolute;

left: 200px;

top: 100px;

width: 400px;

CHAPTER 19 ADDING DYNAMIC HTML 391

FIGURE 19.6

The text has

been placed on

top of the

image.

z-index: 0;

font-face: courier;

font-size: 36pt;

color: blue;

}

</style>

Figure 19.7 shows what this looks like in a browser.

392 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 19.7

Changing the

z-index

changes the

stacking order

of the elements.

Nesting Positioned Elements
So far we’ve dealt strictly with elements and boxes that are completely discrete—one
ends before the next begins. But what happens if you nest a positioned element
within another one? If you use absolute positioning (position: absolute, as in the
last few listings), all elements are positioned relative to their parent elements. In all
the examples thus far, the parent has been the <body> element.

If you nest one element within another, however, the nested element becomes a
child of the element within which it is nested. That means suddenly the child’s coor-
dinate system is based upon the parent element’s, so the top and left properties, in
particular, will be relative to the parent.

Let’s see what happens with the basic positioning example you saw in Listing 19.4 if
you change it around and make one of the elements the child of another. That’s
shown in Listing 19.6. (For the sake of space, I’ve cut the text of the example article,
which was shown in Listing 19.4.)

LISTING 19.6 Nesting CSSP Elements

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Nesting Example</title>

</head>

<style type=”text/css”>

.headline1 {

position: absolute;

left: 25px;

top: 20px;

width: 200px;

height: 50px;

}

.story_text {

position: absolute;

left: 25px;

top: 80px;

width: 210px;

}

</style>

<body>

<div class=”headline1”>

<h1>Man Bites Cat</h1>

<div class=”story_text”>

<p>Body of article.</p>

</div>

</div>

</body>

</html>

CHAPTER 19 ADDING DYNAMIC HTML 393

The classes have been assigned to two different <div> containers, with the first one
containing the second one. The result is a slightly different layout, as shown in
Figure 19.8.

394 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 19.8

Because the sec-

ond <div> is

nested in the

first, the coordi-

nate system for

the second

<div> has

moved down

and to the right.

Relative Positioning
So far we’ve worked with absolute positing, but sometimes relative positioning (with
position: relative) can be a useful property to set as well. Generally, you do that
when you want a particular box to flow with the rest of the document for some rea-
son, but you’d like to specify some of the box’s position parameters, such as the
width or the z-index.

For instance, building on Listing 19.6, you could change the second style class defini-
tion to
.story_text {

position: relative;

top: 5px;

}

Because it’s a child of the first <div> element (remember, that’s what was introduced
in Listing 19.6), the story text is still bound to the coordinates specified by <div
class=”headline1”>. So, its definition can be much simpler—all it needs to do is posi-
tion itself 5 pixels below where it normally would be (below a <h1> element) to make
it look good in the layout.

It can take a while to get used to the differences between absolute and relative position-
ing. I recommend that you play with them in these examples, changing values and so on
to see what the result is. Also, in my experience, relative positioning can vary a bit from
browser to browser, even among the 6.0-level browsers.

Note

Dynamic Positioning and Layers
Up until now, we’ve discussed using CSSP to create divisions of elements that can
overlap one another. You saw how you can use the z-index to change the relative
position of each layered element, and how individual elements or boxes can be
placed at absolute and relative points in the browser window. In this section, we’ll
look at how to use this knowledge to work with DHTML layers.

First, it’s worth noting that layers are more of a concept than a particular set of
parameters that you need to learn. In the previous section, you saw layers of ele-
ments that could be absolutely positioned. In CSSP, that’s really the extent of what a
layer is. The term is commonly used, however, when you’re specifically using the
<div> element to create each layer, and more to the point, when you use scripting to
make the positioning of those layers dynamic in some way.

There is a special case where the term layer takes on more significance—when you’re
dealing with Netscape 4.x, which includes support for a <layer> element. (Netscape 6
also supports it for backward compatibility, but it’s not recommended.) Because the
<layer> element is obsolete, I’ll only touch on it briefly. But you should know it
exists, particularly in case you come across some preexisting code for managing
layers.

CSSP Layers
When you’re creating CSSP-based layers, the only real difference from what you’ve
seen so far in this chapter is a matter of convention rather than a matter of rule.
When you’re creating a layer, you’ll generally use the ID selector (#) in your <style>
definitions, instead of a class definition, because each layer you create needs a
unique ID. That’s accomplished using a combination of the # symbol and, again by
convention, the <div id=”layer_name”> element.

Listing 19.7 is an example of two layers defined using the ID selector and the <div>
element.

LISTING 19.7 Creating CSSP Layers

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>CSSP Layers</title>

<style type=”text/css”>

#mydiv1 {

position:absolute;

CHAPTER 19 ADDING DYNAMIC HTML 395

top:50px;

left:50px;

height:300px;

width:500px;

}

#mydiv2 {

position:absolute;

top:350px;

left:50px;

height:300px;

width:500px;

}

</style>

</head>

<body>

<!--Begin first layer -->

<div id=”mydiv1”>

<p>This beautiful 3/2 farmhouse is right in the heart of Old Towne, taking you out of

the suburbs and back to within walking distance of not only the drug store, but the

drug store’s soda fountain! Put life back the way it’s supposed to be, at $125,000.</p>

</div>

<!--End first layer -->

<!--Begin second layer -->

<div id=”mydiv2”>

<p>

Not only does this neighborhood have good schools and good shade trees, it’s got great

sidewalks. Get out and meet your new neighbors, or strap on that helmet and get back on

that bicycle you haven’t ridden in years. The bike path in front of this property takes

you right along Creekside Drive and into the county park! This 2/2 cottage has two

porches and a two-car garage with studio apartment. Only $135,000.

396 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 19.7 (continued)

</p>

</div>

<!--End second layer -->

</body>

</html>

The result is two nice, well-defined <div> elements that can be used to alter the posi-
tioning, or even visibility, of the enclosed elements, as you’ll see in the next two sec-
tions. As a quick example, though, all you would have to do is swap the names of
the ID selectors in the style definition:
<style type=”text/css”>

#mydiv2 {

position:absolute;

top:50px;

left:50px;

height:300px;

width:500px;

}

#mydiv1 {

position:absolute;

top:350px;

left:50px;

height:300px;

width:500px;

}

</style>

If you did that and tested the result in a browser, you’d see that the two layers had
switched places, with the second <div> container on top and the first <div> container
below it.

Dynamic Positioning
Now that you’ve seen how to position elements on the page, the next step is to intro-
duce some JavaScript to your pages, thus making them truly dynamic. (Otherwise, it
isn’t really Dynamic HTML, is it?) As a simple demonstration, you can take a single
object, set its positioning, and use a simple JavaScript to change that position
dynamically, thus animating the object in the browser window.

CHAPTER 19 ADDING DYNAMIC HTML 397

LISTING 19.7 (continued)

Let’s try it. Listing 19.8 shows the script in action. (Note that, as written, this script
will only work in Internet Explorer versions 4 and 5.)

LISTING 19.8 Moving an Item on the Page

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Dynamic Animation</title>

<style>

#headblock {

position: absolute;

left: 25px;

top: 100px;

width: 200px;

}

</style>

</head>

<script type=”text/javascript”>

<!--

function moveHeading(x, y) {

x = x + “px”;

y = y + “px”;

headblock.style.left = x;

headblock.style.top = y;

}

// -->

</script>

<body>

<form>

<pre>

Enter x coordinate: <input type=”text” id=”xcoord” />

Enter y coordinate: <input type=”text” id=”ycoord” />

<input type=”button” value=”Click to Submit” onclick=”moveHeading(xcoord.value,
➥ycoord.value)”>

398 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

</pre>

</form>

<div id=”headblock”>

<h1>Man Bites Cat</h1>

<p>Orwitz, Nevada -- In a bizarre story that has local officials

scratching their heads, an Orwitz man has been questioned in an alleged biting attack

on a feline. Rich Cutter, 42, a noted local physician, apparently scrambled up a tree

in his backyard in pursuit of the cat, which lives with a neighbor. It was in that tree

that the alleged biting incident took place.</p>

</div>

</body>

</html>

When you enter values and click the Click to Submit button, the function assigns
those values to the appropriate style values. Note that the left and top properties
require values that specify the units (in this case, px for pixels), so they need to be
added to the value before it’s assigned to the properties. Figure 19.9 shows this.

CHAPTER 19 ADDING DYNAMIC HTML 399

LISTING 19.8 (continued)

FIGURE 19.9

Enter figures

and click the

Click to Submit

button, and the

layer is moved

to a new loca-

tion on the

page.

So why doesn’t this work in Netscape? Basically, because Netscape references individ-
ual objects from the DOM a bit differently from IE. To work in Netscape version 6.0
(as well as IE 5.5 and higher), you would need to change the function slightly:
function moveHeading(x, y) {

headblock = document.getElementById(“headblock”);

x = x + “px”;

y = y + “px”;

headblock.style.left = x;

headblock.style.top = y;

}

Netscape 6 uses the W3C’s DOM approach to storing elements in the document object.
This is different from Microsoft’s 4-level approach, which is to place each named ele-
ment in the document object automatically. A hybrid approach would require that
you first detect which browser your user has, and then assign the substitute object
variable (headblock=) for Netscape. We’ll discuss how to do that a little later in this
chapter in the section “Cross-Browser DHTML Example.”

Just because Netscape 6’s approach is different from the IE4-compatible approach
doesn’t mean Netscape 6 is wrong—it’s actually closer to the W3C’s standard for the
DOM. In fact, Internet Explorer 5.5 supports the getElementById() method as well. But
if you want to be compatible with IE4 and up, you need to use the older IE method.

CSSP Visibility
There’s one other new property that CSSP brings to the style sheet: visibility. The
options are visible, hidden, and the default, auto. By adding the property to your
script class definition, you can determine whether or not any elements that have
that class will appear in the browser window:
#mydiv1 {

position:absolute;

top:50px;

left:50px;

height:300px;

width:500px;

visibility: hidden;

}

By adding this to the sample script shown in Listing 19.7, you end up with a page
that looks like Figure 19.10. Suddenly, the story text is gone. (Actually, only the first
paragraph is gone, which is the only one that I’ve given this particular class for the
example.)

400 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Hiding the text and elements you’ve sweated over in your XHTML authoring proba-
bly doesn’t seem all that appealing. But the visibility property gets more interesting
when you mix in some JavaScript.

Using the two together, you could set up a page somewhat akin to the image-swapping
page back in Listing 19.2, except that you’re able to swap an entire layer of content
instead of an image. You do this by defining a division of content, giving it an ID,
and then assigning a visibility property to that division. In Listing 19.9, you’ll also
find that the blocks have been positioned absolutely, and positioned so that they
exactly overlap one another.

Again, as written, this example only works in Internet Explorer 4.0 up to version 5.5
because of the way it references the object model.

LISTING 19.9 Using Visibility to Swap Content

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Changing Visibility</title>

<style type=”text/css”>

CHAPTER 19 ADDING DYNAMIC HTML 401

FIGURE 19.10

With the first

<div> set to

hidden, there’s a

gap on the

page.

Note

#mydiv1 {

position:absolute;

top:50px;

left:50px;

height:400px;

width:500px;

visibility:visible;

}

#mydiv2 {

position:absolute;

top:50px;

left:50px;

height:400px;

width:500px;

visibility:hidden;

}

</style>

<script>

<!--

function changeVis () {

if (mydiv1.style.visibility != “hidden”) {

mydiv1.style.visibility = “hidden”;

mydiv2.style.visibility = “visible”;

}

else {

mydiv1.style.visibility = “visible”;

mydiv2.style.visibility = “hidden”;

}

}

// -->

</script>

</head>

<body>

<form>

<input type=”button” value=”Click me” onclick=”changeVis()”>

</form>

402 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 19.9 (continued)

<!--Begin first layer -->

<div id=”mydiv1”>

<p>This beautiful 3/2 farmhouse is right in the heart of Old Towne, taking you out

of the suburbs and back to within walking distance of not only the drug store, but

the drug store’s soda fountain! Put life back the way it’s supposed to be, at
➥$125,000.</p>

</div>

<!--End first layer -->

<!--Begin second layer -->

<div id=”mydiv2”>

<p>

Not only does this neighborhood have good schools and good shade trees, it’s got

great sidewalks. Get out and meet your new neighbors, or strap on that helmet and

get back on that bicycle you haven’t ridden in years. The bike path in front of this

property takes you right along Creekside Drive and into the county park! This 2/2

cottage has two porches and a two-car garage with studio apartment. Only $135,000.

</p>

</div>

<!--End second layer -->

</body>

</html>

The page creates the two <div> elements and renders the content for both, hiding the
second <div> because of its visibility property. When the button is clicked, the script
function is invoked. It checks the first <div> element to see if it’s currently visible. If it
is, that <div> is hidden and the second <div> is made visible. If the first <div> is
already hidden, the opposite takes place. The result is that every time the button is
clicked, the images and text swap places, as shown in Figure 19.11.

CHAPTER 19 ADDING DYNAMIC HTML 403

LISTING 19.9 (continued)

FIGURE 19.11

On the left, the

page before

clicking the but-

ton; on the

right, the page

after clicking

reveals the sec-

ond <div> ele-

ment’s contents.

404 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Again, this doesn’t work in Netscape because of the DOM differences between the
two. To make it work in Netscape version 6.0 and IE 5.5 or higher, you would need
to change the function slightly:
function changeVis () {

mydiv1 = document.getElementById(“mydiv1”).style;

mydiv2 = document.getElementById(“mydiv2”).style;

if (mydiv1.visibility != “hidden”) {

mydiv1.visibility = “hidden”;

mydiv2.visibility = “visible”;

}

else {

mydiv1.visibility = “visible”;

mydiv2.visibility = “hidden”;

}

As mentioned, there’s more on these issues in the “Cross-Browser DHTML Example”
section later in this chapter.

Netscape Layers
In Netscape 4.x browsers, a different approach to layers was taken with the <layer>
element. That element never was terribly popular, and more to the point, it wasn’t
accepted as a standard HTML or XHTML element. In version 6 of its browsers,
Netscape has moved to CSSP standards for positioning, although the <layer> element
is still around for backward compatibility.

There are a few key differences between the <layer> element and its CSSP counter-
parts:

■ It doesn’t require a style definition before it’s used. Although it does have an
ID, it’s assigned differently from in CSSP.

Note

■ It works like other page elements, meaning it has typical attributes such as
id, top, and left. These attributes accept an equal sign and a value in quotes,
not colons and semicolons like style markup.

■ It has a src attribute that can load an HTML document into the layer, as well
as pagex and pagey attributes that don’t have equivalents in CSSP.

Once you’ve seen the CSSP positioning approach at work, the <layer> approach
doesn’t seem terribly foreign. Listing 19.10 is an example.

LISTING 19.10 Using Netscape Layers for Positioning

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Netscape Layers</title>

</head>

<body>

<layer id=”mydiv1” top=”50” left=”50”>

<p>This beautiful 3/2 farmhouse is right in the heart of Old Towne, taking you out of

the suburbs and back to within walking distance of not only the drug store, but the drug

store’s soda fountain! Put life back the way it’s supposed to be, at $125,000.</p>

</layer>

<layer id=”mydiv2” top=”500” left=”50”>

<p>

Not only does this neighborhood have good schools and good shade trees, it’s got great

sidewalks. Get out and meet your new neighbors, or strap on that helmet and get back on

that bicycle you haven’t ridden in years. The bike path in front of this property takes
you right along Creekside Drive and into the county park! This 2/2 cottage has two
porches and a two-car garage with studio apartment. Only $135,000.

</p>

</layer>

</body>

</html>

CHAPTER 19 ADDING DYNAMIC HTML 405

Like <div>, the <layer> container surrounds all the text and markup that will be on
that layer. Unlike <div>, the style changes are added as attributes to the <layer> ele-
ment instead of via a style sheet definition. The positioning is absolute in nature—
the specified coordinates are relative to the browser window.

You’ve seen some of the attributes that <layer> can accept, but let’s take a closer look
at them and some others not yet mentioned. You’ll notice that most of them mirror
the CSSP property names:

id This attribute gives the layer a unique identifier.

left and top These attributes determine how far from the left and top
of the layer’s parent element the layer will appear. With
the <layer> element, all positioning is similar to
absolute positioning in CSSP. Units are assumed to be
pixels, so no px is needed.

pagex and pagey These attributes can be used to arrange the layer based
on the page’s dimensions, even if another parent ele-
ment is present. (That is, even if the <layer> element is
nested in another element.)

src With the <layer> element, you can use the src attribute
to specify an outside file for the layer.

width and height Set the dimensions of the layer’s box. These attributes
assume the dimensions are in pixels, but they can also
be a percentage of the page, as in height=”50%”.

clip With this attribute, you can decide that only a portion
of the layer will be visible, using four values that repre-
sent the left, top, right, and bottom points of the clip-
ping region. An example would be clip=”5,5,100,100”.

z-index As with the similar CSSP property, z-index is used to
determine where a layer fits above or below other lay-
ers. The higher the number, the closer the layer is to the
top.

visibility Again similar to the CSSP property, the visibility
attribute can accept three values: show, hidden, and
inherit. The inherit value is used to set the current layer
to the same visibility as its parent.

bgcolor and background The <layer> element can accept a background color set-
ting (using color names or color hexadecimal values).
The background attribute accepts the URL to an image to
be placed in the background of the layer.

406 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

In addition to all these attributes, there is also the <nolayer> container, which dis-
plays its contents in browsers that don’t recognize the <layer> element. For example:
<nolayer>

This page is only viewable in Netscape 4.0-level browsers or higher.

</nolayer>

Netscape’s Inline Layer
Netscape’s answer to the relatively positioned CSSP element is the <ilayer> element,
which can be used to specify an inline layer. Just as with a relative-positioned CSSP
layer, an <ilayer> begins at the place it generally would as the next logical element,
but then the top and left attributes can be used to move it from that position.

This code snippet is an example:
<body>

<p>This is a regular XHTML paragraph.</p>

<ilayer id=”para2” left=”10”>

<p>This paragraph began at its natural origin, then moved ten pixels to
➥the right.</p>

</ilayer>

<p>This paragraph is another regular paragraph, back at the “natural”
➥origin.</p>

</body>

Scripting Netscape’s Layers
As with CSSP layers, you can use JavaScript or a similar language to manipulate
Netscape’s layers. The layer object model is slightly different from the CSSP object
model (which is also different between browser versions), so it’s a little tricky to
learn. Fortunately, on its own, accessing Netscape layer properties is pretty easy.
They follow this basic structure:
layerName.propertyName

Netscape includes a number of methods for the <layer> element, which are accessed
using this familiar structure:
layerName.methodName()

Unlike many objects and elements rendered in Netscape 4, layers can be changed
dynamically. You can use them in Netscape 6 as well, although the CSSP properties
also allow for dynamic changes and are closer to cross-platform.

CHAPTER 19 ADDING DYNAMIC HTML 407

The layer object’s properties mirror the attributes almost exactly, such as layer1.top,
layer1.visibility, and so on. The one major difference is the clip attribute, whose
properties are accessed individually at layer1.clipleft, layer1.clipright,
layer1.cliptop, and layer1.clipbottom.

The layers themselves are actually held in an array of layers that are part of the
document object. To access a particular layer, you can use the name of the layer as
the index for the array:
document.layers[“layer1”]

In many cases, you’ll want to set the layer in question to a new variable that can be
accessed as a standalone object:
myLayer = document.layers[“layer1”];

The properties and methods of that particular layer can then be accessed using the
new layer variable:
myLayer.top = 5;

The layer object also includes a number of methods that don’t have corollaries in
the CSSP world. These methods are used to directly manipulate layers, making it a
little easier to animate them and make them visible or hidden. Table 19.2 shows
many of the methods available for use with layers.

TABLE 19.2 Layer Object Methods
Method Description

moveBy(x,y) Moves the layer by the number of pixels

moveTo(x,y) Moves the layer to particular pixel coordinates, relative to the
layer’s parent

moveToAbsolute(x,y) Moves the layer to the specified coordinates on the page

resizeBy(width, height) Grows or shrinks the layer by the number of pixels specified

resizeTo(width, height) Changes layer size to the exact specified pixel values

moveAbove(layerName) Places this layer above the specified layer

moveBelow(layerName) Stacks this layer below the specified layer

load(src, width) Changes the source of a layer to the contents of a file

In Netscape 4, note that resizing layers doesn’t reposition the text and markup like
you might think it would. Instead, it acts more like the clip attribute, in that it sim-
ply makes more or less of the layer visible. Methods are used in the same way that
they are in any JavaScript code:
layer1.resizeTo(250, 500);

408 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Now you’re ready to toss in some JavaScript. In this example, the approach is simi-
lar to the layer movement shown in Listing 19.9, where two layers are specified and
clicking a button changes their visibility. Listing 19.11 shows the scripting of <layer>
elements.

LISTING 19.11 Changing a Layer’s Visibility

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Netscape Layers</title>

<script>

<!--

function changeLayer () {

window.alert(document.mydiv1.visibility);

if (document.mydiv1.visibility != “hide”) {

document.mydiv1.visibility = “hide”;

document.mydiv2.visibility = “show”;

}

else {

document.mydiv1.visibility = “show”;

document.mydiv2.visibility = “hide”;

}

}

// -->

</script>

</head>

<body>

<form>

<input type=”button” value=”Click me” OnClick=”changeLayer()”>

</form>

<layer id=”mydiv1” top=”50” left=”50”>

<p>This beautiful 3/2 farmhouse is right in the heart of Old Towne, taking you out of
the suburbs and back to within walking distance of not only the drug store, but the drug
store’s soda fountain! Put life back the way it’s supposed to be, at $125,000.</p>

CHAPTER 19 ADDING DYNAMIC HTML 409

</layer>

<layer id=”mydiv2” top=”50” left=”50” visibility=”hide”>

<p>

Not only does this neighborhood have good schools and good shade trees, it’s got great

sidewalks. Get out and meet your new neighbors, or strap on that helmet and get back on

that bicycle you haven’t ridden in years. The bike path in front of this property takes

you right along Creekside Drive and into the county park! This 2/2 cottage has two
porches and a two-car garage with studio apartment. Only $135,000.

</p>

</layer>

</body>

</html>

You can see that this script is very similar to the script used for CSSP, with the excep-
tion of the <layer> elements and the object model used to access those items. In fact,
you can pare that down even more, as you’ll see in the next section.

Cross-Browser DHTML Example
Okay, the $64,000 question is, “Can I possibly create one page that will work in
three different browsers—IE, Netscape 4, and Netscape 6?” The answer is “Yes,”
because they all have some things in common that may be a little surprising. In this
section, we’ll look at the layer-swapping example that was used in Listings 9.9 and
9.11 to see how we can bring them all together in one page.

First, let’s start with Netscape 4. The surprising bit is that you don’t even have to use
the <layer> element if you don’t want to! Instead, Netscape 4 will accept the <div>
elements and allow you to create the layers using the ID identifiers in a <style> sec-
tion. That means the cross-browser DHTML example can include the following for
all three browsers:

410 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 19.11 (continued)

<style type=”text/css”>

#mydiv1 {

position:absolute;

top:50px;

left:50px;

height:400px;

width:500px;

visibility:visible;

}

#mydiv2 {

position:absolute;

top:50px;

left:50px;

height:400px;

width:500px;

visibility:hidden;

}

</style>

Likewise, all three browsers support the same basic <body> container shown back in
Listing 19.9. They all support the <div> element and the onClick event handler.

What needs to be different for each browser is the function that changes the layers.
They need to be different for two reasons:

■ Each browser accesses the document object a bit differently. IE 4
and higher uses document.all.layername, Netscape 6 uses
document.getElementById(“layername”), and Netscape 4 uses document.layername.

■ Netscape 4 can assign the strings visibility and hidden to the visibility prop-
erty, but it must test for the values show and hide. That’s weird, but we can
work around it.

Technically, IE 5.5 and higher can use the Netscape 6 approach, but that would require
detecting four different browser types instead of three. So, because IE 5.5 is also back-
ward compatible with the IE 4 approach, we can use it for all IE versions.

The only way to use different functions for the different browsers is to detect the type
of browser that the user has, and then work a little object magic. Here’s what the
testing part of the function will look like:

CHAPTER 19 ADDING DYNAMIC HTML 411

Note

function changeLayer () {

var isNet4;

var isNet6;

var isIE;

if (navigator.appName == “Netscape”) {

if (navigator.appVersion.charAt(0) == “4”) isNet4 = true;

if (navigator.appVersion.charAt(0) == “5”) isNet6 = true;

}

if (navigator.appName.indexOf(“Microsoft”) != -1) isIE = true;

This does a series of simple tests to determine which browsers we’re working with.
Here’s how it works:

1. The function begins by defining three variables.

2. Then it tests to see what the name of the browser application is.

3. If “Netscape” is the application’s name, we’ll test for the application number.
Depending on the number, either the variable isNet4 or the variable isNet6
will be assigned the value true.

4. If “Microsoft” is the application’s name, the variable isIE is assigned true.
(Technically, the comparison is using the indexOf method to find out if the
string “Microsoft” is part of the application’s name. If the indexOf value does
not equal –1, that means the word “Microsoft” is in the name. It’s a little con-
voluted, but it works.)

5. Now, we can set up the function so that it creates variables that will fit into
the final formula, depending on the browser we’re using. In this section of
the function, we’ll set the variable visTest to hold the string that corresponds
to the visibility property value we’re going to test against. (When you test
visibility in Netscape 4, it responds with the values hide and show instead of
hidden and visible. So, you have to test especially for those values. Oddly,
though, it can accept the latter two values as assignments, so we don’t have
to do anything different for Netscape 4 in the section that actually swaps the
layers.)

6. Then, two object variables (div1object and div2object) are created to circum-
vent the different ways that each browser accesses the visibility property of
these layers:

var VisTest;

var div1Object;

412 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

var div2Object;

if (isNet4) {

visTest = “hide”;

div1Object = document.mydiv1;

div2Object = document.mydiv2;

}

if (isNet6) {

visTest = “hidden”;

div1Object = document.getElementById(“mydiv1”).style;

div2Object = document.getElementById(“mydiv2”).style;

}

if (isIE) {

visTest = “hidden”;

div1Object = document.all.mydiv1.style;

div2Object = document.all.mydiv2.style;

}

Finally, the function ends with the same pattern you saw earlier in Listings 9.9 and
9.11. The visibility property is tested to see if the first layer is hidden. If it isn’t, the
first layer is hidden and the second layer is shown. If the first layer is hidden, the
opposite happens:

if (div1Object.visibility != visTest) {

div1Object.visibility = “hidden”;

div2Object.visibility = “visible”;

}

else {

div1Object.visibility = “visible”;

div2Object.visibility = “hidden”;

}

}

As you can see, the visTest and two object variables are cleverly plugged in there to
make up for the differences in the browser’s approaches to the DOM. Listing 19.12
shows the whole page.

CHAPTER 19 ADDING DYNAMIC HTML 413

LISTING 19.12 Cross-Browser Compatible Layer Switching

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Netscape Layers</title>

<style type=”text/css”>

#mydiv1 {

position:absolute;

top:50px;

left:50px;

height:400px;

width:500px;

visibility:visible;

}

#mydiv2 {

position:absolute;

top:50px;

left:50px;

height:400px;

width:500px;

visibility:hidden;

}

</style>

<script>

<!--

function changeLayer () {

var isNet4;

var isNet6;

var isIE;

if (navigator.appName == “Netscape”) {

if (navigator.appVersion.charAt(0) == “4”) isNet4 = true;

if (navigator.appVersion.charAt(0) == “5”) isNet6 = true;

}

if (navigator.appName.indexOf(“Microsoft”) != -1) isIE = true;

414 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

var VisTest;

var div1Object;

var div2Object;

if (isNet4) {

visTest = “hide”;

div1Object = document.mydiv1;

div2Object = document.mydiv2;

}

if (isNet6) {

visTest = “hidden”;

div1Object = document.getElementById(“mydiv1”).style;

div2Object = document.getElementById(“mydiv2”).style;

}

if (isIE) {

visTest = “hidden”;

div1Object = document.all.mydiv1.style;

div2Object = document.all.mydiv2.style;

}

if (div1Object.visibility != visTest) {

div1Object.visibility = “hidden”;

div2Object.visibility = “visible”;

}

else {

div1Object.visibility = “visible”;

div2Object.visibility = “hidden”;

}

}

// -->

</script>

</head>

<body>

<form>

CHAPTER 19 ADDING DYNAMIC HTML 415

LISTING 19.12 (continued)

<input type=”button” value=”Click me” OnClick=”changeLayer()”>

</form>

<div id=”mydiv1”>

<p>This beautiful 3/2 farmhouse is right in the heart of Old Towne, taking you out of
the suburbs and back to within walking distance of not only the drug store, but the drug
store’s soda fountain! Put life back the way it’s supposed to be, at $125,000.</p>

</div>

<div id=”mydiv2”>

<p>

Not only does this neighborhood have good schools and good shade trees, it’s got great

sidewalks. Get out and meet your new neighbors, or strap on that helmet and get back on

that bicycle you haven’t ridden in years. The bike path in front of this property takes
you right along Creekside Drive and into the county park! This 2/2 cottage has two
porches and a two-car garage with studio apartment. Only $135,000.

</p>

</div>

</body>

</html>

Cross-Browser APIs
In the previous section, you saw a long script that produced a reasonably simple
result. You can imagine what happens when you try to create pages to do much
more complicated things that work in many different browsers. Although it’s per-
fectly common and acceptable to do all this prep work (detecting browsers and

416 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

LISTING 19.12 (continued)

substituting pointer variables for certain DOM objects), a more sophisticated
approach is to use a special application programming interface, or API.

Although APIs are usually the domain of more sophisticated programming lan-
guages, a number of cross-browser APIs for JavaScript have been developed. They
give you predetermined function calls that you can use with your scripts to make
things like browser detection much easier. Instead of writing the function yourself,
you simply learn the API and then plug that function into your script. You’ll load
the API as an external script file, making its functions available to you within your
own script.

If that sounds interesting, visit one of the following Web sites to learn more:

■ http://www.mozilla.org/docs/web-developer/csspapi/csspapi.html—The Mozilla
organization—the open source arm that developed the underlying Netscape
browser engine—offers a freely downloadable cross-browser JavaScript API.

■ http://dynapi.sourceforge.net/dynapi/—The DynAPI is a similar effort that
offers an API for cross-browser use, as well as a few extras within the API to
make certain Dynamic HTML tricks easier to accomplish.

Dynamic Styles and Classes
If you’ve worked through the previous sections of this chapter, these last few pages
should be a cakewalk. Now that you’ve seen how to change the CSS Positioning ele-
ments, changing regular CSS elements using a script should be simple.

And it is, unless you want to do it in Netscape 4. That can’t really be done, because
Netscape 4 doesn’t support dynamic rerendering of elements on pages like Internet
Explorer 4 and higher does. It so happens that Netscape 6 has been updated with
this capability, however, so you’ll find that the ability to change styles using scripts
is supported in both those later browsers.

By the way, we’re discussing the scripting of CSS1—CSSP capabilities are considered
part of the CSS2 standard. CSS1 is the CSS standard that includes the style sheet
properties discussed in Chapter 10—font, text, border, and similar properties. In this
section we’ll look at scripting basic CSS1 properties in IE 5.5 and higher, Netscape 6,
and other compatible browsers.

Scripting Styles and Properties
With what you already know about scripting style properties, scripting CSS1 proper-
ties is straightforward. Take this example:
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

CHAPTER 19 ADDING DYNAMIC HTML 417

<title>Dynamic Image Demo</title>

</head>

<script type=”text/javascript”>

<!--

function changeText (p) {

p.style.color=”red”;

}

// -->

</script>

<body>

<p onmouseover=”changeText(this)”>Test 1</p>

<p onmouseover=”changeText(this)”>Test 2</p>

</body>

</html>

When you place the mouse pointer over either of these paragraphs, the text turns
red. Using the simple p.style.color=”red”; assignment, the style of the received ele-
ment pointer is changed.

You can experiment with nearly any style in CSS1 and change properties in this
way. Because most property values are strings, you’ll find that you can even
accept entries from the user for the property values and then assign them, as in
Listing 19.13.

LISTING 19.13 Changing the Color of Text

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Dynamic Text Color</title>

</head>

<script type=”text/javascript”>

418 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

<!--

function changeBack () {

var theColor = document.forms[0].myColor.value;

alert (theColor);

document.getElementById(“myPara”).style.color = theColor;

if (theColor == “white”) document.body.style.backgroundColor = “black”;

}

// -->

</script>

<body style=”background-color: gray”>

<form name=”form1”>

<p id=”myPara”>What color would you like the text?</p>

<input type=”text” name=”myColor” />

<input type=”button” value=”Change It” onClick=”changeBack()”>

</form>

</body>

</html>

In this example, the user can enter a color in the myColor input box and then click
the Change It button. When the button is clicked, the changeBack() function is called.
In the function, the color name entered by the user is assigned to a variable
(theColor), and then the style of the paragraph of text is assigned to the value of the
variable. The function will also check if the new foreground color is white; if it is, it
changes the background color to black so that the text can still be read.

This script should work, but it’s a bit oversimplified because it doesn’t account for a user
who enters an invalid color name. If you were really going to implement this script, you
might use a <select> element to limit the color choices to valid color names, or you
might create another function that tests the user’s entry against valid color names.

Dynamic Classes and IDs
In the previous section, you saw that you can change the individual properties of
elements, regardless of whether or not they’ve been predefined with other style

CHAPTER 19 ADDING DYNAMIC HTML 419

LISTING 19.13 (continued)

Note

properties or even been assigned classes. But what if you want to change an ele-
ment’s class ID itself, so that the element changes a number of different properties
dynamically? This is easily done, in both Internet Explorer and Netscape, using a
script such as the one shown in Listing 19.14.

LISTING 19.14 Changing CSS Classes Programmatically

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Dynamic Classes</title>

<style>

.big {font-size: 36; color: red}

.small {font-size: 12; color: black}

</style>

<script type=”text/javascript”>

<!--

function changeClass () {

theClass = document.getElementById(“myPara”).className;

alert (theClass);

if (theClass != “big”) {

document.getElementById(“myPara”).className = “big”;

}

else document.getElementById(“myPara”).className = “small”;

}

// -->

</script>

</head>

<body>

<form name=”form1”>

<p id=”myPara” class=”small”>What class would you like assigned to this text?</p>

<input type=”button” value=”Change It” onClick=”changeClass()” />

</form>

</body>

</html>

420 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

In this case, when the user clicks the Change It button, the function is invoked. It
then determines the current class name that’s being used with the paragraph and
assigns it to theClass. Next, it checks if theClass does not equal big. If it doesn’t, it is
assigned the class big; if it does, it is assigned the class small. In this way, the script
is able to compensate for either choice and switch between them repeatedly as the
user clicks the button.

Figure 19.12 shows this script in action.

CHAPTER 19 ADDING DYNAMIC HTML 421

FIGURE 19.12

On the left, the

page before

clicking the but-

ton; on the right,

the page after

clicking has

changed the

class of the tar-

geted paragraph.

Summary
In this chapter, you learned how JavaScript and CSS can come together into some-
thing that some people call Dynamic HTML. When Netscape and Internet Explorer
released their 4.0-level browsers, Dynamic HTML was a buzzword on every Web
developer’s lips. It turned out that a great number of both browsers’ implementa-
tions were incompatible with one another, making aspects of DHTML difficult to
adopt.

With both browser companies now offering 5.x- and 6.x-level browser versions, that
landscape has changed somewhat. Both browsers support a common overlap of CSS,
both for appearance styles and for positioning elements on the page. Using those
styles, it’s possible to do a great deal of Dynamic HTML—programming style
sheets—that will work cross-browser.

This chapter started by introducing the CSSP properties and techniques, and then
showed you how to script CSSP in each of the major browsers. Also shown was how
scripts can be written that take into account all CSS-compatible versions of the
major browsers, including the problematic Netscape 4.x browsers.

The chapter ended with a look at scripting CSS1-level properties, including changing
individual properties and changing the CSS class with which a particular property is
associated.

In the next chapter, you’ll see some of the popular graphical editors for HTML and
XHTML. You’ll learn some of the differences between them and the advantages to
using a graphical editor, particularly once you’ve come to understand XHTML and
other Web technologies.

422 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

WEB PUBLISHING
TOOLS

VPART

M

20

GRAPHICAL
EDITORS
y recommended path for a Web author is to learn XHTML first. You

want to know what your graphical editor is doing and how to augment

its capabilities or fix any problems that crop up by digging into the code.

If you’ve been reading the chapters of this book in order, you should

have no problem managing a graphical editor.

The advantages of a graphical editor are obvious—you don’t have to

type all those crazy codes! Nearly all graphical editors let you lay out

your page with tables, create framesets, or even add some JavaScript.

At the high end, a graphical editor can enable you to work with com-

plex style sheet configurations and CSS positioning or other DHTML

procedures. Best of all, you generally do less editing of elements and

tags by hand.

In this chapter, you’ll take a look at some popular graphical editors; the

differences and advantages of them for Web authoring.

This chapter discusses the following:

■ Netscape Composer

■ Adobe GoLive

■ Macromedia Dreamweaver

■ Microsoft FrontPage 2002

Netscape Composer
While Netscape Composer doesn’t exactly belong in the same class as the other
graphical editors discussed in this chapter, it’s worth covering for one primary rea-
son—it’s free. It’s also gotten a bad rap from some Web authors, perhaps because
earlier versions were partial to Netscape-only elements and the code tended to be a
bit messy. The fact that Netscape Communicator (the main version of Netscape’s
software in the late 1990s) went quite a while without significant updates also hurt
Composer, because it was stuck at a particular support level of HTML for quite a
while.

Composer has been updated for Netscape 6.x, however, and it turns in a decent per-
formance. It’s part of the standard Netscape distribution, which now incorporates all
the modules (Web browsing, e-mail, newsgroups, and Composer) that used to com-
prise Netscape Communicator. In Netscape 6.x, all you need to do is choose File,
New, Blank Page to Edit to begin working with Composer.

Where to Get It
You can get Composer simply by downloading Netscape from
http://home.netscape.com/computing/download/index.html. Once that’s downloaded
and installed, Composer is available immediately.

Composer’s Strengths
Composer is an HTML 4.01 transitional DTD-compliant Web browser. It doesn’t fol-
low all the rules of an XHTML document—for instance, empty elements don’t
include a trailing slash. However, it does follow many of the rules, including closing
most container elements, avoiding most deprecated elements, and using the appro-
priate elements for much of the markup. Likewise, the raw markup is reasonably
clean and easy to read, which was a problem with earlier versions of Composer (as
with many early graphical editors).

Composer features a number of different modes that are great for the Web developer
who is learning HTML code. The Show All Tags mode (see Figure 20.1) can be used
to quickly see which elements are being used on a particular page. This mode
enables you not only to see potential mistakes (such as the two <div> elements that
appear in Figure 20.1), but also to double-click an element and change its attributes
or add inline style or JavaScript event handlers.

426 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 20.1

In Show All Tags

mode, Composer

gives you a spe-

cial view that

displays the ele-

ments being

used. You can

also change

them and add

inline styles.

CHAPTER 20 GRAPHICAL EDITORS 427

Composer offers two other modes: HTML Source and Preview. The HTML Source
mode is useful for seeing the source that Composer is developing, as well as for mak-
ing alterations yourself when necessary. And the Preview mode is useful because it
can show you exactly how the page will look—at least in Netscape 6.x. You can also
edit in Preview mode, if desired, without the guides that are shown in the Normal
mode.

Composer’s Weaknesses
Composer isn’t really an XHTML tool, although generally Composer will create
pages that validate to the HTML 4.01 transitional DTD. (And in fact, a validation
tool is built into Composer.) Composer tends to use elements for changing the
size and typeface of fonts, although you can opt to add inline styles to elements one
by one.

Composer is designed primarily to edit individual pages. As you’ll see with the other
tools discussed in this chapter, pro-level editors tend to help you manage an entire
site, including uploading and downloading the site or otherwise working with the
server. Composer is really a page editor, leaving most of the site management up to
you.

Probably its biggest weakness is that it has very little support for adding <style> and
<script> elements to the page in any mode other than the HTML Source mode.
While Composer doesn’t seem to damage the <style> and <script> elements, it
doesn’t always recognize them, either. For instance, style definitions in the <head> of
the document don’t appear to change the Preview mode presentation of the page. If
you click the Browse button to see the page in a full-fledged Netscape browser win-
dow, however, the style sheet definitions are put into place.

The other weakness is an interface issue. Most commercial Web authoring packages
use small windows, called palettes, to make common settings available as you’re
editing. For instance, a Web editor might have a palette for settings so that when
you click inside a table cell, the cell’s alignment, width, background color, and other
settings are available immediately. In Composer, these settings are handled using
dialog boxes, which simply adds a step to the process. You need to double-click an
element, either in Normal mode or Show All Tags mode, before you can see the dia-
log box that governs that element’s settings. While the dialog boxes tend to be pow-
erful (as I mentioned, you can add inline style and JavaScript event handlers), all
that double-clicking can get tiresome.

Composer’s Highlights
If you’re interested in trying out Composer, simply launch Netscape 6.x and choose
File, New, Blank Page to Edit, or choose Tasks, Composer to launch Composer
directly. (Netscape 6 also has a small menu bar, usually in the bottom-left corner,
that has a Composer launch button.) Once it’s launched, you can begin typing
directly in the window. Composer considers the entire window to be within the
bounds of the <body> of your document, unless you’re editing in Source mode.

As you type, note that the menu in the top-left corner can be used to change the
current paragraph on the page to a particular block style, either a paragraph style
or a heading, as shown in Figure 20.2. You needn’t highlight block elements to
change them—simply place the insertion point in a paragraph and choose from the
menu.

You can change font typefaces, sizes, and text styles by highlighting words and
choosing styles from the toolbar, or by opening the Format menu and choosing from
the Font, Size, and Text Style submenus.

Also on the Format menu are controls for editing table properties, as well as the
Format, Page Title, and Properties menu items, where you can enter the title and
some <head>-level elements.

428 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 20.2

Changing block

level styles with

the menu bar

menu.

CHAPTER 20 GRAPHICAL EDITORS 429

Adding other elements is accomplished via the Insert menu, where you can add
images, hyperlinks, tables, and other HTML markup. For instance, choose Insert,
Image and the resulting dialog box enables you to locate the image on your hard
disk. (Remember, it should be in the same relative location that it will be once it’s
uploaded to your Web server.) The Image Properties dialog box allows you to add
alternative text, specify the width and height of the image, or create an imagemap.
Once you’ve made your settings and click OK, the image is added where the inser-
tion point is on your page. You can then drag the image around to change its loca-
tion.

Adding a table is a similar prospect. Choose Insert, Table and a dialog box appears.
In that dialog box, choose the number of rows and columns for the table, the width,
and the border thickness. For more advanced options, including cellpadding and
cellspacing, click the Advanced Edit button. Otherwise, click the OK button to add
the blank table to your page. You’ll see the cells, ready for you to begin typing (or
pasting) content.

As a knowledgeable Web author, you’ll likely find yourself spending at least some
time in the HTML Source mode. There you can edit the elements directly, and you
can add <head>-level elements, scripting, or style code. Netscape Composer is fairly
good at staying out of your way after you’ve edited the source code. (In fact, in the
Preferences dialog box, you can tell Composer to maintain the original formatting
of the HTML that you type in manually.)

Finally, you have a few different choices when you’re ready to preview the page.
Click the Preview mode tab for an editable preview of your page. Click the Browser
button in the toolbar to see the page in an actual Netscape browser window, where
you’ll likely see even truer representations. (Plus, JavaScript and CSS will work in
those browser windows.) Finally, choose Edit, Validate HTML to automatically con-
nect to the W3C’s validator page and test your document to make sure it’s valid
HTML. (Again, it’s compared against the HTML 4.01 transitional DTD, which is simi-
lar to the XHTML 1.0 transitional DTD but slightly less strict.)

Adobe GoLive
GoLive began as its own very successful development company, creating what was
at first a Macintosh-only Web editor called GoLive CyberStudio, which surpassed
everything else of its time in terms of graphical editing. One of the first editors to
make Web authoring more object-oriented and less code-focused, GoLive still works
by enabling you to “drag in” any number of different objects and work with them
without too much low-end knowledge of HTML coding. Since its early beginnings, it
has gone cross-platform and hit the big time. It’s now owned by graphics power-
house Adobe, which has given it a makeover to resemble Adobe’s line of graphics
applications, while retaining its powerful approach.

For knowledgeable Web authors, GoLive offers a way to quickly prototype pages and
then dig into the code to make them perfect. GoLive also supports tons of advanced
features, including a JavaScript editor, drag-and-drop support for multimedia con-
trols, and the ability to work easily with technologies such as CSS Positioning. It’s
definitely a pro-level tool, which extends to the price—currently, it’s $299 for most
users. Still, if you’re planning to do professional work with GoLive, it’s probably
money worth spending.

As with many software applications, GoLive is available in a much cheaper academic
version for teachers and students (and occasionally parents). Check with your school or
university to see if you qualify for educational pricing.

Where to Get It
You can get Adobe GoLive in most computer stores and superstores, or you can order
it online via any number of vendors. If you’re not yet sure that GoLive is right for
you, Adobe offers a 30-day demo that you can download at http://www.adobe.com/
products/golive/main.html. Be warned that the demo’s archive is over 35MB for the
Windows version and nearly 50MB for the Mac version, so downloading it is only
recommended if you have a broadband connection.

430 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

GoLive’s Strengths
If you fire up GoLive and you have existing Web sites, you might come across the
first advantage immediately—GoLive can import an existing Web site quickly and
easily. All you have to do is tell it where the index page is, and it can figure out the
rest. Once you’ve imported your site, GoLive allows you to manage that site visually
(see Figure 20.3).

CHAPTER 20 GRAPHICAL EDITORS 431

FIGURE 20.3

Adobe GoLive

enables you to

manage your

Web site

visually.

Probably the most obvious reason to choose GoLive is its integration with other
Adobe tools. GoLive can work directly with PhotoShop image files, rollover anima-
tions created with Adobe ImageReady, and files created in Adobe Illustrator or
Adobe LiveMotion. This integration, as well as a shared approach to the user inter-
face, makes Adobe GoLive a good choice for Web authors who have bought other
Adobe products, or Adobe users looking for a pro-level Web development tool. In
fact, you can purchase GoLive in various bundles with these other Adobe tools (one
of them called Adobe Web Studio), which is much cheaper than buying each appli-
cation individually.

GoLive offers many additional rich features, including strong support for program-
ming back-end databases, the ability to create pages that work with Microsoft’s ASP
servers, and automatic conversion of HTML documents to XHTML. It offers particu-
larly strong tools for editing the source code, including the ability to view elements
in different ways, such as a hierarchical tree that can show you when elements are
missing from the logic of your page. And GoLive includes a special feature to ensure
that code you import or type directly will remain off-limits to the program so that it
doesn’t change items you’ve hand-coded.

In fact, if you happen to have GoLive or the GoLive demo available as you work
through this book or explore XHTML coding further, you’ll find the Source mode is a
great way to work in XHTML. (You access Source mode by clicking the Source tab at
the top of the editing window.) Small buttons in the button bar enable you to high-
light different portions of the code—you can highlight only links, for instance, or

only server-side code. You can also display line numbers. This can be handy for trou-
bleshooting JavaScript (JScript) code in Internet Explorer, which reports errors on
numbered lines. GoLive even displays a small error count at the top of the editing
window, and it can alert you to errors and warn about problematic code.

Although GoLive is a strong Windows tool, its Mac roots still show through a bit. It
supports AppleScript, it can work extensively with QuickTime movies, and it directly
supports WebObjects technology, which is Apple’s high-end Web application envi-
ronment (for building high-capacity Web stores, for instance).

GoLive’s Weaknesses
Reviewers and users often directly compare Adobe GoLive to Macromedia
Dreamweaver (covered later in this chapter), which tends to be the category leader.
Whereas GoLive relies on its Adobe family integration for some of its strengths, some
feel that it continues to lag behind Dreamweaver’s ease of use. GoLive requires a
slightly steeper learning curve than some other editors, although it does go deeper
with database-driven sites than much of the competition does.

GoLive 5 can have trouble with standards, thanks to some slightly proprietary
approaches to creating pages. It doesn’t always create pages that pass muster with
the validators, it doesn’t generate strict XHTML 1.0, and often it throws in some
messy proprietary codes (such as special attributes for tables), particularly when
you’re working with tables and grid-based layouts.

If you plan to use GoLive, you should have a large computer display and it should
run at high resolution. GoLive uses palettes for a number of solutions and tools,
making it easy to fill up the screen on smaller displays. Editing Web pages at
800×600 is frustrating at best (see Figure 20.4). A better workspace for GoLive
includes a large display and a good mouse—you’ll be doing a lot of pointing and
clicking, and contextual menus abound.

GoLive’s Highlights
If you’ve already put together a Web site of any sort, you should allow GoLive to
import that site so you can see the site-management tools. Once you grow familiar
with GoLive, you’ll appreciate being able to not only edit pages within it, but to
manage your overall site, including the FTP process to your server. In fact, if your
server supports the WebDAV protocol, you can actually edit your pages directly on
the server using GoLive, which supports WebDAV.

432 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 20.4

These are

GoLive’s default

palette posi-

tions—nearly

impossible to

work with at

800×600.

CHAPTER 20 GRAPHICAL EDITORS 433

If the site is stored on your local hard disk, import it by choosing File, New Site,
Import from Folder. If not, choose File, New Site, Import to import from an FTP
Server. In the second case, your entire site will be downloaded via FTP, which can
take a while.

Once the site is imported, you’ll see the Site window. There you can inspect all the
pages on the site, along with other attributes of the site’s markup. For instance, you
can check the Colors tab to see the different colors being used in your site. GoLive
even allows you to assign your own names to particular color values, which can be
handy if you have a group of designers and you want to create a custom palette of
approved colors. Clicking the Font Sets tab shows you the different font families
being used—again, this is helpful if you have a team of designers for your site. The
Errors tab shows any URLs or other referenced files that don’t exist or links that don’t
work.

Double-click a page in the Site window (or create a new one using the File, New
command), and you’re introduced to the main editing interface. Along the top of
the editing window are a number of tabs that you use to change modes—Layout,
Source, Preview, and others for viewing frames and viewing an element hierarchy.

Once you’re working on a page in Layout mode, you’ll find that most of the images,
form elements, and pretty much anything else you don’t type in are added by drag-
ging an icon to your page. The Objects palette holds different icons that you can

drag directly to your window. Anything from a comment, a line break, or a horizon-
tal line, all the way up to a QuickTime or RealMedia plug-in object, can be dragged
directly into the editing window. Once an element is in the window, selecting it
causes its properties to be displayed in the Inspector, which you can then use to
tweak the attribute settings for that element.

Perhaps the least familiar element to a seasoned XHTML author is the layout grid
that GoLive can use for HTML layout (see Figure 20.5). Essentially, it enables you to
lay out your page as precisely as you’d like without worrying about any particular
CSS, table, or other element or property. Then, when you’re done, HTML tables are
created to place the elements on the page as exactly as is possible with the HTML
specification.

434 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 20.5

You can use a

layout grid to

position ele-

ments without

worrying about

the underlying

table code.

Macromedia Dreamweaver
By most accounts, Dreamweaver is the leader in professional Web authoring tools.
While both GoLive and Microsoft FrontPage (discussed next in this chapter) have
their strengths, those strengths tend to focus on integration—GoLive integrates well
with other Adobe products, whereas FrontPage integrates well with Microsoft prod-
ucts. Dreamweaver, in many cases, is favored simply for its interface and its
approach to Web page creation. Personally, I’ve come across a number of Web neo-
phytes who have found that Dreamweaver helps them make sense of basic Web
editing and updating—even the actual process of sending files to the server via FTP
is made a little more bearable by Dreamweaver.

In fact, Dreamweaver’s emphasis on interface design means you can work with
fewer palette windows on the screen, if desired. You can actually drag tabs from one
palette to another, creating a personalized interface that enables you to work with
fewer windows that still have your favorite tools. This is a great way to get quick
access to the tools you use regularly, particularly once you’ve worked with
Dreamweaver a bit and gotten a sense of its capabilities.

At the same time, Dreamweaver is owned by Macromedia, a powerhouse multime-
dia applications company. This means it integrates well with Macromedia’s tools,
which include some very popular Web development tools such as Macromedia Flash.
In fact, Macromedia sells Dreamweaver in different bundles that include Flash,
Fireworks (for animated and optimized images), and other Macromedia applica-
tions. These bundles (Macromedia calls them Studios) can be much cheaper than
buying all the included applications individually.

Where to Get It
Macromedia offers a free 30-day demo of Dreamweaver that you can download
from http://www.macromedia.com/software/dreamweaver/. The suggested price for
Dreamweaver is $299, although upgrade and “cross-grade” prices are also available.

Dreamweaver’s Strengths
Dreamweaver features a good mix of visual editing and textual editing, which works
well for both the novice Web author and one who has XHTML experience. The blank
page offers the user a word processor-like interface, with a small taskbar that holds
commonly used elements that can be dragged into the window and defined. Using
that tool palette, you can add anything from a horizontal line to a plug-in object.

The word processor theme is carried through to the Properties window, which shows
up at the bottom of the page by default. As you move to different elements on your
page, the Properties window changes to reflect the sort of element you’re working
with. You can then make immediate changes that are reflected in the code that
Dreamweaver generates, such as changes to the fonts, sizes, or styles of text, or to
the dimensions or alternate text of images. You create hyperlinks using the
Properties window by highlighting text or an image and entering an URL in the
Link entry box (see Figure 20.6).

CHAPTER 20 GRAPHICAL EDITORS 435

FIGURE 20.6

As you create

your page, use

the Properties

area to quickly

change values

and styles.

436 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

One favorite element of Dreamweaver’s interface is a split-window option for code-
level editing of the page. You can view pages in full graphical mode, source code-
only mode, or a split window with source code on the top and a graphical
representation on the bottom. This is great for knowledgeable Web authors. You can
immediately see the changes made in one environment and tweak them in the
other. If you add an element in the graphical pane, for instance, and you don’t like
one of the attribute settings that Dreamweaver uses, you can click in the source
pane and edit it. The changes are shown immediately in the graphical representa-
tion (see Figure 20.7). Note that both sides are active at once—highlighting text in
the preview pane also highlights it in the source pane. You can jump back and
forth, editing freely on either side.

Dreamweaver features a Reference panel that includes content from books that offer
quick reference for both HTML and CSS. Likewise, a palette is available that makes
it easy to add CSS styles to your page, whether you’re creating a site-wide style sheet,
a redefinition of an existing element, or a class for use with various elements.
Unfortunately, the Dreamweaver engine isn’t fully capable of displaying those CSS
styles, but you can use a button in the main window to preview your work in
Internet Explorer, Netscape, or another external browser.

Aside from the windowpane approach to source code, Dreamweaver’s most unique
offering is the Asset panel, which is particularly useful for larger sites. The Asset
panel collects the images, colors, URLs, and multimedia elements that you’ve
already used in your site. Using the Asset panel, you can quickly drag and drop
these recurring elements into your pages, making it easier to generate pages that use
the standard navigational aids and other styles that you’ve developed for your site.

CHAPTER 20 GRAPHICAL EDITORS 437

FIGURE 20.7

The split-pane

approach is

great for authors

who know their

way around

HTML.

Dreamweaver’s Layout mode is similar to GoLive’s, but it offers some interesting
visual feedback. Select the Layout icon in the View portion of the Object panel, and
the Layout tools come alive. You can draw a table on the page and begin adding
content, or you can draw individual cells on the page, which Dreamweaver auto-
matically turns into cells of a whole-page table. As you draw these floating cells, you
can see the rest of the table taking shape in the background. In this way, you can
create very complex tables (see Figure 20.8) that can be used to create very interest-
ing designs.

FIGURE 20.8

In Layout mode,

you’re free to

draw cells all

over the page,

perhaps leading

up to a very

interesting page

design.

438 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Layout icon

Layout tools

Other features include a JavaScript debugger for creating and editing scripts. The
debugger can find specific problems with your JavaScript code and help point you in
the right direction.

Finally, are you interested in adding some Macromedia Flash rollover images?
Thanks to Dreamweaver’s shared parentage with Flash, it can create some basic
Flash text and animated buttons without requiring an outside application.

Dreamweaver’s Weaknesses
Compared to the other high-end Web editors discussed in this chapter, Dreamweaver
is probably the weakest when it comes to working with server-side elements. While
GoLive includes a number of built-in database-access capabilities, and FrontPage
supports Microsoft’s servers very well, Macromedia requires you to upgrade to
Dreamweaver UltraDev if you want support for anything beyond basic server-side
includes. The UltraDev package is powerful, with support for ASP, JSP, and Cold
Fusion—names that should mean something to Web application developers. The
UltraDev pacakge is more expensive than the others. If you’re looking for a graphi-
cal editor that also works with various server front-ends, shop carefully.

Dreamweaver may be a bit frustrating if you’re shooting for 100% strict XHTML 1.0
code because it tends to use a transitional DTD approach. However, Dreamweaver’s
plug-in architecture makes it possible for third-party software to fill that gap. You’ll
find such tools for XHTML compliance at http://www.macromedia.com/exchange/
dreamweaver/, where Macromedia highlights the plug-ins.

Otherwise, Dreamweaver has few weaknesses, if you like the interface. FrontPage
offers a more comfortable interface for users who are accustomed to Microsoft Office
products, and GoLive is sometimes more comfortable for Mac users, Photoshop users,
and those who are familiar with Adobe’s products. But Dreamweaver tends to
appeal to all sorts of customer profiles. It’s simply a very impressive tool.

Dreamweaver’s Highlights
Dreamweaver’s Site window is a great place to start if you’ve already begun work on
a Web site. Choose Site, Define Sites from the menu to begin converting an existing
site to a Dreamweaver site. In the Site Definition window, you can name the site,
choose its local root folder, and specify the URL that the site will use when it’s avail-
able online. When defining the site, notice that you can do much more—under
Remote Info, you can enter information about your FTP server or any other mecha-
nism for updating the site that you choose. When the Design Notes feature is
enabled, it lets you share notes with others who are working on the site.

Click OK in the Site Definition window to create your site. Now you can use the Site,
Open Site command to open this Web site whenever necessary. If you’ve set up FTP
access, you can even use the Site window (see Figure 20.9) to quickly log in and
transfer files to and from the server.

CHAPTER 20 GRAPHICAL EDITORS 439

FIGURE 20.9

The Site window

is great for

quickly manag-

ing your Web

site.

To edit an individual page, double-click in the Local Folder pane of the Site window.
(Or, for individual pages, use the File, New or File, Open command.) Now, if you’re
like me, you’ll immediately switch to the split-window view. (It’s the center of three
buttons in the button bar at the top-left of the editing window. Or you can choose
View, Code and Design.) If the page is something you’ve worked on previously, you
can scroll the source code view to see if any of it is highlighted. If so, that suggests
the code is incorrect in some way. Make the corrections, click the Refresh button in
the toolbar (or choose View, Refresh Design View), and you can see if you’ve fixed
the error.

Adding elements to your pages is a simple drag-and-drop from the Objects bar, if
that’s how you want to do things. You can also use the Insert menu to add many
types of objects, such as images (Insert, Image), tables (Insert, Table), or form ele-
ments (Insert, Form and Insert, Form Elements). You can even create layers (CSS- or
Netscape-compatible) and add server-side includes.

As you’re working, you can use the Properties window (it’s at the bottom of the
screen by default) to alter just about any of the markup you’re working with in your
document. If you highlight text, the Properties window changes to show text options.
(Watch out—some of them may be using transitional elements such as the
element.) If you highlight a table cell, you’ll see table-related choices.

Also, while you’re working, it’s handy to have the CSS Styles window open so you
can edit and update CSS styles, many of which will be updated immediately in the
Dreamweaver editing window. And with the Assets window open, you can easily
drag and drop images, colors, and other elements that you’ve already used else-
where in the site. This makes it convenient to keep your site looking uniform.

When you’re done editing a site, choose Site, Check Links Sitewide for a quick report
on any broken links that your site may have. You can then use that report to dig
back into the site and fix the problems.

Microsoft FrontPage 2002
FrontPage 2002 is a popular Web-editing application, particularly among users who
are partial to Microsoft Office-like applications and those who are creating Web
pages specifically for Microsoft’s Internet servers. FrontPage 2002 is designed specifi-
cally to work well with Microsoft Word, Excel, and the rest of the Office package,
while at the same time integrating Web-application creation with Microsoft’s lan-
guages, proprietary scripting, and interface hooks.

440 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Where to Get It
FrontPage isn’t available as a downloadable demo, presumably because it’s too big
for the download. It’s available in a trial version, but only via CD-ROM. Check your
local computer store to see if they have the demo in stock. If not, you can order it
directly from Microsoft at http://www.microsoft.com/frontpage/evaluation/trial.htm.
Unlike all the other tools discussed in this chapter, FrontPage 2002 is only available
for Windows—there is no Mac version (or Unix or Linux versions, which Netscape
Composer does offer). FrontPage 2002 is packaged in a number of Microsoft Office
bundles, or it can be purchased separately at a retail price of $169.

FrontPage’s Strengths
The obvious strength of FrontPage 2002 is its integration with Microsoft Office. It
looks very much like a Microsoft application, with a toolbar very similar to Word’s,
the ability to directly import Word documents, and even that ubiquitous little paper-
clip for getting help. It includes wizards to help you create and manage pages, as
well as wizards to help you create a particular type of page or site.

FrontPage 2002 has been reworked to place many more tools on the main interface,
including tools that enable you to look at your Web site in different ways. For
instance, the Hyperlinks tool can show you the different ways that each page is
linked to the main page, while the Navigation view can be used to quickly see the
navigational structure of your site.

FrontPage focuses its ease-of-use on the beginning user by making it easy to pull off
some complex tasks. For instance, adding a DHTML mouseover event is something
you can accomplish simply by displaying the DHTML formatting toolbar (Format,
Dynamic HTML Effects) and then highlighting an item for which you’d like to create
the effect.

FrontPage integrates well with Microsoft’s servers, allowing you to manage your Web
site closely. You can check statistics such as page hits, the operating systems being
used, and the referring URLs, essentially enabling you to monitor Web log stats from
within the FrontPage interface. FrontPage also allows you to integrate content and
technology from Microsoft Web sites, such as bCentral.com (for Web site revenue
and traffic), Expedia (for online travel links), and even MSNBC (for placing news
headlines on your page).

One of FrontPage’s real strengths is making tedious things simple to do. For instance,
one special Web component (Insert, Web Component) is a photo gallery (also via
Insert, Picture, New Photo Gallery), which is really a wizard to help you create a
thumbnail gallery of images that can be clicked and enlarged for viewing. Using

CHAPTER 20 GRAPHICAL EDITORS 441

templates provided by FrontPage, you can create a montage, a slide show, or a page
of images and descriptive text (see Figure 20.10).

442 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 20.10

The Photo

Gallery

Properties win-

dow helps you

put together a

quick page of

thumbnails.

Likewise, FrontPage includes a number of templates, both for Web pages and for
entire Web sites, that can make setting up a basic Web presence fairly simple and
quick. In fact, you can even use FrontPage to create more complicated sites—such as
a guest book, discussion forums, feedback pages, or HTML forms—as long your Web
server is running FrontPage Extensions.

FrontPage Extensions is a set of applications that run server-side on capable servers.
(That’s mostly Microsoft servers, although they can be added to Unix-based servers as
well.) FrontPage can then use those server extensions to add interesting interactive
items to pages, such as hit counters, bulletin boards, and form submissions. Those same
pages won’t work on a server that doesn’t support FrontPage Extensions, however.

FrontPage’s Weaknesses
FrontPage’s interface is something you’ll either love or hate. If you’re not a fan of
other Microsoft Office components, you may find that FrontPage suffers from similar
“featuritis”—it’s filled with commands and features, which you might feel get in the
way of actually editing pages. It offers a lot of templates and wizards and helpers
that can sometimes seem to keep you separated from your XHTML code instead of
intimately familiar with it.

Note

It can also rely a bit heavily on proprietary features, such as FrontPage Extensions or
Internet Explorer-specific codes and elements. It often makes these items available to
you without making it terribly clear that they are proprietary. If you develop a page
in FrontPage and you don’t have a FrontPage Extensions-enabled Web server, you
may find that the particularly cool add-ons don’t work correctly or at all.

Finally, this Windows- and Office-centric approach means FrontPage is great for
Windows users who are used to Office, but less interesting for Macintosh users, Unix
users, and those wild-hair creative types who want to use different graphics and ani-
mation tools. Although FrontPage has its collaborative features, it’s probably best
characterized as a “pro-sumer” tool—one that can make personal and small busi-
ness Web sites look great.

FrontPage’s Highlights
The highlights begin at the beginning, particularly if you’re creating a new Web site
that will be hosted on a server that supports FrontPage Extensions. If that’s the case,
you can launch FrontPage and immediately dig into some of the templates it offers.
Whenever you select File, New, Page or File, New, Web, you’ll see a column on the
far-right side of the FrontPage interface. There you can choose to create a blank
page or an empty Web site, or you can work from templates. To explore the tem-
plate options, choose Page Templates or Web Site Templates from the column.

In the Templates window, you can select one of the templates for a small preview
(when applicable). If it looks like the type of page you want to work with, you can
click the OK button. In some cases, a wizard will launch. In other cases, you’ll be
presented immediately with the page template, which you can begin to fill out.

With the page up in the FrontPage interface (whether or not you’re working with a
template), the next step is to begin editing. If you’re familiar with Microsoft Word at
all, you’ll notice that some of the formatting options in FrontPage are made to look
like those in Word. You can select the Bold, Italic, and Underline buttons in the tool-
bar as you type and edit, for instance, or you can select Format, Font to see more
extensive options for changing font appearances.

Want to really change the look of the page? Go for a theme. Choose Format, Theme
and a dialog box appears, enabling you to choose from some predesigned themes
that Microsoft has thrown in with FrontPage. The themes can look professional,
artistic, or just wacky. Select one, and then make a few other choices below the list of
themes. The options include Apply Using CSS, which will create the theme using a
style sheet instead of using elements and other attributes. Click OK and the
new theme is applied to your page—instant design!

CHAPTER 20 GRAPHICAL EDITORS 443

Note also that the Themes dialog box gives you the choice of applying a theme to the
selected page or to all pages. Choose the latter only if your pages are simple in design.
Generally, complex table-based layouts get messed up by the Themes option, and it can
be tough to restore your site after applying a theme.

Another fun way to create your site is to use the Web components. Choose Insert,
Web Component and the Insert Web Component Wizard appears. Then you can
select from among many different types of components, such as dynamic effects,
tables of contents, a hit counter, and so on. You can also add components that
access content from Microsoft’s other Web sites and services.

Although many of these elements require FrontPage Extensions, you’ll find that
some of them simply make it easier to create navigation aids for your pages, such as
Back and Forward links on the pages or hyperlinks to all the pages that comprise
your Web site. Once you’ve made a selection, walk through the remaining steps of
the wizard and your Web component will be added to the page.

When you’re done adding themes and components to your pages (along with some
good old-fashioned text and photos), you’re ready to publish your Web site by select-
ing File, Publish Web. The Publish Destination dialog box appears—enter the URL
for your server. (Use http:// if the server supports FrontPage Extensions, and ftp:// if
it doesn’t.) Once the server is contacted, verified, and you’re logged in, the publish-
ing process should go smoothly. Your site will be uploaded, and then you’ll be ready
to view it on the Web.

Summary
Quite a few Web authoring applications are available for you to try out. Although a
well-trained Web author will know XHTML and related technologies at the code
level, a graphical editor can be an immense help in quickly prototyping sites, as well
as managing large projects and collaborating with others.

Each Web authoring package has its strengths, its weaknesses, and its affiliations.
Adobe’s GoLive works well with other Adobe products, Macromedia’s Dreamweaver
integrates with other Macromedia products, and Microsoft’s FrontPage looks and acts
very much like other Microsoft Office applications. Netscape’s Composer may be the
odd one out. But then again, it’s free, and it’s designed primarily for editing individ-
ual pages.

Most high-end Web authoring tools have demo versions, so you should download
them and test them to see which one works best for you. After all, these tools can get
a little expensive at the pro level, and having the wrong one won’t help much.

In the next chapter, you’ll learn to use add-on technologies to make your Web site
more dynamic and interactive. You’ll also learn a little more about CGI scripts and
other server-side scripting options.

444 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

M

21

FORUMS, CHATS,
AND OTHER
ADD-ONS

any different options enable you to add interactive elements to

your Web site without requiring much programming knowledge. You

can download and install software on your Web server that’s been

written by someone else or you might link to a hosted service, where

the application resides on someone else’s Web server.

You’ll find Web solutions, including forums and chat applications for

real-time discussions. You’ll also see solutions for counting your page

visitors, tracking Web statistics, and much more.

This chapter discusses the following:

■ Creating and hosting forums on your site, including download-
able and hosted forums

■ Adding a live-chat capability to your Web site using third-party
solutions

■ Adding counters and other third-party statistics tools to your site

■ Checking out your site’s statistics and making sense of the results

Creating and Hosting Forums
Before the Internet became popular, many of the people who wanted to meet in
“cyberspace” did so via online services such as America Online or dial-up bulletin
board systems (BBS), most of which were locally run using a computer, a modem,
and a phone line or two. The bulletin board software would answer the phone, log
in the user, show some news about the BBS, and allow the user to post messages in
various forum areas to participate in ongoing discussions.

While the phone-based BBS isn’t quite the cutting-edge tool that it once was, much
of its functionality has been moved to the Internet in the form of Web-based forums
and bulletin board applications. Forums exist on all sorts of topics—computer support,
politics, music, and so on.

If you want to interact with your visitors, answer questions, or try to strike up lively
discussions—in other words, build up a community of repeat visitors—you’ll probably
want to consider a bulletin board system of some sort. Corporate or organizational
sites can benefit from forums as well, if only because users will often answer each
other’s questions (or can find the previous answers you’ve supplied).

Forum Types and Technologies
As with many Web applications, there are two major types of forums—server-based
and hosted. A server-based forum application will need to be installed on your Web
server, generally as a series of CGI scripts, and will need to be maintained on that
server. That may include backups, database maintenance, and occasionally
reinstallation.

Server-based forums come in a vast range of technologies and capabilities, ranging
from ASP (Active Server Pages) applications to CGI scripts written in Perl and C.
Some will require your Web server to offer certain database capabilities, such as an
ODBC (Open DataBase Connectivity) database. Others may require PHP (a server-side
scripting language) or any variety of other scripting solutions that are available for
different Web-hosting server platforms.

Hosted solutions are actually stored on someone else’s server—usually a company
devoted to that purpose. You sign up for a forum that you’d like to host, in some
cases paying for the privilege. You’re then given a username, password, and URL.
You access the forum, set up the topics, and publicize it. You’ll likely link to it from
your own site, and you may be able to make it look somewhat as if it’s actually part
of your site. But the URL is different (because it’s not on your server), and you may
not have access to the actual files in which messages are stored.

446 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Hosted forums are easy to use, but the downside is a certain lack of control. Your
forums will likely have to comply with the host’s terms of service, and may be subject
to editing or censorship. Also, you may not be able to back up and/or transfer the
messages easily if you change your mind and opt for a different solution. While
many people are turning to a variety of hosted applications on the Web these days,
generally the convenience comes at the expense of turning over a little power to the
hosting company.

Choosing a Server-Side Forum
There’s a great deal of forum software for the various Web server platforms you’ll
encounter on the Internet, so the first consideration in forum shopping is what sort
of server you’re using for your Web site. You’ll need to ask the system administrator
or your Web-hosting company these questions:

■ Is the server based on Unix, Windows, or Macintosh?

■ What access do I have to the server—can I install in the cgi-bin directory,
or should I install somewhere else?

■ What scripting technologies, CGI languages, and/or database technologies
are available?

■ What are the version numbers of the particular languages or scripting
environments that are available?

You’ll find that most ISPs (if that’s who you’re dealing with) are familiar with these
questions and can tell you their do’s and don’ts regarding Web applications. Likewise,
if you’re planning to implement server-side applications for your company Web site,
your IT department or system administrator should be able to answer these questions.

Once you’re familiar with the options and limitations of your Web server, you can
start researching compatible forum software. A great place to start is the Conferencing
on the Web guide (http://thinkofit.com/webconf/), where you’ll find links to most of
the Web forum packages available.

The main decision you’ll likely need to make is whether or not you want to pay for
the forum software. There’s a fair amount of freeware available for your forums, but
few of those options give you the flexibility and professional look-and-feel of the
more expensive commercial software. Commercial software can vary in price, from
tens to hundreds of dollars, but in many cases the price can be worth it.

Aside from the look of the software, the differences tend to be in the following areas:

■ Customization features—Can you make the forums look like they’re a
part of your Web site? Can you change colors, fonts, and so on?

CHAPTER 21 FORUMS, CHATS, AND OTHER ADD-ONS 447

■ Management features—How do you manage users and messages? Does
the software offer sophisticated support for registered and non-registered
users, or is everyone lumped into a single category? Can you send e-mail
messages to all of your registered users? Can you block certain users or add
users as moderators or forum managers?

■ User interface features—Can visitors use HTML markup, images, emoticons,
and other widgets to make their discussions a little more personal and fun?

Here are a few of the more famous and notable server-side Web forum software
packages:

■ WWWBoard (http://worldwidemart.com/scripts/wwwboard.shtml)—This one
isn’t the prettiest bulletin board system available, and it can get unwieldy if
it sees a lot of action. But it’s freeware and it’s been around a long time, so
it’s popular. It’s written in Perl, requiring Perl 4 or higher, and has ports to
Windows and Macintosh.

■ WebBBS (http://www.extropia.com/applications/web_bbs.html)—This is another
popular, simple discussion system, similar to WWWBoard, with very little in
the way of user interface options and user-management features. It requires
Perl 5.

■ IkonBoard (http://www.ikonboard.com)—Another freeware solution, this one is
popular because it looks a bit like Ultimate BB (discussed below), which defines
the look-and-feel standard for bulletin boards. Surprisingly, it’s free, but you
may need to do some tweaking and regular maintenance to get it running
and stay on top of the updates. The software requires Perl 5.004.

■ YABB (http://yabb.xnull.com/)—The name stands for Yet Another Bulletin
Board, but this one is a great option considering it’s freeware (probably
thanks to the fact that it’s an open source project). With the look-and-feel of
a good Ultimate BB clone, YABB also offers a lot of the customization and
management features of higher-end software. This requires Perl 5 and works
with Unix and Windows NT.

■ Discus (http://www.discusware.com/)—Discusware offers two versions of its soft-
ware, a freeware offering and a commercial one. Both are good competitors
in their respective markets—the freeware version is very popular, and the
commercial version is reasonably inexpensive ($149). In fact, many users like
the no-nonsense tree-based interface, which isn’t as graphical as Ultimate
and its clones but is still very well thought-out. It requires Perl 5.005 running
on a Windows or Unix server.

448 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

■ Ultimate Bulletin Board (http://www.infopop.com/)—This one has been the
standard-bearer for a long time, particularly when it used to have a freeware
version. Now you can download a trial version that has a limited number of
uses, and the license for the full version is $199. Ultimate BB looks great, and
it offers customization, e-mail options, HTML, searching, personal profiles, and
much more. It uses Perl; a PHP version called UBBThreads is also available.

■ vBulletin (http://www.vbulletin.com/)—Another Ultimate BB clone, vBulletin
gets higher marks from some users than the original. It’s a little less expensive
($85 a year or $160 to own it) and uses PHP and MySQL for a faster interface
than most Perl solutions. PHP 3.0.9 and MySQL 3.22 are the minimum
requirements. The company offers vBulletin Lite, which can be used for test-
ing or for smaller sites (it’s feature-limited, but it works). Figure 21.1 shows
vBulletin’s support forum, which itself uses the vBulletin software.

CHAPTER 21 FORUMS, CHATS, AND OTHER ADD-ONS 449

FIGURE 21.1

The vBulletin

software offers

a reasonably

inexpensive

commercial

solution that’s

graphically

appealing.

Installing a Server-Side Forum
So what does it take to install a server-side forum? Each one is a little different, and
some of them can require some tedious configuration—particularly the free ones.
Generally, the process goes something like this:

1. Download the software package and decompress its archive to reveal all
the files.

2. Copy (or upload) files to various directories on your Web server, mostly the
cgi-bin directory. You may also need to copy or upload images and other
ancillary files, such as help files, to other directories on your server, according
to the software’s instructions.

3. Set permissions for the forum scripts, so that the scripts can be executed by
the Web server software when requested by a browser. (Generally this will be
done either using your FTP software or at the Unix command line, if your
Web server supports a command-line login.)

Changing Web server permissions settings can be a bit unsettling because making a
mistake can sometimes create a security hole. You should read the instructions for the
forum software carefully, and consult with your ISP or system administrator if you’re not
familiar with setting file and folder permissions.

4. Set any options and preferences, including an administrative account, the
original forum topics or questions, the look-and-feel, and so on. Sometimes
these configuration options are done via an HTML document, and sometimes
they’re done by hand-editing a configuration text file (see Figure 21.2).

450 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Caution

FIGURE 21.2

Here’s a sample

configuration

file for YABB.

Once the system is set up, generally you access it using a straightforward CGI URL,
such as http://www.fakecorp.com/cgi-bin/forum.pl. Then the forum application takes
over and the users can begin reading and posting. The application will also likely have
administrative features, which you should be able to access using the administrative
account you’ve created.

Remember that using a CGI application, particularly a sophisticated one that involves
this much user interaction, could pose a security risk to your server. You should read
the documentation for your Web forum software closely for security issues, including
creating a unique administrator account and password. Likewise, because you’re managing
the software yourself, make sure you keep up with the updates and new versions,
particularly if they fix security issues.

Hosted Forum Solutions
If you’re not keen on digging into configuration files, uploading files to your server,
or changing permissions and doing other admin-level things, a hosted solution might
be better for you. With a hosted bulletin board, you create an account, log in, and
create the bulletin board. Then, your users will be able to access the bulletin board
via a special URL that points to the host’s server. The software doesn’t run from your
server, so you have a little less control over it. A good hosted bulletin board will be
run by professionals who know what they’re doing, though, so hopefully it will be
fairly bulletproof and convenient.

Ultimately, the decision may come down to how much control you want over the
forum software. If your pursuit is commercial, backups are critical, and you can’t
stand the idea of another company controlling some of your content, you should
probably skip a hosted solution. If you still don’t want the hassle of running a board
but you want more guarantees, you can go with a higher-end commercial hosting
company, which may be willing to write a specific contract giving you as much
control as you want.

If you’re an individual, hobbyist, or non-profit, you may find that a hosting solution
is the best way to quickly get your discussion groups up and running. For informal
discussions, Q&As, and other less-than-critical solutions, a hosted forum might be
the way to go. Figure 21.3 shows one of my hosted forums in action.

Read any user agreements and privacy agreements carefully when you’re creating or
using a hosted message board. They’re ripe for e-mail address gathering, generally for
the purposes of spam or unsolicited advertising.

CHAPTER 21 FORUMS, CHATS, AND OTHER ADD-ONS 451

Note

Tip

Hosted solutions range from ad-supported freebies to expensive commercial applica-
tions. Here’s a look at some of the available hosted discussion group applications:

■ EZBoard (http://www.ezboard.com/)—Discussion boards can be created for
free, if you don’t mind banner and pop-up ads. For a minimal fee, a discus-
sion community can remove the ads. EZBoard even includes a donation
mechanism you can use to get the money from your users. The look-and-feel
is similar to Ultimate BB, and the customization options are pretty good,
including backups for paid boards.

■ BoardHost (http://www.boardhost.com/)—The bulletin board software is very
basic, but some folks like it this way—threaded discussions without all the
subject and topic pages. Setting up a basic board is free, with premium serv-
ice options that get rid of the ads.

■ TimTyler Solutions (http://www.timtyler.com/siteForums/)—This is a basic
forum application that’s a bit pricey compared to some other services. With a
sign-up fee and monthly fee, the major advantage appears to be personal
customer service.

■ MSN Communities (http://communities.msn.com/)—Would Microsoft allow
itself to be left out? Here you can create an ad-driven community for free. It
includes more than bulletin boards, offering support for users to post photos,
calendars, and chat. It’s full-featured, but you can’t make the forums look
like an extension of your own Web site.

452 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 21.3

Here’s my

forum on Mac

upgrades hosted

by EZBoard.

Although it’s not

on my server, it

still matches the

design of my

Web site.

■ World Crossings (http://worldcrossing.com/)—This is the hosted version of
Web Crossings software, from the same company. The forums aren’t graphical
UBB clones, but they’re functional, with “conversation” and “threaded” options
for different types of boards. It’s free because it’s banner-ad supported, but it’s
a great choice if you’d like the simple, less-busy approach to useful forums.

■ InfoPop (http://www.infopop.com/)—The company that makes UltimateBB
will host UBB-based forums for you, for a price. Intended for corporate clients
(it would appear), the cheapest price for this service is $299 a month.

Add Live Chat to Your Site
For years, one of the strengths of the big-name online services such as America Online
was their ability to host live chats—text-based discussion groups where all participants
are active at the same time. You type a comment, others respond, and so on.

For the most part, this sort of interaction is beyond the capabilities of an HTTP
server or even many CGI applications, because Web technologies rely on the static
approach—click a link, load a page—that HTTP offers. While that works for forums
and bulletin boards, live chat requires a different technology. In the case of Web-
based chat, this is usually a Java applet, although other options also abound.

You’ll find that most consumer-oriented chat options are hosted by their respective
companies and tend to be ad-driven. If you’re looking for institutional or corporate
use, some full-featured alternatives are available for a price.

Remember, too, that chatting doesn’t even have to be all that specific to your Web site.
Several of the Internet chat options that are popular for one-to-one communication
also enable you to create your own chat groups and link to them from your Web
documents:

■ MSN Messenger—http://messenger.msn.com/

■ Yahoo! Messenger—http://messenger.yahoo.com/

■ AOL Instant Messenger—http://www.aim.com/

You have two ways to add a Java-based chat room to your Web site. The first way is
to simply create a hyperlink to a hosted chat room that’s configured and served on
another server. The other way is to download chat server software and run it from
your Web server. Unless you have physical access to your Web server, a hosted chat
room is probably your best option. Even access to the CGI directory may not help
you with something as sophisticated as a Java chat server.

CHAPTER 21 FORUMS, CHATS, AND OTHER ADD-ONS 453

If you want to place a Java server on your site, however, you do have a few options:

■ DigiChat (http://www.digichat.com/)—With this server installed on your Web
server computer, you can offer Java-based chat rooms to any compatible client.
Features include moderated chats, content filtering, and a high level of cus-
tomization. Licenses for the server start at $595 and go up depending on the
number of users. You can also have the chats hosted for $25 per month and up.

■ ChatBlazer (http://www.chatblazer.com/)—Prices start at $395 for the Gold
server and go up for the Enterprise edition, which is priced depending on the
number of Web sites it supports and can go as high as $9,995. Works on any
server that supports Java, and supports embedding on your Web pages for a
more integrated design.

■ iChat (http://www.ichat.com/)—Focusing on the corporate customer, iChat
offers service licenses starting at $495. The software includes “auditorium”
modes for a moderated chat that many people can listen to, but only the
people “onstage” and selected others can participate in.

■ VolanoChat (http://www.volano.com/)—Another pricey option starting at
$495, VolanoChat offers you many of the same features that the others do—
moderated chats, banner ads, membership, and chat room transcripts. The
company offers a free, fully operational demo limited to five users.

Beyond the big guys, you’ll find a number of services that enable you to create your
own hosted chat rooms for free, or nearly free. These chat services give you less con-
trol over the configuration and user management, and many are ad-based or are
basic offerings that attempt to entice you into subscribing to a pay service. But they
might work well for a small or growing site. Here are a few examples:

■ ChatPod (http://www.chatpod.com/)—This ad-based service offers free Java
chat rooms that you can link to from your site. ChatPod is a service of the
same company that makes DigiChat software, so you can upgrade to one of
their hosted solutions if desired.

■ Multicity (http://www.multicity.com/)—Offers tiered pricing for chat rooms—
a basic room supporting 25 people is free, the 50-user level is $30 a month,
and a 100-people room with other pro-level features is $50 a month. It offers
both Java and HTML clients so that non-Java browsers can still participate.
Multicity also offers message boards, instant messaging, Web polls, and even
hosted auction sites.

■ Talkcity (http://www.talkcity.com/)—This very popular destination offers free
chat rooms that you can create and use on the service, or ownership of a
chat room for $3 a month. The service requires users to sign in and offers
safer (content-regulated) chatting options. They’ll also list your premium site
to millions of users or make it completely private.

454 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

■ GroupBoard (http://www.groupboard.com/)—Not only can you chat on this
site, but you can use a whiteboard to draw pictures for the entire group to
see. That might be useful for meetings or teaching, but mainly it’s just fun.

■ Bravenet (http://www.bravenet.com/)—Offers basic, hosted, ad-driven Java
chat rooms, along with many other such services for improving Web sites.

Many Java-based chats offer more of the same, except for the look-and-feel. To explore
other chats and pick one that agrees with you, try the Freeware Java Chat page at
http://freewarejava.com/applets/chat.shtml.

Counters and Web Statistics
Most Web authors like to know how well their sites are doing—how many people
visit, which pages they look at, and what about the site seems to be succeeding. That’s
the whole point of Web statistics, which is what we’ll talk about in this section.

Most Web server applications keep fairly detailed statistics about the activities on the
site, including which pages have been visited, how often, by which IP addresses, and
sometimes which page the user came from most recently (the “referrer” page). If you’re
interested in those things, you’ll need to dig into your Web server’s statistics log files.

Not all Web authors have access to these log files. If you don’t, or if you simply want
a more visual approach to page tracking, you can add a counter to your pages. Most
counters act a little like a car’s odometer, counting up one tick every time that par-
ticular page is visited. Some are more sophisticated, only counting unique visitors,
giving you more detailed statistics, and so on.

Accessing Your Web Statistics
If you run your own Web server, you probably have some idea where your Web
statistics are stored—most likely you have a log file that’s auto-generated by the
Web server software and stored somewhere on the server computer. (Unix-compatible
computers generally place a log file in the /var/log/httpd/ directory, for instance.) If
you have an ISP-based Web site, the ISP probably still makes a log file available to
you somewhere in your Web space, with which you can download and work.

This log file is filled with an entry for every access request, whether it’s for a Web
page, an image, or some other resource on your Web site. Generally speaking,
just looking at such a log page will tell you next to nothing about your Web site.
Instead, you’ll need a program of some kind that can take that log file (or, more
appropriately, a copy of that log file), analyze it, and report its findings to you.

CHAPTER 21 FORUMS, CHATS, AND OTHER ADD-ONS 455

Tip

Perhaps the most popular application for doing that is Analog
(http://www.statslab.cam.ac.uk/~sret1/analog/), which is available for nearly any
computer operating system. It’s not much of an application in its own right—that is,
you don’t do much clicking or choosing while it’s running. Instead, you launch the
application and point it to the log file. (Often this simply means having the log
file in the same directory as the application.) It analyzes the log and generates an
HTML document that gives you an idea of how well your Web site is performing (see
Figure 21.4).

456 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 21.4

Analog’s output

is a fairly

uniform HTML

document that

shows you

what’s going on

with your site.

Some ISPs offer automatic analog output posted somewhere in your own Web space.
Others offer proprietary Web-based interfaces for checking statistics.

Analog (and other analysis programs) will tell you the total requests and the total
page views. For most applications, the number of page views that your site receives is
the most interesting because requests can include images, multimedia, and other
items that don’t really account for additional visitors. You’ll also find that Analog
offers interesting averages, such as the average number of page views per day, and
other tidbits, such as which days of the week seem to have the most traffic.

Tip

Adding a Web Counter
Even if you do have access to your Web statistics, many Web authors like to post
Web counters to provide a quick indication of how many people have loaded a
particular page. While a counter will only give you the basics about how many
people visit your site, it can be handy and entertaining.

The easiest way to add a counter is as a server-side include (SSI), which is discussed
later in this chapter. But if your Web server or ISP doesn’t support SSI, or if you’d
like more flexibility for your counter—such as graphics—you might opt for either a
CGI-based counter or a Java-based counter.

A CGI counter is best if you don’t want to rely on the Web browser, as you do with
a Java counter. Instead, a CGI counter relies on your own server, so you know the
count is always working. CGI counters can be very basic, offering only text-based
results, or they can be fairly ornate, with numbers, banner advertisements, and all
sorts of add-ons.

If you have access to your cgi-bin folder, you can install a CGI-based counter yourself,
or your ISP may offer such a counter. CGI counters can be found online at a number
of places, including Matt’s Script Archive (http://www.worldwidemart.com/scripts/),
CGIAdmin.com (http://www.cgiadmin.com/freescripts/), FreeCode (http://www.freecode.
com/index/), CGIExtremes (http://www.cgiextremes.com/), and anywhere else fine CGIs
are downloadable.

If you don’t want to install a CGI, a fair number of Web counters are external,
hosted services—and a number of them are free. Here’s a look at a few different
options:

■ Digits.com (http://www.digits.com/)—This popular graphical counter is free
as long as you include the Digits.com graphic and a link to the site.

■ Web-Stat (http://www.web-stat.com/)—More than a counter, Web-Stat can do
quite a bit of the traffic analysis that can be done with Analog and similar
applications, although it doesn’t require access to the log file. Instead, you
place code on your page and the Web-Stat server tracks users. Web-Stat costs
$5 a month.

■ CyberCount (http://www.cybercount.com/)—Similar to Web-Stat, CyberCount
offers a graphical counter and Web statistics tracking. It’s free if you also run
their banner ad on your pages, or $5 a month ad-free.

■ FastCounter (http://www.bcentral.com/products/fc/default.asp)—Another pop-
ular option from Microsoft’s bCentral, it’s free to registered bCentral members.
(bCentral is a “small business solutions” site that focuses on generating Web
traffic for its members via Web rings, search engine submission, and similar
options.)

CHAPTER 21 FORUMS, CHATS, AND OTHER ADD-ONS 457

These counters are simple to add—you’ll be given a selection of HTML code to paste
into your Web document. When you put the Web document on your server and
access it via a Web browser, the counter is activated, the remote server is queried,
and the statistics are tracked.

Server-Side Includes
Server-side includes, or SSIs, were among the earliest add-ons to Web servers. SSIs
are used to include certain text files or server variables in your Web documents. For
instance, if you store a text document (even a snippet of XHTML code) that includes
the header you use for multiple pages on your Web site, you can use an SSI command
to include that code on the relevant pages. Then, the server pieces the document
together and sends it to the requesting browser as if it were all one file stored on the
server.

Along with text files, SSIs can be used to include certain environment variables. SSIs
depend entirely on your Web server software—there’s no official standard, and SSIs
can be implemented in any way that the server desires. Generally, these commands
are fairly simple, but they can be effective. For instance, SSIs can be used to include
the current date, the current URL, information about the user’s browser, and other
environment variables. In addition, many servers implement Web counters using
SSI, and you can often execute a small CGI script and put the results on your page.

You’ll find that SSI support isn’t offered by every ISP, and they may be turned off by
your system administrator for security or server-load reasons. If you do have access to
SSIs, you’ll likely need to discuss their implementation with your system administrator.
The exact commands and syntax at your disposal may vary depending upon the
actual Web server software in use.

As a general template, you’ll need to take a few steps to use SSIs on your site:

1. Confirm with your ISP or system administrator that your Web server is capable
of using SSIs and that they’re turned on.

2. Save your pages with a .shtml or .shtm filename extension. That’s how the
server knows to expect SSIs on the page.

3. Add the SSI commands to your page. Generally, they’re added using the
HTML comment tag with the SSI command inside the brackets:

<!-- #include file=”banner.txt” -->

Aside from the #include command, SSI implementations usually have an #echo
command, which causes the Web server to add something to your page:
<!-- #echo var=”DATE_LOCAL” -->

458 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Using that command, you could add the current date to your page. Remember that
SSIs work by replacing the text within your Web document before it’s sent to the Web
browser. So, you can even place the commands inside XHTML containers, if desired:
<p>Document was last modified: <!-- #echo var=”LAST_MODIFIED” -->
➥</p>

When this page reaches the Web browser, it will no longer have the <!-- --> command
in it because the entire bracket is replaced with the value of the echo command.
That’s how SSIs work. Once the server has parsed the page, the comment brackets
are completely replaced with the SSI’s value. Even if the user used the View Source
command in a Web browser, the SSI command wouldn’t appear there.

The environment variables were discussed in Chapter 16, “CGIs and Data Gathering.”
You should be able to access those same variables from your SSI commands.

Here’s how a counter, banner, or rotating “Saying of the Day” often works—using
the exec command. This actually launches a script, with the result of that script
being included at the place where the script call is on the page. So, if you have a
script that calls a counter, and the script counter.pl is in the same directory as the
page you’re authoring, you could include its results like this:
<p>This page has had <!-- #exec cmd=”./counter.pl” --> visitors since
➥March 1.</p>

You may have seen a line similar to this on many Web pages. What the SSI is doing
is executing the script, plugging the result into the page, and thus replacing the SSI
command with a number.

As with any CGI script, this script would need to be executable. On Unix and Windows
servers, you’d need to set the appropriate permissions, or the script would need to be
an executable application. This can be a security risk, so check with your ISP or adminis-
trator before changing permissions.

One thing that’s interesting about the exec command is that it tends to only work
for scripts that are in the same directory as the Web page you’re authoring. And, for
security reasons, many Web servers won’t allow you to place executable scripts in a
regular HTML directory. Instead, you’d need to access the cgi-bin directory. You can
do that using the virtual command instead:
<!-- #include virtual=”/cgi-bin/counter.cgi” -->

The virtual command actually works by building its relative URL based on the
“virtual server” that it’s dealing with—that is, the local domain name and server
address. In this example, the virtual command will go to the root of the Web server’s
drive, locate the cgi-bin directory, and execute the script from there.

CHAPTER 21 FORUMS, CHATS, AND OTHER ADD-ONS 459

Tip

Note

If your Web site uses Apache server software, visit http://httpd.apache.org/
docs/howto/ssi.html for more on its implementation. You’ll notice that you can
get even more advanced with SSI, including creating variables and performing some
conditional expressions!

Summary
In this chapter you saw some of the add-on products, both freeware and commercial,
that you can use to make your Web site more community-focused, more automated,
or just a bit more fun. For instance, adding discussion groups is a great way to foster
community and participation among your users, which generally means a more
active Web site. Likewise, chats are a good way to get together in real-time with your
visitors and share information or simply have a good time.

This chapter also discussed the fine art of counting pages, including special counter
programs you can add to your site, as well as programs you can download and use
on your own computer to analyze your site’s log files.

Along with CGI and Java-based solutions, this chapter discussed hosted solutions for
chat, messages, and counters that are run from the hosting company’s server instead
of your own. The advantages are that you don’t have to set up the programs and
configure them to keep them running, while the disadvantage is a certain lack of
control. Still, hosting is one way to add high-end applications to your site without
too much trouble.

Finally, the chapter ended with a quick look at SSI technology, which lets you include
files, CGI results, and other scripted solutions on your page, thanks to server-side
processing.

In the next chapter, you’ll learn about some of the different approaches you can
take to choosing a Web server, including solutions for selling things online.

460 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Tip

W

22

WEB PUBLISHING
SERVICES
hether you’re just starting out with a new Web site or building a num-

ber of sites, eventually you’ll probably want to shop around for a Web

publishing service. (If you’re like me, you’ll probably move your favorite

sites around a little bit, too.) All sorts of Web publishing services are

available to you, the differences pretty much hinging on price and serv-

ice. This chapter will take a look at some of the basic issues you should

consider when shopping for Web services. It will also look at some spe-

cific offerings and see how they compare.

This chapter discusses the following:

■ Questions you should ask and features to look for in a Web
service

■ Using free services—do you get what you pay for?

■ How to add e-commerce solutions so that you can sell products
(and maybe even make money)

Finding the Right Web Host
You might be asking, “Why is this chapter at the back of the book instead of the
front?” My answer is simple: Before you can choose your Web server, you need to
know a little about what you want to accomplish with your Web site. To do that,
you need to know Web publishing, as this book has taught you. So, this chapter
comes last.

There are so many ISPs and Internet Presence Providers that choosing one can prove
incredibly difficult. In certain cases, you may use a pricier service because you know
the people who manage the ISP or you’ve had a personal recommendation. In other
cases, the cheapest (or almost cheapest) service may suffice, just to put up a quick
site. You may even find use for one of the free Web hosting services, some of which
offer clever templates and solutions to interesting problems.

An Internet Presence Provider (IPP) is a company that provides Web server space and
services without offering dial-up, DSL, or other connections to the Internet that most
ISPs offer.

So, to find the right Web service, you’ll need to know a little something about your
Web goals. You’ll need to decide what’s important to you, what you can skip, and
what you’re willing to pay for.

Let’s consider the items that are likely to be important to you when you’re selecting
your Web service provider. They range from basic to somewhat involved, so it’s prob-
ably a good idea to have a pencil and pad handy to jot down your answers.

Before we get to the list, the first question to ask yourself is, “Am I willing to spend
money?” If you’re not willing to spend money, you can immediately eliminate a
great number of the IPPs out there that charge for their services. Instead, you’re
looking at two basic options—either using the ISP-provided server space that you
may already have, or signing up for free server space, which is usually ad-driven.
(The server company places an ad on your site.) See the section “Using Free Servers”
for more details on a few of the most popular no-charge options.

The rest of the questions in this section assume that you are willing to spend a little
for services.

Does the Web server platform matter to me? If it’s important to you that your
pages be hosted on Unix, Linux, Windows NT, or a Mac OS version, you
should make that a primary consideration when you’re shopping. In day-to-
day terms, the Web server platform generally is irrelevant, except that some-
times it can dictate the filename extension (.html or .htm) that you use for
your files. Still, some Web authors care, particularly if an ISP offers access to
that OS via remote login tools, or if you want to use particular scripting and
database languages.

462 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Are CGI scripts important, and does the language matter? If you want to create
scripts (as discussed in Chapter 16, “CGIs and Data Gathering,”) or add CGI-
based forums, chat, and other goodies (as discussed in Chapter 21, “Forums,
Chats, and Other Add-Ons”), the CGI language support will matter to you.
Some ISPs offer Perl and C for CGI scripting, and others offer PHP,
AppleScript, Visual Basic, and so on. If you’re looking for a specialty lan-
guage, that may narrow your options.

Are SSIs or FrontPage Extensions turned on, and what specific commands can I use?
If you want to use Service Side Includes or Microsoft FrontPage extensions on
your pages, you’ll need to know what’s available from your ISP, or if they’re
offered at all.

Do I need a database solution? Many Linux- and Unix-based servers run ver-
sions of SQL or mySQL that you can use for a back-end database, often cou-
pling it with CGI scripts for page retrieval, forums, banner ad management,
and so on. Other specialty servers will offer FileMaker Pro, Microsoft Access,
or other types of database backends. Even if you’re simply downloading
applications or scripts that you want to use with your site, check those scripts’
requirements to see if you need your ISP to provide a particular database
solution.

Do I need secure server capabilities? Using SSL (Secure Socket Layers)
technology, you can encrypt the communication between your user’s browser
and the Web server. However, the Web server has to support this feature, and
the IPP has to make it available to you.

Do I need e-commerce tools? If you have access to a CGI directory and the right
back-end databases and/or languages, you can probably implement your
own e-commerce solution to accept Web-based orders and credit card pur-
chases. But if e-commerce is one of your goals, it can be easier to choose an
ISP that already has support for e-commerce applications. Preferably, it
should give you a demo of its capabilities and how they would be tailored to
your Web site.

Aside from these slightly more advanced issues, you’ll also need to consider the
issues discussed in Chapter 3, “What You Need to Get Started,” concerning storage
space, throughput limits, and other basic IPP questions. And, to top it all off, you
may be interested in other services the IPP can provide for particular accounts, such
as e-mail accounts, e-mail forwarding, domain name registration, and so forth.

An IPP doesn’t have to be in your immediate geographical area, but I can tell you
from personal experience that an IPP or ISP with good customer service—people
eventually answer the phone when you call, for instance—can be worth a few extra

CHAPTER 22 WEB PUBLISHING SERVICES 463

dollars. An unbiased recommendation from a current customer or a magazine arti-
cle can also be worthwhile, if only to keep you away from a potentially deadbeat
IPP.

There are so many Web hosts out there that Yahoo! has an entire topic devoted to the
Web hosting directory sites. Check out http://dir.yahoo.com/
Business_and_Economy/Business_to_Business/

Communications_and_Networking/Internet_and_World_Wide_Web/

Network_Service_Providers/Hosting/Web_Site_Hosting/Directories/.

Using Free Servers
So you’re taking the cheap route? If you don’t mind limited support for CGI scripts,
you don’t want your own domain name (or you want to add it cheaply), and you’re
not against a little advertising, a free server is a perfectly reasonable choice. In fact,
some of them offer some interesting advantages. Often, you can add a feature or
two for a few bucks—such as a personalized domain name or e-commerce tools. This
may be worth it, especially as your site grows.

America Online Hometown
If you have an AOL account, you automatically have access to AOL’s Hometown
service (http://hometown.aol.com/), which enables you to post up to 12MB of HTML,
photos, and other documents. The Hometown service is available to non-AOL mem-
bers as well, but you’re limited to using their online tools, 1-2-3 Publish or Easy
Designer, if you want to place the pages online. AOL members can use a special FTP
area on the service, or they can use an external FTP application while connected to
AOL to upload standard HTML documents and images.

If you use Hometown, you’ll have a small banner at the top of your page that
includes the Hometown logo, some buttons to encourage users to join Hometown
themselves, and generally a small banner advertisement. Aside from templates
and the easy-to-use publishing tools, AOL features a few small scripts for users to
add to their pages for a guestbook or to receive HTML data in e-mail. There is no
access to other CGIs, however, and no option to pay for the privilege of a page with-
out ads or a unique domain name.

464 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Yahoo! GeoCities
GeoCities (http://geocities.yahoo.com/) has been popular for years as a free option
for Web publishing—since well before it came under the Yahoo! banner. Today,
GeoCities still provides free, ad-supported pages, with the option of paying a pre-
mium for additional features, including domain name support.

With the basic GeoCities account, you get 15MB of storage space and access to
GeoCities’ Web building tools. Your domain will be http://geocities.yahoo.com/
username/ and you’ll have FTP access to the site, meaning you can bypass the easy-
to-use tools and upload your own Web documents, images, and so forth.

The main advantage to GeoCities appears to be that you can add certain Yahoo!-
powered content to your site: news, stock quotes, a Yahoo! search box, and so on.
You can also select a category for your Web site, which enables Yahoo! to serve more
targeted advertising. Ideally, that’s an advantage for you and your user, as well as
an obvious advantage for Yahoo!.

Along with the Yahoo! add-ons, you can add a guest book and a counter, and you
can send HTML forms data via e-mail. Yahoo! also offers clip art, images, and
games (such as video poker) you can add to your site. And the interface includes an
advanced look at your site’s statistics.

If you move up to premium services, you can get your own domain name, matching
e-mail addresses, and even the ability to create subdomains, such as
fred.fakecorp.com. Premium services aren’t terribly pricey (currently starting at $9
per month) and offer the same access to the Yahoo! add-ons and so forth, without
the ads.

Lycos Tripod
Tripod is another free service, but this one focuses a bit more on business pages—
particularly those that participate in advertising share programs, such as affiliate
programs and Web rings. Join up and you get 50MB of space, although your pages
will include banner ads served by Lycos. Interestingly, the ads are customizable—you
can use “ad skins” to make the advertising area at the top of the page look a little
more interesting, and you can choose between banner ads and pop-up ads.

Tripod enables you to focus on scripting a bit more than other free services, with a
few prebuilt CGI and JavaScript scripts that you can access. In addition, the service
offers a script editor, which you can use to write JavaScript or Perl scripts and add
them to your pages (see Figure 22.1).

CHAPTER 22 WEB PUBLISHING SERVICES 465

You can have a domain name forwarded to the site for free, as long as you pay $20
to register it yourself using Lycos’ domain name registration partner. In fact, part-
nerships seem to abound on Tripod. You’ll find links to many other Lycos services,
such as Webmonkey for Web publishing tutorials, the Online Business Center for
e-commerce advice, and Commission Central for developing relationships with affili-
ates and other advertisers.

Lycos offers a Tripod Plus service, which enables you to serve pages without ads. You
can also pay to upgrade the amount of storage space for your documents and the
amount of bandwidth your site can serve. At the time of this writing, prices start at
$4.95 a month.

Apple’s iTools
As part of a value-added service for Macintosh users, Apple offers iTools, a suite of
Internet-based applications. It includes a Mac.com e-mail, an online storage area
called iDisk, some Internet-based greeting cards called iCards, and HomePage,
Apple’s tools for Web publishing.

As of this writing, Apple requires that you access your HomePage tool from a Mac-
based browser. Logging in from a Windows version of Internet Explorer won’t work.

An iTools account offers 20MB of total storage to be shared between the iDisk and
the HomePage tool, and you can distribute that storage in any way you please.
Apple doesn’t advertise on its pages, but it does offer you prebuilt templates and wiz-
ards for putting together your Web pages in a way that tends to have a certain
Apple-ified look to it. Not that that’s bad; it’s just true.

466 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

FIGURE 22.1

Tripod includes

a script editor

that you can use

to create

JavaScript or

Perl scripts.

Note

HomePage offers some interesting templates, including special pages that can turn a
directory of images into a thumbnail gallery, a tool that posts QuickTime movies
online for easy viewing, and a template that enables you to share files with other
users over the Web.

What’s more, Apple doesn’t seem too uptight about bandwidth usage. So if you’re a
shareware author who wants to make your software available to the world, you
might consider placing it on your Mac.com pages.

HomePages are found at http://homepage.mac.com/username/, and Apple doesn’t let you
have your own domain name. You can pay to upgrade your account, but that just
gives you more storage space for the iDisk and HomePage tools.

E-Commerce Solutions
What if you want to sell something on your Web site? Again, tons of ISPs and IPPs
are ready to offer you the basics of an e-commerce site, including SSL security, back-
end databases, credit-card accounts, and even prebuilt “shopping cart” applications
to display your products and help your customers choose them and track them. If
you find a reputable local or regional IPP that’s willing to help you with your online
store, use it if the deal seems right. In this section, I’ll be focusing on a few lower-cost
national solutions that might also be interesting.

CHAPTER 22 WEB PUBLISHING SERVICES 467

FIGURE 22.2

Apple’s

HomePage tool

can be used to

create pages

based on profes-

sionally

designed tem-

plates.

Yahoo! Store
Yahoo! offers a service called Yahoo! Store (http://store.yahoo.com/), which promises
a turnkey online store solution. The service walks you though the process of adding
products, using templates, and even getting a merchant account for accepting credit
cards. The cost is currently about $50 per month, plus some other fees, such as per-
product listing costs. And in certain cases, Yahoo! gets a percentage of your sales
when the customers are referred from other Yahoo! pages.

While the price structure may sound a little daunting, Yahoo! Store is fairly cheap
for an e-commerce solution. Plus, you can apply for a listing in the Yahoo! Shopping
channel, which could be a boon to your sales. Yahoo! Stores can be “built with a sin-
gle click,” according the Yahoo!, so it’s worth consideration if you’re looking to jump
into an online store immediately.

Catalog.com
Catalog.com is another intriguing low-cost service for quickly putting together an
e-commerce site. As part of its basic plan (currently $25), you get a fairly solid
Windows-based hosting package. It includes access to CGI scripts and the ability to
run your own scripts, Microsoft Access support, VBScript and FrontPage support,
ODBC-compliant database support, and even some multimedia features such as
RealAudio serving. (There’s also a Unix-based package for the same price that sub-
stitutes mySQL, PHP, and Python instead of the Microsoft-specific features.)

The kicker, though, is the ability to list up to 50 products in an online catalog,
accept credit card payments, and so on. You can pay more to list additional items,
currently $10 per 1,000 items.

Your best bet is to sign on to the site and try out the demo store to see if it works for
you. This will require a bit more customization and HTML know-how than a solu-
tion like Yahoo! Stores. Then again, thanks to this book, you have that HTML know-
how already!

Oracle Small Business
Oracle Small Business (http://www.oraclesmallbusiness.com/) began life as
NetLedger.com, an online application for managing small business accounting.
Since then, it’s grown into a tool for managing a small business that’s completely
online—or a traditional business with an online store—thanks to its module-based
approach.

468 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

This approach is a little different, but it could be very interesting if you already own
a small business. Oracle Small Business begins by replacing your current software-
based accounting system (such as QuickBooks or Peachtree Accounting) with its
online application. The advantage is that you don’t need special server computers.
The disadvantage is that you lose some control over your data. The online applica-
tion is used for accounting, payroll, inventory management, and so on.

The really interesting part is how well the online store can integrate with the
accounting software. Oracle Small Business claims that its Web store can be created
“in a snap”—that’s partly true because it can be populated automatically using your
inventory records, and sales made on the Web site can be entered into your account-
ing system automatically. In fact, clients can access your online accounting system
to check out their invoices and pay them online. For a basic Web store of up to 100
items, plus all the accounting, customer relationship, payroll, and inventory fea-
tures, the service currently starts at $99 a month.

This solution is too complex to describe in a few paragraphs, but it’s worth looking
into if you’re running a small business, you already have accounting issues or pay-
roll headaches, and you think you’re interested in a Web-based store.

Miva Merchant Servers
Although there are many, many different e-commerce server engines out there, Miva
Merchant (http://www.miva.com/) stands out because it’s popular with ISPs and IPPs
that offer e-commerce as a value-added solution. Also, Miva is touted as an easy
add-on for regular Web authors. In fact, one approach to using Miva is the Miva
Now service, which offers what’s essentially a hosted e-commerce store that you can
set up and test for 30 days. You’re then transferred to a Miva partner IPP if you opt
to keep the store. Miva-enabled accounts begin around $30 per month.

Miva Merchant can be purchased for $595, but you’ll likely use Miva through your
IPP for a monthly fee. (ISPs and IPPs can run Miva Empressa, a platform for multi-
ple Miva-enabled shopping sites.) You manage your store from your Web browser,
making it fairly easy to administer. You can check statistics, track your inventory,
and so on.

The Miva Merchant system also makes it easy to create an affiliate program, which is
a popular way to drive business to your e-commerce site. Under an affiliate pro-
gram, other Web authors (your affiliates) place advertisements for your store on
their Web sites. When a user clicks an ad, the Web author gets credit, ranging from
a small amount of money per click (usually a few cents) to a percentage of the sale.
In a sense, it turns other Web authors into commissioned salespeople for the store.

CHAPTER 22 WEB PUBLISHING SERVICES 469

Perhaps the most interesting component of the Miva line of servers is their support
for Miva Script. It’s a proprietary Web-scripting language that enables you to add
HTML-like elements for interactive forms allowing feedback, user registration, and
e-commerce shopping. Using Miva Script, you can either do the scripting yourself
(which you’ll want to do on some level) or add third-party scripts, including some
fairly sophisticated offerings that enable you to manage an entire Web site, much as
you would using Perl or PHP. For more on Miva Script, see http://www.ideablue.com/
index.mv?Menu=MivaScript or http://www.miva.com.

Summary
This chapter expanded on the basic ISP or IPP discussion that was begun in Chapter
3 by looking at how to choose a Web-hosting solution. Before shopping for a Web-
hosting service, you should ask yourself about the complexity of scripting, data-
bases, and add-ons you want for your site. Once you’ve made those decisions, you
can make a more informed choice.

In particular, this chapter covered some solutions for Web hosting, from the free
services offered by AOL, Yahoo!, and Lycos to some e-commerce solutions. Although
many, many Web-hosting companies compete for your attention (and many more
than are mentioned in this chapter deserve a look), this chapter looked at a few
fairly unique e-commerce solutions that all promise to be easy to set up and admin-
ister.

Now you know how to find a host for all of the Web pages, forms, frames,
JavaScripts, multimedia, and other exciting Web technologies that you’ve developed
throughout this book. You’re done!

Appendix A offers a quick reference for common XHTML elements and their attrib-
utes, as well as a reference for CSS style sheet elements and options. Good luck with
your Web sites!

470 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

APPENDIX

VIPART

A

XHTML AND CSS
COMMAND
REFERENCE
This appendix is a quick reference to the bulk of the XHTML elements

and attributes introduced in this book. Likewise, this appendix offers a

quick reference to the CSS properties discussed in the text.

Document Elements
The elements in this section are those required for well-formed Web documents, as
well as the options and attributes that go along with them.

DTD Declarations
DTD declarations begin every well-formed Web document, telling the parser what
type of document to expect.

The XHTML Strict DTD Declaration is used if you intend to be strict in your use of
XHTML 1.0 compliant elements and in using well-formed coding rules:
<!DOCTYPE html PUBLIC “\//W3C//DTD XHTML 1.0 Strict//EN”
“DTD/xhtml1-strict.dtd”>

The XHTML Transitional DTD Declaration can be used if your page includes ele-
ments that aren’t supported in the XHTML 1.0 specification, but are supported in
early HTML standards:
<!DOCTYPE html PUBLIC “\//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>

The XHTML Frameset DTD Declaration is used for creating frameset documents:
<!DOCTYPE html PUBLIC “\//W3C//DTD XHTML 1.0 Frameset//EN”
“DTD/xhtml1-frameset.dtd”>

The <html> Element
The <html> element is the first-level container for a Web document—all other ele-
ments will be placed inside the <html> element. This element can accept a lang attrib-
ute and an xmlns attribute, which is used to specify the XML namespace (in this case,
XHTML).

Example:
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en”>

The <head> Elements
The <head> elements include <head> itself, along with a number of others that are
enclosed within the <head> of the document, including the <title>, <meta>, and <base>
elements.

The <head> element is a container that wraps around these other elements (only
<title> is required), as well as <script> containers, if they’re used in the <head> of the
document. The <head> element can also accept a lang attribute.

474 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Example:
<head>

...head-level markup

</head>

The <title> Element
The <title> element is used to determine the text that will appear in the Web
browser’s title bar when the page is displayed. The title may also be used for the
bookmarks or favorites feature employed by the Web browser, and in other situa-
tions where a name should be associated with a particular Web document. The
<title> element can accept a lang attribute. It must appear inside the <head> con-
tainer.

Example:
<head>

<title>Title Example</title>

</head>

The <meta> Element
This optional element is used to pass along additional information about the docu-
ment, called metadata. This metadata can be used by the browser or other applica-
tions (such as a Web search engine’s robot or spider application) to learn more about
the document. The <meta> element accepts a contents attribute and either a name or
http-equiv attribute, but never both. This element is used for a variety of purposes,
particularly when pages are generated by graphical Web editors.

Examples:
<meta name=”keywords” content=”PC, hardware, repair, laptop, newsfeed”>

<meta http-equiv=”refresh” content=”30”;
url=”http://www.fakenews.com/newpage.html” />

The <base /> Element
This optional element is used to specify a base-level URL for relative URLs used else-
where on the page. For instance, if the base URL is http://www.fakecorp.com/products/,
relative URLs such as href=”product1.html” will be accessed as http://www.fakecorp.com/
products/product1.html regardless of the actual stored location of the current docu-
ment. The <base> element accepts the href and/or target attribute. The target attrib-
ute is useful for specifying a default frame when using framesets.

APPENDIX A XHTML AND CSS COMMAND REFERENCE 475

Examples:
<base href=”http://www.fakecorp.com/people/bob/” />

<base target=”main_viewer” />

The <body> Element
The <body> element is used to contain all the non-<head> elements on the page.
Specifically, this element contains all the text and markup that will appear in the
Web browser window. It can accept a lang attribute. A typical <body> container sim-
ply wraps around all other content on the page.

Example:
<body>

<h1>Hello World</h1>

...Additional content...

</body>

The Comment Element
Comments can appear anywhere in your document, including the head or body.
The comment element is used to hide and embed comments in your page that don’t
appear in the browser window.

Example:
<!-- This is a one line comment. -->

<!-- Comments can also stretch

over multiple lines -->

Styles and Scripting
Although style sheets and scripting may seem like advanced topics, they happen to
appear in the <head> of the document in some cases, and they both add attributes
that apply to nearly all XHTML elements.

The <script> Element
The <script> element is used to contain scripting language that the Web browser is
not supposed to attempt to parse as XHTML. Instead, the Web browser should note
the scripting commands and turn them over to a script interpreter, which is often
built into the browser. The <script> element can accept the type attribute, although
the language attribute is also sometimes used (in transitional DTDs) for backward
compatibility.

476 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Example:
<script type=”text/javascript”>

...JavaScript commands...

</script>

Typically, the <script> container will be hidden using the XHTML comment element
to make sure that incompatible browsers don’t attempt to render the script com-
mands. This is called script hiding.

Example:
<script type=”text/javascript”>

<!--

script commands

// -->

</script>

The <noscript> Element
In documents that use <script> elements within the <body>, you can include the
<noscript> element to enclose text and markup that should appear if the user’s
browser doesn’t support scripting or that particular scripting language.

Example:
<noscript>

This page requires JavaScript. Please visit

our text-based index instead.

</noscript>

The <style> Element
The <style> element is a container used in the <head> of the document to store style
and class definitions. This element accepts a type attribute.

Example:
<style type=”text/css”>

...CSS definitions...

</style>

Style, Script, and Universal Attributes
Because the scripting and style sheets can affect nearly every element that appears
inside the <body> container on your page, a few special attributes exist to support
those technologies. These attributes are useful for classifying and identifying markup

APPENDIX A XHTML AND CSS COMMAND REFERENCE 477

elements so that they can be used with scripts or styles. In addition, a few other uni-
versal attributes can be added to nearly any element.

In general, the <head> elements (<head>, <meta>, and so on) and the <script> and
<style> elements themselves do not accept these attributes.

class
The class attribute is used to assign a particular style class to a markup element.
Classes are defined between the <style> tags and can then be assigned to other ele-
ments. (The <div> element is a general-use block-level element that you can use to
apply styles or alignment to a number of elements at once. It’s discussed in the sec-
tion “Formatting Blocks.”)

Examples:
<p class=”intro”>paragraph text</p>

<div class=”centerbold”>

... text and markup...

</div>

id
The id attribute is used to assign a unique identifier to a particular element, often so
that element can be referenced in a script.

Example:
<p id=”para1”>paragraph text</p>

style
The style attribute is used to assign a particular style to the element without first
defining the style or class.

Example:
<p style=”font-family: Arial”>paragraph text</p>

dir
The dir attribute is used to select the direction that the text will render in compatible
browsers. It works only with container elements, and not with <frame> or <frameset>

elements. Possible values are ltr (left to right) and rtl (right to left).

478 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Example:
<p dir=”rtl”>paragraph text</p>

lang
The lang attribute is used to specify the language of the enclosed text, which may
help the browser render that text. The attribute accepts a two-letter language code.

Example:
<p lang=”fr”>paragraph text in French</p>

General Markup
The elements in this section fall into two basic categories—elements used to mark up
text and those used to create blocks of text.

Formatting Blocks
The block elements are used to create blocks or chunks of text that make up para-
graphs, line returns, quoted passages, headings, and other divisions on the page.

Among these elements are a series of containers that are all variations on the para-
graph element, <p>. The <p> element is used to contain text and markup that make
up paragraphs on the page. Each paragraph has white space before and after it.

Example:
<p>This is a paragraph of text.</p>

Other elements with similar results are shown here:

<pre> The <pre> element is used to enclose text and markup
that should be rendered with spaces and linefeeds
(returns) intact.

<blockquote> This element renders the enclosed paragraph as a
quotation, often by indenting both margins of the
paragraph.

<address> This container is often used at the beginning or end of
the page to give information about the page’s author.
Many Web browsers render this text in italics.

<div> The <div> container is often used with style sheet
markup to assign a particular style or class to the
enclosed markup. The <div> element can also be used
with an align attribute to align the enclosed markup to

APPENDIX A XHTML AND CSS COMMAND REFERENCE 479

center, left, right, or justify. (Note that align is not
strict XHTML.) The <div> element, like a <p> element,
creates whitespace around itself, but it can enclose more
than one block-level element.

<h1>...<h6> The heading elements are used to contain different lev-
els of document headings, from the largest (<h1>) to the
smallest (<h6>). They should be used in order, without
skipping levels. Like paragraphs, white space appears
above and below a heading.

In addition, a few other elements can be used to break up the appearance of a page.
These elements are all empty elements, meaning they require only one tag and don’t
contain any text or markup:

 This is the break element, which creates a line return
whenever it is inserted in a block-level container.

<hr /> The horizontal rule element creates a horizontal line on
the page.

One final block-level element is the container, which is generally used to
apply a style to the enclosed text and markup. Note that differs from <div>
primarily in that it doesn’t force white space around itself, so that the following use
would not break up the paragraph:
<p>This text: is boldface and this text
➥isn’t.</p>

Formatting Text
The text-level formatting elements are generally used to change the appearance of
certain words within your text so that they stand out. These elements can be either
physical or logical. The physical elements demand a particular appearance (as in
bold or italic), while logical elements will allow the browser to use a different
appearance if it must.

Physical Styles
The physical text style elements are

 Boldface

<i> Italic

<tt> Mono-spaced typewriter font

<u> Underlined

480 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

<big> Make text bigger

<small> Make text small

<sub> Subscript

<sup> Superscript

Example:
<p>This text is <i>italic</i>, this text is bold,

this text is <tt>typewriter</tt> and this text is <u>underlined.</u></p>

Logical Styles
The logical styles will often render as bold () or italic (), but they aren’t
required to. Non-graphical browsers can elect to emphasize the words in a different
way.

The logical text style elements are

 Emphasized

 Strongly emphasized

<cite> A citation or reference to an outside source

<code> Computer programming code

<dfn> The primary or defining instance of the term

<samp> Sample output, often rendered in a way similar to code

<kbd> Representing text that should be entered at a keyboard

<var> A variable or value

<q> Quoted text

<abbr> An abbreviation

<acronym> An acronym

One element in particular, <q>, offers a good use of a logical style. In most browsers,
the <q> container will appear with quotation marks around the contained text. If
you include a lang attribute representing a language that offers alternative quota-
tion marks (or if the page itself is already rendering in a different language), the
browser may render those marks correctly, thanks to the use of the <q> element.

<ins> and
Two other logical styles, <ins> and , can be used to surround text that should be
inserted or deleted. These elements are often used on collaborative documents. They
can accept the attributes datetime, cite, or title. The datetime attribute is used to

APPENDIX A XHTML AND CSS COMMAND REFERENCE 481

show the date and time of the insertion or deletion. The cite attribute is used to ref-
erence an URL that includes an explanation of the insertion or deletion. The title
attribute can be used to explain it right within the tag.

Example:
<p>It’s important for the <ins datetime=”2001-12-05T09:00:00-05:00”

title=”Changed after the board’s vote on this matter”>Board of
Directors</ins>

Office of the President to have an opportunity to make its case
to the shareholders.</p>

Creating Lists
Lists are block-level elements that contain a series of list items, each of which is indi-
vidually contained in a element. To change the style of list, you simply change
the list element that’s used to enclose the list items.

An ordered list, using , places a number in front of each list item.

Example:

First item

Second item

Third item

An unordered list, using , places a bullet character in front of each list item.

If you use a transitional DTD, you can use start, value, and type in ordered lists and
just type in unordered lists. (These attributes have been dropped in strict XHTML
1.0.) In ordered lists, you can change the type of numbering used for each item:

<ol type=”A”> Uppercase letters

<ol type=”a”> Lowercase letters

<ol type=”I”> Uppercase Roman numerals

<ol type=”i”> Lowercase Roman numerals

<ol type=”1”> Numbers

In unordered lists, you can change the appearance of the bullet character:

<ul type=”disc”> Solid circle

<ul type=”square”> Solid square

<ul type=”circle”> Open circle

482 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

In addition, the start attribute can be used to change the starting value for an
ordered list.

Example:
<ol start=”10”>

You can also use the value attribute to change the value of an individual list item, or
to change the counting within the list itself.

Example:

Item #1

Item #2

<li value=”1”>Item #1

Item #2

A third type of list, the definition list using <dl>, can have two different list items: a
definition term, <dt>, and a definition, <dd>. You don’t have to use both, but the list
type is most useful when you do. A definition list does not place numbers or bullets
in front of items.

Example:
<dl>

<dt>Term 1</dt>

<dd>Definition of term 1</dd>

<dt>Term 2</dt>

<dd>Definition of term 2</dd>

</dl>

Images, Hyperlinks, Java, and Plug-Ins
The elements and attributes in this section are used to add images or other multime-
dia to your page. Also discussed are the various elements and attributes used to cre-
ate and govern hyperlinks on your pages.

Adding Images
The element is used to add images to your page by specifying either a rela-
tive or absolute URL to a compatible image file that’s stored in GIF, JPEG, or (for
many browsers) PNG format. The src attribute for is required.

APPENDIX A XHTML AND CSS COMMAND REFERENCE 483

Example:

The element offers a number of attributes, including alt, which accepts a
string value that is displayed when the image can’t be. The longdesc attribute is used
to accept the URL to a longer text-based description of an image. This is useful for
assistive browsers, particularly when an image (such as a chart or graph) requires
explanation.

Example:
<img src=”chart1.jpg” alt=”chart of first quarter sales”
➥longdesc=”/img_desc/chart1.html” />

The element can accept the align attribute, which can be used to align inline
images to the top, middle, or bottom of the surrounding line of text. The align attrib-
ute can also accept left or right as values, which cause the image to float so that
text wraps around the image.

The element can accept the attributes height and width, which are used to
specify the dimensions of the image in pixels. This is generally done to help the tar-
get browser download the image and page more quickly, although it can also be
used to scale the size of the image.

Example:
<img src=”chart1.jpg” alt=”chart #1” align=”left” height=”330” width=”200”
➥/>

Adding Hyperlinks
The <a> anchor element is used to create a hyperlink by associating an URL with the
text and markup that it contains. Creating a hyperlink <a> container requires the
href attribute, which accepts a relative or absolute URL. The markup contained
between anchor tags can be text, XHTML elements, images, or almost any combina-
tion of those things, as long as <a> elements are not nested inside one another.

Examples:
Visit the W3C

<img src=”product1.jpg” alt=”product #1”
➥/>

The anchor element can also be used with the name attribute to create a named sec-
tion within a document. That section can then be referred to using the # sign as part
of the URL.

484 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

The name attribute isn’t strict XHTML, so it’s best to use a transitional DTD and then use
name and id in the same <a> element for backward compatibility.

By creating a named section like this:
<h2>A: Why the sky is blue</h2>

you can use the # sign to link to that named section:
Q: Why is the sky blue?

Named anchors can also be accessed from another document using a full URL:
Q: Why is the sky
blue?

Note that hyperlinks can include almost any sort of valid URL, including those that
use mailto:, ftp://, and other protocols. Linking to a document that the browser
doesn’t understand will either cause a helper application to launch or prompt the user
to download that document to the user’s computer.

The <a> element can accept another attribute, the target attribute, which is used to
tell the browser which frame of a frameset document the anchor’s URL should
appear in. It can also be used with special targets that can determine where the new
document is loaded:

_blank Loads the URL in a new window

_top Loads the URL in the same browser window at
the top of the page, without regard to frames (if
there are any)

_parent Loads the URL in the frame that is the immedi-
ate parent of the current frame

_self Loads the document in the same frame in
which the anchor appears

Example:
Click to see the product

in its own browser window.

Imagemaps
You can combine images and hyperlinks into something called the imagemap. This
enables you to use a number of different hyperlinks and associate them with an
image, so that clicking different parts of the image loads different URLs.

This is done with the usemap attribute to the element. The usemap attribute
accepts a named link reference, which is used to refer the browser to the portion of
the document where the imagemap is defined.

APPENDIX A XHTML AND CSS COMMAND REFERENCE 485

Note

Example:
<img src=”banner.gif” usemap=”#banner_map” alt=”navigation banner”
border=”0” />

Note the border attribute, which can be used with images when they’re used as hyper-
links or in imagemaps to avoid placing a blue (or other color) border around the image
in graphical browsers.

The usemap attribute tells the browser to look for a map definition. That definition is
created using the <map> element, which contains individual <area /> elements that
define each hotzone that you’re creating on the map. The <map> element uses the name
attribute to give the map definition a name.

Inside the <map> element, an <area /> element is used to create each hotzone’s shape,
using the shape attribute. The <area> element also includes the coords attribute to
define the shape and the href attribute for the linked document’s URL. Three differ-
ent shapes are supported:

■ rect—The rectangle requires four coordinates: a set that defines each of the
left, top, right, and bottom coordinates.

■ circle—A circular hot zone requires three different coordinates: center-x,
center-y, and a radius.

■ polygon—The third shape, a polygon, enables you to specify a shape with any
number of sides. Each vertex requires a pair of points (x,y) as its definition.

Example:
<map name=”banner_map”>

<area shape=”rect” coords=”0, 0, 100, 100” href=”index.html” alt=”Index”
➥/>

<area shape=”rect” coords=”100,0,200,100” href=”products.html”
➥alt=”Products” />

<area shape=”rect” coords=”200, 0, 300, 100” href=”about.html” alt=”About
➥Us” />

</map>

If you plan to use a server-side imagemap, you can use the ismap=”ismap” attribute to
the element. Then, wrap the in an anchor that points to the map file
on the server.

Example:

486 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Note

Multimedia Content
The typical way to link to multimedia documents is to use the <a> element. In cer-
tain cases, however, multimedia elements can be embedded in the document win-
dow. This means they’re made to appear much as if they were images added using
the element.

One way to do this is to use the <embed> element, which is not strict XHTML, so it
requires a transitional DTD be in effect. The <embed> element is used to load a plug-in
that provides extra functionality to Netscape-compatible browsers. The <embed> ele-
ment can have quite a few different attributes, depending on the media that’s being
embedded. Some of the more common attributes are src, width, height, pluginspage,
and sometimes autoplay. You’ll need to check the documentation of the particular
plug-in (and Chapter 13, “Adding Multimedia and Java Content”) to see the specific
attributes.

Example:
<embed name=”Movie1” src=”movie1.mov” width=”240” height=”120”
pluginspage=”http://www.apple.com/quicktime/download/”>

</embed>

Java Applets
Java applets are small Java-language programs designed to be executed within a
portion of the Web browser window. The Java applet actually uses the Web browser
as a virtual machine, thus enabling it to run.

Java applets are best added using the XHTML-compliant <object> element, although
the older Netscape-specific <applet> element is still popular. The <object> element
should include a classid attribute, which points to the Java applet’s file. It can
include a codebase attribute as well, if you need a full URL to the Java applet.

Example:
<object codetype=”application/java”
codebase=”http://www.fakecorp.com/applets/” classid=”java:myapplet.class”
standby=”Applet Loading...” width=400 height=350>

</object>

Creating Tables
The table elements enable you to place content in rows and columns on the page.
These elements can be used to display sections of tabular information on the page or
to lay out the entire page in rows and columns, as discussed in Chapter 8, “Basics
Tables,” and Chapter 9, “Advanced Table Elements and Table Design.”

APPENDIX A XHTML AND CSS COMMAND REFERENCE 487

Tables are created using the <table> element, which can accept a number of attrib-
utes:

width Sets the relative width (percentage) of your table
as part of the browser window or an absolute
width, usually in pixels

border Defines the width, in pixels, of the border sur-
rounding the table

cellspacing The amount of space, in pixels, between individ-
ual cells

cellpadding The amount of space, in pixels, used to pad data
elements from the walls of the cell

rules Determines where lines are drawn between cells
(none, groups, rows, cols, or all)

frames Determines where lines are around the table
(above, below, hsides, lhs, rhs, vsides, box, or border)

Tables can also accept an align attribute, but it isn’t strict XHTML. The align
attribute accepts right or left to cause the table to float on the page (text wraps
around it).

Example:
<table border=”1” cellpadding=”5” cellspacing=”5” width=”50%”>

</table>

The <table> element can accept another attribute, called summary, which is useful for
non-graphical and assistive Web browsers.

Example:
<table summary=”This table shows that sales in the Western region were 500
in spring and 600 in summer; sales in the Northern region were 300 in
spring and 400 in summer and sales in the Southern region were 200 in
spring and 650 in summer.”>

Inside the <table> container, you can add the <caption> element, which is used to
contain the text and markup for the table’s caption.

Example:
<table>

<caption>Sales (in thousands) for Spring and Summer
➥Quarters</caption>

</table>

488 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Inside the <table> definition, you use the <tr> container to create rows, the <th> con-
tainer to create heading cells, and the <td> container to create data cells.

Example:
<table>

<caption>Sales (in thousands) for Spring and Summer
➥Quarters</caption>

<tr><th>Quarter</th><th>West</th><th>North</th><th>South</th></tr>

<tr><th>Spring</th><td>500</td><td>300</td><td>200</td></tr>

<tr><th>Summer</th><td>600</td><td>400</td><td>650</td></tr>

</table>

Both table rows and cells can accept the attributes valign and align. The valign
attribute is used to vertically align the data with the cell, with values of top, middle,
and bottom. The align attribute aligns elements horizontally with the left, center,
and right values. If you use the values with the <tr> element, then using different
values with the <th> or <td> element will override the settings for the <tr> element.

Example:
<table border=”1”>

<tr valign=”top”>

<td><img src=”image1.gif”</td>

<td valign=”bottom”></td>

<td></td>

</tr>

</table>

Table data and heading cells can accept the rowspan or colspan attributes to cause
that cell to take up more than one row or cell when necessary.

Example:
<table>

<tr><th>Student</th><th colspan=”2”>Test Scores</th></tr>

<tr><td>Mike</td><td>100</td><td>90</td></tr>

<tr><td>Sarah</td><td>85</td><td>100</td></tr>

<tr><td>Susan</td><td colspan=”2”>95</td></tr>

</table>

Rows and individual cells can use the bgcolor attribute to accept a color name or color
hexadecimal value (such as #FFFFFF for white), but only under a transitional DTD
because this attribute has been dropped in strict XHTML.

APPENDIX A XHTML AND CSS COMMAND REFERENCE 489

Note

In addition to these elements, tables can include a few others: <thead>, <tbody>, and
<tfoot>. These elements are particularly useful when used with a Web browser that
recognizes them and is able to scroll the body (<tbody>) of the table independently of
the header (<thead>) and footer (<tfoot>). The XHTML specification recommends that
<tfoot> come immediately after the <thead> element, so that browsers can render
them correctly. (Note that doing so will occasionally cause the footer’s contents to
appear out of order with the rest of the table in earlier browsers.)

Example:
<table>

<thead>

rows of data in the header

</thead>

<tfoot>

rows of data in the footer

</tfoot>

<tbody>

rows of data in the body

</tbody>

</table>

Creating Framesets
Using the <frameset> and <frame> elements, you can create a browser window that
has different HTML documents loaded into different portions of the interface. You
can then use the target attribute to load new URLs into the various frames.

To begin a frameset document, you need to use the frameset DTD at the top of the
page, followed by the <frameset> element, which acts much like the <body> element in
non-frameset documents. The <frameset> element can accept two attributes: rows and
cols. With each <frameset> element, you define either rows or columns; if you need
one within the other, you’ll use multiple framesets. The rows and cols attributes can
accept pixels, percentages, or the * sign, which means “the rest of the window.”

Example:
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset/EN”
“http://www.w3.org/TR/xhtml1/DTD/frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<title>Frameset</title>

</head>

490 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

<frameset cols=”150, *”>

</frameset>

</html>

Within each frameset, you’ll use the <frame> element and the <noframe> element. You
should have as many <frame> elements as you’ve defined columns or rows in the
<frameset> element (unless you’re nesting framesets, as is discussed in a moment).
You should have one <noframes> element per page, used for browsers that don’t rec-
ognize frameset markup.

The <frame> element accepts a src attribute that specifies the URL for the default
page for this frame. Optionally, the <frame> element can accept an id attribute,
which is used to give the frame a target name.

While the id attribute is appropriate for XHTML compliance, you should also include the
name attribute for backward compatibility with earlier browsers.

The <noframes> element contains text and markup that you want to display in
browsers that don’t support frameset markup.

Example:
<frameset cols=”150, *”>

<frame src=”index.html” />

<frame src=”viewer.html” name=”main_viewer” id=”main_viewer” />

<noframes>

<p>If your browser doesn’t support frames, you can access the

article index directly.</p>

</noframes>

</frameset>

The <frames> element can accept a number of optional attributes:

noresize=”noresize” Size of frame cannot be changed by users

frameborder Accepts either a 1 or a 0 (as in frameborder=”1”);
a 1 means that the frame has a border, while a
0 means it does not

scrolling Can accept yes, no, or auto as values that enable
you to decide whether or not a particular dis-
play has scroll bars

marginwidth Changes the left and right margins of the
frame, in pixels

marginheight Changes the top and bottom margins of the
frame, in pixels

APPENDIX A XHTML AND CSS COMMAND REFERENCE 491

Note

longdesc Used to include a link to an HTML document
(via URL) that describes the contents of the
frame; this is ideal for assistive browsers

You may also want to nest <frameset> definitions, particularly if you need to have
two rows appear within a column, or something along those lines. You do that by
replacing one of the <frame> elements with a second <frameset> element.

Example:
<frameset rows=”150, *”>

<frame src=”topbanner.html” />

<frameset cols=”25%, 75%”>

<frame src=”leftcol.html” name=”left_col” id=”left_col” />

<frame src=”default.html” name=”viewer” id=”viewer” />

</frameset>

</frameset>

As mentioned earlier in this appendix, frames are used in conjunction with the
target attribute for the <a> element (and other elements that accept URLs) to cause a
page to load in a particular named frame. For instance, in the preceding example, a
link in the leftcol.html document might look like
Click to see the new page

This would cause the document newpage.html to appear in the frame labeled viewer.

Creating Forms
Using the XHTML forms elements, you can create pages that interact with your user,
responding to typed information, menu choices, checkbox choices, and button clicks.
This data can then be sent to a server-side script for processing, sent via e-mail, or
processed “client-side” using JavaScript or a similar scripting language.

The <form> Element
The main element of the forms specification is the <form> container, which accepts
the attributes method and action. The method attribute accepts either get or post as its
value. The get method causes the data from the form to be appended to the URL for
the data’s destination. The post method sends the data separately, without any prac-
tical limit on the amount of data that can be transferred.

The second attribute is action, which simply accepts the URL for the script that will
process the data from your form. Most often the script is stored in a directory called
bin or cgi-bin, located on your Web server.

492 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Example:
<form method=”post” action=”http://www.fakecom.net/cgi-bin/survey.pl”>

</form>

Aside from the two basic attributes, the <form> element can accept a few others:

enctype Accepts a MIME type entry that specifies the
type of content that will be submitted

name and id Used to identify the form for either scripting or
style sheets (id is XHTML-compliant; name is rec-
ommended for backward compatibility)

accept Used to specify, in a comma-separated list, the
types of files that the server can handle cor-
rectly, using MIME names

accept-charset Used to specify the character encodings that the
server is prepared to accept when processing the
form’s data

<textarea>
The <textarea> element enables you to accept multiple lines of text from a user. This
element is a container that wraps around the default text you’d like to have in the
area. It accepts the rows and cols attributes to specify the size of the text area, as well
as the name attribute, which is used to give it a unique identifier for scripting.

Example:
<textarea name=”comments” rows=”4” cols=”40”>

Enter your comments about our Web site.

Include your e-mail address if you’d like a response.

</textarea>

The <textarea> element can accept the readonly attribute, making the area so that it
can’t be edited.

The <input /> Element
The <input /> element accepts a type attribute that is used to determine the type of
input control that will be created. Possible values for the type attribute include the
following:

text Creates a short text entry box for typed input

password Like text, but letters are shown as asterisks
when typed

APPENDIX A XHTML AND CSS COMMAND REFERENCE 493

checkbox Creates a checkbox interface that can be clicked
on or off

radio Creates a radio button interface, where only
one of many options can be selected

hidden Creates a hidden field whose value can’t be
altered by the user

reset Creates a reset button to clear the form of its
current input

submit Creates a Submit button for sending the form to
the URL specified in the action attribute of the
<form> element

The <input /> element also accepts the name attribute, which is used to give it a
unique identifier, and the value attribute, which is used to set a default value (used
for the text on Submit and Reset buttons) for the input element.

For text and password types, the <input /> element can also accept the size attribute
(for the size of the box) and the maxlength attribute (for the maximum number of typed
characters).

Example:
<form method=”post” action=”cgi-bin/form.pl”>

<pre>

Name: <input type=”text” name=”name” length=”40” />

Check the prizes you’d like:

<input type=”checkbox” name=”car” />New car

<input type=”checkbox” name=”cash” />Cash

<input type=”checkbox” name=”land” />Real Estate

Do you want us to contact you about subscriptions:

<input type=”radio” name=”subs” value=”yes” checked=”checked” />Yes

<input type=”radio” name=”subs” value=”no” />No

<hr>

<input type=”submit” value=”Submit Form” />

<input type=”reset” value=”Reset Form” />

</pre>

</form>

Notice that checkbox elements all have different name attribute values, while radio
buttons that are grouped have the same name attribute. Also note the checked attrib-
ute, which can be used on either radio button or checkbox elements to determine
that they’re selected by default.

494 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Tip

The <select> Element
The <select> element is used to create pop-up and scrolling menus. It requires a name
attribute and allows you to decide how many options to display at once with the
size attribute. The <select> element is a container. Each <option> element, represent-
ing a menu option, is placed between <select> and </select>, and each <option> ele-
ment can have an initial value. When one of those options is chosen, it gets
assigned to the name that’s specified in the opening <select> tag. The attribute
selected=”selected” sets the default value in a given list.

Example:
Choose your hobby:

<select name=”hobby”>

<option selected=”selected”>Golf</option>

<option>Jogging</option>

<option>Web Publishing</option>

<option>Cooking</option>

</select>

You can also use the size attribute of <select> to display the menu as a scrolling
menu instead of as a pop-up menu. Another attribute of the <select> element,
multiple=”multiple”, allows the user to select more than one option from the menu.

Finally, you can create groupings of options within a <select> element using the
<optgroup> element. The <optgroup> element accepts a label attribute that can be used
to label groups within a <select> control. The <optgroup> elements are used by some
browsers to arrange a <select> control.

Example:
<p>Choose your hobby :</p>

<select name=”hobby” size=”15” multiple=”multiple”>

<option value=”none” selected=”selected”>None</option>

<optgroup label=”Indoor”>

<option>Cooking</option>

<option>Computing</option>

<option>Arts&Crafts</option>

</optgroup>

<optgroup label=”Outdoor”>

<option>Travel</option>

<option>Hiking</option>

<option>Biking</option>

</optgroup>

APPENDIX A XHTML AND CSS COMMAND REFERENCE 495

<optgroup label=”Sports”>

<option>Golf</option>

<option>Basketball</option>

<option>Swimming</option>

</optgroup>

</select>

CSS
In this section, I’ve reproduced some of the tables in Chapter 10, “Get Splashy: Style
Sheets, Fonts, and Special Characters,” and Chapter 14, “Site-Wide Styles: Design,
Accessibility, and Internationalization,” that discuss CSS styles. Text style properties
are shown in Table A.1.

TABLE A.1 CSS Text-Style Properties
Property Value Example(s)

word-spacing Number and units 1pt, 4em, 1in

letter-spacing Number and units 3pt, 0.1em, +1

line-height Number and units 24pt, 20px

text-decoration Value underline, line-through, box, blink

text-transform Value capitalize, lowercase, uppercase, none

text-indent Number and units or percentage 1in, 5%, 3em

vertical-align Value or percentage baseline, sup, sub, top, middle, 50%

text-align Value left, right, center, justify

Table A.2 shows the font style properties used to alter the font choice and appear-
ance of text.

TABLE A.2 CSS Font Properties
Property Value Example(s)

font-family Name of font Helvetica, Serif, Symbol

font-size Number/percentage 12pt, +1, 120%

font-weight Number/strength normal, bold, bolder, 100, 900

font-style Name of style italic, oblique, normal

font-variant Name of style normal, small-caps

font Combination 12pt Serif medium small-caps

color Word/hex number Red, green, blue, #FF00FF

496 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

Table A.3 shows the background properties you can use to create boxes or blocks of
patterns or colors.

TABLE A.3 CSS Background Properties
Property Value Example(s)

background-color Color name of white, #0000FF
RGB value

background-image url() url(image.gif),url(http://www.fakecorp.net/
bgnd.jpg)

background-repeat Word value repeat, repeat-x, repeat-y, no-repeat

background-attachment word value scroll, fixed

background-position Direction or top, left center, 20% 65%
percentage

background Combination white url (image.gif) repeat-x fixed

Table A.4 shows the block-level styles for altering block-level elements such as para-
graphs.

TABLE A.4 CSS Block Appearance Properties
Property Value Example(s)

margin Length or percentage 1in, 5% 10%, 12pt 10pt, 12pt 10pt

padding Length or percentage 1in, 5% 10%, 12pt 10pt, 12pt 10pt

border Width/style/color Medium dashed red, 2in grooved, blue

width Length/percentage .5in, 10%

height Length/percentage 10em, 12pt

float Direction left, right, none

clear Direction none, left, right, both

Table A.5 shows the pseudo classes for creating mouseover effects using CSS.

TABLE A.5 Pseudo Classes
Property Explanation

:link Properties of the hyperlink before it’s clicked

:visited Properties of the hyperlink after it’s clicked

:hover Properties of the link or object while the mouse pointer is over it

APPENDIX A XHTML AND CSS COMMAND REFERENCE 497

:focus Properties of the link or object while text is being entered or it’s selected
via the keyboard

:active Properties of the link or object while it’s being selected (that is, while the
mouse button is down or the Enter key is pressed)

Table A.6 shows the aural properties of CSS, used to direct assistive browsers that
speak the text of your site aloud.

TABLE A.6 CSS2 Aural Properties
Property Values Description

azimuth left, center-left, Enables you to specify the angle from which a
center, center-right, sound seems to be coming
right or an angle
value (–360 to 360)

cue-after url(sound_file_url) Plays the sound file at the specified URL after
reading the attached content (example:
url(sound.af))

cue-before url(sound_file_url) Plays the specified sound file before reading the
specified content

elevation below, level, above, Enables you to specify the angle of a sound
angle value (–90 to 90) above or below the listener

pause-after Seconds or milliseconds Pauses for a certain number of seconds after
the element is spoken

pause-before Seconds or milliseconds Pauses for a certain number of seconds before
the element is spoken

pause Seconds or milliseconds Pauses before and after the element is spoken

pitch low, medium, high, Chooses the pitch, or frequency, of the spoken
number (Hertz) text

pitch-range 0, 50 or any number The inflection of the spoken text; 0 is mono-
tone, 50 is normal

play-during url(sound_file_url) Plays a sound file while the text of the element
is being read

speak none, normal, spell-out Sets how the element’s text is spoken

speak-numeral digits, continuous Sets whether numbers are read as digits (“1-2-
3-4”) or words (“one thousand, two hundred
and thirty four”)

498 ABSOLUTE BEGINNER’S GUIDE TO CREATING WEB PAGES

TABLE A.5 (continued)
Property Explanation

speak-punctuation none, code If it’s “code”, then punctuation is read aloud,
as in “period” and “exclamation point”

speech-rate slow, medium, fast, number Sets how quickly text is read; if it’s a number,
the number represents words per minute

voice-family male, female, child, Specifies the name of the voice to be used for
Zervox speech (similar to font families, the voice must

be installed on the user’s computer)

volume silent, soft, medium, loud Sets the volume of the spoken text

APPENDIX A XHTML AND CSS COMMAND REFERENCE 499

TABLE A.6 (continued)
Property Values Description

Numbers
256-color value, 188

A
<a> element

frames, targeting, 223

hyperlinks, creating, 114,
484-485

A Real Validator, pages
(validating), 71

abbreviations, logical styles,
83

absolute

positioning, 386, 392

URL (Uniform Resource
Locator), 114-118

accept attribute, <form>
element, 268

accept-charset attribute,
<form> element, 269

accessibility

HTML, 36, 291-292

movies, embedded multime-
dia, 240

simplicity, 37

site-wide style sheets,
259-261

special-needs users, 36

accesskey attribute, HTML
form accessibility, 292

accounts

hosted, ISP, 47

name, e-mail addresses, 122

shared hosting, ISP, 47

acronyms, logical styles, 83

action attribute, 268

:active, pseudo classes, 192

ActivePerl, Web sites, 306

ActiveX

components, 245

controls, VBScript, 310

Internet Explorer, 242

multimedia, embedding, 242

Windows Media, 244-245

Actual/Print Size radio but-
ton, 201

<address>, block element,
479

address element (paragraph),
88

addresses

computers, Web, 9

e-mail, 122

Internet, FTP site hyperlinks,
123

Web. See URLs

Adobe

GoLive, 430-434

Photoshop, graphics editor,
44

tools, Adobe GoLive, 431

Web Studio, 431

Advanced Edit button, 429

affiliate programs, Miva
Merchant, 469

alert boxes, user input
(JavaScript), 346

alert() method, window
object (DOM), 351

align

attribute, 108-109, 484, 488

table attribute, 140

alignments

<div> element, 183

properties, 189-191

all-page tables, 144

alt attribute (images),
107-108

alternative (alt) text, images,
121

ampersands (&), entities, 196

Analog, log files, (analyzing),
456

anchor elements

hyperlinks, 118

imagemap definitions,
accessing, 212

mailto: hyperlinks, 122

Index

502 ANCHORS

anchors, named (referencing),
120

Animagic GIF Animator, ani-
mation tool, 45

Animation menu commands,
206

Animation Maker, animations
(creating), 207

Animation Properties com-
mand (Animation menu),
206

Animation Shop, animations,
205-206

animations, 45, 205-207

annotations, frames, 218

anti-aliasing, text (images),
102

AOL

Hometown, 464

Instant Messenger, chat, 453

APIs (application program-
ming interfaces), 416-417

Apple

HomePage, templates, 467

iTools, 466-467

Web site, 236

AppleScript

Adobe GoLive, 432

CGI script language, 295

applets, Java applets,
248-249, 309, 453, 487

application programming
interfaces (APIs), 416-417

applications

animations, 205

helper, 9, 125, 235, 238

image editing, 44

map-editing, MapEdit, 208

<area> element, 209

ARPANet, TCP/IP, 8

arrays

accessing, variables, 325

indexing, variables, 326

JavaScript, controlling, 331

math, JavaScript, 332

values, looping, 331

variables, JavaScript, 325

ASCII (American Standard
Code for Information
Interchange), documents, 40

ASCII text files, HTML pages,
58

ASP (Active Server Pages),
server-side forums, 446

Asset panel (Macromedia
Dreamweaver), 437

assignments, JavaScript, 323,
327, 334

asterisks (*), framesets, 220

attributes

<a> element, 484-485

accept attribute, <form>
element, 268

accept-charset attribute,
<form> element, 269

accesskey attribute, HTML
form accessibility, 292

action attribute, 268

align attribute, 108-109, 484

alt attribute, 107-108

cells, spanning, 136

cite, 89

class attribute (styles), 478

color, cells or rows, 136

cols attribute, <textarea>
box, 270

content, <meta> element,
127

coords, 209

creating, 484

datetime, 89

del element, 89

dir attribute, 262, 478

elements, 18

<embed> element, 240

enctype attribute, <form>
element, 268

 element, 175,
267-269, 492

<frame> element, 491-492

frames, 160

<frameset> element, 219,
490

framesets, 224

height attribute (images),
110-111

horizontal lines, 78

href, 210

HTML forms, 269

http-equiv, <meta> element,
127

id, 119, 222, 268, 478

<iframe> element, 229

 element, 484

<input /> element, 493-494

<input> element, 271

<ins> element, 89

lang attribute, 479

<layer> element, 406

longdesc attribute (images),
108

<meta> elements, 64

method attribute, values, 267

name, 119, 222

name attribute, 268-270,
484

BORDERS 503

ordered lists, 92

QuickTime movies, 241-242

readonly attribute, text fields,
270

RealPlayer plug-ins, 247

rows attribute, <textarea>
box, 270

rules, 160-161

<select> element, 495

setting, elements, 178

shape, 209

src, 106, 221

style attribute, accepted ele-
ments, 177

creating, 176

style attribute (styles), 478

style sheets, 175

<table> element, 488

tables, 131-135, 138-141

target, 126, 223

target attribute, frames, 485

<textarea> element, 493

title, 89

type attribute, 271, 493

unordered lists, 93

usemap, 208, 485-486

value attribute, radio
buttons, 274

width attribute, 110-111,
140

widths, fixed widths (cells),
148

Windows Media movies, 244

audience, Web sites
(planning), 32

audio

multimedia tools, 46

streaming audio (RealMedia
movies), 246

aural

properties, 259-260, 498-499

styles, CSS2, 260

author information, address
elements, 88

AVI, QuickTime (encoding),
246

B
background-attachment,

background property, 188

background-color, back-
ground property, 188

background-image, back-
ground property, 188

background-position, back-
ground property, 188

background-repeat, back-
ground property, 188

backgrounds

images, 189

properties, 188-189, 497

backward compatibility

JavaScript, 312

modes, browsers, 60

bandwidth, data (Internet),
29

Banner Wizard, 206

banners, advertisements
(creating), 206

bars

menu bars, Netscape, 428

Objects bar (Macromedia
Dreamweaver), 440

scroll bars, frames, 217

title, 63

<base> element, 63, 117-118,
475

BBEdit, text editor, 42

BBS (bulleting board sys-
tems), 446

binary operators, variables,
324

blank cells, tables, 131

block

appearance, properties,
189-191, 497

directions, international (site-
wide style sheets), 262

elements, 479-480

block-level elements, <div>
element, 182

<blockquote>, block element,
86-88, 479

BoardHost, hosted forum
solution, 452

<body> element (document
element), 58, 65-69, 411,
476

body

HTML documents, 58

tables, scrolling, 153

Boolean, value type
(JavaScript), 323

booleans, HTML forms, 273

border

block appearance property,
190

table attribute, 140

borders

elements, 190

images, hyperlinks, 121

tables, 140, 194

504 BOTS

bots (search robots), meta
elements, 64

boxes. See also dialog boxes

JavaScript, 346

check boxes, 273

password entry boxes, 272

<textarea>, 270

text boxes, <input> element
(HTML forms), 271

, element, 282-283, 480

Bravenet, chat service, 455

break, looping (JavaScript),
330

breaks, line breaks (HTML
forms), 282-283

Browser button, 430

browsers

backward-compatibility
mode, 60

columns, viewing, 166

compatibility, 37, 377

cross-browsers, 410-417

CSS, 174

DOM (Document Object
Model), 376

elements, storing, 400

file formats, 235

frames, unsupported, 220

HTTP, 10

images, replacing, 108

logical styles, 81

multimedia files, 238

non-graphical browsers, 172

paragraphs, recognizing,
66-67

QuickTime movies, display-
ing, 243

redirecting, JavaScript, 365-
367

Standard/Web-safe palette,
201

support, 308-309

tables, displaying, 130

tabs, 86

testing, 411-413

URLs, absolute versus rela-
tive, 115

windows, 126, 216, 400

built-in

functions, calling, 346

objects, 336-341

bulleted lists, attributes, 93

bulletin board systems (BBS),
446

bullets

inserting, lists, 90

styles, rendering, 93

<button> element, buttons,
(creating), 276

buttons

Advanced Edit, 429

Browser, 430

creating, 275-276

radio buttons

Actual/Print Size, 201

<input> element (HTML
forms), 274

name values, 274

storing (JavaScript), 365

Pixel Size, 201

value attribute, 274

values (JavaScript), 364

Reload, 71

reset button, <input> ele-
ment (HTML forms), 275

size, HTML forms, 275

submit button, <input> ele-
ment (HTML forms), 275

Text, 101, 104

C
C

CGI script language, 295

Java, 310

calculations, functions, 319

calling

built-in functions, 346

CGI scripts, 297

functions, event handlers,
346

methods, objects (JavaScript),
336

camcorders, DV-compatible,
46

<caption> element, table cap-
tions, 132, 488

captions

hyperlinks, 132

locations, 132

tables, 488

tags, 132

cascading style sheets. See
CSS

Cascading Style Sheets 1. See
CSS1

Cascading Style Sheets 2. See
CSS2

catalog sites, images, 28

Catalog.com, 468

cellpadding, table attribute,
141

COLOR 505

cells

aligning, 133

blank, tables, 131

color, tables, 136-137

content, formatting (tables),
150

data, aligning, 135, 489

fixed widths, tables, 148

padding, 148

ranges, 136

spacing, 148

tables, 130, 134-136, 141,
489

cellspacing, table attribute,
141

CGI (Common Gateway
Interface), 457

scripts

calling (URLs), 297

compatibility, 304

configuring, 303

creating, 305-306

form data, receiving,
297-299

hosted, 304

HTML forms, 266

installing, 296, 303-304

languages, 294-295

links, 294

mailto: option, 299-301

MIME (Multipurpose
Internet Mail Extension)
format, 296

output, creating, 301

permissions, 303

preferences, 304

referencing, 296-297

server-side forums, 446

simple example, 295-296

storing, 303

testing, 305

user interaction, 294

Web server software, 49

working with, 302-305

URLs, server-side forums,
accessing, 451

CGI Resource, Web site,
303-304

cgi-bin directory, scripts
(installing), 303

CGIAdmin.com, Web site, 457

characteristics, columns
(defining), 157

characters

newline character, \n, 346

scripts, hiding, 313

special characters, 195-197

charts, images (Web pages),
27

chat (chatting)

adding, 453-455

Java servers, 454

server software, adding, 453

ChatBlazer, Java server
option, 454

ChatPod, chat service, 454

check boxes

<input> element, HTML
forms, 273

standalone values, 273

values (JavaScript), 365

Check Links Sitewide com-
mand (Site menu), 440

circle, shapes, 209, 486

cite attribute, 89

class attributes (styles), 478

classes

adding, elements, 180

dynamic classes, 419-421

pseudo classes, 193, 497

 element, 181

special classes, creating (style
sheets), 179-180

classifieds, images, 28

clear, block appearance prop-
erty, 190-191

client-pull, HTML pages (load-
ing automatically), 127

client-side

imagemaps, creating, 208

JavaScript, HTML forms,
361-365

clip property, CSS Positioning,
386

code

HTML, managing, 42

JavaScript, 311

machine code, interpreted
languages, 295

source, 41, 431

well-formed, 66

CoffeeCup, 43-45

<col> element, table columns
(grouping), 157

<colgroup> element, table
columns (grouping), 155-157

color

256-color value, 188

cells, tables, 136-137

CSS-defined style properties,
187

depth, 200

506 COLOR

dither, 201

images, 200

palettes, lowering, 201

properties, 188-189

rows, tables, 136-137

sites, Adobe GoLive, 433

transparency, images, 203

Colors

command (Picture menu),
201

menu commands, 200, 204

tab, 433

cols attribute, <textarea>
box, 270

columns

assigning (grouped columns),
155

cells, spanning, 136

characteristics, defining, 157

defining, framesets, 221

<frameset> element,
219-220

grouping, tables, 155-159

managing, 158, 165-170

tables, 130, 146, 194

titles, 130

viewing, browsers, 166

widths, 148, 156

commands

Animation menu, 206

Colors menu

Decrease Color Depth,
200

Set Palette Transparency,
204

Edit menu

Trim Selection, 103

Undo Decrease Colors,
201

Validate HTML, 430

Effect menu, 206

Explorer menu, Preference,
Helpers, 238

File menu

Banner Wizard, 206

Export, 27

File, Open, 440

New, 206

New Site, Import, 433

New Site, Import from
Folder, 433

New, Blank Page to Edit,
426-428

New, Open, 440

New, Page, 443

New, Web, 443

Open, 99, 103

Open File, 70

Publish Web, 444

Save, 70, 100, 103

Save As, 61, 70, 100,
103-105, 202, 207

Format menu

Dynamic HTML Effects,
441

Font, 428

JPEG/JFIF, 202

Size, 428

Text Style, 428

Theme, 443

Image menu

Crop, 100

Image Information, 111

Resize, 101, 201

Insert menu

Form and Insert, Form
Elements, 440

Image, 429, 440

Picture, New Photo
Gallery, 441

Table, 429, 440

Web Component, 441,
444

JavaScript, adding, 312

Picture menu

Colors, 201

Resolution, 202

Show Information, 111

Size, Scale, 104

Save As Type menu, JPEG-JFIF
Compliant, 202

Set menu, 207

Site menu, 439-440

SSI (server-side includes),
458-459

Tasks menu, Composer, 428

View menu, Animation, 206

comment element, 61, 476

comments, JavaScript, 313

Common Gateway Interface.
See CGI

comparisons

conditions, JavaScript, 327

evaluating, 328

operators, 327-328

compatibility

backward compatibility,
JavaScript, 312

browsers, 37, 377

CGI scripts, 304

modes, HTML editors, 44

components

ActiveX components, 245

Web components, Microsoft
FrontPage 2002, 444

Composer command (Tasks
menu), 428

CSS2 507

Composer (Netscape),
426-430

compression, images, 202

Compression Factor slider
(Options dialog box), 202

computers, addresses (Web),
9

conditionals, (JavaScript),
327-330

Conferencing on the Web
(Web site), 447

confirm() method, window
objects, 351

connections

computers, Internet, 10

HTTP connections, security,
273

ISP, Internet, 47

TCP/IP, 10

Web servers, 47

<container> element, style
sheets, 175

containers. See also elements

<area>, 209

<body> container, cross-
browsers, 411

body, 65

<button> element, 276

caption, 132

head, 62

<map>, 208-209

non-empty elements, 18

<select> element, 277

<textarea> element, 269

content

attribute, <meta> element,
127

cells, formatting (tables), 150

swapping, CSSP visibility, 401

continue, looping
(JavaScript), 331

controlling JavaScript, 327-
332

controls

ActiveX controls, VBScript,
310

Macromedia Flash controls,
247-248

conventions, filenames, 50

coordinates, hot zones, 208

coords attribute, 209

copyrights

adding, pages, 64

comment elements, 61

images, 97

costs, selecting (Web publish-
ing services), 462

counters

hit, 49

Web counters, adding,
457-458

Crop

command (Image menu), 100

tool, 100

cross-browsers

APIs, 416-417

DHTML example, 410-417

functions, 411-413

CSE HTML Validator Lite,
pages (validating), 71

CSS (Cascading Style Sheets),
178

aural properties, 498-499

background properties, 497

block appearance properties,
497

Dynamic HTML, 378

font properties, 496

mouseovers, pseudo classes,
497

styles, Macromedia
Dreamweaver, 436, 440

text-style properties, 496

Web browsers, 174

CSS Positioning. See CSSP

CSS-defined style properties,
fonts, 186

CSS1 (Cascading Style
Sheets 1)

alignment properties,
189-191

background properties,
188-189

block appearance properties,
189-191

color properties, 188-189

:first-letter pseudo class, 193

:first-line pseudo class, 193

font properties, 186-187

link styles, 192

object styles, 192

special table styles, 194-195

table styles, 193

text styles, 185-186

CSS2 (Cascading Style Sheets
2), 174

alignment properties,
189-191

aural, properties or styles,
260

background properties,
188-189

block appearance properties,
189-191

color properties, 188-189

:first-letter pseudo class, 193

508 CSS2

:first-line pseudo class, 193

font properties, 186-187

link styles, 192

object styles, 192

special table styles, 194-195

table styles, 193

text styles, 185-186

CSSP (CSS Positioning)

Dynamic HTML, 378, 384-
394

graphical editors, 425

elements, 384-385, 389-392

layers, 395-397

positioned elements, nesting,
392-394

properties, 385, 389-392

relative positioning, 394

visibility, 400-404

Web pages, separating, 385

z-index, elements (layering),
391

current property, history sub-
object, 352

customization, features
(server-side forum soft-
ware), 447

CyberCount, Web counter,
457

D
Dat, built-in object, 336

data

aligning, cells, 135

bandwidth, Internet, 29

cell data, aligning (tables),
489

form data, receiving (CGI
scripts), 297-299

HTML forms, 266-267, 281

metadata, adding, 64

time-based data, multimedia,
232

databases, selecting (Web
publishing services), 463

Date, built-in object, 340-341

datetime attribute, 89

debuggers, JavaScript debug-
ger (Macromedia
Dreamweaver), 438

declarations

DTD declarations, document
elements, 474

script function declarations,
scripts (hiding), 314

decoding form data, receiv-
ing (CGI scripts), 298

Decrease Color Depth, com-
mand or dialog box, 200

decrementing variables,
JavaScript, 324-325

default

text, text fields, 269

URLs, 50

default.html, frames (inter-
faces), 372

Define Sites command (Site
menu), 439

definitions

assigning, elements, 178

elements, 177-178

frames, 216

imagemaps, 208-209, 212,
486

lists, 93-94, 483

Perl, 49

style, 177, 183-185

<table> definition, table cells
or rows, 489

term, 93, 483

XML definitions, language
(Web page), 261

 element, 89-90, 481

descriptions, tables (caption),
132

design

HTML forms, 282

site-wide style sheets,
252-259

tables, 144-152

Web, 24-31

destination, URL (Uniform
Resource Locator), 114

DHTML (Dynamic HTML), 21

cross-browsers, example,
410-417

formatting toolbar (Microsoft
FrontPage 2002), 441

graphical editors, 425

dialog boxes

Decrease Color Depth, 200

Image Properties, 429

JPEG/JFIF, 202

Options, 202

Preferences, 429

Publish Destination, 444

Resize, 101

Resolution, 202

Save, 105

Save As, 103, 207

Save GIF file, 207

Scale, 104

Set Palette Transparency, 204

Text Entry, 101

Themes, 443

DYNAMIC 509

DigiChat, Java server option,
454

Digits.com, Web counter, 457

dimensions, images, 484

dir attribute, 262, 478

directories

installing, 303

files, 52-53

organizing, 51-52

subdirectories, creating (Web
site directory), 50

URLs, absolute versus rela-
tive, 116

Web, meta elements, 64

Discus, server-side forum
software, 448

dither, color, 201

<div> element, 479

alignments, 183

cross-browsers, 411

style sheets, creating,
182-183

dividers, frames, 217

DNS (Domain Name Service),
records, 48

DOCTYPE element, 61

document

elements, 58-59, 474-476

objects, 353-355

subobject, window objects,
352

type definition. See DTD

Document Object Model. See
DOM

document.close() method,
document object, 354

document.open() method,
document object, 354

document.write() method,
document object, 354

document.writeln() method,
316, 354

documents

<frameset> document,
frames (interfaces), 370

adding, 58, 118

creating, 182

encoded files, metafiles
(Windows Media), 245

frames, defining, 220

HTML, 40, 62-69, 229

hyperlinks, 119

index.htm, 53

index.html, 53

indexes, frames, 218

log files, 455

map definition, 208

metafiles, encoded files
(Windows Media), 245

MP3 documents, linking, 237

multimedia files, 238-239

named sections, creating
(name attribute), 484

naming, 53-54

organizing, 51-55

paths, FTP site hyperlinks,
123

PDF documents, 236-237

saving, 40

size, image, 99

source documents, 221-223

text, ASCII, 58

transferring, protocols, 10

Web, accessing, 13-15

Windows Media, embedding,
236

DOM (Document Object
Model), 347

browsers, 376

document object, 353-355

Dynamic HTML, 376

function properties, 348

JavaScript, 347-355

location object, 352-353

paths, scope, 349

pointers, 349-351

referencing, 347

scope, 349, 351

value property, 349

W3C, 349, 376

window object, 351-352

Domain Name Service (DNS),
records, 48

domain names, 48, 122

dots. See pixels

downloading

Adobe GoLive demo, 430

Macromedia Dreamweaver
demo, 435

multimedia, 233

Netscape Composer, 426

Dreamweaver. See
Macromedia, Dreamweaver

drop caps, creating, 193

DTD (document type defini-
tion), 59-61, 474

DV-compatible camcorders,
46

dynamic

classes, 419-421

IDs, 419-421

scripting, 417-419

510 DYNAMIC HTML

Dynamic HTML (DHTML), 21

browser compatibility, 377

CSS, 378

CSS Positioning (CSSP), 378,
384-394

DOM (Document Object
Model), 376

dynamic positioning, 395,
397-410

JavaScript, 309

layers, 376-410

mouseovers, 378-384

Dynamic HTML Effects com-
mand (Format menu), 441

Dynamic Positioning, 395-410

DynAPI, Web site, 417

E
e-commerce

Catalog.com, 468

Oracle Small Business,
468-469

Web publishing services, 467,
470

Yahoo! Store, 468

e-mail

addresses, 122

messages, encoded, 300

transferring, protocols, 10

#echo command, SSI (server-
side include), 458

Edit menu commands

Trim Selection, 103

Undo Decrease Colors, 201

Validate HTML, 430

editors. See also graphical
editors

graphics, 44-45

HTML, 42-44

source code, 42

text, 41-42

WYSIWYG (What You See Is
What You Get), 42

EditPlus, text editor, 42

Effect menu commands, 206

effects

Microsoft FrontPage 2002,
441

special effects, frames, 206

transition, frames, 206

elements

<a> element, 223, 484-485

accepted elements, style
attribute, 177

accessing, forms (JavaScript),
356

adding, 241

address (paragraph), 88

anchor, 118, 122, 212

<area>, 209

attributes, 18, 178

<base /> elements (<head>
element), 475

<base> element, 117-118

base, 63

block elements, 479-480

block-level elements, <div>
element, 182

blockquote (paragraph), 86-
88

<body>, 58, 65-69, 476

borders, 190

, line breaks (HTML
forms), 282-283

browser windows, 400

<button> element, creating
buttons (HTML forms), 276

<caption>, 132, 488

cells, 134-136

classes, adding, 180

comment, 61, 476

<container> element, style
sheets, 175

creating, 177-179, 269, 277,
490-495

definition lists, 93

definitions, 177-178

 element, 89-90, 481

<div> element, 182-183, 411

DOCTYPE, 61

document, 58-59, 474-476

<embed> element, 240-244,
487

empty, 18, 67, 480

event handlers, 345

<fieldset> element, HTML
form structure, 289

fixed, frames, 218

floating, 191, 229

 element, 175

fonts, setting, 178

<form> element, 267-269,
344, 492

formatting, 287, 480-482

<frame> element, attributes,
491-492

frames, 219

<frameset> element, attrib-
utes, 219, 490

framesets, 220-222

<head>, 58, 62-65, 474-475

heights, 191

<hr />, horizontal lines
(HTML forms), 284-285

<html> elements (document
element), 474

HTML, 59-61, 266

<iframe> element, 229

EQUAL SIGN 511

 element, 106-111,
483-484

, 209

<input /> element, attributes,
493-494

<input> element, 270-277

<ins> element, 89-90, 481

interactive, Web pages, 30

<layer> element, 291, 385,
404-406

layering, z-index (CSS
Positioning), 391

<legend> element, HTML
form structure, 289

line return, 68

<link /> elements, style
sheets (linking), 184

<map>, 208-209

<meta> elements, 64-65,
127, 315, 475

moving, CSS Positioning, 384

non-empty, XHTML, 18

non-standard, rendering, 60

<noscript> element, 315,
477

<object> element, 242, 249,
487

<optgroup> element, menu
options (grouping), 278

overlapping, CSS Positioning,
389-392

<p>, paragraphs (HTML
forms), 285

pages, Macromedia
Dreamweaver, 440

paragraph, 66, 84-90

positioned elements, nesting
(CSS Positioning), 392-394

positioning, CSS Positioning,
384-385

<pre> elements, fonts, 288

preformatted text, 84-85

properties, setting, 179

proprietary elements,
172-174

<q> element, quotation
marks (languages), 262

rules, 177

<script> element, 312-313,
428, 476-477

<select> element, attributes,
495

selectors, 177

server-side elements,
Macromedia Dreamweaver,
438

 element, style sheets
(creating), 180-182

storing, browsers, 400

<style> element, Netscape
Composer, 428

style sheets, 175

styles, assigning, 179

summary, 132

<table> element, attributes,
488

tables, 130-133, 153-155

text, flowing, 191

<textarea> element, attrib-
utes, 493

<title> elements (<head> ele-
ment), 63, 475

widths, 191

XHTML, 29, 282

<embed>

element, 240-244, 487

parameters, Windows Media
movies, 244

embedding

Macromedia

Director animations, 236

Flash movies, 236, 247

multimedia, 235-237,
240-242, 487

QuickTime, 236, 241-244

RealMedia animations, 236

style

definitions, <style> ele-
ment, 177

sheet definitions, 183-185

style attribute, 176

Windows Media files, 236

emphasis styles, tables, 85

empty elements, 480

HTML, 18

paragraph elements, 67

XHTML, 18

encoded

e-mail messages, 300

files, metafiles (Windows
Media), 245

encoding

AVI, RealMedia, 246

movies, Windows Media
Encoder, 245

progressive, images, 203

QuickTime, RealMedia, 246

enctype attribute, <form>
element, 268

entities

ampersands (&), 196

semicolons (;), 196

special entities, 195

environment variables

printing, scripting, 301

SSI (server-side includes), 458

strings, 298

equal sign (=), JavaScript, 321

512 ERRORS

errors

checking, HTML forms
(JavaScript), 357-361

JavaScript, 312

syntax, pages (validating), 71

Errors tab, 433

European Computer
Manufacturer’s Association,
Web site, 308

eval() method, window
objects, 351

event handlers

adding, 344

creating, 346

<form> elements, 344

functions, calling, 346

JavaScript, 310-311, 315

types, JavaScript events,
345-346

events

intrinsic events. See event
handlers

JavaScript, 344-347

scripts, 311

Excite, Web site, 165

exec command, SSI (server-
side include), 459

experimentation, site-wide
style sheets, 257-259

Explorer (Internet Explorer)

ActiveX, 242

DOM (Document Object
Model), 376

elements, storing, 400

<embed> element, 241-242

form data, decoded, 300

mouseovers, 380

pages, viewing, 82

Explorer menu commands,
Preference (Helpers), 238

Export command (File menu),
27

expressions

creating, comparison opera-
tors, 328

JavaScript, 322

eXtensible Markup Language
(XML), 16

extensions

domain names, 48

files, 53, 234

FrontPage, selecting Web
publishing services, 463

Web server software, 49

ez-Motions, Flash tool, 45

EZBoard, hosted forum solu-
tion, 452

F
family names, fonts, 187

FastCounter, Web counter,
457

features

Adobe GoLive, 430-431

Apple iTools, 466

Catalog.com, 468

customization features,
server-side forum software,
447

proprietary features,
Microsoft FrontPage 2002,
443

text editors, 42

Yahoo! GeoCities, 465

fields

hidden fields, <input> ele-
ment (HTML forms), 274

text fields, 269-270

<fieldset> element, HTML
form structure, 289

file formats

animation, 205-206

extensions, multimedia, 234

images, 27, 97, 200, 203

multimedia, 233-234

rich media, 234

streaming, 235

Web browsers, 235

File menu commands

Banner Wizard, 206

Export, 27

File, Open, 440

New, 206

New Site, Import, 433

New Site, Import from Folder,
433

New, Blank Page to Edit,
426-428

New, Open, 440

New, Page, 443

New, Web, 443

Open, 99, 103

Open File, 70

Publish Web, 444

Save, 70, 100, 103

Save As, 61, 70, 100,
103-105, 202

Save As, GIF, 207

File, Open command (File
menu), 440

filenames, 50, 103-105

files. See documents

FRAMES 513

:first-letter pseudo class, 193

:first-line pseudo class, 193

fixed

elements, frames, 218

widths, cells, tables, 148

Flash. See Macromedia, Flash

float, block appearance prop-
erty, 190-191

floating

elements, 191, 229

images, 203, 110

objects, tables, 140

tables, 151-152, 488

floating-point numbers, value
type (JavaScript), 323

flowing text, elements, 191

:focus, pseudo classes, 192

folders. See also directories

 element, attributes or
style sheets, 175

Font command (Format
menu), 428

Font Sets tab, 433

font-family, CSS-defined style
properties, 187

font-size, CSS-defined style
properties, 187

font-style, CSS-defined style
properties, 187

font-variant, CSS-defined
style properties, 187

fonts

CSS-defined style properties,
187

family names, 187

inheritance, 186

italics, 187

Netscape Composer, 427

<pre> element, 288

properties, 186-187, 496

setting, elements, 178

size, 187

text, preformatted text ele-
ments, 85

footers

non-scrolling, tables, 154

tables, inserting, 153

for, looping conditional
(JavaScript), 329

<form> element

attributes, 267-269, 492

forms, creating, 492

event handlers, 344

HTML forms, creating, 267

Form and Insert, Form
Elements command (Insert
menu), 440

form

data, 297-300

elements, inserting
(Macromedia
Dreamweaver), 440

objects, 356-357

Format menu commands

Dynamic HTML Effects, 441

Font, 428

JPEG/JFIF, 202

Size, 428

Text Style, 428

Theme, 443

formats. See also file formats

hyperlinks, HTML, 118

MIME (Multipurpose Internet
Mail Extension) formats,
CGI script, 296

tables, 130

URL, 13

formatting

cell content, tables, 150

elements, 480-482

HTML forms, 287-292

pages, 76-78, 90-94

paragraph style elements,
84-90

style sheet formatting, apply-
ing, 180

text, 78-85

forms. See also HTML, forms

accessing (JavaScript), 356

creating, 492-496

elements, accessing
(JavaScript), 356

menus, creating, 495

processing, hosted CGI
scripts, 304

forms-to-e-mail gateways,
installing, 301

forums, 446-453

<frame /> element, frame-
sets, 220-222

<frame> element, attributes,
491-492

frame, attribute (values), 160

Frame Properties command
(Animation menu), 206

frames

adding, sites, 219-225

advantages, 218

attributes, tables, 160

defined, 216, 220

deleting, 227

disadvantages, 217

dividers, 217

514 FRAMES

duration, 206

elements, 219

framesets, creating, 219-220

HTML frames, JavaScript,
369-372

hyperlinks, 216

index pages, user option,
227

inline frames, 229

interfaces (JavaScript),
370-372

JavaScript, 369-372

managing (animations), 206

modifying, 217

naming, 222-224

new Web pages, loading,
222

outlinks, user option, 228

scroll bars, 217

self-referential URLs, frames
(user option), 228

special

effects, 206

targets, 226

target attribute, 485

targeting, 222-224

transitions, 206-207

unsupported, browsers, 220

URL (Uniform Resource
Locator), 216, 224

user options, 227-229

<frameset>

documents, 216, 370

elements, 219, 490

frameset DTD, framesets (cre-
ating), 490

framesets

* (asterisks), 220

attributes, 224

columns, 219-221

creating, 219-220, 490-492

elements, 220-222

nesting, 224, 492

rows, 219-221

XHTML Frameset DTD, 219

FreeCode, Web site, 457

Freeware Java Chat, Web
site, 455

FrontPage Extensions, 442,
463

FrontPage (Microsoft
FrontPage 2002), 440-444

FTP

servers, 124

sites, hyperlinks, 123

Web site, updating, 54

function

calls, 311, 319-322, 333,
350

keyword, function declara-
tions, 319

functions

advantages, 317

built-in functions, calling,
346

calculations, 319

calling, event handlers, 346

creating, JavaScript, 317-322,
334

declaring, 318-319

getInput() function, looping,
331

invoking, 311

JavaScript, 310-311

properties, DOM (Document
(Object Model), 348

syntax, 318

testing, cross-browsers,
411-413

values, 317-317

variables, 318, 412

G
gateways, forms-to-e-mails

gateways (installing), 301

GeoCities, Yahoo!, 465

get method, form data,
(receiving), 298

getInput() function, looping,
331

GIF (Graphics Interchange
Format)

<button> element, 276

file formats, images, 97

specification, Web anima-
tions, 45

GifBuilder, 45, 205

GIMP (Gnu Image
Manipulation Program),
graphics editor, 44

goals, selecting (Web pub-
lishing services), 462

GoLive (Adobe GoLive),
430-434

Google.com, Web site, 37

Gopher servers, hyperlinks,
124

graphical editors, 44-45

Adobe GoLive, 430-434

CSS positioning, 425

DHTML, 425

Macromedia Dreamweaver,
434-440

HTML 515

Microsoft FrontPage 2002,
440-444

Netscape Composer, 426-429

style sheets, 425

GraphicConverter, 44, 204

hot zones, coordinates, 208

images, 103-106, 111, 202,
205

resolutions, changing, 202

graphics. See images

Graphics Interchange Format.
See GIF

GroupBoard, chat service, 455

guidelines

style guidelines, style sheets,
173

syntax, XHTML, 19

H
<h1>, block element, 480

<h2>, block element, 480

<h3>, block element, 480

<h4>, block element, 480

<h5>, block element, 480

<h6>, block element, 480

handlers

event handlers, 310-311,
344-346

calling, 346

<meta> element, 315,
345-346

HandyHTML, HTML editor, 43

hard returns, adding (text
strings), 346

<head> element, 58, 62-65,
474-475

headers, tables, 153-154

headings

levels, 76

page organization, 76-77

text, 77

Web pages, organizing, 26

heads, HTML documents, 58

height, block appearance
property, 190-191

height attribute (images),
110-111

heights, elements, 191

Hello World example,
JavaScript (creating),
315-317

helper applications

multimedia, 235, 238

Telnet, 125

Web, 9

hexadecimal numbers, color
properties, 188

hidden fields, <input> ele-
ment (HTML forms), 274

hierarchies, creating, 52-53

Hinted QuickTime movies,
243

history subobject, 352

hits, Web pages, 49

home pages, mailto: hyper-
links, 122

HomePage, Apple (tem-
plates), 467

Hometown, Web site, 464

horizontal lines

attributes, 78

HTML forms, 284-285

page organization, 77

hosted

accounts, ISP, 47

CGI scripts, 304

forums, 446, 451-453

hot zones

coordinates, 208

creating, 208-209

images, 207

server-side imagemaps, 211

shapes, 209

HotDog, HTML editors, 43

hotzones, imagemaps, 486

:hover, pseudo classes, 192

<hr /> element, 284-285, 480

href attribute, 210, 484

<html> element (document
element), 474

HTML (Hypertext Markup
Language). See also
Dynamic HTML

authoring (text editors), 42

code, managing, 42

documents, 58, 62-69, 118,
229

editors, 42-44, 54

elements, hiding, 61

empty elements, 18

forms

accessibility, 291-292

attributes, 269

booleans, 273

building guidelines, 282

buttons, 275-276

CGI scripts, 266

client-side JavaScript,
361-365

creating, 269-281

516 HTML

data, 266-267, 281

design, 282

elements, 266

error checking, JavaScript,
357-361

example, 280-281

<form> element, 267-269

formatting, 287-292

horizontal lines, 284-285

identifying, 268

information, sending, 275

<input> element, 270-277

instructional text, 283

JavaScript, 356-365

line breaks, 282-283

menus, 277-278

navigating, 281

paragraphs, 285

processing, values, 274

structure, 289

text fields, 269

frames. See frames

hyperlinks, formats, 118

issues, 36-38

JavaScript, 309

layout, Adobe GoLive, 434

non-empty elements, 18

pages, 127, 171

programming, 17-21

rewriting in XML, 16

scripting, 20-21

slash (/), 18

source

code, 41

HTML documents, defin-
ing (src attributes), 221

specifications, 15-16, 24, 172

standards, 15-16

style sheets, 19

tags, 11

templates, 58-62

validating on Web, 72

versus XHTML, 15-17

W3C (World Wide Web
Consortium), 15

Web protocol, 11-12

XHTML, Web design, 24

html elements, creating, 59

HTML Source mode (Netscape
Composer), 427

HTML Tidy, pages (validat-
ing), 71

HTTP (Hypertext Transfer
Protocol), 10-11, 273

HTTP 1.1, 11

http-equiv attribute, <meta>
element, 127

hyperlinks

absolute URL, 118

adding, HTML documents,
118

anchor elements, 118

<base> element, 117-118

captions, 132

chat, adding, 453

creating, 114, 118

<a> element, 484-485

images, 121

Macromedia
Dreamweaver, 435

same pages, 119-120

files, 119

frames, 216

FTP sites, 123

Gopher servers, 124

hot zones, creating, 209

HTML, formats, 118

images, 121, 207

inserting, Netscape
Composer, 429

mailto:, creating, 122-123

multimedia, 119, 237-239

navigating, sites, 32

nesting, 119

newsgroups, 125

opening, browser windows,
126

organizing, sites, 33-34

relative URL, 118

targeting, 223

Telnet servers, 125-126

URL (Uniform Resource
Locator), 114-116

Web, 12-13, 26

hypermedia links, 235-237

hypertext links. See hyper-
links

Hypertext Markup Language.
See HTML

Hypertext Transfer Protocol
(HTTP), 10-11, 273

I
iChat, Java server option, 454

iCoder, scripting tool, 46

icons, images, 98

id attribute

<form> element, 268

frames, naming, 222

scripting, 478

XML, 119

identifiers, text fields, 270

IDs, dynamic IDs, 419-421

 ELEMENT 517

IE. See Explorer

<iframe> element, 229

if statements, mouseovers
(rollover image), 382

if…else conditional state-
ment, JavaScript (control-
ling), 328

IkonBoard, server-side forum
software, 448

Image

command (Insert menu), 429,
440

menu commands

Crop, 100

Image Information, 111

Resize, 101, 201

Image Information command
(Image menu), 111

Image Properties dialog box,
429

imagemaps, 207-210

<area> element, 209

client-side, creating, 208

creating, usemap attribute,
485-486

definitions, 208-209, 212,
486

hotzones, 486

 element, 209

<map> element, 209

map definition file, 208

server-side, 211, 486

usemap attribute, 208

images

accessing, mouseovers
(Dynamic HTML), 380

adding, element,
483

aligning, 108-109, 146, 484

animated, creating, 205-207

background images, 189

catalog sites, 28

charts (Web pages), 27

classifieds, 28

compression, 202

copying, 97

copyrights, 97

created (Web pages), 27

creating, 99-106

cropping, 100, 103

dimensions, 484

displaying, 209

distorting, Paint Shop Pro,
101

editing applications, tools, 44

exporting, 27

file

formats, 97, 200

size, 99

filenames, 103, 105

floating, 110, 203

hot zones, 207-208

hyperlinks, 121, 207

icons, 98

imagemaps, 207-212

 element, 106-111

improving, 200-205

inline images, 106

inserting

Macromedia
Dreamweaver, 440

Netscape Composer, 429

URLs, 106

interlaced, 203

loading, 99, 103

locating, 96, 106

Macromedia Flash rollover
images (Macromedia
Dreamweaver), 438

managing, graphics editors,
44

mouseovers, Dynamic HTML,
378-380

moving text, 102, 105

naming, 103, 380

objects, images, (preloading),
384

optimizing, 200-202

photos (Web pages), 27

pixels, displaying, 101

preloading, (Dynamic HTML),
383-384

press releases, 28

progressive encoding, 203

purpose, 98

reading, 96

relative URLs, 106

remote images, mouseovers
(Dynamic HTML), 380, 382

replacing, browsers, 108

resizing, 101, 104

rules, 98

saving, 100-105

selecting, 98-99

shrinking, 99

size, 99-100, 111

tables, 27, 146-147

technology, 99

text, 98, 101-105

translating, 97-106

transparency, 203-205

Web pages, organizing,
26-29

 element, 106

alt attribute, 107

attributes, 484

518 ELEMENT

height attribute, 110-111

images, 108-109, 483

longdesc attribute, 108

text (images), aligning,
108-109

width attribute, 110-111

 element, 209

iMovie, Macintosh, 46

implementations, SSI (server-
side includes) implementa-
tions, 458-460

#include command, SSI
(server-side include), 458

includes, server-side includes
(SSI), 458-460

index pages, frames (user
option), 227

index.htm file, 53

index.html file, 53

indexes, documents (frames),
218

Indigo Perl Web site, 306

infinite loops, 330

InfoPop, hosted forum solu-
tion, 453

information

author, address elements, 88

HTML form information,
sending, 275

inheritance

fonts, 186

site-wide style sheets, 255

style sheets, 178

inline

elements, element,
180

frames, 229

images, 106

layers, Netscape (Dynamic
positioning), 407

<input> element

attributes, 271, 493-494

check boxes (HTML forms),
273

creating menus (HTML
forms), 277

forms, creating, 493-494

hidden fields (HTML forms),
274

HTML forms, 270, 273, 276

password entry boxes (HTML
forms), 272

radio buttons (HTML forms),
274

reset button (HTML forms),
275

submit button (HTML forms),
275

text boxes (HTML forms), 271

<ins> element, 89-90, 481

Insert Frames, Empty com-
mand (Animation menu),
206

Insert Frames, From File com-
mand (Animation menu),
206

Insert Image Effect command
(Effect menu), 206

Insert Image Transition com-
mand (Effect menu), 206

Insert menu commands

Form and Insert, Form
Elements, 440

Image, 429, 440

Picture, New Photo Gallery,
441

Table, 429, 440

Web Component, 441, 444

Insert Web Component
Wizard, 444

instances, objects
(JavaScript), 333

instructional text, HTML
forms, 283

integers, value type
(JavaScript), 323

interactive elements, Web
pages, 30

interactivity

adding, Web pages, 20

Web pages, XHTML form ele-
ments, 29

interfaces

consistent, sites, 35

frames (JavaScript), 370-372

Macromedia Dreamweaver,
435, 439

Microsoft FrontPage 2002,
442

Netscape Composer, 428

word processor interface,
Macromedia Dreamweaver,
435

interlaced images, 203

international, site-wide style
sheets, 261-262

internationalization, 37

Internet

addresses, FTP site hyperlinks,
123

computers, connecting, 10

data, bandwidth, 29

history, 8-9

KEYWORDS 519

ISP (Internet service provider).
See ISP

Usenet newsgroups, hyper-
links, 125

Internet Explorer. See
Explorer

Internet Presence Provider
(IPP), 462

interpreted languages (CGI
scripts), 295

intrinsic events. See event
handlers

IPP (Internet Presence
Provider), 462

ISP (Internet service provider)

connections, Internet, 47

DNS (Domain Name Service)
record, 48

lists, Web sites, 47

selecting, 49

server-side forums, 447

Web servers, 47-49

Web sites, updating, 54

italics, fonts, 187

iTools, features, 466

iTools (Apple), free Web pub-
lishing service, 466-467

J
Jasc, Animation Shop (creat-

ing animations), 206

Java, 248-249

advantages, 309

applets, 248-249, 309, 453,
487

browser support, 309

C, 310

JavaScript, 309-310

servers, chat, 454

virtual machine technology,
309

Web counters, 457

JavaScript

= (equal sign), 321

arrays, math, 332

assignment values, 327

backward compatibility, 312

browsers, 308, 365, 367

built-in objects, 336

client-side JavaScript, HTML
forms, 361-365

code, 311

commands, adding, 312

comments, 313

conditions, comparisons, 327

controlling, 327-332

creating, 311-317

cross-browsers, APIs, 417

debugger (Macromedia
Dreamweaver), 438

DOM (Document Object
Model), 347-355

dynamic positioning, 397

errors, 312

event handling, 310-311,
315

events, 344-347

expressions, 322

functions, 310-311, 317-322

HTML, 309

forms, 356-365

frames, 369-372

Java, 309-310

Link menu, 367-369

literals, 322

<meta> element, 315

navigation menu, creating,
367

<noscript> element, 315

objects, 332-341

quotes, 346

script, hiding, 312-313

scripting language, 20

<select> menu, 367

statements, conditions, 327

testing, 311

types, values, 322

user input, alert boxes, 346

users, clicking, 301

value returns, 319-321

variables, 322-325

versus VBScript, 310

JavaScript Developer, script-
ing tool, 46

JavaScript Tools, scripting
tool, 46

JPEG (Joint Photographic
Experts Group), file formats,
97

JPEG-JFIF Compliant com-
mand (Save As Type menu),
202

JPEG/JFIF, command or dialog
box, 202

Jscript, Microsoft, 308

K-L
keywords

function declarations, 319

new, object (JavaScript), 334

search engines, meta ele-
ments, 64

this, 334, 347

520 <LABEL> ELEMENT

<label> element, HTML form
accessibility, 291

lang attributes, 261, 479

languages. See also
JavaScript

CGI scripts, 294-295, 305

internationalization, 37

interpreted languages (CGI
scripts), 295

markup, XML, 16

programming languages,
Java, 248-249

<q> element, quotation
marks, 262

scripting languages, form
data output (parsing), 300

selecting, Web publishing
services, 463

text flow direction, dir
attribute, 262

Web pages, lang atttribute,
261

XML definition, Web pages,
261

<layer> element, 385, 404-
406

layer object, Netscape, 408

layers

accessing, Netscape, 407-408

CSS Positioning, 395-397

Dynamic HTML, 376, 384-
410

inline layers, Netscape
(Dynamic positioning), 407

inserting, Macromedia
Dreamweaver, 440

Netscape (Dynamic
Positioning), 404-407

scripting, Netscape (Dynamic
positioning), 407-410

storing, Netscape, 408

variables, Netscape, 408

visibility, Netscape, 409-410

layout

HTML layout, Adobe GoLive,
434

pages, tables, 144

tables, nesting, 148

Layout

mode, 433, 437

tools (Macromedia
Dreamweaver), 437

<legend> element, HTML
form structure, 289

length

measuring, text style proper-
ties, 186

property, window objects,
351

letter-spacing property, text
style, 185

levels

definition lists, 93

headings, 76

root, URLs (base elements),
63

line

breaks, HTML forms,
282-283

return elements, 68

line-height property, text
style, 185

lines

horizontal, 77-78, 284-285

rendering, tables, 160

<link /> element, style sheets
(linking), 184

Link menu, JavaScript, 367-
369

:link, pseudo classes, 192

linking

MP3 documents, 237

multimedia, 235-237

pages, 13

PDF documents, 236

style sheets, 183-185

URLs, frames, 224

links. See also hyperlinks

CGI scripts, 294

checking, Macromedia
Dreamweaver, 440

hypermedia links, 237

hypertext links. See hyper-
links

multimedia links, linking mul-
timedia, 235

outlinks, frames (user
option), 228

styles, 192

lists

creating, 482-483

definition, 93-94, 483

ending, 92

HTML forms, formatting, 288

items, 92, 482

nesting, 91

ordered, 90-93, 482

pages, 90-94

unordered, 90-93, 482

literals, JavaScript, 322

Local Folder pane
(Macromedia
Dreamweaver), 440

location objects, 352-353

METADATA 521

locations

captions, 132

functions, 318-319

images, src attribute, 106

pages, saving, 70

log files, Web statistics, 455

logical styles, 78, 81-84, 481

looping

animations, 206-207

array values, 331

conditionals, 329-330

getInput() function, 331

JavaScript, controlling,
330-331

Lview Pro, graphics editors,
44

Lycos, Tripod, 465-466

M
machine

code, interpreted languages,
295

name, e-mail addresses, 122

Macintosh, 42-46

MacPerl, Web site, 306

Macromedia

Director, animations (embed-
ding), 236

Dreamweaver

CSS styles, 436

demo, downloading, 435

graphical editor, 434-440

highlights, 439-440

hyperlinks, creating, 435

interfaces, 435, 439

pages, viewing, 436

server-side elements, 438

split-window, 436

strengths, 435-438

tables, creating, 437

transitional DTD, 439

weaknesses, 438-439

word processor interface,
435

Fireworks, graphics editor, 44

Flash

animations, embedding,
236

controls, 247-248

movies, 247-248

multimedia file format,
233

plug-ins, 236

rollover images
(Macromedia
Dreamweaver), 438

tools, 45

Web animations, 45

Studios, 435

Web site, 45

mail. See e-mail

mailto: hyperlinks, creating,
122-123

mailto: option, CGI scripts,
299-301

Maintain Aspect Ratio option
(Resize dialog box), 101

<map> element, 208-209

map definition file, 208

map-editing applications,
MapEdit, 208

MapEdit, map-editing pro-
gram, 208

margin

block appearance property,
190

properties, values, 190

tables, table styles, 194

markup

languages, XML, 16

modifying, Macromedia
Dreamweaver, 440

sites, cleaning up (site-wide
style sheets), 252

Math, built-in object, 336,
339-340

math

arrays, JavaScript, 332

variables, 323-324

Matt’s Script Archive, Web
site, 457

media, streaming media, 243-
245

Media. See Windows Media

menus

bars, Netscape, 428

creating (forms), 495

displaying, HTML forms, 277

HTML forms, 277

Link menu, JavaScript,
367-369

navigation, creating
(JavaScript), 367

Netscape Composer, 428

options, 278

<select> menu, 367, 370

messages, e-mail message
(encoded), 300

<meta> element, 64-65, 127,
315, 475

metadata, adding, 64

522 METAFILES

metafiles, 245-246

method attribute, values, 267

methods

alert() method, window
object (DOM), 351

calling, objects (JavaScript),
336

creating, objects (JavaScript),
335

Date built-in object, 340

document object, 354

document.writeln() methods,
JavaScript (creating), 316

form objects, 357

get method, receiving form
data (CGI scripts), 298

layer objects, Netscape, 408

Math built-in object, 339-340

objects, JavaScript, 332,
335-336

post method, receiving form
data (CGI scripts), 298

reduction (color), 201

 element, 180-182

strings (JavaScript), 337

window object (DOM),
351-352

Microsoft

Dynamic HTML, 376

FrontPage 2002, 440-444

JScript, 308

Office, Microsoft FrontPage
2002, 441

Web site, 377

MIME (Multipurpose Internet
Mail Extension) formats,
CGI scripts, 296

Miva Merchant, 469-470

Miva Script, 470

modes

backward-compatibility,
browsers, 60

compatibility, HTML editors,
44

Layout mode (Macromedia
Dreamweaver), 437

Netscape Composer, 426

Source mode (Adobe
GoLive), 431

mouseovers

Dynamic HTML, 378-384

images, 378-384

psuedo classes, CSS, 497

remote images, Dynamic
HTML, 380-382

Movie Maker, Windows, 46

movies

accessibility, embedded multi-
media, 240

encoding, Windows Media
Encoder, 245

Hinted QuickTime movies,
243

Macromedia Flash movies,
247-248

multimedia tools, 45

poster movies, 242

QuickTime, 236, 241-243,
248

RealMedia movies, 246-247

Windows Media movies,
244-246

Mozilla, Web site, 417

MP3

documents, linking, 237

multimedia file format, 233

MSN Communities, hosted
forum solution, 452

MSN Messenger, chat, 453

multi-line comment,
JavaScript, 313

Multicity, chat service, 454

multimedia

adding, 237-248

displaying, plug-ins, 235

downloading, 233

embedding, 235-237, 242,
487

files, 233-234, 238-239

Gopher sites, 125

hyperlinks, 119

linking, 235-237

Macromedia Flash, 247-248

multimedia, movie accessibil-
ity, 240

plug-ins, 235

RealMedia movies, 246-247

time-based data, 232

tools, 45

viewing, 28

Web pages, 26-30

Windows Media movies,
244-246

N
\n, newline character, 301,

346

name

attribute

<form> element, 268

documents, named sec-
tions (creating), 484

frames, naming, 222

identifiers, text fields, 270

XML, 119

OBJECTS 523

property, window objects,
351

values, radio buttons, 274

named anchors, referencing,
120

names. See also filenames

accounts, e-mail addresses,
122

adding, pages, 64

domain, 48, 122

family names, fonts, 187

filenames, 50, 53-54,
103-105

frames, 222-224

images, 103, 380

JavaScript, 323

machine, e-mail addresses,
122

pages, 63

value names, functions, 318

variable names, 318, 325

namespaces, XML, 59

navigate.html page, frames
interfaces, 370

navigation

menu, creating (JavaScript),
367

objects, browser redirection
(JavaScript), 366

toolbar, tables (inserting),
146

Nearest Color (reduction
method), 201

nesting

framesets, 224, 492

hyperlinks, 119

lists, 91

positioned elements, CSS
Positioning, 392-394

tables, 148, 151-152

Netscape

Commerce Server, 8

Composer, 426-430

DOM (Document Object
Model), 376

Dynamic HTML, 376

dynamic positioning, 400

elements, storing, 400

inline layer (Dynamic posi-
tioning), 407

layers, 404-410

menu bar, 428

mouseovers, 380

Web site, 377

Netscape-style plug-ins,
Windows Media movies,
244

New command (File menu),
206

new keyword, objects
(JavaScript), 334

New Site, Import command
(File menu), 433

New Site, Import from Folder
command (File menu), 433

New York Times, Web site,
26, 165

New, Blank Page to Edit com-
mand (File menu), 426-428

New, Open command (File
menu), 440

New, Page command (File
menu), 443

New, Web command (File
menu), 443

newline character, \n, 346

newsgroups, hyperlinks, 125

next property, history subob-
ject, 352

non-empty elements, 18

non-graphical browsers, 172

<noframes> element, frame-
sets, 220-222

none, rules attribute value,
161

<noscript> element, 315, 477

Notepad, text editor, 41

numbers

JavaScript, 323

hexadecimal numbers, color
properties, 188

inserting, lists, 90

O
<object> element, 241-242,

249, 487

objects

assignment (JavaScript), 334

built-in objects, 336-341

creating, JavaScript, 332-335

document objects, 353-355

floating, tables, 140

form objects, 356-357

function calls (JavaScript),
333

image objects, preloading
images (Dynamic HTML),
384

instances (JavaScript), 333

JavaScript, 332-341

layer objects, 408

location objects, 352-353

524 OBJECTS

methods, 332, 335-336

navigator object, browser
redirection (JavaScript), 366

new keyword (JavaScript),
334

properties (JavaScript), 335

styles, 192

templates (JavaScript), 333

this keyword (JavaScript), 334

values, storing (JavaScript),
333

variables, 333, 350

window object, 351-352

Objects

bar (Macromedia
Dreamweaver), 440

palette (Adobe GoLive), 433

ODBC (Open DataBase
Connectivity), server-side
forums, 446

Open command (File menu),
99, 103

Open File command (File
menu), 70

Open Site command (Site
menu), 439

open() method, window
objects, 352

operating systems, Web
servers, 47

operators

binary operators, variables,
324

comparision operators,
327-328

unary operators, variables,
325

<optgroup> element, menu
options (grouping), 278

options

mailto: option, CGI scripts,
299-301

Maintain Aspect Ratio (Resize
dialog box), 101

menu options, 278

user options, frames,
227-229

Options dialog box, 202

Oracle Small Business, 468-
469

ordered lists, 90-93, 482

organization

audience, sites, 32

sites, planning, 33-35

outlines, tables. See also
frames

outlinks, frames (user
option), 228

output

creating, CGI scripts, 301

form data output, parsing
(scripting languages), 300

overlapping elements, CSS
Positioning, 389-392

P
<p> element, paragraphs

(HTML forms), 285

padding properties, 190

pages. See Web, pages

copyrights, adding, 64

dividing into rows, tables
(example), 162-165

DTD, languages and stan-
dards, 59

editing, 427, 440

elements, Macromedia
Dreamweaver, 440

home, mailto: hyperlinks,
122

HTML, 127, 171

index pages, frames (user
option), 227

interactivity, adding, 20

layout, tables, 144, 148

linking, 13

lists, 90-94

modifying, Microsoft
FrontPage 2002, 443

multiple, displaying, browser
windows (frames), 216

names, adding, 64

naming, 63

new, loading, 65

organizing, 76-78

paragraphs, creating, 67

physical styles, adding, 80

previewing, Netscape
Composer, 430

same pages, hyperlinks (cre-
ating), 119-120

saving, locations, 70

testing, 70-71

titles, 58

URLs, root levels (base ele-
ments), 63

validating, 71

viewing, 82, 436

views, Web statistics, 456

Web, 19-20, 49

XHTML 1.0 Transitional speci-
fications, 60

PageSpinner, HTML editor, 43

Paint Shop Pro

color depth, changing, 200

graphics editors, 44

PREFERENCES 525

hot zones, coordinates, 208

images, 99-103, 111,
202-204

resolutions, changing, 201

palettes

color, 200-201

Objects palette (Adobe
GoLive), 433

Standard/Web-safe (Decrease
Color Depth dialog box),
201

panels

Asset panel (Macromedia
Dreamweaver), 437

Reference panel (Macromedia
Dreamweaver), 436

panes, Local Folder pane
(Macromedia
Dreamweaver), 440

paragraph elements, 66,
84-90

paragraphs

creating, 67

HTML forms, 285

recognizing, browsers, 66-67

parameters, <embed> para-
meters (Windows Media
movies), 244

parsing, form data, 298-300

password entry boxes, 272

paths

DOM paths, scope, 349

file, FTP site hyperlinks, 123

organizing, sites, 35

statements, 14, 51

PDF (portable document for-
mat), 236-237

Perl

CGI script, 295, 301

defined, 49

programming, 306

Perl Monks, Web site, 306

permissions

CGI scripts, 303

forums scripts, 450

multimedia files, 238

PHP, server-side forums, 446

physical styles, 78-80, 480

Picture menu commands

Colors, 201

Resolution, 202

Show Information, 111

Size, Scale, 104

Picture, New Photo Gallery
command (Insert menu),
441

Pixel Size radio button, 201

pixels, 78

creating, columns or rows
(framesets), 220

displaying, 101

elements, positioning (CSS
Properties), 388

images, resizing (Paint Shop
Pro), 101

pixels per inch (ppi), 101

plain-text documents, saving,
40

platforms, selecting (Web
publishing services), 462

Play Animation command
(Set menu), 207

plug-ins

adding, object element, 241

Macromedia Flash, 236

multimedia, displaying, 235

Netscape-style plug-ins,
Windows Media movies,
244

QuickTime plug-ins, 236

RealPlayer plug-ins, attrib-
utes, 247

storing, 235

PNG (Portable Network
Graphics), 97, 276

pointers, DOM, 349-351

polygon, shapes, 210, 486

portable document format
(PDF), 236-237

positioning. See also CSSP
(CSS Positioning)

absolute positioning, nesting
elements (CSS Positioning),
392

background images, 189

Dynamic Positioning,
395-410

elements, CSS Positioning,
384-385, 392-394

relative positioning, CSS
Positioning, 394

post method, form data,
(receiving), 298

poster movies, 242

ppi (pixels per inch), 101

<pre> element, 287-288, 479

Preference, Helpers command
(Explorer menu), 238

preferences

CGI scripts, 304

multimedia files, 239

526 PREFERENCES DIALOG BOX

Preferences dialog box, 429

preformatted text element,
84-85

press releases, images, 28

Preview mode

Adobe GoLive, 433

Netscape Composer, 427

tab, 430

previous property, history
subobject, 352

printing, environment vari-
ables (scripting), 301

procedural programming, 317

programming

HTML, 17-21

languages, Java, 248-249

Perl, 306

procedural programming,
317

scripting, 20

programs

affiliate, Miva Merchant, 469

Java. See Java, applets

progressive encoding,
images, 203

prompt() method, window
objects, 352

properties

alignment properties,
189-191

aural properties, 259-260,
498-499

background properties,
188-189, 497

block appearance, 189-191,
497

CSS2, 174

clip property, CSS Positioning,
386

collection of properties. See
objects

color properties, 188-189

CSS Properties, 385

CSS-defined style properties,
fonts, 186

document object, 353-354

dynamic scripting properties,
417-419

element definitions, 178

font properties, 186-187,
496

form objects, 356

functions, DOM (Document
Object Model), 348

history subobject, 352

location objects, 352-353

margin properties, values,
190

Math built-in object, 339

objects (JavaScript), 335

padding properties, values,
190

setting, elements, 179

table properties, Netscape
Composer, 428

text styles, 185, 496

value property, DOM
(Document Object Model),
349

window object (DOM), 351

z-index property, CSS
Positioning, 389-392

Properties window
(Macromedia
Dreamweaver), 435, 440

proprietary

elements, 172-174

features, Microsoft FrontPage
2002, 443

protocols, 10-14, 114

pseudo classes, 193, 497

Publish Destination dialog
box, 444

Publish Web command (File
menu), 444

Q-R
<q> element, quotation

marks (languages), 262

Quality slider (JPEG/JFIF dia-
log box), 202

QuickTime

Adobe GoLive, 432

embedding, 241-244

encoding, 246

movies, 236, 241-243, 248

multimedia, 45, 433

plug-ins, 236

QuickTime Pro, multimedia
tool, 46

QuickTime Streaming Service,
244

quotation marks (“”)

languages, <q> element, 262

text, 83

URLs, blockquote, 88

quotes, JavaScript, 346

radio buttons

<input> element, HTML
forms, 274

name values, 274

storing (JavaScript), 365

value attribute, 274

values (JavaScript), 364

SCALE DIALOG BOX 527

ranges, cells, 136

readonly attribute, text
fields, 270

RealMedia

animations, embedding, 236

movies, 246-247

plug-ins, attributes, 247

QuickTime, encoding, 246

server, 246

servers, streaming multime-
dia, 246

RealSystem Producer, 246

rect, shapes (hot zones), 209

red-green-blue (RGB), color
property value, 188

reduction methods (color),
201

Reference panel (Macromedia
Dreamweaver), 436

Register.com, Web site, 48

relative

positioning, CSS Positioning,
386, 394

URL (Uniform Resource
Locator), 106, 114-118

Reload button, 71

remote

access servers, logging on,
125

images, mouseovers
(Dynamic HTML), 380-382

rendering

bullet styles, 93

HTML pages, 171

lines, tables, 160

non-standard elements, 60

returns, tables, 134

spaces, tables, 134

tables, 131

reset button, <input> ele-
ment (HTML forms), 275

Resize

command (Image menu),
101, 201

dialog box, 101

resizeTo() method, window
objects, 352

resolution

Adobe GoLive, 432

images, optimizing, 201

Resolution, command or dia-
log box, 202

results, variables (math), 324

return keyword, function
declarations, 319

returns, tables (rendering),
134

RGB (red, green, and blue)

bgcolor attribute, 137

color property value, 188

rich media, file formats, 234

root levels, URLs (base ele-
ments), 63

row-centric table, example,
162-165

rows

attribute, <textarea> box,
270

cells, spanning, 136

color, tables, 136-137

defining, framesets, 221

divided from pages, tables
(example), 162-165

<frameset> element, 219-
220

grouping, tables, 153-155

tables, 130, 193, 489

titles, 130

rules

attribute, 160-161

elements, 177

Netscape Composer, 426

<style> element, 178

table attribute, 138

Run Optimizer (Options dia-
log box), 202

S
Save As

command (File menu), 61,
70, 100, 103-105, 202

dialog box, 103, 207

Save As Type menu com-
mands, JPEG-JFIF Compliant,
202

Save As, GIF command (File
menu), 207

Save

command (File menu), 70,
100, 103

dialog box, 105

Save GIF file dialog box, 207

saving

animations, 206

documents, 40

images, 100-105

Macromedia Flash movies
(QuickTime movies), 248

pages, locations, 70

Scale dialog box, 104

528 SCOPE

scope, DOM (Document
Object Model), 349, 351

<script> element

JavaScript, creating, 312-313

Netscape Composer, 428

script hiding, 477

scripting, 476

scripting

attributes, id attribute, 478

environment variables, print-
ing, 301

HTML, 20-21

languages, form data output,
parsing, 300

layers, Netscape (Dynamic
positioning), 407-410

Lycos Tripd, 465

Miva Script, 470

<noscript> element, 477

programming, 20

properties, dynamic, 417-419

<script> element, 476

styles, dynamic, 417-419

tools, 46

Web sites, 303

scripts. See also CGI, scripts

events, 311

forum scripts, permissions,
450

function declarations, scripts,
hiding, 314

hiding, 313-314

SSI (server-side includes), 459

scroll bars, frames, 217

search, engines or robots, 64

sections, creating (Web docu-
ments), 182

Secure HTTP (SHTTP), 10

security

CGI URLs, server-side forums,
451

forum scripts, permissions,
450

HTTP connections, 273

password entry boxes, 272

<select>

element, 277, 495

menu, 367, 370

Selection tool, 103

selectors, elements, 177

self property, window
objects, 351

self-referential URLs, frames
(user option), 228

semicolons (;), entities, 196

separations, style sheets,
172-173

server-side

elements, Macromedia
Dreamweaver, 438

forums, 446-451

imagemaps, 211, 486

includes (SSIs), 440, 457-460

servers

FTP, 124

Gopher, hyperlinks, 124

Java servers, chat, 454

RealMedia, 246

remote access servers, log-
ging on, 125

Telnet, 125-126

Web, 10, 47-50

services, Web

hosting services, selecting,
462-464

publishing services, 461-463,
467, 470

Set menu commands, 207

Set Palette Transparency,
command or dialog box,
204

Settings command (Set
menu), 207

shape attribute, 209

shapes, hot zones, 209, 486

shared hosting account, ISP,
47

sheets. See style, sheets

Show All Tags mode
(Netscape Composer), 426

Show Information command
(Picture menu), 111

SHTTP (Secure HTTP), 10

SimpleText, text editor, 41

simplicity, accessibility, 37

single-line comment,
JavaScript, 313

Site Definition window
(Macromedia
Dreamweaver), 439

Site

menu commands, 439-440

window, 433, 439

site-wide style sheets

accessibility, 259-261

basic sites, 252-254

design, 252-259

experimentation, 257-259

inheritance, 255

STREAMING 529

international, 261-262

planning, 254-257

sites. See Web, sites

size

buttons, HTML forms, 275

file size, images, 99

fonts, 187

images, 99-100, 111

inline frames, 229

multimedia files, 238

reducing, images, 99

Size command (Format
menu), 428

Size, Scale command (Picture
menu), 104

slash (/), 18

sliders

Compression Factor (Options
dialog box), 202

Quality (JPEG/JFIF dialog box),
202

small-cap introductions, cre-
ating, 193

software

chat server software, chat
(adding), 453

server-side forums, 447-449

Web servers, 47-50

solutions, hosted forums,
451-453

sound, multimedia tools, 46

Sound Forge XP, multimedia
tool, 46

Sound Studio, multimedia
tool, 46

source

code, 41-42, 429-431

files, viewer windows, 223

HTML documents, defining,
src attribute, 221

Source mode, Adobe GoLive,
431-433

space

adding, floating images, 110

tables, rendering, 134

Web servers, accessing, 50

spacing cells, tables, 141

 element, style sheets
(creating), 180-182

special

characters, 195-197

classes, creating (style
sheets), 179-180

effects, frames, 206

entities, 195

language characters, 197

table styles, 194-195

targets, frames, 226

specifications

GIF, Web animations, 45

HTML, 15-16, 24, 172

Web pages, W3C, 30

XHTML 1.0 Transitional, 60

speed

animations (Animation
Maker), 207

frames, 217

Speed command (Set menu),
207

split-window, Macromedia
Dreamweaver, 436

src attribute

images, locations, 106

source HTML documents,
defining, 221

SSI (server-side includes),
458-460

selecting, Web publishing
services, 463

Web counters, adding, 457

SSL (Secure Socket Layers),
selecting, 463

standalone values, check
boxes, 273

standard, in or out (output),
301

Standard/Web-safe palette
(Decrease Color Depth dia-
log box), 201

statements

conditions, JavaScript, 327

if statement, rollover image
mouseovers (Dynamic
HTML), 382

if…else conditional state-
ment, JavaScript (control-
ling), 328

JavaScript, 327

statistics

reporting, Web server soft-
ware, 49

Web statistics, accessing, 455

status property, window
objects, 351

streaming

audio, RealMedia movies,
246

file formats, 235

media, 243-245

video, RealMedia movies,
246

530 STRICT XHTML

strict XHTML, 17

String, built-in object,
336-338

strings

adding, 346

creating (JavaScript), 336

environment variables, 298

indexing (JavaScript), 338

methods (JavaScript), 337

value type, JavaScript, 323

values (JavaScript), 337

structure, HTML forms, 289-
291

<style> element

Netscape Composer, 428

style sheets, creating,
177-179

styles, 477

style

attribute, 176-177, 478

sheets

advantages, 173

attributes, 175

cascading, 178

CSS2, 174

consistency, sites, 35

<container> element, 175

creating, 176-184

defined, 172

definitions, linking versus
embedding, 183-185

elements, 175

 element, 175

formatting, applying, 180

graphical editors, 425

HTML, 19

HTML form guidelines,
282

inheritance, 178

linked, overriding, 184

proprietary elements,
172-174

separations, 172-173

site-wide style sheets,
252-262

style guidelines, 173

tags, separating, 173

theory, 172-176

Web pages, 19, 24

XHTML, 174

styles

assigning, elements, 179

attributes, 478

aural styles, CSS2, 260

bullets, rendering, 93

CSS styles, Macromedia
Dreamweaver, 436

definitions, embedding
(<style> element), 177

dynamic scripting styles,
417-419

embedding, style attribute,
176

emphasis, tables, 85

guidelines, style sheets, 173

implementing, 176

link styles, 192

logical, 78, 81-84, 481

modifying, Web pages (site-
wide style sheets), 252

object styles, 192

overriding, 184

physical, 78-80, 480

special table styles, 194-195

<style> element, 477

table styles, 193

text styles, 185-186

subdirectories, creating (Web
site directory), 50

submit button, <input> ele-
ment (HTML forms), 275

subobjects, 352

summary element, 132

support, browsers, 308-309

surfing, Web (protocols), 10

swapping content, CSSP visi-
bility, 401

syntax

browser redirection
(JavaScript), 366-367

columns, grouping, 155-157

content, swapping (CSSP visi-
bility), 401-403

cross-browsers, layers

switching, 413-416

CSS Positioning, 387-388

CSSP layers, creating,
395-397

default.html, 372

dynamic classes, 420

dynamic positioning,
398-399

elements, overlapping (CSS
Positioning), 389-390

errors, pages (validating), 71

event handlers, 344-346

floating tables, 151-152

framesets, 225, 370

FTP site hyperlink, 123

function calls, 318-322, 348

Gopher server hyperlink, 125

guidelines, XHTML, 19

Hello World, JavaScript (cre-
ating), 315-317

mailto: hyperlink, 122

TECHNOLOGY 531

methods, creating, 335

mouseovers, 378-384

navigate.html, 370-371

nesting tables, 148

Netscape layers, 405,
409-410

newsgroup hyperlinks, 125

positioned elements, nesting
(CSS Positioning), 392-393

scripting styles, text color,
418-419

strings, creating (JavaScript),
336

tables, 158-159, 162-170

Telnet server hyperlink, 126

Web pages, site-wide style
sheets, 253-254

T
<table>

definition, table cells or rows,
489

element, attributes, 488

Table command (Insert
menu), 429, 440

tables

all-page, 144

attributes, 131, 138-141

body, scrolling, 153

borders, 140, 194

captions, 488

cells, 130-136, 141, 148-
150, 489

centering, 140

columns, 130, 146, 155-159,
165-170, 194

creating, 130-137, 145-146,
437, 487-490

descriptions (caption), 132

design, 144-152

directions, international (site-
wide style sheets), 262

displaying, browsers, 130

element, 130-131

emphasis styles, 85

floating, 151-152, 488

floating objects, 140

footers, 153-154

format, 130

frames, 160

headers, 153-154

HTML forms, formatting, 289

images, 27, 146

inserting, 429, 440

lines, rendering, 160

margins, table styles, 194

navigation toolbar, inserting,
146

nesting, fixed widths (cells),
148

outlines. See also frames

pages, 144, 162-165

preformatted text elements,
85

properties, Netscape
Composer, 428

rendering, 131

returns, rendering, 134

row-centric, example,
162-165

rows, 130, 133, 153-155,
193, 489

rules, 160

scrolling, 490

spaces, rendering, 134

styles, 193

tags, 130

text, aligning, 146

titles, 130

white space, 150

widths, 139

tabs

browsers, 86

Colors, 433

Errors, 433

Font Sets, 433

Preview mode, 430

tags

body elements, 65

captions, 132

comment elements, 61

document elements, 58

HTML, 11

separating, style sheets, 173

tables, 130

Talkcity, chat service, 454

target attribute

browser windows, opening
hyperlinks, 126

frames, 223, 485

targeting

frames, 222-224

hyperlinks, 223

special targets, frames, 226

Tasks menu commands,
Composer, 428

<tbody> element, table rows
(grouping), 153

TCP/IP (Transmission Control
Protocol/Internet Protocol),
8-10

technology

audience, sites, 32

forums, 446

virtual machine technology,
Java, 309

532 TELNET

Telnet, 125-126

templates

Apple HomePage, 467

HTML, 58-62

Microsoft FrontPage 2002,
441-443

objects (JavaScript), 333

Templates window (Microsoft
FrontPage 2002), 443

testing

animations, 206-207

CGI scripts, 305

functions, cross-browsers,
411-413

JavaScript, 311

pages, 70-71

text

adding, images, 101-105

aligning, 85, 146

alt attribute, 108

alternative (alt), images
(hyperlinks), 121

anti-aliasing, images, 102

boxes, <input> element,
HTML forms, 271

comment elements, 61

default text, text fields, 269

deleting, 89

editors, 41-42, 305

fields, 269-270

files, ASCII, HTML pages, 58

images, 98

language, 262

flowing, elements, 191

fonts, preformatted text ele-
ments, 85

formatting, preformatted text
elements, 85

headings, 77

hiding, comment elements,
61

 element, 108-109

indenting, 85-87

inserting, 89

instructional text, HTML
forms, 283

moving, images, 102, 105

quotation marks (“”), 83

strings, hard returns, adding,
346

styles, 105, 185-186

styling, 78-84

value, type attribute, 271

<textarea>

box, 270

element, 269, 493

Text button, 101, 104

Text Entry dialog box, 101

<tfoot> element, table rows,
grouping, 153

<thead> element, table rows,
grouping, 153

Text Style command (Format
menu), 428

text-align property, text
style, 185

text-decoration property, text
style, 185

text-indent property, text
style, 185

text-style properties, CSS,
496

text-transform property, text
style, 185

TextEdit, text editor, 41

TextPad, text editor, 42

Theme command (Format
menu), 443

themes, Microsoft FrontPage
2002, 443

Themes dialog box, 443

this keyword

events, JavaScript, 347

objects (JavaScript), 334

thumbnails, Microsoft
FrontPage 2002, 441

TimTyler Solutions, hosted
forum solution, 452

<title> element (<head> ele-
ment), 475

title

attributes, 89

bar, 63

element, adding, 63

titles

columns, 130

creating, suggestions, 63

pages, 58

rows, 130

tables, 130

toolbars

DHTML formatting toolbar
(Microsoft FrontPage 2002),
441

navigation, inserting (tables),
146

tools, 40

Adobe tools, Adobe GoLive,
431

animation, 45

Crop tool, 100

Flash, 45

graphics editors, 44-45

HTML editors, 42-44

VALUES 533

Layout tools (Macromedia
Dreamweaver), 437

Microsoft FrontPage 2002,
441

multimedia, 45

scripting, 46

Selection tool, 103

text editors, 41-42

transparency, 205

validation tools, Netscape
Composer, 427

trailing slashes, HTML or
XHTML, 18

transition effects, frames, 206

transitional

DTD, 229, 439

XHTML, 17

transitions, frames
(Animation Maker), 207

translation, capabilities or
software, 37

Transmission Control
Protocol/Internet Protocol.
See TCP/IP

transparency, 203-205

Trim Selection command (Edit
menu), 103

Tripod, 465-466

type

attribute, 271, 493

value type, function calls,
320

variables, 322

types

event handlers, JavaScript
events, 345-346

forums, 446

values, JavaScript, 322

U
Ulead GIF Animator, anima-

tion tool, 45

Ultimate Bulletin Board,
server-side forum software,
449

UltraDev (Macromedia
Dreamweaver), 438

UltraEdit, text editor, 42

unary operators, variables,
325

Undo Decrease Colors (Edit
menu), 201

Uniform Resources Locators.
See URLs

Unix

CGI script language, 294

example, CGI script, 295

unordered lists, 90-93, 482

URLs (Uniform Resource
Locators)

absolute, hyperlinks, 114-118

advantages, 14

<base> element, 117

CGI scripts, 297

default, 50

destination, 114

DTDs, 60

formats, 13

frames, 216

hosted forums, accessing,
451

hyperlinks, 114

hypermedia links, 237

images, 96, 106

protocols, 14, 114

quotation marks (“”), block-
quote, 88

relative, 106, 118

root levels, base elements, 63

self-referential URLs, frames
(user option), 228

style sheets, linking, 185

Web, 13-14

URLframes, 217

usemap attribute, 208, 485-
486

Usenet newsgroups, hyper-
links, 125

users

input, JavaScript, alert boxes,
346

interactions, CGI scripts, 294

options, frames, 227, 229

special-needs, accessibility, 36

V
Validate HTML command

(Edit menu), 430

validating

HTML on Web, 72

pages, 71

validation tools, Netscape
Composer, 427

value

attribute, radio buttons, 274

property, DOM (Document
Object Model), 349

returns, JavaScript, 319-321

type, function calls, 320

values

256-color value, 188

<button> element, 276

534 VALUES

align attribute, 108

array values, looping, 331

assigning, variables, 321

assignment values, JavaScript,
327

checkboxes (JavaScript), 365

color properties, 188

frame attribute, 160

HTML forms, processing, 274

items, lists, 92

margin properties, 190

method attribute, 267

name values, radio buttons,
274

names, functions, 318

padding properties, 190

passing, functions, 317

radio buttons (JavaScript),
364

rules attribute, 161

standalone values, check
boxes, 273

storing, variable names, 325

strings (JavaScript), 337

text value, type attribute, 271

type, JavaScript, 322

type attribute (<input /> ele-
ment), 493

variables

accessing, objects, 333

arrays, 325-326

assignments, JavaScript, 323

binary operators, 324

declaring, 322-324

decrementing, JavaScript,
324-325

environment variables,
strings, 298

functions, 318, 412

incrementing, JavaScript,
324-325

JavaScript, 322

math, JavaScript, 323

names, 318, 325

naming, JavaScript, 323

Netscape layers, 408

object variables, pointers
(DOM), 350

results, math, 324

type, 322

unary operators, 325

value, assigning, 321

VBScript, 310

vBulletin, server-side forum
software, 449

vertical-align property, text
style, 185

video, streaming video
(RealMedia movies), 246

View menu commands,
Animation, 206

View Source command, SSI
(server-side include), 459

viewer windows, source files,
223

views, page view (Web sta-
tistics), 456

virtual

command, SSI (server-side
includes), 459

machine technology, Java,
309

visibility

CSS Positioning, 400-404

Netscape layers, 409-410

:visited, pseudo classes, 192

void, frame attribute value,
160

VolcanoChat, Java server
option, 454

VSE Animation Maker, 45,
205

W
W3C (World Wide Web

Consortium)

DOM (Document Object
Model), 349, 376

HTML, 15, 24

<layer> element (Dynamic
HTML), 385

recommendations, 16

Web

pages, specifications, 30

site, 185

working drafts, 15

WAV, multimedia file format,
233

Web

addresses. See URLs

browsers. See browsers

communicating, HTTP, 10

components, Microsoft
FrontPage 2002, 444

computer addresses, 9

counters, adding, 457-458

design, 24-25

directories, meta elements,
64

documents, sections (creat-
ing), 182

helper applications, 9

hosting services, selecting,
462-464

hyperlinks, 12-13

WEB-STAT 535

hypertext, 12-13

pages

design fundamentals,
24-31

hits, 49

languages, 261

loading, frames, 222

modifying, site-wide style
sheets, 252

organizing, 25-30

separating, CSS
Positioning, 385

splitting, 216

style sheets, 24

styles, modifying (site-
wide style sheets), 252

URLs, absolute versus rela-
tive, 115

viewing good examples,
30

protocols, 10-12

publishing services, 461-467,
470

servers, 10, 47-50

sites, 51-55

ActivePerl, 306

Analog, 456

Apple, 236

basic, site-wide style
sheets, 252-254

BoardHost, 452

Bravenet, 455

catalog, images, 28

CGI Resource, 303-304

CGIAdmin.com, 457

ChatBlazer, 454

ChatPot, 454

colors, Adobe GoLive, 433

Conferencing on the Web,
447

consistency, style sheets,
35

converting, Macromedia
Dreamweaver, 439

CyberCount, 457

defining, Macromedia
Dreamweaver, 439

DigiChat, 454

Digits.com, 457

Discus, 448

DynAPI, 417

European Computer
Manufacturer’s
Association, 308

Excite, 165

EZBoard, 452

FastCounter, 457

frames, adding, 219-225

FreeCode, 457

Freeware Java Chat, 455

FTP, 123-124

Google.com, 37

Gopher sites, 124

GroupBoard, 455

Hometown, 464

iChat, 454

IkonBoard, 448

importing, Adobe GoLive,
431-433

Indigo Perl, 306

InfoPop, 453

interfaces, consistent, 35

ISP lists, 47

MacPerl, 306

Macromedia, 45

managing, 432, 441

markup, cleaning up (site-
wide style sheets), 252

Matt’s Script Archive, 457

Microsoft, 377

Miva Merchant, 469-470

Mozilla, 417

MSN Communities, 452

Multicity, 454

navigating, 30

Netscape, 377

New York Times, 26, 165

Oracle Small Business, 468

organizing, 33-35

Perl Monks, 306

planning, 31-36

publising, Microsoft
FrontPage 2002, 444

Register.com, 48

scripting, 303

Talkcity, 454

TimTyler Solutions, 452

translation capabilities, 37

Ultimate Bulletin Board,
449

vBulletin, 449

VolcanoChat, 454

W3C, 185

WebBBS, 448

Web-Stat, 457

World Crossings, 453

WWWBoard, 448

YABB (Yet Another
Bulletin Board), 448

Yahoo! Store, 468

Yahoo!, 165

statistics, accessing, 455

surfing, protocols, 10

URL, 13-14

Web Component command
(Insert menu), 441, 444

Web-Stat, Web counter, 457

536 WEBBBS

WebBBS, server-side forum
software, 448

WebDesign, HTML editor, 43

WebObjects, Adobe GoLive,
432

while, looping conditional
(JavaScript), 330-331

white space, tables, 150

width

attribute, 110-111, 140, 148

block appearance property,
190-191

table attribute, 139

widths

columns, 156

elements, 191

fixed widths, cells (tables),
148

Windows

animation tools, 45

Flash tools, 45

graphics editors, 44

HTML editors, 43

Movie Maker, 46

multimedia tools, 46

text editors, 42

windows

browsers, 126, 216, 400

CSS Styles window
(Macromedia
Dreamweaver), 440

objects, 351-352

Properties window
(Macromedia
Dreamweaver), 435, 440

Site Definition window
(Macromedia
Dreamweaver), 439

Site window, 433, 439

split-window, Macromedia
Dreamweaver, 436

Templates window (Microsoft
FrontPage 2002), 443

viewer windows, source files,
223

Windows Media

ActiveX, 245

files, embedding, 236

movies, 244-246

multimedia

file format, 233

tool, 45

streaming media, 245

Windows Media Encoder, 245

Windows Paint Shop Pro. See
Paint Shop Pro

wizards

Banner Wizard, 206

Insert Web Component
Wizard, 444

word processors

HTML documents, creating,
40

interface, Macromedia
Dreamweaver, 435

word-spacing property, text
style, 185

World Crossings, hosted
forum solution, 453

World Wide Web Consortium
(W3C), 15-16

World Wide Web (WWW).
See Web

WWWBoard, server-side
forum software, 448

WYSIWYG (What You See Is
What You Get) editors, 42

X
XHTML (Extensible Hypertext

Markup Language)

elements, HTML form guide-
lines, 282

empty elements, 18

image hyperlinks, borders,
121

interactivity, Web pages, 29

non-empty elements, 18

slash (/), 18

standards, conforming codes,
16

strict, 17

style sheets, 174

syntax guidelines, 19

transitional, 17

versus HTML, 15-17

Web design, 24

well-formed code, 66

XHTML 1.0 Transitional speci-
fications, 60

XHTML Frameset DTD, frame-
sets, 219

XHTML Strict DTD, 60, 93,
313-314

XHTML Transitional DTD, 60,
92, 313-314

XML (eXtensible Markup
Language), 16

definition, language (Web
pages), 261

id attribute, 119

name attribute, 119

namespace, 59

rewriting, HTML, 16

Z-INDEX 537

Y-Z
YABB (Yet Another Bulletin

Board), server-side forum
software, 448

Yahoo!

GeoCities, 465

Messenger, chat, 453

Store, 468

Web

hosting directory sites,
464

site, 165

z-index

elements, layering (CSS
Positioning), 391

property, CSS Positioning,
389-392

